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Abstract

This thesis consists of three self-contained essays that contribute to the literature on macroeco-

nomic forecasting and empirical macroeconomics. The first essay establishes the importance of

good starting conditions (i.e., nowcasts) and terminal conditions (i.e., steady-states or ”stars”)

in obtaining accurate forecasts from vector autoregressive (VAR) models estimated with quar-

terly data. It does so by proposing the technique of relative entropy to tilt the VAR forecast

both in the near term with the survey nowcast and in the long run with the survey long-run

projection. Doing so leads to meaningful gains in multi-horizon forecast accuracy. The gains

in accuracy are made possible because our proposal is an indirect approach to accommodating

structural change and moving end points.

The second essay develops a framework based on the model and density combinations that

generate highly accurate point and density nowcasts of inflation at a daily frequency. We adopt

a novel flexible treatment in the use of the aggregation function to combine density estimates

from a range of mixed-frequency models. The framework permits dynamic model averaging via

weights that are updated based on learning from past performance. Together these features

allow non-Gaussian densities. The accuracy of the density and implied point nowcasts are sig-

nificantly more accurate than the nowcasts from the survey of professional forecasters.

The third essay develops a large-scale unobserved components model to estimate a range

of macroeconomic stars (i.e., terminal points). The model is motivated by economic theory

and empirical features such as time-varying parameters and stochastic volatility. The model

allows for a direct link between the model-based star and long-run survey expectations, which

significantly improves the precision of the model-based estimates of stars. The by-products are

the time-varying estimates of the wage and price Phillips curves, passthrough between prices

and wages, which provide new insights into these empirical relationships’ instability in the US

data.
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Chapter 1

Introduction

1.1 Motivation

Macroeconomic forecasts play a crucial role in the conduct of monetary policy. Monetary policy

is assumed to affect the economy with long and variable lags, and so policymakers need to be

forward-looking, which necessitates the reliance on forecasts. Over time, research has shown

the usefulness of clear communications and transparency in the effectiveness of the monetary

policy. An important component of clear communications involves communicating the outlook

to the public to support policy actions. Accordingly, central banks now routinely publish

their forecasts and give regular press conferences to explain their policy actions. In explaining

their actions, they often refer to their projections. The publication of the forecasts and their

focal role in the deliberations of policy discussions and as a communication device has increased

considerable interest in research related to forecasting and nowcasting macroeconomic variables.

In an influential work, Faust and Wright (2013) illustrate that in forecasting US inflation,

two critical ingredients to obtaining accurate forecasts for inflation are good “jumping-off” point

(i.e., an accurate nowcast) and a reasonable terminal point (i.e., steady-state). Similarly, Wright

(2013) shows using a vector autoregressive (VAR) model that the same two key ingredients,

accurate nowcast and reasonable estimate of steady-state matter, for improving the forecast

accuracy for a host of other macroeconomic variables in addition to inflation. Thus, in a

nutshell, “good” nowcasts and “reasonable” steady states are crucial ingredients to obtaining

accurate macroeconomic forecasts, a point also emphasized by Wright (2019). In addition,

surveys of professional economists, such as Survey of Professional Forecasters (SPF) and Blue-

Chip Economic Indicators (BC), two well-known surveys in the case of the United States, have

shown to be reliable sources for obtaining estimates of both the nowcasts and the (time-varying)

steady states.
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1.1.1 Importance of reasonable steady states

Macroeconomic forecasters often use atheoretical models for forecasting. For example, Ban-

bura, Giannone, and Reichlin (2010) and Koop (2013) show that fixed-parameter large VARs

containing more than 100 variables can work effectively, a finding that has contributed to a

resurgence in the use of VARs in forecasting and policy analysis by both central banks and

private forecasters.

Although computational advances and developments in Bayesian estimation methods have

made solving time-varying parameter VAR models convenient, constant parameter medium-

scale VAR models remain popular due to their ability to generate accurate forecasts. More

important, Aastveit et al. (2017) show that the forecasting accuracy of constant parame-

ter medium-scale VAR is competitive with both a small-scale time-varying parameter BVAR

with stochastic volatility (similar to Primiceri 2005), with a medium-scale time-varying BVAR

(built along the lines of Koop and Korobilis, 2013) and with a regime-switching VAR (Bar-

nett, Mumtaz, and Theodoridis 2014). This finding lends credibility to the use of medium-scale

fixed-parameter VAR models for forecasting, especially given their computational ease relative

to the alternatives.

In fixed-parameter VAR models, the unrestricted long-run forecasts converge to or nearly

to the unconditional mean of the estimation sample (i.e., implied trend or terminal points),

which at times differs substantially from economists’ views of the long-run values for particular

variables. Contributing to this divergence in views is the use of history for model estimation

that may reflect an outdated characterization of the macroeconomic relationships, including

the unconditional means. Furthermore, the entire forecast trajectory would be biased in the

direction of the implied trend estimated in the model over the full sample. This is because the

implied trend of the model increasingly influences the forecasts beyond five quarters. Therefore,

a badly estimated trend (i.e., the steady-state) is the primary source of forecast errors for

medium-term forecasts (as was emphasized by Clark and McCracken, 2008; Clements and

Hendry, 1999).

The long-run forecasts in published surveys of professional forecasters have shown to be rea-

sonable proxies for the underlying trends (steady states) because they adjust to any exogenous

and or underlying shifts in the economy more quickly than the unrestricted long-run model

forecasts (see Kozicki and Tinsley, 1998; Wright, 2013). The quicker adjustment of the survey

expectations stems from the fact the survey participants have at their disposal indicators that

typically are not included in the information set fed into the models, such as information about

the value of the inflation target, central bank communication, and demographic factors.1 The

fact the survey long-run projections are reasonable proxies of steady states motivates Wright

(2013) to rely on survey projections as estimates of the steady-states for his VAR model. The

1It is worth noting that even if these indicators were included as part of the model’s information set, the
time-invariant models such as VARs would extrapolate forward the trends prevailing over the entire estimation
sample, which may not necessarily align with recent developments.
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insights of Wright (2013) motivate our chapter 2, and the results we find echo many of those

reported by Wright. However, imposing steady states on VAR models using the approach of

Wright (2013) requires specifying VAR in a certain way, i.e., deviation from means. As I discuss

shortly, chapter 2 proposes an alternate (arguably more flexible) approach to influencing the

VAR model(s) implied steady states. Specifically, the technique of relative entropy is utilized

to alter the medium- to long-horizon VAR forecast to match the real-time survey long-horizon

forecast.

The interest in the estimates of steady states of macroeconomic variables, often denoted with

“stars” notation, goes beyond forecasting. Their estimates are used for a variety of purposes. For

example, let’s take the steady-state unemployment rate (u-star); its estimates or equivalently

of the potential real GDP (gdp-star) are used to infer the economy’s cyclical position. The

information about the economy’s cyclical position is input in a range of policy decisions, business

decisions about future spending, and the construction of cyclical indicators. For example,

fiscal agencies use the information of steady states to separate fiscal balances into cyclical

and structural components. Similarly, an assessment of the cyclical position is essential in

constructing cyclical indicators, such as cyclical inflation measures (e.g., Stock and Watson,

2020; Zaman, 2019). And combined with information about estimates of the steady-state real

rate of interest (r-star) and steady-state inflation (pi-star), it plays a direct role in the conduct

of monetary policy.

1.1.2 Estimating steady states (stars)

The long-term expectations reported in surveys are a potential proxy for stars. However, to infer

the estimates of the stars, macroeconomists have applied a range of statistical and econometric

methods to observable historical data. These methods range from univariate statistical filters to

multivariate models, including semi-structural time-series models and fully structural dynamic

stochastic general equilibrium (DSGE) models. Economic theory posits that the structural

aspects of the economy, which inform the values of the stars, change slowly. Therefore, methods

that produce estimates of stars that change only gradually have more traction than methods that

give less smooth estimates. According to this criterion, multivariate unobserved components

(UC) models, which are statistical models that use economic theory to frame the empirical

specification, have been shown to provide reasonable estimates of the stars (e.g., Kuttner, 1994;

Laubach and Williams, 2003; Chan, Koop, and Potter, 2016). Hence, they are the dominant

methods for obtaining time-varying estimates of the stars.

However, with few exceptions, the popular multivariate UC models that provide estimates

of time-varying stars focus on a small number of observables, often just two or three, and have a

minimal structure (e.g., Laubach and Williams, 2003). As I discuss later, chapter 4 takes on the

challenge of jointly estimating several macroeconomic stars using a semi-structural time series

model (aka multivariate UC model with a particular structure informed from economic theory).

In principle, proceeding with the joint estimation of a framework that explicitly models the
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objects of interest and permits interactions among them (e.g., stars) can provide more reliable

estimates of the objects compared to approaches that ignore them.

1.1.3 Importance of good nowcasts and their role in forecasting

Like long-run survey projections, which have good forecasting properties, the nowcast estimates

of macroeconomic variables contained in surveys have shown to have good nowcasting proper-

ties. However, since the seminal work of Giannone, Reichlin, and Small (2008) on nowcasting

GDP, a growing literature has focused on developing quantitative methods, which utilizes high-

frequency data in conjunction with low-frequency data, to nowcast macroeconomic variables.

In this literature, the success of the proposed method is typically assessed relative to the survey

nowcasts, in that whether the nowcast accuracy of the proposed method matches the survey.

If it does, then the method is favorably viewed because there are advantages to using a model-

based approach to computing nowcasts. There is an implicit recognition in the literature that

survey point nowcasts are hard to outperform, so methods that rival surveys and or hard to

beat univariate benchmarks are viewed favorably (e.g., Carriero, Clark, and Marcellino, 2015

in the case of real GDP). And methods that outperform surveys attract greater attention and

become the new baseline for subsequent studies (e.g., Knotek and Zaman, 2017 in the case of

inflation).

Forecasters have at their disposal a rich set of empirical models to produce macroeconomic

forecasts. Often these models are estimated with quarterly data to match the frequency of key

variables such as real GDP. However, forecasts are produced at a frequency greater than once

per quarter to account for the flow of high-frequency information. The standard practice to

updating outlook involves augmenting model-based quarterly forecasts with updated nowcasts

informed from external sources. These include surveys, which are updated more than once per

quarter, or external nowcasting models that explicitly link high-frequency data to low-frequency

variables, e.g., real GDP; see Del Negro and Schorfheide (2013), and Knotek and Zaman (2019).

More recently, Kruger, Clark, and Ravazzolo (2017) show that conditioning quarterly fore-

casting models on both the nowcast mean and variance, i.e., uncertainty around the mean, leads

to improvements in multi-horizon forecast (point and density) accuracy compared to the typical

approach of conditioning with nowcast mean only. This improved accuracy translates into an

improved assessment of probability events (and balance of risks around point forecasts), such

as the risk of a recession or probability of deflation in the next X quarters or so.

The past two decades have seen considerable growth in density forecasting and density

nowcasting literature. However, recent work on density nowcasting (based on mixed-frequency

models) has generally focused on real GDP growth and other indicators of real economic activity

(e.g., Aastveit et al., 2014; Carriero et al., 2015). As discussed shortly, one of the contributions

of this thesis (i.e., chapter 3) is to provide a modeling framework to produce density (and

point) nowcasts of inflation at a trading day frequency.
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1.2 Contributions and Unifying Themes

1.2.1 Contributions of this thesis

In light of the discussion above, which emphasizes the usefulness of macroeconomic forecasts and

the estimates of the stars as inputs into the forward-looking monetary policy setting, this thesis

seeks to improve forecasting and allow for a more credible assessment about the “location” of the

stars. Specifically, the thesis develops frameworks to generate accurate forecasts for a range of

macroeconomic variables, highly accurate nowcasts of inflation measures, and credible estimates

of stars, which are of broader interest to macroeconomists. The forecasts and estimates of stars

from these frameworks are shown to be competitive to popular benchmarks. The expectation

is that the frameworks developed in this thesis would prove valuable to anyone interested in

macroeconomic forecasting, including central banks, private institutions, fiscal agencies, and the

public. We note that even though the empirical focus of the thesis is on US data, the modeling

frameworks developed are general enough and so can be applied more broadly. We expect

that the contributions of the essays will appeal to a broad group of empirical macroeconomic

researchers, and we find some evidence of this effect via increasing citations to the working

paper versions of the chapters.

Chapter 2 is titled “Combining survey long-run forecasts and nowcasts with BVAR fore-

casts using relative entropy.” This chapter constructs hybrid forecasts that combine forecasts

from vector-autoregression (VAR) model(s) with both short and long-term expectations from

surveys. Specifically, we use relative entropy to tilt one step ahead, and long-horizon VAR

forecasts to match the nowcast and long-horizon forecast from the Survey of Professional Fore-

casters. Kruger, Clark, and Ravazzolo (2017) [KCR] use relative entropy to generate conditional

forecasts with moment conditions that match survey forecasts using the short-term forecast from

the survey as the mean condition on a one-step-ahead VAR forecast. They construct variance

conditions around their mean conditions using ex-post real-time survey nowcast errors. The

second chapter of this thesis extends the work of KCR: in addition to tilting the VAR forecast

in the nowcast quarter, we also tilt the medium-to long-horizon forecast from the VARs to

match the long-horizon forecast reported in the external survey of forecasters, the SPF. We

consider a variety of VAR models ranging from simple fixed-parameter to time-varying param-

eters. The results across models indicate meaningful gains in multi-horizon forecast accuracy

relative to model forecasts that do not incorporate long-term survey conditions. Accuracy im-

provements are achieved for a range of variables, including those not directly tilted but affected

by spillover effects from tilted variables. The accuracy gains for hybrid inflation forecasts from

simple VARs are substantial, statistically significant, and competitive to time-varying VARs,

univariate benchmarks, and survey forecasts. We view our proposal as an indirect approach to

accommodating structural change and moving endpoints.

We note that the by-product of our chapter is a rich set of forecasting results confirming

evidence documented in earlier papers: (1) Banbura, Giannone, and Reichlin (2010) and Koop
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(2013), in that medium-scale VARs generate more accurate forecasts than small-scale VARs;

(2) Clark (2011) and Koop and Korobilis (2013), in that allowing for stochastic volatility helps

improve forecast accuracy; (3) D’Agostino, Giannone and Gambetti (2013), in that stochastic

volatility helps more than time-varying parameters in forecasting macroeconomic variables; (4)

Kruger, Clark, and Ravazzolo (2017), conditioning on nowcast mean and nowcast variance leads

to spillover effects in the form of improved accuracy for further out horizons.

Chapter 3 is titled “Real-Time Density Nowcasts of US Inflation: A Model-Combination

Approach.” Recent work on density nowcasting (based on mixed-frequency models) has gener-

ally focused on real GDP growth and other indicators of real economic activity. This chapter

develops a flexible modeling framework to produce density nowcasts for US inflation at a trading-

day frequency. Our framework: (1) combines individual density nowcasts from three classes of

parsimonious mixed-frequency models; (2) adopts a novel flexible treatment in the use of the

aggregation function; and (3) permits dynamic model averaging via the use of weights that

are updated based on learning from past performance. Together these features provide density

nowcasts that can accommodate non-Gaussian properties. We document the competitive prop-

erties of the inflation nowcasts generated from our framework using high-frequency real-time

data over the period 2000-2015. As shown in chapter 2 and KCR, conditioning macroeconomic

models with nowcast means and nowcast densities (informed from external sources) lead to

improvements in the accuracy of multistep point and density forecasts, especially inflation. The

framework developed in chapter 3 provides a potential source of nowcast mean and nowcast

density estimates for inflation.

Chapter 4 is titled “A Unified Framework to Estimate Macroeconomic Stars.” This chap-

ter takes on the challenge of developing a flexible semi-structural time series model to estimate

jointly several macroeconomic stars, i.e., unobserved long-run equilibrium levels of output (and

growth rate of output), unemployment rate, the real rate of interest, productivity growth, price

inflation, and wage inflation. For each star, we formulate a rich structure whose elements are

motivated by economic theory and, in part, by the empirical features necessitated due to the

changing economic environment. Following recent literature on inflation and interest rate mod-

eling, we explicitly model the links between survey long-run expectations and stars to improve

the stars’ econometric estimation. We allow for time variation in the important macroeconomic

relationships and the error variances (aka stochastic volatility). Clark (2011), among many

others, highlights the importance of allowing for stochastic volatility in macroeconomic models.

Permitting time-varying relationships between model components will potentially lead to more

credible estimates and are arguably less susceptible to the Lucas critique. The by-products are

the time-varying estimates of the wage and price Phillips curves, passthrough between prices

and wages, changing procyclicality of labor productivity, and persistence in price and wage in-

flation dynamics, which provide new insights into the instability of these empirical relationships

in US data. To tractably estimate our large multivariate model, we use a recently developed

precision sampler that relies on Bayesian methods. Generally, the contours of our stars echo
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those documented elsewhere in the literature, which employs smaller models, but at times are

different, and these differences can matter for policy. Furthermore, our estimates of the stars are

among the most precise. Lastly, we document the competitive real-time forecasting properties

of our model and, separately, the stars’ estimates if they were used as steady-state values in

external models.

1.2.2 Unifying themes across chapters

Even though chapters 2, 3, and 4 of this dissertation are independent, they all share several

themes: improving inflation prediction and or trend measurement, accounting for model uncer-

tainty, providing role to survey expectations, and modeling changing economic environment.

The three chapters of the thesis contribute to inflation forecasting and trend estimation:

(1) the contribution of chapter 2 includes proposals to generate highly accurate (point and

density) forecasts of inflation using a range of VAR models; (2) Chapter 3 focuses on producing

high quality (point and density) inflation nowcasts using a range of mixed-frequency models;

and (3) the contribution of chapter 4 includes production of credible estimates (both point and

precision) of trend inflation using UC models.

In macroeconomic analysis, accounting for model uncertainty is crucial to the credibility of

the analysis. In the literature, several strategies have been entertained to account for model

uncertainty, and the same is the case for the three chapters of this thesis. In chapter 2, the

efficacy of the proposed method to construct hybrid forecasts (i.e., the combination of model

and survey forecasts) is examined across a range of VAR models, about 10 in total reflecting

the numerous models in use. In chapter 3, model uncertainty is accounted for by combining the

estimates of density nowcasts from many different models to construct a combined (composite)

estimate. In chapter 4, model uncertainty is highlighted by estimating the baseline model and

fifteen additional model specifications to assess the empirical support for numerous features

embedded in the baseline model.

Another unifying theme is the role of survey projections. In both the second and fourth

chapters, the information from the survey of professional economists plays a crucial role. In the

second chapter, the model-based forecasts for a select number of variables are augmented in the

near-term and the longer-term with survey expectations, resulting in improved forecast accuracy

(via spillover effects) for all the forecast horizons considered and for a range of macroeconomic

variables. Hence, information from surveys is an essential input to the forecasting models. In

the fourth chapter, survey long-term expectations play a vital role in improving the precision

and plausibility of the model-based estimates of stars, i.e., the long-run equilibrium values. In

the third chapter, the inflation nowcasts reported in the survey (SPF) – or estimated using the

variance of the past historical errors – are treated as a benchmark; the nowcasting accuracy of

the framework developed is assessed relative to this benchmark.

There is widespread recognition that macroeconomic relationships evolve, and so methods

that either implicitly or explicitly account for these changing relationships have greater appeal.
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The strategy employed to account for the changing economic relationships varies across the three

chapters. In chapter 2, our (hybrid) proposal, which anchors model-based forecasts towards

survey nowcasts and long-term projections, is a post-estimation procedure to accommodating

structural change and moving endpoints in the model-based forecasts. The fact that survey

participants have access to a large information set, the patterns gleaned from it can help shape

their opinions, including any perceived structural change, which can immediately influence their

expectations about the long-run. In chapter 3, we combine evidence (i.e., density nowcasts) from

a range of models that in principle should provide insurance in the face of “future uncertainties”

about specifications as it will be more robust to “structural instabilities” (see Durlauf and Vahey,

2010). In empirical studies, approaches that combine estimates from a rich set of models in a

dynamic fashion (i.e., where weights assigned to individual models are allowed to vary over time)

explicitly recognize that economic relationships, which models seek to capture, are evolving.

And at any given point in time, some models would do a better job than others. In chapter 4,

the modeling framework developed explicitly models time-variation in parameters assumed to

capture important macroeconomic relationships and error variances.

1.2.3 Layout of chapters and status

The three subsequent chapters are packaged such that they are self-contained. Each chapter

has its introduction, results with tables and figures, and footnotes. The corresponding sup-

plementary appendices are relegated to the end. In addition, all the references corresponding

to each of the chapters are compiled into one section labeled Bibliography. As of June 2021:

chapter 2 is published in the International Journal of Forecasting; chapter 3 is under review and

is available both as a Cleveland Fed working paper and a Strathclyde discussion paper; chapter

4 is under preparation for submission to a journal.

Chapter 2 (tilting VAR forecasts to surveys) is a co-authored work with Ellis W. Tallman.

I did most of the work, including writing the first draft and all the empirical work. My co-

author, Ellis, assisted with valuable edits to improve the exposition of the draft. Ellis taught me

the technique of relative entropy by meticulously going over his Matlab code from his paper,

Robertson, Tallman, and Whiteman (2005). Chapter 3 (density nowcasting inflation) is co-

authored work with Edward Knotek II. Again, I did most of the work and wrote the first

and second drafts of the chapter. My co-author, Edward, who is particular about writing,

contributed by editing and validating the draft to streamline the paper’s exposition. This

chapter substantially builds on my earlier work with Edward on inflation nowcasting (Knotek

and Zaman, 2017). Edward proposed the need to construct density estimates around our point

nowcasts from our earlier work. How to go about doing it, i.e., nowcasting via combining density

nowcasts from many different models, is what I contributed to in the conceptualization phase.

I was familiar with the density combination work by the Norges bank economists (e.g., Aastveit

et al., 2014) and by Anthony Garratt, James Mitchell, and Shaun Vahey (2014). I thought

that applying their methods to density nowcasting inflation (using mixed-frequency models)

23



would be a fruitful avenue. Chapter 4 (joint estimation of macroeconomic stars), which is

solo authored, is under preparation for submission to a journal and soon will be available as a

Cleveland Fed working paper and a Strathclyde discussion paper.
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Chapter 2

Combining Survey Long-Run

Forecasts and Nowcasts with BVAR

Forecasts Using Relative Entropy

Based on the paper: Tallman, E.W. and Zaman, S. (2020). Combining survey long-run forecasts

and nowcasts with BVAR forecasts using relative entropy, International Journal of Forecasting,

36(2): 373-398

2.1 Introduction

Macroeconomic forecasters often use atheoretical models for forecasting. Banbura, Giannone,

and Reichlin (2010) show that large fixed-parameter VARs that contain more than 100 variables

can work effectively, a finding that has contributed to a resurgence in the use of VARs for

forecasting and policy analysis by both central banks and private forecasters.

This paper proposes a technique for adjusting the forecasts of the implied trends from a

VAR toward (plausible) values proposed by judgmental forecasters. Specifically, we utilize the

technique of relative entropy to alter the medium- to long-horizon VAR forecast to match the

real-time survey long-horizon forecast.

The long-run forecasts contained in published surveys of professional forecasters are reason-

able proxies for the underlying trends because they adjust to any exogenous and/or underlying

shifts in the economy more quickly than the unrestricted long-run model forecasts (e.g. Kozicki

& Tinsley, 1998; Faust & Wright, 2013; Wright, 2013). The quicker adjustment of the survey

expectations stems from the fact the survey participants have at their disposal indicators that

typically are not included in the information set fed into the models, such as information about

the value of the inflation target, central bank communication, and demographic factors.

In fixed-parameter VAR models, the unrestricted long-run forecasts converge to or nearly

to the unconditional mean of the estimation sample (i.e., implied trend or ‘end points’ in the
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terminology of Kozicki & Tinsley, 1998), which at times differs substantially from economists’

views of the long-run values for particular variables. Contributing to this divergence in views

is the use of history for model estimation that may reflect an outdated characterization of

the macroeconomic relationships, including the unconditional means. Furthermore, the entire

forecast trajectory would be biased in the direction of the implied trend estimated in the

model over the full sample. This is because the forecasts beyond five quarters are increasingly

influenced by the implied trend of the model, and therefore a badly estimated trend is the

primary source of forecast errors for medium-term forecasts (as was emphasized by Clements

& Hendry, 1999; Kozicki & Tinsley, 2001a,b; Clark & McCracken, 2008).

Econometricians have addressed the misspecification issues that arise from structural changes

by introducing various innovations to standard VAR models, such as time-varying parameters

(e.g. Cogley & Sargent, 2005; Primiceri, 2005). These models appear to do well for forecast-

ing variables that exhibit notable structural shifts (e.g. D’Agostino, Giannone, & Gambetti,

2013). These models have become popular as the computational demands of operating them

have become less binding, due to both the availability of greater computing power and the

introduction of newer methods. The latter advantage has also allowed the potential for esti-

mating these models with larger information sets (e.g. Koop & Korobilis, 2013). However,

these models are complex (as there are so many moving parts involved) and require a certain

level of sophistication, which limits their wider use.

Some practitioners in the US and other advanced economies estimate VAR models using

data starting in 1985, i.e., after the well-documented structural change. Empirical evidence

documenting the good forecasting ability of VAR estimated with shorter samples (e.g. Aastveit,

Carriero, Clark, & Marcellino, 2017) supports this practice.

We account for the numerous models that are in use by considering the efficacy of our pro-

posal in a range of VAR models. Specifically, we consider a constant-parameter VAR estimated

with both a longer sample (starting in 1959) and a shorter sample (post-1985), and a time-

varying VAR. We consider model specifications both with and without stochastic volatility, and

perform our assessment on both small-scale and medium-scale VARs. All in all, our model

space consists of 10 models.

We use relative entropy to combine the VAR forecasts with the forecasts reported in the

Survey of Professional Forecasters (SPF). The technique has gained widespread use in combining

model-based forecasts with external information since its application to economic forecasting

by Robertson, Tallman, and Whiteman (2005). This increasing usage stems mainly from its

ease of use, computational ease, and flexibility; it allows the forecaster to combine appropriately

both the mean condition and the modeler’s confidence in that mean condition (i.e., variance),

as illustrated by Krüger, Clark, and Ravazzolo (2017; KCR hereafter).

KCR use relative entropy to generate conditional forecasts with moment conditions that

match survey forecasts using the short-term forecast from the survey as the mean condition

on a one-step-ahead VAR forecast. They construct variance conditions around their mean
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conditions using ex-post real-time survey nowcast errors (using a rolling window over a pre-

forecast evaluation sample). This chapter extends the work of KCR: in addition to tilting the

VAR forecast in the nowcast quarter, we also tilt the medium- to long-horizon forecast from

the VARs to match the long-horizon forecast reported in the external survey of forecasters, the

SPF. Our methodology parallels that of Altavilla, Giacomini, and Ragusa (2017), who also use

the relative entropy to tilt the segments of the yield curve forecasts from the term structure

models so as to match survey expectations.1

Two popular approaches to influencing VAR forecasts directly using survey long-run fore-

casts are: (1) a steady-state BVAR (developed by Villani, 2009), which Wright (2013) uses to

show that prior beliefs regarding the unconditional mean of the variable that are informed by

a survey’s (Blue Chip) long-run forecasts lead to systematic improvements in forecast accuracy

for a range of U.S. macroeconomic variables, especially for inflation; (2) modeling some or all

VAR variables in ‘gaps’, where gaps are computed as deviations from the trends informed by ei-

ther survey long-run projections or univariate moving average methods (e.g. Kozicki & Tinsley,

2001a,b; Clark & McCracken, 2010; Zaman, 2013). The crucial difference between our approach

and these existing approaches is that our approach influences the forecasts’ post-model estima-

tion. The insights of Wright (2013) motivate our study, and the results in this chapter echo

many of those reported by Wright.2

Our main question of interest is whether we can achieve any meaningful gains in the forecast

accuracy of the VAR variables over the forecast horizons that are of interest to policymakers

by forcing the medium-term to long-horizon forecasts of a select number of VAR variables to

match the published survey forecasts. Essentially, the forecast of interest is a hybrid forecast

that consists of a survey nowcast,3 a BVAR forecast, and a survey long-horizon forecast.

Our empirical forecast evaluation results provide evidence of notable improvements in both

the point and density forecast accuracies of hybrid VAR forecasts for several macroeconomic

variables. All of the models in our set benefit from being combined with survey information;

not surprisingly, the accuracy gains are largest for the model specifications estimated with a

longer sample and smallest for time-varying VARs, but all gains are statistically significant.

This result indicates that tilting helps to mitigate misspecification issues more in models that

are thought to have a higher degree of misspecification (caused in part by badly estimated

unconditional means). On a related note, we find that all models benefit from tilting in the

post-crisis period, a period that is associated with structural change (see Aastveit et al., 2017).

The accuracy gains are achieved not only for variables that are tilted directly, but impor-

1The empirical application in this chapter fits within the broader context in the use of relative entropy for
‘theory-coherent forecasting’, as proposed by Giacomini and Ragusa (2014). In our case, the use of survey long-
run forecasts as a proxy for trends can be viewed as adjusting the forecasts from atheoretic VAR models toward
long-run equilibrium values that are informed partly by economic theory.

2In a related work, Giannone, Lenza, and Primiceri (2019) propose a natural conjugate prior (denoted PLR)
for influencing the joint long-run behavior of the VAR variables modeled in levels.

3There is a long list of papers documenting the usefulness of nowcasts for helping improve the forecasting
accuracy for future horizons (e.g., KCR; Knotek & Zaman 2019).
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tantly also for variables that are influenced indirectly through the spillover effects of the tilted

variables (e.g. wage inflation and payroll employment). Over the forecast horizons that are of

interest to monetary policymakers (i.e., 1 to 12 quarters ahead), the gains in forecast accuracy

are strongest for inflation and the federal funds rate. We infer that the apparent structural break

in inflation and the extended experience of the federal funds rate near the zero lower bound

(ZLB) are the crucial challenges, especially in VAR models estimated with fixed coefficients.

We summarize additional findings as follows. First, we show that the point forecast accuracy

of hybrid CPI inflation forecasts from our modeling approach is competitive with those of tough-

to-beat univariate benchmark models. The forecasts are also competitive with those of SPF and

the Federal Reserve’s Greenbook. Our results make a practical contribution to policymakers.

Monetary policymakers desire to use multivariate model(s) which allow for feedback effects from

policy to the real economy and inflation. However, often these multivariate models are unable

to match the forecasting performances of the univariate forecasting models. The application in

this chapter provides one potential path.

Second, we show that hybrid forecasts generated from simple VARs estimated with post-

World War II data are competitive with the forecasts generated from computationally-intensive

time-varying VARs. For inflation, the hybrid forecasts are more accurate and the gains are

statistically significant. This result is of practical importance for practitioners who are reluctant

to use time-varying VARs for a variety of reasons, including computational reasons, complexity

issues, and shorter data samples (a primary concern in the case of developing and emerging

market economies).

The chapter is structured as follows. The next section describes the data and empirical

models. Section 2.3 compares the survey long-run forecasts with the BVAR model long-run

forecasts. Section 2.4 details our methodology for generating the hybrid forecasts. Section

2.5 reports the forecasting results. Section 2.6 concludes. Supplementary sets of results are

reported in the companion appendix A.

2.2 Data and the Empirical Model

2.2.1 Data

Our empirical examination uses real-time data at a quarterly frequency. Our model space

contains small VARs (denoted Small VAR) that consist of five variables and medium-sized

VARs (denoted Medium VAR) that consist of 10 variables. The Small VAR consists of real

GDP, the CPI, the unemployment rate, the effective federal funds rate, and the credit spread

(defined as the difference between the yield on Baa corporate bonds and the yield on the 10-

year Treasury note). Both real GDP and the CPI enter in annualized quarterly rates, and

the remaining three variables (the unemployment rate, the effective federal funds rate, and

the credit spread) are defined in units of percentage points. We use a Small VAR because

several papers on VAR forecasting employ it as a benchmark VAR that contains core variables

28



that are of interest to central bankers. The Medium VAR adds to the Small VAR variables

that have been shown to be useful in improving forecasts of the core variables. Forecasts of the

additional variables may be of their own interest to central bankers, such as productivity growth

and wage inflation measures, for example. Specifically, these additional five variables include

real personal consumption expenditures, nonfarm business productivity, the employment cost

index–wage and salary of private workers (ECI), nonfarm payroll employment, and the core CPI

(i.e., the CPI excluding food and energy). All of these variables are transformed to quarterly

annualized growth rates. We compute the growth rates using 400 times the log difference

formula.

We construct our real-time quarterly data set using both the Federal Reserve Bank of

Philadelphia’s real-time data set for macroeconomists and the Federal Reserve Bank of Saint

Louis’s ALFRED database. Quarterly data on financial variables, which are real-time by con-

struction, are downloaded from Haver Analytics.

All vintages of real-time quarterly data coincide with the survey date of the SPF, which is

a quarterly survey that is released approximately in the middle of the second month of each

quarter. That is, each forecast origin coincides with the SPF survey release date, so whatever

quarterly data are available are utilized for estimation. For example, consider the forecast origin

in February 2016: for real GDP, the advance estimate for 2015.Q4 would be used (reported by

the Bureau of Economic Analysis in the last week of January 2016); for monthly variables such

as the unemployment rate, it will be the second estimate for 2015.Q4 (reported by the Bureau

of Labor Statistics in early February 2016). The real-time vintages start in 1994.Q1 and end

in 2016.Q4. In each real-time vintage, the data sample begins in 1959.Q4; in the 1994.Q1

vintage, the data sample ends in 1993.Q4; in the last vintage (i.e., 2016.Q4), the data sample

ends in 2016.Q3. The first real-time forecasting run is performed with estimation data ending

in 1993.Q4, and out-of-sample forecasts are generated one to twelve quarters ahead, i.e., for

1994.Q1 to 1996.Q4.

For the purpose of forecast evaluation, we treat the ‘truth’ as the third quarterly estimate

(as per Tulip, 2009).4

We collect the SPF nowcasts and SPF long-horizon forecasts for real GDP growth, CPI

inflation, and the unemployment rate. The SPF does not report nowcasts or long-run forecasts

for the federal funds rate, but it does report long-run forecasts for the 3-month Treasury bill.

Accordingly, we treat the long-run forecast for the 3-month bill as the long-run estimate of

4For example, in the case of real GDP, the third estimate for 2015.Q4 would correspond to the actual value
available as of early 2016.Q2. Similarly, for the unemployment rate, which is a monthly variable, the third
quarterly estimate for the reference quarter (e.g. 2015.Q4) would coincide with the third revision to the final
month of the quarter (e.g. December 2015), which will be roughly the first week of the second quarter following
the reference quarter (e.g. 2016.Q2). We emphasize that our results for relative scores would have been similar
both qualitatively and quantitatively if we had treated the ‘truth’ as the latest available estimate instead. For
the results for the Medium VAR, please refer to the working paper version of this chapter (Tallman & Zaman,
2018). We use Haver Analytics to collect the most revised quarterly data for forecast evaluation (i.e., the vintage
available as of August 2017).
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the federal funds rate.5 For the nowcast, we construct an estimate using the intra-quarterly

daily data on the federal funds rate along with the simple daily random walk model of Knotek

and Zaman (2019).6 We collect the daily data starting from January 1, 1994, to December 31,

2016, using Haver Analytics. For illustrative purposes, we also collect the long-run projections

from Blue Chip Economic Indicators (and Blue Chip Financial Forecasts), the Federal Open

Market Committee’s (FOMC) Summary of Economic Projections (SEP). For the formal forecast

evaluation exercises reported in the chapter, we use nowcasts and long-horizon forecasts from

the SPF.

Finally, we assess the accuracy of the Federal Reserve Board’s Greenbook forecasts by

collecting forecasts for real GDP, CPI inflation, and the unemployment rate (from the January

1994 FOMC meeting to the December 2012 meeting) from the Philadelphia Fed’s website (Real-

Time Data Research Center).

2.2.2 Bayesian VAR models

All empirical examinations in this chapter use VAR models estimated with Bayesian meth-

ods. We consider both fixed-parameter and time-varying parameter models (with and without

stochastic volatility). Following a long list of papers on forecasting with VARs, the lag order

(p) is set to four in the case of fixed-parameter VARs and two in the case of time-varying VARs.

Our model specifications follow Clark and Ravazzolo (2015).

VAR with constant volatility

This model is defined as

Yt = A0 +

p∑
i=1

AiYt−i + εt, εt ∼ N (0,Σ) , (2.1)

where t = 1, . . . T , Yt is an n×1 vector of n observed variables, A0 is an n×1 vector of intercepts,

A1, . . . Ap are n× n matrices of coefficients, and εt is an n× 1 vector of error terms distributed

normally with zero mean and variance-covariance matrix Σ = Eεtε
′
t.

For estimation details, please refer to the technical appendix A0.

VAR with stochastic volatility

The stochastic volatility process is modeled using the estimation procedure of Carriero, Clark,

and Marcellino (2016). The algorithm assumes a Kronecker structure for the multivariate

5Historically, there is a small gap between the two, with the federal funds rate averaging roughly 30 basis
points higher than the 3-month Treasury bill on a quarterly basis.

6The procedure involves using the available daily reading as of the SPF survey date to fill the missing trading
days of the quarter. The average of the daily readings (which includes the daily data and the random walk
forecast) within the quarter constitutes our nowcast estimate.
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stochastic volatility, and thus makes it feasible computationally to estimate large VAR models.

Yt = A0 +

p∑
i=1

AiYt−i + εt

εt = B−1Λ0.5
t µt, µt ∼ N (0, In) , Λt ≡ diag(λ1,t, . . . , λn,t)

log(λj,t) = log(λj,t−1) + ej,t, j = 1, n

et ≡ (e1,t, . . . , en,t)
′ ∼ N (0,Φ)

Σt ≡ V ar(εt) = B−1Λt ´B−1,

(2.2)

where B is a lower triangular matrix with ones on the main diagonal and nonzero elements

below it; λ1,t, . . . , λn,t are the diagonal elements of the matrix Λt, representing the time-varying

variances of the shocks, and are assumed to evolve according to a geometric random walk; the

variance-covariance matrix Φ of innovations et is assumed to be of full rank, i.e., correlations

among innovations of different equations is permitted; and the Σt is the variance-covariance

matrix of the reduced form residuals εt.

For complete estimation details, please refer to Carriero et al. (2016).

Time-varying parameters VAR with constant volatility

The specification follows the same setup as per Cogley and Sargent (2005), but allows only re-

gression coefficients (including the intercepts) to be time-varying, and so does not allow stochas-

tic volatility.

Yt = X ′tAt + εt, εt ∼ N (0,Σ)

At = At−1 + εt, εt ∼ N (0, Q) ,
(2.3)

where Xt = In ⊗ [1, Y ′t−1, . . . , Y
′
t−p], and At = vec(A0, A1, . . . , Ap) is a n(k)× 1 column vector.

The VAR coefficients stacked in the vector At are assumed to evolve independently according

to a random walk with shocks εt that are permitted to be correlated across equations (i.e., Q

is of full rank).

For estimation details, please refer to Koop and Korobilis (2010).
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Time-varying parameters VAR with stochastic volatility

The specification follows exactly the setup laid out by Primiceri (2005), but the estimation

procedure follows Del Negro and Primiceri (2015).

Yt = X ′tAt + εt, εt ∼ N (0,Σ)

At = At−1 + εt, εt ∼ N (0, Q)

βt = βt−1 + νt, νt ∼ N (0, R)

εt = B−1
t Λ0.5

t µt, µt ∼ N (0, In) , Λt ≡ diag(λ1,t, . . . , λn,t)

log(λj,t) = log(λj,t−1) + ej,t, j = 1, n

et ≡ (e1,t, . . . , en,t)
′ ∼ N (0,Φ)

Σt ≡ V ar(εt) = B−1
t Λt

´B−1
t ,

(2.4)

where Bt is a lower triangular matrix with ones on the main diagonal and non-zero elements

below it; βt is a column vector that stacks (by row) off-diagonal and non-zero elements of

matrix Bt, and is assumed to evolve according to a random walk with innovations that are

permitted to be correlated across equations; VAR coefficients stacked in the vector At are

assumed to evolve independently according to a random walk with shocks that are permitted

to be correlated across equations; λ1,t, . . . , λn,t are the diagonal elements of the matrix Λt that

represent the time-varying variances of the shocks, and are assumed to evolve according to a

geometric random walk; the variance-covariance matrix Φ of innovations; et is assumed to be

of full rank, i.e., correlations among innovations of different equations are permitted; and Σt is

the variance-covariance matrix of the reduced form residuals εt.

Model set

VAR models are commonly estimated using either a longer history (e.g. post World War II

data) or a shorter history (e.g. post-1985). Accordingly, we estimate our set of VAR models

using both a longer sample (1959.Q4 onwards) and a shorter sample (1985.Q1 onwards). As

was discussed earlier, we consider both smaller (5 variables) and medium-sized (10 variables)

specifications. Thus, we estimate a VAR with constant volatility and a VAR with stochastic

volatility for both smaller and medium-sized versions. For time-varying VARs, only a small-

scale three-variable version (containing real GDP growth, CPI inflation, and the unemployment

rate) estimated over a longer sample is examined. All in all, our model space consists of 10

VAR models:7

• Small VAR est. 1960: fixed-parameter small VAR estimated with data from 1959.Q4

7We choose not to examine our proposal on nonlinear VAR models (e.g. threshold VARs and Markov-switching
VARs) for three reasons: (1) several recent papers have shown empirically that, at best, the forecasting perfor-
mances of these models are competitive to those of time-varying VARs (e.g. Barnett, Mumtaz, & Theodoridis,
2014; Alessandri & Mumtaz, 2017; Aastveit et al., 2017); (2) they are less popular for forecasting than the models
we consider; and (3) to keep our results manageable.
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onwards

• Small VAR SV est. 1960: fixed-parameter small VAR with SV estimated with data from

1959.Q4 onwards

• Small VAR est. 1985: fixed-parameter small VAR estimated with data from 1985.Q1

onwards

• Small VAR SV est. 1985: fixed-parameter small VAR with SV estimated with data from

1985.Q1 onwards

• Medium VAR est. 1960: fixed-parameter medium-sized VAR estimated with data from

1959.Q4 onwards

• Medium VAR SV est. 1960: fixed-parameter medium-sized VAR with SV estimated with

data from 1959.Q4 onwards

• Medium VAR est. 1985: fixed-parameter medium-sized VAR estimated with data from

1985.Q1 onwards

• Medium VAR SV est. 1985: fixed-parameter medium-sized VAR with SV estimated with

data from 1985.Q1 onwards

• TVP VAR: time-varying small VAR estimated with data from 1959.Q4 onwards

• TVP VAR SV: time-varying small VAR with SV estimated with data from 1959.Q4 on-

wards.

For TVP VAR and TVP VAR SV, the first 10 years of data (i.e., 1959.Q4 to 1969.Q3) are

used as a training sample for prior elicitation.

Forecast evaluation metrics

The models defined above are estimated using standard Markov chain Monte Carlo (MCMC)

methods. For details of the precise algorithms, we refer the reader to the papers cited under

the description of each model.

At each forecast origin, the estimation of each model involves simulating the model with D

draws.8 For each posterior draw, the simulated forecast path is constructed by iterating the

model forward h quarters (where h = 1, . . . 40). The D forecast paths constitute the multivariate

predictive density. The point forecast is simply the (posterior) mean of the empirical predictive

density.9

We perform a real-time out-of-sample forecasting evaluation using a recursively-expanding

estimation window. The forecast evaluation sample spans the period 1994.Q1 to 2016.Q4. We

8D = 20,000 for time-invariant VAR model specifications; D = 40,000 + 4,000 (burn-in) for all model
specifications with stochastic volatility and or time-varying parameters; the results are very similar if we instead
use 20,000 for burn-in.

9In the case of time-varying VARs, following the common practice, the point forecast is defined as the median
of the predictive density.
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evaluate point forecasts using the widely-used metric of the mean squared forecast error (MSE),

MSEi,h =

∑T1−h
t=T0

(Yi,t+h − Ŷi,t+h)2

T1 − h− T0 + 1
, (2.5)

where i corresponds to the macroeconomic variable of interest (e.g., real GDP growth), T0

denotes one quarter prior to the start of the evaluation period (e.g., 1993.Q4), T1 is the end of

the evaluation period (2016.Q4), Yi,t+h is the actual realization, and Ŷi,t+h is the forecast.

We evaluate the performances of density forecasts using the continuous ranked probabil-

ity score (CRPS) metric, as proposed by Gneiting and Raftery (2007). CRPS measures how

close the actual realization is to the predictive density: the closer the distribution is to the

actual realization, the smaller the CRPS value and the more accurate the predictive density.10

Accordingly, it is defined as

CRPSi,ht (Yi,t+h) =

∫ ∝
−∝

(F (z)−1 {Yi,t+h ≤ z})2dz = Ep|Y ∗i,t+h−Yi,t+h| − 0.5Ep|Y ∗i,t+h−Y +
i,t+h|,

(2.6)

where Yi,t+h is the actual realization, F is the cumulative distribution function that corresponds

to the predictive density f , 1 {Yi,t+h ≤ z} is an indicator function that takes a value of one if

Yi,t+h ≤ z and a value of zero otherwise, and Y ∗i,t+h and Y +
i,t+h are independent random draws

from p
(
Y T+1,T+H , θ | Y T

)
.

The CRPS metric favors predictive densities that have higher probabilities near the actual

realization. As defined above, a lower CRPS is preferable to a higher score. We report the

average of the CRPS, computed over our forecast evaluation period.

We assess the statistical significance of the differences in forecast accuracy between the

baseline and hybrid forecasts following KCR and Altavilla et al. (2017). We use the Diebold

and Mariano (1995) and West (1996) test of equal predictive accuracy for pairwise comparisons

of the RMSE using the two-sided tests of the standard normal. In computing the test, we use

the HAC variance estimator (an input into the test statistic) with the lag h − 1 truncation

parameter and adjust the test statistic for the finite sample correction proposed by Harvey,

Leybourne, and Newbold (1997); see Clark and McCracken (2013). As was emphasized by

KCR, the use of our test statistics based on standard normal critical values is likely to be on

the conservative side, and should be treated as an approximation that, in our case, deals with

issues such as the nesting of forecasts and conditional forecasting (see Clark & McCracken,

2017).

The density calibration (i.e., absolute accuracy) of the density forecasts is assessed using

interval forecasts (i.e., 70% prediction intervals), and assessments of probability integral trans-

forms (PITS) via a battery of statistical tests: those of Knüppel (2015), Berkowitz (2001), and

Kolmogorov-Smirnov. For the latter, all three statistical tests generally point to similar infer-

10An assessment based on the log-score metric largely confirms the inference obtained from CRPS, and the
results are reported in Section A3 of the supplementary appendix.
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ences, and therefore we report only the results from the Knüppel test. Due to space limitations,

the density calibration results are reported in Section A2 of the supplementary appendix.

2.3 Real-time Long-horizon Survey Forecasts versus BVAR Fore-

casts

In the United States, the SPF and the Blue Chip Economic Indicators are the two most widely

known and easily available routinely-published forecast surveys. The SPF is a quarterly survey

that is released in the middle of the second month of each quarter. Each SPF survey release

contains forecasts of the macroeconomic and financial variables for the current quarter (i.e.,

nowcasts) and up to four quarters ahead. For the survey carried out in the third quarter of

the year, the SPF asks respondents for their estimates of the natural rate of unemployment.

Similarly, for the surveys carried out in the first quarter, the SPF asks respondents for their

projections of long-run values (defined as the 10-year annual average) of real GDP growth, the

short-term interest rate (i.e., yield on the 3-month Treasury bill), and a few other variables.

The SPF contains the projections for all of the core set of variables of interest for this chapter;

for our purposes, we treat the SPF’s projections of the natural rate of unemployment as the

long-run forecast of the unemployment rate. Following the forecasting literature, we use the

median projection for the SPF projections and the mean projection for the Blue Chip. The

evolution of the long-run forecasts across the two surveys is fairly similar, and therefore, for the

sake of brevity, this section focuses only on the SPF, with estimates from the Blue Chip being

relegated to the supplementary appendix for interested readers.11

Our forecast evaluation exercises in this chapter use the nowcasts and long-run forecasts

from the SPF.12

The four panels of Figure 1 plot the real-time evolution of the macroeconomic long-run

forecasts for real GDP growth (upper left), the unemployment rate (upper right), CPI inflation

(lower left), and the short-term interest rate (lower right). Each panel plots forecasts from

the small VAR estimated using the longer history (1960+), the small VAR estimated over the

shorter sample (1985+), a small time-varying VAR with SV, and the SPF. The sample period

is from 1994.Q1 to 2016.Q4, matching our forecast evaluation sample.

The real-time data that we use to estimate our VAR models is a subset of the information

set that would be available to professional forecasters. When coming up with their forecasts, the

professional forecasters would probably rely on a larger information set that included judgmental

opinions of their own and of the subject matter experts, along with their own econometric

methodologies. The use of forward guidance by the central bank and, more generally, the era of

11The supplementary appendix A11 plots the estimates of the long-run values from the FOMC’s SEP alongside
the Blue Chip estimates.

12Our choice of the SPF is due in part to the fact that it is available publicly. On a related note, Croushore
(2010) documents the good inflation forecasting properties of long-run forecasts of CPI inflation from the SPF
and suggests using them as a proxy for inflation expectations.

35



more predictable monetary policy (through central bank communications) since the beginning

of the financial crisis are other examples of important information that will be at the disposal

of the survey participants. As a result, survey participants (collectively) are likely to have more

timely and better informed long-run projections. Figure 1 provides some evidence in support

of this claim.

The figure indicates two notable observations. First, the long-run forecasts from the VAR

estimated with a longer history adjust very sluggishly, whereas the survey projections fluctuate

considerably more. Second, the time-varying VAR that is built to accommodate structural

change explicitly (and which uses all of the available history for estimation) appears to adjust

more rapidly than its time-invariant counterpart on average. However, it adjusts more slowly

than SPF.

Starting with real GDP growth, the movements in forecasts from TVP-VAR-SV and Small-

VAR(1985) are generally similar to those from the SPF, though the SPF projections are on

the lower side. At the beginning of 1994, all three (SPF, TVP-VAR-SV and Small-VAR(1960))

were forecasting underlying growth in the range 2.7–2.9%, roughly four-tenths lower than that of

Small-VAR(1985). As time rolled forward from 1994 to 1996, professional forecasters gradually

lowered their estimates, while the forecasts from the VARs remained steady. In early 1997,

professional forecasters revised their forecasts back up by a couple of tenths to 2.5%, and left

it stable at that level through the end of 1999. Over this same period, the forecasts from all

three VARs were also revised up. Moving into 2000, while the VARs’ projections held steady

in the range 3.1–3.4%, professional forecasters revised their projection up strongly by roughly

six-tenths, to 3.1%. This upward revision was in response to stronger growth data the prior

two years that averaged more than 4%. The upward revision continued through 2005, by

which point the long-run forecasts by both survey forecasters and the VAR were roughly in

agreement at 3.4%. Beginning in 2006 and onward, the survey forecasters gradually lowered

their growth forecasts, reaching 2.3% by the end of 2016. This rate of growth roughly matches

the US economy’s average growth rate since the start of the post-crisis recovery. Over this

same period, forecasts from all three VARs also edged lower, but by a smaller margin (3.3% to

3.0% for Small-VAR(1960), and 3.0% to 2.6% for both TVP-VAR-SV and Small-VAR(1985))

compared to professional forecasters (from 3.4% to 2.3%).

In the case of the unemployment rate, while the forecasts implied by the VAR models have

fluctuated within a narrow range of around 6%, the professional forecasters’ estimates of the

natural rate have evolved in line with the movements in the business cycle. For example, the

estimate trended lower between 1994 and the start of 2001, but then reversed at the onset of

the 2001 recession and began to trend up until the beginning of the recovery. It then trended

lower again until the onset of the Great Recession. In response to a large upward spike in the

unemployment rate that reflected the severity of the recession and the associated disruptions to

the labor market, the professional forecasters rapidly adjusted their projections of the natural

rate of unemployment upward. By the end of 2011, the professional forecasters’ estimate of the
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natural rate of unemployment increased to 6.0%, close to that implied by the VAR. Thereafter,

professional forecasters adjusted their estimates downward as the recovery picked up its pace,

reaching 4.8% by the end of 2016.

We next examine forecasts for the nominal variables: CPI inflation and the short-term

interest rate. First, there is a noticeable downward trend in the projections over our forecast

evaluation sample. Second, there is a sizable gap between the forecasts from the professional

forecasters and the VAR forecasts compared to the plot for real variables. For CPI inflation, the

SPF projection is relatively stable from 1999 onwards, even though all three VAR projections

continue gradually to trend lower. The projection from the TVP-VAR-SV is very similar to

that from Small-VAR(1985), especially since the start of the recovery in late 2009. However,

there is a sizable but declining gap between the SPF projection and the projections from each of

the VARs. Since 2009.Q1, on average the SPF projection is 1.70 percentage points lower than

that from Small-VAR(1960), 0.50 percentage points lower than that from Small-VAR(1985)

and 0.70 percentage points lower than that from TVP-VAR-SV. In the case of the short-term

interest rate, since 2009.Q1, the SPF projection has been 288 basis points lower than that from

Small-VAR(1960) on average, and 160 basis points lower than that from Small-VAR(1985).

Overall, these charts suggest that professional forecasters are quick to adjust their inflation

expectations and to recalibrate their estimates of the underlying trend growth. In reality, it is

difficult to distinguish between transitory fluctuations and fluctuations associated with changes

to the underlying trend. As a result, forecasters learn about shifts in the underlying trend

gradually. Even so, though, their expectations adjust more rapidly than those implied by the

statistical models.

2.4 Methodology for Tilting Forecasts

2.4.1 Relative entropy

The technique of relative entropy, applied to economic forecasting by Robertson et al. (2005),

consists of modifying a given predictive distribution to form a new predictive distribution such

that it satisfies a given set of moment conditions while minimizing the relative entropy between

two predictive distributions.

Let us begin with an unrestricted predictive distribution, p
(
Y T+1,T+H | Y T

)
, that corre-

sponds to an n-dimensional random variable Y obtained from a VAR model. We assume

that this predictive density consists of D draws {Yi, i = 1, . . . D}, and the corresponding

weights are {wi = 1/D, i = 1, . . . D}. If the modeler now wants to impose the moment con-

ditions contained in the matrix g on this predictive distribution p
(
Y T+1,T+H | Y T

)
such that∑D

i=1wip(Y
T+1,T+H
i ) 6= ḡ; i.e., the mean of the predictive distribution p(·) is not equal to the

mean condition required by the modeler (denote it as “new” information). For the predictive

distribution to satisfy the new information, the original weights {wi, i = 1, . . . D} must be mod-

ified. The new weights {w∗i , i = 1, . . . D} that satisfy this new information are equivalent to
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finding a new predictive distribution that is as close as possible to the original predictive density

in the information-criterion sense.

Specifically, the relative entropy or Kullback-Leibler information criterion (KLIC) of w∗ to

w is

K(w∗ : w) =
D∑
i=1

w∗ log(
w∗i
wi

). (2.7)

We solve for new weights that minimize K(w∗ : w) and satisfy the following constraints:

w∗i ≥ 0,
D∑
i=1

w∗i = 1,
D∑
i=1

w∗i p(Y
T+1,T+H
i ) = ḡ. (2.8)

The first and second terms reflect the fact that weights are probabilities and so should be

non-negative and sum to one. The third term represents the new moment conditions.

The solution to the minimization problem above using the Lagrange method is

w∗i =
wi exp(γ′ p(Y T+1,T+H

i ))∑D
i=1wi exp(γ′ p(Y T+1,T+H

i ))
, (2.9)

where γ is the vector of Lagrange multipliers associated with the constraints. According to this,

the original weights w have been tilted “exponentially” to produce the new weights w∗.

The vector of Lagrange multipliers (i.e., tilting parameters) can be obtained as a solution

to the following minimization problem:

γ = arg min
γ̃

D∑
i=1

wi exp(´̃γ [p(Y T+1,T+H
i )− ḡ]). (2.10)

Then, using the newly computed weights, the updated expectation of other functions of

interest can be computed simply as

D∑
i=1

w∗i h(Y T+1,T+H
i ). (2.11)

If the interest is in the modified probabilistic density g(Y T+1,T+H), as will be the case in our

density forecast evaluation exercises, then, as was discussed by Cogley, Morozov, and Sargent

(2005), importance sampling techniques could be used to redraw Y T+1,T+H
i from the original

density p
(
Y T+1,T+H

)
using the newly-found weights w∗, which can be achieved using the

multinomial resampling algorithm of Gordon, Salmond, and Smith (1993). The steps of the

algorithm (taken from Cogley et al., 2005) are detailed in Section A13 of the supplementary

appendix.

In our forecasting exercises, the current-quarter (median) forecast from the SPF is used as

the mean condition on the one-step-ahead VAR predictive density. Similarly, the long-horizon
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(median) forecast from the SPF acts as the mean condition on the VAR predictive density at

the horizon determined for combining the VAR with the survey long-run projections (detailed

in the next section).13 In addition, following KCR, we also restrict the variance of the one-step-

ahead VAR predictive density (i.e., uncertainty around the current/nowcast quarter), with the

variance condition being computed as the variance of the SPF forecast errors over a fixed-length

rolling window that precedes the forecast origin. A variance condition that is constructed via

this approach is defined as an ex-post forecast uncertainty measure (see Clements, 2014; KCR).

Specifically, if we treat Ŷ SPF
t,h as the SPF forecast for indicator Yt, then the variance condition

is formed as
15∑
q=0

(Yt−Delay−q − Ŷ SPF
t−Delay−q,h)2, (2.12)

where h = 1Q, q reflects the number of past forecasts that are used to compute the variance of

errors, and Delay indicates the number of quarters it takes the forecaster to learn about the

actual realization. To remain consistent with our measure of ‘truth’ defined earlier (see Section

2.2), Delay is set equal to 2 for macroeconomic variables (real GDP growth, CPI inflation, and

the unemployment rate). For our financial variable, the federal funds rate, Delay is set equal

to 1, reflecting the fact that the actual quarterly value is available immediately preceding the

last day of the quarter For example, the variance conditions for macroeconomic variables at

the forecast origin 1997.Q1 are based on the variance of the SPF nowcast errors computed over

the preceding period 1992.Q4 through 1996.Q3. Similarly, for the federal funds rate, it is the

variance of the errors over the period 1993.Q1 to 1996.Q4.

In a VAR, conditioning or tilting on some future horizon will influence the forecast all the

way from the jumping-off point to the conditioned forecast horizon. For example, if we tilt the

real GDP growth at a forecast horizon of h = 6Q, then tilting it is likely to impact the forecast

trajectory from h = 1Q to h = 5Q for all of the variables.14 Conditioning on multiple variables

simultaneously (in a system such as VAR) would result in forecast trajectories that reflect the

cumulative effect of those conditions.

We use relative entropy instead of other approaches to conditional forecasting because of

its ease of use, computational simplicity, and flexibility. Relative entropy is an effective and

flexible conditional forecasting methodology, because it allows us to combine effectively both

the mean condition and the modeler’s confidence in that mean condition (i.e., variance). This

is an important advantage if the interest is in density forecasts as well as point forecasts.

Furthermore, specifying only the mean condition will not result in the automatic shrinkage of

the variance around the mean condition to zero; relative entropy will assume that the variance

13SPF also reports forecasts for four subsequent quarters beyond the nowcast quarter (i.e., h = 2Q to h = 5Q),
and these additional survey forecasts could be used as the moment conditions for the respective VAR predictive
densities in order to obtain more accurate hybrid forecasts for the remaining forecast horizons that are of interest
to policy makers (h = 6Q to h = 12Q). We explore the usefulness of these additional conditions in Section A6 of
the supplementary appendix (”Are there benefits to utilizing survey information for additional horizons?”).

14We provide an explanation of this spillover feature in Section A12 of the supplementary appendix using an
analytical Gaussian example.
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around that mean condition is the same as the unconditional.15 In addition, as was discussed

by Giacomini and Ragusa (2014), relative entropy does not require Gaussian assumptions for

either the original densities or the modified tilted densities. This latter advantage makes it

possible to apply our proposal to nonlinear VARs and to density forecasts generated from a

combination of several component density forecasts, because both of these approaches generate

non-normal densities.16

2.4.2 Determining the forecast horizon for tilting

In combining the survey long-run projections with the VAR forecast, the initial inclination would

be to combine the survey projections with the VAR forecast at some very distant horizon. This

assumption is valid, because, by definition, the terminology long-run projection suggests many

years into the future. That said, several macroeconomic variables (transformed to growth

rates) display little persistence and therefore tend to move back rapidly to their respective

(unconditional) means — the unrestricted long-run model forecast. The real GDP growth

fits into this category. The VAR model forecasts of real GDP growth typically tend to move

back toward the estimated mean within a year.17 At the other extreme are series such as the

unemployment rate, which are very persistent. Depending on the starting point, it may take

such series several years to move back toward the model-implied long run.

Based on the work of Clements and Hendry (1999) and Kozicki and Tinsley (2001a,b),

we also know that forecasts beyond four quarters in covariance-stationary VAR models are

influenced heavily by the model’s implied equilibrium value (i.e., unconditional mean). Clements

and Hendry (1999) illustrate that a poorly estimated mean of the variable is the dominant source

of the forecast errors beyond four quarters (e.g. a higher estimate of the trend than is thought to

be reasonable will result in forecasts that are persistently biased upwards).18 This suggests that

influencing the trend estimate implied from the model with the one informed from the survey

requires us to begin doing so as soon as the model’s implied trend is expected to dominate

the forecast values. For real GDP growth, it suggests targeting the horizon somewhere at the

forecast horizon h = 4Q or h = 5Q. If the trend is imposed late in the forecast horizon, it will

be influenced too far out to have a meaningful influence on the forecast horizons of interest.

Hence, the forecast remains biased or corrupted from the influence of the model’s implied steady

state.19

15Alternative approaches to the construction of conditional forecasts include Waggoner and Zha’s (1999) soft
conditioning, which is an extension of the work of Doan, Litterman and Sims (1984); the approach of Andersson,
Palmqvist, and Waggoner (2010); and the Kalman filter approach as per Banbura, Giannone, and Lenza (2015).
All three of these approaches can also allow for both mean and variance conditions. Antolin-Diaz, Petrella, and
Rubio-Ramirez (2019) formally prove the equivalence between VAR conditional forecasting and relative entropy
for the Gaussian case. We get very similar results for the point forecast evaluation if we instead use the approach
of Doan et al. (1984) for imposing our conditions.

16Both these avenues are left for future research.
17See Domit, Monti, and Sokol (2019) for UK GDP growth and KCR for US GDP growth.
18See technical appendix A0.2 for an illustration of the implied steady state on the forecast trajectory.
19We illustrate this with two empirical exercises, reported in Section A15 of the supplementary appendix. In
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Accordingly, we propose that the horizon for tilting should be variable-specific, and we

suggest the following.20 At each forecast origin t, retrieve the persistence estimates (i.e., slope

parameters) that correspond to variable i from equation i of the VAR system in Eq. (1):

ρ+,BV AR
i,t =

p∑
l=1

Ā
(i,i)
i,l , (2.13)

where Ā
(i,i)
i,l represents the posterior mean estimate of the slope coefficient of variable i in

equation i of the VAR system in Eq. (1). It reflects an estimate of variable i’s persistence

conditional on the VAR system.21

The corresponding metric that roughly determines the number of quarters that it takes to

revert back to the VAR’s implied steady state is

h+,V AR
i,t =

1

1− ρ+,V AR
i,t

. (2.14)

The horizon h∗i,t at which the survey long-run forecast is combined with the VAR forecast

for variable i is set as

h∗i,t = max {PQt , h
+,V AR
i,t }, (2.15)

where PQt −1 specifies the minimum number of quarters prior to which the long-horizon survey

forecast takes over the VAR forecast. The max operator ensures that the hybrid forecast uses

the VAR forecast at least for the PQt −2 quarters following the nowcast quarter. In our exercises

we set PQt = 5 to reflect our preference for having a dynamic and informative forecast in the

short to medium term. We note that the choice of PQt does not influence our results; setting

PQt = 0 gives us very similar forecasting results because this choice binds only on real GDP

growth (for just one or two quarters), not other variables.22

In our empirical forecasting exercises, over the forecast evaluation sample, the horizon at

which the survey long-run projection takes over has ranged between h = 5Q and h = 17Q for

CPI inflation, h = 9Q and h = 30Q for the federal funds rate, and h = 10Q and h = 27Q for

the unemployment rate; for real GDP growth, on the other hand, the horizon for combination

has remained steady at h = 5Q. In the interests of brevity, the figures that plot the evolution

the first exercise, the horizon for combination is set dogmatically at h = 25Q (i.e., seven years out), and in the
second exercise, it is set at h = 40Q (10 years out). The results indicate reduced gains in forecast accuracy for
the horizons of interest. The reduced effects are most notable in the specifications that include SV.

20The suggestion is roughly equivalent to generating unconditional forecasts far into the future (e.g. 40 quarters
out) from the VAR model and then determining, for each variable, the precise forecast horizon at which it
converges to its equilibrium value (i.e., implied steady state).

21Our results are robust if the forecast horizon for tilting uses an estimate (of persistence) that is obtained
by estimating a univariate regression AR(4) recursively (i.e., at each forecast origin) for the variable of interest.
The results are reported in Tables A19 and A20 in Section A15 of the supplementary appendix.

22Over our forecast evaluation sample, it takes roughly three quarters on average for the real GDP growth to
move back to trend growth for most forecast origins. By setting h = 5Q, we delay the takeover of the model
forecast by the survey long-run forecast by two quarters, and so permit the possibility of imposing conditions on
additional VAR forecast quarters (i.e., h = 2Q through h = 4Q) for which survey expectations are available.
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of the tilting horizon by variable and for each VAR model are relegated to Section A14 of the

supplementary appendix.23

2.5 Results

2.5.1 Forecasting exercise

Our main question of interest pertains to whether we achieve meaningful improvements in the

forecast accuracy of the variables of interest (to monetary policymakers) by tilting the model-

based forecasts to match the modeler’s long-run value. In our examination, the modeler’s

long-run value equates to the (median of the) long-horizon SPF projections.

We answer this by performing a real-time out-of-sample forecasting evaluation over the

period 1994.Q1–2016.Q4. We begin by estimating our VAR models using real-time data from

1959.Q4 to 1993.Q4 and generating unconditional forecasts iteratively, one to forty quarters out.

Next, we re-estimate the models using an additional data point and again generate forecasts up

to 40 quarters out. We repeat this recursive exercise until 2016.Q3. That is, the last estimation

sample uses data from 1959.Q4 to 2016.Q3, and the forecasts span the period 2016.Q4–2026.Q3;

however, given that data for evaluation are available only until 2016.Q4, we can only evaluate

the one-step-ahead forecast. The forecasts generated through this recursive exercise are denoted

‘raw’ VAR forecasts. Next, we use the technique of relative entropy to tilt the one-step-ahead

‘raw’ VAR forecasts (i.e., predictive densities) generated in the previous step to match the SPF

nowcasts for real GDP growth, CPI inflation (and core CPI inflation24 in the medium VAR),

the unemployment rate, and the federal funds rate. We denote the resulting tilted forecasts

(corresponding to all variables) ‘baseline’ forecasts. The ‘baseline’ forecasts tilt on the nowcasts

only (i.e., both the nowcast mean and variance). Next, we generate another set of forecasts,

but this time tilting the ‘raw’ VAR forecasts toward both the nowcasts and the survey long-

run projections for the same set of variables (as in the ‘baseline’ forecasts). We denote these

forecasts ‘hybrid’ forecasts. Finally, for each VAR model under consideration, we evaluate and

compare the point and density forecast accuracies among the raw VAR, baseline, and hybrid

forecasts in a pairwise fashion.

All of the tables (unless specified) are formatted so to facilitate quick comparisons across

raw, baseline, and hybrid forecasts for each model, as well as comparisons of raw forecasts

across models. The comparison of raw forecasts between small and medium VAR models helps

23For all VAR models except for the TVP-VAR SV and TVP-VAR models, the forecast horizon for combination
is determined based on the specification with a constant variance, and the same value of the combination horizon
is used for the counterpart specification that allows for SV. This facilitates more direct comparisons between
specifications for assessing the role of SV in the forecast accuracy. However, our results remain qualitatively
similar if we relax this restriction.

24For core CPI inflation, the SPF nowcasts are not available until 2007.Q1. The inflation nowcasting models
of Knotek and Zaman (2017) or Modugno (2013) could be used to produce core CPI inflation nowcasts prior to
2007.Q1; however, for the sake of consistency and simplicity, we merely use core CPI nowcasts from the SPF
starting in 2007.Q1.
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in assessing the usefulness of additional variables for improving the accuracy of the core set

of variables. In addition, the formatting of the results helps in assessing whether tilting helps

more models that are inferior to begin with.25 Tables 2.1–2.6 (and Tables A1–A4 in Section A1

of the supplementary appendix) report the real-time forecast accuracies of real GDP growth,

CPI inflation, the unemployment rate, the federal funds rate, and credit spreads (Tables A1–A4

also report accuracy results for the additional five variables), and allow a quick assessment of

the usefulness of the stochastic volatility for the forecast accuracy. Each table is split into two

panels. The left panel reports accuracy results of the VAR model with constant variance, while

the right panel reports results for the equivalent VAR model with stochastic volatility. For each

variable, the first row reports the MSEs (CRPS values for density forecasts) for the raw VAR

forecast, while the subsequent three rows report the relative MSEs (relative CRPS values for

density forecasts): the MSE of the baseline forecast relative to the raw forecast, the MSE of the

hybrid forecast relative to the raw forecast, and the MSE of the hybrid forecast relative to the

baseline forecast. The accuracy results are reported for forecast horizons of one (i.e., nowcast

quarter), four, eight, and 12 quarters out, respectively. The forecast evaluation is based on the

full sample spanning the period 1994.Q1 to 2016.Q4.

Results: Small VAR estimated with the longer sample

Table 2.1 reports the real-time point forecast accuracy from the Small VAR estimated with

data going back to 1959.Q4. A couple of things stand out immediately. First, allowing for SV

helps to improve the point forecast accuracy; however, the magnitudes of the improvements and

persistence in those gains vary across variables. The gains are strongest for CPI inflation and

persist throughout the forecast horizon; for real GDP growth, on the other hand, improvements

are achieved at least through four quarters out. The improvements for unemployment rate are

marginal and persist throughout. These findings are in line with those of Clark (2011) and

D’Agostino et al. (2013). For the federal funds rate and the credit spread, the improvements

are short-lived, as allowing for SV appears to worsen the forecast accuracy by four quarters

out and beyond. Second, across all variables, tilting towards the survey nowcasts improves

the forecast accuracy significantly in the nowcast quarter (i.e., h = 1Q). The relative MSE

is substantially below one for rows labelled ‘Baseline/Raw’ and ‘Hybrid/Raw’. These large

improvements suggest that the SPF nowcasts are significantly more accurate than the VAR

model’s one-step-ahead forecasts, which is consistent with the results of KCR and several other

studies documenting the usefulness of external nowcasts for models estimated purely with quar-

terly data (e.g. Knotek & Zaman, 2019). Looking across all of the rows labeled ‘Baseline/Raw’,

the spillover effects (on subsequent forecast horizons) from more accurate nowcasts last longer

for persistent variables, CPI inflation, the unemployment rate, and the federal funds rate. For

real GDP growth, the gains are relatively short-lived.

25For a convenient assessment of the effectiveness of tilting, please refer to Section A4 of the supplementary
appendix.
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In all rows labeled ‘Hybrid/Raw’, the ratios are less than one and are generally smaller

than those reported in the row immediately above (‘Baseline/Raw’), with few exceptions. This

suggests that tilting the VAR forecasts to match the survey long-horizon forecasts in addition

to the survey nowcasts leads to further improvements in accuracy. A notable difference across

the two rows (i.e., Hybrid/Raw vs. Baseline/Raw) is the significantly improved accuracy at

forecast horizons that are further out.

The rows labeled ‘Hybrid/Baseline’ facilitate our attempts to get a sense of the marginal

gains in accuracy from tilting towards the survey long-horizon over and above that from tilting

towards the survey nowcasts only. For example, eight quarters out, the hybrid forecast for

real GDP growth (in both VAR specifications) is 15% more accurate than the baseline fore-

cast on average, as is indicated by the ratio of 0.85. Digging deeper into error evaluation, the

improvements in the average accuracy of the real GDP growth forecast come mainly from the

Great Recession and the subsequent recovery. This is evident in Figure 2, which plots the

timeline of the cumulative sum of squared forecast errors for the horizon h = 8Q: beginning

around the height of the Great Recession and continuing until the end of evaluation sample,

the baseline forecast consistently underperforms the hybrid forecast. This is evident from the

fact that the plot that corresponds to the hybrid forecast lies below the baseline forecast begin-

ning at the Great Recession, and the divergence between the two increases over the remaining

evaluation sample. The pattern of an improved accuracy of hybrid forecasts around the crisis

period and beyond fits with the formal statistical assessment of a structural change at that

period (see Aastveit et al., 2017). This result suggests that the hybrid approach adjusts the

forecasts to accommodate the possible structural change. This is confirmed further by an in-

spection of recursive forecast trajectories (not shown). The baseline forecast calls for stronger

long-run projections, and as a result, the recursive baseline forecast trajectories continuously

over-predict growth. However, the recursive trajectories from the hybrid forecast track the ac-

tual data relatively better because they rely on professional forecasters’ assessments of a lower

growth potential of the economy, perhaps drawn from demographics or specific assessments of

technological change.

For CPI inflation, the forecast accuracy gains are substantially higher, are statistically

significant, and persist throughout; the hybrid forecast for CPI inflation is roughly 25% (11%

for the specification with SV) more accurate than the baseline forecast two years out, and 30%

(17% for the specification with SV) more accurate three years out. This is not surprising because

it is well known that the inflation process has exhibited pronounced changes in the underlying

trend since the 1950s, meaning that accounting for those changes turns out to be very important

for achieving an improved accuracy. Just as in the case of real GDP growth, Figure 2 shows

that hybrid forecasts have been substantially more accurate than baseline forecasts since the

post-crisis period. Unlike in the case of real GDP growth, the superior accuracy of the hybrid

CPI inflation forecasts is evident over the entire forecast evaluation sample preceding the Great

Recession. This improved accuracy prior to the Great Recession has been possible because
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tilting is helping to reduce the bias in the forecasts that is introduced by a failure to account

for the structural break of the mid-80s (i.e., estimating with a longer history). The sizable

divergence between the hybrid and baseline forecasts since the post-crisis period partly reflects

the fact that tilting is helping the hybrid forecasts to mitigate the misspecification issues that

result from a failure to account for structural breaks in both the mid-80s and the post-crisis

period.

The improvements in accuracy for the effective federal funds rate are of similar magnitudes

to those for CPI inflation. The combination of improved inflation forecasts and tilting on

judgmental survey-based long-run values of the federal funds rate results in highly accurate

forecasts of the federal funds rate. The average improvements in forecast accuracy over the

baseline forecast by the end of the third year are 30% (40% in the VAR specification with SV).

Figure 2 confirms the conjecture that tilting is helping hybrid forecasts to handle structural

change better.

Credit spread is a variable that is not tilted directly, but its accuracy is affected indirectly

through the spillover effects of variables that are tilted directly. Not surprisingly, the improved

accuracies of the federal funds rate, inflation, and real GDP growth are associated with an

improved accuracy of the credit spread. The magnitudes of the gains are similar to those seen

for the federal funds rate.

In the case of the unemployment rate, the average gains from tilting towards survey long-

horizon forecasts are small. As is evident from Figure 2, the marginal gains in accuracy reflect

the slightly more accurate hybrid forecasts over the Great Recession and the post-recovery

period.

Table 2.2 reports the corresponding accuracies of the density forecasts. A lower value of

CRPS is preferred, so negative entries in the rows labeled ‘Baseline - Raw’ suggest that the

baseline density forecast is more accurate than the raw density forecast on average. Similarly,

negative entries for ‘Hybrid - Raw’ suggest that the hybrid forecast is more accurate than the

raw forecast, and negative entries in the case of ‘Hybrid - Baseline’ suggest that the hybrid

density forecast is more accurate than the baseline forecast on average. The results of the

density forecast evaluation echo the results of the point forecast evaluation reported in Table

2.1. First, adding SV helps to improve the density forecasts, with the pattern of improvements

being quite similar to that in the point forecast assessment. Second, the baseline forecasts are

more accurate than the raw VAR forecasts, and the hybrid forecasts are more accurate than

either the baseline or the raw VAR forecasts. Third, the results illustrate that the density

forecast accuracy gains of the hybrid forecasts for CPI inflation, the federal funds rate, and

credit spreads are substantial, are statistically significant, and persist far into the future. Table

A5 in the supplementary appendix reports the density calibration diagnostics. For the VAR with

constant volatility, we find that the density forecasts are badly calibrated (which is consistent

with the findings of Rossi & Sekhposyan, 2014), with the exception of the nowcast quarter

(and the subsequent quarter) for both hybrid and baseline forecasts. SV helps to improve the

45



calibration of the density forecasts via an improved coverage (i.e., predictions intervals that are

close to the nominal coverage of 70%), which is consistent with the findings of Clark (2011) and

D’Agostino et al. (2013). However, it generally remains the case (for forecast horizons beyond

the short-term) that density forecasts with SV are unable to pass all of the necessary statistical

tests (of PITS) to be categorized as calibrated correctly.

Results: Small VAR estimated with the post-1985 sample

Table 2.3 reports the real-time point forecast accuracy from the Small VAR estimated with

data going back to 1985. The results indicate similar patterns of accuracy improvements to

those seen in the case of the VAR estimated with the longer sample, with the gains being

smaller in magnitude but still statistically significant in many instances. SV helps to improve

the point forecast accuracy, but the gains are substantially smaller than in the case of the VAR

estimated with the longer sample. Just like in the previous case for the VAR with the longer

sample, the hybrid approach helps to improve the accuracy in both economically meaningful and

statistically significant ways for the real GDP growth, CPI inflation, the federal funds rate, and

the credit spread. One exception is the unemployment rate, in that the hybrid approach appears

to worsen the forecast accuracy; however, those deteriorations are not flagged as statistically

significant. In that regard, the results for the unemployment rate across the two VARs (longer

and shorter samples) are similar, as the accuracy gains in the VAR with the longer sample were

not statistically significant.

The plots in Figure 3 indicate that most of the accuracy improvements (or losses in the

case of the unemployment rate) for the hybrid approach (compared to the baseline) come

from the evaluation period beginning in 2010; i.e., coinciding with the sample period that

is thought to have undergone structural change. This is exactly where we would expect to

see gains for the hybrid forecasts from VARs estimated with data beginning after the well-

documented structural breaks of the mid-80s, and supports our conjecture that the hybrid

approach helps to accommodate structural breaks. Recall that the Federal Reserve adopted an

inflation targeting framework in 2012, and it is since then that the CPI inflation forecasts derived

from the hybrid approach have outperformed the baseline, with gains that are statistically

significant though marginal. We also point out that these two VAR specifications outperform

the VAR specifications estimated with a longer sample (see Table A12 in Section A4 of the

supplementary appendix for the formal rankings based on forecast performances).

Table 2.4 reports the corresponding accuracies of the density forecasts. The results of the

density forecast evaluation echo those of the point forecast evaluation reported in Table 2.3.

One exception is the unemployment rate: the worsening in the density forecast accuracy of the

hybrid forecasts is marginally significant, whereas in the case of the point forecast accuracy,

the deteriorations in accuracy of the hybrid forecasts generally were not statistically significant.

Table A6 in Section A2 of the supplementary appendix reports the density calibration diagnos-

tics. Interestingly, the raw forecasts for real GDP growth from the VAR with constant variance
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are calibrated correctly. SV helps to improve the calibration of the density forecasts signifi-

cantly for CPI inflation; for the unemployment rate and the federal funds rate, SV improves

the coverage rate but the density forecasts generally fail the statistical tests for categorization

as calibrated correctly. SV helps to widen the prediction intervals (width of the 70% bands),

which is consistent with the discussion by Clark (2011). Interestingly, we find in general that

the hybrid forecast helps to improve the calibration via an improved coverage (i.e., prediction

intervals that are close to the nominal coverage of 70%) only if the underlying (raw or baseline)

forecast to be tilted is calibrated better. However, there are exceptions. For CPI inflation, all

three forecasts (raw, baseline, and hybrid) from the VAR specification with SV appear to be

well-calibrated (based on p-values from the Knüppel test being greater than 0.10). A closer

inspection reveals that, of these three forecasts, the hybrid forecast could be characterized as

slightly better calibrated, as its coverage rates are generally closer to the nominal rate of 70%

than those of the other two.

The evidence of the hybrid approach helping to improve the calibration is more prominent

for the VAR specification with a constant variance. As can be seen, the raw CPI inflation

forecast is calibrated poorly, because the null hypothesis of a well-calibrated density is rejected

at the 10% significance level for all horizons (p-values from the Knüppel test are below 0.10).

This is supported further by the corresponding empirical coverage rates, which are well below

the nominal value of 70%. Beyond the short-term, the baseline forecast also fails the tests of

properly-calibrated densities. In contrast, the hybrid forecast appears to be well calibrated for

all forecast horizons shown, as the p-values (from the Knüppel test) are all above 0.10 and the

empirical coverage rates are much closer to the nominal value of 70%.

Results: Time-varying parameters VAR

Table 2.5 reports the real-time point forecast accuracies from the small-scale time-varying VAR

estimated with data going back to 1959.Q4. The specification with SV helps to improve the

point forecast accuracy for both real GDP growth and CPI inflation. For CPI inflation, the

results point to economically meaningful and statistically significant accuracy improvements

that are similar to those for time-invariant VARs (with and without SV). Specifically, for the

time-varying VAR with a constant variance, the magnitudes of the accuracy gains for hybrid

forecasts are similar to those seen earlier for the small VAR estimated with the longer sample

(e.g., the three-year-out hybrid is 30% more accurate than the baseline). For the time-varying

VAR specification with SV, the gains are relatively smaller and are similar to those seen for

the small VAR estimated with post-1985 data (e.g., the three-year-out hybrid forecast is 18%

more accurate than the baseline on average). We find that the time-varying VAR with SV is

among the most accurate of the models considered in this chapter (see Table A12 in Section

A4 of the supplementary appendix). In the cases of real GDP growth and the unemployment

rate, the time-varying VAR with a constant variance is a close competitor. However, for CPI

inflation, it is the combination of time-varying parameters and stochastic volatility that helps
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to position it as a good forecasting model. We suspect that the superior accuracy of the SV

specification over the constant-variance specification for CPI inflation is due in part to the

much tighter priors that are required for the SV specification. Our results echo the findings of

D’Agostino et al. (2013).26 For real GDP growth, the results indicate a smaller benefit from the

hybrid approach: even though they appear economically meaningful, they are not statistically

significant. As in the case of the VAR models discussed earlier, Figure 4 illustrates that most

of the gains from the hybrid approach come from the post-crisis period. In the case of the

unemployment rate, the results are very similar to those of the small VAR estimated with the

post-1985 sample. On average, the hybrid approach leads to inferior forecasts relative to the

baseline for the unemployment rate, but the losses are not significant statistically. These loses

come primarily from the post-crisis period.

Table 2.6 reports the corresponding accuracies of the density forecasts. The results of the

density forecast evaluation echo those of the point forecast evaluation reported in Table 2.5.

Table A7 in the supplementary appendix reports the density calibration diagnostics. Beyond

the nowcast quarter, the density forecasts from the specification with a constant variance are

calibrated badly. Allowing for SV helps to improve the calibration of the density forecasts

for real GDP growth and CPI inflation. For real GDP growth, the density forecasts from

the SV specification are calibrated correctly. For CPI inflation, the SV specification leads to

improvements in the coverage rates but generally fails the statistical tests for classification as

calibrated correctly.

Results: medium VAR

In the interests of brevity, the results for the medium VAR are relegated to Section A1 of the

supplementary appendix. Here, we summarize our findings briefly. Firstly, the patterns of both

point and density forecast accuracy improvements for hybrid forecasts are generally similar to

those of the small VAR. Specifically, the results for the medium VAR estimated with the longer

sample echo the results reported for the small VAR with the longer sample. One difference

is that the magnitudes of the improvements for the hybrid forecasts are slightly smaller than

those reported for the small VAR.

Secondly, the additional variables in the medium VAR help to improve the accuracy of the

core variables of interest (relative to the small VAR), and therefore tilting helps slightly less with

the more accurate raw forecasts. The finding that the medium VAR generates more accurate

forecasts than the small VAR is in line with the results of Banbura et al. (2010) and Koop

(2013). The results for the medium VAR estimated with the shorter sample echo the results

reported for the small VAR with the shorter sample. Unlike in the case of estimation with the

longer sample, where the medium-sized VAR was favored over the small VAR, we do not find

26D’Agostino et al. do not report results for a time-varying VAR without SV, but one can perform a rough
assessment by comparing the TVP-AR model with a time-varying VAR with SV (denoted TVP-VAR in their
paper) for inflation. The TVP-AR performs significantly worse than the time-varying VAR with SV.

48



this pattern for VAR models estimated with the shorter sample.

Thirdly, the most useful aspect of the results for the medium VAR is the strong positive

spillover effects that are seen on the accuracies of the variables that are not tilted directly.

Impressive and statistically significant gains in the accuracy of forecasts derived from the hybrid

approach are achieved for core CPI inflation, wage compensation, nonfarm payroll employment,

and the credit spread. It is also worth highlighting the fact that adding core CPI inflation and

SV to the medium VAR helps to improve the accuracy of the raw CPI forecasts greatly. This

implies that tilting is less effective for CPI inflation for those specifications, but that it is very

effective in all medium VAR specifications for core CPI inflation.

Results: Hybrid vs. the Federal Reserve’s Greenbook

The results shown thus far largely support our conjecture that the hybrid approach assists in

mitigating misspecification issues by helping to accommodate possible structural change (due

to changing trends) to the extent that it is detected in real-time by professional forecasters.

As a final check in support of our conjecture, we performed an additional exercise comparing

the accuracy of our hybrid forecasts to that of the Federal Reserve’s Greenbook (GB). The

GB forecast can be thought of as a combination of model and judgement, and therefore will

be expected to handle structural change better than standard VARs. We confirm that this is

indeed the case, and, strikingly, that the hybrid forecasts for real GDP growth and CPI inflation

from our simple VARs are competitive with the GB forecasts. In the case of the unemployment

rate, the hybrid forecasts under-perform GB during the Great Recession but are competitive

with GB on average. Due to space constraints, the results are presented in Section A7 of the

supplementary appendix.

Overall, our point and density forecasting results using real-time data provide compelling

evidence that tilting VAR forecasts to match the long-run forecasts from the Survey of Profes-

sional Forecasters systematically leads to improved forecast accuracies for most variables over

the forecast horizons that are of interest to monetary policymakers. In general, our proposal

is more helpful for models that perform worse in raw form (i.e., raw VAR forecasts). Interest-

ingly, the rankings are generally maintained post-tilting; i.e., models that were ranked low prior

to tilting continue to be ranked low post-tilting, though the differences in accuracy are much

smaller (see Section A4 of the supplementary appendix).27

27As a further check of the robustness of this statement, we estimate the small VAR with loose priors and assess
the extent to which our proposal helps to improve its accuracy. We find that this VAR specification is ranked the
lowest (as would be expected) prior to tilting, gains the most from tilting in terms of accuracy improvements,
and remains ranked at the bottom post-tilting, but with a significantly reduced margin relative to the next best
model. The results of this exercise are reported in Section A5 of the supplementary appendix.
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2.5.2 Inflation forecast accuracy of the tilted VAR compared to univariate

benchmarks

Tilting the VAR forecasts to match the long-horizon survey forecasts leads to meaningful gains

in forecast accuracy for most variables, and the gains in point forecast accuracy are substan-

tial for nominal variables such as price inflation and wage inflation. Given these results, we

investigate how the accuracy of inflation forecasts from the tilting approach compares to those

from hard-to-beat univariate benchmark models. Accordingly, we next compare the inflation

forecast accuracy from our medium VAR (with and without stochastic volatility) using the

three best-known univariate benchmarks: a random walk model (Atkeson and Ohanian, 2001),

the univariate unobserved component with stochastic volatility (UCSV) model of Stock and

Watson (2007), and Faust and Wright’s (2013) inflation in gap.28

Random walk model of Atkeson and Ohanian (2001). For our forecasting exercise,

the forecasts of CPI inflation into the future are computed by averaging the previous four

available quarterly annualized readings of the CPI.

To ensure a fair horse race, we set π̂t+1 equal to the survey nowcast

π̂t+h = 0.25(π̂t+1 + πt + πt−1 + πt−2) for h >= 2. (2.16)

Univariate unobserved component with stochastic volatility (UCSV) model of

Stock and Watson (2007). The superior accuracy of this model for forecasting inflation is

documented well in numerous studies. The model decomposes inflation into two components,

a stochastic trend component and a transitory component, and assumes time-varying variances

of the respective shocks to these two components. The specification of this model is as follows

(for ease of exposition, we retain the notation used by Stock & Watson, 2007):

πt = τt + ηt, where ηt = ση,tζn,t and ζn,t is i.i.d. N(0, I1) (2.17)

τt = τt−1 + εt, where εt = σε,tζε,t and ζε,t is i.i.d. N(0, I1) (2.18)

ln(σ2
η,t) = ln(σ2

η,t−1) + νη,t, where νη,t is i.i.d. N(0, γ1) (2.19)

ln(σ2
ε,t) = ln(σ2

ε,t−1) + νε,t, where νε,t is i.i.d. N(0, γ2). (2.20)

The model forecast for inflation an infinite number of quarters into the future is simply the

model’s current estimated trend inflation rate.29

To ensure a fair horserace, we set π̂t+1 equal to the survey nowcast. For forecasts h >= 2,

we estimate the model through t + 1, treating the survey nowcast as data and computing the

28See Tallman and Zaman (2017) for a broader examination of the forecasting properties of other models, as
well as of these two.

29The scalar parameters γ1 and γ2 determine the smoothness of the stochastic volatility process. Following
Stock and Watson (2007), we fix both at 0.2.
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updated trend estimate:

π̂t+h = τ̂t:t+1 for h >= 2. (2.21)

Inflation in gap model of Faust and Wright (2013). This model is patterned along the

lines of Faust and Wright’s univariate AR1 inflation in gap model. According to this model, CPI

inflation (quarterly annualized rate) is modeled as a gap, where ‘gap’ is defined as a deviation

from a trend, which for CPI inflation is taken to be the SPF long-horizon forecast:

πGapt = α0 + α1π
Gap
t−1 + εt, εt ∼ N

(
0, σ2

)
, (2.22)

where πGapt = πt − πSPF LR
t .

The estimated model is used iteratively to produce forecasts h periods ahead. The forecasts

are of the gap (i.e., the CPI inflation gap), and to it we add the latest available estimate of the

SPF trend (as of forecast origin t) to get the implied forecast of the CPI inflation.

Table 2.7 reports the results from a comparison of the out-of-sample CPI inflation forecasting

performances (both point and density) across five models: Medium VAR est. 1960, Medium

VAR SV est. 1960, random walk model, UCSV model, and Faust and Wright’s inflation in gaps

model. Also included is the forecasting performance of the SPF survey itself. Since the SPF

covers only forecast horizons h = 1Q to h = 5Q, its entries in the table for h = 8Q and h = 12Q

are blank. The top portion of the table reports the results that correspond to the full evaluation

sample, while the lower portion corresponds to the pre-crisis sample (i.e., 1994.Q1 to 2006.Q4).

The left panel reports an accuracy comparison of the Medium VAR (with constant variance)

with the univariate forecasts and the right panel reports an accuracy comparison of the Medium

VAR with SV to the same univariate forecasts.

As is shown by the numbers reported in the table, the hybrid CPI point forecasts are at

least competitive with univariate forecasts and more accurate in many cases, with several of

those gains being flagged as statistically significant. This result holds for each of the forecast

evaluation samples.

In regard to the density forecast accuracy, the UCSV forecast is substantially superior to

the baseline forecast obtained from the Medium VAR with constant volatility (as evidenced by

positive values), and the gains are statistically significant throughout. However, relative to the

hybrid forecast, the UCSV forecast is competitive through most of the forecast horizons but

slightly more accurate at the longer horizons (with the gain being marginally significant). In the

case of the Medium VAR specification with SV, both the baseline and hybrid density forecasts

are competitive to the UCSV forecasts. These results suggest that combining the long-horizon

survey forecasts with the VAR forecasts improves the density forecasts notably. Adding SV

helps to improve the density forecast accuracy of the hybrid forecasts further.

The evidence that the multivariate model (VAR) estimated using a sample that goes back

to 1960, when tilted towards survey long-horizon forecasts, generates inflation forecasts that
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rival both the point and density forecast accuracies of forecasts from tough benchmarks is a

worthwhile result, because policymakers at central banks who are faced with inflation targeting

may benefit from using models that allow for feedback between policy, the real economy and

inflation. Such models have been known to underperform simple univariate approaches in terms

of forecasting inflation, at times significantly so. An examination of our exercises suggests

that the modeling technique that we propose and illustrate may have some useful payoffs for

policymakers.

2.6 Conclusions

This chapter proposes a technique for adjusting the medium- and long-horizon forecasts from a

VAR toward plausible values that are proposed by judgmental forecasters. We construct hybrid

forecasts that consist of survey nowcasts, VAR forecasts, and long-horizon survey projections.

Specifically, by applying the flexible and powerful technique of relative entropy, we tilt the VAR

forecast both in the near term with the survey nowcast and in the long run with the survey

long-run projection. The horizon at which the long-run survey projection is combined with the

VAR forecast is variable-specific and is determined by the variable’s estimated persistence at

the forecast origin.

We consider the efficacy of our proposal on a variety of VAR models estimated using Bayesian

methods. We find that all of the models examined benefit through an improved accuracy, with

the largest gains in forecast accuracy being seen in models that are estimated with longer his-

tories and the smallest gains for models that attempt to accommodate structural changes. We

find that tilting VAR forecasts to match the long-run forecasts from the Survey of Professional

Forecasters systematically leads to improvements in forecast accuracy, as is indicated by the

lower MSE and lower CRPS values for most variables over the forecast horizons that are of

interest to monetary policymakers (i.e., one to three years out). The greatest gains in accuracy

are achieved for variables that are believed to have undergone marked shifts in their permanent

components (e.g. inflation and the federal funds rate). We also show substantial forecast accu-

racy improvements for a host of variables (such as compensation, payroll employment, credit

spread) that are not tilted directly but are affected through the spillover effects of the tilted

variables.

We also show that hybrid inflation forecasts from simple VAR models rival those of relatively

accurate univariate benchmark models. We view this as a useful and practical contribution

because the many frustrations of monetary policymakers include the inability of multivariate

models, which allow for feedback effects from policy to the real economy and inflation, to match

the forecasting performances of univariate forecasting models.

Finally, we show that all of the models considered display demonstrable improvements in

the forecast accuracies of hybrid forecasts for real GDP growth and CPI inflation over the last

decade (i.e., from the Great Recession to the present), which coincides with the time period
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that is associated with possible structural change. These results lead us to view our proposal as

a low-cost method for mitigating model instability issues that may arise from structural shifts

caused by moving end points.
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(a) Cumulative sum of squared errors

(b) Cumulative sum of CRPS

Figure 2.2: Results of the small VAR est. 1960: cumulative squared errors (top) and cumulative
CRPS (bottom).
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(a) Cumulative sum of squared errors

(b) Cumulative sum of CRPS

Figure 2.3: Results of the small VAR est. 1985: cumulative squared errors (top) and cumulative
CRPS (bottom).
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(a) Cumulative sum of squared errors

(b) Cumulative sum of CRPS

Figure 2.4: Results of the small TVP-VAR SV: cumulative squared errors (top) and cumulative
CRPS (bottom).
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Table 2.1: Out-of-sample point forecasting performance: small BVAR est. 1960.

Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Small VAR Small VAR with SV
h = 1Q h = 4Q h = 8Q h = 12Q h = 1Q h = 4Q h = 8Q h = 12Q

GDP
Raw 4.35 7.19 6.55 6.20 3.67 6.68 6.61 6.26
Relative MSE
Baseline/Raw 0.62*** 1.01 1.05** 1.02 0.74** 1.00 1.01 1.00
Hybrid/Raw 0.62*** 0.94 0.91 1.00 0.74** 0.90** 0.86* 0.98
Hybrid/Baseline 1.00 0.93* 0.86* 0.98* 1.00 0.90** 0.85** 0.98
CPI
Raw 3.11 5.61 6.70 8.52 2.94 5.26 5.50 6.50
Relative MSE
Baseline/Raw 0.33*** 0.90** 0.95 0.92* 0.35*** 0.86*** 0.99 0.94***
Hybrid/Raw 0.33*** 0.83*** 0.71*** 0.61*** 0.35*** 0.85*** 0.88* 0.79***
Hybrid/Baseline 1.00 0.92* 0.75*** 0.67*** 1.00 1.00 0.89** 0.83***
UR
Raw 0.05 0.64 2.41 3.78 0.05 0.60 2.39 3.75
Relative MSE
Baseline/Raw 0.29*** 0.73* 0.92 0.95 0.32*** 0.73** 0.90* 0.96
Hybrid/Raw 0.29*** 0.75** 0.90 0.95 0.32*** 0.74** 0.87 0.97
Hybrid/Baseline 1.00 1.03 0.98 0.99 1.00 1.01 0.97 1.00
FFR
Raw 0.19 2.11 6.12 10.16 0.10 2.12 7.17 11.66
Relative MSE
Baseline/Raw 0.03*** 0.68*** 0.87** 0.93*** 0.05*** 0.63*** 0.85*** 0.92**
Hybrid/Raw 0.03*** 0.77** 0.77* 0.65*** 0.05*** 0.64*** 0.68*** 0.57***
Hybrid/Baseline 1.00 1.13* 0.88* 0.70*** 1.00 1.02 0.80** 0.62***
Credit spread
Raw 0.09 0.67 1.14 1.28 0.08 0.73 1.30 1.53
Relative MSE
Baseline/Raw 0.77* 0.95*** 0.97*** 0.99 0.89** 0.99 0.98** 0.99*
Hybrid/Raw 0.80 0.94* 0.85*** 0.85*** 0.89** 0.93*** 0.80*** 0.72***
Hybrid/Baseline 1.04 1.00 0.87*** 0.86*** 0.99 0.94** 0.81*** 0.73***

Notes: GDP: quarterly annualized real GDP growth rate; CPI: quarterly annualized inflation rate; UR: unemployment rate in levels; FFR:

effective federal funds rate in levels; credit spread: in levels. The raw forecast is defined as the unconditional forecast from the VAR. The

baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). The hybrid forecast is

defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left panel

reports results for the VAR specification with a constant variance and the right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the rows labeled ‘Raw’ are the mean squared error (MSE), while the three rows below report

relative MSEs: baseline relative to raw, hybrid relative to raw, and hybrid relative to baseline. The table reports statistical significance

based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator, with the test statistic

adjusted for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997). *, ** and *** indicate significance at the

10%, 5% and 1% levels, respectively. The test statistics use two-sided standard normal critical values.
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Table 2.2: Out-of-sample density forecasting performance: small BVAR est. 1960.

Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Small VAR Small VAR with SV
h = 1Q h = 4Q h = 8Q h = 12Q h = 1Q h = 4Q h = 8Q h = 12Q

GDP
Raw 1.21 1.48 1.43 1.41 1.08 1.39 1.42 1.42
Relative CRPS
Baseline - Raw −0.28*** 0.01 0.05** 0.01 −0.15*** 0.00 0.01 0.00
Hybrid - Raw −0.29*** −0.04 −0.02 −0.01 −0.15*** −0.06** −0.05 0.00
Hybrid - Baseline 0.00 −0.05* −0.07 −0.02 0.00 −0.06** −0.07 0.01
CPI
Raw 0.95 1.22 1.42 1.57 0.95 1.20 1.34 1.46
Relative CRPS
Baseline - Raw −0.38*** −0.07*** −0.04 −0.02 −0.37*** −0.11*** −0.03 −0.05**
Hybrid - Raw −0.38*** −0.12*** −0.22*** −0.26*** −0.37*** −0.11*** −0.09 −0.12***
Hybrid - Baseline 0.00 −0.05*** −0.18*** −0.24*** 0.00 0.00 −0.06* −0.07*
UR
Raw 0.12 0.40 0.80 1.07 0.12 0.37 0.79 1.05
Relative CRPS
Baseline - Raw −0.05*** −0.06** −0.04 −0.02 −0.05*** −0.06** −0.05* −0.02
Hybrid - Raw −0.05*** −0.06** −0.05 −0.02 −0.05*** −0.05** −0.06 0.00
Hybrid - Baseline 0.00 0.00 −0.01 0.01 0.00 0.00 −0.01 0.02
FFR
Raw 0.28 0.84 1.43 1.87 0.17 0.78 1.54 2.04
Relative CRPS
Baseline - Raw −0.24*** −0.13*** −0.08* −0.06** −0.13*** −0.16*** −0.13*** −0.06**
Hybrid - Raw −0.24*** −0.10** −0.15* −0.33*** −0.13*** −0.15*** −0.27*** −0.43***
Hybrid - Baseline 0.00 0.03* −0.07 −0.28*** 0.00 0.01* −0.14** −0.37***
Credit spread
Raw 0.15 0.43 0.59 0.65 0.14 0.45 0.66 0.75
Relative CRPS
Baseline - Raw −0.01** −0.01*** −0.01* 0.00 −0.01** −0.01*** −0.01 0.00
Hybrid - Raw −0.01* −0.01 −0.06*** −0.07*** −0.01** −0.02*** −0.08*** −0.11***
Hybrid - Baseline 0.00 0.00 −0.05*** −0.07*** 0.00 −0.02*** −0.08*** −0.11***

Notes: GDP: quarterly annualized real GDP growth rate; CPI: quarterly annualized inflation rate; UR: unemployment rate in levels; FFR:

effective federal funds rate in levels; credit spread: in levels. The raw forecast is defined as the unconditional forecast from the VAR. The

baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). The hybrid forecast is

defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left panel

reports results for the VAR specification with a constant variance and the right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the rows labeled ‘Raw’ are the mean cumulative ranked probability score (CRPS), while the

three rows below report relative CRPS values: baseline relative to raw, hybrid relative to raw, and hybrid relative to baseline. A lower

value for CRPS is preferable, meaning that a negative value in the row labeled ‘Hybrid - Baseline’ suggests that, on average, the hybrid

forecast is more accurate than the baseline forecast. The table reports statistical significance based on the Diebold-Mariano and West test

with the lag h− 1 truncation parameter of the HAC variance estimator, with the test statistic adjusted for the finite sample correction

proposed by Harvey, Leybourne, and Newbold (1997). *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. The

test statistics use two-sided standard normal critical values.
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Table 2.3: Out-of-sample point forecasting performance: small BVAR est. 1985.

Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Small VAR Small VAR with SV
h = 1Q h = 4Q h = 8Q h = 12Q h = 1Q h = 4Q h = 8Q h = 12Q

GDP
Raw 3.43 6.23 6.65 6.46 3.42 6.07 6.51 6.62
Relative MSE
Baseline/Raw 0.79** 0.93 1.00 1.03*** 0.79** 0.96 1.01 1.00
Hybrid/Raw 0.79** 0.96 0.89* 0.96 0.79** 0.98 0.85*** 0.92**
Hybrid/Baseline 1.00 1.02 0.89** 0.93* 1.00 1.02 0.84*** 0.92*
CPI
Raw 2.95 4.71 5.11 6.12 2.77 4.79 4.67 5.50
Relative MSE
Baseline/Raw 0.35*** 1.00 1.00 1.00 0.37*** 0.95*** 1.05 1.02
Hybrid/Raw 0.35*** 0.95 0.88*** 0.87*** 0.37*** 0.91*** 0.97 0.89***
Hybrid/Baseline 1.00 0.95*** 0.88*** 0.87** 1.00 0.96* 0.93** 0.88***
UR
Raw 0.04 0.48 2.22 3.94 0.04 0.46 2.09 3.84
Relative MSE
Baseline/Raw 0.35*** 0.75* 0.84 0.93 0.35*** 0.76** 0.86 0.92*
Hybrid/Raw 0.35*** 0.86 0.96 0.99 0.35*** 0.87*** 0.97 0.96
Hybrid/Baseline 1.00 1.14 1.14 1.06 1.00 1.15* 1.13 1.03
FFR
Raw 0.08 1.95 6.79 10.58 0.08 1.95 6.85 11.33
Relative MSE
Baseline/Raw 0.06*** 0.57*** 0.81** 0.94 0.06*** 0.57*** 0.81*** 0.93*
Hybrid/Raw 0.06*** 0.57*** 0.71** 0.75 0.06*** 0.57*** 0.72*** 0.76**
Hybrid/Baseline 1.00 1.00 0.87* 0.80* 1.00 1.00 0.89 0.82**
Credit spread
Raw 0.09 0.63 1.06 1.12 0.09 0.66 1.09 1.19
Relative MSE
Baseline/Raw 0.72** 0.91** 1.00 1.07 0.84** 0.91** 0.99 1.00
Hybrid/Raw 0.73** 0.93 0.91 0.97 0.82* 0.90** 0.94 0.92*
Hybrid/Baseline 1.02* 1.02 0.91 0.91* 0.98 0.99 0.95 0.92*

Notes: GDP: quarterly annualized real GDP growth rate; CPI: quarterly annualized inflation rate; UR: unemployment rate in levels; FFR:

effective federal funds rate in levels; credit spread: in levels. The raw forecast is defined as the unconditional forecast from the VAR. The

baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). The hybrid forecast is

defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left panel

reports results for the VAR specification with a constant variance and the right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the rows labeled ‘Raw’ are the mean squared error (MSE), while the three rows below report

relative MSEs: baseline relative to raw, hybrid relative to raw, and hybrid relative to baseline. The table reports statistical significance

based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator, with the test statistic

adjusted for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997). *, ** and *** indicate significance at the

10%, 5% and 1% levels, respectively. The test statistics use two-sided standard normal critical values.
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Table 2.4: Out-of-sample density forecasting performance: small BVAR est. 1985.

Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Small VAR Small VAR with SV
h = 1Q h = 4Q h = 8Q h = 12Q h = 1Q h = 4Q h = 8Q h = 12Q

GDP
Raw 1.04 1.37 1.41 1.37 1.05 1.36 1.43 1.43
Relative CRPS
Baseline - Raw −0.11** −0.03 0.01 0.04*** −0.13*** −0.03* −0.01 0.00
Hybrid - Raw −0.11** −0.03 −0.10* −0.02 −0.13*** −0.03 −0.10*** −0.03*
Hybrid - Baseline 0.00 0.00 −0.11** −0.06** 0.00 0.01 −0.09*** 0.03*
CPI
Raw 0.94 1.14 1.20 1.33 0.92 1.14 1.16 1.26
Relative CRPS
Baseline - Raw −0.36*** −0.02 0.00 0.01 −0.35*** −0.04*** 0.00 −0.01
Hybrid - Raw −0.36*** −0.06** −0.10*** −0.11*** −0.35*** −0.08*** −0.05** −0.06***
Hybrid - Baseline 0.00 −0.04** −0.11*** −0.13*** 0.00 −0.04** −0.04** −0.05***
UR
Raw 0.12 0.36 0.80 1.13 0.11 0.35 0.76 1.11
Relative CRPS
Baseline - Raw −0.05*** −0.05* −0.04 −0.02 −0.04*** −0.05*** −0.05* −0.04*
Hybrid - Raw −0.05*** −0.03 0.00 0.00 −0.04*** −0.03** −0.02 −0.04
Hybrid - Baseline 0.00 0.02* 0.04* 0.02 0.00 0.02** 0.04 0.00
FFR
Raw 0.16 0.78 1.48 1.86 0.15 0.75 1.47 1.92
Relative CRPS
Baseline - Raw −0.12*** −0.19*** −0.12*** −0.05 −0.12*** −0.19*** −0.15*** −0.08*
Hybrid - Raw −0.12*** −0.20*** −0.21** −0.23 −0.12*** −0.19*** −0.22*** −0.27**
Hybrid - Baseline 0.00 0.00 −0.09 −0.19* 0.00 0.00 −0.07 −0.20**
Credit spread
Raw 0.15 0.43 0.57 0.62 0.15 0.43 0.57 0.62
Relative CRPS
Baseline - Raw −0.02** −0.02* 0.00 0.02 −0.01** −0.02*** −0.01** −0.01***
Hybrid - Raw −0.02** −0.02 −0.03* −0.03 −0.01** −0.02** −0.03** −0.02*
Hybrid - Baseline 0.00 0.00 −0.03* −0.04* 0.00 0.00 −0.02** −0.02*

Notes: GDP: quarterly annualized real GDP growth rate; CPI: quarterly annualized inflation rate; UR: unemployment rate in levels; FFR:

effective federal funds rate in levels; credit spread: in levels. The raw forecast is defined as the unconditional forecast from the VAR. The

baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). The hybrid forecast is

defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left panel

reports results for the VAR specification with a constant variance and the right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the rows labeled ‘Raw’ are the mean cumulative ranked probability score (CRPS), while the

three rows below report relative CRPS values: baseline relative to raw, hybrid relative to raw, and hybrid relative to baseline. A lower

value for CRPS is preferable, meaning that a negative value in the row labeled ‘Hybrid - Baseline’ suggests that, on average, the hybrid

forecast is more accurate than the baseline forecast. The table reports statistical significance based on the Diebold-Mariano and West test

with the lag h− 1 truncation parameter of the HAC variance estimator, with the test statistic adjusted for the finite sample correction

proposed by Harvey, Leybourne, and Newbold (1997). *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. The

test statistics use two-sided standard normal critical values.
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Table 2.5: Out-of-sample point forecasting performance: small TVP-VAR.

Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Small TVP VAR Small TVP VAR with SV
h = 1Q h = 4Q h = 8Q h = 12Q h = 1Q h = 4Q h = 8Q h = 12Q

GDP
Raw 4.65 6.91 6.33 6.00 3.99 6.55 6.24 6.08
Relative MSE
Baseline/Raw 0.58*** 0.95** 1.03 1.00 0.68*** 0.92** 0.98 1.01*
Hybrid/Raw 0.58*** 0.98 0.93 1.04* 0.68*** 0.86** 0.90 1.01
Hybrid/Baseline 1.00 1.03 0.90 1.05 1.00 0.94 0.92 0.99
CPI
Raw 3.41 6.01 6.65 7.82 3.10 5.21 5.45 6.25
Relative MSE
Baseline/Raw 0.30*** 0.91** 0.95 0.95*** 0.33*** 0.93** 0.94*** 0.96**
Hybrid/Raw 0.30*** 0.82*** 0.69*** 0.67*** 0.33*** 0.88*** 0.82*** 0.79***
Hybrid/Baseline 1.00 0.91*** 0.73*** 0.70** 1.00 0.94* 0.88** 0.82***
UR
Raw 0.05 0.49 1.98 3.16 0.05 0.50 2.04 3.36
Relative MSE
Baseline/Raw 0.32*** 0.82*** 0.93* 0.98 0.34*** 0.82** 0.93 0.98
Hybrid/Raw 0.32*** 0.91 1.04 1.13 0.34*** 0.84*** 1.00 1.09
Hybrid/Baseline 1.00 1.11 1.12 1.16 1.00 1.03 1.08 1.11

Notes: GDP: quarterly annualized real GDP growth rate; CPI: quarterly annualized inflation rate; UR: unemployment rate in levels. The

raw forecast is defined as the unconditional forecast from the VAR. The baseline forecast is defined as the raw VAR forecast tilted towards

survey nowcasts only (both mean and variance). The hybrid forecast is defined as the raw VAR forecast tilted towards both survey

nowcasts (both mean and variance) and long-horizon forecasts. The left panel reports results for the VAR specification with a constant

variance and the right panel reports results for the VAR specification with stochastic volatility. The numbers reported in the rows labeled

‘Raw’ are the mean squared error (MSE), while the three rows below report relative MSEs: baseline relative to raw, hybrid relative to raw,

and hybrid relative to baseline. The table reports statistical significance based on the Diebold-Mariano and West test with the lag h− 1

truncation parameter of the HAC variance estimator, with the test statistic adjusted for the finite sample correction proposed by Harvey,

Leybourne, and Newbold (1997). *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. The test statistics use

two-sided standard normal critical values.
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Table 2.6: Out-of-sample density forecasting performance: small TVP-VAR.

Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Small TVP VAR Small TVP VAR with SV
h = 1Q h = 4Q h = 8Q h = 12Q h = 1Q h = 4Q h = 8Q h = 12Q

GDP
Raw 1.27 1.49 1.44 1.42 1.14 1.42 1.35 1.33
Relative CRPS
Baseline - Raw −0.34*** −0.04** 0.01 −0.01 −0.21*** −0.07** 0.00 0.01
Hybrid - Raw −0.34*** −0.01 −0.04 0.02** −0.21*** −0.12** −0.05 0.02
Hybrid - Baseline 0.00 0.02 −0.06 0.03* 0.00 −0.05* −0.05 0.01
CPI
Raw 1.03 1.30 1.45 1.54 1.01 1.18 1.27 1.33
Relative CRPS
Baseline - Raw −0.45*** −0.08*** −0.04** −0.03*** −0.42*** −0.07*** −0.05*** −0.02***
Hybrid - Raw −0.45*** −0.11** −0.18** −0.19** −0.42*** −0.11*** −0.12** −0.10**
Hybrid - Baseline 0.00 −0.03 −0.14** −0.15* 0.00 −0.04*** −0.06* −0.08**
UR
Raw 0.12 0.38 0.76 0.99 0.12 0.38 0.80 1.08
Relative CRPS
Baseline - Raw −0.05*** −0.04*** −0.03** −0.01 −0.05*** −0.04*** −0.02 0.00
Hybrid - Raw −0.05*** −0.04** −0.02 0.04 −0.05*** −0.05*** −0.02 0.01
Hybrid - Baseline 0.00 0.01 0.02 0.05 0.00 0.00 0.00 0.01

Notes: GDP: quarterly annualized real GDP growth rate; CPI: quarterly annualized inflation rate; UR: unemployment rate in levels. The

raw forecast is defined as the unconditional forecast from the VAR. The baseline forecast is defined as the raw VAR forecast tilted towards

survey nowcasts only (both mean and variance). The hybrid forecast is defined as the raw VAR forecast tilted towards both survey

nowcasts (both mean and variance) and long-horizon forecasts. The left panel reports results for the VAR specification with a constant

variance and the right panel reports results for the VAR specification with stochastic volatility. The numbers reported in the rows labeled

‘Raw’ are the mean cumulative ranked probability score (CRPS), while the three rows below report relative CRPS values: baseline relative

to raw, hybrid relative to raw, and hybrid relative to baseline. A lower value for CRPS is preferable, meaning that a negative value in the

row labeled ‘Hybrid - Baseline’ suggests that, on average, the hybrid forecast is more accurate than the baseline forecast. The table reports

statistical significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance

estimator, with the test statistic adjusted for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997). *, ** and

*** indicate significance at the 10%, 5% and 1% levels, respectively. The test statistics use two-sided standard normal critical values.
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Table 2.7: CPI inflation real-time out-of-sample point forecasting performance.

Panel A: Full sample (recursive evaluation: 1994.Q1–2016.Q4)

Medium VAR est. 1960 Medium VAR with SV est. 1960
CPI inflation h = 2Q h = 4Q h = 8Q h = 12Q h = 2Q h = 4Q h = 8Q h = 12Q
MSE
Hybrid 4.36 4.58 4.55 4.91 4.50 4.47 4.57 4.95

Relative MSE
Hybrid/RW (AO) 0.86* 0.90* 0.84* 0.93** 0.88* 0.89** 0.84* 0.93**
Hybrid/UCSV (SW) 0.98 1.00 0.94 1.00 1.00 0.99 0.94 1.00
Hybrid/FW 0.98 1.00 0.93** 0.95** 1.00 0.99 0.93** 0.95**
Hybrid/SPF 1.08 1.05 N/A N/A 1.10 1.04 N/A N/A

Relative CRPS
Baseline - UCSV 0.02 0.08*** 0.12*** 0.21** 0.04 0.00 0.01 0.06
Hybrid - UCSV −0.01 0.03 0.02 0.07* 0.01 0.02 0.00 0.08

Panel B: Pre-crisis sample (recursive evaluation: 1994.Q1–2006.Q4)

Medium VAR est. 1960 Medium VAR with SV est. 1960
CPI inflation h = 2Q h = 4Q h = 8Q h = 12Q h = 2Q h = 4Q h = 8Q h = 12Q
MSE
Hybrid 1.47 1.57 1.79 1.86 1.35 1.45 1.71 1.89

Relative MSE
Hybrid/RW (AO) 0.96 0.91 0.79 0.88 0.89 0.84* 0.75* 0.89
Hybrid/UCSV (SW) 1.01 1.00 0.91 0.93 0.93 0.92 0.87 0.94
Hybrid/FW 1.01 0.98 0.94 0.87 0.92 0.90 0.89 0.88
Hybrid/SPF 0.99 0.94 N/A N/A 0.91 0.87 N/A N/A

Relative CRPS
Baseline - UCSV 0.01 0.06 0.11 0.32*** 0.00 −0.02 −0.01 0.08**
Hybrid - UCSV 0.01 0.04 0.06 0.11 −0.02 −0.03 −0.05 0.02

Notes: The first row in each panel reports the mean squared error (MSE) that corresponds to the hybrid forecast obtained from a medium

BVAR. Rows 2 to 5 report relative MSEs, meaning that a ratio of less than 1 indicates that, on average, the hybrid forecast is more

accurate than the respective univariate forecast. Row 6 reports the relative CRPS values of the baseline density forecasts relative to UCSV,

where a negative value suggests that the baseline density forecast is more accurate on average. Row 7 reports the relative CRPS of the

hybrid density forecast relative to UCSV, with a negative value suggesting that the hybrid density forecast is more accurate on average.

The table reports statistical significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC

variance estimator, with the test statistic adjusted for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *,

** and *** indicate significance at the 10%, 5% and 1% levels, respectively. The test statistics use two-sided standard normal critical

values. All models use the SPF nowcast for the one-step-ahead forecast; as a result, the relative MSE is equal to one and is not reported.
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Chapter 3

Real-Time Density Nowcasts of US

Inflation: A Model-Combination

Approach

Based on the paper: Knotek, E.S., II and Zaman, S. (2020). Real-Time density nowcasts of US

inflation: A model-combination approach. Federal Reserve Bank of Cleveland, Working Paper

No. 20-31.

3.1 Introduction

Inflation developments are of interest to policymakers, forecasters, financial market participants,

and the general public. This interest includes not only the point forecast but also the range

of potential inflation outcomes and their probability of occurring—i.e., the density forecast.

Building on the literature that finds that the accuracy of multistep point forecasts can be

improved by conditioning on high-quality point nowcasts, Krüger, Clark, and Ravazzolo (2017)

and Tallman and Zaman (2020) document that conditioning quarterly macroeconomic models

with both nowcast means and nowcast densities leads to improvements in the accuracy of

multistep point and density forecasts, especially for inflation.1 Realizing these gains in practice

requires relatively accurate nowcast means and nowcast densities for inflation. Previous research

by Modugno (2013), Monteforte and Moretti (2013), Breitung and Roling (2015), Knotek and

Zaman (2017), and Clement (2017) has developed mixed-frequency approaches to nowcast U.S.

inflation, with an exclusive focus on point nowcast accuracy. In this chapter, we develop a

flexible framework that uses model-combination strategies with three classes of mixed-frequency

models to generate highly accurate point and density nowcasts for U.S. inflation.

The past two decades have seen considerable growth in the density forecasting and density

1E.g., Faust and Wright (2013) and Knotek and Zaman (2019) find that conditioning quarterly macro models
with more accurate jumping-off points from external nowcasts improves multistep forecast accuracy.
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nowcasting literature.2 Density forecasts help to illuminate the balance of risks around point

forecasts (e.g., Rossi, 2014; Mazzi, Mitchell, and Montana, 2014) and strengthen the “credi-

bility” of forecasts (Wright, 2019). However, recent work on density nowcasting has focused

on real GDP growth and other indicators of real economic activity. The paper that comes

closest to the notion of inflation density nowcasting is Garratt, Mitchell, and Vahey (2014), but

there the nowcasts are one-step-ahead forecasts from models estimated with quarterly data;

intra-quarterly daily, weekly, and monthly data are not used, and hence the density nowcast

estimates are largely unchanged during the quarter.

We contribute to the density nowcasting literature by proposing a flexible framework to pro-

duce both point and density nowcast estimates for U.S. headline and core inflation measures:

CPI inflation, core CPI inflation, PCE inflation, and core PCE inflation. Our flexible framework

is based on model combinations across three classes of mixed-frequency models that previous re-

search has shown produce high-quality point nowcasts for inflation; for one of the model classes,

we develop a procedure to generate the density nowcasts. By using mixed-frequency models,

we can produce inflation density nowcasts at a trading-day frequency that take advantage of

high-frequency data and update as information accumulates over the course of a month or a

quarter.

We use model combinations because the characterization of uncertainty from a single (possi-

bly misspecified) model could be too restrictive. In addition, combining density estimates across

a range of models provides a flexible density that can potentially accommodate non-Gaussian

features such as skewness and kurtosis, which may more closely approximate the true den-

sity.3 Inspired by previous research on density forecast combinations (e.g., Bache et al., 2011;

Aastveit et al., 2014; Garratt, Mitchell, and Vahey, 2014), we combine the density nowcasts

in a two-stage procedure.4 In stage 1, density nowcasts coming from different model specifica-

tions within each of the three model classes are combined. In stage 2, we combine across the

three stage 1 combinations to form a “grand” combination. As illustrated in Aastveit et al.

(2014), an advantage of the two-stage procedure is that it directly accommodates instabilities

and uncertainty about model specification within each model class.

Combining densities requires a functional form for the aggregation and weights to apply

to the different densities. Previous research has used either the linear opinion pool or the

logarithmic opinion pool as the functional form for aggregation, with some researchers using

both methods and presenting results for the approach that is more accurate over some evaluation

period. Instead of enforcing a particular functional form for aggregation at the outset, we devise

2See Tay and Wallis (2000) for a survey on density forecasting, including its application in macroeconomics
and finance, and Aastveit et al. (2018) for a more recent survey on density forecasting and density combinations.

3Alternatively, one could flexibly characterize uncertainty using a single mixed-frequency model featuring
stochastic volatility and estimate the model with Bayesian methods, as in Carriero, Clark, and Marcellino (2015b)
for real GDP growth or Koop, McIntyre, and Mitchell (2020) for U.K. regional indicators.

4Our general strategy for combining densities from many models is similar in spirit to the approach in Aastveit,
et al. (2014) for density nowcasting GDP, but with many differences in implementation. Chernis and Sekkel
(2018) employ a similar two-stage procedure to produce point nowcast combinations for real economic indicators.
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and implement a novel flexible aggregation strategy that lets the data dynamically determine

which of the two functional forms it prefers. A potential advantage of this flexibility is that

it allows for the possibility of switching between the two functional forms, at different points

within a month or a quarter based on the nowcast origin or at different points in time during the

sample as more observations become available. This novel flexible aggregation strategy can be

used broadly in multistep forecasting applications when combining point or density forecasts.

The literature has considered a variety of weighting schemes to use when combining den-

sity forecasts, in part because no single scheme has been shown to work “best” under all

circumstances. The bulk of the density combination literature has considered a limited num-

ber of weighting schemes—although Krüger (2015) and Ganics (2017) are exceptions—with the

scheme based on recursive updating of past performance using the log score metric being the

most popular. In contrast, we consider a relatively large number of weighting schemes, ranging

from equal weights to schemes based on past predictive performance to “optimal” schemes that

optimize some loss function over a historical sample. In most cases, these weights dynamically

update over time to learn from past performance.

Using high-frequency real-time data over the evaluation period 2000-2015, we conduct a

comprehensive set of out-of-sample inflation density nowcasting exercises to assess our flexible

framework using a variety of inflation measures, inflation rates, weighting strategies, and mixed-

frequency model classes. This examination reveals that combining individual densities generally

helps improve density nowcast accuracy, and as information accumulates over the course of a

month or a quarter, the accuracy of the combined density nowcasts and the associated point

nowcasts steadily improves. We also document evidence of dynamic model switching, which

highlights the importance of combining estimates from a range of models to circumvent the

instability issues from a single model. But it matters how the densities are combined: not all

combination methods improve accuracy compared with the best-performing individual densities.

The grand combinations based on our flexible aggregation strategy and the log score weighting

scheme, which relies on past predictive performance, or the “optimal” weighting scheme of

Conflitti, De Mol, and Giannone (2015) are among the best performing in terms of relative

accuracy for headline inflation and are well calibrated. The Ganics (2017) weighting scheme,

which optimizes the calibration fit, produces the best calibrated densities for headline inflation,

but its relative accuracy is inferior to the log score or Conflitti, De Mol, and Giannone (2015)

weighting schemes. In the case of core inflation, all weighting schemes generate comparable

accuracy of point and density nowcasts. Overall, the accuracy of the implied point nowcasts

from the grand combination matches the accuracy of the best performing mixed-frequency

model of Knotek and Zaman (2017) and is more accurate in the case of core PCE inflation.

Our empirical results indicate evidence of both time-varying skewness and kurtosis in the

predictive densities of inflation measures, suggesting that asymmetries and fat tails are an

empirical feature of inflation data. Combination methods that produce density estimates derived

from a richer set of models tend to display a higher degree of skewness and kurtosis in the
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predictive densities. We also find evidence of time-varying variances (i.e., uncertainty in the

nowcast estimates) that echo the broader patterns reported elsewhere in the inflation uncertainty

literature using stochastic volatility models (e.g., Carriero, Clark, and Marcellino, 2019; Knotek,

Zaman, and Clark, 2015).

Finally, we conduct a horse race with the Survey of Professional Forecasters (SPF) for point

and density nowcast accuracy. Our grand combination’s density nowcasts provide superior point

and density nowcasts for CPI inflation and PCE inflation. For core CPI inflation and core PCE

inflation, our grand combination’s nowcasting performance is competitive with the SPF. The

ability of our proposed framework to generate highly accurate point and density nowcasts of

inflation is a useful outcome for practitioners.

The chapter proceeds as follows. Section 3.2 describes the mixed-frequency models. Section

3.3 discusses the combination methods to combine individual densities. Section 3.4 describes

the real-time data. Section 3.5 discusses the nowcast evaluation strategy. Section 3.6 presents

empirical results. Section 3.7 compares the accuracy of the combined density nowcasts to SPF.

Section 3.8 concludes.

3.2 Mixed-Frequency Models

Building on the literature that has shown that relatively parsimonious approaches dominate

more sophisticated approaches for nowcasting and near-term forecasting of inflation (e.g., Koop

and Korobilis, 2012; Knotek and Zaman, 2017), we consider three classes of mixed-frequency

models that relate aggregate inflation to its components and to a limited number of other indi-

cators.5 To economize on space, we briefly discuss the models and procedures for constructing

their density nowcasts here. The supplementary appendix B provides detailed explanations of

the models and the bootstrap algorithms for constructing the density nowcasts.

3.2.1 Deterministic Model Switching (DMS)

Knotek and Zaman (2017) construct a mixed-frequency model for inflation point nowcasting

that relies on a small number of variables and combines univariate and multivariate regressions.

The model uses disaggregate and aggregate variables to construct nowcasts for the aggregate,

but the disaggregate information is used only if it is available and deemed useful.6 The latter

aspect gives rise to time-varying coefficients that change in a deterministic fashion based on the

available information set, which we label as deterministic model switching (DMS).

5These model classes have also been applied in other contexts, such as nowcasting GDP growth. We restrict
attention to models that are well understood by econometricians and economic forecasters, but one could extend
the model pool to include a larger and broader set of model classes, including machine learning models.

6Hendry and Hubrich (2011) and Ravazzolo and Vahey (2014) focus on multistep inflation forecasting using
disaggregates.
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Monthly inflation rates πt for month t are modeled via a general representation:

As(τ)Zt = Bs(τ) + Cs(τ)Xt +
J∑
j=1

Dj,s(τ)Zt−j + εs(τ),t (3.1)

For headline inflation, Zt is a vector of aggregates—CPI inflation, πCPIt , and PCE inflation,

πPCEt —and Xt is a vector of disaggregate components comprising gasoline inflation (πGasolinet ),

food inflation (πFoodt ), and core inflation rates (πCoreCPIt and πCorePCEt ).

The coefficient matrices A, B, C, and Dj can potentially vary over time with the information

set s(τ), where τ is the point in time at which the nowcast is being made. As is common in

nowcasting applications, we produce and evaluate nowcasts at different points in time for a

given month; we use the notation τ to capture the former and t to capture the latter.7 The

information set s(τ) captures the data flow from statistical agencies that is available at that

point in time τ ; in Section 3.4, we describe the data flow at the points τ for which we evaluate

the nowcasts. We explicitly include the information set, s(τ) in equation (3.1) to emphasize

the dependence of the coefficients on the available information. As some of these coefficients

can take on values of zero, the model can switch over time between univariate and multivariate

forms depending on the available information set. To illustrate the type of deterministic model

switching that occurs, based on the available information set s(τ), for example, the nowcast for

πPCEt in month t is a function of actual πCPIt in month t via As(τ), if πCPIt is available from

statistical agencies and hence part of the information set; if actual πCPIt is not available, the

nowcast for πPCEt in month t is a function of disaggregates’ nowcasts included in Xt via Cs(τ).

If the vector of disaggregates is incomplete for month t, then Cs(τ) = 0. High-frequency data

on gasoline and oil prices are used to construct a gasoline inflation nowcast via an auxiliary

model, while food inflation nowcasts are derived using a univariate AR specification. Core

inflation rates are modeled using equation (3.1), where no disaggregates are used and nowcasts

are formed either via univariate AR models or bridge regressions if πCoreCPIt is available for

month t while πCorePCEt is not. This mixed-frequency model switches between univariate and

multivariate regressions depending on the available information within a month or a quarter.

We innovate on the DMS approach for constructing inflation point nowcasts in two ways.

First and foremost, we devise and implement parametric block wild bootstrap algorithms to

produce density nowcasts for the DMS framework. When the DMS selects the multivariate

regression model that uses disaggregates, the density nowcasts are constructed by: (1) con-

structing density estimates for each of the three disaggregates (core inflation, food inflation,

and gasoline inflation); and (2) combining the density estimates using the weights in Cs(τ) to

construct the density nowcast for aggregate inflation, similar to the combination approaches in

Ravazzolo and Vahey (2014) and Tallman and Zaman (2017) but in this case with an applica-

tion to nowcasting. While Knotek and Zaman (2017) estimate the model using short rolling

7Note that the timing of the nowcasts τ can occur before, during, and after the target month t—the backcasts
made after the month can still precede the official release of data by the statistical agencies.
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windows, which leads to very flexible parameters and incorporates changing volatility in a par-

simonious way, we consider density combinations that allow for a variety of rolling or expanding

estimation windows, as discussed below. The supplementary appendix B contains more details

on the model and the construction of the density nowcasts.

3.2.2 Mixed Data Sampling (MIDAS)

Monteforte and Moretti (2013) generate inflation point nowcasts using a MIDAS model with

leads, which is a reduced-form regression relating a low-frequency variable to high-frequency

variable(s).8 In our application, oil and gasoline prices act as the high-frequency leads, while

monthly inflation is at a lower frequency. To prevent parameter proliferation, MIDAS works

with distributed lag polynomial operators that reduce the estimation to a smaller number of

parameters. The model is estimated using nonlinear least squares.

The MIDAS model with leads for inflation at time τ for month t+h, πt+h,τ , takes the form

πt+h,τ = α(h),τ +

P (M)−1∑
j=0

χj+1,(h) πt−j +

P (M)−1∑
j=0

γj+1,(h) Zt−j+

β(h),τ

P (HF )−1∑
j=0

ωP (HF )−j (θHF(h) ) XHF
P (HF )−j,t+1 + et+h,τ

(3.2)

where Z includes other monthly variables; P (M) is the number of lags of the monthly regres-

sors (we use 1); and P (HF ) is the number of high-frequency observations, XHF
1,t+1, ..., X

HF
P (HF ),t+1

in month t + 1 (i.e., the target nowcast month). The coefficients are independently estimated

for each forecast horizon (h).9 The assumption
∑P (HF )−1

j=0 ωP (HF )−j(θ
HF
h ) = 1 helps identify

β(h),τ .

We extend Monteforte and Moretti’s (2013) work on inflation point nowcasts by generating

inflation density nowcasts from MIDAS models; see the supplementary appendix for details.

These density nowcasts are constructed by drawing errors from a normal distribution with a

standard deviation coming from past residuals after rescaling to correct the variance. Aastveit,

Foroni, and Ravazzolo (2017) show that this approach is slightly inferior to the block wild boot-

strap in their application when nowcasting GDP, but it provides a substantial computational

advantage in our exercises.

8Ghysels, Santa-Clara, and Valkanov (2005, 2006) popularized these models; Clements and Galvão (2008) is
an influential paper on the application of MIDAS to macroeconomic forecasting. These models are increasingly
used for nowcasting macroeconomic indicators across the globe (e.g., see Allan et al., 2014, for the economy of
Scotland).

9In our exercises, h ranges from 1 to 2 for nowcasting monthly inflation and from 1 to 4 for nowcasting
quarterly inflation.
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3.2.3 Dynamic Factor Model (DFM)

Building on Giannone, Reichlin, and Small (2008), mixed-frequency dynamic factor models

(DFMs) are widely used for nowcasting. Modugno (2013) uses a DFM to generate inflation

point nowcasts from a data set comprising monthly, weekly, and daily data by extracting a

common factor at a daily frequency via the estimation method of Bańbura and Modugno (2014).

At the trading-day τ frequency, the DFM takes the form

yτ = Cfτ + ετ , ετ ∼ N(0,Σ) (3.3)

where yτ is a vector of observations of mixed frequencies, C is a matrix of loadings, ετ is a

vector of idiosyncratic components, and fτ is a vector of unobserved common components that

follows

Bfτ = A(L)fτ−1 + uτ , uτ ∼ N(0, Q) (3.4)

where B and A(L) are coefficient matrices that capture factor dynamics, some of which may

be time-varying, and µτ is a vector of residuals. The estimated latent daily factor(s) aggregate

to weekly and monthly factors, which are used to construct nowcast estimates for monthly

variables, including inflation. Please refer to the supplementary appendix B.1.2. (DFM Model)

for details about coefficient matrices B and A(L).

We extend the previous work using DFMs for inflation point nowcasts in order to generate

density nowcasts for U.S. inflation. Our density nowcasts are constructed using a standard

parametric bootstrapping procedure for factor models, similar to Aastveit et al. (2014), which

we detail in the supplementary appendix. This bootstrapping procedure accounts for factor,

parameter, and shock uncertainty.

3.2.4 Mixed-Frequency Model Space

Each of the three mixed-frequency model classes requires assumptions about certain elements,

such as the size of the rolling windows in the DMS model, the polynomial specification in the

MIDAS model, or the number of lags of the factors in the DFM. To account for this uncertainty

within each model class, we consider many different specifications, listed in Table 3.1. We

employ 132 model variants distributed unequally across our three model classes, with 108 in

the DMS class, 12 in the MIDAS class, and 12 in the DFM class.10 We combine density

nowcasts within each model class in “stage 1” combinations, and we then combine the stage 1

combinations into a “grand” combination in stage 2.

10In preliminary results, we considered 36 specifications for the MIDAS model class (12 each for Beta, BetaNN,
and Almon polynomials). This combination performed similarly to the combination in the chapter, but the latter
approach greatly reduced computing time. For the DFM class we initially used combinations with one or two
factors, giving us 24 specifications. This combination slightly underperformed the combination reported in the
chapter using only one factor, consistent with DFM inflation point nowcasting accuracy findings in Modugno
(2013).
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3.3 Combination Methods

Simple combinations of point forecasts have a long history (see Bates and Granger, 1969)

and often perform well, even when compared with weighting schemes that minimize some loss

function (e.g., Clark and McCracken, 2010). In contrast, the density forecast combination

literature has generally documented performance gains from optimal weighting schemes and

schemes based on past predictive performance over the use of equal weights.11 Combining

candidate density estimates requires both a functional form to use in combining the densities

and a mechanism for deriving the weights to place on each density. We present a novel functional

form to aggregate our candidate density nowcasts and consider a variety of weighting schemes

in this context. To be clear about our approach, in stage 1 we use a particular functional form

and weighting scheme to combine the individual densities within a model class, for each of the

three model classes; and then in stage 2, we use the same functional form and weighting scheme

to combine the densities from the three model classes into the grand combination.

3.3.1 Functional Forms for Aggregation

We consider three functional forms or aggregation methods: the linear opinion pool, the log-

arithmic opinion pool, and a novel flexible method that combines the previous two functional

forms in a data-dependent way.

The linear opinion pool is the weighted linear combination of individual component densities

and is widely used (e.g., Bache et al., 2011; Aastveit et al., 2014; Mazzi, Mitchell, and Montana,

2014; Ravazzolo and Vahey, 2014). If there are M models, then

pLINτ,t,h(yt) =
M∑
i=1

wτ,t,i,h fτ,t,i,h(yt|Iτ,t,i) (3.5)

where pLINτ,t,h(yt) is the combined linear pool predictive density for variable y at different points

in time τ for month t for forecast horizon h. The density forecast from model i, fτ,t,i,h(yt|Iτ,t,i),
is conditional on information set Iτ,t,i which can differ across models. The potentially time-

varying, nonnegative weights wτ,t,i,h are recursively updated at each forecast origin based on

some criteria that we discuss below and sum to 1.

This linear form of aggregation implies that if all the individual component densities are

distributed normally with different mean and variance, then the combined density will be non-

normal (or a mixture-normal). The nonnormal characteristic for the combined density via the

linear pool is desirable if the unknown true density is nonnormal. An advantage of a mixture-

normal distribution is that it permits skewness and kurtosis.

The logarithmic opinion pool is the geometric weighted average of the individual component

11For some examples, see Hall and Mitchell (2007), Jore, Mitchell, and Vahey (2010), Bache et al. (2011),
Bjornland et al. (2011), and Aastveit et al. (2014). Kascha and Ravazzolo (2010) and Garratt, Mitchell, and
Vahey (2011) provide counterexamples.
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densities:

pLOGτ,t,h (yt) =

∏M
i=1 fτ,t,i,h(yt|Iτ,t,i)wτ,t,i,h∫ ∏M
i=1 fτ,t,i,h(yt|Iτ,t,i)wτ,t,i,hdyt

(3.6)

where pLOGτ,t,h (yt) is the combined log pool predictive density for variable y at the point in time

τ within month t for forecast horizon h. (To economize on notation, we omit h subscripts

going forward.) Importantly, the combination based on this geometric functional form assigns

a zero probability to a region if any single individual density assigns a zero probability to that

region. This may be an undesirable feature because a single incorrectly specified density can

significantly influence the specification of the combined density (see Bjornland et al., 2011).12

In this chapter, we propose a novel flexible aggregation method that is in the spirit of “letting

the data speak” about which of the two functional forms—the linear pool or the logarithmic

pool—is preferred.13 Specifically, instead of taking a stand on a particular functional form at

the outset, we allow flexibility in letting the data determine which of the two functional forms

is preferred at every point in time. A potential advantage of this flexibility is that it allows for

the possibility of dynamically switching between the two functional forms, at different points

in time in the sample (t in our notation above) and at different points in time within a month

or a quarter (τ in our notation above), to take advantage of the differing information sets and

the high-frequency data flow for nowcasting applications. For example, at the beginning of a

month, when uncertainty around the point nowcast for that month would be expected to be

higher, since much of the underlying source information is not yet available, the data may prefer

the linear opinion pool (i.e., over the historical sample the combined density constructed using

the linear opinion pool is more accurate on average than combined density based on logarithmic

opinion pool), while later in the month the data may prefer the log opinion pool. This flexible

aggregation method could be applied in more general multistep forecasting applications where

the functional form is allowed to vary based on the forecasting horizon.

We implement this flexible aggregation method by determining, for each point in time τ

for each target month to be nowcasted t, which of the two functional forms has historically

produced the more accurate densities. We denote the start and end of the sample by T0 and T ,

respectively, and we let Dτ denote the normal data release lags (in number of months) at the

point in time τ , which captures the delay in calculating the historical density accuracies.14 We

initialize the flexible functional form by using the linear pool, i.e., if t ≤ T0 +Dτ − 1,

functional formτ,t = Linear Pool (3.7)

12Figure B1 and Figure B2 in the appendix visually contrast the properties of the linear and log opinion pools.
13Knüppel and Krüger (2019) and Garratt, Henckel, and Vahey (2019) propose approaches to modify the linear

opinion pool but do not consider the hybrid approach that we pursue.
14In our empirical application, the delay parameter D is dependent on τ , the position within the month when

the nowcast is being made. Because we use the third monthly inflation release as the “true” inflation reading for
a particular month, the delay D = 4 early in the month when nowcasting monthly inflation, because the most
recent “true” inflation reading comes from four months prior to the current month being nowcasted. The delay
D = 3 late in the month, however, as the statistical agencies have released prior months’ inflation numbers by
that point.
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Subsequently,

functional formτ,t =

Linear Pool if LINτ,t ≥ LOGτ,t
Logarithm Pool if LINτ,t < LOGτ,t

(3.8)

for t = T0 +Dτ , ..., T, with

LINτ,t =

∑t−Dτ
s=T0

log(pLINτ,s (ys = yos))

t−Dτ − T0 + 1
(3.9)

LOGτ,t =

∑t−Dτ
s=T0

log(pLOGτ,s (ys = yos))

t−Dτ − T0 + 1
(3.10)

where the values for pLIN (.) and pLOG are computed from equation (3.5) and equation (3.6),

respectively, and yot is the observed value in month t, which is independent of the point in time

when the nowcast was made (τ) and the nowcast or forecast horizon (h).

3.3.2 Weighting Schemes

We consider five weighting schemes, ranging from equal weights to schemes based on average

past predictive performance to schemes based on optimization of a specific loss function.

1. Equal weights. Simply, each density i gets a weight

wτ,t,i =
1

M
(3.11)

in the construction of the combination density nowcast. Aastveit et al. (2018) characterize such

a combination as a “restrictive finite mixture.”

2. Log-score weights. The logarithmic score (log-score) is the logarithm of the density

forecast evaluated at the observation and is widely used to assess the accuracy of density

forecasts. Accordingly, it makes sense to derive weights based on the past nowcast performance

of the candidate densities using the log-score metric, with more accurate candidate densities

receiving larger weights.15 The weights wτ,t,i are computed by averaging the past predictive

performance using an expanding window for nowcast evaluation. We initialize the weights by

15This approach amounts to “learning from past mistakes” and is widely used in the density combination
literature due to its simplicity (e.g., Gerard and Nimark, 2008; Jore, Mitchell, and Vahey, 2010; Kascha and
Ravazzolo, 2010; Bjornland et al., 2011; Garratt et al., 2011; Aastveit et al., 2014; Beckmann et al., 2020). While
we use the entire expanding history, we also explored the strategy of computing the weights over rolling 12-month
periods, to “learn from recent mistakes” in computing the average score. The density nowcasting accuracy results
were similar. We thank Gary Koop for suggesting this exercise.
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setting them to equal weights (equation 3.11) if t ≤ T0 +Dτ − 1. For t = T0 +Dτ , ..., T :

wτ,t,i =
exp[

∑t−Dτ
s=T0

logfτ,s,i(ys = yos)]∑M
j=1 exp[

∑t−Dτ
s=T0

logfτ,s,j(ys = yos)]
(3.12)

3. Continuous ranked probability score (CRPS). The CRPS is a widely used alternative

metric for assessing density forecasts that is also based on past predictive performance. It is

popular because it is more robust to outliers compared with the log-score metric and it rewards

densities that have probability mass closer to the actual observation. The CRPS score for

density nowcast i at the point in time τ within month t, CRPSτ,t,i, is the squared difference

between the CDF of the density forecast and the CDF of the actual realizations:

CRPSτ,t,i =

∫ +∞

−∞
(Fτ,t,i(yt)− 1{yot ≤ yt})2 (3.13)

where Fτ,t,i is the CDF of density nowcast i, fτ,s,i(yt) , and 1{yot ≤ yt} is the indicator function

equal to 1 if yot ≤ yt and 0 otherwise.16 The smaller the difference between the two cumulative

distributions, the more accurate is the density nowcast, and the more weight that density

nowcast i should receive, such that weights depend on the inverse CRPS. We initialize the

weights by setting them to equal weights wτ,t,i = 1/M if t ≤ T0 +Dτ −1. For t = T0 +Dτ , ..., T ,

the weights are computed based on an expanding window of historical predictive performance:17

wτ,t,i =
[
∑t−Dτ

s=T0
CRPS−1

τ,t,i]∑M
j=1[

∑t−Dτ
s=T0

CRPS−1
τ,t,i]

(3.14)

4. Conflitti, De Mol, and Giannone (2015) iterative algorithm. Following Hall and Mitchell

(2007), the optimal vector of weights W ∗τ,t = (w∗τ,t,1, ...., w
∗
τ,t,M ) minimizes the Kullback-Leibler

information criterion (KLIC) divergence, ˆKLICτ,t = (1/t)
∑t

s=1[log gs(ys = yos)− logfτ,s(ys =

yos ,Wτ,t)], where fτ,s(.,Wτ,t) is the combined density nowcast across the M individual densities

at time τ which is a function of weights Wτ,t and gt(.) is the true but unknown density corre-

sponding to the actual realizations yot . The solution to the optimization problem, subject to

constraints wτ,t,i ≥ 0 ∀i and
∑M

i=1wτ,t,i = 1 in each period, is

W ∗τ,t = arg max
Wτ,s

1

t− T0 + 1

t∑
s=T0

[logfτ,s(ys = yos ,Wτ,s)] (3.15)

16The CDF of the observation is a Heaviside step function, which takes a value of 0 for all values of the density
that are less than the actual realization and 1 for all values of the density that are greater than or equal to the
realization.

17We also explored the strategy of computing weights using a 12-month rolling window. The results for density
nowcasting accuracy were similar.
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Hall and Mitchell (2007) and Amisano and Geweke (2011) note that this optimization can be

solved using numerical search algorithms.18 Conflitti, De Mol, and Giannone (2015) propose

an iterative solution to the above optimization problem that is computationally feasible for

combining density estimates for large M . Specifically, they break the objective function (equa-

tion 3.15) into a set of auxiliary functions that can be easily maximized in an iterative fashion

to solve for the optimal weights each period subject to the constraints. The maximization of

auxiliary functions is convenient because it is simply a sum of M terms, and when each term is

a function of a single weight, there are a total of M weights. The algorithm is initialized with

equal weights, w
(0)
τ,t,i = 1/M . If t ≤ T0 +Dτ − 1, then w∗τ,t,i = w

(0)
τ,t,i. For t = T0 +Dτ , ..., T , then

w
(k+1)
τ,t,i = w

(k)
τ,t,i

1

t−Dτ − T0 + 1

t−Dτ∑
s=T0

fτ,s,i(ys = yos)∑M
j=1w

(k)
τ,s,jfτ,s,j(ys = yos)

(3.16)

If (w
(k+1)
τ,t,i − w

(k)
τ,t,i) ≤ ε, then w∗τ,t,i = w

(k+1)
τ,t,i . The constraints on the weights are satisfied at

every iteration so long as the weights are initially equal. We denote this combination as CMG.

5. Ganics (2017) optimization based on calibration fit. Ganics (2017) proposes an approach

to derive optimal weights based on the calibration fit of the model using the probability integral

transform (PIT). If the preference is for well-calibrated densities irrespective of the user’s loss

function, then intuitively it makes sense to devise a weighting strategy that directly accounts

for the calibration fit of each individual (model) density forecast. Ganics (2017) illustrates via

Monte Carlo applications and an empirical application that a combination approach relying

on the calibration fit to derive the weights not only yields well-calibrated densities but also

leads to superior density forecasts in terms of log-score. The paper examines the efficacy

of three popular metrics to evaluate the calibration fit—the Kolmogorov-Smirnov, Cramer-

von Mises, and Anderson-Darling (AD) statistics—and finds that the three metrics perform

comparably with a slight advantage for the scheme based on the AD statistic in terms of

improved calibration of the combination. Accordingly, we consider the weighting strategy that

optimizes the calibration fit based on the AD metric.

The Ganics optimization-based weights are calculated as follows.19 For a combined density

nowcast fτ,t(yt,Wτ,t) that is a function of a vector of weights Wτ,t, compute the spread between

the CDF of the perfect uniform distribution and the empirical CDF of the PIT zτ,t corresponding

to the combined density nowcast, Ωτ,t(r,Wτ,t) = 1[zτ,t ≤ r] − r, where r ∈ [0, 1] denotes the

quantile of the combined density nowcast. Next, compute an average of the spread over the

18Pauwels and Vasnev (2016) perform an in-depth analysis of this optimization procedure and document a
number of practical recommendations.

19We are grateful to Greg Ganics for sharing computer code.
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forecast evaluation sample,

Υτ,t(r,Wτ,t) =
1

t− T0

t−1∑
s=T0

Ωτ,s(r,Wτ,s) (3.17)

The AD statistic, which is used as the objective function for the combined density, is defined

as

ADτ,t(Wτ,t) =

∫
ρ

Υτ,t(r,Wτ,t)

r(1− r)
dr (3.18)

for ρ ∈ [0, 1]. Since a lower value for the AD statistic is preferred to a higher value, we again

initialize the Ganics weights as equal weights w∗τ,t,i = 1/M if t ≤ T0 + Dτ − 1; otherwise, for

t = T0 +Dτ , ..., T , the Ganics weights solve the minimization problem

W ∗τ,t = arg min
Wτ,t

ADτ,t(Wτ,t) (3.19)

3.4 Real-Time Data

Under the assumption that density nowcasts are most informative when they are made in real

time, our analysis relies on the real-time data that would have been available to forecasters

in the past. Our mixed-frequency model-combination framework can generate nowcasts on a

daily basis. To keep the results manageable, we assess nowcasting performance for each month’s

inflation reading at six representative dates. Table 3.2 provides details about the information

flow corresponding to these representative dates.20

We use the following data transformations and data set in our nowcasting exercises. The

monthly inflation rate is defined as πt = 100(Pt/Pt−1−1), where Pt is the price index in month t.

The 12-month trailing (year-over-year) inflation rate is πt,t−12 = 100(Pt/Pt−12 − 1). Quarterly

annualized inflation rates are πQT = 100[(PQT /P
Q
T−1)4 − 1], with PQT = 1/3(PT,t=1 + PT,t=2 +

PT,t=3) the price index for quarter T and PT,t=k is the price level in the k-th month of quarter

T . The mixed-frequency models forecast monthly inflation rates, which are used to back out

the corresponding price indices to calculate the 12-month trailing inflation rate and quarterly

annualized inflation rate.

We nowcast U.S. headline and core inflation rates in both the consumer price index (CPI)

and the personal consumption expenditures price index (PCE), which are monthly series. All

three model classes use higher-frequency data on gasoline and oil prices. The DMS and DFM

models also use data on monthly food and gasoline inflation. To evaluate our models, we

use the real-time data set from Knotek and Zaman (2017). The real-time vintages for the

monthly PCE price index and core PCE price index begin in June 2000 and come from the

Federal Reserve Bank of Saint Louis’ Archival Federal Reserve Economic Data (ALFRED). The

20We also produce results for quarterly inflation rates, shown in the appendix. Table B1 shows the seven
representative dates that we use for the quarterly nowcasting exercise and the available information.
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real-time vintages for CPI inflation, core CPI inflation, and food CPI inflation going back to

November 1996 are also from ALFRED. The real-time data for gasoline CPI inflation beginning

in January 1999 come from Haver Analytics and ALFRED. Weekly retail gasoline prices (for all

grades) going back to the start of 1993 are obtained from the Energy Information Administration

(EIA).21 Daily Brent crude oil spot prices going back to 1987 are obtained from the Financial

Times via Haver Analytics. The real-time CPI gasoline series, which is seasonally adjusted

by the Bureau of Labor Statistics, is used to compute real-time seasonal factors that are then

applied to retail gasoline prices to adjust them for seasonality.

Additional data are included in the estimation of the DFM. The additional weekly data

include the prices of diesel fuel, regular-grade retail gasoline, mid-grade retail gasoline, and

premium-grade retail gasoline (from the EIA). The additional daily variables include the food-

stuffs price index from the Commodity Research Bureau (CRB), the grains price index from

Standard & Poor’s (S&P), the fats and oils price index from CRB, the raw sugar price from the

International Sugar Organization, the raw industrials price index from CRB, the agricultural

commodities price index from S&P, the textiles and fibers price index from CRB, the industrial

metals price index from S&P, steel scrap prices from the Foundation for International Business

& Economic Research, the 10-year Treasury note constant maturity yield and the 3-month Trea-

sury bill rate from the Federal Reserve Board, the S&P 500 stock price index as reported in the

Wall Street Journal, and the nominal trade-weighted exchange value of the dollar against major

currencies from the Federal Reserve Board. These high-frequency data are all downloaded from

Haver Analytics and are assumed to be unrevised and hence real-time in nature. Hence, at any

point in time τ , we can generate the density nowcasts that would have been available as of that

particular day.

To facilitate a horse race between nowcasts produced from our modeling framework and

those reported in the Survey of Professional Forecasters (SPF), we also download the historical

SPF nowcast estimates from the Federal Reserve Bank of Philadelphia’s real-time database.

Our real-time evaluation period runs from September 2000 through June 2015, to com-

pare the implied point nowcast accuracy of our results to those in Knotek and Zaman (2017).

Following Tulip (2009), we treat the third inflation reading for each month or quarter as our

measure of “truth.” The third estimate has the advantage that it incorporates more complete

source data than earlier estimates, but it usually abstracts from methodological revisions, which

would have been difficult to predict in real time.

3.5 Nowcast Evaluation

We use a range of metrics to evaluate our inflation density nowcasts by examining both the

absolute accuracy and the relative accuracy of the density nowcasts along with the accuracy

of the implied point nowcasts. Absolute accuracy tests for the calibration fit of the density

21The EIA publishes weekly gasoline prices every Monday.
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estimate. Density forecasts are considered well calibrated or correctly specified when the density

forecasts match the distribution of the observations over a large sample. The preference is for

densities that are well calibrated. We assess the calibration properties of the density nowcasts

using probability integral transforms (PITs), originally proposed by Diebold, Gunther, and Tay

(1998), and interval forecasts (i.e., 70% prediction intervals).

The PIT zτ,t is the CDF of the predictive density nowcast pτ,t(yt) from the point in time τ

when the nowcast is made for month t evaluated at the actual data realization yot :

zτ,t =

∫ yot

−∞
pτ,t(u)du, t = T0, ..., T (3.20)

Intuitively, the PIT indicates in which region (i.e., percentile) of the density nowcast the

actual realizations fall (see Gerard and Nimark, 2008). A realization that falls at the middle

of the density nowcast would be assigned a PIT value of 0.5, while a realization at the 10th

percentile would be assigned a value of 0.1. Density nowcasts that are well calibrated have PITs

that are uniformly distributed across observations t; in a large sample, the actual realizations

would be expected to span the entire region of the density nowcast with a probability matching

the probability implied by the density nowcast. Therefore, a visual assessment for calibration

can be performed by plotting PITs in the form of a histogram along with the uniform U(0, 1)

distribution. Correctly specified density estimates resemble rectangles (i.e., flat histograms),

while severe departures from uniformity suggest calibration failure. In addition to this visual

assessment, we conduct a battery of formal statistical assessments using Pearson’s Chi-squared

test (of uniformity and independence), the Berkowitz (2001) test (of normality of the inverse

normal of the PITs), the Kolmogorov-Smirnov test (of uniformity), the Anderson-Darling test

(of uniformity that specifically puts more weight on deviations between the empirical CDF of

the PITs and the CDF of the uniform distribution in the tails), and the Knüppel (2015) test.22

The Knüppel test allows for simultaneous testing for both uniformity and independence of the

PITs.

Interval forecasts are another popular metric to gauge the calibration of the density fore-

casts (e.g., Clark, 2011; Carriero, Clark, and Marcellino, 2015b; Tallman and Zaman, 2020).

Accordingly, we compute the empirical 70% prediction intervals (i.e., the coverage rates) of the

density nowcasts, which are defined as the difference between the 85th and 15th percentiles of

the density nowcasts. We compare the empirical 70% coverage rates with a nominal value of

70% to assess the extent to which the density nowcast estimates are correctly calibrated.

The PITs from two or more competing density nowcasts can all be uniformly distributed

and hence appear correctly specified, but we would not be able to distinguish whether one

density is of higher quality (i.e., more accurate) than the others based on PITs alone. Relative

accuracy involves comparing competing density estimates for their quality based on numerical

22See Hall and Mitchell (2007) and Rossi and Sekhposyan (2014) for details about the exact implementation
of these tests. In implementing the calibration metrics, we benefitted from Matlab code made available on the
websites of Barbara Rossi, Tatevik Sekhposyan, and Malte Knüppel.
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scores. The density forecast that assigns a higher density (i.e., a higher probability mass) at the

actual realization gets a higher numerical score and is considered more accurate. Conditional

on obtaining well-calibrated density nowcasts, the density nowcast with the highest numerical

score is preferred. Scoring metrics such as log score and CRPS are two widely used scoring rules

that allow for the ranking of rival density nowcasts. As discussed earlier, the log score is the

logarithm of the probability density function (corresponding to the density nowcast) evaluated

at the actual realization. The higher the log score, the more accurate the density nowcast.

The CRPS is the difference between the predicted and the realized cumulative distributions.

Smaller CRPS values imply more accurate density nowcasts.

We also examine point nowcasts based on the mean of the (combined) density nowcasts. We

assess point nowcast accuracy via the standard metric of root mean squared error (RMSE):

RMSEτ,t =

√∑T
t=T0

(yot − E(pτ,t(yt)))2

T − T0 + 1
(3.21)

where E(pτ,t(yt)) refers to the mean of the density nowcast, pτ,t(yt), and T − T0 + 1 is the

size of the forecast evaluation sample.

3.6 Empirical Results Using Real-Time Data

We perform a comprehensive investigation of nowcast combination methods with multiple

mixed-frequency inflation nowcasting approaches to produce density and point nowcasts of

U.S. inflation. Overall, we examine three combination methods; five weighting schemes; four

inflation measures (headline and core inflation, CPI and PCE inflation); three inflation rates

(12-month trailing inflation, month-over-month inflation, and quarterly inflation); and multiple

intraperiod points at which we generate our nowcasts (six distinct points for each monthly in-

flation reading, and seven distinct points for each quarterly inflation reading). In short, we end

up with a massive number of results.

To keep the discussion of the results and the length of the chapter manageable, we focus

on a subset of results. Specifically, our discussion focuses entirely on results corresponding to

combinations derived from our novel flexible aggregation strategy.23 The main text also consid-

ers inflation nowcast accuracy for 12-month trailing inflation rates.24 We first briefly examine

the accuracy of the individual density nowcasts from one model in each of the three mixed-

frequency model classes and then the accuracy of the stage 1 combinations. We then compare

results for grand combinations across all five weighting schemes, followed by a comparison of

23The results based on this flexible strategy are equivalent to the ones based on the linear opinion pool,
because in our empirical exercises the linear opinion pool always performs better than the log opinion pool and
hence the flexible strategy always selects the linear opinion pool over the log opinion pool as the aggregation
function. However, we see value in the flexible aggregation strategy because this result need not always hold in
all applications.

24See the appendix for results for month-over-month inflation rates and quarterly annualized inflation rates.
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the accuracy of the grand combination constructed using the log-score weighting scheme with

its three component densities (DMS, MIDAS, and DFM). Finally, we examine the time-varying

properties of the grand combination.

3.6.1 Density Nowcasts from Mixed-Frequency Model Classes

We first establish that density nowcasts obtained from a single specification within each of

the three model classes are incorrectly calibrated with relatively few exceptions. The exact

specifications we consider for the single DMS model, the single MIDAS model, and the single

DFM model follow the baseline models in each class in Knotek and Zaman (2017).

Figure 3.1 plots the density nowcast PITs from these three mixed-frequency models for

the four inflation measures, based on nowcasts made at two distinct points in time: using the

available data through the end of the month preceding the target nowcast month (case 1), and

using the available data as of day 22 of the target nowcast month (case 4). We find these points

to be broadly representative of our results without showing every case. In general, the arrival of

additional data during the target month very marginally improves the calibration of the density

nowcasts, as is evident by comparing the proximity to uniformity in the top and bottom panels.

Each of these three individual mixed-frequency models fails one or more of the necessary

statistical tests of calibration fit for at least one of the inflation measures of interest. For

example, the DFM generates well-calibrated densities for CPI inflation (in cases 1 and 4) and

PCE inflation (in case 4) but fails to do so for both core CPI and core PCE, as evidenced by

notable departures from uniformity. The DMS model has difficulties producing well-calibrated

densities overall, although as more information accumulates for the target month, the calibration

of the CPI density nowcasts produced from the DMS model improves significantly (e.g., case

4). The calibration of the MIDAS model’s CPI density nowcasts also improves considerably

with the arrival of additional information; by contrast, the core PCE inflation density nowcasts

are fairly well calibrated both early and late in the targeted month.

The requirement of correctly specified density nowcasts is a necessary condition. So with

these individual specifications generally failing this important requirement, we omit a discussion

of relative accuracy performance. In summary, the density nowcasts produced from a single

model specification have difficulties capturing the true degree of uncertainty around the point

nowcasts.

We next consider the stage 1 combinations that produce density nowcasts within each class

of mixed-frequency models. Figure 3.2 plots the PITs from the combined density nowcasts from

each model class. The plots indicate some improvements in the calibration fit of the combi-

nations compared with the respective individual specifications, especially for the DFM model

class. However, in some instances there is evidence of a slight deterioration in the calibration

fit. For example, the calibration fit of the combined density nowcasts from the MIDAS class for

core PCE inflation in case 4 worsens compared with the single specification as shown in Figure

3.1. This latter result highlights an important aspect of density combination, which is that if
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the candidate densities are all individually well calibrated, then their combination via the linear

opinion pool may suffer calibration failure due to an increased variance (i.e., the combination

overestimates uncertainty). Fortunately, in our application, the density nowcasts for core PCE

inflation from the 12 different MIDAS specifications are similar. Therefore, the variance of the

resulting combination does not increase enough to cause issues with the calibration fit; i.e., the

disagreement component, disagreement about the mean, is small.

In addition to some improvements in calibration fit, the relative accuracy of the stage 1

combinations in terms of log scores is at least as accurate as, and often more accurate than,

the respective individual specifications (see Figure B3 in the appendix). Taken together, these

results suggest that there are gains from combining models within a model class, but there

remain deficiencies in the calibration fit of these within-model-class combinations.

3.6.2 Comparison across Grand Combinations

We next explore whether the calibration fit of the density nowcasts can be improved further by

combining the stage 1 combination density nowcasts from each of the three mixed-frequency

model classes into a stage 2 “grand” combination.25 Figure 3.3 plots the PITs across various

grand combinations based on the five weighting schemes listed above. Immediately, the fig-

ure demonstrates that there are gains from combining densities across mixed-frequency model

classes as evidenced by PITs that are now closer to the uniform distribution. More precisely,

combining densities via our two-stage procedure fixes the defective stage 1 combination density

nowcasts. A close inspection of the PIT histograms across all four inflation measures, and in

both cases 1 and 4, reveals that all five grand combination density estimates are better cali-

brated compared with the density estimates from either the individual specifications or those

formed by combining specifications only within a model class.

Tables 3.3 and 3.4 report the formal statistical assessment of the calibration fit. Among

the five combinations we consider, we find that the combination based on the weighting scheme

proposed by Ganics generates the best-calibrated densities, with the smallest number of re-

jections of the null hypothesis of correct calibration.26 The density estimates based on the

log score and CMG weighting schemes are the next best combinations, with somewhat higher

numbers of rejections of the null. The ability of the Ganics weighting scheme to produce the

best-calibrated densities makes intuitive sense, as his approach is based on direct optimization

of the calibration fit of the candidate densities.

Beyond calibration fit, we are also interested in relative accuracy. Figure 3.4 assesses rela-

tive accuracy via the log score (panel a) and CRPS (panel b) metrics. In general, the relative

accuracy of the grand combinations improves as additional information arrives over the course

25As a reminder, the same weighting scheme is used to form both the stage 1 and stage 2 combinations.
Figure B4 in the appendix plots the nowcasts coming from the grand combination using real-time data at two
representative dates (case 1 and case 4) for each month along with the actual outcomes.

26We omit the results for the equal weights scheme and the CRPS weighting scheme to economize on space in
the table; in general, these weighting schemes were inferior to those shown, which is visible in Figure 3.3.

82



of the target nowcast month, as is evident by steadily increasing average log scores and declin-

ing CRPS values. The figure shows that the grand combination based on the Ganics weighting

scheme generates inferior density nowcasts for CPI inflation and PCE inflation compared with

both the log score and CMG weighting schemes. In the case of core CPI inflation, all weighting

scheme combinations perform comparably in terms of relative accuracies. For core PCE infla-

tion, the log score and Ganics weighting schemes are a touch worse than the other schemes when

using log score as the relative accuracy metric, but the log score weights are just as accurate as

other weighting schemes when using CRPS to judge relative accuracy. Given that the density

nowcast estimates based on log score and CMG weighting schemes generate superior relative

density nowcast accuracy and satisfactory calibration fit across inflation measures, we generally

favor these schemes over the other weighting schemes.

The patterns observed for the relative accuracy scores of the density nowcasts echo the

point nowcast accuracy results reported in Knotek and Zaman (2017). Knotek and Zaman

(2017) document that a single version of the DMS model was substantially more accurate then

competing MIDAS or DFM models in nowcasting CPI inflation and PCE inflation, while all

three models were competitive in nowcasting core CPI inflation and core PCE inflation. In

terms of the relative accuracy of the density nowcasts, combination schemes such as log score

that put more weight on the DMS model class generate more accurate density nowcasts for

CPI inflation and PCE inflation, even though the calibration fit of the density nowcasts from

the DMS model class is inferior to both the DFM and MIDAS model classes for these inflation

measures. However, the mean of the density nowcasts—i.e., the point nowcasts—from the DMS

model class is substantially more accurate than the means coming from either the DFM or

the MIDAS model classes. When evaluated using the log score metric, which is considered a

broader measure of density accuracy (e.g., Clark, 2011), the DMS model class’s more accurate

density nowcast mean more than offsets its slightly poorer calibration fit, resulting in a higher

log score.

In contrast, the Ganics weighting scheme, which focuses on calibration fit, assigns large

weights to the DFM and MIDAS model classes for nowcasting CPI inflation and PCE inflation

(see Figure B5 in the appendix for an example), because these two model classes produce better-

calibrated densities than the DMS model class. The equal weights scheme and the CRPS-based

weighting scheme also tend to put more weight on the DFM and MIDAS model classes. Because

these two model classes produce substantially inferior point nowcasts compared with the DMS

model class, the additional weight assigned to them results in lower log scores and higher CRPS

values.

In addition to absolute and relative accuracy in a density sense, Figure 3.5 plots the RMSE

of the implied point nowcasts corresponding to the grand combinations. The results for point

nowcast accuracy echo the results for density nowcast accuracy shown in Figure 3.4. As in-

formation accumulates over the course of the month and we move from case 1 to case 6, the

accuracy of the point nowcasts steadily improves and the RMSEs steadily decline. In the case
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of CPI inflation and PCE inflation, the combinations using log score weights produce lower

RMSEs than the other weighting schemes. For core CPI inflation and core PCE inflation, the

differences in RMSEs across weighting schemes are very small and all combinations generally

perform comparably.

3.6.3 Comparing the Grand Combination with Its Underlying Component

Densities

We noted above that the grand combination helps improve the calibration of the density now-

casts, which is an important objective. We also compare the accuracy of the grand combination

to its three component densities—DMS, MIDAS, and DFM—when both the stage 1 and stage

2 combinations are made using the log score weighting scheme to assess the extent to which

relative accuracy and point accuracy gains are coming from combining densities across mixed-

frequency model classes.

Figure 3.6 plots the density nowcast relative accuracy comparison using the log score and

CRPS metrics. These figures indicate that the grand combination’s nowcasts are generally

among the best performing, especially when assessed using the CRPS metric. However, when

evaluated using the log score metric, there are some instances for CPI inflation and PCE inflation

where the DMS combination is significantly more accurate than the grand combination. Indeed,

the DMS combination alone is often quite competitive with the grand combination. Only in the

case of core PCE inflation with the log score metric does the MIDAS combination outperform

the DMS combination.

Figure 3.7 compares the point nowcast accuracy of the grand combination with the DMS

combination and the single DMS specification from Knotek and Zaman (2017).27 The point

nowcast accuracy of the grand combination is similar to the single DMS specification for CPI

inflation, PCE inflation, and core CPI inflation. In the case of core PCE inflation, the grand

combination is more accurate than the single DMS specification, with notably lower RMSEs for

cases 1 through 4; for cases 3 and 4, the accuracy gains are statistically significant at the 10%

significance level.28 We view these results as desirable because it satisfies an important objective

of our model-combination approach, which is that we want the point nowcasting accuracy of

the combined density to be at least as good as the single DMS specification from Knotek and

Zaman (2017).

Given that the point accuracy of the DMS combination is similar to the accuracy of the

grand combination for all four inflation measures, one could focus only on combinations from

the DMS model class. However, we view combining density nowcasts across the three mixed-

frequency model classes as more desirable for at least two reasons. First, given the preference

27We omit the MIDAS and DFM combinations because the DMS combination is substantially more accurate
for CPI inflation and PCE inflation, and all combinations are competitive for core PCE inflation and core CPI
inflation. The grand combination and DMS combination use the log score weighting scheme.

28Statistical significance is based on the Diebold-Mariano and West test (with the truncation lag parameter
h-1 for the HAC variance estimator), and two-sided standard normal critical values.
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for well-calibrated densities, the grand combination comes closer to being correctly specified

than the DMS combinations. Second, while the DMS model class performed well over our

evaluation sample, there is no guarantee that it will continue to do so going forward. The grand

combination based on a richer set of models provides better insurance in the face of future

uncertainties about model specifications and will be more robust to structural instabilities.29

3.6.4 Time-Varying Properties of the Grand Combination: Weights, Uncer-

tainty, Skewness, and Kurtosis

The blend of adaptive, possibly time-varying weights and the use of a flexible aggregation strat-

egy could yield time-varying estimates of the variance (uncertainty), skewness (asymmetry),

and kurtosis in the inflation density nowcasts. Figures 3.8 and 3.9 plot the properties of the

density nowcasts for the four inflation measures for cases 1 and 4 during the target nowcast

month: the evolution of the weights applied to the stage 1 combinations in making the stage 2

grand combination (top row); the evolution of the uncertainty (i.e., the volatility) around the

point nowcasts, measured as the width of the 70% prediction intervals of the density nowcasts

(second row); estimates of skewness (third row); and estimates of kurtosis (fourth row).30

We note the following items from the figures. First, in the case of CPI inflation and PCE

inflation, the DMS model class quickly dominates the DFM and MIDAS model classes, receiv-

ing much or nearly all of the weight for most of our evaluation sample. However, it is worth

pointing out that even if a single model class receives a nearly 100% weight in the stage 2

combination, that model class is nevertheless a stage 1 combination of many individual model

specifications. These stage 1 combinations almost always include more than one model specifi-

cation (see Figures B10, B11, and B12 in the appendix). In the case of core CPI inflation and

core PCE inflation, there is considerably more variation regarding which model class receives

the most weight, although the MIDAS model class tended to be the best performing late in the

sample and so received the most weight.

Second, we highlight the fast model-switching behavior of the weighting scheme based on

the log-score. When the differences in the density accuracy among the candidate densities are

in the moderate to large range, then the log score metric discriminates among densities rather

sharply by heavily penalizing the poor performers. This sharp distinction implies that the

density nowcast assessed as the most accurate gets a very high score, which translates into a

substantially higher average score and, in turn, significantly higher weight in the combination,

possibly resulting in a fast-switching pattern.31 Recent research generally views this feature of

fast model-switching as desirable, and so a framework that allows for it is viewed favorably (see

29Figures B6, B7, B8, and B9 in the appendix report similar results for month-over-month inflation and
quarterly annualized inflation rates.

30Skewness=0 and kurtosis=3 for a variable that is normally distributed, so departures from these values
suggest evidence for asymmetric distributions if skewness is different from zero or fat tails if kurtosis is greater
than 3.

31Aastveit et al. (2014) document a similar characteristic for the log score weighting scheme in their real GDP
nowcasting application.
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Beckmann et al., 2020).

Third, as information accumulates over the course of the target nowcast month, the precision

of the density nowcasts improves, and there is a shift lower in the uncertainty estimates in case

4 compared with case 1.32

Fourth, there are visible movements in the uncertainty estimates, more so in the case of

headline inflation than core inflation. It is also evident that the profiles of the uncertainty

estimates differ across inflation measures and across monthly cases, reflecting different nowcast

origins within a month for a given inflation measure. Interestingly, the patterns seen in the case

of quarterly inflation provide stronger evidence of shifts in uncertainty over time (see Figure

B13 in the appendix). Moreover, the broader movements in the uncertainty estimates implied

by our density nowcasts for quarterly inflation are similar to uncertainty estimates reported

elsewhere in the literature using stochastic volatility models (e.g., Knotek, Zaman, and Clark,

2015).

Fifth, there is evidence of both time-varying skewness and kurtosis in the density nowcasts.

There have been extended stretches in which skewness differed from zero and kurtosis differed

from three, consistent with departures from Gaussianity, along with occasional spikes in both

measures.33 Overall, the density nowcast estimates generated from our two-stage combination

process featuring a flexible aggregation strategy with the log score weighting scheme can adapt

in a time-varying manner to accommodate non-Gaussian features such as asymmetry and/or

heavy tails and are doing an adequate job of capturing uncertainty around future inflation

outcomes.34

3.7 Comparison with the Survey of Professional Forecasters

Given the ability of their respondents to use a variety of high-frequency data sources in a flexible

fashion, nowcasts coming from surveys of professional forecasters are a difficult benchmark to

beat. We test the nowcasting performance of our grand combination against the inflation

nowcasts provided by the Survey of Professional Forecasters (SPF), in terms of both point

nowcasting performance and density nowcasting performance. In doing so, we match our model’s

real-time information set to the survey dates from the SPF each quarter.

For point nowcasting, we compare the median SPF response to the mean of the combined

density nowcast coming from the grand combination using the log score weighting scheme and

the flexible aggregation strategy. For density nowcasting, we compare our grand combination

with estimated survey density nowcasts formed using a normal distribution, whose mean is set

equal to the median SPF point nowcast and whose variance is set to match the variance of the

32See the narrowing of the prediction intervals in case 4 compared with case 1 in Figure B4 in the appendix.
33Figure B14 in the appendix illustrates the stage 2 grand combination as of case 1 for nowcasting the target

month of January 2001; the resulting CPI inflation and PCE inflation grand combination densities are noticeably
fat tailed and asymmetric compared with the densities for core CPI inflation and core PCE inflation.

34Figures B15, B16, and B17 in the appendix plot the weights and higher-order moments when using the CMG,
Ganics, and CRPS weighting schemes, respectively.
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past historical errors of the SPF point nowcasts over a short rolling window.

Estimates of survey density nowcasts based on historical errors have been shown to be a

good benchmark, especially for inflation.35 The Federal Open Market Committee uses histor-

ical forecast errors to provide an estimate of the uncertainty surrounding the outlook in the

Summary of Economic Projections (see Reifschneider and Tulip, 2019). While the SPF does

provide some density forecasts by combining individual respondents’ density forecasts, we fa-

vor the historical errors approach because Clements (2018) shows that the survey projection’s

second moments are inferior to simple statistical models. In addition, the SPF only reports

fixed-event density forecasts for core PCE inflation and core CPI inflation, which limits their

comparability to our results to the fourth quarter of each year.

Table 3.5 reports the results from the out-of-sample nowcasting horse race between our grand

combination using real-time data and the SPF for point and density nowcasts. The evaluation

period runs from 2000Q4 through 2015Q2 for CPI inflation, and 2007Q1 through 2015Q2 for

core CPI inflation, PCE inflation, and core PCE inflation.

The point nowcasts implied by the grand combination are substantially more accurate (i.e.,

have lower RMSEs) than the SPF for both CPI inflation and PCE inflation, and the gains are

statistically significant. For these two inflation measures, the density nowcasts from the grand

combination are substantially more accurate than the simple SPF-based benchmark density

nowcasts, as indicated by significantly higher log scores.

For core CPI inflation and core PCE inflation, both the point accuracy and the density

accuracy of the grand combination are competitive with the SPF. As noted above, there is

only limited evidence of skewness and kurtosis in the predictive distributions for core inflation,

suggesting that flexible density estimates are not far from the normality assumption embedded

in the estimated SPF density. In the case of core inflation, we see our framework’s ability to

adapt in a dynamic fashion to produce an approximately normal distribution as a testament to

the benefits of our flexible approach.

3.8 Conclusion

We develop a flexible framework based on model combinations to produce density nowcasts for

U.S. inflation. By combining individual density nowcasts from three classes of parsimonious

mixed-frequency models, this framework generates nowcasts at a trading-day frequency and

updates as information accumulates over the course of a month or a quarter. We propose a novel

flexible aggregation strategy to combine the density nowcasts both within and across model

classes. We complement this flexible aggregation strategy with an examination of a variety

35Krüger, Clark, and Ravazzolo (2017) and Tallman and Zaman (2020) document competitive nowcasting
performance, including the good calibration fit of the density nowcasts of inflation constructed through this
simple procedure. The procedure’s use of a short rolling window in computing the variance of the past historical
errors is a simple and convenient way to incorporate the changing variance of the density estimates instead of
explicitly modeling stochastic volatility, a point also emphasized by Ganics, Rossi, and Sekhposyan (2019)
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of dynamic model averaging approaches, where the weights used to combine the nowcasts can

be updated based on learning from past performance. An important feature of this proposed

framework is its ability to accommodate non-Gaussian and time-varying properties of variance,

skewness, and kurtosis in the density nowcast estimates. These dynamic features are essential

in improving the accuracy of density nowcasts for headline inflation.

Our flexible framework allows us to incorporate a range of recent density combination meth-

ods proposed in the literature in a comprehensive empirical examination. Overall, using high-

frequency, real-time data over the period 2000-2015, we show that the grand combination from

our approach can generate highly accurate density nowcasts, but the combination method mat-

ters for the accuracy of the combined density nowcasts. Density combinations based on our

novel flexible aggregation strategy using the log score weighting scheme, which relies on past

predictive performance, or the “optimal” weighting scheme proposed by Conflitti, De Mol, and

Giannone (2015) are among the best performing in terms of relative accuracy and are well cali-

brated. The Ganics (2017) weighting scheme produces the best calibrated densities for headline

inflation, but its relative accuracy is inferior to the log score and the Conflitti, De Mol, and

Giannone (2015) weighting schemes. In the case of core inflation, all combination methods

perform comparably.

In a horse race with the Survey of Professional Forecasters, the grand combination’s density

nowcasts provide superior point and density nowcasts for CPI inflation and PCE inflation. For

core CPI inflation and core PCE inflation, our grand combination’s nowcasting performance is

competitive with the SPF. The ability of our proposed framework to generate highly accurate

point and density nowcasts of inflation is a useful outcome for practitioners.

Our empirical findings should serve as a guide to practitioners about the combination meth-

ods that may or may not work for nowcasting U.S. inflation. Our study provides further

evidence that, when it comes to density combinations, there is no single best procedure; rather,

it is important to examine combination methods on a case-by-case basis.
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Table 3.1: Model Space: Mixed-Frequency Model Classes and Specifications

Model Class Modeling Options Number of Models

DMS Autoregressive (AR) Lags = [1, 2] 108

Estimation window core inflation = [24, 36] months

Estimation window headline inflation = [24, 36, 84] months

Estimation window oil-gasoline error correction = [60, 72, 84] months

Number of years to use for computing seasonal factors = [3, 5, 7] years

MIDAS Estimation window = [5-year, 7-year, 10-year rolling, expanding] 12

Polynomial option = [Beta]

High-frequency data = [Daily only, weekly only, both daily and weekly]

DFM Number of factors = [1] 12

Number of lags = [1, 2, 3, 4, 5, 6]

Estimation window = [Expanding, 5-year rolling]

Total 132

Notes: DMS is deterministic model switching; MIDAS is mixed data sampling; and DFM is dynamic factor model. See the text and the

appendix for details.

Table 3.2: Representative Dates for Monthly Nowcasting Performance

Information Set s(τ) Target Month

Case Date (Example: Nowcasting target month is January) Horizon (t+h)

1 Last day of the December 31: Have CPI and PCE through November; CPI: h=2

previous month high-frequency information through December 31 PCE: h=2

2 Day 8 of the January 8: Have CPI and PCE through November; CPI: h=2

target month high-frequency information through the end of the 1st week of Jan., PCE: h=2

which includes weekly retail gasoline reading for the 1st week of Jan.

3 Day 15 of the January 15: Receive CPI for December and have PCE through CPI: h=1

target month November; high-frequency information through end of 2nd week of PCE: h=2

Jan., which includes two weekly retail gasoline readings for Jan.

4 Day 22 of the January 22: Have CPI for December and PCE through November; CPI: h=1

target month high-frequency information through end of 3rd week of Jan., which PCE: h=2

includes three weekly retail gasoline readings for Jan.

5 Last day of the January 31: Have CPI for December and receive PCE for December; CPI: h=1

target month high-frequency information for all of January, which includes all four PCE: h=1

weekly retail gasoline readings for Jan.

6 Day 15 of the February 15: Receive CPI for January and have PCE through CPI: h=n/a

following month December; high-frequency information for all of Jan. PCE: h=1
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Table 3.3: Calibration Diagnostics

Nowcasting Case Berk. Chi-Sq. AD KS KL 70% Cov Rate.

CPI: Grand Combination Based on Log Score

Case 1 0.80 0.05 0.02 0.35 0.26 60.67

Case 2 0.23 0.98 0.42 0.91 0.74 72.47

Case 3 0.50 0.38 0.74 0.81 0.79 69.66

Case 4 0.00 0.33 0.36 0.50 0.38 77.53

Case 5 0.01 0.05 0.44 0.18 0.09 76.97

CPI: Grand Combination Based on CMG

Case 1 0.14 0.92 0.63 0.95 0.99 70.22

Case 2 0.00 0.28 0.36 0.20 0.50 74.16

Case 3 0.05 0.28 0.37 0.52 0.56 76.40

Case 4 0.01 0.14 0.37 0.17 0.37 77.53

Case 5 0.00 0.03 0.07 0.13 0.07 80.90

CPI: Grand Combination Based on Ganics

Case 1 0.10 0.55 0.37 0.76 0.22 71.35

Case 2 0.01 0.75 0.39 0.56 0.44 71.35

Case 3 0.07 0.02 0.35 0.38 0.29 77.53

Case 4 0.11 0.56 0.36 0.48 0.43 76.40

Case 5 0.04 0.23 0.39 0.17 0.21 75.84

Core CPI: Grand Combination Based on Log Score

Case 1 0.32 0.02 0.42 0.30 0.20 65.73

Case 2 0.17 0.22 0.43 0.22 0.30 61.80

Case 3 0.52 0.41 0.36 0.46 0.43 64.61

Case 4 0.39 0.38 0.35 0.43 0.46 65.17

Case 5 0.33 0.28 0.37 0.37 0.47 65.73

Core CPI: Grand Combination Based on CMG

Case 1 0.02 0.70 0.42 0.24 0.53 67.42

Case 2 0.01 0.46 0.09 0.16 0.42 67.98

Case 3 0.41 0.72 0.36 0.44 0.52 65.17

Case 4 0.38 0.43 0.35 0.60 0.53 66.29

Case 5 0.35 0.60 0.35 0.58 0.53 66.85

Core CPI: Grand Combination Based on Ganics

Case 1 0.08 0.16 0.06 0.10 0.35 65.73

Case 2 0.17 0.61 0.08 0.19 0.36 65.73

Case 3 0.44 0.05 0.36 0.26 0.47 63.48

Case 4 0.25 0.23 0.42 0.14 0.39 63.48

Case 5 0.37 0.14 0.39 0.30 0.28 65.17

Notes: Entries except for those in the final column are p-values. “Berk” is the Berkowitz test. “Chi-Sq” is the Pearson

Chi-Squared test. “AD” is the Anderson-Darling test. “KS” is the Kolmogorov-Smirnov test. “KL” is the Knüppel test.

Entries in bold indicate rejection of the null hypothesis of correctly calibrated density nowcasts at a 5% significance level.

“70% Cov. Rate” shows the 70% empirical coverage rates. The evaluation sample: September 2000 through June 2015;
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excludes September 2001 and October 2001 for PCE and core PCE inflation calculations.
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Table 3.4: Calibration Diagnostics (continued)

Nowcasting Case Berk. Chi-Sq. AD KS KL 70% Cov Rate.

PCE: Grand Combination Based on Log Score

Case 1 0.53 0.02 0.01 0.06 0.14 59.66

Case 2 0.05 0.30 0.01 0.01 0.34 65.91

Case 3 0.20 0.46 0.37 0.24 0.37 68.75

Case 4 0.09 0.11 0.39 0.45 0.43 72.73

Case 5 0.05 0.18 0.03 0.11 0.51 69.89

Case 6 0.49 0.19 0.01 0.14 0.13 63.07

PCE: Grand Combination Based on CMG

Case 1 0.23 0.51 0.40 0.31 0.73 67.61

Case 2 0.02 0.48 0.07 0.03 0.57 69.89

Case 3 0.07 0.01 0.36 0.26 0.37 71.02

Case 4 0.03 0.07 0.37 0.37 0.28 71.02

Case 5 0.00 0.11 0.07 0.09 0.51 70.45

Case 6 0.04 0.82 0.39 0.27 0.72 65.34

PCE: Grand Combination Based on Ganics

Case 1 0.39 0.56 0.45 0.54 0.94 68.18

Case 2 0.05 0.74 0.42 0.21 0.68 69.89

Case 3 0.93 0.33 0.50 0.67 0.54 67.05

Case 4 0.91 0.76 0.57 0.47 0.50 67.05

Case 5 0.13 0.47 0.41 0.52 0.29 73.86

Case 6 0.07 0.63 0.36 0.68 0.71 65.34

Core PCE: Grand Combination Based on Log Score

Case 1 0.26 0.01 0.36 0.28 0.44 63.07

Case 2 0.43 0.78 0.36 0.38 0.61 64.20

Case 3 0.17 0.06 0.01 0.12 0.12 59.09

Case 4 0.06 0.01 0.00 0.25 0.16 60.80

Case 5 0.42 0.49 0.38 0.67 0.55 66.48

Case 6 0.77 0.05 0.04 0.28 0.26 63.07

Core PCE: Grand Combination Based on CMG

Case 1 0.00 0.70 0.63 0.90 0.76 67.61

Case 2 0.00 0.94 0.55 0.87 0.67 67.61

Case 3 0.04 0.40 0.67 0.90 0.89 69.32

Case 4 0.06 0.25 0.64 0.82 0.90 68.18

Case 5 0.17 0.70 0.36 0.21 0.67 66.48

Case 6 0.21 0.94 0.40 0.83 0.75 67.05

Core PCE: Grand Combination Based on Ganics

Case 1 0.00 0.64 0.44 0.83 0.57 67.05

Case 2 0.00 0.68 0.51 0.79 0.79 67.05

Case 3 0.52 0.70 0.35 0.71 0.63 65.34

Case 4 0.46 0.88 0.36 0.71 0.49 64.77

Case 5 0.97 0.88 0.37 0.80 0.73 69.32

Case 6 0.54 0.51 0.36 0.83 0.70 64.20
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Table 3.5: Nowcasting Comparison with the Survey of Professional Forecasters

CPI Core CPI PCE Core PCE

Point Nowcast Comparison

Grand combination RMSE 1.040 0.569 0.793 0.525

SPF (median) RMSE 1.429 0.577 1.089 0.504

Ratio, avg. SPF MSE/Grand MSE 1.888 1.025 1.883 0.922

GW p-values 0.010 0.881 0.002 0.617

Density Nowcast Comparison

Grand combination log score (Grand LS) -1.370 -0.811 -1.064 -0.735

SPF log score (SPF LS) -1.913 -1.519 -1.572 -0.780

Relative, SPF LS – Grand LS -0.543 -0.709 -0.508 -0.045

DM type test p-values 0.000 0.185 0.000 0.525

Notes: The grand combination uses real-time data available through the SPF survey date for each quarter. The SPF

density nowcasts are based on historical forecast errors; see the text for details. The CPI exercise uses real-time data from

2000Q4 through 2015Q2. The core CPI, PCE, and core PCE exercises use real-time data from 2007Q1 (the first available

SPF estimate) through 2015Q2. The DM type test reports the results of a test for equal predictive accuracy based on

testing whether the constant term in the regression of the differences in the log score on the constant is statistically different

from zero.
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Figure 3.1: Comparison of PITs across Single Specifications of Mixed-Frequency Model Classes

(a) Case 1

(b) Case 4

Notes: The figure plots histograms of the empirical distribution of the PITs for single specifications of the DMS, MIDAS,

and DFM model classes (blue bars) and the uniform U(0,1) distribution (black lines), generated at either the last day of

the month preceding the target nowcast month (case 1) or day 22 of the target nowcast month (case 4). The x-axis shows

the decile bins and the y-axis shows the percentage of observations falling within each decile bin. The nowcast evaluation

sample spans September 2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation and core

PCE inflation calculations.
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Figure 3.2: Comparison of PITs across Stage 1 Combinations within Model Classes

(a) Case 1

(b) Case 4

Notes: The figure plots histograms of the empirical distribution of the PITs for stage 1 combinations within the DMS,

MIDAS, and DFM model classes (blue bars) and the uniform (0,1) distribution (black lines), generated at either the last

day of the month preceding the target nowcast month (case 1) or day 22 of the target nowcast month (case 4). The x-axis

shows the decile bins and the y-axis shows the percentage of observations falling within each decile bin. The nowcast

evaluation sample spans September 2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation

and core PCE inflation calculations.
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Figure 3.3: Comparison of PITs across Grand Combinations

(a) Case 1

(b) Case 4

Notes: The figure plots histograms of the empirical distribution of the PITs for stage 2 combinations across the DMS,

MIDAS, and DFM model classes (blue bars) and the uniform (0,1) distribution (black lines), generated at either the last

day of the month preceding the target nowcast month (case 1) or day 22 of the target nowcast month (case 4). The x-axis

shows the decile bins and the y-axis shows the percentage of observations falling within each decile bin. The nowcast

evaluation sample spans September 2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation

and core PCE inflation calculations.
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Figure 3.4: Density Performance Comparisons across Grand Combinations

(a) Relative accuracy based on log score

(b) Relative accuracy based on CRPS

Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for grand combinations

based on log score, CRPS, equal, CMG, and Ganics weighting schemes. The evaluation sample runs from September 2000

through June 2015; we omit September 2001 and October 2001 for PCE inflation and core PCE inflation calculations.

97



Figure 3.5: Point Nowcasting Performance across Grand Combinations

Notes: The figure plots the RMSEs for grand combinations based on log score, CRPS, equal, CMG, and Ganics weighting

schemes and using the flexible aggregation strategy. The cases reflect the point in time when each nowcast was made

relative to the target nowcast month; see Table 3.2. The evaluation sample runs from September 2000 through June 2015;

we omit September 2001 and October 2001 for PCE inflation and core PCE inflation calculations.
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Figure 3.6: Density Performance of Grand Combination vs. Its Components

(a) Relative accuracy based on log score

(b) Relative accuracy based on CRPS

Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for the grand combination

based on the log score weighting scheme and combinations based on the DMS model class, MIDAS model class, and DFM

model class, where each individual model class uses the log score weighting scheme. The evaluation sample runs from

September 2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation and core PCE inflation

calculations.
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Figure 3.7: Point Nowcasting Performance, Grand Combination vs. DMS

Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation strategy;

the stage 1 combination from the DMS model class; and a single specification from the DMS model class based on Knotek

and Zaman (2017). The cases reflect the point in time when each nowcast was made relative to the target nowcast month;

see Table 3.2. The evaluation sample runs from September 2000 through June 2015; we omit September 2001 and October

2001 for PCE inflation and core PCE inflation calculations.

100



Figure 3.8: Weights and Higher-Order Moments (CPI and Core CPI)

(a) CPI inflation

(b) Core CPI inflation

Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand

combination, based on the flexible aggregation strategy and log-score weighting scheme. (Each model class is a combination

of multiple model specifications.) The second row plots estimates of dynamic uncertainty, defined as the width of the 70%

prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. The sample period spans

September 2000 through June 2015.
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Figure 3.9: Weights and Higher-Order Moments (PCE and Core PCE)

(c) PCE inflation

(d) Core PCE inflation

Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand

combination, based on the flexible aggregation strategy and log-score weighting scheme. (Each model class is a combination

of multiple model specifications.) The second row plots estimates of dynamic uncertainty, defined as the width of the 70%

prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. The sample period spans

September 2000 through June 2015.

102



Chapter 4

A Unified Framework to Estimate

Macroeconomic Stars

4.1 Introduction

The economic concept of a long-run equilibrium level (often denoted with the “star” symbol)

is central to macroeconomics. These long-run levels are thought to reflect the fundamental

structure of the economy (in the absence of shocks). Hence, they are used as reference points,

and deviations from these long-run levels reflect cyclical or idiosyncratic fluctuations. Dynamics

of cyclical changes and the pace of their adjustment towards the long-run equilibrium are of

interest to macroeconomists. However, effective identification of cyclical fluctuations in any

macroeconomic aggregate requires knowledge of its long-run equilibrium.

In this chapter, we estimate jointly range of macroeconomic stars that are of broader interest

to macroeconomists and policymakers: the equilibrium rate of productivity growth (p-star), the

level of potential output (gdp-star), the growth rate of potential output (g-star), the equilibrium

level of the unemployment rate (u-star), the equilibrium level of the real rate of interest (r-star),

the equilibrium rate of price inflation (pi-star), the equilibrium rate of nominal wage inflation

(w-star).1 The assumption that a long-run equilibrium exists implies that in the long-run, the

economy is growing at potential, inflation equals its trend rate, the unemployment rate reflects

a combination of structural and frictional factors, i.e., there is no cyclical pressure, nominal

wages grow at a rate equal to the sum of labor productivity growth and price inflation, and

the real interest rate reflects the rate consistent with output growing at potential and stable

inflation.2

1The subset of these stars, p-star, g-star, u-star, and r-star, reflect the fundamental structural features of the
economy whereas others, pi-star and w-star are thought to be influenced by central banks and monetary policy.

2The literature has referred to the concept of long-run equilibrium using different terminologies, such as “nat-
ural”, “neutral”, “trend”, “steady-state”, and “long-run”. There are subtle differences among them, but they can
be interpreted as the same for the purpose of this chapter. In some studies, especially using Dynamic Stochastic
General Equilibrium (DSGE) models, the concept of the natural rate refers to medium-horizon equilibrium, and
in these same models, the concept of steady-state is used to refer to the long-run equilibrium.
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As discussed in Weber et al. (2008), conceptually, determining stars’ estimates appears

straightforward, however, in practice, it is fraught with difficulties. The difficulties stem from the

fact that the values of the stars and their determinants are unobserved. To infer the estimates

of the stars, a range of statistical and econometric methods are applied to observable historical

data. These methods range from statistical univariate filters (e.g., Hodrick and Prescott, 1997;

Christiano and Fitzgerald, 2003; Ashley and Verbrugge, 2009) to multivariate models, including

semi-structural time-series models (e.g., Pescatori and Turunen, 2016; Morley and Wong, 2020),

and fully structural DSGE models (e.g., Del Negro et al., 2017).

Economic theory posits that the structural aspects of the economy, which inform the values

of the stars, change slowly. Therefore, methods that produce estimates of stars that change only

gradually have more traction than methods that give less smooth estimates. According to this

criterion, multivariate unobserved components (UC) models, which are statistical models that

use economic theory to frame the empirical specification, have been shown to provide reasonable

estimates of the stars (e.g., Kuttner, 1994; Basistha and Nelson, 2007; Laubach and Williams,

2003; Chan, Koop, and Potter, 2016). Hence, they are the dominant methods for obtaining

time-varying estimates of the stars.

However, with few exceptions, the popular multivariate UC models that estimate time-

varying stars focus on a small number of observables, often just two or three, and minimal

structure (e.g., Laubach and Williams, 2003). Studies that entertain more variables have ab-

stracted from important empirical features such as time-varying parameters and stochastic

volatility (e.g., Del Negro et al., 2017; Fleischman and Roberts, 2011). A priori, one would

expect a framework based on greater information that explicitly permits (contemporaneous)

interactions between stars and between cyclical components and a richer structure to provide

more reliable estimates of the objects of interest (e.g., stars) than frameworks that ignore them.

Indeed, Taylor and Wieland (2016) make a similar argument in the importance of appropriately

accounting for trends in the determinants of the r-star to estimate r-star correctly. Specifically,

Taylor and Wieland (2016) point out, “What appear to be trends in the equilibrium interest

rate may instead be trends in other policy variables that affect the economy.”

Accordingly, in this chapter, we take on the challenge of jointly estimating several macroe-

conomic stars simultaneously, including g-star (and gdp-star), u-star, p-star, pi-star, w-star,

and r-star, using a semi-structural time series model (aka multivariate UC model with a par-

ticular structure informed from economic theory). For each star, we formulate a rich structure

whose elements are guided by past research. For example, econometric estimation of r-star

is informed from various sources: Investment-Savings (IS) equation, Taylor-type rule, equation

linking g-star and r-star, and equation relating r-star to survey expectations. We allow for time-

variation in important macroeconomic relationships and error variances. Fernandez-Villaverde

and Rubio-Ramirez (2010), Koop and Korobilis (2010), Carriero et al. (2019), among many

others, highlight the importance of allowing for stochastic volatility in macroeconomic models.

Incorporating these empirical features should better distinguish between cyclical fluctuations
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and lower-frequency movements in the macroeconomic aggregates considered in this paper.

We extend the Chan, Clark, and Koop (2018) – henceforth CCK – approach of using long-run

survey expectations to improve pi-star precision to other macroeconomic stars. Specifically, for

each macroeconomic variable of interest, we explicitly model the link between the unobserved

“star” and the expectations about the star contained in the Blue Chip survey of economic

forecasters (or reported by the Congressional Budget Office [CBO] when the survey estimate

is not available).3 In a high-dimensional model like ours, the use of long-run survey expecta-

tions, which are direct measures of stars, could help anchor model-based estimates of stars to

reasonable values (especially in times of heightened uncertainty) and potentially improve the

precision of the estimates. We estimate our feature-rich UC model using Bayesian techniques,

specifically the efficient sampling techniques developed in Chan, Koop, and Potter (2013) and

the precision sampler proposed in Chan and Jeliazkov (2009).

All in all, the combination of time-varying parameters, SV, joint modeling of multiple stars,

implementation of an expanded structure, and allowing for a direct connection between stars and

long-term survey expectations is what differentiates our UC model from the existing literature.

Many popular UC models could be viewed as special cases of our larger UC model, which

facilitates model comparison. We note that among the stars considered, w-star has received

less attention in the literature. Our UC model’s ability to provide real-time estimates of w-

star and model-based decomposition into its determinants p-star and pi-star, as implied by

economic theory, is a novel contribution. This specific decomposition is useful to monetary

policymakers, who often refer to developments in nominal wages to support their forecasts and

related discussions on price inflation and employment.

Our results indicate that there are payoffs to modeling stars jointly using a larger multivari-

ate UC model. The metric of Bayesian model comparison generally favors our larger UC model

over smaller-scale UC models. The model yields credible estimates of stars (and the output

gap). For example, the output gap estimate is similar to the CBO estimate based on a produc-

tion function approach. Generally, the contours of stars echo those documented elsewhere in the

literature but at times are different, and these differences can matter for policy. For example,

let’s consider pi-star, from 2000 to 2010, our UC model has an estimate of the pi-star stable at

or close to 2%, whereas pi-star from a popular univariate model (of Stock and Watson, 2007)

displays notable fluctuations around 2%, and the bivariate model of CCK indicates a stable

pi-star about few tenths below 2%. These differences in pi-star matter for central banks tasked

with inflation targeting. Compared to some of the popular UC models and the smaller-scale

restricted variants of our larger UC model, the precision estimates of the stars (and the output

gap) from our UC model are among the most precise, where precision is measured as the width

of 90% credible interval. The model’s reliance on long-term survey expectations data is the

3The long-run survey expectations can be thought of as a hybrid forecast because it combines judgment based
on a range of information and forecast derived from a range of modeling approaches. Our use of such a hybrid
forecast implicitly serves as an additional channel through which the issue of omitted variable bias is mitigated.
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key reason for this improved precision.4 Survey expectations played a crucial role in guiding

the model-based assessment of stars during the COVID-19 pandemic, a period of heightened

uncertainty. Our UC model’s real-time point and density forecasting accuracy rivals and, in

some cases, outperform hard-to-beat benchmarks, including small-scale UC models.

We also demonstrate the usefulness of stars’ estimates (from our UC model) as terminal

values for external models. Previous research shows that forecasting models, such as (steady-

state) vector autoregression (VAR) model, often benefit significantly (in terms of improved

forecast accuracy) from external information about steady-states informed by long-run survey

expectations (e.g., Wright, 2013). Using a real-time forecasting horse race, we show that if we

were to inform steady-states in a VAR with the stars from our UC model, gains in forecast

accuracy (for some of the variables) are achieved compared to the standard approach relying

on survey expectations. Hence, our framework provides a potential source for obtaining the

stars’ estimates in real-time. An advantage of our framework compared to surveys is that it

provides estimates of stars (steady-states) for variables not covered by surveys (such as w-star)

and offers both point and density estimates for the stars.

We summarize three additional findings. First, we find that the empirical evidence in

the link between r-star and g-star, as implied by theory, is weak (consistent with Hamilton

et al., 2016; Lunsford and West, 2019), but by bringing survey expectations into the model,

the link becomes stronger (providing support to Laubach and Williams, 2016). Second, our

results indicate economically and statistically significant evidence of time-variation in our model

parameters capturing macroeconomic relationships and strong support for SV’s inclusion in

our model equations. It lends support to the popular narratives: “(price) Phillips curve has

weakened over time,” “wage Phillips curve is alive,” and “weakening in the procyclicality of

labor productivity.” Third, a comparison between final and real-time estimates of the stars

indicates that their broad movements have generally tracked each other closely. We view this

as a valuable finding because it suggests that we make some progress in mitigating the well-

known difficulties associated with the real-time estimation of the stars.

In recent years, several papers have provided estimates of the stars using UC models with

more indicators and or an expanded structure. For example, Johannsen and Mertens (forth-

coming) [henceforth JM], Pescatori and Turunen (2016), Del Negro et al. (2017), Brand and

Mazelius (2019), Gonzalez-Astudillo and Laforte (2020), among others, have examined the roles

of additional determinants in explaining r-star. Neither of these studies feature time-varying

parameters, and only JM allows for SV, but their model size is significantly smaller than ours.

Chan, Koop, and Potter (2016) [henceforth CKP] illustrate the value of modeling u-star and

pi-star as bounded random walk processes in a bivariate Phillips curve. More recently, using a

fixed-parameter UC model, Crump et al. (2019) estimate u-star by combining a range of labor

market indicators across demographic groups and survey expectations of inflation. This chapter

4Our precision estimates are on a par with recent studies highlighting the improved precision of stars derived
from their approaches (e.g., r-star by Del Negro et al., 2017; u-star by Crump et al., 2019; pi-star by CCK).
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goes further by implementing a UC model that estimates long-run equilibrium values for many

variables with a rich dynamic structure, including stochastic volatility and time-varying param-

eters, and uses survey information about the long-run expectations of inflation, unemployment

rate, real GDP growth, and interest rates.5

The chapter is organized as follows. The next section describes in detail the econometric

model and its variants. Section 4.3 describes the data and estimation. Section 4.4 presents and

discusses in detail the estimates of stars and other model parameters. Section 4.5 reports the

real-time forecasting results and a discussion comparing real-time and final estimates of stars.

Section 4.6 illustrates the ability of the model to handle the COVID-19 pandemic data. Section

4.7 concludes. This chapter has a supplementary online appendix that lists detailed Bayesian

estimation steps and some additional results.

4.2 Empirical Macro Model and Variants

The ingredients of our macroeconomic econometric model are guided by economic theory, and

in part, by features that previous research shows to be empirically relevant. These features

include stochastic volatility and time-varying parameters, which in turn imply time-varying

predictability. Collectively, these empirical features permit modeling changing macroeconomic

relationships in a flexible way.

We represent our empirical model using six sets of equations, which we denote blocks. These

six blocks, which allow for contemporaneous interactions between them, characterize the joint

dynamics of the unemployment rate, output growth, labor productivity growth, price inflation,

nominal wage inflation, nominal interest rate, and corresponding stars. To be sure, the model

assumes that all innovations are uncorrelated both serially and across equations. However, we

emphasize that any assumed current period correlations between the cyclical components and

or between stars are directly modeled via the model equations that define the contempora-

neous relationships between the components (e.g., cyclical output gap at time t with cyclical

unemployment gap at t; r-star and g-star).

Before we jump into the model description, we describe some basics, including the econo-

metric definition of the star and the usefulness of survey long-run expectations in the estimation

of stars.

4.2.1 The econometric notion of a long-run equilibrium

Following CCK, Mertens (2016), Lee and Nelson (2007), Morley (2002), among many, this

chapter defines the long-run equilibrium (or star) of a particular macroeconomic series as its

5Morley and Wong (2020) and Chan (2019) propose alternative modeling framework based on VARs to
estimate the long-run equilibrium values. The advantage of the VAR based framework is the ability to handle
larger amounts of information conveniently and flexibly compared to UC models. On the other hand, the
advantage of UC modeling, as emphasized by CKP, is the availability of the direct estimates of stars, which in
our case proves quite convenient to allow for direct modeling of the relationships between various stars.
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infinite-horizon forecast conditional on the current information set. This definition of a star is

consistent with the notion of Beveridge-Nelson trend decomposition, and extensive literature

has adopted this approach to estimate stars. Equivalently, as commonly defined in the trend

estimation literature, the infinite horizon forecast could be viewed as an estimate of trend

conditional on the current information set (e.g., CCK, Garcia and Poon (2018), Mertens (2016),

Lee and Nelson (2007), Morley (2002)). As discussed in Mertens (2016), among others, different

information sets would likely yield different estimates of the infinite-horizon forecast (or trend).

Mertens showed that including survey projections of long-term inflation (hereafter survey long-

run forecasts) in the information set led to more precise and forward-looking estimates of trend

inflation.

The link between the infinite-horizon forecast and the underlying trend is described well

by the unobserved components (UC) model (see Laubach and Williams, 2003; Lee and Nelson,

2007; Mertens, 2016; CCK). In a UC model, a series (Yt) is typically represented as a sum of a

nonstationary trend component Y ∗t ,, which is assumed to evolve slowly and a stationary cycle

Y c
t , whose infinite-horizon conditional expectation is assumed to be zero. Accordingly,

Yt = Y ∗t + Y c
t . (4.1)

The trend component Y ∗t is interpreted as the limiting forecast of the series (conditional on

the information set It) as the forecast horizon tends to infinity,

lim
j→∞

E[Yt+j |It] = Y ∗t . (4.2)

Differencing the above equation yields,

Y ∗t = Y ∗t−1 + lim
j→∞

E[Yt+j |It]− lim
j→∞

E[Yt+j |It−1] = Y ∗t−1 + et, et ∼ N(0, σ2
e). (4.3)

which suggests a random walk process for the trend Y ∗t .6 It also suggests a stationary,

ergodic mean-zero process for Y c
t .

Intuitively, the above set of assumptions imply that once the effects of the shocks have fully

played out, the macroeconomic series of interest, Yt gravitates to its underlying trend level, Y ∗t .

As discussed in CCK, various statistical and econometric models could fit within the above-

specified decomposition. This chapter formulates a specific unobserved components time series

model and its variants.

6The commonly adopted assumption of modeling Y ∗t as a random walk is partly due to consensus among
macroeconomists that the factors driving the long-run equilibrium levels are perceived to be quite persistent
(e.g., Lee and Nelson, 2007). In practice, the assumption of a (driftless) random walk has generally worked quite
well, in that it has provided reasonable estimates of the stars (e.g., Clark, 1987; Kuttner, 1994; Laubach and
Williams, 2003; Mertens, 2016).
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4.2.2 The role of survey expectations

As discussed in the introduction, an important contribution of this chapter is to provide a direct

role for long-run survey expectations in refining the stars’ estimates. Specifically, we follow the

approach of CCK (and Pescatori and Turunen, 2016). These papers explicitly estimate an

equation linking the observed measure of a long-run forecast obtained from external sources

(survey in the case of CCK and CBO projection of the output gap in Pescatori and Turunen,

2016) to an unobserved object of interest. We extend their approach to the macroeconomic

variables considered in this chapter.

Several papers have documented an essential role of long-run survey (and institutional)

forecasts in helping refine the econometric estimation of model parameters, including the latent

components (e.g., pi-star: Kozicki and Tinsley, 2012; Mertens, 2016; CCK; Mertens and Nason,

2020; gdp-star: Pescatori and Turunen, 2016; r-star: Del Negro et al., 2017). Specifically,

Mertens and Nason (2020), CCK, Mertens (2016), and Kozicki and Tinsley (2012), in using

different methodologies (in combining survey data with model forecasts) to estimate trend in US

inflation, show that survey long-run forecasts of inflation deliver crucial additional information

(beyond the recent inflation history) in refining trend estimates and improving model fit. In

a similar vein, Pescatori and Turunen (2016) document the usefulness of CBO’s projection of

the potential output gap in improving their model’s output gap precision. It is this particular

literature that motivates us to consider survey long-run forecasts in our large-scale econometric

model.

The advantage of survey (and institutional) forecasts stems from the fact that they could be

viewed as hybrid forecasts, i.e., a combination of judgment and forecasts derived from various

modeling approaches. The fact that human judgment enters into survey expectations is an

important reason for their success. As discussed by Kozicki and Tinsley (2012) and others, the

good forecasting properties are partly because survey participants have at their disposal a wide

range of indicators, including central bank communications, and information about changes in

the tax laws, etc. The patterns gleaned from this large information set can help shape opinions,

including any perceived structural change, which can immediately influence expectations about

the long-run.

The usefulness of this hybrid forecast measure is appealing from both theoretical and prac-

tical perspectives. From a theoretical standpoint, the notion of such a type of hybrid forecast

is well-aligned with the New-Keynesian view that emphasizes the importance of allowing for

interlinkages between the current state of the economic variables and their expectations about

the future in determining the relevant stars (see Weber et al., 2008).

From a practical point of view, such a hybrid measure helps limit the number of variables

(i.e., information) that need to be brought into the model. Put differently, explicitly utilizing

survey long-run expectations through an equation linking these expectations to the correspond-

ing model’s latent objects could be thought of as a short-cut to enrich the necessary information

set used in model estimation. Furthermore, in high-dimensional models, such as the one de-
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veloped in this chapter, the use of survey long-run projections, which are targeted and direct

measures of stars, could help anchor model-based estimates of stars to reasonable values and

have the potential to improve precision of the estimates.

Accordingly, in this chapter, with the exceptions of nominal wage inflation and labor pro-

ductivity, for each of the remaining four variables, we model the direct link between long-run

survey projection (or the long-run CBO projection in the years for which survey projections are

unavailable) and the corresponding star using the following econometric equations7,

Zyt = Cyt + βyy∗t + εzyt , ε
zy
t ∼ N(0, σ2

zy), y = π, u, g, r (4.4)

Cyt = Cyt−1 + εcyt , ε
cy
t ∼ N(0, σ2

cy), y = π, u, g, r (4.5)

where π refers to price inflation, u refers to the unemployment rate, g refers to real GDP

growth, r refers to the real interest rate, Zyt refers to the survey long-run forecast corresponding

to the variable y, and y∗t is the unobserved y star.

Cyt is the time-varying intercept assumed to evolve as RW process to possibly capture the

permanent wedge between survey estimate and the model-based star. This wedge can arise due

to several reasons, including the fact that star is assumed to be the infinite-horizon forecast,

whereas the survey forecast refers to the average forecast for the five-year period starting seven

years into the future in the case of BC and ten-year ahead forecast in the case of SPF (for price

inflation).

The above set of equations define a simplistic and flexible relationship between the long-run

survey expectations and the star. 8

4.2.3 Unemployment block

The long-run equilibrium level of unemployment (u-star) is the unemployment rate that prevails

when output is growing at potential, and the economy adds jobs so as to maintain the full-

employment level. This equilibrium level of unemployment is primarily the result of labor-

market imperfections caused by frictional and structural aspects of the labor markets.

As discussed in Crump et al. (2019), two approaches are commonly used to estimate u-star.

The first approach applies UC modeling to detailed labor market data (such as job vacancies,

firm’s recruiting intensity, demographic changes, flows into and out of unemployment) to extract

respective trends. These trends are used to construct implied estimates of u-star (e.g., Daly,

Hobijn, Sahin, and Valleta, 2012; Davis, Faberman, and Haltiwinger, 2013; Barnichon and

Mesters, 2018; Tasci, 2012). The second approach uses a combination of information from

prices (and or nominal wages, survey expectations) and the estimated Phillips curve relationship

7For the long-run inflation forecast, we use the Survey of Professional Forecasters (SPF)/PTR, and for the
long-run forecasts of the other three variables, we use the Blue Chip (BC) survey.

8We note that we adopt a relatively less flexible relationship between survey forecasts and stars than CCK.
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between price inflation and the aggregate unemployment rate to backout the estimate of u-

star.9 Various modeling techniques ranging from parsimonious UC modeling to structural

DSGE models are applied to estimate the Phillips curve relationship (e.g., Staiger, Stock, and

Watson, 1997; Orphanides and Williams, 2002; Lee and Nelson, 2007; CKP; Gali, 2011).

Following CKP, we posit that the observed unemployment rate is decomposed into a (bounded)

RW trend component (u-star) and a stationary cyclical component. The cyclical component

is modeled as an AR(2) process. The use of a parsimonious (time-invariant) AR2 process to

identify the cyclical component of the unemployment rate is a commonly used assumption, in

our case motivated by a recent string of empirical studies, e.g., Lee and Nelson (2007), Gali

(2011), Stock and Watson (2015), CKP, Tallman, and Zaman (2017), and Gali and Gambetti

(2020), who all document reasonable patterns of the cyclical unemployment component (i.e.,

movements in this component correlate quite well with the NBER business cycle).10

More generally, the assumption of an AR2 to model the cyclical component of macroeco-

nomic variables has a long tradition, at least going back to Clark (1987). However, because we

are also modeling the output gap (i.e., level of real GDP minus level of potential real GDP),

we depart from the previous literature by augmenting the AR2 unemployment gap with the

output gap (denoted ogap) as an additional explanatory variable. Sinclair (2009), Grant and

Chan (2017), and Berger, Everaert, and Vierke (2016), among several others, document the

empirical importance of jointly modeling the unemployment rate gap and the output gap.

Similarly, as shown later, we add information from the unemployment gap when modeling

the output gap. We find that the joint modeling of the output gap and the unemployment gap

is empirically and economically useful (confirming previous research findings, e.g., Fleischman

and Roberts, 2011). In addition, joint modeling of both the output gap and the unemployment

gap allows us to estimate the strength in the relationship between the two cyclical components,

popularly known as Okun’s law. In equation (4.7), the coefficient φu captures the contempo-

raneous relationship between the output gap and the cyclical unemployment rate gap. The

estimate,
1−ρu1−ρu2

φu could be interpreted as the Okun’s law coefficient.

We note that when jointly modeling output and the unemployment rate, most researchers

assume a common cyclical component between the two. However, in light of the empirical

evidence that cyclical unemployment displays more persistence than the output gap (e.g., Berger

et al., 2016), we model two separate cycles linked to each other via Okun’s law relationship.

As shown in Berger et al. (2016), a specification that entertains two separate cycles (cyclical

unemployment and the output gap), the data support a time-invariant parameter describing

9As mentioned in Crump et al. (2019), one of the criticisms of this approach is that it will be impacted by the
breakdown of the Phillips curve relationship post 2007. However, by allowing time-variation in the coefficients
capturing the price and wage Phillips curve relationships, as we do, our approach should face less of a problem.
In addition, as illustrated in Del Negro, Giannoni, and Schorfheide (2015) and Clark (2014) bringing information
from long-run survey expectations of inflation (as we do) should further help capture the inflation behavior in
the post 2007 period.

10CKP explores the empirical importance of allowing for time-variation in the parameters of AR2 process, and
finds that data prefers the time-invariant AR2 process, hence validating the widely used assumption of a simple
AR2 process.
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the Okun’s law relationship. In contrast, a specification with a common cyclical component

favored a time-varying Okun’s law relationship (adding support to Knotek, 2007).

In a nutshell, the inference of Berger et al. (2016) suggests that time-variation in the

parameter capturing Okun’s law reflects the sluggish response of the cyclical unemployment

to movements in the output gap. Once they allowed for a sluggish response of the cyclical

unemployment rate by adding persistence, via one-period lag of the cyclical unemployment rate,

evidence of a time-varying Okun coefficient disappears. We found similar evidence. Hence, we

adopt the modeling of two separate cycles and a time-invariant Okun’s law relationship for

our baseline setup; this has the added advantage of requiring estimation of significantly fewer

parameters.11

With the exception of CKP, most of the literature models u-star as a driftless RW. The

use of an unrestricted RW process has empirically been shown to work well, but CKP shows

that modeling u-star as a bounded RW process is even better. Motivating their use of bounds

is because, by construction, the unemployment rate is a bounded variable, which implies that

the long-run equilibrium in the labor market would restrict the movements in u-star within a

bounded interval.12

Accordingly, we model u-star as a bounded RW, where the bounds’ values are fixed at 3.5%

(lower bound) and 7.5% (upper bound).13 Following CKP, the variance of the error in the

cyclical component is not allowed to vary over time.

Ut = U∗t + U ct (4.6)

Ut − U∗t = ρu1(Ut−1 − U∗t−1) + ρu2(Ut−2 − U∗t−2) + φuogapt + εut , ε
u
t ∼ N(0, σ2

u) (4.7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1; φu < 0

U∗t = U∗t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗t−1, bu − U∗t−1; 0, σ2

u∗) (4.8)

where the notation TN(a, b;µ, σ2) refers to normal distribution with mean µ and variance

σ2 but truncated in the interval (a, b).

11Bayesian model comparison assessment slightly preferred the approach of two separate cycles with time-
invariant Okun’s law compared to common cycle with time-varying Okun’s law parameter. Also, we note that
Sinclair (2009) and Grant and Chan (2017) model two separate cycles, linked through a time-invariant parameter.

12CKP argue that economic forces that govern the movements in u-star are slow-moving and those forces would
not cause the unemployment rate to fall to levels close to zero or to levels that are higher than the previous peaks
caused by recessions.

13These values are informed by estimating the CKP model over our estimation sample, and are close to values
reported in CKP based on their estimation sample. As a further check, most estimates of the u-star reported in
commonly cited literature fall within the bounds we use in this chapter.
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Lastly, the equation relating long-run survey projection of the unemployment rate to U∗,

Zut = Cut + βuU∗t + εzut , ε
zu
t ∼ N(0, σ2

zu) (4.9)

Cut = Cut−1 + εcut , ε
cu
t ∼ N(0, σ2

cu) (4.10)

4.2.4 Output block

We are interested in both the potential output (i.e., gdp∗) and the growth rate in potential

output (i.e., g∗). To feasibly estimate both these latent processes, we follow the commonly

adopted approach, which decomposes the level of aggregate output into the level of potential

output and a cyclical component (output gap), where the cyclical component is defined as the

deviation of observed aggregate output level from potential output. This simple decomposition

has a long tradition going back to Harvey (1985) and Clark (1987).

gdpt = gdp∗t + ogapt (4.11)

where gdp ≡ log(GDP ) and gdp∗ refers to potential output, which is unobserved.

A common approach to model gdp∗ is to assume a random walk with a time-varying drift

term (i.e., the local level trend process), where the time-varying drift term (interpreted as g∗)

is assumed to follow a random walk process (to allow for a stochastic g∗). More recently, Chan

and Grant (2017) show that a model where gdp∗ is assumed to follow a second-order Markov

transition process fits the data better compared to the model where gdp∗ is assumed as a random

walk with time-varying drift. Hence, we follow Chan and Grant (2017) and model gdp∗ as,

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗) (4.12)

Which can be re-written as,

4gdp∗t = 4gdp∗t−1 + εgdp∗t

If we define, g∗t ≡ 4gdp∗t , where 4 is the first difference operator. Then,

g∗t = g∗t−1 + εgdp∗t (4.13)

An advantage of modeling g∗ as a second-order Markov process compared to RW with time-

varying drift is that it requires estimating a single shock parameter (σ2
gdp∗), as opposed to two

for the latter (one for the shock to gdp∗ and the other for the shock to time-varying drift, aka

g∗). This modeling assumption implies that all permanent shocks to output are attributed as

shocks to g∗.14

14Note: the second-order Markov process for gdp* could be thought of as a limiting case of the process.
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The cyclical component, ogap, is assumed a stationary AR(2) process augmented with

additional explanatory variables: the real interest rate gap and the unemployment gap,

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rt − r∗t ) + λg(Ut − U∗t ) + εogapt (4.14)

where, εogapt ∼ N(0, σ2
ogap), ρ

g
1 + ρg2 < 1, ρg2 − ρ

g
1 < 1, and |ρg2| < 1; λg < 0

Equation (4.14) could be interpreted as defining an IS-curve (as in LW and subsequent

papers modeling r-star) that allows feedback from the real interest rate gap to the output gap

(i.e., the real interest rate gap responds to economic slack). The IS equation is inspired by LW

but with two modifications. First, instead of using the interest-rate gap based on the short-term

real rate of interest, we use the long-term real interest rate (Gonzalez-Astudillo and Laforte,

2020). Specifically, the long-term real interest rate is constructed as the difference between the

nominal yield on a 10-year Treasury bond and the 10-year inflation expectations (i.e., the PTR

series for PCE inflation).15

In theoretical models, the long-term interest rate influences household consumption decisions

and business investment decisions. Second, to improve the econometric estimation of the output

gap, we enrich the IS equation by bringing in information from the unemployment gap (from

the unemployment block) as an explanatory variable.16 This latter addition is motivated by the

approach taken in a long list of papers (e.g., Morley and Wong, 2020; Chan and Grant, 2017;

Fleischman and Roberts, 2011; Sinclair, 2009; Clark, 1989) that demonstrate the usefulness

of the unemployment rate in improving the econometric estimation of the output gap. As

mentioned earlier, in the equation for the unemployment gap, we add the output gap to improve

the former’s estimation. The coefficient λg captures the contemporaneous relationship between

the output gap and the unemployment gap. The parameter ar relates the output gap to the

real interest rate gap.

We note that innovations ε2
gdp∗ and ε2

ogap are uncorrelated. In an important contribution,

Morley et al. (2003), who assumes a deterministic g-star, show that this assumption matters for

Assuming gdp* as a RW with time-varying drift term, where the variance of shock to the gdp* goes to zero,
and shock to the time-varying drift term (g-star) is the only relevant driver governing the evolution of gdp* and
g-star (see Chan and Grant, 2017).

15We also experimented with an alternative specification, in which the interest rate gap is constructed as the
difference between the short-term federal funds rate and first lag of four-quarter trailing PCE inflation, similar
in spirit to LW. Based on model fit (log marginal likelihood), this specification was inferior compared to the Base
specification. It is worth noting that had the longer history of long-term inflation expectations data available at
the time of the writing, LW would have constructed the interest rate gap using the long-term interest rate (see
page 1064 in LW).

16Model fit, the precision metric for u-star and the output gap, and the plausibility of the estimates of output
gap strongly supports the joint modeling of output gap and unemployment gap. We note that LW estimated an
alternative specification in which they added information from the labor market (hours worked) and found that
doing so improved the precision of the estimated output gap, however, that improved precision did not spillover
to r-star estimate (the focus of their paper) and therefore in their baseline specification they omit the labor
market variable.
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estimating potential output. However, Chan and Grant (2017) show that in their specification,

once a stochastic g-star is allowed for, the correlation between ε2
gdp∗ and ε2

ogap goes to zero.

They also show that the model without correlation performs comparably to the model with

correlated innovations based on Bayesian model comparison. Accordingly, to keep estimation

tractable, we assume uncorrelated innovations.

The equation linking survey projection of potential growth rate to g∗,

Zgt = Cgt + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2

zg) (4.15)

Cgt = Cgt−1 + εcgt , ε
cg
t ∼ N(0, σ2

cg) (4.16)

We could potentially bring in additional information from the CBO’s projection of the level

of the potential GDP to improve the econometric estimation of the level of potential real GDP.

However, as shown in the results section 4.4, the implied estimates of the output gap from

our multivariate framework (with or without survey data) are remarkably similar to CBO’s

estimates suggesting the limited value of bringing additional information from CBO projections.

4.2.5 Productivity block

Since the publication of economist Adam Smith’s influential book, Wealth of Nations, it is

widely acknowledged, among various actors, that long-run productivity growth is the most

important contributor to long-run changes in the living standards. Therefore, estimates of the

long-run level of (labor) productivity growth (p-star) have received considerable discussion in

the past decades and are of great interest. Labor productivity is defined here as output per

hour worked.

Furthermore, the estimates of p-star are an important input into policymaking, as they are

used to gauge the appropriateness of the monetary policy stance. The importance of p-star

for monetary policy is because standard macroeconomic models tightly connect p-star to the

long-run level of real interest rate (i.e., r-star). In these models, a lower level of p-star implies

a lower level of r-star, and a higher level of p-star implies a higher r-star (see Lunsford, 2017).

However, based on post-1960 data, Lunsford (2017) found no statistical evidence supporting

the link between p-star and r-star.

Several papers have endeavored to estimate the long-run level of productivity growth using

various statistical and econometric models. A subset of those papers has documented support in

favor of a regime-switching framework to model long-run labor productivity growth (e.g., Kahn

and Rich, 2007). Also, to extract more precise and timely estimates of p-star, various authors

(e.g., Kahn and Rich, 2007; Roberts, 2001) have proposed using additional variables alongside

labor productivity (e.g., real compensation, real consumption, and average hours worked). On

the other hand, Edge et al. (2007) show that estimates of long-run productivity growth obtained
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from a simple trend-cycle univariate model solved with Kalman filter does an adequate job of

mirroring the long-run projections of productivity growth reported in the survey of professional

forecasters and institutional forecasts (e.g., CBO).17

On closer inspection, the ability of the Kalman filter to echo the predictions of the profes-

sional forecasters is not surprising, however. Productivity growth is a notoriously volatile series

and is subject to extreme revisions from one vintage to another. So, distinguishing highly per-

sistent fluctuations from truly permanent changes is a difficult job for professionals and models

alike. Jacobs and van Nordern (2012) discuss in detail some of these challenges when working

with productivity data.

The combination of findings in Lunsford (2017), Edge et al. (2007), and Jacobs and van

Norden (2012) motivates the formulation of a parsimonious structure for the productivity block

relative to other blocks of the model. In particular, we abstract from explicit modeling of direct

links between p-star and r-star and between p-star and g-star. But our formulation is still in

some ways richer than used in the cited literature, as we allow for time-varying parameters,

including stochastic volatility. Specifically, the productivity gap, which is defined as (nonfarm)

labor productivity growth18 (quarterly annualized) less p-star, is modeled as a function of a one

quarter lag in the productivity gap and the contemporaneous cyclical unemployment gap.

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + λpt (Ut − U∗t ) + εpt , ε
p
t ∼ N(0, eh

p
t ) (4.17)

where, |ρp| < 1

The inclusion of the cyclical unemployment gap (or output gap) helps tease out movements

in productivity associated with the business cycle. The growth in labor productivity (and more

generally aggregate productivity) has been shown to be procyclical to some degree (e.g., Roberts

2001); it typically increases sharply at the onset of recoveries and falls during recessions. How-

ever, empirical evidence on the strength and the direction of the cyclical relationship is mixed.

This mixed evidence stems from the use of different estimation samples and or cyclical indica-

tors (employment-based or output-based). For instance, Gali and van Rens (2020), using split

sample estimation, illustrate empirically the significant weakening in the correlation between

labor productivity and employment, especially post-1984. They find that the relationship has

become countercyclical in the past three decades when using employment as the cyclical indi-

cator.19 But, it is slightly procyclical when using output as the cyclical indicator. This latter

finding motivates our alternative specification that replaces cyclical unemployment with the

17It is worth emphasizing, in contrast to the regime-switching model (as used in Kahn and Rich, 2007), which
allows for deterministic values of p-star, a random walk assumption for p-star (as in Edge et al., 2007) allows for
the possibility that p-star may be changing (slowly) in every period.

18As discussed in Kahn and Rich (2007), the focus outside of the farm sector is primarily on avoiding short-term
transitory volatility in the farm sector that is heavily driven by weather and other non-technological factors.

19Gali and van Rens (2020) using a structural macro model interpret the weakening procyclicality of labor
productivity in part to increased flexibility of the US labor market post-1984, which has enabled firms to make
adjustment at the extensive margin quickly and easily in response to shocks.
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output gap.

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + φpt (ogapt) + εpt , ε
p
t ∼ N(0, eh

p
t ) (4.17b)

Gali and van Rens (2020) find weakening in the correlation between labor productivity and

the cyclical indicator which motivates time-variation in the coefficients λp and φp.20

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2

λp) (4.18)

φpt = φpt−1 + εφpt , ε
φp
t ∼ N(0, σ2

φp) (4.18b)

The variance of the error term εpt is allowed to change over time.21 Allowing for the time-

variation in the cyclical relationship and the error term would better discriminate the cyclical

movements and idiosyncratic movements in productivity from those associated with shifts in

p-star.

The SV process is defined as a driftless random walk in the log-variance.

hpt = hpt−1 + εhpt , ε
hp
t ∼ N(0, σ2

hp) (4.19)

P-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant. By modeling p-star this way allows it to capture

both unobserved and observed factors that are thought to be persistent but hard to measure.

In particular, one factor is developments in fiscal policy; for example, high levels of government

debt in the longer-term tend to crowd out private investment, thereby reducing longer-term

productivity growth.

P ∗t = P ∗t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2

p∗) (4.20)

Economic theory posits that the long-run nominal wage inflation equals the sum of long-run

productivity growth and long-run price inflation. As discussed later in the wage inflation block,

this theoretical restriction defines the law of motion for w-star and constitutes an additional

channel influencing the dynamics of p-star.

4.2.6 Price inflation block

We use price inflation as measured by the Personal Consumption Expenditures (PCE) price

index, the inflation measure that the Federal Reserve targets. Our formulation for price inflation

block closely follows CKP and CCK, combining elements from both of these papers. Specifically,

20Fernald and Wang (2016) documents weakening in the cyclicality of productivity at the industry level,
suggesting that results of Gali and van Rens (2020) are not due to changes in the industry composition.

21Carriero, et al. (2019) and Tallman and Zaman (2020) document superior forecast accuracy of variables in-
cluding labor productivity from Bayesian VARs with SV compared to VARs without SV; suggesting the usefulness
of allowing for SV. We also find empirical support for the inclusion of SV.
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as in CKP, the stationary component, inflation gap (defined as the deviation of inflation from

pi-star),22 is modeled as a function of one-quarter lagged inflation gap, unemployment gap, and

an error term, whose variance is allowed to vary over time.

The coefficient, ρπ on the lagged inflation gap, which captures persistence in inflation dy-

namics (i.e., persistence in deviation of inflation from pi-star), is allowed to vary over time.23

The motivation for time-variation stems from evidence in Weise (2012), who documents that in

the period of Great Inflation, deviations of inflation from the desired target were very persistent

because the Fed at the time either was unable or unwilling to enact policy to reduce inflation

to its desired level. However, in the 1980s, the Fed was aggressive in returning inflation to the

desired target. Modeling time-variation in this parameter allows such contrasting behavior to

be captured.

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (4.21)

ρπt = ρπt−1 + ερπt , ε
ρπ
t ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ2

ρπ) (4.22)

The innovations to the AR(1) coefficient, ρπ are truncated so that 0 < ρπt < 1, ensuring

that the inflation gap (in equation 4.21) is stationary at each point in time t.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ2
λπ) (4.23)

λπ is the slope of price Phillips curve and is constrained in the interval (-1,0).

The parameter λ estimates the price Phillips curve relationship (i.e., the relationship between

the inflation gap and the unemployment gap at business cycle frequency). There is ample

empirical evidence in support of a time-varying price Phillips curve (e.g., Stella and Stock,

2015; CKP; Del Negro et al., 2020) hence our choice of allowing for time-variation in the

parameter λπ.24

hπt = hπt−1 + εhπt , εhπt ∼ N(0, σ2
hπ) (4.24)

The SV process is defined as a random walk in the log-variance.

Both the theoretical and empirical literature emphasizes the usefulness of the signal from

fluctuations in labor costs for inflation dynamics. Post-Keynesian theory posits that excess wage

inflation over labor productivity gains puts upward pressure on price inflation, i.e., causality runs

22Modeling inflation in gap form, where gap is defined as the difference between inflation and slowly-moving
trend, was popularized by Cogley, Primiceri and Sargent (2010), and since then has been a widely used approach
to modeling inflation in macroeconomic models for policy and forecasting (e.g., Faust and Wright, 2013).

23Chan et al. (2013), CKP, and CCK have found strong empirical support for the time-variation in the
coefficient of inflation gap. Our results reinforce the empirical importance of allowing for time-variation in this
coefficient.

24See Del Negro et al. (2020) for a comprehensive literature review of the instability of the Phillips curve in
the US data, and similarly Banbura and Bobeica (2020) for the euro area data.
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from labor costs to price inflation. In comparison, the Neo-Classical theory suggests causality

runs in the opposite direction, from price inflation to nominal wage inflation. The empirical

evidence in the US data is inconclusive in that there is no clear evidence in the direction of the

causality. If anything, the evidence suggests they co-move together (see Knotek and Zaman,

2014 and references therein).

Given the empirical evidence of co-movement, we explore an alternative specification in

which we allow for a connection between two cyclical inflation components, nominal wage in-

flation gap and price inflation gap, by adding the nominal wage inflation gap as an explanatory

variable in the equation describing price inflation gap. The parameter γπ captures the strength

of the relationship between the two cyclical inflation measures. The expression γπ

1−ρπ can be

interpreted as the passthrough from cyclical wage inflation to cyclical price inflation.25

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + γπ(Wt −W ∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (4.21b)

Similarly, as shown later, we add the price inflation gap to the equation describing the nom-

inal wage inflation gap.

Pi-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant (as in CKP). This latter assumption of homoscedastic

errors is in contrast to Stock and Watson (2007), Mertens (2016), and several others. Our choice

not to incorporate SV into shocks to pi-star is made to keep the estimation manageable and

maintain consistency with our modeling assumptions for the stars.26

π∗t = π∗t−1 + επ∗t , ε
π∗
t ∼ N(0, σ2

π∗) (4.25)

Following CCK (and others, such as Mertens and Nason, 2020) to improve pi-star’s econo-

metric estimation, we bring in information from the long-run survey expectations (of PCE

inflation). An important empirical finding of CCK is that long-run survey expectation of in-

flation is a biased measure of the underlying trend inflation, at least at some times. Hence,

simply equating pi-star with the long-run survey expectation or assuming survey expectation

as an unbiased measure of pi-star or calibrating econometric estimates of pi-star to surveys (as

is commonly done) may not be a reasonable strategy.

Accordingly, we add an equation linking long-run survey expectations of inflation to pi-star,

where the intercept, Cπt , is time-varying to capture possibly time-varying differential between

25We explored the possibility of allowing for time-variation in γπ but the estimation ran into difficulties hence
we resort to time-invariant γπ.

26Allowing SV in the inflation gap component and not in the trend component is not without precedent. Besides
CKP, Chan (2013) is a recent paper modeling SV only in the measurement equation (i.e., cyclical/transitory
component). Berger et al. (2016) find support for SV in the inflation gap component but weak evidence for SV
in the trend component. Our preliminary results indicate similar findings that adding SV to the pi-star equation
neither helps nor hurts the model fit.
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the two.27

Zπt = Cπt + βππ∗t + εzπt , ε
zπ
t ∼ N(0, σ2

zπ) (4.26)

Cπt = Cπt−1 + εcπt , ε
cπ
t ∼ N(0, σ2

cπ) (4.27)

Our model specification modifies and extends the baseline model of CCK in five important

ways. First, we allow a time-varying Phillips curve relationship by adding the cyclical unem-

ployment component (similar to CKP).28 Second, we explore a model specification that allows

for a link between the nominal-wage inflation gap and the price-inflation gap (capturing the

evolving passthrough from labor costs to price inflation). Third, we adopt a more simplistic

approach to modeling the link between survey expectations and pi-star. Fourth, the variance

of the shocks to the pi-star process does not entertain SV. Fifth, pi-star is restricted to satisfy

the long-run restriction informed by theory (see equation 4.28).

4.2.7 Wage inflation block

The long-run equilibrium level of nominal wage inflation (w-star) is the nominal wage growth

rate consistent with its fundamentals – p-star and pi-star. As noted earlier, in the long-run,

economic theory posits that the nominal wage inflation equals the sum of the long-run growth

rate of labor productivity and the long-run level of price inflation. In other words, in the

long-run, labor productivity growth is the only fundamental driver of real wages; therefore,

price inflation and nominal wage inflation have to adjust relative to each other to maintain the

fundamental relationship. In our setup, we impose this relationship to define w-star.

W ∗t = π∗t + P ∗t + εw∗t , εw∗t ∼ N(0, σ2
w∗) (4.28)

The above equation implies that W ∗ is approximately equal to sum of π∗t + P ∗t

In order to assess empirical support for the theoretical restriction defined by equation (4.28),

we explore an alternative specification that models W ∗ as a RW process,

W ∗t = W ∗t−1 + εw∗t , εw∗t ∼ N(0, σ2
w∗) (4.28b)

Equation (4.29) relates the nominal wage inflation gap, defined as the difference between the

nominal wage inflation and w-star, to its one-quarter lagged gap, the cyclical unemployment

27Our formulation is flexible but less so than the one adopted by CCK. In addition to time-variation in the
intercept, CCK add time-variation in the slope coefficient, and moving average (MA) in the error term. For PCE
inflation, CCK did not find the addition of the MA in the error term useful. We think our relatively simplistic
equation suffices in its aim of influencing econometric estimation of pi-star through the survey expectations.

28CCK explored an alternative specification in which they add cyclical unemployment but as an exogenous
variable (constructed using the CBO estimate of the natural rate). CCK found that adding the cyclical unem-
ployment slightly worsened the fit of their model.
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gap, and the price inflation gap.29 The variance of the error term, εwt , is allowed to vary over

time. The latter feature is motivated by findings in Tallman and Zaman (2020) and Peneva and

Rudd (2017), who document better fit of the VAR with SV to nominal wage data compared to

VAR without SV.

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + κwt (πt − π∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (4.29)

The SV process is defined as random walk in the log-variance.

hwt = hwt−1 + εhwt , εhwt ∼ N(0, σ2
hw) (4.30)

The findings in Knotek and Zaman (2014) motivate the inclusion of a one-quarter lagged

nominal wage inflation gap, with time-variation in the parameter ρw, the latter quantifies the

persistence in wage inflation dynamics.

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ2
ρw) (4.31)

The innovations to the AR(1) coefficient, ρw are truncated so that 0 < ρwt < 1, to ensure

that the wage gap (in equation 4.29) is stationary at each point in time t.

The parameter λw in equation (4.29) measures the strength of the cyclical relationship

between the nominal wage gap and labor market slack (aka the wage Phillips curve). Many

studies, both theoretical (e.g., Gali, 2011) and empirical (e.g., Knotek and Zaman, 2014; Peneva

and Rudd, 2017; Gali and Gambetti, 2019), have documented strong support for the existence

of a wage Phillips curve in the US data. These studies have also demonstrated the instability

of the wage Phillips curve, motivating the need for time-variation in the parameter λw.30

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ2
λw) (4.32)

where λw is the slope of wage Phillips curve and is constrained in the interval (-1,0).

As discussed earlier in the price inflation block, both theory and empirical evidence point to

the connection between price inflation and nominal wage inflation. The standard fully structural

models describing the New Keynesian Phillips curve posit a tight relationship between price and

29Following the literature on modeling price inflation in the gap, Knotek and Zaman (2014) apply a similar
transformation to modeling nominal wage inflation for the US. In particular, they construct the nominal wage
inflation gap as nominal wage inflation less pi-star, where pi-star is survey expectations. They note the com-
petitive forecasting properties of their model is due to modeling in gaps. Following Knotek and Zaman (2014),
Bobeica, Ciccarelli, and Vansteenkiste (2019) construct a nominal wage inflation gap for the euro area data and
find empirical support for the gap specification.

30Literature has posited various explanations for the instability of the wage Phillips curve, including downward
nominal wage rigidities, where the degree of rigidity varies with the phase of the business cycle (see Daly and
Hobijn, 2014).
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wage inflation via the channel of current and expected future marginal costs. In these models,

price inflation today is a function of expected price inflation and expected future marginal costs,

where marginal costs are generally linked to wages. Knotek and Zaman (2014) provide empirical

evidence of the connection between nominal wage and price inflation. In particular, they show

no clear evidence of one Granger-causing the other; instead, both wage and price inflation

generally tend to move together. This reasoning would suggest the importance of modeling the

direct relationship between wage inflation and price inflation. Hence, the inclusion of the price

inflation gap in the measurement equation (4.29).

Several studies document a significant weakening in the empirical link between price infla-

tion and nominal wage inflation since the 1980s (e.g., Peneva and Rudd, 2017; Knotek and

Zaman, 2014), motivating time-variation in the parameter κw.31 The expression
κwt

1−ρwt
could be

interpreted as an estimate of the passthrough from price inflation to wage inflation.

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2
κw) (4.33)

To assess empirical support for the inclusion of the price inflation gap in the equation

describing the nominal wage gap, we estimate an alternative model that replaces equation

(4.29) with the following,

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (4.29b)

4.2.8 Interest rate block

We close our model with the interest-rate block characterizing the interest rate dynamics and

the law of motion for r-star (the long-run equilibrium real short-term interest rate).

Our first equation of the block brings information from the nominal short-term interest rate

via a Taylor-type rule (TR) to aid in identifying r-star. Past research has shown the TR’s

usefulness in characterizing the monetary policy reaction function over the past four decades.

Specifically, this equation characterizes the dynamics of the short-term nominal interest rate

gap, where the gap is the difference between the nominal short-term interest rate i, and the

long-run level of the nominal neutral rate of interest, i-star. (i-star = pi-star + r-star). When

modeling the nominal short-term interest rate, especially in a framework like ours, one must

account for the effective lower bound (ELB) period.

Recent literature provides at least two options to handle the ELB. The first is to explicitly

but separately model the observed short-term nominal rate, which cannot go below zero, and

the “shadow interest rate,” which is a hypothetical unobserved and unbounded counterpart.

Wu and Xia (2016) popularized the concept of the shadow interest rate, and JM and Gonzalez-

Astudillo and Laforte (2020) are two recent approaches well suited for inclusion in UC models.

The second approach is to treat the estimate of the “shadow rate” obtained from Wu and Xia

31Bobeica et al (2019) find that in the euro area the link between labor compensation and price inflation
continues to remain strong post-1980.
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(2016) as the measure of the short-term nominal interest rate in measurement equations such

as the TR (e.g., Pescatori and Turunen, 2016).32

Given our model’s size and complexity, we adopt the latter approach, which is simpler

though not perfect. Using a direct measure of the nominal shadow rate allows us to capture

both conventional and unconventional monetary policy effects when the (observed) nominal

federal funds rate is constrained at the ELB.33

Equation (4.34) relates the nominal interest rate gap (based on the shadow federal funds

rate) to its one-period lag interest rate gap, current quarter inflation gap (i.e., deviation of

inflation from pi-star), and unemployment rate gap (i.e., deviation of unemployment rate from

u-star). This equation roughly characterizes the monetary policy reaction function as defined by

Taylor (1999).34 There is a broad consensus that policy adjustments outside of cyclical turning

points are made very gradually (e.g., Carlstrom and Zaman, 2014). Hence, the inclusion of the

lagged interest rate gap term.

Recent research documents strong empirical support for constant parameters in the Taylor

rule equation while allowing for stochastic volatility in the errors (see Chan and Eisenstat, 2018a;

2018b; and JM). Accordingly, we allow for SV in the interest-rate equation. JM, Gonzalez-

Astudillo and Laforte (2020), and Brand and Mazelius (2019) document the usefulness of adding

the TR equation to identify r-star. The latter two do not entertain SV, which JM has found

to be empirically important. As discussed later, we also found that adding the TR equation

improves the precision of the r-star estimates significantly, and data strongly favors allowing

for SV in the error process.

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗t ) + κi(πt − π∗t ) + εit, ε
i
t ∼ N(0, eh

i
t) (4.34)

where, ρi is truncated so that 0 < ρi < 1.

hit = hit−1 + εhit , ε
hi
t ∼ N(0, σ2

hi) (4.35)

The SV process is defined as random walk in the log-variance.

Our second equation motivated by LW heeds to the economic theory suggesting the role of

various real factors in influencing movements in r-star. These factors include long-run output

growth (and long-run productivity growth), trend labor force growth (reflecting shifts in demo-

graphics and net migration), taxation structure, government expenditure shifts, and shifts in

32The estimates from Wu and Xia (2016) are publicly available and regularly updated.Treating the shadow
rate as the measure of the short-term nominal rate in place of the federal funds rate is commonly done, and often
academic papers report results indicating robustness to the use of Wu and Xia (2016) shadow rate (e.g., Beyer
and Wieland, 2019; Lewis and Vazquez-Grande, 2019)

33The nominal shadow federal funds rate is identical to the nominal federal funds rate when effective lower
bound (ELB) is not binding.

34It is worth emphasizing that we denote this equation as a “Taylor-type rule” and not an exact Taylor-rule
because in our equation, pi-star refers to the estimate of trend inflation which may or may not equal to central
bank’s long-run inflation goal.
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liquidity preferences (e.g., Del Negro et al., 2017; Bullard, 2018). Accordingly, equation (4.36)

expresses r-star as a linear function of g-star and a “catch-all” component D. In our baseline

specification, both g-star and D follow random walk processes similar to LW (and many other

papers). The RW assumption for D is an appropriate one, given our focus is the long-run r-star

that should, in principle, be influenced over time by permanent shifts in aggregate supply and

demand (Laubach and Williams, 2016).35

r∗t = ζg∗t +Dt. (4.36)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2

d) (4.37)

In more recent literature on long-run r-star, modeling r-star as a random walk process has

performed better empirically than model specifications relying on the link between g-star and

r-star.36 Accordingly, we explore an additional specification that models r-star simply as the

RW process (similar to g-star, p-star, pi-star, u-star). The RW assumption for r-star implies

that we are agnostic about the underlying unobserved forces driving r-star but acknowledge

those forces reflect persistent structural shifts in aggregate demand and supply that ought to

have a bearing on r-star.

r∗t = r∗t−1 + εr∗t , ε
r∗
t ∼ N(0, σ2

r∗) (4.36b)

Lastly, the equations linking implied estimate of the long-run survey expectations of real

short-term interest rate to r∗ is defined as:37

Zrt = Crt + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2

zr) (4.38)

Crt = Crt−1 + εcrt , ε
cr
t ∼ N(0, σ2

cr) (4.39)

All in all, information from six sources and or elements inform the econometric identification

of r-star. These sources include: an IS equation (4.14), TR equation (4.34), which allows for

SV; an equation linking r-star to survey expectations; shadow rate; and an equation relating

r-star to g-star. As we show shortly, all these sources play a role in improving r-star’s precision.

35Researchers have also explored AR process for component D, which would be consistent if the interest is in
medium-term r-star (see Lewis and Vazquez-Grande, 2019), as this would allow r-star to be influenced by the
transitory shocks to aggregate demand (via the AR process) and permanent shocks to aggregate supply (via the
RW process for g-star). In studies focused on the long-run notion of r-star, such as LW, Laubach and Williams
(2016), Clark and Kozicki (2005), and Kiley (2020) specification based on RW assumption has shown empirically
to be favored by data compared to AR assumption.

36See Kiley (2020), Gonzalez-Astudillo and Laforte (2020), JM, Orphanides and Williams (2002)
37The r-star survey estimates are not direct estimates instead they are inferred from the Blue Chip survey

long-run estimates of GDP deflator and short-term interest rates using the long-run Fisher equation. The survey
expectations for r-star goes back to 1983.Q1. Please refer to the supplementary appendix C9 for details on the
procedure to back cast estimates all the way back to 1959
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To reiterate, in our framework, we utilize information from both short-term nominal interest

rates (via a TR equation) and long-term nominal interest rates (via an IS equation) to inform

the estimation of r-star.38

4.2.9 Base model and its variants

The equations (4.6), (4.7). . . (4.39) defines our baseline model formulation (denoted Base).

Figure 4.1 provides a visual representation of our Base model. And section C1.a. of the

supplementary appendix lists all the equations for the Base model for easy reference. To assess

the usefulness of survey information in the econometric estimation of our multivariate UC model,

we also estimate a variant of the baseline model that excludes the equations linking long-run

survey expectations to stars (i.e., excluding equations 4.9, 4.10, 4.15, 4.16, 4.26, 4.27, 4.38, and

4.39). We denote the latter specification as Base-NoSurv. The model specifications Base and

Base-NoSurv constitute our two main model specifications. To assess the empirical support for

numerous additional features (informed from theory and past empirical research) embedded in

our modeling framework, we formulate several additional model specifications, each of which is

a restricted variant of the Base. For instance, to assess the empirical support of the theoretical

restriction defined by equation 4.28 (which defines w-star as the sum of pi-star and p-star),

we estimate a variant of the baseline model that replaces equation 4.28 with a random walk

assumption for w-star as defined by the equation 4.28b. We denote this specification as Base-

W*RW.

Similarly, to assess the empirical support for the theoretical restriction defined by equation

4.36 (the link between gstar and rstar), we estimate a model specification that replaces equation

4.36 with a random walk assumption for r-star as defined by the equation 4.36b. Table 4.1

reports the description of model specifications that are formulated to assess various features

of importance. We ran few additional specifications to explore the role of priors in influencing

r-star, and for brevity purposes they are relegated to the appendix. To keep the length of

chapter manageable, we report selected results from the auxiliary model specifications in the

main part of the chapter with additional results included in the supplementary appendix.

4.3 Data and Bayesian Estimation

4.3.1 Data

We estimate the empirical model using the following quarterly data: (1) the unemployment

rate; (2) Real GDP growth; (3) Nonfarm labor productivity growth; (4) inflation rate in Per-

sonal Consumption Expenditures (PCE) price index; (5) Average Hourly Earnings (AHE) of

38Del Negro et al. (2017), JM, Bauer and Rudebusch (2020), Gonzalez-Astudillo and Laforte (2020) are recent
studies that have highlighted the usefulness of exploiting information from both short-term and long-term interest
rates in the identification of r-star.
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production and nonsupervisory workers (total private industries);39 (6) Federal funds rate; (7)

Nominal yield on 10-year Treasury Bond; (8) Shadow federal funds rate from Wu and Xia

(2016); (9) Blue Chip (real-time) long-run projections of 3-month Treasury Bill, real output

growth, the unemployment rate, and GDP deflator inflation; (10) Long-run inflation expecta-

tions of PCE inflation (PTR series). We also collect the real-time long-run CBO projections

of real output growth, level of real potential output, and the natural rate of unemployment.

For forecast evaluation exercises, the real-time data vintages of real GDP growth, PCE infla-

tion, the unemployment rate, AHE, and nonfarm labor productivity spanning 1998Q1 through

2019Q4 are downloaded from the ALFRED database maintained by the St. Louis Fed and the

real-time database maintained by the Federal Reserve Bank of Philadelphia. For the data series

labeled (1) through (7), which comprises our core dataset, we collect two vintages of revised

data: 2020Q2 and 2020Q4 vintages, respectively. We use data starting 1959Q4 through 2019Q4

from the 2020Q2 vintage (which includes the third estimate of 2019Q4) as a featured sample

for this chapter. To show the implications of the COVID-19 data on our model estimates, we

estimate our model(s) using the 2020Q4 vintage, which has data spanning from 1959Q4 through

2020Q3. The vintages corresponding to the revised data are downloaded from Haver Analytics.

4.3.2 Bayesian estimation

We use Bayesian estimation methods to fit our Base model and its variants. The use of inequality

restrictions on latent parameters in our model(s) setup leads to a non-linear state-space model,

which renders estimation using standard Kalman filter methods infeasible. Accordingly, we

implement our Markov chain Monte Carlo (MCMC) posterior sampler based on computational

methods developed in Chan, Koop, and Potter (2013) and CKP, which uses the band and sparse

matrix algorithms detailed in Chan and Jeliazkov (2009). Specifically, the MCMC posterior

sampler is a significantly scaled-up version of the sampler employed by CKP. The CKP posterior

sample developed for a relatively smaller-scale nonlinear state-space model is carefully extended

to accommodate the additional structure and numerous features of our model(s). Since the

computational methods used in this chapter are based on CKP, we relegate the specific details

of the sampler to the supplementary appendix C1.

In a methodological sense, this chapter’s novelty is in assembling the existing sampling

algorithms based on the fast band and sparse matrix routines to solve a large nonlinear and a

high-dimensional UC model. We found that the use of inequality restrictions such as bounds on

the u-star and other parameters is crucial to estimate the model, especially in the Base-NoSurv

model. Intuitively, features such as truncated distributions that we implement for some of the

time-varying parameters, e.g., the Phillips curve (price and wage), persistence, and bounds on

u-star facilitate estimation by guiding the estimation procedure to the credible regions of the

39Average Hourly Earnings (AHE) of production and nonsupervisory workers in total private industries goes
back to 1964Q1. From 1959Q4 through 1963Q4, we use the AHE of production and nonsupervisory workers in
goods producing industries. We splice them together.
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parameter space.

For each model, we simulate 1 million posterior draws from the MCMC posterior sampler.

We then discard the first 500,000 draws, and of the remaining, we keep every 100th draw.

Accordingly, all the reported results for the Base model and its variants are based on 5000

retained draws.

As emphasized by Chan (2017), the MCMC algorithm is considered efficient if the draws

it produces have low autocorrelation – they are autocorrelated by construction – and the time

it takes to sample a given number of posterior draws is reasonable. In the appendix (see

section C3), we report efficiency diagnostics of our MCMC algorithm. Those diagnostics, which

include inefficiency factors and convergence metrics, indicate good convergence properties (and

low autocorrelation) of our sampler for both Base and Base-NoSurv models.40

Bayesian model comparison is based on the marginal likelihood metric. In computing

marginal likelihood for various models, we use the approach proposed by CCK, which decom-

poses the marginal density of the data (e.g., inflation) into the product of predictive likelihoods;

see appendix C1.d for details.41 Our preference to use the CCK approach is because it allows

us to separately compute marginal data density for each variable of interest: inflation, nominal

wages, interest rate, real GDP, the unemployment rate, and labor productivity. The variable

specific marginal densities prove useful for us because it allows for deeper insights about the

source of the deficiencies, which helps differentiate models at a more granular level.

We note that our prior settings are similar to those used in CKP, CCK, Gonzalez-Astudillo

and Laforte (2020). As discussed in CCK, UC models with several unobserved variables, such

as the one developed in this chapter, require informative priors. That said, our priors settings

for most variables are only slightly informative. The use of inequality restrictions on some pa-

rameters such as the Phillips curve, persistence, bounds on u-star could be viewed as additional

sources of information that eliminates the need for tight priors, something also noted by CKP.

The parameters for which there is a strong agreement in the empirical literature on their val-

ues, such as the Taylor-rule equation parameters, we use relatively tight priors, such that prior

distributions are centered on prior means with small variance. In model comparison exercises,

the priors are kept the same for the common parameters across models. We also perform some

prior sensitivity analysis reported in the appendix C2.

40Regarding computational time, given the high-dimensionality of our model(s) and the number of posterior
simulations we require, the speed is quite fast (in our assessment). When applied to the Base model, the MCMC
algorithm, which is implemented in Matlab, takes about 350 seconds to generate 10,000 posterior draws using a
laptop computer with an Intel(R) Xeon(R) E-2176M CPU @ 2.70 GHz processor. To generate 1 million posterior
draws, it takes less than 10 hours.

41Alternatively, one could use the cross-entropy (Kullback-Leibler divergence) approach proposed by Chan and
Eisenstat (2018a,b). We leave this for future extension.
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4.4 Full Sample Estimation Results

This section sequentially discusses results for each of the six blocks, particularly the full-sample

estimates of stars. Here, we briefly highlight some of the noteworthy findings. Comparing esti-

mates of the stars between model specification Base and Base-NoSurv, a clear pattern emerges.

The precision of the estimates, as measured by the width of the 90% credible intervals, indi-

cates that the Base model, which explicitly accounts for the links between stars and survey data,

yields more precise estimates of the stars than Base-NoSurv. Although the broader contours

seen in the estimates of stars from our two main model specifications, Base and Base-NoSurv,

are comparable, at times, the differences can be notable, especially in the case of r-star. In

the case of g-star (and in-turn the output gap), our two model specifications yield very simi-

lar trajectories as implied by the posterior mean estimates. This result suggests that data is

very informative about g-star, and not so much in the case of r-star, confirming Kiley’s finding

(2020).

Furthermore, the Bayesian model comparison indicates marginally higher support in data for

Base over Base-NoSurv, as shown in table 4.3. The breakdown of the marginal data density by

variables suggests that the Base model’s improved fit over Base-NoSurv is due to its improved fit

to inflation and nominal interest rate data. But that improved fit is offset mainly by worsening

fit to the unemployment and wage data. The table also reports the marginal data density for

two additional Base model variants that the Bayesian model comparison indicates a comparable

fit to the data. Overall, we find that bringing additional information from surveys – by directly

modeling the connection to the stars – leads to more reasonable values, provides more precise

estimates, and marginally improves the model fit.

4.4.1 Estimation results for u-star

Figure 4.2 plots the evolution of u-star (and its uncertainty) covering the period 1960 through

2019. Panel (a) plots the posterior estimates from the Base model and panel (b) from the

Base-NoSurv model. Also plotted are the corresponding 90% credible intervals. Both models

imply smooth evolution of u-star. In the past six decades, the (posterior mean of) u-star has

fluctuated between 4.4% and 5.7%, peaking in the early-1980s and early-2010s; and troughs in

the late-1990s and at the end of our sample period. The contours of u-star from both models

are generally similar (as can also be seen conveniently in panel d); however, the level of u-star

can differ notably in some periods. From 1960 through the late-1970s, the u-star has gradually

increased (from 5.4% to 5.7% in Base and 5.0% to 5.6% in Base-NoSurv). But, since the mid-

1980s through the late-1990s, u-star has steadily drifted lower (to 4.5%). This downward trend

in the later period is also documented in the u-star literature based on job-flows data, which

attributes the decline in u-star to declining trends in job-separation and job-finding rates (e.g.,

Crump et al., 2019; Tasci, 2012).

From early-2000 through early 2010, the u-star has trended higher, with a sharp pickup
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during the Great Recession period. Since 2010, u-star has steadily drifted lower. By the end of

2019, Base has u-star at 4.4% (with a 90% interval covering 3.7% to 5.2%) and Base-NoSurv

at 4.5% (with a 90% interval covering 3.7% to 5.4%). As shown in figure 4.3, at the end of

2019, the unemployment gap implied by both models is negative, i.e., the unemployment rate

is below the estimated u-star.

The use of survey information in the Base model mainly contributes to the difference in the

levels of the u-star across the two models. To facilitate comparison, panel (a) also plots u-star

from the survey. As is evident from the plot, u-star from the survey displays more pronounced

shifts in u-star than the model-based estimates. However, due to a strong estimated relationship

between the survey u-star and Base u-star (i.e., posterior mean of βu = 0.988; see table 4.2),

the Base estimate of u-star reflects the contours in survey u-star. As can be seen in panel (e),

which plots the precision (measured as the width of the 90% intervals), taking onboard survey

information improves the precision of u-star notably (comparing Base and Base-NoSurv).

Surprisingly, based on the Bayesian model comparison, the Base model has an inferior fit to

the unemployment data compared to Base-NoSurv. As shown later, this result contrasts with

the results for pi-star, r-star, and g-star, for which survey information helps improve the model

fit or at least does not worsen the fit.42

Sensitivity of u-star to modeling assumptions including information set

Panel (c) plots additional estimates of u-star (posterior mean) from the variants of the

Base model to highlight the sensitivity of u-star to modeling assumptions and the informational

aspect of joint modeling. The plot denoted Base-NoBoundU* represents the Base model variant

that eliminates the bound on the random walk process describing the u-star. Doing so has a

trivial effect on the estimates of u-star, the precision of u-star, and model fit. Comparing

between panels (a) and (c), the posterior mean estimate of u-star is quite similar across Base

and Base-NoBoundU*. Similarly, there is little change in the u-star estimate’s precision across

the two models, with Base only marginally better in the latter part of the sample (as shown

in panel e). Not surprisingly, the Bayesian model comparison suggests equal support for both

Base and Base-NoBoundU*.

We highlight two noteworthy comments in regards to the implementation of bounds on u-

star. First, the trivial difference in the estimates between Base and Base-NoBoundU* is because

the bounds defined on u-star are wide. Put differently, the values of the bound we have set

are not binding on the Base model. Second, we find that using bounds on u-star is extremely

important in the Base-NoSurv, as it helps keep the estimation tractable. In other words, the

advantages of using bounds on the random walk processes stressed in CKP were in full display

in the estimation of Base-NoSurv. Hence, our preference to keep bounds on u-star in our main

models, including Base.

42Wright (2013) and Tallman and Zaman (2020) use long run survey information in an attempt to improve
VAR model forecasts. In both cases, survey information did not improve unemployment rate forecast accuracy,
although they found survey forecasts useful in improving accuracy for a range of other macroeconomic variables.
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When writing this chapter, we got hit with a COVID-19 shock, an extreme and an un-

precedented global health shock along various dimensions, leading several analysts to call it a

“once-in-a-lifetime upheaval.” As we will show in section 4.6, the implementation of bounds on

u-star is part of the story in preventing our models from blowing up in response to COVID-19

data.

The other model variants plotted in panel (c) are all nested specification of the Base model:

the Bivariate model of GDP and the unemployment rate (is a Base model that excludes sur-

vey information and everything else except the equations describing the dynamics of GDP and

unemployment rate); Bivariate+Surv, which is Bivariate but adds survey data for GDP and

unemployment; and CKP Adjusted, which is a bivariate model of inflation and the unemploy-

ment rate as in CKP but with no bounds on pi-star. For visual reasons (to limit the number

of plots), u-star from Base in panel (c) is not shown. However, for the sake of discussion, we

could treat the plot representing Base-NoBoundU* as the estimate for the Base model, since

they are identical to each other (as discussed in the preceding paragraph).

These plots show that different model specifications could provide very different signals

about the level of long-run unemployment, indicating the sensitivity of u-star to modeling

assumptions. As evident from the figure, the small-scale model specifications indicate u-star

range-bound between 5.3% and 6.5% over the sample. In contrast, the Base specification has

u-star fluctuating over a broader range. A model specification that infers the estimate of u-star

from inflation and unemployment data only, i.e., the price Phillips curve (CKP Adj. model),

has a higher trajectory of u-star compared to Base. The story is similar in the case of the

model specification that infers the estimate of u-star from GDP and the unemployment data

only, i.e., the Okun’s law relationship (Bivariate model), though the trajectory of u-star is lower

than implied by the CKP-Adj model. Once the Bivariate model is augmented with survey data

for GDP and unemployment, the trajectory is revised higher to resemble CKP-Adj, but with

contours similar to Base (because of the survey data).

Panel (d) compares the u-star estimates from our main model specifications with the CBO

estimate of the long-run unemployment rate. Interestingly, except for the 2000-2007 period, the

CBO u-star’s contour is similar to our model-based estimates, though the level of CBO u-star

estimate is significantly higher from 1960 through the early-2000s. From 2000 to 2007, both

Base and Base-NoSurv indicate a steadily rising u-star, whereas CBO has u-star trending lower.

At the onset of the Great Recession and through the early phase of the economic recovery, all

three have u-star continuing to move higher. Whereas Base and Base-NoSurv peak in late 2010

at 5.5% and 5.2%, respectively, CBO has u-star peaking in late 2011 at 5.8%. Since then, u-star

has steadily moved lower, with the pace of decline quite similar across CBO and Base. CBO

has u-star at the end of 2019 at 4.4%, identical to Base and just a tenth shy of Base-NoSurv.

Precision of u-star

The panel (e) plots the precision of u-star estimates for Base, Base-NoSurv, Base-NoBoundU*,
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and Bivariate+Surv. The plots indicate couple of observations. First, comparing between Base

and Bivariate+Surv, both these model specifications use information from the surveys and the

Okuns relationship. However, Base relies on greater information and additional structure (e.g.,

wage Phillips curve, price Phillips curve, cyclical productivity, monetary policy stance via the

Taylor-type policy rule) to infer the u-star compared to Bivariate+Surv, hence the more im-

proved precision of the resulting u-star. The latter reasoning contributed to the very different

estimate of u-star from the Base than Bivariate+Surv discussed earlier (and shown in panel

c). And the model comparison indicates a significantly higher fit of the Base model to the

unemployment data compared to the Bivariate+Surv.

Second, comparing with Base and Base-NoSurv, additional information from survey fore-

casts improve the precision of u-star, but this improved precision does not translate into the

improved model fit, which worsens somewhat (as shown in table 4.4).

Panel (f) shows the precision of u-star for Base-NoSurv, Bivariate (GDP and unemploy-

ment), and CKP-Adj (which is bivariate model of price inflation and unemployment rate). As

indicated earlier, the u-star from Base-NoSurv is inferred from a broader information set and

structure than the other two small-scale models. Accordingly, Base-NoSurv estimate of u-star

is, for the most part, more precise and the model comparison indicates a substantially higher

fit to the unemployment data than the other two. The plots also show that u-star inferred

from the Okun’s law relationship (i.e., Bivariate model) is less precise than inferred from the

price Phillips curve (i.e., CKP-Adj model). In contrast, the Bayesian model comparison lends

support to the Bivariate model over the CKP-Adj model.

The results also provide evidence that adding survey data to the Bivariate model (Bivari-

ate+Surv) improves further both the precision of the u-star (comparing Bivariate and Bivariate-

Surv in panels e and f) and the fit to the unemployment data (Bivariate: -56.5 vs. Bivari-

ate+Surv: -46.5, as shown in table 4.4). This latter finding of improved fit from adding survey

data is interesting because in the case of Base, adding survey data worsens the model fit (Base:

-24.6 vs. Base-NoSurv: -21.7). Importantly, it suggests that survey forecasts of u-star are likely

useful in the case of parsimonious models but of limited use for models that already are utilizing

various sources of information to infer u-star.

Cyclical unemployment

Figure 4.3 presents the posterior mean estimate of the unemployment gap (i.e., the cyclical

component of the unemployment rate) and the corresponding 90% credible intervals. The top

panel plots the estimates from the Base model, and the bottom panel from the Base-NoSurv

model. A visual inspection indicates that the movements in the cyclical unemployment corre-

spond quite well with the NBER’s business cycle dating. For instance, cyclical unemployment

falls in economic expansions and rises during recessions. Both models show a significant spike in

the cyclical unemployment rate in the 1982-83 and 2007-09 recessions. And a sharper recovery

following the 1982-83 recession but a more gradual recovery following the Great Recession. The
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figure also highlights that both models produce similar estimates of cyclical unemployment.

Comparing estimates of (smoothly evolving) u-star in the previous figure to estimates of the

cyclical unemployment rate indicates that fluctuations in the observed unemployment rate are

attributed mainly to cyclical unemployment.

4.4.2 Estimation results for g-star and the output gap

The panels (a) and (b) in figure 4.4 plot the g-star estimates from several sources, and panel

(c) plots the corresponding precision. As is evident, g-star estimates from all sources shown

indicate a steady decline throughout the sample, except a temporary rise in the late 1990s,

which literature has attributed to the technology boom. According to the posterior mean

estimates of g-star from our Base and Base-NoSurv models, the growth rate of potential output

has continuously drifted lower from an annualized rate of close to 4.5% in early 1960 to 1.4%

by the end of 2019. The estimate of g-star fell to 1.2% in 2012 and remained there through

2015 and then began very slowly to move up. The story is generally similar based on the

inference from simpler (nested) specifications of the Base model: (1) univariate model (which

is Chan and Grant 2017 model); (2) the bivariate model of real GDP and unemployment rate;

(3) and the bivariate model augmented to include survey data for g-star and u-star (denoted

Bivariate+Surv).

This continuous reduction in the growth rate of potential output has been extensively doc-

umented elsewhere (e.g., Berger et al., 2016; Chan and Grant, 2017; Coibion et al., 2018) and

in particular the decline since 2009 has been of great concern among the policymakers. Sev-

eral other researchers including, Summers (2014), Eggertson, Mehrotra, and Summers (2016),

Pescatori and Turunen (2016), LW (2016), Antolin-Diaz, Drechsel, and Petrella (2017) have

also documented the secular decline in g-star over the past two decades.

Not surprisingly, the precision of the g-star estimates (and of the output gap) display pat-

terns that align well with intuition. For instance, model specifications that incorporate survey

expectations (i.e., Base and Bivariate + Surv) yield more precise estimates than specifications

that ignore survey data. As discussed earlier, previous researchers have shown unemployment

data to be the most critical indicator for the estimation of g-star and the output gap, and the

plots provide evidence to that effect. For example, the model specification Bivariate, which

builds on the univariate GDP model by adding the unemployment rate, yields a substantial

improvement in the precision of the g-star estimate. Interestingly, the g-star estimate’s preci-

sion from Bivariate is about the same as the Base-NoSurv, suggesting that unemployment is

the most crucial variable influencing estimation of g-star. However, as we show shortly, model

comparison results indicate support for Base-NoSurv over Bivariate in the output gap case.

Output gap estimates

Next, we examine the estimates of the output gap. In figure 4.4, panels (d) and (e) plot

the output gap estimates from the same sources as in the case of g-star, and panel (f) plots the
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corresponding precision. Overall, the estimates of the output gap from Base and Base-NoSurv

are quite similar. They accord well with the NBER recession dates. Furthermore, as noted by

Morley and Piger (2012) and Johannsen and Mertens (2015), our model-based estimates provide

evidence of asymmetry in that recessions are shorter in duration but deeper than expansions

in the US. It is instructive to highlight that estimates imply a more negative output gap (of

−10.5%; posterior mean) during the 1981-82 recession compared to the Great Recession period

(−7%) when output fell more dramatically. At a first pass, this may seem odd. But a closer

inspection reveals that in comparison to the 1981-82 recession during the Great Recession, g-

star fell significantly (as can be seen in panel a), resulting in a smaller negative output gap; in

contrast, during the 1981-82 recession, g-star is estimated to have remained stable.

Bivariate models are consistent with a similar story, but there are notable differences in

the estimates implied from a univariate model. For instance, the latter model suggests a less

dramatic fall in the output gap in 1973-74, 1981-82, and 2007-09 recessions. In the mild 2001

recession, the univariate model estimates a positive output gap, although less positive than

before the recession. Also, as of 2019, according to this model, the output gap remains negative,

which is in sharp contrast to other models and the consensus view (e.g., CBO output gap).

The precision estimates and the Bayesian model comparison indicate the inferior quality of

the univariate model’s output gap estimate. Table 4.5 reports the assessment of model fit to the

GDP data for the various model specifications discussed in this section. As in the case of g-star,

the output gap estimate from the univariate model is subject to a great deal of uncertainty. The

bivariate model, that brings additional information from the unemployment rate helps improve

the precision significantly. This improved precision is also reflected in the bivariate model’s

substantially improved fit to GDP data compared to the univariate model (Bivariate: -280.4 vs.

Univariate: -296.5). In our subjective assessment, the estimate of the bivariate model’s output

gap is more reasonable because its trajectory aligns well with Base and Base-NoSurv, and as

shown shortly, with the consensus view.

Further improvements in precision are realized by bringing in additional information from

the surveys (comparing Bivariate vs. Bivariate+Surv); however, the model fit, which reflects

uncertainty about other model parameters in addition to g-star and the output gap, is little

changed – slightly deteriorates. The usefulness of survey data in improving the quality of the

g-star and output gap estimates is also apparent comparing precision between Base and Base-

NoSurv; however, model fit is nearly similar. Contributing to comparable model-fit between the

two models is that beginning 1990 onwards, the precision of output gap across the two models

is identical. Unlike, in the case of g-star, the Base-NoSurv yields significantly more precise

estimates of output gap than Bivariate, suggesting the usefulness of additional information and

structure embedded in Base-NoSurv; hence, on-net the slightly better fit of the Base-NoSurv

model to GDP data compared to Bivariate (Base-NoSurv: -279.1 vs. Bivariate: -280.4)

Posterior parameter estimates output block
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Next, we discuss the Base model’s parameter estimates of the output block that drive the

dynamics of g-star and the output gap. The posterior mean estimates of parameters ρg1 and ρg2
indicate a high degree of persistence (ρg1 + ρg2 = 0.74) and suggest a hump-shaped response of

output gap to shocks (as ρg1 > 1). These parameters are precisely estimated as evidenced by

tight posterior credible intervals. The posterior estimate of parameter λg (the coefficient on the

unemployment gap in the output gap equation) is negative and highly significant statistically.

The estimated posterior mean of λg is −0.46 (with 90% interval −0.58 to −0.34). Similarly,

the parameter φu (the coefficient on output gap in the unemployment equation), discussed

earlier, is also negative and highly significant statistically. Together, these estimates indicate

a strong Okun’s law relationship in the data. The implied posterior mean estimate of the

Okun’s law coefficient,
(1−ρu1−ρu2 )

φu
is −2.1, with 90% credible intervals spanning −2.3 to −1.8.

This estimated coefficient is strikingly identical to the conventional estimate often discussed

in macroeconomic textbooks. Therefore, not surprisingly, both the estimated output gap and

unemployment gap (shown earlier) reveal similar cyclical dynamics. For instance, according to

both cyclical measures, the 1981-82 recession is estimated to have been deeper than the Great

Recession.

The parameter ar, which relates the output gap to the real rate gap (characterizing the IS

relation), is negative and much smaller than the prior mean. The estimated posterior mean of

ar is −0.07 (with 90% interval −0.14 to −0.00).

The posterior mean estimate of E(σ2
gdp∗), the variance parameter of the innovations to the

process governing the evolution of the g-star (and gdp-star), is nearly identical across the Base

and Base-NoSurv models: 0.022. For comparison, the prior mean E(σ2
gdp∗) is 0.012. Similarly,

for the output gap, the posterior mean estimate of E(σ2
ogap), the variance parameter of the

innovations to the IS equation, is also identical across the two models: 0.722 (compared with a

prior of 12).43 The estimation results suggest that data is quite informative in influencing the

dynamics of both output gap and g-star, confirming Kiley (2020).

Model-based estimates of output gap vs. CBO and others

Figure 4.5 presents estimates from outside sources, CBO, and LW model to gauge how our

model-based output gap estimates compare to measures from other sources. Also plotted are

estimates from Base and Base-NoSurv in panel (a) and from the Bivariate and Bivariate+Surv

models in panel (b) to facilitate comparison with the outside estimates. A few observations

immediately stand out. First, the output gap estimate implied from the LW model is notably

different over most of the sample period. In particular, during the Great Recession period,

the output gap from LW turned slightly negative, while other estimates implied larger negative

gaps. The slight negative gap in the LW model is the result of the LW model estimating a

43Note, our prior setting implying a high ratio of
σ2
ogap

σ2
gdp∗

is consistent with the high noise to signal ratio suggested

in Kamber et al. (2016). Specifically, they recommend fixing the noise-to-signal ratio to a high value to obtain
large and more persistent cycles when estimating output using Morley et al. (2003) UC model with maximum
likelihood estimation.
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dramatic fall in potential output, in line with the collapse in the actual output.

Second, both Base and Base-NoSurv models produce estimates of the output gap generally

similar to the CBO estimate. This close similarity is notable because the CBO approach,

which uses a production function approach (see Shackleton, 2018), differs from our multivariate

modeling approach.44 Note that the Bivariate models of real GDP and the unemployment rate

(with and without survey), which are nested specifications of our bigger Base model, produce

estimates of the output gap broadly similar, though not identical, to our two main model

specifications. Interestingly, in periods when the output gap estimates from our Base (and

Base-NoSurv) differ from the CBO estimates, the Bivariate models’ estimates are identical to

the CBO’s. And in periods when Bivariate models differ from CBO, the Base (and Base-NoSurv)

estimates are identical to CBO’s.

The estimation results suggest an important takeaway: that joint modeling of real GDP and

the unemployment rate is the key to obtaining credible output gap estimates. Morley and Wong

(2020), who estimate the output gap using a large BVAR, also found that the unemployment

rate is the most crucial indicator for the output gap. (In section 4.6, we compare our model

estimates with additional estimates, including Morley and Wong’s). Recently, Barbarino et al.

(2020) use a range of small-scale UC models to estimate the output gap and similarly find that

the unemployment rate is the most valuable indicator.

Our chapter’s result indicating a close resemblance of our models’ output gap estimates to

the CBO’s output gap provides evidence supporting the common practice of using output gap

estimates from the CBO as an exogenous variable in empirical macroeconomic models (e.g.,

JM; Stock and Watson, 2020). We view this result as a useful contribution to the applied

macroeconomics literature.

On the one hand, the fact that model-based estimates of the output gap bear a strong

resemblance to institutional forecasts, i.e., CBO, are encouraging and lends credibility to our

model(s). However, on the other hand, in light of the evidence reported in Coibion et al. (2018),

the strong resemblance to outside estimates is an unfortunate outcome. We say this for the

following reason. Coibion et al. (2018) examine estimates of potential output taken from a

variety of model-based and external sources, including CBO and survey forecasts, and based on

a range of shock measures, find that (in real-time) the estimates of potential output are unable

to distinguish between transitory and permanent shocks effectively. Put differently, they find

that their estimates of potential output respond “gradually and similarly” to both supply shocks

and demand shocks that drive cyclical fluctuations in real GDP. This is unfortunate, since, by

definition, potential output (and g-star) should only adjust in response to permanent shocks.

Coibion et al. (2018) in their conclusion postulate whether a framework that jointly esti-

mates the dynamics of potential output with other relevant stars (as theory would imply) better

distinguish between permanent and transitory components and hence lead to more credible es-

44We note that in recent years, more and more papers using UC models, which jointly models real GDP growth
and unemployment rate, yield estimates of output gap similar to CBO output gap (e.g., Johannsen and Mertens,
2015; Berger et al., 2016; Kiley, 2020; Gonzalez-Astudillo and Laforte, 2020).
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timates of potential output. Unfortunately, our model estimates suggest otherwise.

4.4.3 Estimation results for p-star

Figure 4.6 presents posterior estimates of p-star and other parameters of the productivity block.

The panels (a), (b), and (c) present p-star estimates from the Base, Base-NoSurv, and Base-

W*RW models, respectively. Both the posterior mean and the 90% credible intervals are shown.

Also plotted is the actual labor productivity series. A visual inspection of the actual series in-

dicates the unusually high volatility of the quarterly productivity data. In addition, this series

is subject to a high-degree of revisions in subsequent data vintages, suggesting the extreme dif-

ficulties of its measurement in real-time (see Jacobs and van Norden, 2016). Perhaps, a quote

from the former Chair of the Federal Reserve, Alan Greenspan (courtesy of Jacobs and van

Norden, 2016), would be instructive to reflect a general sentiment about the productivity data,

“The productivity numbers are very rough estimates because we are measuring a whole set of

production outputs from one set of data and a whole set of labor inputs from a different set.

That they come out even remotely measuring actual labor productivity is open to question. . . ”

(Transcript: Meeting of the Federal Open Market Committee, March 25, 1998, p. 96)

Not surprisingly, researchers have emphasized that these difficulties of extreme volatility,

extensive revisions, and real-time measurement issues with productivity data complicate its

trend-cycle decomposition (e.g., Edge, Laubach and Williams, 2007; Kahn and Rich, 2007).

Our model-based estimates reflect these challenges. For instance, the estimate of the parameter

ρp, reported in table 4.2, indicates close to zero persistence in the labor productivity data,

defined as the difference between the growth rate in labor productivity and p-star. Similarly,

our estimation indicates that labor productivity data has very little influence on the estimate

of p-star. Put differently, the data is so volatile to allow for a meaningful identification of trend

in the productivity data. The posterior mean of E(σ2
p∗), the variance of the shock process for

p-star, is essentially the same as the prior mean.45 As a result, the degree of time-variation

in p-star is primarily influenced by the prior setting. So conditional on our prior belief, which

allows p-star to evolve slowly from one quarter to the next, we find considerable evidence of

gradual time-variation in p-star over the post-war sample. The evidence of time-variation is

economically significant and is consistent with the findings of Roberts (2001), Benati (2007),

Edge, Laubach and Williams (2007), and Fernald (2007).

Comparing across the three top panels in the figure, the paths of p-star (posterior mean

estimates) from Base and Base-NoSur are lower than Base-W*RW. The latter model removes

the restriction that the long-run w-star grows at a rate equal to the sum of pi-star and p-star.

So removing this restriction eliminates the direct influence on p-star from wages and prices and

helps raise the level of p-star. As evident from the Bayesian model comparison reported in table

45We tried different values for the prior mean on this parameter, and found that posterior moves with the
prior.
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4.6, the elimination of this restriction improves the fit of the model to the productivity data

but reduces the overall model fit to other data, particularly interest rates – via the changes

in pi-star and u-star in the Taylor-type rule equation. That said, all three models generally

indicate similar broad patterns in p-star.

After averaging between 2% and 3% in the 1960s, the models indicate that p-star experienced

a sharp deceleration in the 1970s through mid-1980s, mirroring the dramatic fall in productivity

growth. Both Base and Base-NoSurv estimates show p-star trending lower from 2.4% (2.3%)

in early 1970 to 0.5% by mid-1980, whereas Base-W*RW has it falling close to 1.5%, with wide

90% credible intervals that range from 0.4% to 2.3%. From there on through to the late 1990s,

p-star increased sharply, at a pace roughly equivalent to its deceleration in prior periods, to

reach a level of 2.0 to 2.4% by 1999. The literature attributes part of this acceleration in the

latter half of the 1990s to the information technology boom. Roberts (2001), Edge, Laubach,

and Williams (2007), and Benati (2007) document estimates of trend productivity generally

similar to the p-star implied from the Base-W*RW model.46

In the 2000s, the models have p-star gradually declining to a level close to 1.0%-1.2% by

2010. It remained close to that level through most of the past decade, but since 2018, it has

steadily increased. At the end of our sample, all three models estimate the posterior mean

of p-star at, or close to, 1.5%. As we show in appendix C12, these estimates of p-star are

consistent with the narrative implied by the two-regime Markov-switching model of Kahn and

Rich (2007), an influential contribution in the trend productivity literature.

The uncertainty around the posterior mean estimates of p-star is large. Panel (d) quan-

tifies this uncertainty by reporting the width of the 90% credible intervals corresponding to

all three models. The plots provide evidence that the theoretical restriction (defined by eq.

4.28) contributes to a substantially improved precision of p-star (just like it does for pi-star and

w-star), as evident by Base and Base-NoSurv plots lying below the Base-W*RW. Interestingly,

the estimate of p-star from the Base is more precise than Base-NoSurv in 1960 through the

mid-1980s, even though we do not utilize survey based long-run expectations of productivity in

the estimation. Based on the Bayesian model comparison, the Base model’s fit to productivity

data is marginally better than Base-NoSurv. The improved precision and better fit of the Base

model to productivity data suggest there are important spillover effects in the estimation from

survey forecasts of other stars.

Cyclical dynamics of labor productivity

Panel (e) plots the estimate of the parameter λp, which relates cyclical unemployment to

the productivity gap, from all three models. The plots indicate a high level of uncertainty

around the estimates of λp. The 90% credible intervals are wide, such that they include both

positive and negative values complicating reliable inference. Going just by the posterior mean

46Edge et al. (2007), who collect real-time estimates of long-run productivity from various sources, including
historical Economic Reports of the President, document a similar pattern in the trend productivity estimates.
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estimate, the evidence suggests a counter-cyclical behavior of labor productivity, which weakens

over time.

The model specification Base-P*CycOutputgap, which relates productivity to output gap in-

stead of unemployment gap (through parameter φp), provides generally similar inference about

the cyclical nature of labor productivity. The plot for the time-varying parameter φp is rel-

egated to appendix C13 to conserve space. The credible intervals are wide and include both

positive and negative values. Based on the posterior estimate of parameter φp, productivity

is procyclical in the 1960s and post-2010, but it is either acyclical or countercyclical in other

periods. Overall, the empirical evidence generally corroborates the evidence presented in Gali

and van Rens (2020). The model comparison results indicate a slightly inferior fit of the Base-

P*CycOutputgap model compared to Base (-608.1 vs. -606.9 in the case of productivity data

and -1773.8 vs. -1771.7 for the overall fit).

The importance of SV in productivity equation

An essential element of our decomposition of labor productivity into the trend, cyclical, and

idiosyncratic components, which others have abstracted from, is that we permit a time-varying

variance of the idiosyncratic component. Empirically, our results show this to be an important

extension, as shown in the SV plots included in panel (f) and the model comparison results

reported in table 4.6. The plots indicate statistically significant evidence of time-variation in

the volatility of the idiosyncratic component. The model comparison further provides evidence

supporting SV inclusion, as the Base-NoSV is the worst performing and has a significantly worse

fit to productivity data compared to Base.

We also explored the possibility that the SV may be soaking up the variation in produc-

tivity, which otherwise would have been attributed to the cyclical component of productivity.

The model specification Base-NoSV, which shuts down SV in the idiosyncratic component of

productivity (and other model equations), yields estimates of λp similar to Base, suggesting

that SV is not contributing to the ambiguous result on the cyclicality of labor productivity.

4.4.4 Estimation results for π-star

Figure 4.7, panels (a) and (b) plot the posterior mean estimates of pi-star along with the 90%

credible intervals from the Base and Base-NoSurv model specifications, respectively. Panel (c)

plots the corresponding precision estimates, defined as the width of the 90% intervals. A quick

visual inspection shows that the pi-star from the Base specification is significantly more precise

than Base-NoSurv, as evidenced by narrower credible bands and the precision plot corresponding

to Base lying below the Base-NoSurv plot. Based on the marginal likelihood criteria, the fit of

the inflation equation to the data in the case of Base is greater than Base-NoSurv (as reported

in Table 4.8). The fit of the overall Base model to the data is also higher than Base-NoSurv.

Our finding that adding survey expectations improves both the model fit and the precision of

pi-star is consistent with CCK.
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The broad contours reflected in the posterior mean pi-star from the two models are similar

to those documented elsewhere in the literature (e.g., CCK). For instance, pi-star was low in the

1960s, high in the 1970s, fell sharply in the 1980s, continued a steady deceleration in the 1990s,

fluctuated in a narrow range between 2.0% and 2.5% in the 2000s, and has been below 2% since

2012. This general pattern is consistent with the widely held view. Focusing on the specifics,

unlike some papers (e.g., Stock and Watson, 2007; Mertens, 2016), which show two peaks in

pi-star, one in the mid-1970s and another in the early 1980s, our model-based estimates (both

with and without survey data) do not show the earlier peak (similar to CCK). Relatedly, in

those same papers, the pi-star is estimated to peak at a level of 10% or higher; in contrast, the

mean estimate of pi-star in our model specifications peak at a lower level (similar to CCK and

Mertens, 2016 – in his model spec that augments survey data).47

Comparing estimates from Base and Base-NoSurv specifications, the level of pi-star is simi-

lar in the 1960s but starting in early 1970, pi-star from the Base specification sharply accelerates

to peak at 6% in early 1980, whereas, while the estimates of pi-star from Base-NoSurv specifi-

cation also accelerate but peaks at a lower level of 4.5%. As shown, uncertainty about pi-star

increases sharply in early 1980, with the Base-NoSurv estimates experiencing a much more

dramatic rise. It is the case that uncertainty around pi-star (as measured by the width of 90%

credible intervals) inferred from the Base-NoSurv is higher compared to the Base throughout

the estimation sample. But in early 1980, the differential in uncertainty is twice as large, as

can be seen comparing dotted and solid plots in panel (c).

A similar rise in model-based estimates of pi-star uncertainty in the late 1970s through early

1980 (known as the Great Inflation period) has been noted elsewhere (e.g., Mertens, 2016). A

subset of literature attributes the rise in pi-star uncertainty to un-anchoring of inflation ex-

pectations during the Great Inflation period. Beginning early 1980 through early 2000, both

models have (posterior mean of) pi-star steadily declining to 2%. Between 2000 and 2012,

whereas in the case of Base, pi-star is flat at 2%, in Base-NoSurv, it is stable at a slightly higher

level of 2.3%. Since 2012, pi-star has slowly moved down to reach 1.5% (in Base) and 1.4% (in

Base-NoSurv).

Inflation gap persistence

Panel (d) shows the posterior mean estimates of parameter ρπ for Base (solid line) and Base-

NoSurv (dotted line). Also plotted are the 90% credible intervals from the Base model. As is

evident, the uncertainty around the posterior mean is high. That said, both models indicate

quite similar estimates of persistence in the deviations of inflation from pi-star. There is also

strong evidence of time-variation in inflation gap persistence. For example, gap persistence was

low (0.25 to 0.35) in early 1960, but from thereon began to increase steadily, reaching close

47Since both Stock and Watson (2007) and Mertens (2016) endow SV to the RW process governing the pi-star
whereas we do not, this difference in the modeling assumption may explain why the difference in the pi-star
estimates around the Great Inflation period. However, CCK, who also allows SV in the pi-star process, yields
pi-star generally similar to our pi-star estimates suggest that the SV assumption is likely not the answer.
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to 0.85 by early 1970, and remained at that level through the early 1980s. Subsequently, the

persistence declined steadily to 0.4 by the early 1990s. From the late 1990s to the early 2000s,

persistence fell further to 0.3, and it remains at that level.

Price Phillips curve

Panel (e) plots the posterior mean estimate of parameter λπ, which is the slope of the price

Phillips curve. As before, the plots from the main model specifications are shown. (The 90%

credible intervals are from the Base model). The plots indicate both model specifications yield

very similar estimates of the parameter linking the inflation gap to the unemployment gap. The

estimates also indicate strong evidence of time-variation in the slope of the Phillips curve. For

example, both models estimate a steeper Phillips curve in the 1960s that subsequently weakens

(becomes less negative) over time through 2010. From thereon, it slowly begins to become

steeper (more negative), ending 2019 at -0.23, which is still weak historically speaking and is

surrounded by wide intervals spanning -0.05 to -0.52. This pattern is consistent with the famil-

iar narrative (also documented in several other papers) that the “Phillips curve has weakened

over time.”

SV in price inflation equation

Panel (f) plots the volatility estimates (i.e., the standard deviation of the shocks to the

inflation gap, eh
π
t ) corresponding to the two model specifications. The figure shows that the

posterior mean estimates are quite similar. The estimates imply high volatility during the pe-

riod of Great Inflation that fell subsequently. Inflation volatility increased sharply again during

the Great Recession but has trended lower since then. By 2019, inflation volatility had re-

turned to the low levels of the early 2000s but remains shy of historic lows of the mid-1960s

and mid-1990s. The contours of the volatility in the inflation gap are generally similar to those

reported in CCK and Chan, Koop and Potter (2013). Bayesian model comparison indicates

strong evidence supporting the inclusion of SV in the price inflation equation.

Link between survey and pi-star

In figure C6 (appendix), panels (a) and (b) plot the posterior estimates of the coefficients Cπ

and βπ that provide a sense of the estimated relationship between survey forecast and pi-star.

The prior assumes an unbiased relationship between survey forecasts and pi-star (i.e., prior

mean βπ = 1 and at all periods Cπt = 0). The model estimation yields posterior mean estimate

of 0.99 for βπ, with 90% credible interval spanning 0.91 to 1.07 (also reported in table 4.2). The

posterior mean of Cπt displays considerable time-variation; however, the 90% credible intervals,

for the most part, include zero. Taken together, the posterior estimates of βπ and Cπt imply

that the survey forecast, on average, is somewhat a biased measure of pi-star. This latter result

confirms the findings of CCK.
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In the supplementary appendix C11.a, we include the results and discussion comparing pi-

star estimates from the Base model to external models: CCK, CKP, and UCSV. The estimates

indicate that the CCK model generates the most precise pi-star, followed by the Base model,

CKP, and UCSV. The latter model yields volatile and erratic estimates of pi-star (and precision).

Summary: pi-star

All told, we summarize the analysis of the inflation block as follows. First, the Base model

and its variants indicate contours of pi-star that corroborate the narrative documented elsewhere

in the literature. However, in some periods, pi-star estimates can differ notably across models,

and as emphasized in CCK, these differences can have important implications for monetary

policy. Second, comparing across Base and Base-NoSurv specifications, and comparing the

Base specification with outside models, strongly suggests the usefulness of survey forecasts in

improving the econometric estimation of pi-star (i.e., survey forecast information yields sensible

estimates of pi-star and improved precision); hence, corroborating evidence in CCK, Mertens

(2016), and Nason and Smith (2020). Third, we find evidence in support of incorporating

time-variation in the price Phillips curve. Specifically, suggesting, in a broad sense, weakening

of the relationship between inflation and labor market slack since the 1960s, something also

documented by several others (e.g., CKP; Stella and Stock, 2015; Del Negro et al., 2020).

Fourth, as found by CKP, CCK, Mertens and Nason (2020), among others, we find evidence

supporting time-variation in the persistence of the inflation gap. Fifth, as noted by many,

including Stock and Watson (2007) and Clark and Doh (2014), we find strong evidence of SV

in the innovations of the inflation equation. Sixth, as in CCK, we find evidence that the survey

forecast of PCE inflation is a biased measure of pi-star. Lastly, the Base model’s improved fit

to inflation data compared to some of its variants provides evidence supporting the long-run

theoretical restriction defined by equation (4.28), which imposes w-star = pi-star + p-star.

4.4.5 Estimation results for W-star

In modeling w-star, a novel feature of our framework is the decomposition of w-star into its

fundamental components, pi-star and p-star. Figure 4.8 presents posterior estimates of w-star

along with the decomposition. The first row in the figure plots estimates from the Base model,

and the second-row plots estimates from the Base-NoSurv. Third-row plots p-star estimates

from other model variants alongside Base and Base-NoSurv models, and also presents precision

estimates of the w-star.

The estimates imply w-star increased steadily in the 1970s and peaked in the early 1980s.

This increasing w-star reflected upward drift in pi-star that more than offset the downward

drift in p-star, as evidenced by the widening in the shaded area representing pi-star and slight

narrowing of the shaded area representing p-star. Base model implies w-star peaked at 7.3% in

the early 1980s, while Base-NoSurv has w-star peaking at 6%. Both models have w-star sharply

drifting lower through much of the 1980s to reach near 4% by early 1990. From thereon, the
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path of w-star across the two models is very similar and indicates a gradual slowing to 2.5%

by the end of 2017. W-star moved up to 3.0% by the end of 2018, only to fall back to 2.8% in

2019.

Not surprisingly, w-star is more precisely estimated in the Base model than in the Base-

NoSurv model, as shown in panel (f). The considerable uncertainty around w-star, implied by

the Base-NoSurv model during the 1970s, is mostly driven by pi-star. As noted earlier, the

pi-star estimate from the Base-NoSurv was highly imprecise during the 1970s. Interestingly,

despite the inferior precision of the Base-NoSurv compared to Base, the Bayesian model com-

parison suggests a better fit of the Base-NoSurv model to the nominal wage data than Base (see

Table 4.7). However, the overall fit of the Base-NoSurv to data (which includes data beyond

nominal wage) is slightly worse than Base.

Sensitivity of w-star to modeling assumptions

Panel (e) plots estimates of w-star from two additional Base model variants, Base-W*RW

and Base-NoPT. The Base-W*RW model eliminates the long-run restriction that w-star is the

sum of p-star and pi-star (on average) and instead models w-star as a RW process. Interestingly,

the path of w-star implied by Base-W*RW is similar to Base-NoSurv through the mid-1980s.

From thereon, w-star from Base-W*RW is below the Base-NoSurv through early 2010. Since

then, it is identical to Base and Base-NoSurv. Although in the first half of the estimation

sample, the w-star from Base-W*RW is less precisely estimated than Base, in the second half

of the sample, it is more precise. According to the Bayesian model comparison, the fit of the

Base-W*RW to the nominal wage data is inferior to both Base-NoSurv and Base. However,

compared to Base, the degree of inferiority is only slight. The overall fit of the Base-W*RW

model to the data is substantially worse than achieved by either the Base and Base-NoSurv

model.

The Base-NoPT model eliminates the passthrough from prices, i.e., it removes the price

inflation gap from the equation describing the wage inflation gap. In other words, the direct

link between the cyclical components of prices and nominal wages is eliminated, but the con-

nection between the permanent components pi-star and w-star remains. Doing so has notable

implications for the estimate of w-star and the model’s fit. As shown in panel (e), the w-star

implied from Base-NoPT is higher than that implied by the other models through the first half

of the sample. While the Base model has w-star peaking at a little above 7% in the early 1980s,

the Base-NoPT model implies a higher peak of 8.2%. The acceleration in w-star implied by the

Base-NoPT model during the 1970s is much stronger than that implied by the Base model es-

timates. This stronger path of w-star is associated with more precise estimates of w-star in the

1970s compared to the Base and other models, as can be seen in panel (f). However, according

to the Bayesian model comparison reported in table 4.7, removing the connection between the

cyclical components negatively impacts the model fit, as evidenced by the substantially inferior

fit of the Base-NoPT model to data compared to the Base model.
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Wage persistence, Wage Phillips curve, Passthrough from prices, and SV in wage equation

Figure 4.9 presents the time-varying posterior estimates of the parameters describing the

persistence in the nominal wage gap, the wage Phillips curve, the short-run passthrough from

prices to wages, and stochastic volatility of the shocks to the nominal wage equation. Estimates

from three models, Base, Base-NoSurv, and Base-W*RW are presented. A quick visual inspec-

tion indicates both statistically and economically significant evidence of time-variation in these

parameters that capture important empirical relationships.

Wage gap persistence

Panel (a) plots the posterior estimates of the parameter ρw, capturing the persistence in the

nominal wage inflation gap. Also included are the 90% credible intervals from the Base model.

The posterior mean estimates for the three models indicate increasing persistence in the wage

inflation gap beginning in early 1960 and peaking in mid-1980. The Base model shows a notably

higher peak at 0.45 compared to 0.39 and 0.33 for Base-NoSurv and Base-W*RW, respectively.

The higher peak suggests that the Base model attributes a higher share of fluctuations in the

cyclical nominal wages to the persistence component than that implied by the other two models.

From the mid-1980 to the early 1990s, the persistence steadily declines but after that increases

through the mid-2000s; from there on through the early 2010s, the estimated persistence in the

nominal wage gap falls to levels seen in the mid-1970s. Since then, it has been slowly increasing.

It is worth noting that credible intervals around the posterior mean are wide, suggesting high

uncertainty in the inference about the estimated persistence.

Wage Phillips curve

In Figure 4.9, panel (b) plots the estimates of parameter λw, which captures the wage Phillips

curve relationship in the US data. The plot provides strong evidence supporting the existence of

the wage Phillips curve in the post-war data. Notably, the plot also offers convincing evidence

of a time-variation in this relationship. According to the posterior mean estimate, from the

early 1960s through mid-1970s, our models imply the strength of the wage Phillips curve at

a moderate level, but from thereon through the mid-1980s, the wage Phillips curve steepened

sharply in Base and Base-NoSurv (less steep in Base-W*RW). By the mid-1980s, in the Base

model, the posterior mean of the wage Phillips curve parameter is estimated to be −0.5, with

90% credible intervals ranging from −0.23 to −0.75. From thereon, it gradually flattened until

the mid-2000s, but soon afterward, it began to flatten more rapidly through to early 2010. In

2010, all three models estimate the posterior mean of the Phillips curve parameter at −0.2. The

prevalence of the downward wage rigidities during the Great Recession is among the primary

explanations for the flattening wage Phillips curve (see Daly and Hobijn, 2014).

From 2010 onwards, with an improving economy, the estimated wage Phillips curve has

steadily steepened. Our empirical evidence on the wage Phillips curve is consistent with the
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findings of Knotek and Zaman (2014), Peneva and Rudd (2017), and Gali and Gambetti (2019),

who all document strong support for the continuing existence of a wage Phillips curve in the

US data.

Passthrough from prices

Panel (c) plots the estimates of the short-run passthrough from prices to wages defined as
κwt

1−ρwt
. The posterior estimates of passthrough indicate a weakening relationship between cyclical

nominal wage inflation and cyclical price inflation over the estimation sample, confirming the

evidence presented in Peneva and Rudd (2017) and Knotek and Zaman (2014). The relationship

between the two was strong in the 1970s through to the mid-80s, but since then, it has gradually

weakened such that it has been nonexistent (i.e., the passthrough is estimated to be zero) for

the past decade. Coincidentally, this period of the breakdown in the relationship between the

two cyclical components has coincided with low and stable price inflation, and the Federal

Reserve has adopted an explicit target of 2%. Literature has attributed various explanations to

this breakdown in the relationship that includes improved anchoring of inflation expectations

(Peneva and Rudd, 2017) and amplification of downward wage rigidities during low levels of

price inflation (Daly and Hobijn, 2014).

Our empirical finding also supports the results of Bobeica et al. (2019), who show using

euro area and US data that the link between labor compensation and price inflation in the

short-run importantly depends on the prevailing inflation regime. They find a high inflation

regime associated with a tighter connection between labor costs and price inflation and a low

inflation regime associated with a weaker link. All three of our models imply similar inference.

Both Base-NoSurv and Base-W*RW indicate a stronger passthrough than the Base model in the

1970s and 1980s, periods associated with high inflation in the US. Comparing between panels

(a) and (c) suggests that during that period, Base attributes more of the increase in nominal

wage inflation to increase in persistence than to the passthrough from price inflation, hence the

less strong passthrough estimate than seen in the Base-NoSurv and Base-W*RW models.

SV in the wage equation

Panel (d) plots the time-varying standard deviation of the innovations to the nominal wage

inflation gap. The plot indicates the importance of allowing for SV in the equation for nominal

wage inflation. All three models show very similar posterior mean estimates of SV. The estimates

suggest that volatility in the early 1960s was high but then subsequently fell to rise back up

again in the late 1960s and early 1970s. From thereon through the mid-1970s, it fell steeply. It

increased in the early 1980s, but less sharply than in the previous decades. From the mid-1980s

through the early 1990s, volatility moderated to low levels, and since then, it remains flat at that

low level. The Bayesian model comparison indicates further evidence supporting the inclusion

of SV in the wage equation, as evident by the substantially inferior fit of the Base-NoSV model

to nominal wage inflation data compared to Base and Base-NoSurv models (Base-NoSV: -344.3
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vs. Base: -277.5; see table 4.7).

4.4.6 Estimation results for r-star

Figure 4.10 presents r-star and the “catch-all” component D estimates for our two main model

specifications. The top row of the figure plots the estimates of r-star (panel a) and component D

(panel b) from the Base model. Also included in panel (a) are the survey expectations of r-star

(which enters our Base model). As can be seen, the contours of (posterior mean) r-star from

the Base model track the survey estimate, this suggests that survey data plays an influential

role in guiding the model’s assessment of r-star. The posterior mean estimate from the Base

model shows r-star staying relatively flat at 3.5% in the 1960s, and then slowly trends down

through the 1970s to reach 3% by early 1980. Thereafter, it fluctuates in a range between 2.8%

and 3.5% through to the beginning of 2000. From there on, it steadily declines to reach 1.1%

at the end 2019.

Panel (b) plots the estimate of component D, whose dynamics are shaped by the survey

expectations data and by information from the Taylor rule and IS equations. As can be seen in

the figure, component D is imprecisely estimated. According to the posterior mean estimate,

in the 1960s, component D exerts slight upward pressure on r-star that is mostly offset by

downward pressure coming from g-star (via equation 4.36), helping keep r-star relatively flat.

After that, with D remaining flat through 2000, developments in g-star shape the trajectory of

r-star. Beginning in 2000 and onwards, all forces (as captured through the model structure)

work in the same direction to push r-star steadily downwards. The estimated link between

r-star and g-star is of moderate strength (posterior mean of parameter m = ζ
4 = 0.701); see

table 4.2); therefore, movements in g-star play an influential role in driving r-star.

Moving on to the Base-NoSurv model specification, in panel (c), the mean estimate shows

r-star rising from 2% in early 1960 to 3.5% through early 1980 and then remaining stable

through early 2000. This trajectory is similar to Gonzalez-Astudillo and Laforte (2020), who

also utilize the Taylor-rule and information from long-term interest rates in their estimation.

Beginning 2000 onwards, r-star steadily declines to reach 1.4% at the end 2019. The trajectory

of r-star from 2000 onwards is similar to that from the Base model. It is worth noting that

our models’ indication of a secular decline in the r-star beginning in 2000 is also documented

elsewhere in the literature tackling r-star (the exception being JM).48 However, the extent of

decline varies considerably across studies. The literature attributes this secular decline in r-star

to various explanations, including: a trend decline in g-star (e.g., LW, 2016); rising premiums

for convenience yield, i.e., increased demand for safety and liquidity Treasury bonds (see Del

Negro et al., 2017; Bullard, 2018); and excess global savings (Pescatori and Turunen, 2016).

The uncertainty around the r-star estimate from the Base-NoSurv model is substantially

48JM document that r-star from their preferred specification (which allows for SV in TR equation) is generally
flat over their sample spanning 1960 through 2018. However, in an alternative specification, which does not permit
SV, the r-star estimate exhibits decline in r-star similar to that documented elsewhere. In our examination, r-star
trajectory is little changed comparing between Base specification and Base without SV (i.e., Base-NoSV).
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higher than Base, as can be seen by comparing panel (a) and panel (c) of figure 4.10, and also

shown in panel (b) of figure 4.11. The increased uncertainty in r-star comes from component D,

which is imprecisely estimated without the survey data. Furthermore, based on the marginal

likelihood criteria, the Base model is favored over the Base-NoSurv model (see table 4.9).

Without the survey information about r-star, the estimated link between g-star and r-star is

significantly weaker (posterior mean of m = ζ
4 = 0.390; see table 4.2), which is consistent with

the evidence documented in Hamilton et al. (2016) and Lunsford and West (2019). Therefore,

the movements in component D significantly dominate the contours of r-star in Base-NoSurv

model. Both the IS curve and Taylor rule equations shape the evolution of component D. The

hump-shaped patterns in both D and r-star reflect the trends in real long-term interest rates

(informed from the IS equation) and short-term interest rates (from the Taylor-rule equation).

It is interesting to note that the r-star estimate from JM (and Gonzalez-Astudillo and Laforte

(2020)) – who use the Taylor-rule equation and information from both short and long-term

interest rates – also exhibit hump-shaped behavior though, in the case of JM, it is only slight.

As we show shortly, the prior setting on the shock process for r-star (in our Base and Base-

NoSurv cases, component D) plays an essential role in shaping the contours of r-star.

As discussed earlier, the estimates of g-star from both Base and Base-NoSurv models are

quite similar. Therefore, the primary source of the differential in the r-star estimates between

Base and Base-NoSurv is the quantitatively weaker relation estimated between r-star and g-star

in Base-NoSurv than Base.

Assessment of policy stance

Panel (e) of figure 4.10 provides an assessment of the stance of monetary policy. Following

Pescatori and Turunen (2016), we gauge monetary policy’s stance as the deviation of the short-

term nominal interest rate from the long-run nominal neutral rate of interest (defined as the

sum of r* and pi*) – this is the interest rate gap from the Taylor rule equation. A positive

interest rate gap characterizes a restrictive monetary policy stance, and a negative interest rate

gap implies a stimulative stance. The solid line corresponds to the policy stance inferred from

the Base model and the dashed line to that inferred from the Base-NoSurv model. Even with

notable differences in the estimates of r-star across the two models, the assessment of the policy

stance is remarkably similar throughout the sample. So why are they so similar?

The answer lies in the differences in pi-star estimates across two model specifications, as

shown in figure 4.7 (panels a and b). In other words, the differences between r-star estimates

across the two models are compensated (i.e., offset) by the differences between pi-star, such that

assessment about the stance of monetary policy across the two models is strikingly similar. For

instance, in the 1960s, the r-star estimate from the Base is on average 1.34 percentage points

(ppts) higher than that of Base-NoSurv. However, over the same period, the pi-star estimate

from the Base model is 0.54 ppt lower than that of the Base-NoSurv model, which reduces the

difference between their associated assessments of policy stance.
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According to our model(s) estimates, the policy stance appeared to be slightly restrictive

before the Great Recession, but at the onset of the Great Recession, the policy stance immedi-

ately turned accommodative. Since then, it has remained very accommodative (reflecting the

effects of unconventional monetary policy). After peaking in late 2015, the degree of accommo-

dation has gradually declined (i.e., the interest rate gap has become less negative), such that,

by the end of 2019, it has edged closer to the neutral threshold.

A closer inspection of the figure reveals an interesting insight. Since 1990, both the degree

and duration of policy accommodation in response to the recession have been more significant

than the previous recession. For instance, the monetary policy stance was more accommodative

both in terms of level and duration following the 2001 recession than the 1990-1991 recession.

Similarly, during and following the Great Recession, the policy stance in terms of level and

duration was more significant than following the 2001 recession. Broadly speaking, our model

implied assessment of the stance of monetary policy mirrors that in the assessment documented

in Brand and Mazelis (2019).

Random walk assumption for r* vs. Base (and Base-NoSurv)

As is commonly done when estimating stars, a random walk assumption for r-star is a

popular choice (e.g., Kiley, 2020; JM). Accordingly, we explore this particular modeling choice’s

fit to the data and empirical properties by replacing the equation linking r-star to g-star and the

RW component D with an equation that assumes a random walk process for r-star in our main

model specifications (Base and Base-NoSurv). We denote these specifications, Base-R*RW and

Base-NoSurv-R*RW. By adopting a RW assumption for r-star, the models will be unable to

attribute any specific causes of movements in estimates of r-star.

Figure 4.11, panel (a) plots the posterior mean r-star estimates from the Base-R*RW and

Base-NoSurv-R*RW models. To facilitate comparison, also shown are estimates from Base

and Base-NoSurv models. Panel (b) plots the corresponding r-star precision estimates (defined

as the width of 90% credible intervals). A few observations immediately stand out. First,

the estimated r-star from model specifications with the RW assumption, although exhibiting

broadly similar contours, are higher than those obtained from the specifications that impose

a relation between r-star and g-star. Second, beginning 2000 and onwards, r-star estimates

from the specifications with the assumed link between r-star and g-star experience a more stark

decline than those from the specifications with the RW assumption. For instance, by late 2019,

the estimates of r-star from both the Base-R*RW and Base-NoSurv-R*RW models settle at

close to 2%, whereas those from the Base and Base-NoSurv models fall further to the range of

1.2 to 1.4%. This differential is mostly explained by the lack of direct downward pressure from

g-star in the specifications with RW assumption.

Third, bringing information from the survey improves the precision of the r-star estimates

substantially, irrespective of whether r-star is modeled simply as RW process or the combination

of RW component and a component linking r-star to g-star. Fourth, the specifications that
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allow for a link between r-star and g-star are more precise than those that do not. The Base

specification generates the most precise r-star estimates relative to those obtained from the

other three specifications.

Based on the model comparison metric reported in table 4.9, the model indicating the most

precise r-star does not necessarily rank as the best fitting model. The fit of the Base specification

is slightly inferior to that of both the Base-R*RW specification and the Base-NoSurv-R*RW,

but not by very much. This evidence nicely illustrates that the marginal likelihood metric has

a built-in penalty that increases as the model complexity goes up. When comparing between

Base-NoSurv-R*RW and Base-R*RW specifications, the addition of survey data increases the

model’s fit to the interest rate data slightly from -215.58 to -214.04 (but reduces overall model

fit marginally from -1769.3 to -1770.8). In comparison, moving from the Base-NoSurv to the

Base specification, the fit to the interest rate data increases, from -221.98 to -216.4 (and the

overall model fit from -1772.8 to -1771.7).

Taken together, the evidence described above suggests that the RW assumption for r-star

is a viable option, and bringing in information from surveys helps improve precision of the

estimates of r-star substantially. Another result worth highlighting from the model comparison

exercise concerns the marginal value of survey information in the estimation of r-star. In a

model specification that imposes a relationship between r-star and g-star (e.g., Base; Base-

NoSurv), adding survey information is crucial in making the model a competitive alternative.

By bringing in survey information, which has a high correlation between g-star and r-star survey

expectations (0.8), the estimated link between g-star and r-star in the model becomes stronger

(m = ζ
4 = 0.701 in Base vs. m = ζ

4 = 0.390 in Base-NoSurv).

Given the evidence on model comparison and the precision of r-star estimates, our preferred

choice is the Base model because its fit to the data is competitive (just marginally inferior to

spec with RW assumption). And it produces the most precise r-star estimate compared to

the alternative specifications. An additional factor that influences our choice is the ability to

provide an explanation for movements in r-star, which is made possible due to its direct link to

g-star.

In a supplementary set of exercises, we illustrate the usefulness of the Taylor-type rule

equation and the equation linking r-star to survey expectations for identifying r-star. The

addition of the Taylor-type rule equation turns out to be crucial to yield plausible and precise

estimates of r-star (see appendix C10.d).

We also explored the role of data versus prior in determining r-star, and in the interest

of brevity, the results of the exercises are relegated to the appendix (see C10.a). Here, we

briefly mention that results indicate that in the case of the Base-NoSurv model, the prior views

determine the shape of the posterior for r-star, confirming Kiley (2020). However, in the Base

model, which links r-star to survey expectations, the data does have some influence. In the case

of the Base-NoSurv model, we also find that if we loosen the prior on the variance of the r-star

process (to values similar to Kiley, 2020), then the data begin to shape the posterior. But, this
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comes at the cost of worsening fit to the interest rate data.

Overall, we find that when it comes to r-star, specification choices matter a lot (something

also highlighted by Clark and Kozicki (2005), Beyer and Wieland (2019), and Kiley (2020)). The

model specifications that include survey expectations yield estimates that are both reasonable

and the most precise. In our examinations, the Base specification, which allows the link between

g-star and r-star, is equally preferred by the data to variant of the Base specification that

assumes r-star as a RW. Since 2000, the best fitting model specifications indicate a steady

decline in r-star, similar to documented elsewhere in the literature.

4.5 Real-time Estimates and Forecasting

In this section, we perform two real-time, out-of-sample, forecasting exercises. In the first ex-

ercise, we compare the real-time forecasting performance of our two main models, Base and

Base-NoSurv. We evaluate both the point and density forecast accuracy for real GDP growth,

PCE inflation, the unemployment rate, nominal wage inflation, labor productivity growth, and

the shadow federal funds rate. We show that the Base model is more accurate on average

compared to Base-NoSurv for all variables of interest except the unemployment rate. We also

document our Base model’s superior forecasting properties relative to “hard to beat” bench-

marks, including some of the recently proposed UC models for inflation forecasting. By-products

of our real-time forecasting exercise are the real-time estimates of the stars from 1999 through

2019. We compare these real-time estimates to the final (smoothed) estimates – based on the

entire sample spanning 1959Q4 through 2019Q4.

In the second forecasting exercise, we illustrate the efficacy of the stars’ estimates produced

from our models by demonstrating their usefulness in forecasting with external models (e.g.,

steady-state VARs). We find that the quality of our estimates of the stars from the Base model

is generally competitive to the survey estimates, which are commonly used as proxies for stars in

VAR forecasting models. For brevity purposes, we relegate the discussion of this latter exercise

to the appendix C5.

Table 4.10 presents the results from comparing the out-of-sample forecasting performance

(both point and density) between the two models over the forecast evaluation sample spanning

1999Q1 through 2019Q4. The forecast evaluation is based on real-time data vintages and uses a

recursively expanding estimation window, where each recursive run uses an additional quarterly

data point in the estimation sample.49 The forecast accuracy (point and density) is computed

from one-quarter ahead to 20 quarters out. Partly due to our focus on the medium-term horizon

49Going back in time means that we are using relatively fewer observations to estimate model(s). As is
commonly done when performing real-time forecasting using multivariate UC models, we need to tighten priors
on the shocks’ variances driving the latent components (see, for instance, Barbarino et al., 2020). Accordingly, we
devise a systematic approach to adjusting the prior on the Scale parameters of the inverse gamma distributions
defining the variances of the stars. We multiply the Scale parameter with the factor = ( 2T

N
− 1) ∗ ( T

N+5(N−T )
),

where N is total sample size from 1959Q4 through 2019Q4, and T refers to the number of data points in a given
data vintage. At the end of the sample,the factor = 1 because T = N .
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and partly in the interest of space, we report accuracy metrics for four, eight, twelve, sixteen,

and twenty quarters ahead. We evaluate the forecast accuracy using real-time data; specifically,

we treat the “actual” as the third release of a given quarterly estimate.50 For instance, in the

case of real GDP, the third estimate for 2018Q4 corresponds to the GDP data available in late

2019Q1. The point forecast accuracy is assessed using the root mean squared error (RMSE)

metric, and the density forecast accuracy is evaluated using the log predictive score (LPS).

The statistical significance of the point forecast accuracy is gauged using the Diebold-Mariano

and West test and in the case of density forecast accuracy based on the likelihood-ratio test of

Amisano and Giacomini (2007).

The top panel of the table reports the results corresponding to the point forecast accuracy,

while the lower panel for the density forecast accuracy. The numbers reported in the table

correspond to relative RMSE –RMSE Base relative to RMSE of Base-NoSurv – in point forecast

comparison, and relative mean LPS – LPS Base minus LPS Base-NoSurv – in the case of density

forecast comparison. Hence, numbers less than one in the top panel suggest that point forecast

accuracy of the Base forecast is more accurate on average, and positive numbers in the bottom

panel suggest that density forecast accuracy of the Base forecast is more accurate than Base-

NoSurv forecast.

As is evident by the numbers reported in the table, except for point forecast accuracy of

the unemployment rate, the evidence generally favors the Base model as more accurate than

Base-NoSurv. The evidence in support of the Base model is strongest for PCE inflation and

labor productivity growth. In the case of the unemployment rate, as was the case with the in-

sample model fit (see table 4.3), the Base-NoSurv model outperforms the Base model in point

forecast accuracy. However, over the forecast evaluation sample, the uncertainty around the

point forecast of unemployment rate implied by the Base-NoSurv model was higher than the

Base model (on average). This higher uncertainty contributed to inferior density forecasts from

the Base-NoSurv model compared to the Base model, as is evident by the positive numbers in

the row corresponding to the unemployment rate. It is generally the case across all variables,

except the real GDP growth, the accuracy of the density forecasts from the Base model are

more accurate than Base-NoSurv. In the case of real GDP growth, even though, for the most

part, the point forecast accuracy between the two models are similar on average, the density

forecasts from the Base-NoSurv model are more accurate than the Base model.

We also compared the forecasting performance of our Base model to the outside benchmark

models, which forecasting literature has shown to be useful forecasting devices. Specifically,

we compare the accuracy of the inflation forecasts from our Base model to the following three

models, UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and Potter (2016) [CKP],

and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of the unemployment

rate forecasts from our Base model to the Chan, Koop, and Potter (2016), and the accuracy

50Results are qualitatively similar if we instead use the revised data (2020Q1 vintage data) as the actual values
in the forecast evaluation exercises. The results are available on request from the author.
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of the nominal wage inflation from the Base model to the UCSV model applied to the nominal

wage inflation – motivated by Knotek (2015). Our forecasting results provide strong evidence

in support of our Base model’s competitive forecasting properties. For the sake of brevity, the

results are included in the appendix C4 table C3.

Real-time versus final estimates

Up to this point, we only examined the smoothed estimates of the stars inferred using all

the sample data, i.e., from 1959Q4 through 2019Q4, which we denote here as final estimates. As

discussed in CKP and Clark and Kozicki (2005), the examination of final estimates is beneficial

for “historical analysis,” such as the evaluation of past policy. But for real-time analysis, such

as forecasting and policy-making, real-time estimates at time t – estimates based on data and

model estimation through time t (instead of through 1:T) – are the relevant measures. In

estimating the stars, a voluminous number of papers have documented the typical pattern of

notable differences between real-time and final estimates, e.g., see Clark and Kozicki (2005) and

Beyer and Wieland (2019) for r-star and Tasci (2019) for u-star.51

Relatedly, several researchers have attributed the inability to precisely know the location

of these stars in real-time to past policy mistakes, see Powell (2018) and references therein.

The documented differences between the real-time and final estimates, which at times could

be dramatic, and the recognition of these differences by policymakers have been the primary

reason limiting the usefulness of real-time estimates of the stars in policy discussions in recent

years (see Powell, 2018). Hence, there is a strong preference for methods that can provide more

credible inferences about stars in real-time.52

Comparing real-time and final estimates of the stars from our Base model suggests that we

make some progress in mitigating the difficulties in previous real-time estimation of the stars.

However, in the Base-NoSurv model, there is less success in mitigating this issue. We believe a

big reason for this lack of success in the latter case is that we estimate a very high-dimensional

model with a lot less data (as will be the case when stopping estimation at earlier periods).

An artifact of this is that it requires the imposition of very tight priors in earlier periods than

when estimating with more recent periods, which, in turn, impacts on the posterior estimates of

model parameters and the stars. This latter fact mechanically contributes to more considerable

observed differences between real-time and final estimates in the first half of the sample period

analyzed. In the case of the Base model, the use of survey information helps anchor the estimates

to more reasonable values even in the face of tight priors.

51Both revisions to past data and the accrual of additional data could contribute to the observed differences
between the real-time and final estimates. The estimation with additional data has been found by many to be
the primary factor causing revisions to historical estimates of the stars and contributing to divergence between
the real-time and final estimates (see Tasci, 2019; Clark and Kozicki, 2005).

52The issue of imprecision in the estimation of stars is an important one. It has been long recognized that
considerable uncertainty surrounds the estimated stars complicating reliable inference (e.g., Cross, Darby and
Ireland, 2005). Despite the stars’ imprecision, they continue to be used as inputs into policymaking and for other
purposes (see Williams, 2018; for r-star). After all, as discussed in Mester (2018), uncertainty about the stars is
just one source of uncertainty among many that confront policymakers.
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Figure 4.12 plots the real-time posterior mean estimates of the stars from 1999Q1 to 2019Q4.

Also plotted are the corresponding final (posterior mean) smoothed estimates and the 68% and

90% credible bands, respectively. The real-time estimates are the end-sample posterior mean (of

the smoothed) estimates at any given period, e.g., 1999Q1 estimate corresponds to estimating

the model(s) from 1959Q4 to 1999Q1; similarly, 1999Q2 estimate corresponds to estimating the

models from 1959Q4 to 1999Q2. As can be seen, for the most part, the real-time estimates of

the stars generally remain within the credible intervals, especially the 68% credible sets implied

based on full sample information. The exception is the g-star, and in turn, the output gap,

the latter shown in figure C3 of the appendix for brevity purpose. In the case of g-star, the

real-time estimate, which before 2007 is not aware that the Great Recession (GR) is about to

occur, is relatively upbeat like the survey estimate (at 2.9% vs. 2.25% for the final). Between

2007 and 2011, the real-time estimate gradually decelerates to 2.5%, but from thereon through

2015, it declines very rapidly, catching up to the final estimate.

Interestingly, the BC survey (which is real-time data) fell by only two-tenths over this period,

but between 2015 and 2017, it dropped another three-tenths to 2.0% and remained at that level

through the end of 2019. Whereas beyond 2017, the survey estimate remained flat, the real-

time model estimate gradually moved back up partly in response to stronger realizations in real

GDP growth than the implied g-star. The more gradual decline in the real-time g-star during

the GR implies a larger (negative) output gap estimate than is indicated by the final estimate.

In the case of u-star, interestingly, in the first half of the forecast evaluation sample, the

real-time estimate generally fell outside the 68% credible intervals but inside the 90% intervals.

In contrast, in the second half, it remained inside the 68% intervals and tracked quite closely

the posterior mean of the final estimate. In the case of p-star, the real-time posterior mean

estimate largely remained inside the 68% intervals, and post-2007, the implied inference on

p-star is consistent with the final estimate, as evident by similar contours of the real-time and

final estimates. It is worth noting that both the real-time and final estimates of p-star are

notably lower than the survey estimate of p-star; to be sure, survey estimate of p-star is not

used in the estimation of the Base model.

In the case of pi-star, the real-time estimate closely tracked the final estimate from 1999

through 2004, and from thereon through 2016, it averaged three tenths higher. From 2017

through 2019, the real-time estimate once again closely tracked the final estimate. The contours

of the real-time and final estimates are similar, and the real-time estimate remained within the

90% credible intervals throughout the sample period analyzed. Consistent with a generally

higher real-time estimate of p-star and pi-star than the final estimate, the real-time estimate

of w-star is higher than the final. Just as in the case of p-star and pi-star, the contours of the

real-time and final estimates of w-star are similar, and the real-time estimate of w-star remained

within the 90% credible intervals. Also plotted are the implied survey estimates of the w-star,

constructed by adding p-star and pi-star survey estimates. Arguably, these implied estimates

are implausibly high given that the actual realizations of nominal wage inflation in the post-
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2007 period were mostly below these implied estimates. The results of a forecasting exercise

presented in the appendix further confirm the implausibility of the implied survey estimate.

In the case of r-star, the contours of the real-time and final estimates are remarkably similar.

Between 2000 and 2005, and post-2014, the real-time estimate closely tracked the final estimate.

From 2006 through 2013, the real-time estimate averaged 35 basis points higher than the final

estimate. In our assessment, the magnitude of the gap between real-time and final estimates is

relatively small compared to the uncertainty estimate around the posterior mean and estimates

of uncertainty typically reported in papers estimating r-star, e.g., Clark and Kozicki (2005),

Laubach and Williams (2016), and Lubik and Matthes (2015). Furthermore, the real-time

estimate of r-star remained within the 68% credible intervals throughout the sample period

considered. The width of the estimated 68% (and 90%) intervals from the Base model has been

remarkably stable between 0.9 and 1.2 percent (1.5 and 2.0 percent) in the last 25 years. For

reference, the typical estimates of 90% bands from popular models such as LW and Lubik and

Matthes (2015) have a width averaging more than 4% and 3.5%, respectively.53 Given that

the 68% and 90% credible intervals are significantly narrower compared to typical estimates

reported elsewhere in the literature, we view the evidence of our real-time r-star remaining

inside the estimated credible intervals as encouraging.

Overall, the real-time estimates of stars and forecast evaluation based on the past twenty

years of data provide empirical evidence supporting the competitive forecasting and real-time

properties of the Base model. Ideally, we would have liked to evaluate our models’ real-

time properties over the more extended historical sample, but are restricted due to the high-

dimensional nature of our models and also to availability of the real-time data on nominal wage

inflation.

4.6 The implications of COVID-19 Pandemic on Stars

At the time of writing this chapter, the global economy is in the midst of an ongoing global

pandemic crisis (GPC), which has continued to inflict significant disruption to economic activity

both here in the US and globally. The GPC, which started in early 2020, contributed to extreme

movements in many US macroeconomic indicators, including those used in this chapter. For

instance, the US real GDP growth in quarterly annualized term declined from -5% in Q1 to

-31% in Q2, the deepest contraction in post-war data (COVID-19 recession). And in Q3,

growth rebounded to +33%, a record increase in the post-war data. These extreme movements,

which were several standard deviations away from their historical averages, contributed to the

breakdown of many conventional time series models, especially the time-invariant VAR models

estimated with monthly data, see Lenza and Primiceri (2020) and Carriero et al. (2021).

Up to this point, our analysis has focused on the pre-GPC data. In light of the recent work

53We note that recent approaches to model r-star such as JM and Del Negro et al. (2017) also generate precise
intervals similar to ours, with JM marginally less precise and Del Negro and all measurably more precise than
ours.
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documenting the difficulties of the standard time-series models handling pandemic data, we are

naturally curious to see how our two main models respond to the COVID-19 GPC data? What

do data during the pandemic imply for the estimates of the stars, or, in other words, what

are the estimated long-run consequences of the GPC data? As we illustrate shortly, the short

answer to the first question is that both models, Base and Base-NoSurv, handled the pandemic

data well, but the Base model, in our judgment, did a much better job than the Base-NoSurv

model.

The answer to the second question is a bit complicated. But, briefly, the models indicate

that, at the moment, the long-run consequences of the economic developments related to the

pandemic are highly uncertain. We view this latter characterization as a reasonable one. Let’s

take long-term productivity growth. Based on past research, the pandemics are associated with

the hit to long-term productivity growth; think of disruptions to schools and universities.54

On the other hand, given the state of the technological advances and the unique nature of

the GPC, which has raised prospects of recurrent pandemics, the recent research argues will

lead to an acceleration in automation (see Leduc and Liu, 2020) and, in turn, boost long-term

productivity. The net effect of these opposing factors on p-star is uncertain, and our model-

based estimates of p-star reflect this via increased assessment of uncertainty around p-star, as

shown in the appendix C8.

We believe that the rich features of our models helped position our models, especially the

Base model, to handle the pandemic data quite well.55 In the interests of brevity, we refer the

reader to appendix C8 for the results comparing the pre-pandemic and pandemic periods, and

results comparing estimates from the Base model to outside sources including CBO and Morley

and Wong (2020).

4.7 Conclusion

This chapter takes up the challenge of developing a large-scale UC model to jointly estimate the

dynamics of inflation, nominal wages, labor productivity, the unemployment rate, real GDP,

interest rates, and their respective survey expectations to back out the estimates of long-run

counterparts of these variables. These long-run counterparts include potential output (gdp-

star), the growth rate of potential output (g-star), the equilibrium level of the unemployment

rate (u-star), the equilibrium real rate of interest (r-star), the trend in inflation (pi-star), the

trend in labor productivity (p-star), and the trend in nominal wage inflation (w-star). The

structure of our UC model is guided by economic theory and past empirical research. Past

research has highlighted strong evidence of changing macroeconomic relationships and allowing

for stochastic volatility in the shocks to cyclical components of a range of macroeconomic

54Aucejo et al.(2020) document negative impact of the COVID-19 on the students’ academic performance.
55The rich features include: (1) modeling the changing economic relationships via the implementation of time-

varying parameters; (2) allowing for changing variance of the innovations to various equations (i.e., SV); (3)
imposing bounds on some of the random walk processes; (4) joint modeling of the output gap and unemployment
gap in particular; (5) and the use of survey forecasts;
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indicators. Accordingly, our model structure permits time-varying parameters and stochastic

volatility in most model equations.

An essential feature of our model structure is the explicit role of the survey long-run forecasts

in possibly informing the econometric estimation of the stars. Like other researchers, we find

adding information from surveys to be an important element in yielding reasonable and credible

estimates of the stars. Incorporating a rich set of empirical features leads to a very flexible but

heavily parameterized model. To feasibly estimate this model (and its variants), we use Bayesian

techniques, specifically the efficient sampling techniques developed in Chan, Koop, and Potter

(2013), and the precision sampler proposed in Chan and Jeliazkov (2009).

We explore the empirical relevance of various features incorporated in our baseline model

by estimating several variants of the baseline model. The Bayesian model comparison results

provide strong support to model features informed based on past research and confirm findings

documented elsewhere. For instance, we find that allowing for SV in the model equations to be

very important. Similarly, we find economically and statistically significant evidence of time-

varying price Phillips curve, wage Phillips curve, the evolving cyclicality of labor productivity,

a changing passthrough relationship between wages and prices, and evolving persistence in

price inflation and wage inflation gaps. Given the richness of our model, we document an

expansive set of empirical results that we hope will prove helpful for both applied and theoretical

macroeconomists alike.

The estimates of the stars from our modeling framework generally echo the contours of

stars documented elsewhere in the literature utilizing smaller-scale models. However, they are

more precise, a consequence of the use of surveys, a flexible multivariate approach, and jointly

modeling the dynamics of several stars. We also show that our baseline model held up well when

including the COVID-19 pandemic data. The rich set of features endowed in our UC model

helped handle the pandemic data without any difficulties. Lastly, we document the competitive

real-time forecasting properties of both our main model and, separately, the estimates of the

stars, if they were to be used as steady-state values in external models.
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Figure 4.1: Visual Overview of Interactions Between Blocks

Notes: The solid lines represent contemporaneous relationship between the element(s) of the

blocks. LR link denotes long-run relationship, i.e., link between stars.
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Table 4.1: Description of Model Specifications

Panel (a): Main Models

Model Description

Base Full model as formulated in equations (4.6) through (4.39)

Base-NoSurv Model as defined by baseline but excluding equations linking surveys to

stars (i.e., excluding 4.9, 4.10, 4.15, 4.16, 4.26, 4.27, 4.38 and 4.39).

Aim: assess the usefulness of survey data

Panel (b): Auxiliary Models

Base-W*RW Base but replaces eq. (4.28) with a RW assumption for W ∗ as defined eq. (4.28b).

Aim: assess the support for the theoretical restriction W ∗ = π∗ + P ∗

Base-PT-Wages-to-Prices Base but replaces eq. (4.21) with eq. (4.21b) .

Aim: asses the usefulness of allowing for pass-through from wages to prices

(for reference, Base allows for pass-through from prices to wages)

Base-NoPT Base but replaces eq. (4.29) with eq. (4.29b).

Aim: assess the usefulness of inclusion of wage inflation in the price equation

AND the inclusion of price inflation in the wage equation.

Base-NoSurv-NoPT Base w/o surveys and replaces eq. (4.29) with eq. (4.29b).

Aim: usefulness of inclusion of wage inflation in the price equation

AND the inclusion of price inflation in the wage equation in a Base-NoSurv.

Base-P*CycOutputGap Base but replaces eq. (4.17) with eq. (4.17b).

Aim: assess empirical link between output gap and productivity gap and

whether data support inclusion of output gap instead of unemployment gap.

Base-NoR*Surv Base but excludes survey expectations of r∗; i.e., removes eq. (4.38) and eq. (4.39).

Aim: assess specifically the marginal value of survey expectations of r∗

Base-NoR*Surv-NoTRule Base but excludes (1) survey expectations of r∗, i.e., removes eq. (4.38) and eq. (4.39);

and (2) policy rule eq. (4.34).

Aim: assess the marginal value of the policy rule equation to the model.

Base-R*RW Base but replaces eq.(4.36) and eq.(4.37) with a RW assumption for r∗ as in eq. (4.36b).

Aim: assess the support for the theoretical link between r∗ and g∗.

Base-NoSurv-R*RW Base-NoSurv but replaces eq.(4.36) and eq.(4.37) with a RW for r∗ as in eq. (4.36b).

Aim: assess support for the link between r∗ and g∗ in a spec. w/o survey data.

Base-R*AR Base but replaces eq. (4.37) with AR assumption for D.

Aim: support of r∗ defined as comb. of permanent and transitory components.

Base-NoSurv-R*AR Base-NoSurv but replaces eq. (4.37) with AR assumption for D.

Aim: support of r∗ defined as comb. of permanent and transitory components.

Base-NoSurv-R*TightPrior Base specification but tighter prior for std. of the shock to process D.

Aim: assess the impact on r∗ estimate of using a tighter prior for D.

Base-NoSV Base specification but with no SV in any of the measurement equations.

Aim: assess the importance of stochastic volatility in shock variances.

Base-NoBoundU* Base specification without the bounds on the U∗ process in eq. (4.8).

Aim: assess empirical support for imposing bounds on U∗.
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Table 4.2: Parameter Estimates

Parameter Parameter description Posterior estimates

Base Base-NoSurv

Mean 5% 95% Mean 5% 95%

ar Coefficient on interest-rate gap -0.069 -0.141 0.002 -0.054 -0.130 0.015

ρg1 + ρg2 Persistence in output gap 0.738 0.678 0.797 0.732 0.669 0.794

ρu1 Lag 1 coefficient on UR gap 1.283 1.238 1.327 1.277 1.232 1.322

ρu2 Lag 2 coefficient on UR gap -0.504 -0.542 -0.466 -0.503 -0.540 -0.466

ρu1 + ρu2 Persistence in UR gap 0.778 0.736 0.821 0.774 0.733 0.814

ρp Persistence in productivity gap -0.005 -0.118 0.110 -0.001 -0.119 0.115

m = ζ
4 Relationship between r* and g* 0.701 0.621 0.784 0.390 0.270 0.560

ρi Persistence in interest-rate gap 0.879 0.838 0.917 0.860 0.816 0.904

λi Interest rate sensitivity to UR gap -0.229 -0.278 -0.180 -0.243 -0.293 -0.194

κi Interest rate sensitivity to inflation 0.061 0.014 0.107 0.085 0.035 0.134

λg Output gap response to UR gap -0.457 -0.580 -0.339 -0.454 -0.575 -0.333

φu UR gap response to Output gap -0.108 -0.130 -0.086 -0.118 -0.140 -0.096
(1−ρu1−ρ

u
2 )

φu
Implied Okuns Law -2.054 -2.327 -1.803 -1.929 -2.179 -1.699

βg Link between g* and survey 0.929 0.774 1.082 — — —

βu Link between u* and survey 0.988 0.919 1.055 — — —

βr Link between r* and survey 1.018 0.923 1.117 — — —

βπ Link between π∗ and survey 0.991 0.912 1.070 — — —

σ2
π∗ Variance of the shocks to π∗ 0.1212 0.1002 0.1412 0.1272 0.0842 0.1822

σ2
p∗ Variance of the shocks to p∗ 0.1452 0.1112 0.1832 0.1412 0.1092 0.1762

σ2
u∗ Variance of the shocks to u∗ 0.0752 0.0642 0.0892 0.0842 0.0712 0.1002

σ2
gdp∗ Variance of the shocks to gdp∗ 0.0182 0.0142 0.0212 0.0212 0.0162 0.0262

σ2
d Variance of the shocks to d 0.0932 0.0772 0.1102 0.1142 0.0842 0.1482

σ2
w∗ Variance of the shocks to w∗ 0.1582 0.1122 0.2152 0.1582 0.1112 0.2202

σ2
ogap Variance of the shocks to Output gap 0.7252 0.6722 0.7812 0.7232 0.6692 0.7802

σ2
u Variance of the shocks to UR gap 0.2682 0.2482 0.2892 0.2652 0.2452 0.2862

σ2
hp Var. of the Volatility – Productivity eq. 0.2742 0.2192 0.3362 0.2732 0.2202 0.3352

σ2
h Var. of the Volatility – Price Inf. eq. 0.2972 0.2372 0.3642 0.2982 0.2382 0.3652

σ2
hw Var. of the Volatility – Wage Inf. eq. 0.3012 0.2372 0.3742 0.3032 0.2392 0.3732

σ2
hi Var. of the Volatility – Interest rate eq. 0.3772 0.2932 0.4692 0.3692 0.2872 0.4542

σ2
λπ Var. of the shocks to TVP λπ 0.0412 0.0322 0.0522 0.0412 0.0322 0.0512

σ2
λw Var. of the shocks to TVP λw 0.0412 0.0322 0.0512 0.0402 0.0322 0.0502

σ2
λp Var. of the shocks to TVP λp 0.0442 0.0342 0.0572 0.0452 0.0342 0.0572

σ2
κw Var. of the shocks to TVP κw, PT 0.0412 0.0322 0.0522 0.0412 0.0322 0.0522

σ2
ρw Var. of the shocks to TVP ρw 0.0422 0.0332 0.0532 0.0422 0.0322 0.0522

σ2
ρπ Var. of the shocks to TVP ρπ 0.0482 0.0372 0.0622 0.0472 0.0362 0.0602
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Table 4.3: Bayesian Model Comparison: Main Models and selected variants

Base Base-NoSurv Base-R*RW Base-NoSurv-R*RW

MDD of Inflation -366.6 -368.6 -366.8 -370.1

MDD of Productivity -606.9 -607.1 -607.5 -607.4

MDD of Nominal Wage -277.5 -274.3 -278.0 -274.9

MDD of Unemployment -24.6 -21.7 -24.7 -21.8

MDD of Interest rate -216.4 -222.0 -214.0 -215.6

MDD of GDP -279.7 -279.1 -279.8 -279.5

MDD -1771.7 -1772.8 -1770.8 -1769.3

Table 4.4: Model Comparison: Variants focused on unemployment rate

Base Base-NoSurv Base-NoBoundU* Bivariate Bivariate+Surv CKP-Adj

MDD of UR -24.6 -21.7 -25.0 -56.5 -46.5 -61.9

Table 4.5: Model Comparison: Variants focused on GDP

Base Base-NoSurv Univariate Bivariate Bivariate+Surv

MDD of GDP -279.7 -279.1 -296.5 -280.4 -281.9

Table 4.6: Model Comparison: Variants focused on labor productivity

Base Base-NoSurv Base-W*RW Base-P*CycOutputGap Base-NoSV

MDD of Productivity -606.9 -607.1 -603.5 -608.1 -633.4

MDD of model -1771.7 -1772.8 -1790.8 -1773.8 -2024.3

Table 4.7: Model Comparison: Variants focused on nominal wages

Base Base-NoSurv Base-W*RW Base-NoPT Base-NoSV

MDD of Nominal wages -277.5 -274.3 -277.7 -281.5 -344.3

MDD of model -1771.7 -1772.8 -1790.8 -1776.3 -2024.3
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Figure 4.2: Full Sample Estimates for Unemployment Rate block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In panel (e), CKP Adj. refers to the bivariate model of inflation and the unemployment rate

as in CKP but with no bounds on pi-star.
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Figure 4.3: Full Sample Estimates for Cyclical Unemployment

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

The shaded areas represent the NBER recession dates.
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Figure 4.4: Full Sample Estimates for Output block

Figure 4.5: Model-based output gap vs. CBO
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Figure 4.6: Full Sample Estimates for Productivity block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Figure 4.7: Full Sample Estimates for Price Inflation block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Table 4.8: Model Comparison: Variants focused on price inflation

Model variant MDD of Price inflation MDD Model

Base -366.6 -1771.7

Base-NoSurv -368.6 -1772.8

Base-W*RW -367.0 -1790.8

Base-PT-Wages-to-Prices -366.7 -1771.4

Base-NoPT -365.2 -1776.3

Base-NoSV -413.9 -2024.3
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Figure 4.8: Full Sample Estimates for Nominal Wage block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Figure 4.9: Wage Persistence, Wage Phillips Curve, Passthrough from Prices, and SV

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Figure 4.10: Full Sample Estimates for Interest Rate block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In top panel, the plot labeled ”survey exp.” is an implied estimate: inferred from the Blue Chip

survey long-run estimates of GDP deflator and short-term interest rates (3-month Treasury

bill) using the long-run Fisher equation. Specifically, the long-run forecast of 3-month Treasury

bill less the long-run forecast of GDP deflator. To this differential, we add +0.3 to reflect the

average differential between the federal funds rate and the 3-month Treasury bill.
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Figure 4.11: More Estimates for Interest Rate block

Table 4.9: Model Comparison: Variants focused on interest rate

Model variant MDD of Interest rate MDD Model

Base -216.4 -1771.7

Base-NoSurv -222.0 -1772.8

Base-R*RW -214.0 -1770.8

Base-NoSurv-R*RW -215.6 -1769.3

Base-NoSurv-R*TightPrior -232.0 -1773.6
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Figure 4.12: Real-time Recursive Estimates of Stars: Base model

Notes: The plots labeled Base are posterior estimates reflecting information in the full sam-

ple (from 1959Q4 through 2019Q4). The plots labeled Base:RealTime are posterior estimates

reflecting information available at a given point in time (i.e., truly real-time).
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Table 4.10: Real-Time Forecasting Accuracy: Base vs. Base-NoSurv

Panel A: Point Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP 1.07* 1.03 1.01 1.00 0.99

PCE Inflation 0.96 0.94* 0.91* 0.89 0.88*

Productivity 0.98* 0.98 0.97 0.98* 0.97

Nominal Wage (AHE) 0.98 1.01 1.05 1.05 1.02

Unemployment Rate 1.07* 1.05* 1.03* 1.02* 1.00

Shadow FFR 0.98 1.00 1.00 0.99 0.98

Panel B: Density Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative Log Predictive Score (LPS): LPS Base - LPS BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP -0.003* -0.002* -0.002* -0.001* -0.001*

PCE Inflation 0.018* 0.020* 0.025* 0.027* 0.026*

Productivity 0.001 0.002* 0.002* 0.002* 0.003*

Nominal Wage (AHE) 0.017* 0.016* 0.018* 0.018* 0.019*

Unemployment Rate -0.003 0.005 0.009* 0.012* 0.013*

Shadow FFR 0.020* 0.007* 0.003 0.000 0.000

Notes for Table: The top panel compares the point forecast accuracy of Base model with Base-NoSurv model. The numbers less than 1

indicates that Base model is more accurate on average. The bottom panel reports the corresponding density forecast accuracy performance.

A positive value (for the relative mean predictive log score) suggests that Base model is on average more accurate. The log predictive

scores are computed using parametric normal approximation. The table reports statistical significance based on the likelihood-ratio test of

Amisano and Giacomini (2007) for the density forecast accuracy, and based on the Diebold-Mariano and West test (with the lag h− 1

truncation parameter of the HAC variance estimator) for the point forecast accuracy. The test statistics for likelihood-ratio test use

two-sided t-test. In the case of the Diebold-Mariano and West test, the test statistics use two-sided standard normal critical values for

horizons less than equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters. *up to 10% significance level.
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Chapter 5

Conclusions

5.1 Summary of contributions and policy implications

In recent years, a consensus is developing in the crucial role of “good” nowcasts and reasonable

estimates of steady states for obtaining accurate macroeconomic forecasts. My thesis, through

a series of chapters, enhances this consensus view. First, it adds support to the consensus

via empirical exercises applied to a range of VAR models. The subsequent chapters take the

consensus view as given and develop approaches that improve the accuracy of the nowcasts

(of inflation) and the estimation of the steady states for a range of macroeconomic variables.

Specifically, the second main contribution of the thesis is that it provides a framework to

obtain highly accurate nowcasts of inflation, a variable that is of considerable importance to

various economic agents, including central bankers. The third main contribution is this thesis

develops a unified framework to estimate time-varying steady states (i.e., “stars”) for a host of

macroeconomic variables. The estimates of these steady states are of value to macroeconomic

forecasters. They can also be used for various other purposes, such as the construction of cyclical

indicators, guiding fiscal policy by separating fiscal balances into their cyclical and structural

components, and much more.

Chapter 2 proposes an approach to adjust the medium- and long-horizon forecasts from

a VAR toward plausible values informed by judgmental forecasters. Specifically, by applying

the flexible and powerful technique of relative entropy, we tilt the VAR forecast both in the

near term with the survey nowcast and in the long run with the survey long-run projection.

We denote the resulting forecast as the “hybrid” forecast. The horizon at which the long-run

survey projection is combined with the VAR forecast is variable-specific and is determined by

the variable’s estimated persistence at the forecast origin. We take as given the fact that survey

nowcasts and survey long-run projections are reasonable estimates of starting and terminal

conditions (steady states), respectively. Our approach is an alternative to the one proposed

by Wright (2013), which uses steady-state BVAR where survey long-run forecasts inform the

steady states. However, in contrast to Wright’s approach, which requires specifying VAR in a

certain way – specifically in deviations from means – our approach is more general because it
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is a post-estimation procedure. Therefore, it can be applied to any VAR model, including a

steady-state VAR, or as a matter of fact, to any empirical model that can generate a density

forecast. Our results echo many of those reported in Wright (2013), in particular, confirming

the importance of reasonable steady states in generating accurate forecasts. Our work is also

related to Kruger, Clark, and Ravazzolo (2017), who use relative entropy to tilt VAR forecasts

to survey nowcasts. We extend their work: in addition to tilting the VAR forecast in the

nowcast quarter, we also tilt the medium-to-long-horizon forecast from the VARs to match the

long-horizon forecast reported in the survey of professional forecasters.

Unlike Wright (2013) and Kruger, Clark, and Ravazzolo (2017), who consider only a single

Bayesian VAR model, we consider the efficacy of our proposal to a variety of Bayesian VAR

models. We summarize our four main findings as follows. First, all the models examined ben-

efit through improved accuracy, with the greatest gains in forecast accuracy seen in models

estimated with longer histories and the smallest gains achieved in models that attempt to ac-

commodate structural changes. Second, the gains in forecast accuracy are achieved for most

variables. Still, the most significant gains are for variables believed to have undergone marked

shifts in their permanent components (e.g., inflation and the federal funds rate). Third, the hy-

brid inflation forecasts from simple VAR models (such as the fixed-parameter VAR model) rival

those of relatively accurate univariate benchmark models and the Federal Reserve’s Greenbook.

We view this as a valuable and practical contribution because among the many frustrations of

monetary policymakers include the inability of multivariate models, which allow for feedback

effects from policy to the real economy and inflation, to match the forecasting performances

of univariate forecasting models. Fourth, all models considered display demonstrable improve-

ments in the forecast accuracy of hybrid forecasts for real GDP growth and CPI inflation over

the last decade (i.e., from the Great Recession to the present), which coincides with the period

associated with possible structural change. These results lead us to view our proposal as a

low-cost method for mitigating model instability issues that may arise from structural shifts

caused by moving endpoints.

Chapter 3 develops a flexible framework based on the model and density combinations to

produce density nowcasts for US inflation. By combining individual density nowcasts from

three classes of parsimonious mixed-frequency models (MIDAS, Dynamic factor model, and

Dynamic model switching of Knotek and Zaman, 2017), our framework generates nowcasts

at trading-day frequency and updates as information accumulates over the course of a month

or a quarter. Combining densities require a functional form for aggregation and weights to

apply to the different densities. Previous research has used either the linear opinion pool or

the logarithmic opinion pool as the functional form for aggregation. However, some researchers

use both methods and present results for the more accurate approach over a chosen evaluation

period. Instead of enforcing a particular functional form for aggregation at the outset, we devise

and implement a novel and flexible aggregation strategy that allows the data to determine which

of the two functional forms is preferred dynamically. A potential advantage of this flexibility is
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that it allows for the possibility of switching between the two functional forms at different points

within a month or a quarter based on the nowcast origin or at different points in time during the

sample as more observations become available. We complement this flexible aggregation strategy

by examining various dynamic model averaging approaches, where weights used to combine the

nowcasts can be updated based on learning from past performance. An important feature of this

proposed framework is its ability to accommodate non-Gaussian and time-varying properties of

the variance, skewness, and kurtosis in the nowcast density estimates. These dynamic features

are essential in improving the accuracy of density nowcasts for headline inflation.

Our framework allows us to incorporate a range of density combination methods proposed

in the literature in a comprehensive empirical examination. Our examination reveals how the

densities are combined matters: not all the combination methods improve accuracy compared

to the best-performing individual densities. Hence, our findings should serve as a guide to

practitioners on which combination methods may or may not work for nowcasting US inflation.

We also show in a horse race with the survey of professional forecasters that the density

nowcasts from our framework provide superior (implied) point and density nowcasts for CPI

inflation and PCE inflation. For core inflation, the performance of our framework is competitive

to the survey. The ability of our proposed framework to generate a highly accurate point and

density nowcasts of inflation is a valuable outcome for practitioners.

Chapter 3 focuses on inflation because recent work on density nowcasting (based on mixed-

frequency models) has generally focused on real GDP growth and other indicators of real eco-

nomic activity. The empirical work of chapter 2 and Kruger, Clark, and Ravazzolo (2017)

demonstrate conditioning quarterly macroeconomic models with nowcast means and nowcast

densities (informed from external sources) leads to improvements in the accuracy of multistep

point and density forecasts, especially inflation. The framework developed in chapter 3 provides

a potential source of both point and density nowcasts of US inflation that is shown to be more

accurate than survey nowcasts, which is a popular source for obtaining nowcast estimates.

Chapter 4 takes on the challenge of jointly estimating several macroeconomic stars (i.e.,

steady states) simultaneously, using a semi-structural time series model (aka a multivariate

UC model with a particular structure informed by economic theory) estimated with Bayesian

methods. Specifically, we consider the equilibrium rate of productivity growth (p-star), the level

of potential output (gdp-star), the growth rate of potential output (g-star), the equilibrium level

of the unemployment rate (u-star), the equilibrium level of the real rate of interest (r-star), the

equilibrium rate of price inflation (pi-star), and the equilibrium rate of nominal wage inflation

(w-star). For each star, we formulate a rich structure whose elements are guided by past

research. In doing so, we contribute to the literature in six important ways.

First, we develop a multivariate UC model that provides direct estimates for all the stars

of most relevance to macroeconomic policymakers. Previous research based on UC models to

estimate time-varying stars has focused on smaller systems, often just two or three observables,

and have relied on a minimal structure. In principle, proceeding with the joint estimation of a
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framework that explicitly models the objects of interest and permits interactions among them

(e.g., stars) has the potential to provide more reliable estimates of the objects than approaches

that ignore them. Our results indicate that specification choices matter for all stars considered,

and there are payoffs to modeling them jointly. For r-star and u-star, the choice of specification

matters the most, and least for g-star. We find that joint modeling g-star and u-star is sufficient;

however, to obtain the most precise estimates of g-star (and output gap), there are gains to using

a larger model. Generally, the contours of our stars echo those documented elsewhere in the

literature, but at times are different, and these differences can matter for policy. We also find

that our model estimates the output gap similar to the CBO estimate based on a production

function approach. This result provides evidence supporting the common practice of using

the output gap estimates from the CBO as an exogenous variable in empirical macroeconomic

models. We view this result as a valuable contribution to the applied macro literature.

Second, in our model, we allow for time-variation in the key macroeconomic relationships

and the error variances (aka stochastic volatility). To the best of our knowledge, features such

as time-varying parameters and stochastic volatility (SV) have not been implemented in a UC

framework beyond a system consisting of at most four variables. In principle, these empirical

features should help better distinguish between cyclical and idiosyncratic fluctuations and lower-

frequency movements in the macroeconomic aggregates considered in chapter 4. Our results

indicate economically and statistically significant evidence of time-variation in macroeconomic

relationships and strong support for SV’s inclusion in our model equations. It lends support to

the popular narrative “(price) Phillips curve has weakened over time,” “wage Phillips curve is

alive,” and “weakening in the procyclicality of labor productivity.”

Third, we extend the Chan, Clark, and Koop (2018) approach of using survey expectations

to improve pi-star precision to other macroeconomic stars. Specifically, we explicitly model

the link between the unobserved “star” and the expectations about the companion star in

the BlueChip survey of economic forecasters for each macroeconomic variable of interest. By

bringing in additional information from survey expectations, we find significant improvements

in the precision of the stars’ estimates. Fourth, we provide a model to obtain real-time estimates

of w-star (the long-run equilibrium level of nominal wage inflation) and its determinants. Our

choice of a particular specification for w-star permits a time-varying model-based decomposition

of w-star into its determinants, p-star (long-run productivity) and pi-star (long-run inflation), as

implied by economic theory. This specific decomposition is helpful to monetary policymakers,

who often refer to developments in nominal wages to support their forecasts and in related

discussions on price inflation and employment.

Fifth, our empirical model can generate competitive real-time point and density forecasts of

macroeconomic variables of broader interest. Sixth, the estimates of the stars from our model

can potentially be used to inform the steady state values for reduced-form VAR models (as in

chapter 2) and or Dynamic Stochastic General Equilibrium (DSGE) models.

174



5.2 Further research

As is the case with most research, there are several aspects of my thesis that could be explored

further and are left for future research. Regarding extensions related to chapter 2, it will be

interesting to examine the efficacy of the “hybrid” proposal combining survey forecasts and

model-based forecasts to other countries. In fact, recently, Ganics and Odendahl (2021) apply

a slightly modified proposal (to the one specified in chapter 2 of this thesis) on euro area

data and find support for the efficacy of the proposal. Another extension is to tilt the model

forecasts to first, second, and third moments extracted from raw density forecasts of the US

SPF. This extension is motivated by Galvão, Garratt, and Mitchell (2021), who apply such an

approach to the UK data. Another extension worth exploring is whether our proposal, when

applied to density combination, constructed by combining the ten individual forecast densities

corresponding to the ten BVAR models (of chapter 2), yields more accurate density (and implied

point) forecast accuracy compared to the individual hybrid forecasts. Both, Galvão, Garratt,

and Mitchell (2021) and Banbura et al. (2021) include density combinations in their empirical

exercises combining survey information with model-based forecasts via entropic tilting; the

former focused on UK data, and the latter on euro area data. Another extension worth exploring

is to expand the model space to include nonlinear VARs, such as threshold VAR, which produce

non-normal density forecasts that the technique of relative entropy can conveniently tilt.

In the case of chapter 3, at least three extensions are worth considering. First, the model

space can be expanded to include the mixed-frequency VAR, patterned along the lines of

Schorfheide and Song (2015) but with the information set similar to Clark and Zaman (2011).

At present, all three mixed-frequency model classes are based on single-equation models, and

expanding the model space to include VAR specifications, which allow for feedback between

inflation and its determinants and vice versa, would enrich the framework. Following a simi-

lar argument, expanding the model space to consider machine learning models such as those

featured in Medeiros et al. (2021), including random forest, would be another fruitful avenue.

Second, augmenting model information set with online price indices entertained in Aparicio

and Bertolotto (2020) is another interesting extension. These online indices may prove helpful

in providing more timely signals when the economy is undergoing unexpected shifts, such as

the COVID-19 pandemic. Third, an alternate approach to obtaining a very flexible estimate

of density nowcast is to use a single model (e.g., Deterministic Model Switching of Knotek

and Zaman, 2017) and assume Student-t distributed errors, which is modeled as a mixture of

normal. Monache and Petrella (2017) provide evidence supporting models featuring Student-t

distributed errors for inflation density forecasting. One would expect this favorable evidence to

carry over to inflation density nowcasting. Hence, it will be interesting to compare which of the

two approaches deliver more accurate density nowcasts of inflation: chapter 3’s density com-

bination based on combining evidence from many models versus a single model with Student-t

distributed errors. This latter extension is the focus of the ongoing work by Knotek and Zaman

(in-progress).
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Regarding chapter 4, again, there are three extensions worth exploring. First, instead of

taking the shadow federal funds rate as given, joint estimation of the shadow federal funds

rate and other model components would be beneficial. For example, the MCMC algorithm

of Johannsen and Mertens (forthcoming), based on sampling with censored data, could be

integrated within the MCMC sampler developed in chapter 4. Given the UC model’s complexity,

this extension would be non-trivial. Second, the Federal Reserve has recently updated its

statement on the longer-run goals and monetary policy strategy. And based on the revised

strategy, the longer-run goal of maximum employment would now be assessed with broad-based

progress in the labor markets. This development reduces the emphasis on the estimates of

the natural rate of unemployment but requires estimating a long-run equilibrium employment

rate (or maximum employment or employment “star”). The UC model developed in chapter

4 could be extended to include a range of labor market variables to estimate an (unobserved)

employment star. However, to keep the estimation tractable, increasing the model size would

require difficult decisions on removing or shutting time-variation in some of the model equations.

Third, VAR models are an alternate approach to modeling jointly many different variables and

estimating the long-run equilibrium values. The advantage of the VAR-based framework is the

ability to handle larger amounts of information conveniently and flexibly than UC models (see

Morley and Wong, 2020; Chan, 2019).

On the other hand, as discussed in Chan, Koop, and Potter (2016), the advantage of UC

modeling is the availability of the direct estimates of stars, which in our case proves quite

convenient to allow for explicit modeling of the relationships between various stars. In VARs,

the long-run estimates are implied estimates; therefore, imposing long-run restrictions is not as

straightforward. That said, it will be interesting to compare the estimates of the stars using a

flexible VAR model as in Chan (2019), but with the same observables as used in chapter 4.
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Appendix A

Chapter 2 Appendix

Chapter 2: Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using

Relative Entropy.

A0: Technical Appendix

Specifically, we impose our prior beliefs about the coefficient estimates in A1, . . . , Ap and Σ

using normal inverse-Wishart (N-IW) conjugate priors.1 The prior beliefs for the means and

variances of the coefficient matrices are as follows:

E[A
(i,j)
l ] =

δi if i = j, l = 1

0 otherwise
(A.1)

V ar[A
(i,j)
l ] = λ2 1

l2
σ2
i

σ2
j

, l = 1, . . . p. (A.2)

The scale factor 1
l2

helps to impose the prior belief that recent lags play a more influential role

than distant ones by shrinking the variances on the more distant lags proportionally (centered on

the prior mean of zero). The prior parameter σi equals the standard deviation of the residuals

obtained from regressing the variable yi on its own p lags and a constant over the sample

period up to time t. We set δi equal to the sum of the autoregressive coefficients obtained

from regressing the variable yi on its own p lags and a constant over a pre-forecast evaluation

sample.2 The hyperparameter λ governs the tightness of our prior beliefs. As λ −→ 0, the

prior dominates, and so posterior equals prior; i.e., the data have no say. On the other hand,

1Natural conjugate priors such as N-IW have computational advantages and at the same time competitive
forecasting properties (see Koop, 2013).

2Since all of the variables that enter the VAR are stationary, we get qualitatively similar results if we instead
set δi = 0 for all i. Studies such as those of Clark (2011) and Carriero, Clark, and Marcellino (2015a) have used
a value of 0.8 for variables that are known to exhibit persistence (e.g., the unemployment rate, inflation and the
interest rate). Our results remain very similar if we instead set δi = 0.8.
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as λ −→ ∞, the prior’s influence diminishes, and so the posterior estimates converge to OLS

estimates.

The VAR model in Eq. (2.1) can be rewritten in compact matrix notation as

Y = XA+ E, (A.3)

where Y = [y1, . . . , yT ]′ is a T × n matrix, X = [x1, . . . , xT ]′ is a T × k matrix and xt =

[1, y
′
t−1, . . . , y

′
t−p] is a 1 × k vector. A = [Ac A1 · · · Ap] is a matrix of VAR coefficients of size

k × n, and E = [ε1 · · · εT ] is a T × n matrix of innovation terms.

The conjugate normal inverse-Wishart (N-IW) prior is:

vec (A) |Σ ∼ N (vec (A0) ,Σ⊗ Ω0) , Σ ∼ iW (S0, υ0) , (A.4)

where A0, Ω0, S0, and υ0 are the prior parameters of which the values are set based on the

VAR model in Eq. (2.1) that satisfies the prior moment conditions specified in equations (A.1

and A.2).

Since our prior N-IW is conjugate, the resulting conditional posterior distribution (i.e., the

product of the prior and the likelihood function) is also N-IW.

vec (A) |Σ, Y ∼ N
(
vec

(
A
)
,Σ⊗ Ω

)
, Σ ∼ iW

(
S, υ

)
, (A.5)

where

A =
(
Ω−1

0 +X ′X
)−1 (

Ω−1
0 A0 +X ′Y

)
, (A.6)

Ω =
(
Ω−1

0 +X ′X
)−1

and (A.7)

υ = υ0 + T (A.8)

are the respective posterior mean estimates of the VAR model, and

S = A0 + ε̂′ε̂+ Â′X ′XÂ+A′0Ω−1
0 A0 − Â′Ω

−1
Â, (A.9)

where Â = (X ′X)−1X ′Y is the OLS estimate of A and ε̂ = Y − XÂ are the OLS residuals

(Zellner, 1971). We use the mixed estimation method of Litterman (1986) to implement the

N-IW prior, which equates to appending the data matrices with dummy observations.

Previous research (e.g., Robertson & Tallman, 1999; Banbura et al., 2010) has documented

further gains in forecast accuracy by imposing a ‘sum of coefficients’ (SOC) prior on the equa-

tions of the VAR. The hyperparameter µ governs the tightness of this prior.

A0.1 Optimal values of the hyperparameters using the marginal likelihood

The values of λ and µ are set by maximizing the marginal likelihood of the model over a

predefined two-dimensional discrete grid of λ and µ. The optimization is performed over the
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pre-forecast evaluation sample, and the optimal values obtained are kept fixed over the forecast

evaluation sample.3

[λ+, µ+] = arg max
[λg ,µg ]

lnp(Y ), (A.10)

where

p(Y ) =

∫
p(Y |θ)p(θ)d(θ) (A.11)

is the marginal likelihood, and θ is the set of all model coefficients. Given that we are using an

N-IW prior, the marginal density p(Y ) can be solved in closed form as4

p(Y ) = (
1

π
)
nT
2 × |(I +XΩ0X′)

−1|
n
2 × |S0|

v0
2

×
Γn(v0+T

2 )

Γn(v02 )
× |S0 + (Y −XA0)

′
(I +XΩ0X′)

−1(Y −XA0)|
− v0+T

2 .

We evaluate the log marginal likelihood using the two-dimensional grid of discrete values that

is defined as: λg = [0.050, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50]; and µg = [0.1, 0.15, 0.2, 0.25, 0.50, 1, 1.5, 2, 2.5, 3].

For the small BVAR estimated using data starting in 1959, the optimal values obtained are

λ = 0.4 and µ = 0.2, while the optimal values for the medium VAR are λ = 0.3 and µ = 0.25.

The values that we obtain are close to those that other researchers have obtained through a

grid search optimization.

Note that the prior specification for each equation is symmetric in its treatment of own lags

of the dependent variable and lags of other variables. As such, we have a prior that is a natural

conjugate (normal inverse-Wishart prior), which proves to be convenient when solving for the

model, because these priors can be implemented easily by augmenting the data matrices with

dummy variables, thus permitting OLS to estimate the model equation by equation (for details

see Banbura et al., 2010, and Carriero et al., 2015a).

A0.2 Illustrating the influence of estimated steady state on the forecasts

This section illustrates two important concepts: the influence of a model’s estimated mean (i.e.,

steady state) on the forecasts, and the direct role of persistence in determining the forecast

horizon at which the convergence to the steady state takes place. To keep things simple, let us

consider a covariance-stationary AR(1) model,

yt = c+ ρyt−1 + εt, εt ∼ N
(
0, σ2

)
. (A.12)

3However, that being said, the results remain qualitatively similar if we instead fix λ = 0.2 and µ = 1 (widely
used values).

4Details of the derivation are provided by Bauwens, Lubrano, and Richard (1999), Carriero et al. (2015a) and
Giannone et al. (2015).
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Covariance-stationarity implies |ρ| < 1, and

E(yt) = E(yt−1) = µ, (A.13)

where µ denotes the steady state of the model. In long samples, it matches the mean of

estimation sample.

Next, taking the expectations of both sides of Eq. (A.12) gives us

E(yt) = c+ ρE(yt−1) + E(εt). (A.14)

Plugging Eq. (A.13) into Eq. (A.14) yields

µ = c+ ρµ =
c

1− ρ
. (A.15)

Rearranging the above equation gives

c = µ(1− ρ). (A.16)

Rewrite Eq. (A.12) by substituting Eq. (A.16) into Eq. (A.12):

yt = µ(1− ρ) + ρyt−1 + εt

yt − µ = ρ(yt−1 − µ) + εt.
(A.17)

Here, ρ is the persistence of y, and determines the speed of convergence back to the steady

state. 1−ρ is the pace of adjustment towards steady state in each period. 1
1−ρ is the number of

periods that it takes for y to converge back to its steady state value. Higher values of ρ imply

longer-lived departures of y from the steady state.

Denoting by ρ̂ and µ̂ estimates obtained via estimation of available data through time t, the

one-step-ahead forecast is

ŷt|t+1 − µ̂ = ρ̂(ŷt − µ̂). (A.18)

Similarly, h-step-ahead forecast is

ŷt|t+h − µ̂ = ρ̂h(ŷt − µ̂)

ŷt|t+h = µ̂+ ρ̂h(ŷt − µ̂).
(A.19)

A closer inspection of the above equation reveals that the h-step-ahead forecast is the sum of

two components: the estimated mean, and the gap between the estimated mean and y (as of

the forecast origin t) multiplied by the hth power of ρ̂.
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Note that ρ̂h is a decreasing function of h,

ρ̂ > ρ̂2 > ρ̂3 > · · · > ρ̂∞,

which suggests that the influence of the component µ̂ becomes more important as h increases.

In the limit, as h −→∞, ρ̂h −→ 0, and lim
h→∞

ŷt|t+h −→ µ̂.

The smaller the value of ρ̂, the faster ρ̂h goes to zero, and the more rapid the convergence

to the model’s implied steady state.

Please refer to Clements and Hendry (1999) for further details.
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A1. Results for Medium VARs

The Medium VAR builds on Small VAR by five additional variables that include real personal

consumption expenditures, nonfarm business productivity, the employment cost index-wage and

salary of private workers (ECI), nonfarm payroll employment, and the core CPI (i.e., the CPI

excluding food and energy). All these variables are transformed to quarterly annualized growth

rates. To compute the growth rates, we use 400 times the log difference formula.

Tables A1 to A4 below report both point and density forecast accuracy comparisons for all

10 variables. The results indicate that the patterns of both point and density forecast accuracy

improvements for hybrid forecasts are generally similar to that of small VAR. Specifically, re-

sults for medium VAR estimated with longer sample echo strongly the results reported for small

VAR with longer sample. One difference is that the magnitude of improvements for hybrid fore-

casts is slightly smaller than those reported for small VAR. The additional variables in medium

VAR are helping improve the accuracy of the core variables of interest (relative to small VAR)

therefore with more accurate raw forecasts tilting is helping slightly less (see section A4 in this

appendix). The finding that medium VAR generates more accurate forecasts compared to small

VAR are in line with Banbura et al. (2010) and Koop (2013). Results for medium VAR esti-

mated with shorter sample echo the results reported for small VAR with shorter sample. Unlike

in the case of estimation with longer sample favoring medium-sized VAR over small-sized, we

do not find this pattern for VAR models estimated with shorter sample.

The most useful aspect of the results for medium VAR is the strong positive spillover ef-

fects on the accuracy of the variables that are not directly tilted. Impressive and statistical

significant gains in the accuracy of forecasts derived from hybrid approach are achieved for core

CPI inflation, wage compensation, nonfarm payroll employment, and credit spread. It is also

worth highlighting that adding core CPI inflation and SV in the medium VAR greatly helps

improve the accuracy of the raw CPI forecasts. This implies tilting is less effective for CPI

inflation for those specifications, but for core CPI inflation it is very effective in all medium

VAR specifications.
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Table A1: Out-of-Sample Point Forecasting Performance: Medium BVAR est. 1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 3.88 6.89 6.58 6.18 3.69 6.55 6.80 6.87
Relative MSE
Baseline/Raw 0.69*** 0.98* 0.99 1.03 0.73** 0.98 1.01 1.01
Hybrid/Raw 0.69*** 0.96 0.84 0.99 0.73** 0.91* 0.82** 0.89
Hybrid/Baseline 1.00 0.93* 0.87 0.97 1.00 0.92* 0.81** 0.89
CPI
Raw 2.99 5.17 5.64 6.68 2.62 4.73 4.81 4.94
Relative MSE
Baseline/Raw 0.35*** 0.95 0.95 0.96* 0.39*** 0.93** 0.95** 0.98
Hybrid/Raw 0.35*** 0.89** 0.81*** 0.73*** 0.39*** 0.94 0.95 1.00
Hybrid/Baseline 1.00 0.95*** 0.87** 0.78*** 1.00 1.00 1.00 1.02
UR
Raw 0.05 0.61 2.43 4.10 0.05 0.58 2.34 3.99
Relative MSE
Baseline/Raw 0.33*** 0.81* 0.91** 0.96 0.32*** 0.75** 0.92* 0.96
Hybrid/Raw 0.33*** 0.82*** 0.91 0.89* 0.32*** 0.75** 0.88 0.89
Hybrid/Baseline 1.00 0.96 0.97 0.93 1.00 1.00 0.95 0.92
FFR
Raw 0.20 1.84 4.83 8.33 0.09 1.65 5.64 9.43
Relative MSE
Baseline/Raw 0.03*** 0.75** 0.96 0.99 0.02*** 0.73*** 0.89*** 0.96**
Hybrid/Raw 0.03*** 0.85** 0.93 0.78*** 0.05*** 0.80*** 0.85 0.75*
Hybrid/Baseline 1.00 1.14** 0.99 0.81* 1.00 1.09*** 0.95 0.78*
Credit Spread
Raw 0.09 0.63 1.06 1.21 0.08 0.66 1.19 1.40
Relative MSE
Baseline/Raw 0.83 0.93** 0.99 1.01 0.90* 0.98* 0.99 0.97**
Hybrid/Raw 0.79 0.96* 0.89*** 0.87*** 0.90* 0.97* 0.86*** 0.78**
Hybrid/Baseline 0.99 1.02 0.91*** 0.87*** 1.00 0.99 0.87** 0.80**

Notes for Table: GDP: real GDP growth quarterly annualized rate; CPI: inflation quarterly annualized rate; UR: unemployment rate in

levels; FFR: effective federal funds rate in levels; Credit Spread: in levels. Raw forecast is defined as the unconditional forecast from the

VAR. Baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts (both mean and variance) only. Hybrid forecast

is defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left

panel reports results for the VAR specification with constant variance and right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the row labeled Raw are the mean squared error (MSE), the three rows immediately below

report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid relative to Baseline. The table reports statistical

significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and

adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent,

and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal critical values.
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Table A1: Cont.: Out-of-Sample Point Forecasting Performance: Medium BVAR est. 1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

Consumption
Raw 2.57 4.26 4.35 4.14 2.37 4.08 4.54 4.61
Relative MSE
Baseline/Raw 0.79*** 0.94 1.04 1.06** 0.97 0.98 1.03 1.01
Hybrid/Raw 0.81** 0.94 1.03 1.07 0.99 0.95 0.93 0.98
Hybrid/Baseline 1.03 1.00 0.99 1.01 1.01 0.97 0.90 0.97
Core CPI
Raw 0.33 0.77 1.50 2.88 0.31 0.50 0.84 1.38
Relative MSE
Baseline/Raw 0.73** 0.73*** 0.84*** 0.91** 0.82** 0.80** 0.98 0.89**
Hybrid/Raw 0.68** 0.67*** 0.53*** 0.34*** 0.81** 0.77 0.86 0.64*
Hybrid/Baseline 0.93*** 0.91 0.64*** 0.37*** 0.99 0.96 0.88 0.72
Productivity
Raw 4.99 5.57 5.22 5.99 4.89 5.34 5.02 5.96
Relative MSE
Baseline/Raw 0.95 0.88** 0.97 1.02*** 1.00 0.97 1.01 1.02
Hybrid/Raw 1.01 0.89* 0.97 1.07*** 1.00 0.95 1.01 0.98
Hybrid/Baseline 1.06** 1.01 1.00 1.05*** 0.99 0.98 1.00 0.96
Compensation
Raw 0.77 1.22 2.09 2.91 0.75 1.06 1.33 1.43
Relative MSE
Baseline/Raw 1.10 0.93** 0.91*** 0.95** 1.03 0.95** 0.93*** 0.96
Hybrid/Raw 0.95 0.83*** 0.57*** 0.40*** 1.02 0.92** 0.84*** 0.75**
Hybrid/Baseline 0.86* 0.89* 0.63*** 0.42*** 0.99 0.96 0.90* 0.78***
Payroll Employment
Raw 0.55 3.49 4.76 4.68 0.52 3.04 4.30 4.33
Relative MSE
Baseline/Raw 0.64*** 0.91* 0.98* 1.07 0.63*** 0.88** 0.97*** 1.01
Hybrid/Raw 0.62*** 0.81** 0.70** 0.82** 0.61*** 0.77** 0.69*** 0.73***
Hybrid/Baseline 0.98 0.89** 0.72** 0.76*** 0.97** 0.88* 0.71*** 0.72***

Notes for Table: For all the variables in this panel, the forecasts and the associated accuracy correspond to the quarterly annualized rate.

Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast tilted towards

survey nowcasts (both mean and variance) only. Hybrid forecast is defined as the raw VAR forecast tilted towards both survey nowcasts

(both mean and variance) and long-horizon forecasts. The left panel reports results for the VAR specification with constant variance and

right panel reports results for the VAR specification with stochastic volatility. The numbers reported in the row labeled Raw are the mean

squared error (MSE), the three rows immediately below report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid

relative to Baseline. The table reports statistical significance based on the Diebold-Mariano and West test with the lag h− 1 truncation

parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne,

and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance levels, respectively. The test statistics use two-sided standard

normal critical values.

198



Table A2: Out-of-Sample Density Forecasting Performance: Medium BVAR est. 1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 1.15 1.46 1.42 1.40 1.08 1.40 1.44 1.44
Relative CRPS
Baseline - Raw -0.22*** -0.01* 0.01 0.01 -0.16*** -0.03 0.00 0.01
Hybrid - Raw -0.22*** -0.04 -0.07 0.00 -0.16*** -0.07* -0.11* -0.04
Hybrid - Baseline 0.00 -0.03 -0.08* -0.01 0.00 -0.05 -0.10* -0.05
CPI
Raw 0.96 1.17 1.28 1.38 0.90 1.11 1.18 1.22
Relative CRPS
Baseline - Raw -0.38*** -0.03 -0.02 -0.02 -0.32*** -0.05** -0.03** -0.02**
Hybrid - Raw -0.38*** -0.06** -0.10** -0.16*** -0.32*** -0.04 -0.04 -0.02
Hybrid - Baseline 0.00 -0.03** -0.08** -0.14** 0.00 0.01 -0.02 0.00
UR
Raw 0.12 0.39 0.81 1.11 0.12 0.37 0.78 1.08
Relative CRPS
Baseline - Raw -0.05*** -0.04* -0.05** -0.03 -0.04*** -0.05** -0.03 -0.01
Hybrid - Raw -0.05*** -0.05** -0.06 -0.06 -0.05*** -0.05*** -0.05 -0.04
Hybrid - Baseline 0.00 -0.01** -0.01 -0.03 0.00 -0.01 -0.02 -0.03
FFR
Raw 0.27 0.78 1.26 1.68 0.17 0.71 1.35 1.82
Relative CRPS
Baseline - Raw -0.23*** -0.10*** -0.02 0.00 -0.14*** -0.11*** -0.09*** -0.05**
Hybrid - Raw -0.23*** -0.04** 0.00 -0.14 -0.14*** -0.08*** -0.11* -0.25*
Hybrid - Baseline 0.00 0.06*** 0.01 -0.14* 0.00 0.03** -0.02 -0.20
Credit Spread
Raw 0.15 0.42 0.56 0.63 0.14 0.43 0.61 0.69
Relative CRPS
Baseline - Raw -0.01 -0.01** 0.00 0.01* -0.01 -0.01* -0.01* 0.00
Hybrid - Raw -0.01 -0.01* -0.04*** -0.05*** 0.00 -0.01* -0.06*** -0.08***
Hybrid - Baseline 0.00 0.00 -0.04*** -0.06*** 0.00 0.00 -0.05*** -0.08***

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts (both mean and variance) and long-horizon forecasts. The numbers reported in the row labeled Raw are the mean

cumulative ranked probability score (CRPS), all other numbers are relative CRPS; relative to Raw or relative to Baseline. A negative

value for Relative CRPS suggests that on average the Baseline forecast is more accurate compared to the Raw forecast (in the case of

Baseline - Raw); Hybrid more accurate compared to Raw (in the case of Hybrid - Raw); Hybrid more accurate compared to Baseline (in

the case of Hybrid - Baseline). The left panel reports results for time-invariant Medium VAR and right panel reports results corresponding

to Medium VAR with stochastic volatility. The table reports statistical significance based on the Diebold-Mariano and West test with the

lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance levels, respectively. The test statistics use

two-sided standard normal critical values.
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Table A2: Cont. Out-of-Sample Density Forecasting Performance: Medium BVAR est.
1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

Consumption
Raw 0.93 1.15 1.16 1.16 0.87 1.10 1.18 1.20
Relative CRPS
Baseline - Raw -0.10*** -0.01 0.02 0.04** -0.02 -0.02 0.00 -0.01
Hybrid - Raw -0.09*** -0.01 0.04 0.04** -0.01 -0.04 -0.02 0.00
Hybrid - Baseline 0.01 0.00 0.02 0.00 0.01 -0.02 -0.02 0.01
Core CPI
Raw 0.37 0.56 0.77 1.02 0.31 0.41 0.54 0.70
Relative CRPS
Baseline - Raw -0.05*** -0.05*** -0.05*** -0.04** -0.02** -0.04*** -0.01 -0.03***
Hybrid - Raw -0.06*** -0.05** -0.12** -0.25*** -0.02** -0.04* -0.03 -0.08
Hybrid - Baseline -0.01 0.00 -0.08*** -0.22*** 0.00 0.00 -0.01 -0.05
Productivity
Raw 1.28 1.35 1.33 1.40 1.26 1.31 1.30 1.39
Relative CRPS
Baseline - Raw -0.04 -0.06** 0.00 0.03*** 0.01 -0.01 0.00 0.02
Hybrid - Raw -0.05*** -0.05** -0.06 -0.06 0.02 -0.01 0.00 0.00
Hybrid - Baseline 0.03** -0.01 0.00 0.03** 0.01 0.00 0.00 -0.02
Compensation
Raw 0.53 0.65 0.85 1.02 0.48 0.58 0.67 0.72
Relative CRPS
Baseline - Raw 0.01 -0.03*** -0.04*** -0.01 0.00 -0.02*** -0.02*** -0.02
Hybrid - Raw -0.01 -0.05*** -0.14*** -0.25*** 0.00 -0.03*** -0.04*** -0.05*
Hybrid - Baseline -0.02* -0.02* -0.10*** -0.23*** 0.00 -0.01 -0.02* -0.04*
Payroll Employment
Raw 0.42 0.98 1.16 1.15 0.40 0.90 1.10 1.13
Relative CRPS
Baseline - Raw -0.08*** -0.04 0.00 0.05 -0.07*** -0.07*** -0.01** 0.01
Hybrid - Raw -0.08*** -0.09* -0.19** -0.11* -0.08 -0.13*** -0.19** -0.15**
Hybrid - Baseline 0.00 -0.05** -0.19** -0.16** -0.01* -0.06* -0.17** -0.16**

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts (both mean and variance) and long-horizon forecasts. The numbers reported in the row labeled Raw are the mean

cumulative ranked probability score (CRPS), all other numbers are relative CRPS; relative to Raw or relative to Baseline. A negative

value for Relative CRPS suggests that on average the Baseline forecast is more accurate compared to the Raw forecast (in the case of

Baseline - Raw); Hybrid more accurate compared to Raw (in the case of Hybrid - Raw); Hybrid more accurate compared to Baseline (in

the case of Hybrid - Baseline). The left panel reports results for time-invariant Medium VAR and right panel reports results corresponding

to Medium VAR with stochastic volatility. The table reports statistical significance based on the Diebold-Mariano and West test with the

lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance levels, respectively. The test statistics use

two-sided standard normal critical values.
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Table A3: Out-of-Sample Point Forecasting Performance: Medium BVAR est. 1985

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 3.72 7.10 7.75 7.36 3.99 6.72 8.00 8.04
Relative MSE
Baseline/Raw 0.72** 0.93*** 0.96 1.03*** 0.68*** 0.97 1.01 1.02
Hybrid/Raw 0.72** 0.86* 0.77*** 0.91** 0.68*** 0.88 0.75** 0.78**
Hybrid/Baseline 1.00 0.92 0.80** 0.89*** 1.00 0.92 0.74* 0.77**
CPI
Raw 3.65 5.08 5.39 6.51 2.70 4.83 4.88 5.44
Relative MSE
Baseline/Raw 0.28*** 0.99 1.001 1.00 0.38*** 0.98 0.97** 0.99
Hybrid/Raw 0.28*** 0.92 0.84** 0.83*** 0.38*** 0.95 0.92* 0.90**
Hybrid/Baseline 1.00 0.93* 0.84*** 0.83*** 1.00 0.97 0.95 0.91**
UR
Raw 0.05 0.53 2.21 4.11 0.04 0.49 2.16 4.15
Relative MSE
Baseline/Raw 0.31*** 0.72* 0.85 0.93 0.39*** 0.80*** 0.90* 0.95
Hybrid/Raw 0.31*** 0.73* 0.88 0.91 0.39*** 0.83*** 0.93 0.89
Hybrid/Baseline 1.00 1.02 1.04 0.98 1.00 1.04 1.03 0.94
FFR
Raw 0.10 2.03 7.39 12.95 0.08 1.94 6.81 12.83
Relative MSE
Baseline/Raw 0.05*** 0.66*** 0.86*** 0.96* 0.06*** 0.66*** 0.85*** 0.93**
Hybrid/Raw 0.05*** 0.60*** 0.65*** 0.66** 0.06*** 0.64*** 0.65** 0.50
Hybrid/Baseline 1.00 0.90 0.75** 0.69** 1.00 0.97 0.76 0.54
Credit Spread
Raw 0.11 0.66 1.09 1.21 0.09 0.69 1.16 1.25
Relative MSE
Baseline/Raw 0.68** 0.92* 0.98** 1.04 0.87* 1.01 1.03 1.04
Hybrid/Raw 0.68** 0.89** 0.91 0.94 0.84* 1.00 0.86 0.82
Hybrid/Baseline 1.01 0.96 0.93 0.90* 0.97** 0.99 0.84 0.79

Notes for Table: GDP: real GDP growth quarterly annualized rate; CPI: inflation quarterly annualized rate; UR: unemployment rate in

levels; FFR: effective federal funds rate in levels; Credit Spread: in levels. Raw forecast is defined as the unconditional forecast from the

VAR. Baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts (both mean and variance) only. Hybrid forecast

is defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left

panel reports results for the VAR specification with constant variance and right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the row labeled Raw are the mean squared error (MSE), the three rows immediately below

report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid relative to Baseline. The table reports statistical

significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and

adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent,

and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal critical values.
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Table A3: Cont.: Out-of-Sample Point Forecasting Performance: Medium BVAR est. 1985

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

Consumption
Raw 2.55 4.79 5.91 6.45 2.70 4.64 6.27 6.71
Relative MSE
Baseline/Raw 0.94 0.95 0.97 1.01 0.97 0.98 0.98 1.06
Hybrid/Raw 0.93 0.96 0.86*** 0.81** 0.98 0.93 0.79 0.82***
Hybrid/Baseline 0.99 1.01 0.88 0.80 1.01 0.94 0.80 0.77***
Core CPI
Raw 0.36 0.59 0.95 1.54 0.35 0.55 0.74 1.12
Relative MSE
Baseline/Raw 0.87** 0.96 0.91** 0.95*** 0.82** 0.91** 0.92** 0.92**
Hybrid/Raw 0.88** 0.82* 0.59** 0.54*** 0.81** 0.77** 0.74 0.60**
Hybrid/Baseline 1.01 0.86 0.65** 0.57** 0.99 0.85* 0.81 0.65*
Productivity
Raw 4.81 5.89 5.06 6.45 4.78 5.58 5.41 6.55
Relative MSE
Baseline/Raw 0.98 0.90** 1.01 1.02** 0.98 0.98** 1.00 1.02***
Hybrid/Raw 0.95 0.88*** 1.03 0.95 0.96 0.98 1.02 0.97
Hybrid/Baseline 0.97* 0.97 1.02 0.93** 0.98* 1.01 1.02 0.95
Compensation
Raw 0.83 1.00 1.19 1.36 0.77 0.92 1.05 1.23
Relative MSE
Baseline/Raw 1.03 1.05 0.96 1.00 1.06* 1.04 1.00 0.99
Hybrid/Raw 1.05 1.04 0.96 0.96 1.04 1.07 1.01 0.95
Hybrid/Baseline 1.02 0.99 1.00 0.96 0.98 1.03 1.00 0.96
Payroll Employment
Raw 0.56 2.76 4.14 3.97 0.49 2.88 4.64 4.57
Relative MSE
Baseline/Raw 0.67*** 0.83** 0.98 1.08 0.70*** 0.85** 0.99 1.02
Hybrid/Raw 0.64*** 0.72** 0.79** 0.90 0.67*** 0.80* 0.71 0.70**
Hybrid/Baseline 0.95* 0.87 0.81* 0.83*** 0.96** 0.94 0.72 0.69*

Notes for Table: for all the variables in this panel, the forecasts and the associated accuracy correspond to the quarterly annualized rate.

Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast tilted towards

survey nowcasts (both mean and variance) only. Hybrid forecast is defined as the raw VAR forecast tilted towards both survey nowcasts

(both mean and variance) and long-horizon forecasts. The left panel reports results for the VAR specification with constant variance and

right panel reports results for the VAR specification with stochastic volatility. The numbers reported in the row labeled Raw are the mean

squared error (MSE), the three rows immediately below report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid

relative to Baseline. The table reports statistical significance based on the Diebold-Mariano and West test with the lag h− 1 truncation

parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne,

and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance levels, respectively. The test statistics use two-sided standard

normal critical values.
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Table A4: Out-of-Sample Density Forecasting Performance:Medium BVAR est. 1985

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 1.08 1.47 1.53 1.49 1.13 1.44 1.57 1.61
Relative CRPS
Baseline - Raw -0.16** -0.06*** -0.02 0.03 -0.20*** -0.02 0.00 -0.01
Hybrid - Raw -0.16** -0.11 -0.19** -0.07** -0.20*** -0.07 -0.15** -0.13***
Hybrid - Baseline 0.00 -0.04 -0.17** -0.10*** 0.00 -0.05 -0.15* -0.12***
CPI
Raw 1.02 1.23 1.26 1.40 0.93 1.16 1.21 1.31
Relative CRPS
Baseline - Raw -0.43*** -0.03 0.01 0.02 -0.35*** -0.03** -0.02*** -0.02*
Hybrid - Raw -0.43*** -0.11* -0.15** -0.17*** -0.35*** -0.05* -0.05 -0.07**
Hybrid - Baseline 0.00 -0.08** -0.17*** -0.19*** 0.00 -0.02 -0.03 -0.05**
UR
Raw 0.12 0.36 0.77 1.15 0.11 0.35 0.75 1.11
Relative CRPS
Baseline - Raw -0.05*** -0.05** -0.05 -0.03* -0.04*** -0.04*** -0.04** -0.03*
Hybrid - Raw -0.05*** -0.05 -0.02 -0.03 -0.04*** -0.04*** -0.02 -0.03
Hybrid - Baseline 0.00 0.01 0.03 0.00 0.00 0.01 0.02 0.00
FFR
Raw 0.18 0.84 1.63 2.15 0.16 0.80 1.53 2.05
Relative CRPS
Baseline - Raw -0.14*** -0.17*** -0.13*** -0.06*** -0.13*** -0.15*** -0.13*** -0.08***
Hybrid - Raw -0.14*** -0.20*** -0.35*** -0.46*** -0.13*** -0.15*** -0.25** -0.43
Hybrid - Baseline 0.00 -0.04 -0.22** -0.40** 0.00 0.00 -0.13 -0.35
Credit Spread
Raw 0.17 0.44 0.59 0.66 0.16 0.44 0.59 0.63
Relative CRPS
Baseline - Raw -0.02*** -0.01 -0.01* 0.02 -0.01* 0.00 0.00 0.00
Hybrid - Raw -0.02** -0.03* -0.04* -0.03 -0.01* -0.01 -0.04* -0.05*
Hybrid - Baseline 0.00 -0.02* -0.03* -0.05** 0.00 0.00 -0.04 -0.05

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts and long-horizon forecasts. The numbers reported in the row labeled Raw are the mean cumulative ranked probability

score (CRPS), all other numbers are relative CRPS; relative to Raw or relative to Baseline. A negative value for Relative CRPS suggests

that on average the Baseline forecast is more accurate compared to the Raw forecast (in the case of Baseline - Raw); Hybrid more accurate

compared to Raw (in the case of Hybrid - Raw); Hybrid more accurate compared to Baseline (in the case of Hybrid - Baseline). The left

panel reports results for time-invariant Medium VAR and right panel reports results corresponding to Medium VAR with stochastic

volatility. The table reports statistical significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of

the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold

(1997); *10 percent, **5 percent, and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal

critical values.
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A2. Density Forecast Calibration Diagnostics

As indicated in the main body of the chapter, the density calibration is assessed using:

a. Interval forecasts (i.e. 70% prediction intervals)

b. Formal assessment of probability integral transforms (PITS) using

i). Berkowitz (2001) test: tests for the uniformity of the PITS by testing whether the in-

verse normal transformation of the PITS is distributed iidN(0, 1). Specifically, for the case of

one-step ahead density forecast, the test involves testing whether the transformed PIT distribu-

tion is iidN(0, 1). The test statistic (likelihood ratio test) is asymptotically χ2(3) distributed.

For horizons beyond one-step, we test whether transformed PIT distribution is identically dis-

tributed N(0, 1) and the test statistic is asymptotically χ2(2) distributed.

ii). Kolomogorov-Smirnov test: tests for the closeness between the CDF of a U(0, 1) and the

empirical distribution of PITS. The critical values for the tests are obtained using the procedure

discussed in Rossi and Sekhposyan (2014).

iii). Knüppel (2015) test: is considered a more powerful test because it is a raw moments

(i.e. nonstandardized, noncentral momements) based test and is robust to the presence of serial

correlation in the PITS corresponding to the multi-step ahead density forecasts.

Generally, all three tests point to similar inference. Therefore, in the interest of brevity, we

report inference based on Knüppel (2015) test only.

Tables A5 through A8 report the density calibration for all the VAR models considered in

the chapter.

The entries reported in the rows labeled COV are the 70% empirical coverage rates. And

the associated sharpness of the prediction intervals (defined as the average difference between

the 15th and 85th percentiles of the predictive densities) are reported in the rows labeled

LEN. Smaller values of LEN indicate more concentrated densities (higher sharpness). Sharper

forecasts are preferred conditional on correctly calibrated densities.
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Table A5: Calibration Assessment of Density Forecasts: Small VAR est. 1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP Raw PIT 0.00 0.00 0.00 0.00 PIT 0.07 0.00 0.01 0.02
COV 86.4 85.9 92.6 90.9 COV 75.0 70.6 74.1 79.2
LEN 6.09 6.87 7.21 7.29 LEN 4.28 5.06 5.68 6.08

Baseline PIT 0.49 0.00 0.00 0.00 PIT 0.37 0.00 0.01 0.03
COV 71.6 84.7 88.9 89.6 COV 72.7 68.2 76.5 80.5
LEN 3.54 6.71 6.97 7.07 LEN 3.37 4.90 5.46 5.92

Hybrid PIT 0.49 0.00 0.00 0.00 PIT 0.38 0.07 0.12 0.02
COV 72.7 88.2 90.1 87.0 COV 70.5 71.8 76.5 81.8
LEN 3.57 6.65 7.06 7.03 LEN 3.38 5.08 5.82 6.40

CPI Inflation Raw PIT 0.92 0.00 0.00 0.00 PIT 0.61 0.03 0.00 0.00
COV 67.1 80.0 80.3 81.8 COV 65.9 78.8 76.5 83.1
LEN 3.16 4.80 5.99 6.48 LEN 3.37 4.94 6.26 7.07

Baseline PIT 0.60 0.01 0.00 0.00 PIT 0.88 0.01 0.00 0.00
COV 69.3 82.4 82.7 79.2 COV 70.5 77.7 79.0 83.1
LEN 2.24 4.54 5.82 6.44 LEN 2.18 4.52 5.91 6.73

Hybrid PIT 0.74 0.00 0.00 0.00 PIT 0.90 0.00 0.00 0.00
COV 70.5 83.5 90.1 87.0 COV 70.5 80.0 81.5 92.2
LEN 2.19 4.52 6.02 6.56 LEN 2.17 4.69 6.22 7.22

UR Raw PIT 0.57 0.00 0.00 0.00 PIT 0.95 0.01 0.00 0.00
COV 79.6 84.7 74.1 62.3 COV 71.6 77.7 70.4 62.3
LEN 0.47 1.47 2.14 2.55 LEN 0.40 1.19 1.89 2.49

Baseline PIT 0.00 0.00 0.00 0.00 PIT 0.01 0.01 0.00 0.00
COV 70.5 80.0 75.3 63.6 COV 72.7 77.7 72.8 62.3
LEN 0.27 1.29 2.06 2.47 LEN 0.26 1.06 1.78 2.34

Hybrid PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.01 0.00 0.00
COV 70.5 83.5 75.3 58.4 COV 72.7 75.3 65.4 50.7
LEN 0.27 1.32 2.09 2.47 LEN 0.26 1.09 1.87 2.51

FFR Raw PIT 0.00 0.00 0.00 0.00 PIT 0.38 0.00 0.00 0.00
COV 93.2 85.9 72.8 57.1 COV 76.1 71.8 63.0 49.4
LEN 1.70 4.09 5.77 6.55 LEN 0.73 2.62 4.44 5.38

Baseline PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 75.0 88.2 72.8 58.4 COV 76.1 75.3 61.7 50.7
LEN 0.15 3.51 5.55 6.39 LEN 0.13 2.14 4.19 5.21

Hybrid PIT 0.00 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 79.6 87.1 76.5 72.7 COV 79.6 74.1 72.8 70.1
LEN 0.16 3.49 5.60 6.62 LEN 0.13 2.23 4.41 5.61

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts (both mean and variance) and long-horizon forecasts. PIT are the p-values from the statistical test of Knüppel (2015).

The values less than 0.10 suggest instances where the hypothesis of correctly calibrated density forecasts is rejected at the 10% significance

level. COV corresponds to the 70% empirical coverage rate; values closer to nominal value of 70% is preferred. LEN corresponds to the

width of the 70% prediction intervals.
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Table A6: Calibration Assessment of Density Forecasts: Small VAR est. 1985

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP Raw PIT 0.83 0.27 0.22 0.27 PIT 0.31 0.11 0.17 0.17
COV 69.3 64.7 69.1 71.4 COV 73.9 71.8 71.6 76.6
LEN 3.96 4.74 4.82 4.81 LEN 4.15 5.06 5.41 5.67

Baseline PIT 0.49 0.43 0.21 0.16 PIT 0.38 0.20 0.18 0.24
COV 71.6 69.4 69.1 70.1 COV 70.5 72.9 74.1 76.6
LEN 3.49 4.62 4.82 4.70 LEN 3.38 4.87 5.27 5.54

Hybrid PIT 0.44 0.50 0.54 0.21 PIT 0.36 0.50 0.19 0.13
COV 71.6 68.2 75.3 74.0 COV 70.5 74.1 76.5 77.9
LEN 3.51 4.67 4.86 4.76 LEN 3.38 5.01 5.51 5.83

CPI Inflation Raw PIT 0.08 0.10 0.01 0.00 PIT 0.84 0.21 0.22 0.38
COV 59.1 60.0 54.3 54.6 COV 60.2 69.4 64.2 66.2
LEN 2.80 3.11 3.19 3.23 LEN 3.26 3.81 4.07 4.40

Baseline PIT 0.76 0.10 0.01 0.00 PIT 0.81 0.12 0.23 0.42
COV 70.5 58.8 51.9 49.4 COV 68.2 64.7 64.2 64.9
LEN 2.20 3.02 3.05 3.21 LEN 2.16 3.61 3.98 4.27

Hybrid PIT 0.96 0.21 0.28 0.13 PIT 0.79 0.21 0.46 0.53
COV 69.3 65.9 61.7 62.3 COV 69.3 72.9 71.6 71.4
LEN 2.19 3.05 3.08 3.25 LEN 2.15 3.70 4.13 4.42

UR Raw PIT 0.14 0.00 0.00 0.00 PIT 0.75 0.05 0.04 0.00
COV 64.8 68.2 63.0 54.6 COV 71.6 80.0 70.4 61.0
LEN 0.32 1.09 1.98 2.37 LEN 0.40 1.26 2.26 2.86

Baseline PIT 0.00 0.00 0.00 0.00 PIT 0.01 0.02 0.02 0.00
COV 69.3 74.1 61.7 49.4 COV 71.6 76.5 70.4 59.7
LEN 0.26 0.98 1.85 2.30 LEN 0.26 1.11 2.11 2.78

Hybrid PIT 0.00 0.00 0.00 0.00 PIT 0.01 0.00 0.01 0.05
COV 69.3 69.4 59.3 53.3 COV 70.5 75.3 65.4 66.2
LEN 0.26 1.00 1.86 2.30 LEN 0.26 1.13 2.19 2.93

FFR Raw PIT 0.12 0.00 0.00 0.00 PIT 0.13 0.00 0.00 0.00
COV 80.7 60.0 60.5 55.8 COV 80.7 70.6 67.9 61.0
LEN 0.66 2.32 4.07 4.96 LEN 0.66 2.55 4.69 5.98

Baseline PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 77.3 64.7 58.0 54.6 COV 76.1 76.5 67.9 59.7
LEN 0.15 1.89 3.73 4.76 LEN 0.13 2.05 4.31 5.73

Hybrid PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 78.4 67.1 61.7 63.6 COV 77.3 77.7 75.3 70.1
LEN 0.15 1.93 3.77 4.79 LEN 0.13 2.11 4.45 5.95

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts (both mean and variance) and long-horizon forecasts. PIT are the p-values from the statistical test of Knüppel (2015).

The values less than 0.10 suggest instances where the hypothesis of correctly calibrated density forecasts is rejected at the 10% significance

level. COV corresponds to the 70% empirical coverage rate; values closer to nominal value of 70% is preferred. LEN corresponds to the

width of the 70% prediction intervals.
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Table A7: Calibration Assessment of Density Forecasts: Small TVP-VAR

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small TVP VAR Small TVP VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP Raw PIT 0.00 0.00 0.00 0.00 PIT 0.16 0.03 0.23 0.60
COV 88.6 84.7 90.1 92.2 COV 60.2 60.0 65.4 68.8
LEN 6.55 7.12 7.57 7.78 LEN 3.28 3.84 4.12 4.20

Baseline PIT 0.37 0.00 0.00 0.00 PIT 0.45 0.03 0.22 0.49
COV 72.7 87.1 90.1 90.9 COV 70.5 63.5 67.9 70.1
LEN 3.50 7.03 7.53 7.72 LEN 3.25 3.80 4.17 4.30

Hybrid PIT 0.41 0.00 0.00 0.00 PIT 0.41 0.11 0.73 0.37
COV 72.7 88.2 92.6 90.9 COV 71.6 67.1 70.4 70.1
LEN 3.51 7.18 7.61 7.82 LEN 3.27 3.87 4.37 4.52

CPI Inflation Raw PIT 0.44 0.00 0.00 0.00 PIT 0.05 0.01 0.00 0.00
COV 70.5 87.1 87.7 89.6 COV 50.0 72.9 74.1 76.6
LEN 3.80 5.88 6.98 7.34 LEN 2.68 4.10 4.76 5.10

Baseline PIT 0.75 0.00 0.00 0.00 PIT 0.97 0.03 0.00 0.00
COV 69.3 85.9 87.7 88.3 COV 68.2 75.3 75.3 72.7
LEN 2.22 5.52 6.83 7.27 LEN 2.11 4.01 4.80 5.18

Hybrid PIT 0.81 0.00 0.00 0.00 PIT 0.94 0.10 0.02 0.01
COV 70.5 89.4 92.6 92.2 COV 68.2 80.0 76.5 83.1
LEN 2.23 5.74 7.22 7.70 LEN 2.10 4.19 5.08 5.58

UR Raw PIT 0.02 0.00 0.00 0.00 PIT 0.00 0.00 0.00 0.00
COV 77.3 92.9 82.7 72.7 COV 46.6 48.2 40.7 44.2
LEN 0.54 1.76 2.68 3.13 LEN 0.28 0.90 1.60 2.08

Baseline PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 73.9 89.4 85.2 71.4 COV 72.7 60.0 39.5 37.7
LEN 0.27 1.49 2.56 3.06 LEN 0.26 0.87 1.57 2.08

Hybrid PIT 0.02 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 71.6 90.6 85.2 80.5 COV 72.7 63.5 49.4 46.8
LEN 0.27 1.51 2.61 3.22 LEN 0.26 0.88 1.63 2.23

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts (both mean and variance) and long-horizon forecasts. PIT are the p-values from the statistical test of Knüppel (2015).

The values less than 0.10 suggest instances where the hypothesis of correctly calibrated density forecasts is rejected at the 10% significance

level. COV corresponds to the 70% empirical coverage rate; values closer to nominal value of 70% is preferred. LEN corresponds to the

width of the 70% prediction intervals.
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Table A8: Calibration Assessment of Density Forecasts: Medium VAR est. 1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Medium VAR Medium VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP Raw PIT 0.00 0.00 0.00 0.00 PIT 0.36 0.00 0.00 0.00
COV 87.5 87.1 91.4 90.9 COV 69.3 72.9 81.5 83.1
LEN 5.72 6.70 7.10 7.31 LEN 4.08 5.24 5.80 6.11

Baseline PIT 0.49 0.00 0.00 0.00 PIT 0.37 0.01 0.00 0.00
COV 72.7 87.1 92.6 89.6 COV 71.6 70.6 79.0 81.8
LEN 3.54 6.53 7.11 7.20 LEN 3.39 5.15 5.65 6.04

Hybrid PIT 0.60 0.00 0.00 0.00 PIT 0.46 0.10 0.03 0.01
COV 76.1 87.1 91.4 88.3 COV 71.6 75.3 77.8 81.8
LEN 3.57 6.66 6.97 7.28 LEN 3.39 5.29 5.95 6.31

CPI Inflation Raw PIT 0.76 0.05 0.00 0.00 PIT 0.58 0.32 0.05 0.00
COV 63.6 76.5 81.5 83.1 COV 62.5 75.3 79.0 81.8
LEN 3.05 4.50 5.44 6.01 LEN 3.15 4.14 4.92 5.59

Baseline PIT 0.82 0.11 0.00 0.00 PIT 0.91 0.30 0.10 0.00
COV 71.6 77.7 82.7 84.4 COV 68.2 74.1 75.3 81.8
LEN 2.22 4.28 5.36 5.89 LEN 2.16 3.95 4.73 5.36

Hybrid PIT 0.88 0.07 0.00 0.00 PIT 0.91 0.11 0.02 0.00
COV 72.7 77.7 86.4 89.6 COV 68.2 77.7 79.0 85.7
LEN 2.23 4.31 5.52 6.20 LEN 2.15 4.02 4.92 5.57

UR Raw PIT 0.42 0.00 0.00 0.00 PIT 0.33 0.01 0.00 0.00
COV 72.7 81.2 71.6 62.3 COV 67.1 71.8 70.4 68.8
LEN 0.40 1.37 2.15 2.61 LEN 0.39 1.19 2.01 2.61

Baseline PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.01 0.00 0.00
COV 68.2 76.5 72.8 63.6 COV 72.7 77.7 70.4 66.2
LEN 0.27 1.24 2.05 2.49 LEN 0.26 1.10 1.90 2.53

Hybrid PIT 0.00 0.00 0.00 0.00 PIT 0.01 0.00 0.00 0.00
COV 70.5 78.8 72.8 62.3 COV 71.6 82.4 69.1 59.7
LEN 0.26 1.24 2.07 2.48 LEN 0.26 1.11 1.99 2.64

FFR Raw PIT 0.00 0.00 0.00 0.00 PIT 0.52 0.02 0.00 0.00
COV 94.3 87.1 81.5 70.1 COV 77.3 72.9 64.2 54.6
LEN 1.57 3.74 5.32 6.14 LEN 0.76 2.41 3.97 4.90

Baseline PIT 0.01 0.00 0.00 0.00 PIT 0.01 0.01 0.00 0.00
COV 78.4 84.7 80.3 68.8 COV 76.1 75.3 66.7 52.0
LEN 0.15 3.33 5.08 5.94 LEN 0.13 2.04 3.74 4.75

Hybrid PIT 0.00 0.00 0.00 0.00 PIT 0.00 0.00 0.00 0.00
COV 79.6 85.9 79.0 68.8 COV 78.4 67.1 67.9 68.8
LEN 0.16 3.33 5.22 6.20 LEN 0.13 2.09 3.92 4.98

Notes for Table: Raw forecast is defined as the unconditional forecast from the VAR. Baseline forecast is defined as the raw VAR forecast

tilted towards survey nowcasts only (both mean and variance). Hybrid forecast is defined as the raw VAR forecast tilted towards both

survey nowcasts (both mean and variance) and long-horizon forecasts. PIT are the p-values from the statistical test of Knüppel (2015).

The values less than 0.10 suggest instances where the hypothesis of correctly calibrated density forecasts is rejected at the 10% significance

level. COV corresponds to the 70% empirical coverage rate; values closer to nominal value of 70% is preferred. LEN corresponds to the

width of the 70% prediction intervals.
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A3. Density Forecast Assessment based on Log-Score metric

The two widely used metrics for assessing the relative accuracy for density forecasts are the

CRPS and Log-score. In the main body of the chapter we report the density forecast accuracy

based on the CRPS metric. In this section we report the accuracy comparison results based on

log-score. Log-score is the logarithm of the predictive density evaluated at the actual realiza-

tion. Higher values are preferred to lower. As a reminder, in the case of CRPS, lower values

are preferred to higher. The log-scores are computed based on normal kernel approximation

method (for untilted densities, i.e. RAW forecasts, both parametric normal approximation and

normal kernel approximation methods gives similar scores).

Tables A9 to A11 report the density forecast accuracy results based on the log-score. The

numbers reported in the row labeled Raw are the mean logarithmic score of the Raw forecasts,

all other numbers are relative log-Score. The relative log-score is the difference between average

log-scores of the two forecasts. A positive value for Relative Log-Score suggests that on average

the Baseline forecast is more accurate compared to the Raw forecast (in the case of Baseline

- Raw); Hybrid more accurate compared to Raw (in the case of Hybrid - Raw); Hybrid more

accurate compared to Baseline (in the case of Hybrid - Baseline). The left panel reports results

for time-invariant Small VAR and right panel reports results corresponding to Small VAR with

stochastic volatility.

The assessment based on log-score metric generally confirms the inference based on CRPS

metric. In that Baseline density forecasts are more accurate compared to Raw forecasts, and

density forecasts derived from the Hybrid forecasts are more accurate compared to both the

Raw and Baseline forecasts. However, assessment based on log-score point to slightly fewer

statistical significant gains which we suspect is partly due to the use of likelihood-ratio statisti-

cal test of Amisano and Giacomini (2007) that is more suitable for the rolling estimation scheme.

The Amisano and Giacomini (2007) test consists of regressing the differences in the log-

scores (between two forecasts) on a constant and testing whether the constant is different from

zero. The test statistic is based on a two-sided t-test, and are computed using the Newey-West

variance estimator (i.e. serial-correlation robust variance of the regression constant). This test is

suitable for forecasts generated from models that are estimated with rolling estimation scheme.

This is not the case here because forecasts are generated using recursive scheme therefore the

statistical significance should only be viewed as a rough approximation.
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Table A9: Density Forecasting using Log-Score metric : Small BVAR est. 1960

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

GDP
Raw -2.25 -2.46 -2.46 -2.44 -2.09 -2.33 -2.40 -2.42
Relative Log-Score
Baseline - Raw 0.32*** -0.06 0.02 0.01 0.11** -0.33 -0.04 -0.06
Hybrid - Raw 0.33** 0.04 0.00 0.01 0.12** -0.03 -0.01 -0.06
Hybrid - Baseline 0.01 0.09 -0.02 -0.01 0.01 0.30 0.03 0.00
CPI
Raw -1.93 -2.21 -2.38 -2.47 -1.93 -2.17 -2.32 -2.39
Relative Log-Score
Baseline - Raw 0.49*** 0.06 0.05 0.00 0.50*** 0.07 0.00 0.02
Hybrid - Raw 0.48*** 0.11*** 0.17*** 0.10 0.50*** 0.05 0.03 0.06*
Hybrid - Baseline -0.01 0.06 0.12*** 0.10* 0.00 -0.01 0.03 0.05
UR
Raw 0.08 -1.08 -1.87 -2.25 0.18 -0.99 -2.00 -2.28
Relative Log-Score
Baseline - Raw 0.50*** 0.13*** 0.22* 0.20 0.41*** 0.17** 0.26 0.16
Hybrid - Raw 0.49*** 0.21*** 0.25 0.17 0.41*** 0.20** 0.37 0.16
Hybrid - Baseline -0.01 0.08 0.03 -0.03 0.00 0.03 0.11 0.00
FFR
Raw -0.86 -1.88 -2.37 -2.62 -0.15 -1.71 -2.47 -2.82
Relative Log-Score
Baseline - Raw 2.19*** 0.15*** 0.03 -0.04 1.54*** 0.22*** 0.13*** 0.05*
Hybrid - Raw 2.12*** 0.15*** 0.05 0.11** 1.56*** 0.23*** 0.28*** 0.32***
Hybrid - Baseline -0.06 0.00 0.03 0.14*** 0.02 0.01 0.15** 0.27***
Credit Spread
Raw -0.10 -1.18 -1.62 -1.78 -0.02 -1.49 -1.95 -2.22
Relative Log-Score
Baseline - Raw 0.05 0.00 0.04 0.01 0.02 0.02 0.11 -0.29*
Hybrid - Raw 0.07 0.06 0.13 0.19** 0.05 0.21 0.35 0.08
Hybrid - Baseline 0.02 0.06 0.09 0.18*** 0.03 0.19* 0.24*** 0.37***

Notes for Table: Raw forecast is defined as the unconditional forecast from the BVAR. Baseline forecast is defined as the raw BVAR

forecast tilted towards survey nowcasts only. Hybrid forecast is defined as the raw BVAR forecast tilted towards both survey nowcasts and

long-horizon forecasts. The numbers reported in the row labeled Raw are the mean logarithmic score (Log-Score), all other numbers are

relative Log-Score; relative to Raw or relative to Baseline. A positive value for Relative Log-Score suggests that on average the Baseline

forecast is more accurate compared to the Raw forecast (in the case of Baseline - Raw); Hybrid more accurate compared to Raw (in the

case of Hybrid - Raw); Hybrid more accurate compared to Baseline (in the case of Hybrid - Baseline). The left panel reports results for

time-invariant Small VAR and right panel reports results corresponding to Small VAR with stochastic volatility. The table reports

statistical significance of the equal predictive accuracy based on testing whether the constant term in the regression of the differences in the

log-score on the constant is statistically different from zero. The test statistics are based on a two-sided t-test, and are computed using the

Newey-West variance estimator (i.e. serial-correlation robust variance of the regression constant); *10 %, **5 %, ***1 % significance levels.
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Table A10: Density Forecasting using Log-Score metric : Small BVAR est. 1985

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

GDP
Raw -2.04 -2.33 -2.37 -2.37 -2.07 -2.32 -2.40 -2.41
Relative Log-Score
Baseline - Raw 0.14** 0.05 -0.07*** -0.08 0.14** -0.16 -0.03 -0.01
Hybrid - Raw 0.12* -0.06 0.08 -0.04 0.15** -0.18 0.02 -0.01
Hybrid - Baseline -0.02 -0.10 0.15 0.04 0.01 -0.02 0.05* 0.00
CPI
Raw -1.91 -2.16 -2.21 -2.30 -1.89 -2.12 -2.15 -2.22
Relative Log-Score
Baseline - Raw 0.40*** 0.00 -0.03 0.01 0.47*** -0.01 0.00 -0.03
Hybrid - Raw 0.42*** 0.04 0.14*** 0.09* 0.47*** 0.02 0.05 0.00
Hybrid - Baseline 0.02 0.03 0.17*** 0.08** 0.00 0.03 0.05 0.03
UR
Raw 0.13 -0.97 -1.92 -2.42 0.19 -0.98 -1.82 -2.30
Relative Log-Score
Baseline - Raw 0.32*** 0.15 0.20 0.04 0.41*** 0.24*** 0.03 0.03
Hybrid - Raw 0.35*** 0.07 0.09 -0.06 0.40*** 0.10** 0.00 0.01
Hybrid - Baseline 0.03 -0.08 -0.12 -0.10 -0.01 -0.14* -0.03 -0.02
FFR
Raw -0.20 -1.79 -2.43 -2.64 -0.07 -1.69 -2.42 -2.70
Relative Log-Score
Baseline - Raw 1.48*** 0.27*** 0.05 -0.09* 1.46*** 0.26*** 0.10** 0.05
Hybrid - Raw 1.39*** 0.29*** 0.12 0.07 1.51*** 0.23*** 0.17*** 0.08
Hybrid - Baseline -0.09 0.02 0.07 0.17* 0.05 -0.03 0.07 0.03
Credit Spread
Raw -0.11 -1.33 -1.75 -2.00 -0.10 -1.28 -1.52 -1.75
Relative Log-Score
Baseline - Raw 0.14* 0.15 -0.04 -0.25* 0.08** 0.11 -0.04 -0.13*
Hybrid - Raw 0.17** 0.20 0.19 -0.12 0.07** 0.10 -0.03 -0.11
Hybrid - Baseline 0.03 0.05 0.23 0.13 -0.01 -0.01 0.01 0.02

Notes for Table: Raw forecast is defined as the unconditional forecast from the BVAR. Baseline forecast is defined as the raw BVAR

forecast tilted towards survey nowcasts only. Hybrid forecast is defined as the raw BVAR forecast tilted towards both survey nowcasts and

long-horizon forecasts. The numbers reported in the row labeled Raw are the mean logarithmic score (Log-Score), all other numbers are

relative Log-Score; relative to Raw or relative to Baseline. A positive value for Relative Log-Score suggests that on average the Baseline

forecast is more accurate compared to the Raw forecast (in the case of Baseline - Raw); Hybrid more accurate compared to Raw (in the

case of Hybrid - Raw); Hybrid more accurate compared to Baseline (in the case of Hybrid - Baseline). The left panel reports results for

time-invariant Small VAR and right panel reports results corresponding to Small VAR with stochastic volatility. The table reports

statistical significance of the equal predictive accuracy based on testing whether the constant term in the regression of the differences in the

log-score on the constant is statistically different from zero. The test statistics are based on a two-sided t-test, and are computed using the

Newey-West variance estimator (i.e. serial-correlation robust variance of the regression constant); *10 %, **5 %, ***1 % significance levels.
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Table A11: Density Forecasting using Log-Score metric : Small TVP-VAR

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small TVP VAR Small TVP VAR with SV
h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

GDP
Raw -2.31 -2.46 -2.46 -2.46 -2.16 -2.41 -2.35 -2.35
Relative Log-Score
Baseline - Raw 0.31*** 0.02** -0.01 -0.01 0.20*** 0.05 -0.07 -0.08
Hybrid - Raw 0.32*** 0.00 0.00 -0.03** 0.18*** 0.06 -0.07 -0.23
Hybrid - Baseline 0.01 -0.02 0.01 0.02** -0.01 0.02 0.00 -0.15
CPI
Raw -2.02 -2.34 -2.43 -2.50 -2.13 -2.18 -2.25 -2.30
Relative Log-Score
Baseline - Raw 0.62*** 0.08*** 0.02 0.03 0.35*** 0.11*** 0.03 -0.02
Hybrid - Raw 0.62*** 0.11*** 0.05*** 0.07** 0.34*** 0.16*** 0.07 0.03
Hybrid - Baseline 0.00 0.03* 0.03** 0.04 -0.01 0.05* 0.04 0.05
UR
Raw 0.08 -1.12 -1.81 -2.09 -0.02 -1.15 -2.00 -2.31
Relative Log-Score
Baseline - Raw 0.52*** 0.14*** 0.03 -0.03 0.62*** 0.18*** -0.02 0.07
Hybrid - Raw 0.50*** 0.10** -0.03 -0.17 0.61*** 0.12** 0.00 0.01
Hybrid - Baseline -0.01 -0.04 -0.05 -0.14 -0.01 -0.06 0.03 -0.06

Raw forecast is defined as the unconditional forecast from the BVAR. Baseline forecast is defined as the raw BVAR forecast tilted towards

survey nowcasts only. Hybrid forecast is defined as the raw BVAR forecast tilted towards both survey nowcasts and long-horizon forecasts.

The numbers reported in the row labeled Raw are the mean logarithmic score (Log-Score), all other numbers are relative Log-Score;

relative to Raw or relative to Baseline. A positive value for Relative Log-Score suggests that on average the Baseline forecast is more

accurate compared to the Raw forecast (in the case of Baseline - Raw); Hybrid more accurate compared to Raw (in the case of Hybrid -

Raw); Hybrid more accurate compared to Baseline (in the case of Hybrid - Baseline). The left panel reports results for Small time-varying

VAR (with constant variance) and right panel reports results corresponding to Small time-varying VAR with stochastic volatility. The

table reports statistical significance of the equal predictive accuracy based on testing whether the constant term in the regression of the

differences in the log-score on the constant is statistically different from zero. The test statistics are based on a two-sided t-test, and are

computed using the Newey-West variance estimator (i.e. serial-correlation robust variance of the regression constant); *10 %, **5 %, ***1

% significance levels.

A4. Ranking the Models: Before tilting vs. Post-tilting

The focus of our results is to establish that our proposal is working on a range of model spec-

ifications. Given we are considering several model specifications, that gives rise to additional

curiosities such as the usefulness of additional variables in improving forecasts of core variables,

importance of stochastic volatility, the role of estimation sample, importance of time-varying

parameters etc. Is there any one model that dominates others in forecasting core variables of

interest? And relatedly, is tilting more beneficial for models that are relatively inferior in Raw

form?

These curiosities can be answered by collectively looking at all the tables included in the
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main body of the chapter, and tables included in section A1 of this appendix. To provide a

more convenient way to help answer some of these curiosities, we have summarized in table A12

the point forecast accuracy metrics (using RMSE) for all the models we consider.

The results reported in this table can be used to directly answer some of the above questions.

For example, if a forecaster is interested in obtaining accurate forecasts for real GDP growth,

CPI inflation, and unemployment rate using a single multivariate model, then an optimal choice

would be to pick a Small VAR estimated using post-1985 data (if interest is only on point fore-

casts) or Small VAR with SV estimated using post-1985 data (if interest is both on point and

density forecasts; evidence in rest of the chapter supports the use of SV for density forecasts

and calibration).

The results in the table indicate that additional predictors help improve the forecast accu-

racy for core variables but only when VAR is estimated with longer sample of data (confirming

results in Banbura et al, 2010; Koop, 2013; and Carriero et al, 2015a; all these studies focused

on estimation with longer sample). But in contrast, for VAR models estimated with post-85

sample these additional predictors do not appear to be helpful (e.g. Small VAR competitive to

Medium VAR).

The information reported in columns ‘% change in RMSE (indicating percentage gains in

forecast accuracy via tilting’, ‘Rank Raw’ and ‘Rank Hybrid’ of the table could be used to

answer the specific question, ‘is tilting more beneficial for models that are relatively inferior in

Raw form?’ For medium-horizon (h=8Q, and h=12Q-not shown), we find that our (Hybrid)

proposal helps more models that perform worse in Raw form. For short-horizon, rankings are

generally maintained post-tilting, i.e. models ranked low prior to tilting continues to rank low

post-tilting but the differences across accuracy are much smaller. As discussed in the main

body of the chapter (and Clark and McCracken, 2008, Kozicki and Tinsley, 2001; Clements and

Hendry, 1999), beyond 4 or 5 quarters, the forecasts are increasingly influenced by the model’s

implied steady-state/trend, and given our proposal is targeting the trend, the most gains from

proposal would be expected for horizons beyond 4 quarters. As a further check on robustness of

our finding, we estimate a Small VAR with loose priors and assess to what extent our proposal

is helping improve its accuracy. It is well-known that such a specification of a VAR performs

poorly (due to overparameterization) in forecasting. Then we would expect our proposal to

help this particular VAR specification significantly more compared to the set of VAR models

we consider that are estimated with relatively tighter Bayesian priors. Indeed, we find that this

VAR specification (with loose priors) ranks the lowest before tilting, gains the most in terms

of accuracy improvement from tilting, and remains ranked at the bottom post-tilting but with

significantly reduced margin when compared to next best model. The results are reported in

table A13
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Table A12: Forecast Accuracy Assessment: Before Tilting (Raw) and Post-Tilting (Hybrid)

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)
Real GDP

h=4Q h=8Q

Models
Rank RMSE Rank % ∆ Rank RMSE Rank % ∆
Raw Raw Hybrid RMSE Raw Raw Hybrid RMSE

Small VAR est 1960 3 2.7 4 -0.1 2 2.6 1 -8.2
Small VAR SV est 1960 2 2.6 1 -5.2 2 2.6 1 -7.2
Small VAR est 1985 1 2.5 2 +1.7 2 2.6 1 -8.9
Small VAR SV est 1985 1 2.5 1 -1.2 2 2.6 1 -7.7
Medium VAR est 1960 2 2.6 3 -1.5 2 2.6 1 -8.3
Medium VAR SV est 1960 2 2.6 1 -4.8 2 2.6 1 -9.4
Medium VAR est 1985 3 2.7 4 -0.1 3 2.8 1 -15.5
Medium VAR SV est 1985 2 2.6 1 -5.9 3 2.8 1 -13.4
TVP VAR 2 2.6 3 -0.9 1 2.5 1 -3.8
TVP SV VAR 2 2.6 1 -7.1 1 2.5 1 -5.1

CPI Inflation
h=4Q h=8Q

Models
Rank RMSE Rank % ∆ Rank RMSE Rank % ∆
Raw Raw Hybrid RMSE Raw Raw Hybrid RMSE

Small VAR est 1960 3 2.4 2 -8.4 4 2.6 2 -15.3
Small VAR SV est 1960 2 2.3 1 -7.7 2 2.3 2 -6.2
Small VAR est 1985 1 2.2 1 -2.1 2 2.3 1 -6.0
Small VAR SV est 1985 1 2.2 1 -4.5 1 2.2 1 -1.5
Medium VAR est 1960 2 2.3 1 -5.9 3 2.4 1 -10.2
Medium VAR SV est 1960 1 2.2 1 -2.8 1 2.2 1 -2.5
Medium VAR est 1985 2 2.3 3 +0.5 2 2.3 1 -8.8
Medium VAR SV est 1985 1 2.2 1 -2.5 1 2.2 1 -3.9
TVP VAR 4 2.5 2 -9.2 4 2.6 1 -16.8
TVP SV VAR 2 2.3 1 -6.3 2 2.3 1 -9.4

Unemployment rate
h=4Q h=8Q

Models
Rank RMSE Rank % ∆ Rank RMSE Rank % ∆
Raw Raw Hybrid RMSE Raw Raw Hybrid RMSE

Small VAR est 1960 2 0.8 2 -11.1 3 1.6 2 -5.2
Small VAR SV est 1960 2 0.8 2 -14.2 2 1.5 1 -6.7
Small VAR est 1985 1 0.7 2 -5.5 2 1.5 2 +0.9
Small VAR SV est 1985 1 0.7 1 -6.7 1 1.4 1 -1.8
Medium VAR est 1960 2 0.8 2 -8.9 3 1.6 2 -4.6
Medium VAR SV est 1960 2 0.8 2 -13.3 2 1.5 1 -6.4
Medium VAR est 1985 1 0.7 2 -4.1 2 1.5 2 +1.7
Medium VAR SV est 1985 1 0.7 1 -8.8 2 1.5 1 -3.5
TVP VAR 1 0.7 2 -4.9 1 1.4 1 +1.9
TVP SV VAR 1 0.7 1 -8.2 1 1.4 1 +0.1

Notes for Table: Rank Raw: rank of the raw (i.e. unconditional) forecast based on RMSE value (using one-decimal point); similarly Rank

Hybrid is the rank of the hybrid forecast.
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A5. Effect of Tilting on Small VAR with loose priors

Overall, our point and density forecasting results using real-time data provide compelling evi-

dence that tilting VAR forecasts to match the long-run forecasts from the Survey of Professional

Forecasters systematically leads to improved forecast accuracy for most variables over the fore-

cast horizon of interest to monetary policymakers. Generally, it is the case that our proposal

is helping more models that are performing worse in Raw form (i.e. raw VAR forecasts). In-

terestingly, rankings are generally maintained post-tilting for shorter horizons (e.g. h=4Q),

i.e. models ranked low prior to tilting continues to rank low post-tilting but the differences

across accuracy are much smaller. As an additional check on robustness of this statement, we

estimate a Small VAR with loose priors5 and assess to what extent our proposal is helping

improve its accuracy. We know that a VAR model estimated with post-1985 sample consisting

of five variables and four lags would be severely over parametrized and so would produce signif-

icantly inferior forecasts. Accordingly, we would expect it to gain the most from tilting and yet

we expect the accuracy of the hybrid forecast from this model to continue to rank at the bottom.

We confirm that indeed this is the case. We find that this VAR specification ranks the lowest

(as would be expected) prior to tilting, gains the most in terms of accuracy improvement from

tilting, and remains ranked at the bottom post-tilting but with significantly reduced margin

when compared to next best model. The results of this exercise are reported in table A13.

5This is achieved by setting the hyper parameters µ=200 and λ=200; compare this with the optimal values
of µ=1 and λ=0.4 used for Small VAR est 1985.
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Table A13: Forecast Accuracy Assessment: Before Tilting (Raw) and Post-Tilting (Hybrid):
Added Small VAR with loose priors

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)
Real GDP

h=4Q h=8Q

Models
Rank RMSE Rank % ∆ Rank RMSE Rank % ∆
Raw Raw Hybrid RMSE Raw Raw Hybrid RMSE

Small VAR est 1960 3 2.7 4 -0.1 2 2.6 1 -8.2
Small VAR SV est 1960 2 2.6 1 -5.2 2 2.6 1 -7.2
Small VAR est 1985 1 2.5 2 +1.7 2 2.6 1 -8.9
Small VAR SV est 1985 1 2.5 1 -1.2 2 2.6 1 -7.7
Medium VAR est 1960 2 2.6 3 -1.5 2 2.6 1 -8.3
Medium VAR SV est 1960 2 2.6 1 -4.8 2 2.6 1 -9.4
Medium VAR est 1985 3 2.7 4 -0.1 3 2.8 1 -15.5
Medium VAR SV est 1985 2 2.6 1 -5.9 3 2.8 1 -13.4
TVP VAR 2 2.6 3 -0.9 1 2.5 1 -3.8
TVP SV VAR 2 2.6 1 -7.1 1 2.5 1 -5.1
Small VAR 1985, loose priors 4 3.1 5 -6.4 4 3.6 1 -32.6

CPI Inflation
h=4Q h=8Q

Models
Rank RMSE Rank % ∆ Rank RMSE Rank % ∆
Raw Raw Hybrid RMSE Raw Raw Hybrid RMSE

Small VAR est 1960 3 2.4 2 -8.4 4 2.6 2 -15.3
Small VAR SV est 1960 2 2.3 1 -7.7 2 2.3 2 -6.2
Small VAR est 1985 1 2.2 1 -2.1 2 2.3 1 -6.0
Small VAR SV est 1985 1 2.2 1 -4.5 1 2.2 1 -1.5
Medium VAR est 1960 2 2.3 1 -5.9 3 2.4 1 -10.2
Medium VAR SV est 1960 1 2.2 1 -2.8 1 2.2 1 -2.5
Medium VAR est 1985 2 2.3 3 +0.5 2 2.3 1 -8.8
Medium VAR SV est 1985 1 2.2 1 -2.5 1 2.2 1 -3.9
TVP VAR 4 2.5 2 -9.2 4 2.6 1 -16.8
TVP SV VAR 2 2.3 1 -6.3 2 2.3 1 -9.4
Small VAR 1985, loose priors 3 2.4 4 -0.7 3 2.4 1 -12.5

Unemployment rate
h=4Q h=8Q

Models
Rank RMSE Rank % ∆ Rank RMSE Rank % ∆
Raw Raw Hybrid RMSE Raw Raw Hybrid RMSE

Small VAR est 1960 2 0.8 2 -11.1 3 1.6 2 -5.2
Small VAR SV est 1960 2 0.8 2 -14.2 2 1.5 1 -6.7
Small VAR est 1985 1 0.7 2 -5.5 2 1.5 2 +0.9
Small VAR SV est 1985 1 0.7 1 -6.7 1 1.4 1 -1.8
Medium VAR est 1960 2 0.8 2 -8.9 3 1.6 2 -4.6
Medium VAR SV est 1960 2 0.8 2 -13.3 2 1.5 1 -6.4
Medium VAR est 1985 1 0.7 2 -4.1 2 1.5 2 +1.7
Medium VAR SV est 1985 1 0.7 1 -8.8 2 1.5 1 -3.5
TVP VAR 1 0.7 2 -4.9 1 1.4 1 +1.9
TVP SV VAR 1 0.7 1 -8.2 1 1.4 1 +0.1
Small VAR 1985, loose priors 3 0.9 3 -16.1 4 1.9 3 -16.6

Notes for Table: Rank Raw: rank of the raw (i.e. unconditional) forecast based on RMSE value (using one-decimal point); similarly Rank

Hybrid is the rank of the hybrid forecast.
216



A6. Are there benefits to utilizing survey information for addi-

tional horizons?

The focus of our chapter is tilting the VAR model’s trend forecasts towards the long-horizon

survey forecasts and its implications on the forecast accuracy over the forecast horizon of in-

terest to monetary policymakers (current quarter to three years out). In light of widely used

practice of conditioning or tilting current quarter VAR forecasts (of quarterly models) towards

external nowcasts (i.e. nowcasts informed from mixed-frequency models or surveys) we also tilt

the VAR one-quarter ahead forecast to survey nowcasts. However, surveys such as SPF and

BC also report forecasts for subsequent four quarters beyond the nowcast quarter. So this gives

rise to a natural curiosity is there benefit in using these additional survey forecasts?

One can certainly proceed to impose these survey forecasts as additional restrictions on the

VAR model forecasts, and the technique of relative entropy is well-suited to achieving such a

proposal.

To assess the usefulness of these additional survey forecasts as conditions for the VAR is to

compare their real-time accuracy with the hybrid forecast generated from our approach. Table

A14 reports the Root Mean Squared Errors (RMSE) for the hybrid forecasts derived from var-

ious models considered in our empirical exercises along with the accuracy of the SPF forecast.

Interestingly, we find that once the VAR models are tilted towards the survey nowcast and

long-horizon forecasts, the resulting hybrid forecasts are generally competitive to the survey

forecasts for the remaining horizons covered by the survey (i.e. h=2Q through h=5Q). In other

words, tilting VAR at the jumping-off horizon and at terminal horizon is sufficient to produce

forecasts whose accuracy rival the survey forecasts for the remaining horizons for which survey

forecasts are available. There are some exceptions for real GDP growth that we detail below.

Specifically, the forecast accuracy of hybrid forecasts for inflation and unemployment rate

produced from most VAR models under consideration matches the accuracy of the survey fore-

casts. However, we note that in the case of real GDP growth, survey forecast outperform hybrid

forecasts (from all VAR models) for forecast horizon immediately preceding the nowcast quarter

(i.e. h=2Q), and hybrid forecasts from all VAR models except one (obtained from TVP-SV

VAR) for h=3Q. This suggests that in the case of real GDP growth, there may be gains from

tilting towards survey forecasts for additional forecast quarters (i.e. h=2Q and h=3Q).

Based on the results reported in table A14, utilizing all these additional survey forecasts

as conditions to generate the hybrid forecast is certainly a viable option. As doing so leads to

a net benefit because all models experience accuracy gains in the two quarters following the

nowcast quarter for real GDP growth. However, benefits for the remaining horizons (i.e. fore-

cast horizons not covered by the survey, h=6Q through h=12Q) are likely to be small especially
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given that most models perform competitively beyond three quarters. In addition, for real GDP

growth, the spillover effects of improved accuracy to future horizons would be limited due to

the rapid mean-reverting nature of real GDP growth.

Our findings that survey forecasts are among the most accurate is consistent with a large

number of papers who have demonstrated that survey forecasts are hard to outperform (e.g.

Ang et al, 2007; Clark and McCracken, 2008; Croushore, 2010; Wright, 2013). As stressed in

Wright (2013), the ability of an econometric approach to match the forecast accuracy of sur-

veys is a huge advantage as the approach could then be used to generate forecasts for forecast

horizons and variables not covered by the survey; and be used to produce forecasts at any point

in time (compared to survey forecasts that are available once a month in the case of Blue Chip,

and quarterly in the case of SPF). Another important advantage of the modeling approach is

the ability to obtain higher moment forecasts, specifically density forecasts which have gained

importance over the past few years coinciding with increasing interest in macroeconomic risks

assessment.

Therefore, we view the ability of the hybrid forecasts (in this chapter) to rival the forecast

accuracy of the survey forecasts (for the forecast horizons surveys are available) as a success.

As one, we would be more confident in our hybrid forecast one to three years out (for forecast

horizons covered by surveys) for our core variables; secondly, we can rely on model’s forecasts

for additional variables such as consumption or wage inflation which have gained increased

prominence as of late (e.g. in recent years policy makers have been more directly asked about

their forecasts for productivity and wages); thirdly, we will have more confidence in our risk

assessment based on density forecasts obtained from our models (e.g. risk of deflation etc.).

It is fair to characterize results in the main body of the chapter as the lower bound of

improvements from hybrid approach. One could certainly improve on our results (in terms

of improved accuracy for hybrid forecasts), for example, by tilting the variance around the

long-run means. These variance conditions (that far out) could be constructed using univariate

unobserved components model that allow stochastic volatility or through a recently developed

method of Clark, McCracken and Mertens (2018). Our framework is quite flexible and can

easily handle any number of restrictions on the forecasts over the forecast horizon. To facilitate

the use of our approach across a range of practitioners we will make available the code for tilting

(in the form of a Matlab function) that could easily be adapted for use with any econometric

model that has the ability to construct predictive densities.

Finally, we highlight a practical consideration that may play a role in deciding whether to

use the SPF forecasts as conditions (in VARs) for additional forecast quarters such as real GDP.

In the chapter, we use nowcasts informed from the survey so to be systematic in using survey

information in our empirical exercises and to follow Krüger, Clark and Ravazzolo (2017) (KCR)
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as this allows us to characterize our exercises as truly building on KCR (KCR perform two sets

of exercises one using survey nowcasts and another using model-based nowcasts). However, in

practice a modeler or forecaster who relies on quarterly VARs to produce forecasts would likely

use other models (built specifically to do nowcasting) to produce nowcasts and use those as

the starting conditions for the quarterly VAR. It is reasonable to assume that as information

accumulates over the course of quarter, the nowcasts from external models to become more

accurate (due to timing advantage) compared to SPF nowcast estimates that were formed based

on dated information available through the beginning of the second month of the quarter. All

this suggests, that it is a strong possibility that tilting the VAR forecasts towards an updated

(and more accurate) nowcast informed from a nowcasting model (e.g. GDP) and survey long-

horizon forecast results in a hybrid forecast whose accuracy for h=2Q and h=3Q matches or is

more accurate than the survey forecast (made possible through the spillover effects from more

accurate nowcast). If indeed this is the case then the benefit of using the additional survey

conditions (e.g. h=2Q and h=3Q for real GDP growth) is reduced. Therefore, the usefulness

of additional survey forecasts is a model-specific empirical matter.
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Table A14: Real-Time Forecasting Performance: Hybrid vs. Survey of Professional Forecasters

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)
Root Mean Squared Error (RMSE)

Real GDP

Model h=1Q h=2Q h=3Q h=4Q h=5Q

Small VAR est 1960 1.6 2.2 2.5 2.7 2.3
Small VAR SV est 1960 1.6 2.1 2.3 2.4 2.4
Small VAR est 1985 1.6 2.0 2.3 2.5 2.3
Small VAR SV est 1985 1.6 2.1 2.3 2.4 2.3
Medium VAR est 1960 1.6 2.2 2.4 2.6 2.3
Medium VAR SV est 1960 1.6 2.1 2.3 2.4 2.4
Medium VAR est 1985 1.6 2.3 2.5 2.7 2.3
Medium VAR SV est 1985 1.6 2.2 2.3 2.4 2.4
TVP VAR 1.6 2.3 2.4 2.6 2.4
TVP SV VAR 1.6 2.1 2.2 2.4 2.4
Survey of Professional Forecasters 1.6 1.9 2.2 2.3 2.4

CPI Inflation

Model h=1Q h=2Q h=3Q h=4Q h=5Q

Small VAR est 1960 1.0 2.1 2.2 2.2 2.2
Small VAR SV est 1960 1.0 2.1 2.1 2.1 2.2
Small VAR est 1985 1.0 2.1 2.1 2.1 2.1
Small VAR SV est 1985 1.0 2.1 2.1 2.1 2.1
Medium VAR est 1960 1.0 2.1 2.1 2.1 2.1
Medium VAR SV est 1960 1.0 2.2 2.1 2.1 2.1
Medium VAR est 1985 1.0 2.1 2.2 2.3 2.1
Medium VAR SV est 1985 1.0 2.1 2.1 2.1 2.1
TVP VAR 1.0 2.2 2.2 2.2 2.2
TVP SV VAR 1.0 2.2 2.2 2.1 2.1
Survey of Professional Forecasters 1.0 2.0 2.1 2.1 2.1

Unemployment rate

Model h=1Q h=2Q h=3Q h=4Q h=5Q

Small VAR est 1960 0.1 0.3 0.5 0.7 1.0
Small VAR SV est 1960 0.1 0.3 0.4 0.7 0.9
Small VAR est 1985 0.1 0.3 0.4 0.7 0.9
Small VAR SV est 1985 0.1 0.3 0.4 0.6 0.8
Medium VAR est 1960 0.1 0.3 0.5 0.7 0.9
Medium VAR SV est 1960 0.1 0.3 0.4 0.7 0.9
Medium VAR est 1985 0.1 0.3 0.5 0.7 0.9
Medium VAR SV est 1985 0.1 0.3 0.4 0.6 0.9
TVP VAR 0.1 0.3 0.4 0.7 0.9
TVP SV VAR 0.1 0.3 0.4 0.6 0.9
Survey of Professional Forecasters 0.1 0.3 0.4 0.7 0.9

Notes for Table: Entries in bold indicate the lowest RMSE for a given forecast horizon.
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A7. Hybrid vs. Federal Reserve’s GreenBook

The staff at the Federal Reserve Board of Governors produces Greenbook (GB) forecasts roughly

a week and a half prior to each FOMC meeting. The FOMC meetings are held eight times a

year, with roughly two meetings scheduled per quarter. These meetings are irregularly spaced

and therefore any forecasting exercise comparing GB to alternative methods needs to account

meticulously for comparability of the information sets at forecast origins. GB forecasts are

released to the public with a 5-year delay. The historical forecasts could be downloaded either

from the website of the Federal Reserve Board of Governors or from the website of the Federal

Reserve Bank of Philadelphia.

GB forecast can be thought of as a combination of model and judgement, because judgment

adjusts the base model forecasts. Therefore, it will be expected to handle structural change

better than standard VARs. Put differently, we would expect the pattern of forecast accuracy

improvements to somewhat echo the pattern of forecast accuracy seen for hybrid forecasts (illus-

trated in the main body of the chapter). We confirm that indeed this is the case, and strikingly,

the hybrid forecasts for real GDP growth and CPI inflation from our simple VARs are compet-

itive to the GB forecasts. In the case of unemployment rate, hybrid forecast under-performs

GB during the Great Recession but on average is competitive to GB.

To perform a fair comparison, we collect GB forecasts corresponding to the FOMC meeting

days closer to the SPF survey dates. Specifically, we collect GB forecasts either prepared in the

second or third month of the quarter. GB forecasts prepared closer to the end of second month

or anytime in the third month will have an informational advantage over the SPF. That is,

GB is likely to have more accurate nowcast estimates (i.e. jumping-off points) compared to the

SPF and by extension our VAR models (which uses SPF nowcasts to produce both baseline and

hybrid forecasts). We could fix this by further restricting the set of GB forecasts for evaluation

to only those that are prepared (for FOMC) around a narrow window of the SPF release date.

Instead, we let the GB have more accurate starting points. This is done for two main reasons:

(1) our focus is on the medium-term forecast horizons (2) doing so would have significantly

reduced the set of available forecasts for comparison.

Another issue worth mentioning is the maximum horizon of the forecast reported in the GB

varies across meetings, but all the forecasts (over our forecast sample period of interest) at least

goes through h=6Q. Therefore, in our forecast comparison exercises with GB we consider up

h=1Q through h=6Q.

Figure A1 plots the cumulative sum of squared errors for GB forecast, baseline forecast, and

the hybrid forecast respectively for forecast horizon h=6Q. Both the baseline and hybrid fore-

casts are obtained from the Small VAR (1960). We deliberately feature this model as it ranks

at the bottom of the list of the 10 model specifications we consider. The figure illustrates the

ability of both hybrid and GB forecasts to adjust in the face of structural change of 2008-2009.

It is quite interesting that both hybrid and GB forecasts perform comparably for real GDP

growth and CPI inflation and are more accurate than the baseline VAR forecast. In the case
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of unemployment rate, for most part all three perform comparably as evidenced by a stable

(or negligible) gap across the three. The differences in the accuracy arise around the Great

Recession period, where the GB is substantially more accurate compared to hybrid. The sub-

stantially more accurate GB forecast for the few quarters (around the crisis period) contributed

to the gap between GB and VAR forecasts. Those improvements (for just few quarters) were

large enough to lower the average RMSE for the GB by two to three tenths lower compared

to the hybrid forecast (1.0 vs. 1.2; for h=6Q), see table A15. As the recovery from the Great

Recession progressed, all three performed comparably.

Based on the RMSE reported in the table, and ignoring the nowcast quarter, for real GDP

growth the accuracy is competitive to VAR models across all horizons shown. This result is

consistent with Faust and Wright (2009) who showed that beyond the current quarter, GB fore-

casts of real GDP performed comparably to other forecasts obtained from atheoretic models.

In contrast, Faust and Wright document that inflation forecasts (in their case GDP deflator)

were the most accurate and hard to outperform. In contrast, we find that beyond two quarters,

the hybrid forecasts from all models are competitive (and in some cases slightly more accurate)

compared to the GB. For the unemployment rate, GB is among the most accurate through

h=3Q, and just slightly more accurate for the remaining forecast horizons. For the unemploy-

ment rate, we are unable to relate our findings to Faust and Wright since they only focused on

real GDP and inflation.
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Figure A1: Cumulative Squared Errors, GreenBook vs. Baseline and Hybrid (Small VAR 1960)

Notes for the figure: Cumulative sum of squared errors at h=6Q, for Greenbook forecast (solid
green); baseline (solid black), and hybrid forecasts (dotted red) both obtained from Small VAR
with constant variance estimated with longer sample. The x-axis dates reflect the forecast
evaluation quarters.
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Table A15: Real-Time Forecasting Performance: Hybrid vs. Green Book

Full Sample (Recursive evaluation: 1994.Q1-2014.Q1)
Root Mean Squared Error (RMSE)

Real GDP

Model h=1Q h=2Q h=3Q h=4Q h=5Q h=6Q

Small VAR est 1960 1.6 2.2 2.6 2.7 2.4 2.5
Small VAR SV est 1960 1.6 2.2 2.4 2.5 2.4 2.5
Small VAR est 1985 1.6 2.1 2.4 2.6 2.4 2.5
Small VAR SV est 1985 1.6 2.1 2.3 2.5 2.3 2.5
Medium VAR est 1960 1.6 2.2 2.5 2.6 2.4 2.5
Medium VAR SV est 1960 1.6 2.1 2.3 2.5 2.4 2.5
Medium VAR est 1985 1.6 2.4 2.6 2.7 2.4 2.5
Medium VAR SV est 1985 1.6 2.3 2.3 2.5 2.4 2.6
TVP VAR 1.6 2.3 2.5 2.6 2.5 2.6
TVP SV VAR 1.6 2.1 2.3 2.4 2.4 2.5
Survey of Professional Forecasters 1.6 1.9 2.3 2.4 2.4 –
Green Book 1.4 2.0 2.3 2.4 2.5 2.5

CPI Inflation

Model h=1Q h=2Q h=3Q h=4Q h=5Q h=6Q

Small VAR est 1960 1.0 2.2 2.2 2.2 2.2 2.2
Small VAR SV est 1960 1.0 2.2 2.2 2.2 2.3 2.2
Small VAR est 1985 1.0 2.2 2.2 2.2 2.1 2.1
Small VAR SV est 1985 1.0 2.2 2.2 2.1 2.1 2.1
Medium VAR est 1960 1.0 2.2 2.2 2.2 2.2 2.1
Medium VAR SV est 1960 1.0 2.2 2.2 2.1 2.1 2.2
Medium VAR est 1985 1.0 2.2 2.2 2.3 2.1 2.1
Medium VAR SV est 1985 1.0 2.1 2.2 2.2 2.1 2.1
TVP VAR 1.0 2.2 2.2 2.3 2.2 2.1
TVP SV VAR 1.0 2.2 2.2 2.2 2.1 2.1
Survey of Professional Forecasters 1.0 2.0 2.1 2.1 2.1 –
Green Book 0.5 1.7 2.3 2.2 2.1 2.1

Unemployment rate

Model h=1Q h=2Q h=3Q h=4Q h=5Q h=6Q

Small VAR est 1960 0.1 0.3 0.5 0.8 1.0 1.2
Small VAR SV est 1960 0.1 0.3 0.4 0.7 0.9 1.2
Small VAR est 1985 0.1 0.3 0.4 0.7 0.9 1.2
Small VAR SV est 1985 0.1 0.3 0.4 0.7 0.9 1.1
Medium VAR est 1960 0.1 0.3 0.5 0.7 1.0 1.2
Medium VAR SV est 1960 0.1 0.3 0.5 0.7 0.9 1.2
Medium VAR est 1985 0.1 0.3 0.5 0.7 1.0 1.2
Medium VAR SV est 1985 0.1 0.3 0.4 0.7 0.9 1.1
TVP VAR 0.1 0.3 0.4 0.7 0.9 1.1
TVP SV VAR 0.1 0.3 0.4 0.7 0.9 1.1
Survey of Professional Forecasters 0.1 0.3 0.4 0.7 0.9 –
Green Book 0.1 0.3 0.4 0.6 0.8 1.0
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A8. Hybrid vs. Time-Varying VAR (Baseline)

In the body of this chapter and in the previous sections of this appendix we document the good

forecasting properties of TVP VAR SV. Our results for TVP VAR SV confirm the findings

from a long list of papers documenting the importance of allowing stochastic volatility and

time-varying parameters in improving the forecast accuracy of real GDP growth and inflation

(e.g. D’Agostino et al, 2013; Clark and Ravazzolo, 2015; for the US, and Barnett et al, 2014

for the UK).

Until recently these models can feasibly be estimated only with three or four variables

mainly because of computational constraints. The availability of greater computing power and

the introduction of newer methods requiring reduced computational needs are helping increase

the use of these models. The latter advantage has allowed the possibility of estimating these

models with larger information set (e.g. Koop and Korobilis, 2013). However, these models are

complex (as there are so many moving parts involved) and as a result operating them requires

a certain level of sophistication which somewhat limits their wider use.

There are situations where using a time-varying VAR may not be feasible. These situa-

tions include shorter estimation sample size, an issue for many developing and some emerging

countries. Practical considerations such as ease of communicating forecasts (and the narrative)

to the principal (or intended audience) along with higher comfort level in operating simpler

models would suggest preference for simpler VARs (e.g. many of the economic commentary

and associated economic analysis performed by economic consulting firms, banks, etc.). For

some, the time varying VARS may be undesirable due to the uncomfortable choices for prior

elicitation necessary when using these models especially with a shorter sample.

Practitioners who are unwilling or unable to estimate a time-varying VAR may ask, how well

hybrid forecasts obtained using simple VARs do against forecasts from these complex models?

Our results indicate that forecast accuracy of the hybrid forecasts from simple VARs per-

form comparably or better (for inflation) than the time-varying VARs (baseline forecasts). Of

course a forecaster using a time-varying VAR can gain in terms of accuracy by adopting our

proposal. However, if that is not an option the forecaster should take some solace that by using

a simple VAR (and adopting our proposal) he or she may not be losing much in regards to the

forecast accuracy.

To illustrate the competitive forecast accuracy, we compare the forecast accuracy between

the hybrid approach using the Small VAR SV and the TVP-VAR SV that uses the three macroe-

conomic variables (real GDP, CPI inflation and unemployment rate). For a fair horserace, we

also require the TVP-VAR SV one-step-ahead forecast to be tilted to match the more accurate
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survey nowcast (i.e. the baseline forecast). This will ensure that competing models start from

the same jumping-off point.

Table A16 reports the forecast accuracy comparison results between the hybrid forecasts

(from Small VAR SV (1960) and Small VAR SV (1985) and baseline forecast from TVP-VAR

SV. The top panel (i.e., Panel A) reports the results corresponding to point forecast accuracy

and the bottom panel (i.e., Panel B) reports the results corresponding to density forecast accu-

racy. In both Panels A and B, the top portion reports the accuracy comparison between hybrid

forecast from Small VAR SV (1960) and baseline forecast from TVP-VAR SV; the bottom por-

tion reports the accuracy comparison between hybrid forecast from Small VAR SV (1985) and

baseline from TVP-VAR SV. In the case of the point forecast comparison, a ratio of less than one

suggests that the hybrid point forecast accuracy is on average more accurate compared to the

TVP-VAR SV. In the case of the density forecast comparison, a negative number suggests that

the hybrid density forecast accuracy is on average more accurate compared to the TVP-VAR SV.

Beginning with the point forecast accuracy, the hybrid forecasts corresponding to real GDP

growth and CPI inflation are generally more accurate in an absolute sense, and for inflation, the

gains are statistically significant. The ability of the survey expectations to adapt more quickly

compared to the TVP-VAR SV partly explains the more accurate inflation forecasts from the

hybrid approach. In the case of the unemployment rate, statistically speaking the forecast ac-

curacy is competitive but in an absolute sense hybrid forecasts are inferior. A closer inspection

of the errors reveals relatively big misses around the Great Recession and in the early part of

the post-crisis period; this explains why on average the inferiority of the hybrid unemployment

forecasts is statistically not significant.

For the density forecast accuracy, the hybrid forecasts generally rival the density forecast

accuracy of the TVP-VAR SV with an exception that in the case of CPI inflation, the Small

VAR SV (1985) is significantly more accurate.
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Table A16: Real-Time Forecasting Accuracy Hybrid (from Small VAR) vs. TVP-VAR SV

Panel A: Point Forecast Accuracy (Recursive evaluation: 1994.Q1-2016.Q4)
h=1Q h=4Q h=6Q h=8Q h=10Q h=12Q

Relative MSE: MSE Hybrid from Small VAR SV (1960) / MSE Baseline from TVP-VAR SV

Real GDP 1.00 0.99 0.91 0.93 1.02 1.00
CPI Inflation 1.00 0.92*** 0.95*** 0.95 0.82** 0.85**
Unemployment rate 1.00 1.08 1.10 1.10 1.08 1.10

Relative MSE: MSE Hybrid from Small VAR SV (1985) / MSE Baseline from TVP-VAR SV

Real GDP 1.00 0.98 0.91 0.91 0.98 0.99
CPI Inflation 1.00 0.90*** 0.83*** 0.89* 0.77*** 0.82***
Unemployment rate 1.00 0.98 1.03 1.06 1.10 1.11

Panel B: Density Forecast Accuracy (Recursive evaluation: 1994.Q1-2016.Q4)
h=1Q h=4Q h=6Q h=8Q h=10Q h=12Q

Relative CRPS: CRPS Hybrid from Small VAR SV (1960) - CRPS Baseline from TVP-VAR SV

Real GDP 0.00 -0.02 -0.05 0.02 0.05 0.08*
CPI Inflation 0.00 -0.02 0.04 0.03 0.00 0.02
Unemployment rate 0.00 -0.02 -0.04 -0.05 -0.05 -0.03

Relative CRPS: CRPS Hybrid SV from Small VAR SV (1985) - CRPS Baseline from TVP-VAR SV

Real GDP 0.00 -0.02 -0.05 -0.02 0.02 0.06
CPI Inflation 0.00 -0.05** -0.09** -0.10* -0.15** -0.11*
Unemployment rate 0.00 -0.02 -0.03 -0.03 -0.02 -0.01

Notes for Table: The top panel compares the forecast accuracy of the time varying parameter VAR with SV (TVP-VAR SV) to hybrid

from Small VAR SV (1960) and Small VAR SV (1985) respectively. The first half of the top panel reports the Mean Square Error (MSE)

corresponding to the Small VAR SV (1960) tilted to match the SPF nowcast (mean and variance) and SPF long-horizon forecast (Hybrid)

relative to the TVP-VAR SV tilted to match the SPF nowcast (mean and variance). The second half of the top panel report the relative

MSE: MSE from the Small VAR with SV (1985) tilted to match the SPF nowcast (mean and variance) and SPF long-horizon forecast

(Hybrid SV) / MSE from TVP-VAR SV tilted to match the SPF nowcast (mean and variance) only. So a ratio of less than 1 indicates that

tilted VAR hybrid is on average more accurate. The bottom panel reports the corresponding density forecast accuracy performance. A

negative value suggests that hybrid density forecast is on average more accurate. The table reports statistical significance based on the

Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for

the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance

levels, respectively. The test statistics use two-sided standard normal critical values. All models use the SPF nowcast for the

one-step-ahead forecast; as a result, the relative MSE is equal to one and is not reported.
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A9. Steady-State BVAR vs. Hybrid (Small BVAR est. 1960)

Villani (2009) proposed a fully Bayesian approach to adjust the long-run forecast of VAR

models. His methodology for both stationary and co-integrated Bayesian VARs permits the

forecaster to specify prior beliefs on the unconditional mean of the variable, including variance

around that prior mean (commonly denoted in the literature as a steady-state BVAR). Using

a seven-variable steady-state BVAR model estimated with data for the Swedish economy, he

illustrated the improved forecast accuracy compared to an unrestricted BVAR.

Since then the steady-state VAR model has become a widely used tool to incorporate off-

model information including the information from the surveys. Wright (2013) uses the steady-

state BVAR technology of Villani (2009) to show that prior beliefs on the unconditional mean of

the variable informed by a survey’s (Blue Chip) long-run forecasts lead to systematic improve-

ments in forecast accuracy for a range of U.S. macroeconomic variables, especially for inflation.

Frey and Mokinski (2016) extend the methodology of Wright (2013) by augmenting the vector

of dependent variables of a steady-state VAR with their corresponding survey nowcasts and

the relationship of the survey nowcasts with all the lagged dependent variables of the model is

allowed to deviate from the coefficients capturing the relationship between dependent variables

and the lagged dependent variables. The extent of the deviation is operationalized through the

prior and is pinned down through the joint estimation of the data and the survey nowcasts.

They show that doing so leads to more accurate forecasts compared to Wright (2013), as their

approach acts as a form of Bayesian shrinkage technique that helps sharpen the parameter es-

timates of the unaugmented (i.e., original) steady-state VAR.

Chan and Koop (2014) extend the steady-state BVAR technology by developing a methodol-

ogy that allows for detection of changes in the steady states of included variables in an automatic

fashion. However, their econometric approach relies on past data and therefore, it is likely to

be slower to detect any shifts in variables’ mean compared to professional forecasters (e.g.,

knowledge of forward guidance and extended zero lower bound). In their empirical exercise,

they consider five variables (output growth, hours worked, labor share, inflation, and interest

rates), and their methodology detects changes in the steady states for inflation and the interest

rate when estimated over the sample 1954.Q3 through 2012.Q3. This finding coincides with

our results on tilting VAR forecasts to long-term survey conditions. Specifically, our results

indicate a notable improvement in forecast accuracy for inflation and the interest rate, largely

because these two macroeconomic variables have exhibited sizable shifts in the mean since the

1950s.

Our approach has practical advantages over the steady-state BVAR: (1) our approach does

not require the modeler to re-specify and re-parameterize the model, and (2) our approach does

not require the VAR to be stationary or co-integrated. Therefore, modelers can continue to use
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their preferred BVAR/VAR specification and seamlessly integrate the relative entropy approach

by simply calling a particular routine that takes as an input the output from the BVAR and

the modeler’s desired short-term and long-term forecasts informed by judgment, other mod-

els, or surveys. A related advantage is that the forecaster can get a sense of the differences

between the forecast that imposes conditions compared to the one that does not without the

need to re-specify the model. The forecaster can test the implications on the forecasts of a wide

spectrum of restrictions without re-estimating the model each time. The technique of relative

entropy generates several diagnostics that help the modeler assess the severity of tilting, that

is, reflecting the presumed reliability of inferences drawn from the tilted distributions – and the

role of the various moment conditions contributing to the severity.

We next show the forecast accuracy comparison between the steady-state VAR and our

approach based on a Small VAR estimated with longer sample (and for a specification without

stochastic volatility). To perform a fair horse-race both these two approaches uses the same

data and survey information. A priori we would expect the two approaches to be competitive

with each other. Indeed the results reported below (Table A17) confirm our expectations.

The steady-state BVAR model includes the same set of variables as used in our Small

BVAR. The steady states are informed by the long-term forecasts of the Survey of Professional

Forecasters (i.e., same values to which the Small BVAR is tilted). To run a fair horserace, we

tilt both the steady-state BVAR and Small BVAR in the near term on the same nowcasts to

ensure that both models start with the same jumping-off point. For this exercise, we do not tilt

towards the nowcast variance, only the nowcast mean.

The estimation procedure and the prior settings are the same as in Clark (2011) with the

exception that prior variances around the steady-state priors are set very tight (as proposed in

Wright, 2013). This will ensure that variables converge to the modeler’s specified steady-states

which in this case are the long-term forecasts from the SPF. (The prior variances are set at a

value of 0.001).

Table A17 reports the forecast accuracy comparison between the steady-state BVAR and the

hybrid approach from the Small BVAR. Panel A reports the point forecast accuracy comparison

using relative MSE: MSE Small BVAR / MSE steady-state BVAR. A ratio of less than one

suggests that the hybrid forecast from the Small BVAR is on average more accurate compared

to the forecast from the steady-state BVAR. Panel B reports the density forecast accuracy

comparison in the form of the mean relative CRPS, where negative numbers indicate that

density forecasts from the hybrid approach (of Small BVAR) are on average more accurate

compared to the steady-state BVAR.
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Table A17: Real-Time Out-of-Sample Forecasting Performance: Small BVAR (Hybrid)
vs. Steady-State BVAR

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Panel A: Point Forecast Accuracy of Small BVAR (Hybrid) vs. Steady-State BVAR (Baseline)

Series h=1Q h=4Q h=6Q h=8Q h=10Q h=12Q h=20Q h=32Q

Relative MSE: Small BVAR (Hybrid) / Steady-State BVAR (Baseline)

Real GDP 1.00 0.90 0.84* 0.87* 0.88 0.95* 0.98 1.00
CPI Inflation 1.00 1.02 1.00 1.04 0.94 1.03 0.90* 1.00
Unemployment 1.00 0.98 0.96 0.95 0.96 1.00 1.07 0.93
Federal Funds 1.00 1.15* 1.06 0.98 0.92 0.88 0.87 1.02
Credit Spread 1.04 1.07 1.05 1.03 1.03 1.07 1.06*** 1.14**

Panel B: Density Forecast Accuracy of Small BVAR (Hybrid) vs. Steady-State BVAR (Baseline)

h=1Q h=4Q h=5Q h=8Q h=10Q h=12Q h=20Q h=32Q

Mean (Relative CRPS Score: Small BVAR (Hybrid) - Steady-State BVAR (Baseline))

Real GDP -0.02 -0.07 -0.11 -0.08* -0.07 -0.04** -0.02* -0.01
CPI Inflation -0.01 0.00 0.02 0.02 0.00 0.03** -0.02 0.04
Unemployment 0.00 -0.01 -0.02 -0.04 -0.04 -0.02 0.04 -0.04
Federal Funds -0.00 0.04* 0.03 0.02 -0.01 -0.05 -0.03 0.25**
Credit Spread 0.00 0.02 0.03 0.03 0.03 0.03 0.04** 0.06*

Notes for Table: The numbers reported in the top panel of the table are relative mean squared errors: mean squared error conditional on

nowcasts and long-horizon survey forecasts from Small BVAR (Hybrid) / mean squared error from the steady-state BVAR conditional on

nowcasts only (Baseline). So a ratio of less than 1 indicates that point forecasts from the hybrid approach corresponding to fixed-coefficient

Small VAR are on average more accurate compared to the forecasts from the steady-state BVAR. The numbers reported in the bottom

panel of the table are mean relative CRPS: CRPS from the Hybrid - CRPS from steady-state BVAR conditional on nowcasts only. So a

negative number indicates that density forecasts from the hybrid approach corresponding to fixed-coefficient Small VAR are on average

more accurate compared to the forecasts from the steady-state BVAR. The table reports statistical significance based on the

Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for

the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance

levels, respectively. The test statistics use two-sided standard normal critical values.
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A10. BVAR in Gaps vs. Hybrid (Small BVAR est. 1960)

Another popular approach to anchor model forecasts to survey expectations is to model vari-

ables by first transforming them into a gap form (i.e., deviation from the respective long-run

survey expectations) and then estimating them using a VAR (or a univariate regression for the

single variable of interest). The forecasts of the gap coming out of the VAR are then transformed

back to the units of interest by adding the latest estimate of the survey expectations available

as of the forecast origin to construct the corresponding implied forecasts (see Faust and Wright

2013 in the context of the univariate inflation case; Clark and McCracken 2010 in the case of the

VAR). The trend estimate (proxied by the survey expectations measure) is assumed to follow

a random walk over the forecast horizon. By construction, the implied long-run forecasts from

this approach would be close to the latest available estimate of the survey expectations plugged

in as of the time forecast is generated. The advantage of this approach is its simplicity, and

therefore, it has gained traction over the past few years. A key drawback is that it requires a

time series of survey expectations as long as the estimation sample (necessary for constructing

the transformed gap variable). This issue may be more likely to bind for regions outside the

United States and Europe for which publicly available survey forecasts have a shorter history.

We construct a BVAR model in gaps that includes the same set of variables as used in a

Small VAR estimated with longer sample (and for a specification without stochastic volatility).

The variables (with the exception of the credit spread) are transformed to the gap by taking a

deviation from their respective time series of the survey expectations. To run a fair horserace,

we condition both the BVAR in gaps and Small BVAR in the near-term on the same nowcasts.

This will ensure that both models start with the same jumping-off points. For this exercise, we

do not tilt towards the nowcast variance, only the nowcast mean.

We construct the expectation series for real GDP, CPI inflation, the unemployment rate, and

the federal funds rate going back to 1959.Q4 as follows:

From 1959.Q4 to 1993.Q4:

1. Real GDP growth trend=constant 3%

2. Unemployment rate trend is computed using an exponential smoother with a smoothing

parameter of 0.02 (as in Clark, 2011):

u∗t = u∗t−1 + 0.02(ut − u∗t−1)

3. CPI inflation trend is the PTR (long-term inflation expectations series used in the Federal

Reserve Board’s FRB/US econometric model)

4. Nominal federal funds rate trend is assumed to be the same as the CPI inflation trend

From 1994.Q1 to 2016.Q4:

The respective trend estimates are the long-run forecasts from the SPF.
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The prior settings are the same as those of the Small BVAR. Table A6 reports the fore-

cast accuracy comparison between the Small BVAR in gaps and the hybrid approach from

the Small BVAR. Panel A reports the point forecast accuracy comparison using relative MSE:

MSE Small BVAR / MSE Small BVAR in Gaps. A ratio of less than one suggests that the

hybrid forecast from the Small BVAR is on average more accurate compared to the forecast

from the BVAR in Gaps. Panel B reports the density forecast accuracy comparison in the

form of mean relative CRPS where negative numbers indicate density forecasts from the hybrid

approach (of Small BVAR) are on average more accurate compared to the BVAR in Gaps. A

priori we would expect the two econometric approaches to perform comparably. Based on the

results reported in Table A18, for real GDP growth, CPI Inflation, and the federal funds rate,

the hybrid approach generates more accurate forecasts and the gains are statistically significant.

It is worth noting that even though an attempt is made to anchor the forecasts closer to

the survey expectations (through modeling the variables in gap transformation), there is no

guarantee that the medium- to long-term forecast would converge to the survey expectations.

It may even settle far from the assumed underlying trend. This is due to the presence of an

intercept term in the gap equation (e.g., inflation gap) that captures the long-run historical

deviation of the gap from zero within the estimation sample. The estimate of the intercept

term will be positive if the variable (e.g., inflation) has exceeded its trend (informed by the

survey) on average during the sample, while it will be negative if the variable has been below

trend on average. So an inflation forecast three years out may settle at a level that is lower

than the trend estimate informed by the survey expectations (and the modeler’s desired level).
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Table A18: Real-Time Out-of-Sample Forecasting Performance: Small BVAR (Hybrid)
vs. Small BVAR in Gaps (Baseline)

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Panel A: Point Forecast Accuracy of Small BVAR (Now and LR) vs. BVAR in Gaps (Now Only)

Series h=1Q h=4Q h=6Q h=8Q h=10Q h=12Q h=20Q

Relative MSE: Small BVAR (Hybrid) Forecast / BVAR in Gaps (Baseline) Forecast

Real GDP 1.00 0.91 0.89* 0.87*** 0.92** 0.94*** 0.97*
CPI Inflation 1.00 0.94*** 0.87*** 0.82*** 0.78*** 0.83** 0.80***
Unemployment rate 1.00 0.95 0.99 1.00 1.01 1.03 1.13
Federal Funds rate 1.00 0.95 0.89 0.80* 0.73** 0.69*** 0.67***
Credit Spread 0.91 0.97 0.96 0.95 0.94 0.98 1.08

Panel B: Density Forecast Accuracy of BVAR (Now and LR) vs. BVAR in Gaps (Now Only)

h=1Q h=4Q h=5Q h=8Q h=10Q h=12Q h=20Q

Mean (Relative CRPS Score: Small BVAR (Hybrid) Forecast - BVAR in Gaps (Baseline) Forecast)

Real GDP 0.01 -0.07 -0.07* -0.08*** -0.05** -0.03 -0.01
CPI Inflation 0.00 -0.02 -0.03 -0.06* -0.06* 0.00 0.04
Unemployment rate 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.04
Federal Funds rate 0.00 0.00 -0.03 -0.09 -0.17 -0.26* -0.40***
Credit Spread -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.04

Notes for Table: The numbers reported in the top panel of the table are relative mean squared errors: mean squared error conditional on

nowcasts and long-horizon survey forecasts from Small BVAR (Hybrid) / mean squared error from the BVAR in Gaps conditional on

nowcasts only. So a ratio of less than 1 indicates that point forecasts from the hybrid approach corresponding to fixed-coefficient Small

VAR are on average more accurate compared to the forecasts from the BVAR in gaps. The numbers reported in the bottom panel of the

table are mean relative CRPS: CRPS from the Hybrid - CRPS from BVAR in Gaps conditional on nowcasts only. So a negative number

indicates that density forecasts from the hybrid approach corresponding to fixed-coefficient Small VAR are on average more accurate

compared to the forecasts from the BVAR in gaps. The table reports statistical significance based on the Diebold-Mariano and West test

with the lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction

proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent, and ***1 percent significance levels, respectively. The test

statistics use two-sided standard normal critical values.
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A11. Evolution of Long-Run Forecasts from Other Surveys

In the United States, the SPF and the Blue Chip Economic Indicators (BC) are the two most

widely known and easily available forecast surveys routinely published. All the forecast evalu-

ation exercises in this chapter uses SPF, and Figure 1 in the chapter plots the evolution of the

long-run forecasts from the SPF. In this section, Figure A2 plots the evolution of Blue Chip

(consensus estimates) alongside the SPF. Also plotted to facilitate comparison are the median

projections from the Federal Open Market Committee’s (FOMC) Summary of Economic Pro-

jections (SEP).

The BC is a monthly survey released at the end of the first week of the month. It is a

monthly survey therefore the forecasts and nowcasts collected reflect the developments in the

intra-quarterly flow of information. Two times a year, i.e., each March and October, the BC

also reports the respondents’ long run projections (defined as an average for the 7 to 11 years

ahead). The BC reports long-run forecasts for all of our core variables of interest: CPI inflation,

real GDP growth, the unemployment rate, and the short-term interest rate.

SEP projections are made available roughly once per quarter beginning 2009.Q1. SEP re-

ports projections for real GDP growth, unemployment rate, headline inflation based on Personal

Consumption Expenditures (PCE) price index, and core PCE inflation. It also provides the

long-run estimate for the federal funds rate. The projections for federal funds rate were added

beginning in 2012.Q1.
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A12. Gaussian example: Illustrating Spillover Effects of Tilting

Restricting the elements of the forecast matrix by imposing conditions on some future horizon

will influence the forecast starting from the jumping-off point all the way to the tilted forecast

horizon. For example, if we tilt real GDP growth at forecast horizon h=6Q, then tilting it

will potentially impact the forecast trajectory from forecast horizons h=1Q to h=5Q and from

h=7Q and beyond for all the variables. The extent and degree of the spillover effects will be

determined importantly by the BVAR’s implied estimates of the covariances and autocorrela-

tions among the variables and across forecast horizons.

To provide an intuition of the mechanics behind the spillover effects below, we illustrate

using an example of a multivariate normal density (as would be obtained from a constant co-

efficient VAR model). Our example below generalizes the examples provided in Robertson,

Tallman, and Whiteman (2005) and KCR. For convenience, we keep the same notation where

possible.

We begin with a multivariate normal density f(Y ) = N (θ,Σ) corresponding to the H-

variate vector Y of forecast, Y = [y1, y2, ...., yH ]; Σ is positive definite and θ = [θ1, ...θH ]′.

We obtain a KLIC-closest density f(Y )∗ = N (µ,Ω) such that it satisfies the restriction that

the mean and the variance of the first element of vector Y, y1 equals µ1 and Ω1,1, respectively

(e.g., a nowcast informed by the survey expectations).

The parameters of the tilted density f∗ are defined as follows,

µ2:H = θ2:H + Σ−1
1,1Σ1,2:H(µ1 − θ1) (A.20)

Ω2:H,2:H = Σ2:H,2:H − Σ2:H,1Σ−1
1,1Σ1,2:H × (

Σ1,1 − Ω1,1

Σ1,1
) (A.21)

Ω2:H,1 = Σ2:H,1Σ−1
1,1Ω1,1 (A.22)

The matrices indexed by i : j, a : b represents a matrix containing rows from i to j, and

columns a to b. Accordingly, matrices indexed by i : j, a correspond to column vector and

those indexed by i, a : b correspond to row vector. The elements of column vector Σ2:H,1 re-

flect the correlation between the nowcast horizon and the forecast horizons beyond the nowcast.

From the above definitions of the parameters, it can be easily seen that imposing the moment

restriction Ω1,1 = 0 is equivalent to the standard conditional forecasting. Also, by imposing the
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mean moment condition only, it can be seen that the tilted variance is the same as variance of

the untilted density (i.e. the original variance).

A13. Sampling from Tilted Predictive Density: Multinomial

Algorithm

To sample from the modified (i.e., tilted) predictive density g(.), we follow the approach sug-

gested in Cogley et al. (2005). Specifically, they suggest using the multinomial resampling

algorithm of Gordon et al. (1993) to redraw from the original predictive density p(.) using the

modified weights, ω∗, to obtain a sample corresponding to the tilted density g(.)

Algorithm

Given a sample Y T+1,T+H
i , i = 1, ....D from the predictive density p(.) along with the

weights, ω∗i corresponding to the tilted density g(.) the steps listed below are used to obtain a

sample from g(.)

Step 1: Define NC as a D× 1 vector representing the number of offspring corresponding to

each draw obtained from the original density p(.)

Step 2: Define a value for D∗ such that D∗ > D. D∗ represents the number of draws for

the tilted predictive density g(.), our object of interest.

The above two steps ensure that
∑D

i=1NCi = D∗.

Step 3: Draw D number of draws for NC from a multinomial distributionNC ∼MN(D∗;w
∗
1, w

∗
2, ..., w

∗
D).

(Matlab function mnrnd is used to draw from the MN distribution.)

Step 4: Given a sample for NC obtained in the previous step, construct a density g(.) by

replicating Y T+1,T+H
i NCi times for i = 1, ....D

A14. Evolution of Forecast Horizons for Tilting
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A15. Sensitivity to Getting the Horizon Wrong

Thus far, all reported results corresponding to hybrid forecasts are constructed by combining

the model and long-term survey expectations at the forecast horizon based on the algorithm

detailed in section 2.4.2 (of chapter 2).

In this section, we explore the sensitivity of our results to two alternative approaches. The

first approach is based on an alternative algorithm to compute an estimate for the persistence

parameter. The second approach ignores the persistence (or dynamic behavior of variables)

and dogmatically set the combination horizon 7 years out (h=25Q); we also show results for

dogmatically setting the horizon 10 years out (h=40Q).

The alternative algorithm to estimate the persistence is based on estimating a univariate

AR(4) process to determine the persistence estimate and in turn the forecast horizon at which

the variable would be expected to converge. Specifically, at each forecast origin, the forecaster

decides to estimate separately univariate autoregressions for each variable of interest to get an

indication of the persistence of each variable. And then use these estimates of the persistence

(i.e. proxy for the speed of convergence) to compute the respective values for the combination

forecast horizon. In contrast to the approach discussed in section 2.4.2, this approach fully ig-

nores the possible effects on the persistence from other variables included in the VAR. Figure A4

plots the values of the forecast horizon for combination obtained from the univariate approach

alongside the values for Small VAR (1960) obtained from the approach used in the chapter.

There are some notable differences except for real GDP growth, for which both approaches give

values less than or equal to h=5. However, we find that results reported in Tables A19 (for

Small VAR 1960) and A20 (for Small VAR 1985) are robust to obtaining forecast horizon for

combination from this alternative approach (see entries in the rows Hybrid/Baseline).

In the second approach, the forecast horizon for combination is dogmatically set at h=25Q

(i.e. 7 years out). This approach ignores the dynamic behavior of the variables and so will

be expected to perform less well compared to approaches that in some way account for the

persistence of the variable. The results of this exercise are reported in Table A21, and it confirms

our prior beliefs. As can be seen looking at the entries in the rows labeled Hybrid/Baseline,

the gains in accuracy are notably reduced for the forecast horizons of interest (i.e. 1 to 3

years out). It is still the case that statistical significant gains are achieved for CPI inflation

and the federal funds rate but the magnitude of accuracy gains are meaningfully reduced. For

the VAR specification with SV, statistical significant gains are only seen for the federal funds

rate. The results for other VAR models (not shown) largely echo the results reported for the

VAR specification with SV. Table A22 reports the results if we set the forecast horizon for

combination even further out (i.e. 10 years out; 40 quarters). As expected, the accuracy gains

for the forecast horizons of interest are reduced further. For the specification with SV, the

relative ratios for Hybrid/Baseline are close to one, and none are statistically significant.
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Table A19: Out-of-Sample Point Forecasting Performance: Small BVAR est. 1960
Horizon for combination determined by Univariate process

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 4.35 7.19 6.55 6.20 3.67 6.68 6.61 6.26
Relative MSE
Baseline/Raw 0.62*** 1.01 1.05** 1.02 0.74** 1.00 1.01 1.00
Hybrid/Raw 0.62*** 0.91 0.91 0.99 0.74** 0.89** 0.86* 0.98
Hybrid/Baseline 1.00 0.90** 0.86* 0.98* 1.00 0.88** 0.85** 0.98
CPI
Raw 3.11 5.61 6.70 8.52 2.94 5.26 5.50 6.50
Relative MSE
Baseline/Raw 0.33*** 0.90** 0.95 0.92* 0.35*** 0.86*** 0.99 0.94***
Hybrid/Raw 0.33*** 0.81*** 0.70*** 0.61*** 0.35*** 0.82*** 0.87* 0.78***
Hybrid/Baseline 1.00 0.90** 0.74*** 0.66*** 1.00 0.96** 0.87** 0.82***
UR
Raw 0.05 0.64 2.41 3.78 0.05 0.60 2.39 3.75
Relative MSE
Baseline/Raw 0.29*** 0.73* 0.92 0.95 0.32*** 0.73** 0.90* 0.96
Hybrid/Raw 0.29*** 0.74* 0.89 0.96 0.32*** 0.72** 0.84 0.95
Hybrid/Baseline 1.00 1.01 0.97 1.00 1.00 0.99 0.94 0.98
FFR
Raw 0.19 2.11 6.12 10.16 0.10 2.12 7.17 11.66
Relative MSE
Baseline/Raw 0.03*** 0.68*** 0.87** 0.93*** 0.05*** 0.63*** 0.85*** 0.92**
Hybrid/Raw 0.03*** 0.71** 0.72* 0.63** 0.05*** 0.65*** 0.68*** 0.61***
Hybrid/Baseline 1.00 1.04 0.82* 0.68** 1.00 1.03* 0.80** 0.66***
Credit Spread
Raw 0.09 0.67 1.14 1.28 0.08 0.73 1.30 1.53
Relative MSE
Baseline/Raw 0.77* 0.95*** 0.97*** 0.99 0.89** 0.99 0.98** 0.99*
Hybrid/Raw 0.78 0.90** 0.84*** 0.85*** 0.87** 0.92*** 0.79*** 0.74***
Hybrid/Baseline 1.01 0.95** 0.86*** 0.86** 0.98 0.93*** 0.81*** 0.75***

Notes for Table: GDP: real GDP growth quarterly annualized rate; CPI: inflation quarterly annualized rate; UR: unemployment rate in

levels; FFR: effective federal funds rate in levels; Credit Spread: in levels. Raw forecast is defined as the unconditional forecast from the

VAR. Baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). Hybrid forecast

is defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left

panel reports results for the VAR specification with constant variance and right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the row labeled Raw are the mean squared error (MSE), the three rows immediately below

report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid relative to Baseline. The table reports statistical

significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and

adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent,

and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal critical values.
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Table A20: Out-of-Sample Point Forecasting Performance: Small BVAR est. 1985
Horizon for combination determined by Univariate process

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 3.43 6.23 6.65 6.46 3.42 6.07 6.51 6.62
Relative MSE
Baseline/Raw 0.79** 0.93 1.00 1.03*** 0.79** 0.96 1.01 1.00
Hybrid/Raw 0.79** 0.88* 0.85* 0.95 0.79** 0.93 0.85*** 0.92**
Hybrid/Baseline 1.00 0.94 0.86** 0.92* 1.00 0.97 0.84*** 0.92*
CPI
Raw 2.95 4.71 5.11 6.12 2.77 4.79 4.67 5.50
Relative MSE
Baseline/Raw 0.35*** 1.00 1.00 1.00 0.37*** 0.95*** 1.05 1.02
Hybrid/Raw 0.35*** 0.96 0.89*** 0.85*** 0.37*** 0.91*** 0.97 0.89***
Hybrid/Baseline 1.00 0.96* 0.89*** 0.85** 1.00 0.95 0.93** 0.88***
UR
Raw 0.04 0.48 2.22 3.94 0.04 0.46 2.09 3.84
Relative MSE
Baseline/Raw 0.35*** 0.75* 0.84 0.93 0.35*** 0.76** 0.86 0.92*
Hybrid/Raw 0.35*** 0.76* 0.82 0.89 0.35*** 0.77** 0.85 0.88*
Hybrid/Baseline 1.00 1.01 0.98 0.95* 1.00 1.02 0.99 0.96
FFR
Raw 0.08 1.95 6.79 10.58 0.08 1.95 6.85 11.33
Relative MSE
Baseline/Raw 0.06*** 0.57*** 0.81** 0.94 0.06*** 0.57*** 0.81*** 0.93*
Hybrid/Raw 0.06*** 0.52*** 0.59** 0.63 0.06*** 0.53*** 0.63*** 0.66**
Hybrid/Baseline 1.00 0.92* 0.73** 0.68* 1.00 0.93*** 0.78** 0.71**
Credit Spread
Raw 0.09 0.63 1.06 1.12 0.09 0.66 1.09 1.19
Relative MSE
Baseline/Raw 0.72** 0.91** 1.00 1.07 0.84** 0.91** 0.99 1.00
Hybrid/Raw 0.70** 0.89* 0.88 0.93 0.83** 0.89** 0.91 0.89
Hybrid/Baseline 0.97 0.97 0.88 0.87 0.99 0.97 0.91 0.88

Notes for Table: GDP: real GDP growth quarterly annualized rate; CPI: inflation quarterly annualized rate; UR: unemployment rate in

levels; FFR: effective federal funds rate in levels; Credit Spread: in levels. Raw forecast is defined as the unconditional forecast from the

VAR. Baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). Hybrid forecast

is defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left

panel reports results for the VAR specification with constant variance and right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the row labeled Raw are the mean squared error (MSE), the three rows immediately below

report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid relative to Baseline. The table reports statistical

significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and

adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent,

and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal critical values.
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Table A21: Out-of-Sample Point Forecasting Performance: Small BVAR est. 1960
Horizon for combination dogmatically set at h=25Q (i.e. 7 years out)

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 4.35 7.19 6.55 6.20 3.67 6.68 6.61 6.26
Relative MSE
Baseline/Raw 0.62*** 1.01 1.05** 1.02 0.74** 1.00 1.01 1.00
Hybrid/Raw 0.62*** 1.00 1.05* 1.09** 0.74** 0.96* 1.04* 1.05
Hybrid/Baseline 1.00 0.99 1.00 1.07 1.00 0.95* 1.03 1.05
CPI
Raw 3.11 5.61 6.70 8.52 2.94 5.26 5.50 6.50
Relative MSE
Baseline/Raw 0.33*** 0.90** 0.95 0.92* 0.35*** 0.86*** 0.99 0.94***
Hybrid/Raw 0.33*** 0.85*** 0.77** 0.69** 0.35*** 0.88*** 0.95 0.88***
Hybrid/Baseline 1.00 0.94 0.81** 0.75** 1.00 1.03 0.96 0.93
UR
Raw 0.05 0.64 2.41 3.78 0.05 0.60 2.39 3.75
Relative MSE
Baseline/Raw 0.29*** 0.73* 0.92 0.95 0.32*** 0.73** 0.90* 0.96
Hybrid/Raw 0.29*** 0.71* 0.92* 1.00 0.32*** 0.73** 0.89* 0.98
Hybrid/Baseline 1.00 0.97* 1.00 1.05 1.00 1.00 1.00 1.02
FFR
Raw 0.19 2.11 6.12 10.16 0.10 2.12 7.17 11.66
Relative MSE
Baseline/Raw 0.03*** 0.68*** 0.87** 0.93*** 0.05*** 0.63*** 0.85*** 0.92**
Hybrid/Raw 0.03*** 0.65** 0.77* 0.76 0.05*** 0.62*** 0.77*** 0.84**
Hybrid/Baseline 1.00 0.95** 0.89 0.82 1.00 0.99 0.91* 0.91**
Credit Spread
Raw 0.09 0.67 1.14 1.28 0.08 0.73 1.30 1.53
Relative MSE
Baseline/Raw 0.77* 0.95*** 0.97*** 0.99 0.89** 0.99 0.98** 0.99*
Hybrid/Raw 0.80 0.93** 0.95** 1.01 0.89** 0.94*** 1.02 0.99
Hybrid/Baseline 1.03* 0.98 0.98 1.02 0.99 0.95* 1.03 1.00

Notes for Table: GDP: real GDP growth quarterly annualized rate; CPI: inflation quarterly annualized rate; UR: unemployment rate in

levels; FFR: effective federal funds rate in levels; Credit Spread: in levels. Raw forecast is defined as the unconditional forecast from the

VAR. Baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). Hybrid forecast

is defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left

panel reports results for the VAR specification with constant variance and right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the row labeled Raw are the mean squared error (MSE), the three rows immediately below

report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid relative to Baseline. The table reports statistical

significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and

adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent,

and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal critical values.
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Table A22: Out-of-Sample Point Forecasting Performance: Small BVAR est. 1960
Horizon for combination dogmatically set at h=40Q (i.e. 10 years out)

Full Sample (Recursive evaluation: 1994.Q1-2016.Q4)

Small VAR Small VAR with SV
h=1Q h=4Q h=8Q h=12Q h=1Q h=4Q h=8Q h=12Q

GDP
Raw 4.35 7.19 6.55 6.20 3.67 6.68 6.61 6.26
Relative MSE
Baseline/Raw 0.62*** 1.01 1.05** 1.02 0.74** 1.00 1.01 1.00
Hybrid/Raw 0.62*** 0.99 1.08** 1.07** 0.74** 1.03 1.01 1.02
Hybrid/Baseline 1.00 0.98 1.02 1.05 1.00 1.02 1.01 1.03
CPI
Raw 3.11 5.61 6.70 8.52 2.94 5.26 5.50 6.50
Relative MSE
Baseline/Raw 0.33*** 0.90** 0.95 0.92* 0.35*** 0.86*** 0.99 0.94***
Hybrid/Raw 0.33*** 0.86*** 0.79** 0.73** 0.35*** 0.88*** 0.94** 0.97
Hybrid/Baseline 1.00 0.95** 0.84*** 0.80** 1.00 1.03 0.94 1.03
UR
Raw 0.05 0.64 2.41 3.78 0.05 0.60 2.39 3.75
Relative MSE
Baseline/Raw 0.29*** 0.73* 0.92 0.95 0.32*** 0.73** 0.90* 0.96
Hybrid/Raw 0.29*** 0.72* 0.93 0.99 0.32*** 0.74** 0.91* 0.97*
Hybrid/Baseline 1.00 0.99 1.01 1.03 1.00 1.01 1.01 1.00
FFR
Raw 0.19 2.11 6.12 10.16 0.10 2.12 7.17 11.66
Relative MSE
Baseline/Raw 0.03*** 0.68*** 0.87** 0.93*** 0.05*** 0.63*** 0.85*** 0.92**
Hybrid/Raw 0.03*** 0.65*** 0.74** 0.75* 0.05*** 0.64*** 0.84*** 0.94**
Hybrid/Baseline 1.00 0.95 0.85* 0.80* 1.00 1.01 0.99 1.02
Credit Spread
Raw 0.09 0.67 1.14 1.28 0.08 0.73 1.30 1.53
Relative MSE
Baseline/Raw 0.77* 0.95*** 0.97*** 0.99 0.89** 0.99 0.98** 0.99*
Hybrid/Raw 0.82* 0.92*** 0.96*** 0.99 0.89** 0.97** 1.01 1.03
Hybrid/Baseline 1.06 0.97** 0.99 1.01 1.00 0.98 1.02 1.05

Notes for Table: GDP: real GDP growth quarterly annualized rate; CPI: inflation quarterly annualized rate; UR: unemployment rate in

levels; FFR: effective federal funds rate in levels; Credit Spread: in levels. Raw forecast is defined as the unconditional forecast from the

VAR. Baseline forecast is defined as the raw VAR forecast tilted towards survey nowcasts only (both mean and variance). Hybrid forecast

is defined as the raw VAR forecast tilted towards both survey nowcasts (both mean and variance) and long-horizon forecasts. The left

panel reports results for the VAR specification with constant variance and right panel reports results for the VAR specification with

stochastic volatility. The numbers reported in the row labeled Raw are the mean squared error (MSE), the three rows immediately below

report relative MSE: Baseline relative to Raw, Hybrid relative to Raw, and Hybrid relative to Baseline. The table reports statistical

significance based on the Diebold-Mariano and West test with the lag h− 1 truncation parameter of the HAC variance estimator and

adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne, and Newbold (1997); *10 percent, **5 percent,

and ***1 percent significance levels, respectively. The test statistics use two-sided standard normal critical values.
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Appendix B

Chapter 3 Appendix

Chapter 3: Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach.

B1. Description of Mixed-Frequency Models and Simulation

Procedures

B.1.1. MIDAS Model

Following Knotek and Zaman (2017, KZ), a general representation of an ADL-MIDAS model

with leads takes the following form,

πt+h = αh+

P (M)−1∑
j=0

χj+1,(h)πt−j+

P (M)−1∑
j=0

γj+1,(h)Zt−j+βh

P (HF )−1∑
j=0

ωP (HF )−j(θ
HF
(h) )XHF

P (HF )−j,t+1+et+h

(B.1)

where Z refers to other monthly variables; P (M) refers to the number of lags of the monthly

regressors (we set to 1); and P (HF ) refers to the number of high-frequency observations,

XHF
1,t+1, ..., X

HF
P (HF ),t+1 in month t+1 (i.e., the target nowcast month). The notation (h) indicates

that the coefficients are independently estimated for each forecast horizon (h). In nowcasting

monthly inflation, h will range from 1 to 2, whereas in nowcasting quarterly inflation, h will

range from 1 to 4. An assumption of
∑P (HF )−1

j=0 ωP (HF )−j(θ
HF
(h) ) = 1 helps identify βh.

Density construction: Drawing errors from the normal distribution

Let T be the total number of observations (i.e., the length of the estimation window).

1. For h = 1, .., 4

2. Estimate the model specified in equation (1) using nonlinear least squares to obtain the

parameter estimates α̂(h), χ̂(h), γ̂(h), β̂(h)( ˆθ(h))
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3. Based on the estimates in the previous step, compute the sequence of residuals êt+h

4. For d = 1, . . . ., D

a. Sample e∗t+h from the empirical distribution of et+h ∼ N(0, var(ët+h)), where ët+h =

( T
T−k )0.5êt+h and k is the number of regressors in eq.(1).

b. Generate a simulated series π∗t+h using

π∗t+h
(d) = α̂h+

P (M)−1∑
j=0

χ̂j+1,(h)πt−j+

P (M)−1∑
j=0

γ̂j+1,(h)Zt−j+β̂h

P (HF )−1∑
j=0

ωP (HF )−j(θ̂
HF
(h) )XHF

P (HF )−j,t+1+e∗t+h

c. REPEAT

5. The empirical distribution {π∗t+h}Dd=1 constitutes the estimate of the density nowcast corre-

sponding to the forecast horizon, h

Note that, in step 4a above, the draws are obtained from a distribution of modified residuals

because the variance of the modified residuals is a better estimate of the true variance of the

least squares estimate of the error term et+h in equation (1). To further explain why this is the

case, recall that the variance of the residuals êt+h is the sum of the squared residuals divided

by T , whereas the variance of the least squares estimate should be divided by T − k, where

k is the number of regressors in the regression. Therefore, the original series of residuals are

rescaled to correct the variance (see Davidson and MacKinnon, 2006).

This simple procedure accounts for shock uncertainty only; i.e., it does not account for the

parameter uncertainty. However, in preliminary exercises, the difference in the density accuracy

between this procedure and a bootstrapping procedure that also takes into account parameter

uncertainty was very small.

B.1.2. DFM Model

Our implementation of the mixed-frequency DFM follows Modugno (2013) and KZ.

The dynamic factor model takes the general form:

yτ = Cfτ + ετ , ετ ∼ N(0,Σ) (B.2)

where τ refers to the trading-day frequency, yτ is a vector of observations, C is a block diagonal

matrix of factor loadings, ετ is a vector of idiosyncratic components, and fτ is a vector of latent
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common factors following VAR dynamics:

Bfτ = A(L)fτ−1 + uτ , uτ ∼ N(0, Q) (B.3)

where B and A(L) are coefficient matrices governing factor dynamics, some of which may be

time-varying, and uτ is a vector of residuals.

With monthly, weekly, and daily data, yτ = [yMτ , y
W
τ , y

D
τ ]′, we have three corresponding

factors, fτ = [fMτ , fWτ , fDτ ]′ , each of dimension r×1. The monthly factor(s) fMτ and the weekly

factor(s) fWτ are a function of the daily factors(s) fDτ . Thus equations (B.2) and (B.3) can be

written as: y
M
τ

yWτ

yDτ

 =

CM 0 0

0 CW 0

0 0 CD


f

M
τ

fWτ

fDτ

+

ε
M
τ

εWτ

εDτ

 (B.4)

and 1 0 −1

0 1 −1

0 0 1


f

M
τ

fWτ

fDτ

 =

ΘM
τ 0 0

0 ΘW
τ 0

0 0 AD


f

M
τ−1

fWτ−1

fDτ−1

+

 0

0

uDτ

 (B.5)

The matrices CM ,CW , and CD are the loadings for the monthly, weekly, and daily variables.

ΘM
τ and ΘW

τ are time-varying coefficients: ΘM
τ is equal to zero the day after the release of the

monthly data and is equal to one elsewhere; similarly, ΘW
τ is equal to zero the day after the

release of the weekly data and is equal to one elsewhere.

Assuming that the monthly variables and weekly variables in our system at any time τ

represent a stock (i.e., a snapshot), accordingly the monthly first difference (or growth rate)

and weekly first difference (or growth rate) of those variables can be formed by summing up

their respective daily first differences (or growth rates).

To produce forecasts far into the future, the daily factors are forecast via the transition equa-

tion (B.5) and are translated to daily nowcasts and aggregated to weekly and monthly nowcasts

via equation (B.4). Following Modugno (2013), we estimate the model with the expectation-

maximization (EM) algorithm as detailed in Bańbura and Modugno (2014).

Density construction: Standard bootstrapping procedure

Our procedure closely follows the factor model bootstrapping procedure detailed in Aastveit et

al. (2014).

Let T be the number of observations (i.e., the length of the estimation window).

1. Estimate the model specified in equations (B.2) and (B.3) to obtain parameter estimates
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Â(0), B̂(0), Ĉ(0), Q̂(0), Σ̂(0), f̂ (0). Let Â = Â(0), B̂ = B̂(0), Ĉ = Ĉ(0), Q̂ = Q̂(0), Σ̂ = Σ̂(0).

2. For d=1,. . . .,D, do the following

a. Simulate draws u∗τ from the empirical distribution of uτ ∼ N(0, Q̂)

b. Generate bootstrap series f∗τ using B̂f∗τ = Â(L)f∗τ−1 + u∗τ where u∗τ is obtained in the

previous step

c. Simulate draws ε∗τ from the empirical distribution of ετ ∼ N(0, Σ̂)

d. Generate bootstrap series y∗τ using y∗τ = Ĉf∗τ + ε∗τ where ε∗τ and f∗τ are obtained in the

previous two steps.

e. Using y∗τ re-estimate the model in equations (B.2) and (B.3) to obtain an updated set

of parameter and factor estimates, Â(d), B̂(d), Ĉ(d), Q̂(d), Σ̂(d), f̂ (d). Set Â = Â(d), B̂ = B̂(d),

Ĉ = Ĉ(d), Q̂ = Q̂(d), Σ̂ = Σ̂(d).

f. Based on the parameter and factor estimates obtained in the previous step construct

forecasts of factors via equation (B.3), which are then aggregated up to produce nowcasts (and

forecasts) for monthly inflation, π∗t+h
(d) via equation (B.2).

g. REPEAT

3. The empirical distribution {π∗t+h}Dd=1 constitutes the estimate of the density nowcast corre-

sponding to the forecast horizon, h

B.1.3. DMS Model

As discussed in the body of chapter 3, the DMS model is essentially a collection of univariate

and multivariate regressions applied to disaggregate components and aggregate inflation. To

appropriately account for uncertainty, we devise two separate bootstrapping algorithms for

univariate and multivariate formulations. The difference between these two algorithms is only

slight but it helps improve the density accuracy of monthly inflation.

We first describe the general-purpose bootstrap algorithm for the multivariate regression

followed by the description for the univariate regression.
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A general representation for a multivariate regression can be written as follows,

yt = β0 + αXt + εt εt ∼ N(0, σ2) (B.6)

Assume that β̂0, α̂, σ̂2 are the OLS estimates obtained through the estimation of equation

(B.6) over the sample 1, . . . , T . ε̂t are the least squares residuals with mean 0 and variance σ̂2.

Density construction, algorithm 1: Wild block bootstrap for density forecasts

For d=1,. . . .,D do the following.

1. Construct a transformed series of residuals {ε̈t}Tt=1 from the OLS residuals {ε̂t}Tt=1, where

ε̈t = h(ε̂t)ut and ut ∼ N(0, 1). h is a transformation function that modifies the original least

squares residuals to correct them for possible heteroscedasticity. Various choices for h have

been suggested in the literature. Following Chernick and LaBudde (2011, Ch. 6, Section 6.6),

we set

h(ε̂t) =
ε̂t

1−H
where H = X(X ′X)−1X ′

We also tried h(ε̂t) = ε̂t
(1−H)1/2

, another widely used transformation.

2. Sampling from ε̈

a. To correct for possible serial correlation (following Aastveit et al., 2014), we draw blocks

of consecutive errors from ε̈. We define the block size, bsize = 4; it is common to set it greater

than or equal to the forecast horizon; T is the number of observations; and bnumber = ceil( T
bsize

),

is an integer that denotes the number of non-overlapping blocks of consecutive errors.

b. For l = 1, . . . , bsize and j = 1, . . . , bnumber construct the bootstrap sample for y∗

y∗(j−1)bsize+l
= β̂0 + α̂X(j−1)bsize + ε∗(j−1)bsize+l

where ε∗(j−1)bsize+l
= ε̈(j−1)bsize+l ·δj , and δj is set as a Rademacher variable, following Davidson

and Flachaire (2008) and Aastveit et al (2014):

δj =

+1, with probability 0.5

−1, with probability 0.5

We also experimented with δj ∼ N(0, 1), but doing so slightly worsened the accuracy of the

density forecasts.
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3. Based on the bootstrap sample y∗ (constructed in the previous step), re-estimate the model

in equation (B.6) to obtain updated estimates β̂
(d)
0 , α̂(d), σ̂2(d).

4. Use β̂
(d)
0 and α̂(d) in equation (B.6) to generate iterative forecasts, ŷ

(d)
t+h up to h periods

ahead. (We also experimented with a modified step 4: when generating iterative forecasts ŷ
(d)
t+h

we drew from ε∗ ∼ N(0, var(ε∗)) for each h. This alternative made no difference to the overall

results.)

5. REPEAT

6. The empirical distribution of {ŷt+h}Dd=1 constitutes our estimate of the h-step-ahead density.

Next, we describe the algorithm that we apply to the univariate AR regressions. A general

representation for a univariate AR regression is:

yt = β0 +

P∑
j=1

αj yt−j + εt, εt ∼ N(0, σ2) (B.7)

Assume that β̂0, [α̂j ]
P
j=1, σ̂2 are the OLS estimates obtained through the estimation of equation

(B.7) over the sample consisting of 1, . . . , T observations. ε̂t are the least squares residuals with

mean 0 and variance σ̂2.

Density construction, algorithm 2: Parametric bootstrap for density forecasts

For d=1,. . . .,D do the following.

1. Construct a transformed series of residuals {ε̈t}Tt=1 from the residuals {ε̂t}Tt=1, where ε̈t =

( T
T−k )0.5ε̂t and k is the number of regressors, in this case k = P + 1; P is the number of lags

of the dependent variable. We also experimented with ε̈t = h(ε̂t)ut and ut ∼ N(0, 1) but this

produced inferior nowcasts.

2. Sample a sequence of {ε∗t }Tt=1 from ε̈ ∼ N(0, var(ε̈)) and then construct a bootstrap sample

of {y∗t }Tt=1 using

y∗t = β̂0 +

P∑
j=1

α̂jy
∗
t−j + ε∗t

3. Based on the bootstrap sample y∗ re-estimate the model in equation (B.7) to obtain updated

estimates β̂
(d)
0 , [α̂

(d)
j ]Pj=1
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4. Use β̂
(d)
0 , [α̂

(d)
j ]Pj=1 in equation (B.7) to iteratively generate forecasts, ŷ

(d)
t+h up to h peri-

ods ahead. (We also experimented with a modified step 4: when generating iterative forecasts

ŷ
(d)
t+h we draw from ε̈ ∼ N(0, var(ε̈)) for each h. This alternative made no difference to the

overall results.)

5. REPEAT

6. The empirical distribution of {ŷt+h}Dd=1 constitutes our estimate of the h-step-ahead density.

Using the same notation as in KZ, the general representation of the DMS model for monthly

headline (or core) inflation is

As(τ)Zt = Bs(τ) + Cs(τ)Xt +

J∑
j=1

Dj,s(τ)Zt−j + εs(τ) (B.8)

where Zt is an n × 1 vector of aggregates, Xt is an m × 1 vector of disaggregates that are

informative over Zt, and εs(τ) ∼ N(0,Σ). The coefficient matrices A, B, C, and Dj are n× n,

n × 1, n × m, and n × n, respectively, and are allowed to vary over time depending on the

available information set, denoted s(τ); in particular, C and Dj measure the weights put on

the disaggregates and lagged aggregates, respectively.

Nowcasting core inflation

Let Zt = [πCoreCPIt , πCorePCEt ]′ and Xt = 0 in equation (B.8). We specify two possible

regression specifications for core inflation. The first one is a univariate AR, and the second is

a bridge equation (i.e., multivariate regression), which regresses core CPI on core PCE and a

constant. Conditional on the available information, equation (B.8) reduces to either a univari-

ate AR or a combination of a univariate AR and bridge equation.

Univariate AR: πCoret = β0 +
∑P

j=1 αjπ
Core
t−j + εt

Bridge equation: πCorePCEt = γ0 + θπCoreCPIt + ut

In cases where we have an additional monthly release of core CPI compared with core PCE,

and only core PCE remains to be nowcasted: (1) The forecasts of core CPI are produced using

a univariate AR, and algorithm 2 is used to produce density forecasts. (2) The nowcast of core
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PCE is produced using a bridge regression. The forecasts up to h steps ahead are produced

using a univariate regression that treats the nowcast from a bridge regression as an initial value.

To produce density estimates (nowcasts and forecasts), algorithm 2 is used. In all other cases,

both core CPI and core PCE are nowcasted (and forecasted) using a univariate AR model. The

density estimates are computed based on algorithm 2.

Nowcasting food inflation

Nowcasts for food inflation are produced and used to nowcast headline inflation in all cases

except: (1) when we are unable to produce a nowcast for gasoline inflation, and (2) when we

have an additional reading for PCE inflation (πPCE) compared to CPI inflation (πCPI). Similar

to core PCE, we adopt a parsimonious approach to produce nowcasts of food inflation by simply

estimating a univariate AR,

πfoodt = β0 +

P∑
j=1

αjπ
food
t−j + εt

Density nowcasts (and forecasts) are produced using algorithm 2.

Nowcasting gasoline inflation

Following KZ, we generate nowcasts (and forecasts) for gasoline inflation based on the

availability of weekly gasoline prices and daily oil prices. If weekly gasoline prices are available

in the current month, these form the basis for that month’s gasoline inflation nowcast. We use

a daily random walk in oil prices to extend (i.e., forecast) the oil price series by one additional

month. If oil price data or a forecast for oil prices is available for a month but gasoline prices

are not available from within that month, then we produce nowcasts or forecasts for gasoline

inflation (π̂Gasoline) via a two-stage regression procedure (see KZ for details). In the first stage,

a longer-run relationship between monthly gasoline prices and monthly oil prices is assumed via

the following regression:

P
Gasoline(NSA)
t−1 = α+ βPOilt−1 + e1,t−1 (B.9)

Denote P̃
Gasoline(NSA)
t−1 as the fitted monthly gasoline prices obtained by estimating equation

(B.9). In the second stage, we estimate an error correction model that uses the lagged gap

between gasoline prices and their predicted (longer-run) values obtained in the first stage via

the following regression:

4PGasoline(NSA)
t−1 = b4POilt−1 + c(P

Gasoline(NSA)
t−2 − P̃Gasoline(NSA)

t−2 ) + e2,t−1 (B.10)
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Using the estimated coefficients in equations (B.9) and (B.10) and iterating forward equa-

tions (B.9) and (B.10) we generate P̂
Gasoline(NSA)
t−1+h and 4̂PGasoline(NSA)

t−1+h and in turn estimates

of π̂
Gasoline(NSA)
t−1+h . The estimates are seasonally adjusted to produce π̂Gasolinet−1+h . The density

forecasts are produced by applying algorithm 1 sequentially to equations (B.9) and (B.10). For

each simulation d, π̂
Gasoline(NSA),d
t−1+h is seasonally adjusted to obtain the corresponding π̂Gasoline,dt−1+h .

Nowcasting headline inflation

Let Zt = [πCPIt , πPCEt ]′ and Xt = [πCoreCPIt , πCorePCEt , πFoodt , πGasolinet ]′. In cases where we

have an additional release of πCPIt , equation (B.8) reduces to a bridge equation for πPCEt and

a univariate AR for πCPIt .

Univariate AR: πCPIt = β0 +
∑P

j=1 αj π
CPI
t−j + εt

Bridge equation: πPCEt = γ0 + θ πCPIt + ut

Density estimates are constructed using algorithm 2. In cases where we have nowcasts of

πGasolinet , equation (B.8) reduces to a multivariate regression,

πCPIt = b1 + c11π
CoreCPI
t + c13π

Food
t + c14π

Gasoline
t + eCPIt (B.11)

πPCEt = b2 + c22π
CorePCE
t + c23π

Food
t + c24π

Gasoline
t + ePCEt (B.12)

The density nowcasts (and forecasts) for CPI and PCE inflation are produced by separately

applying algorithm 1 to equations (B.11) and (B.12). In very few cases, where we lack estimates

of π̃Gasolinet and do not have an additional reading for πCPIt , equation (B.8) reduces to univariate

AR,

πCPIt = β1 +
P∑
j=1

αCPIj πCPIt−j + εCPIt (B.13)

πPCEt = β2 +

P∑
j=1

αPCEj πPCEt−j + εPCEt (B.14)

The density nowcasts (and forecasts) are generated by separately applying algorithm 2 on equa-

tions (B.13) and (B.14).

In all of our simulation procedures, D=500. Early experimentation suggested that we would

normally obtain similar results if we instead set D=1000.
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B2. Mechanics of Density Combination and Graphical Illustra-

tion

Assume at time t, we have i = 1, . . . ,M (potentially different) empirical distributions fi,t(yt)

for a variable yt. We wish to combine them using a given set of M weights, wi,t.

Step 1: Looking across all the M empirical distributions, fi,t(yt), determine the (global)

minimum value and (global) maximum value of yt. Denote xmint as the minimum value and

xmaxt as the maximum value.

Step 2: Define a grid xt ∈ {xmint , ..., xmaxt } of S equally spaced intervals such that xk−1 < xk.

Step 3: Transform each of the i = 1, . . . ,M empirical distributions fi,t(yt) to a probability

density function (pdf), pi,t(yt) using the grid xt as the domain. The Gaussian kernel function

(Matlab: ksdensity function) is applied to construct a smoothed pi,t(yt). Using the same grid

xt to construct each of the M pdfs will guarantee that all the pdfs that are to be combined

together at time t have the same domain; that is, they are all positioned over the same grid.

Step 4: With all pdfs positioned over the same domain (grid), the combination can be

achieved by simply adding up the M different densities using the corresponding weights wi,t

(for linear combination) or raised to a power of wi,t for a log pool combination. The combined

density gt(yt) will also be positioned over the same grid (domain) xt as the M individual den-

sities.

We set S=500. Early experimentation suggested that the results were very similar if we set

S=1000.

Note that our procedure dynamically adjusts the grid xt at each time t. Alternatively, we

could just set it to a predefined interval but then the interval has to be wide enough to en-

compass all the individual empirical distributions for all t = 1, . . . , T (i.e., over the evaluation

sample). Given the breadth of our analysis, including the number of variables considered and

both monthly and quarterly rates, having a grid that adjusts dynamically was more efficient

for our application.

In implementing our algorithm, we have benefitted from and are grateful for the PROFOR

Matlab toolbox (developed by researchers at the Norges Bank, Bank of England, and Warwick

Business School). We have modified some of the functions of the toolbox to fit our needs.
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B3. Comparing Properties of Grand Combinations across Weight-

ing Schemes

Figure 3.8 in the body of chapter 3 shows the weights and higher-order moments from using the

log score weighting scheme to generate the stage 1 and stage 2 combinations. Figures B15, B16,

and B17 (in this appendix) show the weights and higher-order moments from the CMG, Ganics,

and CRPS weighting schemes, respectively. We summarize six key results from this comparison.

First, for CPI inflation and PCE inflation, the DMS combination gets the highest weight

in all weighting schemes with the exception of Ganics. Furthermore, the DMS maintains its

ranking with incoming information over the course of the month.

Second, the CMG and Ganics grand combinations for CPI inflation and PCE inflation pro-

vide stronger evidence of both kurtosis and skewness than the combination based on log score

weights. This finding is associated with the grand combination being composed of more di-

verse components in these cases; that is, the DMS combination, the DFM combination, and

the MIDAS combination are all assigned nonzero weights in the grand combination. Different

weighting schemes can lead to combinations with very different compositions, as is evident by

very different profiles of the weights assigned to the three model classes over time. In general,

the greater the diversity in the composition of the grand combination, the greater is the evi-

dence of skewness and kurtosis.1 But greater flexibility in terms of accommodating skewness

and kurtosis does not necessarily translate into improved accuracy. We say this because for

CPI inflation the grand combination based on the log-score weighting scheme is more accu-

rate than grand combinations based on other schemes, yet it displays less evidence of skewness

and kurtosis on average compared with other grand combinations. This improved accuracy is

mainly coming from the significantly more accurate mean of the density nowcast constructed

from the log-score scheme, which puts high weight on the stage 1 DMS combination, compared

with grand combinations based on other weighting schemes.

Third, in the case of core inflation, the patterns observed in the properties of the grand

combination are generally comparable across the various weighting schemes, even though the

weights assigned to the densities of the three modeling classes differ. This result stems from

the fact that the estimates of density nowcasts for core inflation are generally similar across

the different modeling classes; so irrespective of the approach used to combine the component

density nowcasts, the resulting estimates of the combined density nowcasts are similar. This

1We highlight a result in regard to grand combinations for CPI inflation (case 4) produced using the log score
weighting scheme (see Figure 3.8) and the CMG weighting scheme (Figure B15). Both schemes assign a weight
of 100% to DMS at least in the last few years of the evaluation sample, yet the profiles of the kurtosis property
of the grand combinations across the two schemes are very different for this period. This finding arises in part
because the underlying composition of the two respective stage 1 DMS combinations is quite different; see Figure
B18.
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latter pattern also explains the comparable accuracy results for core inflation shown in Figures

3.4 and 3.5 of chapter 3 (especially in the case of core CPI). Relatedly, the weight profiles across

different weighting schemes (for core inflation) indicate a high incidence of fast switching across

the three combinations. The evidence of time-varying switching across density combinations

highlights the importance of combining density estimates from a range of models to circumvent

the instability issues of using a single model.

Fourth, the CRPS weighting scheme assigns positive weights to the three combinations

across all inflation measures and at all representative dates (shown for cases 1 and 4), reflecting

the generous assessment of the CRPS metric. In the case of core inflation, the weights are

pretty evenly distributed across the DMS, DFM, and MIDAS combinations.

Fifth, in our application, the two optimal combination weighting schemes (CMG and Ganics)

yield weight profiles that are remarkably different, especially in the case of CPI inflation and

PCE inflation. However, the different profiles are not unexpected, given the earlier results

that showed MIDAS and DFM combinations producing well-calibrated densities compared with

DMS, which tends to do quite well in relative accuracy scoring. The weights produced from the

Ganics approach display quite a bit of variability early in the sample. This variability is also

present to a degree in the results reported in Ganics (2017) using industrial production data.

Figure B1: Illustration of Combining Densities with Linear and Log Opinion Pools

Notes: A simple example (motivated by Kascha and Ravazzolo, 2010) on combining two densities with very different mean

and variances via two different functional forms.
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Figure B2: Example Stage 1 DMS Combination

Notes: Single specification density nowcasts (thin lines) underlying the stage 1 DMS combination, linear pool nowcasts

(thick red lines), and log pool nowcasts (thick green lines) for case 1 for the month of September 2000.
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Figure B3: Comparisons between Single Specifications vs. Stage 1 Combinations

Notes: Average log scores at different nowcast origins for single specifications and stage 1 combinations within model

classes. The evaluation sample is September 2000 through June 2015. We exclude September 2001 and October 2001 from

the average log score calculations for PCE inflation and core PCE inflation.
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Figure B4: Real-Time Density Nowcasts

(a) CPI inflation

(b) Core CPI inflation

259



Figure B4: Real-Time Density Nowcasts (continued)

(c) PCE inflation

(d) Core PCE inflation

Notes: The figure shows the out-of-sample nowcasts generated using real-time data from the grand combination with the

log score weighting scheme and the flexible aggregation strategy at two different points in each month (case 1 and case 4)

for the 12-month trailing inflation rate. The shaded areas represent 70% and 90% prediction intervals. The sample period

spans September 2000 through June 2015.
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Figure B5: Weights Underlying Grand Combination based on Ganics Weighting Scheme

Notes: The figure plots the evolution of the weights applied to each of the stage 1 density combinations from the DMS,

MIDAS, and DFM model classes to form the stage 2 combination, based on nowcasts generated for monthly (year-over-year)

inflation at case 5 for nowcasting CPI inflation. The sample period spans September 2000 through June 2015.
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Figure B6: Density Performance of Grand Combination vs. Its Components: Month-Over-

Month Inflation

(a) Relative accuracy based on log score

(b) Relative accuracy based on CRPS

Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for the grand combination

based on the log score weighting scheme and combinations based on the DMS model class, MIDAS model class, and DFM

model class, where each individual model class uses the log score weighting scheme. The evaluation sample runs from

September 2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation and core PCE inflation

calculations.
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Figure B7: Point Nowcasting Performance, Grand Combination vs. DMS: Month-Over-Month

Inflation

Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation strategy;

the stage 1 combination from the DMS model class; and a single specification from the DMS model class based on Knotek

and Zaman (2017). The cases reflect the point in time when each nowcast was made relative to the target nowcast month;

see Table 3.2 (in chapter 3). The evaluation sample runs from September 2000 through June 2015; we omit September

2001 and October 2001 for PCE inflation and core PCE inflation calculations.
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Figure B8: Density Performance of Grand Combination vs. Its Components: Quarterly Inflation

Notes: Average log score for the grand combination based on the log score weighting scheme and combinations based on

the DMS model class, MIDAS model class, and DFM model class, where each individual model class uses the log score

weighting scheme. The evaluation sample runs from 2000Q4 through 2015Q2; we omit 2001Q3 and 2001Q4 for PCE

inflation and core PCE inflation calculations.
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Figure B9: Point Nowcasting Performance, Grand Combination vs. Other Combinations and

Single DMS Specification: Quarterly Inflation

Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation strategy;

the stage 1 combinations from the DMS model class, DFM model class, and MIDAS model class; and a single specification

from the DMS model class based on Knotek and Zaman (2017). The cases reflect the point in time when each nowcast

was made relative to the target nowcast quarter; see Table B1. The evaluation sample runs from 2000Q4 through 2015Q2;

we omit 2001Q3 and 2001Q4 for PCE inflation and core PCE inflation calculations.
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Figure B10: Weights for Stage 1 DMS Combinations, Log Score Weighting Scheme

Notes: The figure plots the evolution of the weights for underlying individual candidate densities for the stage 1 DMS

combination at case 4. Each color shade represents a particular individual candidate density. There are 108 candidate

densities. The sample period spans September 2000 through June 2015.

266



Figure B11: Weights for Stage 1 DFM Combinations, Log Score Weighting Scheme

Notes: The figure plots the evolution of the weights for of underlying individual candidate densities for the stage 1 DFM

combination at case 4. Each color shade represents a particular individual candidate density. There are 12 candidate

densities. The sample period spans September 2000 through June 2015.
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Figure B12: Weights for Stage 1 MIDAS Combinations, Log Score Weighting Scheme

Notes: The figure plots the evolution of the weights for underlying individual candidate densities for the stage 1 MIDAS

combination at case 4. Each color shade represents a particular individual candidate density. There are 12 candidate

densities. The sample period spans September 2000 through June 2015.
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Figure B13: Time-Varying Uncertainty Estimates for Density Nowcasts of Quarterly Inflation

Notes: Uncertainty is measured as the width of the 70% prediction intervals. Estimates are for the grand combination

based on the flexible aggregation strategy and log score weighting scheme for case 1 (last day of the preceding quarter),

case 3 (last day of the first month of the quarter), and case 5 (last day of the second month of the quarter); see Table B1.

The sample period spans 2000Q4 through 2015Q2.
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Figure B14: Stage 2 Grand Combination of DMS, DFM, and MIDAS Combinations

Notes: The figure illustrates a grand combination for 12-month inflation rates as of case 1 (the last day of the previous

month) for nowcasting the target month of January 2001 and the three stage 1 combinations from the DMS, MIDAS, and

DFM model classes that are used to construct the grand combination.
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Figure B15: Weights and Higher-Order Moments, CMG Weighting Scheme

(a) CPI inflation

(b) Core CPI inflation
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Figure B15: Weights and Higher-Order Moments, CMG Weighting Scheme (continued)

(c) PCE inflation

(d) Core PCE inflation

Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand

combination, based on the flexible aggregation strategy and CMG weighting scheme. (Each model class is a combination

of multiple model specifications.) The second row plots estimates of dynamic uncertainty, defined as the width of the 70%

prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. The sample period spans

September 2000 through June 2015.
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Figure B16: Weights and Higher-Order Moments, Ganics Weighting Scheme

(a) CPI inflation

(b) Core CPI inflation
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Figure B16: Weights and Higher-Order Moments, Ganics Weighting Scheme (continued)

(c) PCE inflation

(d) Core PCE inflation

Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand com-

bination, based on the flexible aggregation strategy and the Ganics weighting scheme. (Each model class is a combination

of multiple model specifications.) The second row plots estimates of dynamic uncertainty, defined as the width of the 70%

prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. The sample period spans

September 2000 through June 2015.
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Figure B17: Weights and Higher-Order Moments, CRPS Weighting Scheme

(a) CPI inflation

(b) Core CPI inflation
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Figure B17: Weights and Higher-Order Moments, CRPS Weighting Scheme (continued)

(c) PCE inflation

(d) Core PCE inflation

Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand

combination, based on the flexible aggregation strategy and the CRPS weighting scheme. (Each model class is a combination

of multiple model specifications.) The second row plots estimates of dynamic uncertainty, defined as the width of the 70%

prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. The sample period spans

September 2000 through June 2015.
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Figure B18: Comparison of Weights within the DMS Model Class, Log Score Weighting Scheme

vs. CMG Weighting Scheme

Notes: The figure plots the evolution of weights of the underlying individual candidate densities. Each color shade represents

a particular individual candidate density. There are 108 candidate densities. The richness in the color variation indicates

that no single candidate density dominates others. The left panel displays the weights for the stage 1 DMS combination

constructed using the log score weighting scheme, and the right panel displays weights for the stage 1 DMS combination

constructed using the CMG weighting scheme. The flexible aggregation method is used in both cases. The sample period

spans September 2000 through June 2015.
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Table B1: Representative Dates for Quarterly Nowcasting Performance

Information Set Months

Case Date (Example: Nowcasting target quarter is Q1) to Forecast

1 Last day of the December 31: Have CPI and PCE through November; CPI: h=4 (Dec., Jan., Feb., Mar.)

previous month high-frequency information through December 31 PCE: h=4 (Dec., Jan., Feb., Mar.)

2 Day 15 of month January 15: Receive CPI for December and have PCE CPI: h=3 (Jan., Feb., Mar.)

1 of the target through November; high-frequency information through PCE: h=4 (Dec., Jan., Feb., Mar.)

quarter end of second week of January, which includes two

weekly retail gasoline readings from January

3 Last day of January 31: Have CPI for December and receive PCE for CPI: h=3 (Jan., Feb., Mar.)

month 1 of the December; high-frequency information for all of January, PCE: h=3 (Jan., Feb., Mar.)

target quarter which includes all four weekly retail gasoline readings

from January

4 Day 15 of month February 15: Receive CPI for January and have PCE CPI: h=2 (Feb., Mar.)

2 of the target through December; high-frequency information through PCE: h=3 (Jan., Feb., Mar.)

quarter end of second week of February, which includes two

weekly retail gasoline readings from February

5 Last day of February 28: Have CPI for January and receive PCE for CPI: h=2 (Feb., Mar.)

month 2 of the January; high-frequency information for all of February, PCE: h=2 (Feb., Mar.)

target quarter which includes all four weekly retail gasoline readings

from February

6 Day 15 of month March 15: Receive CPI for February and have PCE CPI: h=1 (Mar.)

3 of the target through January; high-frequency information through end PCE: h=2 (Feb., Mar.)

quarter of second week of March, which includes two weekly

retail gasoline readings from March

7 Last day of March 31: Have CPI for February and receive PCE for CPI: h=1 (Mar.)

month 3 of the February; high-frequency information for all of March, PCE: h=1 (Mar.)

target quarter which includes all four weekly retail gasoline readings

from March
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Appendix C

Chapter 4 Appendix

Chapter 4: A Unified Framework to Estimate Macroeconomic Stars.

C1. Bayesian Estimation Details

C1.a. Base Model equations

For convenience, we list all model equations keeping the numbering as in the main text.

Ut = U∗t + U ct (C.6)

Ut − U∗t = ρu1(Ut−1 − U∗t−1) + ρu2(Ut−2 − U∗t−2) + φuogapt + εut , ε
u
t ∼ N(0, σ2

u) (C.7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1; φu < 0

U∗t = U∗t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗t−1, bu − U∗t−1; 0, σ2

u∗) (C.8)

Zut = Cut + βuU∗t + εzut , ε
zu
t ∼ N(0, σ2

zu) (C.9)

Cut = Cut−1 + εcut , ε
cu
t ∼ N(0, σ2

cu) (C.10)

gdpt = gdp∗t + ogapt (C.11)

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗) (C.12)

g∗t ≡ 4gdp∗t

g∗t = g∗t−1 + εgdp∗t (C.13)

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rt − r∗t ) + λg(Ut − U∗t ) + εogapt (C.14)
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where, εogapt ∼ N(0, σ2
ogap), ρ

g
1 + ρg2 < 1, ρg2 − ρ

g
1 < 1, and |ρg2| < 1; λg < 0

Zgt = Cgt + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2

zg) (C.15)

Cgt = Cgt−1 + εcgt , ε
cg
t ∼ N(0, σ2

cg) (C.16)

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + λpt (Ut − U∗t ) + εpt , ε
p
t ∼ N(0, eh

p
t ) (C.17)

where, |ρp| < 1

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2

λp) (C.18)

hpt = hpt−1 + εhpt , ε
hp
t ∼ N(0, σ2

hp) (C.19)

P ∗t = P ∗t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2

p∗) (C.20)

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (C.21)

ρπt = ρπt−1 + ερπt , ε
ρπ
t ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ2

ρπ) (C.22)

where, ρπ are truncated so that 0 < ρπt < 1.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ2
λπ) (C.23)

λπ is the slope of price Phillips curve and is constrained in the interval (-1,0).

hπt = hπt−1 + εhπt , εhπt ∼ N(0, σ2
hπ) (C.24)

π∗t = π∗t−1 + επ∗t , ε
π∗
t ∼ N(0, σ2

π∗) (C.25)

Zπt = Cπt + βππ∗t + εzπt , ε
zπ
t ∼ N(0, σ2

zπ) (C.26)

Cπt = Cπt−1 + εcπt , ε
cπ
t ∼ N(0, σ2

cπ) (C.27)

W ∗t = π∗t + P ∗t + εw∗t , εw∗t ∼ N(0, σ2
w∗) (C.28)

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + κwt (πt − π∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (C.29)

hwt = hwt−1 + εhwt , εhwt ∼ N(0, σ2
hw) (C.30)

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ2
ρw) (C.31)

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ2
λw) (C.32)

λw is the slope of wage Phillips curve and is constrained in the interval (-1,0).

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2
κw) (C.33)

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗t ) + κi(πt − π∗t ) + εit, ε
i
t ∼ N(0, eh

i
t) (C.34)
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where, ρi is truncated so that 0 < ρi < 1.

hit = hit−1 + εhit , ε
hi
t ∼ N(0, σ2

hi) (C.35)

r∗t = ζg∗t +Dt. (C.36)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2

d) (C.37)

Zrt = Crt + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2

zr) (C.38)

Crt = Crt−1 + εcrt , ε
cr
t ∼ N(0, σ2

cr) (C.39)
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C1.b. Prior Elicitation

Our prior settings are similar to those used in Chan, Koop, and Potter (2016) [CKP], Chan,

Clark, and Koop (2018) [CCK], and Gonzalez-Astudillo and Laforte (2020). As discussed in

CCK, UC models with several unobserved variables, such as the one developed in this chapter,

require informative priors. That said, our priors settings for most variables are only slightly

informative. The use of inequality restrictions on some parameters such as the Phillips curve,

persistence, bounds on u-star could be viewed as additional sources of information that elimi-

nates the need for tight priors, something also noted by CKP. The parameters for which there is

a strong agreement in the empirical literature on their values, such as the Taylor-rule equation

parameters, we use relatively tight priors, such that prior distributions are centered on prior

means with small variance.

In the table below, the notation N(a, b) denotes Normal distribution with mean a, and

variance b; and IG(ν, S) denotes Inverse Gamma distribution with degrees of freedom parameter

ν, and scale parameter S.

Table C.1: Prior Settings

Parameter Parameter Description Prior

ar Coefficient on interest-rate gap in output gap equation N(0, 1)

ρg1 Persistence in output gap: lag 1 N(1.3, 0.12)

ρg2 Persistence in output gap: lag 2 N(−0.5, 0.12)

ρu1 Persistence in UR gap: lag 1 N(1.3, 0.12)

ρu2 Persistence in UR gap: lag 2 N(−0.5, 0.12)

ρp Persistence in productivity gap N(0.1, 1)

ζ Relationship between r* and g* N(1, 0.1)

ρi Persistence in interest-rate gap N(0.85, 0.12)

λi Interest rate sensitivity to UR gap: (−2 ∗ (1− ρi)) N(−0.3, 0.12)

κi Interest rate sensitivity to inflation: (0.5 ∗ (1− ρi)) N(0.075, 0.12)

λg Output gap response to UR gap N(−0.02, 1)

φu UR gap response to Output gap N(−0.02, 1)

βg Link between g* and survey N(1, 0.12)

βu Link between u* and survey N(1, 0.052)

βr Link between r* and survey N(1, 0.12)

βπ Link between π∗ and survey N(1, 0.052)

σ2
π∗ Var. of the shocks to π∗ IG(10, 0.12 × 9)

σ2
p∗ Var. of the shocks to p∗ IG(10, 0.1422 × 9)

σ2
u∗ Var. of the shocks to u∗ IG(10, 0.12 × 9)

Continued on next page
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Table C1 – continued from previous page

Parameter Parameter Description Prior

σ2
gdp∗ Var. of the shocks to gdp∗ IG(10, 0.012 × 9)

σ2
d Var. of the shocks to d IG(10, 0.12 × 9)

σ2
w∗ Var. of the shocks to w∗ IG(10, 0.1422 × 9)

σ2
ogap Var. of the shocks to Ogap IG(10, 1× 9)

σ2
u Var. of the shocks to UR gap IG(10, 0.7072 × 9)

σ2
hp Var. of the volatility – Productivity eq. IG(10, 0.3162 × 9)

σ2
h Var. of the volatility – Price Inf. eq. IG(10, 0.3162 × 9)

σ2
hw Var. of the volatility – Wage Inf. eq. IG(10, 0.3162 × 9)

σ2
hi Var. of the volatility – Interest rate eq. IG(10, 0.3162 × 9)

σ2
λπ Var. of the shocks to TVP λπ, Price Phillips curve IG(10, 0.042 × 9)

σ2
λw Var. of the shocks to TVP λw, Wage Phillips curve IG(10, 0.042 × 9)

σ2
λp Var. of the shocks to TVP λp, Cyc. Productivity IG(10, 0.042 × 9)

σ2
κw Var. of the shocks to TVP κw, PT: π to Wages IG(10, 0.042 × 9)

σ2
ρw Var. of the shocks to TVP ρw, Persist. Wage-gap IG(10, 0.042 × 9)

σ2
ρπ Var. of the shocks to TVP ρπ, Persist. Inflation-gap IG(10, 0.042 × 9)

Cπ0 Time-varying Intercept in eq. linking survey to pi-star N(0, 0.1)

Cu0 Time-varying Intercept in eq. linking survey to u-star N(0, 0.1)

Cg0 Time-varying Intercept in eq. linking survey to g-star N(0, 0.1)

Cr0 Time-varying Intercept in eq. linking survey to r-star N(0, 0.1)

σ2
cπ Var. of the shocks to TVP Cπ IG(10, 0.12 × 9)

σ2
cu Var. of the shocks to TVP Cu IG(10, 0.12 × 9)

σ2
cg Var. of the shocks to TVP Cg IG(10, 0.12 × 9)

σ2
cr Var. of the shocks to TVP Cr IG(10, 0.12 × 9)

σ2
zπ Var. of the shocks in measurement eq. Zπ, IG(10, 0.2× 9)

σ2
zu Var. of the shocks in measurement eq. Zu, IG(10, 0.3× 9)

σ2
zg Var. of the shocks in measurement eq. Zg, IG(10, 0.1× 9)

σ2
zr Var. of the shocks in measurement eq. Zr, IG(10, 0.2× 9)

π∗0 Initial value of pi-star N(3, 52)

u∗0 Initial value of u-star, t = 0 N(5, 52)

u∗−1 Initial value of u-star, t = −1 N(5, 52)

p∗0 Initial value of p-star N(3, 52)

w∗0 Initial value of w-star, E(p∗0) + E(π∗0) = 6 N(6, 52)

D0 Initial value of D, ”catch-all” component of r-star N(0, 0.31622)

gdp∗0 Initial value of gdp-star, t = 0 N(750, 102)

gdp∗−1 Initial value of gdp-star, t = −1 N(750, 102)
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C1.c. MCMC Algorithm

The estimation of our complex UC model and sampling from its joint posterior distribution

reduces to sequentially drawing from a set of conditional posterior densities, some of which are

standard and some that are non-standard.

Collect all the time-invariant model parameters into θ:

θ = (ρu1 , ρ
u
2 , σ

2
u, φu, σ

2
u∗, β

u, σ2
zu, σ

2
cu, σ

2
gdp∗, ρ

g
1, ρ

g
2, a

r, λg, σ2
ogap, σ

2
zg, σ

2
cg, β

g, ρp, σ2
hp, σ

2
p∗, σ

2
λπ, ...

σ2
ρπ, σ

2
hπ, σ

2
π∗, σ

2
zπ, σ

2
cπ, β

π, σ2
w∗, σ

2
hw, σ

2
ρw, σ

2
λw, σ

2
κw, ρ

i, λi, κi, σ2
hi, σ

2
zr, σ

2
cr, β

r, σ2
d)

We denote • as representing all other model parameters.

1. p(U∗|Y, •) 2. p(gdp∗|Y, •) 3. p(P ∗|Y, •) 4. p(π∗|Y, •) 5. p(w∗|Y, •) 6. p(r∗|Y, •)
7. p(λp|Y, •) 8. p(ρπ|Y, •) 9. p(λπ|Y, •) 10. p(ρw|Y, •) 11. p(λw|Y, •) 12. p(κw|Y, •)
13. p(hp, hπ, hw, hi|Y, •) 14. p(Cu, Cg, Cπ, Cr|Y, •) 15. p(D|Y, •) 16. p(θ|Y, •)

Step 1. Derive the conditional distribution p(U∗|Y, •)

The derivation of this distribution is most complex because the information about U∗ comes

from eight sources (i.e., model equations). Below, we derive an expression for each of the eight

sources.

The first source is the state equation of U∗. We rewrite it in a matrix notation as follows,

HU∗ = αu + εu∗ εu∗ ∼ N(0,Ωu∗), where Ωu∗ = diag(ω2
u∗, σ

2
u∗, ..., σ

2
u∗) (C.40)

where,

αu =



U∗0
0

0
...

0


, H =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for U∗ is given by

p(U∗|σ2
U∗) ∝ −

1
2(U∗ −H−1αu)

′
H
′
Ω−1
u∗H(U∗ −H−1αu) + gu∗(U

∗, σ2
u∗)

where,
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au < U∗ < bu for t = 1, ..., T , and

gu∗(U
∗, σ2

u∗) = −log
(

Φ

(
bu
ωu∗

)
− Φ

(
au
ωu∗

))
−

T∑
t=2

log

(
Φ

(
bu − U∗t−1

σu∗

)
− Φ

(
au − U∗t−1

σu∗

))

The second source of information comes from the unemployment measurement equation. Rewrite

the equation in a matrix notation,

KuU = µu +KuU
∗ + εu εu ∼ N(0,Ωu), where Ωu = IT ⊗ σ2

u (C.41)

and,

µu =



ρu1(U0 − U∗0 ) + ρu2(U−1 − U∗−1)

ρu2(U0 − U∗0 )

0
...

0


, Ku =



1 0 0 · · · 0

−ρu1 1 0 · · · 0

−ρu2 −ρu1 1 · · · 0
...

. . .
...

0 · · · −ρu2 −ρu1 1



Ignoring any terms not involving U∗, we have

log p(U |U∗, •) ∝ −1
2(U −K−1

u µu − U∗)′K
′
uΩ−1

u Ku(U −K−1
u µu − U∗)

The third source of information comes from the inflation measurement equation. Rewrite the

equation in a matrix notation,

Z = ΛπU∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh
π
1 , eh

π
2 , ..., eh

π
T ) (C.42)

where,

zt = (πt − π∗t )− ρπt (πt−1 − π∗t−1)− λπt Ut,

Z = (z1, ..., zT )′ and Λπ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving U∗, we have

log p(π|U∗, U, π∗, hπ, ρp, •) ∝ −1
2(Z − ΛπU∗)′Ω−1

π (Z − ΛπU∗)

The fourth source of information comes from the productivity measurement equation. Rewrite
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the equation in a matrix notation,

MP = ΛPU∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh
p
1 , eh

p
2 , ..., eh

p
T ) (C.43)

where,

mt = (Pt − P ∗t )− ρP (Pt−1 − P ∗t−1)− λPt Ut,

MP = (m1, ...,mT )′ and ΛP = diag(−λP1 , ...,−λPT )

Ignoring any terms not involving U∗, we have

log p(P |U∗, U, P ∗, hp, ρp, •) ∝ −1
2(MP − ΛPU∗)′Ω−1

P (MP − ΛPU∗)

The fifth source of information comes from the wage measurement equation. Rewrite the

equation in a matrix notation,

Mw = ΛwU∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh
w
1 , eh

w
2 , ..., eh

w
T ) (C.44)

where,

mw
t = (Wt −W ∗t )− ρWt (Wt−1 −W ∗t−1)− λWt Ut − κWt (πt − π∗t ),

Mw = (mw
1 , ...,m

w
T )′ and Λw = diag(−λW1 , ...,−λWT )

Ignoring any terms not involving U∗, we have

log p(W |U∗,W,W ∗, hw, ρW , •) ∝ −1
2(Mw − ΛwU∗)′Ω−1

w (Mw − ΛwU∗)

The sixth source of information comes from the output gap measurement equation. Rewrite

the equation in a matrix notation,

Mg = ΛgU∗ + εg εg ∼ N(0,Ωogap), where Ωogap = diag(σ2
ogap, ..., σ

2
ogap) (C.45)

where,

mg
t = ogapt − ρg1(ogapt−1)− ρg2(ogapt−2)− λgUt − ar(rt − r∗t ),
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Mg = (mg
1, ...,m

g
T )′ and Λg = diag(−λg, ...,−λg)

Ignoring any terms not involving U∗, we have

log p(ogap|U∗, U, •) ∝ −1
2(Mg − ΛgU∗)′Ω−1

ogap(M
g − ΛgU∗)

The seventh source of information comes from the Taylor-type rule measurement equation.

Rewrite the equation in a matrix notation,

Mui = ΓuiU∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (C.46)

where,

mui
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κi(πt − π∗t )− λiUt,

Mui = (mui
1 , ...,m

ui
T )′ and Γui = diag(−λi, ...,−λi)

Ignoring any terms not involving U∗, we have

log p(i|U∗, U, π, •) ∝ −1
2(Mui − ΓuiU∗)′Ω−1

i (Mui − ΓuiU∗)

The eighth source of information comes from the measurement equation that links survey to

U∗. Rewrite the equation in a matrix notation,

F u = βuU∗ + εzu εzu ∼ N(0,Ωzu), where Ωzu = diag(σ2
zu, ..., σ

2
zu) (C.47)

where,

fut = Zut − Cut ,

F u = (fu1 , ..., f
u
T )′

Ignoring any terms not involving U∗, we have

log p(Zu|U∗, U, π, •) ∝ −1
2(F u − βuU∗)′Ω−1

zu (F u − βuU∗)
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Combining the above eight conditional densities we obtain,

log p(U∗|Y, •) ∝ −1
2(U∗ − Û∗)′D−1

U∗(U
∗ − Û∗) + gu∗(U

∗, σ2
u∗)

where,

DU∗ = (H ′Ω−1
U∗H + K

′
uΩ−1

u Ku + Λπ
′
Ω−1
π Λπ + Λw

′
Ω−1
w Λw + Λg

′
Ω−1
ogapΛ

g + Γui
′
Ω−1
i Γui +

ΛP
′
Ω−1
P ΛP + (βu)2Ω−1

zu )−1

Û∗ = DU∗(H
′Ω−1
U∗αu +K

′
uΩ−1

u Ku(U −K−1
u µu) + Λπ

′
Ω−1
π Z + Λw

′
Mw + Λw + Λg

′
Ω−1
ogapM

g +

Γui
′
Ω−1
i Mui + ΛP

′
Ω−1
P MP + βuΩ−1

zu F
u)

The addition of the term gu∗(U
∗, σ2

u∗) leads to a non-standard density. Accordingly, we sample

U∗ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first gen-

erating candidate draws from N(Û∗, DU∗) using the precision based algorithm that are then

accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed

in Chan and Strachan, 2012).

Step 2. Derive the conditional distribution p(gdp∗|Y, •)

The information about gdp∗ comes from five sources. Below, we derive an expression for each

of these sources.

The first source is the state equation of gdp∗. We rewrite it in a matrix notation as follows,

H2gdp
∗ = αgdp∗ + εgdp∗ εgdp∗ ∼ N(0,Ωgdp∗), where Ωgdp∗ = diag(ω2

gdp∗, σ
2
gdp∗, ..., σ

2
gdp∗)

(C.48)

where,

αgdp∗ =



gdp∗0 +4gdp∗0
−gdp∗0

0
...

0


, H2 =



1 0 0 0 · · · 0

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

The prior density for gdp∗ is given by

288



p(gdp∗|σ2
gdp∗) ∝ −

1
2(gdp∗ −H−1

2 αgdp∗)
′
H
′
2Ω−1

gdp∗H2(gdp∗ −H−1
2 αgdp∗)

The second source of information about gdp∗ is from the output gap measurement equation.

Rewrite in matrix form,

Hrhoggdp = Hrhoggdp
∗+arr̃+λgũ+αgmore+ε

ogap εogap ∼ N(0,Ωogap), where Ωogap = diag(σ2
ogap, ..., σ

2
ogap)

(C.49)

where,

αgmore =



ρg1(gdp0 − gdp∗0) + ρg2(gdp−1 − gdp∗−1)

ρg2(gdp0 − gdp∗0)

0
...

0


, Hrhog =



1 0 0 0 · · · 0

−ρg1 1 0 0 · · · 0

−ρg2 −ρg1 1 0 · · · 0

0 −ρg2 −ρg1 1 · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · 0 −ρg2 −ρg1 1


,

r̃ =



r1 − r∗1
r2 − r∗2
r3 − r∗3

...

rT − r∗T


ũ =



U1 − U∗1
U2 − U∗2
U3 − U∗3

...

UT − U∗T



log p(gdp|gdp∗, •) ∝ −1
2(gdp−H−1

rhog(Hrhoggdp
∗+arr̃+λgũ+αgmore))

′H
′
rhogΩ

−1
ogapHrhog(gdp−

H−1
rhog(Hrhoggdp

∗ + arr̃ + λgũ+ αgmore))

The third source of information comes from the unemployment gap measurement equation.

Rewrite that equation in matrix notation,

Y ugdp = Γugdp∗ + εu εu ∼ N(0,Ωu), where Ωu = diag(σ2
u, ..., σ

2
u) (C.50)

where,

yugdpt = ũt − ρu1 ˜ut−1 − ρu2 ˜ut−2 − φugdp, where ũt = (Ut − U∗t )

Y ugdp = (yugdp1 , ..., yugdpT )′

Ignoring any terms not involving gdp∗, we have
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log p(U |gdp∗, •) ∝ −1
2(Y ugdp − Γugdp∗)′Ω−1

u (Y ugdp − Γugdp∗)

The fourth source of information comes from the equation linking r-star to g-star, i.e.,

r∗t = ζ(gdp∗t − gdp∗t−1) +Dt (C.51)

Rewrite this equation in matrix notation,

r∗ = ζHgdp∗ + αgr +D (C.52)

where,

αgr = (−ζgdp∗0, 0, 0, ...., 0)′

Ignoring any terms not involving gdp∗, we have

log p(r∗|gdp∗, D, •) ∝ −1
2(r∗ − (ζHgdp∗ + αgr +D))′(r∗ − (ζHgdp∗ + αgr +D))

The fifth source of information comes from the measurement equation that links survey to

g∗. Rewrite the equation in a matrix notation,

F g = βg(Hgdp∗ − αg) + εzg εzg ∼ N(0,Ωzg), where Ωzg = diag(σ2
zg, ..., σ

2
zg) (C.53)

where,

fgt = Zgt − C
g
t , F g = (fg1 , ..., f

g
T )′

αg = (gdp∗0, 0, 0, ...., 0)′ is a T × 1 vector.

Ignoring any terms not involving gdp∗, we have

log p(Zg|gdp∗, •) ∝ −1
2(F g − βg(Hgdp∗ − αg))′Ω−1

zg (F g − βg(Hgdp∗ − αg))

Combining the above five conditional densities we obtain,

log p(gdp∗|Y, •) ∝ −1
2(gdp∗ − ˆgdp

∗
)
′
D−1
gdp∗(gdp

∗ − ˆgdp
∗
)
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where,

Dgdp∗ = (H
′
2Ω−1

gdp∗H2 +H
′
rhogΩ

−1
ogapHrhog + Γu

′
Ω−1
u Γu + (ζH)

′
(ζH) + βgH ′Ω−1

zg β
gH)−1

ˆgdp
∗

= Dgdp∗(H
′
2Ω−1

gdp∗H2αgdp∗+H
′
rhogΩ

−1
ogap(Hrhoggdp−arr̃−λgũ−αgmore)+Γu

′
Ω−1
u Y ugdp+

(ζH)
′
(r∗ − αgr +D) + βgH ′Ω−1

zg F
g)

Step 3. Derive the conditional distribution p(P ∗|Y, •)

First, rewrite the productivity measurement eq. as

KpP = µp +KpP
∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh

p
1 , eh

p
2 , ..., eh

p
T ) (C.54)

µp =



ρP1 (P0 − P ∗0 ) + λP1 (U1 − U∗1 )

λP2 (U2 − U∗2 )

λP3 (U3 − U∗3 )
...

λPT (UT − U∗T )


, KP =



1 0 0 · · · 0

−ρP2 1 0 · · · 0

0 −ρP3 1 · · · 0
...

. . .
...

0 0 · · · −ρPT 1


, P ∗ =



P ∗1
P ∗2
P ∗3
...

P ∗T



Since | KP |= 1 for any ρP , KP is invertible. Therefore, we have likelihood

p(P |P ∗, U, •) ∼ N(K−1
P µP + P ∗, (K

′
PΩ−1

P KP )−1)

i.e.,

log p(P |U, •) ∝ −1
2 ιTh

P − 1
2(P −K−1

P µP − P ∗)
′
K
′
PΩ−1

P KP (P −K−1
P µP − P ∗),

where ιT is a T × 1 columns of ones.

Similarly, rewrite the state equation for P ∗ as

HP ∗ = αp + εP∗ εP∗ ∼ N(0,ΩP∗), where ΩP∗ = diag(ω2
P∗, σ

2
P∗, ..., σ

2
P∗) (C.55)

where,
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αp =



P ∗0
0

0
...

0


, KP =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for P ∗ is given by

p(P ∗|σ2
P∗) ∝ −

1
2(P ∗ −H−1αp)

′
H
′
Ω−1
P∗H(P ∗ −H−1αp)

Now account for the third source of information about P* in the equation W ∗ = P ∗+π∗+ εw∗,

p(P ∗|W ∗, π∗, σ2
W∗) ∝ −

1
2(P ∗ − (W ∗ − π∗))′Ω−1

W∗(P
∗ − (W ∗ − π∗))

where,

ΩW∗ = diag(σ2
W∗, σ

2
W∗, ..., σ

2
W∗), W

∗ = (W ∗1 , ...,W
∗
T )′, π∗ = (π∗1, ..., π

∗
T )′

Combining the above three conditional densities we obtain,

log p(P ∗|Y, •) ∝ −1
2(P ∗ − P̂ ∗)′D−1

P∗(P
∗ − P̂ ∗)

where,

DP∗ = (H
′
Ω−1
P∗H +K

′
PΩ−1

P KP + Ω−1
W∗)

−1

P̂ ∗ = DP∗(H
−1Ω−1

P∗αp +K
′
PΩ−1

P KP (P −K−1
P µP ) + Ω−1

W∗(W
∗ − π∗))

The candidate draws are sampled from N(P̂ ∗, DP∗) using the precision based algorithm.

Step 4. Derive the conditional distribution p(π∗|Y, •)

The information about π∗ comes from six sources. Below, we derive an expression for each

of these sources.
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The first source is the inflation measurement equation. Rewrite it in a matrix notation as,

Kππ = µπ +Kππ
∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh

π
1 , eh

π
2 , ..., eh

π
T ) (C.56)

where,

µπ =



ρπ1 (π0 − π∗0) + λπ1 (U1 − U∗1 )

λπ2 (U2 − U∗2 )

λπ3 (U3 − U∗3 )
...

λπT (UT − U∗T )


, Kπ =



1 0 0 · · · 0

−ρπ2 1 0 · · · 0

0 −ρπ3 1 · · · 0
...

. . .
...

0 0 · · · −ρπT 1



Since | Kπ |= 1 for any ρπ, Kπ is invertible. Therefore, we have likelihood

log p(π|U,U∗, •) ∝ −1
2 ιTh

π − 1
2(π − (K−1

π µπ + π∗))′K
′
πΩ−1

π Kπ(π − (K−1
π µπ + π∗))

The second source of information is from the state equation of π∗. Rewrite it in a matrix

notation,

Hπ∗ = απ + επ∗ επ∗ ∼ N(0,Ωπ∗), where Ωπ∗ = diag(ω2
π∗, σ

2
π∗, ..., σ

2
π∗) (C.57)

where,

απ =



π∗0
0

0
...

0


That is, the prior density for π∗ is given by

p(π∗|σ2
π∗) ∝ −1

2(π∗ −H−1απ)
′
H
′
Ω−1
π∗H(π∗ −H−1απ)

Now account for the third source of information about π∗ in the equation W ∗ = P ∗+π∗+ εw∗,

p(π∗|W ∗, P ∗, σ2
W∗) ∝ −

1
2(π∗ − (W ∗ − P ∗))′Ω−1

W∗(π
∗ − (W ∗ − P ∗))
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where,

ΩW∗ = diag(σ2
W∗, σ

2
W∗, ..., σ

2
W∗), W

∗ = (W ∗1 , ...,W
∗
T )′, P ∗ = (P ∗1 , ..., P

∗
T )′

The fourth source of information is from the wage measurement equation. Rewrite in ma-

trix notation,

Mwπ = Xwππ
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (C.58)

where,

mwπ
t = wt − w∗t − ρwt (wt−1 − w∗t−1)− λwt (Ut − U∗t )− κwt πt

Mwπ = (mwπ
1 ,mwπ

2 , ...,mwπ
T )

Xwπ =



−κw1 0 0 · · · 0

0 −κw2 0 · · · 0

0 0 −κw3 · · · 0
...

. . .
...

0 0 · · · 0 −κwT



log p(W |π∗, •) ∝ −1
2(Mwπ −Xwππ

∗)′Ω−1
w ((Mwπ −Xwππ

∗)

The fifth source is the Taylor-rule equation. Rewrite the equation in the matrix notation,

Mπi = απi + (Kπi + Γπ)π∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (C.59)

where,

mπi
t = it − ρiit−1 − r∗t + ρir∗t−1 − λi(Ut − U∗t )− κiπt

Mπi = (mπi
1 ,m

πi
2 , ...,m

πi
T )′
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Kπi =



1 0 0 · · · 0

−ρi 1 0 · · · 0

0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1


, Γπ =



−κi 0 0 · · · 0

0 −κi 0 · · · 0

0 0 −κi · · · 0
...

. . .
...

0 0 · · · 0 −κi


, απi =



−ρiπ∗0
0

0
...

0



log p(i|π∗, π, •) ∝ −1
2(Mπi − (απi + (Kπi + Γπ)π∗))′Ω−1

i (Mπi − (απi + (Kπi + Γπ)π∗))

The sixth source of information comes from the measurement equation that links survey to

π∗. Rewrite the equation in a matrix notation,

F π = βππ∗ + εzπ εzπ ∼ N(0,Ωzπ), where Ωzπ = diag(σ2
zπ, ..., σ

2
zπ) (C.60)

where,

fπt = Zπt − Cπt ,

F π = (fπ1 , ..., f
π
T )′

Ignoring any terms not involving π∗, we have

log p(Zπ|π∗, π, •) ∝ −1
2(F π − βππ∗)′Ω−1

zπ (F π − βππ∗)

Combining the above six conditional densities we obtain,

log p(π∗|Y, •) ∝ −1
2(π∗ − π̂∗)′D−1

π∗ (π∗ − π̂∗)

where,

Dπ∗ = (H ′Ω−1
π∗H + K

′
πΩ−1

π Kπ + Ω−1
w∗ + X

′
wπΩ−1

w Xwπ + (K
′
πi + Γπ)

′
)Ω−1

i (K
′
πi + Γπ)

′
+

(βπ)2Ω−1
zr )−1

π̂∗ = Dπ∗(H
′Ω−1
π∗ απ + K

′
πΩ−1

π Kπ(π − K−1
π µπ) + Ω−1

w∗(W
∗ − P ∗) + X

′
wπΩ−1

w Mwπ + (K
′
πi +

Γπ)
′
Ω−1
i (Mπi − απi) + βπΩ−1

zr F
π)

The candidate draws are sampled from N(π̂∗, Dπ∗) using the precision based algorithm.
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Step 5. Derive the conditional distribution p(w∗|Y, •)

The information about w∗ comes from two sources. Below, we derive an expression for each of

these sources.

The first source is the nominal wage measurement equation. Rewrite it in a matrix notation as,

KwW = µw +KwW
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (C.61)

where,

µw =



ρw1 (W0 −W ∗0 ) + λw1 (U1 − U∗1 ) + κw1 (π1 − π∗1)

λw2 (U2 − U∗2 ) + κw2 (π2 − π∗2)

λw3 (U3 − U∗3 ) + κw3 (π3 − π∗3)
...

λwT (UT − U∗T ) + κwT (πT − π∗T )


, Kw =



1 0 0 · · · 0

−ρw2 1 0 · · · 0

0 −ρw3 1 · · · 0
...

. . .
...

0 0 · · · −ρwT 1



Since | Kw |= 1 for any ρw, Kw is invertible. Therefore, we have likelihood

Ignoring any terms not involving w∗, we have

log p(W |W ∗, •) ∝ −1
2 ιTh

w − 1
2(W − (K−1

w µw +W ∗))′K
′
wΩ−1

w Kw(W − (K−1
w µw +W ∗))

The second source is the state equation of W ∗, which describes W ∗ as the sum of P ∗ and

π∗. This equation can be thought of describing prior density for W ∗. Rewrite it in a matrix

form.

W ∗ = P ∗ + π∗ + εw∗ εw∗ ∼ N(0,Ωw∗) (C.62)

p(W ∗|P ∗, π∗, σ2
w∗) ∝ −1

2(W ∗ − (P ∗ + π∗))
′
Ω−1
w∗(W

∗ − (P ∗ + π∗))

Combining the above two conditional densities we obtain,

log p(W ∗|Y, •) ∝ −1
2(W ∗ − Ŵ ∗)′D−1

W∗(W
∗ − Ŵ ∗)

where,

296



DW∗ = (K
′
wΩ−1

w Kw + Ω−1
W∗)

−1

Ŵ ∗ = DW∗(K
′
wΩ−1

w (KwW − µw) + Ω−1
w∗(P

∗ + π∗))

The candidate draws are sampled from N(Ŵ ∗, DW∗) using the precision based algorithm.

Step 6. Derive the conditional distribution p(r∗|Y, •)

The information about r∗ comes from four sources. Below, we derive an expression for each of

these sources.

The first source is the output gap measurement equation. We rewrite it in a matrix nota-

tion as follows,

Hrhogogap = αogap − arr∗ + εogap εogap ∼ N(0,Ωogap) (C.63)

where,

αogap =



ρg1(ogap0) + ρg2(ogap−1) + arr1 + λg(U1 − U∗1 )

ρg2(ogap0) + arr2 + λg(U2 − U∗2 )

arr3 + λg(U3 − U∗3 )
...

arrT + λg(UT − U∗T )


Ignoring any terms not involving r∗, we have

log p(ogap|r∗, •) ∝ −1
2(ogap−H−1

rhog(αogap−a
rr∗))′H

′
rhogΩ

−1
ogapHrhog(ogap−H−1

rhog(αogap−a
rr∗))

The second source is the state equation linking r∗ to g∗. We rewrite it in a matrix notation as

follows,

r∗ = ζ4gdp∗ +H−1εd εd ∼ N(0,Ωd), where Ωd = diag(ω2
d, σ

2
d, ..., σ

2
d) (C.64)

Ignoring any terms not involving r∗, the prior density for r∗ is given by

log p(r∗|gdp∗, σ2
d, •) ∝ −

1
2(r∗ − ζ4gdp∗)′H ′Ω−1

d H(r∗ − ζ4gdp∗)
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The third source is the Taylor-type rule equation. We rewrite it in a matrix notation as follows,

M ri = αri +Kπir
∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh

i
1 , eh

i
2 , ..., eh

i
T ) (C.65)

where,

mri
t = it − ρiit−1 − π∗t + ρiπ∗t−1 − λi(Ut − U∗t )− κi(πt − π∗t ),

M ri = (mri
1 ,m

ri
2 , ...,m

ri
T )′

αri =



−ρir∗0
0

0
...

0


, Kπi =



1 0 0 · · · 0

−ρi 1 0 · · · 0

0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1


Ignoring any terms not involving r∗, we have

log p(i|r∗, •) ∝ −1
2 ιTh

i − 1
2(M ri − (αri +Kπir

∗))′Ω−1
i (M ri − (αri +Kπir

∗))

The fourth source of information comes from the measurement equation that links survey to

r∗. Rewrite the equation in a matrix notation,

F r = βrr∗ + εzr εzr ∼ N(0,Ωzr), where Ωzr = diag(σ2
zr, ..., σ

2
zr) (C.66)

where,

f rt = Zrt − Crt ,

F r = (f r1 , ..., f
r
T )′

Ignoring any terms not involving r∗, we have

log p(Zr|r∗, •) ∝ −1
2(F r − βrr∗)′Ω−1

zr (F r − βrr∗)

Combining the above four conditional densities we obtain,

log p(r∗|Y, •) ∝ −1
2(r∗ − r̂∗)′D−1

r∗ (r∗ − r̂∗)
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where,

Dr∗ = ((−ar)2Ω−1
ogap +H

′
Ω−1
d H +K

′
πiΩ
−1
i Kπi + (βr)(2)Ω−1

zr )−1

r̂∗ = Dr∗(−arΩ−1
ogap(Hrhogogap−αogap)+H

′
Ω−1
d Hζ4gdp∗+K

′
πiΩ
−1
i (M ri−αri)+βrΩ−1

zr F
r)

The candidate draws are sampled from N(r̂∗, Dr∗) using the precision based algorithm.

Step 7. Derive the conditional distribution p(λp|Y, •)

The information about λp comes from two sources. Below, we derive an expression for each of

these two sources.

The first source is the productivity measurement equation. Rewrite it in a matrix notation,

B = Xuλ
p + εp εp ∼ N(0,Ωp) (C.67)

where,

B = (p̃1 − ρpp̃0, ..., p̃T − ρpp̃T−1)

p̃t = pt − p∗t
ũt = Ut − U∗t
Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λp, we have the likelihood

log p(p|λp, •) ∝ −1
2(B −Xuλ

p)′Ω−1
p (B −Xuλ

p)

The second source of information comes from state equation for λp. We rewrite it in a ma-

trix notation as follows,

Hλp = ελp ελp ∼ N(0,Ωλp), where Ωλp = diag(ω2
λp, σ

2
λp, ..., σ

2
λp) (C.68)

Ignoring any terms not involving λp, the prior density for λp is given by

log p(λp|σ2
λp,Ωλp) ∝ −1

2(λp)′H ′Ω−1
λpH(λp)
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Combining the above two conditional densities we obtain,

log p(λp|Y, •) ∝ −1
2(λp − λ̂p)′D−1

λp (λp − λ̂p)

where,

Dλp = (H ′Ω−1
λpH +X ′uΩ−1

p Xu)−1

λ̂p = Dλp(X
′
uΩ−1

p B)

The candidate draws are sampled from N(λ̂p, Dλp) using the precision based algorithm.

Step 8. Derive the conditional distribution p(ρπ|Y, •)

The information about ρπ comes from two sources. Below, we derive an expression for each of

these two sources.

First, we define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗t
Π̃ = (π̃1, ..., π̃T )′

ũ = (ũ1, ..., ũT )′

The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

Π̃ + Λũ = Xπρ
π + επ επ ∼ N(0,Ωπ) (C.69)

where,

Xπ = diag(π̃0, ..., π̃T−1)

Λ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving ρπ, we have the likelihood

log p(π|ρπ, •) ∝ −1
2(Π̃− (Xπρ

π − Λũ))′Ω−1
π (Π̃− (Xπρ

π − Λũ))

The second source comes from state equation for ρπ. We rewrite it in a matrix notation as
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follows,

Hρπ = ερπ ερπ ∼ N(0,Ωρπ), where Ωρπ = diag(ω2
ρπ, σ

2
ρπ, ..., σ

2
ρπ) (C.70)

0 < ρπt < 1 for t=1,....,T

Ignoring any terms not involving ρπ, the prior density for ρπ is given by

log p(ρπ|σ2
ρπ,Ωρπ) ∝ −1

2(ρπ)′H ′Ω−1
ρπH(ρπ) + gρπ(ρπ, σ2

ρπ)

where,

gρπ(ρπ, σ2
ρπ) = −

T∑
t=2

log

(
Φ

(
1− ρπt−1

σρπ

)
− Φ

(
0− ρπt−1

σρπ

))

Combining the above two conditional densities we obtain,

log p(ρπ|Y, •) ∝ −1
2(ρπ − ρ̂π)

′
D−1
ρπ (ρπ − ρ̂π) + gρπ(ρπ, σ2

ρπ)

where,

Dρπ = (H ′Ω−1
ρπH +X ′πΩ−1

π Xπ)−1

ρ̂π = Dρπ(X ′πΩ−1
π (Π̃ + Λũ))

The addition of the term gρπ(ρπ, σ2
ρπ) leads to a non-standard density. Accordingly, we sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first

generating candidate draws from N(ρ̂π, Dρπ) using the precision based algorithm that are then

accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed

in Chan and Strachan, 2012).

Step 9. Derive the conditional distribution p(λπ|Y, •)

The information about λπ comes from two sources. Below, we derive an expression for each of

these two sources.

First, we define some notation,

π̃t = πt − π∗t
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ũt = Ut − U∗t
NW = (π̃1 − ρπ1 π̃0, ..., π̃T − ρπT π̃T−1)′

The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

NW = Xuλ
π + επ επ ∼ N(0,Ωπ) (C.71)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λπ, we have the likelihood

log p(π|λπ, •) ∝ −1
2(NW −Xuλ

π)′Ω−1
π (NW −Xuλ

π)

The second source comes from state equation for λπ. We rewrite it in a matrix notation

as follows,

Hλπ = ελπ ελπ ∼ N(0,Ωλπ), where Ωλπ = diag(ω2
λπ, σ

2
λπ, ..., σ

2
λπ) (C.72)

−1 < λπt < 0 for t=1,....,T

Ignoring any terms not involving λπ, the prior density for λπ is given by

log p(λπ|σ2
λπ,Ωλπ) ∝ −1

2(λπ)′H ′Ω−1
λπH(λπ) + gλπ(λπ, σ2

λπ)

where,

gλπ(λπ, σ2
λπ) = −

T∑
t=2

log

(
Φ

(
0− λπt−1

σλπ

)
− Φ

(−1− λπt−1

σλπ

))

Combining the above two conditional densities we obtain,

log p(λπ|Y, •) ∝ −1
2(λπ − λ̂π)

′
D−1
λπ (λπ − λ̂π) + gλπ(λπ, σ2

λπ)
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where,

Dλπ = (H ′Ω−1
λπH +X ′uΩ−1

π Xu)−1

λ̂π = Dλπ(X ′uΩ−1
π NW )

The addition of the term gλπ(λπ, σ2
λπ) leads to a non-standard density. Accordingly, we sam-

ple λπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first

generating candidate draws from N(λ̂π, Dλπ) using the precision based algorithm that are then

accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed

in Chan and Strachan, 2012).

Step 10. Derive the conditional distribution p(ρw|Y, •)

The information about ρw comes from two sources. Below, we derive an expression for each of

these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
w̃ = (w̃1, ..., w̃T )′

ũ = (ũ1, ..., ũT )′

π̃t = πt − π∗t
π̃ = (π̃1, ..., π̃T )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

w̃ + Λwũ+ Λwππ̃ = Xwρ
w + ερw ερw ∼ N(0,Ωw) (C.73)

where,

Xw = diag(w̃0, ..., w̃T−1)

Λw = diag(−λw1 , ...,−λwT )

Λwπ = diag(−κw1 , ...,−κwT )

Ignoring any terms not involving ρw, we have the likelihood
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log p(w|ρw, •) ∝ −1
2(w̃ − (Xwρ

w − Λwũ− Λwππ̃))′Ω−1
w (w̃ − (Xwρ

w − Λwũ− Λwππ̃))

The second source comes from state equation for ρw. We rewrite it in a matrix notation

as follows,

Hρw = ερw ερw ∼ N(0,Ωρw), where Ωρw = diag(ω2
ρw, σ

2
ρw, ..., σ

2
ρw) (C.74)

0 < ρwt < 1 for t=1,....,T

Ignoring any terms not involving ρw, the prior density for ρw is given by

log p(ρw|σ2
ρw,Ωρw) ∝ −1

2(ρw)′H ′Ω−1
ρwH(ρw) + gρw(ρw, σ2

ρw)

where,

gρw(ρw, σ2
ρw) = −

T∑
t=2

log

(
Φ

(
1− ρwt−1

σρw

)
− Φ

(
0− ρwt−1

σρw

))

Combining the above two conditional densities we obtain,

log p(ρw|Y, •) ∝ −1
2(ρw − ρ̂w)

′
D−1
ρw (ρw − ρ̂w) + gρw(ρw, σ2

ρw)

where,

Dρw = (H ′Ω−1
ρwH +X ′wΩ−1

w Xw)−1

ρ̂w = Dρw(X ′wΩ−1
w (w̃ + Λwũ+ Λwππ̃))

The addition of the term gρπ(ρπ, σ2
ρπ) leads to a non-standard density. Accordingly, we sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first

generating candidate draws from N(ρ̂π, Dρπ) using the precision based algorithm that are then

accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed

in Chan and Strachan, 2012).

Step 11. Derive the conditional distribution p(λw|Y, •)

The information about λw comes from two sources. Below, we derive an expression for each of
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these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
π̃t = πt − π∗t
Bw = (w̃1 − ρw1 w̃0 − κw1 π̃1, ..., w̃T − ρwT w̃T−1 − κwT−1π̃T )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bw = Xuλ
w + εw εw ∼ N(0,Ωw) (C.75)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λw, we have the likelihood

log p(w|λw, •) ∝ −1
2(Bw −Xuλ

w)′Ω−1
w (Bw −Xuλ

w)

The second source comes from state equation for λw. We rewrite it in a matrix notation

as follows,

Hλw = ελw ελw ∼ N(0,Ωλw), where Ωλw = diag(ω2
λw, σ

2
λw, ..., σ

2
λw) (C.76)

−1 < λwt < 0 for t=1,....,T

Ignoring any terms not involving λw, the prior density for λw is given by

log p(λw|σ2
λw,Ωλw) ∝ −1

2(λw)′H ′Ω−1
λwH(λw) + gλw(λw, σ2

λw)

where,
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gλw(λw, σ2
λw) = −

T∑
t=2

log

(
Φ

(
0− λwt−1

σλw

)
− Φ

(−1− λwt−1

σλw

))

Combining the above two conditional densities we obtain,

log p(λw|Y, •) ∝ −1
2(λw − λ̂w)

′
D−1
λw (λw − λ̂w) + gλw(λw, σ2

λw)

where,

Dλw = (H ′Ω−1
λwH +X ′uΩ−1

w Xu)−1

λ̂w = Dλw(X ′uΩ−1
w Bw)

The addition of the term gλw(λw, σ2
λw) leads to a non-standard density. Accordingly, we sam-

ple λw using an independence-chain Metropolis-Hastings (MH) procedure. This involves first

generating candidate draws from N(λ̂w, Dλw) using the precision based algorithm that are then

accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed

in Chan and Strachan, 2012).

Step 12. Derive the conditional distribution p(κw|Y, •)

The information about kappaw comes from two sources. Below, we derive an expression for

each of these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
π̃t = πt − π∗t
Bκw = (w̃1 − ρw1 w̃0 − λw1 ũ1, ..., w̃T − ρwT w̃T−1 − λwT−1ũT )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bκw = Xπκ
w + εw εw ∼ N(0,Ωw) (C.77)

where,

Xπ = diag(π̃1, ..., π̃T )
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Ignoring any terms not involving κw, we have the likelihood

log p(w|κw, •) ∝ −1
2(Bκw −Xπκ

w)′Ω−1
w (Bκw −Xπκ

w)

The second source comes from state equation for κw. We rewrite it in a matrix notation

as follows,

Hκw = εκw εκw ∼ N(0,Ωκw), where Ωκw = diag(ω2
κw, σ

2
κw, ..., σ

2
κw) (C.78)

Ignoring any terms not involving κw, the prior density for κw is given by

log p(κw|σ2
κw,Ωκw) ∝ −1

2(κw)′H ′Ω−1
κwH(κw)

Combining the above two conditional densities we obtain,

log p(κw|Y, •) ∝ −1
2(κw − κ̂w)

′
D−1
κw (κw − κ̂w)

where,

Dκw = (H ′Ω−1
κwH +X ′πΩ−1

w Xπ)−1

κ̂w = Dκw(X ′πΩ−1
w Bκw)

The candidate draws are sampled from N(κ̂w, Dκw) using the precision based algorithm.

Step 13. Derive the conditional distribution p(hp, hπ, hw, hi|Y, •)

Given parameters and other latent states, the stochastic volatility, hp, hπ, hw, hi are condition-

ally independent and so can be drawn separately. Following, Chan, Koop, and Potter (2013;

2016), we draw hp, hπ, hw, hi using the Accept-Reject independence-chain Metropolis Hastings

(ARMH) algorithm of Chan and Strachan (2012; page 32-34).

Step 14. Derive the conditional distribution p(Cu, Cg, Cπ, Cr|Y, •)
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Given parameters and other latent states, Cu, Cg, Cπ, Cr are conditionally independent and

so can be drawn separately.

Beginning with Cu, the information about it comes from two sources. Below, we derive an

expression for each of these two sources.

The first source is the measurement equation linking survey to U∗. Rewrite it in a matrix

notation,

N zu = Cu + εzu εzu ∼ N(0,Ωzu) (C.79)

where,

nzut = Zut − βuU∗

N zu = (nzu1 , nzu2 , ..., nzuT )′

Ωzu = diag(σ2
zu, ..., σ

2
zu)

Ignoring any terms not involving Cu, we have the likelihood

log p(Zu|Cu, •) ∝ −1
2(N zu − Cu)′Ω−1

zu (N zu − Cu)

The second source comes from state equation for Cu. We rewrite it in a matrix notation

as follows,

HCu = αcu + εcu εcu ∼ N(0,Ωcu), where Ωcu = diag(ω2
cu, σ

2
cu, ..., σ

2
cu) (C.80)

where,

αcu =



Cu0
0

0
...

0


Ignoring any terms not involving Cu, the prior density for Cu is given by

log p(Cu|σ2
cu,Ωcu) ∝ −1

2(Cu −H−1αcu)′H ′Ω−1
cu H(Cu −H−1αcu)
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Combining the above two conditional densities we obtain,

log p(Cu|Y, •) ∝ −1
2(Cu − Ĉu)

′
D−1
Cu(Cu − Ĉu)

where,

DCu = (H ′Ω−1
cu H + Ω−1

zu )−1

Ĉu = DCu(H ′Ω−1
cu αcu + Ω−1

zuN
zu)

The candidate draws are sampled from N(Ĉu, DCu) using the precision based algorithm.

Following similar logic,

N(Ĉr, DCr)

DCr = (H ′Ω−1
cr H + Ω−1

zr )−1

Ĉr = DCr(H
′Ω−1
cr αcr + Ω−1

zr N
zr)

where,

nzrt = Zrt − βrr∗

N zr = (nzr1 , n
zr
2 , ..., n

zr
T )′

Ωzr = diag(σ2
zr, ..., σ

2
zr)

N(Ĉπ, DCπ)

DCπ = (H ′Ω−1
cπ H + Ω−1

zπ )−1

Ĉπ = DCπ(H ′Ω−1
cπ αcπ + Ω−1

zπN
zπ)

where,

nzπt = Zπt − βππ∗

N zπ = (nzπ1 , nzπ2 , ..., nzπT )′

Ωzπ = diag(σ2
zπ, ..., σ

2
zπ)
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N(Ĉg, DCg)

DCg = (H ′Ω−1
cg H + Ω−1

zg )−1

Ĉg = DCg(H
′Ω−1
cg αcg + Ω−1

zg N
zg)

where,

nzgt = Zgt + βgαg − βggdp∗

N zg = (nzg1 , n
zg
2 , ..., n

zg
T )′

Ωzg = diag(σ2
zg, ..., σ

2
zg)

αg = (gdp∗0, 0, 0, ...., 0)′

Step 15. Derive the conditional distribution p(D|Y, •)

Given the posterior draws of r∗, ζ, and g∗, the posterior draw for D is constructed as,

D = r∗ − ζg∗ (C.81)

Step 16. Derive the conditional distribution p(θ|Y, •)

There are 40 parameters in the vector θ. These parameters are drawn in 38 separate blocks

using standard regression procedures. Following similar notation to Chan, Koop, and Potter

(2016), we denote θ−x to refer all parameters in θ except the parameter x.

Substep 16.1 Derive the conditional distribution p(ρu|Y, •)

Given the stationary constraints, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1

ρu = (ρu1 , ρ
u
2)′ is a bivariate truncated normal. To obtain draws from this truncated normal

distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal

density, N(ρ̂u, Dρu).
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Dρu = (V −1
ρu +X

′
uXu/σ

2
u)−1

ρ̂u = Dρu(V −1
ρu ρ

u
0 +X

′
u(ũ− φuogap)/σ2

u)

where,

V −1
ρu is the prior variance and ρu0 is the prior mean,

Xu =


ũ0 ũ−1

ũ1 ũ0

...

ũT−1 ũT−2


Substep 16.2 Derive the conditional distribution p(σ2

u|Y, •)

p(σ2
u|Y, •) is a standard inverse-Gamma density,

p(σ2
u|Y, •) ∼ IG(νu0 + T

2 , Su0 + 1
2

T∑
t=1

(ũt − ρu1 ũt−1 − ρu2 ũt−2 − φuogapt)2)

Substep 16.3 Derive the conditional distribution p(φu|Y, •)

Given the constraint φu < 0, the conditional distribution p(φu|Y, •) is a truncated normal

density. The candidate draws are sampled from the proposal distribution N(φ̂u, Dφu) using the

precision based algorithm, and simple Accept-Reject step is applied to the candidate draws.

Rewrite the unemployment rate (gap) measurement equation in matrix notation as

Y φ = φuogap+ εu εu ∼ N(0, σ2
u) (C.82)

where,

yφt = ũt − ρu1 ũt−1 − ρu2 ũt−2

Y φ = (yφ1 , ..., y
φ
T )′

Dφu = (V −1
φu + ogap

′
ogap/σ2

u)−1

φ̂u = Dφu(V −1
φu φ

u
0 + ogap

′
Y φ/σ2

u)

where,
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V −1
φu is the prior variance and φu0 is the prior mean,

Substep 16.4 Derive the conditional distribution p(σ2
u∗|Y, •)

p(σ2
u∗|Y, •) is a non-standard density because U∗ is a bounded random walk,

log p(σ2
u∗|Y, •) ∝ −(νu∗0+1)log σ2

u∗− Su∗0
σ2
u∗
− T−1

2 log σ2
u∗− 1

2σ2
u∗

∑T
t=2(U∗t −U∗t−1)2+gu∗(U

∗, σ2
u∗)

The candidate draws from p(σ2
u∗|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νu∗0 + T−1
2 , Su∗0 + 1

2

T∑
t=2

(U∗t − U∗t−1)2)

Substep 16.5 Derive the conditional distribution p(βu|Y, •)

Candidate draws are sampled from N(β̂u, Dβu) using the precision based algorithm.

where,

Dβu = (V −1
βu + U∗

′
Ω−1
zuU

∗)−1

β̂u = Dβu(V −1
βu β

u
0 + U∗

′
Ω−1
zu J

zu)

jzut = Zut − Cut
Jzu = (jzu1 , ..., jzuT )′

V −1
βu is the prior variance and βu0 is the prior mean for βu

Substep 16.6 Derive the conditional distribution p(σ2
zu|Y, •)

p(σ2
zu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2
zu|Y, •) ∼ IG(νzu0 + T

2 , Szu0 + 1
2

T∑
t=1

(Zut − Cut − βuU∗)2)

Substep 16.7 Derive the conditional distribution p(σ2
cu|Y, •)

p(σ2
cu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cu|Y, •) ∼ IG(νcu0 + T−1

2 , Scu0 + 1
2

T∑
t=2

(Cut − Cut−1)2)

Substep 16.8 Derive the conditional distribution p(σ2
gdp∗|Y, •)

p(σ2
gdp∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
gdp∗|Y, •) ∼ IG(νgdp∗0 + T−1

2 , Sgdp∗0 + (gdp∗ − αgdp∗)′ ∗H2H2 ∗ (gdp∗ − αgdp∗)/2)

where (although they are defined above but for convenience we redefine them),

αgdp∗ =



gdp∗0 +4gdp∗0
−gdp∗0

0
...

0


, H2 =



1 0 0 0 · · · 0

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

Substep 16.9 Derive the conditional distribution p(ρg|Y, •)

Given the stationary constraints, ρg1 + ρg2 < 1, ρg2 − ρ
g
1 < 1, and |ρg2| < 1

ρg = (ρg1, ρ
g
2)′ is a bivariate truncated normal. To obtain draws from this truncated normal

distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal

density, N(ρ̂g, Dρg).
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Dρg = (V −1
ρg +X

′
ρgXρg/σ

2
ogap)

−1

ρ̂g = Dρg(V
−1
ρg ρ

g
0 +X

′
ρgYogap/σ

2
ogap)

where,

V −1
ρg is the prior variance and ρg0 is the prior mean,

Xρg =



0 0

ogap1 0

ogap2 ogap1

...

ogapT−1 ogapT−2


yogapt = ogapt − ar(rt − rt−1)− λgũt)
Yogap = (yogap1 , ..., yogapT )′

Substep 16.10 Derive the conditional distribution p(ar|Y, •)

Candidate draws are sampled from N(âr, Dar) using the precision based algorithm.

where,

Dar = (V −1
ar +X

′
arΩ
−1
ogapXar)

−1

âr = Dar(V
−1
ar a

r
0 +X

′
arΩ
−1
ogapJ

ar)

jart = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt
Jar = (jar1 , ..., jarT )′

Xar = (r̃1, ..., r̃T )′

r̃t = rt − r∗t

V −1
ar is the prior variance and ar0 is the prior mean for ar

Substep 16.11 Derive the conditional distribution p(λg|Y, •)

Given the constraint λg < 0, the conditional distribution p(λg|Y, •) is a truncated normal

density. The candidate draws are sampled from the proposal distribution N(λ̂g, Dλg) using the

precision based algorithm, and simple Accept-Reject step is applied to the candidate draws.
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where,

Dλg = (V −1
λg +X

′
uΩ−1

ogapXu)−1

λ̂g = Dλg(V
−1
λg λ

g
0 +X

′
uΩ−1

ogapB
g)

bgt = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − arr̃t
Bg = (bg1, ..., b

g
T )′

Xu = diag(ũ1, ..., ũT )′

r̃t = rt − r∗t

V −1
λg is the prior variance and λg0 is the prior mean for λg

Substep 16.12 Derive the conditional distribution p(σ2
ogap|Y, •)

p(σ2
ogap|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
ogap|Y, •) ∼ IG(νogap0 + T

2 , Sogap0 + 1
2

T∑
t=1

(ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt − arr̃t)2)

Substep 16.13 Derive the conditional distribution p(σ2
zg|Y, •)

p(σ2
zg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zg|Y, •) ∼ IG(νzg0 + T

2 , Szg0 + 1
2

T∑
t=1

(Zgt − C
g
t − βggdp∗t−1 + βggdp∗t )

2)

Substep 16.14 Derive the conditional distribution p(σ2
cg|Y, •)

p(σ2
cg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2
cg|Y, •) ∼ IG(νcg0 + T−1

2 , Scg0 + 1
2

T∑
t=2

(Cgt − C
g
t−1)2)

Substep 16.15 Derive the conditional distribution p(βg|Y, •)

Candidate draws are sampled from N(β̂g, Dβg) using the precision based algorithm.

where,

Dβg = (V −1
βg + (Hgdp∗ − αg)

′
Ω−1
zg (Hgdp∗ − αg))−1

β̂g = Dβg(V
−1
βg β

g
0 + (Hgdp∗ − αg)Ω−1

zg J
zg)

jzgt = Zgt − C
g
t

Jzg = (jzg1 , ..., jzgT )′

αg = (gdp∗0, 0, 0, ...., 0)′

V −1
βg is the prior variance and βg0 is the prior mean for βg

Substep 16.16 Derive the conditional distribution p(ρp|Y, •)

Given the stationary constraint, |ρp| < 1

ρp is a truncated normal. To obtain draws from this truncated normal distribution, AR sam-

pling step is applied to the candidate draws from the proposal density, N(ρ̂p, Dρp).

Dρp = (V −1
ρp +X

′
prodΩ

−1
P Xprod)

−1

ρ̂p = Dρp(V
−1
ρp ρ

p
0 +X

′
prodΩ

−1
P Y prod)

where,

V −1
ρp is the prior variance and ρp0 is the prior mean,

p̃t = Pt − P ∗t

Xprod = (p̃0, ..., p̃T−1)′
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yprodt = p̃t − λpt ũt

Y prod = (yprod1 , ..., yprodT )′

Substep 16.17 Derive the conditional distribution p(σ2
hp|Y, •)

p(σ2
hp|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hp|Y, •) ∼ IG(νhp0 + T−1

2 , Shp0 + 1
2

T∑
t=2

(hpt − h
p
t−1)2)

Substep 16.18 Derive the conditional distribution p(σ2
p∗|Y, •)

p(σ2
p∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
p∗|Y, •) ∼ IG(νp∗0 + T−1

2 , Sp∗0 + 1
2

T∑
t=2

(P ∗t − P ∗t−1)2)

Substep 16.19 Derive the conditional distribution p(σ2
λπ|Y, •)

p(σ2
λπ|Y, •) is a non-standard density because of the constraints on λπ,

log p(σ2
λπ|Y, •) ∝ −(νλπ0+1)log σ2

λπ−
Sλπ0
σ2
λπ
− T−1

2 log σ2
λπ−

1
2σ2
λπ

∑T
t=2(λπt −λπt−1)2+gλπ(λπ, σ2

λπ)

The candidate draws from p(σ2
λπ|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νλπ0 + T−1
2 , Sλπ0 + 1

2

T∑
t=2

(λπt − λπt−1)2)

Substep 16.20 Derive the conditional distribution p(σ2
ρπ|Y, •)
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p(σ2
ρπ|Y, •) is a non-standard density because of the constraints on ρπ,

log p(σ2
ρπ|Y, •) ∝ −(νρπ0 +1)log σ2

ρπ−
Sρπ0
σ2
ρπ
− T−1

2 log σ2
ρπ− 1

2σ2
ρπ

∑T
t=2(ρπt −ρπt−1)2 +gρπ(ρπ, σ2

ρπ)

The candidate draws from p(σ2
ρπ|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νρπ0 + T−1
2 , Sρπ0 + 1

2

T∑
t=2

(ρπt − ρπt−1)2)

Substep 16.21 Derive the conditional distribution p(σ2
hπ|Y, •)

p(σ2
hπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hπ|Y, •) ∼ IG(νhπ0 + T−1

2 , Shπ0 + 1
2

T∑
t=2

(hπt − hπt−1)2)

Substep 16.22 Derive the conditional distribution p(σ2
π∗|Y, •)

p(σ2
π∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
π∗|Y, •) ∼ IG(νπ∗0 + T−1

2 , Sπ∗0 + 1
2

T∑
t=2

(π∗t − π∗t−1)2)

Substep 16.23 Derive the conditional distribution p(σ2
zπ|Y, •)

p(σ2
zπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zπ|Y, •) ∼ IG(νzπ0 + T

2 , Szπ0 + 1
2

T∑
t=1

(Zπt − Cπt − βππ∗)2)

Substep 16.24 Derive the conditional distribution p(σ2
cπ|Y, •)
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p(σ2
cπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cπ|Y, •) ∼ IG(νcπ0 + T−1

2 , Scπ0 + 1
2

T∑
t=2

(Cπt − Cπt−1)2)

Substep 16.25 Derive the conditional distribution p(βπ|Y, •)

Candidate draws are sampled from N(β̂π, Dβπ) using the precision based algorithm.

where,

Dβπ = (V −1
βπ + π∗

′
Ω−1
zπ π

∗)−1

β̂π = Dβπ(V −1
βπ β

π
0 + π∗

′
Ω−1
zπ J

zπ)

jzπt = Zπt − Cπt
Jzπ = (jzπ1 , ..., jzπT )′

V −1
βπ is the prior variance and βπ0 is the prior mean for βπ

Substep 16.26 Derive the conditional distribution p(σ2
w∗|Y, •)

p(σ2
w∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
w∗|Y, •) ∼ IG(νw∗0 + T−1

2 , Sw∗0 + 1
2

T∑
t=2

(w∗t − π∗t − P ∗t )2)

Substep 16.27 Derive the conditional distribution p(σ2
hw|Y, •)

p(σ2
hw|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2
hw|Y, •) ∼ IG(νhw0 + T−1

2 , Shw0 + 1
2

T∑
t=2

(hwt − hwt−1)2)

Substep 16.28 Derive the conditional distribution p(σ2
ρw|Y, •)

p(σ2
ρw|Y, •) is a non-standard density because of the constraints on ρw,

log p(σ2
ρw|Y, •) ∝ −(νρw0+1)log σ2

ρw−
Sρw0

σ2
ρw
−T−1

2 log σ2
ρw− 1

2σ2
ρw

∑T
t=2(ρwt −ρwt−1)2+gρw(ρw, σ2

ρw)

The candidate draws from p(σ2
ρw|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νρw0 + T−1
2 , Sρw0 + 1

2

T∑
t=2

(ρwt − ρwt−1)2)

Substep 16.29 Derive the conditional distribution p(σ2
λw|Y, •)

p(σ2
λw|Y, •) is a non-standard density because of the constraints on λw,

log p(σ2
λw|Y, •) ∝ −(νλw0+1)log σ2

λw−
Sλw0

σ2
λw
−T−1

2 log σ2
λw−

1
2σ2
λw

∑T
t=2(λwt −λwt−1)2+gλw(λw, σ2

λw)

The candidate draws from p(σ2
λw|Y, •) are obtained via the MH step with the proposal density

IG(νλw0 + T−1
2 , Sλw0 + 1

2

T∑
t=2

(λwt − λwt−1)2)

Substep 16.30 Derive the conditional distribution p(σ2
κw|Y, •)

The candidate draws are obtained from

IG(νκw0 + T−1
2 , Sκw0 + 1

2

T∑
t=2

(κwt − κwt−1)2)

Substep 16.31 Derive the conditional distribution p(ρi|Y, •)

Given the constraint |ρi| < 1, the conditional distribution p(ρi|Y, •) is a truncated normal
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density. The candidate draws are sampled from the proposal distribution N(ρ̂i, Dρi) using the

precision based algorithm, and simple Accept-Reject step is applied to the candidate draws.

where,

Dρi = (V −1
ρi +X

′
ρiΩ
−1
i Xρi)

−1

ρ̂i = Dρi(V
−1
ρi ρ

i
0 +X

′
ρiΩ
−1
i Mρi)

mρi
t = it − π∗t − r∗t − λiũt − κiπ̃t

Mρi = (mρi
1 , ...,m

ρi
T )′

Xρi = (i0 − π∗0 − r∗0, ..., iT−1 − π∗T−1 − r∗T−1)′

V −1
ρi is the prior variance and ρi0 is the prior mean for ρi

Substep 16.32 Derive the conditional distribution p(λi|Y, •)

The candidate draws are sampled from the proposal distribution N(λ̂i, Dλi) using the pre-

cision based algorithm.

where,

Dλi = (V −1
λi +X

′
λiΩ
−1
i Xλi)

−1

λ̂i = Dλi(V
−1
λi λ

i
0 +X

′
λiΩ
−1
i Mλi)

mλi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κiπ̃t

Mλi = (mλi
1 , ...,m

λi
T )′

Xλi = (ũ1, ..., ũT )′

V −1
λi is the prior variance and λi0 is the prior mean for λi

Substep 16.33 Derive the conditional distribution p(κi|Y, •)

The candidate draws are sampled from the proposal distribution N(κ̂i, Dκi) using the pre-
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cision based algorithm.

where,

Dκi = (V −1
κi +X

′
κiΩ
−1
i Xκi)

−1

κ̂i = Dκi(V
−1
κi κ

i
0 +X

′
κiΩ
−1
i Mκi)

mκi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− λiũt

Mκi = (mκi
1 , ...,m

κi
T )′

Xκi = (π̃1, ..., π̃T )′

V −1
κi is the prior variance and κi0 is the prior mean for κi

Substep 16.34 Derive the conditional distribution p(σ2
hi|Y, •)

p(σ2
hi|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hi|Y, •) ∼ IG(νhi0 + T−1

2 , Shi0 + 1
2

T∑
t=2

(hit − hit−1)2)

Substep 16.35 Derive the conditional distribution p(σ2
zr|Y, •)

p(σ2
zr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zr|Y, •) ∼ IG(νzr0 + T

2 , Szr0 + 1
2

T∑
t=1

(Zrt − Crt − βrr∗t )2)

Substep 16.36 Derive the conditional distribution p(σ2
cr|Y, •)

p(σ2
cr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2
cr|Y, •) ∼ IG(νcr0 + T−1

2 , Scr0 + 1
2

T∑
t=2

(Crt − Crt−1)2)

Substep 16.37 Derive the conditional distribution p(βr|Y, •)

Candidate draws are sampled from N(β̂r, Dβr) using the precision based algorithm.

where,

Dβr = (V −1
βr + r∗

′
Ω−1
zr r
∗)−1

β̂r = Dβr(V
−1
βr β

r
0 + r∗

′
Ω−1
zr J

zr)

jzrt = Zrt − Crt
Jzr = (jzr1 , ..., j

zr
T )′

V −1
βr is the prior variance and βr0 is the prior mean for βr

Substep 16.38 Derive the conditional distribution p(σ2
d|Y, •)

p(σ2
d|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
d|Y, •) ∼ IG(νd0 + T−1

2 , Sd0 + 1
2

T∑
t=2

(Dt −Dt−1)2)
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C1.d Marginal likelihood computation

Bayesian model comparison is based on the marginal likelihood (marginal data density) metric.

In computing marginal likelihood for various models, we use the approach proposed by CCK,

which decomposes the marginal density of the data (e.g., inflation) into the product of predic-

tive likelihoods. This approach allows us to separately compute marginal data density for each

variable of interest: inflation, nominal wages, interest rate, real GDP, the unemployment rate,

and labor productivity. The variable specific marginal densities prove quite useful because it

allows for deeper insights about the source of the deficiencies, which in turn helps differentiate

models at a more disaggregated level.

Specifically, marginal data density of the variables of interest is computed as follows,

p(yj |Xj
i ,Mi) =

T∏
t=3

p(yjt |y
j
1:t−1, X

j
1:t,i,Mi) (C.83)

where, j = PCE inflation (π), unemployment rate(ur), real GDP(gdp), labor productivity(prod),

nominal wage inflation(wage), nominal short-term interest rate(int) ;

p(yjt |y
j
1:t−1, X

j
1:t,i,Mi) is the predictive likelihood for variable j, and Xj

i is set of covariates that

influences variable j in model Mi. For example, in the case of short-term interest rate, the

covariates in the Base model include ur, π, gdp, and survey data. Whereas, in the Base-NoSurv

model, the covariates will not include the survey data.

To compute the overall marginal data density of Y = (yπ, yur, ygdp, yprod, ywage, yint)′ for

model Mi,

p(Y |Xi,Mi) = p(yπ|Xπ
i ,Mi)× p(yur|Xur

i ,Mi)× p(ygdp|Xgdp
i ,Mi)...

×p(yprod|Xprod
i ,Mi)× p(ywage|Xwage

i ,Mi)× p(yint|Xint
i ,Mi) (C.84)

C2. Prior Sensitivity Analysis

In the chapter, we noted that our prior settings are similar to those used in CKP, CCK,

Gonzalez-Astudillo and Laforte (2020). As discussed in CCK, UC models with several unob-

served variables, such as the one developed in this chapter, require informative priors. That

said, our priors settings for most variables are only slightly informative. The use of inequality

restrictions on some parameters such as the Phillips curve, persistence, bounds on u-star could

be viewed as additional sources of information that eliminates the need for tight priors, some-

thing also noted by CKP. The parameters for which there is a strong agreement in the empirical

literature on their values, such as the Taylor-rule equation parameters, we use relatively tight

priors, such that prior distributions are centered on prior means with small variance. So besides
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the prior on the Taylor-rule equation parameters, all other prior settings are taken from related

papers.

Here, we examine the sensitivity of loosening the priors on the variances of the shocks to the

pi-star, p-star, u-star, and r-star (i.e., for the process D). Specifically, we double the prior mean

of the variances from 0.01 to 0.03. Table C2 reports the posterior estimates. The top panel

reports the posterior estimates from the main text to facilitate easy comparison, and the bottom

panel reports the posterior estimates of re-running the models with these new prior values. The

results for p-star are as expected. In the chapter, we noted that the prior view primarily shapes

p-star, and we see that manifest here too; prior (E(σ2
p∗)) and posterior (E(σ2

p∗|Data)) are fairly

identical. Similar evidence is seen in the case of r-star (i.e., D) for the Base-NoSurv model.

For pi-star, u-star, and r-star (in the case of Base), the posterior mean estimates’ differences

between the two panels are small. In fact, the posterior mean estimates from the runs with

looser prior are pushed toward values that are closer to the prior mean estimates used in the

main chapter, lending credibility to our default prior settings used in the main chapter.

Table C2: Parameter Estimates: Comparison

Panel A: From the main chapter, where prior E(σ2
π∗) = E(σ2

u∗) = E(σ2
d) = 0.12 and E(σ2

p∗) = 0.142

Parameter Parameter description Posterior estimates

Base Base-NoSurv

Mean 5% 95% Mean 5% 95%

σ2
π∗ Variance of the shocks to π∗ 0.1212 0.1002 0.1412 0.1272 0.0842 0.1822

σ2
p∗ Variance of the shocks to p∗ 0.1452 0.1112 0.1832 0.1412 0.1092 0.1762

σ2
u∗ Variance of the shocks to u∗ 0.0752 0.0642 0.0892 0.0842 0.0712 0.1002

σ2
d Variance of the shocks to d 0.0932 0.0772 0.1102 0.1142 0.0842 0.1482

Panel B: Prior sensitivity, where prior E(σ2
π∗) = E(σ2

u∗) = E(σ2
d) = E(σ2

p∗) = 0.1732

Parameter Parameter description Posterior estimates

Base Base-NoSurv

Mean 5% 95% Mean 5% 95%

σ2
π∗ Variance of the shocks to π∗ 0.1432 0.1242 0.1632 0.1902 0.1452 0.2362

σ2
p∗ Variance of the shocks to p∗ 0.1722 0.1342 0.2142 0.1662 0.1302 0.2072

σ2
u∗ Variance of the shocks to u∗ 0.1022 0.0902 0.1152 0.1212 0.1032 0.1402

σ2
d Variance of the shocks to d 0.1222 0.1062 0.1402 0.1752 0.1362 0.2182
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C3. MCMC Convergence Diagnostics

In this section, we document the diagnostic properties of our MCMC algorithm in the Base

and Base-NoSurv models (see figures C1 and C2). Following Primiceri (2005), Koop, Leon-

Gonzalez, and Strachan (2010), and Korobilis (2017), we report the autocorrelation functions

of the posterior draws (10th and 50th order sample autocorrelation), inefficiency factors (IFs),

and convergence diagnostic (CD) of Geweke (1992).1

One of the most common metrics examined to assess the efficiency of the MCMC sampler

is to look at the autocorrelation function of the draws, which indicates how well the chain is

mixing. Low autocorrelations are preferred to higher because the lower the autocorrelation, the

closer the draws are to being independent and higher the efficiency of the algorithm. The plots

shown in the top panel of the figures correspond to 10th and 50th order autocorrelations in the

draws, and as can be seen, they indicate very low autocorrelation. In the case of 50th order

autocorrelation, all of them indicate close to zero, and in the case of 10th order except for a

couple most indicate correlation below 0.2.

The inefficiency factor related to the autocorrelation functions is the inverse of Geweke’s

(1992) relative numerical efficiency measure (RNE). It is computed using the following for-

mula, (1 + 2
∑∞

i=1 ρi), where ρi refers to the k − th order autocorrelation of the chain. The

middle panel in the figures plots the IF for each of the parameters. The values lower than

or close to 20 are considered desirable. As shown, in the case of the Base model, all the IFs

are below 20, and most at below 10. Similarly, in the case of Base-NoSurv, except one, for

all other parameters, IFs are below 20. (Note: IFs are computed using the default setting in

LeSage’s toolbox: estimation of spectral density at frequency zero uses a tapered window of 4%)

As discussed in Koop, Leon-Gonzalez, and Strachan (2010), to assess whether the MCMC

sampler has converged, a rough rule of thumb is to look at the CDs and see whether 95% of

them are less than 2. If they are, then convergence is likely achieved. Based on the plots in

figures C1 and C2 (third-panel), most CDs are within +/- 2. The very few that exceed 2 are

only slightly larger than 2.

We also note that the results are fairly identical to the different initial conditions of the

chain (picked randomly) and to a significantly lower number of simulations (and burn-in). For

example, a run using 320K posterior draws with a burn-in of the first 300K and retaining all the

remaining draws provide similar inference. However, the MCMC convergence properties favor

higher simulations because it allows for a greater degree of thinning.

1In computing some of these metrics, we have benefitted from the Matlab toolbox developed by James P.
LeSage. Detailed explanation including intuition for these convergence diagnostics are provided in Koop (2006;
page 67-68) and Chan, Koop, Poirier, and Tobias (2019; page 209).
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Overall, these diagnostic measures provide us confidence in the good convergence properties

of our MCMC algorithm in both the Base and Base-NoSurv models.

Figure C1: MCMC Diagnostics of Base Model
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Figure C2: MCMC Diagnostics of Base-NoSurv Model
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C4. Additional Forecasting Results: Base vs. Benchmarks

In this section we compare the real-time forecasting performance of our Base model to the

outside benchmark models, which forecasting literature has shown to be useful forecasting

devices. Specifically, we compare the accuracy of the inflation forecasts from our Base model

to the following three models, UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and

Potter (2016) [CKP], and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of

the unemployment rate forecasts from our Base model to the CKP, and the accuracy of the

nominal wage inflation from the Base model to the UCSV model applied to the nominal wage

inflation – motivated by Knotek (2015).

Table C3 presents the forecast evaluation results for headline PCE inflation, nominal wage

inflation, and the unemployment rate. These results indicate following three observations.

First, in terms of point forecast accuracy, inflation forecasts from all the four models considered

are competitive to each other. There is some statistically significant evidence that the Base

model is more accurate than UCSV at h=12Q. Regarding the density forecast accuracy, the

Base model is more accurate than the UCSV but inferior to CCK, as the latter produces more

precise intervals than the Base model. Second, in the case of nominal wage inflation, the Base

model generates more accurate forecasts (both point and density) than UCSV, and the gains

are statistically significant for the most part.

Third, the accuracy of the unemployment forecasts from the Base model is competitive to

the CKP model statistically speaking, even though the relative numbers favor CKP. A closer

inspection of the forecast errors reveals that the Base model, which incorporates survey forecasts

of the unemployment rate, experienced significantly bigger misses than the CKP model around

the Great Recession period. Outside of this period, the Base model is slightly more accurate

than the CKP, and when combined with the Great Recession period, on the net, the much

bigger misses of the Base model results in overall higher RMSE.

As illustrated in Tallman and Zaman (2020), just before and at the onset of the Great Reces-

sion, the survey participants projected relatively upbeat long-run forecasts of unemployment,

which indicated a declining natural rate of unemployment. It was not until few months into the

recession that survey participants recognized the extent of the labor market damage and began

to revise their estimates of the long-run unemployment higher. Hence, models such as the Base

model that take signals from the survey forecasts experienced big misses.

To sum up, we view these forecasting results as providing evidence supporting our Base

model’s competitive forecasting properties.
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Table C3: Out-of-Sample Forecasting Performance: Base vs. Benchmarks

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting

4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

PCE Inflation

Relative RMSE Relative Log Score

Base/UCSV 0.95 0.97 0.93* 0.96 Base - UCSV 0.013* 0.023* 0.028* 0.041*

Base/CCK 1.01 1.04 1.01 1.04* Base - CCK -0.018* -0.030* -0.046* -0.058*

Base/CKP 0.98 0.99 0.97 1.02 Base - CKP 0.002 0.001 -0.003* -0.008*

Nominal Wage

Relative RMSE Relative Log Score

Base/UCSV 0.89* 0.87* 0.92 0.64 Base - UCSV 0.012 0.027* 0.037* 0.041*

Unemployment Rate

Relative MSE Relative Log Score

Base/CKP 1.08 1.12 1.15 1.24 Base - CKP 0.001 0.000 -0.004 -0.007

Notes for Table: For variables PCE inflation and nominal wage (i.e., average hourly earnings), the forecasts and associated accuracy

correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which the steady states are

assumed to be the estimates of the stars from the Base model. UCSV forecast corresponds to the forecast from the univariate unobserved

component stochastic volatility model similar to Stock and Watson (2007). The model is used to construct forecasts of PCE inflation and

nominal wage inflation. CCK forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of

Chan, Clark and Koop (2018). CKP forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility

model of Chan, Koop and Potter (2016), with the bounds on u-star fixed to values identical to the Base model. The left panel reports

results for the point forecast accuracy (relative root mean squared errors) and the right panel reports the corresponding density forecast

accuracy (mean of the relative log predictive score). The table reports statistical significance based on the Diebold-Mariano and West test

with the lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction

proposed by Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal

critical values for horizons less than equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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C5. Additional Forecasting Results: SSBVAR, Base stars vs.

Survey

In macroeconomic forecasting, research by Wright (2013) and Tallman and Zaman (2020),

among others, show using workhorse Bayesian VAR models that the predictive performance

boils down to good starting conditions (i.e., nowcasts) and terminal conditions (i.e., steady-

states proxied by stars). Survey forecasts provide both nowcasts and long-run projections,

whose accuracy has been shown by past research to be quite good. Wright (2019) empha-

sizes the desirable forecasting properties of the survey forecasts and highlights that econometric

approaches utilizing survey projections are at the forecasting frontier, especially in inflation fore-

casting. Most empirical research on forecasting has focused on proposing methods to improve

the accuracy of the nowcast estimates relative to survey nowcasts’ accuracy, but only little effort

has been dedicated to improving estimates of long-run projections. Hence, this chapter raises

the natural curiosity in the usefulness of the stars’ estimates from our modeling framework for

macroeconomic forecasting using Bayesian VARs (via the imposition of steady-states).

To assess the efficacy of our star’s estimates for the external VAR models, we perform

a real-time out-of-sample forecasting evaluation similar to Wright (2013) and Tallman and

Zaman (2020). These studies informed the time-varying steady-states for the steady-state

(SS) BVAR using the long-run survey projections and found that doing so leads to significant

accuracy gains. Accordingly, the design of our forecasting examination is as follows. We take

the SSBVAR from Tallman and Zaman (2020) and perform three sets of recurive real-time out-

of-sample forecasting runs. In the first run, we inform the steady-states for real GDP growth,

PCE inflation, core PCE inflation, the unemployment rate, nominal wage inflation, and labor

productivity growth using the long-run survey projections. For the latter two variables, we use

the survey expectations from the SPF.2 The forecasts from this run are denoted ‘Survey’ in

table C4. In the second run, we repeat the exercise, but this time inform the steady-states

using the real-time estimates of the stars from the Base-NoSurv model, denoted ‘BaseNoSurv’.

In the third run, we inform the steady-states using the real-time estimates of stars from the

Base model, denoted ‘Base’.

Each of the three forecasting runs is based on estimating the SSBVAR with a recursively

expanding sample, i.e., the recursive execution uses an additional quarterly data point in the

estimation. The SSBVAR is estimated with quarterly data beginning 1959Q2. The model

consists of ten variables: (1) real GDP growth; (2)real consumption expenditures; (3) headline

PCE inflation; (4) core PCE inflation; (5) labor productivity growth; (6) growth in average

hourly earnings; (7) growth in payroll employment; (8) the unemployment rate; (9) the shadow

federal funds rate; (10) and the risk spread, defined as the difference between the yield on

10-year Treasury Bond and yield on BAA Bond. The out-of-sample forecasting period spans

2In the case of nominal wage inflation, we construct an implied survey projection by adding the survey
expectation of PCE inflation and productivity, both of which are obtained from the SPF.
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1999Q1 through 2019Q4. The forecast accuracy (point and density) is computed from one-

quarter ahead to 20 quarters out. Partly due to focus on the medium-term horizon and partly

in the interest of space, we report accuracy metrics for four, eight, twelve, and twenty quarters

ahead.

We evaluate the forecast accuracy using real-time data; specifically, we treat the “actual”

as the third quarterly estimate. For instance, in the case of real GDP, the third estimate for

2018Q4 corresponds to the GDP data available in late 2019Q1. The point forecast accuracy is

assessed using the root mean squared error (RMSE) metric, and the density forecast accuracy

is assessed using either the continuous ranked probability score (CRPS). Forecasts with lower

RSME and CRPS are preferred. The statistical significance of the point and density forecast

accuracy is gauged using the Diebold-Mariano and West test. The description of these tests is

listed in the notes accompanying the tables reporting forecast accuracy.

Table C4 reports forecast evaluation results corresponding to this exercise. The left panel

reports the point forecast accuracy results, while the right panel results for the density forecast

accuracy. We evaluate and compare the point, and density forecast accuracies among the Base,

BaseNosurv, and Survey forecasts in a pairwise fashion. For each variable, the three rows

report the relative RMSE (for point forecast accuracy) and the relative CRPS (for density

forecast accuracy). The first row reports the RMSE of the Base relative to Survey, the second

row reports the RMSE of BaseNoSurv to Survey, and the third row reports the RMSE of

BaseNoSurv relative to Base. A model with a lower values of RMSE and CRPS is preferred

to a model with higher values. These relative metrics indicate the following. First, for real

GDP growth, statistically speaking, Survey outperforms both Base and BaseNoSurv. A closer

inspection of the errors reveals that most of the gains of Survey over Base and BaseNoSurv are

achieved over the post-Great Recession period.

As indicated in the figures plotting real-time estimates (see figure C5), starting in 2011

onwards, while both Base and Base-NoSurv have g-star falling sharply in the vicinity of 1.0%,

the Survey has g-star falling only a little to 2.0%. This more rapid deceleration in g-star inferred

by our models hurts the forecast accuracy of real GDP forecasts. This particular forecasting

result suggests that our models misleadingly attribute a higher portion of the low GDP growth

realizations in the post-Great Recession period to a trend decline in real GDP growth instead

of cyclical fluctuations.

For headline PCE inflation, all three are competitive to each other, with some statistically

significant gains in the density forecast accuracy of Base and Base-NoSurv over Survey. In

the case of nominal wage inflation, both Base and Base-NoSurv generate forecasts that are

substantially more accurate than Survey on average. The gains are statistically significant for

the most part. In the case of labor productivity, while Base is more accurate than BaseNoSurv,

both are inferior to the Survey. This result suggests that maybe bringing in survey information

about productivity in the Base model may improve the econometric estimation of p-star.

For the unemployment rate, both Base and BaseNoSurv are inferior to the Survey, but
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the gains are not statistically significant for the most part. The SSBVAR with steady-states

informed from the Base model generates more accurate unemployment forecasts than Base-

NoSurv, but the forecast gains are statistically significant only for the very long horizons. In

the case of the shadow federal funds rate, both Base and Survey are competitive but are inferior

to BaseNoSurv for h=4Q and h=8Q.

Overall, these forecasting results lend credibility to our stars’ estimates (except for g-star)

in their use to inform steady-states for VAR forecasting models. We also note the results of

this section lend support to the survey projections in their use as proxies for stars, something

also documented by Tallman and Zaman (2020), among others.

The fact that the estimates of stars from our models are generally competitive to survey

long-run projections we believe is a good outcome. It has been well-established that survey

expectations are at the frontier of forecasting (e.g., Wright, 2019). However, the preference

is for forecasts (or estimates of stars) obtained using a single multivariate model because the

resulting forecasts will be coherent and allow for a credible narrative in a systematic manner.
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Table C4: Out-of-Sample Forecasting Performance: Steady-State BVAR

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting

4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

Real GDP

Relative RMSE Relative CRPS

Base/Survey 1.05* 1.07* 1.06* 1.01 Base - Survey 0.09* 0.09* 0.07* 0.01

BaseNoSurv/Survey 1.04 1.09* 1.07* 1.03* BaseNoSurv - Survey 0.06 0.12* 0.09* 0.03

BaseNoSurv/Base 0.98 1.02 1.01 1.02* BaseNoSurv - Base -0.02 0.03 0.01 0.02

PCE Inflation

Relative RMSE Relative CRPS

Base/Survey 0.99* 0.98 1.00 1.05 Base - Survey -0.02* -0.02* -0.01 0.04

BaseNoSurv/Survey 0.97 1.00 1.04 1.06 BaseNoSurv - Survey -0.03* -0.01 0.02 0.04

BaseNoSurv/Base 0.99 1.02 1.04 1.01 BaseNoSurv - Base -0.02 0.01 0.03 0.00

Productivity

Relative RMSE Relative CRPS

Base/Survey 1.04* 1.08* 1.05* 1.00 Base - Survey 0.04* 0.08* 0.06* 0.00

BaseNoSurv/Survey 1.06* 1.13* 1.12* 1.05 BaseNoSurv - Survey 0.07* 0.13* 0.12* 0.05

BaseNoSurv/Base 1.02 1.05* 1.06* 1.05* BaseNoSurv - Base 0.02 0.05* 0.06* 0.05*

Nominal Wage

Relative RMSE Relative CRPS

Base/Survey 0.73* 0.77* 0.84* 0.92* Base - Survey -0.08* -0.09* -0.09* -0.08*

BaseNoSurv/Survey 0.72* 0.76* 0.93* 1.06 BaseNoSurv - Survey -0.08* -0.09* -0.05* 0.03

BaseNoSurv/Base 0.98 0.99 1.10 1.16 BaseNoSurv - Base 0.00 0.00 0.04 0.11

Unemployment Rate

Relative MSE Relative CRPS

Base/Survey 1.05 1.08* 1.09 1.11 Base - Survey 0.03 0.09* 0.13* 0.18*

BaseNoSurv/Survey 1.07 1.13 1.19 1.27* BaseNoSurv - Survey -0.08 -0.15 -0.10 0.20*

BaseNoSurv/Base 1.02 1.05 1.09 1.14* BaseNoSurv - Base 0.02 0.10 0.19 0.31

Shadow FFR

Relative RMSE Relative CRPS

Base/Survey 0.98 0.99 1.01 1.06 Base - Survey -0.02 -0.02 0.02 0.18

BaseNoSurv/Survey 0.91* 0.92 0.96 1.07 BaseNoSurv - Survey -0.08* -0.15 -0.10 0.20

BaseNoSurv/Base 0.93* 0.93* 0.95 1.01 BaseNoSurv - Base -0.06* -0.13* -0.12 0.02

Notes for Table: For the variables real GDP, PCE inflation, productivity, nominal wage (i.e., average hourly earnings), the forecasts and

the associated accuracy correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in

which the steady states are assumed to be the estimates of the stars from the Base model. BaseNoSurv forecast is defined as the SS-VAR

forecast in which the steady states are taken from the Base-NoSurv model. The left panel reports results for the point forecast accuracy

(relative root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean of the relative

continuous ranked probability score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag

h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for

horizons less than equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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C6. Additional Real-time Estimates Stars

Figure C3: Real-time Recursive Estimates of Output Gap: Base model

Notes: The plot denoted Base corresponds to smoothed (posterior mean) estimates which are

based on the full sample information, i.e., 1959.Q4 through 2019.Q4. The plot denoted Base:

RealTime corresponds to real-time recursive (posterior mean) estimate generated by estimating

Base model at different points in time, specifically 1999.Q1 through 2019.Q4. The credible

intervals reflect the uncertainty around the posterior mean smoothed estimates.
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Figure C4: Real-time Recursive Estimates of Stars: Base-NoSurv model

Notes: The plots denoted Base-NoSurv correspond to smoothed estimates which are based on

the full sample information, i.e., 1959.Q4 through 2019.Q4. The plots denoted Base-NoSurv:

RealTime correspond to real-time recursive estimates generated by estimating Base-NoSurv

model at different points in time, specifically 1999.Q1 through 2019.Q4.
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Figure C5: Real-time Recursive Estimates of Stars: Base model vs. Base-NoSurv model

Notes: The plots correspond to real-time recursive estimates generated by estimating Base

and Base-NoSurv models at different points in time, specifically 1999.Q1 through 2019.Q4.

To facilitate comparison, real-time estimates from the survey either Blue Chip or Survey of

Professional Forecasters (SPF) are also plotted.
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C7. Estimated relationship between Survey and Stars

Figure C6: Estimated Link Between Survey Forecasts and Stars

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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C8. Additional COVID-19 Pandemic Results

Figure C7 presents posterior estimates of u-star, g-star, and r-star from Base and Base-NoSurv

models based on estimating data through 2020Q3. Also plotted to facilitate comparison are the

corresponding posterior estimates based on estimation through 2019Q4. Figure C8, similarly,

provides estimates of pi-star, p-star, and w-star. A visual inspection of the plots suggests

the following four observations. First, estimates appear reasonable, indicating the model isn’t

blowing up. Second, adding pandemic data to the estimation sample has small effects on the

historical estimates of stars in the Base model and, for the most part, also applies to the Base-

NoSurv model. For u-star, there are some notable revisions in the estimates obtained from

the Base-NoSurv model comparing between estimation pre-and post-pandemic recession. The

considerable revision in the posterior mean of u-star is associated with decreased precision, as

evidenced by the larger width of the 90% credible intervals; however, in the Base model, the

estimation with pandemic data is associated with increased precision of u-star.

Third, in the case of g-star, estimation using pandemic data yields posterior mean estimates

of g-star that are revised four-tenths higher starting 2000 onwards compared to estimation using

pre-pandemic data. Fourth, as would be expected (see Carriero et al., 2021), the precision plots

indicate an uptick in uncertainty towards the end of the sample period associated with pandemic

data. Though except for p-star and w-star, the uptick in uncertainty is small. The Base model

generally held up better because the survey forecasts help anchor the econometric estimates of

stars to a reasonable range. Without it, extreme data movements in the unemployment rate

profoundly influenced the econometric estimates of u-star in the Base-NoSurv model. In light

of the discussion in the preceding paragraph, we view the uptick in uncertainty around p-star

as a reasonable result.

We believe that the rich features of our models, which includes: (1) modeling the changing

economic relationships via the implementation of time-varying parameters; (2) allowing for

changing variance of the innovations to various equations (i.e., SV); (3) imposing bounds on

some of the random walk processes; (4) joint modeling of the output gap and unemployment

gap in particular; (5) and the use of survey forecasts; helped position our models to handle the

pandemic data better.

Carriero et al. (2021) using monthly Bayesian VARs show models that allow for SV bet-

ter handle pandemic observations than those without SV. But, even models with SV have a

drawback in the context of pandemic data. This drawback arises from the standard approach

to modeling SV, which assumes a random walk process or a very persistent AR process. So in

the face of a temporary spike in volatility, the model will attribute this spike incorrectly to a

persistent increase in volatility. Inspired by the outlier treatment method of Stock and Watson

(2016) for UCSV models, Carriero et al. (2021) propose an outlier-adjusted SV method that

models the VAR residuals as a combination of persistent and transitory changes in volatility.

We believe that this drawback of standard SV applies more to monthly VARs and to a

lesser extent in quarterly models, as is the case here. However, we stress that Stock and Wat-
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son outlier treatment method can be conveniently implemented in our modeling framework. It

would also require introducing SV in both the output gap and the unemployment gap equa-

tions. To keep the length of the chapter manageable, we leave this extension for future research.

The COVID-19 pandemic provides an excellent real-time illustration of the importance of

using survey expectations data in the econometric estimation of the stars. The unprecedented

nature of the pandemic crisis and the extreme movements in the data induced by the pandemic

are too volatile to provide a timely and credible signal about the long-run macroeconomic

consequences. Complicating the signal extraction problem from the data during the pandemic

period is that consensus has been developing (perhaps rightly so) to treat macroeconomic data

for the periods 2020Q2 and 2020Q3 as outliers in estimating the macro-econometric models; see

Schorfhedie and Song (2020), Lenza and Primiceri (2020), Carriero et al. (2021), among others.

On the other hand, judgment assessment informed from past event studies and understand-

ing of many decades of economics research indicates that the COVID pandemic is likely going

to have implications on the long-run productivity growth (p-star), the growth rate of potential

output (g-star), the natural rate of unemployment (u-star), the long-run real rate of interest

(r-star); see Jorda, Singh, and Taylor (2020). As time rolls forward, and more is revealed about

the possible long-term macroeconomic impacts of the pandemic on the underlying trends, the

survey participants would judgmentally adjust their estimates of long-run projections in a more

timely manner. And by extension, our Base model, which incorporates the long-run survey

projections.

Base model vs. external sources: post-pandemic Recession

We next compare our Base model estimates with those produced by externals sources (and

or models) to assess further the reliability of our Base model estimates post-pandemic recession.

Figure C9 compares the estimates of the output gap (panel a), r-star (panel b), u-star (panel c),

and pi-star (panel d) from the Base model to the outside estimates.3 The estimates are based

on data through 2020Q3 (specifically vintage of data corresponding to late November 2020). In

the case of CBO, the projections correspond to an update as of late July 2020.

The plots in panel (a) indicate remarkable similarity between the posterior mean estimate

of the base model’s output gap and the CBO output gap. Compared with Morley and Wong

(2020), even though before the pandemic, the base model’s output gap estimates indicated less

3Morley and Wong (2020) estimates are based on their updated work Berger, Morley, and Wong (forthcoming)
and are available to download from outputgapnow.com. The estimates were downloaded in the last week of
November, which included the nowcast estimate for 2020Q4 that we do not plot. Thank Murat Tasci, for providing
the estimates of the u-star from the Tasci (2012) model. And also, thank Benjamin Johannsen for providing
the r-star estimates from Johannsen and Mertens (2019). The LW estimates of r-star were downloaded from the
New York Fed website. Del Negro et al. (2017) estimates of r-star were downloaded from github.com/FRBNY-
DSGE/rstarBrookings2017. Lubik and Matthes estimates were downloaded from the Richmond Fed website in
late November 2020.
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tight resource utilization, for 2020, they are quite similar. Morley and Wong (2020), based on

a BVAR approach, could be viewed more flexibly than ours because it explicitly considers the

possible error correlation across model equations. However, at the same time, their approach

could be deemed less flexible than ours because it does not explicitly model time-variation

in parameters and stochastic volatility – i.e., abstracts from the issue of “changing economic

environment.” Both the Base model and Morley and Wong (2020) estimates the output gap at

-3.5% for 2020Q3, with CBO just a tenth higher at -3.6%.

Panel (b) plots the estimates of the r-star from various sources. Except for Laubach

and Williams (2003) [LW], all others are based on information available as of late Novem-

ber 2020. LW estimate reflects information through August 2020. Comparing between 2019Q4

and 2020Q3, the Base model, Johannsen and Mertens (2019), and Del Negro et al. (2017), all

three estimate r-star to have changed only a little; Base model: from 1.36% to 1.26%, Del Negro

et al. (2017): from 1.11% to 1.08%, Johannsen and Mertens (2019): from 1.48% to 1.47%. In

contrast, Lubik and Matthes (2015) have r-star increasing from 0.64% to 1.0%. However, in

their estimate, r-star first falls from 0.64% to -0.68% and then bounces back to 1.0% in 2020Q3.

Their estimate of r-star displays considerable volatility compared to others.

Panel (c) plots the estimates of the u-star from four sources, Base model, CBO, Tasci

(2012), and Chan, Koop, and Potter (2016). Comparing between the Base model and CBO,

the contours of the u-star plots are quite similar. But, the levels through 2010 are notably

different, with CBO higher than the Base model. From mid-2013 onwards, the levels are quite

similar, and in 2020Q3, both indicate u-star at 4.3% (Base) and 4.4% (CBO). Interestingly, both

CBO and the Base model have u-star remaining mostly stable between 2019Q4 and 2020Q3,

suggesting that they attribute most of the increase in the pandemic’s unemployment rate to

the cyclical component. It is worth highlighting that the (median) estimate of u-star reported

in the September 2020 Summary of Economic Projections, which the Federal Reserve compiles,

also indicated a stable u-star (at 4.1%) between 2019Q4 and 2020Q3.

Broadly speaking, the contour of the u-star implied by the CKP (bivariate Phillips curve)

is similar to the Base model and CBO. But, the estimated level of u-star is significantly higher.

According to the CKP model, the estimated u-star in 2020Q3 is 5.7%, just a tenth higher than

2019Q4. The Tasci (2012) model, which is based on the flow rates in-and-out of unemployment,

is significantly impacted by the pandemic data, as the u-star is estimated to have increased from

4.7% in late 2019 to 5.2% in 2020Q3. Part of the explanation of more significant movements in

u-star seen in the Tasci model in response to pandemic data is that the model is estimated using

maximum likelihood methods, which are relatively known to have done a less well job in handling

extreme pandemic induced movements in variables. More generally, Tasci (2019) document the

challenges of estimating u-star in real-time with these models during crisis periods.

Panel (d) presents pi-star estimates from three sources: the Base model, CCK model, and

CKP model. All three models indicate pi-star to have remained stable between 2019Q4 and

2020Q3. However, the pi-star estimates differ slightly across models, with the Base model at
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1.65%, CCK at 1.50%, and CKP at 1.44% (in 2020Q3).

Figure C7: Estimates of Stars pre- vs. post-COVID Recession

Notes: The plots labeled Pre Pandemic reflect posterior estimates based on information in the

sample 1959Q4 through 2019Q4, and plots labeled Post Pandemic reflect posterior estimates

based on the sample 1959Q4 through 2020Q3.
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Figure C8: Estimates of Stars pre- vs. post-COVID Recession (more)

Notes: The plots labeled Pre Pandemic reflect posterior estimates based on information in the

sample 1959Q4 through 2019Q4, and plots labeled Post Pandemic reflect posterior estimates

based on the sample 1959Q4 through 2020Q3.
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Figure C9: Estimates of Stars post-COVID Recession: Base vs. Outside

Notes: In the case of Johannsen and Mertens (2019), Del Negro et al. (2017), and Lubik and

Matthes (2015), the estimates plotted are the posterior median, for all others it is the (posterior)

mean estimate.
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C9. R*: Backcast Survey R* from 1959-1982

The survey estimates of g-star, u-star, and pi-star are direct reads from the survey. In contrast,

the r-star survey estimate is not a direct estimate. Instead, it is inferred from the Blue Chip

survey long-run estimates of GDP deflator and short-term interest rates (3-month Treasury

bill) using the long-run Fisher equation. Specifically, the long-run forecast of 3-month Treasury

bill less the long-run forecast of GDP deflator. To this differential, we add +0.3 to reflect the

average differential between the federal funds rate and the 3-month Treasury bill. (r-star refers

to the long-run equilibrium federal funds rate)

Survey projections are not available before 1983Q1. To fill in estimates for the survey

variables between 1959Q4 and 1982Q4, we use CBO long-run projections in the case of real

GDP growth and the unemployment rate. In the case of inflation, we use the PTR series

available from the Federal Reserve Board website; this series is used in many studies employing

long-run expectations of inflation (e.g., CCK, Tallman and Zaman, 2020). We do not have a

readily available historical source for long-run forecasts for interest rates (and r-star). So we

backcast a particular time series of implied r-star using CBO’s long-run projections of g-star.

Specifically, we first fit a simple linear regression model over the post-1983 period that regresses

survey r-star on a constant, its lags (2 lags), and a one-period lag “gap,” defined as the difference

between survey r-star and survey g-star. We use the estimated model and the CBO long-run

projections of g-star over the sample 1959Q4 through 1982Q4 to backcast the implied survey

r-star estimates. (When backcasting, the initial values of r-star for 1959Q2 and 1959Q3 are

assumed identical to CBO g-star)

r∗,Survt = c+ β1gap
r∗,g∗,Surv
t−1 + β2r

∗,Surv
t−1 + β3r

∗,Surv
t−2 + ε∗,Survt , ε∗,Survt ∼ N(0, σ2

∗,Surv) (C.85)

where, gapr∗,g∗,Survt = g∗,Survt − r∗,Survt

The OLS estimation yields, c = −0.0745; β1 = 0.06; β2 = 1.167; β3 = −0.148

Figure C10 plots the survey g-star and r-star estimates in solid, and the CBO g-star and

the backcast r-star in dashed lines.
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Figure C10: Survey r* and g*
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C10. R* : Additional Full Sample Results

C10.a. Role of data vs. prior in shaping r-star

Kiley (2020), using a model in which r-star follows a RW process, documents an essential finding

that data provide very little information in shaping the r-star process. Hence, the model-based

r-star estimate is mainly driven by the modeler’s prior views. Our results generally confirm

Kiley’s findings. However, in our Base specification, where the variance of the g-star process

influences both the prior and the posterior for the r-star process, the data does influence the r-

star estimate; because we find evidence that data provide information about the g-star process.

This latter evidence of data’s influence on the identification of g-star is also noted by Kiley

(2020).

We begin by comparing the prior and posterior estimates of the parameter σ2
r∗, which governs

the shock variance of the r-star process, in the Base-R*RW and Base-NoSurvR*RW – both these

specs model r-star as a RW similar to Kiley (2020). We set prior for E(σ2
r∗) = 0.12), which

is the same as in Astudillo and Laforte (2020) but tighter than 0.252 used by Kiley.4 (Our

choice of tighter prior than Kiley is due to a significantly more complex model). Our model

estimation yields posterior estimates of 0.092 (with 90% credible intervals 0.072 to 0.112) in

Base-R*RW and 0.12 (with 90% interval 0.082 to 0.132) in Base-NoSurvR*RW, respectively. It

appears that in the case of Base-NoSurv-R*RW, the prior setting of the r-star process is driving

the trajectory as evidenced by the posterior mean of the parameter σ2
r∗ identical to the prior.

But in the case of Base, the posterior mean of the parameter σ2
r∗ is slightly different from the

prior mean, suggesting that by bringing survey data in the estimation, the data does play a role

in shaping r-star.

We next confirm our finding by re-doing our exercise setting a looser prior for E(σ2
r∗) =

0.252), same as in Kiley (2020). The updated model estimation yields posterior estimates of

E(σ2
r∗) = 0.152) (with 90% credible intervals 0.132 to 0.172) in Base-R*RW and E(σ2

r∗) = 0.222)

(with 90% interval 0.182 to 0.272 in Base-NoSurvR*RW, respectively. The fit of these models

to interest rate data (and other model data) is significantly worse compared to Base and Base-

NoSurv.

We explored the impact on the r-star estimates of even more looser priors on the shock

process governing r-star. We find that as the prior on the r-star process loosens, data becomes

more informative in shaping the r-star estimate (echoing Lewis and Vazques-Grande, 2019).

But it comes at the cost of worsening model fit, higher volatility in the r-star estimate, and

worsening precision of r-star.

4We also explore a model specification in which prior variance is set at 0.252, the fit of this specification was
significantly inferior, and the r-star estimate was quite volatile.
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C10.b. Base vs. External models

In figure C11, the left panel plots r-star from Base (solid line) and two external models, the

seminal model of LW (dashed line) and the more recent model developed in Del Negro et al.

(2017) (dotted line). As is the case with most r-star estimates presented in the literature, the

LW estimate shows a marked decline in r-star from 2000 and beyond. As shown in the figure,

compared to the r-star estimate from the Base, the LW estimate is lower over this period. Part

of the explanation of this difference in the estimates comes from the different estimates of g-star

(not shown).

In the LW model, the mechanical reason for this steadily declining trajectory of r-star is

coming from the fact that their model estimate of g-star has been steadily declining over the

same period. Over this period, GDP grew just slightly above their estimate of g-star, even

though the real short-term rate is significantly below zero over this period. The model explains

the combination of moderate growth in GDP (suggesting a small positive output gap) and

negative real short-term interest through a low level of r-star estimate so to obtain a negative

real interest rate gap (see LW, 2016). In our Base (and Base-NoSurv) model, because the

estimate of g-star is even lower than LW, which implies a more positive output gap (than LW),

a less negative real interest rate gap (than LW) is required to explain the output gap. The less

negative real interest rate gap (i.e., a smaller interest rate gap) implies a higher level of r-star

than LW.

The r-star estimate from Del Negro et al. is stable around 2% from 1960 through early

1980 and then slowly move up, reaching 2.5% by late 1990. From thereon, it begins a gradual

decline ending 2019 at 1.2%, identical to Base, and two-tenths lower than Base-NoSurv. It is

worth noting that Del Negro et al. also utilize survey expectations on r-star to estimate r-star

but their approach in how they model the link between the two is very different than ours.5

They also assume a relationship between g-star (in their case, long-run productivity growth)

and r-star. However, their model structure is different compared to ours. Shortly, we show an

r-star estimate from our model specification with the tighter prior assumption for the r-star

process, which is remarkably similar to Del Negro et al.

C10.c. Sensitivity of r-star to the prior setting

As just shown and noted by others (e.g., Kiley (2020)), the prior elicitation for the variance

parameter of the shock process governing r-star has a notable influence on the dynamics of

5Del Negro et al. use survey expectations from Survey of Professional Forecasters, which start from 1992
onwards. In addition, in their framework survey expectations is one of the several financial indicators that they
use to extract a common trend. So arguably, in their approach, the survey expectations of r-star will be less
influential in driving r-star than in our approach in which a direct connection between r-star and survey data is
assumed.
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r-star. We briefly show another illustration highlighting the sensitivity of r-star to the prior

setting. In figure C11, the right panel plots the posterior mean r-star obtained from model spec-

ification, Base-NoSurv-R*TightPrior, which is Base-NoSurv but with a tighter prior value for

the parameter σ2
d (0.012 instead of 0.12). The parameter σ2

d refers to the variance of the shock

process defining the “catch-all” component D. Also plotted are the posterior estimates of r-star

from Base-NoSurv and Del Negro et al. (2017) model. Three things immediately stand out.

First, imposing a tighter prior has a notable impact on r-star, as shown by comparing dashed

and solid lines in the figure. Second, the model specification Base-NoSurv-R*TightPrior has

the posterior mean of r-star near 2% from early 1960 through mid-1980, which is similar to

the r-star estimate reported in Kiley (2020). Third, the entire trajectory of r-star from the

Base-NoSurv-R*TightPrior is remarkably similar to the median estimate of r-star from the Del

Negro et al. model. These results indicate that very different approaches could provide similar

estimates, yet somewhat related approaches could yield very different estimates.

Figure C11: R* estimates
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C10.d. The usefulness of the Taylor-rule equation and the equation linking

r* to survey

In recent studies on estimating r-star, a Taylor-type rule equation is added to the model struc-

ture to improve the econometric estimation. Our Base model also includes a Taylor-type rule.

As we now illustrate, this addition is crucial to improve precision and the plausibility of the r-

star estimates significantly. The left panel in figure C12 plots three estimates of r-star obtained

from model specifications Base (solid line), Base-NoR*Surv (dashed line), and Base-NoR*Surv-

NoTRule (dotted line). The right panel plots the corresponding precision of the r-star estimates.

The specification Base-NoR*Surv excludes the equation linking r-star to survey expectations

from the model (but keeps equations relating other stars to survey). Doing so produces a tra-

jectory of r-star similar to the Base-NoSurv spec; and not surprisingly, the precision of r-star

is reduced relative to the Base spec, as evidenced by the plot corresponding to Base-NoR*Surv

lying above the Base.

The specification Base-NoR*Surv-NoTRule excludes the equation linking r-star to survey

expectations and the Taylor-rule equation. So in this spec, r-star is identified from the IS-

curve equation, and the equation relating r-star to g-star. As expected, shrinking the model’s

structure further by excluding the Taylor-rule equation reduces the r-star estimate’s precision

dramatically, as evidenced by Base-NoR*Surv-NoTRule plot located above all the others in the

left panel. Besides the impact on the precision, as would be expected, changes in the system’s

structure result in notable differences in the estimated level of the r-star. The posterior mean

estimate of r-star, which has the r-star declining steadily over the sample, is substantially lower

than both Base and Base-NoR*Surv. However, the uncertainty around the posterior mean is

enormous complicating inference with a reasonable degree of certainty.

Figure C12: The Usefulness of Taylor Rule equation

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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C11. Pi* : Additional Full Sample Results

C11.a. Pi-star comparison Base vs. outside models

In figure C13, panel (a) plots posterior mean estimates of pi-star from some related (smaller

size) models from the literature alongside Base to facilitate comparison. In particular, estimates

are shown for CKP, CCK, and the celebrated UCSV model of Stock and Watson (2007).6 Panel

(b) plots the corresponding precision estimates of pi-star.

There are some interesting similarities and differences across the pi-star estimates. Whereas

UCSV displays very volatile and erratic estimates of pi-star, others show smoother evolution of

pi-star. CKP indicates a lower estimate of pi-star than others from the early 1970s through the

late 1980s. The primary factor contributing to lower pi-star in CKP is the model assumption

of a bounded random walk for pi-star. As discussed in CKP, the addition of bounds on pi-star

leads the model to attribute a substantial share of the high observed inflation of the 1970s to

the increased persistence of the inflation gap and only a small increase in the pi-star. Hence,

pi-star is estimated to have risen less than implied by other models. For instance, CCK model

had pi-star peaking at 4.9%, Base at 6.0% and CKP at 3.2%. As alluded in CKP, this small

rise in pi-star is consistent with a specific narrative that during the Great Inflation period, the

Fed had a low implicit target for inflation but was either unable to or unwilling to correct large

deviations of inflation from the target.

The contours of pi-star from Base is similar to CCK through 2000, but from 2000 to 2012,

Base is identical to CKP, with CCK a touch lower. It is interesting to note that from the early

2000s through 2010, both Base and CKP indicate pi-star at 2%. From 2012 through 2019, both

Base and CKP gradually drift lower to 1.5% (same as CCK) and 1.3%, respectively.

Panel (b), which plots the corresponding precision of pi-star, reveals some interesting pat-

terns. First, the precision of the pi-star evolved generally with the level of pi-star. As pi-star

increased during the Great Inflation, pi-star became more uncertain, i.e., more imprecise. Sub-

sequently, as pi-star trended lower during the Volcker disinflation, so did the uncertainty about

it (i.e., precision increased). Second, comparing across models, there is significant heterogene-

ity in the precision of pi-star. From 1960 through the mid-1970s, the Base model indicates

the most precise pi-star, followed by CCK and CKP. UCSV model shows volatile estimates of

precision, sharply fluctuating between the most precise to least precise. From the mid-1970s

through 2019, the CCK model indicates the most precise (least uncertain) pi-star, followed by

Base, CKP, and UCSV. CCK had the uncertainty of pi-star gradually trending down starting in

the mid-1970s. In contrast, in others, the uncertainty continued to trend higher until peaking

in the early 1980s.

Third, between 2000 and 2019, the uncertainty around pi-star implied by CCK and Base has

been reasonably stable, an artifact of the use of survey data. During this period, the precision of

6Whereas in estimating the UCSV model, Stock and Watson (2007) fix the parameters governing the smooth-
ness of the SV processes, we estimate them.
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pi-star implied by CCK is on average 40 basis points higher (i.e., uncertainty is lower) compared

to Base. This improved precision of CCK is interesting because both CCK and Base utilize

information from survey expectations of inflation. However, at the same time, compared to

Base, which has a rich structure (hence more parameters), the CCK model is parsimonious, as

it uses information from inflation and survey only to estimate pi-star.

An additional factor that could contribute to the differential in precision is that, unlike

Base, CCK allows SV in the pi-star equation. A more in-depth inspection of the estimation

results reveals the primary factor driving the superior precision of the CCK estimate of pi-star

compared to Base is tighter priors on the assumed relationship between survey forecast and

pi-star. And that translates into a posterior estimate implying a stronger connection between

survey forecast and pi-star in CCK than Base.

Figure C13: Pi* estimates: Base vs. External models

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In all cases, the inflation measure is the PCE inflation.
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C11.b. Sensitivity of pi-star to modeling assumptions

Figure C14, panel (a) indicates the sensitivity of the pi-star estimates to modeling assumptions.

The plot labeled Base-W*RW is the variant of the Base model that removes the theoretical

restriction imposed by equation (4.28) and instead assumes a random walk assumption for

w-star. Comparing the Base and Base-W*RW plots indicate the effects of the theoretical

restriction on pi-star. As shown, the posterior mean estimate of pi-star from Base-W*RW

is marginally lower than Base in the period 1970 through the early 1980s (Great Inflation

period). However, from thereon, estimates of pi-star are identical. During the high-inflation

period, compared to the Base model, the Base-W*RW allocates a higher share of the increase

in inflation to the persistence component than pi-star (i.e., the random walk component); see

figure C14. Hence, the lower level of pi-star in Base-W*RW than Base.

The plot labeled Base-NoPT is the variant of the Base model that eliminates the passthrough

from prices to wages, modeled via equation (29b)—doing so results in a slightly higher pi-star

(Base-NoPT) from 1970 through the early 1980s. However, thereafter, estimates of pi-star

are identical between Base and Base-NoPT. During the high-inflation period, compared to the

Base model, the Base-NoPT allocates a lower share of the increase in inflation to the persistence

component than pi-star; hence, the higher level of pi-star in Base-NoPT than Base. Based on

the model comparison, Base-W*RW model’s fit to the inflation data and other data is inferior

compared to Base. In the case of Base-NoPT, the fit to the inflation data is slightly higher than

Base. However, the overall fit of the Base-NoPT is significantly worse than Base. The Base-

NoPT model’s reduced fit is the net effect of its reduced ability to fit wages and its improved

ability to fit prices.

We also explored a variant of the Base model that allowed the passthrough from wages to

prices in the price inflation equation, denoted Base-PT-Wage-to-Prices in table 1 (see main

chapter). The estimates of pi-star (and of other parameters) are identical to those of the Base;

hence, they are not shown. Therefore, not surprisingly, as reported in table 8 (see main chap-

ter), both models’ ability to fit inflation data are very similar. We also highlight that allowing

SV in the inflation equation is very important, as evidenced by a significantly reduced fit of

the Base-NoSV model, which is the Base model variant that does not feature SV in any model

equations.
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Figure C14: More Estimates for Price inflation block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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C11.c. Pi-star estimates for some variants of the Base model

Figure C15: Pi* estimates: Base vs. Base model variants

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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C12. P*: Base comparison with Kahn and Rich (2007)

In this section, we compare our model-based estimates of p-star with the narrative about p-star

implied from the two-regime Markov switching model of Kahn and Rich (2007).7 A regime-

switching framework (as in Kahn and Rich) allows for deterministic values of p-star, where

the number of deterministic values equals the number of possible regimes. Accordingly, in a

2-regime setup, the estimated p-star would periodically alternate from one-regime (e.g., low

productivity regime) to the other regime (e.g., high productivity regime). In contrast, the

random walk assumption for p-star adopted in this chapter (and in others such as Roberts,

2001; Edge et al., 2007; Benati, 2007) allows for the possibility that p-star may be (slowly)

changing in every period. This latter assumption implies that the possible values of p-star

could equal the number of periods in the estimation sample. The differences in the stochastic

conception between the two frameworks complicate direct comparison in p-star.

One possible albeit imperfect approach to comparing the implied p-star from two frameworks

is to use the regime-switching model’s identified regimes to assess how well those corroborate

with p-star estimates implied from the RW assumption model. Specifically, for the RW model,

compute the “average” p-star over the specific periods (identified regimes). Then assess the

following: (1) whether the “average” rates imply characterization of regimes that corroborate

with the identified regimes; (2) how close the “average” rates of p-star are to the deterministic

values of p-star estimated in the regime-switching model. We use this approach to compare the

estimates of p-star from our models to the p-star estimated by the Kahn and Rich model.

Figure C16 presents the comparison of p-star. Panel (a) compares the Base model with

Kahn and Rich model, and panel (b) compares the Base-W*RW model with Kahn and Rich

model. In the panels, the shaded areas refer to the two regimes identified by the Kahn and Rich

model using the same vintage of data as our models. The lighter shaded area corresponds to the

“high productivity regime,” and the darker shaded area “low productivity regime.” Their model

identifies two subperiods of high productivity regimes: the beginning of our sample through

1974Q4 and 1996Q3 through 2004Q4. Similarly, two subperiods of low productivity regime:

1975Q1 through 1996Q2 and 2005Q1 through the end of the sample, 2019Q4. Based on the

“average” rates of p-star computed for the specific two regimes from our models, if we assume

a cutoff of 1.5%, with “average” rate of p-star <= 1.5% as defining low productivity regime,

and “average” rate > 1.5% as defining high productivity regime, then the characterization of

regimes (and in-turn the narrative) aligns perfectly with Kahn and Rich.

Next, we compare the “average” rates for the two-regimes implied by our models to Kahn

and Rich model. The Base model implies for a low productivity regime an “average” rate

of 1.3% (for both subperiods) and for a high productivity regime an “average” rate of 2.1%

(subperiod beginning of our sample through 1974Q4) and 1.7% (subperiod 1996Q3 through

7The estimates of p-star implied by the Kahn and Rich (2007) model are routinely updated and made available
for download at James A. Kahn’s website: http://sites.google.com/view/james-a-kahn-economics/home/trend-
productivity-update
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2004Q4). The Base-W*RW model implies for a low productivity regime an “average” rate of

1.5% (for both subperiods) and for a high productivity regime an “average” rate of 2.5% (in the

first subperiod) and 2.3% (in the second subperiod). In comparison, Kahn and Rich’s model

implies a p-star of 1.33% for a low productivity regime for both subperiods – p-star are equal

across subperiods by construction; and 2.96% p-star for a high productivity regime. For the

low productivity regime, the implied p-star is similar between our models and Kahn and Rich,

but for the high productivity regime, Kahn and Rich’s model is on the higher side than our

models.

Overall, this illustration suggests that the two approaches provide generally similar infer-

ences about developments in p-star, and we view this as a useful result for macroeconomists

tasked with modeling and tracking productivity developments.
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Figure C16: P* consistent with narrative from 2-Regime Markov-Switching Model

Notes: The shaded areas refer to the two regimes identified by the Kahn and Rich model using

the same vintage of data as our models. The lighter shaded area corresponds to the “high

productivity regime,” and the darker shaded area “low productivity regime.” The plots labeled

Base and Base-W*RW are the posterior mean estimates based on the full sample (from 1959Q4

through 2019Q4).
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C13. P* : Additional Full Sample Results

C13.a. Cyclical Productivity based on Output gap

Figure C17: Base-P*CycOutputGap model

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

The solid line represents the posterior mean and the dotted lines represent the 90% credible

intervals.

359


	Introduction
	Motivation
	Importance of reasonable steady states
	Estimating steady states (stars)
	Importance of good nowcasts and their role in forecasting

	Contributions and Unifying Themes
	Contributions of this thesis
	Unifying themes across chapters
	Layout of chapters and status


	Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy
	Introduction
	Data and the Empirical Model
	Data
	Bayesian VAR models

	Real-time Long-horizon Survey Forecasts versus BVAR Forecasts
	Methodology for Tilting Forecasts
	Relative entropy
	Determining the forecast horizon for tilting

	Results
	Forecasting exercise
	Inflation forecast accuracy of the tilted VAR compared to univariate benchmarks

	Conclusions

	Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach
	Introduction
	Mixed-Frequency Models
	Deterministic Model Switching (DMS)
	Mixed Data Sampling (MIDAS)
	Dynamic Factor Model (DFM)
	Mixed-Frequency Model Space

	Combination Methods
	Functional Forms for Aggregation
	Weighting Schemes

	Real-Time Data
	Nowcast Evaluation
	Empirical Results Using Real-Time Data
	Density Nowcasts from Mixed-Frequency Model Classes
	Comparison across Grand Combinations
	Comparing the Grand Combination with Its Underlying Component Densities
	Time-Varying Properties of the Grand Combination: Weights, Uncertainty, Skewness, and Kurtosis

	Comparison with the Survey of Professional Forecasters 
	Conclusion

	A Unified Framework to Estimate Macroeconomic Stars
	Introduction
	Empirical Macro Model and Variants
	The econometric notion of a long-run equilibrium
	The role of survey expectations
	Unemployment block
	Output block
	Productivity block
	Price inflation block
	Wage inflation block
	Interest rate block
	Base model and its variants

	Data and Bayesian Estimation
	Data
	Bayesian estimation

	Full Sample Estimation Results
	Estimation results for u-star
	Estimation results for g-star and the output gap
	Estimation results for p-star
	Estimation results for -star
	Estimation results for W-star
	Estimation results for r-star

	Real-time Estimates and Forecasting
	The implications of COVID-19 Pandemic on Stars 
	Conclusion

	Conclusions
	Summary of contributions and policy implications
	Further research

	Bibliography
	Chapter 2 Appendix
	A0. Technical appendix
	A1. Results for Medium VARs
	A2. Density Forecast Calibration Diagnostics
	A3. Density Forecast Assessment based on Log-Score metric
	A4. Ranking the Models: Before tilting vs. Post-tilting
	A5. Effect of Tilting on Small VAR with loose priors
	A6. Are there benefits to utilizing survey information for additional horizons?
	A7. Hybrid vs. Federal Reserve's GreenBook
	A8. Hybrid vs. Time-Varying VAR (Baseline)
	A9. Steady-State BVAR vs. Hybrid (Small BVAR est. 1960)
	A10. BVAR in Gaps vs. Hybrid (Small BVAR est. 1960)
	A11. Evolution of Long-Run Forecasts from Other Surveys
	A12. Gaussian example: Illustrating the Spillover Effects of Tilting
	A13. Sampling from Tilted Predictive Density: Multinomial Algorithm
	A14. Evolution of Forecast Horizons for Tilting
	A15. Sensitivity to Getting the Horizon Wrong

	Chapter 3 Appendix
	B1. Description of Mixed-Frequency Models and Simulation Procedures
	B.1.1. MIDAS Model
	B.1.2. DFM Model
	B.1.3. DMS Model

	B2. Mechanics of Density Combination and Graphical Illustration
	B3. Comparing Properties of Grand Combinations across Weighting Schemes

	Chapter 4 Appendix
	C1. Bayesian Estimation Details
	C1.a. Base Model equations
	C1.b. Prior Elicitation
	C1.c. MCMC Algorithm
	C1.d Marginal likelihood computation

	C2. Prior Sensitivity Analysis
	C3. MCMC Convergence Diagnostics
	C4. Additional Forecasting Results: Base vs. Benchmarks
	C5. Additional Forecasting Results: Steady-State BVAR, Base stars vs. Survey
	C6. Additional Real-time Estimates Stars
	C7. Estimated relationship between Survey and Stars
	C8. Additional COVID-19 Pandemic Results
	C9. Backcast: Survey R* from 1959-1982
	C10. R* : Additional Full Sample Results
	C10.a. Role of data vs. prior in shaping r-star
	C10.b. Base vs. External models
	C10.c. Sensitivity of r-star to the prior setting
	C10.d. The usefulness of the Taylor-rule equation

	C11. Pi* : Additional Full Sample Results
	C11.a. Pi-star comparison Base vs. outside models
	C11.b. Sensitivity of pi-star to modeling assumptions
	C11.c. Pi-star estimates for some variants of the Base model

	C12. P*: comparison with Kahn and Rich (2007)
	C13. P* : Additional Full Sample Results
	C13.a. Cyclical Productivity based on Output gap



