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Chapter 1

Introduction and Thesis Outline

There are countless developing health problems in the world. One of the most

crucially overlooked is hepatitis C virus (HCV) which directly affects 3% of the

global population (Akhtar et al. (2022)) and countless more indirectly. In a span

of two decades after discovery, HCV has evolved to become the number one cause

of liver disease globally (Shepard et al. (2005)). One of the prime examples of this

phenomenon is Scotland. As a result of the abundance in resources, there is an

ever-growing population of individuals that inject themselves with drugs. These in-

dividuals significantly increase the rate of infection and spread of the disease. In 2006

approximately 50,000 native Scottish citizens were positive for the HCV virus, with

the largest group of these individuals being former people who inject drugs (PWIDs)

(Hutchinson et al. (2006a)). Even with these growing numbers, the services aimed

to reduce infection among PWIDs, with a focus on HCV and Human Immunodefi-

ciency Virus (HIV), have been running since the 1980s. Though the services offered

have very good results in the prevention of HIV, they have proven ineffective in

the prevention of HCV. With this in mind, there are some recommendations within

the Hepatitis C Action Plan courtesy of the Scottish Government (Goldberg et al.

(2008)), that aim at improving intervention coverage among PWIDs alongside the

prevention of further HCV infection. However, the dynamics of PWID populations

alongside other factors associated with the prevalence of HCV in this group will be

difficult to study.

1



1.1. Thesis outline 2

Nevertheless, there are attempts made through the application of mathemat-

ical modelling techniques to recognize the link between the transmission of HCV

and the risky behaviour witnessed among PWIDs. Additionally, these techniques

are stretched further with the aim to comprehend the effect of strategies such as

intervention plans, diagnostic techniques, treatment options and their combinations

associated with the healthcare options linked to HCV (Corson (2011)).

Therefore, this thesis focuses on the analysis and development of mathemati-

cal models that assess and determine the HCV infection rate among PWIDs. These

models are expected to be capable of being used to obtain real-time HCV prevalence

estimates for Glasgow PWIDs. Moreover, we have changed the PWID needle interac-

tion assumptions made by Corson et al. (2012) to allow needles to progress through

different infectious stages and introduce treatment of infected PWIDs. These models

are used to study how varying intervention measures and parameter estimates affect

the spread of HCV in the population. Particularly, interest lies in determining con-

trol strategies and values of possible control parameters that can make eradication

of HCV in Glasgow a reality. An example of this is using the model to ascertain

the number of syringes and needles that can be distributed by the Glasgow and

Clyde Health Board to mitigate the spread of HCV and continue until HCV is fully

eradicated.

1.1 Thesis outline

In Chapter Two, we develop a model for HCV transmission among PWIDs through

the sharing of needles and syringes. Utilizing analytical techniques, we conclude

that the model behaviour is governed by the basic reproduction number R0, with

R0 = 1 being a critical threshold dividing two different outcomes. It is noted that if

R0 ≤ 1 only the disease-free equilibrium is present whereas if R0 >1 both the unique

endemic equilibrium and disease-free equilibrium are present. The disease-free equi-

librium of this model remains globally stable if R0 ≤ 1 but becomes unstable when

the value increases above one. Following this step, the focus shifts to an approx-

imate model. This approximation model has the same equilibria as those of the
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full model. Also, we showed that if R0 > 1 then the endemic equilibrium is locally

asymptotically stable for our approximate model.

In Chapter Three, there are discussions on the parameter estimates applied in

our simulations followed by presentations on the conclusions of the data discussed.

Most of these parameter estimates are taken from Corson (2011) and Corson et al.

(2012) which he derived from data and literature sources provided by Health Pro-

tection Scotland (HPS). The baseline estimates applied in the numerical simulations

are subsequently introduced. With the use of these baseline parameter estimates

one can determine the progress made in the elimination of HCV in the population.

The ambiguity of the parameters is then examined and its effect on HCV prevalence

as well as the trend taken by the model selected and making comparison with the

results of Corson (2011).

In Chapter Four, we study the development of a mathematical model that splits

the PWID population into two different groups. These groups are distinguished by

their time since start of self-injecting behaviours and the introduction of different

PWID needle interaction assumptions make the model analysis considerably more

complex than previous work. We have also shown that the behaviour of the model is

again controlled by the basic reproduction number R0. We have seen that if R0 ≤ 1

and the disease is present in the population, in this case the system will tend toward

the globally stable disease free equilibrium where HCV has been eliminated in all

PWIDs and needles. We also prove that if R0 > 1 then there is a unique non-zero

equilibrium as well as the disease-free one. Lastly, we explore the behaviour of this

model numerically.

In Chapter Five, the mathematical model extends further to incorporate the

HCV transmission that is a result of needle sharing in individuals who inject them-

selves with drugs (Corson (2011) and Corson et al. (2012)). The main discussion

focuses on the heterogeneity effects of this parameter where the drug injecting in-

dividuals are represented as a community of size n. This group is further split into

p groups based on the frequency at which they share injection equipment where

they share m needles in q shooting galleries. The key parameter of the models be-

ing derived is the Basic Reproduction Number symbolized by R0. After that we
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focus on the numerical simulations applied to determine how heterogeneity affects

different groups within the PWID populations and the shooting galleries they have

established. The aim is to carry out simulations based on realistic parameter values

derived from sources in the literature.

In the last chapter which is Chapter Six, we summarise our thesis, give a gen-

eral conclusion and also recommend some future works.

Note that we have used the literature review of the thesis of Corson (2011) as

a template for our literature review because we have based our model on Corson’s

model so there is similarity in the background literature. Also, we have added many

new references to reflect more recent work that has been done since Corson submit-

ted his thesis. We have also added a new section on HCV treatment because there

have been big advances in treatment since 2011. Also the next generation matrix

was not discussed in Corson’s thesis. Moreover, we have discussed the epidemic

model, local and global asymptotic stability of rest points of systems of ODEs. We

have mentioned the bifurcation, persistence, Quasi-steady-state-approximation and

fixed point theorem. We also added a subsection on a technical way for computing

R0. We also discuss in detail the work of Corson and co-workers, heterogeneity

models and the work of Greenhalgh and Al-Fwzan, different to Corson’s thesis.

1.2 Hepatitis C virus

HCV is one of the diseases that affect millions of people globally and it is a blood-

borne pathogen. It is a major worldwide health issue that requires extensive active

interventions to control and stop it (WHO (2022)). Information about the world-

wide distribution must be specified based on international research. HCV, a blood

borne virus, is commonly transmitted by various practices used in people who in-

ject drugs (PWIDs), such as sharing needles by PWIDs who ignored sterilising of

needles.

HCV is a virus which is a single stranded RNA virus, which flows through

the blood, leading to infection of the liver cells. It was discovered in 1989 and it

is believed that it currently affects 58 million people throughout the world (WHO
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(2022)). Acute and chronic infections can result from HCV. The former occurs in

the first six months after the patient has been affected, in which spontaneous viral

clearance can develop (Hoofnagle (2002) and Kamal (2008)). Symptoms which are

displayed include fatigue and jaundice (Muzzi et al. (2005)). On the other hand, if

HCV RNA is detected after this initial period, it is referred to as chronic HCV in-

fection. Chronic HCV is more prominent as the majority of cases are asymptomatic

and between 50% and 80% of those affected develop chronic HCV which puts them

at the risk of liver disease in later years. Between 4% and 12% will develop cirrhosis

within 20 years. Hepatocellular carcinoma, a form of cancer of the liver, will develop

in up to 7% of those affected by cirrhosis and decompensated cirrhosis, liver failure,

will occur in 6% of cases (Corson (2011)).

Distinct but related viral strains result as the HCV genome is mutable. One

mutation per genome per replication cycle is generated. Six genotypes and a further

six subtypes have been identified (Blackard et al. (2008)). No vaccine is available

which can protect individuals against infection as the viral replication cycle creates

about ten trillion new virus particles every day (Li et al. (2015)).

1.2.1 Treatment of HCV infection

Treatment by drugs is not recommended in the early stages of HCV which is known

as acute hepatitis C virus infection (NHS (2020)). Martin et al. (2011) consider a

model in which up to 6% of continuing PWIDs were treated annually. This is in line

with observed treatment rates in the UK up to 2015 where at most 3% of PWIDs

were treated annually (Martin et al. (2015)).

There are fewer treatments for those who have acute HCV. The main reason for

this is that those with acute HCV tend to be asymptomatic, meaning the infection is

difficult to diagnose. Moreover, there is the likelihood that acute HCV infection can

clear spontaneously which means that treatment would not be required but could

also be harmful in such instances (Corson (2011)).

Antiviral drugs are a means of treating those patients who are chronically ill.

The most common drugs in use are Interferon (IFN) or a combination of Interferon

and Ribavirin (Rihan et al. (2017)). These should be taken over a period of between
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24 and 48 weeks. Both Pegylated and Non-Pegylated Interferon can be used, the

half life of the former is longer than that of the latter, as well as having a slower rate

of clearance (di Bisceglie and Hoofnagle (2002)). Pegylated Interferon-Ribavirin is

the recommended treatment, however, it has to be taken into consideration that it

is not 100% effective and there are a number of possible side effects. Treatment

is considered as having success when patients have a sustained virological response

(SVR) which means that there is no trace of HCV RNA in serum 24 weeks after the

treatment has been completed (Corson (2011)).

However treatments for HCV have improved dramatically in recent years mov-

ing from relatively expensive and ineffective interferon based treatments to much

more effective and cheaper Directly Acting Antiviral (DAA) treatments (Rihan et al.

(2017)). DAAs are effective on a number of targets in the HCV virus. There are

drugs that are only effective when they are combined with others, but not when

they are used individually. The combination of DAAs drugs is always prescribed for

between 12 and 24 weeks, and it is administered orally, specifically once or twice

a day. Patients are not injected with the combination of DAAs drugs. There are

cases where patients are only required to use one tablet because of the effectiveness

of the drug (Mushtaq et al. (2020)).

So recently there has been a huge increase in the number of PWIDs being

treated (Harris et al. (2019) and Traeger et al.). Traeger et al. (2020) state that in

Australia DAAs have moved from a cumulative total of less than 1% of RNA tested

PWIDs receiving treatment to a cumulative total of around 45% of RNA tested

PWIDs (note that this is RNA tested PWIDs not all PWIDs). Moreover World

Health Organization forward targets are even more ambitious with 80% of PWIDs

to receive treatment by 2030 (WHO (2020)). According to the European guideline,

DAAs should mainly be used to treat patients who have severe liver diseases, par-

ticularly with regard to the previous recommendations.

Needle and syringe programmes (NSPs) reduce the sharing of syringes and nee-

dles infected with HCV, while opioid substitution therapy (OST) reduces the fre-

quency of injections thereby reducing the risk of sharing infected needles or syringes.

When combined, these two techniques alongside actual treatment have shown signif-
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icant reduction of HCV infection in the locations implemented (Martin et al. (2011)

and Tod and Hirst (2014)). A larger study conducted by Turner et al. (2011), across

six sites in the UK which analysed the impact of NSPs and OSTs identified that

PWIDs who received OST were 64% less likely to be affected by HCV. Moreover,

when there were high levels of both NSPs and OST the possibility of being affected

by HCV fell by 80%, which identifies the benefits of combining both OST and NSP

to reduce the transmission of HCV in the PWID population (Al-Fwzan (2015)).

1.2.2 Transmission

This section analyses the different ways in which HCV can be transmitted and

identifies the risk of each.

Blood transfusion

In the United States, HCV is transmitted commonly through blood-borne infection

and the studies show that during 2013-2016 there were 2.4 million people who were

living with HCV (Schillie et al. (2020)). However, since the early 1990s blood

products in developed countries have been screened to identify HCV antibodies. This

has led to a significant reduction in the risk of HCV being transmitted (Donahue

et al. (1992)). As a result, by 2004 the chance of being affected by HCV after a blood

transfusion was thought to be 1 in 2,000,000 (Goldberg and Anderson (2004)). This

is in stark contrast to those countries where screening does not take place, where

the risk of HCV infection from transfusion is still high (Corson (2011)).

From mothers to children

In children with HCV virus it is not obviously the reason of liver diseases before

adulthood (Leung et al. (2020)). Moreover much has been written about HCV being

transmitted from mothers to children during pregnancy, however it is not common.

It is believed that transmission can occur in utero but the chance of transmission is

not clear (WHO, (2010)). It has been calculated that the risk of a child born to a

mother infected by HCV, also being affected is between 3% and 7% (Goldberg and

Anderson (2004)). On the other hand, there is a significant increase of children being
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affected by HCV when the mother is co-infected with HIV. Indeed, it is considered

that the risk increases to between 5% and 36% (Corson (2011)).

Sexual activity

Another risk of being affected with HCV has been identified as unprotected sex with

a partner who has been infected or with multiple partners (Thitipatarakorn et al.

(2022)). Therefore, HCV can also be spread via sex (WHO (2022)). It is, however,

not considered to be one of the main sources of HCV transmission. In the USA it

has been identified that sexual activity accounts for between 15% and 20% of acute

HCV cases which have been reported (Corson (2011)). Various factors have been

considered as adding to the risk, including whether the male affects the female or

vice versa. Moreover, the risk is considered to be greater when one of the partners

has detectable HCV RNA. In a study conducted in Egypt in 2005, it was found that

the possibility of a female being infected by a male is 3% when there is detectable

HCV RNA (95% CI 0-13%) whereas this was reduced to 0% when there was no

detectable HCV RNA (95% CI 0-9%).

Needle contamination

To reduce HCV infections we need to focus on the sharing of infectious needles

(Villano et al. (1997)). Being infected by needles is a risk that health care workers

take. The risk of being infected by HCV is considered to be between 0% and 10%

(Sulkowski et al. (2002)). On the other hand the risk from a single needle stick

injury is estimated at 0.25% (Corson (2011)). There are several factors which can

contribute to individuals being infected by needles, including how much and the

nature of the tissue affected, the extent of RNA in the source, the kind of needle

used, as well as the nature and application of policies adopted to limit the occurrence

of occupational infections (Kamal, 2008).

Body piercing practices

Needles are also used in body piercing and tattoo practices, therefore there is a risk

of HCV infection, although there is a lack of data on the extent of cases. The risk of
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HCV infection is greater in unlicensed and unregulated locations, such as prisons,

where unsterilized equipment is used. A meta-analysis of studies, conducted by

Vescio et al. (2008) which examined the incidence and causes of HCV in prisons, to

identify the risk factors and assess HCV seroprevalence in the prison environment,

identified from 30 studies that tattooing contributes to the incidence of HCV. It was

assessed that prisoners who are tattooed are at a risk of HCV which is three times

greater than those who are not.

People who inject drugs

Transmission amongst PWIDs is a strong reason for increasing transmission of HCV

(Scott et al. (2018)). In developed countries which have effective screening of blood

products, the main cause of transmission of HCV is injecting drugs, using needles

and syringes which have been shared (Bialek and Terrault (2006)). A report into

HCV incidence in Scotland identified that drug use is the main risk factor in the

transmission of HCV in Scotland, which is replicated in other developed countries

(McDonald et al. (2012)). Indeed, it is even higher in England where it has accounted

for 92.5% of cases. In Australia the figure is 80% and in USA 60% (Dore et al. (2003)

and Alter (1999)).

PWIDs are at greater risk of being infected by HCV than HIV that because of

environmental and viral factors (Hagan and des Jarlais (2000)). The probability of

being infected by HCV is between 1.5% and 5% when an infected needle is used,

whereas in the same conditions, the risk of being infected with HIV is between

0.34% and 2% (Vickerman et al. (2009) and Grebely and Dore (2011)). When

it is considered that it is estimated that there are more than 13 million PWIDs

throughout the world, it can be identified that there is a substantial future health

and economic burden of HCV.

1.2.3 Worldwide prevalence of HCV among PWIDs

In this section, we show the prevalence of HCV among PWIDs globally to see how

this disease is dangerous and try to explain some mathematical models relating

to transmission of HCV through PWIDs. As well as in the next section and for
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the same reason, we will give some information about transmission of HIV among

PWIDs globally and then move on to explain some mathematical models relating

to transmission of HIV among PWIDs.

HCV antibodies detected by enzyme-linked immunosorbent assays (ELISA) in

saliva or serum indicates the prevalence of HCV in a literature review to analyse the

global prevalence of HCV amongst PWIDs (Aceijas and Rhodes (2007)). Data from

57 countries were examined. A similar study by Nelson et al. (2011) also examined

peer-reviewed databases and online resources to determine worldwide prevalence

of HCV and hepatitis B virus (HBV) amongst PWIDs. This retrieved data from

77 countries. Furthermore, differences in study design may lead to variances in

characteristics of sample populations and their characteristics. Therefore, estimates

of the prevalence of HCV may not necessarily reflect the true figures (Corson (2011)).

Africa

HCV is increasingly becoming common among people who inject drugs (PWIDs)

(Sambai et al. (2022)). Studies have shown that there are many different causes

for transmission of HCV through PWIDs in Africa. One of the most important

causes was when the patients were injected by the same needle for a long time and

this needle was used by other patients. Additionally, poor sterilization techniques

increase the likelihood of transmission. delete sentence

In 2008, the highest amount of HCV prevalence in the world was in Egypt (El-

ghitany (2019)). Additionally more recently, it has been estimated that the number

of chronically infected PWIDs in Egypt is 32,997 (Mahmud et al. (2020)). Other

African countries with a high risk of prevalence of HCV are Cameroon and Burundi.

Kenya, South Africa, and Zambia are the African countries with the lowest level of

HCV infections.
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Figure 1.1: Global distribution and prevalence of HCV. (Adapted from Jefferies

et al. (2018). Original sourece Gower et al. (2014).)

Moreover, HCV is still under-diagnosed and underreported in Africa except

in Egypt. Moreover, in Africa the data on HCV has in the past been outdated

(Karoney and Siika (2013)). The prevalence of HCV in Africa is estimated to range

between 0.1 and 17.5, additionally that there is no clear or accurate information

about HCV infection in the continent (Karoney and Siika (2013)). Hence, there is

a need to further explore HCV in Africa.

Middle East

The Middle East and North Africa (MENA) is the region that is leading in HCV

infections across the world as it accounts for about 20% of the total number of

patients who suffer from the condition globally (Mahmud et al. (2020)). A significant

number of people in the MENA are vulnerable to HCV because it is not only the

epicentre of PWIDs but it also leads in drug production.

It is estimated that the numbers of PWIDs in Syria and Lebanon are less than

10,000. In these countries estimates of prevalence of HCV range from 5% to 60.5%.

These estimates are based on studies of about 50 PWIDs (Salem et al. (2003)). The
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prevalence of HCV among PWIDs has been estimated with highest rate in Israel,

67%, and the lowest is in Turkey, 28%, Nelson et al. (2011).

Eastern Europe and Central Asia

The highest number of prevalence of HCV is in Eastern Europe and Central Asia by

more than 600,000 diagnoses (Pala and Remien (2021)). In both reviews it was found

that the prevalence of HCV amongst PWIDs was above 50% in all countries except

Hungary and Slovenia. The largest number of PWIDs was found in Russia where

it was estimated that the number of PWIDs was between 1,500,000 and 6,000,000.

Furthermore, the prevalence of HCVs in the PWID community in Russia was 96%

(Nelson et al. (2011)) and HCV was most prevalent in the larger cities.

East Asia and South-East Asia

There were diverse estimates of HCV prevalence in this region, ranging from 33.5%

to 99.3%. This diversity of estimates was most noticeable in China (Corson (2011)).

HCV prevalence was estimated to be highest in Northern Thailand which had almost

50,000 PWIDs, with the highest numbers being found in Bangkok. In countries

which had higher numbers of PWIDs it is estimated that HCV prevalence could be

beyond 90%. In India, it is estimated that the PWID population is about 1,163,000,

HCV prevalence was believed to be 92% (Aceijas and Rhodes (2007)). Furthermore,

China has the highest number of people who inject drugs at 1,928,000. Japan, Hong

Kong and Taiwan record a high rate of HCV prevalence of more than 50% (Nelson

et al. (2011)).

Latin America and the Caribbean.

The estimates of HCV prevalence in Brazil varied between 39.5% and 69.7%. How-

ever, in the largest city, Sao Paolo, it was believed that as many as 84% of the PWID

population had HCV (Segurado et al. (2004)). In this region, the lowest prevalence

of HCV was considered to be in Columbia, where the estimate of HCV in one area of

the country was 1.7%. Information from Mexico suggests that in those areas where

data was available, HCV prevalence was as high as 100% (Corson (2011)).
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North America and Western Europe

The USA, including a number of advanced countries, always has a low prevalence of

chronic hepatitis C, even though this varies based on age and transmission factors

(Jafri and Gordon (2018)). It is estimated that nearly 7 million people in the USA

are suffering from HCV, which is equivalent to about 1.8% for the country’s total

population. Thus, the estimated prevalence rate in the USA is 1,800 per 100,000

persons. Based on recent estimates, the prevalence rate in the USA is 0.9%, which

is similar to 2,936,000 people. In the USA, people who were born between 1945

and 1965 account for the majority of individuals with chronic HCV, a trend that is

linked to a high rate of previous PWIDs in the age group.

Western European countries have a lower prevalence rate than the USA, even

though they have witnessed some increase in the infection, which is associated with

immigrants from nations where HCV is becoming endemic. However, Southern and

Eastern Europe have a higher prevalence compared to the USA, mainly because of

iatrogenic spread and PWIDs (Jafri and Gordon (2018)).

Australia and New Zealand

In New Zealand, the prevalence of HCV is unknown, but it is similar to that of

Australia (Aluzaite et al. (2020)). Hence, estimates of HCV prevalence amongst

the PWID population in Australia, taken from studies conducted between 1990 and

1995, varied from between 40% and 68% (Aceijas and Rhodes (2007) and Nelson

et al. (2011)). Aitken et al. (2008) who conducted a study of 374 PWIDs in Mel-

bourne between 2005 and 2007 found that HCV prevalence of those participants

who contributed two blood samples was 71% (Corson (2011)).

1.2.4 Prevalence of HCV amongst PWIDs in Glasgow

Between 1990 and 1996 the prevalence of HCV amongst PWIDs in Glasgow fell

from 79% in the former to 66% in the latter (Taylor et al. (2000)). However, this

reduction was not observed in the subsequent years (NESI (2010) and Hutchinson

et al. (2006b)). A study by the Needle Exchange Surveillance Initiative (NESI)
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conducted between 2008 and 2009 of 2,513 PWIDs in Scotland found that HCV

was most prevalent in Glasgow which accounts for an estimated 37% of PWIDs in

Scotland (Hay et al. (2009)). The NESI study showed that the prevalence of HCV

amongst Scottish PWIDs was 70%, 95% CI 67-73% (Corson (2011)).

1.3 HIV and AIDS

As we have concluded in our introduction regarding HCV, we will now provide some

information about HIV and AIDS, especially its transmission and worldwide preva-

lence. The reason for introducing HIV and AIDS is because our mathematical model

is based on previous studies that deal with the spread of HIV and AIDS through

PWIDs. As a result, it is necessary to provide some information about HIV and

AIDS in this section.

AIDS is currently one of the diseases that affect millions of people globally.

AIDS is caused by the human immunodeficiency virus (HIV). There is a contro-

versial debate about the origin and history of the HIV/AIDS pandemic. However,

the history of HIV/AIDS can be traced back to the mid-1970s, even though the

disease was unknown until the early 1980s when scientists started rigorous research

to determine its cause and transmission.

AIDS was discovered in 1981 when gay men were diagnosed with Lymphadenopa-

thy and unknown infection. Gay men in Los Angeles started showing a rare case

of lung infections in 1981, even though they were previously healthy (Mor and Dan

(2012)). Similar cases were reported among gay young men in New York and Cali-

fornia who suffered from severe immune deficiency. Consequently, there was a global

race to identify this strange disease. In 1983, Dr. Luc Montagnier of the Pasteur In-

stitute in Paris identified a suspect virus, which was named LAV (Lymphadenopathy

Associated Virus). He published his results in May 1983, giving the first definition

of HIV.

At the same time, there was another scientific group led by Dr. Anthony Gallo

of the National Cancer Institute in Washington that identified the causes of AIDS

(Passi (2008)). Specifically, the National Institute of Cancer announced in April
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1984 that they had discovered the cause of AIDS. A lot of studies have been done

by various organizations since then to explore the disease. The biggest danger of

the AIDS virus was that it affected the immune system and once infected with the

virus a person will remain ill forever. Moreover, the associated symptoms vary over

the life of the infection.

1.3.1 Transmission

HIV is transmitted differently in various countries. However, there are two main

types of countries that show different ways in which HIV is transmitted from one

person to another. Type I includes North America and Western Europe while type

II incorporates Sub-Saharan Africa countries. In North America and Western Eu-

rope, HIV is spread mostly through homosexual men and PWIDs. In the USA for

instance, it is estimated that nearly 50% of people with HIV are men who have sex

with men (MSM) (Moore (2011)). Specifically, it is estimated MSM account for

about 64% of people with HIV in North America (Moore (2011)). On the other

hand, in North America, less than 28% of people with the disease have heterosexual

orientation (Moore (2011)).

Therefore, HIV in North America is mainly transmitted through homosexual

practices. Likewise, in Western Europe, MSM and PWIDs account for a significant

majority of people with HIV/AIDS. Even though cases of HIV infections are re-

ducing in many countries in Western Europe, countries like Germany, the United

Kingdom (UK), and Belgium are experiencing a surge in infections due to the in-

creasing number of MSM (Nakagawa et al. (2014)). Hence, homosexuality is the

main cause of HIV infection in North America and Western Europe.

On the other hand, in Sub-Saharan Africa, HIV infections spread through het-

erosexual intercourse (Hay (1999)). Heterosexual sex is the main mode of transmit-

ting HIV in Sub-Saharan countries in Africa. Consequently, unlike North America

and Western Europe where HIV mainly affects men, in Sub-Saharan Africa, the

majority of people who suffer from HIV/AIDS are women. Women in the region

account for nearly 58% of HIV infections (Kharsany and Karim (2016)). There-

fore, HIV is mainly transmitted through sexual contacts such as homosexual and



1.3. HIV and AIDS 16

heterosexual activities.

Homosexual transmission

The cases of AIDs were discovered in North America in homosexuals (Robertson

(2005)). After that, the community of homosexuals was reacting to this new disease

in a different way. As a result, groups of scientists started to study this new unknown

disease by using prediction models that are based on many parameters (McKusick

et al. (1985a) and McKusick et al. (1985b)). In Scotland, there are high-risk sexual

behaviours in homosexual men. HIV infections increased between 1996 and 2002

due to treatment optimism, especially based on the findings of various researchers

(Hart and Williamson (2005)).

The nature of homosexual activities, including the behaviours and attitudes of

gay people, is increasing the prevalence of HIV/AIDS in many developed countries,

especially North America and Western Europe. MSM, for instance, have liberal

attitudes towards sexual intercourse, which leads to both instantaneous and spon-

taneous behaviour that increases the risks of HIV infection (Mor and Dan (2012)).

In addition, age-mixing is a common practice in gay sexual relationships, increasing

the risk of exposure to HIV infections. Besides, homosexuality is increasingly being

accepted in many developed countries like the USA, leading to increased tolerance

and acceptance of the gay community. Gay people also have a high number of sexual

partners, resulting in an increased prevalence of infection (Mor and Dan (2012)).

Therefore, homosexuality is increasingly becoming one of the major factors that are

contributing to HIV infections in North America and Western Europe.

Heterosexual transmission

Despite Europe and North America having a large number of cases of AIDS due to

homosexual transmission, there are other parts of the world such as sub-Saharan

Africa and the Caribbean whose transmissions are mainly through heterosexual

intercourse. There are many different studies that conclude that HIV is transmitted

less through heterosexual partners and these studies indicate the range of infection

between 7% and 68% percent (Fischl et al. (1987)). In the Caribbean, for instance,
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it is estimated that heterosexual transmissions account for between 60% and 80% of

HIV infections while homosexual transmission only contributes close to 10% of total

transmission in the country (Pape (2011)). The same trend is witnessed in many

African countries. Thus, HIV transmission in some regions like Sub-Saharan Africa

and the Caribbean mainly occurs through heterosexual transmission.

Needle Sharing

In many different parts of the world such as Edinburgh in the UK, New Jersey and

Connecticut in the USA, Thailand and Italy, the large number of AIDS cases is

because of drug injection (Des Jarlais et al. (1992)). There is no obvious reason for

why addicts share needles, but it is possible that lack of access to sterilised needles

is the main cause. The use of drugs is not acceptable from a community viewpoint

for many reasons such as the links to crime. Moreover, the environment makes it

possible for addicts to inject and share needles without cleaning and replacing them.

Consequently, many PWIDs are suffering from AIDS. The recent statistics re-

veal that between 0.9 million and 4.8 million PWIDs have been infected with HIV

globally (Des Jarlais et al. (2016)). Needle sharing is believed to be the most effi-

cient mode of transmitting HIV, resulting in the increasing cases of infections among

PWIDs across the globe.

1.3.2 Worldwide prevalence of HIV/AIDS

Because we have based our model, in the next chapter, on the previous works which

described the spread of HCV and HIV among PWIDs then as the previous section

described the spread of HCV, we now move on to outline the spread of HIV/AIDS

in some parts of the world. We start with the epidemics in Africa and end with

Europe.

Africa

Heterosexual contacts and mother-to-child transmission account for the majority of

cases of HIV infections in Africa. There were 2 million African deaths by AIDS in

1998. Also, there were more than 21.5 million adults and 1 million children with
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HIV in the same year. As a result, because of the surge in infections and this risk,

the United Nations (UN) set the targets of reducing the spread of HIV by 2015

(Kim and Watts (2005)). Based on the 2013 report, about 1.5 million Africans are

suffering from HIV infection, indicating a significant reduction since 2005 (Kharsany

and Karim (2016)). HIV infections in the continent have declined by about 33%,

particularly between 2005 and 2013 (Kharsany and Karim (2016)). Nonetheless,

the rate of HIV infection in the continent is still higher than in many regions in the

world.

Asia

Because the majority of the world population is based in Asia, the level of risk of

spread HIV/AIDS in the continent is higher than other parts of the world. For

example, India has a population of over 1 billion, and half of them are in the age

group of 15-49. Asia is increasingly becoming the epicentre of HIV infections due

to its large and growing populations. According to the statistics that were released

in 2007, nearly 4.9 million Asians were infected with HIV/AIDS (Rodrigo and Ra-

japakse (2009)).

Although there are many different countries in Asia which have a low rate of

HIV infections, some Asian countries like Pakistan and Nepal have experienced a

significant increase in infections. Some of the main factors that are facilitating the

spread of HIV/AIDS in Asian include a surge in the number of PWIDS, poverty,

and social taboos (Rodrigo and Rajapakse (2009)). Asia is likely to experience a

surge in HIV infections due to its large population.

The Caribbean and Latin America

HIV/AIDS in the Caribbean and Latin America is mainly transmitted through ho-

mosexual contact and intravenous drug use. Over 2 million people are estimated to

be living with HIV in the Caribbean and Latin America (Avert (2019)).

HIV/AIDS, therefore, is the leading cause of death in many parts of the Caribbean

such as Jamaica and Guyana. In Latin America and the Caribbean, women are

more vulnerable to HIV infections than their male counterparts (Sutherland (2014)).
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Poverty is one of the main factors that are contributing to the high prevalence of

HIV infections in the two regions as it leads to unhealthy behaviours such as pros-

titution. HIV/AIDS is still a major health challenge in the Caribbean and Latin

America.

Western Europe and North America

In 2005 alone, nearly 65,000 people became infected with HIV, making the number

of people living with HIV/AIDS in North America and Western Europe to increase

to 2 million. The number of people in Western Europe and North America of cases

in either homosexual males or drug users is higher than heterosexual contacts. MSM

and PWIDs are abundant in many countries in Western Europe and North America,

explaining why HIV infections continue to increase in the two regions.

We are now going to introduce the basic reproduction number and simple epi-

demic models then some of the mathematical machinery necessary to analyse these

models, in particular local and global stability of rest points of ODEs, bifurcation,

persistence and Quasi-steady-state-approximation. We need to introduce the ba-

sic reproduction number and the simple epidemic models to illustrate some of the

concepts needed.

1.4 The basic reproduction number

The modelling of infectious diseases is dependent on critical factors, including the

basic reproduction number, R0, which helps to identify the potential of a disease to

persist within a population. It can also help to determine whether the disease can

be eliminated. The basic reproduction number is the average number of secondary

cases generated by a single susceptible individual entering a completely susceptible

population at equilibrium (Vynnycky and White (2010)).
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Figure 1.2: How a virus spreads when the basic reproductive number R0 = 2.

(Adapted from Eisenberg (2020a). Original figure in Eisenberg (2020b).)

In Figure 1.2, which outlines the effects of an infectious disease when R0 = 2

through different time periods, it can be seen that the number of those infected

doubles in each time period. This signifies that there is an epidemic which continues

to grow until the process abates due to the decreasing number of individuals who

are susceptible to the disease.
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Infection R0 estimate

Measles 12-18

Mumps 7-14

Malaria 5-100

Influenza 2-4

Smallpox 5-7

Diphtheria 6-7

Table 1.1: Basic reproduction numbers for various well known infectious diseases

(taken from (Corson (2011)).

From Table 1.1 above it can be seen that the reproduction number differs in

different diseases. Factors which contribute to the spread of the disease include those

which relate to the population in question at the time period, including healthcare

available, preventive measures available and level of hygiene. Table 1.1 provides

the basic reproduction number for various infectious diseases (Vynnycky and White

(2010)).

The basic reproduction (or reproductive) number represented by the symbol

R0, is a measure for the spread of a disease within a completely susceptible popu-

lation. It measures the expected number of new infections caused by one positive

case in an unexposed population. Therefore, if R0 > 1, the infected individual will

spread the disease to the population and the number of infections will increase, but

not if R0 < 1.

1.5 The epidemic models

The number of individuals changes with time, then the total population size is a

function N(t), defined by

N(t) = S(t) + I(t) +R(t)
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where S(t) is the number of susceptible individuals, I(t) is the number of infected

individuals and R(t) is the number of recovered individuals at time t. The SIR

(Susceptible-Infective-Removed) epidemic model is given by the system of ODEs
S ′(t) = −βIS,

I ′(t) = βIS − αI,

R′(t) = αI,

with given initial conditions S(0), I(0) and R(0) (Kermack and McKendrick (1927)).

The parameters α and β are respectively the recovery rate and the transmission rate

constant. Adding all three equations in the previous system, we have N ′(t) = 0, this

mean that the total population size is constant, ie N(t) = N(0) for all t.

If we assume that those individuals who recover become immediately susceptible

to be infected again, then the SIR model can be written S ′(t) = −βIS + αI,

I ′(t) = βIS − αI.

This system of ODEs is called the SIS epidemic model, it is a simplification of

the SIR epidemic model. Here N = S + I and N ′ = 0. Since S = N − I, the SIS

epidemic model can be rewritten as

I ′(t) = βI(N − I)− αI.

As detailed by Kermack and McKendrick (1927), the basic reproduction number

of the disease can be defined by

R0 =
βN

α
.

1.6 Local and global asymptotic stability of rest

points of systems of ODEs

Let f be a function sufficiently smooth on an open set U ⊂ Rn, consider the ODE

system

x′(t) = f(x(t))
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Definition 1.6.1. A point x∗ is called an equilibrium point or singular point if

f(x∗) = 0.

An equilibrium point x∗ is called hyperbolic if none of eigenvalues of the Jacobian

matrix Df(x∗) have zero real part (Shub (2013)).

Near an hyperbolic equilibrium point, the system of ODEs x′ = f(x) can be

linearized to the system x′ = Df(x∗)x. In this case, we can give a classification of

the hyperbolic equilibrium point:

• x∗ is a sink if all of the eigenvalues of the matrix Df(x∗) have negative real

part,

• x∗ is a source if all of the eigenvalues of the matrix Df(x∗) have positive real

part,

• it is called a saddle if at least one eigenvalue has a positive real part and at

least one eigenvalue has a negative real part.

About the local stability, a sink is stable and a source is unstable, a saddle is

always considered unstable (Perko (2013)).

Definition 1.6.2. The system of ODEs is Lyapunov stable if for every ε > 0, there

exist δ > 0 such that if ||x(0)− x∗|| < δ, then for every ε > 0 we have

||x(t)− x∗|| < ε

and locally asymptotically stable if it is Lyapunov stable and there exist δ > 0 such

that if ||x(0)− x∗|| < δ then

lim
t→∞
||x(t)|| = 0

and globally asymptotically stable if for all x(0)

lim
t→∞
||x(t)− x∗|| = 0

In other words, local stability of an equilibrium point defines as that if we put

the system somewhere nearby the equilibrium point then it will move itself to the

equilibrium point eventually but the global stability means that the system will
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come to the equilibrium point from any possible starting point that means we do

not need to start near the equilibrium point.

Returning to the SIS epidemic model, we have two equilibrium points, that are

solutions of the equation βI(N − I)− αI = 0, the first equilibrium point I∗1 = 0 is

called a disease-free equilibrium, and the second equilibrium point I∗2 =
βN − α

β
is called an endemic equilibrium.

If the disease-free equilibrium is the unique equilibrium and it is locally stable

it may not be globally stable because if you start from the disease-free equilibrium

limit cycle behaviour or chaotic behaviour may occur.

The stability of the model

The stability of the SIS epidemic model depends of the value of R0. If R0 < 1, in

this case, there is a unique equilibrium point, namely the disease-free equilibrium

I∗1 . All solutions of the equation

I ′(t) = βI(N − I)− αI,

approach to I∗1 = 0, so I∗1 = 0 is globally asymptotically stable. If I(0) = 0 then

I(t) = 0 for all time.

If R0 > 1 then the disease free equilibrium point I∗1 = 0 is unstable and all

solutions starting with I(0) > 0 approach I∗2 . In this case I∗2 is locally asymptotically

stable and globally stable on the set if we consider the domain {I > 0}.

1.7 Bifurcation

Let the dynamical system

x′ = f(x, µ),

with µ is real number called a parameter. When µ varies, the dynamical system

produces a topologically equivalent dynamical system, but, there may exists a value

µ0 of µ such that the resulting dynamical system is not topologically equivalent to

the first system. In this case, µ0 is called bifurcation value. In general we speak of

bifurcation theory (Kuznetsov et al. (1998)).
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1.7.1 The forward and backward bifurcation

The previous models depend on the parameter R0, there is the critical value of this

reproduction number R0 = 1, in fact, if R0 > 1 there are two equilibrium points,

and the endemic equilibrium exists, and if R0 < 1 there is only the disease-free

equilibrium.

Martcheva (2015a) states that ”the bifurcation diagram is called a forward

bifurcation diagram, since the endemic equilibrium bifurcates ’forward’ and exists

only for values of the reproduction number greater than one” and ”there are cases in

which the bifurcating endemic equilibrium exists for R0 < 1. It is said that backward

bifurcation occurs”. From the cited definitions we see that the notions of forward

and backward bifurcations are tied to the special notion of the reproduction number

R0 used in epidemiology and related areas. So if we take them as indicators of how

epidemiologists use these terms, we can draw the following epidemiologist-generic

diagrams:

Figure 1.3: Forward bifurcation and backward bifurcation against R0.

Depending on R0, there is a bifurcation of the model. When the endemic equi-

librium appears, for R0 < 1, the bifurcation is called the backward bifurcation.



1.8. Persistence and Quasi-steady-state approximation 26

1.8 Persistence and Quasi-steady-state approxi-

mation

There are several definitions of the notion of the persistence, we use the simplest

definition. Consider the dynamical system

x′ = f(x),

with x in the closure of an Euclidean space E, such that ∂E is not empty (Butler

and Waltman (1986)).

Definition 1.8.1. The dynamical system x′ = f(x) with the initial condition x(0) =

x0 ∈ E, has a unique solution x(t), the persistence means that

lim inf
t→+∞

d(x(t), ∂E) > 0, ∀x0 ∈ E.

If the disease-free-equilibrium is unstable then we cannot have persistence and

this happens when the solution of the dynamic system is periodic, as in the below

example which is cited from Martcheva (2015a) we have

 S ′(t) = Λ− β(1 + vI)IS − µS,

I ′(t) = β(1 + vI)IS − (α + µ)I.

This example has an unstable equilibrium at

I = 0, S =
Λ

µ
.

However it is not persistent (see Figure 1.4), because the system periodically returns

to it, so

lim inf
t→∞

f(t) = 0.
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Figure 1.4: The diagram shows fluctuations in the (S, I)-plane the converge to a

periodic orbit (taken from Martcheva (2015a)).

Definition 1.8.2. The quasi-steady-state approximation (QSSA) is a method

for reducing the number of variables in a dynamical system that includes processes

on different time scales that can be separated into slow and fast. Indeed, a fast pro-

cess is always considered in a steady state, by changing the time scale, on slow time

scale, the state of the process changes (Cangelosi et al. (2018)).

The QSSA replaces such variables which vary on much faster time scales than

other variables and tend asymptotically to steady values dependent on the slow

variables by their asymptotic steady values. More specifically, suppose the dynamic

system in standard form has

x = {x1, ..., xk}, y = {y1, ..., ym},

x′ = F (x, y), (1.8.1)

y′ = G(x, y), (1.8.2)

scale(Fi) >> scale(Gj). (1.8.3)

Inequality (1.8.3) is meant to be understood qualitatively as follows:

Given fixed values of y, equation (1.8.1) has solutions which reach steady state with
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constant and finite values of x on time scales which are much shorter than the time

scales on which solutions of (1.8.2) with fixed x vary (Cangelosi et al. (2018)).

Then a QSSA solution of system (1.8.1)-(1.8.2) is obtained as follows:

First we solve (1.8.1) with constant y for y in the range of all possible relevant values

and make sure the solution asymptotically approaches some constant values:

x(t, y)→ x∗(y).

Then we solve (1.8.2) with x replaced by x∗:

y′ = G[x∗(y), y].

1.9 Fixed point theorem

In this section we shall introduc some information relating to fixed point theorem

which we need to use in Chapter 4. Therefore, let X be a Banach space, K ⊂ X a

convex and compact set.

Theorem 1.9.1. Every continuous mapping f : K → K has a point x such that

f(x) = x (Elworthy and Tromba (1970)).

Definition 1.9.1. A subset C ⊂ X is called a cone if for a ∈ C then we have

ax ∈ C for any positive scalar x.

The operator T (K) is Fréchet differentiable at K = 0 in the direction of the

cone C if there is a bounded linear operator T ′(0) such that

T (K) = T (0) + T ′(0)(K) + o(|K|)

for all K in C (Greenhalgh (1993)). T ′(0) is called the Fréchet derivative at K = 0

in the direction of the cone C. A bounded linear operator is an operator that maps

every bounded set into a bounded set (Kreyszig (1978)).

Theorem 1.9.2. (Theorem 6.2, Corson 2011, Theorem 4.4.3 Gatica and Smith,

1977) ”Considering T : C → C as a compact continuous operator acting on a

Banach space, such that T (0) = 0 and T is Frechet differentiable at K = 0 in the

direction of the cone. After that we assume T satisfies
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1. T ′(0), the Frechet derivative of T at K = 0, has an eigenvector k ∈ C

corresponding to an eigenvalue ω0 > 1 and 1 is not an eigenvalue of T ′(0)

with corresponding eigenvector in C: and

2. there exists an R > 0 such that if x ∈ C with |x| = R and Tx = µx then

µ ≤ 1.

Then T has a non-zero fixed point x0 ∈ C with |x0| = R.

Note that we will use this theorem in Chapter 4 to prove our Theorem (4.4.2).

1.10 Technical way to calculate R0

Scientists should first understand both the structures and interactions of the model

to accurately estimate and apply the basic reproduction number. Consequently,

there is a need to review or conduct further research on the basic reproduction

number to either simplify the process or reduce the variation of its values that have

been reported by different scientists across the globe. Besides, further research on

the basic reproduction value can reduce misconceptions and confusions that have

been witnessed, particularly during an infectious disease outbreak.

The reproduction number gives a threshold condition under which the disease-

free equilibrium state is stable or unstable. By requiring stability of the disease-free

state, the reproduction number can be expressed in terms of an equation. This can

be done even for higher-dimensional models, but requires the computation of the the

Jacobian, evaluated at the disease-free steady-state. Restricting that all eigenvalues

have negative real part is equivalent to the stability of this equilibrium. In a 2x2

matrix, this is equivalent to TrJ < 0 and det J > 0. In the case of higher-dimensional

systems, see the Routh-Hurwitz Criterion (Martcheva (2015b)).

Despite a representation for the stability of the equilibrium, this expression

for the reproduction number may be written in more than one way. However it is

assumed the expression should satisfy the following criteria:

• The reproduction number is nonnegative
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• Zero transmission implies zero reproduction number

• The reproduction number is interpretable as the secondary infected count

In higher dimensional systems, the stability of the disease-free equilibrium is

determined by the stability of the linearized system, i.e. the Jacobian evaluated at

the equilibrium. Generally, this cannot be reduced to a 2x2 system, and thus stabil-

ity is determined by finding the roots of the characteristic polynomial, of arbitrary

degree. The reproduction number is the constant term in the polynomial, with the

sign determined by whether the reproduction number is greater or less than one.

To determine the stability, the Routh-Hurwitz Criteria give necessary and sufficient

conditions for the roots of the characteristic polynomial to have negative real parts

(Martcheva (2015b)).

1.10.1 Next generation matrix

Calculating the basic reproduction number for the complex models is not easy,

particularly through a heterogeneous population. The basic reproduction number,

which is also known as the basic reproduction ratio, is primarily utilized to describe

the transmissibility of infectious diseases or agents. Besides being affected by a num-

ber of biological, environmental, and socio-behavioral factors, the basic reproduc-

tion number is estimated by different forms of complicated or complex mathematical

models. Consequently, there is a high possibility of misrepresenting or misinterpret-

ing of the basic reproduction number. Besides, it is not always measured directly as

its values are determined by both model structures and assumptions. In addition,

a significant number of the basic reproduction numbers that are reported in the

scholarly literature are outdated or obsolete. Thus, scientists must use or apply the

basic reproduction number with a lot of caution as its basic metrics are complicated

or complex. Nonetheless, Diekmann et al. (1990) helped in improving the theory

that can be used to generate the basic reproduction number for the models.

As detailed by Hurford et al. (2010), despite its potential to significantly sim-

plify the usual linear stability analysis from the theory of dynamical systems, the

next-generation matrix theory of Diekmann, Heesterbeek and Metz (1990) and van

https://link.springer.com/article/10.1007/BF00178324
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
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den Driessche and Watmough (2002) has seen relatively little traction, in particu-

lar, in evolutionary invasion analysis. Principally, it is used to compute the basic

reproduction number, R0, i.e., the expected number of infections directly resulting

from a single infection in a population of only susceptible individuals; and is pred-

icated primarily on the next-generation theorem (NGT) of van den Driessche and

Watmough (2002):

Theorem 1.10.1. Let

x′ = Ax,

with x0 = x(0) 6= 0 be a linear system of ordinary differential equations for x : R→

Rn and non-singular A ∈ Rn×n, n ∈ N. Let s : Rn×n → R denote the spectral bound,

i.e., the maximum real part of all eigenvalues of its argument and ρ : Rn×n → R the

spectral radius, i.e., the maximum absolute value of all eigenvalues of its argument.

Then given any F,V ∈ Rn×n such that F ≥ 0 and V−1 ≥ 0 (has all nonnegative

entries), s(−V) < 0 and A = F−V, then

s(A) S 0 ⇐⇒ ρ(FV−1) S 1.

Thus by the NGT, the usual linear stability analysis to confirm that s(A) < 0,

may equivalently be replaced by checking instead ρ(FV −1) < 1 for suitable F ,V ∈

Rn×n. In particular, the special case when x lists the number of individuals of each

of n classes in a structured population, F the nonnegative rate of generation of indi-

viduals in each class j from each class i, 1 ≤ i, j ≤ n, and V the migration between

and destruction of these classes; results in the next-generation matrix FV −1 listing

the expected (lifetime) number of individuals from class i generated by each class j,

and ρ(FV −1) = R0.

The latter expression (i.e. R0) indicates the long-term expected lifetime or gen-

eration (of all classes combined) i.e. the long-term expected birth or reproduction

number. And in particular R0 < 1 indicates by the NGT that s(A) < 0 i.e. the

disease-free equilibrium x=0 is globally asymptotically stable meaning that x→0

as t → ∞ for all x 0, whereas there will be no endemic equilibrium x . In the case

R0 = 1, there may or may not be a disease-free equilibrium and if there is it may

or may not be either locally or globally stable. Additionally if R0 = 1, there may

https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
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or may not be an endemic equilibrium and if there is it may or may not be either

locally or globally asymptotically stable. If R0 > 1 the endemic equilibrium will not

be globally asymptotically stable on the whole space (because the disease-free equi-

librium exists) so neither type of equilibrium will be globally stable the disease-free

equilibrium will not be locally stable and the endemic equilibrium may or may not

be locally stable.

1.10.2 Calculating R0 in our model

The definition of R0 as the expected number of secondary cases caused by a single

newly infected case was around long before the next generation matrix methods were

introduced (Macdonald (1952), Kaplan (1989), Massad et al. (2001)). In host-vector

models for diseases such as malaria it was accepted that there were two definitions

for R0 in use, one corresponding to using humans as the only infectious unit and the

second one corresponding to using both humans and mosquitoes as infectious units.

The latter corresponds to the next generation matrix method and if it denoted by

R̃0 then the value of the basic reproduction number calculated using only humans

as infectious entities is R̃2
0. But both have the same threshold condition.

Diekmann and Heesterbeek (2000) define an h-state as the infectious state of

an individual at the moment of birth and define kij as the expected number of new

cases that have h-state i at the moment of birth. They define the next generation

matrix to be (kij). So our use of the term ”next generation matrix” in Chapter 4

corresponds to Diekmann and Heesterbeek’s. They define K = (kij) i, j = 1, 2, ..., n

and

R0 = lim
n→∞

||K n||
1
n

and R0 is the dominant eigenvalue of K . If Diekmann and Heesterbeek’s method is

to make sense it must be independent of the choice of what constitutes an infectious

entity at least in the resulting threshold condition.

The idea of the basic reproduction number and its meaning for systems with

potentially more than one infectious state predates the work of Van den Driessche

and Watmough (i.e. malaria Macdonald (1952)). Hence we would hope that these

two different definitions of R0 would be related and at least give the same threshold



1.11. Mathematical modelling of the spread of HIV amongst PWIDs 33

(similar to the two definitions R̃0 and R̃2
0 for malaria). If we consider our method in

Chapter 4 and the method of Van den Driessche and Watmough in context of the R0

definition of Diekmann and Heesterbeek (1990) we can see that our method attempts

to define an infected entity as a newly infected human, whilst the method of Van

den Driessche and Watmough defines an infected entity as either a human or needle

entering a new infectious state. The intergenerational time will thus be different

for the two cases. But as the next generation matrix for Van den Driessche and

Watmough’s method is irreducible we expect that all infectious classes exponentially

decrease at the same rate the two methods give different definitions of the expected

number of entities infected at each generation and different ways of calculating them

but it seems intuitive that if iterating our next generation matrix gives a discrete

process that does not die out then the same should be true of the process of Van

den Driessche and Watmough and vice-versa. Whilst this is not a rigorous proof it

gives an idea of why we expect the two definitions to give the same threshold value

(as indeed we have shown for the model discussed in Chapter 2) and this could form

the basis of a rigorous proof.

1.11 Mathematical modelling of the spread of HIV

amongst PWIDs

Mathematical modelling techniques have contributed to the understanding of the

epidemiology of HIV, and the various risk factors to those susceptible to infection

within PWID populations. Furthermore they have contributed to the evidence to

support various interventions to tackle the spread of infection in PWID populations.

1.11.1 The model of Kaplan (1989)

One of the earliest mathematical models created to examine the spread of AIDS

and HIV in PWID communities was developed by Kaplan (1989) who used models

to gain an insight into the impact of PWIDs sharing needles on the transmission of
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HIV. Kaplan’s study identified those factors which were necessary to gain an under-

standing of how HIV was transmitted in such circumstances. Amongst the factors

identified were the rates of needle and syringe sharing, the length of sharing and

whether or not syringes and needles were cleaned. The latter also led to the model

investigating the effectiveness of bleaching and the distribution of clean needles and

syringes. Kaplan made the following assumptions to develop the model.

1. The number of needles or syringes in the shooting gallery is denoted by m.

2. The frequency of visits to shooting galleries is represented as a. Each PWID

injects once on each occasion, therefore it is assumed that a represents the

rate of needle and syringe sharing per capita.

3. It is assumed that once it has been used by one infectious PWID then all

equipment is considered infectious. However, if equipment is used by an non-

infectious PWID, it is the probability of flushing the needle, that is replacing

the infected blood by uninfected blood (with probability θ), which means that

the use of infectious needles puts non-infectious PWIDs at risk of HIV, that

risk is removed for the PWIDs who subsequently use the equipment.

4. α denotes the probability of the transmission of HIV from shared equipment

in each injection. It is assumed therefore that PWIDs can only be infected if

injection is through shared needles and syringes.

5. As it is assumed that the PWID population n is both large and constant,

whenever the population is reduced whether by a PWID dying, being impris-

oned, hospitalised, or receiving treatment, then that individual is replaced by

another susceptible PWID. The rate (per capita) at which PWIDs enter or

leave the population under study is denoted by µ.

Kaplan devised two differential equations to determine the spread of HIV, the first

equation describes how the fraction of infected PWIDs varies over time and the

second equation describes how the fraction of infected needles change over time.
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Therefore, the system of deferential equations was given by:
dπ(t)

dt
= [1− π(t)]aβ(t)α− π(t)µ,

dβ(t)

dt
= abπ(t)− abβ(t)[1− [1− π(t)](1− θ)],

where π(t) refers to the proportion of PWIDs within the population who are infected

at time t and β(t) relates to the proportion of infected needles and syringes at time

t, with b representing ratio of PWIDs to needles.

A further equation was devised to represent the basic reproduction number.

Hence, Kaplan derived R0 as the expected number of secondary infections caused

by a single infectious person entering a disease-free population of equilibria. This

individual will visit shooting galleries at rate a per unit time and survive for average

time 1/µ. Therefore this infected person will infect a/µ kits of injection equipment.

The distribution of the number of PWIDs who use a needle before it is flushed is

geometric with mean 1/θ. Each PWID is infected with probability α. Hence using

this definition of R0 then we have:

R0 =
aα

µθ
.

For an epidemic to exist this must result in R0 > 1. The results of the first numerical

simulation show that when b is a large number, HIV reaches an equilibrium amongst

this PWID population in a short time, whereas the disease spreads more slowly when

b is a low value.

Kaplan also identified that heterogeneity played a role in needle and syringe

rates of sharing and therefore introduced it into the model to determine the impact of

heterogeneity on the results. It was identified, through numerical simulations, that

those PWIDs who used and shared needles most frequently were infected quicker

than those whose needle and syringe sharing could be considered moderate (Corson

(2011)).

1.11.2 The model of Kaplan and O’Keefe (1993)

Following previous studies to identify risk factors of HIV and possible means of

reducing the prevalence of the disease, Kaplan and O’Keefe (1993) continued look-

ing at models to determine how HIV could be prevented from spreading in PWID
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communities. Kaplan and O’Keefe (1993) developed a mathematical model which

considered various factors listed below.

dπ(t)

dt
= a[1− π(t)](1− φ)β(t)α− π(t)µ,

dβ(t)

dt
= [1− β(t)]aγπ(t)− β(t)[ρ+ aγθ[1− π(t))],

C(τ) =

∫ τ

0

[1− π(t)]a(1− φ)β(t)αdt.

The rate of needle and syringe sharing is represented by a. α provides the figure for

probability of HIV transmission in each injection. The prevalence of HIV amongst

those participating is denoted by π(t). φ relates to the likelihood of the equip-

ment being cleaned before being used. The rate of departure from the program is

represented by µ. ρ relates to frequency of needle exchange. The ratio of those

participating to the number of needles in circulation is denoted by γ. β denotes the

proportion of needles where HIV is identified.

The model provided three equations, the first equation is for the fraction of

infected PWIDs and uses the parameter α which is the probability of a non-infected

PWID being infected from sharing equipment which has not been cleaned before

use. The second equation represents equipment being affected after being used by

a PWID who is infected. In this formula, it is identified that needles and syringes

which are infected are assumed to be non-infectious if they are cleaned or exchanged

prior to use. The final equation provides a calculation of the cumulative incidence

of HIV during the time period. Furthermore the effectiveness of needle exchanges

to prevent transmission of HIV amongst PWIDs had been questioned.

1.11.3 The model of Greenhalgh (1996)

Greenhalgh, a specialist on infectious diseases, (1996) modeled the effects of het-

erogeneity on the spread of HIV/AIDS among self-injecting drug users. This model

let PWIDs vary their rate of visits to shooting galleries and take account of the

cleanliness of the needles they use.

Greenhalgh (1996) modified the assumption that all PWIDs behave the same

way and all needles and shooting galleries are the same (Kaplan (1989)). The dif-
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ferential equations which described the spread of the disease are:

dπi
dt

= (1− πi)

(
q∑
j=1

λipij(1− ξij)αβj

)
− µπi, 1 ≤ i ≤ p (1.11.4)

dβj
dt

=

p∑
i=1

Λijπi −
p∑
i=1

Λijβj

(
1− (1− πi)(1− ξij(1− θ))

)
, 1 ≤ j ≤ q (1.11.5)

with suitable conditions 1 ≥ πi(0) ≥ 0 and 1 ≥ βj(0) ≥ 0. The descriptions of the

model parameters are presented in Table 1.2. Recall that R0 is the key parameter

which determines the behviour of the disease. Using the method below Greenhalgh

found that R0 is the largest eigenvalue of the q × q matrix Qjk, where:

Qjk =

p∑
i=1

Λij(1− ξij)αλipik∑p
s=1 Λsj

(
1− (1− θ)(1− ξsj)

)
µ
.

ρ(Q) is the spectral radius of the matrix Q which is q × q with Qjk ≥ 0 for j, k =

1, 2 . . . q. ρ(Q) is realized to be the largest eigenvalue of the matrix Q.

This was based on directly calculating a matrix similar to the Next Generation

Matrix used in the approach of Diekmnann et al. (1990) corresponding to the

expected number of cases caused in each group by a single newly infected PWID

entering a population of PWIDs and needles at the disease-free equilibrium. Because

this approach considers infectious quantities to be only humans whilst the approach

of Diekmann et al. (1990) considers both humans and needles as infectious entities

two infectious generations in Diekmann et al.’s approach correspond to a single one

in this approach, one would expect this R0 to be the square of the one obtained by

Diekmann et al.’s method.

The result in this model is if R0 ≤ 1 the system of equations (1.11.4) and

(1.11.5) has a unique equilibrium solution wherever the disease has been eliminated

in each group of PWIDs and in each shooting gallery, and if R0 > 1 and disease is

initially present in either PWIDs or needles then the fractions of infected PWIDs

and the fractions of infected needles tend to their unique equilibrium values.

In another study, Greenhalgh and Hay (1997) factored in an analysis of a version

of Kaplan’s model (1989), that showed that sometimes HIV or HCV infectious drug

users did not always leave a needle infected alongside reduced sharing injecting

equipment behaviour (Al-Fwzan (2015)).
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Parameter Definition

θ Probability that a susceptible PWIDs flushes an infectious needle.

πi Fraction of type i PWIDs that are infected.

βj Fraction of needles in shooting gallery j.

ξij Probability that PWID of type i effectively bleaches or cleans needle

before use in shooting galleryj.

λi Rate PWIDs of type i visit shooting galleries.

α Probability of HIV transmission via shared needles.

pij Probability that PWID i chooses shooting gallery j.

µ Rate of joining and leaving sharing, injecting population per PWID.

Table 1.2: Descriptions of parameters in model of Greenhalgh (1996).

1.11.4 The model of Greenhalgh and Lewis (2000)

Greenhalgh and Lewis conducted further studies in 2000 in which they developed

the model of Kaplan and O’Keefe (1993) to relate it to AIDS and the three stages

of infection which exist prior to its onset. Assuming that the infectivity of the last

PWID to use a needle and syringe affected the infectivity of the needle and the

syringe, using three stages allowed for PWIDs and the needles and syringes to be

investigated at each of the different stages prior to the onset of AIDS. Doing so re-

sulted in more positive predictions than previous models. The differential equations

which described the spread of the disease are:

dπA
dt

= (1− πA − πB − πC)λ(βAαA + βBαB + βCαC)(1− φ)− (µ+ δA)πA,

(1.11.6)

dπB
dt

= δAπA − (µ+ δB)πB, (1.11.7)

dπC
dt

= δBπB − (µ+ δC)πC , (1.11.8)

dβA
dt

= λγ(πA − βA)− βAτ, (1.11.9)

dβB
dt

= λγ(πB − βB)− βBτ, (1.11.10)

dβC
dt

= λγ(πC − βC)− βCτ. (1.11.11)



1.11. Mathematical modelling of the spread of HIV amongst PWIDs 39

Equations (1.11.6)-(1.11.8) represent the behaviour of PWIDs at the stage A, at

the stage B, at the stage C, whereas (1.11.9)-(1.11.11) represent the behaviour of

infectious needles at the stage A, at the stage B and at the stage C. Moreover the

stages A, B and C are different stages of HIV (Acutely Infectious, Asymptomatic

and Pre-AIDS) which play a similar role to the different stages of HCV through

which PWIDs pass in our model and also the optimistic model of Greenhalgh and

Lewis (2001) was used as a template to build Corson’s model because in both of

them the PWID adopts the infectious stage of the last needle uses. Note that in

this model there is again only one group of PWIDs and one group of needles.

Also λ, αA, αB, αC , φ, µ, δA, δB, δC , γ and τ refer respectively to a needle

and syringe sharing rate, probability of transmission on the stage A, probability of

transmission on the stage B, probability of transmission on the stage C, probability

that a PWID cleans a needle before use, per capita rate at which PWIDs leave the

sharing, injecting population, per capita rate at which PWIDS move from stage A

infection to stage B infection, per capita rate at which PWIDs move from stage B

infection to stage C infection, per capita rate at which PWIDs move from stage C

infection to full blown AIDS, the ratio of PWIDs to needles and needle turnover

rate.

Recall that R0 is the key parameter to determine the behaviour of the model

therefore Greenhalgh and Lewis (2000) define R0 by ”the number of secondary in-

fections caused by a single infectious person coming into a disease-free population

at equilibrium”. Greenhalgh and Lewis (2000) used a similar definition as in Ka-

plan (1989) and they defined R0 as the total of secondary infections caused by one

infectious PWID entering the disease-free population. Therefore, R0 is given by:

R0 =
λ(1− φ)

(µ+ δA)(τ̂ + 1)

[
αA +

αBδA
µ+ δB

+
αCδAδB

(µ+ δB)(µ+ δC)

]
,

where τ̂ = τ/λγ.

The main results of this model, show that if the basic reproduction number is

less or equal to unity then the model has a unique equilibrium solution where HCV

has died out in both PWIDs and needles. Otherwise, there is the disease-free equi-

librium, but there is additionally a unique endemic equilibrium. The simulations
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provided evidence that in both the model of Kaplan and O’Keefe (1993) and Green-

halgh and Lewis (2000) an endemic equilibrium would be reached after a period of

about 50 years but that in the latter model there was a lower long term prevalence

of HIV than in the former.

1.11.5 The model of Lewis and Greenhalgh (2001)

In 2001, Lewis and Greenhalgh also used the Kaplan and O’Keefe (1993) model to

examine the three stages of infectivity (the same as A, B and C in the previous

model) from the perspective that it is assumed that rather than it is that last in-

fectious PWID user who has the main impact on the needle and syringe, it is the

most infectious PWID who has the greatest impact on the equipment and there-

fore the predictions were pessimistic. The mathematical analysis followed along

broadly similar steps to the study of Greenhalgh and Lewis (2000). Hence, Lewis

and Greenhalgh (2001) adopted the assumption that the state of a needle after use

is taken to be that of the more infectious of the state of the needle prior to use and

the current PWID state therefore this assumption was a ‘pessimistic assumption’

compared with Greenhalgh and Lewis (2000) who use an ‘optimistic assumption’

(we will consider the same pessimistic assumptions when we deal with our model

in the next chapters). So the system of differential equations (1.11.6)-(1.11.8) still

represent the flow of PWIDs through the different infectious stages and the system

of differential equations which describes the behaviour of infectious needles at each

stage is:

dβA
dt

= λγ(1− βA)πA − βA(1− πA)φλγ − βAτ, (1.11.12)

dβB
dt

= λγ(1− βA − βB − βC)πB + βAπBφλγ + βCπBφλγ − βBπCλγ − βBπAλγ

− βBλγφ(1− πA − πB − πC)− βBτ, (1.11.13)

dβC
dt

= λγπC(1− βA − βC) + λγφβAπC − λγβCπA − βCλγφ(1− πA − πC)

− βCτ. (1.11.14)
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Lewis and Greenhalgh (2001) used a similar definition and method as in Greenhalgh

and Lewis (2000) and they give R0 as:

R0 =
λ(1− φ)

(µ+ δA)(τ̂ + φ)

[
αA +

αBδA
µ+ δB

+
αCδAδB

(µ+ δB)(µ+ δC)

]
,

where τ̂ = τ/λγ. Using analytical techniques, Lewis and Greenhalgh (2001) also

found that the model behaviour is governed by the basic reproduction number R0.

Again, in comparison with the Kaplan and O’Keefe (1993) model the analysis showed

that endemic equilibrium was reached sooner using the three stage model which also

provided greater estimates of long term HIV prevalence.

1.12 Mathematical modelling of the spread of HCV

amongst PWIDs

As for HIV mathematical modelling techniques have also been used to understand

the intervention strategies to control the prevalence of the spread of HCV among

PWIDs.

1.12.1 The model of Hutchinson et al. (2006a)

Hutchinson et al. (2006a), adopted a stochastic model which simulated the spread

of HCV in PWIDs in Glasgow who shared needles and syringes. The models were

used to provide an estimate of the prevalence and incidence of HCV in the city for

the period between 1960 and 2000, of these estimates those from between 1988 and

2000 examined the number of infections that had been prevented through the use of

intervention measures. The model also allowed an examination of the impact there

would be if the infectivity of HCV was ten times as high in a period of six weeks

after PWIDs had first been infected.

In the model three distinct infectious stages were employed and examined:

susceptible, acute HCV and chronic HCV. Of these the acute stage was categorised

into a short non-infectious phase and a longer infectious one, covering a period of up

to two years. Those identified as being susceptible passed to the non-infectious acute
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stage once they had been infected, after which they progressed to the infectious stage.

From this point there were two possibilities, either the infection could be resolved

and the PWIDs would return to the susceptible stage or the infection would become

chronic. It was assumed that those who had successfully resolved the infection were

partially immune to reinfection. It was considered that the likelihood of a new

HCV viraemia being developed was halved and the likelihood of chronic infection

developing was reduced twelve-fold. In order to estimate how often PWIDs injected

and shared needles and syringes, surveys conducted in Glasgow in the 1990s were

consulted.

1.12.2 The model of Vickerman et al. (2007)

Vickerman et al. (2007) analysed the transmission of HCV amongst PWIDs in Lon-

don. Similar to the study of Hutchinson et al. (2006a) the model was used to examine

the impact of intervention measures to reduce the sharing of needles and syringes

amongst PWIDs who had been sharing needles and syringes for more than a year.

The model focussed on those in the class of acute stage of HCV and sub-divided

them into two categories, those who could resolve the infection spontaneously and

those whose infection progressed to the chronic stage. It was assumed that those

in the former group were immune to re-infection, whereas those in the latter group

remain infected for life. Different transmission probabilities were assigned to each

category.

The PWIDs were then further classified into three behavioural subgroups which

related to the frequency of sharing needles: those who do not share, those whose

sharing is infrequent and those whose sharing is frequent. The study determined

that when sharing rates were reduced by more than 50%, HCV seroprevalence would

fall in those PWIDs who had been injecting for more than eight years. Reductions

of less than 25% would lead to a reduction in HCV for those PWIDs who had been

injecting for up to four years. For HCV prevalence to be reduced to less than 10%

there would need to be a reduction in baseline estimates of needle and syringe shar-

ing from 16 events per month to only one or two. The simulations also indicate

that significant decrease in HCV seroprevalence could only occur if interventions
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were directed at the full PWID community. Furthermore, intervention would have

to occur within the first year that PWIDs were injecting. Note that this model was

also discussed deeply in Corson (2011).

1.12.3 The model by Corson et al. (2012)

A compartmental mathematical model was developed by Corson et al. (2012) to es-

timate HCV transmissions among PWIDs. This model was derived from a previous

one by Vickerman et al. (2007). The aim of this model was to determine the level

of needle sharing, cleaning and exchange necessary to promote HCV elimination

among PWIDs in Glasgow. The model also enabled PWIDs progress through the

many stages of HCV infection.

The population of PWIDs was split into individuals susceptible to HCV in-

fection, x to represent those not previously infected, x1 to represent those already

infected, those in the acute clase of HCV infection (h1 and h2), those in the chronic

stage of HCV infection y and those immune to HCV infection z (see Figure 1.5).

Corson et al. (2012) divided the infectious PWIDs into ‘Acutely Infected’ and

‘Chronically Infected’ classes corresponding to the observation that the level of virus

in the blood is much higher in ‘Acutely Infected’ and ‘Chronically Infected’ PWIDs.

Moreover the Acutely Infected PWIDs are divided into two classes corresponding to

those who will progress to the chronic class (h1) and those who will progress to the

susceptible or immune class (h2). The needles are divided into the same infectious

classes as the PWIDs and again needles are assumed to adopt the infectious state

of the last PWID to use them.
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Figure 1.5: HCV transmission map. The arrows indicate the possible transitions

for PWIDs between classes of HCV infection and the parameters are the per capita

rate of flow between the classes (taken from Corson et al. (2012)).

Moreover Corson et al. (2012) assumed the size of the PWIDs population to

be n, which is both large and constant. PWIDs who left the population due to a

number of reasons like death or permanently avoiding injecting behaviour at a per

capita rate of µ are instantly substituted by other susceptible persons. This simpli-

fying assumption had been made in many other models of the spread of HIV and

HCV amongst PWIDs. They developed this model to assess relevant intervention

measures that were required to stop HCV among PWIDs who lived in Glasgow.

Although the PWIDs population in Glasgow had remained unchanged for many

years. So there was a possibility of expanding their model to give room for variable

population size, mainly by utilizing methods previously employed by Caulkins and

Kaplan (1991), Lewis and Greenhalgh (2001a) and Lewis and Greenhalgh (2001b).

Therefore, the PWIDs population was grouped into three categories. The first cat-

egory involved PWIDs who were susceptible to HCV infection, particularly through

sharing needles and syringes. The category was further subdivided into x to denote

PWIDs who had not initially been infected and x1 to stand for those who had been
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infected. The second category comprised PWIDs who were in an acute phase of HCV

infection (h1 and h2). The final category involved PWIDs who had proceeded to the

chronic phase of HCV infection (y), including those who could not be infected again

due to immunity (z). Corson’s model enabled two forms of acute HCV infection,

which included the one that results in chronic infection and the other which caused

self-limiting HCV infection. In the latter case the recovered individual re-entered

the susceptible class.

Corson et al. (2012) denoted the mean per capita rate that PWID persons

shared syringes and needles by λ while φ stands for the probability that a PWID

will succeed in cleaning either their needle or syringe before he or she used it. To

successfully clean needles or syringes, Corson et al (2012) assumed that individual

PWIDs should used alcohol or bleach to eliminate the presence of HCV viral load

before use. On the other hand, they denoted by αh the probability that if a suscep-

tible person injected himself or herself with a syringe in the phase of acute infection

(denoted h1 or h2) without sterilizing or cleaning the needle then that person caught

the disease. αy stands for the corresponding probability of infection, when the sy-

ringe was in the stage of acute infectivity. Based on the data, αh was more than αy

(Vickerman et al. (2007)).

Moreover, they considered the incorporation of probabilities of differential HCV

transmission, which related to both acute and chronic infection, especially based on

Hutchinson et al. (2006a), was the same as assumptions that were anchored on

different blood viral loads, which were linked to the phases of HCV infection sim-

ilar to HIV (Seitz and Muller (1994)). Furthermore the mathematical models of

Greenhalgh and Lewis (2000) for HIV considered a high chance of spreading HIV

for acute infection and chronic HCV infection. Thus in a similar way Corson et al

(2012) decided to incorporate similar differential risks of HCV transmission in their

model. Note that both HCV and HIV are blood born viral diseases spread amongst

PWIDs.

Again Corson et al (2012) assumed that susceptible PWIDs who had contracted

HCV will proceed to the chronic phase of infection, which was denoted by either

h1 or h2. A percentage of δ of PWIDs who had just been infected with HCV were
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allowed to proceed to the acute h2 class. Based on Farci et al. (1992) and Micallef

et al. (2007), Corson et al. (2012) assumed that the newly infected PWIDs were

expected to spontaneously eradicate the virus when they finished their stay in this

class with a proportion α expected to show immunity to HCV re-infection while

the other proportion 1− α became susceptible again and were capable of being re-

infected with HCV. 1− δ, which was the remaining percentage of persons who had

just been infected with HCV, were allowed to proceed to the acute h1 class. On

leaving the acute h1 class the remaining PWID proceeded to the chronic infection

stage where they stayed until they died or departed from the population that shares

injections.

As well as modelling the PWID population, Corson et al. (2012) also modelled

the number of needles and syringes by HCV infection status over time (needles can

be uninfected, acutely infected or chronically infected). m denoted the total popu-

lation size of needles and syringes. Only needles and syringes that had been used by

PWIDs who were chronically or acutely infected can spread HCV. The infectivity

of each needle was determined by the last infected PWID that it had come into

contact with. Unused needles were uninfectious.

The force of infection experienced by a single susceptible PWID was given by

f = λ(1− φ)(αh(βh1 + βh2) + αyβy). The authors therefore derived a system of nine

differential equations, six of them describe the transmission of HCV among PWIDs

and three describe HCV prevalence in needles.

Hence the system of governing equations that described the spread of HCV

among PWIDs was given by

dπx
dt

= µ− µπx − λπx(1− φ)(αh(βh1 + βh2) + αyβy),

dπx1
dt

= σ(1− α)πh2 − µπx1 − λπx1(1− φ)(αh(βh1 + βh2) + αyβy),

dπh1
dt

= (1− δ)λ(1− φ)(αh(βh1 + βh2) + αyβy)(1− πh1 − πh2 − πy − πz)− (µ+ σ)πh1 ,
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Parameter Description

φ Probability of needle cleaning

λ Needle-and syringe- sharing rate

τ Needle turnover rate

γ PWIDs to needle ratio

µ Rate PWIDs leave the sharing population

αh Acute HCV transmission probability

αy Chronic HCV transmission probability

1/σ Period of the acute HCV stage

δ Proportion that clears HCV infection

α Proportion of PWIDs that become immune

Table 1.3: Table of Corson et al. (2012) model parameters definition.

dπh2
dt

= λ(1− φ)δ(αh(βh1 + βh2) + αyβy)(1− πh1 − πh2 − πy − πz)− (µ+ σ)πh2 ,

dπy
dt

= σπh1 − µπy,

dπz
dt

= σαπh2 − µπz,

dβh1
dt

= γλ(πh1 − βh1)− τβh1 ,

dβh2
dt

= γλ(πh2 − βh1)− τβh2 ,

dβy
dt

= γλ(πy − βy)− τβy.

This step was followed by an evaluation of the basic reproduction number

R0 which determines the behaviour of HCV among PWIDs. The total number of

secondary infections caused by an individual infectious PWID entering the DFE is

given by:

R0 =
λ(1− φ)

µ(µ+ σ)(1 + τ̂)

[
µαh + αyσ(1− δ)

]
,

where the parameters are defined in Table 1.3, γ = n/m is the number of PWIDs

for each needle in the population and τ̂ = τ/λγ.

This is not deduced directly by the next generation matrix. It is derived

by considering directly a population of needles and PWIDs at equilibrium and a
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single newly infected PWID entering it. Then Corson et al. (2012) consider a direct

calculation of the average number of infectious needles caused directly by that PWID

multiplied by the average number of PWIDs each needle infects. This method is

commonly used for host vector models such as dengue and malaria (Greenhalgh et al.

(2018), Macdonald (1952), Maier et al. (2017)). For dengue and malaria because the

next generation method considers both PWIDs and syringes as infectious entities

the R0 calculated by this method for those diseases is the square of that calculated

by the next generation method. Hence the threshold value for both models is the

same. For our modified model we shall show how the R0 value obtained using the

definition of R0 in Corson et al. (2012) is related to the R0 value obtained by the

next generation matrix method. Although the two values are different they are

related and the threshold value is the same. A similar argument can be applied to

the model of Corson et al. (2012). This result is original and was not obtained by

Corson et al. (2012) even for their original model.

The main proposition of Corson’s model, states that if R0 ≤ 1 the model has a

unique equilibrium solution where HCV has died out in both PWIDs and needles.

If R0 > 1, there is the disease-free equilibrium, but there is a unique endemic

equilibrium. Then, Corson et al. (2012) simulated HCV for the population of

Glasgow PWIDs over time. The model parameters are estimated and they examine

the behaviour of HCV when R0 ≤ 1 and R0 > 1. Simulation has shown that when

realistic parameter values are used the model tends to the endemic equilibrium value

together with realistic parameter values resulting HCV prevalence estimated at 69%

which matches up with observed data. Moreover, the authors examined the impact

of various control measures on R0. They determined the threshold values of sharing

needle, cleaning and turnover that lead to R0 less than unity and HCV elimination

in PWIDs and needles. Note that this model was also discussed in Al-Fwzan (2015).

1.12.4 The model of Al-Fwzan and Greenhalgh (2015)

Al-Fwzan and Greenhalgh (2015) developed a mathematical model pertaining to

the HCV infection rate among PWIDs sharing needles in shooting galleries. This

model was based on an earlier simple model discussed by Corson et al. (2012), which
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assumed homogeneity in time since onset of injection and needle sharing rates, and a

model of Greenhalgh (1996) who showed the effects of heterogeneity on the transmis-

sion of AIDS and HIV among a population of injecting drug users. They compared

that with the model by Corson et al. (2012). The model of Al-Fwzan and Green-

halgh (2015) focusses on the impact of heterogeneity in disease sharing rates and

choice of shooting galeery on the prevalence of HCV in this risky group.

Al-Fwzan (2015) assumed that a population of n drug-injecting PWIDs is di-

vided into p group sizes n1, n2, ..., np where n =
∑p

t=1 ni, where n is large and

constant for each time t. The groups are uniform and distinct from one another

in injection sharing rate, shooting gallery selection probability and needle clean-

ing probability. So there could be groups consisting of individuals sharing needles

frequently or sporadically or never sharing needles. One premise underpinning the

proposed model is that PWIDs do not change groups for the duration of their life

or the duration of drug use. Moreover the groups are of constant size so that when

PWIDs leave the population due to permanent cessation of injecting behaviour or

death at per capita rate µ, they will immediately be replaced by other PWIDs

susceptible to HCV infection who inject at the same rate and whose other char-

acteristics are also similar. Furthermore, q shooting galleries are considered, with

shooting gallery j comprising mj needles or syringes, where m =
∑q

j=1mj and m

is large and constant for all time t. The shooting gallery visiting rate of every type

i PWID is λi, with the probability of selection of shooting gallery j on every visit

being Pij for j = 1, 2...q, where Pij ≥ 0 and
∑q

j=1 Pij = 1.

Upon visiting a shooting gallery, PWIDs undertake a single drug injection with

a needle selected arbitrarily from the visited shooting gallery. PWIDs of type i are

instantly replaced by other PWIDs at risk of HCV infection when they exit their

group owing to terminating drug use or dying at per capita rate µ, they are re-

placed immediately by a susceptible PWID. The arrival rate of type i PWIDs at a

presented needle in shooting gallery j is Λij = (
λiniPij
mj

). Al-Fwzan (2015) divided

the population into p groups labeled i = 1, 2, ...p.

Al-Fwzan and Greenhalgh (2015) assumed that λi is the average rate that a

type i PWID shares needles and syringes and φij is the probability that a type i
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PWID in shooting gallery j cleans his or her needle prior to use. αh and αy are re-

spectively the transmission probability relating to acute and chronic HCV by shared

needles and the average duration that a type i PWID remains in the acute stage is

1/σ time units. Also Al-Fwzan and Greenhalgh (2015) considered a needle turnover

rate of the average rate at which PWIDs change their needles for clean needles in

shooting gallery j of τj per year, PWIDs can be infected through the sharing of nee-

dles utilized by an HCV acutely or chronically infected PWID and that infectious

needles do not lose their infectivity if they are left unused for a period of time. An

infectious needle, when exchanged, is replaced by a non-infectious needle.

Al-Fwzan’s model allowed for dividing the PWIDs population of type i into

those PWIDs susceptible to HCV infection through needle and syringe sharing (de-

noted xi for those not previously infected and x1i for those previously infected),

those in the acute stage of HCV infection (h1i and h2i), those who have progressed

to the chronic stage of HCV infection (yi) and those immune to HCV reinfection

(zi). As in Corson’s model, the model allows for two different types of acute HCV

infection: one which leads to chronic infection, and the other which leads to self-

limiting HCV infection. A susceptible PWID of type i (either xi or x1i) once infected

with HCV will pass to the acute stage of infection (either h1i or h2i). Then those

PWIDs newly infected with HCV will pass to the acute stage h1i with probability

(1− δ). Therefore these PWIDs will either die, leave the sharing injecting popula-

tion, or pass to the chronic infection and stay there until they either die or leave

the sharing injecting population. The lasting proportion δ of newly infected type i

infected PWIDs pass to the acute h2i stage. So these PWIDs will either die, leave

the sharing injecting population or progress. Of those that progress a fraction α

pass to the immune stage, where they will stay until they either die or leave the

sharing injecting population. The other fraction (1−α) of those who progress from

the h2i stage return to the susceptible class.

Similarly, the shooting galleries are divided into q groups labeled j = 1, 2, ...q.

Each shooting gallery j contains three different types of infectious needles. The only

way that a type i PWID can be infected is through the sharing of needles used by an
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HCV acutely or chronically infected PWID. Moreover, the infectivity of each needle

is determined by the last infected PWID that it had come into contact with. Un-

used needles are uninfectious. Also, in this model Al-Fwzan and Greenhalgh (2015)

assumed that the population of PWIDs is of size n where n is large and constant.

Therefore, when PWIDs leave the population (due to either permanent cessation of

injecting behaviour or death) at a per capita rate µ, they are immediately replaced

by PWIDs susceptible to HCV infection.

Al-Fwzan and Greenhalgh (2015) derived a system of nine differential equations,

six of them describe the transmission of HCV among PWIDs and three describe HCV

prevalence in needles.

dπxi
dt

= µ− µπxi − πxi
q∑
j=1

λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
,

dπx1i
dt

= σ(1− α)πh2i − µπx1i − πx1i
q∑
j=1

λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
,

dπh1i
dt

=

q∑
j=1

(1− δ)(πxi + πx1i)λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh1i ,

dπh2i
dt

=

q∑
j=1

δ(πxi + πx1i)λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
− (µ+ σ)πh2i ,

dπyi
dt

= σπh1i − µπyi ,

dπzi
dt

= σαπh2i − µπzi ,

dβh1j
dt

=

p∑
i=1

Λijπh1i(1− βh1j)− βh1j
p∑
i=1

Λij(1− πh1i)− τjβh1j ,

dβh2j
dt

=

p∑
i=1

Λijπh2i(1− βh2j)− βh2j
p∑
i=1

Λij(1− πh2i)− τjβh2j ,

dβy
dt

=

p∑
i=1

Λijπyi(1− βyj)− βyj
p∑
i=1

Λij(1− πyi)− τjβyj .

The definitions of the model parameters are presented in Table 1.4. Define

that R0 is the key parameter to determine the behaviour of the model. Al-Fwzan

and Greenhalgh (2015) derived the matrix Qik where:

Qik = ξ

q∑
j=1

λiPijΛkj(1− φkj)∑p
l=1 Λlj + τj

,
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Parameter Description

φij Probability that a PWID in group i cleans a needle

in shooting gallery j before use, i = 1, 2, . . . p, j = 1, 2, . . . q.

λi Needle and syringe sharing rate in group i, i = 1, 2, . . . p.

τj Needle turnover rate in shooting gallery j.

µ Per capita rate at which PWIDs leave the sharing,

injecting population.

αh Acute HCV transmission probability.

αy Chronic HCV transmission probability.

1/σ Duration of the acute HCV phase.

δ Proportion of acutely infected PWIDs who resolve

HCV infection.

α Proportion of PWIDs that become immune.

Pij The probability that a PWID in group i chooses

shooting gallery j to share a needle.

mj Number of needles in shooting gallery j.

Table 1.4: Table of Al-Fwzan and Greenhalgh (2015) model parameters definition.

where ξ = (αyσ(1− δ) + αhµ)/µ(µ+ σ). They have expected that the basic repro-

duction number R0 to be the largest eigenvalue of the p× p matrix Q, with Qik ≥ 0

for i, k = 1, 2, ..., p. Recall that ρ(Q) the spectral radius of Q is defined to be

ρ(Q) = max
1≤i≤p

|λi|

where λ1, λ2, ..., λp are the eigenvalues of Q.

The results of this model shown that if R0 ≤ 1 then the disease will always die

out, that is the disease-free equilibrium is globally asymptotically stable. Moreover

it was shown that if R0 > 1 then there is a unique non-zero endemic equilibrium.

Also when R0 > 1 then the disease-free equilibrium is unstable.
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1.12.5 The Model by Pitcher et al. (2019)

The research article by Pitcher and his colleagues mainly focuses on mathematical

modelling of the spread of HCV, especially based on the World Health Organization

(WHO) targets, which are aimed at reducing HCV infection by 80% by 2030 across

the globe. This article addresses treatment of HCV. Specifically, the article exam-

ines the insights offered by the models in relation to attaining WHO HCV targets,

particularly concerning people who inject drugs (PWIDs). Importantly, based on

the models, Pitcher et al. (2019) found that it is possible to eliminate HCV in var-

ious settings. However, focusing on harm reduction alone is not likely to attain the

elimination target amongst PWIDs. The article also revealed that HCV testing and

treatment that are used in many settings are not sufficient to eliminate the disease.

Also, mathematical models are characterized by some uncertainties. For instance,

they do not clearly indicate how the diagnosis and treatment of HCV impact be-

havioral change of affected persons.

The dynamic equations which describe the transmission of HCV in figure 1.6

are given by:

dS(t)

dt
= θ − π(1− δ)C + Z

N
S + ωαT − µS,

dC(t)

dt
= π(1− δ)C + Z

N
S − f(C)− µC,

dT (t)

dt
= f(C)− ωT − µT,

dZ(t)

dt
= ω(1− α)T − µZ,

where S(t) refers to those uninfected, C(t) refers to those chronic with HCV,

T (t) refers to those successfully treated and Z(t) refers to those who failed treat-

ment. Moreover, the total population is represented by N(t) that means N(t) =

S(t) + C(t) + T (t) + Z(t).
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Figure 1.6: Simple digram of HCV transmission model among PWIDs (taken from

Pitcher et al. (2019)).

Also θ, µ, π, δ, α and 1/ω and f(c) refer respectively to a fixed rate for PWIDs

who enter the population, the infection rate, the per capita death rate, the pro-

portion of those infected who self cure and become susceptible again, the period of

time that a PWID who is being treated remains on treatment and a function f(c)

of PWIDs who can be treated.

Even though HCV is one of the main diseases that are killing millions of people

globally, especially the PWID population, the models that examine the elimination

of HCV are lacking in developing countries. The majority of models are utilized in

the developed world like the USA, Europe, and Australia. The developing world,

therefore, is lagging behind in the drive to eliminate HCV. The PWID population

remains to be the group that is highly vulnerable to HCV infections. Pitcher et al.

(2019) estimate that nearly 52% of PWIDs have been infected by HCV. As a result,

the WHO elimination target is most likely to be achieved when it mainly focuses on
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PWIDs. The article concludes that mathematical epidemic modeling plays a major

role in eliminating HCV globally.

1.13 Conclusion

This opening chapter has presented an examination of literature relating to the epi-

demiology and modelling of HCV which is a major health issue transmitted through

blood contact between an infectious individual and someone who is susceptible to

the disease. HCV has a global impact, affecting millions. Up to four million new

cases arise each year, of which the majority of those infected develop chronic HCV

which is linked to severe liver disease (Seef (2002) and Kamal (2008)).

Much of this review and the models under study have looked at forecasting

of the use of intervention methods in reducing the prevalence of HIV and HCV

amongst PWIDs. In Scotland it has been recognised by the Scottish Parliament that

the high levels of HCV which exist amongst PWIDs posed a serious public health

risk which required substantial resources to be allocated in order that intervention

methods could be improved and implemented to prevent HCV being transmitted

(Scottish Executive (2011)). Resources can be allocated to the development and use

of mathematical models including and similar to those reviewed in this study.

These models provide an insight into how infectious diseases, such as HIV and

HCV spread and allow knowledge to be gained for various intervention measures to

be evaluated as well as highlight the steps that are required for infectious disease

to be eradicated. As has been seen in this review, various model structures exist,

including deterministic, stochastic, SIS and SIR models. As the spread of HCV

replicates that of HIV, those models and techniques which have been developed for

the latter can also be applied to HCV models which examine the spread of disease

amongst PWIDs.



Chapter 2

A Simple Pessimistic Model for

the Spread of HCV Amongst

PWIDs

Mathematical modelling techniques are now being used by health organizations

worldwide to help understand the likely impact that intervention strategies, treat-

ment options and combinations of these have on the prevalence and incidence of the

hepatitis C virus (HCV) in the people who inject drugs (PWIDs) population. In

this chapter, we develop a deterministic compartmental model for HCV transmis-

sion among PWIDs through the sharing of needles and syringes. Using analytical

techniques, the model behaviour is governed by the basic reproduction number R0,

with R0=1 being a critical threshold separating two different outcomes. It has been

shown that if R0≤ 1 there is only the disease-free equilibrium whereas if R0 >1 there

is the disease-free equilibrium and a unique endemic equilibrium. This model has

a unique disease-free equilibrium which is globally stable if R0 ≤ 1. If R0 > 1 the

disease-free equilibrium is unstable. After that we look at a simplified approximate

model by using the fact that the timescale on which injections take place is much

faster than the timescale of epidemiological change. This approximation model has

the same equilibria as the full model. Also, as Corson (2011) and Corson et al.

(2012) we showed that if R0 > 1 the endemic equilibrium is locally asymptotically

56
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stable for our approximate model. A brief summary of the main findings concludes

the chapter.

2.1 Model description

We develop a deterministic compartmental model for HCV transmission among

PWIDs through the sharing of needles and syringes. The model was loosely based on

the model previously described by Corson et al (2012). The treatment of chronically

infected PWIDs is considered in the model. Recall that in the ‘Optimistic Model’

HIV transmission model amongst PWIDs studied by Greenhalgh and Lewis (2000)

PWIDs were divided into ‘Acute’, ‘Asymptomatic’ and ‘Pre-AIDS’ groups according

to their infectious disease status and needles were divided into the same groups

according to the level of virus in the blood in the needle. The needles were supposed

to adopt the infectious characteristics of the last PWID to use them, so a needle

last used by a PWID in the Pre-AIDS stage would be in the Pre-AIDS class and a

needle last used by a susceptible PWID would be left uninfected. This corresponds

to the flushing assumption that PWIDs can rid a syringe of infectious blood made by

Kaplan (1989). The model is called ‘Optimistic’ because needles adopt the infectious

state of the last PWID to use them. This results in lower levels of HCV infection.

However in the ‘Pessimistic Model’ of HIV transmission amongst PWIDs stud-

ied by Lewis and Greenhalgh (2001a) the PWIDs and needles are divided into the

same infectious classes but instead it is assumed that a needle used by a PWID

adopts the most infectious state of its previous state and the infectious state of the

PWID who last used it. Thus needles become progressively more infectious over

time. This is based on the observation by Kaplan that HIV can be isolated from

syringes even at great dilutions.

The model of the spread of HCV amongst PWIDs studied by Corson et al.

(2012) is similar to the ‘Optimistic Model’ of Greenhalgh and Lewis (2000). We

shall base our model on the model of Corson (2011) and Corson et al. (2012) but

adopt the pessimistic needle mixing assumptions of Lewis and Greenhalgh (2001a),

namely that needles adopt the most infectious of the current infectious state and
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the state of the last infectious PWID to use them.

For instance, suppose that an acute phase h1 infectious needle is also utilized by

a PWID who is in the chronic y phase of infection. In this case, the needle remains

in the acute h1 infection phase. Conversely, if a needle that is in the chronic y

phase of infection is utilized by an individual under the category of acute h1 stage

of infection then this needle will remain in the acute h1 phase of infection. This

assumption agrees with that made by Lewis and Greenhalgh (2001a) and results in

this model being pessimistic in contrast to other possible assumptions and so we

expect that it could be utilized to find a lower bound for the fraction of PWIDs and

needles infected with HCV.

The parameters φ, λ, γ, µ, αh, αy, σ, δ and α are still similar to the definition in

Corson’s model (see Table 1.3). Also, we suppose a needle turnover rate of τ per year.

Besides, we assume that infectious needles retain their infectivity even when they

remain unused. Chronically infected individual PWIDs can be treated with antiviral

therapy which is successful over 95% of the time (Chen et al. (2014)) and Cousien

et al. (2018)) although successfully treated individual PWIDs can catch HCV again.

Cousien et al. (2018) used a dynamic agent-based model of transmission amongst

PWIDs to study optimal interventions to best manage HCV amongst PWIDs in

France, in order to eliminate HCV. They take the new DAAs into consideration.

Jia et al. (2019) consider a mathematical model for hepatitis C in China. Infected

individuals are divided into acute and chronically infected. After the acute stage

individuals can progress to the chronic, immune or treated stages (see Figure 2.1).

We assume that the per capita rate at which chronically infected individual PWIDs

are successfully treated is ψ.
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Figure 2.1: Our simple diagrams of our HCV transmission model among PWIDs.

2.1.1 Dynamic equations

We now start by deriving the differential equations which represent the spread of

HCV among PWIDs where PWIDs progress through the different classes of HCV

infection represented in the previous section and HCV infection is caused by sharing

the three types of infectious needle described also in the previous section 2.1. We

derive a total of eleven equations: six equations for PWIDs and five for needles for

two assumptions in stages h1 and h2. For needles we have two alternative assump-

tions for how needles in state h1 and h2 interact, Assumption 1 and Assumption

2. Assumption 1 means that we regard state h1 infectious needles as being slightly

more infectious than state h2 infectious needles and after use the level of infectivity
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of a needle originally in state h1 or state h2 infectivity is the highest of its state im-

mediately before use and the level of infectivity in the blood of PWID who last used

it (as in Lewis and Greenhalgh (2001a)). Assumption 2 means that we regard state

h1 infectious needles and state h2 infectious needles as being equally infectious and

assume that a needle remains uninfectious until first used then adopts the infectious

state of the last PWID to use it (as in Corson (2011) and Corson et al. (2012)). For

each assumption we derive a total of nine equations, six for PWIDs and three for

needles. Note that Assumption 1 and Assumption 2 are concerned only with the

interaction of state h1 PWIDs and state h2 needles and vice-versa.

The flow diagrams for the equations are given in Figure 2.1, where the top part is

for numbers of PWIDs and the bottom part is for needles (Assumption 1). Both are

given in terms of absolute numbers not fractions. In these figures π = πh1 +πh2 +πy

is the total fraction of infectious PWIDs, Mh1 = mβh1 , Mh2 = mβh2 , My = mβy and

MI = Mh1 +Mh2 +My are the number of infectious needles in infectious stages h1,

h2 and y, and the total number of infectious needles respectively. For Assumption 2

the flow from Mh1 to Mh2 is λγMh1πh2 , with the other flows remaining unchanged.

Let x(t), x1(t), h1(t), h2(t), y(t) and z(t) denote the number of PWIDs in

respectively the x-susceptible, x1-susceptible, h1 acute, h2 acute, chronic y and

immune z classes at time t. Let Mh1(t), Mh2(t) and My(t) denote respectively the

number of acute state h1 infectious needles, acute state h2 infectious needles and

chronic state y infectious needles at number t. Consider πx(t), πx1(t), πh1(t), πh2(t),

πy(t), and πz(t) to represent the fraction of PWIDs respectively in the x-susceptible,

x1-susceptible, acute h1, acute h2, chronic y and immune z classes at time t. Also,

βh1(t), βh2(t) and βy(t) respectively represent the fraction of HCV infectious needles

in the h1, h2 and y stages at time t. As in Corson (2011) and Corson et al. (2012), we

denote the constant PWIDs to needle ratio γ = n/m to be the number of PWIDs per

needle in the population. Each susceptible PWID injects at rate λ. The probability

that he or she becomes infected at injection is

(1− φ)(αh(βh1 + βh2) + αyβy).

So the force of infection experienced by a single susceptible PWID is still similar to
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Corson (2011) and Corson et al. (2012)

f = λ(1− φ)(αh(βh1 + βh2) + αyβy).

The change in the number of x-susceptible individuals in the small time interval

[t, t+4t)

x(t+4t)− x(t) = new susceptible PWIDs born in [t, t+4t)

− x-susceptible PWIDs who leave the sharing, injecting

population in [t, t+4t)

− x-susceptible PWIDs who become infected in [t, t+4t)

after borrowing needles and syringes last used by acute h1

PWIDs in [t, t+4t)

+ the number of y-chronic PWIDs who successfully treat HCV

infection in [t, t+4t),

= µn4t− µx4t− λx(1− φ)4t(αh(βh1 + βh2) + αyβy) + ψy4t

+ o(4t).

Here writing f(ξ) = o(ξ) means f(ξ)
ξ
→ 0 as ξ → 0. So

x(t+4t)− x(t)

4t
= µn− µx− λx(1− φ)(αh(βh1 + βh2) + αyβy) + ψy + o(1).

Letting 4t→ 0 we deduce that

dx

dt
= µn− µx− λx(1− φ)(αh(βh1 + βh2) + αyβy) + ψy.

Dividing by n, and recalling that πx =
x

n
, πy =

y

n
.

dπx
dt

= µ− µπx − λπx(1− φ)(αh(βh1 + βh2) + αyβy) + ψπy.

The derivations of the equations for the x1-susceptible, acute h1 and acute h2

classes are a similar way to Corson (2011) and Corson et al. (2012). These equations
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are

dπx1
dt

= σ(1− α)πh2 − µπx1 − λπx1(1− φ)(αh(βh1 + βh2) + αyβy),

dπh1
dt

= (1− δ)λ(1− φ)(αh(βh1 + βh2) + αyβy)(1− πh1 − πh2 − πy − πz)

− (µ+ σ)πh1 ,

dπh2
dt

= λ(1− φ)δ(αh(βh1 + βh2) + αyβy)(1− πh1 − πh2 − πy − πz)− (µ+ σ)πh2 .

The change in the number of y chronic infected PWIDs individuals in the small

time [t, t+4t)

y(t+4t)− y(t) = new chronic y PWIDs in [t, t+4t) who come from the acute

h1 stage

− number of chronic y PWIDs who die in [t, t+4t)

− the number of y-chronic PWIDs who successfully treat HCV

infection in [t, t+4t).

= σh14t− µy4t− ψy4t+ o(4t).

So we have that

y(t+4t)− y(t)

∆t
= σh1 − µy − ψy + o(1).

Letting 4t→ 0 we deduce that

dy

dt
= σh1 − µy − ψy.

Dividing by n then we have

dπy
dt

= σπh1 − µπy − ψπy.

Similarly for immune z PWIDs we have

dπz
dt

= σαπh2 − µπz.
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Note that we assume that all new recruits into the PWID community are sus-

ceptible. This is reasonable as recruits are drawn from the general population where

the level of HCV incidence is low. Similar assumptions are made in Greenhalgh and

Lewis (2000). For needles recall that both stage h1 and stage h2 infectious needles

are equally infectious. We shall discuss two possible assumptions for how stage h1

and stage h2 infectious needles and stage h1 and stage h2 infectious PWIDs interact.

The first (Assumption 1) corresponds to the pessimistic needle assumptions in Lewis

and Greenhalgh (2001a) where state h1 infectious needles are regarded as more in-

fectious than state h2 infectious needles. So needles only move up the spectrum:

uninfectious, state y infectious, state h2 infectious, then state h1 infectious. Hence,

we assume that a stage h1 PWID will always leave needles in state h1 infectivity.

Also, a stage h2 PWID will always leave state h2, state y and uncontaminated nee-

dles in state h2 infectivity. Moreover, a stage y PWID will always leave state y and

uncontaminated needles in state y infectivity.

The change in the number of acute h1 needles and syringes in the small time

interval [t, t+4t)

Mh1(t+4t)−Mh1(t)

= the number of non h1 needles and syringes used by h1

infected PWIDs in [t, t+4t)

− the number of h1 needles and syringes cleaned and then

used by non h1 infected PWIDs in [t, t+4t)

− the number of h1 needles exchanged in [t, t+4t).

= nλ

(
m−Mh1

m

)
πh14t− nλ

Mh1

m
(1− πh1)φ4t− τMh14t+ o(4t).

So dividing by ∆t, then letting ∆t→ 0, we deduce that

dMh1

dt
= nλ

(
1− Mh1

m

)
πh1 − nλ

Mh1

m
(1− πh1)φ− τMh1 + o(1).

Dividing by m,

dβh1
dt

= γλ(1− βh1)πh1 − γλβh1(1− πh1)φ− τβh1 .
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The change in the number of acute h2 needles and syringes in the small time

interval [t, t+4t)

Mh2(t+4t)−Mh2(t)

= the number of non acute h1 and non acute h2 needles and syringes used

by acute h2 infected PWIDs in [t, t+4t)

+ the number of acute h1 needles and syringes cleaned and then

used by acute h2 infected PWIDs in [t, t+4t)

− the number of acute h2 needles and syringes used by acute

h1 infected PWIDs in [t, t+4t)

− the number of acute h2 needles and syringes cleaned and then

used by non acute h1 and non acute h2 infected PWIDs in [t, t+4t)

− the number of acute h2 needles exchanged in [t, t+4t).

= nλ

(
m−Mh1 −Mh2

m

)
πh24t+ nλ

Mh1

m
πh2φ4t− nλ

Mh2

m
πh14t

− nλMh2

m
(1− πh1 − πh2)φ4t− τMh24t+ o(4t).

Dividing by 4t, and letting 4t→ 0 then we deduce that

dMh2

dt
= nλ

(
1− Mh1

m
− Mh2

m

)
πh2 + nλ

Mh1

m
πh2φ− nλ

Mh2

m
πh1

− nλMh2

m
(1− πh1 − πh2)φ− τMh2 .

Dividing by m,

dβh2
dt

= γλ(1− βh1 − βh2)πh2 + γλφβh1πh2 − γλβh2πh1

− γλφβh2(1− πh1 − πh2)− τβh2 .

The second assumption (Assumption 2) for how infectious state h1, h2 needles

interact with infectious stage h1, h2 PWIDs corresponds to the Optimistic Model

assumptions in Greenhalgh and Lewis (2000). Thus whilst they are in the state h1

or h2 infectivity state h1 and state h2 infectious needles adopt the infectious state
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of the last h1 or h2 infectious state PWID to use them. Hence, we assume that a

stage h1 PWID will always leave needles in state h1 infectivity. Also, a stage h2

PWID will always leave needles in state h2 infectivity. Moreover, a stage y PWID

will always leave state y and uncontaminated needles in state y infectivity.

The change in the number of acute h1 needles and syringes individuals in the

small time interval [t, t+4t)

Mh1(t+4t)−Mh1(t)

= the number of non acute h1 needles and syringes

used by acute h1 infected PWIDs in [t, t+4t)

− the number of acute h1 needles and syringes

used by acute h2 infected PWIDs in [t, t+4t)

− the number of acute h1 needles and syringes cleaned

and then used by non acute h1 and non acute h2

infected PWIDs in [t, t+4t)

− the number of acute h1 needles exchanged in [t, t+4t).

= nλ

(
m−Mh1

m

)
πh14t− nλ

Mh1

m
πh24t

−nλφMh1

m
(1− πh1 − πh2)4t− τMh14t+ o(4t).

Dividing by 4t, and letting 4t→ 0 then we deduce that

dMh1

dt
= nλ

(
1− Mh1

m

)
πh1 − nλ

Mh1

m
πh2 − nλφ

Mh1

m
(1− πh1 − πh2)− τMh1 .

Dividing by m,

dβh1
dt

= γλ(1− βh1)πh1 − γλβh1πh2 − γλφβh1(1− πh1 − πh2)− τβh1 .

The change in the number of acute h2 needles and syringes individuals in the

small time interval [t, t+4t)
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Mh2(t+4t)−Mh2(t)

= the number of non acute h2 needles and syringes

used by acute h2 infected PWIDs in [t, t+4t)

− the number of acute h2 needles and syringes

used by acute h1 infected PWIDs in [t, t+4t)

− the number of acute h2 needles and syringes cleaned

and then used by non acute h1 and non acute h2

infected PWIDs in [t, t+4t)

− the number of acute h2 needles exchanged in [t, t+4t).

= nλ

(
m−Mh2

m

)
πh24t− nλ

Mh2

m
πh14t− nλφ

Mh2

m
(1− πh1

−πh2)4t− τMh24t+ o(4t).

Dividing by 4t, and letting 4t→ 0 then we deduce that

dMh2

dt
= nλ

(
1− Mh2

m

)
πh2 − nλ

Mh2

m
πh1 − nλφ

Mh2

m
(1− πh1 − πh2)− τMh2 .

Dividing by m,

dβh2
dt

= γλ(1− βh2)πh2 − γλβh2πh1 − γλφβh2(1− πh1 − πh2)− τβh2 .

In both Assumption 1 and Assumption 2 infectious state h1 or h2 infectious

needles are both more infectious than infectious state y infectious needles so in both

cases the differential equation for infectious state y infectious needles is derived as

follows:

The change in the number of chronic y needles and syringes in [t, t+4t) is

My(t+4t)−My(t)

= the number of initially uninfected needles and syringes used by stage chronic y

infected PWIDs in [t, t+4t)
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+ the number of initially acute h1 or acute h2 infected needles cleaned and

used by chronic y infected PWIDs in [t, t+4t)

− the number of initially chronic y infected needles used by acute h1 or acute h2

infected PWIDs in [t, t+4t)

− the number of initially chronic y infected needles cleaned and used by

susceptible PWIDs in [t, t+4t)

− the number of chronic y needles exchanged in [t, t+4t).

= nλ

(
m−Mh1 −Mh2 −My

m

)
πy4t+ nλφ

(
Mh1 +Mh2

m

)
πy4t

− nλMy

m
(πh1 + πh2)4t− nλφ

My

m
(1− πh1 − πh2 − πy)4t− τMy4t+ o(4t).

Dividing by 4t, and letting 4t→ 0 then we deduce that

dMy

dt
= nλ

(
1− Mh1

m
− Mh2

m
− My

m

)
πy + nλφ

(
Mh1

m
+
Mh2

m

)
πy

−nλMy

m
(πh1 + πh2)− nλφ

My

m
(1− πh1 − πh2 − πy)− τMy.

Dividing by m,

dβy
dt

= γλ(1− βh1 − βh2 − βy)πy + γλφ(βh1 + βh2)πy − γλβy(πh1 + πh2)

−λγφβy(1− πh1 − πh2 − πy)− τβy.

Hence the system of governing equations that describe the spread of HCV

among PWIDs is given by

dπx
dt

= µ− µπx − λπx(1− φ)(αh(βh1 + βh2) + αyβy) + ψπy, (2.1.1)

dπx1
dt

= σ(1− α)πh2 − µπx1 − λπx1(1− φ)(αh(βh1 + βh2) + αyβy), (2.1.2)

dπh1
dt

= (1− δ)λ(1− φ)(αh(βh1 + βh2) + αyβy)(1− πh1 − πh2 − πy − πz)

− (µ+ σ)πh1 , (2.1.3)

dπh2
dt

= λ(1− φ)δ(αh(βh1 + βh2) + αyβy)(1− πh1 − πh2 − πy − πz)

− (µ+ σ)πh2 , (2.1.4)
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dπy
dt

= σπh1 − µπy − ψπy, (2.1.5)

dπz
dt

= σαπh2 − µπz. (2.1.6)

Under Assumption 1 for needles,

dβh1
dt

= γλ(1− βh1)πh1 − γλβh1(1− πh1)φ− τβh1 , (2.1.7)

dβh2
dt

= γλ(1− βh1 − βh2)πh2 + γλφβh1πh2 − γλβh2πh1

− γλφβh2(1− πh1 − πh2)− τβh2 . (2.1.8)

Under Assumption 2 for needles,

dβh1
dt

= γλ(1− βh1)πh1 − γλβh1πh2 − γλφβh1(1− πh1 − πh2)

− τβh1 , (2.1.9)

dβh2
dt

= γλ(1− βh2)πh2 − γλβh2πh1 − γλφβh2(1− πh1 − πh2)

− τβh2 . (2.1.10)

For both Assumptions we have that

dβy
dt

= γλ(1− βh1 − βh2 − βy)πy + γλφ(βh1 + βh2)πy − γλβy(πh1 + πh2)

− λγφβy(1− πh1 − πh2 − πy)− τβy. (2.1.11)

Equations (2.1.1)-(2.1.6) represent how the PWIDs move through the different

stages whereas (2.1.7)-(2.1.11) represent how the needles move through the different

infectious stages.

For either assumption the initial conditions are πx(0) ≥ 0, πx1(0) ≥ 0, πh1(0) ≥

0, πh2(0) ≥ 0, πy(0) ≥ 0 and πz(0) ≥ 0; βh1(0) ≥ 0, βh2(0) ≥ 0 and βy(0) ≥ 0 with

πx(0) +πx1(0) +πh1(0) +πh2(0) +πy(0) +πz(0) = 1 and βh1(0) +βh2(0) +βy(0) < 1.

2.2 Difference to Corson’s model

The model of Corson (2011) also discussed in Corson et al. (2012) assumes that after

use by an infected PWID each needle takes on the infectious state of the last PWID
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to use it. However there is evidence from HIV that once infected needles remain

permanently infected. Hence the assumption that the needle adopts the infectious

state of the last PWID to use it may not be realistic and alternative assumptions

must be explored. Here we have used two alternative assumptions which assume

that the infectious state of the needle can only increase during its lifetime. The

difference between the model discussed in Corson (2011) and Corson et al. (2012)

is similar to the difference between models for the spread of HIV of Greenhalgh

and Lewis (2000) who use an ‘optimistic assumption’ similar to Corson’s model and

that of Lewis and Greenhalgh (2001) who use a ‘pessimistic assumption’ similar to

our model. Thus the PWID-needle interactions are more complicated in our models

than those in Corson (2011) and Corson et al. (2012). As well as the different

PWID needle interaction assumptions in our model addicts can also be treated at

per capita rate ψ.

This completes our derivation of the basic model. In the next section we shall

focus on a key epidemiological parameter, the basic reproduction number R0.

2.3 The basic reproduction number R0

The basic reproduction number is defined as the number of secondary infections

caused by a single infectious person coming into a disease-free population at equi-

librium (Corson (2011), Corson et al. (2012) and Al-Fwzan (2015)). A secondary

infection is when someone is infected after using an infectious needle, contaminated

by the originally infected PWID. In our model an alternative definition of R0 is

defined as the expected number of secondary needles infected by a single infected

needle entering a disease-free population at equilibrium. A secondary needle infec-

tion is a needle infected by a PWID who was infected from the original infectious

needle. R0 is critically important in epidemiological models with the disease usually

being eliminated when R0 < 1 and an epidemic usually occurring when R0 > 1.

In unusual cases, usually in models with two or more different types of individu-

als, there may be subcritical endemic equilibria so disease can persist if R0 < 1

(Greenhalgh et al. (2000)). To derive an expression for R0 we note that for a single
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newly infected PWID entering a population containing only susceptible PWIDs and

uninfectious needles at the disease-free equilibrium, the initial infection process can

be broken down into two distinct phases. Firstly the disease passes from our single

infectious PWID to an uninfectious needle, secondly this needle (which is now in-

fectious) passes on the disease to a susceptible PWID. We wish to find the expected

number of needles a single PWID will infect during his or her infectious lifetime and

the expected number of PWIDs each of these needles will infect. The product of

these expected values is R0. This results in a different value for R0 than using the

next generation matrix method although the threshold value is the same.

PWIDs progress through different infectious stages and during each stage a

PWID will leave needles infectious. Following a similar way as in Corson (2011) and

Corson et al. (2012) then we have on average a PWID generates

λ(1− δ)
µ+ σ

acute h1 infectious needles and
λδ

µ+ σ

acute h2 infectious needles and

λσ(1− δ)
(µ+ ψ)(µ+ σ)

chronic y infectious needles.

We now want to find Ei(PWIDs infected by the single needle), where i =

h1, h2, y classes. Hence, we first define that:

Y = the number of PWIDs infected by a single needle,

X1 = the event that the needle is safe before the next injection

and

X2 = the event that the needle is still infectious before the next injection.

Therefore,

Eh1(Y ) = Eh1(Y |X1)P (X1) + Eh1(Y |X2)P (X2).
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If the needle is safe before the next injection that means Eh1(Y |X1) = 0 and if

the needle is still infectious before the next injection then the probability of event

X2 is λγ(1− φ)/(λγ + τ) and

Eh1(Y ) =
λγ(1− φ)

λγ + τ
Eh1(Y |X2).

We now explore Eh1(Y |X2) by conditioning on the next event, that of a susceptible

PWID injecting with an infectious needle. This event has two outcomes. A PWID

may be infected by the needle or still remain susceptible. (Note that in this situation

the needle is never flushed and this is different to the models discussed in Corson

(2011) and Corson et al. (2012) where the needle is always flushed.) Consider

the event that a susceptible PWID injects with an infectious needle, each of the

two outcomes mentioned previously are possible and each outcome has different

implications for the number of PWIDs infected by this needle. If the PWID becomes

infected then the number of PWIDs infected from the needle before the next injection

is one, if the PWID is not infected then the number of PWIDs infected from the

needle before the next injection is zero. In the case the needle infects the susceptible

PWID then it will infect in total Eh1 + 1 PWIDs where Eh1 = Eh1 (PWIDs infected

by a single needle), similarly if the PWID was not infected then the needle will infect

in total Eh1 PWIDs.

Hence, we are assuming that a susceptible PWID always leaves an infectious

needle in the infectious state that means an infectious needle is never flushed by a

susceptible PWID. Namely that the PWID is infected by the needle with probability

αh or remains susceptible with probability 1− αh. Therefore,

Eh1 =
λγ(1− φ)

λγ + τ

[
P(susceptible PWID infected) + P(needle not flushed)Eh1

]
.

(2.3.12)

Here P(needle not flushed) =1. This is different to the models discussed in Corson

(2011) and Corson et al. (2012) where in this situation P(needle not flushed) = 0.

Hence (2.3.12) is

Eh1 =
λγ(1− φ)

λγ + τ
(αh + Eh1).
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Solving for Eh1 we deduce that

Eh1 =
(1− φ)αh
φ+ τ̂

.

Here τ̂ = (τ/λγ).

A second way to derive Eh1 is to note that at each stage the needle remains

infectious between PWIDs with probability

λγ(1− φ)

λγ + τ
=

1− φ
1 + τ̂

and infects a previously susceptible PWID with probability αh at each injection.

Hence the probability that the needle remains infectious for PWIDs 1, 2, 3, . . . i− 1

but does not remain infectious for PWID i is[
1− 1− φ

1 + τ̂

](
1− φ
1 + τ̂

)i−1
=
φ+ τ̂

1 + τ̂

(
1− φ
1 + τ̂

)i−1
i = 1, 2, 3, . . .

in other words a geometric distribution with p = 1−φ
1+τ̂

.

So the total number of PWIDs to use the needle and become infected before

the needle becomes uninfectious is

S = Eh1 = αh
φ+ τ̂

1 + τ̂

[
0 +

1(1− φ)

1 + τ̂
+

2(1− φ)2

(1 + τ̂)2
+

3(1− φ)3

(1 + τ̂)3
+ . . .

]
.

Multiplying by 1−φ
1+τ̂

S
(1− φ)

1 + τ̂
= αh

(φ+ τ̂)

(1 + τ̂)

[
0 +

1(1− φ)2

(1 + τ̂)2
+

2(1− φ)3

(1 + τ̂)3
+

3(1− φ)4

(1 + τ̂)4
+ . . .

]
.

Subtracting

S
(φ+ τ̂)

1 + τ̂
= αh

(φ+ τ̂)

1 + τ̂

[
(1− φ)

1 + τ̂
+

(1− φ)2

(1 + τ̂)2
+

(1− φ)3

(1 + τ̂)3
+ . . .

]
.

= αh
(φ+ τ̂)(1− φ)

(1 + τ̂)2

[
1

1− 1−φ
1+τ̂

]
.

= αh
(1− φ)

1 + τ̂
.

Hence

S = αh
(1− φ)

φ+ τ̂
.
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So

S = Eh1 = αh
(1− φ)

φ+ τ̂
.

Moreover, this argument is the same in the acute h2 and chronic y for Assumption 1

and Assumption 2 because in both assumptions we have assumed that the PWIDs

never flushed needles. Therefore, we use a similar argument to derive the expected

number of PWIDs that are infected by acute h2 and chronic y needles in both

assumptions of needles until they are uninfectious. These are

Eh2 =
(1− φ)αh
φ+ τ̂

and

Ey =
(1− φ)αy
φ+ τ̂

respectively.

An expression for the total of secondary infections caused by one infectious

PWID entering the disease-free population can be calculated by multiplying the

expected number of infections from each type of infectious needle (in both assump-

tions) with the expected number of needles that a PWID generates during their

infectious lifetime. This gives

λ(1− δ)
(µ+ σ)

(1− φ)αh
(φ+ τ̂)

+
λδ

(µ+ σ)

(1− φ)αh
(φ+ τ̂)

+
λσ(1− δ)

(µ+ ψ)(µ+ σ)

(1− φ)αy
(φ+ τ̂)

=
λ(1− φ)

(µ+ ψ)(µ+ σ)(φ+ τ̂)
[(µ+ ψ)αh + αyσ(1− δ)].

Hence, the basic reproduction number is given by

R0 =
λ(1− φ)

(µ+ ψ)(µ+ σ)(φ+ τ̂)
[(µ+ ψ)αh + αyσ(1− δ)]. (2.3.13)

Thus, we conclude that R0 is the same for Assumption 1 and Assumption 2. More-

over it is different than R0 in Corson (2011) and Corson et al. (2012) because of the

ψ terms and also the factor (φ+ τ̂) in the denominator.

Another way to derive our R0 is by considering R0 as the number of HCV

cases in PWIDs caused via exactly one infected syringe from a single newly infected

PWID entering the DFE point (Liang et al. (2019), Macdonald (1952), Maier et al.
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(2017), Massad et al. (2001), Sanches and Massad (2016) and Van den Driessche

(2017)). An alternative approach (Diekmann et al. (1990), Roberts and Heesterbeek

(2003), Van den Driessche (2017), Van den Driessche and Watmough (2002), Van den

Driessche and Watmough (2008) and Wonham and Lewis (2008)) takes the interval

between cases of disease to be between vector (in our case needles) and human

(individual PWID) or human and vector. If this method is applied the new basic

reproduction number, R∗0 say, is the unique positive real root of a cubic equation.

As R∗0 > 1 if and only if R0 > 1 and R∗0 < 1 if and only if R0 < 1 this R∗0 has the

same threshold value as R0.

We work with the equations representing the absolute number of PWIDs and

needles not the proportions. The infectious compartments are h1, h2, y and Mh1 ,

Mh2 and My.

dh1
dt

=
λ

m
(1− δ)(1− φ)

[
αh(Mh1 +Mh2) + αyMy

](
n− h1 − h2 − y − z

)
−(µ+ σ)h1,

dh2
dt

=
λ

m
δ(1− φ)

[
αh(Mh1 +Mh2) + αyMy

](
n− h1 − h2 − y − z

)
− (µ+ σ)h2,

dy

dt
= σh1 − (µ+ ψ)y,

dMh1

dt
=

λ

m
(m−Mh1)h1 −

λ

m
Mh1(n− h1)φ− τMh1 ,

dMh2

dt
=

λ

m
(m−Mh1 −Mh2)h2 +

λ

m
φMh1h2 −

λ

m
Mh2h1 −

λ

m
φMh2(n− h1 − h2)

− τMh2 ,

dMy

dt
=

λ

m
(m−Mh1 −Mh2 −My)y +

λ

m
φ(Mh1 +Mh2)y −

λ

m
My(h1 + h2)

− λ

m
φMy(n− h1 − h2 − y)− τMy.
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Recall that Fi is the rate at which new cases of disease arise in the i′th class

F1 = (1− δ) λ
m

(1− φ)
(
αh(Mh1 +Mh2) + αyMy

)
(n− h1 − h2 − y − z),

F2 = δ
λ

m
(1− φ)

(
αh(Mh1 +Mh2) + αyMy

)
(n− h1 − h2 − y − z),

F3 = σh1,

F4 =
λ

m
(m−Mh1)h1,

F5 =
λ

m
(m−Mh1 −Mh2)h2 +

λ

m
φh2Mh1 ,

F6 =
λ

m
(m−Mh1 −Mh2 −My)y +

λ

m
φ(Mh1 +Mh2)y.

Hence recalling our discussion of the Next Generation Matrix Method in Section

1.4.1

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 (1− δ)(1− φ)αhλγ (1− δ)(1− φ)αhλγ (1− δ)(1− φ)αyλγ

0 0 0 δ(1− φ)αhλγ δ(1− φ)αhλγ δ(1− φ)αyλγ

σ 0 0 0 0 0

λ 0 0 0 0 0

0 λ 0 0 0 0

0 0 λ 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(µ+ σ) 0 0 0 0 0

0 (µ+ σ) 0 0 0 0

0 0 (µ+ ψ) 0 0 0

0 0 0 λγφ+ τ 0 0

0 0 0 0 λγφ+ τ 0

0 0 0 0 0 λγφ+ τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

So calculating FV−1 gives the Next Generation Matrix and similarly for Assump-

tion 2. Therefore, using the next generation matrix approach there are six types

of infectious entities h1, h2 and y for individual PWIDs and Mh1 ,Mh2 and My for

needles. The next generation matrix is defined as the matrix M = {Mij : i =

1, 2, 3, 4, 5, 6, j = 1, 2, 3, 4, 5, 6} where Mij is defined as the expected number of

secondary cases in infectious state i caused by a single newly infectious PWID in

infectious state j entering a disease free population at equilibrium. Hence

M =



0 0 0 αh(1− δ)φ∗ αh(1− δ)φ∗ αy(1− δ)φ∗

0 0 0 αhδφ
∗ αhδφ

∗ αyδφ
∗

σ

µ+ σ
0 0 0 0 0

λ

µ+ σ
0 0 0 0 0

0
λ

µ+ σ
0 0 0 0

0 0
λ

µ+ ψ
0 0 0


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where φ∗ = 1−φ
φ+τ̂

. It is straightforward to show that three of the eigenvalues of this

matrix are zero and the remaining three satisfy f(ω) = 0 where

f(ω) = ω3 − αhφ∗
λ

µ+ σ
ω − αyφ∗

λσ(1− δ)
(µ+ σ)(µ+ ψ)

.

As f(0) < 0 and limω→∞ f(ω) = ∞ the equation f(ω) = 0 has either one or

three strictly positive real roots. By Descartes rule of signs it has either zero or one

strictly positive real roots (Bennett (1922)), hence has exactly one positive real root.

Moreover as the Next Generation Matrix M is a positive irreducible matrix it has

a real strictly positive eigenvalue corresponding to its spectral radius (Lemma 2.1

in Nold, 1980), which is R∗0, the basic reproduction number by the Next Generation

Matrix method. Moreover f(1) = 1 − R0. Hence R∗0 > 1 if and only if R0 > 1,

R∗0 = 1 if and only if R0 = 1, and R∗0 < 1 if and only if R0 < 1. So R0 and R∗0 have

the same threshold value.

We now going to see the behaviour of our model analytically. In particular, in

the conditions that allow HCV to die out or persist in the population.

2.4 Analytical results

In this section we are going to analyse the behaviour of our transmission model, cen-

tering on the conditions that result in HCV persistence or elimination. We proceed

with an equilibrium and stability analysis in order to determine the nature of any

equilibrium solutions. Then we shall show that there are two equilibrium solutions;

a zero and an unique non-zero solution. Stability analysis will present that the zero

solution is globally stable when R0 ≤ 1 and unstable when R0 > 1. After that we

will derive an approximation to our differential equation model with the same basic

reproduction number and equilibria. The non-zero solution for our approximation

model is locally asymptotically stable when R0 > 1.

Moreover we will suppose that the probability of successful needle and syringe

cleaning, φ, lies between zero and one but cannot take the value one. If we allow

φ = 1 then R0 = 0 and no disease transmission will take place, φ = 0 is allowed

since this corresponds to a scenario where PWIDs do not engage in cleaning practices

prior to injecting. In addition, we suppose that the remaining model parameters are
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strictly positive.

2.4.1 Equilibrium solutions

Theorem 2.4.1. In either system (2.1.1)-(2.1.8) and (2.1.11) or (2.1.1)-(2.1.6)

and (2.1.9)-(2.1.11), if R0 ≤ 1 then the system has a unique equilibrium solution

where the disease has died out in both PWIDs and needles and syringes. If R0 > 1

then there is the DFE, moreover there is a unique endemic equilibrium point.

Proof. If we are using the similar method which was used in proving of Theorem 3.1

in Corson (2011) and proving of Theorem 4.1 in Corson et al. (2012) and considering

the different PWID needle interaction assumptions in our model addicts can also

be treated at per capita rate ψ therefore we can write π∗i and β∗j where i = x, x1,

h1, h2, y, z and j = h1, h2, y represent to the endemic equilibrium proportions of

PWIDs and needles respectively. Putting d
dt

= 0 in equations (2.1.1)-(2.1.11) and

then defining π∗h1 = (1 − δ)k, which leads to π∗h2 = δk from (2.1.3) and (2.1.4), we

have that

π∗y =
σ(1− δ)k
µ+ ψ

, π∗z =
σαδk

µ
.

For Assumption 1 we have that

β∗h1 =
(1− δ)k

(1− δ)k(1− φ) + φ+ τ̂
and

β∗h2 =
kδ(φ+ τ̂)

(k(1− φ) + φ+ τ̂)(k(1− δ)(1− φ) + φ+ τ̂)
.

For Assumption 2 we have that

β∗h1 =
k(1− δ)

k(1− φ) + φ+ τ̂
and β∗h2 =

kδ

k(1− φ) + φ+ τ̂
.

For notational simplicity write πh = πh1 + πh2 , βh = βh1 + βh2 , π = πh1 + πh2 + πy

and β = βh1 + βh2 + βy. Denote their respective equilibrium values by π∗h, β
∗
h, π

∗

and β∗. Then for both Assumption 1 and Assumption 2

dβh
dt

= γλ(1− βh)πh − γλφβh(1− πh)− τβh, (2.4.14)
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and

dβ

dt
= γλ(1− β)π − γλφβ(1− π)− τβ. (2.4.15)

Hence from the equilibrium versions of these equations

β∗h =
k

k(1− φ) + φ+ τ̂
,

β∗ =

k

(
1 + σ(1−δ)

µ+ψ

)
k

(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

,

and

β∗y =
(φ+ τ̂)σk(1−δ)

µ+ψ(
k(1− φ) + φ+ τ̂

)[
k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

] .
Adding the equilibrium versions of equations (2.1.3) and (2.1.4) we deduce that

k = π∗h =
λ(1− φ)

µ+ σ
(1− π∗ − π∗z)

(
(αh − αy)β∗h + αyβ

∗).
Hence k=

λ(1− φ)

µ+ σ

(
1− k

[
1 +

σ(1− δ)
µ+ ψ

+
σαδ

µ

])(
(αh − αy)k

k(1− φ) + φ+ τ̂

+
kαy
(
1 + σ(1−δ)

µ+ψ

)
k
(
1 + σ(1−δ)

µ+ψ

)
+ φ+ τ̂

)
.

(2.4.16)

k = 0 is always a possible solution of (2.4.16) corresponding to the disease-free

equilibrium solution which is therefore always possible. Any other non-zero solution

must satisfy

1 =
λ(1− φ)

µ+ σ

(
1− k

[
1 +

σ(1− δ)
µ+ ψ

+
σαδ

µ

])(
(αh − αy)

k(1− φ) + φ+ τ̂

+
αy
(
1 + σ(1−δ)

µ+ψ

)
k
(
1 + σ(1−δ)

µ+ψ

)
+ φ+ τ̂

)
.

(2.4.17)
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Let g(k) denote the right-hand side of (2.4.17). g(k) is strictly monotone decreasing

in k with g(0) = R0. Hence if R0 ≤ 1 there are no strictly positive solutions to

(2.4.17) whereas if R0 > 1 there is a unique strictly positive solution to (2.4.17) in

(0, k∗) where k∗ = 1/[1 + (σ(1− δ)/(µ+ ψ)) + (σαδ/µ)].

It is straightforward to show that this strictly positive solution corresponds to

an endemic equilibrium for either Assumption 1 or Assumption 2. Hence we have

shown that if R0 > 1 there is a unique feasible endemic equilibrium with all of

π∗x, π
∗
x1
, π∗h1 , π

∗
h2
, π∗y, π

∗
z , β

∗
h1

, β∗h2 and β∗y strictly positive and if R0 ≤ 1 there is only

the disease-free equilibrium.

We conclude that the proof of 2.4.1 is different to Corson (2011) and Corson

et al. (2012). It is a more complicated and significantly different proof because

of the needle equations. Also R0 is the same for the Pessimistic Model with both

Assumption 1 and Assumption 2. There is a difference between the results for

Assumption 1 and Assumption 2 in that the β∗h1 and β∗h2 value differs.

2.4.2 Global stability of the disease free equilibrium

We are going now to see what happens when 0 ≤ R0 ≤ 1. In this situation we shall

show that when R0 takes the values between 0 and 1 inclusive HCV will die out in

all PWIDs and needles and syringes.

Theorem 2.4.2. If R0 ≤ 1 HCV will be eradicated in all PWIDs and needles and

syringes.

Proof. Note that the idea of the proof is similar to that of Corson (2011) and

Corson (2012) but the main difference is the needle equations. There is also the

PWID treatment rate ψ. This outcome is proved in several steps. We write

π∞h1 for limt→∞ sup πh1(t), with similar definitions for the other π∞i and β∞j for

i = x1, h1, h2, y, z and j = h1, h2, y. We start off proving several results that

give upper bounds on the limit suprema of each PWID and needle class in terms

of either π∞h1 or π∞h2 , this leads us to express our results in terms of a single limit

supremum. We then show if R0 ≤ 1 this limit supremum is equal to zero. Applying
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this result will complete the proof.

Lemma 2.4.3. π∞y ≤
σπ∞h1
µ+ ψ

.

Proof. From equation (2.1.5), we have that

dπy
dt

+ (µ+ ψ)πy = σπh1 .

To solve by using an integrating factor, we have

d

dt
[πy exp((µ+ ψ)t)] = σπh1 exp((µ+ ψ)t).

So given ε > 0, there exists t1(ε) ≥ 0 such that for t ≥ t1(ε)

d

dt
[πy exp((µ+ ψ)t)] ≤ σ(π∞h1 + ε) exp((µ+ ψ)t).

Let t ≥ t1(ε) and integrating over [t1(ε), t] gives

πy(t) exp((µ+ ψ)t)− πy(t1(ε)) exp((µ+ ψ)t1(ε)) ≤ (π∞h1 + ε)σ
1

µ+ ψ
(exp((µ+ ψ)t)

− exp((µ+ ψ)t1(ε))),

πy(t) ≤ πy(t1(ε)) exp(−(µ+ ψ)(t− t1(ε)))

+ (π∞h1 + ε)σ
1

µ+ ψ
(1− exp[−(µ+ ψ)(t− t1(ε))]),

≤ exp(−(µ+ ψ)(t− t1(ε))) + (π∞h1 + ε)σ
1

µ+ ψ
.

Note there exists t2(ε) > t1(ε) such that exp(−(µ+ ψ)(t− t1(ε))) ≤ ε. For t ≥ t2(ε)

πy(t) ≤ ε+ (π∞h1 + ε)σ
1

µ+ ψ
=

σπ∞h1
µ+ ψ

+ ε1, where ε1 = ε

(
µ+ ψ + σ

µ+ ψ

)
.

Suppose that π∞y >
σπ∞h1
µ+ψ

. Then take ε1 = 1
2

(
π∞y −

σπ∞h1
µ+ψ

)
> 0. For t ≥ t2(ε),

πy(t) ≤
σπ∞h1
µ+ ψ

+
1

2

(
π∞y −

σπ∞h1
µ+ ψ

)
.

Letting t→∞,

π∞y ≤
σπ∞h1

2(µ+ ψ)
+

1

2
π∞y .



2.4. Analytical results 82

Re-arranging we deduce that

πy(t) ≤
σπ∞h1
µ+ ψ

.

This is a contradiction therefore πy(t) ≤
σπ∞h1
µ+ ψ

, completing the proof.

Corollary 2.4.1. π∞z ≤
σαπ∞h2
µ

.

Proof.

dπz
dt

+ µπz = σαπh2 .

Using the same method which was used in the proof of Lemma 2.4.3 the result

follows.

We shall next use the same method and equations (2.1.7)-(2.1.8) and (2.1.11)

for Assumption 1 and equations (2.1.9)-(2.1.11) for Assumption 2 to find upper

bounds for β∞h1 , β
∞
h2

and β∞y . Recall that τ̂ = τ
λγ

. For Assumption 1 from equation

(2.1.7) we have that

dβh1
dt

= γλπh1 − γλβh1(φ+ τ̂)− γλπh1βh1(1− φ).

For Assumption 2 from equation (2.1.9) we have that

dβh1
dt

= γλπh1 − γλβh1(φ+ τ̂)− γλ(πh1 + πh2)βh1(1− φ).

So in both cases

dβh1
dt
≤ γλπh1 − γλβh1(φ+ τ̂).

So multiplying by exp
(
λγ(φ+ τ̂)t

)
we have

d

dt
[βh1 exp(λγ(φ+ τ̂)t)] ≤ λγπh1 exp(λγ(φ+ τ̂)t).

Proceeding as in the proof of Lemma 2.4.3 we deduce that

β∞h1 ≤
π∞h1
φ+ τ̂

.
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Similarly for βh2 for Assumption 1 from equation (2.1.8) we have that

dβh2
dt
≤ γλπh2 − γλβh2(φ+ τ̂)− γλ(πh1 + πh2)βh2(1− φ)− λγβh1πh2(1− φ),

≤ γλπh2 − γλβh2(φ+ τ̂).

And from equation (2.1.10) we have that

dβh2
dt
≤ γλπh2 − γλβh2(φ+ τ̂).

Again proceeding as in the proof of Lemma 2.4.3 we deduce that

β∞h2 ≤
π∞h2
φ+ τ̂

.

For βy for both Assumption 1 and Assumption 2 we have that

dβy
dt

= λγπy − λγβy(φ+ τ̂)− λγπy(βh1 + βh2)(1− φ)

−λγβyπy(1− φ)− βy(πh1 + πh2)(1− φ),

≤ λγπy − λγβy(φ+ τ̂).

So once again we have that

β∞y ≤
π∞y
φ+ τ̂

.

Now for Assumption 1 and Assumption 2, we have that

β∞h1 ≤
π∞h1
φ+ τ̂

, β∞h2 ≤
π∞h2
φ+ τ̂

and β∞y ≤
π∞y
φ+ τ̂

. (2.4.18)

Again if we compare this with Corson (2011) and Corson et al. (2012) then we can

see this is different than both Corson (2011) and Corson et al. (2012) because of

the φ.

The next step in our argument is to derive a relationship between π∞h1 and π∞h2

given by the following Lemma:

Lemma 2.4.4.

(1− δ)π∞h2 = δπ∞h1 .

Proof. Following a similar proof of Lemma 3.2 in Corson (2011) and Lemma 4.2 in

Corson et al. (2012).
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Define πh = πh1 + πh2 . Suppose that π∞h > 0. Using the previous lemma it is

straightforward to show that

π∞h =
π∞h1

(1− δ)
=
π∞h2
δ
.

We can use Lemma 2.4.4 to write the inequalities in Lemma 2.4.3, Corollary 2.4.1

and equations (2.4.18) in terms of π∞h to obtain:

π∞y ≤
σ(1− δ)π∞h
µ+ ψ

, (2.4.19)

π∞z ≤
σδαπ∞h
µ

, (2.4.20)

β∞h1 ≤
(1− δ)π∞h
φ+ τ̂

, (2.4.21)

β∞h2 ≤
δπ∞h
φ+ τ̂

and (2.4.22)

β∞y ≤
σ(1− δ)π∞h

(µ+ ψ)(φ+ τ̂)
. (2.4.23)

Adding equations (2.1.3) and (2.1.4) together we have

dπh
dt

= λ(1− φ)(1− πh − πy − πz)(αh(βh1 + βh2) + αyβy)− (µ+ σ)πh,

≤ λ(1− φ)(1− πh)(αh(β∞h1 + β∞h2) + αyβ
∞
y + ε)− (µ+ σ)πh,

for ε > 0, t ≥ t3(ε) for some t3(ε) > 0.

Substituting in the upper bounds for β∞h1 , β
∞
h2

and β∞y given by inequalities (2.4.21)-

(2.4.23) yields

dπh
dt
≤ λ(1− φ)(1− πh)

(
αh

(
(1− δ)π∞h
φ+ τ̂

+
δπ∞h
φ+ τ̂

)
+ αy

σ(1− δ)π∞h
(µ+ ψ)(φ+ τ̂)

+ ε

)
− (µ+ σ)πh,

≤ (µ+ σ)

[
(1− πh)

λ(1− φ)

(µ+ ψ)(µ+ σ)(φ+ τ̂)
((µ+ ψ)αh

+ σαy(1− δ))π∞h + ε2 − πh
]
,

where ε2 = ελ(1−φ)
(µ+σ)

. Using equation (2.3.13) we obtain

dπh
dt
≤ (µ+ σ)[(R0 + ε3)π

∞
h − (R0π

∞
h + 1)πh], where ε3 =

ελ(1− φ)

(µ+ σ)π∞h
.
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Following a similar proof as in Corson (2011), so for all t ≥ t3(ε) and by integrating

over [t3(ε), t] and using a similar method to that used in the proof of Lemma 2.4.3

we have that

π∞h ≤
π∞h R0

(1 + π∞h R0)
+ ε5, where ε5 = ε4 +

ε3π
∞
h

(1 + π∞h R0)

such that ε4 is an arbitrarily small positive constant. Since if 0 ≤ R0 ≤ 1 then we

deduce that

π∞h −
π∞h R0

(1 +R0π∞h )
> 0.

Because ε5 > 0 is arbitrarily then we can write

ε5 =
1

2

(
π∞h −

π∞h R0

(1 +R0π∞h )

)
.

As in Corson (2011) and Corson et al. (2012) this results in a contradiction and

hence we deduced that π∞h = 0 provided that 0 ≤ R0 ≤ 1. So as a result π∞h1 =

π∞h2 = π∞y = π∞z = β∞h1 = β∞h2 = β∞y = 0. Therefore the DFE is globally stable when

0 ≤ R0 ≤ 1 (see Theorem 3.2, Corson 2011).

Thus we have shown that if R0 ≤ 1 the DFE is globally asymptotically stable.

We next turn our attention to the situation where R0 > 1, recall that in this case

there is a unique endemic equilibrium. Our first result is the following lemma which

shows that if R0 > 1 then the DFE is unstable.

Theorem 2.4.5. If R0 > 1 the DFE is unstable.

Proof. If we are using the similar method which was used in proving of Theo-

rem 3.3 in Corson (2011) and proving of Theorem 4.3 in Corson et al. (2012) and

considering the linearised system of equations (2.1.1)-(2.1.11) which are evaluated

at the DFE. Also, when linearising the population dynamics in the neighbour-

hood of the disease-free equilibrium point then we have that dx/dt = Jx, where

xT = (1−πx, πx1 , πh1 , πh2 , πy, πz, βh1 , βh2 , βy) then this leads us to have one J matrix

for both Assumption 1 and Assumption 2 which is given by
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

−µ 0 0 0 −ψ 0 λ(1− φ)αh λ(1− φ)αh λ(1− φ)αy

0 −µ 0 σ(1− α) 0 0 0 0 0

0 0 −(µ+ σ) 0 0 0 λ(1− φ)(1− δ)αh λ(1− φ)(1− δ)αh λ(1− φ)(1− δ)αy

0 0 0 −(µ+ σ) 0 0 λ(1− φ)δαh λ(1− φ)δαh λ(1− φ)δαy

0 0 σ 0 −(µ+ ψ) 0 0 0 0

0 0 0 σα 0 −µ 0 0 0

0 0 λγ 0 0 0 −(φλγ + τ) 0 0

0 0 0 λγ 0 0 0 −(φλγ + τ) 0

0 0 0 0 λγ 0 0 0 −(φλγ + τ)



.

Using the Routh-Hurwitz conditions then we need just to show that for instability

the constant term a9 < 0, in the characteristic equation of J. Now the characteristic

equation of the matrix J is a ninth-order polynomial in ω, which is in the form:

ω9 + a1ω
8 + a2ω

7 + a3ω
6 + a4ω

5 + a5ω
4 + a6ω

3 + a7ω
2 + a8ω + a9 = 0.

It is straightforward to show that

a9 = µ3(µ+ ψ)(µ+ σ)2(φλγ + τ)3[
1−

(
λ(1− φ)λγαh

(φλγ + τ)(µ+ σ)
+

λ(1− φ)(1− δ)σλγαy
(µ+ ψ)(µ+ σ)(φλγ + τ)

)]
,

= µ3(µ+ ψ)(µ+ σ)2(φλγ + τ)3[1−R0].

As in Corson (2011) and Corson et al. (2012), this term is negative when R0 > 1

and the result follows.

Our main persistence result is Theorem 2.4.10 which states that if R0 > 1 then

these terms cannot become arbitrarily small, hence can be bounded away from the

origin.

This shows that if infection is initially present in either PWIDs or needles and

R0 > 1 then infection will persist indefinitely. As with Theorem 2.4.2, we are going
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to prove this in several stages. Hence, we need some preliminary lemmas. Let

πh1,∞ = lim inf
t→∞

πh1(t),

πh2,∞ = lim inf
t→∞

πh2(t),

πy,∞ = lim inf
t→∞

πy(t),

πz,∞ = lim inf
t→∞

πz(t),

βh1,∞ = lim inf
t→∞

βh1(t),

βh2,∞ = lim inf
t→∞

βh2(t),

βy,∞ = lim inf
t→∞

βy(t).

Lemma 2.4.6. If πy,∞ = limt→∞ inf πy(t), then

πy,∞ ≥
σπh1,∞
µ+ ψ

.

Proof. From equation (2.1.5) we have, given ε > 0 then

d

dt
[πy exp((µ+ ψ)t)] = σπh1 exp((µ+ ψ)t),

≥ σ(πh1,∞ − ε) exp((µ+ ψ)t), ∀ t ≥ t4(ε), for some t4(ε) > 0.

Now integrating over [t4(ε), t] gives

πy(t) exp((µ+ ψ)t) ≥ πy(t4(ε)) exp((µ+ ψ)t4(ε)) + (πh1,∞ − ε)σ
1

µ+ ψ
(exp(µ+ ψ)t

− exp(µ+ ψ)t4(ε)).

Dividing by exp((µ+ ψ)t),

πy(t) ≥ πy(t4(ε)) exp[−(µ+ψ)(t−t4(ε))]+(πh1,∞−ε)
σ

µ+ ψ
[1−exp(−(µ+ψ)(t−t4(ε)))].

Now note that exp(−(µ+ψ)(t−t4(ε)))→ 0 as t→∞. So there exists t5(ε) > t4(ε)

such that for t ≥ t5(ε),

πy(t) ≥
σπh1,∞
µ+ ψ

− ε6, where ε6 = ε
µ+ ψ + σ

µ+ ψ
.

As ε is arbitrary the result of Lemma 2.4.6 follows.
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Lemma 2.4.7.

πz,∞ ≥
σαπh2,∞

µ
.

Proof. Using equation (2.1.6) and the same method used in the previous lemma

then the result follows.

In order to prove Theorem 2.4.2 we needed to find a relationship between π∞h1

and π∞h2 . In a similar way, to prove Theorem 2.4.10 we need to find a relationship

between πh1,∞ and πh2,∞.

Lemma 2.4.8.

(1− δ)πh2,∞ = δπh1,∞.

Proof. Following a similar proof of Lemma 3.5 in Corson (2011) and Lemma 4.3 in

Corson et al. (2012).

Using the same method as Lemma 2.4.6 and equations (2.1.7), (2.1.9), (2.4.14)

and (2.4.15) for both Assumption 1 and Assumption 2 it is straightforward to show

that

βh1,∞ ≥
πh1,∞
1 + τ̂

, βh,∞ ≥
πh1,∞

(1− δ)(1 + τ̂)
and β∞ ≥

πh1,∞
(1− δ)(1 + τ̂)

(
1 +

σ(1− δ)
µ+ ψ

)
.

(2.4.24)

So this argument is different than Corson (2011) and Corson et al. (2012) because

we have to combine the β’s.

From Lemmas 2.4.6-2.4.8 and inequalities (2.4.24) we deduce that it is sufficient

to show that πh1,∞ > 0 in order to bound trajectories away from zero.

Lemma 2.4.9. Assume that at least one of πh1(0), πh2(0), πy(0), βh1(0), βh2(0),

and βy(0) is strictly positive then πh1(∆t), πh2(∆t), πy(∆t), βh1(∆t), βh2(∆t), and

βy(∆t) are all bigger than zero for small ∆t > 0.

Proof. Similar to the proof of Lemma 3.6 in Corson (2011) and the proof of the

Lemma 4.4 in Corson et al. (2012) although there are small differences in the

introduction of a ψ term and the fact that the β equations are different and there

are two Assumptions.
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Theorem 2.4.10. If R0 > 1 and either π(0) > 0 or β(0) > 0 is strictly positive

then there exists ε > 0 and η > 0 such that for t > η, πh1 ≥ επ∗h1, πh2 ≥ επ∗h2,

πy ≥ επ∗y, πz ≥ επ∗z , βh1 ≥ εβ∗h1, βh ≥ εβ∗h and β ≥ εβ∗.

Proof. Note that this is again different to Corson (2011) and Corson et al. (2012)

because it is more complicated and we have to work with βh1 , βh and β instead of

βh1 , βh2 and βy. Also the bounds for the β’s are different. However part of the

argument is based on Corson (2011) and Corson et al. (2012).

Assume that ε is fixed and small. We have two cases:

1. πh1,∞ ≥ 1
2
επ∗h1 or

2. πh1,∞ < 1
2
επ∗h1 .

Starting first by case 1, πh1,∞ ≥ 1
2
επ∗h1 , then we have from the definition of πh1,∞

that there exists T1 such that for all t ≥ T1, πh1 ≥ 1
4
επ∗h1 . Then using Lemma 2.4.8

we find that

πh2,∞ =
δ

1− δ
πh1,∞ ≥

1

2
ε

δ

1− δ
π∗h1 =

1

2
επ∗h2 .

Arguing similarly to the above there exists T2 such that for t ≥ T2 then πh2 ≥ 1
4
επ∗h2 .

Recall that under Assumption 1

β∗h1 =
π∗h1

π∗h1 + φ(1− π∗h1) + τ̂
,

and under Assumption 2

β∗h1 =
π∗h1

π∗h + φ(1− π∗h) + τ̂
,

and also under both assumptions

β∗h =
π∗h

π∗h + φ(1− π∗h) + τ̂
,

and

β∗ =
π∗

π∗ + φ(1− π∗) + τ̂
.
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Hence using Lemma 2.4.6 and 2.4.7 and inequalities (2.4.24) and arguing similarly to

the above we find that there exists a T3 such that for all t ≥ T3, πy ≥ 1
4
επ∗y, πz ≥ 1

4
επ∗z ,

βh1 ≥ 1
4
ε
π∗h1

(1−φ)+φ+τ̂
1+τ̂

β∗h1 (under Assumption 1) or βh1 ≥ 1
4
ε
π∗h(1−φ)+φ+τ̂

1+τ̂
β∗h1 (under

Assumption 2), βh ≥ 1
4
ε
π∗h(1−φ)+φ+τ̂

1+τ̂
β∗h and β ≥ 1

4
επ
∗(1−φ)+φ+τ̂

1+τ̂
β∗. The inequalities

apart from that for βh1 are true for either assumption. So defining ε′ = 1
4
εφ+τ̂
1+τ̂

we

see that Theorem 2.4.10 is true with ε′ replaced by ε.

Now we are dealing with case 2 where πh1,∞ < 1
2
επ∗h1 , if we assume that πh1,∞ <

1
2
επ∗h1 then from Lemma 2.4.9 we can find time r ≥ ∆t where πh1(r) <

1
2
επ∗h1 . So

if we define the time t0 by t0 = inf{r ≥ 4t, πh1(r) < 1
2
επ∗h1} to be the first time

which is located immediately after t = ∆t where πh1 starts to go below 1
2
επ∗h1 and

t1 = inf{r ≥ t0, πh1(r) >
1
2
επ∗h1} to be the first time which is also located immediately

after t = t0 where πh1 increases over 1
2
επ∗h1 . If πh1(∆t) ≥ 1

2
επ∗h1 then by the definition

of t0, we have πh1(t0 + ω) < 1
2
επ∗h1 for some ω small and positive. Hence, t1 > t0

and by continuity πh1(t0) = 1
2
επ∗h1 = πh1(t1) and so πh1 ≤ 1

2
επ∗h1 in (t0, t1) and

πh1 >
1
2
επ∗h1 just after t1. We are going now to show that if πh1 becomes small then

all other variables must also become also small.

Lemma 2.4.11. There exists a time T ∗1 > 0 such that if t0 + T ∗1 < t1 then for all

t ∈ [t0+T ∗1 , t1], 0 < πy < (1
2
+∆)επ∗y where T ∗1 depends only on the model parameters,

∆ and ε.

Proof. We have that πh1 ≤ 1
2
επ∗h1 in [t0, t1]. Using equation (2.1.5) then we have

d

dt
(πy exp((µ+ ψ)t)) ≤ 1

2
επ∗h1σ exp((µ+ ψ)t).

Integrating over [t0, t],

[πy exp((µ+ ψ)t)]tt0 ≤
1

2
επ∗h1σ

(
e(µ+ψ)t − e(µ+ψ)t0

µ+ ψ

)
,

we deduce that

πy ≤ πy(t0) exp(−(µ+ ψ)(t− t0)) +
1

2

επ∗h1σ

µ+ ψ
(1− e−(µ+ψ)(t−t0)),

≤ exp[−(µ+ ψ)(t− t0)] +
1

2
επ∗y.

Provided that t is sufficiently large, let t ≥ t0 + T ∗1 then the result holds.
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In Lemma 2.4.11 we have seen that πh1 becomes small then this leads πy to

become small. We shall now prove similar results for πh2 , πz, βh1 , βh and β.

Lemma 2.4.12. There exists a time T ∗2 > 0 such that for t ∈ (t0 + T ∗2 , t1) then

0 < πh2 <

(
1
2

+ ∆

)
επ∗h2 , where T ∗2 depends only on the model parameters, 4 and ε.

Proof. From the proof of Lemma 2.4.4 we have∣∣∣∣ πh11− δ
− πh2

δ

∣∣∣∣ ≤ ∣∣∣∣πh1(0)

1− δ
− πh2(0)

δ

∣∣∣∣e−(µ+σ)t,
≤ e−(µ+σ)t

δ(1− δ)
.

Using the triangle inequality, we have that

πh2 ≤
δπh1
1− δ

+
e−(µ+σ)t

1− δ
.

Hence in the interval [t0, t1],

πh2 ≤
1

2
επ∗h2 +

e−(µ+σ)t

1− δ
.

Thus, provided that t is sufficiently large the result follows.

Lemma 2.4.13. There exists a time T ∗3 > 0 such that for t ∈ (t0 +T ∗2 +T ∗3 , t1), 0 <

πz < (1
2

+ 2∆)επ∗z , where T ∗3 depends only on the model parameters, ∆ and ε.

Proof. Using equation (2.1.6) and Lemma 2.4.12 then we have in (t0 + T ∗2 , t1),

d

dt
(πz exp(µt)) ≤

(
1

2
+ ∆

)
σαπ∗h2 exp(µt).

Integrating over [t0 + T ∗2 , t] then

πz(t) ≤ e−µ(t−t0−T
∗
2 ) +

(
1

2
+ ∆

)
επ∗z .

Thus, provided that t is large enough, the lemma is true.

Lemma 2.4.14. There exists a time T ∗4 > 0 such that for t ∈ (t0 + T ∗4 , t1), where

T ∗4 depends only on the model parameters ∆ and ε then

0 < βh1 <
(1

2
+ ∆

)
ε1β
∗
h1
,
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where

ε1 = ε
(π∗h1(1− φ) + τ̂ + φ)

τ̂ + φ
> ε,

for Assumption 1 and

ε1 = ε
(π∗h(1− φ) + τ̂ + φ)

τ̂ + φ
> ε,

for Assumption 2.

Proof. We have that for both Assumption 1 and Assumption 2

dβh1
dt
≤ λγπh1 − λγβh1(φ+ τ̂).

Hence,

d

dt

[
βh1 exp[(λγφ+ τ)t]

]
≤ λγπh1 exp

[
(λγφ+ τ)t

]
,

≤ 1

2
ελγπ∗h1 exp

[
(λγφ+ τ)t

]
in [t0, t].

Arguing as in the proof of Lemma 2.4.11

βh1(t) ≤
(1
2

+ ∆)

τ̂ + φ
π∗h1ε,

for t sufficiently large, say t ≥ t0 + T ∗4 . However we cannot replace
π∗h1
τ̂+φ

by β∗h1 since

under Assumption 1

β∗h1 =
π∗h1

π∗h1(1− φ) + τ̂ + φ
≤

π∗h1
τ̂ + φ

,

and under Assumption 2

β∗h1 =
π∗h1

(π∗h1 + π∗h2)(1− φ) + τ̂ + φ
≤

π∗h1
τ̂ + φ

.

So defining ε1 as in Lemma 2.4.14 we have the required result.

Lemma 2.4.15. There exists a time T ∗5 > 0 such that for t ∈ (t0 + T ∗2 + T ∗5 , t1),

where T ∗5 depends only on the model parameters ∆ and ε then

0 < βh <

(
1

2
+ 2∆

)
ε2β
∗
h,

for both Assumption 1 and Assumption 2 where

ε2 =

(
π∗h(1− φ) + τ̂ + φ

τ̂ + φ

)
ε > ε.
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Proof. Note that for both Assumption 1 and Assumption 2 we have

dβh
dt
≤ λγπh − λγ(φ+ τ̂)βh.

So arguing as in the proof of Lemma 2.4.14 we can deduce that there exists T ∗5 > 0

depending only on the model parameters ∆ and ε such that for t ∈ [t0 +T ∗2 +T ∗5 , t1]

βh ≤
(

1

2
+ 2∆

)
π∗h

φ+ τ̂
ε.

Now noting that

β∗h =
π∗h

π∗h(1− φ) + φ+ τ̂
,

the result follows.

Lemma 2.4.16. There exists a time T ∗6 > 0 such that for t ∈ (t0 +T ∗1 +T ∗2 +T ∗6 , t1),

where T ∗6 depends only on the model parameters ∆ and ε then

0 < β <

(
1

2
+ 3∆

)
ε2β
∗,

for both Assumption 1 and Assumption 2 where

ε3 =

(
π∗(1− φ) + τ̂ + φ

τ̂ + φ

)
ε > ε.

Proof. Similar to the proof of Lemma 2.4.15 as

dβ

dt
≤ λγπ − λγ(φ+ τ̂)β.

We have shown that if πh1 approaches zero then all components must also

approach zero. Now we show that πh1 cannot become arbitrary small. We do this

by showing that t1− t0 can be bounded above by a fixed finite value and hence, πh1

cannot remain below 1
2
επ∗h1 long enough to become arbitrary close to zero. We have

either

1. t1 ≥ t0 + max[T ∗1 + T ∗2 + T ∗3 , T
∗
2 + T ∗5 , T

∗
1 + T ∗2 + T ∗6 ] or

2. t1 < t0 + max[T ∗1 + T ∗2 + T ∗3 , T
∗
2 + T ∗5 , T

∗
1 + T ∗2 + T ∗6 ].
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Again the basic idea of the proof is similar to Corson (2011) and Corson et al.

(2012). Therefore, if case (2) is true, then our proof is complete. We want to show

case (1) where t1 occurs at a time higher than or equal to the time it takes for all

terms to become small. So if we are using the instability of the DFE where R0 > 1

we will see that πh1 cannot stay small indefinitely.

Lemma 2.4.17. Let F1(ω, ε) be an nth degree polynomial in ω and ε. Denote the

(possibly complex) roots of F1(ω, ε) = 0 by ωj for j = 1, ..., n. Then each ωj is

defined and continuous in ε in a neighbourhood of ε = 0.

Proof. See Lewis (2000).

Lemma 2.4.18. If πh1(t) drops below 1
2
επ∗h1 at a time t0, then πh1(t) returns to this

level by at least t = t0 + max[T ∗1 +T ∗2 +T ∗3 , T
∗
1 +T ∗5 , T

∗
1 +T ∗2 +T ∗6 , t0 + t2 +T ∗7 ] which

is finite and depends only on the model parameters, ∆ and ε.

Proof. Although there are similarities with the proof of Corson (2011) and Cor-

son et al. (2012) there are significant differences. In particular a different co-

ordinate system is used. Consider the model with re-arranged co-ordinate system

x̃T = (πx, πx1 , πz, βh1 , πh1 , πh2 , πy, βh, β) linearised about the disease-free equilib-

rium. We see clearly that the three of the eigenvalues are −µ and one is −(λγφ+ τ)

(for both assumptions).

For ε ≥ 0 define the matrix J 1(ε) =

−(µ+ σ) 0 0 λ(1− φ)(1− δ)(1− ε)(αh − αy) λ(1− φ)(1− δ)(1− ε)αy

0 −(µ+ σ) 0 λ(1− φ)δ(1− ε)(αh − αy) λ(1− φ)δ(1− ε)αy

σ 0 −(µ+ ψ) 0 0

λγ λγ 0 −(φλγ + λγ(1− φ)ε+ τ) 0

λγ λγ λγ 0 −(φλγ + λγ(1− φ)ε+ τ)



.
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The linearised stability matrix is

J(0) =

 −D X

0 J1(0)

 .
Here D is the matrix 

−µ 0 0 0

0 −µ 0 0

0 0 −µ 0

0 0 0 −(φλγ + τ)

 .

Define the matrix

J(ε) =

 −D X

0 J1(ε)

 .
Denote the eigenvalues of J(ε) by ωi(ε), i = 1, 2, 3, ..., 9. Five of the eigenvalues,

ωi(ε), i = 1, 2, 3, 4, 5 come from J1(ε), with the other four eigenvalues equal to −µ,

−µ, −µ and −(φλγ + τ). Arguing as in the proof of Lemma 3.10 in Corson (2011)

and the proof of Lemma 4.8 in Corson et al. (2012) by taking ε7 sufficiently small

we can ensure that ω1(ε7) > 0. With this choice of ε7 we can choose ε small enough

so that

1

2
επ∗h1 +

(
1

2
+4

)
επ∗h2 +

(
1

2
+4

)
επ∗y +

(
1

2
+ 24

)
επ∗z < ε7.

Hence for t1 > t > t0 + T ∗1 + T ∗2 + T ∗3 we have π+(t) = π + πz < ε7.

Therefore we have for both Assumption 1 and Assumption 2

dπh1
dt

≥ (1− ε7)(1− δ)λ(1− φ)((αh − αy)βh + αyβ)− (µ+ σ)πh1 ,

dπh2
dt

≥ (1− ε7)λδ(1− φ)((αh − αy)βh + αyβ)− (µ+ σ)πh2 ,

dπy
dt

≥ σπh1 − (µ+ ψ)πy,

dβh
dt

≥ λγπh − βh(λγ(1− φ)ε7 + λγφ+ τ),

dβ

dt
≥ λγπ − β(λγ(1− φ)ε7 + λγφ+ τ).



2.4. Analytical results 96

In matrix form we now have dx1
dt
≥ J1(ε7)x1 where x1 = (πh1 , πh2 , πy, βh, β). Let

t2 = inf{ξ ≥ 0 : for t1 > t > t0 + ξ, π(t) < ε7}. So if t2 > 0 then by continuity

π(t0 + t2) = ε7 and so t0 + t2 is the last time before t1 that π(t) ≥ ε7. Note that

t2 ≤ T ∗1 +T ∗2 +T ∗3 . If t1 < t0 +T ∗1 +T ∗2 +T ∗3 we have the desired result. Consider the

case where t1 ≥ t0 + T ∗1 + T ∗2 + T ∗3 , we have that dx1
dt
≥ J1(ε7)x1 for (t0 + t2, t1], also

J1(ε7) has a strictly positive left eigenvector e = (e1, e2, e3, e4, e5), which corresponds

to its spectral radius ω1(ε7). Hence

e · dx1

dt
≥ e · J1(ε7)x1 = ω(ε7)e · x1.

Thus for t > t0 + t2,

e · x1(t) ≥ (e · x1)(t0 + t2) exp[ω1(ε7(t− t0 − t2))], integrating over [t0 + t2, t],

≥ π(t0 + t2) min(e1, e2, e3) exp[ω1(ε7(t− t0 − t2))],

= ε7 min(e1, e2, e3) exp[ω1(ε7(t− t0 − t2))], if t2 > 0,

≥ 1

2
επ∗h1 min(e1, e2, e3) exp[ω1(ε7)(t− t0)] if t2 = 0, and πh1(4t) ≥

1

2
επ∗h1 ,

so that πh1(t0) = 1
2
επ∗h1 .

Therefore, if either t2 > 0 or πh1(4t) ≥ 1
2
επ∗h1 , after a time t0 + t2 + T ∗7 , we have

e ·x1(t) > e ·
(

1

2
επ∗h1 ,

(
1

2
+4

)
επ∗h2 ,

(
1

2
+4

)
επ∗y,

(
1

2
+24

)
ε2β
∗
h,

(
1

2
+34

)
ε3β
∗
)
.

(2.4.25)

Here T ∗7 depends only on ε,4 and the model parameters. If t1 ≥ t0 + max[T ∗1 +

T ∗2 + T ∗3 , T
∗
2 + T ∗5 , T

∗
1 + T ∗2 + T ∗6 , t2 + T ∗7 ] then for t ≥ t0 + max[T ∗1 + T ∗2 + T ∗3 , T

∗
2 +

T ∗5 , T
∗
1 +T ∗2 +T ∗6 , t2 +T ∗7 ] we have πh1 ≤ 1

2
επ∗h1 , πh2 ≤

(
1
2

+∆
)
επ∗h2 , πy ≤

(
1
2

+∆
)
επ∗y,

βh1+h2 ≤
(
1
2

+ 24
)
ε2β
∗
h, β ≤

(
1
2

+ 34
)
ε3β
∗. Hence

e ·x1(t) < e ·
(

1

2
επ∗h1 ,

(
1

2
+4

)
επ∗h2 ,

(
1

2
+4

)
επ∗y,

(
1

2
+24

)
ε2β
∗
h,

(
1

2
+34

)
ε3β
∗
)
.

This is a contradiction to (2.4.25) and hence t1 < t0+max[T ∗1 +T ∗2 +T ∗3 , T
∗
2 +T ∗5 , T

∗
1 +

T ∗2 + T ∗6 , t2 + T ∗7 ]. Again the argument is modified from Corson (2011) and Corson

et al. (2012) because there are only two β terms and the basis is different.This

completes the proof of Lemma 2.4.18.
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We have shown that the first time πh1 drops below 1
2
επ∗h1 , it must return to this

level after a duration of at most T = max[T ∗1 +T ∗2 +T ∗3 , T
∗
2 +T ∗5 , T

∗
1 +T ∗2 +T ∗6 , t2+T ∗7 ].

The main persistence result follows as in Corson (2011) and Corson et al. (2012).

This completes the proof of our main persistence result Theorem 2.4.10.

2.4.3 Local stability of the endemic equilibrium

To show local stability of our model then we need to use the quasi-steady-state ap-

proximation (QSSA) and the Routh-Hurwitz conditions and this because the char-

acteristic equation of our model equations is a ninth order polynomial then this

would be impractical due to level of complexity and difficulty. In its place, a similar

approximation model will be used that has five dimensions. The first concept in

reducing the complexity of the system is that individual PWID demographic pro-

cesses are much slower than the timescale on which individual PWIDs inject and the

former are measured in years whilst the latter are measured in days. As a similar

technique which was used in Corson (2011) and Corson et al. (2012) we replace βh

and β by their equilibrium values if π and πh are constant

βh =
πh

πh + (1− πh)φ+ τ̂
,

and β =
π

π + (1− π)φ+ τ̂
.

As in Corson (2011) and Corson et al. (2012) we can eliminate the πx equation. It

is known that 1 = πx + πx1 + πh1 + πh2 + πy + πz and hence if πx1 → π∗x1 , πh1 →

π∗h1 , πh2 → π∗h2 , πy → π∗y and πz → π∗z then πx → π∗x. So if everything else is known

it is possible to determine the limiting behaviour of πx. Therefore our approximate

model can be represented by the following system of differential equations:

dπx1
dt

= σ(1− α)πh2 − µπx1 − λ(1− φ)

(
αyπ

π + (1− π)φ+ τ̂
+

(αh − αy)πh
πh + (1− πh)φ+ τ̂

)
πx1 ,

(2.4.26)
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dπh1
dt

= λ(1− φ)(1− δ)(1− πh1 − πh2 − πy − πz)

×
(

αyπ

π + (1− π)φ+ τ̂
+

(αh − αy)πh
πh + (1− πh)φ+ τ̂

)
− (µ+ σ)πh1 , (2.4.27)

dπh2
dt

= λ(1− φ)δ(1− πh1 − πh2 − πy − πz)
(

αyπ

π + (1− π)φ+ τ̂
+

(αh − αy)πh
πh + (1− πh)φ+ τ̂

)
− (µ+ σ)πh2 , (2.4.28)

dπy
dt

= σπh1 − (µ+ ψ)πy, (2.4.29)

and

dπz
dt

= σαπh2 − µπz. (2.4.30)

Note that these equations have the same equilibrium solutions and R0 as the

full model. Again this is different to Corson (2011) and Corson et al. (2012) because

of the ψ term and the way that the β terms approximate the π terms.

Also by using the next generation matrix approach as we have done for the

original model. Therefore, for our approximate model there are three types of infec-

tious entities h1, h2 and y for individual PWIDs. Again we work with the equations

representing the absolute number of PWIDs. The infectious compartments are h1,

h2 and y.

dh1
dt

= λ(1− φ)(1− δ)(n− h1 − h2 − y − z)

×

(
αy(h+ y)

(h+ y) + (n− h− y)φ+ nτ̂
+

(αh − αy)h
h+ (n− h)φ+ nτ̂

)
− (µ+ σ)h1,

dh2
dt

= λ(1− φ)δ(n− h1 − h2 − y − z)

×

(
αy(h+ y)

(h+ y) + (n− h− y)φ+ nτ̂
+

(αh − αy)h
h+ (n− h)φ+ nτ̂

)
− (µ+ σ)h2,

dy

dt
= σh1 − (µ+ ψ)y.

Hence we derive the next generation matrix as follows:

F1 = λ(1− φ)(1− δ)(n− h1 − h2 − y − z)

×

(
αy(h+ y)

(h+ y) + (n− h− y)φ+ nτ̂
+

(αh − αy)h
h+ (n− h)φ+ nτ̂

)
,
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F2 = λ(1− φ)δ(n− h1 − h2 − y − z)

×

(
αy(h+ y)

(h+ y) + (n− h− y)φ+ nτ̂
+

(αh − αy)h
h+ (n− h)φ+ nτ̂

)
,

F3 = σh1.

V1(x) = (µ+ σ)h1,

V2(x) = (µ+ σ)h2,

V3(x) = (µ+ ψ)y.

F =



λ(1−φ)(1−δ)αh
φ+τ̂

λ(1−φ)(1−δ)αh
φ+τ̂

λ(1−φ)(1−δ)αy
φ+τ̂

λ(1−φ)δαh
φ+τ̂

λ(1−φ)δαh
φ+τ̂

λ(1−φ)δαy
φ+τ̂

σ 0 0


,

V =



(µ+ σ) 0 0

0 (µ+ σ) 0

0 0 (µ+ ψ)


.

Hence the next generation matrix is defined as the matrix M = Mij : i = 1, 2, 3,

j = 1, 2, 3 where Mij is defined as the expected number of secondary cases in infec-

tious state i caused by a single newly infectious PWID in infectious state j entering

a disease free population at equilibrium. So in this case the next generation matrix is
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

λ(1−φ)(1−δ)αh
(µ+σ)(φ+τ̂)

λ(1−φ)(1−δ)αh
(µ+σ)(φ+τ̂)

λ(1−φ)(1−δ)αy
(µ+ψ)(φ+τ̂)

λ(1−φ)δαh
(µ+σ)(φ+τ̂)

λ(1−φ)δαh
(µ+σ)(φ+τ̂)

λ(1−φ)δαy
(µ+ψ)(φ+τ̂)

σ
µ+σ

0 0


.

Now it is important to note that for equations (2.4.26)-(2.4.30) the equilibrium

values and R0 are the same as in our original model with needles included. Recall

that φ∗ = 1−φ
φ+τ̂

. If we denote R∗∗ to be the basic reproduction number obtained by

using the Next Generation Matrix it satisfies characteristic equation f(ω) = 0 where

f(ω) = ω2 − αhφ∗
λ

µ+ σ
ω − αyφ∗

λσ(1− δ)
(µ+ ψ)(µ+ σ)

and a similar argument as for the original model shows that R0 and R∗∗0 have the

same threshold value. Therefore, the characteristic equation of this matrix has

eigenvalues ω = 0 or the roots of

f(ω) = ω2 − λ(1− φ)αhω

(µ+ σ)(φ+ τ̂)
− λ(1− φ)σαy(1− δ)

(µ+ ψ)(µ+ σ)(φ+ τ̂)
= 0.

So R∗∗0 is the unique positive root of this equation (R∗∗0 denotes the basic repro-

duction number of the approximate model derived by the next generation matrix

method).

Again R∗∗0 and R0 have the same threshold value as

R∗∗0 > 1 =⇒ f(ω) < 0 in [0, R∗∗0 ),

=⇒ f(1) < 0,

=⇒ 1−R0 < 0,

=⇒ R0 > 1.

And conversely

R0 > 1 =⇒ f(1) < 0,

=⇒ R∗∗0 > 1 because f(ω) ≥ 0 for ω ≥ R∗∗0 .
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Theorem 2.4.19. The endemic equilibrium of this approximate model is locally

stable when R0 > 1.

Proof. This proof is qualitatively different than the proof in Corson (2011) and the

proof in Corson et al. (2012) because of the way the different a1’s are expressed in

terms of the β’s. To prove local stability we examine the Jacobian of this system

linearised in the endemic equilibrium. In this system there is no πx1 term in the other

equations. As a result in calculating the characteristic equation from the stability

matrix we are able to expand by column one giving the negative eigenvalue

−µ− λ(1− φ)

(
αyπ

∗

π∗ + (1− π∗)φ+ τ̂
+

(αh − αy)π∗h
π∗h + (1− π∗h)φ+ τ̂

)
.

We write K = λ(1− φ),

a1 =
(αh − αy)(1− π+∗)(φ+ τ̂)

(π∗h(1− φ) + φ+ τ̂)2
+

αy(1− π+∗)(φ+ τ̂)

(π∗(1− φ) + φ+ τ̂)2
− a3, (2.4.31)

a2 =
αy(1− π+∗)(φ+ τ̂)

(π∗(1− φ) + φ+ τ̂)2
− a3, (2.4.32)

and

a3 =
αyπ

∗

π∗(1− φ) + φ+ τ̂
+

(αh − αy)π∗h
π∗h(1− φ) + φ+ τ̂

. (2.4.33)

Similarly to Corson (2011) and Corson et al. (2012) the remaining eigenvalues are

eigenvalues of the matrix∣∣∣∣∣∣∣∣∣∣∣∣

(1− δ)Ka1 − (µ+ σ) (1− δ)Ka1 (1− δ)Ka2 −(1− δ)Ka3
δKa1 δKa1 − (µ+ σ) δKa2 −δKa3
σ 0 −(µ+ ψ) 0

0 σα 0 −µ

∣∣∣∣∣∣∣∣∣∣∣∣
.

Recall from the equilibrium analysis that

π+∗ = k

(
1 +

σ(1− δ)
µ+ ψ

+
σαδ

µ

)
, (2.4.34)

π∗ = k

(
1 +

σ(1− δ)
µ+ ψ

)
,

π∗h = k,
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where k satisfies the equation

1 =
λ(1− φ)

µ+ σ

(
1− k − σ(1− δ)k

µ+ ψ
− σαδk

µ

)[
(αh − αy)

1

k(1− φ) + φ+ τ̂

+
αy
(
1 + σ(1−δ)

µ+ψ

)
k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

]
.

As in Corson (2011) and in Corson et al. (2012), one eigenvalue is ω = −(µ + σ)

and the remaining eigenvalues satisfy the characteristic equation

ω3 + A1ω
2 + A2ω + A3 = 0, (2.4.35)

where

A1 = 3µ−Ka1 + σ + ψ, (2.4.36)

A2 = σαδKa3 + 2µ(µ+ ψ) + µ2 −Ka1(2µ+ ψ) + (2µ+ ψ)σ − σ(1− δ)Ka2,

(2.4.37)

A3 = (µ+ ψ)σαδKa3 + (µ+ σ −Ka1)(µ+ ψ)µ− µσKa2(1− δ). (2.4.38)

From the equilibrium equations we find that

(µ+ σ)=K

[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αy
(
1 + σ(1−δ)

µ+ψ

)
k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

+
(αh − αy)

k(1− φ) + φ+ τ̂

]
.

Therefore,

A1 = 3µ+ σ + ψ −Ka1

= 2µ+ (µ+ σ) + ψ −Ka1.

Substituting equation (2.4.31) into A1 we can write

A1 = 2µ+Ka3 + ψ +K

[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αy
(
1 + σ(1−δ)

µ+ψ

)
k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

+
(αh − αy)

k(1− φ) + φ+ τ̂

]

−K
[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αy(φ+ τ̂)(

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

)2 +
(αh − αy)(φ+ τ̂)(
k(1− φ) + φ+ τ̂

)2
]
.
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Hence,

A1 = 2µ+Ka3 + ψ + ψ1, (2.4.39)

where

ψ1 =K

[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αy

σ(1−δ)
µ+ψ

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

+
αyk
(
1 + σ(1−δ)

µ+ψ

)
(1− φ)(

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

)2
+

(αh − αy)k(1− φ)(
k(1− φ) + φ+ τ̂

)2
]
> 0.

Substituting (2.4.32) in (2.4.37) we can express A2 in terms of a3 as

A2 = Ka3[δασ + σ(1− δ)] + µ(µ+ ψ) + (2µ+ ψ)(µ+ σ −Ka1)− σ(1− δ)Kζ2,

where ζ2 =
αy(1− π∗+)(φ+ τ̂)

(π∗(1− φ) + φ+ τ̂)2
.

Again from equilibrium equation and equation (2.4.31) we have

µ+ σ −Ka1 =K

[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αy

σ(1−δ)
µ+ψ

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

+
αyk
(
1 + σ(1−δ)

µ+ψ

)
(1− φ)(

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

)2
+

(αh − αy)k(1− φ)(
k(1− φ) + φ+ τ̂

)2
]

+Ka3.

Expressing µ+ σ −Ka1 in terms of K and a3, we have

A2 = µ(µ+ ψ) +Ka3
(
(2µ+ ψ) + δασ + σ(1− δ)

)
+ ψ2, (2.4.40)

where

ψ2 =K

[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αyk
(
1 + σ(1−δ)

µ+ψ

)
(1− φ)(2µ+ ψ + σ(1− δ))(

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

)2 +

µ
µ+ψ

αyσ(1− δ)

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

+
(2µ+ ψ)(αh − αy)k(1− φ)(

k(1− φ) + φ+ τ̂
)2

]
> 0.(2.4.41)
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Similarly writing

A3 = (µ+ ψ)σαδKa3 + µ(µ+ ψ)(µ+ σ −Ka1)− µσKa2(1− δ), (2.4.42)

and substituting for µ+ σ −Ka1 and a2 in terms of K and a3 we see that

A3 = Ka3
[
µ(µ+ψ)+σαδ(µ+ψ)+σ(1−δ)µ

]
+ψ3, (2.4.43)

where

ψ3 =µK

[
1− k

(
1 +

σ(1− δ)
µ+ ψ

+
ασδ

µ

)]
×

[
αyσ(1− δ)k

(
1 + σ(1−δ)

µ+ψ

)
(1− φ)(

k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

)2 +
αyk(µ+ ψ + σ(1− δ))(1− φ)(
k
(
1 + σ(1−δ)

µ+ψ

)
(1− φ) + φ+ τ̂

)2
+

(αh − αy)k(µ+ ψ)(1− φ)(
k(1− φ) + φ+ τ̂

)2
]
> 0.(2.4.44)

To show stability of the endemic equilibrium we need to show that the Routh-

Hurwitz conditions are satisfied. These are A1, A2, A3 > 0 and A1A2 > A3.

From (2.4.39), (2.4.40) and (2.4.42) it is clear that A1, A2 and A3 > 0. To show

A1A2 > A3 note that:

A1A2 = (2µ+Ka3 + ψ + ψ1)(µ(µ+ ψ)

+Ka3
(
(2µ+ ψ) + δασ + σ(1− δ)

)
+ ψ2)

> (2µ+Ka3 + ψ)(µ(µ+ ψ) +Ka3
(
(2µ+ ψ) + δασ + σ(1− δ)

)
)

+(2µ+ ψ)ψ2,

> Ka3[µ(µ+ ψ) + σαδ(µ+ ψ) + σ(1− δ)µ] + (2µ+ ψ)ψ2. (2.4.45)

Now we shall show that (2µ+ ψ)ψ2 > ψ3. Note that

(2µ+ ψ)(2µ+ ψ + σ(1− δ)) > µ(µ+ ψ + σ(1− δ)).

Hence if we consider (2µ + ψ) multiplied by the first term in the second pair of

square brackets in (2.4.41), it exceeds µ multiplied by the second term in the second

pair of square brackets in (2.4.44). Also as

(2µ+ ψ)
µ

µ+ ψ
> µ,



2.5. Conclusion 105

(2µ + ψ) multiplied by the second term in the second pair of square brackets in

(2.4.41), exceeds µ multiplied by the first term in the second pair of square brackets

in (2.4.44). Similarly as

(2µ+ ψ)2 > µ(µ+ ψ),

the terms multiplying (αh − αy) in (2µ + ψ)ψ2 exceed those multiplying (αh − αy)

in ψ3. So

(2µ+ ψ)ψ2 > ψ3. (2.4.46)

The result that A1A2 > A3 follows from (2.4.45) using (2.4.43) and (2.4.46).

2.5 Conclusion

In this chapter we develop a deterministic compartmental model for HCV trans-

mission among PWIDs through the sharing of needles and syringes, building on the

models developed by Corson (2011) also discussed in Corson et al. (2012). Using

analytical techniques, we find that the model behaviour is governed by the basic

reproduction number R0, with R0 = 1 being a critical threshold separating two

different outcomes. It has been shown that if R0 ≤ 1 there is only the disease-free

equilibrium whereas if R0 > 1 there is the disease-free equilibrium and a unique

endemic equilibrium. This model is globally stable if R0 ≤ 1 otherwise unstable.

After that we look at an approximate model by using the fact that the timescale

on which injections take place is much faster than the timescale of epidemiological

change. This approximation model has the same equilibria as the full model. Also,

we showed that if R0 > 1 the endemic equilibrium is locally asymptotically stable

for our approximate model.

Our model is qualitatively different than the model discussed in Corson (2011)

and Corson et al. (2012) because of the PWID needle interactions and the ψ term.

In particular the equilibrium analysis and the local stability analysis involve sub-

stantially different arguments. It is useful to understand the behaviour of HCV both

with treatment and with different PWID needle interactions. Although the assump-

tions that the needles take on the stage of the last infectious person to use them is

common it may not be correct and it is useful to consider alternative assumptions



2.5. Conclusion 106

as we have done particularly as discussed there may be supporting evidence. The

R0 is the same for the Pessimistic Model for both Assumption 1 and Assumption 2

and always greater than the R0 in Corson’s model with the same parameters. We

have derived R0 using the Next Generation Matrix Method for both the full and

approximate models and also given an alternative derivation to Corson’s model.

In the next chapter we will describe numerical simulations using this simple

HCV transmission model.



Chapter 3

Parameters and Numerical

Simulations

HCV prevalence and incidence are still high and in the past Glasgow had one of the

highest HCV prevalences of injecting drug use and HCV infection among PWIDs

in Europe; of an approximate 9,000 recent PWIDs in the largest city in Scotland

(Glasgow) roughly 70% had been infected with HCV (Corson (2011)). Here, the aim

of this chapter is to use the simulation package Wolfram Mathematica version 11.1

to come up with hepatitis C virus (HCV) prevalence estimates. These estimates will

be used to generate progression of HCV levels for the Glasgow population against

time, according to the model equations in Chapter 2.

Therefore, we need to obtain values for parameters such as the probability of

successful needle cleaning (φ), needle and syringe sharing rate (λ), needle turnover

rate (τ), PWID to needle ratio (γ), rate that PWIDs leave the sharing, injecting

PWID population (µ), acute and chronic HCV transmission probabilities (αh, αy),

duration of acute HCV infection (1/σ), proportion of PWIDs that develop immunity

to HCV re-infection (α), proportion of PWIDs that spontaneously resolve HCV

infection (δ) and rate of treatment (ψ). The parameter values that are used are

taken from the model of the model of Corson (2011) and Corson et al. (2012)

except the rate of treatment (ψ) which is found from a literature review. We will

make comparison between our simulation results and the results of Corson (2011).

107
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3.1 Corson’s model and our model

As we have mentioned in the previous chapter, our model is based on the ‘pessimistic

assumption’ of Lewis and Greenhalgh (2001) and Corson’s model is based on the

‘optimistic assumption’ of Greenhalgh and Lewis (2000). Moreover we have intro-

duced the rate of treatment ψ in our model which was not introduced in Corson’s

model. Therefore there are two differences between our model and Corson’s model:

1. The PWID - needle interactions have changed.

2. A treatment term has been introduced.

If we ignore the effect of treatment we expect that disease will spread faster in

our model so more control effort will be needed. Moreover, we have updated the

references to include recent work and included treatment of infected PWIDs in the

model.

3.2 Parameters used

We take our parameters from existing published and unpublished works such as

Traeger et al., Harris et al. (2019), Fraser et al. (2018), Noroozi et al. (2017), WHO

(2017), Martin et al. (2011), Corson (2011), Corson et al. (2012), Goldberg et al.

(1995), Kaplan and O’Keefe (1993), Greenhalgh and Lewis (2000, 2002), Murray

et al. (2003), Greenhalgh and Hay (1997), Hutchinson et al. (2006a), Vickerman

et al. (2009) and Vickerman et al. (2007).

Estimating the fraction of PWIDs who use of bleach to clean needles is difficult

because of the very varied data available. According to Noroozi et al. (2017) the

probability value of φ for the HCV model by 0.31 in Kermanshah, Iran. Goldberg

et al. (1995) estimated the value of φ for the HIV model by 0.442, whereas Ka-

plan and O’Keefe (1993) estimate it to be 0.84. In addition, Greenhalgh and Lewis

(2000, 2002) arrived at their estimate for φ to be 0.64 by averaging the estimates

of Goldberg et al., and Kaplan and O’Keefe. Murray et al. (2003) estimate φ to be

0.5 modelling HCV and HIV research amongst PWIDs. The data estimated here of
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φ = 0.255 is from unpublished data HPS observed (1990-1993) also this value was

used by Corson (2011) and Corson et al. (2012).

The data from Goldberg et al. (1995) were later used by Greenhalgh and Hay

(1997), who gave an average number of shared injections λ = 171 per year after

restricting the data from Goldberg et al. (1995) to those PWIDs that share. It is

suggested by Goldberg et al. (1995) that the mean sharing injection rate for Glasgow

PWIDs is 72.48 annually. The data estimated here of λ = 103 each year is from

unpublished data HPS observed (1990-1993) also Corson (2011) and Corson et al.

(2012) used the same value.

The natural lifetime of a needle estimated by Kaplan (1995) is 23.50 days which

results in a natural needle turnover rate of τ = 365/23.5 = 15.53 each year. Also,

Greenhalgh and Lewis (2000, 2002) used this estimate when they were modelling

HIV. The data from Corson (2011) and Corson et al. (2012) is used here of τ = 133

every year. This is based on a survey in 2007 of 362 recent PWIDs in Greater Glas-

gow and Clyde.

Using information from the New Haven needle program gathered between Novem-

ber 1990 to February 1991,Kaplan and O’Keefe (1993) estimate that γ = 0.1675.

Kaplan (1995) shows from an infectious needle model that the rate at which uncon-

taminated needles become contaminated with HIV is 0.3675 every day, and the rate

at which contaminated needles will become uncontaminated is 0.1665 every day.

Further, estimation by Corson (2011) and Corson et al. (2012) can be used here

where the PWID to needle proportion γ is 1.002.

In their work on HIV in PWIDs, Greenhalgh and Hay (1997) utilise an estima-

tion of µ = 0.25 per PWID per year. Moreover, they consider two reasons, AIDS

related reasons and other reasons, why infected PWIDs might cease injecting. The

authors expect that a fraction 0.125 of PWIDs every year will leave the population

for non-HIV related reasons and a separate fraction 0.125 will leave the population

because of AIDS related factors. Information presented by Corson (2011) and Cor-

son et al. (2012) is used where the rate that PWIDs leave the PWID population

µ = 0.17 per PWID per year which depends on demonstrated evaluations from

Hutchinson et al. (2006a) applied to Glasgow PWIDs during the 2000s and utilized



3.2. Parameters used 110

mortality of and cessation of injecting by PWIDs.

The Advisory Council on the Misuse of Drugs (2009) reports that the likeli-

hood of getting contaminated with HCV in the wake of utilizing a infected syringe

ranges from 1.5−5%. This information can be traced back to research presented by

Vickerman et al. (2009) which accepted one transmission likelihood for both acute

and chronic HCV disease extending from 1.5− 14%. Vickerman et al. (2007) affirm

an alternate likelihood for the disease transmission for chronic and acute HCV while

demonstrating the spread of HCV among PWIDs in London, UK. The initial trans-

mission likelihood for chronic HCV disease ran from 0.84 − 10% with a multiplier

factor for the transmission likelihood of HCV during the acute stage given by one

to ten. Further, according to Corson (2011) and Corson et al. (2012) we estimate

that αh = 0.0432 and αy = 0.016.

The acute period of infection was taken to be the initial a half year after dis-

ease was introduced (Vickerman et al. (2007, 2009)). Subsequently, it was evaluated

that (1/σ) = 0.5 years or σ = 2 per year. While most people clear their acute HCV

disease in this half year time frame, it has been reported that acute disease has

lasted as long as two years after starting infection (Cox et al. (2005) and Larghi

et al. (2002)).

Past work that has modelled an immune state includes Vickerman et al. (2007,

2009). Vickerman et al. (2007) expect that a fraction of PWIDs, running from

18-50%, can resolve their underlying HCV disease and after a time of acute HCV

infection these become immune forever. Due to the uncertainty in evaluating this

parameter, Vickerman et al. (2009) assessed that the extent of PWIDs who become

immune could go from 0 − 100%. In this perspective, we choose α = 0.25 as in

Corson (2011) and Corson et al. (2012).

Since most of acute HCV diseases are asymptomatic and accordingly go undis-

covered it tends to be hard to precisely measure the proportion of PWIDs that

spontaneously resolve HCV infection. Hutchinson et al. (2006a) accept that this ex-

tent is in the range 15-40%, with a comparable measure of between 18-50% utilised

by Vickerman et al. (2007). Further, δ = 0.26 is used here dependent on an efficient

survey of longitudinal examinations including 675 subjects (Micallef et al. 2006).
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Fraser et al. (2018) estimate that in Scotland if chronic infections were treated

by 2.5% annually therefore the prevalence of HCV will be decreased up to 23.5%.

Martin et al. (2011) consider a model in which up to 6% of continuing PWIDs were

treated annually. This is in line with observed treatment rates in the UK up to

2015 where at most 3% of PWIDs were treated annually (Martin et al., 2015). Scott

et al. (2018) discuss a mathematical model to investigate HCV elimination in line

with WHO targets in Iceland, using a complex mathematical model. The model es-

timated that an 80% reduction in domestic HCV incidence was achievable by 2030,

2025, or 2020 if at least 5.5%, 7.5% and 18.8% of PWIDs were treated per year.

However treatments for HCV have improved dramatically in recent years moving

from relatively expensive and ineffective interferon based treatments to much more

effective and cheaper Directly Acting Antiviral (DAA) treatments. So recently there

has been a huge increase in the number of PWIDs being treated (Harris et al. (2019)

and Traeger et al.). Traeger et al. (2020) state that in Australia DAAs have moved

from a cumulative total of less than 1% of RNA tested PWIDs receiving treatment

to a cumulative total of around 45% of RNA tested PWIDs (note that this is RNA

tested PWIDs not all PWIDs). Moreover World Health Organization forward tar-

gets are even more ambitious with 80% of PWIDs to receive treatment by 2030

(WHO, 2020). Hence we increase the number of continuing PWIDs treated annu-

ally from the 0-6% used in Martin et al. (2011) to 10% thus taking ψ = 0.1 per

year.

Note that a needle that was originally infected becomes uninfected due to time

lapsed since injection. But the effect of this would be to have an extra rate at

which infected needles became uninfected therefore could be incorporated in the

needle turnover rate. However as most other models of the spread of HCV amongst

PWIDs do not do this and we do not have data on the rate at which needles become

uninfected we have decided not to do this.
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Table 3.1: Table of parameter estimates (Adapted from Corson (2011)).

Parameter Definition Estimate

φ Probability that a PWID cleans needle 0.255

λ Needle and syringe sharing rate 103 per year

τ Needle turnover rate 133 per year

γ PWIDs to needle ratio 1.002

µ Per capita rate at which PWIDs leave the sharing,

injecting population.

0.17 per PWID

per year

αh Probability of transmission on the acute stage 0.0432

αy Probability of transmission on the chronic stage 0.016

1/σ Average duration of the acute stage 0.5 years

δ Proportion of PWIDs who resolve HCV infection 0.26

α Proportion of PWIDs that develop immunity 0.25

ψ Per capita treatment rate 0.1 per year

3.3 Simulation results

3.3.1 Determining R0

We now use Wolfram Mathematica version 11.1 to produce HCV prevalence esti-

mates for the PWID population in Glasgow, Scotland, over time, given by our model

governing equations. The model was comprehensively verified using detailed output

from a large number of runs. We do not possess our own source of data from which

to estimate the parameters in these models. Instead we rely on parameter estimates

from existing published work. Using the baseline set of parameters estimates given in

Table 3.1 we estimated that R0 = 2.9987 > 1 which includes intervention measures

such as needle exchange and needle cleaning. Note that this value of R0 is bigger

than the one obtained for Corson’s model (which was R0 = 2.82). This is because we

have introduced treatment of infected PWIDs needle interaction assumptions from

the optimistic PWID needle interaction assumptions of Corson (2011) and Corson

et al. (2012) to the pessimistic PWID needle interaction assumptions of Lewis and
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Greenhalgh (2001). Changing the PWID needle interaction assumptions increases

R0 and this more than offsets the reduction due to introducing treatment of PWIDs.

The parameters τ , µ and γ were estimated from Glasgow survey data. δ is estimated

to be 0.26 based on a systematic review of longitudinal studies involving 675 sub-

jects (Micallef et al., 2006). We follow Corson (2011) and conservatively estimate

α = 0.25. We use parameter estimates for αh and αy taken from the literature (Ka-

mal et al. (2001) and Villano et al. (1999)). We estimate σ = 0.2 per year because

we follow Vickerman et al., (2007, 2009) and take the acute stage of infection to be

the first six months after initial infection. We have increased the number of PWIDs

who are treated annually from the 0-6% used in Martin et al. (2011) to 10% thus

considering ψ = 0.1 per year.

We estimate the transmission of HCV in our model when R0 = 2.9987 over a

period of 70 years. It was assumed that one percent of the PWID population were

infected with acute HCV (h1) and no different PWIDs or needles are infected. That

is, πx(0) = 0.99, πx1(0) = 0, πh1(0) = 0.01, πh2(0) = 0, πy(0) = 0, πz(0) = 0 and

βh1(0) = βh2(0) = βy(0) = 0 where πx(0) means the division of PWIDs in the x-

susceptible class at time t=0 and likewise for all other PWID and needles classes for

the two assumptions. The prevalence of HCV in the PWID population (we follow

Corson (2011) and we use the Health Protection Scotland meaning of those testing

HCV antibody positive, which is given by πx1 + πh1 + πh2 + πy + πz), as well as the

infectious needles, are illustrated in Figure 3.1. Time is measured in years.

It is obvious from the figure that the division of PWIDs and needles infected

with HCV in the end arrives at a steady state solution. The steady state values for

PWIDs in each phase of disease are

(π∗x, π
∗
x1
, π∗h1 , π

∗
h2
, π∗y, π

∗
z) = (0.3497, 0.0523, 0.0610, 0.0214, 0.4524, 0.0631).

Similarly, for needles at every phase of disease, the rough steady state values

in Assumption 1 are (β∗h1 , β
∗
h2
, β∗y) = (0.03843, 0.01298, 0.22401). Additionally, for

Assumption 2 the quantities are (β∗h1 , β
∗
h2
, β∗y) = (0.03799, 0.01301, 0.22382). This

compares to an endemic HCV prevalence of π∗ = 0.5348 for needle and syringe

sharing PWIDs in Glasgow and β∗ = 0.275 for needles in the two assumptions,

where π∗ = πh1 + πh2 + πy and β∗ = β∗h1 + β∗h2 + β∗y . We have given the simulation
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Figure 3.1: HCV prevalence among Glasgow needle and syringe sharing PWIDs

(solid black line) and infectious needles (dashed red line) when R0 = 2.9987 for

Assumption one.

results over a long period of time so that we can demonstrate the analytical results

that the system tends to an endemic equilibrium. However practitioners would be

more interested in results over a shorter timescale.

3.4 Threshold parameter values such that R0 ≤ 1

Analytical determination of critical values

We are following a similar technique in Corson (2011) and Corson et al. (2012) to

calculate φcrit, λcrit, τcrit and ψcrit. Hence using equation (2.3.13) and Table 3.1,

then we can find values for each of λ, φ, τ and ψ, keeping all other parameters

constant, that the outcomes result in R0 = 1 and hence eliminate HCV.

Definition 3.4.1. Similarly to Corson (2011) we define



3.4. Threshold parameter values such that R0 ≤ 1 115

PWIDs

Infectious needles

0 10 20 30 40 50 60 70

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Time (Years)

H
C
V
P
re
va
le
n
ce

Figure 3.2: HCV prevalence among Glasgow needle and syringe sharing PWIDs

(solid black line) and infectious needles (dashed red line) when R0 = 2.9987 for

Assumption two.

(i) λcrit refers to the unique critical value of λ which leads to R0 ≤ 1 when λ ≤ λcrit;

(ii) φcrit refers to the unique critical value of φ which leads to R0 ≤ 1 when φ ≥ φcrit;

(iii) τcrit refers to the unique critical value of τ which leads to R0 ≤ 1 when τ ≥ τcrit;

(iv) ψcrit refers to the unique critical value of ψ which leads to R0 ≤ 1 when ψ ≥ ψcrit.

We shall show later that these values λcrit, φcrit, τcrit and ψcrit do exist and are unique.

3.4.1 Determining λcrit

From previous chapter we have noted that R0 is a monotone increasing function

of λ. Therefore to set the critical value of λ we start with the expression for R0

obtained in Chapter 2 with R0 = 1 and λ = λcrit. Following Corson (2011) this

leads to

1 =
λcrit(1− φ)

(µ+ ψ)(µ+ σ)(φ+ τ̂)
[(µ+ ψ)αh + αyσ(1− δ)] (3.4.1)



3.4. Threshold parameter values such that R0 ≤ 1 116

where τ̂ = τ
λcritγ

.

Re-arranging (3.4.1), for λcrit gives

(0.0449416)λcrit(
0.255 + 133.266

λcrit

) = 1.

Solving this equation we have λcrit = 57.4. We summarise that a needle and syringe

sharing rate of λ ≤ λcrit = 57.4 per year gives R0 ≤ 1 and therefore eventual HCV

elimination in all PWIDs and needles. To contrast this value with λcrit in Corson’s

model which is less than ours:

λcrit = 54.7 per year, (Corson (2011) and Corson et al. (2012)),

λcrit = 48.1 per year, (our model with ψ = 0.0 per year),

λcrit = 57.4 per year, (our model with ψ = 0.1 per year).

Note that the λcrit in Corson’s model is bigger than ours if there is no treatment and

this effect is because that we are changing the PWID needle interaction assumptions

from optimistic to pessimistic. In contrast when we have not introduced treatment

of infected PWIDs, which we would expect to increase λcrit, therefore treatment of

infected PWIDs does indeed increase λcrit to larger than Corson’s model.

3.4.2 Determining φcrit

Following Corson (2011) we are now going to calculate the level of successful needle

and syringe cleaning that gives outcomes of R0 ≤ 1 and HCV elimination in all

PWIDs and needles. We again begin with the expression for R0 but with φ changed

to φcrit:

1 =
λ(1− φcrit)

(µ+ ψ)(µ+ σ)(φcrit + τ̂)
[(µ+ ψ)αh + αyσ(1− δ)] (3.4.2)

where τ̂ = τ
λγ
.

Re-arranging (3.4.2), again put ψ = 0.0 per year as Corson (2011), for φcrit

gives
(6.213)(1− φcrit)
(1.29384 + φcrit)

= 1.
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Solving this equation we have φcrit = 0.682. Again by contrasting this value with

φcrit in Corson’s model which is bigger than ours (ignoring treatment):

φcrit = 0.736, (Corson (2011) and Corson et al. (2012)),

φcrit = 0.763, (our model with ψ = 0.0 per year),

φcrit = 0.682, (our model with ψ = 0.1 per year).

Note that our value of φcrit is less than the value of φcrit obtained by Corson (2011)

and Corson et al. (2012) when we have considered treatment this is because we

have also changed the PWID needle interaction assumptions from optimistic to

pessimistic but when we have not introduced treatment of infected PWIDs, which

we would expect to increase φcrit, therefore the value of φcrit is larger than the value

of φcrit obtained by Corson (2011) and Corson et al. (2012).

3.4.3 Determining τcrit

Again we are now following Corson (2011) to calculate the average needle turnover

rate that gives R0 ≤ 1. We again start with the expression for R0 but with τ changed

to τcrit:

1 =
λ(1− φ)

(µ+ ψ)(µ+ σ)(φ+ τ̂crit)
[(µ+ ψ)αh + αyσ(1− δ)] (3.4.3)

where τ̂crit = τcrit
λγ
.

After substituting in the necessary parameter values we get that τcrit = 449.621

per year. Moreover by comparing this value with τcrit in Corson’s model which is

bigger than ours:

τcrit = 562 per year, (Corson (2011) and Corson et al. (2012)),

τcrit = 637.152 per year, (our model with ψ = 0.0 per year),

τcrit = 449.621 per year, (our model with ψ = 0.1 per year),

then we summarise that τcrit for Corson’s model is bigger than to τcrit for our model

which is considering treatment. Again note that we have changed the PWID needle

interaction assumptions from optimistic to pessimistic but when we have not con-

sidered treatment then the τcrit for Corson’s model is less than τcrit for our model.

Hence we have summarised these results in Table 3.2.



3.5. The effect of treatment on the prevalence estimates 118

λcrit (per year) φcrit τcrit (per year)

Our model estimate with ψ = 0.0 per year 48.1077 0.763 637.152

Corson’s estimate 54.7 0.736 562.82

Our model estimate with ψ = 0.1 per year 57.4 0.682 449.621

Table 3.2: Comparison of the critical values for λ, φ and τ between Corson’s model

and our model.

3.4.4 Determining ψcrit

We are now going to calculate the level of rate of treatment that gives outcomes of

R0 ≤ 1 and HCV elimination in all PWIDs and needles. We again begin with the

expression for R0 but with ψ changed to ψcrit:

1 =
λ(1− φ)

(µ+ ψcrit)(µ+ σ)(φ+ τ̂)
[(µ+ ψcrit)αh + αyσ(1− δ)] (3.4.4)

where τ̂ = τ
λγ
.

Solving (3.4.4) for ψcrit then we have ψcrit = 39.296 per year of PWIDs are

treated per year.

We have assumed that these parameters are independent of one another. In

reality these parameters are influenced by both biological factors and sociological

factors and it may be that because of the sociological factors there is some interde-

pendence between some of these parameters. However this would be very compli-

cated to model and it is still useful to focus on one parameter at a time to influence

the relative impact of different control policies which could potentially influence one

factor at a time.

3.5 The effect of treatment on the prevalence es-

timates

In this subsection, we will look at the changed model practises which result from

different ψ parameters for long term HCV prevalence. We run simulations utilizing

three unique estimations of ψ relating to our present parameter value (ψ = 0.03 per
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year), which was estimated by Martin et al. (2015), (ψ = 0.06 per year) which was

estimated by Martin et al. (2011) and our estimation which is (ψ = 0.1 per year).

As Corson (2011) did not consider treatment this is different to his thesis.

Figures 3.3 and 3.4 show the subsequent HCV prevalence levels for both PWIDs

and needles. To show the impacts of these progressions all the more obviously we

have given the endemic equilibrium values in both PWIDs and needles in Table 3.3.
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Figure 3.3: HCV prevalence among sharing PWIDs with ψ = 0.03, 0.06 and 0.1 per

year.

From these simulations we can see that increasing the rate of treatment causes

a decrease in the prevalence but it is relatively small compared with other interven-

tions.
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ψ Prevalence among sharing PWIDs Prevalence among shared needles

0.03 0.715 0.324

0.06 0.688 0.312

0.1 0.655 0.297

Table 3.3: Endemic equilibrium HCV prevalence for sharing PWIDs and needles

with ψ = 0.03, 0.06 and 0.1 per year.
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Figure 3.4: HCV prevalence among shared needles with ψ = 0.03, 0.06 and 0.1 per

year.

3.6 Comparison between our simulation results

without considering treatment and the results

of Corson (2011)

As we have shown in previous chapter, our model is similar to the ‘Pessimistic Model’

of HIV transmission amongst PWIDs studied by Lewis and Greenhalgh (2001a) and

Corson’s model is similar to the ‘Optimistic Model’ studied by Greenhalgh and Lewis
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λ (per year) 92.7 103 113

Our model results with ψ = 0 per year 0.689 0.738 0.776

Results of Corson (2011) 0.629 0.689 0.735

Difference 6% 4.9% 4.1%

Table 3.4: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different λ between the model of Corson (2011) and our model with

ψ = 0 per year.

(2000). Therefore we expect that disease will spread faster in our model so more

control effort will be needed.

Table 3.4 to Table 3.9 respectively give the results under the pessimistic scenario

when each of the different parameters λ, φ, τ , αy, αh and δ is varied keeping the other

parameters constant. From these tables it is clear that the endemic equilibrium of

HCV prevalence among PWIDs is bigger in our model than in Corson (2011). In

Table 3.4 where the parameter λ is increased from 92.7 per year to 113 per year

then the difference in the endemic equilibrium HCV prevalence amongst PWIDs is

decreased from 6% to 4%. Moreover in Table 3.5 when the parameter φ is increased

from 0.255 to 0.3825 then the difference in the endemic equilibria increases from 4.9%

to 5.5% and in Table 3.6 when the parameter τ increases from 133 per year to 199.5

per year then the difference in the endemic equilibria increases from 4.9% to 5.8%.

A similar scenario happens in Tables 3.7 and 3.8 which consider the parameters αy

and αh respectively. The difference in the endemic equilibrium prevalence amongst

PWIDs decreases from 4.9% when αy = 0.0160 to 0.8% when αy = 0.0432 and

from 5.2% when αh = 0.016 to 3.9% when αh = 0.14. Also in Table 3.9 when the

difference in endemic equilibria increases from 4% when δ = 0.15 to 8.1% when

δ = 0.5.
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φ 0.255 0.2805 0.306 0.3825

Our model results with ψ = 0 per year 0.738 0.727 0.716 0.675

Results of Corson (2011) 0.689 0.678 0.665 0.620

Difference 4.9% 4.9% 5.1% 5.5%

Table 3.5: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different φ between the model of Corson (2011) and our model with

ψ = 0 per year.

τ (per year) 133 146.35 159.6 199.5

Our model results with ψ = 0 per year 0.738 0.721 0.704 0.652

Results of Corson (2011) 0.689 0.671 0.652 0.594

Difference 4.9% 5% 5.2% 5.8%

Table 3.6: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different τ between the model of Corson (2011) and our model with

ψ = 0 per year.

αy 0.0160 0.0296 0.0432

Our model results with ψ = 0 per year 0.738 0.834 0.878

Results of Corson (2011) 0.689 0.817 0.870

Difference 4.9% 1.7% 0.8%

Table 3.7: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different αy between the model of Corson (2011) and our model with

ψ = 0 per year.
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αh 0.016 0.026 0.0432 0.05 0.14

Our model results with ψ = 0 per year 0.682 0.705 0.738 0.749 0.841

Results of Corson (2011) 0.630 0.655 0.689 0.701 0.802

Difference 5.2% 5% 4.9% 4.8% 3.9%

Table 3.8: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different αh between the model of Corson (2011) and our model with

ψ = 0 per year.

δ 0.15 0.26 0.5

Our model results with ψ = 0 per year 0.745 0.738 0.713

Results of Corson (2011) 0.705 0.689 0.632

Difference 4% 4.9% 8.1%

Table 3.9: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different δ between the model of Corson (2011) and our model with

ψ = 0 per year.

3.7 Comparison between our simulation results

with ψ = 0.1 per year and the results of Corson

(2011)

We have seen that disease will spread faster in our model without treatment than

in the model of Corson (2011) but in this section we have introduced treatment so

it is no longer clear whether or not disease will spread faster in our model.

Table 3.10 to 3.15 respectively again give the results under the pessimistic sce-

nario when each of the different parameters λ, φ, τ , αy, αh and δ is varied keeping the

other parameters constant. From these tables it is clear that the endemic equilibria

of HCV prevalence among PWIDs are larger in the model of Corson (2011) than

our model with ψ = 0.1 per year. In Table 3.10 where the parameter λ is increased

from 92.7 per year to 113 per year then the difference in the endemic equilibrium
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λ (per year) 92.7 103 113

Results of Corson (2011) 0.629 0.689 0.735

Our model results with ψ = 0.1 per year 0.584 0.650 0.699

Difference 4.5% 3.9% 3.6%

Table 3.10: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different λ between the model of Corson (2011) and our model with

ψ = 0.1 per year.

φ 0.255 0.2805 0.306 0.3825

Results of Corson (2011) 0.689 0.678 0.665 0.620

Our model results with ψ = 0.1 per year 0.650 0.636 0.621 0.563

Difference 3.9% 4.2% 4.4% 5.7%

Table 3.11: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different φ between the model of Corson (2011) and our model with

ψ = 0.1 per year.

HCV prevalence amongst PWIDs is decreased from 4.5% to 3.6%. Also in Table

3.11 when the parameter φ is increased from 0.255 to 0.3825 then the difference

in the endemic equilibria increases from 3.9% to 5.7% and in Table 3.12 when the

parameter τ increases from 133 per year to 199.5 per year then the difference in

the endemic equilibria increases from 3.9% to 6.2% and a similar scenario happens

in Table 3.13 when the difference in endemic equilibria increases from 3.9% when

αy = 0.0.0160 to 4.6% when αy = 0.0432. Moreover, in Tables 3.14 and 3.15 which

consider the parameters αh and δ respectively the difference in the endemic equi-

librium prevalence among PWIDs decreases from 8.2% when αh = 0.0160 to 0.9%

when αh = 0.14 and from 5% when δ = 0.15 to 0.5% when δ = 0.5.
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τ (per year) 133 146.35 159.6 199.5

Results of Corson (2011) 0.689 0.671 0.652 0.594

Our model results with ψ = 0.1 per year 0.650 0.627 0.603 0.531

Difference 3.9% 4.4% 4.9% 6.2%

Table 3.12: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different τ between the model of Corson (2011) and our model with

ψ = 0.1 per year.

αy 0.0160 0.0296 0.0432

Results of Corson (2011) 0.689 0.817 0.870

Our model results with ψ = 0.1 per year 0.650 0.766 0.824

Difference 3.9% 5.1% 4.6%

Table 3.13: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different αy between the model of Corson (2011) and our model with

ψ = 0.1 per year.

αh 0.016 0.026 0.0432 0.05 0.14

Results of Corson (2011) 0.630 0.655 0.689 0.701 0.802

Our model results with ψ = 0.1 per year 0.548 0.591 0.650 0.670 0.793

Difference 8.2% 6.4% 3.9% 3.1% 0.9%

Table 3.14: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different αh between the model of Corson (2011) and our model with

ψ = 0.1 per year.
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δ 0.15 0.26 0.5

Results of Corson (2011) 0.705 0.689 0.632

Our model results with ψ = 0.1 per year 0.655 0.650 0.627

Difference 5% 3.9% 0.5%

Table 3.15: Comparison of endemic equilibrium HCV prevalence among sharing

PWIDs for different δ between the model of Corson (2011) and our model with

ψ = 0.1 per year.

3.7.1 Conclusion and discussion

In this chapter, the consequences of the simulations affirmed analytical results and

permitted us to use the model to gauge the degree of interventions required to

achieve R0 ≤ 1 and in this way wipe out HCV in all PWIDs and needles. Investiga-

tive strategies have led to the inference of the critical values of needle and syringe

sharing rates (λ), needle cleaning (φ), needles turnover (τ) and rate of treatment

(ψ) that are expected to achieve R0 ≤ 1. The examination, which was confirmed

by simulations, shows that given that every single other parameter stays fixed each

separately of λ ≤ 48.10 per year, φ ≥ 0.76, τ ≥ 637.152 per year and ψ ≥ 39.296

per year results in R0 ≤ 1 and possible HCV elimination in PWIDs and needles. For

the model with ψ = 0 per year the pessimistic assumptions make the endemic equi-

librium prevalence higher but introducing treatment brings it down again. However

for realistic parameter values the effects of treatment seem to be small, even if we

increase the treatment levels beyond the values used in previous simulations. This

supports WHO recommendations of very high treatment levels necessary.

In summary, this study has created and explored a numerical model that ap-

proximates the spread of HCV among PWIDs, and in spite of various assumptions

which are capable of being improved, we have acquired sensible prevalence esti-

mates. Moreover, this study has indicated that focused interventions can diminish

HCV prevalence among the Glasgow PWID population. Our model differs from

that of Corson (2011) and Corson et al. (2012) in that we introduce treatment of

infected PWIDs at rate ψ and assume that needles cannot lose infectiousness over
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time. We have compared our results with those of Corson (2011) when we have

introduced treatment and without treatment.



Chapter 4

A Time Since First Injection

Model for the Spread of HCV

Amongst PWIDs

In this chapter, we develop a mathematical model aimed at creating two groups

within the PWID population participating in this research. These two groups will

be named naive and experienced PWIDs. The distinction between the two will be

made by period of time since their first injection (Corson (2011) and Corson et al.

(2013)). The first step requires us to describe the model and the assumptions made

that would allow PWIDs to progress along various stages of HCV infection. This

step is followed by the derivation of a basic reproduction number R0 that pre-empts

the analysis of the model mathematically. The model behaviour is controlled by

the basic reproduction number, we shall demonstrate that when R0 ≤ 1, and HCV

is initially present in the population, the system will tend towards the globally

asymptotically stable DFE where HCV has been eliminated from the population.

After that, we study the behaviour of this model numerically.

128
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4.1 Model description

The model of Corson (2011) and Corson et al. (2013) discussed a mathematical

model which separate a PWID population into two different groups (naive and ex-

perienced) by their time since first injection.

This model description is based on Corson (2011) and Corson et al. (2013)

except that the PWID needle interactions follow the assumptions made in Chapter

2 so every time that a PWID injects with a needle the needle takes on the infectious

disease characteristics of that PWID, also chronically infected PWIDs are treated

at per capita rate ψ. However we shall shortly see that some of the mathematics

is very different and much more complicated than that model. For this research, a

modified version of the model in Chapter Two is applied. This model focuses on the

PWID only group of participants and does not overtly focus on needles. It divides

the participant group of the PWID population into two risk groups based on the be-

ginning of injection practice. This work bases its methods and practices on models

by Greenhalgh and Hay (1997), Kretzchmar and Wiessing (2004), Vickerman et al.

(2009), Corson (2011) and Corson et al. (2013).

To explore this issue, the modified model will separate the test PWID partic-

ipants into two risk groups. These groups will be namely naive and experienced

PWIDs. This distinction will be made by their individual injection times and also

incorporate the prevention measures that aim to prevent further HCV infection

(Corson (2011) and Corson et al. (2013)). In this model, we consider the outcome

of HCV antiviral treatment on PWIDs.

This model relies on the assumption that is used in Corson (2011) and Corson

et al. (2013) in which the PWID population selected is of size n, where n is a large

number and remains constant. These assumptions therefore imply that PWIDs who

stop injecting drugs due to ceasing injecting drug use or death leave the population

under consideration at an individual rate µ. This translates to a phenomenon where

each individual to leave is replaced by an individual among the PWID population

susceptible to HCV infection.

Again as assumed in Corson (2011) and Corson et al. (2013) the modified
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model to be applied here also allows for several HCV infection stages. These stages

are individuals susceptible to infection, (represented by x for those not previously

infected and x1 for those previously infected), individuals acutely infected with HCV

(denoted h1 and h2), individuals chronically infected (y) and finally individuals who

are immune to HCV re-infection (z). In a later section, the term fi, will be defined

to denote the impact of infection among naive (i = 0) and experienced PWIDs

(i = 1) accordingly.

While susceptible PWIDs are infected with HCV they then move on to another

level that is acute stage of infection (either h1 or h2). A proportion δ of newly

infected PWIDs move to this acute h2 infected level. Eventually, the individuals

in this category either leave the injecting group of participants or clear their infec-

tion. Of those that clear their infection there is however a fraction α that develop

an immunity to HCV re-infection alongside another fraction (1 − α) that remains

susceptible to HCV re-infection (Farci et al. (1992), Mehta et al. (2002) and Mi-

callef et al. (2007)). The remaining fraction of (1 − δ) of newly infected PWIDs

cross over to the acute h1 infected class which leads to either leaving the sharing,

injecting population or the development of chronic HCV. Once chronically infected,

the PWID participants remain infected until death or until they eventually leave

the injecting population.

When separating the PWID population according to infection status, this mod-

ified model further separates the participant PWIDs into two groups. These two

group numbers vary depending on whether the individuals have a short (naive) or

long (experienced) injecting career. Every naive PWID participant moves at an in-

dividual rate η from the novice level to the experienced level which is represented in

a shift from one group to the other. Through this shift, these particular individuals

cross over into an equivalent model category that corresponds to their present HCV

infection condition.
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4.2 Model derivation

We now derive the differential equations which describe the spread of HCV among

PWIDs where PWIDs progress through the stages of infection described in the pre-

vious section. We first use techniques used previously to derive a model where both

PWIDs and needles are modelled explicitly. If we assume that needles can be either

naive or experienced (with two PWID-needle interaction assumptions as in the sim-

ple model) and exist in three infectious classes (acute h1, acute h2 and chronic y),

we will derive a total of 18 differential equations: 12 equations for PWIDs and six

for needles for Assumption 1 and 12 equations for PWIDs and six for needles for

Assumption 2. We then derive a PWID only model and show that under certain

conditions these models are equivalent in the sense that by the quasi-steady-state

argument used earlier, the PWID only model would be expected to approximate

the model with PWIDs and needles and also the models have the same basic repro-

duction number and equilibrium values. A total of 12 differential equations will be

derived for the PWID only model.

Consider πix(t), π
i
x1

(t), πih1(t), π
i
h2

(t), πiy(t) and πiz(t) to represent the fraction

of PWIDs respectively in the naive (i = 0) or experienced (i = 1) x-susceptible,

x1-susceptible, acute h1, acute h2, chronic y, immune z infectious classes at time

t. Also βih1(t), β
i
h2

(t) and βiy(t) respectively represent the fraction of needles and

syringes that were last used by a naive (i = 0) or experienced (i = 1) user.

Furthermore, λi denotes the value of the needle and syringe sharing rates in

the i’th group of PWIDs. φ then indicates the likelihood that a particular PWID

thoroughly disinfects their needles and syringes before use (meaning that PWIDs

disinfect injecting paraphernalia using alcohol or bleach to remove all HCV viral

load before injecting themselves). αh and αy denote the transmission of acute and

chronic HCV infection, respectively. si0 and si1 then show the portion of the inject-

ing apparatus a naive (i = 0) or experienced (i = 1) PWID borrows from naive and

experienced injecting PWIDs, respectively.

Finally π0 and π1 denote the fractions of naive and experienced PWIDs, re-

spectively. Henceforth, we will assume that this constraint is satisfied. If we are
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consider the fraction of naive π0(t) and experienced π1(t) drug users at time t we

have

dπ0

dt
= µ− (µ+ η)π0 (4.2.1)

and

dπ1

dt
= ηπ0 − µπ1. (4.2.2)

It is straightforward to show that over time

π0(t) → π∗0 =
µ

µ+ η
, (4.2.3)

π1(t) → π∗1 =
η

µ+ η
. (4.2.4)

Note that we follow Corson (2011) and Corson et al. (2013) in order to ensure

that our model is realistic by putting a constraint on s01 and s10 by ensuring that

λ0s01µ = λ1s10η. This is necessary to ensure that the number of needles in the two

experience groups remains positive. It ensures that at equilibrium the total number

of needles borrowed by naive users from the experienced group is equal to the total

number of needles borrowed from the naive group by experienced users.

4.2.1 Dynamic equations for PWID and needle model

We now derive the equations which describe the behaviour of our PWID population

over time t.

PWID population

Following a similar way as in Corson (2011) and Corson et al. (2013) to derive the

PWID equation for naive x-susceptible then we have

The change in the number of naive x-susceptible individuals in the small time

interval [t, t+4t)
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x0(t+4t)− x0(t)

= new naive x-susceptible PWIDs born in [t, t+4t) i.e. the number of PWIDs

recruited to sharing intravenous injecting drug use in [t, t+4t)

− the number of naive x-susceptible PWIDs who move into the experienced

tier of the model in [t, t+4t)

− the number of naive x-susceptible PWIDs who leave the population due

to death or cessation of injecting drug use in [t, t+4t)

− the number of naive x-susceptible PWIDs who develop acute HCV infection

after borrowing needles and syringes last used by naive PWIDs in [t, t+4t)

− the number of naive x-susceptible PWIDs who develop acute HCV infection

after borrowing needles and syringes last used by experienced PWIDs

in [t, t+4t)

+ the number of naive y-chronic PWIDs who successfully treat HCV infection in

[t, t+4t).

= µn4t− (µ+ η)x04t−4tλ0s00(1− φ)x0(αh(β
0
h1

+ β0
h2

) + αyβ
0
y)

−4tλ0s01(1− φ)x0(αh(β
1
h1

+ β1
h2

) + αyβ
1
y) + ψy04t+ o(4t).

Dividing both sides by 4t then we have

x0(t+4t)− x0(t)
4t

= µn− (µ+ η)x0 − λ0s00(1− φ)x0(αh(β
0
h1

+ β0
h2

) + αyβ
0
y)

− λ0s01(1− φ)x0(αh(β
1
h1

+ β1
h2

) + αyβ
1
y) + ψy0 + o(1).

Letting 4t→ 0 we deduce that

dx0(t)

dt
= µn− (µ+ η)x0 − λ0s00(1− φ)x0(αh(β

0
h1

+ β0
h2

) + αyβ
0
y)

− λ0s01(1− φ)x0(αh(β
1
h1

+ β1
h2

) + αyβ
1
y) + ψy0.

Dividing by n, and recalling that π0
x = x0

n
, π0

y = y0

n
,

dπ0
x

dt
= µ− (µ+ η)π0

x − λ0s00(1− φ)π0
x(αh(β

0
h1

+ β0
h2

) + αyβ
0
y)

− λ0s01(1− φ)π0
x(αh(β

1
h1

+ β1
h2

) + αyβ
1
y) + ψπ0

y.
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The change in the number of naive chronic y infected individuals in the small

time interval [t, t+4t) y0(t+4t)− y0(t)

= the number of naive acute h1 infected PWIDs that develop chronic HCV

infection in [t, t+4t)

− the number of chronic cases that leave the sharing, injecting population in

[t, t+4t)

− the number of chronic cases that move into the experienced tier in [t, t+4t)

− the number of naive y-chronic PWIDs who successfully treat HCV infection after

borrowing needles and syringes last used by naive PWIDs in [t, t+4t),

= n4tπ0
h1

(t)σ − n(µ+ η)π0
y(t)4t− ψπ0

y(t)n4t+ o(4t).

Hence, dividing both sides by 4t we have that

y0(t+4t)− y0(t)
∆t

= nπ0
h1

(t)σ − n(µ+ η)π0
y(t)− ψπ0

y(t)n+ o(1).

Letting 4t→ 0 we deduce that

dy0

dt
= nπ0

h1
(t)σ − n(µ+ η)π0

y(t)− nψπ0
y(t),

= π0
h1
σ − (µ+ η)π0

y − ψπ0
y.

The derivations of the equations for naive x1-susceptible, naive acute h1, naive

acute h2 and naive chronic y are given by

dπ0
x

dt
= µ− (µ+ η)π0

x − λ0s00(1− φ)π0
x(αh(β

0
h1

+ β0
h2

) + αyβ
0
y)

− λ0s01(1− φ)π0
x(αh(β

1
h1

+ β1
h2

) + αyβ
1
y) + ψπ0

y,

dπ0
x1

dt
= σ(1− α)π0

h2
− (µ+ η)π0

x1
− λ0s00(1− φ)π0

x1
(αh(β

0
h1

+ β0
h2

)

+ αyβ
0
y)− λ0s01(1− φ)π0

x1
(αh(β

1
h1

+ β1
h2

) + αyβ
1
y),

dπ0
h1

dt
= λ0s00(1− φ)(1− δ)

(
π0 − Σkπ

0
k

)
(αh(β

0
h1

+ β0
h2

) + αyβ
0
y)

+ λ0s01(1− φ)(1− δ)
(
π0 − Σkπ

0
k

)
(αh(β

1
h1

+ β1
h2

) + αyβ
1
y)

− (µ+ σ + η)π0
h1
,
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dπ0
h2

dt
= λ0s00(1− φ)δ

(
π0 − Σkπ

0
k

)
(αh(β

0
h1

+ β0
h2

) + αyβ
0
y)

+ λ0s01(1− φ)δ
(
π0 − Σkπ

0
k

)
(αh(β

1
h1

+ β1
h2

) + αyβ
1
y)

− (µ+ σ + η)π0
h2
,

and

dπ0
y

dt
= π0

h1
σ − (µ+ η)π0

y − ψπ0
y.

Similarly for naive immune z PWIDs we have

dπ0
z

dt
= σαπ0

h2
− (µ+ η)π0

z .

Again by using the similar techniques which are used to derive the behaviour of

naive PWIDs at each stage of infection over time then we can use a similar way to

describe the behaviour of experienced PWIDs at each stage of infection over time.

Therefore, the twelve equations that describe the behaviour of all PWIDs over time

are given by

dπ0
x

dt
= µ− (µ+ η)π0

x − f0π0
x + ψπ0

y, (4.2.5)

dπ0
x1

dt
= σ(1− α)π0

h2
− (µ+ η)π0

x1
− f0π0

x1
, (4.2.6)

dπ0
h1

dt
= (1− δ)f0

(
π0 − Σkπ

0
k

)
− (µ+ σ + η)π0

h1
, (4.2.7)

dπ0
h2

dt
= δf0

(
π0 − Σkπ

0
k

)
− (µ+ σ + η)π0

h2
, (4.2.8)

dπ0
y

dt
= σπ0

h1
− (µ+ η)π0

y − ψπ0
y, (4.2.9)

dπ0
z

dt
= σαπ0

h2
− (µ+ η)π0

z , (4.2.10)

dπ1
x

dt
= ηπ0

x − µπ1
x − f1π1

x + ψπ1
y , (4.2.11)

dπ1
x1

dt
= ηπ0

x1
+ σ(1− α)π1

h2
− µπ1

x1
− f1π1

x1
, (4.2.12)

dπ1
h1

dt
= ηπ0

h1
+ (1− δ)f1

(
π1 − Σkπ

1
k

)
− (µ+ σ)π1

h1
, (4.2.13)

dπ1
h2

dt
= ηπ0

h2
+ δf1

(
π1 − Σkπ

1
k

)
− (µ+ σ)π1

h2
, (4.2.14)

dπ1
y

dt
= ηπ0

y + σπ1
h1
− µπ1

y − ψπ1
y, (4.2.15)

dπ1
z

dt
= ηπ0

z + σαπ1
h2
− µπ1

z , (4.2.16)
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where πij ≥ 0, Σkπ
0
k + Σkπ

1
k = 1 (k = x, x1, h1, h2, y, z) and f0, f1 are given by

fi = λisi0(1− φ)(αh(β
0
h1

+ β0
h2

) + αyβ
0
y) + λisi1(1− φ)(αh(β

1
h1

+ β1
h2

) + αyβ
1
y).

Equations (4.2.5)-(4.2.10) describe how the behaviour of naive PWIDs at each stage

of HCV infection changes over time while equations (4.2.11)-(4.2.16) describe how

the behaviour of experienced PWIDs at each infectious stage changes over time.

Needles and syringes

The critical step for this model is the derivation of equations for the change in the

fraction of infectious needles and syringes. These particular equations describe the

change in the fraction of infectious needles in each category. To fully define the

models we need to define m0 as the number of naive syringes and needles circulating

amongst PWIDs, that is the number of needles and syringes that were either last

used by a naive PWID or are the last of a sequence of non-used needles or syringes,

the first member of which was exchanged for a needle or syringe last used by a

naive PWID. This situation implies that this is the number of naive syringes and

needles in circulation amongst the number of naive PWIDs in the modelled pop-

ulation. Similarly the model defines m1 to be the number of experienced needles

and syringes in circulation (Corson (2011) and Corson et al. (2013)). We therefore

define Λjk =
λjsjknj
mk

, j, k = 0, 1 as the rate which any PWID in group j injects using

a syringe and needle previously used by a group k PWID.

Now as in the first model we have two assumptions. The first (Assumption 1)

corresponds to the pessimistic needle assumptions in Lewis and Greenhalgh (2001a)

where state h1 infectious needles are regarded as more infectious than state h2 infec-

tious needles. So needles only move up the spectrum: uninfectious, state y infectious,

state h2 infectious, then state h1 infectious. Under Assumption 1
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m0β
0
h1

(t+4t), the number of naive acute h1 infected needles at time t+4t

= the number of acute h1 infected needles and syringes at time t

+ (the number of naive non acute h1 infected needles and syringes at time t)

× (the fraction used by naive acute h1 PWIDs in [t, t+4t))

+ the number of experienced needles and syringes at time t used by a naive

acute h1 infected PWID in [t, t+4t)

− the number of naive acute h1 infected needles and syringes cleaned then

used by a naive non acute h1 PWID in [t, t+4t)

− the number of naive acute h1 needles and syringes used by experienced

PWIDs in [t, t+4t)

+ (the number of experienced acute h1 infected needles and syringes at time t)

× (the fraction used without cleaning by naive non acute h1 PWIDs in

[t, t+4t))

− the number of naive acute h1 needles and syringes exchanged in [t, t+4t).

m0β
0
h1

(t+4t) = m0β
0
h1

(t) + Λ00

π0
h1

π0
m0(1− β0

h1
)4t+ Λ01

π0
h1

π0
m14t

− φΛ00

(
π0 − π0

h1

π0

)
β0
h1
m04t

− Λ10m0β
0
h1
4t+ Λ01

(
π0 − π0

h1

π0

)
m1β

1
h1

(1− φ)4t

− m0β
0
h1
τ4t+ o(4t).

Subtracting m0β
0
h1

(t) from both sides, dividing by 4t then letting 4t→ 0 gives

m0

dβ0
h1

dt
= Λ00

π0
h1

π0
m0(1− β0

h1
) + Λ01

π0
h1

π0
m1 (4.2.17)

− φΛ00

(
π0 − π0

h1

π0

)
β0
h1
m0

− Λ10m0β
0
h1

+ Λ01

(
π0 − π0

h1

π0

)
m1β

1
h1

(1− φ)

− m0β
0
h1
τ.
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Similarly

m0β
0
h2

(t+4t) = m0β
0
h2

(t) + Λ00

π0
h2

π0
m0(1− β0

h1
− β0

h2
)4t

+ Λ01

π0
h2

π0
m1[(1− β1

h1
) + φβ1

h1
]4t

+ φΛ00β
0
h1

π0
h2

π0
m04t− Λ00

π0
h1

π0
β0
h2
m04t

− Λ10m0β
0
h2
4t

− φΛ00

(
π0 − π0

h1
− π0

h2

π0

)
β0
h2
m04t

+ Λ01

(
π0 − π0

h1
− π0

h2

π0

)
m1β

1
h2

(1− φ)4t

− m0β
0
h2
τ4t+ o(4t).

Subtracting m0β
0
h2

(t) from both sides, dividing by 4t then letting 4t→ 0 gives

m0

dβ0
h2

dt
= Λ00

π0
h2

π0
m0(1− β0

h1
− β0

h2
) (4.2.18)

+ Λ01

π0
h2

π0
m1[(1− β1

h1
) + φβ1

h1
]

+ φΛ00β
0
h1

π0
h2

π0
m0 − Λ00

π0
h1

π0
β0
h2
m0

− Λ10m0β
0
h2

− φΛ00

(
π0 − π0

h1
− π0

h2

π0

)
β0
h2
m0

+ Λ01

(
π0 − π0

h1
− π0

h2

π0

)
m1β

1
h2

(1− φ)

− m0β
0
h2
τ.

Under Assumption 2 the equations for naive state βh1 needles are

m0β
0
h1

(t+4t) = m0β
0
h1

(t) + Λ00

π0
h1

π0
m0(1− β0

h1
)4t+ Λ01

π0
h1

π0
m14t

− Λ00

π0
h2

π0
(1− φ)m0β

0
h1
4t

− φΛ00

(
π0 − π0

h1

π0

)
β0
h1
m04t− Λ10m0β

0
h1
4t

+ Λ01

(
π0 − π0

h1
− π0

h2

π0

)
m1β

1
h1

(1− φ)4t

−m0β
0
h1
τ4t+ o(4t).
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Subtracting m0β
0
h1

(t) from both sides, dividing by 4t then letting 4t→ 0 gives

m0

dβ0
h1

dt
= Λ00

π0
h1

π0
m0(1− β0

h1
) + Λ01

π0
h1

π0
m1 (4.2.19)

− Λ00

π0
h2

π0
(1− φ)m0β

0
h1

− φΛ00

(
π0 − π0

h1

π0

)
β0
h1
m0 − Λ10m0β

0
h1

+ Λ01

(
π0 − π0

h1
− π0

h2

π0

)
m1β

1
h1

(1− φ)

− m0β
0
h1
τ.

Similarly

m0β
0
h2

(t+4t) = m0β
0
h2

(t) + Λ00

π0
h2

π0
m0(1− β0

h2
)4t

− Λ00

π0
h1

π0
(1− φ)m0β

0
h2
4t

+ Λ01

π0
h2

π0
m14t

− φΛ00β
0
h2

(
π0 − π0

h2

π0

)
m04t

− Λ10m0β
0
h2
4t

+ Λ01

(
π0 − π0

h1
− π0

h2

π0

)
β1
h2
m1(1− φ)4t

− m0β
0
h2
τ4t+ o(4t).

Subtracting m0β
0
h2

(t) from both sides, dividing by 4t then letting 4t→ 0 gives

m0

dβ0
h2

dt
= Λ00

π0
h2

π0
m0(1− β0

h2
) (4.2.20)

− Λ00

π0
h1

π0
β0
h2

(1− φ)

+ Λ01

π0
h2

π0
m1

− φΛ00β
0
h2

(
π0 − π0

h2

π0

)
m0

− Λ10m0β
0
h2

+ Λ01

(
π0 − π0

h1
− π0

h2

π0

)
m1β

1
h2

(1− φ)

−m0β
0
h2
τ.
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Now for both Assumptions 1 and 2 in stage chronic y we have that

m0β
0
y(t+4t) = m0β

0
y(t) + Λ00

π0
y

π0
m0(1− β0

h1
− β0

h2
− β0

y)4t (4.2.21)

+ Λ01

π0
y

π0
m1[(1− β1

h1
− β1

h2
) + φ(β1

h1
+ β1

h2
)]4t

+ φΛ00

π0
y

π0
(β0

h1
+ β0

h2
)m04t

− Λ00m0β
0
y

(
π0
h1

+ π0
h2

π0

)
4t (4.2.22)

− Λ10m0β
0
y4t

− φΛ00β
0
y

(
π0 − (π0

h1
+ π0

h2
+ π0

y)

π0

)
m04t

+ Λ01

(
π0 − π0

h1
− π0

h2
− π0

y

π0

)
m1β

1
y(1− φ)4t

−m0β
0
yτ4t+ o(4t).

Subtracting m0β
0
y(t) from both sides, dividing by 4t then letting 4t→ 0 gives

m0

dβ0
y

dt
= Λ00

π0
y

π0
m0(1− β0

h1
− β0

h2
− β0

y) (4.2.23)

+ Λ01

π0
y

π0
m1[(1− β1

h1
− β1

h2
) + φ(β1

h1
+ β1

h2
)]

+ φΛ00

π0
y

π0
(β0

h1
+ β0

h2
)m0

− Λ00m0β
0
y

(
π0
h1

+ π0
h2

π0

)
− Λ10m0β

0
y

− φΛ00β
0
y

(
π0 − (π0

h1
+ π0

h2
+ π0

y)

π0

)
m0

+ Λ01

(
π0 − π0

h1
− π0

h2
− π0

y

π0

)
m1β

1
y(1− φ)

− m0β
0
yτ.



4.2. Model derivation 141

Similarly for the experienced stage, we have that for Assumption 1

m1

dβ1
h1

dt
= Λ11

π1
h1

π1
m1(1− β1

h1
) + Λ10

π1
h1

π1
m0 (4.2.24)

− φΛ11

(
π1 − π1

h1

π1

)
β1
h1
m1

− Λ01m1β
1
h1

+ Λ10

(
π1 − π1

h1

π1

)
m0β

0
h1

(1− φ)

−m1β
1
h1
τ.

For acute h2 we have

m1

dβ1
h2

dt
= Λ11

π1
h2

π1
m1(1− β1

h1
− β1

h2
) (4.2.25)

+ Λ10

π1
h2

π1
m0

[
(1− β0

h1
) + φβ0

h1

]
+ φΛ11β

1
h1

π1
h2

π1
m1 − Λ11

π1
h1

π1
β1
h2
m1

− Λ01m1β
1
h2

− φΛ11

(
π1 − π1

h1
− π1

h2

π1

)
β1
h2
m1

+ Λ10

(
π1 − π1

h1
− π1

h2

π1

)
m1β

0
h2

(1− φ)

−m1β
1
h2
τ.

Under Assumption 2 we have

m1

dβ1
h1

dt
= Λ11

π1
h1

π1
m1(1− β1

h1
) + Λ10

π1
h1

π1
m0 (4.2.26)

− φΛ11

(
π1 − π1

h1

π1

)
β1
h1
m1 − Λ01m1β

1
h1

− Λ11

π1
h2

π1
(1− φ)m1β

1
h1

+ Λ10

(
π1 − π1

h1
− π1

h2

π1

)
m0β

0
h1

(1− φ)

− m1β
1
h1
τ.
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m1

dβ1
h2

dt
= Λ11

π1
h2

π1
m1(1− β1

h2
) (4.2.27)

+ Λ10

π1
h2

π1
m0 − Λ11

π1
h1

π1
β1
h2

(1− φ)

− φΛ11β
1
h2

(
π1 − π1

h2

π1

)
m1

− Λ01m1β
1
h2

+ Λ10

(
π1 − π1

h1
− π1

h2

π1

)
m0β

0
h2

(1− φ)

−m1β
1
h2
τ.

Now for both assumptions we have

m1

dβ1
y

dt
= Λ11

π1
y

π1
m1(1− β1

h1
− β1

h2
− β1

y) (4.2.28)

+ Λ10

π1
y

π1
m0[(1− β0

h1
− β0

h2
) + φ(β0

h1
+ β0

h2
)]

+ φΛ11

π1
y

π1
(β1

h1
+ β1

h2
)m1

− Λ11m1β
1
y

(
π1
h1

+ π1
h2

π1

)
− Λ01m1β

1
y

− φΛ11β
1
y

(
π1 − (π1

h1
+ π1

h2
+ π1

y)

π1

)
m1

+ Λ10

(
π1 − π1

h1
− π1

h2
− π1

y

π1

)
m0β

0
y(1− φ)

−m1β
1
yτ.

The governing equations for the PWID and needle time since first injection model

are given by equations (4.2.5)-(4.2.28). This model contains 18 governing equations

for Assumption 1 and 18 governing equations for Assumption 2 which makes it

very difficult to perform any kind of mathematical analysis. Another way to model

the spread of HCV in our population is to develop a PWID only model. The

approximation argument that was used in the local stability analysis of the endemic

equilibrium of the simple model (Theorem 2.4.19) shows that it is possible to have

an approximately valid PWID only model which has the same basic reproduction

number and equilibrium values as the full model. Hence the system of equations
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which govern the behaviour of the model is given by

dπ0
x

dt
= µ− (µ+ η)π0

x − f̃0π0
x + ψπ0

y, (4.2.29)

dπ0
x1

dt
= σ(1− α)π0

h2
− (µ+ η)π0

x1
− f̃0π0

x1
, (4.2.30)

dπ0
h1

dt
= (1− δ)f̃0

(
π0 − Σkπ

0
k

)
− (µ+ σ + η)π0

h1
, (4.2.31)

dπ0
h2

dt
= δf̃0

(
π0 − Σkπ

0
k

)
− (µ+ σ + η)π0

h2
, (4.2.32)

dπ0
y

dt
= σπ0

h1
− (µ+ η)π0

y − ψπ0
y, (4.2.33)

dπ0
z

dt
= σαπ0

h2
− (µ+ η)π0

z , (4.2.34)

dπ1
x

dt
= ηπ0

x − µπ1
x − f̃1π1

x + ψπ1
y, (4.2.35)

dπ1
x1

dt
= ηπ0

x1
+ σ(1− α)π1

h2
− µπ1

x1
− f̃1π1

x1
, (4.2.36)

dπ1
h1

dt
= ηπ0

h1
+ (1− δ)f̃1

(
π1 − Σkπ

1
k

)
− (µ+ σ)π1

h1
, (4.2.37)

dπ1
h2

dt
= ηπ0

h2
+ δf̃1

(
π1 − Σkπ

1
k

)
− (µ+ σ)π1

h2
, (4.2.38)

dπ1
y

dt
= ηπ0

y + σπ1
h1
− µπ1

y − ψπ1
y, (4.2.39)

dπ1
z

dt
= ηπ0

z + σαπ1
h2
− µπ1

z , (4.2.40)

where πij ≥ 0, Σjπ
0
j + Σjπ

1
j = 1 (j = x, x1, h1, h2, y, z) and the summation signs over

k are taken over k = h1, h2, y, z and f̃0, f̃1 are given by

f̃i = λisi0(1− φ)
(
(αh − αy)(β

0

h1
+ β

0

h2
) + αy(β

0

h1
+ β

0

h2
+ β

0

y)
)

+ λisi1(1− φ)
(
(αh − αy)(β

1

h1
+ β

1

h2
) + αy(β

1

h1
+ β

1

h2
+ β

1

y)
)
, (4.2.41)

such that

β
0

h1
+ β

0

h2
=
B0

A0
(4.2.42)
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where

B0 = Λ00

π0
h1

+ π0
h2

π0

(
Λ11

π1
h1

+ π1
h2

π1
(1− φ) + φΛ11 + τ

)
+ Λ01Λ00

π0
h1

+ π0
h2

π0

+ Λ10

π0
h1

+ π0
h2

π0

(
Λ11

π1
h1

+ π1
h2

π1
(1− φ) + φΛ11 + τ

)
+ Λ10Λ11

π1
h1

+ π1
h2

π1
(1− φ)

(
1−

π0
h1

+ π0
h2

π0

)
+ Λ10Λ01

π0
h1

+ π0
h2

π0

+ Λ10Λ01

π1
h1

+ π1
h2

π1
(1− φ)

(
1−

π0
h1

+ π0
h2

π0

)
and

A0 =

(
Λ00

π0
h1

+ π0
h2

π0
(1− φ) + φΛ00 + τ

)(
Λ11

π1
h1

+ π1
h2

π1
(1− φ) + φΛ11 + τ

)
+ Λ01

(
Λ00

π0
h1

+ π0
h2

π0
(1− φ) + φΛ00 + τ

)
+ Λ10

(
Λ11

π1
h1

+ π1
h2

π1
(1− φ) + φΛ11 + τ

)
to

+Λ10Λ01

[
1− (1− φ)2

(
1−

π0
h1

+π0
h2

π0

)(
1−

π1
h1

+π1
h2

π1

)]
.

β
0

h1
+ β

0

h2
+ β

0

y =
D0

C0
. (4.2.43)

Here

D0 = Λ00

π0
h1

+ π0
h2

+ π0
y

π0

(
Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ) + φΛ11 + τ

)
+ Λ01Λ00

π0
h1

+ π0
h2

+ π0
y

π0

+ Λ10

π0
h1

+ π0
h2

+ π0
y

π0

(
Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ) + φΛ11 + τ

)
+ Λ10Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ)

(
1−

π0
h1

+ π0
h2

+ π0
y

π0

)
+ Λ10Λ01

π0
h1

+ π0
h2

+ π0
y

π0

+ Λ10Λ01

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ)

(
1−

π0
h1

+ π0
h2

+ π0
y

π0

)
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and

C0 =

(
Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ) + φΛ00 + τ

)
×
(

Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ) + φΛ11 + τ

)
+ Λ01

(
Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ) + φΛ00 + τ

)
+ Λ10

(
Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ) + φΛ11 + τ

)
+ Λ10Λ01

[
1− (1− φ)2

(
1−

π0
h1

+ π0
h2

+ π0
y

π0

)(
1−

π1
h1

+ π1
h2

+ π1
y

π1

)]
.

Moreover

β
1

h1
+ β

1

h2
=
B1

A1
(4.2.44)

where

B1 = Λ11

π1
h1

+ π1
h2

π1

(
Λ00

π0
h1

+ π0
h2

π0
(1− φ) + φΛ00 + τ

)
+ Λ10Λ11

π1
h1

+ π1
h2

π1

+ Λ01

π1
h1

+ π1
h2

π1

(
Λ00

π0
h1

+ π0
h2

π1
(1− φ) + φΛ00 + τ

)
+ Λ01Λ00

π0
h1

+ π0
h2

π0
(1− φ)

(
1−

π1
h1

+ π1
h2

π1

)
+ Λ01Λ10

π1
h1

+ π1
h2

π1

+ Λ01Λ10

π0
h1

+ π0
h2

π0
(1− φ)

(
1−

π1
h1

+ π1
h2

π1

)
and

A1 =

(
Λ11

π1
h1

+ π1
h2

π1
(1− φ) + φΛ11 + τ

)(
Λ00

π0
h1

+ π0
h2

π0
(1− φ) + φΛ00 + τ

)
+ Λ10

(
Λ11

π1
h1

+ π1
h2

π1
(1− φ) + φΛ11 + τ

)
+ Λ01

(
Λ00

π0
h1

+ π0
h2

π0
(1− φ) + φΛ00 + τ

)
+ Λ01Λ10

[
1− (1− φ)2

(
1−

π1
h1

+ π1
h2

π1

)(
1−

π0
h1

+ π0
h2

π0

)]
.

Similarly

β
1

h1
+ β

1

h2
+ β

1

y =
D1

C1
. (4.2.45)
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Here

D1 = Λ11

π1
h1

+ π1
h2

+ π1
y

π1

(
Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ) + φΛ00 + τ

)
+ Λ10Λ11

π1
h1

+ π1
h2

+ π1
y

π1

+ Λ01

π1
h1

+ π1
h2

+ π1
y

π1

(
Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ) + φΛ00 + τ

)
+ Λ01Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ)

(
1−

π1
h1

+ π1
h2

+ π1
y

π1

)
+ Λ01Λ10

π1
h1

+ π1
h2

+ π1
y

π1

+ Λ01Λ10

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ)

(
1−

π1
h1

+ π1
h2

+ π1
y

π1

)
and

C1 =

(
Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ) + φΛ11 + τ

)
×
(

Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ) + φΛ00 + τ

)
+ Λ10

(
Λ11

π1
h1

+ π1
h2

+ π1
y

π1
(1− φ) + φΛ11 + τ

)
+ Λ01

(
Λ00

π0
h1

+ π0
h2

+ π0
y

π0
(1− φ) + φΛ00 + τ

)
+ Λ01Λ10

[
1− (1− φ)2

(
1−

π1
h1

+ π1
h2

+ π1
y

π1

)(
1−

π0
h1

+ π0
h2

+ π0
y

π0

)]
.

We note that this PWID only model is completely different than the analysis of Cor-

son (2011) and Corson et al. (2013). In that case there is a PWID only model but

it is much simpler. The calculations behind deriving these equations are straight-

forward but complicated. We give the explanation of the equation (4.2.42) in detail.

The other equations (4.2.43)-(4.2.45) are explained similarly. For Assumption 1

we add (4.2.17) to (4.2.18) to give an equation similar to (4.2.17) for m0
dβ0
h

dt
where

β0
h = β0

h1
+β0

h2
. We then add (4.2.24) to (4.2.25) to get a similar equation to (4.2.24)

for m1
dβ1
h

dt
where β1

h = β1
h1

+ β1
h2

. For Assumption 2 exactly the same equations are

got by adding equations (4.2.19) and (4.2.20) and (4.2.26) to (4.2.27) we then set

the time derivatives
dβ0

h

dt
=
dβ1

h

dt
= 0

and solve for the equilibrium values of these equations to get (4.2.42). We note that

at equilibrium the total number of naive PWIDs who inject with syringes last used
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by experienced PWIDs is equal to the total number of experienced PWIDs who

inject with syringes last used by naive PWIDs and we assume that this equilibrium

has been reached (Corson (2011) and Corson et al. (2013)). This implies that

λ0n0s01 = λ1n1s10 (4.2.46)

or equivalently

Λ01m1 = Λ10m0

which was used in the derivation of (4.2.42).

The model given by (4.2.5)-(4.2.28) is approximately equivalent to the PWID

only model given by the equations (4.2.29)-(4.2.45). In deriving this approximately

equivalent model given by equations (4.2.29)-(4.2.45) we approximated the dynamic

relationship between the PWID and needle stages by observing that a PWID injects

on a time scale that is of the order of days whereas the epidemiological and demo-

graphic changes are much slower and measured in years. A similar approximation

was model in our analysis of the local stability of the endemic equilibrium from the

simple model in Chapter 2.

4.3 The basic reproduction number R0

R0 is also defined by a dimensionless number and not time-dependent, and thus is

also referred to as the basic reproduction (or reproductive) ratio. It can be defined

as the ratio of rates or as the secondary cases per infected case.

For notational purposes, each infected individual will be defined by the h-state

at the time of infection, versus the current h-state. An individual has h-state j

means the individual had h-state j when they were infected. This is also called the

”state at birth”, since the individual is created, or ”born”, from an infectious point

of view. kij is defined as the expected number of new infections that have h-state i

caused by one individual having h-state j, over the time-period of transmissibility

(Diekmann and Heesterbeek (2000)).

Therefore, our derivation of R0 is based on the derivation in Corson (2011)

and Corson et al. (2013) the difference being that there is an additional treatment
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rate ψ but the analysis is very different and much more complicated because of

the different needle equations. Therefore, we have had to adapt our model from

that of Corson (2011) and Corson et al. (2013) because of the different needle

equations then we derive our basic reproduction number (R0). Hence, this method

uses the projected number of secondary cases that develops from every primary case

found within a given ‘virgin’ population (Corson (2011), Corson et al. (2013) and

Diekmann and Heesterbeek (2000)). For this particular case, ‘virgin’ population

refers to the population at the DFE level when the initial infectious case appears.

This number plays a crucial role when it comes to epidemiological models. In these

cases the disease usually dies out if R0 < 1 and spreads if R0 > 1. To best derive

this basic reproduction number, the modified model to be applied considers two

particular cases:

1. The infection chain starts with a single naive PWID.

2. The infection chain starts with a single experienced PWID.

An assumption made for this phenomenon focuses on a scenario where the popula-

tion has reached the DFE. In this situation, both the novice and experienced PWID

numbers alongside naive and experienced syringe and needle numbers all reach equi-

librium values.

In both case 1 or case 2 once he or she catches HCV, this individual will move

to the h1 stage with probability 1− δ and the h2 stage with probability δ. In both

cases he or she will stay there for an average time 1/(µ + σ + η). The transition

probabilities through the various infected stages are the same as in Corson (2011)

and Corson et al. (2013) except for (a) leaving the chronic infected naive class where

they stay for time 1/(µ + η + ψ) and the probabilities of leaving the population,

moving to the chronic infected experienced class or being cured are µ/(µ + η + ψ),

η/(µ + η + ψ) and ψ/(µ + η + ψ) respectively and (b) leaving the chronic infected

naive class where they stay for time 1/(µ + ψ) and the probabilities of leaving the

population or being cured are µ/(µ+ψ), η/(µ+ η+ψ) and ψ/(µ+ψ) respectively.



4.3. The basic reproduction number R0 149

We define

x0 = expected number of naive PWIDs infected by a single needle in infectious

state h1 or h2 last used by a naive PWID

and

x1 = expected number of naive PWIDs infected by a single needle in inf-

ectious state h1 or h2 last used by an experienced PWID.

If we consider a single needle in infectious state h1 or h2 last used by a naive PWID

the next event to happen is that it is either used by a naive PWID and not cleaned

with probability Λ00(1− φ)/(Λ00 + Λ10 + τ), or used by an experienced PWID and

not cleaned with probability Λ10(1− φ)/(Λ00 + Λ10 + τ) or either cleaned and used

or exchanged with probability
(
(Λ00 + Λ10)φ+ τ)

)
/(Λ00 + Λ10 + τ). Hence

x0 = αh
Λ00(1− φ)

Λ00 + Λ10 + τ
+

Λ00(1− φ)

Λ00 + Λ10 + τ
x0 +

Λ10(1− φ)

Λ00 + Λ10 + τ
x1

and

x1 = αh
Λ01(1− φ)

Λ11 + Λ01 + τ
+

Λ11(1− φ)

Λ11 + Λ01 + τ
x1 +

Λ01(1− φ)

Λ11 + Λ01 + τ
x0.

After some algebraic operations, we deduce that

x0 =
αh(1− φ)

[
Λ00(Λ01 + Λ11φ+ τ) + Λ01Λ10(1− φ)

]
(Λ00φ+ Λ10 + τ)(Λ11φ+ Λ01 + τ)− Λ10Λ01(1− φ)2

, (4.3.47)

and

x1 =
αh(1− φ)Λ01(Λ00 + Λ10 + τ)

(Λ00φ+ Λ10 + τ)(Λ11φ+ Λ01 + τ)− Λ10Λ01(1− φ)2
.

Also let

y0 = expected number of experienced PWIDs infected by a single needle

in infectious state h1 or h2 last used by a naive PWID (state 0),

then we have

y0 =
αh(1− φ)Λ10(Λ11 + Λ01 + τ)

(Λ00φ+ Λ10 + τ)(Λ11φ+ Λ01 + τ)− Λ10Λ01(1− φ)2
.
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Similarly we have

y1 = expected number of experienced PWIDs infected by a single needle

in infectious state h1 or h2 last used by an experienced PWID (state 0).

y1 =
αh(1− φ)

[
Λ11(Λ10 + Λ00φ+ τ) + Λ01Λ10(1− φ)

]
(Λ00φ+ Λ10 + τ)(Λ11φ+ Λ01 + τ)− Λ10Λ01(1− φ)2

.

If we similarly define

x̄0 = expected number of naive PWIDs infected by a single needle

in infectious state y last used by a naive PWID (state 0),

x̄1 = expected number of naive PWIDs infected by a single needle

in infectious state y last used by an experienced PWID (state 1),

ȳ0 = expected number of experienced PWIDs infected by a single needle

in infectious state y last used by a naive PWID (state 0),

and

ȳ1 = expected number of experienced PWIDs infected by a single needle

in infectious state y last used by an experienced PWID (state 0),

then it is clear that x̄0 = αy
αh
x0, x̄1 = αy

αh
x1, ȳ0 = αy

αh
y0 and ȳ1 = αy

αh
y1.

Let kij denote the total number of secondary cases caused in the group j by an
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index case in group i. Then

k10 = the expected total number of secondary cases caused in the naive group

by a single experienced individual needle infected entering the disease

free population at equilibrium

= the expected total number of secondary cases caused in the naive group

by a single experienced individual needle infected individual who

progresses through the various stages of infection starting at the acute h2

stage of infection

+ the expected total number of secondary cases caused in the naive group

by a single experienced individual needle infected individual who

progresses through the various stages of infection starting at the acute h1

stage of infection.

Therefore,

k10 = k10h2 + k10h1

where

k10h2 = leaving the acute h2 infected naive class where they stay for time 1/(µ+ σ)

with probability δ,

and

k10h1 = leaving the acute h1 infected naive class where they stay for time 1/(µ+ σ)

with probability 1− δ, then they move to the experienced chronic class

with probability σ/(µ+ σ) where they stay for expected time 1/(µ+ ψ).

In both cases there are λ1/(µ+σ) expected infected needles from the acute class. In

the second case there are also (1−δ)(σ/(µ+σ))(λ1/(µ+ψ)) expected infected needles

from the chronic class. In the first case the needle is left in the acute infectious state

and the expected number of PWIDs infected is x1. In the second case the needle is
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left in the chronic infectious state and the expected number of naive PWIDs infected

is αy
αh
x1. Hence,

k10 =
λ1

µ+ σ

[
1 +

αyσ(1− δ)
αh(µ+ ψ)

]
x1, (4.3.48)

and similarly

k11 =
λ1

µ+ σ

[
1 +

αyσ(1− δ)
αh(µ+ ψ)

]
y1. (4.3.49)

Then similarly k01 and k00 are given by:

k01 =
λ0y

0

µ+ σ + η

[
1 +

αyσ(1− δ)
αh(µ+ η + ψ)

]
+

λ1y
1

µ+ σ + η

[
η

µ+ σ
+
αy
αh

(
ση(1− δ)

(µ+ ψ)(µ+ η + ψ)
+

ση(1− δ)
(µ+ ψ)(µ+ σ)

)]
.

(4.3.50)

k00 =
λ0x

0

µ+ σ + η

[
1 +

αyσ(1− δ)
αh(µ+ η + ψ)

]
+

λ1x
1

µ+ σ + η

[
η

µ+ σ
+
αy
αh

(
ση(1− δ)

(µ+ ψ)(µ+ η + ψ)
+

ση(1− δ)
(µ+ ψ)(µ+ σ)

)]
.

(4.3.51)

Equations (4.3.51)-(4.3.49) give us the elements of the matrix which is given by k00 k01

k10 k11

 . (4.3.52)

This is a ”next generation matrix” in the sense of Diekman and Heesterbeek (1990)

and they define R0 to be the spectral radius of 4.3.52. As discussed earlier the

values of R0 might be different than the values obtained by Van den Drissche and

Watmough’s method but we would expect it to have the same threshold value. Also

we are following the method of Diekman and Heesterbeek. Hence the spectral radius

of 4.3.52 is given by

R0 =
1

2
(k00 + k11) +

1

2

√
(k00 + k11)2 − 4(k00k11 − k10k01), (4.3.53)

with k00, k01, k10 and k11 are given by (4.3.51), (4.3.50), (4.3.48) and (4.3.49) respec-

tively.
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4.4 Analytical results

In this section the focus shifts to the transmission model applied in the modified

model to be used. Similar to Section 2.4.1 an equilibrium and stability analysis will

be carried out to determine the rationale and validity of the equilibrium solutions

developed. These steps aim to verify that when R0 ≤ 1 the only non-negative

solution to the presented system of equations is a disease free state. Additionally,

we aim to prove that when R0 > 1 there is a non-zero endemic equilibrium solution.

Through a global analysis one can ascertain that the DFE is globally asymptotically

stable if R0 ≤ 1.

In this case although the structure of the PWID equations is similar to that of

Corson et al. (2013) the structure of the needle equations is very different. Based on

the previous analysis carried out, the modified model assumes that the probability

of successful syringe and needle cleaning, φ, is between zero and one but strictly

less than one, so that 0 ≤ φ < 1 also 0 ≤ δ < 1. Let πi∗j , j = h1, h2, y, z denote the

equilibrium proportions of naive (i = 0) and experienced (i = 1) PWIDs. Setting

d/dt = 0 in equations (4.2.33), (4.2.34), (4.2.39) and (4.2.40) we find that

π0∗
y =

σ

µ+ η + ψ
π0∗
h1
, (4.4.54)

π0∗
z =

σα

µ+ η
π0∗
h2
,

π1∗
y =

ηπ0∗
y + σπ1∗

h1

µ+ ψ
,

π1∗
z =

ηπ0∗
z + σαπ1∗

h2

µ
.

Now using equations (4.2.31) and (4.2.32), which are the main driving force for

disease amongst naive PWIDs, with d/dt = 0 we obtain

π0∗
h1

= (1− δ)
(
π0 − π0∗

h1
− π0∗

h2
− π0∗

y − π0∗
z

µ+ σ + η

)
f̃0 (4.4.55)

and

π0∗
h2

= δ

(
π0 − π0∗

h1
− π0∗

h2
− π0∗

y − π0∗
z

µ+ σ + η

)
f̃0 (4.4.56)
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where

f̃i = λisi0(1− φ)
(
(αh − αy)(β

0

h1
+ β

0

h2
) + αy(β

0

h1
+ β

0

h2
+ β

0

y)
)

+ λisi1(1− φ)
(
(αh − αy)(β

1

h1
+ β

1

h2
) + αy(β

1

h1
+ β

1

h2
+ β

1

y)
)
.

Adding these together gives

π0∗
h =

(
π∗0 − π0∗

h − π0∗
y − π0∗

z

µ+ σ + η

)
f̃0

where π0∗
h = π0∗

h1
+ π0∗

h2
, now let K∗0 = π∗0 f̃0 then we have

π0∗
h =

K∗0
µ+ σ + η

(
1− π0∗

h

π∗0

(
1 +

σ(1− δ)
µ+ η + ψ

+
σαδ

µ+ η

))
. (4.4.57)

Solving (4.4.57) for π0∗
h and substituting in the equilibrium expression for π∗0 we

obtain

π0∗
h =

K∗0
µ+σ+η

1 +
K∗0

µ+σ+η

(
µ+η
µ

+ σ(1−δ)(µ+η)
µ(µ+η+ψ)

+ σαδ
µ

) . (4.4.58)

We now use a similar procedure for the equations that make HCV spread amongst

experienced PWIDs. We write π1
h = π1

h1
+ π1

h2
, so π1∗

h = π1∗
h1

+ π1∗
h2

, and note

that equations (4.2.37) and (4.2.38) imply that π1∗
h1

= (1 − δ)π1∗
h and π1∗

h2
= δπ1∗

h .

Considering equations (4.2.37)-(4.2.38) and adding them together with d/dt = 0

and substituting in the necessary equilibrium expressions (4.4.54) then that gives

π1∗
h =

ηπ0∗
h

µ+ σ
+

K∗1
µ+ σ

[
1− π1∗

h

π∗1

(
1 +

σ(1− δ)
µ+ ψ

+
σαδ

µ

)
(4.4.59)

−π
0∗
h

π∗1

(
ησ(1− δ)

(µ+ ψ)(µ+ ψ + η)
+

ησαδ

µ(µ+ η)

)]
where K∗1 = π∗1 f̃1. Recall that π∗0 + π∗1 = 1, π∗0 = µ/(µ + η) and π∗1 = η/(µ + η).

Substituting (4.4.58) in this expression for π∗1 we obtain

π1∗
h =

ηK∗0
(µ+σ)(µ+σ+η)

+
K∗1
µ+σ

[
1 +

K∗0
µ+σ+η

(
µ+η
η

+ (µ+η)σ(1−δ)ψ
µ(µ+ψ)(µ+η+ψ)

)]
[
1 +

K∗1 (µ+η)

(µ+σ)η

(
1 + σ(1−δ)

µ+ψ
+ σαδ

µ

)][
1 +

K∗0
µ+σ+η

(
µ+η
η

+ σ(1−δ)(µ+η)
µ(µ+η+ψ)

+ σαδ
µ

)] .
(4.4.60)
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If we represent K = (K0, K1) then recall that

K∗0 = π∗0 f̃0

= π∗0

[
λ0s00(1− φ)

(
(αh − αy)B0

A0
+
αyD

0

C0

)
+ λ1s01(1− φ)

(
(αh − αy)B1

A1
+
αyD

1

C1

)]
.

Now note as A0, B0, A1, B1, C0, D0 and C1, D1 are all functions of π0∗
h and π1∗

h , hence

using (4.2.42)-(4.2.45) along with expressions (4.4.54), (4.4.58) and (4.4.60) they are

functions of K∗0 and K∗1 . Moreover B0, B1, D0 and D1 can be written in the form

M00(K
∗)K ∗

0 +M01(K
∗)K ∗

1

where M00(K
∗) and M01(K

∗) are functions of K ∗.

Applying a similar argument to K∗1 we deduce that

K ∗ = M (K ∗)K ∗, (4.4.61)

where M (K ) is a strictly positive matrix function. Moreover for K ≥ 0,K 6= 0

then Mij(K ) < Mij(0 ) i = 0, 1, j = 0, 1 and M(0)T is the next generation matrix

(4.3.52) .

To show that if K∗ ≥ 0, K∗ 6= 0 then Mij(K
∗) < Mij(0), i = 0, 1, j = 0, 1 note

that using (4.4.57) and (4.4.59)

π0∗
h (K∗0 , K

∗
1)

π∗0
= M̃00(K

∗)K∗0

and

π1∗
h (K∗0 , K

∗
1)

π∗1
= M̃10(K

∗)K∗0 + M̃11(K
∗)K∗1

where

(i) if K∗0 > 0 then M̃00(K
∗) < M̃00(0),

(ii) if either K∗0 > 0 or K∗1 > 0 then M̃1j(K
∗) < M̃1j(0), j = 0, 1.

Hence using (4.53) the same is true for

πi∗h (K∗0 , K
∗
1)

π∗i
+
πi∗y (K∗0 , K

∗
1)

π∗i
, i = 0, 1.
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Note that

β
0∗
h =

B0

A0

=
(Λ00 + Λ10)

π0∗
h

π∗0(
Λ00

π0∗
h

π∗0
+ φΛ00

(π∗0−π0∗
h )

π∗0
+ Λ10 + τ

) 1

(1− αh)

+
Λ10

(π∗0−π0∗
h )

π∗0
(1− φ)(

Λ00
π0∗
h

π∗0
+ φΛ00

(π∗0−π0∗
h )

π∗0
+ Λ10 + τ

) (Λ11 + Λ01)
π1∗
h

π∗1(
Λ11

π1∗
h

π∗1
+ φΛ11

(π∗1−π1∗
h )

π∗1
+ Λ01 + τ

) 1

(1− αh)

(4.4.62)

where

αh =

Λ10Λ01

(
1− π0∗

h

π∗0

)(
1− π1∗

h

π∗1

)
(1− φ)2(

Λ00
π0∗
h

π∗0
+ φΛ00

(
1− π0∗

h

π∗0

)
+ Λ10 + τ

)(
Λ11

π1∗
h

π∗1
+ φΛ11

(
1− π1∗

h

π∗1

)
+ Λ01 + τ

) < 1.

(4.4.63)

Now using (4.4.62) and (4.4.63)

β
0

h =
(Λ00 + Λ10)M̃00(K

∗)K∗0(
φΛ00 + Λ00

π0
h(K

∗)

π∗0
(1− φ) + Λ10 + τ

) 1

(1− αh(K∗))

+

Λ10

(
1− π0∗

h (K∗)

π∗0

)(
(1− φ)(Λ11 + Λ01)[M̃10(K

∗)K∗0 + M̃11(K
∗)K∗1 ]

)
(
φΛ00 + Λ00

π0
h(K

∗)

π∗0
(1− φ) + Λ10 + τ

)(
φΛ11 + Λ11

π1
h(K

∗)

π∗1
(1− φ) + Λ01 + τ

)
1

(1− αh(K∗))
(4.4.64)

where αh(K
∗) =

Λ10Λ01

(
1− π0

h(K
∗)

π∗0

)(
1− π1

h(K
∗)

π∗1

)
(1− φ)2(

φΛ00 + Λ00
π0
h(K

∗)

π∗0
(1− φ) + Λ10 + τ

)(
φΛ11 + Λ11

π1
h(K

∗)

π∗1
(1− φ) + Λ01 + τ

)
≤ αh(0) =

Λ10Λ01(1− φ)2

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)
.

Equation (4.4.64) expresses

β̄0
h = F00(K

∗)K∗0 + F01(K
∗)K∗1
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where F00 and F01 are strictly positive functions, F00(K
∗) ≤ F00(0), F01(K

∗) ≤

F01(0) and if K∗ ≥ 0 but K∗ 6= 0 then F00(K
∗) < F00(0) and F01(K

∗) < F01(0).

A similar argument using (4.2.43), (4.2.44) and (4.2.45) shows that we can

express

β̄1
h = F10(K

∗)K∗0 + F11(K
∗)K∗1 ,

β̄0
h + β̄0

y = F 00(K
∗)K∗0 + F 01(K

∗)K∗1 ,

β̄1
h + β̄1

y = F 10(K
∗)K∗0 + F 11(K

∗)K∗1 ,

in a similar format where F10(K
∗), F11(K

∗), F 00(K
∗), F 01(K

∗), F 10(K
∗) and F 11(K

∗)

have the same properties as F00(K
∗) and F01(K

∗).

Now we have

K∗0 = π∗0f0(K
∗), (4.4.65)

K∗1 = π∗1f1(K
∗), (4.4.66)

where for i = 0, 1, fi is given by (4.40). Hence for K∗ > 0,K∗ 6= 0 Mij(K
∗) <

Mij(0).

To show that M(0) is the transpose of the next generation matrix consider

M00(0) which is the coefficient of K∗0 in the right hand side of the equation (4.4.65)

when we set K∗0 = K∗1 = 0 in this expression

M00(0) = A

(
αh +

αyσ(1− δ)
µ+ ψ + η

)
1

µ+ σ + η

+B

[
η

µ+ σ

(
αh +

αyσ(1− δ)
µ+ ψ

)
1

µ+ σ + η

+
ησ(1− δ)αy

(µ+ ψ)(µ+ η + ψ)(µ+ σ + η)

]
where

A =
λ0s00(1− φ)(Λ00 + Λ10)(φΛ11 + Λ01 + τ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

+
λ0s01(1− φ)(Λ00 + Λ10)Λ01(1− φ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

and

B =
λ0s00(1− φ)(Λ11 + Λ01)Λ10(1− φ)

π∗0
π∗1

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

+
λ0s01(1− φ)(Λ11 + Λ01)(φΛ00 + Λ01 + τ)

π∗0
π∗1

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2
.
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So

M00(0) =
Aαh

µ+ σ + η

[
1 +

αy
αh

(
σ(1− δ)

(µ+ η + ψ)

)]
+

Bαh
µ+ σ + η

[
η

µ+ σ
+
αy
αh

(
ση(1− δ)

(µ+ ψ)(µ+ η + ψ)

+
ση(1− δ)

(µ+ ψ)(µ+ σ)

)]
. (4.4.67)

Here

A =
λ0s00(1− φ)(Λ00 + Λ10)(φΛ11 + Λ01 + τ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

+
λ0s01(1− φ)(Λ00 + Λ10)Λ01(1− φ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2
.

Now

s00(Λ00 + Λ10) = s00

(
λ0n0s00
m0

+
λ1n1s10
m0

)
= s00

(
λ0n0s00
m0

+
λ0n0s01
m0

)
as λ1n1s10 = λ0n0s01

=
s00λ0n0

m0

as s00 + s01 = 1

= Λ00.

Similarly

s01(Λ00 + Λ10) =
s01λ0n0

m0

=
s10λ1n1

m0

= Λ10.

Hence λ0s00(1− φ)(Λ00 + Λ10)(φΛ11 + Λ01 + τ) + λ0s01(1− φ)2(Λ00 + Λ10)Λ01

= λ0(1− φ)Λ00(φΛ11 + Λ01 + τ) + λ0Λ01Λ10(1− φ)2.

So Aαh = λ0x
0. Now

B =
λ0s00(1− φ)(Λ11 + Λ01)Λ10(1− φ)

π∗0
π∗1

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

+
λ0s01(1− φ)(Λ11 + Λ01)(φΛ00 + Λ01 + τ)

π∗0
π∗1

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2
.
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Note that λ0s00(Λ11 + Λ01)Λ10
π∗0
π∗1

= λ0s00

(
n1λ1s11
m1

+
n0λ0s01
m1

)
λ1n1s10n0

m0n1

=
λ1n0λ0s00

m0

(
n1λ1s11
m1

+
n1λ1s10
m1

)
s10

as n0λ0s01 = n1λ1s10

= λ1Λ00
n1λ1s10
m1

as s11 + s10 = 1

= λ1Λ00
n0λ0s01
m1

as n0λ0s01 = n1λ1s10 again

= λ1Λ00Λ01.

Also

λ0s01(Λ11 + Λ01)
π∗0
π∗1

=
λ0s01n0

n1

(
n1λ1s11
m1

+
n0λ0s01
m1

)
=
λ0s01n0

n1

(
n1λ1s11
m1

+
n1λ1s10
m1

)
as n0λ0s01 = n1λ1s10 again

=
λ0s01n0λ1

m1

= λ1Λ01.

So

Bαh =
λ1αh(1− φ)2Λ00Λ01 + λ1αh(φΛ00 + Λ10 + τ)Λ01(1− φ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

=
λ1αh(1− φ)Λ01(Λ00 + Λ10 + τ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)− Λ01Λ10(1− φ)2

= λ1x
1.

Hence from (4.4.67) and (4.3.51) we deduce that M 00(0) = k00. The results that the

other entries of M (0) are the other entries of the transpose of the next generation
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matrix follow similarly. All of the above work is completely different than that of

Corson (2011) and Corson et al. (2013).

We need to show what happens when 0 ≤ R0 ≤ 1. In this part we will see that

when R0 takes these values then HCV will be eliminated in all PWIDs. This part

of the proof follows the lines of the corresponding proof in Corson et al. (2013).

Lemma 4.4.1. Suppose that R0 ≤ 1. The only non-negative solution K to

K=M(K)K is K=0.

Proof. Using the method of Lemma 6.1 of Corson (2011) and Lemma 1 of Corson

et al. (2013).

We are now going to see what happens when R0 > 1. We will now see that when

R0 > 1 there is a positive equilibrium which corresponds to a feasible equilibrium

value for the model.

Theorem 4.4.2. Assume that R0 > 1 then the system given by (4.4.61) has one or

more positive non-zero solution corresponding to a feasible equilibrium.

If we let C denote the cone of positive vectors:

C =
{

(K0, K1) : K0 ≥ 0, K1 ≥ 0
}
.

This is obviously a cone since multiplying K = (K0, K1) by a scalar ξ > 0 results in

a vector belonging to C. We use Theorem 1.6 of Gatica and Smith (1977) which is

given in chapter 1 (Theorem 1.9.2) applied to the operator T : C → C given by

T (K) = M(K)K.

In order to apply this theorem exactly as in Corson (2011), we need to show

that

(a) T : C → C is a continuous compact operator;

(b) T ′(0 ) has an eigenvector k ∈ C corresponding to an eigenvalue ω0 > 1 and 1

is not an eigenvalue of T ′(0 ) with a corresponding eigenvector in C;

and

(c) there exists R > 0 such that if x ∈ C , |x | = R and T (x ) = µx then µ ≤ 1.”
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Lemma 4.4.3. T(K) is continuous in K for all K ≥ 0.

Proof. Proved in Lemma 6.2 of Corson (2011) and Lemma 2 of Corson et al. (2013).

Note that we can consider a function as bounded if its range is a bounded set

(Kreyszig (1978)).

Lemma 4.4.4. T (K) : C −→ C is bounded.

Proof. This proof is significantly different than in Corson (2011) and Corson et al.

(2013). Now we need to prove that each of M00K0 +M01K1 and M10K0 +M11K1 is

bounded in C.

M00K0 +M01K1 = K0

= π0

[
λ0s00(1− φ)

(
(αh − αy)B0

A0
+
αyD

0

C0

)
+λ0s01(1− φ)

(
(αh − αy)B1

A1
+
αyD

1

C1

)]
.

If we define

αh(π
0
h, π

1
h) =

Λ10Λ01

(
1− π0

h

π0

)(
1− π1

h

π1

)
(1− φ)2(

Λ00
π0
h

π0 + φΛ00

(
1− π0

h

π0

)
+ Λ10 + τ

)(
Λ11

π1
h

π1 + φΛ11

(
1− π1

h

π1

)
+ Λ01 + τ

) .
Then it is straightforward to show that

B0

A0
≤ 1

1− αh(π0
h, π

1
h)
≤ 1

1− αh(0, 0)
and

B1

A1
≤ 1

1− αh(π0
h, π

1
h)
≤ 1

1− αh(0, 0)
.

Similarly defining

αhy(π
0
hy, π

1
hy) =

Λ10Λ01

(
1− π0

hy

π0

)(
1− π1

hy

π1

)
(1− φ)2(

Λ00
π0
hy

π0 + φΛ00

(
1− π0

hy

π0

)
+ Λ10 + τ

)
× 1(

Λ11
π1
hy

π1 + φΛ11

(
1− π1

hy

π1

)
+ Λ01 + τ

) ,
where π0

hy = π0
h + π0

y, π
1
hy = π1

h + π1
y, then

D0

C0
≤ 1

1− αhy(π0
hy, π

1
hy)
≤ 1

1− αhy(0, 0)
and

D1

C1
≤ 1

1− αhy(π0
hy, π

1
hy)
≤ 1

1− αhy(0, 0)
.
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Hence

M00K0 +M01K1 ≤
A1

1− αh(0, 0)
+

A2

1− αhy(0, 0)

where A1 = π0λ0(1− φ)(αh − αy)(s00 + s01) and A2 = π0λ0(1− φ)αy(s00 + s01).

In a similar way we have

M10K0 +M11K1 = K1

< π1

[
λ1s10(1− φ)

(
αh − αy

1− αh(0, 0)
+

αy
1− αhy(0, 0)

)
+λ1s11(1− φ)

(
αh − αy

1− αh(0, 0)
+

αy
1− αhy(0, 0)

)]
=

B1

1− αh(0, 0)
+

B2

1− αhy(0, 0)
,

where B1 = π1λ1(1 − φ)(αh − αy)(s10 + s11) and B2 = π1λ1(1 − φ)αy(s10 + s11).

Hence T (K) : C −→ C given by T (K) = M(K)K is a bounded continuous operator

in C, which is contained in a finite dimensional vector space. In a finite dimensional

space every bounded operator with finite dimensional range is compact (Oden and

Demkowicz (2017)). Hence T (K) is a continuous compact operator.

We are now going to prove that the operator T (K) is Fréchet differentiable at

K = 0 in the direction of the cone C.

Lemma 4.4.5. T (K) is Fréchet differentiable at K = 0 in the direction of the cone

C, with Fréchet derivative

T ′(0) =

 M00(0) M01(0)

M10(0) M11(0)

 .
Proof. Proved in Lemma 6.4 of Corson (2011) and Lemma 4 of Corson et al. (2013).

To apply Theorem 1.9.2 we need to prove that T ′(0) has an eigenvector corre-

sponding to an eigenvalue ω0 > 0 and 1 is not an eigenvalue of T ′(0) with corre-

sponding eigenvector in C. It is a straightforward conclusion to show the Fréchet

derivative of T at K = 0 is given by the transpose of the next generation matrix

(4.3.52).
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Since T ′(0) is a matrix with positive entries the modified model uses the Perron-

Frobenius theory of positive matrices (Meyer (2000)). This theory shows us that

there is a positive real numerical value r such that r is an eigenvalue of T ′(0) and

any other eigenvalue is strictly smaller in absolute value. The spectral radius of

T ′(0), ρ(T ′(0)) = r and furthermore there is an eigenvector with strictly positive

entries that corresponds to the eigenvalue r.

Hence if ρ(T ′(0)) > 1, T ′(0) has an eigenvector v ∈ C which corresponds to an

eigenvalue ω0 > 1. The theory also states that there are no other positive eigenvec-

tors. Hence 1 cannot be an eigenvalue of T ′(0) with corresponding eigenvector in

C and the lemma below follows (c.f. Lemma 6.6 of Corson (2011) and Lemma 6 of

Corson et al. (2013)).

Lemma 4.4.6. If R0 > 1, T ′(0) has an eigenvector v ∈ C and 1 is not eigenvalue

of T ′(0) with corresponding eigenvector in C.

We now prove condition (c) of the conditions immediately following Theorem

4.4.2.

Lemma 4.4.7. There exists R > 0 such that if x ∈ C with |x| = R and T (x) = µx

then µ ≤ 1.

Proof. Again using a similar proof as Lemma 6.6 of Corson (2011) and Lemma 6 of

Corson et al. (2013).

This lemma completes the proof of the three conditions that are needed to

apply Theorem 4.4.2 and we can conclude that when R0 > 1 there exists a non-zero

equilibrium x0 ∈ C.

Now we need to prove that such an equilibrium value corresponds to a feasible

endemic equilibrium for the full model. If each of the equilibrium values π0∗
x , π

0∗
x1
, π0∗

h1

. . . π1∗
h2
, π1∗

y and π1∗
z are positive then the endemic equilibrium value is feasible.

Setting d/dt = 0 in equation (4.2.29) we get

0 = µ− (µ+ η)π0∗
x − f̃0π0∗

x + ψπ0∗
y .
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Previously we know that K∗0 = π∗0 f̃
∗
0 , this leads to f̃ ∗0 = K∗0/π

∗
0. Therefore,

π0∗
x =

µ+ ψπ0∗
y

µ+ η +
K∗0
π∗0

. (4.4.68)

If we use a similar method as above with equations (4.2.30), (4.2.33) and (4.2.34)

and using the relationships π0∗
h1

= (1− δ)π0∗
h and π0∗

h2
= δπ0∗

h we get

π0∗
x1

=
σ(1− α)δπ0∗

h

µ+ η +
K∗0
π∗0

, (4.4.69)

π0∗
y =

σ(1− δ)π0∗
h

µ+ η + ψ
, (4.4.70)

π0∗
z =

σαδπ0∗
h

µ+ η
. (4.4.71)

If K∗ = M(K∗)K∗ corresponds to a non-zero equilibrium then it is obvious that both

K∗0 and K∗1 must be strictly positive. From equation (4.4.58) we conclude that π0∗
h is

strictly positive. Hence π0∗
x , π

0∗
x1
, π0∗

y and π0∗
z given by equations (4.4.68)-(4.4.71) are

all strictly positive. Performing similar calculations with equations (4.2.35), (4.2.36),

(4.2.39) and (4.2.40) and using the relationships π1∗
h1

= (1− δ)π1∗
h and π1∗

h2
= δπ1∗

h we

get the following results:

π1∗
x =

ηπ0∗
x + ψπ1∗

y

µ+
K∗1
π∗1

(4.4.72)

π1∗
x1

=
ηπ0∗

x1
+ σ(1− α)δπ1∗

h

µ+
K∗1
π∗1

, (4.4.73)

π1∗
y =

ηπ0∗
y + σ(1− δ)π1∗

h

µ+ ψ
, (4.4.74)

π1∗
z =

ηπ0∗
z + σαδπ1∗

h

µ
. (4.4.75)

We know that K∗1 > 0 and from equation (4.4.60) π1∗
h > 0. This leads to π1∗

x , π
1∗
x1
, π1∗

y

and π1∗
z given by equations (4.4.72)-(4.4.75) are all strictly positive. Also, if we

are adding the equilibrium versions of equations (4.2.29)-(4.2.40) we conclude that

π0∗
x + π0∗

x1
+ π0∗

h1
+ π0∗

h2
+ π0∗

y + π0∗
z + π1∗

x + π1∗
x1

+ π1∗
h1

+ π1∗
h2

+ π1∗
y + π1∗

z = 1. Hence each

non-zero equilibrium point of (K∗0 , K
∗
1) corresponds to a feasible endemic equilibrium

value.
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4.5 Global stability

We are now going to show the stability of the DFE when R0 takes values between

0 and 1 inclusive.

Theorem 4.5.1. When R0 ≤ 1 the DFE is globally asymptotically stable.

Proof. This result will be shown in several stages using a method similar to that

used in the proof of Theorem 2.4.2. We write π0,∞
h for limt→∞ supπ0

h(t), where

π0
h(t) = π0

h1
(t) + π0

h2
(t), with similar definitions for the other π0,∞

y , π1,∞
y and π1,∞

h ,

where π1
h(t) = π1

h1
(t) + π1

h2
(t). We will start the proof by giving several results that

give upper bounds on the limit suprema π0,∞
y , π1,∞

y , π0,∞
h and π1,∞

h . If we use equa-

tions (4.2.31), (4.2.32), (4.2.37) and (4.2.38) and derived relationships expressing

π0,∞
h1

, π0,∞
h2

, π1,∞
h1

and π1,∞
h2

in terms of π0,∞
h and π1,∞

h this allows us to express our

earlier results in terms of the two limit suprema π0,∞
h and π1,∞

h . We then show if

R0 ≤ 1 these limit suprema must be equal to zero. The global stability of the DFE

then follows.

Lemma 4.5.2.

(
π0
h

π0

)∞
≤ π0,∞

h

π∗0
.

Proof. Recall that as pointed out earlier (4.2.3) π0 → π∗0 as t → ∞. Given ε > 0

with 1
2
π∗0 > ε > 0 there exists t0 such that for all t ≥ t0 and |π0−π∗0| ≤ ε/2, we have

π0
h ≤ π0,∞

h +
ε

2
π∗0.

Therefore, for all t ≥ t0, π
0 ≥ π∗0 − ε/2 ≥ 3

4
π∗0,

π0
h

π0
− π0,∞

h

π∗0
=

π0
hπ
∗
0 − π

0,∞
h π0

π0π∗0
,

≤ π0
h(π

∗
0 − π0) + π0(π0

h − π
0,∞
h )

π0π∗0

≤ ε/2

π0π∗0
+ ε/2

≤ 4

3π∗0
2 ε/2 + ε/2

=
ε

2

(
4

3π∗0
2 + 1

)
.
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So given ε1 > 0 choose ε = ε1
1
2

(
4

3π∗0
2+1
) , then with this value of ε for t ≥ t0 we have

that
π0
h

π0
≤ π0,∞

h

π∗0
+ ε1.

Hence (
π0
h

π0

)∞
≤ π0,∞

h

π∗0
+ ε1.

But as ε1 is arbitrary then (
π0
h

π0

)∞
≤ π0,∞

h

π∗0
.

Similarly we conclude that (
π1
h

π1

)∞
≤ π1,∞

h

π∗1
.

Lemma 4.5.3.

π0,∞
h ≤ K0

µ+ σ + η + K0

π∗0

,

where K0 = αhAπ
0,∞
h + αyAπ

0,∞
y + αhBπ

1,∞
h + αyBπ

1,∞
y ,

A =
λ0s00(1− φ)(Λ00 + Λ10)

(φΛ00 + Λ10 + τ)(1− α∗h)
+

λ0s01(1− φ)(Λ00 + Λ10)Λ01(1− φ)

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)(1− α∗h)

B =
λ0s00(1− φ)(Λ11 + Λ01)Λ10(1− φ)

π∗0
π∗1

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)(1− α∗h)
+
λ0s01(1− φ)(Λ11 + Λ01)

π∗0
π∗1

(φΛ11 + Λ10 + τ)(1− α∗h)
(4.5.76)

and α∗h =
Λ01Λ10(1− φ)2

(φΛ00 + Λ01 + τ)(φΛ11 + Λ10 + τ)
.

Proof. Write β0
hy = β0

h + β0
y and β1

hy = β1
h + β1

y , similarly for π0
hy and π1

hy. Using

equations (4.2.31) and (4.2.32) together we have

dπ0
h

dt
=

[
λ0s00(1− φ)

(
(αh − αy)β0

h + αyβ
0
hy

)
+ λ0s01(1− φ)

(
(αh − αy)β1

h + αyβ
1
hy

)]
×(π0 − π0

h − π0
y − π0

z)− (µ+ σ + η)π0
h,

= π0

[
λ0s00(1− φ)

(
(αh − αy)β0

h + αyβ
0
hy

)
+ λ0s01(1− φ)

(
(αh − αy)β1

h +

αyβ
1
hy

)](
1− 1

π0
(π0

h + π0
y + π0

z)

)
− (µ+ σ + η)π0

h,
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≤ π0

[
λ0s00(1− φ)

(
(αh − αy)β0

h + αyβ
0
hy

)
+ λ0s01(1− φ)

(
(αh − αy)β1

h + αyβ
1
hy

)]
×
(

1− π0
h

π0

)
− (µ+ σ + η)π0

h. (4.5.77)

Note that by adding (4.2.17) to (4.2.18) for Assumption 1 or (4.2.19) to (4.2.20) for

Assumption 2 and using the relationship Λ01
m1

m0
= Λ10

dβ0
h

dt
= Λ00

π0
h

π0
(1− β0

h) + Λ10
π0
h

π0
− φΛ00

(
1− π0

h

π0

)
β0
h − Λ10β

0
h + Λ10

(
1− π0

h

π0

)
β1
h(1− φ)

− τβ0
h.

Hence ∃ t0 so that for t ≥ t0

dβ0
h

dt
≤ (Λ00 + Λ10)

π0
h

π0
+ Λ10β

1,∞
h (1− φ) + ε− (φΛ00 + Λ10 + τ)β0

h.

Hence using Lemma 4.5.2 and a similar argument as in the proof of Lemma 2.3.3

β0,∞
h ≤

(Λ00 + Λ10)
π0,∞
h

π∗0
+ Λ10β

1,∞
h (1− φ)

φΛ00 + Λ10 + τ
,

similarly

β1,∞
h ≤

(Λ11 + Λ01)
π1,∞
h

π∗1
+ Λ01β

0,∞
h (1− φ)

φΛ11 + Λ01 + τ
.

Putting these results together

β0,∞
h ≤

(Λ00 + Λ10)
π0,∞
h

π∗0

(φΛ00 + Λ10 + τ)(1− α∗h)
+

Λ10(1− φ)(Λ11 + Λ01)
π1,∞
h

π∗1

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
,

β1,∞
h ≤

(Λ11 + Λ01)
π1,∞
h

π∗1

(φΛ11 + Λ01 + τ)(1− α∗h)
+

Λ01(1− φ)(Λ00 + Λ10)
π0,∞
h

π∗0

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
.

Similarly, we have that

β0,∞
hy ≤

(Λ00 + Λ10)
π0,∞
hy

π∗0

(φΛ00 + Λ10 + τ)(1− α∗h)
+

Λ10(1− φ)(Λ11 + Λ01)
π1,∞
hy

π∗1

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
.

β1,∞
hy ≤

(Λ11 + Λ01)
π1,∞
hy

π∗1

(φΛ11 + Λ01 + τ)(1− α∗h)
+

Λ01(1− φ)(Λ00 + Λ11)
π0,∞
hy

π∗0

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
.
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These last two results are true because Lemma 4.5.2 works equally for π0
hy and π1

hy

as π0
h and π1

h. Recall that π0 → π∗0 as t → ∞. Hence from (4.5.76) and (4.5.77)

given ε > 0 ∃ t1 such that for t ≥ t1

dπ0
h

dt
≤ π∗0

(
1− π0

h

π∗0

)(
K0

π∗0
+ ε

)
− (µ+ σ + η)π0

h.

Hence using a similar argument to the proof of Lemma 2.3.3

π0,∞
h ≤ K0 + επ∗0

µ+ σ + η + K0

π∗0
+ ε

.

As ε > 0 is arbitrary we deduce that

π0,∞
h ≤ K0

µ+ σ + η + K0

π∗0

.

Similarly, we have the following result:

Lemma 4.5.4.

π1,∞
h ≤ K1 + ηπ0,∞

h

µ+ σ + K1

π∗1

,

where

K1 = A1(αhπ
0,∞
h + αyπ

0,∞
y ) +B1(αhπ

1,∞
h + αyπ

1,∞
y ),

A1 =
λ1s10(1− φ)(Λ00 + Λ10)

π∗1
π∗0

(φΛ00 + Λ10 + τ)(1− α∗h)
+

λ1s11(1− φ)Λ01(Λ00 + Λ10)(1− φ)
π∗1
π∗0

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)

and

B1 =
λ1s10(1− φ)Λ10(Λ11 + Λ10)(1− φ)

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
+

λ1s11(1− φ)(Λ11 + Λ01)

(φΛ11 + Λ01 + τ)(1− α∗h)
.

(4.5.78)

Proof. Taking equations (4.2.37) and (4.2.38) along with the method used in the

proof of Lemma 4.5.3 the result follows.

It is useful to use the same techniques used to prove Lemma 2.3.3 to prove

results that give upper bounds on the limit suprema of π0
y and π1

y in terms of π0,∞
h1

and π1,∞
h1

.
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Lemma 4.5.5.

π0,∞
y ≤

σπ0,∞
h1

µ+ η + ψ
.

Proof. Using equation (4.2.33) we have,

dπ0
y

dt
= σπ0

h1
− (µ+ η + ψ)π0

y.

Given ε > 0, we have that

π0
h1
≤ π0,∞

h1
+ ε, ∀t ≥ t3(ε).

d

dt
[π0
y exp((µ+ η + ψ)t)] ≤ σ(π0,∞

h1
+ ε) exp((µ+ η + ψ)t), ∀t ≥ t3(ε).

Integrating over [t3(ε), t] gives

π0
y(t) ≤ ε+

σ(π0,∞
h1

+ ε)

µ+ η + ψ
∀t ≥ t4(ε) for some t4(ε) > t3(ε) sufficiently large.

Using the lim sup and letting t→∞ we have

π0,∞
y ≤

σπ0,∞
h1

µ+ η + ψ
+ ε1, where ε1 = ε

(
µ+ η + ψ + σ

µ+ η + ψ

)
.

Since ε1 > 0 is arbitrary, the result follows.

Lemma 4.5.6.

π1,∞
y ≤

σπ1,∞
h1

µ+ ψ
+

σηπ0,∞
h1

(µ+ ψ)(µ+ ψ + η)
.

Proof. Taking equation (4.2.39) along with the method used in the proof of Lemma

4.5.5 the result follows.

We now going to use equations (4.2.31) and (4.2.32) to find a relationship

between π0,∞
h1

and π0,∞
h2

.

Lemma 4.5.7. (1− δ)π0,∞
h2

= δπ0,∞
h1

.

Proof. As proved in Lemma 6.13 of Corson (2011) and Lemma 13 in Corson (2013).

Lemma 4.5.8. (1− δ)π1,∞
h2

= δπ1,∞
h1

.
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Proof. From equations (4.2.37) and (4.2.38)

d

dt

(
π1
h1

1− δ
−
π1
h2

δ

)
= η

(
π0
h1

1− δ
−
π0
h2

δ

)
− (µ+ σ)

(
π1
h1

1− δ
−
π1
h2

δ

)
,

= η

(
π0
h1

(0)

1− δ
−
π0
h2

(0)

δ

)
exp[−(µ+ σ + η)t]

− (µ+ σ)

(
π1
h1

1− δ
−
π1
h2

δ

)
.

Hence

d

dt

[(
π1
h1

1− δ
−
π1
h2

δ

)
exp[(µ+ σ)t

]
= η

(
π0
h1

(0)

1− δ
−
π0
h2

(0)

δ

)
exp[−ηt].

Solving

π1
h1

1− δ
−
π1
h2

δ
=

(
π0
h1

(0)

1− δ
−
π0
h2

(0)

δ

)
(1− exp[−ηt]) exp[−(µ+ σ)t]

+

(
π1
h1

(0)

1− δ
−
π1
h1

(0)

δ

)
exp[−(µ+ σ)t].

Hence
π1
h1

1− δ
−
π1
h2

δ
→ 0 as t→∞. So we deduce that δπ1,∞

h1
= (1− δ)π1,∞

h2
similarly

to Lemma 4.5.7.

Write π0
h = π0

h1
+π0

h2
. As we have δπ0

h1
− (1− δ)π0

h2
→ 0 as t→∞ it is straight-

forward to show that π0,∞
h = π0,∞

h1
/(1 − δ) = π0,∞

h2
/δ. It is similarly straightforward

to show that π1,∞
h = π1,∞

h1
/(1 − δ) = π1,∞

h2
/δ. We can use these results to define the

inequalities in Lemmas 4.5.5 and 4.5.6 in terms of π0,∞
h and π1,∞

h to get:

π0,∞
y ≤ σ(1− δ)π0,∞

h

µ+ η + ψ
. (4.5.79)

π1,∞
y ≤ σ(1− δ)π1,∞

h

µ+ ψ
+

ση(1− δ)π0,∞
h

(µ+ ψ)(µ+ ψ + η)
. (4.5.80)

Substituting into equations (4.5.76) and (4.5.78)

K0 ≤ Aπ0,∞
h

(
αh +

αyσ(1− δ)
µ+ η + ψ

)
(4.5.81)

+ B

(
π1,∞
h

(
αh +

αyσ(1− δ)
µ+ ψ

)
+ π0,∞

h

ησ(1− δ)αy
(µ+ ψ)(µ+ η + ψ)

)
.

K1 ≤ A1π
0,∞
h

(
αh +

αyσ(1− δ)
µ+ η + ψ

)
+ B1

(
π1,∞
h

(
αh +

αyσ(1− δ)
µ+ ψ

)
+ π0,∞

h

ησ(1− δ)αy
(µ+ ψ)(µ+ η + ψ)

)
.
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Recall that

A =
λ0s00(1− φ)(Λ00 + Λ10)

(φΛ00 + Λ10 + τ)(1− α∗h)
+

λ0s01(1− φ)(Λ00 + Λ10)Λ01(1− φ)

(φΛ11 + Λ01 + τ)(φΛ00 + Λ01 + τ)(1− α∗h)
,

B =
λ0s00(1− φ)(Λ11 + Λ01)Λ10

π∗0
π∗1

(1− φ)

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
+
λ0s01(1− φ)(Λ11 + Λ01)

π∗0
π∗1

(φΛ11 + Λ01 + τ)(1− α∗h)
,

A1 =
λ1s10(1− φ)(Λ00 + Λ10)

π∗0
π∗1

(φΛ00 + Λ10 + τ)(1− α∗h)
+

λ1s11(1− φ)Λ01(Λ00 + Λ10)(1− φ)
π∗0
π∗1

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
,

B1 =
λ1s10(1− φ)(Λ11 + Λ01)Λ10(1− φ)

(φΛ00 + Λ10 + τ)(φΛ11 + Λ01 + τ)(1− α∗h)
+

λ1s11(1− φ)(Λ11 + Λ01)

(φΛ11 + Λ01 + τ)(1− α∗h)
.

Substituting in the upper bounds for π0,∞
h and π1,∞

h given by Lemmas 4.5.3

and 4.5.4 respectively allows us to define this as a set of simultaneous inequalities

satisfied by

K ≤M +(K )K ,

where M +(K ) is a strictly positive function of K for K ≥ 0 with M+
ij (K ) =

M+
ij (K0, K1) ≥ 0. If K > 0 but either K0 > 0 or K1 > 0 then M+

ij (K ) < M+
ij (0 ).

Moreover M +(0 ) = M (0 ), the transpose of the next generation matrix (4.3.52).

Hence, assuming that either K0 > 0 or K1 > 0 we have

K <M (0 )K , (4.5.82)

with strict inequality in both components. Since K is a positive vector in (4.5.82)

there exists an ε > 0 with

K (1 + ε) <M (0 )K .

Hence arguing as in Corson et al. (2013) we deduce

(1 + ε) < ||M n(0 )||
1
n . (4.5.83)

Again as in Corson et al. (2013) we also use the fact that the spectral radius, ρ, of a

matrix M is given by limt→∞ ||M n|| 1n (Diekmann and Heesterbeek (2000)), we let

n→∞ in (4.5.83) to get

ρ(M (0 )) ≥ 1 + ε,
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where ρ(M (0 )) represents to the spectral radius of the matrix M (0 ). Thus, the

spectral radius of M (0 ) is equal to the basic reproductive number R0, this shows

that R0 ≥ 1 + ε. So this leads us to a contradiction and so K0 = K1 = 0 leads to

π0,∞
h = π1,∞

h = 0 when R0 ≤ 1. π0,∞
h = π1,∞

h = 0 shows that π0,∞
h1

= π0,∞
h2

= π0,∞
y =

π1,∞
h1

= π1,∞
h2

= π1,∞
y = 0. Also this result shows that π0

x1
(t), π0

h1
(t), π0

h2
(t), π0

y(t), π
0
z(t),

π1
x1

(t), π1
h1

(t), π1
h2

(t), π1
y(t), π

1
z(t) all approach zero, π0

x(t) approaches µ/(µ + η) and

π1
x(t) approaches η/(µ + η) as t becomes large. This is the completion of our proof

for the global stability of the DFE when R0 between 0 and 1.

Note that this proof worked for the original model (4.5)-(4.27) with separate

equations for the PWIDs and the needles and syringes. However it is straightforward

to adapt it to the approximate model (4.28) to (4.44) to give the same result.

4.6 Parameters and numerical simulations

The aim of this section is to use the simulation package Wolfram Mathematica

version 11.1 to come up with hepatitis C virus (HCV) prevalence estimates. These

estimates are meant to assess the Glasgow PWID population over time, according to

the model equations in Chapter 3. We shall base our estimates on those of Corson

et al. (2013) and here briefly summarise the values and to achieve this feat, we use the

Glasgow PWID survey data collected between 1990-1993 and 2008-2009. From this

data, through HPS, one is then able to find two sets of parameter approximations.

Each of these approximated figures shows the PWID behaviour as it was between

the years 1990-1993 and 2008-2009, respectively. In order to produce these HCV

prevalence estimates, one selects each parameter set individually and relates it with

the estimated hepatitis C prevalence of the selected people who inject drugs (PWIDs)

surveyed in Glasgow within that particular time frame. This research aims to prove

that although the model created produces positive results based on the earlier data;

it fails miserably when the more recent survey data acquired is applied to find the

similar parameter estimates. Additionally, as PWIDs tend to underrate their syringe

and needle sharing habits (Greenfield et al. (1995)) further investigations are in order

to determine to what extent this occurrence transpires among Glasgow PWIDs in
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the period between 2008-2009.

4.6.1 Parameters

In Tables 4.1, 4.2 and 4.3 the data presented here illustrates the parameter estimates

applied to the simulations in this research. The focus now lies on the estimates used

in our test simulations, not taking into account the values of α, δ, σ, ψ and φ. These

values will remain constant all the way through our simulations. This is a quality

they will possess beginning all the way from our simple model simulations (for fur-

ther clarification on these estimates, see Chapter 2).

From surveillance carried out by a collaboration of HPS and colleagues (Rehm

et al. (2010)), it was found that PWIDs fall into two experience groups. This separa-

tion is based on the difference witnessed from the period where they start injections

(Corson (2011) and Corson et al. (2013)). The threshold dividing the two sets of

people is 3 to 5 years of time difference. This difference in years helps researchers

to have at least two different levels which are made up of beginners who have been

injecting for five years or less and seasoned PWIDs who have injected for five years

or more. Therefore as in Corson (2011) and Corson et al. (2013), this data set is

represented as 1/η = 5 years.

Corson (2011) and Corson et al. (2013) project that 33.33% of the entire Glas-

gow PWID population are relatively recently started and new injectors while at

least 66.67% are much older seasoned injectors especially according to the informa-

tion collected between the years 1990-1993 and 2008-2009. Moreover, the PWID

population in Glasgow has remained relatively constant over the years. With this

assumption in mind, one can, therefore, assume that the estimates for π0 and π1 can

be applied as the equilibrium values for these parameters. That is, π0 = π∗0 = 0.3333

and π1 = π∗1 = 0.6667.

We follow Corson (2011) and Corson et al. (2013) to approximate that for the

time between 1990-1993 s00 = 0.6667, s01 = 0.3333, s10 = 0.2026 and s11 = 0.7974

and for the time between 2008-2009 s00 = 0.6667, s01 = 0.3333, s10 = 0.1276 and

s11 = 0.8724.

Again we follow Corson (2011) and Corson et al. (2013) to estimate the aver-
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age working life of a needle is (365.25/τ) during two different periods of time. One

period of time is from 1990 to 1993 and another period is from 2008 to 2009. There-

fore 2, 038 Glasgow PWIDs were assessed between the period 1990-1993 and from

this data Corson (2011) and Corson et al. (2013) estimate the working lifespan of a

needle to be around 15.4 days. Another estimation was based on the 704 Glasgow

PWIDs surveyed from June 2008 to June 2009 and from this data Corson (2011)

and Corson et al. (2013) estimate the working lifespan of a needle to be 3.26 days.

According to Corson (2011) and Corson (2013) between the period 1990-1993

the average injection rate for newly started PWIDs (λ0) is 45 shared injections for

each PWID every year and for experienced PWIDs (λ1) is 37 shared injections for

each PWID. Moreover, between the period 2008-2009 the average injection rate of

recently started PWIDs (λ0) is 1.96 annually with shared injections for seasoned

PWIDs (λ1) at 2.56 annually.

Similar to Corson’s research, we too increased our estimates for a chance for

transmission of chronic infection from αy = 0.016 to αy = 0.025. This move aimed

to match the change of estimates proposed by Crofts et al. (1999) (0.013-0.049),

Hutchinson et al. (2006a), the Advisory Council on the Misuse of Drugs (2009)

(0.015-0.05) and Bird et al. (2006) (0.02-0.03). As per the assumption, one applies

the 2.7 times higher rate of acute HCV infection over chronic infection to determine

later the value of αy = 0.025 which implies that, αh, as per the injection transmission

chance of acute HCV infection to be 0.0675.

4.6.2 Simulation results

We now use Wolfram Mathematica version 11.1 to produce HCV prevalence esti-

mates for each period provided in the Tables 4.1, 4.2 and 4.3 together with the

parameters within and bearing in mind the rate of treatment ψ = 0.1 per year,

research simulates transmission of HCV to be over a 70 year period. Initially the

assumption is that 50% of the PWID participants already have acute HCV (h1)

and no other PWIDs have the disease. To clarify further, π0
x(0) = 0.5/3, π0

x1
(0) =

0, π0
h1

(0) = 0.5/3, π0
h2

(0) = 0, π0
y(0) = 0, π0

z(0) = 0, π1
x(0) = 1/3, π1

x1
(0) = 0, πh1(0) =

1/3, π1
h2

(0) = 0, π1
y(0) = 0 and π1

z(0) = 0 where π0
x(0) = 0 represents the portion
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of PWIDs that are young and inexperienced in the group and x-susceptible at time

t = 0.

Parameter Estimate Source Notes

φ 0.255 Unpublished data

HPS (1990-1993)

Observed data on Glasgow

PWIDs during 1990-1993

αy 2.5% Hutchinson et al.

(2006a)

Assumption based on observed

data on HCV transmission

through needle stick injury

αh 6.75% Conservative estimate Estimate is 2.7 × αy based on

Vickerman et al. (2007) model

fits

1/σ 0.5

years

Vickerman et al.

(2007,2009)

Observed data from studies on

acute HCV

α 0.25 Conservative estimate Limited data available

δ 0.26 Micallef et al. (2006) Review of longitudinal studies

during 1980-2003

1/η 5 years Assumption based on surveil-

lance reports of PWIDs

1/µ 10.002

years

Calculated estimate Based on assumed equilibrium

proportion of naive PWIDs and

time since onset of injection

π0 0.3333 Unpublished data

HPS (2008-2009)

Based on observed data of Glas-

gow PWIDs during 2008-2009

π1 0.6667 Unpublished data

HPS (2008-2009)

Based on observed data of Glas-

gow PWIDs during 2008-2009

ψ 0.1 per

year

Conservative estimate No data

Table 4.1: Table of baseline parameter estimates for use in the time since onset of

injection model. (Adapted from Corson et al. (2013)).
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Parameter Estimate Source Notes

λ0 45 per

PWID

per year

Unpublished data

HPS (1990-1993)

Observed data on Glasgow

PWIDs during 1990-1993

λ1 37 per

PWID

per year

Unpublished data

HPS (1990-1993)

Observed data on Glasgow

PWIDs during 1990-1993

365.25/τ 15.4

days

Frischer et al. (1993);

Gruer et al. (1993);

Taylor et al. (2001)

Based on the estimated number

of Glasgow PWIDs during 1990

and observational data on needle

and syringe provision in Glasgow

during 1990-1993

s00 0.6667 Conservative estimate No data

s01 0.3333 Conservative estimate No data

s10 0.2026 Conservative estimate No data

s11 0.7974 Conservative estimate No data

Table 4.2: Table of parameter estimates for the period 1990-1993. (Adapted from

Corson et al. (2013)).

Parallel explanations are available for the other PWID classes. The assumption in

play here is that the section of individuals in the recently started and seasoned groups

begin at their balance values. This ensures that the conditions and values are satisfied.

This value then suggests that the needles and syringes present in each group stays constant.

The overall prevalence of HCV (given by π0x1 +π0h1 +π0h2 +π0y+π0z+π0x1 +π1h1 +π1h2 +π1y+π1z)

is illustrated in Figures 4.1 and 4.2. These conditions were selected since they allow one

to view the performance of the model under the sets of parameters present. In Figure

4.1 one can eventually arrive at a stable state resolution. When one applies the baseline

parameter values used in the year 1990-1993 (Table 4.2), R0 = 6.177 > 1 the occurrence

of HCV among Glasgow PWIDs reaches an incidence of roughly 81%. Also, in Figure

4.2 it is clear that HCV occurrence reaches a stable state resolution. However, once

the model is applied to the parameter estimates from the year 2008-2009 (Table 4.2),
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R0 = 0.0275 < 1 the results suggest a marked reduction in HCV frequency in Glasgow

PWIDs. This phenomenon results in the elimination of HCV.

Parameter Estimate Source Notes

λ0 1.96 per

PWID

per year

Unpublished data

HPS (2008-2009)

Observed data on Glasgow

PWIDs during 2008-2009

λ1 2.56 per

PWID

per year

Unpublished data

HPS (2008-2009)

Observed data on Glasgow

PWIDs during 2008-2009

365.25/τ 3.26

days

Hay et al. (2009); ISD

Scotland (2010)

Based on the estimated number

of Glasgow PWIDs during 2008

and observational data on needle

and syringe provision in Glasgow

during 2008-2009

s00 0.6667 Conservative estimate No data

s01 0.3333 Conservative estimate No data

s10 0.1276 Conservative estimate No data

s11 0.8724 Conservative estimate No data

Table 4.3: Table of parameter estimates for the period 2008-2009. (Adapted from

Corson et al. (2013)).

4.6.3 Parameter combinations resulting in R0 ≤ 1.

We have seen that the health organisations would need to distribute approximately 3.2

times more needles to PWIDs to get the R0 = 1 target, it is also very important to achieve

R0 < 1. It is possible that a smaller increase in needle turnover combined with another

parameter will result in PWIDs and needles arriving to a disease free state in a shorter

time frame. In this subsection we will focus on combining parameters and finding the

range of values that allow for R0 < 1.

Figures 4.3, 4.4 and 4.5 clearly show the combinations that will result in R0 ≤ 1
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Figure 4.1: HCV prevalence using baseline parameter estimates for 1990-1993.
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Figure 4.2: HCV prevalence using baseline parameter estimates for 2008-2009.
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Figure 4.3: Combinations of φ and τ that result in R0 ≤ 1, grey coloured area.

and that result in HCV elimination in all PWIDs and all needles. These figures clearly

show the parameter combinations that will result in R0 ≤ 1 in the grey coloured area

and the white coloured area means that R0 > 1. Figure 4.3 shows the values of φ and τ

that are needed to achieve an HCV free population or R0 ≤ 1, it is clear from the figure

when these parameters lie in the grey coloured area that means R0 ≤ 1 otherwise R0 > 1.

Similarly, Figure 4.4 indicates the combinations of ψ and τ , the same as before when these

parameters lie in the grey coloured area that means R0 ≤ 1 otherwise R0 > 1. Moreover,

Figure 4.5 indicates the combinations of ψ and φ also again as previous parameters when

these parameters lie in the grey coloured area that means R0 ≤ 1 otherwise R0 > 1.

4.6.4 How the proportion of PWIDs that can spontaneously

resolve HCV infection affects model predictions.

During the literature review of parameter values in the simple model, we found that

estimating the proportion of PWIDs that spontaneously resolve HCV infection is most

difficult since the most of cases are asymptomatic and therefore go undiagnosed. The

results of the systematic review into spontaneous viral clearance is δ = 26%. Therefore,
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Figure 4.4: Combinations of ψ and τ that result in R0 ≤ 1, grey coloured area.

Figure 4.5: Combinations of ψ and φ that result in R0 ≤ 1, grey coloured area.
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δ Prevalence among sharing PWIDs

0.15 0.95227

0.26 0.95286

0.5 0.95190

Table 4.4: Endemic equilibrium HCV prevalence for sharing PWIDs and needles

with δ = 0.015, 0.026 and 0.5.

Figure 4.6: HCV prevalence using baseline parameter estimates for 1990-1993.

other researchers have estimated a range of values with Hutchinson et al. (2006a) sug-

gesting 15-40%, Vickerman et al. (2007) suggesting 18-50% and Kamal (2008) suggesting

10-60% before stating that the general rule of thumb is 20%-40%.

In this part we are going to see how these changing assumptions will affect our equilib-

rium estimates of HCV prevalence and proportion of infectious PWIDs in the population.

Our simulations show that decreasing our suggested δ to 0.15 results in our long

term HCV prevalence estimates increasing by only 0.05%. In a similar way, we can see

that increasing δ from 0.26 to 0.5 will decrease our long term prevalence estimates by just

0.09%. Therefore, it is clear that there is a slight change in our model behaviour when

this parameter is changed. Despite our simple model, we can see in this model the change

in behaviour is very small.
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αy Prevalence among sharing PWIDs

0.0160 0.944422

0.0296 0.956116

0.0432 0.963448

Table 4.5: Endemic equilibrium HCV prevalence estimates for sharing PWIDs and

needles with chronic HCV transmission probability of αy = 0.0160, 0.0296 and

0.0432.

4.6.5 The influence of the probability of HCV transmission

for chronic infection on model predictions.

We have seen from our literature review that some models of HCV assume that the proba-

bility of chronic HCV transmission is equal to the probability of acute HCV transmission.

On the other hand other models assume that there is a difference between these two prob-

abilities. In the model of Vickerman et al. (2009) fits were obtained when they did not

use the same transmission probabilities as well as when transmission probabilities were

assumed to be the same.

In this subsection and the next one we will investigate how these two different as-

sumptions affect our simulations of long term HCV prevalence.

In our next set of simulations (note that we will use the same values of αy which

we estimated for the simple model for purpose of comparison), we will examine the long

term prevalence when αy = 0.0160, 0.0296 and 0.0432. Figure 4.7 presents how the model

behaviour changes with each parameter estimate. As we expected from previous work

in Chapter 3 a lower estimate for αy similarly to αy in the simple model will reduce the

final equilibrium value and the speed at which the disease spreads through our popula-

tion. Similarly, a higher estimate for this parameter results in faster disease spread and a

greater endemic equilibrium value.

To see how these final estimates for HCV prevalence differ under each assumption

we summarise the equilibrium values in a table (see Table 4.5). From this table we show

that expanding or in other words increasing our estimate of αy from 0.016 to 0.0432 results

in the long term prevalence estimate increasing by 1.9%. If we compare this result with

that from the simple model which was 14% then there is a big difference of change of
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Figure 4.7: HCV prevalence among shared needles αy = 0.0160, 0.0296 and 0.0432.

behaviour of this model with that change in the simple model.

4.6.6 The influence of the probability of HCV transmission

for acute infection on model predictions.

While searching the literature for parameter estimates we represented a range of estimates

for the probability of acute HCV transmission (see Table 3.1). In the following simulations

we examine how the different estimates for this parameter affect the long term estimates

of our transmission model.

In our next set of simulations (note that we will use the same values of αh which we

estimated for the simple model for purpose of comparison) we will examine the long term

prevalence when αh = 0.016, 0.026, 0.05 and 0.14. Figure 4.8 presents how the model

behaviour changes with each parameter estimate. As expected, a lower estimate for αh

reduces the final equilibrium value and the speed at which the disease spreads through our

population. Similarly, a higher estimate for this parameter results in faster disease spread

and a greater endemic equilibrium value.

To see how these final estimates for HCV prevalence change under each assumption

we have summarised the equilibrium values in a table (see Table 4.6). From this table we

show that expanding or in other words increasing our estimate of αh from 0.016 to 0.05

results in the long term prevalence estimate increasing by 1.7%. If we compare this result

with that which we have from the simple model which was 6.7% then it is also a much
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Figure 4.8: HCV prevalence among sharing PWIDs αh = 0.0160, 0.026, 0.0432, 0.05

and 0.14.

αh Prevalence among sharing PWIDs

0.016 0.9268

0.026 0.9269

0.0432 0.9413

0.05 0.9446

0.14 0.9797

Table 4.6: Endemic equilibrium HCV prevalence for sharing PWIDs with acute

HCV transmission probability of αh = 0.016, 0.026, 0.0432, 0.05 and 0.14.



4.7. Comparison between our results and the results of Corson (2011)
when we use the Glasgow PWID survey data collected between
1990-1993 and 2008-2009 185

smaller increase in absolute terms than the corresponding increase for the simple model.

4.7 Comparison between our results and the re-

sults of Corson (2011) when we use the Glas-

gow PWID survey data collected between 1990-

1993 and 2008-2009

Again to understand the difference between our model and Corson’s model then we need to

go back to the previous chapters (Section 3.1), our model is more pessimistic than Corson’s

model because of we have based our model on the assumption of Lewis and Greenhalgh

(2001) and Corson’s model is based on the assumption of Greenhalgh and Lewis (2000).

Also we have introduced the rate of treatment ψ in our model which was not considered

in Corson’s model. Hence again we expect that disease will spread faster in our model

than Corson’s model.

Note that our two values of R0 for the period 1990-1993 with ψ = 0 per year and

ψ = 0.1 per year both of them are bigger than the one obtained for Corson’s model (we

have summarised these results in Table 4.7) even though we have introduced treatment of

infected PWIDs into the model. This is because we have changed the PWID needle inter-

action assumptions from the optimistic PWID needle interaction assumptions of Corson

(2011) and Corson et al. (2013) to the pessimistic PWID needle interaction assumptions

of Lewis and Greenhalgh (2001). Changing the PWID needle interaction assumptions

without treatment is decreased R0 from 10.474 (when ψ = 0 per year) to 6.177 when we

have introduced treatment (ψ = 0.1 per year). A similar scenario happened when we used

the data survey for the period 2008-2009 which is R0 decreased from 0.0492 to 0.0275

when we consider treatment.

4.8 Conclusion

In this chapter we have separated the PWID population according to infection status,

this modified model further separates the participant PWIDs into two groups. These two

group numbers vary depending on whether the individuals participating in the research
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R0 1990-1993 2008-2009

Our results with ψ = 0 per year 10.474 0.049

Our results with ψ = 0.1 per year 6.177 0.027

Corson (2011) results 3.598 0.009

Table 4.7: Comparison between our R0 results and Corson’s results for two periods

of time 1990-1993 and 2008-2009.

have a short (naive) or long (experienced) injecting career. We have shown analytically

that the behaviour of the model is again governed by the basic reproductive number R0,

with R0 = 1 a critical threshold for endemic HCV prevalence. We have shown that if

R0 ≤ 1 and the disease is initially present in the population, then the system will tend

toward the globally stable disease free equilibrium where HCV has been eliminated in all

PWIDs. If R0 > 1 we have shown that there is a endemic equilibrium. Also we have

tried to prove the uniqueness of endemic equilibria analytically and numerically (by using

Wolfram Mathematica) but I have not found any results because it is difficult and very

complicated and it is still the open question and may be can prove in future, in Corson’s

model the uniqueness has been proved analytically but the same method does not carry

over to our model.

Our model is different than the model discussed in Corson (2011) and Corson et al.

(2013) because of the PWID needle interactions and the ψ term. Particularly the equi-

librium analysis and simulation results. Also we have used the basic parameter estimates

given in Corson (2011) but the model is different and there is treatment which leads to

a differerent and more complex approach to the mathematical analysis than studies in

Corson (2011) and Corson et al. (2013). Moreover we have examined combinations of

the control parameters φ, ψ and τ that give R0 ≤ 1 which was not done for this model

in Corson (2011) and Corson et al. (2013) (additionally this could not have been done

because Corson’s model did not consider ψ). Also we have examined the sensitivity of the

model predictions to parameter estimates which was not done for this model in Corson

(2011) and Corson et al. (2013).

Lastly, in this chapter we analysed the behaviour of our model over time using the

numerical simulation package Wolfram Mathematica version 11.1. We initially used two
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parameter sets: one from 1990-1993 and one from 2008-2009. We showed that while our

model performed reasonably well when the 1990-1993 parameter set was used, perfor-

mance was poor when the 2008-2009 parameter set was used. We speculated that an

under-estimation in the self-reported needle and syringe sharing rates, which were used to

obtain our parameter estimates, could explain the poor performance of our model.

The results of these simulations confirmed our analytical results and allowed us to use

the model to estimate the level of intervention required to give R0 ≤ 1 and therefore elim-

inate HCV in all PWIDs and needles. Again by using the package Wolfram Mathematica

version 11.1 we further varied all three control parameters (ψ, φ and τ) simultaneously to

find the combination which gives R0 ≤ 1. Lastly we have compared our R0 results with

those of Corson (2011) when we have introduced treatment and without treatment.



Chapter 5

A Simple Pessimistic Model for

the Effects of Heterogeneity on the

Spread of HCV amongst PWIDs

It is common knowledge that heterogeneity in a population may enhance or in-

hibit the transmission of contagions thereby affecting the effectiveness of strategies

to control infections (Anderson and May (1992)). Heterogeneity is the main fac-

tor that complicates a model’s structure, both in individuals on infection from the

outside population and in pathogens as well. Active research on infectious disease

epidemiology focuses on a variety of potentially important problems. It is therefore

important to accommodate individual heterogeneity in statistical and mathematical

models in disease research. These models involve specifying contact rates between

individuals (Farrington et al. (2013)).

Heterogeneity in a population can play a vital role in the outbreak of an epi-

demic. The heterogenous population is divided into subgroups with each group hav-

ing similar characteristics in its members. The subgroups are based on factors, such

as amount of vaccination, infectious period, route of transmission, latent period, so-

cial, geographic, age, cultural and economic factors (Al-Fwzan (2015)). Heterogene-

ity in disease transmission leans heavily on the social behaviour of the population

at risk for the disease. Hence, the question :‘Who mixes with whom?’ (Hethcote

188
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(1996)). Many epidemiological models are formulated with multiple groups with

defined contact matrices for the interaction of individuals within the groups. Exam-

ples of such models are those by Lajmanovich and Yorke (1976),Nold (1980),Dushoff

and Levin (1995) and Greenhalgh (1996).

The formulation of a deterministic mathematical model regarding the impact of

heterogeneity on HCV dissemination amongst PWIDs and shooting galleries is the

focus of the current chapter. We start off by discussing previous work on the effect

of heterogeneity on the spread of HCV and HIV/AIDS amongst PWIDs. Next the

chapter proceeds by addressing a series of hypotheses considered to underpin the

differential equation system characterising HCV dissemination.

An article on heterogeneity in disease modelling is discussed by Nold (1980)

with a consideration of a heterogeneously mixing epidemic model as a factor in the

application to gonorrhea. This is a pioneering article in mathematical modelling

reflecting heterogeneity in the spread of a disease. The author has provided a link

between the basic reproduction number R0 within a heterogeneously mixing popu-

lation and the spectral radius of a given operator to provide a firmer mathematical

basis for the results. The basic reproduction number is given as the spectral radius

of a given matrix. The disease dies out if this spectral radius is less than one but

takes off if the spectral radius exceeds one.

A mathematical model was developed by Greenhalgh (1996) to study how HIV

and AIDS are spread amongst PWIDs in shooting galleries. Additionally the re-

searcher studies how the spread of HIV and AIDS in a population of PWIDs was

changed by heterogeneity effects. Greenhalgh reflected on the variability in shooting

gallery visiting rate exhibited when PWIDs visit shooting galleries, choice of shoot-

ing galleries and whether the needles are cleaned before use.

However Greenhalgh (1996) was concerned with a heterogeneously mixing model

through a mathematical analysis that reflected on the transmission of HIV within the

population of intraveneously injecting PWIDs. Al-Fwzan (2015) studied a similar

model for heterogeneity in the spread of HCV amongst a population of PWIDs. Al-

Fwzan was working with the ‘optimistic’ needle-PWID assumption similar to that of

Corson et al. (2012) and Greenhalgh and Lewis (2000). Here a needle automatically
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adapts the infectious state of the last PWID to use it. We shall study a similar

model to Al-Fwzan (2015) but we shall be working with two assumptions similar to

the needle-PWID interaction assumptions of Lewis and Greenhalgh (2001a). Here

each time that a needle is used it adopts the most infectious of its previous state and

the infectious state of the last PWID to use it. Additionally unlike Al-Fwzan (2015)

we take into account the treatment of chronically infected PWIDs with antiviral

therapy.

In the following part the model description is outlined and the model equations

are derived afterwards. We have followed hypotheses similar to those of Al-Fwzan

(2015) except that in Al-Fwzan’s model the PWID-needle interaction assumptions

are different and there is no treatment of infected PWIDs. Then we derive our new

model equations after that an expression for the basic reproduction number of the

model, R0 was derived. Next we show that if R0 ≤ 1 the system of differential

equations has a unique solution where the disease has died out in each group of

PWIDs and each shooting gallery. We show that this unique endemic equilibrium is

globally asymptotically stable if R0 < 1. The numeric solution of the ordinary differ-

ential equation system of our models was made by the use of Wolfram Mathematica

software.

5.1 Model description

We create a deterministic mathematical model of the prevalence of HCV amongst

PWIDs in shooting galleries, basing our model on the simple model that we have

discussed in Chapter 2. This model relies on the assumption that is used in Al-

Fwzan (2015). Therefore the parameters φij, λi, τj, µ, αh, αy, σ, δ, α, Pij and

mj are still similar to the definition in Al-Fwzan’s model (see Table 1.4). Also, we

assume that the per capita rate at which chronically infected PWIDs are successfully

treated is ψ.

Again as assumed in Al-Fwzan (2015) the modified model to be applied here

also allows for dividing the PWIDs population of type i into xi, x1i, h1i, h2i, yi and

zi which represent respectively to those not previously infected, those previously
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infected, those in the acute h1 stage of HCV infection, those in the acute h2 stage

of HCV infection, those who have progressed to the chronic stage of HCV infection

and those immune to HCV reinfection.

Similarly, the shooting galleries are divided into q groups labeled j = 1, 2, ...q.

The difference here between our model and Al-Fwzan’s model on the way that a

type i PWID can be infected PWID so the infectivity of each needle is determined

by the highest level of infectiousness that it has previously come into contact with.

For example, suppose that an acute stage h1 infectious needle in shooting gallery j

is used by a PWID in the chronic y stage of infection. The needle will remain in

the acute h1 infectious state. On the other hand a needle in the chronic y state of

infection used by a PWID in the acute h1 infectious stage will be left in the acute h1

infectious state. This assumption agrees with that made by Lewis and Greenhalgh

(2001a) and makes this model pessimistic compared to other possible assumptions

and so we expect that it could be used to find a lower bound for the fraction of

PWIDs and needles infected with HCV.

5.2 Dynamic equations

We are now going to derive the differential equations which give the spread of HCV

among PWIDs where PWIDs move through the different stages of HCV infection

represented in the previous subsection and HCV infection is caused by sharing the

three types of infectious needle which is again described in the previous subsection.

Let πxi(t), πx1i(t), πh1i(t), πh2i(t), πyi(t) and πzi(t) denote the fraction of PWIDs

out of PWIDs in group i respectively in the xi-susceptible, x1i-susceptible, acute h1i,

acute h2i, chronic yi and immune zi classes at time t. Note that in our model we

consider the rate of treatment ψ which was not included in the model of Al-Fwzan

(2015) then we have new different equations for the xi-susceptible and chronic yi

classes. The other PWID equations for the other classes are still the same. In a

similar way, βh1j(t), βh2j(t) and βyj(t) respectively denote the fractions of HCV in-

fectious needles at time t in shooting gallery j that were last used by an infected

PWID in infectious state h1, h2 and y respectively. Also we shall discuss two different
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possible sets of assumptions than discussed by Al-Fwzan (2015) for how stage h1,

stage h2 and stage y infectious needles and stage h1, stage h2 and stage y infectious

PWIDs interact. Note that in this model, the parameter µ is both the per capita

birth rate and the per capita death rate for all PWIDs.

Using a similar way to the way that we derived our differential equations in

Chapter 2 then we can derive the system of governing equations that describe the

spread of HCV among PWIDs which is given by:

For i = 1, 2, . . . p, and j = 1, 2, . . . q.

dπxi
dt

= µ− µπxi − πxi
q∑
j=1

λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
+ ψπyi , (5.2.1)

dπx1i
dt

= σ(1− α)πh2i − µπx1i − πx1i
q∑
j=1

λiPij(1− φij)
(
αh(βh1j + βh2j) (5.2.2)

+αyβyj
)
,

dπh1i
dt

=

q∑
j=1

(1− δ)(πxi + πx1i)λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
(5.2.3)

−(µ+ σ)πh1i ,

dπh2i
dt

=

q∑
j=1

δ(πxi + πx1i)λiPij(1− φij)
(
αh(βh1j + βh2j) + αyβyj

)
(5.2.4)

−(µ+ σ)πh2i ,

dπyi
dt

= σπh1i − µπyi − ψπyi , (5.2.5)

dπzi
dt

= σαπh2i − µπzi . (5.2.6)

Under Assumption 1 for needles

dβh1j
dt

=

p∑
i=1

Λijπh1i(1− βh1j)− βh1j
p∑
i=1

Λijφij(1− πh1i)− τjβh1j , (5.2.7)

dβh2j
dt

=

p∑
i=1

Λijπh2i(1− βh1j − βh2j) + βh1j

p∑
i=1

Λijφijπh2i − βh2j
p∑
i=1

Λijπh1i (5.2.8)

−βh2j
p∑
i=1

Λijφij(1− πh1i − πh2i)− τjβh2j .
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Under Assumption 2 for needles

dβh1j
dt

=

p∑
i=1

Λijπh1i(1− βh1j)− βh1j
p∑
i=1

Λijπh2i (5.2.9)

−βh1j
p∑
i=1

Λijφij(1− πh1i − πh2i)− τjβh1j .

dβh2j
dt

=

p∑
i=1

Λijπh2i(1− βh2j)− βh2j
p∑
i=1

Λijπh1i (5.2.10)

−βh2j
p∑
i=1

Λijφij(1− πh1i − πh2i)− τjβh2j .

For both Assumptions we have that

dβyj
dt

=

p∑
i=1

Λijπyi(1− βh1j − βh2j − βyj) + (βh1j + βh2j)

p∑
i=1

Λijφijπyi (5.2.11)

−βyj
p∑
i=1

Λij(πh1i + πh2i)− βyj
p∑
i=1

Λijφij(1− πh1i − πh2i − πyi)− τjβyj ,

with suitable initial conditions: πxi(0), πx1i(0), πh1i(0), πh2i(0), πyi(0), πzi(0) for

i = 1, 2, . . . p and βh1j(0), βh2j(0), βyj(0) ≥ 0 with
∑

b∈{h1j ,h2j ,yj} βbj(0) < 1 for

j = 1, 2, . . . q.

5.3 Difference to Al-Fwzan’s model

The model of Al-Fwzan (2015) assumes that after use by an infected PWID each

needle takes on the infectious state of the last PWID to use it but in our model we

have used two sets of alternative assumptions which assume that the infectious state

of the needle can only increase during its lifetime. Also we are following the structure

of the corresponding chapter in Al-Fwzan’s thesis because we want to compare the

results between the model of Al-Fwzan (2015) and the two sets of models discussed

in this chapter. Moreover, the difference between the model discussed in Al-Fwzan

(2015) and the two sets of models discussed in this thesis is similar to the difference

between the models for the spread of HIV of Greenhalgh and Lewis (2000) who use

an ’optimistic assumption’ similar to Al-Fwzan’s model, and the model of Lewis and

Greenhalgh (2001) who use a ’pessimistic’ assumption similar to our model. There-

fore the PWID-needle interactions are more complicated in our models than those
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in Al-Fwzan (2015). As well as the different PWID needle interaction assumptions

in our model PWIDs can also be treated at per capita rate ψ.

5.4 The basic reproduction number R0

This derivation is similar to that of Section 2.3 of Al-Fwzan (2015) although it

differs in the ψ term and the PWID needle interaction terms. Therefore as with

previous simple model in Chapter 2 we need to derive an expression for the basic

reproduction number for the model defined by equations (5.2.1)-(5.2.11).

Again consider a single newly infectious PWID in group i entering a totally

susceptible population of PWIDs and needles at equilibrium. Using the methods

outlined in Section 2.2 of this thesis and Section 3.2 of Al-Fwzan (2015) then we

have that the single PWID in group i will infect on average

λiPij(1− δ)
µ+ σ

acute h1j infectious needles,
λiPijδ

µ+ σ

acute h2j infectious needles and

λiPijσ(1− δ)
(µ+ ψ)(µ+ σ)

chronic yj infectious needles, in shooting gallery j.

By again dealing with each type of infectious needle which is used by uninfected

PWIDs of different groups k = 1, 2, ...p and using the same method and notation in

Section 2.2 then we have that

Eh1j =
αhΛkj(1− φkj)∑p

l=1 Λlj + τj
+

∑p
l=1 Λlj(1− φlj)∑p
l=1 Λlj + τj

Eh1j (5.4.12)

Hence solving (5.4.12) for Eh1j gives

Eh1j =
αhΛkj(1− φkj)∑p
l=1 Λljφlj + τj

PWIDs in group k, (5.4.13)
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Therefore, we use a similar argument to derive the expected number of PWIDs that

are infected by acute h2j and chronic yj needles in both assumptions of needles until

they are uninfectious. These are

Eh2j =
αhΛkj(1− φkj)∑p
l=1 Λljφlj + τj

PWIDs in group k, (5.4.14)

and

Eyj =
αyΛkj(1− φkj)∑p
l=1 Λljφlj + τj

PWIDs in group k. (5.4.15)

Thus, Qik is defined to be the total expected number of secondary PWIDs in group

k left infected by a single newly infected PWID entering in group i which is the sum

of those infected by h1j needles plus the sum of those infected by h2j needles plus

the sum of those infected via yj needles. So

Qik =

q∑
j=1

(
λiPij(1− δ)

µ+ σ
· αhΛkj(1− φkj)∑p

l=1 Λljφlj + τj

+
λiPijδ

µ+ σ
· αhΛkj(1− φkj)∑p

l=1 Λljφlj + τj

+
λiPijσ(1− δ)

(µ+ ψ)(µ+ σ)
· αyΛkj(1− φkj)∑p

l=1 Λljφlj + τj

)
,

= ξ

q∑
j=1

λiPijΛkj(1− φkj)∑p
l=1 Λljφlj + τj

, (5.4.16)

where ξ = (αyσ(1 − δ) + αh(µ + ψ))/(µ + ψ)(µ + σ). Hence, define R0 as the

spectral radius of Q as in Al-Fwzan (2015) and Greenhalgh (1996) therefore the

basic reproduction number R0 is given by:

ρ(Q) = max
1≤i≤p

|λi| (5.4.17)

where λ1, λ2, ..., λp are the eigenvalues of Q.

Thus, we conclude that R0 is the same for Assumption 1 and Assumption 2.

Moreover it is different than R0 in Al-Fwzan (2015) because of the ψ terms and

also the factor (
∑p

l=1 Λljφlj + τj) in the denominator. If we set ψ = 0 per year

and replace the terms (
∑p

l=1 Λljφlj + τj) in the denominator by (
∑p

l=1 Λlj + τj)

then we get the matrix Q discussed in Chapter 2 of Al-Fwzan (2015). Al-Fwzan

(2015) showed that R0 could be expressed as the largest eigenvalue of a matrix Q̂jr

where Q̂jr = ξ
∑p

k=1 Λkj(1 − φkj)λkPkr/(
∑p

l=1 Λlj + τj) derived from a matrix M
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corresponding to the expected number of needles resulting from a single infectious

needle entering the disease-free population at equilibrium and we expect the same

corresponding result to be true for our model if we replace ξ by its new definition

and (
∑p

l=1 Λlj + τj) in the denominator of the terms in the sum of the right hand

side of Q̂ by (
∑p

l=1 Λljφlj + τj).

Epidemiological models accord great significance to R0 because it is a universal

concept applicable to almost if not all epidemic models that usually gives a single key

threshold parameter that determines the overall behaviour of the model. In the above

part we described a completely general model for PWIDs visiting shooting galleries

where PWIDs had a completely general choice of shooting galleries to visit.

5.5 Analytical results

The creation of a deterministic model of heterogeneous populations requires identifi-

cation of the circumstances for equilibria and local and global stability and determi-

nation of how those circumstances (epidemic outbreak and subsidence thresholds)

are correlated. The way in which the proposed transmission model behaves is the

focus of the current part, with emphasis on the circumstances in which HCV can be

eradicated. The type of equilibrium solutions is established based on an equilibrium

and stability analysis, in relation to which the basic reproduction number R0 is a

crucial parameter. Furthermore, it will be demonstrated that a zero solution repre-

senting a disease-free equilibrium exists and is a possibility in all cases. Moreover,

the disease-free equilibrium will be globally asymptotically stable if the value of R0

is 1 or less than 1, signifying eventual disease elimination in all PWIDs and shooting

galleries.

If we use the PWID-needle interaction assumptions of Corson’s model and

ψ = 0 the next theorem translates to Theorem 3.1.1 of Al-Fwzan (2015) adapted to

our model.

Theorem 5.5.1. In either system (5.2.1)-(5.2.8) and (5.2.11) or (5.2.1)-(5.2.6)

and (5.2.9)-(5.2.11), if R0 ≤ 1 then the system has a unique equilibrium solution

where the disease has died out in each group of PWIDs and in each shooting gallery.
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Proof. Note that the idea of the proof is similar to that of Al-Fwzan (2015) but the

main difference is the needle equations. There is also the needle exchange rate ψ.

Several stages are used to prove the theorem. First, needles and PWIDs equilibrium

proportions are denoted as β∗lj and π∗si where l = h1, h2, y and s = x1, h1, h2, y, z

respectively. Disease-free equilibrium existence is denoted with π∗xi = 1, π∗si = 0 and

β∗lj = 0. We need to show that there is no other equilibrium solution. From the

equilibrium versions of equations (5.2.7)-(5.2.11), we have the following:

For Assumption 1 for needles,

β∗h1j =

∑p
i=1 Λijπ

∗
h1i∑p

i=1 Λijπ∗h1i +
∑p

i=1 Λijφij(1− π∗h1i) + τj
, (5.5.18)

β∗h2j =

∑p
i=1 Λijπ

∗
h2i

(1− β∗h1j) + β∗h1j
∑p

i=1 Λijφijπ
∗
h2i∑p

i=1 Λij(π∗h1i + π∗h2i) +
∑p

i=1 Λijφij(1− π∗h1i − π
∗
h2i

) + τj
. (5.5.19)

For Assumption 2 for needles,

β∗h1j =

∑p
i=1 Λijπ

∗
h1i∑p

i=1 Λij(π∗h1i + π∗h2i) +
∑p

i=1 Λijφij(1− π∗h1i − π
∗
h2i

) + τj
, (5.5.20)

β∗h2j =

∑p
i=1 Λijπ

∗
h2i∑p

i=1 Λij(π∗h1i + π∗h2i) +
∑p

i=1 Λijφij(1− π∗h1i − π
∗
h2i

) + τj
. (5.5.21)

For both assumptions,

β∗yj =

∑p
i=1 Λijπ

∗
yi

(1− β∗h1j − β
∗
h2j

) + (β∗h1j + β∗h2j)
∑p

i=1 Λijφijπ
∗
yi∑p

i=1 Λij(π∗h1i + π∗h2i + π∗yi) +
∑p

i=1 Λijφij(1− π∗h1i − π
∗
h2i
− π∗yi) + τj

.

(5.5.22)

From equation (5.2.3) we have that: π∗h1i = (1− δ)Ki such that:

Ki =
1

µ+ σ

q∑
j=1

(π∗xi + π∗x1i)λiPij(1− φij)(αh(β
∗
h1j

+ β∗h2j) + αyβ
∗
yj

).

Also, from equations (5.2.4), (5.2.5) and (5.2.6) we have that:

π∗h2i = δKi,

π∗yi =
σ(1− δ)Ki

µ+ ψ
,

π∗zi =
σαδKi

µ
.
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Under Assumption 1 for needles,

β∗h1j =

∑p
i=1 Λij(1− δ)Ki∑p

i=1 Λij(1− δ)Ki +
∑p

i=1 Λijφij
(
1− (1− δ)Ki

)
+ τj

,

β∗h2j =

(∑p
i=1 Λij(1− β∗h1j) + β∗h1j

∑p
i=1 Λijφij

)
δKi∑p

i=1 ΛijKi +
∑p

i=1 Λijφij(1−Ki) + τj
,

Under Assumption 2 for needles,

β∗h1j =

∑p
i=1 Λij(1− δ)Ki∑p

i=1 ΛijKi +
∑p

i=1 Λijφij(1−Ki) + τj
,

β∗h2j =

∑p
i=1 ΛijδKi∑p

i=1 ΛijKi +
∑p

i=1 Λijφij(1−Ki) + τj
.

For both assumptions

β∗yj =

∑p
i=1 Λij

(σ(1−δ)Ki
(µ+ψ)

)
(1− β∗h1j − β

∗
h2j

) + (β∗h1j + β∗h2j)
∑p

i=1 Λijφij
(σ(1−δ)Ki

(µ+ψ)

)
∑p

i=1 Λij

(
Ki +

(
σ(1−δ)Ki
µ+ψ

))
+
∑p

i=1 Λijφij

(
1−Ki −

(
σ(1−δ)Ki
µ+ψ

))
+ τj

.

(5.5.23)

Writing π∗hi = π∗h1i + π∗h2i = Ki for both assumptions of needles we have that:

β∗h1j + β∗h2j ≤
∑p

k=1 Λkjπ
∗
hk∑p

k=1 Λkjφkj + τj
,

β∗h1j + β∗h2j + β∗yj ≤
∑p

k=1 Λkj(π
∗
hk

+ π∗yk)∑p
k=1 Λkjφkj + τj

.

These inequalities follow from solving the equilibrium versions of equations d
dt

(βh1 +

βh2) and d
dt

(βh1 + βh2 + βy) as in Chapter 2 or directly using 5.5.18-5.5.22
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We get a bound for π∗hi as the following (similar to Al-Fwzan (2015)):

π∗hi = π∗h1i + π∗h2i = (1− δ)Ki + δKi,

=
1

µ+ σ

q∑
j=1

(π∗xi + π∗x1i)λiPij(1− φij)
(
αy(β

∗
h1j

+ β∗h2j + β∗yj)

+ (αh − αy)(β∗h1j + β∗h2j)
)
,

≤ 1

µ+ σ

q∑
j=1

(1− π∗h1i − π
∗
h2i
− π∗yi − π

∗
zi

)λiPij(1− φij)

×

(
αy

(∑p
k=1 Λkj(π

∗
hk

+ π∗yk)∑p
k=1 Λkjφkj + τj

)
+ (αh − αy)

( ∑p
k=1 Λkjπ

∗
hk∑p

k=1 Λkjφkj + τj

))
,

=
1

µ+ σ

(
1− π∗hi

(
1 +

σ

µ+ ψ
(1− δ) +

σ

µ
δα

))
×

q∑
j=1

λiPij(1− φij)
∑p

k=1 Λkjπ
∗
hk∑p

k=1 Λkjφkj + τj

(
αh + αy

σ

µ+ ψ
(1− δ)

)
,

≤
p∑

k=1

Q∗ikπ
∗
hk. (5.5.24)

Here

Q∗ik =

q∑
j=1

ξλiPijΛkj(1− φij)∑p
l=1 Λljφlj + τj

. (5.5.25)

We denote the matrix with elements Q∗ik by Q∗.

Lemma 5.5.2. The matrix Q∗ik where

Q∗ik =

q∑
j=1

ξλiPijΛkj(1− φij)∑p
s=1 Λsjφsj + τj

,

and matrix QT where

QT
ik = Qki =

q∑
j=1

ξλkPkjΛij(1− φij)∑p
s=1 Λsjφsj + τj

,

have the same eigenvalues, see equation (5.5.25).

Proof. The idea of Lemma 3.1.2 within Al-Fwzan (2015) gives us an overview of the

prevailing proof where we write

bj =

p∑
s=1

Λsjφsj + τj.
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Hence,

QT
ik =

q∑
j=1

ξλkPkjΛij(1− φij)
bj

,

so arguing as in Lemma 3.1.2 of Al-Fwzan (2015) with aj replaced by bj then we

have

QT
ik = Q∗ik

ni
nk
.

Therefore as results we have that (e1, e2, . . . , ep) is a left eigenvector of the matrix

QT
ik and (n1e1, n2e2, . . . , npep) is a left eigenvector of the matrix Q∗ik. Therefore our

proof is completed.

We suppose that there exists a shooting gallery j0 for each pair of groups i and

k of PWIDs, λi > 0 with:

Pij0(1− φij0)Λkj0 > 0

and therefore transmission of the infection forwards by every group of PWIDs is

possible.

Again we are following the similar idea which was used in Al-Fwzan (2015)

then the proof of the Theorem 5.5.1 needs completion when R0 ≤ 1. We need to

show that there is only the zero equilibrium if R0 is less than or equal to unity. A

contradiction method can be used to prove this. Suppose there is another solution

with some π∗hi0 = Ki0 > 0. Then from the equilibrium solution (5.5.23) we deduce

that each of

π∗h1i0 , π∗h2i0 , π∗yi0 , and π∗zi0 ,

is strictly deduced as positive. Reflecting on both equivalent versions of equations

(5.2.1) and (5.2.2), it is clear that π∗xi0 > 0 and π∗x1i0 > 0. Additionally, at any

j = 1, 2, . . . , q as per the equilibrium equation (5.5.23), we deduce that

β∗h1j , β∗h2j , and β∗yj ,

are strictly greater than zero.

The proof of Theorem 1.5.1 now follows as the proof of Theorem 3.1.1 of Al-
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Fwzan (2015) to deduce that Ki = 0 for each i. The result follows as in Al-

Fwzan (2015) except that there are some minor differences in the PWID and needle

equations so the details are not exactly the same but the idea is the same. So if

i is another group of PWIDs then considering the equilibrium versions of (5.2.1),

(5.2.2) and (5.2.4), π∗xi and π∗x1i are strictly positive. Additionally, π∗h1i and π∗h2i are

strictly positive from the equilibrium version of (5.2.3) and (5.2.4) hence so is π∗hi.

Then using inequality (5.5.24):

π∗hi <

p∑
k=1

Q∗ikπ
∗
hk

for i = 1, 2, . . . , p.

Write π∗h = (π∗h1 , π
∗
h2
, . . . , π∗hp). Hence there exists ε > 0 such that:

Q∗π∗h > (1 + ε)π∗h,

then the proof of Theorem 1.5.1 follows as in the proof of Theorem 3.1.1 of Al-Fwzan

(2015).

We conclude that the proof of 5.5.1 is different to Al-Fwzan (2015) particu-

larly at the beginning. We needed to re-express the disease transmission term in

terms of β∗ and β∗h for the proof to work. It is a more complicated and significantly

different proof because of the needle equations. Also R0 is the same for the Pes-

simistic Model with both Assumption 1 and Assumption 2. There is a difference

between the results for Assumption 1 and Assumption 2 in that the β∗h1j and β∗h2j

value differs.

However, the prediction of what happens when 0 ≤ R0 ≤ 1 can be answered

by the following theorem. The theorem reflects on what happens when R0 takes

the value between 0 and 1 with the notion that HCV in each group of PWIDs and

needles in each shooting gallery dies out.

For dealing with the PWID needle interaction assumptions of Corson’s model

and ψ = 0 per year the following theorem corresponds to Theorem 3.1.4 of Al-Fwzan

(2015). Our proof is based on the proof of Al-Fwzan (2015) but there are differences

because of the PWID-needle interaction assumptions and the treatment of infected

PWIDs.
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Theorem 5.5.3. The disease will ultimately die out whatever the initial conditions

if R0 < 1.

Proof. Note that the idea of the proof is similar to that of Al-Fwzan (2015) but

the main difference is the needle equations. There is also the treatment rate of

infected PWIDs ψ. This outcome is proved in several steps. Recall that the pro-

portion of acutely h1 infected PWIDs in group i is referred to by πh1i and we define

π∞h1i = lim supt→∞ πh1i(t), i = 1, 2, . . . , p. Similarly, we define π∞h2i , π
∞
yi

, π∞zi and β∞h1j ,

β∞h2j and β∞yj for both assumptions of needles.

We are now going to show that π∞yi , π
∞
zi

, β∞h1j , β
∞
h2j

and β∞yj can all be bounded

above with bound involving π∞h1k and π∞h2k , k = 1, 2, . . . , p. We shall start off the proof

by giving an upper bound in terms of π∞h1i and π∞h2i for the upper limit suprema π∞yi ,

β∞h1j , β
∞
h2j

and β∞yj in each group of PWIDs i and shooting gallery j. A proof of sev-

eral results that give upper bounds is paramount given that each group i of PWIDs

and shooting gallery j in terms of the limit supremum π∞h1i or π∞h2i . From equation

(5.2.3) and equation (5.2.4), there is a link between π∞h1i and π∞h2i . Therefore, taking

into consideration the proof of theorem 2.4.2 in Chapter 2 and applying this result

will complete our proof with the following anticipation:

Lemma 5.5.4. π∞yi ≤
σπ∞h1i
µ+ψ

.

Proof. From equation (5.2.5), we have that

dπyi
dt

+ (µ+ ψ)πyi = σπh1i .

So given ε > 0, there exists t ≥ t0(ε) and

d

dt
[πyi exp((µ+ ψ)t)] = σπh1i exp((µ+ ψ)t),

≤ σ(π∞h1i + ε) exp((µ+ ψ)t), ∀t ≥ t0(ε) and ε > 0.
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Let t ≥ t0(ε) and integrating over [t0(ε), t] gives

πyi(t) ≤ πyi(t0(ε)) exp(−(µ+ ψ)(t− t0(ε)))

+ (π∞h1i + ε)σ
1

µ+ ψ
(1− exp[−(µ+ ψ)(t− t0(ε))]),

≤ ε+ (π∞h1i + ε)σ
1

µ+ ψ
, ∀t ≥ t1(ε) > t0(ε).

Letting t→∞ and choosing ε1 = ε
(
µ+ψ+σ
µ+ψ

)
, we have that:

π∞yi ≤
σπ∞h1i
µ+ ψ

+ ε1.

Therefore the result follows as ε1 is positive and arbitrary. Using the same method

which was used in the previous proof of Lemma then we have that:

π∞zi ≤
σαπ∞h2i
µ

. (5.5.26)

Under Assumption 1 for needles, from equation (5.2.7) we have

dβh1j
dt

=

p∑
i=1

Λijπh1i − βh1j
( p∑

i=1

Λijφij + τj

)
− βh1j

p∑
i=1

πh1iΛij(1− φlj)

≤
p∑
i=1

Λijπh1i − βh1j
( p∑

i=1

Λijφij + τj

)
hence, using a similar argument as in Lemma 5.5.4 then we can show that

β∞h1j ≤
∑p

i=1 Λijπ
∞
h1i∑p

l=1 Λljφlj + τj
.

Now in stage acute h2, from equation (5.2.8) we have:

dβh2j
dt

=

p∑
i=1

Λijπh2i − βh1j
p∑
i=1

Λijπh2i(1− φij)− βh2j
p∑
i=1

Λijπh2i(1− φij)

- βh2j

p∑
i=1

Λijπh1i(1− φij)− βh2j
( p∑

i=1

Λijφij + τj

)
,

≤
p∑
i=1

Λijπh2i − βh2j
( p∑

i=1

Λijφij + τj

)
.

Again by using a similar argument on Lemma (5.5.4) then we have

β∞h2j ≤
∑p

i=1 Λijπ
∞
h2i∑p

l=1 Λljφlj + τj
.
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Under Assumption 2 for needles, from equation (5.2.9) we have

dβh1j
dt

=

p∑
i=1

Λijπh1i − βh1j
p∑
i=1

Λijπh1i(1− φij)− βh1j
p∑
i=1

Λijπh2i(1− φij)

− βh1j
( p∑

i=1

Λijφij + τj

)
,

≤
p∑
i=1

Λijπh1i − βh1j
( p∑

i=1

Λijφij + τj

)
.

Therefore,

β∞h1j ≤
∑p

i=1 Λijπ
∞
h1i∑p

l=1 Λljφlj + τj
.

Similarly in stage acute h2, from equation (5.2.10) we have that:

β∞h2j ≤
∑p

i=1 Λijπ
∞
h2i∑p

l=1 Λljφlj + τj
.

For both Assumptions, from equation (5.2.11) we have that:

dβyj
dt

=

p∑
i=1

Λijπyi − βh1j
p∑
i=1

Λijπyi(1− φij)− βh2j
p∑
i=1

Λijπyi(1− φij)

− βyj
p∑
i=1

Λijπyi(1− φij)− βyj
p∑
i=1

Λijπh1i(1− φij)− βyj
p∑
i=1

Λijπh2i(1− φij)

− βyj
( p∑

i=1

Λijφij + τj

)
.

≤
p∑
i=1

Λijπyi − βyj
( p∑

i=1

Λijφij + τj

)
.

Thus,

β∞yj ≤
∑p

i=1 Λijπ
∞
yi∑p

l=1 Λljφlj + τj
.

Therefore we conclude that for both Assumption 1 and Assumption 2 we have that:

β∞h1j ≤
∑p

i=1 Λijπ
∞
h1i∑p

l=1 Λljφlj + τj
,

β∞h2j ≤
∑p

i=1 Λijπ
∞
h2i∑p

l=1 Λljφlj + τj
,

β∞yj ≤
∑p

i=1 Λijπ
∞
yi∑p

l=1 Λljφlj + τj
, (5.5.27)
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so, it is clear that our β∞h1j , β
∞
h2j

and β∞hyj are bounded differently than Al-Fwzan

(2015) because of the factor (
∑p

l=1 Λljφlj + τj) in the denominator.

Define πhk = πh1k +πh2k . πhk refers to the proportion of PWIDs in group k who

are infected and in the acute stage

Lemma 5.5.5. For each i = 1, 2, . . . , p:

π∞hi =
π∞h1i

(1− δ)
=
π∞h2i
δ
.

Proof. Following a similar proof of Lemma 3.1.6 in Al-Fwzan (2015).

Lemma 5.5.5 can be used in writing the inequality in Lemma 5.5.4 and inequal-

ities (5.5.26) and (5.5.27) in terms of π∞hi to obtain:

π∞yi ≤
σ(1− δ)π∞hi
µ+ ψ

, (5.5.28)

π∞zi ≤
σδαπ∞hi
µ

, (5.5.29)

β∞h1j ≤
∑p

i=1 Λij(1− δ)π∞hi∑p
l=1 Λljφlj + τj

, (5.5.30)

β∞h2j ≤
∑p

i=1 Λijδπ
∞
hi∑p

l=1 Λljφlj + τj
and (5.5.31)

β∞yj ≤
σ(1− δ)
(µ+ ψ)

∑p
i=1 Λijπ

∞
hi∑p

l=1 Λljφlj + τj
. (5.5.32)

Now, we have

d

dt
πhi =

q∑
j=1

(1− πhi − πyi − πzi)λiPij(1− φij)(αh(βh1j + βh2j) + αyβyj)− (µ+ σ)πhi .
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Hence given ε > 0, there exists t4 ≥ t0 such that for t4 ≤ t :

d

dt
πhi ≤ (1− πhi)

q∑
j=1

λiPij(1− φij)(αh(β∞h1j + β∞h2j) + αyβ
∞
yj

+ ε)− (µ+ σ)πhi ,

≤ (1− πhi)
q∑
j=1

λiPij(1− φij)[
αh(
∑p

k=1 Λkjπ
∞
h1k

+
∑p

k=1 Λkjπ
∞
h2k

) + αy
∑p

k=1 Λkjπ
∞
yk∑p

l=1 Λljφlj + τj
+ ε

]
− (µ+ σ)πhi ,

≤ (1− πhi)

[
q∑
j=1

λiPij(1− φij)
(
αh + αy

σ

(µ+ ψ)
(1− δ)

)
( ∑p

k=1 Λkjπ
∞
hk∑p

l=1 Λljφlj + τj
+ ε1

)]
− (µ+ σ)πhi ,

= (µ+ σ)

[
(1− πhi)

(
q∑
j=1

λiPij(1− φij)ξ
∑p

k=1 Λkjπ
∞
hk∑p

l=1 Λljφlj + τj
+ ε2i

)
− πhi

]
,

= (µ+ σ)

[
(1− πhi)

(
p∑

k=1

Q∗ikπ
∞
hk

+ ε2i

)
− πhi

]
,

where ε1 = ε/(ξ(µ + σ)), ε2i = ε1ξ
∑q

j=1 λiPij(1 − φij), and Q∗ is a matrix defined

earlier. Recall that R0 is the spectral radius of Q∗ and R0 = ρ(Q∗) ≤ 1. Therefore

we have:

d

dt
πhi ≤ (µ+ σ)

[( p∑
k=1

Q∗ikπ
∞
hk

+ ε2i

)
− πhi

(
1 +

p∑
k=1

Q∗ikπ
∞
hk

+ ε2i

)]
.

Hence,

π∞hi ≤
∑p

k=1Q
∗
ikπ
∞
hk

+ ε2i

1 +
∑p

k=1Q
∗
ikπ
∞
hk

+ ε2i
.

As ε is arbitrary then letting ε→ 0 and ε2i → 0 we conclude that:

π∞hi ≤
∑p

k=1Q
∗
ikπ
∞
hk

1 +
∑p

k=1Q
∗
ikπ
∞
hk

.

Now if we assume that for some i0 π
∞
hi0

> 0 and following similar way as Al-Fwzan

(2015), then we have that there exists ε2 > 0 such that:

π∞hi (1 + ε2) ≤
p∑

k=1

Q∗ikπ
∞
hk
,

so we have

π∞h (1 + ε2) ≤ Q∗π∞h ,
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hence

R0 = ρ(Q∗) ≥ 1 + ε2 > 1.

As this contradicts the fact that R0 is less than one every πh
∞
k = 0. As in Al-Fwzan

(2015) considering all of the infectious PWID classes and the previously infected

susceptible class the limsups are all zero. Note that the details to show this are

not exactly the same because of the different needle equations and the treatment

of infected PWIDs being included but the underlying principle is the same. Hence,

the proof of the global stability of the disease-free equilibrium solution is complete

when R0 ≤ 1.

5.6 Parameters and numerical simulations

We are following the structure of the chapter four in Al-Fwzan’s thesis because we

want to compare the results between the two models. The primary course of con-

ducting the simulation results is to estimate the impacts of the HCV during the time

interval of 70 years. The estimated production of HCV prevalence simulation results

over time is through the model parameters. In this section, the assumption that the

model portrays similar characteristics in shooting galleries is kept into considera-

tion. This implies that the PWID group share in one shooting gallery (q = 1). To

be simple, we use this assumption and discuss the heterogeneous cases of shooting

galleries. The simulation results under the assumption of homogeneity of shooting

galleries are performed to illustrate the prevalence of HCV among different groups

of PWIDs. In addition to our assumption of homogeneity of shooting galleries, we

also have an assumption that all the model parameters are homogeneous, except for

the needle sharing rates.

5.6.1 Al-Fwzan’s model and our model

As we have mentioned in the differences between our model and Corson’s model it is

also the same here, our model is based on the ‘pessimistic assumption’ of Lewis and

Greenhalgh (2001) and Al-Fwzan’s model is based on the ‘optimistic assumption’

of Corson (2011). Moreover we have also introduced the rate of treatment ψ in
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our model which was not considered in Al-Fwzan’s model. Hence there are two

differences between our model and Al-Fwzan’s model:

1. The PWID - needle interactions have been varied.

2. A treatment term has been considered.

Therefore there are two opposing factors in our model. Because the PWID needle

interaction terms are more pessimistic we expect the disease to spread faster. How-

ever because of the disease treatment term the disease will spread slower. Hence

overall we are not able to say whether or not the disease will spread faster or slower

in our model compared with Al-Fwzan’s model.

5.6.2 Parameters used

This section contains the presentation of the numeric estimations of the parameters

of the model. The use of many of these parameter estimations is evident in Chapter

Three and they have also been used together with other parameters in the study of

the effects of heterogeneity of the HCV prevalence among a variety of PWID groups.

We then proceed to discuss the estimation of the parameters.

Heterogeneity in the rates of sharing is the only heterogeneity of our model in

our simulation in this chapter. We will thus put the parameter under discussion

in a more detailed manner and give an insight into the different rates for each

different group in our simulation. Contrary to what has been observed in the PWID

population, many studies assumed homogeneous sharing rates for simplicity (Kaplan

and O’Keefe (1993), Corson (2011) and Corson et al. (2012)). A mean of 72.48 per

year of shared injection rate for Glasgow PWIDs was assumed by Goldberg et al.

(1995) in studies of HIV transmission amongst PWIDs. 103 per year was the mean

found by Corson et al. (2012) after obtaining λ from survey data of PWIDs from

Glasgow during 1990-1993 and 2007.

Our focus is mainly on the heterogeneity of the rate of sharing needles among

PWIDs in different groups i, for i = 1, 3, 5 and 9. In this simulation we aim at

discussing how the prevalence of HCV in a population of PWIDs and shooting

galleries is affected by heterogeneity. As in Al-Fwzan (2015), the probability of
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sharing borrowed needles that were previously used by another PWID is presented

by the data of a survey of PWIDs in Glasgow collected by HPS (Hutchinson et al.

(2000)). These sharing rates of borrowed used needles, which were obtained by HPS

during 1990-1993 detailing sharing over the past six months. We simulated data

of sharing rates among people who were PWIDs in Glasgow collected by Goldberg

et al. during six months amongst a sample of 503 PWIDs in 1990 to attempt to

compare a variety of sets of data in sharing needle rates (Goldberg et al. (1995)).

We first had an assumption that the model is homogeneous. We then proceeded to

separate the PWIDs population into three groups in accordance with their sharing

rates. Following that we separated the PWIDs into five groups and nine groups with

different sharing rates. We follow simulations performed in Al-Fwzan (2015) so that

we can compare the results with Al-Fwzan (2015).

5.6.3 Simulation results

We are following the structure of Al-Fwzan’s thesis so that we can obtain new results

with the pessimistic PWID-needle interaction assumptions and examining the effect

of treatment on those results. Therefore, data from Glasgow assisted us to start our

simulation with different sharing rates of different groups. 9,000 PWIDs that mix

heterogeneously is what makes the population size. The behavior of the disease in

each different group is explored after we have divided the population into groups.

λ = 167.39 per year is what we found to be the sharing rate of λ in the whole

population of PWIDs in the first group. The values of different sharing rates in

each different group and the number of PWIDs are illustrated in Table 5.3. The

aim of presenting the results of the model simulation is to demonstrate the effect

of heterogeneity of the prevalence of HCV among p groups of PWIDs. We used the

above parameter values for the model for p = 1, 3, 5 and 9 and q = 1 shooting gallery

to calculate the model graph. As mentioned earlier, the group sizes and sharing rates

for each group were taken from a survey of PWIDs in 1990. Information from Corson

et al. (2012) provided the estimates of the rest of the model parameters. The set

of parameter estimations and their definitions are shown in Table 5.2. We have the

assumption that every PWID in group i will choose a needle in shooting gallery j
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since j = 1. To simplify, we considered Pij = 1 in this stage of discussion. We

estimated the number of needles to be m = 8, 932.03 and the number of PWIDs

at n = 9, 000. The information from the model of Corson et al. (2012), who take

γ = 1.002 as the ratio of PWIDs to needles, is what was used to provide the figure

for the number of needles (Griesbach et al. (2006) and King et al. (2009)). We

then estimated that Λij, the arrival rate of a single PWID in group i at a needle in

shooting gallery j:

Λij =
λini
mj

i = 1, 3, 5 and 9, j = 1.

Estimation of the basic reproduction number (R0)

Some of the parameters on which these numbers depend being difficult, if not impos-

sible, to quantify directly estimate reproduction numbers to be typically a compli-

cated process. This parameter determines a threshold: whenever R0 > 1, a typical

infective gives rise, on average, to more than one secondary infection, leading to

an epidemic. To explore disease behavior, we need to estimate this threshold we

estimate R0 using Table 5.3 and Table 5.2 and our expression of this number, which

is:

R0 = ξ

∑p
k=1 λ

2
knk(1− φ)

m
(∑p

l=1
λlnlφ
m

+ τ
) , (5.6.33)

where ξ = (αyσ(1− δ) + αh(µ+ ψ))/(µ+ ψ)(µ+ σ). This corresponds to equation

(4.1) of Al-Fwzan (2015) except that the definition of ξ and the denominator of the

fraction have been modified. In each stage of our simulation, we estimate R0 using

the sharing rates in the different groups.

5.6.4 Comparison of models with different numbers of groups

of infectious PWIDs

For all the four models, we aim to incorporate the total proportions of infected

PWIDs. Figure 5.1 shows the plots of these proportions of infected PWIDs in

Glasgow using data from 1990 (Hutchinson et al., 2000). The highest equilibrium
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proportion of infectious PWIDs occurs in a single group model (homogeneous), while

the ninth group (heterogeneity model) has the lowest overall equilibrium prevalence.

This is an indication that for this observed data, the reduction of the overall endemic

equilibrium level of disease among PWIDs may be caused by increasing the hetero-

geneity of the PWIDs. The observed distribution of needle sharing rate being very

skew is the reason for this. The prevalence in the smaller groups gets higher with

the increase in heterogeneity while that of higher larger groups gets lower, overall

the endemic prevalence decreases.

It is moreover shown in Figure 5.1 that the behavior of infectious PWIDs in

the five and nine group models is similar, the total production of infectious PWIDs

in Table 5.5 can also attest to this. The increase of the initial speed of increase of

the epidemic (which is related to R0) is subsequent to the increase in the number

of groups. So our theoretical results which show that in this situation, the homo-

geneous model has the lowest value of R0 are consistent with our simulations. The

basic reproductive number is shown for each model, and we can see that the five

and nine group models have the highest number for R0, as presented in Table 5.3.

Furthermore, the endemic equilibrium prevalence values in each stage: suscep-

tible, acute, chronic, and immune, and the number of groups is compared in Table

5.1. We can, therefore, see that the decrease in the endemic equilibrium prevalence

of infectious PWIDs is subsequent to an increase in the number of groups. This

indicates that a reduction in the long term endemic equilibrium proportion of HCV

among this population may be as a result of increasing the heterogeneity in the

PWIDs population.

The R0, and equilibrium solutions for both PWIDs and needles are evaluated

and calculated in each model. For every seventy years, we calculate the overall

proportions of infectious PWIDs and needles against time. The results for all the

four models are summarized in 5.4. You should note that the value of R0 calculated

is much higher than those generally observed for homogeneous models as in Al-

Fwzan (2015). The simulations results presented in Table 5.4 indicate that as the

number of groups increases R0 values increase and the overall prevalence of HCV

amongst PWIDs and needles decreases. Also the values of R0 are higher than the
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Figure 5.1: The proportions of PWIDs in Glasgow in the four models using data

from 1990.

corresponding values in the model discussed in Table 4.4 of Al-Fwzan (2015) and

the greater the amount of heterogeneity, i.e. the greater the number of groups, the

bigger the difference gets.

Table 5.1: Comparing the endemic equilibrium proportions of infectious PWIDs for

all four models using data from 1990.

Models π∗x π∗x1 π∗h1 π∗h2 π∗y π∗z

One group 0.1232 0.0231 0.1232 0.0212 0.7098 0.0624

Three group 0.6296 0.0111 0.0367 0.0129 0.2718 0.0379

Five group 0.6845 0.0154 0.0306 0.0108 0.2270 0.0317

Nine group 0.7009 0.0147 0.0290 0.0102 0.2151 0.0300

5.6.5 The effect of treatment on the basic reproduction num-

ber with different numbers of groups

In this subsection, we will see that the changed basic reproduction number values

which result from different ψ parameters. We run simulations utilizing three unique
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Table 5.2: Table of parameter estimates used in our simulations (Adapted from

Al-Fwzan (2015)).

Parameter Definition Estimate

φij Probability that a PWID in group i successful needle

cleaning in shooting gallery j before use, i = 1, 3, 5

and 9, j = 1.

0.255

λi Needle and syringe sharing rate in group i, i = 1, 3, 5

and 9.

Table 5.3

τj Needle turnover rate in shooting gallery j, j = 1. 133 per

year

µ Rate PWIDs leave the sharing, injecting population. 0.17 per

year

αh Acute HCV transmission probability. 0.0432

αy Chronic HCV transmission probability. 0.016

1/σ Duration of the acute HCV phase. 0.5 years

δ Proportion of infected PWIDs that resolve HCV infec-

tion.

0.26

α Proportion of PWIDs that become immune. 0.25

Pij The probability that a PWID in group i chooses shoot-

ing gallery j to share a needle.

1

mj Number of needles in shooting gallery j, j = 1. 8,982

ψ Per capita treatment rate. 0.1 per

year

estimations of ψ relating to our present parameter value ψ = 0.1 per year, ψ = 0.03

per year which was estimated by Martin et al. (2015) and ψ = 0.06 per year which

was estimated by Martin et al. (2011).

Table 5.5 shows the increasing on the rate of treatments leads to decrease in the

basic reproduction numbers in all groups model. Also we can see that the largest

decrease in the value of the basic reproduction number occurs in the nine group
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One Group Model

λ 167

n 9000

Three Group Model

λ1 0.000 λ2 152.44 λ3 1440.25

n1 5135.08 n2 3157.25 n3 707.66

Five Group Model

λ1 0.000 λ2 34.91 λ3 364.75 λ4 550.9 λ5 1996.09

n1 5135.08 n2 2032.25 n3 1125 n4 272.18 n5 435.48

Nine Group Model

λ1 0.000 λ2 19.55 λ3 91.25 λ4 231.43 λ5 423.66 λ6 462.67 λ7 651.78 λ8 1629.46 λ9 2607.14

n1 5135.08 n2 1596.77 n3 435.48 n4 344.75 n5 780.24 n6 145.16 n7 127.01 n8 272.17 n9 163.3

Table 5.3: Shared needles and syringes rate λi, sizes of group ni of PWIDs for

i = 1, 3, 5, 9 using data from 1990. (Adapted from Al-Fwzan (2015)).

Table 5.4: Comparing the four models in the basic reproductive number and equi-

librium percentage of proportion of infectious PWIDs and infectious needles using

data from 1990.

Model R0 Infectious PWIDs Infectious needles

One group 7.15 84% 45%

Three group 43.92 37% 49%

Five group 56.13 32% 50%

Nine group 59.28 31% 51%

model and the smallest decrease value in the one group model.

Therefore, we expect that when we decrease the rate of treatment then the

disease will spread faster in our model and vice-versa. Note also this effect is more

pronounced, at least in absolute values, the greater the amount of heterogeneity in

the model.
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Table 5.5: Comparing the four models in the basic reproduction number values with

ψ = 0.03 per year, ψ = 0.06 per year and ψ = 0.1 per year.

Model ψ = 0.03 per year ψ = 0.06 per year ψ = 0.1 per year

One group 8.82 7.98 7.15

Three group 54.21 49.03 43.92

Five group 70.82 64.05 56.13

Nine group 73.17 66.18 59.28

Table 5.6: Comparing the one group model in the basic reproductive number and

equilibrium percentage of proportion of infectious PWIDs and infectious needles

between our model and Al-Fwzan’s (2015) model using data from 1990.

One group model R0 Infectious PWIDs Infectious needles

Al-Fwzan’s results 5.8 79% 42%

Our results with ψ = 0.1 per

year

7.1 84% 45%

Our results with ψ = 0.0 per

year

9.9 87% 48%

Table 5.7: Comparing the three group model in the basic reproductive number and

equilibrium percentage of proportion of infectious PWIDs and infectious needles

between our model and Al-Fwzan’s (2015) model using data from 1990.

Three group model R0 Infectious PWIDs Infectious needles

Al-Fwzan’s results 35 28% 48%

Our results with ψ = 0.1 per

year

43.9 37% 49%

Our results with ψ = 0.0 per

year

61.2 39% 51%
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Table 5.8: Comparing the five group model in the basic reproductive number and

equilibrium percentage of proportion of infectious PWIDs and infectious needles

between our model and Al-Fwzan’s (2015) model using data from 1990.

Five group model R0 Infectious PWIDs Infectious needles

Al-Fwzan’s results 45.7 23% 45%

Our results with ψ = 0.1 per

year

56.1 32% 50%

Our results with ψ = 0.0 per

year

78.2 34% 52%

Table 5.9: Comparing the nine group model in the basic reproductive number and

equilibrium percentage of proportion of infectious PWIDs and infectious needles

between our model and Al-Fwzan’s (2015) model using data from 1990.

Nine group model R0 Infectious PWIDs Infectious needles

Al-Fwzan’s results 48.3 27% 44%

Our results with ψ = 0.1 per

year

59.3 31% 51%

Our results with ψ = 0.0 per

year

82.6 32% 52%

5.6.6 Comparison between our results with ψ = 0.0 per year

and ψ = 0.1 per year with different numbers of groups

and the results of Al-Fwzan (2015)

Because our model is based on the ’pessimistic assumption’ of Lewis and Greenhalgh

(2001) and Al-Fwzan’s model is based on the ’optimistic’ assumption of Corson

(2011) therefore we expect that if ψ = 0.0 per year then both R0 and the propor-

tions of infectious PWIDs and needles would be higher in our model than ψ = 0.1 per

year. With ψ = 0.1 per year these values are lower but still higher than Al-Fwzan’s

model because the effect of changing the PWID-needle assumptions is higher than
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R0 One group Three group Five group Nine group

Our R0 results with ψ = 0

per year

9.9 61.2 78.2 82.6

Our R0 results with ψ =

0.1 per year

7.1 43.9 56.1 59.3

Al-Fwzan’s (2015) results 5.8 35 45.7 48.3

Table 5.10: Comparison between our R0 results with ψ = 0 per year and ψ = 0.1

per year in different numbers of groups and Al-Fwzan’s (2015) results.

the effect of introducing treatment. For the one group model these results are clear

from Table 5.6.

As for the one group model, when we compare our results with the results of

Al-Fwzan (2015) then it is clear that our R0 value is bigger in our model than the

value of R0 obtained for Al-Fwzan’s model. Moreover, long-term prevalence of HCV

in our model is bigger than long-term prevalence of HCV obtained for Al-Fwzan’s

model (see Table 5.7).

Also, if we are comparing between our simulation results and Al-Fwzan’s (2015)

results for five group model therefore a similar scenario happens in Tables 5.8 as for

the one group model and the three group model.

Lastly, as one group model, three group model and five group model therefore

it is clear that when we compare our results with Al-Fwzan’s (2015) results then our

R0 value and long-term prevalence of HCV are bigger in our model than the values of

R0 and long-term prevalence of HCV obtained for Al-Fwzan’s model (see Table 5.9).

5.6.7 Comparison between our R0 results with different num-

bers of groups and the results of Al-Fwzan (2015)

As we have shown in a previous chapter, our model is similar to the ‘Pessimistic

Model’ of HIV transmission amongst PWIDs studied by Lewis and Greenhalgh

(2001a) and Al-Fwzan’s model is similar to the ‘Optimistic Model’ studied by Cor-
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son (2011) and Corson et al. (2012). Therefore we predict that disease will spread

faster in our model so our R0’s value will be larger than the corresponding R0 in

the results of Al-Fwzan (2015) if ψ = 0.0 per year.

Note that values of R0 in our model will be larger than the the results of Al-

Fwzan (2015) (see Tables 5.6, 5.7, 5.8, 5.9 and 5.10) even though we have considered

treatment of infected PWIDs into the model. This is because we have changed the

PWID needle interaction assumptions from the optimistic PWID needle interac-

tion assumptions of Al-Fwzan (2015) to the pessimistic PWID needle interaction

assumptions of Lewis and Greenhalgh (2001a). Changing the PWID needle inter-

action assumptions increases R0 and this more than offsets the reduction due to

introducing treatment of PWIDs.

5.7 Conclusion

In this chapter we have formulated a mathematical model of the effect of heterogene-

ity on the prevalence of HCV, building on the models developed by Corson et al.

(2012), Al-Fwzan (2015) and Greenhalgh (1996). A system of differential equations

has been derived to describe the progress of the disease. Moreover our model is

different than the model discussed in Al-Fwzan (2015) because of the PWID needle

interactions and the ψ term.

We have investigated analytically the results and behaviour of our basic HCV

transmission model. A key parameter of our model is the basic reproductive number

R0. Analysis indicates that the model is governed by the basic reproductive number

R0. It has been shown that if R0 ≤ 1 and the disease is present at the start in the

population, then the system will tend towards the globally stable DFE. We believe

that it is possible to go further i.e. to modify the proof of Theorem 3.1.7, Theorem

3.1.8, Theorem 3.1.15 and Theorem 3.1.16 in Al-Fwzan’s thesis for our model, also

if R0 > 1 there is an endemic equilibrium solution but we have not pursued this

because of lack of space.

Moreover, we have developed numerical simulation on the system of equations

(5.2.1)-(5.2.11) describing the spread of hepatitis C amongst PWIDs. We started
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with a literature review to identify values for the relevant parameters. Then we

performed some simulation results using data from a survey of PWIDs in 1990.

After that we have assumed that there is one shooting gallery where all PWIDs

share needles. Then we divide the PWID population into different numbers of

groups with different sharing rates. As the number of groups increased also R0 in-

creased. The initial rate of increase of the level of disease also increased with the

number of groups as did the endemic equilibrium prevalence of HCV amongst nee-

dles. Also we have compared our R0 results with different numbers of groups and

those of Al-Fwzan (2015) results when we have introduced treatment and without

treatment.



Chapter 6

Conclusions and Future Work

We started off the thesis with a literature survey and we have added a new section

on the epidemic models and new subsection on the local and global asymptotic sta-

bility of the ODEs. Also, we have discussed in new sections the bifurcation and

persistence and Quasi-steady-state approximation. After that we have introduced

in general that the technical way to calculate R0 then we have presented the special

case how we calculate R0 in our model. Therefore, we have discussed the next gen-

eration matrix method to derive the basic reproduction number. Lastly, we discuss

some heterogeneity models such as the model of Greenhalgh (1996) and the model

of Al- Fwzan and Greenhalgh (2015).

Moreover we have developed a model to approximate HCV transmission among

Glasgow PWIDs, building on the models developed by Corson (2011) and Corson

et al. (2012). Our model is different than the model discussed in Corson’s works be-

cause of the PWID needle interactions and the ψ term. Also we have calculated our

R0 by using the next generation matrix method for both the full and approximate

models and also given an alternative derivation to Corson’s model. A major novel

innovation in our model compared to Corson (2011), Corson et al. (2012) and the

other previous models is that we introduce a different set of needle equations. In

Corson (2011) and Corson et al. (2012) when an infected individual PWID uses a

syringe or needle after use the syringe or needle takes on the infectious state of that

PWID. So once a syringe is infected it remains infected indefinitely. Based on this

220
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we assume that needles and syringes can only move up the levels of infectiousness.

Also a second important novel aspect of our model compared to these models is that

we have also introduced the effect of treatment of chronically infected PWIDs.

Also we formulated some forms of preventive measures to reduce HCV preva-

lence in the general public. To achieve this goal, it was, therefore, crucial to under-

stand how injection prone PWIDs interact among their respective groups. To this

end, the selected PWID population splits into two risk groups based on the differ-

ences in the degree of risk behaviours (Sutton et al. (2006), Roy et al. (2007), Mehta

et al. (2011), Corson (2011) and Corson et al. (2013)). As the research progresses,

the PWID population is further diversified based on infection status. This form of

diversification creates two distinct groups. The difference between these two groups

is the level of experience that each group of users has. The experience discussed is

on the factor of injecting career or duration, which classified the participants into

naive and experienced injecting PWIDs.

Lastly we showed the formulation of a mathematical model framed on the ef-

fect of heterogeneity on HCV prevalence. This model builds on previous versions

of the models created by Greenhalgh (1996), Corson (2011), Corson et al. (2012)

and Al-Fwzan (2015). Moreover our model differs from that of Al-Fwzan (2015) in

that we introduce treatment of infected PWIDs at rate ψ and assume that needles

cannot lose infectiousness over time. To better explain this phenomenon, we further

came up with differential equations to describe the progress of the disease.

In summary, we have shown both analytically and numerically (through a nu-

merical simulation by using package Wolfram Mathematica version 11.1) that the

behaviour of the models are governed by the basic reproduction number R0, with

R0 = 1 a critical threshold for endemic HCV prevalence. Also we have shown that

if R0 ≤ 1 and the disease is initially present in the population, then the system will

tend toward the globally stable DFE where HCV has been eliminated in all PWIDs

and needles. Furthermore, we have found that provided that R0 > 1 and HCV is

initially present in the population, our models will tend towards the endemic equi-

librium, provided that certain conditions are satisfied.

Hence this study give us an overview of infectious disease modelling which re-
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lates to how mathematical models can be applied to study and control the spread

of disease. Thus, as we know that the world is currently fighting the COVID-19

pandemic, which continues to affect people globally. Therefore, it can be given us

more motivation to work on creating of SIR or SIS model to predict how to control

the spread of COVID-19 through a community (Cooper et al. (2020)). The spread

of COVID-19 can be reduced significantly if countries take drastic and necessary in-

terventions when the number of affected individuals is still low. China, for instance,

was able to control and reduce COVID-19 infections because the country took im-

mediate extreme measures such as closures and confinement, leading to a decrease

in the number of affected people. The study by Cooper et al. (2020) shows that

mathematical models can help in the fight against pandemic such as COVID-19.

While on the topic of mathematical models on HCV dynamics and heterogene-

ity of injecting practices, several interests arise. One of the arising interests revolves

around the parameters of social life and their influence on PWIDs. It is, there-

fore, necessary to investigate characteristic parameters among PWIDs like age and

how it affects the HCV dynamics in play today, Kondili et al. (2022) discusses an

age-structured computational model for HCV and Ayoub et al. (2018) discusses an

age-structured model for hepatitis C in Pakistan and it may be possible to explore

a similar model.

Moreover the age parameters should encompass those less than thirty years and

those older than thirty. This issue of age would also assist researchers in determin-

ing the reproduction number of the disease and the conditions that influence the

transmission process along with both age groups (Anderson and May (1992)).

One more interesting point of review would be investigating the use of injecting

paraphernalia. This research should be on the heterogeneity of how sharing the

injecting apparatus pushes the spread of HCV among injecting drug users. Another

area of interest should be on a combination of HCV treatment and needle and sy-

ringe sharing heterogeneity. This aspect of research should focus on how needle

sharing rates modify HCV prevalence among PWIDs. It would also be of significant

interest to extend the model to go beyond its current scope of drug users. This

move would incorporate two new main groups of drug users. These groups would
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comprise of treated PWIDs and another group of untreated PWIDs. This change

in dimensions would aim at investigating the dynamics of HCV prevalence between

the two groups of participants.

Currently, it is recommending that HCV treatment should as well be offered to

individuals who have a high risk of transmitting the disease to other people, includ-

ing the PWIDs. Based on the recent economic model, it is cost-effective to treat a

patient with a moderate stage of fibrosis instead of treating them at the mild stages.

Pitcher et al. (2019) review the epidemic modeling literature on HCV transmis-

sion and prevention amongst PWIDs and considering treatment. Therefore, there

is scope to expand the changing on model’s behaviour when we change the rate of

treatment.

It is also vital to determine how the emergence of antiviral resistant HCV in-

fections affect the prevalence of HCV amongst PWIDs. To date, there has been no

modeling work carried out on the transmission of antiviral resistant HCV infection

among PWIDs. Also, it would be interesting to extend the model to prove for the

heterogeneous model the existence of a non-zero endemic equilibrium if R0 exceeds

one. The techniques used to prove this are the same ones as discussed in Al-Fwzan

(2015).
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