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Abstract 

Despite >60% of UK in vivo studies being conducted upon mice, routine 

characterisation of its gastrointestinal (GI) microbiome during drug discovery 

is not conducted despite the understanding of its role in the health of the host. 

Outsourced 16S rRNA gene-based experiments were conducted to develop 

an ethical sampling strategy by assessing diversity along the GI tract, the effect 

of transport, and sex bias. The diversity of excreted faeces was identical to 

colonic digesta, while the stomach was highly populated in contrast to the small 

intestine in both sexes. During transit from a commercial supplier 29% of 

operational taxonomic units (OTUs) were lost from the GI tract, which was 

shown to last >3-months in subsequent analysis. A comparison of GI diversity 

using 16S rRNA gene analysis, DNA metagenomics, and RNA-seq was 

conducted using the MG-RAST analysis server. No taxonomic agreement was 

evident between methods or databases while slow processing deterred further 

use. An in-house, hybrid, species-level method of characterising the 16S rRNA 

gene was then developed by coupling the freely accessible RefSeq database 

and licenced Lasergene alignment software. This enabled the improved 

illustration of the effect of disease progression upon prokaryotic communities 

in both dextran sulfate sodium (DSS) and CD4+ adoptive transfer mouse 

models of irritable bowel disease (IBD). DSS transiently effected a range of 

prokaryotes in a dose dependant manner, while the GI microbiome of 

immunocompromised mice remained unaffected by both transport and the 

inflammatory response initiated by CD4+ transfer. Using this evaluative tool 
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has increased the scope of routine health monitoring and the understanding of 

induced disease progression in the laboratory mouse. 
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1.1 The microbiome  

The microbiome is defined as the entire breadth of microbial species (the 

microbiota) and their genetic content, in relation to the habitat in which they 

are found. Environmental habitats play a role in shaping microbiomes but are 

conversely affected by community members, their functions, and perturbations 

(Cullen et al, 2020). These integrated microbial communities are now 

detectable by advances in DNA/RNA analysis (Marchesi & Ravel, 2015). 

However, much of the research in this area has focused on what can be 

achieved by these advances, not what can be routinely applied (Cullen et al, 

2020). 

  

1.2 Use of animals in research 

Screening potential therapeutic agents utilising in vivo models is a necessary 

step in the pathway from drug discovery to validation, bridging the safety 

assessment gap between rational compound design and clinical trials in 

humans. Current European legislation demands pharmaceutical compound 

safety testing on one non-rodent and one rodent species (ICH, 2009). 

Common species used by the pharmaceutical industry to investigate 

compound activity, metabolism, and toxicity include mice, rats, dogs, pigs, and 

primates. Of the 3.06 million experimental procedures conducted on animals 

in Britain during 2021, 934,200 were specifically conducted upon mice, while 

a further 1.15 million were conducted for the development or maintenance of 

genetically altered mouse models (HMHO, 2022). Although the use of in vivo 

work has fallen since 2004, these figures show a 6% increase in usage on 
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2020, due to the lifting of workplace restrictions imposed during the SARS-

CoV-2 pandemic (HMHO, 2022; Wu et al, 2020). 

 

1.3  Current health monitoring of in vivo models  

Healthy animal models are an absolute prerequisite to all science founded 

upon their use in research. In Britain, all animals used in scientific procedures 

are protected from significant pain and discomfort by the Animals (Scientific 

Procedures) Act 1986 (HMHO, 1986). This act also ensures the provision of a 

certain level of veterinary care. However, more specific care and welfare 

considerations are detailed in the pursuant ‘Code of Practice’ (HMSO, 1989) 

to the 1986 Act which stipulates the provision of routine animal health 

monitoring. Specific guidelines regarding the methodology and frequency of 

this microbiological monitoring of in vivo models are provided in the Federation 

of European Laboratory Animal Science Associations (FELASA) 

recommendations (Mähler et al, 2014). Currently, this activity uses a range of 

microbiological assays; direct examination, serology, microscopy, culture, and 

polymerase chain reaction (PCR). The results of these analyses are knitted 

together to confirm the absence or presence of a list of prescribed deleterious 

microorganisms. However, the importance of the endogenous commensal 

microbiota has been ignored in this field, due to the lack of a routine methods 

to isolate all microorganisms in an ecological niche simultaneously (Lederberg, 

2000). Next generation sequencing (NGS) has circumvented all barriers to this 

aim and offers the ability to understand what species of prokaryotes are 

present (16S rRNA amplicon analysis), what potential gene complement there 
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is in an environmental sample (DNA metagenomics), and what genes a given 

microorganism may be expressing at a given time (RNA-seq; Izard & Rivera, 

2015). Applying these methods in a diagnostic setting would push microbiology 

from lone identifications to population wide illustrations of potential gene 

function and expression patterning, generating a step change in understanding 

the ecology and metabolic processes of a specific habitat or host (Izard & 

Rivera, 2015).  

 

1.4 Impact of infections and outbreaks 

Animal models have long been used to reproduce or mimic the developmental 

origins of disease. They are also used in studies of disease amelioration 

through the administration of novel drug compounds or as tools to understand 

disease progression and systemic influence in the search for human 

therapeutics. However, housing large rodent populations in necessarily 

confined areas opens animal models up to the transmission of natural 

infections. Disease outbreaks and subsequent depopulations are an accepted 

risk in experimental colonies (Mähler et al, 2014). This led to the development 

of an exclusion criteria by FELASA which is routinely applied to trace outbreaks 

and hinder their progression. This ever-increasing list of microorganisms 

includes overt pathogens, organisms which impact breeding, zoonotic agents, 

and opportunistic species. The list contains members of all classes of 

microorganism (viruses, fungi, parasites, and bacteria) which necessities the 

implementation of the range of diagnostic methods used in their detection. 

However, global prevalence data indicates that only a handful of microbial 
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entities stimulate this complex and expensive activity (Pritchett-Corning et al, 

2009). The most recent survey of their occurrence indicated that agents with 

the highest prevalence were Mouse norovirus (24%), Helicobacter spp. 

(6.6%), Rodentibacter pneumotropica (13%), Staphylococcus aureus (23%) 

and Entamoeba muris (8%; Pritchett-Corning et al, 2009). All these particular 

agents are shed in faeces and are detectable by PCR analysis, however, other 

members of the FELASA exclusion list may only be reliably detected by 

culture, microscopy, or serology due to a lack of specificity in nucleic 

databases. This comes at a time where only <10% of agents on the exclusion 

list are isolated due to the success of FELASA in promoting models with a 

standardised microbiota (Mähler et al, 2014). It is now understood is that the 

health of animal colonies and the reproducibility of research data based on 

their use is equally influenced by their commensal microbiota (Ericsson et al, 

2017).  

The use of NGS technology has not yet been applied to routine health 

monitoring. In addition to allowing researchers to gauge a baseline microbiome 

reading either prior to animal delivery or study commencement, its use has the 

potential to elucidate how microbial communities are affected during study 

progression in illustrative therapeutic areas such as IBD. The application of 

NGS in this field would allow better model selection, more relevant study 

outcomes, reduced animal use, reduced animal discomfort, and ultimately 

reduced attrition rates in drug discovery programmes. 

 

 



 21 

1.5 Drug metabolism   

Less than 0.3% of compounds progress from candidate selection to market, 

therefore, reducing this attrition rate during the drug development process is a 

major challenge for the pharmaceutical industry (Waring et al, 2016). The 

reasons for this disparity are difficult to attribute to a single factor, although the 

highest single driver in attrition is due to commercial or company restructuring 

decisions, cutting 28% of potential medicines from the pipeline. However, a 

further 30% of portfolio reductions are generated during in vivo studies and are 

due to an amalgam of safety issues, lack of efficacy, and low bioavailability 

(Waring et al, 2016). Of the fraction of compounds that reach the market, 

around 85% are developed to be administered orally. This is as much to do 

with the cost of production as it is drug compliance, but it means that any 

compound must contend with a range of GI environmental conditions and the 

activity of their associated microbial communities (Sousa et al, 2008).  

It is already appreciated that >50 presently licensed drugs are biotransformed 

by undetermined members of the GI microbiota. It can, therefore, be predicted 

that a proportion of the failures in compound progression could be due to 

biotransformation by commensal members of the in vivo model host 

microbiota. The most common methods by which drug molecules are bio 

transformed and therefore exploited by members of GI microbiota are by 

reduction and hydrolysis (Figure 1-1; Spanogiannopoulos et al, 2016). 

Reduction sees bonds obtain electrons, which provide alternate acceptors for 

anaerobic respiration (Figure 1-1A). Hydrolysis is a simple method by which 
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bacteria may cleave a glycosylated bond by the addition of water, freeing 

sugars needed for bacterial growth (Figure 1-1B).  

These interactions are usually detrimental, reducing bioavailability where 

thresholds are key to efficacy (e.g., digoxin metabolism in ~50% of arrhythmia 

patients) or re-glycosylation and therefore re-activation of biliary excreted host-

generated metabolites (e.g., SN-38 accumulation causing diarrhoea in 

colorectal cancer patients; Spanogiannopoulos et al, 2016). Biotransformation 

in the GI tract is not limited to reduction and hydrolysis. The metabolically 

active members of the microbiota exert many types of exploitative activity upon 

the ingested GI digesta. The pharmaceutical sector often screen potential 

compounds for biotransformation using human faeces in static or continuous 

culture systems (Sousa et al, 2008).  

However, using ex vivo methods of assessing microbial biotransformation fails 

to illustrate the true dynamic properties of complex ecological communities 

containing coevolved networks of both auxotrophic and functionally redundant 

community members (Zengler & Zaramela, 2018). More importantly, these 

methods are conducted post-administration and attempt to illustrate the effect 

of administration rather than predicting it. A possible method of prediction 

would be the functional characterisation of the complete GI microbiome by 

metagenomic and transcriptomic sequence analysis (Garza et al, 2018). This 

would allow the potential for deleterious microbial activity to be screened for 

prior to administration as a method of screening out carrier or non-carrier 

models.  
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Figure 1-1: Two major classes of prokaryotic biotransformatory reaction. 

(A) reduction and (B) hydrolysis: with examples of drug compounds known to 

be acted upon by prokaryotic activity (Spanogiannopoulos et al, 2016). 
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Using characterised models may reduce animal usage and study attrition in 

the drug discovery process but it would also augment the current granularity 

of our knowledge of how integrated, inter-kingdom microbial pathways have 

developed and potentially what role individual community members contribute 

to the system and the host (Spanogiannopoulos et al, 2016). 

 

1.6 Host-microbe interfaces 

The varied geobiology of the matured surfaces generated during 

cephalocaudal folding creates numerous distinct but contiguous environments 

or niches, providing the opportunity for colonisation by diverse and coevolved 

microbial species and communities. Although a multitude of niches exist 

across the external surfaces of the host, these belong to four major 

environmental regions (Cho & Blaser, 2012), each with its own limiting and 

symbiotic ecology. The skin, where barrier function and aridity limits microbial 

diversity but prevents moisture loss (Grice & Serge, 2012), the female 

reproductive system, where protective diversity is observed to fluctuate with 

oestrus and pregnancy (Wallace et al, 2018). The oral cavity and lungs, where 

highly diverse communities are firstly found across the multiple irriguous 

structures (Wade, 2012) and secondly where a microbial community thrives in 

a once believed sterile environment (Dickson et al, 2016), and finally the GI 

tract, where a voluminous microbial milieu augments the host’s catabolic and 

nutrient scavenging processes (Walter & Ley, 2011). A commonality across all 

these interfaces is the immunological peace or homeostasis which is 
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generated and maintained between the host immune system and its symbiont 

partners (Scharschmindt et al, 2015). Nowhere is this more evident than the 

GI tract, where the high metabolic activity of faecal communities offers a 

continuously produced material for analysis at the site of biotransformation and 

disease impact in specific in vivo models.  

 

1.7 Structure & function of the gastrointestinal tract  

The mammalian gut is a dynamic environment and one that has afforded more 

attention in relation to its constitutive microbiome than any other, possibly due 

to the ubiquitous nature of its sample material. Its structure has coevolved with 

its colonising and mutable microbiota since the emergence of coalesced 

cellular structures with bilateral body forms billions of years ago (Hartenstein 

& Martinez, 2019). The GI tract is a series of defined structures which run from 

the anterior mouth to the posterior anus. Each structure allows the sequential 

breakdown, passage, and finally excretion of food material. Each step in this 

process allows maximal extraction and absorption of nutrients and energy from 

the digesta. Its conflicting absorbent and barrier functions necessitate an 

extremely strong and yet selectively penetrable structure allowing constitutive 

contact with the immune and circulatory systems (Walter & Ley, 2011). This 

open system allows the ingestion and colonisation of microorganisms.  

It is thought that microorganisms found in the stomach reflect both those found 

in the oral cavity, being swallowed during mastication along with a highly 

specific local microbiota. The stomach is maintained at a pH of ~2.5, which 

enables proteases (e.g., pepsin) to function properly. Rapid transit time and 
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the capacity of the stomach do little to temper the diversity of microorganisms 

that pass through it, allowing the colonisation of subsequent niches (Walter & 

Ley, 2011). The small intestine is a less harsh environment, but displays 

prokaryotic selectivity, seeing colonisation by members of the 

Enterobacteriaceae family and proteolytic anaerobes in the duodenum with a 

low pH, bile salts and a flood of agglutinating immunoglobulin (Ig)A molecules, 

inhibiting bacterial proliferation and preventing mucosal penetration (Pabst et 

al, 2016). Both mice and humans have evolved to support hindgut fermentation 

with the ileocecal valve serving as a barrier between the proximal and large 

intestine (Nguyen et al, 2015), separating the mass of competing bacteria from 

the initial site of carbohydrate harvest and metabolism in the small intestine 

giving the host an evolutionary advantage (Walter & Ley, 2011). The colon 

allows the greater numerical proliferation of prokaryotes by lowering 

immunological surveillance and therefore prescribed remodelling (Hill & Artis, 

2010). A higher pH (~7) and slower transit time also allows increased species 

diversity and enables stepwise fermentation and more complete energy 

harvesting to take place. Manifest coevolution has resulted in an environment 

in which symbiont species prosper and the host benefits from innumerable 

microbial functions gained by community richness and diversity.  

Changes in both geographical and seasonal diet for the host species and the 

complexity of both the microbiota and its mutable genetic functionality have 

generated a redundancy in this system where holistically they are 

interdependent and yet specifically independent (Davenport et al, 2014). It is 

known that gnotobiotic mice can survive in the absence of a formal microbiota 
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but obtain an advantage in one’s presence (Chen et al, 2020). This symbiotic 

system allows each side of the relationship to thrive and multiply. However, 

each partner in this relationship is immunologically foreign to the other, with 

benefit only possible with structural separation and immunological 

surveillance, without which both partners perish. 

This functionality is only possible by the presence of multiple specialist 

intestinal epithelial cell (IEC) types and structures. Almost 80% of the surface 

of the GI tract is made of enterocytes which have distinctive brushes or 

microvilli on their anterior surface which decrease in prevalence from the 

proximal gut to the rectum. These structures are supported by actin filaments, 

increasing surface area and therefore the absorptive potential of a highly 

invaginated surface (Figure 1-2A & B; Hill & Artis, 2010).  

Enterocytes are arranged with tight junctions preventing paracellular ingress 

of microbes and express both major histocompatibility complex (MHC)I and 

MHCII on their posterior surfaces which allow the presentation of antigenic 

material, macromolecules, and microorganisms for monitoring by the host 

immune system from within the lamina propria which is measuredly primed by 

limited mucus penetration and colonisation of the villi (Weseman & Nagler, 

2016).  

Goblet cells constitute ~5% of the small intestine surface and ~15% of the 

intestine surface areas. These cells generate mucins which are branched 

oligosaccharides with hygroscopic and hydrophobic chains.  
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Figure 1-2: Intestinal villi and microvilli of the mouse. (A) haematoxylin 

and eosin stain image indicating the lamina propria (LP) and (B) an electron 

microscopy (EM) enlargement of the area indicated by the black square of 

enterocyte microvilli showing the tight junction (TJ) between cells. Section 

image supplied by UK Pathology team (GSK) and EM image generated by 

Ultrastructural & Cellular Bioimaging team (GSK). 
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This material limits direct contact between host and microbiota. In the densely 

populated colon, a layer of permissive colonisation is present above a sterile 

area, where no bacteria are present. Paneth, enteroendocrine and tuft cells 

each represent about 1% of the GI surface area. Paneth cells are responsible 

for the secretion of antimicrobial proteins (AMPs) such as α-defensins and 

lysozyme. These may be constitutionally secreted or stored for triggered 

release (Allaire et al, 2018). Enteroendocrine cells are present in multiple 

forms and are responsible for the secretion of hormones which control 

peristalsis, cell proliferation, and mucus secretion. Tuft cells secrete 

endogenous opioids and are associated with protozoal and helminth detection 

and reduction (Gerbe & Jay, 2016).  

Although the GI tract represents an effective and formidable barrier, this 

activity in chronic exposure to antigenic and toxic materials requires the 

constant renewal of the cells described above (Weseman & Nagler, 2016). The 

complete GI tract is renewed every five days and is done so by the presence 

of stem cells in the crypts which generate each of the constitutive cell types 

which subsequently pushes developed cells up into contact with digesta and 

the native microbiota (Fler & Clevers, 2009). 

 

1.8 Microbial acquisition 

It is accepted that exposure to and acquisition of a thriving microbiota begins 

with parturition, physically driving maternal microbes into the foetus when it 

passes, most commonly facing the maternal spine, through the vagina. This 
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immediate vertical transfer from the mother establishes an oral and therefore 

GI microbiota in the neonate which represents the mother’s vaginal, skin, and 

gut communities (Spor et al, 2011). Subsequent and prolonged physical 

contact between offspring and mother continues to play a role in growing 

external and internal microbial diversity. Neonates display low colonisation 

resistance, strategically opening them up to both growing diversity and 

infection (Pabst et al, 2016). Although a study on mice indicated that host 

genotype can impact the abundance of community members, composition 

depended upon parenthood and occurs via vertical transmission, suckling 

proximity, and later shared diets (Ley et al 2006).  

After the initial colonisation with vaginal community members, neonates are 

rapidly colonised by facilitative anaerobes (Pseudomonadota) which rapidly 

deplete lumen oxygen levels allowing the establishment of obligate anaerobes 

(e.g., Bifidobacterium spp.) which break down milk-based oligosaccharides 

and drive GI hypoxia and useful colonisation with members of the Bacillota and 

Bacteroidota phyla, leading to homeostasis (Byndloss et al, 2018). Although 

these complex carbohydrate polymers provide a substrate on which 

Bifidobacterium spp. may flourish, they also function as soluble decoy 

receptors, preventing mucosal attachment by all classes of pathogen (Bode, 

2012). Recent work shows that the presence of Bifidobacterium breve in 

neonatal mice directly effects the transcriptome of IECs causing the up 

regulation of genes related to gap junction, tight junction, integrin, and cadherin 

expression (Kiu et al, 2020), Associated cell specificity work indicted that B. 

breve acted upon IEC stem cells of all types, providing early functional training 
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to integral barrier function. Although the secondary pioneers such as 

Bifidobacterium spp. form a core GI microbiota they are eventually replaced or 

augmented by members from the greater environment with exposure 

increasing diversity after weaning and into adulthood (Spor et al, 2011).  

 

1.8.1 Theories of acquisition  

Three theories have been put forward regarding the construction and diversity 

of community members. Firstly, the deterministic build-up of the microbial 

communities is thought to occur by the principle that local conditions (pH, water 

availability and retention time) and innate local biogeography forces 

environmental pressures on these immigrants (Walter & Ley, 2011). 

Experiments involving the transplantation of gut microbiota indicate that the 

donated microbiota rebounds to one representing the usual, native community 

over time, supporting this deterministic acquisition theory (Rawls et al, 2006). 

Although deterministic acquisition may occur, colonising microorganisms must 

run a gauntlet of harsh environments to find themselves proximal to a suitable 

niche along a pyramid of growing diversity descending the GI tract, with the 

highest recorded population density of microorganisms at its base in the colon 

(Grice & Serge, 2012). Successful community members must express multiple 

attributes which allow adhesion, evasion, appeasement, and genetic 

adaptability. They must also survive the transfer to new hosts at expedient 

moments such as parturition or excretion (Lay et al, 2006). Secondly, it is 

postulated that a historical build-up of microorganism’s shapes community 
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membership, with the first to arrive in a naïve niche repelling subsequent 

immigrant species. These founder species are thought to hold more sway over 

community composition than the niche environment by preferentially altering 

local physiochemical properties. The third theory is neutral, with community 

membership being completely stochastic. Diversity, in this case, is obtained by 

random events and therefore may change rapidly over time (Walter & Ley, 

2011).  

Examples of each theory include Helicobacter pylori successfully surviving the 

local conditions of the stomach but failing to thrive in the colon (Walter & Ley, 

2011), evidence of stable founder communities which resist subsequent 

integration events (Oh et al, 2013), and the use of antibiotics throughout life 

perturbs community membership stochastically with transient and permanent 

outcomes (Dethlefsen & Relman, 2011). Therefore, laying acquisitional 

responsibility to just one method of acquisition is unsound as evidence 

suggests all three are at work throughout the life of a host species but what 

controls the impact of each type of immigration and subsequent maintenance 

is a more complex process in which both autochthonous and allochthonous 

community members fluctuate, effect, and interact with the host, the 

environment and each other.  

The stochastic, historical, and deterministic elements to the acquisition of a 

mature microbiome are not one-sided. Recent mathematical profiling of 

community assembly shows that strong dependencies between species may 

inhibit assembly, and independence and competition drive colonisation (Coyte 

et al, 2021). Assembly is made possible by host feeding, an example of 
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bidirectional contact and evolution with the environment which is in itself 

dependent on host physiology, genotype, and existing health. Nevertheless, 

these interactions play as much a part in the evolution and survival of the 

microbial species as in that of the host (Davenport et al, 2017). 

 

1.8.2 Autochthonous & allochthonous 

Once established, microorganisms fall into two broad categories, 

autochthonous and allochthonous. Autochthonous community members are 

those which are acquired and remain in situ at a given niche for significant 

periods. These organisms may be said to be endogenous i.e., they are 

commonly found in most host species. Autochthonous species are not readily 

found in the external environment and are dependent on their specific host for 

carriage, nutrients, replication, and dispersal among family groups, yet their 

role may be commensal or parasitic. Commensals may be further split into 

neutral (one having no effect on the other), beneficial (one species benefits at 

no detriment to the other) or mutualistic (where both species benefit; Zengler 

& Zaramela, 2018). Parasitic interactions are usually considered detrimental 

to one side of the relationship; however, this may be in only one aspect of a 

relationship. For example, the detrimental loss of nutrients in the GI tract to a 

parasitic species may be countered by the low level stimulation of the humoral 

immune system and the subsequent avoidance of an allergic march which is 

of benefit to the host (Weseman & Nagler, 2016). 
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Allochthonous community members originate from external sources and are 

not found in considerable numbers in most hosts. As they are taken up from 

the environment, they may lack niche specificity but cannot form part of a 

stable community over prolonged periods of time. At best, these species are 

transient parasites, giving no benefit to the host, at worst they are overtly 

pathogenic causing acute disease which leads to their clearance by the 

immune system or self-induced ejection from the host to continue to infect 

subsequent hosts (Ley et al, 2006). Although these definitions may be of value 

to define a characteristic at a specific moment, like actors, microorganisms 

may play many roles in a host’s lifetime with pathogenicity or commensalism 

being merely contextual states (Belkaid & Hand, 2014).  

 

1.9 Function of the gastrointestinal microbiome  

The GI microbiota plays an essential role in host health and survival. Three 

broad and yet overlapping functional roles have been found; dietary, where 

community members provide a nutritional benefit to the host, physical, where 

the number and type of microorganism augment the barrier between 

microbiota and host and finally, in the priming, calibration, and regulation of 

the immune system throughout the lifetime of the host (Walter & Ley, 2011). 
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1.9.1 Dietary impact 

The leading role of both the neonatal and adult GI microbiomes is the exclusive 

breakdown of complex carbohydrates (Figure 1-3). Indigestible poly- 

saccharides (e.g., resistant starches, cellulose, pectins, pentosans, and 

hexosans), oligosaccharides (e.g., raffinose and lactose) and sugar alcohols 

(e.g., sorbitol) in the lower GI tract are all acted upon by a prokaryotic 

consortium (Flint et al, 2012). Degradation of these substrates depends heavily 

upon solubility, polymer linkage and degree of branching or enzymic 

accessibility. The lack of a host apparatus for this complex activity suggests a 

long symbiotic coevolution (Haller, 2018).  

The initial breakdown of polysaccharides and secondary oligosaccharides 

depends upon multiple families of glycoside hydrolases, polysaccharide 

lyases, glycosyltransferases and carbohydrate esterases. More than eighty 

families of these carbohydrate-active enzymes (CAZymes) have been 

identified (Bhattacharya et al, 2015). The GI microbiome and the Bacteroidetes 

phyla in particular, contains an over-representation of genes associated with 

this activity, with an inverse number of genes needed for alternative harvesting 

pathways.  
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Figure 1-3: The breakdown of complex carbohydrates to short chain fatty 

acids. Prokaryotes work in concert to depolymerise and ferment complex 

polysaccharides into short chain fatty acids in the GI tract (Haller, 2018).  
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The phyla Actinomycetota including all Bifidobacterium spp. break down 

oligosaccharides found in breast milk for example (Kiu et al, 2020), while 

members of the Bacillota phylum (Lachnospira spp., Ruminococcus spp., and 

Lactobacillus spp.) break down monosaccharides into short chain fatty acids 

(SCFAs; Flint et al, 2012). Therefore, a diverse bacterial community is able to 

liberate a wider range of monosaccharides which are further fermented into 

intermediate molecules such as lactic acid or directly generating the SCFA 

acetate, propionate, and butyrate (Figure 1-3). 

The final rounds of fermentative action towards SCFA generation cyclically 

decreases local pH which is tolerated by members of the Bacillota phylum 

(Flint et al, 2012). However, this view of cooperative networks maybe simplistic 

with ecological modelling indicating that stability possibly arises from 

competition, which allows species loss or variability without loss of function 

(Coyte et al, 2015). 

Of the total SCFA generated by the GI microbiota, 95% is used by enterocytes, 

with 70% of their adenosine triphosphate (ATP) requirement being obtained 

by butyrate-sensor peroxisome proliferator activated receptor (PPAR-γ) 

activated mitochondrial β-oxidation of microbially derived SCFA (butyrate). 

This activity consumes oxygen, rendering the epithelial surface hypoxic, 

driving localised anaerobiosis ensuring obligate anaerobic species can 

proliferate, converting further complex carbohydrates to SCFA and 

suppressing inflammation by promoting the expansion of thymus derived 

regulatory cells (TREGS) (Byndloss et al, 2018; Figure 1-4). 
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Figure 1-4: Anaerobic homeostasis in the colon. This is achieved by PPAR-

γ activated mitochondrial β-oxidation of microbially derived short chain fatty 

acids produced in the lower GI tract (Byndloss et al, 2018). 
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Prokaryotic energy harvesting by the degradation of complex carbohydrates 

generates 15% of daily energy requirement for the host (Marchesi et al, 2016) 

while SCFA have been shown to increase solubility of calcium increasing bone 

heath (Flint et al, 2012). 

Some gut microbes are overtly responsible for the generation of B-vitamins; 

thiamine (B1), riboflavin (B2), niacin (B3), pantothenate (B5), pyridoxine (B6), 

biotin (B7), folate (B9) and cobalamin (B12) and vitamin K. These essential 

factors are responsible for the catabolism of sugars and amino acids, vitamin 

activation, multiple metabolic processes, gluconeogenesis, cell growth, DNA 

synthesis, and blood clotting (Magnusdottir et al, 2015). 

Many GI bacteria can synthesise complete vitamins, but many depend on the 

production of precursors for pathway completion. This suggests mutualism 

among bacterial genera and even phyla. However, evidence that plasma levels 

of vitamin K are not reflected in their abundance in the GI tract via microbial 

synthesis suggests a system in which dietary sources can be selectively 

complemented by microbial production (Karl et al, 2017).  

The initial immunological selection of what colonises the small intestine shapes 

community range and overall biomass, allowing the host species to benefit 

from easily absorbed carbohydrate sources, leaving the digestion of more 

complex carbohydrates to the fermentative organisms found in the colon 

(Walter & Ley, 2011). This mutualistic relationship is further entwined with the 

link between adequate nutritional intake and the functionality of the immune 

system. It is shown that the mammalian target of rapamycin (mTOR) cell 



 40 

cycling, and proliferation pathway is detrimentally affected by reduced 

nutrition, which in turn impacts both the innate and acquired immune systems 

reducing dendritic cell (DC) maturation, T-cell differentiation, memory T-cell 

formation, and CD8+ regulation and trafficking (Kau et al, 2011).  

Carbon dioxide and hydrogen are generated by many prokaryotes such as 

members of the Enterobacteriaceae family and the Bacillota phylum which are 

used by other bacteria to generate acetate. A sizable proportion of dietary 

protein reaches the lower GI tract along with host-derived proteins such as Ig 

molecules and inactivated proteases. These all represent alternative sources 

of energy and biosynthetic molecules. It is easier for most prokaryotes found 

in the colon to gain energy from carbohydrates, but multiple species are 

capable of proteolysis and therefore nitrogen and carbohydrate harvesting. 

The step wise breakdown of proteins generates amino acids that are 

fermented generating the SCFAs, carbon dioxide and hydrogen is often 

achieved by consortia of species (Haller, 2018). Although bile is not a major 

source of energy, it is a selective antibacterial agent which may be used by 

Lactobacillus spp., Clostridium spp. and Bifidobacterium spp. which possess 

bile salt hydrolases which liberate carbon and nitrogen. Along with structural 

carbohydrates, ingested vegetable matter contains metabolites which are used 

by GI bacteria (Haller, 2018). Isoflavones are used by Adlecreutzia spp. 

generating equol which has been linked to cancer prevention (Maruo et al, 

2008).  
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1.9.2 Barrier integrity  

As ingested food is only present in the stomach for a brief time (<1hr) the 

bacterial species found in this niche are considered to play no significant role 

in the digestion of complex dietary matter. They may, however, play a role in 

mucosal barrier function during the first prolonged contact the host has with 

food matter and allochthonous organisms (Walter & Ley, 2011). Complex 

coevolutionary elements become clear with the first point at which bacterial 

species aid barrier integrity and pathogen exclusion (Bode, 2012). 

Bifidobacteria acquired during parturition are selected for or fed by the 

provision of milk oligosaccharides and become dominant during the suckling 

period in mammals. These polymers constitute one third of milk and 

specifically and cyclically promote the growth of certain members of the 

Actinomycetota phylum which contain the catabolic gene products necessary 

for the breakdown of milk oligosaccharides (Yamada et al, 2017). This 

symbiotic relationship reduces the probability of pathogenic infection, 

diarrhoea and therefore morbidity during the period of initial immune priming 

and exposure in early life. The same genetic equipment allows the selective 

breakdown of mucus glycoproteins and augments epithelial adhesion via 

extracellular polysaccharides and auto-aggregation, further excluding 

unwanted ingress and generating immune tolerance (Hiipala et al, 2016). 

Specific sculpting of prokaryotic species and niche community 

compartmentalisation is made possible by the glycosylation of mucin 

glycoprotein family members (MUC1 to 21). This wide group of host molecules 

are expressed in varying numbers at specific regions of the GI tract. They are 
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divided into secreted, or membrane associated mucins. Secreted mucins play 

a role in the physical barrier and mobility of the GI tract whereas membrane 

associated members contribute to the rich cellular carbohydrate display which 

directly interacts with prokaryotic communities. Their preferential binding via a 

diverse range of carbohydrate binding molecules and other lectin-associated 

motifs acts as a highly evolved system of ensuring symbiotic preference along 

the GI tract throughout the life of the host (Corfield, 2018). This interaction 

provides barrier protection via weight of numbers, only if exposure and 

subsequent feeding occurs (Coyte et al, 2015), linking diet, barrier, immunity, 

and homeostasis.  

The post-weaning increase in diversity is partly due to a widening of diet and 

the removal of milk oligosaccharides. This does not exclude the need for 

bacterial protection from deleterious microorganisms during primary enzymic 

energy recovery in the small intestine (Walter & Ley, 2011). The immediate 

niches below the stomach are maintained with low pH and are the site of 

primary innate immune activity. Here, lactobacilli breakdown simple sugars 

forming lactic acid which further promotes an acidic, anti-microbial 

environment (Porter & Martens, 2017). This niche is a fast moving, liquid 

environment which allows the absorption of exposed nutrients and minerals 

from the diet via the numerous microvilli found upon local IECs. Non-motile 

bacteria such as lactobacilli are adapted to adhere to mucin (Nishiyama et al, 

2016). As fast as it is generated and passes through the area lactobacilli 

replicate and colonise new mucus from the goblet cells. Specific species of 

these bacillota contain the genes for specific adhesive capabilities, allowing 
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comprehensive and diverse colonisation during life and dietary alterations, 

maintaining barrier function (Porter & Martens, 2017). These adhesion factors 

can be either cell-wall anchored (e.g., microtubule associated proteins), or 

multifunctional (e.g., glyceraldehyde 3-phosphate dehydrogenase) factors. In 

addition to this species variability in adhesion, Lactobacillus spp. are able to 

rapidly switch transcription pathways in the presence of alternate carbon 

sources (Nishiyama et al, 2016). These factors allow continued host pre-

eminence via the activity of selected bacterial species. 

 

1.9.3 Immune conflict, calibration, and control 

Surveillance of this barrier is imperative in the maintenance of autochthonous 

species and the eradication of allochthonous pathogens for host survival (Hill 

& Artis, 2010). Along with microbial signatures, the host immune system has 

to content with responding to a plethora of xenobiotic signals from ingested 

diet. This balance is only possible with the combined activity of the innate and 

acquired immune systems (Artis, 2008). The complexity of this surveillance 

and control mechanism necessitates 70% of host immune system is focused 

on the GI tract, constituting the gut associated lymphoid tissue (GALT). The 

cells of the GI tract directly recognise microbial ingress by pattern recognition 

receptor (PRR) binding to innumerable non-host pathogen-associated 

molecular patterns (PAMPS). These include lipopolysaccharide (LPS), 

lipoproteins, peptidoglycan, flagella, and dsRNA. PRRs such as Toll-like 

receptors (TLRs) initiate downstream cellular and systemic responses to 
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microbial interactions (Artis, 2008). Enterocytes also initiate such responses 

indirectly by detecting damage to the cellular matrix. Microfold or M-cells 

present microbial and dietary antigens to macrophages and dendritic cells 

which reside below the epithelial layer in the lamina propria. Along with their 

own expression of pro-inflammatory signals, these phagocytic, antigen 

presenting cells prime the acquired immune system via transfer to the 

mesenteric lymph nodes where they interact with T-cell populations leading to 

classical Th1 cell-mediated or Th2 humoral responses (Ost & Round, 2018). 

This archetypal, combative immune ramping must be kept in check at the 

interface of host and microbiota for both to survive by attaining homeostasis. 

Immune tolerance of symbiotic prokaryotes is driven from both sides. Not only 

do commensal species provide nutrients and aid barrier maintenance, but they 

also paradoxically ameliorate immune responses by close physical contact 

and release of metabolites (Artis, 2008).  

Anaerobic colonic bacteria ferment non-digestible plant carbohydrates (e.g., 

cellulose, xylans, starch) to generate non-carbohydrate SCFAs such as 

acetate, propionate, and butyrate. Along with SCFAs providing energy to the 

enterocytes via neoglucogenesis which is the ubiquitous process of glucose 

synthesis from non-carbohydrate substrates (LeBlanc et al, 2017), they are 

shown to suppress a wide range of specific inflammatory elements and 

pathways. Acetate stimulates the proliferation of cell generation in GI crypts, 

inhibit nuclear factor (NF)-κB transcription cascades in colonic enterocytes 

where it also suppresses pro-inflammatory interleukin (IL)-6 expression. 

Acetate also serves as an intermediate substrate for bacteria to breakdown 
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into butyrate. Propionate also inhibits NF-κB via guanosine triphosphate 

(GTP)-binding proteins in immune cells, inhibits LPS-induced tumour necrosis 

factor (TNF)α production of pro-inflammatory cytokines and is also used for 

butyrate generation (Flint et al, 2012).  

Butyrate is the core energy source for enterocytes but also reduces 

macrophage IL-8 expression, stimulates mucin production in goblet cells, 

effects tight junction proteins affecting barrier function and permeability. 

Butyrate is also responsible for TREG proliferation and therefore 

downregulation of effector T-cell populations (LeBlanc et al, 2017). Along with 

water-soluble SCFAs, commensal bacteria express a range of membrane-

bound effector molecules. These include Bacteroides spp. polysaccharide-A 

which promotes tolerance by activating TREGs, which suppress Th17 

responses, and Roseburia spp. flagellin which induce the upregulation of anti-

inflammatory IL-22 expression and suppression of pro-inflammatory IFNγ and 

IL-17 (Pandiyan et al, 2019). These activities rely upon colonisation and 

penetration of the mucus layer so that close contact can be made between the 

host and the commensal species. At this juncture, immunoglobulins become 

pivotal in the control provided by the acquired immune system. IgA is the 

primary serotype secreted in the GI tract (Bunker & Bendelac, 2018). It is 

expressed from plasma cells throughout the lamina propria along with bile from 

the hepatic portal. Its full function here in controlling the microbial biomass is 

not completely understood. However, IgA selectively binds to a range of 

microbial species in the mucosal layer and this strain specific immobilisation 

may help with the removal of unwanted species and conservation of beneficial 
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commensals (Pabst et al, 2016). IgA selective pressure on bacteria is found to 

drive surface antigen diversity in commensal species, augmenting resistance 

by pushing the perpetual expression of alternate surface epitopes (Peterson 

et al, 2007). This exquisite control by extensive elements of the immune 

system does not dampen responses blindly but calibrates pro and anti-

inflammatory processes according to the state of multiple factors. Without this 

control, host and commensals would jointly fall, its success again points to a 

long coevolutionary mutualism.  

 

1.10 Dysbiosis, perturbation, and disease 

The elegant balance of symbiotic functionality and limited immunogenesis is a 

flexible relationship which necessarily concedes change (e.g., host age, diet, 

and microbial diversity) over time without penalty. However, chronic, and acute 

changes to the local environment can affect the harmony and subsequently 

influence the resilience of the host and the microbiota. These malformed and 

often less heterogenous community structures are said to be in dysbiosis. 

While this terminology is often contested, this remains qualitatively and 

quantitatively demonstratable (Byndloss et al, 2018; Levy et al, 2017). 

Localised anaerobiosis is generated by the uptake of SCFA by enterocytes.  
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Figure 1-5: Dysregulation of anaerobic homeostasis. The dysregulation of 

PPAR-γ activated mitochondrial β-oxidation of microbially derived short chain 

fatty acids produces dysbiosis in the lower GI tract (Byndloss et al, 2018). 
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In the absence of complex carbohydrates, levels of SCFA are reduced, 

resulting in the proliferation of facultative anaerobes such as the 

Enterobacteriaceae causing anaerobic glycolysis in the enterocytes releasing 

oxygen, further preventing the growth of catabolic species, increasing local 

inflammation, and reducing barrier integrity (Byndloss et al, 2018) (Figure 1-

5). 

Conversely, increased carbohydrate intake, over time is strongly associated 

with weight gain in Western communities when compared to rural communities 

on a more restrictive diet (Martinez et al, 2017), likewise feeding a 

polysaccharide-rich diet to ob/ob mice sees shift in community structure 

towards dominance by Bacillota, the core carbohydrate harvesting 

gastrointestinal phyla, away from the Bacteroidota which are often associated 

with host leanness (Ley et al, 2005).  

Overt chemical sculpting of prokaryotic communities by the administration of 

antibiotics often allows colonisation of niches by non-native species due to 

bystander expansion. The longevity of compositional alterations is shown to 

differ widely between individuals, with just two doses of ciprofloxacin 

temporarily altering diversity for ~8wks in some and permanently changing 

composition in others (Dethlefsen & Relman, 2011). Inter-kingdom, off-target 

consequences can be seen with the rise of resistance genes encoded in the 

genomes of bacteriophages post-administration which are not limited to the 

class of antibiotic used, indicating an ever-widening ripple in diversity and gene 

activity caused by a single antibiotic intervention (Modi et al, 2014). Once basal 

community structures are chemically altered, keystone symbiotic processes or 
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control mechanisms are interrupted. Clostridioides difficile infections (CDI) 

display this effect, being the highest cause of healthcare associated infections, 

leading to ~30,00 deaths per annum in the USA (Peng et al, 2017).  

Those at highest risk from CDI are in-patients, >65yrs old which have already 

undergone antibiotic treatment. C. difficile is able to survive this primary 

chemical intervention as it is a spore former, which allows its prolonged 

dissemination in an enclosed environment such as hospital. Secondly, it 

expresses biofilm associated proteins when presented with antibiotics, but C. 

difficile strains are often 100% resistant to first, second and third generation 

cephalosporins and fluoroquinolones. Primary treatment for known CDIs is 

metronidazole and vancomycin but by 2012, ~15% of strains were resistant to 

metronidazole creating an antibiotic-driven, therapeutic dead-end as 

protective members of the Bacillota and Bacteroidota phyla are removed 

(Peng et al, 2017). C. difficile strains may be toxigenic or non-toxigenic. 

Pathogenicity is dependent on the presence of one or both toxins possibly 

expressed by C. difficile (TcdA and TcdB), both found to be expressed in 

reaction to high levels of SCFAs (Gregory et al, 2021). Both of these toxins 

inactivate GTPases through glucosylation of a specific threonine residue, 

leading to polymerisation of actin and cell death. The subsequent inflammatory 

response increases tissue damage leading to diarrhoea and 

pseudomembranous colitis (Burke & Lamont, 2014). 

In the IBD states ulcerative colitis (UC) and Crohn’s disease (CD), genetically 

susceptible individuals experience episodic manifestations of diarrhoea and 

discomfort and weight loss. Attacks are attributed to autoimmune responses 



 50 

to commensal bacteria which lead to population eradications and persistent 

translocations of maladapted species from inflamed niches. 

Atopic diseases such as food allergy, asthma, and dermatitis which stem from 

hyper-reactivity, rather than mis-activity, at mucosal surfaces, originate from 

alterations in normal tolerance levels driven by a chronic decline in microbial 

diversity (Haller, 2018). 

Typically, interactions between host and the commensal microbiota from birth, 

aid neurodevelopment with germ-free mice developing fewer neurons than 

their diversely populated counterparts, subsequently displaying reduced 

sociability and increased anxiety-like behaviours. A critical contact window 

exists for the codevelopment of a symbiotic microbiota alongside neuronal 

restructuring immediately after birth. During this period, normal functioning can 

be restored by faecal transplant. Normal functioning involves endocrine, 

metabolic, and immune pathways, directly influencing disease progression, 

behaviour, and longevity (Warner, 2018). Dysbiosis and disruption of this gut-

brain axis also result in structural changes to multiple sites in the brain, 

indirectly influencing the behaviour and survival of the host (Vuong et al, 2017). 

Classical dysbiosis caused by the administration of single pathogenic bacteria 

(e.g., Campylobacter spp. or Citrobacter rodentium) rapidly induces anxiety-

like responses in mice due to direct signalling via microbial peptides or 

activation of host receptors in the brain (Bravo et al, 2012). Conversely, anxiety 

can be reduced in autistic patients (Haller, 2018) and exploratory drive can be 

increased in mice (Bravo et al, 2012) upon the administration of antibiotics 

removing specific classes of bacteria from the microbiota.  
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If the modulation of specific members of the GI microbiota results in physical 

and psychological changes in the host, it stands that these changes and 

therefore disease states may have diagnostic microbial signatures. A meta-

analysis of faecal metagenomic data of colon cancer patients indicated an 

increased prevalence of prokaryotic genes involved in protein and mucin 

catabolism and a corresponding decrease in genes needed for carbohydrate 

degradation suggesting that a diet rich in fat and protein tips the microbiota 

into dysbiosis, increasing the risk of this specific pathology (Wirbel et al, 2019). 

The integrated mechanisms necessary for health and survival are clearly 

derailed in many diseases. Not only are the effects of dysbiotic community 

structures implicated, but they can also now be mapped and used as 

diagnostic markers. Prokaryotes may be the biochemical drivers behind 

altered processes, but the full strata of the microbiota are both implicated in 

dysbiosis but affected by it.  

 

1.11 Microbial strata 

Although the microbiota can be divided into allochthonous and autochthonous, 

and there appears to be common acquisitional and anchoring processes in 

mammals, the human microbiome differs more between individual than within 

an individual over time (Gilbert et al, 2018). Within individuals, each ecological 

niche is inhabited by a complex mix of microorganisms across all kingdoms of 

life which have coevolved. The microbial strata, whose gene compliment 

equates to the full microbiome includes prokaryotes (bacteria and archaea), 

eukaryotes (fungi and protozoa) and viruses (of both eukaryotic and 
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prokaryotic organisms). It is this full complement microorganisms which has 

coevolved with the mammalian host, driving health and disease equally (Cullen 

et al, 2020; Walter & Ley, 2011).  

 

1.11.1 Eukaryotes  

The domain of the Eukaryota is divided into four kingdoms: Plantae, Fungi, 

Protista, and Animalia. It is in this last group that the class Mammalia are 

found. The mammalian GI tract plays host to members of all four eukaryotic 

kingdoms along with those of the bacterial and archaeal domains. Often the 

role of the host is to allow forward transmission of transient species. However, 

microbiologically, the GI tract of mice may constitutionally contain parasitic 

invertebrates, protists, and yeasts identifiable by coprological examination, 

filtration, and microscopy depending on the stage of their life cycle (Theinpont 

et al, 1986). However, just as with the prokaryotes,  rRNA gene specific PCR 

can be used to identify this class of organism, by amplifying and analysing the 

18S rRNA gene (Woese & Fox, 1977). Fungal species may also be 

haphazardly observed by culture and microscopy but their role in the 

microbiota in anything, but acute disease states is little appreciated due to the 

lack of a parallel method of their joint isolation. However, evidence gleaned 

from studying patients with primary immunodeficiencies that bacterial, protist 

and fungal populations (and therefore interactions) are intrinsically linked by 

the immune status of the host (Oh et al, 2013).  
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1.11.2 Prokaryotes  

The classification of organisms according to their primeval rRNA subunit gene 

sequences in the 1970s saw the division of life on Earth into three domains, 

the Bacteria, the Archaea and the Eukaryota (Woese & Fox, 1977). This 

distinction has pervaded phylogenic organisation and diagnostic techniques 

ever since. The use of full-16S rRNA gene specific PCR primers to distinguish 

prokaryotic species has become the blueprint for their discovery (Fox et al, 

1999). This method of identifying or classifying bacterial species continued into 

the first work of the Human Microbiome Project Consortium (HMPC) (NIH, 

2009) and ignited the cataloguing of bacterial communities. This method is 

ideal for understanding which species are present in a sample but the use of 

16S rRNA gene primers can be biased, necessitating the development of 

many universal oligonucleotides to account for the variability of this gene target 

(Eaton et al, 1996). The work of the HMPC has formed the basis of the 

theoretical understanding of the scope of the microbiome and the technical 

and formal basis for its investigation (Cho & Blaser, 2012). Although the 

bacterial domain dominates the microbiota of the mammalian host, the 

continued application of taxonomic studies by 16S rRNA-designation possibly 

promoted a non-inclusive view of the inter-Kingdom reality of the microbiome, 

lessening the understanding of the complex nature of all ecological niches 

(Handley et al, 2012). Members of the Archaea constitute the other free-living 

prokaryote domain but until relatively recently the general view was that these 

organisms were largely unculturable extremophiles (Robertson et al, 2005). 

Culture independent methods now show a much wider distribution, comprising 
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~10% of total GI microbiota, existing in syntrophic relationships with other 

microorganisms in anaerobic niches, which supports their hydrogen-based 

energy metabolism. The archaea are not thought to be linked to overt disease 

in man but may play a role in multifactorial diseases such as periodontal 

disease and therefore are associated with endocarditis, stroke, 

atherosclerosis, and preterm delivery of infants. The severity of these diseases 

has been associated to the relative abundance of archaea in the oral cavity 

(Lepp et al, 2004). The presence of methanogens and methane generation 

has also been linked to pathology in UC and CD but their presence in patients 

may be more closely related to retention time of excreta than a result of a 

disease state (Aminov, 2013).  

 

1.11.3 Eukaryotic viruses 

The most overtly allochthonous strata of the mammalian microbiota is the 

virome. With no metabolic activity, this group falls outside the classical 

kingdoms of life (Woese & Fox, 1977). They are classified by the Baltimore 

system which assigns them to one of seven groups according to the various 

means by which they synthesise mRNA for eventual replication (Baltimore, 

1971). This system mirrors their varied genomic structures, being RNA or DNA, 

single stranded or double stranded, and positive or negative sense. 

Additionally, they may possess a lipid envelope obtained from their last host 

or be non-enveloped, expressing just a protein capsid at cellular exit (Kudesia 

& Wreghitt, 2009). Viruses must straddle intracellular, extracellular, and 
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external environments in order to replicate in a permissive host and pass 

through the external environment to gain a foothold in the next host (Dennehy, 

2014). The lack of proof-reading inherent in viral RNA-dependant RNA 

polymerase and retroviral reverse transcriptase drives mutation and evolution 

in RNA viruses (Smith, 2017), while DNA viruses obtain and use host genes 

in a less mutable framework necessary for host gene mimicry (Tortorella et al, 

2000). This genomic mosaicism and morphological variability indicates that 

they possess no common genetic element or framework by which to align and 

distinguish these microorganisms such as the 16S rRNA gene in prokaryotes. 

However, DNA and RNA metagenomics can be applied to interrogate their 

diversity or richness in an ecological niche (Zuo et al, 2021). As with fungal 

infections, their presence and diversity often reflects the immune status and 

presiding health of their host, which is shown to strongly affect community 

membership (Handley et al, 2012; Zuo et al, 2021).  

This transient, subclinical flux of viruses in immunocompetent hosts masks 

their ubiquitous presence with diagnosis or isolation of viral nucleic acid 

previously depending upon serendipitous discovery (Karst et al, 2003). This 

has made the appreciation of the virome difficult, however, DNA and RNA 

metagenomic sequencing has increased the number of viral genomes 

submitted to databases such as GenBank which has concurrently increased 

the potential for their inclusion in studies of the full microbiome (Norman et al, 

2014). By routinely considering the virome, their role in complex ecological 

niches will become clearer and the dark regions of the microbiota which may 
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have obscured the etiological agent of ~40% of cases of human diarrhoea and 

significant mortality may be uncovered (Finkbeiner et al, 2008).  

 

1.11.4 Prokaryotic viruses 

The final strata of the microbiome are the least understood, that of the 

prokaryotic phages. They are the most numerous biological entities on Earth 

and yet until recently little thought of their impact on prokaryote populations 

has been considered again due to the lack of genome references (Shkoporov 

& Hill, 2019). The role of the phages in the development of sequencing and 

microbiology is paradoxical. Phages ØMS2 and ØX174 were the first complete 

genome sequences to be fully characterised in the mid-1970s (Fiers et al, 

1976; Sanger et al, 1977), however, the focus of sequencing moved swiftly to 

whole bacterial genomes and then complete communities. Phage diagnosis 

continues to be used although it is biased towards those phages which cause 

lysis and the culture of permissive bacterial species. Phages also exist in non-

lytic forms, becoming stable additions to the host genetic material for many 

generations by plasmid formation or integration. They are found in various 

structural forms pleomorphic, as filamentous rods or icosahedral with 

diagnostically indicative tails. However, morphology is shown not to be related 

to genomic phylogeny (Shkoporov & Hill, 2019). They can be identified by 

electron microscopy but as with microscopic examination for protists and 

parasites, phage density in a sample can affect their detection. To complicate 

matters more, both bacteria and archaea play host to divergent species of 
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infective phage (Abedon, 2008). The lack of sequence data and therefore a 

framework on which to hang phage genomes has until recently been the block 

to investigating these microorganisms in isolation or as part of strata wide 

metagenomic studies. There were <500 phage genome sequences available 

in 2008, indicating the resurgence of interest in phage genomics in line with 

the increased application of NGS (Shkoporov & Hill, 2019). However, there are 

now thousands of phage genome sequences available for mapping and 

comparison on the IMG/VR database (Paez-Espino et al, 2017), making their 

inclusion into true microbiome studies now possible. Their numerical 

superiority in the environment and the ubiquitous nature of their hosts means 

they have the potential to alter whole ecosystems and necessitating their 

inclusion in characterisation studies if possible (Norman et al, 2014). This 

periodic alteration in niche community membership is an example of a 

stochastic selection event affecting historic community members, making 

space for new immigrants or the expansion of previously repressed member 

species which are resistant to infection and destruction. The examination of 

equine faeces using plaque formation indicated the presence of sixty-nine 

distinct phage species (Letarov & Kulikov, 2009), while none were found in 

captive murine samples (Kasman, 2005). These incongruous data indicate the 

need for culture-independent investigations into phage diversity in vertebrates. 

No attempt has yet been made to integrate phage detection into routine 

microbiology, perhaps due to the lack of a unifying method for their detection 

or classification but also perhaps that until recently it was difficult to appreciate 

or disentangle the complex genetic storm which revolves around diverse 
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phage genomics and the relationships, they have with their hosts which drives 

antibiotic resistance and exemplifies horizontal gene transfer events 

(Shkoporov & Hill, 2019). 

 

1.12 Characterisation 

Originally described by van Leeuwenhoek by visual phenotype then later by 

the likes of Pasteur by biochemical properties, prokaryotic taxonomy has 

historically been driven by phenotype as illustrated in Bergey’s Manual of 

Systematic Bacteriology (1994) and Cowen & Steel’s Manual for the 

Identification of Medical Bacteria (1993). Concurrent with earlier editions of 

these texts, was published the first genetic description of the phylogeny of life 

based on dideoxy-characterisation of rRNA sequences (Woese & Fox, 1977). 

This was made possible by employing Sanger sequencing, which maps the 

random incorporation of individually labelled chain-terminating, 

dideoxynucleoside triphosphates (ddNTPs) in an extending product up to 

~500bp (Sanger et al, 1977). Oligos are visualised along a capillary gel where 

each terminating base is detected, and a sequence strand mapped across the 

multiple channels. Initially it was employed to sequence short phage genomes, 

however, the development of PCR (Mullis et al, 1986) allowed the in vitro 

amplification of specific sequences of DNA, which accelerated the scope and 

speed of  sequencing. This combined use of Sanger sequencing and PCR 

enabled the reciprocal development of the International Nucleotide Sequence 

Database Collection (INSDC) member databases; National Centre 

Biotechnology Information (NCBI), European Molecular Biology Laboratory 
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(EMBL), and DNA Databank of Japan (DDBJ). The 16S rRNA gene of E. coli 

was first sequenced and deposited in the NCBI database in 1983 (J01695). 

One third of all subsequent NCBI accessions are prokaryotic 16S rRNA gene 

sequences. However, only ∼20% of these sequences are full 1500bp reads 

(Schloss et al, 2016). It is this weight of work that has propelled the 16S rRNA 

gene as the central biomarker in a post-phenotype taxonomic system, 

providing a more accurate illustration of evolutionary association and even of 

genetic mobility. The 16S rRNA gene is ∼1540bp in length, with nine variable 

regions (V1-9) flanked by conserved areas. It is found in various copy numbers 

across all prokaryotic genomes, with up to fifteen copies per cell (Klappenbach 

et al, 2001). The 16S rRNA gene has a 67% base-pairing potential which 

allows an essential secondary structure to form in complex with a small number 

of scaffold proteins. This generates the small ribosomal subunit which then 

coalesces with the 23S ribosomal subunit, to create the functional ribosome, 

essential for protein synthesis or translation of mRNA into polypeptides in the 

cytoplasm. Its essentialness in bacterial replication, endows the 16S rRNA 

gene with a functional stability across time with a higher mutation rate in the 

less essential variable protrusions (Yarza et al, 2014). It is from these mutating 

regions that evolutionary relatedness can be traced, and phylogeny mapped. 

This explosion of genetic information led to the eventual adoption of genomic 

divergence as the foundation of prokaryotic classification.  

The inherent specificity of this PCR-based work still made ecological profiling 

impossible. However, these small steps opened the path to advances in 

massively parallel sequencing or NGS (Yarza et al, 2014). This novel method 
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co-amplifies material of multiple origins at once, repeatedly recording millions 

of nucleotide incorporation and base-calling events. Multiple NGS chemistries 

exist (ION Torrent, Pyrosequencing, Nanopore etc.), however, bridge 

amplification has proved the most successful method of sequencing. This 

method developed in 1997 (Glaxo Wellcome, 1998) has been adopted by 

Illumina as Sequencing by Synthesis (SBS) which presently accounts for 

~90% of sequencing activity (Illumina, 2016). This hybridisation method 

employs index linkers to attach amplicons to a flow cell coated in a forest of 

complementary oligos. The free end of the tethered DNA strand then loops 

over forming a bridge to the alternate oligo. Enzymic extension occurs over 

this bridge using fluorescent labelled dNTPs. Single base incorporations are 

captured at hundreds of millions of points across the cell until extension 

reaches the 3’ end of the bridge, at which point the template is cleaved and 

the process begins again (Glaxo Wellcome, 1998). The commercial availability 

of NGS at the beginning of the 21st century, quickly saw the 16S rRNA-

amplicon based approach enflower phylogenetic trees, allowing all prokaryotic 

species to be distinguished, mostly to genera level, in an environmental 

sample and was quickly applied to gauge the composition of bacterial 

populations from every conceivable environmental niche (Joval et al, 2016). 

From the study of the taxonomic relationships based on 16S rRNA gene 

similarity it has been possible to quantify what constitutes each level of the 

taxonomic ladder. Phyla can be differentiated by >75% dissimilarity, whereas 

class is defined by 78.5%, order 82%, family 86.5%, genera 94.5% and 

species by >98.7% similarity (Yarza et al, 2014). By this reckoning, 16S rRNA 
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gene based NGS experiments should be able to define all prokaryotic entities 

and unravel previously hidden community structures. NGS is capable of hugely 

increasing the illustrative resolution when measuring diversity but what it fails 

to do is achieve this separation in conjunction with a universal discriminatory 

power or focus. This is because millions of short, variable-region reads, trade 

clarity with numeric superiority. The choice of what variable region or fragment 

(or combination) to use is key in the clarity of the resulting data (Klindworth et 

al, 2013). These fragments are the nine hypervariable regions (HVR) in the 

prokaryotic 16S rRNA gene, designated V1-9 (Figure 1-6). These are used to 

taxonomically categorise isolates, either singly or jointly. However, no single 

region can differentiate all bacteria and archaea to a sufficient level of 

identification (either genus or species). It is shown that V1 can distinguish the 

streptococci and staphylococci well; while V2, V3 and V6 can differentiate most 

species apart from members of the Enterobacteriaceae family. Regions V4, 

V5, V7 and V8 fail to discriminate singly any species (Chakravorty et al, 2007).  

Each HVR is flanked by conserved regions which are used for universal PCR 

primer lift-off points (Eaton et al, 1996). The absence of a single diagnostic 

region in the rRNA gene necessitates the use of multiple HVRs to increase 

specificity. Unfortunately, this short-read length extrapolation may introduce 

bias (Sharpton, 2014).  
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Figure 1-6: The nine variable regions of the prokaryotic 16S rRNA gene. 

Helicobacter hepaticus (GenBank accession L39122.1) 16S rRNA gene 

sequence is shown indicating each variable region defined across 1457 bases. 

The span of V3/V4 amplicon used here for taxonomic designation (318-756) is 

indicated by the red bar. 

 

 

 

 

 

 

 

 

ORIGIN       

        1 agagtttgat cctggctcag agtgaacgct ggcggcgtgc ctaatacatg caagtcgaac 

       61 gatgaatctt ctagcttgct agaagtggat tagtggcgca cgggtgagta atgcataggt 

      121 tatgtgccct ttagtctggg atagccactg gaaacggtga ttaatactgg atactcccta 

      181 cgggggaaag tttttcgcta aaggatcagc ctatgtccta tcagcttgtt ggtgaggtaa 

      241 tggctcacca aggctatgac gggtatccgg cctgagaggg tgatcggaca cactggaact 

      301 gagacacggt ccagactcct acgggaggca gcagtaggga atattgctca atgggggaaa 

      361 ccctgaagca gcaacgccgc gtggaggatg aaggttttag gattgtaaac tccttttgtt 

      421 agagaagatt atgacggtat ctaacgaata agcaccggct aactccgtgc cagcagccgc 

      481 ggtaatacgg agggtgcaag cgttactcgg aatcactggg cgtaaagagt gcgtaggcgg 

      541 ggtaataagt cagatgtgaa atcctgtagc ttaactacag aactgcattt gaaactgtta 

      601 ctctggagtg tgggagaggt aggtggaatt cttggtgtag gggtaaaatc cgtagagatc 

      661 aagaggaata ctcattgcga aggcgacctg ctggaacatt actgacgctg atgcacgaaa 

      721 gcgtggggag caaacaggat tagataccct ggtagtccac gccctaaacg atggatgcta 

      781 gttgttgcct tgcttgtcag ggcagtaatg cagctaacgc attaagcatc ccgcctgggg 

      841 agtacggtcg caagattaaa actcaaagga atagacgggg acccgcacaa gcggtggagc 

      901 atgtggttta attcgaagat acgcgaagaa ccttacctag gcttgacatt gatagaatct 

      961 actagagata gtggagtgcc cttcggggag cttgaaaaca ggtgctgcac ggctgtcgtc 

     1021 agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctc gtccttagtt 

     1081 gctagcagtt cggctgagca ctctaaggag actgccttcg taaggaggag gaaggtgagg 

     1141 acgacgtcaa gtcatcatgg cccttacgcc tagggctaca cacgtgctac aatggggcgc 

     1201 acaaagagga gcaatatcgc gaggtggagc aaatctcaaa aacgtctctc agttcggatt 

     1261 gtagtctgca actcgactac atgaagctgg aatcgctagt aatcgtgaat cagccatgtc 

     1321 acggtgaata cgttcccggg tcttgtactc accgcccgtc acaccatggg agttgtattc 

     1381 gccttaagtc gggatactaa attggttacc gcccacggcg gatgcagcga ctggggtgaa 

     1441 gtcgtaacaa ggtaacc 
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The most widely used region used is V3/V4. However, this is more to do with 

segment length (438bp) than diagnostic accuracy as the Illumina MiSeq 

generates paired-end reads of 2x 300-350bp which after trimming should 

easily incorporate the complete V3/V4 HRVs (Wang et al, 2016). 

 

This combination has its drawbacks but does create read data in a manner 

which can be repeated and therefore compared across studies. Although 16S 

rRNA gene based NGS analysis has known limitations, it has become the 

cornerstone to our understanding of the prokaryotic world. It currently 

represents a cost effective and computationally economical method to 

comparatively gauge the diversity of complex samples.  

 

DNA metagenomic sequencing also employs parallelised amplification of 

ligated DNA libraries and records multiple, concurrent base incorporation 

events. However, initial material consists of enzymatically or mechanically 

fragmented genomic material rather than amplicon-specific products. 

Sequence data is then mapped and characterised by post-sequencing 

assembly and comparison to known genome scaffolds. Along with the ability 

to construct more granular phylogeny this technique allows the perception of 

potential gene function from the same sample. Understandably, this technique 

generates much more data and is more computationally challenging than that 

of 16S rRNA gene analysis (Izard & Rivera, 2015). 

Transcriptomic sequencing uses the same sequencing methodology preceded 

by a reverse transcriptase step to generate DNA fragments which can be 
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sequenced from RNA transcripts (or genomes) in a sample prior to analysis. 

This method refines the illumination of potential gene activity to the real-time 

process and can allow pathway mapping with further analysis (Izard & Rivera, 

2015). Transcriptomic sequencing or RNA-seq, again, allows nonbiased 

expression profiling of complex biological samples. It relies upon the 

construction of cDNA molecules from extracted RNA strands. However, 

template quality is reliant on sample handling and the method of RNA 

extraction employed. Although granular activity catalogues can be 

constructed, RNA-seq can struggle to differentiate strand polarity and 

alternate, reverse, or non-coding features in both eukaryotic and prokaryotic 

genomes. As with all NGS workflows, multiple protocols can generate highly 

divergent data sets (Levin et al, 2010). Although the transcriptome of complex, 

niche communities will be dominated by prokaryotic genes, there will be a 

portion that represents the eukaryotes and a smaller one which reflects the 

virome. This deceivingly modest portion may represent multiple endogenous, 

phage or host specific viral elements. The low density of these viral transcripts, 

even considering their multitudinous presence, may necessitate specific 

fractionation or filtration steps prior to successful or representative sequence 

analysis and understanding (Marston et al, 2013).  

These three broad sequencing approaches offer the researcher a key to 

characterising complex microbial communities and their temporal activities and 

auxotrophic relationships. The dogma of NGS has seemingly become who, 

what, and when, discernible by the step wise application of these workflows to 

a complex single microbiological sample. Applying these three approaches to 
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characterise microbial communities is not a simple task but the use of these 

three methods in a diagnostic setting may allow the detection of all levels of 

the microbial strata which may allow not only the health status of an in vivo 

model be gauged but the effect of disease be measured by a new perimeter 

(Jovel et al, 2016).  

 

1.13 Applying NGS analysis in a disease model  

The ultimate goal of employing NGS here is to extend routine health monitoring 

from the FELASA exclusion list to a tool applicable to the characterisation of 

the GI microbiota of mice before and during drug discovery studies. This 

greater temporal understanding will hopefully contribute to study outcomes. 

Focusing this effort on research into IBD is an ideal pairing of applied NGS and 

a relevant biological model (Tindemans et al, 2020). Inflammatory bowel 

diseases (IBD) are multifactorial disorders characterised by chronic-

progressive and relapsing intestinal inflammation. The two clinically defined 

forms of IBD are UC and CD. UC is a superficial ulcerative disease of the 

colon, whereas CD can be transmural and affecting the entire GI tract, while 

both conditions are associated with an increased risk of colon cancer (Lee & 

Chang, 2021). Another commonality between these states is CD4+ 

lymphocyte infiltration of the intestinal tissue. A subset of these cellular 

populations are the memory T-cells, which make up ∼60% of the total GI 

lymphocyte population and are essential in mounting rapid immune responses 

to pathogens and as such, their action is normally highly regulated. Loss of 

control or the lack of pathogenic targets are thought to contribute to IBD 
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progression (Tindemans et al, 2020). However, the exact aetiology of IBD is 

poorly understood but what was thought to be solely a genetic disease has 

now become one which the environment plays a significant role in disease 

development. Differential responses in monozygotic twins and the 

development of IBD in immigrants to Western counties characterised by 

urbanised housing and refined diets have been found to be associated with 

IBD (Kaser et al, 2010). However, IBD must be driven by a combination of 

genetic loci, the environment, and a myriad of further factors which themselves 

are comprised of multiple nuances such as the use of certain medications (e.g., 

non-steroidal anti-inflammatory drugs and antibiotics), exposure to cigarette 

smoke (protective against UC but detrimental to CD), environmental pollution, 

exercise, sleep levels, psychological factors, hygiene, and stress. However, 

combinations of these factors occur in unaffected populations making direct 

causality impossible (Kaser et al, 2010).  

 

To attempt to clarify risk factors in individuals, genome-wide association 

studies (GWAS) have been used to identify specific loci for IBD. More than two 

hundred genetic risk loci have been associated with IBD. Of this number, 

causal variants involved in microbial sensing e.g., interleukin-23 receptor 

(IL23R), regulation of inflammatory responses e.g., nucleotide binding 

oligomerisation domain-containing protein 2 (NOD2), and regulation of 

autophagy e.g., autophagy 16-like 1 protein (ATG16L1) have been identified. 

Although there are discrete genetic factors for both UC and CD, some genetic 

associations are shared between the two states and many are linked to other 
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multifactorial immune related disorders such as diabetes indicating that 

genetic markers are as hard to pinpoint as life style markers (Uniken et al, 

2017). 

 

It is understood that the microbiota plays a role in the regulation of immune 

responses in the GI tract, and that dysbiosis driven by environmental factors 

plays a key role in disease progression. The primary method of influencing the 

microbiota is diet. This has been found to influence susceptibility to IBD, with 

intake of dietary fibre, zinc, and vitamin D providing protection while a 

westernised diet high in processed food, refined sugar, and saturated fat has 

been implicated in changes to the diversity of GI microbiota seen in IBD. 

However, it is still unclear whether shifts in diversity are a result of disease 

progression or a driver behind it. Both changes in microbial composition and 

altered localisation of bacteria due to impaired barrier function can induce 

immune responses to non-pathogenic organisms which may drive 

dysregulation of an immune response (Khalili et al, 2018). Although CD4+ cells 

play a pivotal role in both CD and UC, dysregulation of both innate and 

adaptive arms of the immune system are implicated in aberrant behaviour. In 

the innate immune system reduced production of anti-microbial peptides in CD 

patients have reduced production of α-defensins, which is more pronounced 

in patients with NOD2 mutations. An early sign of intestinal inflammation is 

neutrophil infiltration which can contribute to pathogenesis through multiple 

mechanisms, including impairment of barrier function, tissue damage and 

secretion of soluble mediators which can amplify of inflammation. 
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Macrophages produce increased levels of IL-23, IL-6 and TNFα which can 

influence T-cell polarisation. Dendritic cells show an activated phenotype, 

expressing increased levels of TLR2, TLR4 and CD40 and secreting increased 

levels of IL-12 and IL-6. They also express higher levels of the chemokine 

receptor CCR7, aiding their migration to and retention in the colon (Souza & 

Fiocch, 2016).  

 

In the adaptive immune system T-cells from CD patients produce IFNγ and IL-

17A, suggesting that pathogenic T-cells polarise into Th1/Th17 cells. In CD, 

Th17 cells also produce IL-21 and IL-22, driving further IFNγ production. In 

contrast, IL-22 is reduced in inflamed tissue from UC patients and lymphocytes 

from UC patients can display an atypical Th2 response, with increased IL-5 

and IL-13 expression, but low IL-4 production. Additionally, some UC patients 

harbour IL-9-producting Th9 cells. Whilst TREG numbers are decreased in the 

blood, they are increased in lamina propria (Moschen et al, 2019). This 

suggests that these cells are impaired in their suppressive capacity as despite 

increased cell numbers they fail to control inflammation. In CD, T-cells are 

resistant to apoptosis, suggesting that accumulation of activated T-cells may 

contribute to disease pathogenesis. Anti-neutrophil cytoplasmic antibodies 

(ANCAs) are present in IBD, with increased prevalence in UC compared to 

CD. In addition, antibodies to microbial components are also present. Whilst 

these immunoglobulins do not contribute to the disease pathogenesis, they are 

elevated in active disease and highlight the importance of microbial antigens 

in driving disease (Moschen et al, 2019).  
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These dysregulations of the innate and acquired immune systems and the site 

of pathology points towards the GI microbiota as the most immediate 

environmental factor. The previously described immune priming afforded by 

the GI microbiota indicated the symbiotic relationship between microbial 

populations and the development of a healthy gut in neonates (Byndloss et al, 

2018). It makes sense those disruptions to the microbial populations generated 

externally by antibiotics, diet and internally or physiologically, via the vagus 

nerve due to stress, work in the opposite way, creating an inverse microbial 

phenotype, classically observed by Ley et al (2006). Altered microbial patterns 

are associated with specific disease states or disease models but are often 

phyla-level and although quantified in studies, are in no way causal (Kaser et 

al, 2010). This points to a requirement to use culture independent tools capable 

of discerning changes at a much higher level of classification (genera and 

species) to understand specific roles or identify key marker species. The 

multifactorial element of IBD and its sometimes-distant relationship to genes 

which may or may not come into play according to GI microbiota and possible 

immune dysregulation are confounded by research in another species. 

Genetic loci can be easily altered in the mouse and specific targets studied 

which as generated much of the knowledge in this field (Kaser et al, 2010). 

More than sixty distinct animal models have been established to study IBD, 

which are classified primarily into transgenic, chemically induced, infection 

induced, cell-transfer models. These IBD models have provided significant 

contributions to not only dissect the mechanism but also develop novel 

therapeutic strategies for IBD. However, despite the many different methods 
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by which colitis can be induced in vivo, there is no single model which 

completely mirrors the human disease. Therefore, the choice of disease model 

is dependent on the aspect of disease that is subject to investigation 

(Mizoguchi, 2012). 

 

In the infection colitis model, the pathogenic Gram-negative Citrobacter 

rodentium is orally administered to naive immunocompetent mice resulting in 

epithelial damage, diversity alterations, weight loss and diarrhoea. Epithelial 

damage is associated with immune cell infiltration and loss of barrier integrity. 

This measurable element along with bacterial load and histological evidence 

make this understood model widely used although not in the UK (Bhinder et 

al, 2013). 

 

The chemically induced model of colitis is generated by the administration of 

dextrin sulfate sodium (DSS) This was first described in 1990 and has been 

extensively used to understand the pathophysiology of IBD, the contribution of 

genes of interest to disease progression, and to evaluate the therapeutic 

efficacy of novel interventions (Kjellev et al, 2006). In this model, colitis is 

induced through the administration of DSS in the drinking water. DSS 

penetrates the intestinal mucosa, causing epithelial damage and barrier 

dysfunction. Dissemination of gut bacteria into the intestinal wall drives the 

recruitment of immune cells, resulting in an inflammatory response. The 

clinical signs of DSS-induced colitis include body weight loss, diarrhoea, and 
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blood in the faeces. Histopathological changes are visible during microscopic 

evaluation of colon tissue (Eichele et al, 2017). 

 

The T-cell transfer model of experimental colitis is generated by the transfer of 

a defined number of mouse naïve CD4+CD45RB high T-cells into 

immunodeficient mice. The recipient mice develop chronic colitis due to these 

T-cells homing to the intestinal mucosa and lack of functional TREGs in the 

host which allows the development of a Th1/Th17 adaptive immune response 

to antigens derived from intestinal bacteria. As the host animals lack TREGs, 

chronic colitis develops, mimicking human disease. The absence of TREGs is 

crucial for disease onset, as co-transfer of TREGS with naïve CD4+ T cells 

ablates colonic inflammation (Ostenin et al, 2008). Along with robust wild-type 

or immunodeficient strains of mice, spontaneous mutant and genetically 

altered models of disease offer insights to specific pathways and the effects of 

specific genetic loci expression. Both congenital and transgenic constructs 

may be used in conjunction with the cell transfer, DSS and infection systems 

of IBD induction. These methods of elemental presentation have become 

invaluable tools in this field of research (Prattis & Jurjus, 2015). 

 

These experimental models have become useful tools in the prediction of 

clinical outcomes of studies involving biological entities. However, the 

chemical and cell transfer models currently used in the UK have associated 

advantages and disadvantages. Advantages of the DSS model over the T-cell 

transfer model are that wild-type animals used can generate lymphocytes, 
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allowing interrogation of B-cell and CD8+ T-cell mechanisms and therapeutics. 

Additionally, cessation of DSS administration leads to the resolution of 

disease, allowing mechanisms of epithelial repair to be studied. Application of 

multiple cycles of DSS interspersed with normal drinking water imitates the 

development of remission and relapse, mimicking the chronic disease seen in 

patients. Disadvantages of DSS-model over the cell transfer model are that 

the induction of inflammation through chemically induced intestinal damage is 

less physiological. The variability and reproducibility of the model is often 

influenced by multiple factors, including microbiota, mouse strain and protocol 

used (Eichele et al, 2017). Comparison of transcriptomic changes in the colon 

suggests that the cell transfer model most closely reflects gene expression 

changes seen in IBD patients (Acera et al, 2021). Prediction of clinical efficacy 

may depend on the use of either the acute or chronic model.  

 

1.14 Pharmaceutical translatability 

The translatability of in vivo studies to the human patient is key in their use in 

the development of novel therapies. However, in any model, sometimes only 

a caricature can only be perceived, this especially true of the in vivo models 

used in pharmaceutical research (Lederberg, 2000).  

Although the mouse is the most used model for human disease, this has come 

about due to its economic and reproductive advantages rather than its recent 

genomic characterisation. Along the path of drug discovery, it is hoped that 

data gleaned from the use of induced models of disease is applicable to human 

patients. This previously glaucomic activity was brought into sharper focus and 
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translatability with the advent of transgenic rodent models which were created 

to mirror specific molecular aspects of human disease to evaluate for 

pharmaceutical alleviation (Hickman & Davis, 2005).  

Most microbiome studies conducted on mice are reductionist and mechanistic, 

tending to use the mouse to answer discovery questions involving single 

organisms (Brugiroux et al, 2017). Studies attempting to understand the tool 

itself and how its innate qualities may be used to translate data lag behind 

similar efforts in the human (Kim et al, 2021).  

Mouse models used in research today originate from fancy European and 

Asian mice generated around 100 years ago creating the commonly used 

C57BL/6, BALB/C, 129, and C3H inbred strains (Hugenholtz & de Vos, 2017). 

The benefit of inbreeding is genetic similarity creating a comparative tool. 

Today there are >400 described inbred strains. These inbred strains may be 

bred in sterile conditions or rederived by caesarean section or embryo transfer 

creating germ-free models for microbiome research (Hugenholtz & de Vos, 

2017). Gnotobiotic strains may be germ-free or have been administered with 

a defined microbiota (e.g., altered Schaedler flora). Humanised, germ-free 

mouse models are seeded with defined consortia of human-derived bacteria 

(e.g., Oligo-Mouse-Microbiota) to gain functional understanding of causality in 

human disease such as colonisation resistance testing for single organisms 

(Brugiroux et al, 2017). 
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Figure 1-7: Comparison of murine and human gastrointestinal tracts. This 

shows the differential size of the caeca and the haustration of the human colon 

indicating the primary location of fermentative activity in each species (Nguyen 

et al, 2015). 
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The murine and human GI tracts are physiologically divergent (Nguyen et al, 

2015), with similar metabolic processes occurring at different niches, for 

example with the most active site of bacterial fermentation in the mouse being 

the caecum and in humans this being the colon (Ley et al, 2006) (Figure 1-7). 

However, both humans and mice immunologically sculpt the microbiota of the 

small intestine to give priority to host carbohydrate harvesting (Santaolalla et 

al, 2012). 

Characterising microbial communities and their activities at structural, 

metabolic or drug absorption sites along the murine GI tract may be used to 

understand the potential of drug entities to be metabolised, the correct 

microbiota for specific studies and mapping disease progression or alleviation. 

These attributes may reduce the number of animals used and reduce drug 

attrition by conducting more refined experiments. However, it has been found 

that ∼80% of genera found in the mouse are present in the human GI 

microbiome but 70% of this common microbiota share <40% of core gene 

content (Kim et al, 2021). Furthermore, there is only a 10% overlap in taxa at 

the species level confirming the significant divergence between the model and 

the target species (Klieser et al, 2022). The mutable nature of prokaryotes and 

their use of auxotrophic networks for nutrient harvesting clearly indicates that 

appointment of taxonomic designations across host species is not translatable. 

The mouse is a tool for research, but it is a significantly blunt tool if its use 

continues without understanding its taxonomic and functional microbial 

repertoire. Improving our understanding of the murine microbiome represents 

the same movement as that in human trails by bringing microbiome data into 
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the clinical realm (Guthrie & Kelly, 2019). Developing an accurate diagnostic 

tool to be routinely applied in microbial characterisation of the models used in 

drug development represents a step towards integrating this type of analysis 

in real-world scenarios (Cullen et al, 2020). A partnership was created with the 

applied immunity groups at GlaxoSmithKline (GSK) so that faecal samples 

could be taken during their studies and processed independently as a proof of 

concept in helping understand the effects of administration upon in vivo models 

and their microbiota. The following sections detail each study plan and 

background.  
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1.15 Hypothesis & experimental aims 

Routine NGS characterisation of the murine GI microbiome is not currently 

undertaken during health monitoring or during in vivo studies. Consequently, 

the hypothesis that underpins the research presented in this thesis is that 

applying this evaluative tool would help characterise the microbiome, 

extending health monitoring beyond an exclusion criteria, aiding appropriate 

model selection, and allowing the tracking of disease progression in specific 

areas of research.  

The hypothesis was tested by investigating potential workflows in a 

technologically conservative research space in order to develop the most 

accurate process by which this technique could be routinely applied in drug 

development.  

Key objectives of this work are: 

- To design a representative, repeatable and ethical sampling strategy 

which will be applied to the subsequent microbiome characterisation 

studies.  

- To use this method to run pilot 16S rRNA gene analysis studies to 

assess the effect of host sex, geolocation, transport, and acclimatisation 

upon prokaryotic community diversity across multiple ecological niches 

of the murine GI tract to pinpoint a suitable sampling material for future 

studies.  

- To assess and compare 16S rRNA gene analysis, DNA metagenomics, 

and RNA-seq methods in the description of both taxonomy and gene 
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function along the GI tract of a murine model using a single, openly 

available bioinformatic resource, to enable routine implementation. 

- To improve 16S rRNA gene sequencing data generation and analysis 

methods and to coalesce these into a standard operating procedure for 

future use.  

- To investigate and develop a method of producing standardised, high 

quality nucleic acid from faecal material to form the input material for 

the above workflow. 

- To evaluate this complete standard operating procedure on the faecal 

material generated by mice throughout disease progression in two 

classes of IBD study. 
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Chapter 2: Materials & methods  
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2.1 Primary 16S rRNA gene analysis 

experiments (Chap. 3) 

 

2.1.1 Mouse Models – niche, sex, and location study 

C57(Jax) mice, from Area 52 at the Charles River Laboratories (CRL) breeding 

facility (Maidstone, Kent) were chosen for the geolocation, niche, and sex 

studies due to the length of uninterrupted colony maintenance (Table 2-1). 

Animals were group housed in autoclaved Tecniplast 1292N cage cages 

containing Datesand ECO7D, softwood flake and maintained at an ambient 

temperature of 21.0 +/- 1°C and relative humidity of 55% +/- 10%, on a 7am to 

7pm light-dark cycle, with free access to food (VRF1 SDS Pelleted diet) and 

softened, filtered, UV treated and chlorinated water in bottles. These animals 

were provided from the specified pathogen free unit with a health surveillance 

report indicating the absence of all agents according to FELASA quarterly 

screening recommendations (Mähler et al, 2014). C57(Jax) mice for screening 

at GSK were packed into transport boxes with Clear-H2O hydrating gel packs 

(South Portland, USA) at around midday on the day preceding shipment and 

delivered at ∼8.30am on the day of transit. CRL is 109 miles from GSK, 

Stevenage, a journey which takes ~3hrs depending on the number of 

deliveries to universities and institutions en route across SE England. These 

animals were housed in autoclaved Techniplast GM500 cages containing IPS 

Lignocel BK8/15 bedding, Datesand Paper Shaving nesting material, a red 
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Perspex dome home, a cardboard fun tunnel, and a wooden chew block. 

Animals were maintained at an ambient temperature of 20.5 to 23.5°C with 

relative humidity of 39% to 61%, on a 6am to 6pm light-dark cycle, with free 

access to food (Labdiet expanded and irradiated 5LF2 Maintenance) and 

double reverse osmosis animal grade drinking water in bottles. 

 

2.1.2 Mouse models – faecal/colon comparison study 

Wildtype C57(Trim) mice, were bred in the GSK Transgenic Production Facility 

at Stevenage and were chosen to provide material for comparisons between 

faeces and colonic contents sequencing methods as they were unnecessary 

for the program for which they were originally generated (Table 2-2). Animals 

were housed in autoclaved Techniplast GM500 cages containing IPS Lignocel 

BK8/15 bedding with Datesand Paper Shaving nesting material, a red Perspex 

dome home, a cardboard fun tunnel and a wooden chew block. Animals were 

maintained at an ambient temperature of 20.5 to 23.5°C with relative humidity 

of 39% to 61%, on a 6am to 6pm light-dark cycle, with free access to food 

(Labdiet expanded and irradiated 5LF2 Maintenance) and double reverse 

osmosis animal grade drinking water in bottles. They were housed with study, 

long-term breeding, and stock animals but underwent no regulated 

procedures. 
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Table 2-1: Sample ID, sex, sampling location and niche of C57(Jax) 

digesta samples. A comparison of source, sex, and niche was conducted on 

these samples to gauge major effectors of prokaryotic diversity. 

ID Sex Sampling location Niche 

JP25-1 M CRL Caecum 

JP26-2 M CRL Caecum 

JP27-3 F CRL Caecum 

JP28-4 F CRL Caecum 

JP29-5 M GSK (at del.) Caecum 

JP30-6 M GSK (at del.) Caecum 

JP31-7 F GSK (at del.) Caecum 

JP32-8 F GSK (at del.) Caecum 

JP33-9 M GSK (2wks) Caecum 

JP34-10 M GSK (2wks) Caecum 

JP35-11 F GSK (2wks) Caecum 

JP36-12 F GSK (2wks) Caecum 

JP37-13 M CRL Stomach 

JP38-14 M CRL Stomach 

JP39-15 F CRL Stomach 

JP40-16 F CRL Stomach 

JP41-17 M CRL Jejunum 

JP42-18 M CRL Jejunum 

JP43-19 F CRL Jejunum 

JP44-20 F CRL Jejunum 

JP45-21 M CRL Ileum 

JP46-22 M CRL Ileum 

JP47-23 F CRL Ileum 

JP48-24 F CRL Ileum 
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Table 2-2: Sample ID, sex, and niche of C57(Trim) digesta and faecal 

samples. A comparison was connected here to ascertain whether faeces 

samples can be used to gauge prokaryotic diversity in the colon. 

ID Sex Niche 

JP01-1F M Faeces 

JP02-1C M Colon 

JP03-2F M Faeces 

JP04-2C M Colon 

JP05-3F M Faeces 

JP06-3C M Colon 

JP07-4F M Faeces 

JP08-4C M Colon 

JP09-5F M Faeces 

JP10-5C M Colon 
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2.1.3 Mouse models – four-month longitudinal study  

NOD severe combined immunodeficiency disease (NOD-SCID) 

immunocompromised mice for longitudinal study were obtained from Area 50 

of CRL where they are housed in flexible isolators (consumables treated with 

chlorine dioxide at 250ppm for 10mins) and provided with VRF1 (SDS) diet 

(gamma irradiated), softened, filtered, UV treated and chlorinated water in 

bottles and kept on Nepco aspen bedding with Kleenex tissues and a 

cardboard tunnel (all gamma irradiated) on a 7am to 7pm light-dark cycle. 

These animals were provided from the specified pathogen-free unit with a 

health surveillance report indicating the absence of all agents according to 

FELASA quarterly screening recommendations conducted by PCR only 

(Mähler et al, 2014). 

Upon arrival at GSK, they were housed in autoclaved Techniplast individual 

ventilated cages (IVCs) containing autoclaved sawdust, golden shavings, and 

a cardboard tunnel. Animals were maintained at an ambient temperature of 

21.0 +/- 1°C with a relative humidity of 55% +/- 10%, on a 6am to 6pm light-

dark cycle, with free access to food (5LF2 extruded diet) and autoclaved 

animal grade drinking water in bottles. These animals were provided from the 

specified pathogen-free unit with a health surveillance report indicating the 

absence of all agents according to FELASA quarterly screening 

recommendations (Mähler et al, 2014). During this study faecal pellets were 

sampled at delivery and the subsequent monthly anniversary for three months.  
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2.1.4 Terminal and cage sampling  

The C57(Jax) study was designed to sample three groups of two males and 

two females at source (A), at delivery to GSK, Stevenage (B) and after 2wks 

acclimatisation in the experimental animal facility at Stevenage (C). Therefore, 

the acclimatised group were delivered to GSK at 5-6wks of age. Male and 

female groups from each sampling date had been either delivered or housed 

together for the period of transport or acclimatisation. All mice were all 

terminally sampled at 8wks of age, with sampling of group A taking place in 

the necropsy suite at CRL, Maidstone, while groups B & C were sampled in 

the microbiology necropsy suite at Stevenage. 

All animals sampled were kept in a Scantainer (Scanbur, Denmark) to isolate 

them from sight or smell during post mortem procedures. Euthanasia was 

conducted using rising concentration of CO2. After loss of the righting reflex, 

the ventral surface of each mouse was exposed upon a downdraft table and 

wiped with 70% ethanol. A cut was then made in the skin from the lower 

abdomen, following up through the rib cage, exposing the heart and lungs at 

which point the heart was removed as a secondary confirmation of death.  

Individually packed and steam sterilised scissors and tweezers were employed 

for each mouse sampled. The gastrointestinal tract was then removed from 

the abdominal cavity by firstly cutting the oesophagus above the stomach and 

severing connective tissue to the liver and then gently pulling up and away, 

finally cutting at the lower colon just before the anus. The excised tract was 

then laid out on a sterile 90mm square petri dish (Sterilin, UK). Each GI tract 
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was then cut into five sections from anterior to posterior (stomach, jejunum, 

ileum, caecum, and colon) to minimise the potential for contamination from 

areas with higher bacterial populations. and each section of the GI tract was 

opened using a new sterile scalpel blade which was then used to gently apply 

pressure to the exterior to push out digesta for collection into a PCR clean 

1.5µl tube (Eppendorf, UK).  

All sectional digesta samples were collected into sterile 2ml Sarstedt tubes 

(Numbrecht, Germany) on dry ice and were then stored at -80˚C until 

processing. Dedicated PPE was employed while conducting euthanasia and 

post mortem sampling of all animals used. All sampling events were conducted 

between 8.30-10.30am to minimise any possible temporal variations in 

diversity. All consumables were disinfected in 1.5% Virkon (Antec 

International, UK), prior to autoclaving and off-site incineration in accordance 

with current company waste-stream regulations. 

Excreted cage faeces were obtained for the colon comparison and the NSG 

study by aseptically picking pellets from home cages at base changing 

intervals with sterile forceps into sterile 2ml Sarstedt tubes (Numbrecht, 

Germany). Collected samples were again stored at -80˚C until submission.  

 

2.1.5 External material processing & NGS   

DNA extractions, NGS library preparations, and Illumina MiSeq sequencing 

were conducted at Genewiz, Inc. DNA was extracted from submitted samples 

using DNeasy Powersoil kit (Qiagen, UK). Resulting DNA was quantified using 
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a Qubit 2.0 Fluorometer (Invitrogen, USA). 30-50 ng DNA was used to 

generate amplicons using a MetaVx™ Library Preparation kit. V3, V4, and V5 

hypervariable regions of prokaryotic 16S rRNA gene DNA were selected for 

generating amplicons and following taxonomy analysis. Genewiz designed a 

panel of proprietary primers aimed at conserved regions bordering the V3 and 

V4 hypervariable regions of bacteria and Archaea 16S rRNA gene DNA. First 

round PCR products were used as templates for second round amplicon 

enrichment PCR. At the same time, indexed adapters were added to the ends 

of the 16S rRNA DNA amplicons to generate indexed libraries ready for 

downstream NGS sequencing on Illumina MiSeq (San Diego, USA). DNA 

libraries were validated by Agilent 2100 Bioanalyzer (Palo Alto, USA), and 

quantified by Qubit 2.0 Fluorometer. DNA libraries were multiplexed and 

loaded on an Illumina  MiSeq instrument according to manufacturer’s 

instructions. Sequencing was performed using a 2x300/250 paired-end (PE) 

configuration; image analysis and base calling were conducted by the MiSeq 

Control Software (MCS) embedded in the MiSeq instrument. The cost per 

sample was £150.  

 

2.1.6 External QIIME data analysis 

The QIIME data analysis package was used for 16S rRNA gene OTU table 

generation. The forward and reverse reads were joined and assigned to 

samples based on barcode and truncated by cutting off the barcode and primer 

sequence. Quality filtering on joined sequences was performed and sequence 

which did not fulfil the following criteria were discarded: sequence length 
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<200bp, no ambiguous bases, mean quality score >= 20. Then the sequences 

were compared with the RDP reference database (www.rdp.cme.msu.edu) 

using UCHIME algorithm to detect chimeric sequence (UCHIME Home Page 

drive5.com), and then the chimeric sequences were removed. The effective 

sequences were used in the final analysis. Sequences were grouped into 

operational taxonomic units (OTUs) using the clustering program VSEARCH 

(1.9.6) against the Silva 119 database pre-clustered at 97% sequence identity. 

The Ribosomal Database Program (RDP) classifier was used to assign a 

taxonomic category to all OTUs at a confidence threshold of 0.8. The RDP 

classifier uses the Silva 119 database which has taxonomic categories 

predicted to the species level.  

 

2.1.7 Statistical analysis of OTU tables 

The use of the Shannon Index (Shannon & Weaver, 1964) was applied here 

using the following equation in Excel (Microsoft, USA), where the individual 

read number is divided by the sum of the reads per sample multiplied by the 

natural log of the individual read count multiplied by the sum of the reads per 

sample.  

 

The raw p-values and false discovery rates (FDR) were calculated (Verhoeven 

et al, 2005) using Array Studio (Qiagen, UK) from OTU read counts by applying 
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the log+1 of each count with the assistance of the GSK Development Statistics 

group. 
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2.2 NGS method comparison using 

MG-RAST server (Chap. 4) 

  

2.2.1 Mouse model – niche comparison 

Wildtype C57(Trim) mice, were bred in the Transgenic Production Facility at 

Stevenage and were chosen to provide material for comparisons between 16S 

rRNA, shotgun and RNA-seq sequencing methods as they were unnecessary 

for the program for which they were originally generated (Table 2-3). Animals 

were housed as those in section 2.1.2.  

These mice were housed in a room with study, long-term breeding, and stock 

animals but underwent no regulated procedures. Two cages were sampled, 

each containing three 10-12wk old mice. The first cage housed three 

littermates (432, 435 & 436). The second cage house two littermates (645 & 

642) and an unrelated mouse of the same age (495) (Table 2-3). These 

animals were transferred to an approved necropsy area and euthanised by 

rising concentration of CO2 with confirmation of death being made by the 

removal of heart. Samples were collected aseptically into PCR-clean 1.5ml 

Eppendorf Safe-Lock tubes on dry ice and then stored at –80°C until 

processing.  
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Table 2-3: Sample ID and cage origin of digesta samples (1-14) obtained 

from C57(Trim) mice. These different materials were used to compare niche 

diversities using 16S rRNA gene analysis, DNA metagenomic, and RNA-seq 

NGS methods.  

  C57(Trim) 

Cage # Cage 1 Cage 2 

Animal 

ID 

432-

87.1 

435-

87.1 

436-

87.1 

495-

89.1 

645-

89.1 

642-

89.1 
Stomach 1     8     

Jejunum 2     9     

Ileum 3     10     

Caecum 4     11     

Colon 5 6 7 12 13 14 
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2.2.2 External material processing & NGS 

Digesta samples from the C57(Trim) mice were shipped on dry ice to Genewiz 

(Plainfield, USA). Nucleic acids were co-extracted using PowerViral DNA/RNA 

kit (Qiagen, UK).  

For the 16S rRNA gene analysis workflow, resulting DNA was quantified using 

a Qubit 2.0 Fluorometer (Invitrogen, USA). 30-50 ng DNA was used to 

generate amplicons using a MetaVx™ Library Preparation kit (Genewiz, Inc., 

USA). V3, V4, and V5 hypervariable regions of prokaryotic 16S rRNA gene 

were selected for generating amplicons and following taxonomy analysis. 

Genewiz designed a panel of proprietary primers aimed at conserved regions 

bordering the V3 and V4 hypervariable regions of bacteria and Archaea 16S 

rRNA gene. The V3 and V4 regions were amplified using forward primer (5’-

CCTACGGRRBGCASCAGKVRVGAAT) and reverse primer (5’-GGACTA 

CNVGGGTWTCTAATCC). The V4 and V5 regions were amplified using 

forward primer (5’-GTGYCAGCMGCCGCGGTAA) and reverse primer (5’-

CTTGTGCGGKCCCCCGYCAATTC). First round PCR products were used as 

templates for second round amplicon enrichment PCR. At the same time, 

indexed adapters were added to the ends of the 16S rRNA gene DNA 

amplicons to generate indexed libraries ready for downstream NGS 

sequencing on Illumina MiSeq. DNA libraries were validated by Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), and quantified by 

Qubit 2.0 Fluorometer. DNA libraries were multiplexed and loaded on an 

Illumina MiSeq instrument according to manufacturer’s instructions. 

Sequencing was performed using a 2x300/250 paired-end (PE) configuration; 
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image analysis and base calling were conducted by the MiSeq Control 

Software (MCS) embedded in the MiSeq instrument. 

 

For the RNA-seq workflow, rRNA depletion was performed using Illumina 

Ribozero rRNA Removal Kit and TruSeq Stranded Total RNA library Prep kit 

following manufacturer’s protocol (Illumina, Cat# RS-122-2101). Briefly, rRNA 

was depleted with Ribp-Zero rRNA Removal Kit, rRNA depleted RNAs were 

fragmented for 8 minutes at 94 °C. First strand and second strand cDNA were 

subsequently synthesised. The second strand of cDNA was marked by 

incorporating dUTP during the synthesis. cDNA fragments were adenylated at 

3’ends, and indexed adapter was ligated to cDNA fragments. Limited cycle 

PCR was used for library enrichment. The incorporated dUTP in second strand 

cDNA quenched the amplification of second strand, which helped to preserve 

the strand specificity. Sequencing libraries were validated using DNA Analysis 

Screen Tape on the Agilent 2200 TapeStation (Agilent Technologies, Palo 

Alto, CA, USA), and quantified by using Qubit 2.0 Fluorometer (Invitrogen, 

Carlsbad, CA) as well as by quantitative PCR (KAPA Biosystems, Wilmington, 

MA, USA). The cost per sample was ~£500.  

 

For the metagenomic workflow, DNA library preparations and sequencing 

reactions were conducted at Genewiz, Inc. NEB NextUltra DNA Library 

Preparation kit was used following the manufacturer’s recommendations. 

Briefly, the genomic DNA was fragmented by acoustic shearing with a Covaris 

S220 instrument. The DNA was end repaired and adenylated. Adapters were 
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ligated after adenylation of the 3’ends. Adapter-ligated DNA was indexed and 

enriched by limited cycle PCR. The DNA library was validated using 

TapeStation (Agilent Technologies, Palo Alto, CA, USA), and was quantified 

using Qubit 2.0 Fluorometer. The pooled libraries were clustered and loaded 

on the Illumina HiSeq instrument (4000 or equivalent) according to 

manufacturer’s instructions and sequenced using a 2x150bp Paired End (PE) 

configuration. Image analysis and base calling were conducted by the HiSeq 

Control Software (HCS). Raw sequence data (.bcl files) generated from 

Illumina HiSeq was converted into fastq files and de-multiplexed using 

Illumina's bcl2fastq 2.17 software. The cost per sample was ~£500.  

 

2.2.3 External data analysis 

Although no data analysis was conducted by Genewiz on the metagenomic or 

RNA-seq files, the QIIME data analysis package was used for 16S rRNA OTU 

table generation as described in 2.1.6. 

 

2.2.4 Data delivery & security   

The C57(Trim) digesta samples generated 84 raw .fastq sequence files (42 

paired end) generated during these experiments which were uploaded by 

Genewiz onto the DNAnexus (https://www.dnanexus.com) cloud-based server 

(Mountain View, USA) for secure transfer to an internal network. 

 

 

https://www.dnanexus.com/
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2.2.5 Internal data analysis 

Files were subsequently downloaded from DNAnexus using a Virgin Media 

(Reading, UK) 100Mps domestic package. Downloaded compressed files 

(.fastq) were extracted using Winzip (Ottawa, Canada) and stored on a 

Western Digital (San Jose, USA) 4Tb external hard drive. The same domestic 

package with an upload speed of <10Mps was used to transfer these .fasta 

files to the MG-RAST DNA metagenomics analysis server for analysis 

(https://www.mg-rast.org/mgmain.html.; Meyer et al, 2008). Assemblies and 

comparative analysis were made on the MG-RAST server between all 

available 16S rRNA databases, those being Greengenes (GG), Ribosomal 

Database Project (RDP), NCBI Reference Sequences (RefSeq) SILVA small 

and sub-unit databases (SSU & LSU). Functional analysis of DNA 

metagenomics and RNA-seq files was conducted using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Orthologue (KO) database 

(https://www.genome.jp/kegg/) via the MG-RAST server. 

 

 

 

 

 

 

 

https://www.mg-rast.org/mgmain.html
https://www.genome.jp/kegg/
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2.3 Hybrid 16S rRNA gene 

characterisation method (Chap. 5) 

 

2.3.1 Sample data 

Initial bioinformatic research used the raw MiSeq .fastq files generated for 16S 

rRNA gene comparison in the previous experiment for manipulation and 

analysis. 

 

2.3.2 Improved 16S rRNA gene analysis   

All file sharing and analysis was carried using a HP Z-book G5 laptop with an 

8-core Intel® i9-9880H processor, 2x32Gb DDR4 2666 RAM and 2x 2Tb solid 

state hard drives for read-write performance running Windows 10. Analysis 

was conducted on .fasta files using Lasergene NGS suite (https://www.dnastar 

.com/software/genomics), a software package comprising of multiple tools for 

genome and metagenomic sequence assembly and analysis developed by 

DNAstar (Madison, USA). A bespoke 16S rRNA gene reference database was 

downloaded from the NCBI Nucleotide website (https://www.ncbi.nlm.nih 

.gov/nucleotide/) defined .fasta files, by selecting ‘bacteria’ and ‘archaea,’ 

‘RefSeq’ and ‘rRNA’ tick boxes. This novel reference database contained 

21,762 complete RefSeq 16S rRNA genes, defined to the strain level.  

https://www.dnastar/
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2.3.3 Application of Python script  

Python script (https://www.python.org) was used for the generation of an 

annot.txt file, used to fully annotate the OTU tables generated during assembly 

phase of the novel bioinformatic pipeline in Array Star (Lasergene). Saving the 

reference database (.annot) in the same folder as script allows automatic 

proximity running. The script shown below was written with assistance of 

Lasergene (Madison, USA): 

 

Import glob 

File1=”db.fas” 

With open(file1,”r”) as oFile: 

With open(“annot.txt”,”w”) as wFile: 

wFile.write(“REF\tGI\tNotes\n”) 

rLines=oFile.readlines() 

for x in rLines: 

if x. startswith(“>”): 

xSplit=x.strip() .split(“|”) 

print xSplit 

#’>gi’, ‘219722938’, ‘ref’, ‘NR_024570.1’, Escherichia coli 

strain U 5/41 16S ribosomal RNA, partial sequence\n’ 

wFile.write(x.split[3]+”\t”+xSplit[1]+”t\”+xSplit[4]+”\n”) 

 

 

 

 

https://www.python.org/
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2.3.4 External DNA extraction comparison   

Stock C57BL/6 mice were chosen for the DNA extraction experiments. 

Animals were housed at the Stevenage animal facility in autoclaved 

Techniplast GM500 cages containing IPS Lignocel BK8/15 bedding with Dates 

and Paper Shaving nesting material, a red Perspex dome home, a cardboard 

fun tunnel, and a wooden chew block. Animals were maintained at an ambient 

temperature of 20.5 to 23.5°C with relative humidity of 39% to 61%, on a 6am 

to 6pm light-dark cycle, with free access to food (Labdiet expanded and 

irradiated 5LF2 Maintenance) and double reverse osmosis animal grade 

drinking water in bottles. They were housed with long-term breeding, and stock 

animals and had undergone no regulated procedures. The faecal pellets from 

four stock cages containing six individual mice were taken aseptically into a 

single 20ml Sterilin tube, mixed and six were then removed aseptically into 

PCR-clean 1.5ml Safe-Lock tubes (Eppendorf, UK). These randomised 

samples were stored at –80°C until in-house DNA extraction and/or 

submission to four contract research organisations (CROs): Genewiz, 

Eurofins, Qiagen and Charles River Laboratories (CRL). DNA was extracted 

in-house using the DNeasy PowerSoil Pro kit (Qiagen, UK) according to 

manufacturer’s instructions but using a 75µl final elution volume. Extraction 

took place on the day before submission to all external providers and stored 

overnight at -20°C. Two samples of in-house extracted DNA and two 

Eppendorf tubes containing faecal pellets were submitted to the four CROs for 

extraction and 16S rRNA library preparation followed by MiSeq sequencing 

and raw .fasta file generation. 
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Eurofins employed a Kingfisher magnetic extraction kit, Genewiz used DNeasy 

PowerSoil (Qiagen, UK), Qiagen used QIAmp PowerFecal Pro DNA Kit 

(Qiagen, UK) and CRL used Powersoil kit (Qiagen, UK). Raw .fasta files 

representing the four samples were downloaded from each CRO and analysed 

by the method developed here. Counts for each data entry on the reference 

database were compared and a Spearman rank correlation matrix was 

generated to compare the pairs of samples and gauge extraction technique 

quality and reproducibility. 
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2.4 Application of hybrid 16S rRNA 

gene analysis method (Chap. 6) 

 

2.4.1 Description of IBD studies and animals  

For the adoptive CD4+ transfer model of colitis, C.B-17/IcrHsd-PrkcdSCID 

mice were used to receive donated CD4+ T-helper cells harvested from Balb/c 

mice (Table 2-4). Excreted faecal samples were taken at delivery, during 

acclimatisation, and throughout the study until termination. Groups 1A and 3A 

(each having six mice) were given 100µl phosphate buffered saline (PBS; 

intraperitoneal) as controls, while groups 2A, 2B, 4A and 4B (seven mice in 

each group) received 5x104 naïve CD4+ T-cells in 100µl PBS (intraperitoneal) 

on Day 0. Groups 1A, 2A & 2B were given non-sterile water and food (non-

sterile group), while groups 3A, 4A & 4B were given double reverse osmosis 

water and irradiated diet (sterile group) (Table 2-4). Body weights were taken 

every day. Tail bleeds were conducted on all animals on Day 8 and Day 22, 

and all animals underwent endoscopy on Day 21. Oral sham dosing with 

10ml/kg 1% methylcellulose vehicle took place every day from Day 25 until 

study termination on Day 38. These mice were housed as those in section 

2.1.2 Every three weeks, 50% of bedding was removed and replaced with new 

along with more regular latrine area cleaning. All manipulations took placed 

inside a changing station.  
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For the dextran sodium sulphate (DSS) dose response study 32 12wk old 

female C57BL/6 mice were split into four dose groups (0%, 2%, 3% and 4% 

DSS) housed between two cages due to stocking density (Table 2-4). Mice 

were acclimatised for fourteen days post-arrival and given Hydrogel along with 

tap water from date of arrival. Hydrogel was removed at Day 0, when DSS and 

water was administered. DSS in water was replaced by tap water and Hydrogel 

at Day 5. All animals were terminated on Day 8. These C57 mice were housed 

as those animals in section 2.1.2. Cages were changed weekly, but 

environmental enrichment remained constant for each cage throughout study. 

All manipulations took placed inside a changing station.  
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Table 2-4: Group ID, and study days of sampling for the CD4+ and DSS 

IBD studies. Material collection days are given for all samples analysed by 

the new 16S rRNA gene analysis methodology. 

CD4+ 
Day 
 -12 

Day 
 -4 

Day 
 3 

Day  
10 

Day  
17 

Day  
24 

Day  
31 

Day  
38 

Delivery 1-6        

1A  7 8 9 10 11 12 13 

2A  14 15 16 17 18 19 20 

2B  21 22 23 24 25 26 27 

3A  28 29 30 31 32 33 34 

4A  35 36 37 38 39 40 41 

4B  42 43 44 45 46 47 48 

         

DSS 
Day  
-20 

Day  
-16 

Day  
-12 

Day 
 0 

Day  
2 

Day  
4 

Day  
7 

Day  
8 

Delivery 1               

Delivery 2               

4%   3 11 19 27 35 43 51 

4%   4 12 20 28 36 44 52 

H2O   5 13 21 29 37 45 53 

H2O   6 14 22 30 38 46 54 

2%   7 15 23 31 39 47 55 

2%   8 16 24 32 40 48 56 

3%   9 17 25 33 41 49 57 

3%   10 18 26 34 42 50 58 
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2.4.2 Samples & storage  

Faecal samples were obtained naturally during routine weighing and study 

interventions on the dates given (Table 2-4). Faecal material was immediately 

placed aseptically into PCR-clean 1.5ml Safe-Lock tubes (Eppendorf, UK) on 

dry ice and then stored at –80°C until extraction.  

 

2.4.3 Internal DNA extraction 

DNA was extracted onsite using the DNeasy PowerSoil Pro kit (Qiagen, UK) 

according to manufacturer’s instructions using a 75µl final elution volume on 

the day before submission to CRL and stored overnight at -20°C. 

 

2.4.4 New external sequencing partner 

Frozen DNA was submitted to CRL and delivered within 48hrs to their 

sequencing laboratory in Wilmington, USA. Recovery yield and DNA quality 

was determined by fluorometric analysis (QuBit, ThermoFisher). DNA 

concentration was adjusted to specifications and amplified using broadly 

reactive 16S rRNA gene primers spanning the V3 and V4 regions. Resulting 

amplified PCR products were analysed for quantity and correct product size 

(Bioanalyzer, Agilent Technologies) then purified and amplified with primers 

containing unique sample nucleotide barcodes (Illumina). PCR products 

quality and quantity were further analysed by SYBR green qPCR (KAPA, 

Roche Biotechnologies). All samples were pooled and adjusted to a 
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normalised concentration. The DNA library pool was denatured with sodium 

hydroxide, normalised to optimal loading concentration, and combined with 

PhiX control (Illumina). Extended read lengths up to 2 X 300 bp was used for 

cluster generation and sequencing on an Illumina MiSeq. Following the 

sequencing run, the sequence data was de-multiplexed based on the 

nucleotide barcode. Sequence. fastq files were finally uploaded onto One 

Codex file share application (app.onecodex.com). The cost per sample was 

£75.  

 

2.4.5 Novel data analysis   

Raw. fastq sequencing files were downloaded from One Codex on both GSK 

and domestic internet networks via Wi-Fi connection. All computational work 

was carried as described in 2.3.2 and 2.3.3.  

 

2.4.6 Use of animals in this study 

All animal studies were ethically reviewed and conducted in accordance with 

Animals Directive 2010/63/EEC and the GSK policy on Care, Welfare, and 

Treatment of Animals.  
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Chapter 3: Primary 16S rRNA gene 

analysis experiments 
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3.1 Introduction  

The number of microbiome-based publications published annually reflects the 

number of sampling, processing, and analysis methods available to 

researchers. This figure reflects the limitations in applying a single method that 

will work in all circumstances. This point drives the organic nature and 

applications seen in the literature. Remarkably, the routine use of microbiome 

studies and NGS for in vivo model selection purposes is non-existent. The cost 

of such studies now makes it economic to embed these approaches early 

within the drug discovery and development pipeline. To create a routine 

sampling and sequencing method where none exists, proof of concept studies 

were necessary to answer key questions regarding variable input sources. 

These would be the geographical location of study animals, the acclimatisation 

period applied, the sex of the animal, and the GI niche sampled to provide the 

most useful information, taking advantage of the current provision or 

availability of the necessary techniques. At this point, 16S rRNA gene 

sequence analysis was used and all NGS work (extraction, library preparation, 

sequencing, and analysis) was outsourced to Genewiz (Plainfield, USA). 

These exploratory studies would provide understanding of the effect general 

animal handling and husbandry variables have upon data generated from the 

widest number of sampling conditions i.e., length of study, sex of the animals 

on study and from where they originate. This activity would facilitate a more 

robust experimental design going forward. 
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To align microbiome analysis with the 3Rs (reduce, replace, and refine animal 

use), all research experiments described here were conducted on surplus 

animals or those already being sacrificed at study termination. Adding 

microbiome analysis to existing study plans (rather than generating 

microbiome-specific investigations) reduced animal usage while still producing 

essential knowledge. It was intended that this approach would be continued, 

with deeper health monitoring being gleaned only from animals on study.  

In order to develop an ethical sampling methodology, the communities found 

in excreted faeces and colonic digesta would be compared to assess whether 

microbiome analysis could be carried out on cage faeces, negating the need 

to sacrifice animals. In addition to an ethical strategy, it was intended that this 

work would generate a sampling method utilising the highest degree of aseptic 

technique to avoid contamination across multiple samples. This work method 

would go on to form the basis of a standard operating procedure for future 

investigations. 
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3.2 Results 

3.2.1 Sampling strategy 

The aseptic removal of the complete mouse GI tract was performed by 

sectioning the organ at the base of the oesophagus and gently pulling it away 

from the body cavity in one movement, bisecting the organ at the anus. Once 

the complete structure was laid on a petri dish, equidistant anterior/posterior 

sections could be cut using sterilised, single-use instruments producing 

uncontaminated samples of equal volume (Figure 3-1). Digesta was pushed 

from each section in an anterior-posterior direction using a sterile scalpel. 

Samples were all snap-frozen on dry-ice. This method of terminal sampling 

was used, unaltered, for all subsequent studies.  
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Figure 3-1: The complete GI tract of a C57BL/6 mouse. Scale and bars 

indicating the sequential sectioning points from left to right, representing the 

physiological environments deemed to represent the stomach, jejunum, ileum, 

caecum, and colon. 
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3.2.2 Effect of long-term storage of digesta upon DNA yield & OTUs     

An assessment of the concentration of extracted DNA was conducted to gauge 

any effect of long-term freezer storage and the resulting values are shown for 

the niche comparison experiment (Table 3-1) and the excretion experiment 

(Table 3-2). Concentrations of DNA extracted from C57(Jax) mouse digesta 

indicated a high degree of variation between site-specific samples which was 

expected but a high degree of variability was seen in the results within each 

niche. The stomach samples had a range of 0.43-6.67ng/µl (�̅� of 2.88ng/µl), 

the jejunum samples had a range of 0.24-1.44ng/µl (�̅� of 0.72 ng/µl), the ileum 

samples had a range of 0.13-21.3ng/µl (�̅� of 5.72ng/µl), and the caecum 

samples had a range of 3.23-36.7ng/µl (�̅� of 21.68ng/µl). The DNA 

concentrations from C57(Trim) faeces and colonic digesta (Table 3-2) showed 

less inter-sample variation and a clear difference between materials with 

faeces generating a 30.6-68.0ng/µl range (�̅� of 43.7ng/µl), while the colon 

contents generated a lower range of 12.6-48.8ng/µl (�̅� of 39.4ng/µl).  

.  
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Table 3-1: Sample ID, GI niche, and concentration (ng/µl) of DNA 

extracted from C57(Jax) mouse digesta. This indicates the variability of 

resulting DNA concentrations measured after 18 months storage at -80°C. 

ID Niche DNA conc. (ng/µl) 

(ng/µl) 
JP25-1 Caecum 21.9 

JP26-2 Caecum 16.5 

JP27-3 Caecum 3.23 

JP28-4 Caecum 9.13 

JP29-5 Caecum 35.3 

JP30-6 Caecum 22.7 

JP31-7 Caecum 36.7 

JP32-8 Caecum 6.8 

JP33-9 Caecum 29.6 

JP34-10 Caecum 28.3 

JP35-11 Caecum 31.3 

JP36-12 Caecum 18.7 

JP37-13 Stomach 6.67 

JP38-14 Stomach 0.43 

JP39-15 Stomach 1.47 

JP40-16 Stomach 2.96 

JP41-17 Jejunum 1.44 

JP42-18 Jejunum 0.24 

JP43-19 Jejunum 0.54 

JP44-20 Jejunum 0.69 

JP45-21 Ileum 21.3 

JP46-22 Ileum 0.13 

JP47-23 Ileum 1.17 

JP48-24 Ileum 0.29 
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The total number of OTUs obtained from C57(Jax) faeces was 304, while the 

C57(Trim) faeces generated 303. The total number of defined phylotypes 

described using the outsourced analysis pipeline in both studies was ninety-

one. Only six phylotypes reached the species level designation, with twenty-

six genera, twenty-four families, fifteen orders, thirteen classes and seven 

phyla being noted. The only disparity between C57(Jax) and C57(Trim) 

sampling and storage was the former were kept at -80°C for >18 months prior 

to analysis, while the latter were processed after ∼1 week at -80°C. Freeze 

thaw may have affected DNA concentrations but OTU and phylotype outputs 

were comparable 
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Table 3-2: Sample ID, niche, and concentration (ng/µl) of DNA extracted 

from C57(Trim) mouse faeces. This indicates the variability of resulting DNA 

concentrations (ng/µl) after storage at -80°C for <1 month. 

ID Niche DNA conc. (ng/µl) 

JP01-1F Faeces 50.2 

JP02-1C Caecum 24.6 

JP03-2F Faeces 30.6 

JP04-2C Caecum 22.6 

JP05-3F Faeces 38.8 

JP06-3C Caecum 14.4 

JP07-4F Faeces 30.8 

JP08-4C Caecum 12.6 

JP09-5F Faeces 68 

JP10-5C Caecum 48.8 
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3.2.3 Effect of host sex upon GI community diversity 

To assess whether the sex of the host influences community diversity, 

hierarchical clustering of the OTU counts from pairs of caecal samples taken 

at CRL, GSK at time of arrival, and after two weeks acclimatisation was 

conducted using ArrayStudio. This suggested that OTUs in male and female 

caecal samples taken at each site sampled, behaved independently from the 

sex of the host. When raw p-values were calculated between the sex variable 

for the log1 of each OTU count observed from C57(Jax) mouse faeces, it was 

found that sixteen OTUs had a p-value <0.05 (thirteen of which were bacillota). 

When the FDR was applied to p-values, no difference was found between the 

diversity of each sex, illustrating that the presence of OTUs in the caeca is not 

dependant on the sex of the host. 

 

3.2.4 Effect of GI niche upon community diversity 

A simple numerical count of OTUs derived from the C57(Jax) digesta was 

made at each ecological site evaluated at the phyla level. This showed that the 

stomach contains a numerous and diverse microbiota (224 OTUs), second 

only to the colon (277 OTUs), while the jejunum and ileum were found to have 

seventy-six and seventy-one OTUs respectively (Figure 3-2). The phyla level 

of Bacteroidetes is constant at all sites while numbers of those belonging to 

the Bacillota, which include the drivers of carbohydrate breakdown, were 

lowest in the jejunum and ileum. It is also clear that diversity ranges are 

independent of DNA extraction efficiency (Table 3-1 & 3-2).  
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A detailed microbiological assessment was made by studying the proportions 

of 250/300 identified bacteria across the taxonomic levels (Figure 3-3). These 

analyses indicate that two Lactobacillus OTUs dominate the acid environment 

of the stomach and small intestine, along with multiple S24-7 OTUs. Many of 

these enigmatic members of the GI microbiota are also found in the caecum, 

which represents a homogenous environment with no dominant OTU being 

obvious from these data. This indicates that the low-pH niches, where initial 

host absorption of carbohydrates occurs, are dominated by a small number of 

mucin-integrated, acidophilic species (Flint et al, 2012). These data also 

confirm that the caecum contains a wide range of OTUs possibly fulfilling 

multiple metabolic pathways in a competitive manner (Coyte et al, 2015). This 

diversity also likely indicates a functional microbiota mirroring that of humans 

(Flint et al, 2012), possibly created by immune sculpting (Zheng et al 2019). 

The community diversities of colon contents and excreted faeces were 

compared to determine whether animals need to be sacrificed to provide 

representative samples for 16S rRNA gene analysis. It was thought that 

alterations in diversity could arise from subsequent home-cage contamination 

with external skin commensals or via post-excretion growth of facultative 

anaerobes and death of obligate species, however, this work indicates that this 

is not the case and that excreted faeces are comparable to colon contents in 

terms of its diagnostic potential.  

The Shannon Index (Shannon & Weaver, 1963) was employed to allow all 

diversity analysis to measure the richness (diversity), evenness (frequency), 

and dominance where results <1.5 are considered low diversity, >1.5 & <2.5 
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are considered medium and >2.5 are considered high (Wagner et al, 2018). 

This approach was made to all subsequent analysis to provide a common 

approach. The results of this analysis (Figure 3-4A) confirm those found by 

numerical evaluation but aligns the richness of the stomach closer to that of 

the small intestine (Figure 3-2). This is due to dominance of fewer OTUs 

lowering the richness measurement, as opposed to the lack of OTU 

dominance in the caecum. The box and whisker plot (Figure 3-4B) indicate the 

median counts more aligned to numerical the values described in Figure 3-2, 

with remarkably similar spreads across the quartiles of each niche.  

Principal component analysis (PCA) was conducted to examine the difference 

between the OTUs found in each niche (Figure 3-5). This again indicated the 

similarity in terms of OTUs from the jejunum and ileum samples and their high 

difference from that found in the caecum. It was found that the diversity of the 

stomach, not only numerically approached that of the caecum but its 

membership was more aligned than those of the small intestine.  

In addition to these illustrative comparisons of diversity, the change in 

community diversity was also statistically interrogated; the fold change, raw p-

value, and FDR being calculated from the log+1 of each taxonomically 

designated OTU count between the stomach, jejunum, ileum, and caecum 

which indicated that OTUs behave independently within a host, rather than 

across all samples. The changes in diversity or so many OTUs are more easily 

illustrated by plotting raw p-values against fold change (Figure 3-6A-C). A 

decrease shift is seen between the stomach and the small intestine 

environments (Figure 3-6A), whereas the jejunum and ileum displayed a low-
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level shift in both directions (Figure 3-6B), while a huge increase shift was seen 

between the ileum and caecum (Figure 3-6C). 
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Figure 3-2: A numerical representation of phyla found in each 

environmental niche of the C57BL/6 mouse GI tract. This indicates the 

reduction of overall diversity and specifically the phyla Bacillota (synonym 

Firmicutes) in the small intestine (jejunum and ileum) compared to that of the 

stomach and the caecum. 
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Figure 3-3: The relative abundance of OTUs identified in C57BL/6 mice at 

each given niche. This indicates a high prokaryotic diversity or richness in the 

caecum compared to the stomach, ileum, and jejunum where specific 

lactobacilli are seen to dominate the niche communities.  
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Figure 3-4: Alpha diversity analysis of each environmental niche of the 

GI tract in C57BL/6 mice. (A) Shannon Index indicating the higher richness 

of the caecum compared to all other sites analysed and (B) box and whisker 

plot showing the lower relative range of inter quartile values found in the small 

intestine compared to the stomach and the caecum.  
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Figure 3-5: Principal component analysis of the OTUs identified at each 

GI niche in C57BL/6 mice. This shows the clustering of small intestine 

community structures together compared to those obtained from the stomach 

and caecum. PCA generated using Array Studio. 
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Figure 3-6: Volcano plots indicating changes in OTU numbers between 

GI niches. Plots generated in Array Studio by plotting -log10 raw p-value vs. 

fold change for stomach vs. jejunum (A), jejunum vs. ileum (B) & ileum vs. 

caecum (C) comparing counts in C57BL/6 mice samples taken at CRL only.  
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3.2.5 Effect of excretion upon community diversity  

To determine if faecal material would be suitable as an indicator for colon 

diversity and therefore for long-term studies adhering to the 3R principles a 

relative abundance graph was generated comparing the OTUs obtained in the 

colon and from excreta (Figure 3-7). Using the mean count for each of the 

>300 OTUs identified in the five C57(Trim) mouse studied, no obvious 

difference was observed between the samples (raw p-value or FDR) when 

log+1 of counts were analysed for each OTU. This correlation is confirmed by 

Shannon diversity analysis (Figure 3-8A) and box and whisker comparison 

(Figure 3-8B). This similarity in excreted cage faeces and digesta from the 

terminal colon justifies the future use of excreted faecal material for 

microbiome studies revolving around the lower intestine rather than sacrificing 

animals.  
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Figure 3-7: The relative abundance of OTUs identified in C57(Trim) 

colonic digesta and excreted faeces. This indicates a high level of 

community similarity between colonic material and that of excreted faeces.
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Figure 3-8: Alpha diversity analysis of colonic digest and excreted faeces 

in C57(Trim) mice. (A) Shannon Index indicating the similarity in richness 

between faeces and colonic digesta and (B) box and whisker plot indicating 

the high a slight increase in spread of data from excreted faeces over colonic 

digesta. LN C is natural log of colon counts and LN F is natural log of faecal 

counts.  
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3.2.6 Effect of sampling location and transport upon community diversity  

To assess the effect of the location and the possible impact of transport 

between sites upon the microbial diversity and dynamics in mice prior to 

experimental procedures, identical samples were taken at the originating 

breeding facility in Maidstone (CRL, UK), upon arrival at GSK (Stevenage, UK) 

and after two weeks acclimatisation onsite at GSK. The raw p-values, fold 

changes and FDRs were calculated for each taxonomically designated OTU 

which changed following transport. It was found that 277 OTUs could be 

identified in caecal samples taken at CRL, while only 198 were identified in 

identical samples taken immediately post-arrival, seeing a loss of 28.6% of 

OTU diversity following a two hour journey. Two-week acclimatisation was not 

sufficient not for these OTUs to recover or rebound within samples. Of the 

OTUs that were lost during transport, thirty-three belonged to the 

Bacteroidetes phyla, suggesting that metabolic potential of the gut was altered 

in terms of complex carbohydrate harvesting (Haller, 2018), as it was shown 

in Figure 3-2 that this bacterial phyla is found with equal abundancy across GI 

niches, whereas it is the Bacillota which undergo immune sculpting 

(Santaolalla et al, 2012). Only five OTUs were found to change in population 

size during the two-week acclimatisation period. The C57(Jax) mouse GI tract 

hosted ∼55-65% of its microbiota belonging to the Bacillota phyla, with ~25-

30% belonging to the Bacteroidota across all GI tract niches. Post-delivery at 

GSK, the Bacillota were seen to rise proportionality within the GI tract to ~85-

90%. Generation of a relative abundance graph, a homogenous caecal 

community, dominated by no single organism is evident at source in CRL 
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(Figure 3-9). The subsequent transport of these mice resulted in the 

permanent reduction of OTU diversity and succession of a dominant S24-7 

phylotype in the caecum, along with an overall rise in OTUs belonging to the 

Bacillota. The dominant representative of the phylum Bacillota identified at 

CRL was a Lactobacillus sp. Numbers of this beneficial symbiont species were 

seen to fall upon transit with a potential negative impact to mucosal defence 

and the general wellbeing of the host (Nishiyama et al, 2016). The OTUs 

belonging to the Bacillota were observed to rise post-delivery, were all 

designated as members of the order Clostridiales.  

Employing the calculation of the Shannon Index across the caecal samples it 

was found that the CRL samples exhibited high richness, but the transport of 

mice resulted in a decrease in microbial diversity post-arrival at GSK which did 

not rebound after two weeks acclimatisation (Figure 3-10A). The Box and 

whisker plot of these data illustrates a common median between counts from 

each site but a wider, and more dysbiotic spread in samples taken at GSK 

(Figure 3-10B).  

Subsequent PCA analysis of the OTUs (Figure 3-11) obtained from 

sequencing pre, post-transport and after acclimatisation confirmed that GI 

microbiota following transit is highly divergent from the original diversity found 

in identical mice at source. To simplify analysis, the raw p-value was plotted 

against the fold changes (Figure 3-12) to illustrate the huge change in OTUs 

during transit (Figure 3-12A) and the relatively low level and even shifts in 

diversity between the two-week sampling occasions at GSK (Figure 3-12B).  
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Figure 3-9: The relative abundance of OTUs identified in C57BL/6 mouse 

caeca taken at source, at delivery, and after 2wks acclimatisation. This 

indicates a decrease in prokaryotic diversity and increase in several dominant 

genera which did not return to its previous levels over the two-week housing 

period.  
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Figure 3-10: Alpha diversity analysis of caecal material taken at source, 

at delivery, and after 2wks acclimatisation. (A) Shannon Index indicating a 

reduction in prokaryotic richness and (B) box and whisker plot indicating the 

widening of data in the prokaryotic diversity of the caecum during the two post-

arrival sampling opportunities compared to that derived from delivery boxes.  
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Figure 3-11: Principal component analysis of OTUs identified in caecal 

material taken at source, at delivery, and after 2wks acclimatisation. This 

indicates the clustering of results from material analysed post-arrival and the 

stability of the new microbiota over the following two weeks. PCA generated 

using Array Studio. 
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Figure 3-12: Volcano plots Volcano plots indicating changes in OTU 

numbers between sampling occasions. Plots generated in Array Studio by 

plotting -log10 raw p-value vs. fold change for CRL vs delivery at GSK (A), and 

between delivery and 2 weeks acclimatisation (B) comparing counts derived 

from C57(Jax) mice caecal samples taken at CRL & GSK. 
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3.2.7 Effect of four-month housing upon community diversity 

To better assess post-delivery microbiota stability and to understand changes 

to the microbiota of mice during acclimatisation over a longer period, diversity 

was analysed from faecal samples obtained from cohoused, male NOD-SCID 

mice over a four-month period. In this study 1006 OTUs were identified by 

outsourced processing. 

A change in diversity was illustrated between origin and the three subsequent 

sampling opportunities at GSK by creating a relative abundance graph (Figure 

3-13). By analysing relative abundance graphs based on individual OTU 

counts from across the four-month period, the dominant S24-7 OTU was seen 

to increase from ∼2% to ∼10% of the populations, while the second and third 

most populous S24-7s fell in number along with a Ruminococcus sp. (Figure 

3-13). In this study C57(Jax) and NOD-SCID samples were dominated by 

multiple S24-7 OTUs, while C57(Trim) samples were dominated by a single 

OTU belonging to the genus Prevotella.  

However, Shannon index analysis indicated a similar richness across all 

sampling opportunities (Figure 3-14A) and box and whisker analysis indicates 

a slight reduction in diversity spread or a constriction of OTUs (Figure 3-14B). 

By conducting PCA analysis (Figure 3-15), the shift in diversity, was observed 

as a permanent change to a new defined microbiota once animals were 

received which could affect study outcome. 

By analysing the p-values and FDR it was possible to observe a huge change 

in diversity affecting >200 OTUs between delivery in May to the first post-

arrival screen in June. The shift between June and July showed twenty-two 
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changes in OTU number (fifteen up and seven down), indicating a low-level 

change once mice are received. The same analysis between July and August 

at which point the study was terminated shows twelve significant changes 

which are all members of the Bacillota phylum indicting that the GI microbiota 

attained a new diversity during transit which did not change once animals were 

received.
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Figure 3-13: Relative abundance of OTUs identified in NOD-SCID faeces 

over a four-month period. This indicates the post-arrival changes in 

prokaryotic diversity which remained stable over the subsequent three months.  
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Figure 3-14: Alpha diversity analysis of NOD-SCID faeces over a four-

month period. (A) Shannon Index indicating a similar richness across time 

and (B) box and whisker plot indicating the relative stability and tightening of 

data of prokaryotic diversities when this type of analysis is conducted.  
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Figure 3-15: Principal component analysis of NOD-SCID faeces over a 

four-month period. This indicates a change in diversity post-arrival which 

remained stable for the subsequent three months. PCA generated using Array 

Studio.
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3.2.8 Dynamic OTU behaviour during community disruption 

The interpretation of OTU tables generated helped summarise changes in 

diversity across a large number of biological entities. Studying OTU behaviour 

at its numerical basis (individual NGS reads associated with a single OTU) can 

be informative during disruptive events rather than looking at proportional 

changes in OTUs or diversity within samples. Here, data illustrated how the 

majority of OTUs relating to a recently cultured bacterium, S24-7 (Ormerod et 

al, 2016), were lost during transit. However, by studying this data in greater 

detail (Table 3-3), OTU24 (green) was seen to be in low abundance at CRL 

but rose during transit, only to fall after 2-weeks acclimatisation where most 

S24-7 OTUs do not follow this pattern. OTU3 (yellow) was seen to rise 

dramatically during transit to become the most dominant community member. 

This dominance was seen to rise over the subsequent two weeks of 

acclimatisation. Through interrogation of these data at the level of sequencing 

reads, it was inferred that genera (or species as it was unclear which) within 

the S24-7 taxonomic family exhibit dynamic behaviour as the host animal 

underwent transport. Transport could have caused the host mice to experience 

stress which may have affected their microbiota including the S24/7 family. 

Table 3-3 shows that genera or species belonging to S24/7 react differently to 

these external influences, but the lack of diagnostic clarity prevents any 

understanding of which genera or species contract or proliferate under these 

specific conditions.  
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Table 3-3: Multiple S24-7 OTU designations and OTU counts for C57BL/6 

mouse faeces taken at source, at delivery, and after 2wks 

acclimatisation. indicating the decrease in numbers of one OTU post-arrival 

(24) and the increase in another (3) over the same period indicating specific 

lower-classification level behaviour. 

 Caecum 

O T U CRL GSK (delivery) GSK (2wks acclimatisation) 

20 509 450 1473 1417 1 4 1 2 0 12 0 0 

209 74 75 84 94 0 0 0 0 0 2 0 0 

222 9 1 1 0 90 80 111 56 16 4 42 51 

228 75 42 23 30 0 0 0 0 0 0 0 0 

24 487 306 937 1054 1 1 0 0 0 13 3 0 

243 143 110 586 588 1 2 0 0 0 0 1 0 

25 1002 808 619 648 1 1 0 0 1 11 3 1 

29 373 345 174 272 0 1 1 0 2 27 4 0 

298 1 1 0 0 2 0 0 0 3 4 6 0 

3 1043 1327 2824 2843 8333 5060 2460 4905 4182 6049 11220 10560 

300 162 261 217 205 0 1 0 1 0 3 1 0 

302 1 0 0 0 0 0 0 0 0 0 0 0 
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3.3 Summary 

To investigate the suitability of an outsourced 16S rRNA amplicon sequencing 

approach for the routine elucidation of microbial diversity in the murine GI tract 

during drug discovery and validation studies, five comparative analyses were 

conducted from three in vivo sampling opportunities. This work enabled the 

design of a sampling strategy and allowed the analysis of data from a 

standardised 16S rRNA gene analysis NGS protocol. In addition to providing 

experience in data handling and the development of an easily implemented 

pipeline, it illustrated the effect several basic variables had upon resulting data 

which would lead to informed sampling decisions and strategies in the future.  

Firstly, the effect host sex plays upon community diversity was assessed. This 

was to determine whether samples from both sexes would be representative 

of given murine population. Secondly, four sites along the murine GI tract were 

analysed to illustrate local community structure, indicating possible function. 

Following this, a comparison was made between digesta from the terminal 

colon and cage faeces to assess the affect elimination and environmental 

exposure has upon this material. The results of this determined whether 

samples could be generated in-life rather than only terminally acquired. The 

effect of a change in host location was then assessed and finally, the longevity 

of any community changes was explored.  

It was found that community diversity was independent of host sex. This 

confirms the work of Wallace et al (2018), who also found that the GI 
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microbiota did not alter through the oestrous cycle in C57(Jax) mice when 

analysed using a 16S rRNA gene analysis approach. Each GI niche was 

shown to contain an independent community, with richness and diversity being 

driven by, and also contributing to, the local environmental conditions. Here 

the increasing biomass/decreasing pH model descending the GI tract asserted 

by Walter & Ley (2011) was not observed as the stomach was found to host a 

numerous and diverse community, second only to that of the caecum. It was 

found that excreted faeces do not undergo any post-excretion changes during 

a period of up to 18hrs. This indicates that excreted material is representative 

of the lower GI tract, removing the need to sacrifice animals in pursuit of lower 

GI community characterisation. GI community disruption has been illustrated 

after long-term (5-day) transport across the USA (Montonye et al, 2018). 

However, no investigations have been conducted into the effect of moderate 

(~22hr) transit across the ‘research triangle’ in the Southeast of England. The 

eradication of nearly one third of OTUs identified (mostly Bacteroidetes) in 

caecal samples taken at CRL during transit would likely have an impact on the 

metabolic potential for community members and the host alike. The switch to 

a secondary community structure was subsequently found to continue for up 

to four months. These findings indicate that transport-induced changes in GI 

diversity, or dysbiosis may affect the functional role played by the prokaryotic 

population in the gut and this effect is long-lived. This may also contribute to 

the lack of reproducibility in in vivo studies conducted across distinct locations 

(Montonye et al, 2018).  
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In relation to the observation of S24-7, the use of the GreenGenes reference 

database failed to drop below the family level of classification, masking clear 

species or genera traits. It also fails to supply relevant taxonomic information. 

The culturing of S24-7 (Ormerod et al, 2016) would have done little to 

illuminate the breadth of this recently re-assigned family which has >650 

species and is now known as the Muribaculaceae (Lagkouvardos et al, 2019). 

Utilising reference databases which are not updated as discoveries are made 

inhibits understanding and confuses research.  

Although community structures were discernible during this work, the use of a 

standardised approach to taxonomic characterisation in conjunction with an 

out-of-date reference lacked granularity which hampered functional 

understanding and clinical significance. These attributes are essential in 

diagnostic microbiology and therefore a more refined analysis of the NGS data 

was still required.  
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Chapter 4: NGS Method 

Comparison using MG-RAST  
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4.1 Introduction 

In the previous chapter 16S rRNA gene amplicon characterisation of excreted 

murine faeces was shown to be equally representative of colonic digesta in 

illustrating community diversity and dynamics in a range of conditions. 

However, the data generated during this fully outsourced process, using the 

QIIME analysis methodology (Kuczynski et al, 2011) lacked diagnostic clarity 

below the family level for this study. The Greengenes reference database 

which was employed to assign nomenclature was based on data from 2013 

(McDonald et al, 2012). Although the breadth of microbiological information 

obtained was wider than that possible through classical culture, the failure to 

identify genera and species ultimately inhibited the understanding the clinical 

relevance or biological function of a member of the population. The lack of this 

information limits the usefulness of these data in terms of animal husbandry 

studies and the deployments of these methods within the specific Good 

Laboratory Practice and Veterinary landscapes of the pharmaceutical industry.  

To address this, a study was designed to determine if the processing of 

identical starting material (cage faeces) through 16S rRNA amplicon 

sequencing, DNA metagenomic, and RNA-seq transcriptomic NGS workflows 

and subsequent analysis of the resulting data through a single open source 

bioinformatic tool (MG-RAST) would provide diagnostic data of an improved 

quality which could be compared between workflows and utilised in an 

expansive routine health monitoring regime (Meyer et al, 2008). This 

improvement would be firstly assessed by the diagnostic granularity of all 



 144 

outputs by employing a range of reference databases. Secondly, below 

species level, gene function and spatial and temporal control would be 

assessed by applying relevant functional databases to the analysis.  

MG-RAST (Meyer et al, 2008) is a free-to-use tool that can be used by 

operators with only basic knowledge of bioinformatics. It provides the analysis 

of all types of sequencing data via a common interface, enabling 

parameterisation to be controlled. This would potentially enable easier 

deployment in a routine setting. Registered users can use publicly available 

datasets or upload their own data sets can be run concurrently through any a 

range of pipelines to obtain rapid interpretation of data for both taxonomy, 

abundance, and function. Once data is uploaded it is quality checked before 

analysis (.fasta and .fastq). A single, logical graphical user interface (GUI) 

makes this resource easy to understand and make successive, related 

analyses for comparison. Analysis takes seconds to complete, even if multiple 

database searches are requested. Major limitations on MG-RAST are that 

prokaryotic hits below the genera level and all eukaryotic results should be 

viewed as inaccurate (Meyer et al, 2008). The SILVA database (www.arb-

silva.de; (Quast et al, 2013), is a manually curated compendium of bacterial, 

archaeal, and eukaryotic genetic information and suite of bioinformatic tools. 

Data is divided into small (16S rRNA/18S) and large (23S/28S) 

prokaryotic/eukaryotic ribosomal subunit sections (SSU & LSU). The 2012 

release contains >3x106 prokaryotic and ∼3x105 eukaryotic entries (Quast et 

al, 2012). The RDP database (www.rdp.cme.msu.edu) is based on 16S rRNA 

sequences from Bacteria, Archaea and Fungi (Eukarya) and tools. It contains 

http://www.arb-silva.de/
http://www.arb-silva.de/
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∼3x106 16S rRNA sequences and ∼7x105 fungal 18S sequences. It is mostly 

made of incomplete sequences derived from PCR amplification (Cole et al, 

2013). The Greengenes taxonomic database (www.greengenes). Second 

genome.com) is comprised of bacterial and archaeal 16S rRNA genes and 

contains ∼5x105 full length 16S rRNA entries (McDonald et al, 2012). The 

NCBI taxonomic database (www.ncbi.nlm.nih.gov/refseq/) is manually curated 

and updated daily. It contains the names of all accession numbers or 

organisms associated with submissions to the NCBI sequence database 

(Pruitt et al, 2006). It represents the primary information source for the 

biotechnology community and is the hub for an integrated web of associated 

databases and tools. The Kyoto Encyclopedia of genes and genomes of 

KEGG server (www.genome.jp/kegg/) is a comprehensive, interlinked web of 

databases and tools for the interpretation molecular data at the functional level. 

It was instigated in 1995 as the need grew to understand gene function 

networks. Functions are stored in the KEGG Orthology (KO) database, where 

each is defined as an ortholog of other genes. Networks, relationships, and 

pathways are made visible and open further links and interactions.  

Using data obtained from this study, a comparison of these databases was 

employed to identify which is most suitable for use in semi-automated analysis 

of microbiome data as part of routine monitoring of in vivo study data. 

 

 

 

http://www.greengenes/
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4.2 Results 

4.2.1 NGS data handling   

Fourteen physical samples of digesta were submitted to Genewiz for 16S 

rRNA gene analysis, DNA metagenomics, and RNA-seq NGS processing 

(utilising co-extraction of nucleic acids). Genewiz indicated that sample 

number 8 (stomach of 495-87.1 in Cage 2) was contaminated in the laboratory 

during library preparation. The data for this sample are included in the analysis 

but must be treated with caution, although this known contaminant could have 

been deleted. Each NGS method created twenty eight (paired end) read files, 

totalling eighty four final raw .fastq sequence files for download from the 

DNAnexus server (Appendix 9.2). 

 

4.2.2 Comparison of taxonomic assemblies using MG-RAST.  

To assess the accuracy of each taxonomic database available on MG-RAST, 

the 16S rRNA, DNA metagenomic, and RNA-seq data from sample number 1 

(stomach of mouse 432-87.1, cage 1) was analysed using all options and then 

examined at the phylum and generic level. The 16S rRNA data cannot be 

processed through RefSeq on MG-RAST so taxonomic descriptions were 

found by running DNA metagenomic (12 x106 hits) or RNA-seq (0.7x106 hits) 

data sets through the suite. The data indicated Bacteroidota, Bacillota and 

Verrucomircobiota were the major phyla present, while the major genera 

identified were the Bacteroides, Clostridium and Prevotella (Figure 4-1). The 
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Greengenes database generated the most useful output from RNA-seq data 

(>2x106 hits), while DNA metagenomic data generated <10x104 hits. The 16S 

rRNA amplicon data generated ∼4x105 hits, with the major phyla identified 

being Bacteroidota, Bacillota and Pseudomonadota, and the major genera 

identified as unclassified, Barnsiella or Clostridium. This was unexpected as 

Greengenes is a rRNA database. By using the Ribosomal Database Project 

database, the highest number of hits processing of RNA-seq data (>3x106 

hits), while DNA metagenomics generated <10x104 hits. 16S rRNA data 

generated ∼4.5x105 hits. The 16S rRNA data indicated that the major phyla 

were again Bacteroidota, Bacillota and Pseudomonadota, the major genera 

decerned were Barnsiella, Clostridium or unclassified. The SILVA SSU 

database again yielded the most hits from processing of RNA-seq data 

(>5.1x106 hits), while DNA metagenomics generated <10x104 hits. 16S rRNA 

data generated ∼5x105 hits. The 16S rRNA data indicated that the major phyla 

were Bacteroidota, Bacillota and Pseudomonadota, while the major genera 

decerned were again unclassified, Barnsiella or Clostridium. While the SILVA 

LSU database cannot process 16S rRNA (small subunit data) but exceeds all 

other databases in the processing of RNA-seq data (>30x106 hits), while DNA 

metagenomics generated <5x105 hits. The data from RNA-seq indicated that 

the major phyla were Bacteroidota, Bacillota and Chordata, while the major 

genera decerned were Homo, Clostridium and Flavobacterium. Indicating that 

there was obvious human contamination in this sample.  

Comparing the taxonomic data generated in Figs. 1 – 5 (above) illustrated the 

failure of MG-RAST to generate consensus between databases and datasets. 
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This failure meant that this service could not be employed as a universal 

platform that can be employed for rapid analysis of routine microbiome data. 

RefSeq and Silva LSU databases did not recognise 16S rRNA amplicon-based 

sequences and Greengenes, RDP and SILVA (LSU and SSU), which are 

RNA-based gene databases, failed to generate extensive results from 

metagenomic DNA datasets. Additionally, RefSeq, which is a DNA sequence 

database could not provide taxonomy from RNA-seq datasets which may be 

because MG-RAST cannot align 5’ to 3’ DNA reads against complimentary 

RNA sequence reads. Excluding RefSeq, processed RNA-seq data generates 

higher numbers of taxonomic designations than the more often cited method, 

DNA metagenomics. A metagenomic approach, in terms of read numbers 

generating designated hits fell between amplicon-based and transcriptomic 

methods. It therefore illustrated the general inconsistency between data 

generated through different analysis pipelines originating from different 

sequencing methods. This was possibly due to RNA-seq data arising from 

organisms that are actively growing in a particular niche versus the sequencing 

of total DNA which could come from a range of sources; actively growing 

organisms within that niche, dead cells, DNA from food consumed and 

contaminants from environmental sources or even rRNA copy number in 

different prokaryotic species (Klappenbach et al, 2001). Some of these 

approaches also limited further analysis such as Shannon Indexing or 

biogeographical assessment which would have been useful in terms of drug 

discovery and the routine deployment of these methods within the 

pharmaceutical industry.
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Figure 4-1: The phyla and genus level diversity of C57(Trim) stomach 

digesta using the RefSeq database. Generated by passing 16S rRNA, DNA 

metagenomic and RNA-seq data through the NCBI RefSeq database on MG-

RAST.  
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Figure 4-2: The phyla and genus level diversity of C57(Trim) stomach 

digesta using the GreenGenes database. Generated by passing 16S rRNA, 

DNA metagenomic and RNA-seq data through the Greengenes database on 

MG-RAST.  
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Figure 4-3: The phyla and genus level diversity of C57(Trim) stomach 

digesta using the Ribosomal Database Project database. Generated by 

passing 16S rRNA, DNA metagenomic and RNA-seq data through the RDP 

database on MG-RAST.  
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Figure 4-4: The phyla and genus level diversity of C57(Trim) stomach 

digesta using the SILVA SSU database. Generated by passing DNA 

metagenomic and RNA-seq data through the SILVA SSU database on MG-

RAST.  
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unclassified (derived from Gammaproteobacteria) Rattus
Salegentibacter Pediococcus
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Figure 4-5: The phyla and genus level diversity of C57(Trim) stomach 

digesta using the SILVA LSU database. Generated by passing DNA 

metagenomic and RNA-seq data through the SILVA LSU database on MG-

RAST.  
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4.2.3 Comparison of functional assemblies using MG-RAST.  

To rapidly assess the output from processing large (20-50Gb) DNA 

metagenomic, and RNA-seq raw sequencing files using the MG-RAST suite of 

tools, only the KO analysis option was chosen. Firstly, this was to overtly gauge 

prokaryotic gene activity (potential and actual) in each sample. Secondly, this 

was attempted to see whether the results for a single sample would produce a 

functional agreement between the methods of data generation. To illustrate 

the results, the highest ten gene associations (or counts) for stomach samples 

(1 and 8) were shown (Table 4-1; in descending order, along with the ten 

highest counts for jejunum samples 2 and 9 (Table 4-2). The counts for both 

DNA metagenomics and RNA-seq (RNA) analysis procedures are given for 

comparison. In the stomach samples, DNA counts are higher than associated 

RNA counts, suggesting overall transcriptional activity of organisms in the 

stomach may be lower. The remaining 2515 results show a similar numerical 

relationship. The jejunum samples showed a lower level of genomic counts but 

an almost complete absence of expressed RNA counts. This numerical 

divergence was seen in the remaining 5464 results. As this may have been 

due to functional suppression in the small intestine, raw sequence files for all 

sample types were passed through KO analysis. The lack of RNA counts (and 

therefore expression) was seen in all samples taken from below the pyloric 

sphincter. This failure to genetically characterise each sample by DNA and 

RNA databases prevented identity confirmation and negated any further 

numerical or functional comparison between DNA and RNA data sets.  
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Table 4-1: The highest (mean average) DNA and RNA functional counts 

derived from C57(Trim) stomach samples (1 & 8). Generated by passing 

metagenomic and RNA-seq data sets through the KO facility on the MG-RAST 

server.  

 

Table 4-2: The highest (mean average) DNA and RNA functional counts 

derived from C57(Trim) jejunum samples (2 & 9). Generated by passing 

metagenomic and RNA-seq data sets through the KO facility on the MG-RAST 

server. 

 

  

 

 

function 1 DNA 1 RNA 8 DNA 8 RNA

rpoC; DNA-directed RNA polymerase subunit beta' [EC:2.7.7.6] 23594 3277 19671 811

lacZ; beta-galactosidase [EC:3.2.1.23] 24508 339 19674 72

uvrA; excinuclease ABC subunit A 24189 868 18835 218

carB, CPA2; carbamoyl-phosphate synthase large subunit [EC:6.3.5.5] 23596 502 17674 89

dnaK; molecular chaperone DnaK 11273 14623 9444 5363

rpoB; DNA-directed RNA polymerase subunit beta [EC:2.7.7.6] 19990 2214 16419 547

E3.2.1.22B, galA, rafA; alpha-galactosidase [EC:3.2.1.22] 16102 319 16075 77

E6.3.5.3, purL; phosphoribosylformylglycinamidine synthase [EC:6.3.5.3] 16827 493 13683 126

secA; preprotein translocase subunit SecA 14622 753 12212 251

IARS, ileS; isoleucyl-tRNA synthetase [EC:6.1.1.5] 14432 758 12197 223

function 2 DNA 2 RNA 9 DNA 9 RNA

ABC-2.AB.A; antibiotic transport system ATP-binding protein 687 0 2839 0

E2.1.1.37, DNMT, dcm; DNA (cytosine-5-)-methyltransferase [EC:2.1.1.37] 592 0 2558 0

uvrA; excinuclease ABC subunit A 719 0 2401 3

rpoC; DNA-directed RNA polymerase subunit beta' [EC:2.7.7.6] 691 0 2368 0

carB, CPA2; carbamoyl-phosphate synthase large subunit [EC:6.3.5.5] 677 0 2307 0

lacZ; beta-galactosidase [EC:3.2.1.23] 575 0 2256 0

E3.2.1.22B, galA, rafA; alpha-galactosidase [EC:3.2.1.22] 480 0 2095 0

rpoB; DNA-directed RNA polymerase subunit beta [EC:2.7.7.6] 605 0 1897 4

recG; ATP-dependent DNA helicase RecG [EC:3.6.4.12] 461 0 1824 0

E6.3.5.3, purL; phosphoribosylformylglycinamidine synthase [EC:6.3.5.3] 492 0 1767 0
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4.2.4 Assessment of DNA metagenomics analysis using MG-RAST.  

Unlike RNA-seq data generated in parallel, DNA metagenomic data appeared 

to offer a robust (if not confirmed by a second method) characterisation of the 

potential identification of gene function of the samples analysed. The KO 

workflow allowed results to be exported as .xls files, enabling simple filtering 

and graph rendering in Excel allowing easy deployment in a laboratory setting. 

This gave a clear and comparable indication of the most common prokaryotic 

genes in each sample. The most common genes identified were unsurprising 

with many of these highly conserved across prokaryotes such as the RNA 

polymerase subunits (rpoC and rpoB), the genes that are essential for protein 

secretion across all domains of life such as secA, genes associated with DNA 

replication and repair (uvrA and dnaK) and genes associated with core purine 

(DNA/RNA synthesis) metabolism such as purL (Table 4-1 and 4-2). Within 

the MG-RAST tool kit (https://www.mg-rast.org/mgmain.html.) the identity and 

function of sequence entities can be visualised on Krona http plots or as 

members of KEGG database function maps (Meyer et al, 2008). These link 

across the multiple databases in KEGG, allowing an understanding of function, 

structure, and importance in disease of a single gene. One example of a 

metabolic gene is lacZ, encoding the beta-galactosidase (EC:3.2.1.23), which 

was most highly represented in the gene complement of the stomach samples 

analysed (Figure 4-6). The lacZ gene product, beta-galactosidase and it is 

unsurprising that this ubiquitous gene was found to be the highest ranking in 

the results. Due to the huge size of data generated during DNA metagenomics 

(>2.5x106 hits per sample), classes of genes were more easily captured and 

https://www.mg-rast.org/
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communicated by this activity. Functional analysis of these sequences by 

KEGG allows the potential identification of genes involved in metabolism of 

xenobiotics which could affect metabolism of drug molecules within trials 

(Figure 4-7). 
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Figure 4-6: The relative abundance of prokaryotic gene counts and 

identities from C57(Trim) stomach digesta samples (1 & 8). Generated by 

passing metagenomic and RNA-seq data sets through KEGG database on the 

MG-RAST server suite indicating the robustness of this method. 

 

 

 

 



 159 

 

Figure 4-7: A KEGG Orthologue gene function map indicating the 

position of lacZ gene (EC.3.2.1.23). This map shows the catabolism of 

lactose, identified via the MG-RAST analysis of stomach samples (1 & 8) 

derived from DNA metagenomic sequence data indicating the potential for 

highly granular functional output. 
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4.3 Summary 

In previous work, a significant shortfall was observed in the granularity of 

taxonomic data produced using an outsourced 16S rRNA approach to sample 

characterisation. This limited the diagnostic clarity which subsequently 

inhibited the functional understanding of a biological entities identified from 

digesta samples. This limitation was due to an outdated reference database 

being used in conjunction with an established NGS method. This highlighted 

the integrated nature of any sequencing work, where the quality of each step 

in the process effects the next step and the eventual results and interpretation. 

It was therefore hypothesised that by taking control of the analysis stage of 

NGS work, taxonomic data could be more descriptively assessed and 

bolstered by functional characterisations. Here, a small sampling exercise 

generated a range of digesta sample types, which were used to generate 

comparable 16S rRNA gene analysis, DNA metagenomic, and RNA-seq NGS 

data sets. These data would form the starting material used to assess the ease 

of working with large data sets in a highly conservative computational space 

and the applicability of MG-RAST in generating both taxonomic and functional 

profiles from defined GI niches. 

This work illustrated that large NGS data sets can be easily generated. 

However, the movement, storage, and analysis of this level of output was 

problematic as described by Ding et al, (2008). The use of the MG-RAST 

server was shown to be fast and simple and requires no bioinformatic training. 

However, the simplicity of comparative analysis allowed the lack of consensus 



 161 

between reference databases, and the three NGS methods to be observed 

when taxonomic characterisation was attempted. When functional analysis 

was conducted using the MG-RAST server, DNA metagenomics generated 

detailed output but RNA-seq data generated no confirmatory output as counts 

were seldom higher than zero. This could have been due to high shipping 

temperature, incorrect handling of samples, or an inefficient method co-

extraction of RNA and DNA during the outsourced segment of NGS data 

production. Paradoxically, this work showed that too much data is as inhibitory 

to understanding, as not enough. Additionally, the excessive cost of DNA 

metagenomic and RNA-seq processing, and the crippling time taken for data 

movement precluded this method to be used in routine functional 

characterisation of GI communities (Appendix 9.2). 
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Chapter 5: Development of hybrid 

16S gene analysis method 
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5.1 Introduction 

In the last chapter a common starting material was processed through 16S 

rRNA gene analysis, DNA metagenomic and RNA-seq transcriptomic 

workflows and the resulting data were analysed and compared using a single 

bioinformatic suite of tools. This was attempted to firstly, gauge whether this 

approach could improve diagnostic granularity and secondly, to bring into 

control an essential aspect of the NGS workflow to enable rapid routine 

analysis. Perhaps naïvely, it was also considered that although technically, 

highly divergent, each umbrella-NGS method would complement or confirm 

the others using a single alignment toolbox. This significant expansion of 

scope was made by using the openly available MG-RAST server. Although it 

was shown to be an agile and diverse tool kit, significant difficulty in uploading 

raw sequencing data packets, from multiple computational infrastructures was 

a hinderance to further use. MG-RAST’s multiple taxonomic databases also 

failed to find any taxonomic consensus, leaving the outcome ambiguous rather 

than merely obscured as in the fully outsourced 16S rRNA gene analysis 

experiments. Processing DNA metagenomic and RNA-seq data through its 

functional databases worked extremely quickly and generated abundant data. 

However, the failure of any samples other than those obtained from above the 

pyloric sphincter, to generate any transcriptomic data not only removed an 

essential quality check on the validity of DNA metagenomic sequencing but 

indicated that Genewiz had employed a possibly inappropriate RNA/DNA co-

extraction method. Ultimately, DNA metagenomic and RNA-seq are entirely 
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different entities which warrant highly divergent sampling and processing 

methods to produce results of consistent quality. Their application is best 

suited to answering highly specific questions which warrants the investment 

rather than the desire to routinely characterise entire microbial populations.  

Although seemingly a failure, this work indicated that taking control of 

outsourced processes improved the quality of results. Therefore, employing an 

improved 16S rRNA gene analysis approach to population characterisation 

may offer clear results which could then be extrapolated to gene content via 

data mining. This reduction in bioinformatic scope may also work better if it 

included a new, less burdensome method of bioinformatic analysis. To this 

end, a novel pipeline was developed, leaning on the experiences in Chapter 3 

and 4, to produce a health monitoring methodology that could be routinely 

embedded within a drug discovery study workflow, allowing the visualisation 

of changes in prokaryotic populations during studies which may establish the 

role of microbiome and how this may influence the outcome of some studies 

or how it is affected by study design.  
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5.2 Results 

5.2.1 Development of alternative analysis workflow  

The disparity in both the taxa identified, and the relative ability of each 

database employed on the MG-RAST server to process each type of data 

generated in the previous experiments indicated that an alternate method of 

assembling raw data files should be employed. This idea was cemented by the 

convoluted processes by which raw data was received and managed to the 

point of analysis. It was evident from previous experiments that such a unifying 

method should be robust enough to work inside and outside a secure network, 

be computationally discreet and flexible in the data it could process and 

specific in the data it generated. The DNAstar Lasergene (Madison, USA) suite 

of bioinformatic tools was already widely used within the GSK network for PCR 

primer development and sequence alignments. Although not widely used at 

GSK, a stand-alone academic licence was acquired suite for high through-put 

next generation sequence analysis.  

The Lasergene Genomics suite of tools firstly allows the assembly of raw 

sequence file reads (.fasta) in Lasergene ‘Ngen,’ forming contigs generated on 

uploaded scaffold databases such as Greengenes or SILVA. These databases 

are free to download from each project home page (e.g., www.arb-silva.de). 

Although specific to prokaryotes, the Greengenes database was considered 

too out of date to use for the initial assembly as it was last updated in 2013. 

Therefore, the first 16S rRNA assembly carried out employed the SILVA small 
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subunit (SSU) database (Quast et al, 2013) which was downloaded to the 

laptop and used as a reference (www.arb-silva.de/no_cache/download/ 

archive/current/ARB_files /). This assembly was conducted using the 16S 

rRNA gene data generated in the previous study. The assembly took more 

than a week to process, and generated data littered with improbable eukaryotic 

members including Plasmodium falciparum. The computational size and 

taxonomic inclusivity of each of the established databases (e.g., Greengenes 

or SILVA) was not apparent when using the MG-RAST remote server. 

However, when running assemblies on a standalone laptop (however fast and 

powerful) bioinformatics at this scale became computationally slow and 

diagnostically inaccurate.  

Due to these immediate issues with resulting data, quality checking 

assemblies using Lasergene ‘Seq-Man-Pro’ became an essential activity in 

assessing the quality of processed sequence data. ‘Seq-Man-Pro’ displays 

each alignment alongside its NCBI accession number so these can be 

matched checked by eye rapidly in the NCBI’s Nucleotide, Taxonomy and 

BLAST resources (https://www.ncbi.nlm.nih.gov). Equally, gaps, base 

substitutions or run insertions can be examined closely across assemblies 

using the same tools. While checking the quality of these alignments using 

NCBI BLAST and Taxonomy databases it became apparent that bespoke 

catalogues of specified categories of microorganism can be downloaded from 

the NCBI Nucleotide website (www.ncbi.nlm.gov/nuccore) as small and 

defined .fasta files. By selecting ‘bacteria’ and ‘archaea,’ ‘RefSeq’ and ‘rRNA,’ 

a .fasta file containing 21,762 complete RefSeq 16S rRNA genes, defined to 

https://www.ncbi/
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the strain level could be generated. This bespoke reference database was 

exquisitely matched to all sequence data file types. The .fasta file generated 

by the above method was stored on the assembly laptop as a primary 

reference database for Lasergene Genomics software just as the SILVA 

database was. This reference was used again in conjunction with the 16S 

rRNA gene data generated in Chapter 4. The first assembly of 16S rRNA gene 

sequence data using this method took  seven minutes to run to conclusion 

(compared to seven days with Greengenes). The assembly generated a .astr 

file which was viewed in grid format (counts and RefSeq accession number) in 

Lasergene ‘Array Star.’ This data was devoid of full taxonomy and minimally 

assigned NCBI accession number.  

To create a full taxonomic description necessary to understand the biology 

behind the limited NCBI accession number output, an annot.txt file was created 

using Python script editor (https://www.python.org). This activity created a .txt 

file used to assign taxonomy in a subsequent annotation step in Array-Star by 

matching the accession numbers to display their full identity. This generated 

tables which show NCBI accession number, taxonomic nomenclature, and 

molecule type which were exported into Excel or Array-Studio for primary 

numerical and secondary statistical analysis. Although MG-RAST was unable 

to process amplicon-based sequence data (i.e., 16S rRNA gene) using the 

RefSeq database, this hybrid method allowed the use of the most 

comprehensive curated microbial gene catalogue presently available. 

Additionally, as the RefSeq database is updated with every new submission, 
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newer versions of the bespoke database annotation file could be created by 

re-processing a new .fasta file through the Python script.  

 

5.2.2 Array-Star variant assessment 

Although proprietary, Array-Star software allows the end-user to alter many of 

the default settings. Most impactful changes are found by toggling percentage 

identity score, trim settings, and k-mer length prior to each assembly run. It 

was hoped that a standard approach to setting each parameter could be found 

so that data was comparable across samples and studies.  

A widely accepted tenet is the setting a percentage identity score threshold for 

clustering at 97%, which is used to represent a defined cut-off for species 

similarity (Edgar, 2017). It is intended that by pragmatically setting this 

threshold, OTUs could be safely considered to represent defined biological 

entities. However, the accuracy of this assumption is a balance between the 

inclusion of error-driven calls and a strict cut off point for that inclusion. By 

lowering the percentage identity, more variants are considered as specific 

entities and conversely, by raising the percentage identity score sees a fall in 

counts but a rise in accuracy. This supposed improvement in quality ignores 

the differential degree of mutation in each V-region within many lineages of 

microorganism making true differentiation often impossible using V-region 

characterisation methods in isolation (Mysara et al, 2017). Single Illumina 

sequencing reads are most often <250 bases long, while paired end reads 

represent longer, linked spans but contain four strand extremities. Illumina 
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base calling is conducted internally using CASAVA software, which assigns a 

Phred score to each call. These quality (Q) scores relate to the probability of 

the base being incorrect using the equation p=10(-Q/10). Strand extremities tend 

to have reduced Q scores. Inclusion of these incorrectly called bases will bias 

data and invalidate taxonomic assignments. It is important then to remove or 

trim these aberrant bases from assemblies prior to taxonomic assignment of 

binned sequences.  

Trimming may be achieved by either correcting or eliminating incorrect base 

calls. Correcting depends on readjusting calls according to frequency of 

insertion, whereas elimination removes effected stretches of bases. Each has 

its drawbacks, both computationally and interpretationally. Trimming has 

therefore been widely adopted in metagenomic studies (Fabbo et al, 2013). 

Here, the effect of auto-trimming was made apparent by the highest inclusion 

of a bacteria found in shellfish (NR_043177.1, Spiroplasma penaei, strain 

SHRIMP). This was due to auto-trimming too strongly, generating a small 

contig which matched a highly conserved area of the 16S rRNA gene, 

effectively decreasing specificity. Once auto-trim was removed, results did not 

alter during subsequent changes to percentage identity and k-mer size in high-

ranking diversity and reflected the biology of the niche screened. 

Altering percentage identity scores from 75-100%, saw the resulting OTUs fall 

from 617 to 148. Changing the score again, did not affect the high-ranking 

entities in each niche, indicating high quality data. However, it is probable that 

by reducing OTUs to 148, many species with low V-region (specific) variation 

will be binned together, still creating a false diversity. Therefore, a high (97%) 
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score was employed which gave good quality output but still allowed some 

variation during binning.  

Both increasing and decreasing the k-mer size (default 17) from 10 to 31 saw 

a slight reduction in resulting OTU numbers (277 to 220 and 211 respectively). 

Again, the highest-ranking entities were not affected and as both variations to 

the default settings generated decreases in numbers it was thought that the 

default setting was best left alone (data not shown). If a conservative approach 

to OTU binning is taken 16S rRNA gene based studies would benefit from 

increasing percentage scores to 97%, with no auto-trimming and a k-mer size 

of 17. However, it would be best practice to always quality check a range of 

high and low scoring identities for accuracy post-assembly.  

 

5.2.3 Bespoke database workflow results  

Simple analysis of 16S rRNA gene analysis in Excel indicated a site specific 

microbiota, most easily seen between the stomach samples (1 & 8) compared 

to those of the lower GI tract. These samples were dominated by the genera 

Moraxella, Brevundimonas, Haemophilus, and Pseudomonas. Other common 

species unique to this niche were Staphylococcus capitis, S. aureus, S. 

caprae, S. epidermidis, and S. simiae. While the lower GI tract was devoid of 

these species, S. scuiri was found to be the only staphylococci present. Other 

Gram-positive genera belonging to the Actinomycetota phyla: 

Corynebacterium, Cutibacterium, Micrococcus and Kocuria were only found in 

these samples, not in the lower GI tract. Also, Clostridium scindens was the 
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only Clostridia found in this niche, while it and all others were found through 

the entire lower GI tract. Enterorhabdus spp., Escherichia spp., Kineothrix spp. 

and  Bacteroides spp. were not found in this niche, but in all others. The upper 

GI tract was dominated by waterborne genera (Brevundimonas and 

Pseudomonas), the Moraxella/Haemophilus group and multiple Gram positive 

genera (Corynebacterium, Staphylococcus or Micrococcus) while being 

devoid of Enterobacteriaceae and most obligate anaerobes responsible for the 

fermentative breakdown of complex carbohydrates in the lower GI tract 

(Clostridium and Bacteroides). This suggested that a niche specific microbiota 

(down to the strain level) was discernible using this newly defined method of 

characterisation. It is also shown that simple comparative analysis of this 

dataset can be achieved using the conditional formatting, hide/unhide and 

sort/filter functions in Excel. However, to uncover any less obvious details and 

to use a less subjective method of analysis, this full data set was statistically 

processed with Array Studio software.  

 

5.2.4 Alpha diversity analysis of 16S rRNA gene data 

The new method of analysing GI diversity replicated variance seen in the 

primary niche experiments (3.2.4) generating 137 defined OTUs. Shannon 

index analysis (Figure 5-1A) showed a fall in richness in the small intestine 

from the stomach which was seen in Fig. 3-4 but also showed the rise in 

richness from the caecum to the colon, a site omitted in the original sampling 

opportunity. This further validated the use of faeces as a representation of 
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colonic diversity and possible metabolic activity in mice. Box and whisker 

analysis of the same data again indicated the rise in diversity down the GI tract 

with the stomach showing the tightest spread of data (Figure 5-1B).  

Once imported into Array Studio, this data was standardised by transforming 

to a +1-log scale to allow widely varying counts to be compared equally. 

Principle component analysis was conducted (Figure 5-2). This showed the 

wide difference between niches above and below the pyloric sphincter but also 

the clustering of all samples from below including the caecum this shows that 

there is a dramatic shift in microbial diversity between the stomach (dark blue) 

and that of the niches below the pyloric sphincter (jejunum, ileum, caecum, 

and colon), which was not evident in previous analysis (Figure 5-5).  
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Figure 5-1: Alpha diversity analysis of C57(Trim) GI niches identified 

using the novel method of analysis. The Shannon index (A) indicates the 

broad change in bacterial diversity between the stomach and those niches of 

the upper GI tract and the increase in the sites of the lower GI tract while the 

box and whisker plot indicates a broadening of species down the GI tract. 
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Figure 5-2: Principal component analysis of C57(Trim) GI niches 

identified using the novel method of analysis. This indicates the broad 

difference in species diversity between niches above and below the pyloric 

sphincter of mice. PCA generated using Array Studio. 
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5.2.5 DNA extraction and CRO NGS comparison   

In the first outsourced studies, Genewiz used the DNeasy Power Soil kit 

(Qiagen-A, 2021) for the extraction of DNA from faecal disgesta for 16S rRNA 

analysis. In subsequent work, Genewiz employed the AllPrep Powerviral 

DNA/RNA kit (Qiagen-B, 2021) for the co-extraction of nucleic acids for 16S 

rRNA, metagenomic and RNA-seq workflows. The former kit is based upon 

non-biased physical (bead) material disruption, whereas the latter method 

uses physical and chemical (β-mercaptoethanol) disruption steps. Each kit 

uses different proprietary buffers and wash solutions (Qiagen A & B, 2021). 

This essentially generated vastly different starting material for each 16S rRNA 

study, which unfortunately created incomparable diversity data. The 

concurrent extraction of both DNA and RNA is an ineffective approach to 

microbiome analysis where good data is dependent on good quality nucleic 

acid. Inefficiencies at a critical stage in a costly process involving animals 

possibly terminally sampled, should not be tolerated. Therefore, a comparison 

was made between the existing method for PCR grade analysis DNA using 

the QIAmp DNeasy kit and the DNeasy Powersoil Pro kit using both suggested 

physical disruption devices (Genie centrifuge adapter and the TissueLyser II). 

The average concentration of extracted DNA using QIAmp was 5.3µg/µl, using 

Powersoil and Genie centrifuge was 144.8 µg/µl and using Powersoil and the 

TissueLyser was 263.6µg/µl. Therefore, a 4873% increase in non-biased DNA 

yield was attained by using the Powersoil kit in conjunction with the 

TissueLyser II (Table 5-1) although 260/280 ratio purity testing was not carried 

out. 
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Table 5-1: Comparison of DNA extraction methods and resulting DNA 

concentration (µg/µl) obtained from C57BL/6 mouse faeces. the Powersoil 

with Genie and TissueLyser II disruption techniques (as recommend) 

compared to that extracted using the enzymic QIAmp DNeasy method. 

 

Method Pellet (number) Faeces (mg) DNA conc. (ug/ul) 

Genie 3 40 67 

Genie 10 125 161 

Genie 10 125 169 

Genie 20 250 199 

Genie 20 250 128 

TL II 3 40 61 

TL II 10 125 296 

TL II 10 125 276 

TL II 20 250 308 

TL II 20 250 377 

QIAmp 10 125 6 

QIAmp 10 125 4 

QIAmp 10 125 6 
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Samples sent for third party analysis were processed fastest by CRL (4-weeks) 

and slowest by Qiagen (3-months). Eurofins generated data by around 8 

weeks. Genewiz left the samples for extraction and sequence analysis in a 

warehouse near Stanstead Airport for two weeks before processing. When 

samples eventually arrived at their sequencing facility in Plainfield, USA no dry 

ice was present. They conducted the contracted work and only communicated 

the issue after processing.  

The resulting raw sequence files were analysed using the novel bioinformatic 

workflow and counts for each of the 21,762 possible entities were compared 

and a Spearman’s rank correlation coefficient (Figure 5-3) was conducted 

which derives a similarity score between two variables. Here the variables 

were the company carrying out the DNA extractions and the number of 

resulting OTUs for each sequencing run. Matrix plots are given below, with 

response plots below the diagonal and Spearman ranks above which tends 

towards one, when samples compare more highly and reduces from one 

where correlation is less strong. The diagonal shows a histogram for each 

sample. The responses here are plotted on a log ten scale and 0.01 was added 

to all entries with zero counts after sequencing. Entities which scored zero 

counts across all samples were excluded prior to this analysis to remove a 

high number of data points. This left 6050 entities which are compared here. It 

was evident from this analysis that the in-house use of Powersoil kit generated 

higher scores and therefore better correlation than those samples extracted 

and run at Eurofins and Qiagen. Conversely, higher correlation was found 

between samples extracted and run at CRL although a single low ranking in-
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house sample being found was unfortunate. This work indicated that CRL 

offered the fastest turnaround time and although Qiagen generated higher 

correlation between samples, their turnaround time was the longest and they 

are not a GSK preferred supplier. Therefore, CRL were chosen for future 

outsourced sequencing work and in-house DNA extraction was the most 

reproducible method of submitting material for analysis.  
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Figure 5-3: Comparison of external NGS provider quality using a 

Spearman rank plot. by Eurofins, Qiagen and CRL sequencing labs showing 

the relationships between DNA extraction and OTUs at each indicating highest 

ranking when both activities took place at CRL.
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5.2.6 Development of SOP for 16S rRNA gene analysis 

The driving force behind these experiments was to develop a standard 

operating procedure (SOP) to deploy microbiome analysis as standard 

methodology for animal studies. This SOP could then be employed to generate 

samples of comparable quality going forward into NGS processing, so that 

resulting datasets could be compared and conclusions drawn from these 

efforts. These combined bioinfomatic experiments were designed to firstly 

illuminte the biology behind each question asked, but secondly to generate a 

knowledge base form which considered changes could be made in the future 

as technology and processes develop and evolve. The flow diagram (Figure 

5-4) illustrates the interlinked processes used to generate full taxonomic 

descriptions drawn from raw 16S rRNA gene sequence files.  

During the development of this process several technical points became 

apparent. The complete dataset of all 21,762 entries was copied from Array 

Star into Excel. This ensured that all scores were included in subsequent 

analysis. The mean average was calculated across all samples for each taxa, 

and then the taxa present in numbers below that of the number of samples 

taken, was hidden from the analysis pipeline. This ensured that any graphs 

generated are not littered with low scores for organisms in the reference 

dataset making interpretation easier. 
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Figure 5-4: A flow diagram indicating the novel 16S rRNA gene analysis 

workflow. Original .fasta format in conjunction the Lasergene suite and the 

use of Python script to create an annotation file thus generating detailed 

taxonomic characterisations from all classes of sequence data. 
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The resulting stacked graphs generated in Excel were conditionally formatted 

(high to low) so that the comparative biology of each sample became easier to 

understand highlighting the keystone species. This allowed diversity to be 

more readily appreciated. When the OTUs were arranged alphabetically it 

became apparent which species and therefore which phyla and genera are 

present in a sample. Grouping bacterial species like this allowed both high 

level and extremely granular data to be represented.  

The issue of generic granularity due to 16S rRNA gene similarities still exists 

for the Enterobacteriaceae. However, although this method was unable to 

identify easily cultured bacteria, it was able to identify >500 other unculturable 

bacteria to the strain level. The drawback of culture-based techniques is that 

they only identify a limited number of species. By reassessing our view of what 

is possible and what is not by understanding the shortcomings of each 

technique indicates a depth of knowledge rather than a failure of the method 

employed. Once OTU tables are generated in this way, individual phyla, 

genera or families can be lifted from the mass and inspected across all 

samples in a study in isolation. Samples can be hidden in Excel allowing data 

from litter mates or cage mates be compared at the species/strain level.  
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5.3 Summary 

The work described above represents a solution to the previous findings that 

fully and partly outsourced 16S rRNA gene analysis, DNA metagenomic, and 

RNA-seq methods of taxonomic characterisation were equally ill-suited to the 

routine production of accurate diagnostic data from the GI tract of the mouse.  

This work involved the generation of a novel bioinformatic tool by pairing an 

openly available reference database and a proprietary software package to 

produce a functionally descriptive output. This key step forward in diagnostic 

granularity was augmented by an assessment of nucleic extraction techniques 

and sequencing partners. The reference database used here was a .fasta copy 

of the RefSeq, fully curated list of full 16S rRNA gene sequences. As such, it 

provided a prokaryotic-focused reference, aiding rapid and accurate 

alignments as an annotation using the Lasergene Array-Star suite of tools. 

This pairing was made possible by creating a bespoke computational device 

capable of running alignments as a network-free, standalone tool. 

By taking experimental control of the input of nucleic acids and by applying a 

novel bioinformatic tool to the analysis phase, the previously observed lack of 

diagnostic clarity was removed. Additionally, by leaving only the sequencing of 

high-quality DNA to an expert provider of NGS, a repeatable and cost effective 

workflow was established and a formal SOP created (Appendix 9.1). This will 

allow detailed characterisation studies to take place in a comparable manner. 

This sets a standard for the application of this technique in drug development 
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studies. By applying this analytical technique across multiple murine studies, 

an awareness of the models used and how their microbiota is modified by the 

administration of therapeutic agents or disease simulations will increase. It is 

hoped that from this increasing body of data, study-specific markers will 

become apparent which will aid understanding of the underlying biology and 

contribute to more informed decisions and study designs in the future which 

ultimately augment drug discovery. 
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Chapter 6: Application of hybrid 

16S gene analysis method  
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6.1 Introduction 

In the previous chapter both the bioinformatic pipeline process and the 

extraction of nucleic acids were removed from the initial, fully outsourced 

method of NGS characterisation. Firstly, a hybrid bioinformatic process was 

developed which worked within a conservative computational space, 

generated repeatable results of species-level granularity, and which could be 

readily updated. Secondly, a superior method of nucleic acid extraction was 

evaluated and introduced as a standardising feature of all pre-sequencing 

work. These advances, added to the sampling method previously described 

meant that only the sequencing runs were to be outsourced by a CRO. The 

comparative testing conducted between four CROs indicated that CRL 

supplied a consistently robust submission, delivery, sequencing, data sharing 

process and was a preferred supplier. Therefore, CRL was chosen as the 

external provider of NGS for subsequent studies. These advances enabled the 

development of an SOP which laid out every step of a routine health monitoring 

NGS process, enabling reproducibility in a divergent field. With this process in 

place, the diagnostic capabilities of the hybrid 16S rRNA gene analysis-based 

approach could now be focused upon relevant disease areas to help gain 

understanding of the impact of disease generation to members of the GI 

microbiota and to study the feasibility of deploying microbiome analysis 

routinely during in vivo studies. This real-world application would allow the 

detailed quantification of species-level diagnostics based on the analysis of 

ethical material throughout studies, allowing the visualisation of the fate of 
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species generated by different classes of disease instigation and amelioration. 

This work may uncover both the effect of administration upon the microbiota 

and the microbiota upon the host and disease progression, a link which is 

seldom found (Fischbach, 2018). 

 

6.1.1 CD4+ cellular induction model 

A study was designed to evaluate the effect of two refinements to the 

husbandry of this IBD model but carry out the study as a direct mirror of a real 

investigation, employing normal study procedures (i.e., vehicle dosing, 

weighing, and handling). It was hoped that adverse effects (i.e., body weight 

loss and clinical signs) could be reduced without affecting the development of 

colitis while maintaining the robustness of the endpoints (i.e., colon density), 

body weight and clinical scores, measured between PBS controls and CD4+ 

recipients.  

The success of this model of IBD is also thought to be dependent on the 

bacterial load of the GI tract (Guarner, 2003). As immunocompromised mice 

have an innately and environmentally altered prokaryotic diversity (Zheng et 

al, 2019), providing food and water containing low levels of these pathogens 

is thought to assist in the development of disease. By keeping PBS and CD4+ 

groups of C.B-17/IcrHsd-PrkcdSCID mice in non-sterile and sterile 

environments the strength of outcome could be observed according to the 

possible increase in bacterial burden in the non-sterile group. Secondly, the 

animals were to be given diet gel and soaked food from Day 18 as animals 

used in this model typically show signs of dehydration and weight loss due to 
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the thickening of the colon as disease progresses towards the end of the study. 

This leaves the animal less able to absorb water resulting in loose faeces 

which is expected at around Day 30. Providing additional liquid in the diet could 

allow greater absorption, reducing visible signs of dehydration and weight loss, 

however, it may also increase levels of diarrhoea due to loss of normal 

functionality. By employing the 16S gene analysis to this study, the bacterial 

numbers in both sterile and non-sterile groups in a CD4+ study would be 

measured for the first time in addition to species level identifications through 

the study, unlike the reliance on subjective scores and terminal examination of 

the colon architecture.  

 

6.1.2 DSS chemical induction model  

In this model the severity of colitis is influenced by several factors, including 

the DSS concentration (typically 1-10%), the susceptibility of the mouse strain 

used, and the duration and switching of DSS administration. DSS-induced 

colitis can be either acute or chronic; acute colitis is achieved through 

administration of single cycle of DSS, whereas chronic colitis is achieved 

through the application of repeated cycles of DSS, interspersed with periods 

of normal drinking water administration. Whilst similar pathological changes 

are seen in both approaches, the chronic model of DSS induced colitis 

replicates some pathological changes seen in human disease that are not 

seen in the acute model. In addition, the withdrawal of DSS can lead to disease 

resolution, allowing investigation of the mechanisms controlling epithelial 

repair and resolution of inflammation (Munyaka et al, 2016). Signs of disease 
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can appear as early as one day after DSS administration, with changes in the 

expression of epithelial cell tight junction proteins, which is thought to 

contribute to impaired barrier function. Altered expression of tight junction 

proteins have also been observed in human IBD. The cytokine profile observed 

after DSS administration has indicated that Th1 and Th2 pathways are both 

implicated in this model (Munyaka et al, 2016). The aim of this study was to 

observe the optimal concentration of DSS in conjunction with wild type 

C57BL/6 mice under present husbandry and facility confines. Again, it was 

hoped that measuring fluctuations in prokaryote species and number 

throughout a DSS study for the first time, a link between dose-related 

pathology and community structure could be made. Additionally, it was hoped 

that any physiological repair of the GI tract after administration could be linked 

to changes in the prokaryotic community structure.  
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6.2 Results 

6.2.1 Description of inflammation in the CD4+ induction model of IBD  

At the termination of the study (Day 38) eyelids and colons (as sites of 

inflammation) were removed and underwent histological preparation, 

haematoxylin and eosin staining, and scanning. Images of the colon 

representing all groups (sterile and non-sterile PBS and CD+) are shown (Figs. 

6-1A & B and 6-2A & B). These indicate the lack of cellular infiltration in the 

PBS groups and the presence of proliferating lymphocytes in the mucosal 

surfaces of the colon indicating the successful development of the disease 

model in C.B-17/IcrHsd-PrkcdSCID mice. Although, moderate structural 

changes to the topography of the colon were formed by the number of 

mononuclear infiltrates causing hyperplasia and apoptosis in the CD4+ 

recipients, none was observed in the PBS groups. Neither was a perceptible 

difference observed between sterile and non-sterile groups. In addition to 

colonic images, histological examination of eyelids indicted the presence of 

high numbers of CD4+ infiltrates. This data provides cellular confirmation of 

the clinical signs (squinting) observed (Figure 6-3). This graph also indicates 

the difference in clinical signs observed between the CD4+ and PBS control 

groups which reflects the externally observable indications of disease.  
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Figure 6-1: Haematoxylin and eosin-stained C.B-17/IcrHsd-PrkcdSCID 

colon at termination of CD4+ study. (A) representing the sterile PBS group 

and (B) representing the non-sterile PBS group in the CD4+ transfer model. 

Both images indicate the lack of lymphocyte infiltration (cells stained blue) in 

comparison to Fig. 6-2. Sections and images generated by the Non-clinical 

Histology and UK Pathology teams (GSK).  

 

  A 

  B 
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Figure 6-2: Haematoxylin and eosin-stained C.B-17/IcrHsd-PrkcdSCID 

colon at termination of CD4+ study. (A) representing the sterile CD4+ group 

and (B) representing the CD4+ non-sterile group in the CD4+ transfer model. 

Both images indicate the presence of large numbers of lymphocytes (cells 

stained blue) and successful generation of the disease model. Sections and 

images generated by the Non-clinical Histology and UK Pathology teams 

(GSK).  

  A 

  B 
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However, it also shows the subjective nature of visual observations as peaks 

and troughs seen here are common in all groups (going against disease trend). 

The dates with low observations (Days 20, 27 and 34) were weekends when 

staff unaccustomed to the study were required to record subjective events 

during overtime. 
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Figure 6-3: Total daily clinical observations made of C.B-17/IcrHsd-

PrkcdSCID mice during daily welfare examinations throughout the CD4+ 

transfer study. These signs were hunching, lethagy, eye inflammation, 

squinting, anal swelling, sore feet, abnormal respiration, straining, reduced 

group interaction, and piloerection. 1A (non-sterile PBS), 2A/B (non-sterile 

CD4+), 3A (sterile PBS) and 4A/B (sterile CD4+).  
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In addition to clinical signs, daily body weights were recorded for all groups in 

the CD4+ transfer study. The CD4+ recipients’ weight decreases throughout 

the study as disease progression takes place following CD4+ transfer on Day 

0 (Figure 6-4). Clinical signs and weigh plateau or loss both begin to be 

observed at Day 16 post-transfer (Figs. 6-3 and 6-4). The PBS control groups 

exhibit a slowing of natural weight gain towards the end of the study while the 

CD4+ recipient groups all suffered weight loss after Day 23. The trends for 

each group are consistent from beginning to the termination of the study. 

However, there is evidence of non-random selection at study commencement 

with the CD4+ recipients all weighing more than the PBS control groups in the 

original weight measurements.  
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Figure 6-4: Daily body weights of C.B-17/IcrHsd-PrkcdSCID mice on each 

day of the CD4+ study. the adoptive CD4+ cell transfer study of IBD. Groups 

1A (non-sterile) & 3A (sterile) are PBS controls and 2A, 2B (non-sterile), 4A & 

4B (sterile) are CD4+ recipients. 
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6.2.2 Prokaryotic diversity in the CD4+ induction model of IBD 

The cellular proliferation of naive CD4+CD45RBhigh lymphocytes when 

transferred into an immunocompromised mouse, is initiated by GI localisation, 

tissue infiltration and direct contact with commensal bacteria (Kjellev et al, 

2006). As immunocompromised mice possess an environmentally and innately 

altered GI microbiota (Zhang et al, 2019), it was hypothesised that 

environmental microorganisms may augment proliferation. These could 

originate from the water, diet, or cage environment and so a study was 

designed to evaluate whether sterile or non-sterile conditions affected disease 

progression in the absence of a research antagonist.  

The diversity of all pooled faecal samples was analysed by compiling a 

Shannon index to normalise quantitative OTU data between the sterile and 

non-sterile groups and between the CD4+ recipients and the PBS control 

groups (Figure 6-5). These analyses show that community diversity increased 

during the first week post-arrival in all groups but the sterile CD4+, which has 

not been found in other studies. No other clear pattern of community behaviour 

is seen in these plots. By comparing the counts across all sampling points and 

including replicates at arrival and the two cage samples provided by the CD4+ 

recipients (per sterility group) it was possible to generate p-values and 

subsequently calculate the FDR using Array Studio. This statistically showed 

that there was no difference in community composition between CD4+ and 

PBS or sterile and non-sterile.  
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Figure 6-5: Alpha diversity analysis of C.B-17/IcrHsd-PrkcdSCID mouse 

faeces throughout the CD4+ study. The Shannon index of prokaryotic OTUs 

found in C.B-17/IcrHsd-PrkcdSCID mouse faecal output comparing diversity 

at delivery with the CD4+ recipients and PBS controls. 
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In addition to the use of Shannon indexing to describe changes in community 

diversity, taxonomic characterisation of each C.B-17/IcrHsd-PrkcdSCID 

mouse faecal sample was undertaken (Figure 6-6). Using this method of 

illustrating changes in diversity allowed the detailed understanding of how 

successful disease progression in the CD4+ model effected species dynamics. 

Of the original 322 OTUs named using the hybrid bioinformatic method 

described here, only thirty-six had a mean average of >48 in this analysis. The 

p-values and FDRs were calculated using the OTU output and showed no 

significant changes between the sterile, non-sterile, CD4+ and PBS groups.  

However, when the thirty-six OTUs are illustrated using a stacked bar chart 

with a specific a colour code (Figure 6-6), it is possible to see that 

Staphylococcus lentus (Figure 6-7 top), S. cohnii, S. vitulinus and 

Sporosarcina pasteurii (Figure 6-7 bottom) all increased in numbers through 

the period of the study. The staphylococci are skin commensals may also 

inhabit the GI tract of healthy mice, while Sporosarcina (formally Bacillus) 

pasteurii is an environmental spore former which can inhabit inhabits 

nutritionally low, external surfaces. The rise in bacterial numbers in all CD+ 

and PBS groups regardless of sterility status, possibly shows environmental 

conditions post-delivery, (such as the use of Aspen wood chips instead of 

highly processed Uber-dry at source), which were more conducive to 

staphylococcal proliferation. Novel transmission from the new facility 

environment regardless of the engineering controls put in place using IVCs 

(e.g., enclosed change stations) could also be implicated here. The former 

represents a factor in the reproducibility of studies across facilities and the 
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latter represents a short fall in the effectiveness of IVCs which if extrapolated 

to the transmission of viruses presents a husbandry technique unfit for 

purpose. Both staphylococci and Sporosarcina pasteurii express elevated 

levels of urease which breaks down urea resulting in the release of ammonia 

which is found in long-term studies where litter is not changed completely or 

regularly (Washington & Peyton, 2016). S. pasteurii is also able to precipitate 

calcite which is often found affixed to the bases of dirty rodent caging (Chou et 

al, 2008). 

This taxonomic analysis confirms the statistical results indicting that there was 

no difference between sterile and non-sterile groups. It does however reveal 

the community structure at source and how it changes upon delivery. The 

transfer of CD4+ cells or the onset of weight loss and other clinical 

manifestations clearly noted during daily observations (hunching, lethagy, eye 

inflammation, squinting, anal swelling, sore feet, abnormal respiration, 

straining, reduced group interaction, and piloerection). It is possible that the 

hyperplasic but structurally unchanged topography of the GI tract in these 

cohorts allows the maintenance of a stable community structure with only 

marginal ingress by species made possible by changes in cage litter which are 

advantageous to environmental bacterial species capable of breaking down 

urea.Here it has been shown that disease progression may be driven by 

urease-positive, dermal, or environmental bacterial species rather than the 

expected GI microbiota which were found to not change during the study in 

any group. It may be that the push into pathology is driven by acquired species 

which cause additional discomfort to the animals on study.  
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Figure 6-6: The relative abundance of OTUs obtained from C.B-17/IcrHsd-

PrkcdSCID mouse faeces throughout the CD4+ study. This graph indicates 

the changes in prokaryotic diversity post-arrival and the subsequent changes 

throughout the study between the sterile and non-sterile groups. The  day of 

study at which point samples were obtained (e.g., -6) is indicated, along with 

the sterility status of the group (e.g., Non or Sterile), and whether the group 

was a CD4+ or PBS recipient.
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Figure 6-7: Two examples of bacterial species increasing in prevalence 

throughout the CD4+ study. Staphylococcus lentus (top) and Sporosarcina 

pasteurii (bottom) seen across all groups of C.B-17/IcrHsd-PrkcdSCID mice. 

The  day of study at which point samples were obtained (e.g., -6) is indicated, 

along with the sterility status of the group (e.g., Non or Sterile), and whether 

the group was a CD4+ or PBS recipient . 
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6.2.3 Description of inflammation in the DSS model of colitis  

Classically, the shortening and thickening, or tubularisation of the GI tract in 

mice during DSS administration is accompanied by rigidity and loss of function 

(Rieder & Fiocchi, 2008). Here, defining the GI topography by the examination 

of haematoxylin and eosin stained sections of the GI tract was made possible 

in all dose groups at study termination. This histological work illustrated the 

similarity in structure between those representing the H2O control group 

(Figure 6-8A) and those illustrating a healthy GI tract (Figure 1-2). This 

structure, along with the lack of clinical signs, normal weight gain, and the 

absence of changes in prokaryotic diversity indicated a healthy GI tract. 

Sections from the 2% dose group (Figure 6-8B) shows a uniform change in GI 

structure at termination, with inflammatory ingression and hyperplasia. The 

section from the 2% dose group indicated further signs of microvilli architecture 

destruction and influx of inflammatory cells from the lamina propria (black 

arrow) along with a loss of normal glandular architecture possibly indicating 

previous ulceration and subsequent repair (Figure 6-9A). The section 

representing the 4% dose group is shown to be completely infiltrated with 

inflammatory cells and devoid of all functional achitecture (Figure 6-9B), which 

must have impacted normal absorbtion and functionality contributing to rapid 

weight loss. This analysis was useful in assessing the affect local architecture 

may have had upon the associated microbiota.  
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Figure 6-8: Haematoxylin and eosin stained C57BL/6 colon at termination 

of DSS study. (A) representing H2O control group with no cellular changes in 

evidence and (B) indicating cellular proliferation (cells stained blue) and 

inflammatory swelling seen in the 2% DSS dose group. Sections and images 

generated by the Non-clinical Histology and UK Pathology teams (GSK).  
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Figure 6-9: Haematoxylin and eosin stained C57BL/6 colon at termination 

of DSS study. Cellular infiltration (black arrow) by mucosal immune cells seen 

in the 2% DSS dose group (A) and (B) cell infiltrate (cells stained blue) within 

an ulcerated area of mucosa and loss of mucosal layer and functionality seen 

in the 4% DSS dose group. Sections and images generated by the Non-clinical 

Histology and UK Pathology teams (GSK).  
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Along with analysing the microscopic architecture by histology, a standard post 

mortem parameter used to measure the impact of DSS upon the physiology 

and functionality of the GI tract is colon density. This provides an organ-wide, 

macroscopic view of the altered environment in which the host’s GI microbiota 

resides. A numerical density value is achieved by dividing length in  mm 

(Figure 6-10A) by weight in grams (Figure 6-10B). This was carried out and is 

plotted in Figure 6-10C. The length of the GI is dose-linked with the 4% dose 

group’s length being half of that found in the H2O control group. However, 

organ weight was found to be uniformly increased in the 2%, 3% and 4% dose 

groups (170-260mg) when compared to the H2O control group (145-195mg) 

(Fig. 6-10). This may indicate that water-driven hyperplasia and subsequent 

loss of epithelial cells is linked to cellular infiltration. Clustering of the eight 

values from each dose group indicated that all dose groups had a greater 

density value than the H2O group, but are grouped together with no dose 

relationship being evident.  
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Figure 6-10: Comparisons of C57BL/6 colon attributes at termination of 

DSS study. The length (A), weight (B) and density (C) of the C57BL/6 colons 

at termination of the DSS study shown according to dose group. 

 A 

 B 

 C 
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As with the CD4+ study, in-life observations allowed disease progression or 

onset of welfare issues to be picked up during the study without the need to 

sacrifice the animal. Here, externally observed clinical signs were noted to give 

a numerical indictaion of disease progression and highlight animals which may 

require veterinary assistance or culling. These signs were hunching, lethagy, 

eye inflammation, squinting, anal swelling, sore feet, abnormal respiration, 

straining, reduced group interaction, and piloerection. The combined scores 

for each dose group show a range of clinical manifestations and the subjective 

nature of their observation (Figure 6-11), and the inherant varibility found in in 

vivo models is illustrated by a single finding in the H2O control group. Six 

clinical signs were observed in the 2% DSS group of eight animals, while 

thirteen were observed in the 3% group. A total of thirty eight signs were 

observed in the 4% dose group by termination date. This reflects the decay in 

GI functionality in these high dose animals. Comparing this data with diversity 

is essential in understanding the effect of DSS upon the microbiota and the 

effect of DSS upon the host. It was found that clinical signs were only observed 

from Day 4 (Figure 6-11).   
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Figure 6-11: Total daily clinical observations made of C57BL/6 mice on 

each day of the DSS study. This graph shows data for the duration of the 

study according the dose groups indicating the difference in observations in 

the 4% DSS dose group compared to the the 3% and 2% groups. These signs 

were hunching, lethagy, eye inflammation, squinting, anal swelling, sore feet, 

abnormal respiration, straining, reduced group interaction, and piloerection.  
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DSS causes loss of membrane function and junction strength followed by 

cellular apoptosis and ultimately the destruction of the fine microvilli which 

reduces the host’s absorptive ability, removing and immediate host-

microbiome interface, inhibiting faecal pellet formation (Anbazhagan et al, 

2018). It is hypothesised that these three factors would affect prokaryotic 

diversity in the colon which has been shown to be measurable in faeces. Body 

weight was used as an in-life indicator of GI function (Figure 6-12) and here it 

was found that the H2O control group continued to put on weight as healthy 

animals should throughout the study. This group was also seen to put on more 

weight after the provision of Hydrogel. The 2% dose group were shown to fall 

in weight through the study but regain this at DSS removal. The 3% dose group 

was seen to lose around 10% body weight but were also found to slightly gain 

weight in the last day of the study after DSS had been removed. All animals in 

the 4% dose group lost between 10-19% body weight by the termination day 

(Day 8). The loss of colonic function in this group continued to take effect after 

the removal of DSS and the provision of Hydrogel, which aided the lower dose 

groups to functionally recover. Therefore, in the 4% dose group, the chronic 

model of IBD was not found, rather the acute loss of GI function caused 

significant insult and injury to these animals. Theoretically, the lower doses 

(2% and 3%) where weight rebound was observed were more representative 

of chronic IBD which was an initial driver for this investigation.  
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Figure 6-12: Daily mean averaged body weights of C57BL/6 mice in DSS 

dose groups. This graph shows the dose groups (H2O, 2%, 3%, 4%) across 

the duration of the DSS study. It shows the normal weight gain of the H2O 

group, the rebound of the 2% group, the plateau of the 3% group, and the 

decline of the 4% group.  
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A confounding factor in the DSS study was the administration of Hydrogel at 

delivery until DSS dosing (Day 0), and then from when dosing had finished 

(Day 5) until termination (Day 8). This material was provided at delivery to 

introduce the mice to this substrate and after dosing to augment recovery and 

weight gain. Hydrogel overtly provides 98% sterile water along with 0.07mg 

protein, 0.9mg carbohydrates, 0.9mg dietary fibre, 20.4mg calcium, 23.9mg 

phosphorus, 25.1mg potassium and 23.6mg sodium (www.clearh2o.com 

/resources). When water consumption was analysed during dosing and 

afterwards (Figure 6-13), it was found that mice in all dose groups prefer 

Hydrogel to the water provided. The added electrolytes and sources of 

carbohydrate and protein could affect the microbial diversity in the post-dose 

period. As no measurements of water consumption were taken prior to dosing, 

only changes in microbial diversity indicated this effect.  

This factor is further confounded as it is known that DDS (a ribose sugar) is 

sweet to the pallet which drives successful self-administration of this caustic 

substance to the mice on study. All dose groups were found to increase intake 

of water when Hydrogel was removed (Day 0) and the only dose group which 

showed a decrease in DSS uptake (Figure 6-13; Day 4) was the 4% group 

where clinical signs were noted (Figure 6-11). When DSS was removed and 

replaced by water and Hydrogel, water consumption fell to ∼15% of that in all 

dose groups during its withdrawal.  
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Figure 6-13: Daily mean averaged water consumption values in C57BL/6 

mice in DSS dose groups. This graph indicates the period of DSS 

administration and subsequent replacement with water and Hydrogel. The fall 

in water consumption indicates the preference for Hydrogel over water when 

both were made available.  
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6.2.4 Prokaryotic diversity in the DSS mouse model of IBD 

The loss of normal architecture is thought to massively impact the microbial 

community structure and function. Tracking prokaryotic community structures 

in the presence of GI injury was initially measured here by generating a 

Shannon index from the original OTU table (Figure 6-14). There was a fall in 

diversity at delivery which was seen in all earlier work apart from the CD4+ 

study, followed by only minimal fluctuations until dose administration on Day 

0. Administration of DSS saw the reduction of diversity in all dose groups. 

However, the reduction in diversity was greatest in the 2% dose group, with 

the lowest change in overall diversity found in the 4% dose group. However, 

the diversity in the H2O group also changed in concert with dose groups, while 

never being exposed to DSS.  

Administration of DSS in drinking water and the removal of Hydrogel occurred 

on Day 0. It was shown by histology and colon density that the differing stages 

of injury resulted in dose-specific topography, in an equally dense tissue but in 

a dose-related length. Although hyperplasia was found at termination in the 

2% group, ulceration indicated possible characteristics of repair by study 

termination. In-life observations indicated that clinical signs become apparent 

in the 4% dose group on Day 4 along with the 2% dose group, while the 3% 

dose group showed signs on Day 5. Weight loss was recorded in all groups 

from Day 4 (Figure 6-12). 
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Figure 6-14: Alpha diversity analysis of C57BL/6 mouse faeces 

throughout the DSS study. This indicates the overall similarity in changes in 

diversity regardless of dose between 2%, 3% and 4% groups and the change 

in H2O control group possibly due to changes in sources of hydration  

throughout the study. 

0

0.5

1

1.5

2

2.5

3

3.5

-19 -16 -12 0 2 4 7 8

Sh
an

n
o

n
 in

d
ex

Study day

Shannon index (DSS)

H20 2% 3% 4%



 216 

Water consumption was seen to increase in all groups from DSS 

administration until it falls in the 4% group on Day 2 (Figure 6-13). These data 

show a lag in effects of DSS administration across all dose groups and a 

common period of observable measurements taking place between Day 1 and 

Day 5, at which point DSS was removed. 

By looking at the Shannon index created for this period it is seen that diversity 

remains reduced in all dose groups until termination. However, more granular 

taxonomic structure of faecal samples across this same period (Figure 6-15). 

A lag is also evident, with no changes to bacterial species on Day 0 in any 

group but all (including the H2O control group) had undergone a shift in 

microbial structure by Day 2. However, a rebound in bacterial species is seen 

in all groups from Day 4, when clinical assigns, weight loss and water 

consumption had all been affected and GI architecture altered. 

Key bacterial species seen to fluctuate during the dosing period include 

Ligilactobacillus apodemi and Akkermansia muciniphila (Figure 6-16 top and 

bottom). B. caecimuris is only seen in small numbers until DSS administration 

(Day 0) at which point it increases >9-fold in all dose groups (Day 2) reducing 

to >4-fold (Day 4) remaining present higher than originally in dose groups until 

termination. The opposite effect is seen with L. apodemi which is seen to 

increase ∼100-fold in the H2O group during removal of Hydrogel (Day 2 to Day 

4), returning to pre-dose levels until termination. A. muciniphila decreases in 

numbers by ∼50% in all dose groups during initial administration (Day 0) of 
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DSS but rises in dose groups while DSS is still present to original levels but 

sees a 10-fold increase after the removal of DSS (Day 5)
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Figure 6-15: The relative abundance of OTUs obtained from C57BL/6 

mouse faeces throughout the DSS study. This graph indicates the changes 

in prokaryotic diversity post-arrival and the subsequent changes throughout 

the study between all dose groups (H2O, 2%, 3% & 4%) of C57BL/6 mice 

across the DSS study indicating the post-delivery change in diversity and that 

during DSS administration (red box) and replacement with water and Hydrogel. 

The  day of study at which point samples were obtained (e.g., -6) is indicated, 

along with the dose percentage group (e.g., 4%).  
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Figure 6-16: Two examples of DSS-driven bacterial prevalence 

throughout the DSS study. Ligilactobacillus apodemi (top) and Akkermansia 

muciniphila (bottom) seen across all groups of C57BL/6 mice in all dose groups 

(H2O, 2%, 3% & 4%) throughout the DSS study. 

 

 

 

 

0

500

1000

1500

2000

2500

3000

-1
9

 D
EL

-1
6

 H
2

O

-1
6

 2
%

-1
6

 3
%

-1
6

 4
%

-1
2

 H
2

O

-1
2

 2
%

-1
2

 3
%

-1
6

 4
%

0
 H

2
O

0
 2

%

0
 3

%

0
 4

%

2
-H

2
O

2
 2

%

2
 3

%

2
 4

%

4
-H

2
O

4
 2

%

4
 3

%

4
 4

%

7
 H

2
O

7
 2

%

7
 3

%

7
 4

%

8
 H

2
O

8
 2

%

8
 3

%

8
 4

%

C
o

u
n

ts

Study day and dose % 

Ligilactobacillus apodemi (DSM 16634) 

0

5000

10000

15000

20000

25000

30000

-1
9

 D
EL

-1
6

 H
2

O

-1
6

 2
%

-1
6

 3
%

-1
6

 4
%

-1
2

 H
2

O

-1
2

 2
%

-1
2

 3
%

-1
6

 4
%

0
 H

2
O

0
 2

%

0
 3

%

0
 4

%

2
-H

2
O

2
 2

%

2
 3

%

2
 4

%

4
-H

2
O

4
 2

%

4
 3

%

4
 4

%

7
 H

2
O

7
 2

%

7
 3

%

7
 4

%

8
 H

2
O

8
 2

%

8
 3

%

8
 4

%

C
o

u
n

ts
 

Study day and dose %

Akkermansia muciniphila (ATCC BAA-835 strain Muc) 



 220 

Ligilactobacillus apodemi is a Gram-positive, non-spore former with tannase 

activity which uses many carbohydrates to generate acid (Osawa et al, 2006). 

As this species was seen to increase in numbers during DSS administration 

but only in the water groups it could be assumed that the concurrent removal 

of Hydrogel generates an environment which temporarily this species can 

acclimatise quickly. There is scarce literature regarding this bacterium but the 

genome sequence and functional inference catalogue of L. apodemi can be 

found at: 

NCBI - https://www.ncbi.nlm.nih.gov/genome/?term=lactobacillus+apodemi or 

KEGG - https://www.genome.jp/entry/T07549.  

Akkermansia muciniphila is a Gram-negative, cocci-bacillus which is known to 

degrade mucin and help reduce diabetes and obesity in mice (Zhai et al, 2019). 

A. muciniphila has also be shown to reduce pro-inflammatory cytokines e.g., 

IL6 and TNFα in a 2% DSS induced colitis mouse model (Bian et al, 2019). 

Here, A. muciniphila increased in numbers towards the end of the dosing 

regime (Figures 6-15 & 6-16). 

Although stool consistancy is an established method of assesing disease 

severity in human patients and mouse models (Kim et al, 2012), all but one 

sample supplied for this work was normally formed and the experimental data 

for this measure was not supplied. The loss of the mucus layer is an early 

event in colitis in both human patients and mouse models with both a reduction 

of structural mucus protein expression and fall in numbers of goblet cells (Post 

et al, 2018). Both the host and the microbiota undergo transcriptional changes 

https://www.ncbi.nlm.nih.gov/genome/?term=lactobacillus+apodemi
https://www.genome.jp/entry/T07549
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during this event. The host displays an altered transcriptional signature for 

activated macrophages and granulocytes as a defence while the microbiota 

upregulates genes involved in resistance to oxidative stress and nutrient 

deprivation as a survival mechanism (Ilott et al, 2016). The loss of mucus 

generating goblet cells during disease progression in this model may account 

for the initial fall of A. muciniphila in all DSS dose groups (Fig. 6-15), but not 

the recovery of this mucus utilising bacteria in all groups including the 4% 

where subsequent histologicasl analysis indicated the loss of normal villi 

structure and total loss of goblet cells. The post-dose rise in numbers possibly 

aids a reduction in inflammation and augments cellular and functional repair, 

illustrated by the return to weight gain seen in all groups apart from 4% DSS 

by the termination date. The terminal histological findings in the 4% dose group 

(Figure 6-9B) possibly indicate a structure devoid of crypt driven repair. The 

genome and functional inference gene data of A. muciniphila can be accessed 

at:  

NCBI - https://www.ncbi.nlm.nih.gov/genome/?term=txid239935%5borgn%5d 

or KEGG - https://www.genome.jp/entry/T00736.  

 

 

 

https://www.ncbi.nlm.nih.gov/genome/?term=txid239935%5borgn%5d
https://www.genome.jp/entry/T00736
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6.3 Summary 

The SOP for routine microbiome analysis was successfully employed here in 

conjunction with two models of IBD. This method of characterising the 

prokaryotic diversity in faeces obtained non-invasively from mice increased 

understanding of how disease is instigated, and how the microbiome aids 

repair of the GI tract when specific community members are present. This 

method of characterisation negates pursuing costly DNA metagenomic and 

less robust RNA-seq methods attempted previously here (Chapter 4). By 

applying the hybrid method of generating species/strain level identities, it was 

possible to diagnose the presence of prokaryotes in a cost-effective manner 

from which gene complement can be extrapolated using freely available 

databases such as NCBI and KEGG. These curated and constantly updated 

resources provide the researcher with a stable and direct access library of 

gene function to study at no experimental cost. This wealth of information 

allows granular knowledge to be gained about the prokaryotes found in 

complex communities which would pass unknown if reliance on an exclusion-

based health monitoring continued. 

Currently, externally observable clinical signs such as weight loss, lethargy, 

piloerection, and faecal blood content analysis are the only in-life indication of 

disease progression in the CD4+ and DSS models of IBD. Blood analysis can 

supply an indication of lymphocyte proliferation but is highly invasive and is 

limited by sampling site injury and available volume. At termination, histological 
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analysis of the GI tract can provide a single time point assessment of 

pathology. However, it was shown here that 16S rRNA gene characterisation 

of excreted faeces offered a non-invasive and temporal signal of disease 

progression in both models studied. Specific bacterial species were found to 

proliferate in the GI environment in each model (e.g., S. lentus in CD4+ and A. 

muciniphila in DSS). It may be possible to use these organisms as real-time 

biomarkers via quantitative PCR (QPCR) to measure disease progression 

while the study is running as a non-invasive method. 

Ocular inflammation is an extraintestinal symptom of IBD in humans (Troncoso 

et al, 2017). It can affect all parts of the eye and can result in cataracts, optic 

neuritis, and oedema. It is thought to be initiated by the migration of microbial 

antigens to the periphery or misdirected immune responses to local self-

antigens. It is also a known pathology in mice models of chronic IBD (Watts et 

al, 2013). Although no formal eye function analysis was conducted in these 

studies, it was found that squinting in the model became a significant 

contributing feature in the build-up of clinical signs in the CD4+ model. This 

may be because activated lymphocytes migrate to all mucosal membranes 

such as the mouth and the eyes. Here their numbers are fewer than in the gut 

but infiltration and interaction with commensal bacteria cause unregulated 

inflammation and probable distress to the animal. This effect may be 

exacerbated by the increasing numbers of staphylococci in the cage 

environment which colonised the mice on the CD4+ study. In this study, cage 

cleaning was kept to a minimum in order to present a bacterial burden to the 
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animals. This work indicates that present husbandry practices are only 

accidently responsible for inflammation, and this is quite possibly off-target. 

It has also shown that there is no difference in community structure between 

the sterile and non-sterile groups which provides evidence that the use of 

irradiated goods and water could be halted, saving money, and reducing 

cluttering from triple layered items in already cramped changing stations. This 

work has also shown that the water given to the mice on study does not play 

a role in inflammation as no waterborne bacteria such as Ralstonia pickettii or 

Pseudomonas aeruginosa were identified in faecal analysis. Presently, the 

idea that dirty water instigates CD4+ driven inflammation means that lower 

grade water is administered to animals on study. The use of multiple grades of 

water in a barriered animal facility is technically problematic but also provides 

a method of ingress and transmission to other models.  

This work has provided and insight into bacterial dynamics in two mouse 

models of IBD. It has also suggested the use of more specific, non-invasive, 

in-life measurements. In addition to these scientific outcomes, it has provided 

information key to improving the welfare of mice during study design and which 

could positively affect the length and outcome of future studies. These positive 

impacts have fostered a tighter relationship with inflammation research groups 

and veterinary scientists which have seen the benefit of increasing the scope 

of health monitoring in line with the technology now available to the 

microbiologist.  
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Chapter 7: Discussion, future work, 

and conclusion   

 

There is a need to embed microbiome analysis into routine diagnostic 

microbiology. Using NGS as an evaluative tool in this field would increase our 

understanding of the multiple aspects of the relationship between microbiome 

and host (Cullen et al. 2020). There is also a need to develop a greater 

understanding of the GI microbiota of the laboratory mouse to increase the 

relevance of its use in research (Kieser et al, 2022). This thesis aimed to 

evaluate which method of routinely characterising the murine microbiome 

would be best applied in the specific field of pharmaceutical development 

where no consideration, method, or infrastructure currently exists. This work 

would hopefully see the development of a novel approach to health monitoring, 

moving from a strict exclusion criteria (Mähler et al, 2014), to a full, in-life 

characterisation to aid model selection and gauge the effect of disease 

induction on the microbiome as a measure of the effect upon the in vivo model.  

 

7.1 NGS data in a novel environment 

Big data is defined as substantial amounts of computational output which 

cannot be managed using traditional software, hardware, and storage. It is said 

to grow in three dimensions; volume, velocity, and variety (Dash et al, 2019). 

Here, it was shown that with a limited number of samples and a reasonably 
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small investment, all three aspects of big data growth were observed and 

presented immediate obstacles in the further use of this technology. The 

volume of data generated outstripped all physical storage boundaries, the 

velocity of its generation compounded this issue, and the range of data 

generated led to extended periods of analysis and a loss of scientific focus. 

Experiencing these impeding problems in a novel computational environment 

resulted in two outcomes. Firstly, once the breadth and wide applicability of 

NGS data was appreciated, the focus of subsequent work was regained by 

limiting the enquiry and correspondingly expanding control or improving of all 

aspects of data generation and analysis, reducing data analysis speeds, and 

improving specificity (Yin et al, 2017). Secondly, this deluge of data 

necessitated the permanent deletion of all but essential raw .fasta files and 

.astr alignment files. In a limited sense, these saved files become an 

accessible library, while the generated SOP represented the process by which 

the library may be accessed, and this thesis, the metadata needed to interpret 

the output. However, the permanent loss of all alignment files represented a 

block to quality assurance or fault-finding activities. These equally positive and 

negative outcomes mirror common bottlenecks in this field (Papageorgiou et 

al, 2018), which need to be overcome to allow successful and repeatable 

scientific enquiry (Eck, 2018). The activities described here, developed in an 

organic fashion, with progression only being made when locally acceptable 

workarounds were identified and subsequently demonstrated to be functional 

alternatives within the confines of the existing computational infrastructure or 

bounds of security policies. This widespread approach to problem solving in 
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the face of quickly generated big data has created as many analysis concepts 

and workflows as groups researching the microbiome (Kulkarni & Frommolt, 

2017). Each has had to deal with universal issues on an individual basis, with 

considerable effort to the detriment of evaluation of data (Tanjo et al, 2021). It 

would be preferential to submit data sets to an established and curated cloud 

storage server such as the European Nucleotide Archive for DNA 

Metagenomics (https://www.ebi.ac.uk/ena/browser/home) for open-access 

and utilisation (Harris et al, 2021).  

However, in a conservative data environment such as the pharmaceutical 

industry, storing data on externally controlled cloud servers is not tolerated due 

to intellectual property and patent protection policies. The workaround 

achieved here was the storage of all data on external hard drives. This 

physically fragile method of holding data is open to deletion, damage, and 

criminal loss. Sharing data by this method is also not ideal as each copy will 

incur subtle compression changes. An ideal method of storage would be an 

onsite server-based source, from which identical libraries could be repeatedly 

accessed (Harris et al, 2021; Tanjo et al, 2021). 

In establishments with pre-existing, low-level internet connectivity, the 

movement of data of this size was never considered (Eck, 2018). However, 

information is key in understanding problems, improving organisations, and 

driving developments (Dash et al, 2019). Without improvements to security, 

storage, policies, and investment in technology which would drive the 

controlled access to, and systematic use of data, nothing will be gained from 

its muddled generation (Toga & Dinov, 2015). An additional block to direct 

https://www.ebi.ac/
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access and enquiry is that if this work is introduced to drug development 

studies rather than be used for health monitoring purposes then all sequence 

data would fall under the umbrella of a regulated study pack which would 

necessitate archiving along with all associated metadata. This represents a 

static repository, prohibiting access and enquiry. It seems that the generation 

of data which may have infinite enquiries made upon it, and which promises a 

degree of enlightenment by this inclusion (Coyte et al, 2021) may be 

permanently locked away. 

 

7.2 Gene function: a bridge too far and a change in direction 

With the fall in cost and rise in speed of NGS methods, has come a shift in 

experimental aim, from simple taxonomic form to potential and temporal gene 

function (Montonye et al, 2018). Community diversity and stability of the 

microbiome has been shown by ecological modelling to play a key role in 

functionality, with community structure being able to influence the ecosystem 

(GI) function, and the health of the host (Coyte et al, 2015). However, 

misdirected prokaryotic metabolism in the GI tract has been shown to reduce 

bioavailability and increase attrition in drug development (Spanogiannopoulos 

et al, 2016; Zimmerman et al, 2019). Routinely applying DNA metagenomic 

and RNA-seq methods to characterise the murine microbiome during drug 

development studies may facilitate an understanding of this potentially 

detrimental microbial activity. This approach could represent a monumental 

shift in health monitoring from a simple exclusion monitoring to one of 
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cataloguing the total microbial diversity held within murine faeces and a 

snapshot of microbial gene expression (Beresford-Jones et al, 2022). This 

method would be easily translatable and as knowledge grows useful in the 

prediction of drug interactions from early phase in vivo experiments to late 

phase human trials. Extensive individual efforts have been made to catalogue 

the gene content of the murine microbiome indicating the possibility of 

generating this level of data (Kieser et al, 2022; Lagkouvardos et al, 2016; Xiao 

et al, 2015; Zhu et al, 2020; Zimmerman et al, 2016). Some of these 

exploratory studies where augmented with an effort to culture and fully genome 

sequence previously unknown prokaryotes (Beresford-Jones et al, 2022; 

Lagier et al, 2018; Lui et al, 2020). However, few have described the routine 

application of this work to be possible using freely available bioinformatic 

pipelines (e.g., MG-RAST; Durrazi et al, 2021). Although it was hoped that 

DNA metagenomics (and RNA-seq) could illustrate all microbial domains (from 

phage to protist), the use of MG-RAST for the characterisation of eukaryotes 

is discouraged in the RAST handbook, as is describing with any certainty 

anything below the family level although this data is consistently generated 

(Meyer et al, 2017). 

MG-RAST also allows the use of SILVA, RDP and Greengenes are RNA 

databases, which although permissive of 16S gene enquiries, contain both 

eukaryote and prokaryote references making searches inaccurate and slow, 

or they are taxonomically redundant. The inability to process 16S rRNA gene 

enquiries through the RefSeq database on the MG-RAST server was the 

catalyst behind moving towards the bespoke method of amplicon 
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characterisation here as it was realised that this database represents the 

greatest breadth of filterable datasets or reference libraries (Camacho et al, 

2009). The high-level curation of RefSeq (O’Leary et al, 2008) offers strain 

level identifications, rather than producing high level taxonomic designations 

resulting in diagnostic clarity.  

Beresford-Jones et al (2022) showed that deep functional analysis of the 

murine microbiome was possible and that efforts to culture and genome 

sequence previously unknow prokaryotes is possible and improves our 

understanding of functional ties between host and microbe. However, in every 

sampling opportunity described in this thesis a novel and previously unseen 

microbiome was unveiled which was common to the group of animals 

screened indicating that however varied, housing conditions control the 

microbiome across individuals unlike the differences observed in humans 

(Gilbert et al, 2018). These novel ecological descriptions were found to 

undergo permanent changes after transit, or experimental interventions. 

Understanding these minute changes to the degree described by Beresford-

Jones et al (2022) would be an impractical, lifelong endeavour with benefit to 

rapidly concluded in vivo studies.  

This work found that the use of DNA metagenomics and RNA-seq generated 

too much unconfirmed data, which took too long to analyse in a fast-moving 

research environment. It showed as other have (Beresford-Jones et al, 2022) 

that this level of taxonomic and functional integration is possible but is 

impractical without the focus of a pre-existing microbial target or gene of 

interest. That 16S gene analysis and DNA metagenomics generate divergent 
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data is known (Balvociute & Huson, 2017; Brumfield et al, 2020; Durrazi et al, 

2021; Park et al, 2018; Peterson et al, 2021; Rausch et al, 2019). This is 

usually as comparisons are made between HiSeq/NextSeq and MiSeq, 

respectively generating >5x106 reads/sample versus 50,000 reads/sample 

(Peterson et al, 2021) or using different databases for each method, pre-

loading bias into the analysis (Durrazi et al, 2021). In fact, it has been shown 

that in these comparative studies the choice of sequencing methodology (kit 

and platform) has more impact on resulting data variability than inter-sample 

differences (Clooney et al, 2015). If it does not make sense to seek consensus 

in one field of NGS (Pollock et al, 2018), then it is futile, to search for it between 

NGS methods. What proved more sensible was the return to an established 

method of taxonomic characterisation, improve upon it in a step wise fashion, 

and rollout its use as an ethical tool for focused microbiome analysis.  

 

7.3 Towards a new idea of health monitoring   

By applying a FELASA-based health monitoring approach only animals which 

are free from disease are used in research. From a veterinary perspective, this 

ensures that animals may exist free from the threat of microbial disease, while 

from a scientific perspective, it ensures that experimental data derived from 

animal studies is not confounded by the advent of a disease outbreak (Mähler 

et al, 2014). The pressure to remove certain microorganisms from rodent 

colonies via embryonic rederivation has subtly influenced the host microbiota 

(Franklin & Ericsson, 2017) with each commercial animal supplier generating 
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standardised models and animal lines with FELASA-based health reports. 

Remarkably, whilst this may imply microbial standardisation, this study 

illustrated how each model, line, study, and location analysed displayed a 

unique prokaryotic GI microbial signature. Moreover, these communities were 

found to shift during acute and chronic interventions such as transport or 

intervention. This suggests that the ecoevolutionary dynamics of microbiome 

community structure are subject to ecological (external) changes that drive 

changes in the microbiome, but we cannot rule out that subtle changes to a 

single (or small number) focal species can further modify the environment as 

has been observed in macrobiology (Hendry, 2017). It was recently shown that 

ecological assembly and dependencies can be predictable in microbiome 

communities and through modelling and experimental studies that microbe to 

microbe and microbe to host interactions govern the trajectory of microbiome 

assembly (Coyte et al, 2015). 

Identifying bacterial roles from a 16S rRNA amplicon NGS is problematic 

because high-level classifications (phyla, class) do not provide the level of 

detail required for species level assignment and there is limited information 

available for newly discovered and unculturable members of the microbiota 

were available (Lagkouvardos et al, 2016). Although metagenomic sequencing 

can be used to define both nomenclature and function (Jovel et al, 2016), when 

combined with MG-RAST it was found to be technically difficult and 

diagnostically inaccurate. RNA-seq work which is mostly used for temporal 

gene expression analysis also found diagnostic utility through the MG-RAST 

server (Brumfield et al, 2020; Escobar-Zepeda et al 2018; Rausch et al, 2019; 
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Tessler et al, 2017), but in this study, this failed to generate usable data and 

suffered from the technical issues identified in the metagenomic work (Chapter 

4). 

Refining the 16S gene analysis approach and creating a highly specific 

reference database allowed rapid species level diagnostics to be achieved, 

and when coupled with literature research enabled an understanding of each 

species and their potential roles in the host. This approach also is suitable for 

next generation health monitoring system of animal colonies, as described in 

this work. This approach is also more inclusive and enables several taxa to be 

monitored and as data and understanding of systems become better 

understood may enable early warnings of dysbiosis to be identified. Monitoring 

these activities can also help explain how the microbiota dynamically interacts 

with the host. 

In 2021, 25,059 articles with the word ‘microbiome’ in the title were published 

globally (https://pubmed.ncbi.nlm.nih.gov/?term=microbiome), which equates 

to 2.86/hour. Many of the experiments described utilised different bioinformatic 

pipelines and different reference databases, such that the constant reinvention 

of better or more illustrative tools and pipelines may be counter-effective and 

possibly meaningless (Hill, 2018). This study shows that tools and pipelines 

can be used to answer some questions from some input data but often these 

approaches do not give appropriate outputs to glean useful information in the 

context of health monitoring. This work aimed to identify a unifying 

methodological pipeline for routine deployment in a pharmaceutical research 

setting. The use of 16S rRNA gene-based phylogeny has been the most widely 

https://pubmed/
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used method by which ecological niches may be characterised and compared 

(Yarza et al, 2014). The pipeline defined here is simple, but appropriate and 

can be used with confidence to develop further our understanding of the 

prokaryotic communities and their dynamics in the mouse in routine health 

monitoring. 

 

7.4 Can dysbiosis or dysregulation be observed in models of IBD?  

Dysbiosis is defined as a change in community structure which negatively 

impacts the host (Levy et al, 2017). The functional redundancy in the 

microbiota, allows temporary impairments, such that the condition remains 

subclinical, with the host able to survive in the absence of specific organisms 

or their metabolites. However, this survival does not equate to wellbeing. The 

benefits of a functional microbiota are wide ranging, such as the complete 

breakdown of indigestible carbohydrates (Haller, 2018), generation of vitamins 

(Mu et al, 2018), contributions to enterocyte health (Haller, 2018), inhibition of 

pathogen adherence and regulation of immune responses (Byndloss et al, 

2018) and potential contributions to mental wellbeing (Vuong et al, 2017). We 

have also seen that these balanced functions are regulated at innately fine 

detail by both the host and microbiota (Kiu et al, 2020).  

In the initial experiments (Chapter 3), significant differences in community 

structures were observed between GI niches and between sampling locations. 

The former being driven by physiology and immunoregulation (Hill & Artis, 

2010), and the latter being driven by the stress of transport upon the host. It 
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has previously been shown that transit related community disruption regained 

homeostasis at around five days post-transit, indicating an extended period of 

flux followed by resolution, if not rebound (Ma et al, 2012), which was not 

observed in this study. Other studies have shown that although acute transit 

induced disruption does occur, homeostasis is only regained between one- 

and four-weeks post-transit (Montonye et al, 2018). Here it was seen that 

transport immediately resulted in the loss of almost one third of species found 

in the GI tract of C57BL/6 mice, creating a new community structure did not 

return to its former diversity within an acclimatisation period of seven days, or 

within two weeks of arrival. It is suggested that these fluctuations may 

contribute to differing study outcomes at distinct locations (Montonye et al, 

2018). However, in initial experiments and in the subsequent longitudinal NSG 

study it was shown that a physiological experience endured by the host such 

as transit impacts prokaryotic diversity at transit and this new community 

remains stable for at least the four-month period of screening conducted. It has 

been shown that age (>48 months) eventually affects GI diversity in C57BL/6 

mice (Langille et al, 2014), indicating that longer term studies may be affected 

by the overt functional decline in cellular, metabolic, and immunological 

processes (Bajaj et al, 2021). This again illustrates that the autochthonous 

microbiota is affected by external factors.  

Another external driver to overall GI diversity in mice is the systemic use of 

embryonic rederivation used to remove overt pathogens from breeding 

colonies (Nicklas & Seidel, 2019), potentially leaving this model species a poor 

reflection of its wild counterpart, reducing immunostimulatory potential while 
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promoting disease phenotypes (Rosshart et al, 2017). Arguably this is 

beneficial in models of disease but creates a housing environment which 

promotes the transmission of deleterious microorganisms which maybe 

subclinical in the immunocompetent and challenged wild population (Becker et 

al, 2007). The limited microbiome diversity of the immunodeficient C.B-

17/IcrHsd-PrkcdSCID used in the CD4+ study was seen to gain numbers of 

specific bacterial species post-arrival at the new location rather than lose 

diversity. This may be a result of this genetic lines inability to limit colonisation 

due to the lack of T- and bursal or bone marrow derived (B)-cells (Envigo, 

2022). The observed rise in staphylococcal species number and diversity is 

possibly due to human transmission during cage husbandry in receiving cages 

(Ferrecchhia et al, 2014). However, their innate GI diversity was not seen to 

alter at the administration of Balb/C CD4+ T-helper cells or thereafter. The 

expected cellular infiltration of the lumen was therefore shown to not have a 

downstream effect on microbial diversity possibly as this is a model of cellular 

activity measured below the lumen, rather than one measured by the 

destruction of the microvilli from above as in the DSS model (Prattis & Jurjus, 

2015). 

The C57BL/6 mice used for the DSS study (Chapter 6) showed a significant 

change in GI diversity post-arrival with a fall in gut Lactobacilli. Hydrogel and 

DSS are more palatable to mice than water alone and each of these 

substances were given exclusively at different points of the study which may 

have played a part in relative body weight changes and microbial diversity. The 

overt epithelial damage and barrier dysfunction along with tubulerization 
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caused by the administration of DSS into the GI tract firstly affects GI 

physiology and then the resident microbiota (Eichele et al, 2017). In low dose 

groups (2% and 3%) bacterial species lost at administration were seen to 

rebound and host health markers were seen to increase when DSS was 

removed, whereas the 4% dose group suffered from terminal loss of GI 

function and a highly dysbiotic community structure which saw an exclusive 

increase in carbohydrate harvesting species possibly utilising the administered 

DSS.  

All the changes to prokaryotic community structure observed here represent 

dysbiosis driven by external events forced upon the models screened. This 

work firstly supports the theory that transport initiates a change in the 

microbiota possibly as a result of stress (Ma et al, 2012) but consistently shows 

that this disruption occurs during transit and remains stable over time 

thereafter. Secondly, it shows that disease instigation in mouse models and 

subsequent husbandry choices can drive the level, and species specificity of 

dysbiosis. This work provides a tool by which the breadth of dysbiosis can be 

measured in such models, aiding greater understanding of subclinical changes 

that may occur during research and drug trials. 

 

7.5 Partnering animal welfare and drug discovery  

Both IBD studies investigated here were sham or pilot and so no compounds 

were used. This reduced the number of variables which could have contributed 

to changes in the prokaryotic community. The CD4+ study was conducted to 
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measure any difference in pathology or out come between a sterile group and 

non-sterile group as it was though that housing in non-sterile conditions would 

generate greater microbiome induced upregulation of immune responses post-

CD4+ transfer. Here no changes were seen in the microbiota at arrival, at 

administration or between the sterile and non-sterile groups. The observation 

that there was no difference between sterile and non-sterile group microbiotas 

indicates that the continued administration of sterile diet and water could stop 

in subsequent studies. This would free up time and remove working constraints 

as husbandry is conducted in sterile change stations which become crowded 

with the triple wrappers which are used to contain the irradiated goods. 

Additionally, stopping the use of irradiated diet and water will reduce study 

costs.  

In the DSS pilot study, no antagonistic pharmaceutical agent was administered 

so that the observed changes in prokaryotic microbiota were attributable solely 

to the concentration of DSS administered in the drinking water which was used 

to make gross observations in the health of the mice or possibly the 

administration of Hydrogel (Figure 6-14) when DSS was removed. These 

observations or scores were added to those conducted at termination to gauge 

the effective dose needed to generate a disease model to be used in 

subsequent elevation studies. The range of outward signs observed in the 4% 

DSS group indicated that previous literature (Munyaka et al, 2016) was correct 

in using 4% to illicit a significant representation of colitis in the mouse.  

However, the 4% dose group was found to lose between 11-19% body weight 

as the destruction of the GI tract was so severe that functionality had possibly 
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been terminally impaired. In the 2% and 3% dose groups similar but less 

marked changes were observed in mice which did not lose >10% bodyweight 

during or after DSS administration and at histological examination. It would 

therefore be possible to use the lower dose of 3% and have a model that can 

withstand DSS administration but still provide evaluative data used to measure  

disease progression and alleviation by the administration of an antagonist over 

a longer period. By measuring the microbial changes in dose groups 

throughout the study, it was possible to illustrate significant or relevant 

changes on a scale in relation to specific bacterial species which corresponded 

with weight loss and gain and unobservable GI alterations and tubulerization. 

The rebound in bacterial species, weigh gain and faecal output all indicate that 

the use of 2% or 3% DSS doses in this study would be possible if routine and 

timely use of community profiling were employed.  

The observation that all mice have a unique community structure according to 

source, indicates that it would be possible to use 16S amplicon based NGS to 

take a census of animals on study which could then be refined to use specific 

bacterial species as markers of disease progression in IBD studies. Both 

findings illustrate the immediate practical use of 16S amplicon based NGS in 

animal studies to reduce animal suffering, reduce animal usage, and refine 

techniques used in the gleaning of data used directly in research groups for 

decision making thus aiding drugs to market through more refined techniques 

and granular understanding of the mice models used in pharmaceutical 

research today.  
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7.6 Future work 

Although this thesis resulted in the successful development of a robust 

microbiome characterisation method several technical and sampling 

improvements could be adopted to further develop this method into a highly 

accurate tool for the improvement of animal welfare and study outcome.  

   

7.6.1 Technical improvements  

It is now possible to perform near-full length 16S gene sequencing (Johnson 

et al, 2019). This method uses V1V2, V2V3, V3V4, V4V5, V5V7 and V7V9 

primers sets to generate overlapping amplicons covering the variable regions, 

creating a mosaic of the 16S gene. By applying near-full length 16S gene reads 

to the novel database method of characterisation described here, resulting 

identities would be of the highest specificity (Johnson et al, 2019). This would 

allow exceptional diagnostic clarity to be achieved from complex samples 

removing many of the issues experienced here. 

The final workflow described used the NCBI 16S gene curated list as a 

reference database. Stand-alone analysis of its 21,653 entries was possible 

on a laptop as the reference scaffolds are around 1500bp long, query 

sequences are up to 300bp length and total reads do not exceed 100,000. 

Theoretically, it would be possible to use the NCBI GenBank database 

(presently holding 474,000 bacterial RefSeq entries) as a reference tool for 

prokaryotic DNA metagenomic and RNA-seq data sets in the same way. The 

reference database would be of equally high quality as the 16S rRNA one, and 
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it too would be openly accessible and constantly updated. The only hinderance 

to applying this alignment method to larger sequencing files may be an 

increase in processing times, which could necessitate the use of larger 

processors.  

If this increase in processing capacity was tied to the acquisition of better-

quality RNA-seq data from faeces, an avenue to understanding microbial gene 

activity would be possible. It is expected that by utilising an RNA stabilizing 

agent and a specific processing method such as the RNeasy Powersoil kit that 

robust RNA-seq data could be generated from murine faeces. If these steps 

were successful, it would also be possible to use further NCBI directories such 

as viral, protist and fungal (accessible at http://www. ncbi.nlm.nih.gov.nuccore) 

to gain high quality diagnostic characterisation of all classes of microorganism 

from DNA metagenomic and RNA-seq datasets. However, the concurrent 

identification of all classes of microorganism would never be straightforward 

by this approach, however, multi-locus sequence typing (MLST) of internal 

fragments of alternate house-keeping genes could be used (Urwin & Maiden, 

2003). 

 

7.6.2 Wider sampling 

Due to the ubiquitous nature of faecal matter, and its classification as waste 

material, any widening of sampling is easy to achieve and would not impact 

existing study designs or future considerations. It is thought that by sampling 

all animals at delivery, a characterisation of each commercial supplier would 
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be possible and the subsequent loss of species during transit from each, 

according to length of travel time. It would be beneficial to sample animal 

facilities over time to understand whether a facility-specific microbiota exists 

(Montonye et al, 2018) and whether continual imports from multiple suppliers 

alters this microbial signature over time and if specific community members 

are always lost in transit. By tethering this advanced health monitoring analysis 

to complex study outcomes utilising immunocompromised or transgenic 

models and themes of research (inflammation, cancer therapy etc.) over time, 

a more granular understanding and awareness of the impact of the murine 

host’s microbiota on drug discovery will become possible.  

 

7.6.3 Reducing attrition  

Attrition in drug discovery can be due to unwanted microbial metabolism 

(Spanogiannopoulos et al, 2016). Understanding this activity is possible using 

the method of characterisation described here by extrapolating accurate 

taxonomy to functional database searches. Applying this level of analysis in 

breeding facilities as an extension of health monitoring would build up 

ecological data. Applying this method to all study types may not always be of 

use but piggy backing on compound toxicity studies would also provide clear 

dose graduation versus non-dose variation, a clearer understanding of 

compound class interactions, and greater statistical power due to the larger 

number of animals used in this type of investigation. Additionally, toxicity 

studies are usually run using rats which generate more faecal and GI digseta. 
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This would allow both technical replicates (validating method reproducibility) 

and biological replicates (validating dose variations) to be run (Robasky et al, 

2014). By introducing this evaluative method information would be available to 

research groups which could illustrate prokaryotic sources of off-target 

metabolism found in drug metabolism and pharmacokinetic mass 

spectrometry screening. This would inform the clinic of potential drug 

interactions, but pre-study screening of rodent colonies or strains would allow 

the inclusion or exclusion of these metabolic species.  

 

7.6.4 Embedding this work in pharmaceutical research 

The embedding of microbiome analysis in any form as a routine evaluation tool 

remains in its infancy (Cullen et al, 2020), despite nearly twenty years of next 

generation sequencing research and the intention to catalogue the microbial 

diversity of Earth’s entire ecology (Thompson et al, 2017). This work illustrates 

a real world application of this established and mutable technology. However, 

its wider adoption still rests upon visible and understandable benefits rather 

than huge, expensive studies with real world applicability. This weight of 

evidence is only obtainable if researchers can be persuaded to include this 

type of analysis in their body of research. However, generating yet another 

method by which a study can be cancelled is not what is usually wanted. The 

step wise generation of applicable data based on causality can be generated 

by piggy backing on relevant breeding programs and studies such as those 

with GI delivered molecules or specific microbial targets may result in this work 
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being accepted for pre-study screening or in-life monitoring of diversity 

changes in relation to the activity of one key species (Hendry, 2017). 

Communicating these results in a timely fashion to the researchers in person 

and the wider animal research community and discovery research groups 

would hopefully see the consideration of the second genome in drug research 

becoming routine (Grice & Segre, 2012). 

 

7.7 Conclusion 

In summary, this work has succeeded in establishing a robust sampling and 

16S gene analysis pipeline for the routine, in-life characterisation of the murine 

GI microbiota where no previous method existed. Considerable progress was 

made in understanding the applicability of NGS in this field. This understanding 

has enhanced routine health monitoring, enabling the characterisation of which 

prokaryotic species are present in a host animal rather than discerning those 

which are not. It has begun conversations with the research community about 

the mutability of the microbiome during drug development studies, how this 

may be used diagnostically, and how the health of the microbiome is tightly 

linked to the health of the host which is central to the use of animals in research
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Chapter 9: Appendix 

9.1: Microbiome Analysis Standard Operating Procedure (SOP) 

The detailed procedure for microbiome analysis of rodent digesta by the GSK 

Veterinary Microbiology laboratory is as follows: 

• Cage faeces will be used for microbiome analysis unless otherwise 

requested.  

• All samples will be taken by Microbiology group. 

• Microbiologists will wear suitable PPE while in animal holding or 

procedure areas.  

• Microbiology group will continue to hold appropriate competencies in 

methods of rodent euthanasia. 

• Microbiology group will continue to complete annual Laboratory Animal 

Allergens assessment.  

• Microbiology group will continue to complete annual facility access 

training for all sites.  

• If digesta from other sites is to be analysed, animals will be euthanised 

using an appropriate method by Microbiologists in an area designated 

for this task away from other living animals.  

• An appropriate secondary method, confirming death will be conducted 

by Microbiologists in this same area.  

• Cadavers will then be taken to a secondary procedure room with 

downdraft facilities.  
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• Animal dermis will be wiped down with 70-100% ethanol. 

• Cadavers will be opened using pre-sterilised instruments. 

• Samples will be taken in a descending order (mouth to anus). 

• Cadavers will be disposed of in accordance with local rules.  

• Samples for DNA analysis will be taken into PCR-clean safe-lock, 1.5ml 

Eppendorf tubes on dry ice. 

• Samples for RNA analysis will be taken into 2ml RNA-Later tubes on 

wet ice. 

• Samples will be identified and labelled correctly with indelible ink. 

• RNA-Later samples will be allowed to equilibrate on wet ice for at least 

1hr. 

• Samples shall be protected from UV irradiation when being processed 

out of animal facilities.  

• DNA & RNA samples will be stored at -80°C until nucleic extraction 

takes place. 

• Nucleic extraction will be conducted using Qiagen Power-DNA or 

Power-RNA kits in the Microbiology laboratory. 

• Third party outsourcing agreements will be arranged by Procurement 

team and TPOs stored in a dedicated shared drive.  

• At the agreed time of transfer to third parties, extracted nucleic acid will 

be taken from -80°C freezer and immediately placed in sufficient dry 

ice to allow temperature maintenance throughout period of 

transportation. 
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•  Extracted nucleic acids will be sequenced using pre-agreed and 

quality checked methodologies by designated third party resources. 

• Raw .fastq sequencing files shall be uploaded by third parties to the 

DNAnexus cloud server via an access key generated by the 

microbiologist. 

• Raw .fastq files will be downloaded from DNAnexus in a timely fashion 

and stored on a suitable GSK cloud-based server with applicable 

metadata. 

• After action reviews of third-party process will take place to ensure 

quality and reflection on contracted services. 

• Files held on DNAnexus server will only then be deleted. 

• Compressed .fastq files will be extracted to .fasta format using WinZip 

or 7-zip and stored on the analysis computer. 

• Assemblies will be conducted using Seq-Man-Pro (Lasergene 

Genomics suite). 

• The specific reference taxonomic database will be stored on the 

analysis computer and selected during assembly on Seq-Man-Pro. 

• Percentage identity will be set at 98.5% and auto-trim will be de-

selected. 

• K-mer size will be left at default seventeen.  

• Temporary files will be assigned to the analysis machine’s D drive.  

• Assembly .astr output files will be assigned to the analysis machine’s 

C drive.  

• The D drive will be deleted immediately after assemblies have finished.  
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• The reference annot.txt generated using Python script file will be 

amended to the .astr file. 

• Only this .astr file and assembly files for each sample will be saved 

from the C drive output. 

• Analysis of .astr files will be conducted using Array Star (Lasergene 

Genomics suite). 

• Quality checking of assemblies will be conducted using Seq-Man-

NGen (Lasergene Genomics suite). 

• Resulting operational taxonomic unit data will be transferred by 

selecting and copying all entry lines and copying directly into Excel 

(Microsoft, USA). 

• The mean average will be calculated and set in ascending order.  

• Refine count data by changing lowest represented number to zero.  

• Counts below the number of samples taken in the study will be hidden.  

• Numeric diversity work will be conducted in Excel (Microsoft, USA) 

while statistical analysis will be conducted in Array Studio (Qiagen, 

UK).  

• Data shall be communicated to requesters in a timely fashion.  
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9.2: NGS data handling details (4.2.1) 

The file size for each method was 1.85Gb (16S rRNA gene analysis), 561Gb 

(DNA metagenomic), and 593Gb (RNA-seq), totalling >1.12Tb of data. All 

downloading of the data and uploading to the analysis software was completed 

on a domestic Wi-Fi. Downloading this data for local analysis was initially 

attempted onsite at Stevenage using a GSK-build PC. However, single 16S 

rRNA gene sequence files took >2.5hrs to download only to fail before 

completion due to data transfer interference. As the DNAnexus server is an 

external, downloads were then attempted using a domestic internet 

connection. All data was successfully downloaded over a period of >1 week 

but this required all GSK network connections to be disabled. To circumvent 

network constraints, sequence files were finally downloaded onto a non-GSK 

build laptop and an external hard drive. An attempt was made to upload 16S 

rRNA gene analysis files (those being the smallest) onto the MG-RAST server 

from GSK, however, the paucity of upload speed divided data packages too 

heavily resulting in all uploads being cancelled. Again, file transfer was 

attempted via a domestic internet connection. The subsequent attempts to 

upload these raw files onto the MG-RAST server to analyse them was equally 

ineffectual from an existing intranet environment. It was sometimes possible to 

upload just one 16S rRNA file per day, however, intermittent connection meant 

that only one or two files could be successfully uploaded per week. It again 

become clear that uploading of data would only be possible from a domestic 

connection. The significant block to this process was the universal focus on 

download speed in favour of upload. With a maximum domestic upload speed 
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of <10Mps (often not achieved), the process of uploading >1.25Tb of raw data 

held on 84 individual files took more than six weeks to achieve. Once 

uploaded, assembly processing and analysis of raw sequence files took <30 

seconds to complete each request. 


