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Abstract 

This thesis deals with nonlocal models for solid-solid phase transitions, such 

as ferromagnetic phase transition or phase separation in binary alloys. We discuss 

here, among others, nonlocal versions of the Allen-Cahn and Cahn-Hilliard equa- 

tions, as well as a nonlocal version of the viscous Cahn-Hilliard equation. The 

analysis of these models can be motivated by the fact that their local analogues 
fail to be applicable when the wavelength of microstructure is very small, e. g. at 

the nanometre scale. Though the solutions of these nonlocal equations and those 

of the local versions share some common properties, we find many differences be- 

tween them, which are mainly due to the lack of compactness of the semigroups 

generated by nonlocal equations. 

Directly from microscopic considerations, we derive and analyse two new types 

of equations. One of the equations approximately represents the dynamic Ising 

model with vacancy-driven dynamics, and the other one is the vacancy-driven 

model obtained using the Vineyard formalism. These new equations are being 

put forward as possible improvements of the local and nonlocal Cahn-Hilliard 

models, as well as of the mean-field model for the Ising model with Kawasaki 

dynamics. 
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Chapter 1 

Introduction 

1.1 Introduction 

Almost all the metallic materials used in engineering applications are alloys, which 

are mixtures of two or more metallic elements. Alloys may vary in complexity 
from binary mixtures, e. g. mixtures of copper and zinc or aluminium and iron, 

to the very complex ones, such as the modern steels. Unlike pure materials, al- 
loys present some interesting properties related to pattern formation and growth 

of domains within the solid material. These domains may be defined as regions 

where certain properties of the material deviate from the properties of the bulk 

of the material. In spite of the wide variety of solid solutions, it is possible to 

identify some common features, such as the tendency to precipitate or to order at 

low temperatures. These phenomena take place because there are unequal inter- 

actions between different kinds of atoms in their composition. However, metallic 

alloys are characterized by a tendency to a final state, called the equilibrium state, 

which should meet the condition of the minimal Helmholtz free energy. Clearly, 

the length scales on which such phenomena occur depend on the properties of 

each material, but the mechanisms are universal and allow a general approach to 

understanding the microstructure. 
A wide variety of phase transformations in solids occur below a critical tem- 

perature TT at which, in the absence of an external field, two or more thermody- 
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CHAPTER ONE 2 

namic states are stabilized in physically distinguishable domains and separated 
from another by mobile domain boundaries. Materials that illustrate this princi- 

ple include ferromagnets, binary alloys, ferroelectrics, ferroelastics, liquid crystals 

and superconductors. 
The purpose of this thesis is to examine some models of solid-solid phase 

transitions. We discuss here the nonlocal versions of the well known Allen-Cahn, 

Cahn-Hilliard and viscous Cahn-Hilliard equations, as well as the mean-field 

equations derived from Statistical Mechanics, for the Ising model with vacancy- 

mediated diffusion. 

The Allen-Cahn and Cahn-Hilliard equations have been employed to study 

the kinetics of atomic ordering and compositional phase separation in binary 

mixtures. They have been very successful in predicting the sequence of phase 

transformations as well as the kinetics of domain coarsening. These equations 

can be derived by considering gradient flows of the free energy of the system 
(the Ginzburg-Landau functional) with respect to an appropriately chosen inner 

product. 
Recently, it was suggested in [66] that the Cahn-Hilliard equation does not 

reproduce faithfully the details of phase separation when the forces driving the 

process operate at very short length scales. One can try to avoid this problem 
by considering instead gradient flows of a different free energy functional, namely 

the Khachaturyan [68] (or the van der Waals [97]) free energy functional. The 

new equations can be regarded as the nonlocal versions of the above mentioned 

equations and have been studied in, among others, [5], [6], [8], [9], [32], [42], [43]. 

Both approaches describe the rate of change of the order parameter being linearly 

proportional to the thermodynamic driving force. 

In [86], O. Penrose suggested that the function contained within this functional 

cannot be regarded as the thermodynamic free energy density since this function 

is not convex, and this contradicts the general theory of Statistical Mechanics. 

Moreover, this approach does not allow one to determine the rate parameter that 

appears in these equations (the mobility). Using a mean-field type of approxi- 

mation, he derived the average behaviour of the Ising model with two kinds of 
dynamics: the Glauber (spin-flip) stochastic dynamics and the Kawasaki (direct 
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exchange) dynamics. These two new models were compared in [86] with the dis- 

crete versions of the Allen-Cahn and Cahn-Hilliard models, and were put forward 

as possible improvements of the latter ones. 
A more realistic representation of the diffusion process in real alloys has been 

considered in [98], [99] (for the non-conserving order parameter case) and in [49], 

[50], [101] (for the conserving order parameter case), where a very small number 

of vacancies is introduced in the system and the atoms are allowed to change 

places only if a neighbouring lattice site is empty. Monte Carlo simulations were 

performed for both the usual Ising models and vacancy-driven dynamics, showing 

that the domain growth regime is reached faster with the vacancy mechanism. 
We organize this thesis as follows. In the remainder of this chapter we discuss 

the phase separation phenomenon and present the Ising model, the mean-field 

models derived by 0. Penrose in [86], and Vineyard's formalism contained in 

[96]. 

Chapter 2 contains some background material on the theory of dynamical 

systems theory and the descriptions of the Allen-Cahn, Cahn-Hilliard and Novick- 

Cohen-Pego models. 
The original material of this thesis is contained in Chapters 3 to 5. In Chap- 

ter 3, we discuss the nonlocal Allen-Cahn equation. This chapter has two main 

parts. The first one focusses on proving that unlike the Allen-Cahn equation, this 

equation has the property that its solutions do not coarsen when any of the two 

parameters, one representing the strength of intermolecular forces and the other 

one the interaction length, is small enough. This result is a consequence of the 

maximum principle that this equation obeys. The second main part is to approx- 

imate the flow generated by the nonlocal Allen-Cahn equation by truncating the 

free energy functional and then taking the Pade approximants. In this way we 
derive new equations, which are well posed for both positive and negative time, 

and solutions to these equations will approximate the solution to the nonlocal 
Allen-Cahn equation. In the end of the chapter numerical results are shown and 
discussed. 

Chapter 4 deals with three nonlocal mass-conserving models. The equations in 

discussion are: the mass-conserving version of the nonlocal Allen-Cahn equation, 
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the nonlocal version of the Cahn-Hilliard equation and the nonlocal extension 

of the viscous Cahn-Hilliard equation. We show that each of these equations 

generates semi-dynamical systems in appropriate function spaces. The stationary 

solutions of these models satisfy the same equation, and some of their properties 

are discussed here. As in the case of the nonlocal Allen-Cahn equation, it appears 

that the solutions to these equations do not coarsen if the strength or the length 

of interactions is small enough. Numerical evidence for this fact is given at the 

end of this chapter. However, the comparison principle tool used to prove the 

similar property for the Allen-Cahn equation is no longer available in this case. 
In the beginning of Chapter 5 we introduce the system of equations which 

approximately represents the Ising model with vacancy driven dynamics, then 

we introduce the mean-field equation derived by using the Vineyard approach. 

We perform some numerics and compare them with the numerical results for the 

Penrose equation which approximately represents the Ising model with Kawasaki 

dynamics. 

The thesis concludes with a discussion of the main results and some sugges- 

tions for further work. 

1.2 Phase transitions in solids 

In many physical systems, e. g. a piece of iron that under certain conditions can 

be magnetized, or an alloy that can exist as a mixture of two or more components, 

one encounters analytic discontinuities or singularities in one of the thermody- 

namic functions, such as the free energy of the system, which correspond to the 

occurrence of various kinds of phase transitions. 

Phase transitions occur when a material undergoes a spontaneous conversion 
from one phase to another, at a characteristic temperature. We can speak about 

solid-solid phase transitions when a rearrangement of molecules that results in a 

change in the material's lattice structure takes place. The most common examples 

of phase transitions in solids are: the transition from a normal conductor to a 

super-conductor, various phenomena associated with the coexistence of phases in 
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the neighbourhood of a critical point, the behaviour of mixtures and solutions 
(such as the phase separation phenomena), phenomena of ferromagnetism and 
antiferromagnetism, the order-disorder transitions in alloys (the tendency of an 

ordered arrangement to disorder) etc. 
Under certain favourable circumstances, one can observe that below a partic- 

ular temperature TT a large number of microscopic constituents of a given system 

may exhibit a tendency to interact with one another in a strong fashion, giving 

rise to some portions of the system that coexist at different conditions, called 

phases, each portion having homogeneous composition and properties, and being 

distinct from other parts of the system. The temperature TT is known as the crit- 
ical temperature of the system and the phases are assumed to be characterized by 

different values of a dimensionless physical quantity called an order parameter. 
The phase transition process may or may not be affected by some conservation 
laws, and thus we may speak of a nonconserved order parameter (NCOP) if no 

global constraints are imposed on the order parameter, and of a conserved order 

parameter (COP), if such constraints (e. g., mass conservation) are imposed. An 

example of NCOP phase transition is the phenomenon of ferromagnetism, which 
can be defined as the development of extremely strong magnetic properties in 

certain materials which occurs when magnetic domains (regions at most 1 mm 
in dimension) become aligned in the absence of an applied field, below a temper- 

ature known as the Curie temperature. It is believed to be caused by magnetic 
fields generated by the electrons' spins in combination with a mechanism known 

as exchange coupling, which aligns all the spins in each magnetic domain. The 

order parameter for this phenomenon is the magnetization. As an example of 
COP phase transition we mention the phase separation of a binary alloy below 

a critical value of the temperature. In this case the order parameter can be con- 
sidered to be the concentration of one of the two components. This phenomenon 

will be described in detail in the next section. 
The homogeneous state defines that state of the system for which all the parts 

of the system are alike, while in the inhomogeneous state we can find some parts 

which are different from the others. We call components of a certain system the 
distinct elements or chemical compounds which make up the system. 
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The study of phase transitions is concerned with how one or more phases in 
the system change into a new phase or mixture of phases. The dynamics of a 
particular system may always be viewed under two perspectives: a macroscopic 
one, where the behaviour of the system is viewed as a whole, and a microscopic 
one, where each individual atom or molecule is represented. 

If the thermodynamic function that exhibits discontinuities or singularities is 

the free energy of the system, then we can talk about different types of phase 
transitions, depending on the order of discontinuity in the derivatives of the free 

energy. When there is a finite discontinuity in one or more of the first derivatives 

of the free energy with respect to temperature, the transition is called first order 
transition. If the first derivatives are continuous but the second, or third, ... 
derivative is discontinuous or infinite, the transitions will be regarded as higher 

order, continuous, or critical. The first classification has been made by Ehrenfest 
[33], who called the phase transitions after their order of discontinuity, i. e. first-, 

second-, third-, ... order transitions. For further details one can also consult [30], 
[31], [61], [83], [87], [102]. 

1.2.1 Phase separation 

When a molten alloy is suddenly cooled ("quick quenching"), the homogeneous 

state is no longer stable and the components of the system, previously perfectly 
mixed, show a tendency to separate into spatially separated multi-phase struc- 
tures; in this case we say that phase separation takes place. Let us consider the 

case of a molten binary alloy, with species a and ,ß of concentrations ca and cß, 
respectively. Since the concentration is a conserved quantity, we have 

ca + cp = constant (1.2.1) 

at each point of the domain. A useful tool for discussing the phase separation phe- 
nomenon is the phase diagram represented in Figure 1.1. This diagram allows us 
to map out what happens with the system under different values of concentration 

c and temperature T. 

Suppose that initially the mixture is at a high temperature, at the point P of 
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Tc 

Tq 

Figure 1.1: Idealized phase diagram for phase separation in binary alloys. 

the diagram, having a given concentration co. At this point and for all the points 

lying outside the continuous curve the equilibrium state is the homogeneous state 

which is stable to all perturbations which do not change the average concentra- 

tion, and thus there is no phase transition. When the temperature is lowered to 

some value below the critical point TT, where the system finds itself in a point 

inside the region enclosed by the continuous curve, the equilibrium state can no 

longer be the homogeneous state, but consists of two phases, which coexist and 

have different values for the concentration. This region is called the coexistence 

region, and the full line curve is the coexistence curve. 

T}i part of the coexistence region the system arrives in after the quench has 

a profound effect on the dynamics of the phase separation process. If the mixture 

arrives at a point that is in the region enclosed by the dotted curve and the 

continuous one (the metastable region), such as the point Q, then we say that the 

system has suffered a shallow quench. In this case the separation process is likely 

to proceed firstly by the formation of small roughly spherical droplets of one of 

the two phases, a phenomenon that is known as nucleation. It turns out that all 

ca cU cp 
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the nuclei that have the radius smaller than a certain value (called the critical 

radius) will shrink after they have been created and then disappear. On the other 
hand, the droplets with a radius greater than the critical radius will grow in time 

to a macroscopic size, a phenomenon which is known as growth. The growth and, 

particularly, the nucleation are very slow processes and sometimes the latter one 

can be ignored. A system in this state behaves in many aspects as though it 

were in a true equilibrium state, but it is stable only to small fluctuations in the 

composition. The homogeneous state is a local minimum of the free energy, and 

we say that the system is in the metastable state. 

If after the quench the system arrives in a point inside the dotted curve, 

also called the spinodal region, then we speak about deep quench. Inside this 

region generically any composition fluctuation is unstable. The mixture separates 

out into two phases, one rich in a components and one rich in 
,ß components, 

a phenomenon known as spinodal decomposition. For a generic point R inside 

the spinodal region we find different values for the concentration, ca and co. 
As time passes, the typical domain size grows in time as the larger domains 

grow at the expense of small domains, which shrink and disappear. This process 

of disappearance of the fine structure in time is called coarsening (or Ostwald 

ripening). Additional details concerning phase separation can be found, among 

other places, in [55], [86]. 

1.2.2 The Ising model r 

The Ising model is one of the pillars of statistical mechanics and it is the prototype 

model for all magnetic phase transitions. It was first studied by Lenz [72] and Ising 

[67] in 1925, as a model of a ferromagnet or antiferromagnet on a crystal lattice. 

The Ising model tries to imitate behaviour in which a collection of individual 

elements (e. g., atoms, animals, social behaviour, etc. ) modify their behaviour in 

time so as to conform to the behaviour of other individuals in their vicinity. It 

has been also used successfully to describe the decomposition of a binary alloy, 

originally in homogeneous state, into domains of two phases. In biology, it can 

model neural networks, flocking birds, or beating heart cells. 



CHAPTER ONE 9 

We consider a lattice A populated by two sorts of spins, 'up' and 'down', (or 

two sorts of atoms, say A and B, for a binary alloy). At each lattice site k we 

assign an occupation variable Uk which can take only two values, Uk = +1 if the 

spin at site k is 'up' (respectively, if we find an A-atom at site k), and Uk _ -1 
if the spin is 'down' (for a B-atom at site k). Each spin (atom) can interact with 

an external magnetic field, Hk, that varies from site to site and with other spins 
(atoms) in the lattice. 

There are various kinds of dynamics that can be considered here. The simplest 

one is the so-called Glauber dynamics, where the spins can just flip from one sign 

to another. This mechanism cannot be used to model phase separation in binary 

alloys, where the order parameter is a conserved quantity in the system. Another 

type of dynamics is the direct interchange between two neighbouring spins, also 

called Kawasaki dynamics, which can also be used as a mechanism for atom 

migration. When a small number of vacancies are present in the lattice, we can 

imagine vacancy-mediated dynamics, where an atom can exchange places only 

with a neighbouring empty site. 

If only nearest neighbour interactions are considered in the lattice, and we de- 

note by Jkj, Kklm, ... the exchange interactions between, respectively, two, three, 

... nearest neighbour spins (atoms), then we can write the general Hamiltonian 

as follows: 

1 
H=->Hkak- E Jk ka1- 

1E 
Kkzmakalvm-... (1.2.2) 

kEA <k, 1> <k, 1, m> 

where <"> means that the sums are considered over the nearest neighbour 

pairs, triplets, ... . 
In the absence of an external magnetic field and if we restrict 

ourselves to pair exchange interactions only, (1.2.2) becomes 

H--2 Jki0k01, (1.2.3) 
kEA IEN(k) 

where N(k) denotes the set of nearest neighbours to site k. 

If J is positive, then H decreases for parallel spins (if A-A and B-B bonds 

are created), fact which corresponds to ferromagnetism (the phase separation 
into A-rich and B-rich regions), but if J is negative the system will tend to order 
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(antiferromagnetism), to maximize the number of A-B bonds. For more details 

one can consult [61], [72], [83], [102]. 

1.2.3 The Penrose models 

Unlike macroscopic models, microscopic models do include representations of each 

atom in the system, and it is assumed that the kinetics of atomic ordering in 

binary alloys can be specified by finding the rate at which each atom of the 

given components will move from one lattice site to another. Since very few 

models in Statistical Mechanics can be solved exactly, in most cases one has 

to use approximate methods. One of the most used methods is the mean-field 

approximation, in which the basic assumption is the statistical independence of 

the local ordering, i. e., of nearest neighbour spins or atoms. In this theory, 

the order parameter is replaced by its expected value ('mean field' term) and 
fluctuations about that value are ignored. One has to find the evolution equation 
for this value. 

In order to avoid the derivation of models for phase separations in solids as 

gradient flows of a free energy functional, which sometimes does not satisfy the 

convexity requirement of Statistical Mechanics theory, Penrose [85) has derived 

new types of equations using only Statistical Mechanics principles. He derived two 

equations which approximately represent the dynamic Ising model with atomic 

exchange in the mean-field approximation. Two kinds of stochastic dynamics 

were considered: the spin-flip dynamics of Glauber for the non-conserving order 

parameter case, and the spin-exchange dynamics of Kawasaki for the conserving 

case. In these models one solves deterministic equations for the expectation of 

site occupation as a function of time. It was shown that these equations also 
have a Lyapunov function, which is not quite the free energy of the system in the 

mean-field approximation, but this approach has'the advantage that it contains 

no adjustable parameters or functions. 

Let us consider an Ising model on a lattice A with occupation numbers Ui =f1 

and assume only interactions between the nearest neighbour spins. Then the 

energy of the system will be given by (1.2.3). In the case of Glauber dynamics 
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each spin kEA has a probability wk(Q) per unit time of reversing its sign, and 

the evolution of the occupation of site k can be expressed as 

dtE(ok) = -2E[akwk(a)], (1.2.4) 

where E represents the expected value of the spin. 
In the case of Kawasaki dynamics, for each pair of nearest neighbour sites 

< k, 1 >, there is a probability wkl(y) per unit time that the atom situated at 

site 1 swaps with the atom at site k. The corresponding law is 

dtE(ok) 
_ E' [(orl - O'k)wkl(U)17 (1.2.5) 

IEN(k) 

where N(k) denotes the set of nearest neighbours to site k. 

Penrose substituted Glauber's hyperbolic tangent rule (see also [54], [92]) into 

the time evolution equations, which resulted in a differential equation involving 

the expectation of some nonlinear functions (e. g., the hyperbolic tangent) and 

some expectations of type E(akai). If we suppose that all such spins take values 
independently of the other spin values, then we can approximate these terms 

by E(ok)E(oj), and the average of the nonlinear function by the function at the 

average value of the argument. The Glauber rule is 

cv(Q) = 
2{1 

- tanh[106W(Q)]}, (1.2.6) 

where 6W (a) is the change in the energy brought about by the transition and 
Q=T (k is the Botzmann's constant and T is the inverse temperature). This 

rule is a convenient choice of the transition rates wk(a) and wkl(a) to satisfy the 

detailed balance conditions 

Wk(Q)e-Ow(a) = wk(Uk)e-#w(ak) (1.2.7) 

and, respectively, 
Wka(ý)e-ýW(ýý = wkt(akt)e-ýW(aklýý (1.2.8) 

where Qk is the configuration (61, U2, ... , -ak, ... , an) when the configuration or 
is (Ql, Q2, ."", Qk, ..., an), and the configuration Qkl is obtained from or by inter- 

changing the spins Qk and or,. 
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After all these substitutions into the time evolution equations (1.2.4) and 
(1.2.5), we get 

auk 
dt = uk + tanh vk (1.2.9) 

for Glauber dynamics, and 

duk 1 E {ul 
- Uk + (1 

- ukul) tanh /3[vk 
- vl + Jkl(uk 

- ul)]} (1.2.10) 
dt 2IEN(k) 

for Kawasaki dynamics. Here we have set 

Uk = E(ok) and Vk =E Jk, L, for all kEA. 
IEN(k) 

Note that in the case of Kawasaki dynamics the total number of the atoms of 

each species is conserved, that is we have 

E 
Uk = const. 

kEA 

(1.2-11) 

The kinetic equation (1.2.9) was also obtain by Suzuki and Kubo in [921. Each of 

these approximate kinetic equations have a Lyapunov function; for (1.2.9) this is 

LG(u) 
_1E, 

O(uk) -2EE Jklukud, (1.2.12) 

kEA kEA IEN(k) 

where 
O(U) =2 (1 + u) ln(1 + u) +2 (1 - u) ln(1 - u). (1.2.13) 

For (1.2.10) a Lyapunov function exists provided At have the same value for 

all k, IEA, say J. Then the Lyapunov function is 

LKaw(U) _0, cb(uk) -2 UkUI -2E uk' (1.2.14) 
kEA kEA lEN(k) kEA 

Penrose [85] has also suggested a way of deriving (1.2.9) and (1.2.10) from, 

respectively, the discrete versions of the Allen-Cahn and the Cahn-Hilliard equa- 
tions. Concerning (1.2.9), it was shown [37] that there is a critical temperature, 

TT, so that for temperatures higher than TT the uniform state is the unique equi- 
librium, while below this value there are multiple equilibria. Also, properties of 

the global dynamics, the bifurcation problem and numerical computations are 
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discussed in this paper. Simulations for (1.2.10) were performed in [66], showing 

that this model does reproduce the variations of the wavelength and amplitude 

with time observed experimentally during the phase separation, even though it 

fails to describe the very early stages of the decomposition. In Chapter 5 we will 
be using these techniques to get the approximate equations for the Ising model in 

which the diffusion process is mediated by a small number of vacancies introduced 

in the system. 

1.2.4 The Vineyard approach 

In 1956, G. Vineyard [96] proposed a more general approach for the kinetics of 

order-disorder transformations, which can be used for alloys having any number of 

components and, like the Penrose models, this model avoids the use of a bulk free 

energy functional. The ordering process is described by a set of multiparticle time- 

dependent distribution functions. Away from equilibrium, all these distribution 

functions will change with time as atomic exchanges take place on the lattice. The 

kinetic equations can be written with respect to any n-particle set of distribution 

functions (where n is the number of particles in a given cluster), depending on 

the level of approximation. The changing rates of these distribution functions 

are proportional to the exponential of activation energy for the atomic diffusion 

jumps. This model can be used for many different mechanisms of atom migration, 

such as direct exchange or vacancy mechanism. We shall describe briefly here the 

model for direct exchange mechanism (Kawasaki dynamics) in a binary alloy. 
Let A be a lattice, in which to each site x corresponds a set of nearest neigh- 

bour sites N(x), and the sites are denoted by x+J. The lattice is populated by 

two sorts of atoms only, say A and B, with corresponding probabilities PA(x; t) 

and PB (x; t) at a given time t. Then we have 

PA(x; t) + PB(x; t) = 1, for all lattice sites x and at all times t. (1.2.15) 

Let us denote by PABtx} (x, x+8, {y}; t) the probability of finding simultane- 

ously an A-atom at x, a B-atom at site x+6 and the set of atoms {X } on the 

neighbouring sites {y}, at a particular time t. Also, we denote by RAB({X}) the 
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rate at which these two atoms will exchange places, under the influence of the 

nearest neighbours around the pair. Similarly, we define PBA{x} (x, x+ö, {y}; t) 

and RBA({X }). Then the law for the rate of change of PA(x; t) is: 

d 
PA(X; t) -2::: 

EE PDA{x} (x, x+S, {y}; t)RBA({X }) - 
a {X} 

-ZEPAB{x}(x, x+8, {y}; t)RAB({X}). (1.2.16) 
6 {x} 

d 
The equation for ýtPB(x; t) is now easily obtained from (1.2.15). These equa- 

tions cannot be solved analytically unless we simplify somehow the right hand 

side expressions. One can do this if we assume statistical independence among 

occupation probabilities. For example, we approximate 

PAB{x} (x) x+ 671Y1*) t) ^' PA(x; t)PB(x + d; t)PX1(yi) ... 
Pxn (Yn), 

where each yz is an individual site in the set {y}, and Xi is an atom (A or B) 

or a vacancy occupying yZ (i =1... n). With this single site approximations, it 

remains only to specify the jump rates RAB({X }), which contain all the physics of 

the problem. Following Vineyard, we consider an A-B pair situated at (x, x+b), 

and we suppose that around the site x we find nA(x) nearest neighbour atoms of 

type A, nB(x) other nearest neighbour atoms of type B, and similar numbers, 

nA (x + 6) and nB (x + 8), around the site x+6. Obviously, for any site x we have 

nA(x) + nB(x) = nA(x + S) + nB(x + 8) :=z-1, (1.2.17) 

where z is the number of all nearest neighbour sites of a given site (the coordina- 

tion number). We denote by JAA, JAB, JBA and JBB the bond energies between 

the nearest neighbour atoms A-A, A-B, B-A and B-B, respectively, where 

all these energies are considered to be non-negative. We assume that JAB = JBA 

and introduce the quantity E_ (JAA + JBB - 2JAa)/2. Clearly, e>0 for an 

ordering system. The energy of a configuration is the sum of all bond energies 
in the system. The contribution of the pair A-B situated at (x, x+ 6) to the 

total energy is 

fA(X)JAA + (z 
-1- fA(x))JAB + TAX + Ö)JBA + (z 

-1- 1ZA(X + 6))JBB, 
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and after the exchange the contribution will be 

nA(X)JAB + (Z 
-1- nA(X))JBB + nA(X + S)JAA + (z 

-1- nA(X + S)). JBA" 

Thus the net change in the energy due to this pair is 

DE(x, x+ 6) = 26(nA(x +8- nA(x)), 

and Vineyard concluded that the exchange rate RAB({X}) is of the form 

RAV({X}) 
= ve-ß(U+f(nA(2+a)-7Lq(X))) 

15 

where U is the activation energy, v is the frequency of the vibrational mode 

associated with the interchange and ,ß =ABT is the Boltzmann's constant. Note 

that rescaling time one can set the term ve-16° to be 1. In a similar manner one 

can find the other exchange rates. 
In the case of vacancy-driven diffusion we can use this mechanism regarding 

vacancies as being species of atoms. Based on this formalism, in the last part of 
Chapter 5 we shall derive the model for ordering in a binary alloy, with atoms 

exchanging places through vacancies. We also derive new equations by taking 

averages over the configurations. 
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Mathematical background 

2.1 Dynamical systems 

In this section we introduce general tools and basic results of continuous dynam- 

ical systems theory which will be used frequently in the sequel; all the results are 

recalled without proof. The following definitions may be found in, among other 

sources, [4], [62], [64], [94]. 

Let X be a Banach space. 

Definition 2.1 A family of evolution operators {S(t) :X -* X, t> 0} is called 

a (nonlinear) semigroup on X if the following properties are satisfied: 

(i) S(d) = I, the identity operator on X; 

(ii) S(t)(S(s)u) = S(t + s)u, for all uEX, for all t, s>0; 

(iii) the mapping t -4 S(t)u is continuous, for each uEX; 

(iv) S(t) is a continuous (nonlinear) operator from X to itself, for all t>0. 

Furthermore, if we suppose that the Frechet derivatives of S(t)u in t exist up 

to order k and are continuous, then {S(t)}t>o is said to be a C' - semigroup. 

The pair {X, S(t)} is called a semi-dynamical system. If the operators {S(t)}two 

are one-to-one, then for all t>0 there exists an inverse of S(t), which we denote 

by S(-t), and this operator maps S(t)X onto X. We then get a family of 

16 
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operators {S(t)}tER satisfying (i)&(ii) on their domains of definition. In this 

case the pair {X, {S(t), tE R}} is called a dynamical system. 
The space X is often called the phase space (or the state space) and the map 
S: R+. xX -+ X, (t, uo) H S(t)uo is called a flow. 

Definition 2.2 The semigroup {S(t), t> 0} is completely continuous (uniformly 

compact) for t> to if 

for all BEX, B bounded, 

there exists to = t(13) >0 such that U S(t)B is relatively compact in X. 
t> to 

We shall show in the next chapters that the equations we will consider are not 

completely continuous. 

The most common way to define a continuous (semi-)dynamical system is by 
differential equations. 

Example 2.3 Let us consider the following problem in a Banach space X: 

dt + Au =f (u), t>0 (2.1.1) 

u(0) = uo E X, 

with f: X -3 X is locally Lipschitz and A is a bounded operator in X. A function 

u: [0, T) -+ X is a solution of this problem on [0, T) if u is continuous on [0, T), 

continuously differentiable on [0, T), u(t) E D(A) for 0<t<T, u(0) = uo and 
(2.1.1) is satisfied for all tE [0, T). We say that the problem is well-posed (see 

[84]), if there exists a solution u(t; uo) to the problem, the solution is unique, and 
depends continuously on uo. Assume that for any initial condition uo EX the 

solution exists for any t>0, then one can easily verify that 

S(t)uo = u(t; uo), t>0 

defines a continuous semi-dynamical system on X. 

For any element uo E X, we define the positive semi-orbit y+(uo) starting at 
uo as 

'Y+(uo) = US (t) U0, 

t>o 
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and similarly, when it exists, the negative semi-orbit y-(uo) ending at uo as 

ry-(uo) = U{u(t)}, 
t<o 

where u: (-oo, 0] -+ X, such that u(0) = uo and for any s<0, S(t)u(s) = 
u(t + s), for 0<t< -s. The complete orbit through uo is the union of positive 

and negative orbits through u0. 
For any uo EX and for any set BCX, we define the w-limit set of uo (or B) 

and the a-limit set of uo (or B) as 

W ý'ýý> =nu S(t)un, 
s>Ot>s 

w(B) =nU s(t)B 
s>Ot>s 

a(uo) =IIV 

s<0t<s 

where the overbar means the closure in X. 

cx(B) =nU S(_t)-'B, 
s<Ot<s 

A stationary point, or equilibrium point is a point 0EX such that 

s(t)q=0, bt>0. 
If {S(t)}too is a C'-semigroup, then an equilibrium point is called hyperbolic if 

the spectrum o (DS(t) (0)) does not intersect the unit circle with center zero in 
C, where DS(t) is the derivative of S(t). 

If 0 is a equilibrium point, then we can define the stable and unstable manifolds 
of 0 as follows: 

Ws(o)={uoEX; S(t)uo -+ 0 as t -+ oo} 
Wu(q) = {uo E X; there exists an orbit u: (-oo, 0] -4 X such that 

u(0)=u0and u(t)-*¢as t--*-oo} 

A set BCX is positively invariant (resp. negatively invariant) for the semi- 
group S(t) if 

S(t)B CB (resp. S(t)B D B), vt > 0. 

The set B is called invariant for the semigroup S(t) if S(t)B = B, Vt > 0. 
A compact invariant set A is said to be a maximal compact invariant set if every 
compact invariant set of the semigroup is contained in A. 
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Definition 2.4 An invariant set AEX is called an attractor if .4 possesses an 

open neighbourhood U such that, for every uo in U we have 

dist(S(t)uo, A) 
-+ 0, as t -+ oo, 

where 'dist' denotes the distance of a point to a set. The largest open set if that 

satisfies the above condition is called the basin of attraction of A. 

Definition 2.5 A set ACX is said to be the global (or universal) attractor for 

the semigroup {S(t), t> 0} if the following conditions hold: 

(i) A is a maximal compact invariant set in X, 

(ii) A attracts bounded sets of X, i. e., for any bounded set BCX we have 

dist(S(t)B, A) -+ 0, as t --4 oo, 

where here 'dist' represents the distance between two sets. 

Related to the concept of attractor is the concept of absorbing sets. 

Definition 2.6 We say that a subset BCX absorbs bounded sets of an open 

set UDa (or B is absorbing in U) if for any bounded set So C U, there exists a 

time tl (depending upon BC)) such that 

S(t)8ocB, dt>tl. 

An important tool in studying of the stability of equilibrium solutions is a Lya- 

punov function. 

Definition 2.7 A continuous function V: X -4 R is called a Lyapunov function 

for the semigroup {S(t), t> 0} if the following properties are satisfied: 

(i) V (x) is bounded below; 

(ii) V(x)-4ooas IxI -4oo; 

(iii) V(S(t)x) is nonincreasing in t for each x in X; 

(iv) if x is such that S(t)x is defined fort E R, and V(S(t)x) =V (x), Vt, E R, 

then x is an equilibrium point. 
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Definition 2.8 A continuous semigroup {S(t), t> 0} is said to be a gradient 

system if each bounded positive orbit is precompact and the system possesses a 
Lyapunov function. 

For gradient systems we have the following results Q62]): 

Proposition 2.9 If {S(t), t> 0} is a gradient system, then for all x in X the 

w-limit set w(x) is a subset of the set of equilibria. 

Proof. See [621, Lemma 3.8.2. Q 

Theorem 2.10 If {S(t), t> 0} is a gradient system, completely continuous, and 

the set of equilibria E is bounded, then there is a global attractor A for S(t) and 

A= Wu(E) = cl{z E X; S(-t)z is defined for t>0 

and dist(S(-t)z, E) -4 0 as t -+ oo}. 

If X is a Banach space, then A is connected. If, in addition, each element of E 

is hyperbolic, then E is a finite set and 

.A=U Wu(z). 
zEE 

Proof. See [62], Theorem 3.8.5. 0 

As we shall see in the next chapters none of the nonlocal equations discussed 

there are gradient systems, and therefore we cannot apply Theorem 2.10. 

Let M be an affine linear subspace of an infinite dimensional Hilbert space 
H (i. e., M= is + Mo, with EH and Mo a linear subspace of H), C: M -+ R 

a Gäteaux differentiable functional with respect to any direction in Mo, and 

u(t) EM for each t. The following two definitions can be also found in [44]. 

Definition 2.11 A constrained gradient of .6 in H, denoted by 'gradmE(u)', is 

defined as an element of the closure MO of Mo in H such that for all vEM, 

< gradM6(u), v >H= 
h6(u 

+ hv) I h=o, (2.1.2) 

if such an element exists. Here <, > represents the duality pairing in H. 
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Definition 2.12 A constrained gradient flow of 9 on M is defined by the equa- 
tion: 

aätt) 
_ -K gradM6(u(t)), (2.1.3) 

for some positive constant K, called the mobility, which determines the rate at 

which u approaches equilibrium. Note that sometimes K may be replaced by a 

positive function. 

Thus, the general principle for a gradient flow is that the dynamics of the system 

will have the property of reducing E. Indeed, we have 

d e(u(t)) _< gradme(u(t)), 
9 

(t) >= -KllgradmE(u(t))IIZ < 0. (2.1.4) 

2.2 A mathematical overview of some macro- 

scopic models for phase transitions in solids 

The macroscopic models are models based on group dynamics. They are usually 

concerned with gross patterns and spatial scales. The matter is treated as being 

continuous, and the existence of atoms on a microscopic scale is not considered. 
At equilibrium the system can be characterized by a relatively small number of 

variables, e. g. density, volume, temperature, free energy, entropy. A state of a 

system described in this way may be referred to as a macrostate. Chemists make 

their observations in the macroscopic world and seek to understand the funda- 

mental properties of matter at the level of the microscopic world (i. e. molecules 

and atoms). The macrostate of a system varies with time in two principal ways: 
by allowing heat to flow in, or doing work on the system. The general rules gov- 

erning the macroscopic variables and their relations with other variables is the 

subject of thermodynamics. In this thesis we shall derive the kinetic equations 
for macroscopic models by postulating the evolution of a state as a gradient flow 

of a free energy functional. Motivated by this fact, we start with a discussion on 

the derivation of the free energy. 
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2.2.1 The free energy 
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In order to derive evolution equations for phase transitions in solids, such as 
ferromagnetic phase transition or phase separation in alloys, one does assume 

that the behaviour of the system can be described by a free energy functional 

which is defined as a function of an order parameter. We would expect that the 

system will evolve in such a way that its free energy decreases in time, a fact 

which is consistent with thermodynamic principles. 

Let us consider a molten binary alloy which is confined to a bounded region 
S2 ER and, as in Section 1.2.1, let ca and co be the concentrations of the two 

phases, a and , 
ß, respectively. We would like now to write the free energy of the 

mixture, such that the energy minimization argument will lead us to some law of 

evolution for the phase separation process. We take the order parameter to be 

the total solute atomic fraction in the alloy, defined by 

u(x, t)_C- Cß" (2.2.1) 
C+ cß 

Hence u is restricted to lie in the interval [-1,1], and u-1 in the pure a-phase 

and u- -1 in the pure , ß-phase. For a1: 1 composition we have u-0. We 

also note that (1.2.1) is satisfied, which imposes the mass conservation constraint 
(2.2.6). If we suppose that the interphase free energy of the two-phase mixture 
is neglected, then the free energy is the sum of the bulk free energies of the 

two components. Suppose that the domain 1 is situated on a lattice. Following 

Khachaturyan [68], if F(ca) and F(cß) denote the specific free energies of each 

phase, and the system has N,, and Nß sites in the phases a and , 3, respectively, 

then the free energy at a given temperature T may be written as 

Eo(u, T) = F(ca, T)NQ + F(co, T)Nß. 

The continuum analogue of this formula is 

Eo(u, T) = fF(u(x) , 
T)dx. (2.2.2) 

As we have discussed in Section 1.2.1, it was experimentally observed that at 
high temperatures the homogeneous state is a stable equilibrium, and for a tem- 

perature below a critical value TT the equilibrium is a state with two coexisting 
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F 

Figure 2.1: The bulk free energy F(u) at some temperature T>T. 

F 

FM 

Figure 2.2: The bulk free energy F(ei) at some temperature T<T. 

ýý. ) 

domains. We would like the bulk free energy F(u, T) to be a convex function 

for T> TT (see Figure 2.1), and to be a double-well type function if T< TT (as 

shown in Figure 2.2), with two equal-depth symmetric minima. For Jul > 1, F(u) 

is prolonged so that F(u) - oc as Jul -+ oc. We shall see later that this choice 

for F(u, T) agrees with experimental results. 

In [70], Landau made the important assumption that in the vicinity of T, the 

bulk free energy is an analytical function of order parameter (for the following 

discussion one can also consult [61], [71], [83], [89], [91] and [95]). Thus one c. an 

uQ u� uD u 

uQ U u0 u 
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expand F(u, T) in power series of u, 
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F(u, T) = F(O) + al(T)u + a2(T)u2 + a3(T)u3 + a4(T)u4 + ... , 
(2.2.3) 

where, in the same time, the coefficients ai (T) (i = 1,2, ... 
) may be expanded 

in Taylor series about T=T. It was argued in [71] that in the absence of 

an external field, the symmetry of the system would require that the expansion 
(2.2.3) contain only even powers of u. Following [61], the behaviour of the system 
is independent of whether or not we include higher order terms in the expansion 
if the leading term of the truncation is positive. Since we want the bulk free 

energy to be double-welled at low temperature, we suppose that a4 (T) =b>0 

and we shall consider the truncation of the Taylor expansion at the fourth order. 

We then have 

F(u, T) = F(O) + a2(T)u2 + bu4. (2.2.4) 

The condition b>0 also assures the fact that F(u) is bounded below. If we want 
F to have the properties that we mentioned earlier, we need the coefficient a2(T) 

of the form 

a2(T) = C(T - Ta). (2.2.5) 

We can easily observe that TT is a critical value: for T> TT the bulk free energy 

is convex (see Figure 2.1), and has only one minimum which corresponds to 

the homogeneous phase u-0, while for temperatures below TT, F(u) becomes 

a double-well type function (see Figure 2.2), having two symmetric minima at 

u= ±(-a2(T)/2b)'/2. These two solutions, which are denoted in Figure 2.2 by ua 

and up, lead to the possibility that the mixture separates into two different phases. 

The region (ua, uß) is known as the miscibility gap, the region where F is concave 

is called the spinodal region, and its complementary region in the miscibility gap is 

known as the metastable region. For example, in the particular case F(u) =4 u4 - 
2u2, these regions are: (-1,1), (- 

V3_- 
L) and (-1, -)U(, 1), respectively. 

v/53 V3_ 
At all times, the concentration of each species contained in the vessel must 

remain constant, and this imposes the following constraint on the order parame- 
ter: 

1 
ICI u(x)dx =M>0. (2.2.6) 

is, 
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It turns out that attempting to describe the dynamics of phase separation by con- 

sidering gradient flows of Eo (u) in a standard Hilbert space, constrained according 

to (2.2.6), will not give an evolution law which is both local and well-posed (see 

[44] and [45]). Taking the L2(1) gradient flow of Eo(u), one obtains the nonlocal 

equation 

ut = -f (u) + ICI 
If 

(u(y))dy, (2.2.7) 

where f (u) = F'(u) (see Figure 2.3). One would expect the solution of this 

equation to evolve towards a state which minimizes the energy (2.2.2), subject to 

(2.2.6). If M lies in the interval (u, uß), as in Figure 2.2, then it is well-known 
[20] that a solution of the minimization problem must be piecewise constant, 

uq, xE Si 

u(x) = 
U0, xE S2i 

where Sl and S2 are disjoint measurable sets whose union is Q, and u, ug are 

defined by the Maxwell conditions (equal-area construction) (cf. Figure 2.3): 

F(uß) - F(ua) = fm((3 - a), (2.2.8) 

f (un) = f(un) = IM. 

It turns out that equation (2.2.7) has far more equilibrium solutions which sat- 
isfy (2.2.6). For example, any bounded measurable function u(x) satisfying 
f (u) = tonst. is a steady state solution, regardless of whether f (u) = fm or 

not. Moreover, if f'(u(x)) >0a. e., such solutions are linearly stable, without 

satisfying (2.2.8). These states are only local minimizers of the free energy (2.2.2). 

The free energy Eo (u) alone cannot predict the development of characteristic 
length scales with time, observed experimentally during phase separation. It was 

suggested [97] that the free energy at constant temperatures depends not only on 

the order parameter, but also on the order parameter gradient. Thus, additional 

terms must be considered in the free energy functional. We will therefore at- 

tempt to express the free energy as the sum of two contributions: one depending 

on the order parameter, and the other one depending on the order parameter 
derivatives. Let us denote by 

-'= F(u, Vu, 02u, ... 
) the free energy per unit 

volume (the specific free energy) and suppose that T is a smooth function of u 
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and its derivatives, such that we can expand this function in Taylor series about 
the uniform concentration (ü, 0,0, ... 

). The total free energy over a volume S2 

may be written as: 

E(u) =J , 
F(u, Vu, V2u, ... 

)dx. (2.2.9) 

For small values of the gradient, the Taylor series expansion of F about 

(u, 0,0, ... 
) gives 

n a. 77 au nna., 7 a2u 
(u, Du, ý2u, ... 

) = F(u) + ävi axi +ZZ awij äxiäxj 
i=1 i=1 j=1 

nn a2. F au au 
(3), (2.2.10) + 

axi ax; i=1 j=1 
via v; a+ 

where F(u) _ F(ü, 0,0, ... 
) is the bulk free energy per unit volume, and vi, wtij 

(i, j=1,2, ... 
) are the components of Vu and V2 u, respectively. 

Assuming the symmetry of the system to reflections (xi -+ -xi) and permu- 

tations (xi -4 xj) of axes (isotropic medium), we get that the partial derivatives 
z 

of F with respect to vi and wig are zero, apart from 
ýw 

and 
-v 

, which we 

shall denote by Bl (u) and 02(u), respectively. 

Thus, with these simplifying assumptions, we can approximate the total free 

energy free energy (2.2.9) by 

n f2 
E2] (u) =J F(u) + 91(u) 

a2+ 
82(u) 

(eau 1 
dx. 

axxi 

Furtheimore, by imposing the no-flux condition Vu "n=0 on 9Q, the appli- 

cation of the divergence theorem yields 
22 Ji 

el (u) äx dx -- 
si 

ä(u) 
äx) 

dx. 

Finally, neglecting the dependence of Bl and 02 on u and writing 

22 := 02(u) - 
9Oi(u), 

the expression of the free energy of the system enclosed in Q reduces to 

r2 EGL (U) =J[E IVuI2 + F(u)]dx. (2.2.12) 
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This theory is due to Cahn and Hilliard for metallic alloys (see [19]). An equiv- 
alent theory for magnetic domains is due to Landau and Ginzburg, and this is 

why (2.2.12) is often called the Ginzburg-Landau free energy functional. Based 

on this functional, with the constraint (2.2.6), Cahn and Hilliard derived in 1958 

the related evolution equation, which is one of the leading models for the study 
of phase separation in isotropic binary alloys. 

An inconvenient fact can appear here. For a very small scale of the mi- 
crostructure (e. g., comparable to the atomic size) the gradient expansion of the 
free energy is no longer valid, and it was shown [66] that the Cahn-Hilliard ap- 
proach fails to describe the evolution of the scale of the phase separation. In order 
to reproduce more faithfully the details of phase separation, two new directions 

are investigated. The first one involves considering mean field equations directly 

derived from the dynamic Ising model (a discussion on this approach will be made 
in Chapter 5). The other one, which we consider in the following two chapters, 
deals with a new free energy functional, in which the gradient term in (2.2.12) 

is replaced by a nonlocal term depending on the compositions at neighbouring 
points and vanishing when the concentration is constant. Instead of considering 
the Ginzburg-Landau free energy functional, we deal now with gradient flows of 
the following free energy functional: 

EK(u) =4ff J(Ix - yl)(u(y) - u(x))2 dydx +J F(u(x)) dx, (2.2.13) 

where J(") E L'(SZ) is a kernel that measures interactions between particles at two 
different positions x and y, and it is assumed positive throughout this work. This 
functional has been initially proposed by van der Waals [97], and also considered 
by Khachaturyan in his book [68] (which is the reason for the subscript K). 

In the remainder of this section, we will give an overview of some nonlinear 
evolutions which are used to model certain phase transition problems in mate- 
rials science. We firstly present the Allen-Cahn model, which does not conserve 
the total mass of the order parameter, and we end with two conserving order 
parameter models, namely the viscous Cahn-Hilliard and the Novick- Cohen- Pego 

models. 
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Figure 2.3: The bistable-type function f (u). 

2.2.2 The Allen-Cahn equation 

ýýý 

The Allen-Cahn equation (also called the bistable equation) is an order parameter 

non-preserving model which can be used to model phase transitions in ferromag- 

netic materials [1], such as ferromagnetism. The equation for this model, 

öu 
_2 at =e Du -f (u), a; E SZ, t>0 (2.2.14) 

is derived as the L2(Q) gradient flow of the Ginzburg-Landau functional (2.2.12) 

for isotropic interfaces. Here f (u) = F'(u) is of bistable type, as shown in Figure 

2.3. The positive parameter E measures the range of intermolecular forces in the 

system. The boundary conditions are usually taken to be 

Vu"n=0 on8SZ, t>0. 

Since the arguments depend only on the bistability property, we shall take for 

definiteness the usual choice for the function f, which is f (u) = u3 - u. Note 

that this equation does not preserve the average value of the order parameter u. 
When E=0, (2.2.14) is a simple ordinary differential equation, and the stable 

equilibrium solutions are either the constant functions u- f1, or the two phase 

solutions having u(x) = -1 for some xE S2, and 'u, (x) =1 otherwise. 

If E>0, then (2.2.14) is a second-order parabolic equation, for which the 

maximum principle, and consequently the comparison principle apply. If Sl is 

ua upu 
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convex, then the only stable equilibrium solutions remain the constant solutions 
u-:: E1. In one space dimension, the dynamics of the Allen-Cahn equation are 
well understood (see the papers of Carr and Pego [21,22] and Fusco and Hale [53]). 

For small enough E, solutions of (2.2.14) corresponding to small inhomogeneous 

perturbation from u=0 evolve as follows: after a short time, domains where u is 

close to -1 and u is close to 1 quickly appear and these are separated by narrow 
transition layers. In one space dimension, a transition layer migrates extremely 
slowly, the time scale being of order O(e-c/E) as e -+ 0 (the positive constant C 
depends only on the distance between layers), and it is annihilated by collision 

either with another layer or with the boundary. With probability one, solutions 

will then coarsen to either u- -1 or u-1, depending on the initial data 

u(x, 0). The latter statement is a straightforward consequence of the comparison 

principle. For more details on coarsening of solutions to (2.2.14) one can consult 
[21]. 

The Allen-Cahn equation defines a gradient flow in L2(Sl), the Ginzburg- 
Landau free energy being the Lyapunov function, it possesses a global attractor 
which is compact, connected and is formed by equilibria and the orbits that 

connect them (see [23], [24], [62], [64]). 

In the case of a quenched polycrystalline material, one can generalize (2.2.12) 

by considering the free energy as a function of many order parameters (ul, u2, ... ) 
ur). The domain-growth kinetics of the system can be described by a system of 

non-conserving order parameter equations which are similar to (2.2.14). Com- 

puter simulations for such a system were performed by Chen and Yang in [28], 

showing that the average domain radius grows as t1/2 after a short transient 
following the quench, independent of the number of order parameters. 

In Chapter 3 we shall derive the nonlocal non-conserving order parameter 
gradient flow using the free energy functional (2.2.13), and then compare some 
properties of solutions to that model with the solutions to the Allen-Cahn model. 
We find a stark contrast between the evolution of their corresponding solutions 
for small enough values of the rate parameters. 
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2.2.3 The viscous Cahn-Hilliard equation 

The viscous Cahn-Hilliard equation, 

(1 - cx)ut = 0(f (u) -6 20u + aut), t>0, (2.2.15) 

where aE [0,1], f (u) = F(u), was introduced by Novick-Cohen [80], who 

considered viscous effects in the Cahn-Hilliard model for phase separation in 

binary alloys which, as we can see later, is a limiting case of (2.2.15). The positive 

parameter E has the same significance as in the previous subsection. This equation 

has been intensively studied by, among others, Bai et al. in [3], Elliott and Stuart 

[38], Grinfeld and Novick-Cohen [58], Novick-Cohen and Pego [82], and Temam 

[94]). If ca and cß, respectively, are the concentrations of the two components of 

the alloy, then u(x, t) is defined by the formula (2.2.1), so uE [-1,1]. 

On a bounded domain S2, the equation (2.2.15) should be supplemented with 

boundary conditions on 0S2. These are usually taken to be 

Vu "n=V(e20u- f(u)) n=0, xEOft (2.2.16) 

The first condition is the no-flux condition on the boundary, and the second one 

ensures that the total free energy of the mixture decreases in time. Using the 

first condition, we may simplify (2.2.16) and have 

Vu"n=V(Du)"n=0, xE8S1. (2.2.17) 

Using the translation v=u-M, we can rewrite (2.2.15) as 

(1 - a)vt ='(f (v + M) - e20v + avt), t>0, ac [0,1]. (2.2.18) 

For any mass ME [0,1] and all aE [0,1], the equation (2.2.18) generates a semi- 

group on the space H' (Il) (l{L2 (1); f9 udx = Q. Using ideas of [38], [62], [94], 

it is not hard to show that the viscous Cahn-Hilliard possesses a global attrac- 
tor which is compact, connected and consists of equilibria and orbits connecting 
them. It has been proved in [13] and [59] that the semigroups are continuous in a, 

and in the limit a --4 0 equation (2.2.15) reduces to the Cahn-Hilliard equation, 

ut = 0(. f (u) - CZAu), (2.2.19) 
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and in the limit a -+ 1, (2.2.15) reduces to the nonlocal reaction- diffusion equa- 
tion, 

ut = 620U -f 
(u) +Jf (u(x))dx, (2.2.20) 

proposed by Rubinstein and Sternberg [88], and also considered in [13]. 

The Cahn-Hilliard equation was initially derived by Cahn and Hilliard in 

[19], as a model for spinodal decomposition and coarsening (Ostwald ripening) 

phenomena in binary alloys. They derived this equation using physical concepts, 

such as generalized chemical potentials. It can also be derived as the H-1(Q) 

gradient flow of the Ginzburg-Landau functional (2.2.12) (see [44], [57]). The 

natural boundary conditions are (2.2.16) (or, equivalently, (2.2.17)), from which 

the mass conservation property (2.2.6) can be derived. 

Existence and uniqueness theorems for solutions of (2.2.19) in appropriate 

functional space settings can be found in [39] and [94]; asymptotic behaviour of 

the solutions and stabilisation to equilibria have been proved in [103]. The semi- 
flow generated by the Cahn-Hilliard equation possesses a global attractor which 
is compact, connected and consists of equilibria and their connecting orbits (see 

[941). In the one dimensional case it was shown that the equilibrium solutions 

are isolated [78] and the global attractor is finite dimensional, which is not the 

general case for higher space dimensions. Other discussions on the mathematical 

properties of the model can be also found in [34] for the bifurcation diagram, in 

[20], [58], [81], [100], [103] for the properties and the structure of equilibrium solu- 

tions whey Q is one-dimensional, in [77] for equilibria in higher space dimensions, 

in [57] and [75] for the spinodal decomposition in one dimension and, respectively, 

in higher dimensions, in [94] for the existence of inertial manifolds, in [7] for the 

spectral properties of solutions, in [2] for the extremely slowly evolving solutions 
in one space dimension, and [36] for numerical studies on the coarsening dynamics 

of solutions to (2.2.19). 

The dynamics of the Cahn-Hilliard equation in one dimension for small 6 may 
be described briefly as follows (for definiteness we consider f (u) = u3 - u). If 

the mass M lies outside the miscibility gap (-1,1), then all solutions decay to 

the trivial solution u=M (see [39], [103]). If M lies in the miscibility gap, then 
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after an initial transient period the solution takes the form of a finite number of 
transition layers separated by regions where u is alternatively -1 or +1. These 

transition layers will migrate slowly relative to one another and the smaller scale 
layers will be annihilated (the coarsening process takes place). Asymptotically, 

solutions approach a stable stationary solution which is a global minimizer of 
the free energy (2.2.12). In [20] it has been proved that the stable equilibrium 

solutions have to be monotone. 
If e or IMI is big enough, then there is a unique global solution which decays 

to the constant mass M as t -* oo (see [39]). 

The nonlocal reaction-diffusion equation (2.2.20) was also used to model the 

phase separation process in binary mixtures which preserve the total mass of 
the two components, but it does not have the pattern formation capabilities of 
(2.2.19). It can been derived as the L2(S2) constrained (mass-conserving) gradi- 

ent flow of the Ginzburg-Landau functional (2.2.12) or, alternatively, by adding 

a nonlocal term to the Allen-Cahn equation, which makes the total mass of u to 

be a conserved quantity, i. e., such that (2.2.6) is satisfied. This is why (2.2.20) 

is sometimes referred to as the nonlocal Allen-Cahn equation. We shall not use 
this name for (2.2.20) in this work, since we are going to use it later for a dif- 

ferent equation. Rubinstein and Sternberg [88] have studied the behaviour of 
the solution of (2.2.20) with Neumann boundary conditions. They used multiple 
time-scale asymptotic expansions, and formally obtained that the domain S2 is 

divided in regions where the order parameter u is close to the local minima of 
F(u). Based on energy methods combined with some a priori estimates, L. Bron- 

sard and B. Stoth [13] studied the asymptotic behaviour of radially symmetric 

solutions of (2.2.20). 

In Chapter 4 we shall introduce and discuss some nonlocal versions of these 

equations. 
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2.2.4 The Novick-Cohen-Pego equation 

As mentioned in [44], the gradient flows of (2.2.2) with respect to L2(S2), or 

H-' (S2), or any other standard Hilbert space will not give a local evolution law. 

Starting from the free energy (2.2.2), one can get a well-posed local equation 

when a different type of approach is used. In [82], Novick-Cohen and Pego have 

considered gradient flows of (2.2.2) with respect to the following Hilbert space 

X= {u E L2(Q); J u(x)dx = 0}. (2.2.21) 

They defined for some v>0 the operator 

Au = (vzi - I)-'Au, (2.2.22) 

and used the following inner product in X: 

(u, v)X = (A-'u, V) L2. 

The mass-conserving gradient flow of (2.2.2) with respect to this inner product is 

ut = A(. f (u) + vut), 

where f (u) = F'(u). 

(2.2.23) 

They proved global existence in L°°(Q) of solutions for t>0 by exhibiting 

a positively invariant interval for u, and the stabilisation of these solutions to a 

steady state solution. In this case the set of equilibria turns out to be richer that 

the corresponding set of the Cahn-Hilliard equation; it also contains steady states 

which satisfy f (u) = 0, regardless of whether u is a global minimum for (2.2.2) or 

not. The constant solutions are unstable in the spinodal region, as for the Cahn- 

Hilliard equation, but their dispersion relation does not identify a preferred wave 

number with maximal growth rate. As we shall see in the next chapter, Section 

3.6, this equation can be derived in a rather different way, by considering Pade 

approximations obtained from the gradient expansion of EK(u). 
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The nonlocal Allen-Cahn 

equation 

3.1 Introduction 

This chapter is devoted to the following equation, 

ut _f J(Ix E yý)(u(y) 
- u(x)) dy - f(u), xe9, t>0, (3.1.1) 

where S2 is a convex bounded domain in IR, u(x, t) is the order parameter rep- 

resenting the state at position x and time t, J(") is an L'(R) kernel, f (u) is 

a (dissipative) bistable nonlinearity, and ry and e are positive constants. This 

equation is subject to the initial condition 

u(x, 0) = u0(x). (3.1.2) 

As we shall see later, no boundary conditions are required. 
The equation (3.1.1) may model a variety of physical and biological phe- 

nomena involving media with properties varying in space. We may regard this 

equation as the nonlocal version of the Allen-Cahn equation (2.2.14) because, as 

one can observe, to determine the evolution of u(x, t) in time we need to take into 

account the values of the state in a neighbourhood of the site x. Equation (3.1.1) 

34 
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has been introduced by Bates, Fife and co-workers. In particular, the paper [42] 

sets out the general theory of these (integro-differential) equations and gives an 

overview of known results. Bates and Chmaj [5] give a careful derivation of the 

equation directly from the Ising model and describe steady state solutions. In 

[43] Fife establishes the existence of a spatially nonuniform stationary solution 

on the real line connecting two uniform states. Monotone travelling waves and 

stationary waves in one-dimensional case were studied in [9]. In [29] Chen found 

an infinite number of non-monotone discontinuous waves, and Bates and Chmaj 

analyse in [6] the discrete version of this equation. The bulk of Sections 3.4 and 

3.5 is contained in [32]. 

We begin with a brief derivation of the Khachaturyan free energy functional, 

and based on this functional we derive an L2-gradient flow. The equation (3.1.1) 

is obtained as the restriction of this gradient flow to Q. Concerning this equation 

we show the well-posedness in LO° (S2) (with SZ bounded in R), and examine some 

properties of the stationary solutions in the special case J-1, properties that will 
be used in the following sections. The main results of this chapter are related to 

coarsening of solutions to (3.1.1)+(3.1.2) when J(. ) > 0, and the approximation 

of the generated flow by flows obtained using a Pade approximation scheme. We 

prove the non-coarsening property of a solution starting from initial data that 

change sign, the key tool in the proof being the comparison principle that (3.1.1) 

obeys. In Section 3.7 we outline a numerical approximation method and show 

runs to illustrate the result of the Section 3.5. We end this chapter with some 

comments on the similarities and differences between this equation and the Allen- 

Cahn equation. 

3.2 Derivation of the equation 

Let us consider a binary alloy on a 1-dimensional lattice A, such that the sites 

are occupied by atoms of two species A or B. To each lattice site k we assign 

a spin variable or(k) which can take only values, u(k) =1 if the site is occupied 
by an A-atom, and o(k) = -1 for a B-atom. Denote by p(k) the probability of 
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an A-atom at site k. We denote by u(k) the average value of this spin, which is 

given by 

u(k) = E(v(k)) = 2p(k) - 1. 

Let J(Ik - k'j) be the energy of interactions between particles at positions k 

and k' (which is considered nonnegative throughout this thesis), and F(u) be the 

bulk free energy of the system. The function F(u) has a double-well form as in 

Figure 2.2, and we suppose that it has two equal depth minima at u- ±1. Then 

the Helmholtz free energy of this discrete system, derived by Bates and Chmaj 

[5], [6] (see also [68]), is 

E(u) =11: J(I k- k'I)(u(k) - u(k'))2 + F(u(k)). 4 (3.2.1) 
k, k'EA kEA 

If the lattice A covers the whole space R., then the expression of the energy (3.2.1) 

in the continuum mean-field approximation is: 

Ex(u) =4JJ J(Ix - yI)(u(y) - u(x))2 dydx +J F(u(x)) dx. (3.2.2) 

If in (3.2.2) we take 

ry =J J(IrD)dr >0 and J(r) =1 
'Y 

we get 

J J(Ix - yI)(u(y) - u(x))2 dydx +J F(u(x)) dx, (3.2.3) EK(u) =4 1 
where now 

f J(IrD)dr =1. 
Note that this normalisation condition enables us to view the nonlocal term in 

(3.2.3) as being a weighted average of the values of (u(y) - u(x))2 over all sites 
in the lattice. The parameter ry can be regarded as a convenient measure of the 

overall strength of interactions between particles at lattice sites x and y. We 

would like now to derive the L2(IR) gradient flow of (3.2.3). We denote here, and 
throughout this work, by < ", "> and 11 " 11 the L2-inner product and the L2-norm, 

respectively. 
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We need firstly the gradient of EK(u) in L2(IR). 

denoted by 
Sa K (u), which satisfies 

d 
dhEK(u + hv)lh_o =< 

6EK 
(u), v 
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This is an element of L2 (R), 

for all vE L2(R). 

We use Definition 2.11, with M=H= L2(R). For all vE L2(R), we have 

successively: 

dh 
EK (U + hv) l h-o = 

- yl)[u(x) + hv(x) - u(y) - hv(y)]2dxdy} 
4 dh 

{ffJ(Ix 

Jh-0 

+d {J F(u(x) + hv(x))dx } 
ll 1R JJJ h=0 

= 
ry 

JJ J(Ix - yl)(u(x) - u(y))(v(x) - v(y))dxdy + 
fFl(u(x))v(x)dx 

2 
JJJ(Ix 

- yl)[u(x)v(x) + u(y)v(y) - u(x)v(y) - u(y)v(x))dxdy + 

+f f(u(x))v(x)dx 

=fJ J(Ix - yl)[u(x)v(x) - u(y)v(x)]dxdy+ 
ff 

(u(x))v(x)dx 
at 

= < 'Y 
f 

J(I x- yl)[u(x) - u(y)]dy +f (u), v >, (3.2.4) 

with f (u) = F'(u) (see Figure 2.3). By the above definition, the gradient of 
(3.2.3) in L2 (R) is represented by 

6 
uK 

(u) =: 'Y 
f 

J(I x- yl)[u(x) - u(y)]dy +f (u(x)). 

Consequently, the L2 (IR) gradient flow is 

Ut = 'Y 
f 

J(I x- yl)[u(y) - u(x)J dy -f (u), xER. (3.2.5) 

By changing the variable under the integral to 77 =y-x, and then rescaling the 

space by a positive constant e, we can rewrite (3.2.5) as 

Ut =7f J(I77 I)[u(x + e, q) - u(x)] di - f(u), xER. (3.2.6) 
We now change the variable by taking y=x+ e17, and obtain 

ut -J J(ix Y') [u(y) - u(x)]dy -f (u), xER, (3.2.7) 
R IR 
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which is the L2 (R) gradient flow of the rescaled energy 

EK (U) =JJ J('x 
- 

yl )[u(y) - u(x)]2 dydx +J F(u(x)) dx. (3.2.8) 

3.3 The semigroup approach 

In this section we restrict ourselves to a convex bounded domain QCR. We 

would like to show that (3.2.7) generates a dynamical system on X= L°°(S2). In 

fact (3.2.7) generates a dynamical system in various function spaces (e. g. L2(Q), 

C(Sl) etc. ), but the L°°(Q) setting is the best choice for the properties that we 

are going to prove in the next sections of this chapter. We consider the following 

assumptions on J and f: 

(-Hi) JE L1(1[ß), J(") > 0, J J(IxD)dx = 1, 

(H2) fE C'(Q) is a function of bistable type (as shown in Figure 2.3), i. e., 

it has exactly three zeros at z_1, zo and z1, with f'(z±i) > 0, f'(zo) < 0. 

We write the equation (3.2.7) on the bounded domain Sl as 

ut =y 
if 

JE(I x- yD)[u(y) - u(x)]dy -f (u), xEf, (3.3.1) 
n 

where by JE we denote 

JE (x) _ J(X). (3.3.2) 

Setting 

A£u(x) =JI JE(lx - yl)[u(y) - u(x)]dy, (3.3.3) 

we can write (3.2.7) in the abstract form: 

äu 
at = ryAEu -f (u), t>0. (3.3.4) 

In what follows we shall establish that equation (3.3.4) with initial data 

u(x, 0) = uo(x), xE9, (3.3.5) 

is well-posed for uo in L°°(Q). 
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Definition 3.1 We define a solution for the problem (3.3.4)+(3.3.5) on an in- 

terval [0, T) to be a continuous function u: [0, T) -* L°° (S2), differentiable on 
(0, T), such that f (u(. )) : [0, T) --* L°°(1l) is continuous, u satisfies (3.3.4) on 
(0, T) and u(0) = uo. 

We start with the following two lemmas: 

Lemma 3.2 The operator A£ is bounded on L°°(Q). 

Proof. Indeed, for all xE1 we have 

IAEu(x)I =I 
in J, (Ix - yl)(u(y) - u(x))dyl 

< J, (Ix - yl)(esssup (u(y)I + esssup lu(x)I)dy 
Sz YESl xE12 

<2 (f Jf(I x- yI )dy) (lull. 

<2 (f JE(I x- yl )dy) (lull. 

=211ul1,,., 
which implies the boundedness of AE in the L°°-norm. Q 

Lemma 3.3 If f is locally Lipschitz and satisfies the following property 

lim inf 
f (S) 

> 0, (3.3.6) 
Isl-+oo 8 

then the problem 
dw 
dt = -f (w), w(0) =e (3.3.7) 

has a unique global solution wE C1([O, oo)). 

Proof. For any i>0, the hypothesis (3.3.6) implies that 

-f (s)s < Cl, - µs2, for all sER, (3.3.8) 

where Cµ is a positive constant depending on p. Existence theory for ordinary 
differential equations yields a unique local solution w(t) such that 

2 dtw2(t) _ -f (w(t))w(t) 

Cµ - tcw2(t), for all t>0, 
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which, after integration, implies that 

w2(t) < w2(0) exp(-2µt) + 
S(1 

- exp(-2µt)) 

< max(e2, 
CA), 

for all t>0. 
µ 

Hence, a unique global solution exists. 
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Theorem 3.4 (local existence) Suppose J satisfies the conditions (? -ll), f is lo- 

cally Lipschitz, and uo E L°°(SZ). Then there exists T= T(uo) >0 such that the 

problem (3.3.1)+(3.3.5) has a unique local solution uE C'([0, T), LOO (Q)). If f 

is Ck, 1<k< oo, then uE Ck+1([0, T), L0O(SZ)). 

Proof. Since Af is bounded on L°O(Q), the right hand side of (3.3.4) is a locally 

Lipschitz perturbation of a bounded operator on the Banach space L°° (Q). We 

then have the existence and uniqueness of a local solution on a maximal interval 

of existence [0, T). (See, for example, [64] Theorem 3.3.3. ). Q 

For the evolution governed by (3.3.1) P. C. Fife [42] showed that a maximum 

principle holds, as well as a comparison principle. For these principles to hold 

the condition J(") >0 is essential. We give here an adapted version of the 

comparison principle presented in [42]. 

Lemma 3.5 Let u0, vo E L°O(Sl) satisfying uo(x) < vo(x) a. e. in Q. If u(x, u0) 
and u(x, vo) are the solutions to (3.3.4) + (3.3.5) starting from uo and v0, re- 

spectively, then 

u(x, uo) < u(x, vo), a. e. in Q, for all tE [0, oc). 

Proof. This is an immediate consequence of Prop. B, [42]. Q 

Remark 3.6 In Section 3.5, we shall prove (see Prop. 3.27) the comparison 
principle for equation (3.3.4) with AE replaced by a more general operator. 

Using the result of Lemma 3.5, we can now prove the following theorem: 
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Theorem 3.7 (global existence) Suppose the hypotheses of Theorem 3.4 are ful- 

filled and, moreover, f satisfies the additional condition (3.3.6). Then there 

exists a global solution to (3.3.1)+(3.3.5) such that uE C1([O, oo), L°°(Q)). 

For all T>0, the mapping uo º-* u is Lipschitz continuous from L°°(1l) into 

cýýýý T), L°°(1Z)). 

Proof. Theorem 3.4 guarantees the existence and uniqueness of a local solution. 
In order to show that this solution is globally defined, one needs to prove the 
boundedness of the solution. We start with an initial data uo that satisfies 

a< uo(x) < b, a. e. x E Q. 

We then consider the solutions w4(t) and Wb(t) to (3.3.7) with initial data w(O) = 

a and w(O) = b, respectively. We observe that these functions also verify (3.3.4), 

and by the comparison principle stated in Lemma 3.5 we get 

Wa(t) 5 u(x, t; uo) < wb(t), for all t>0. 

Since wa(t) and wb(t) are bounded, the solution u(x, t; uo) is locally bounded, 

and, hence, a unique global solution exists. 
The Lipschitz continuity of the map uo u is a consequence of the following 

argument. For an arbitrary fixed T>0, let u and v be the C1([0, T), L" (Q)) 

solutions starting from initial data uo and, respectively, vo, with uo, vo E L°°(1l). 

Then we have 

ut(tý - vt(t) = yA. (u(t) - v(t)) +f (v (t)) -f (u (t)), for all 0<t<T. 

Multiplying the above relation by u(t) - v(t), and using the boundedness of AE 

and the local Lipschitz continuity of f, we get 

2 dt 
hu(t) - v(t) (2 < 2711 u(t) - v(t) III + L(T)Il u(t) - v(t) x'00 

_ (2ry + L(T)) I hu(t) - v(t) 1100, 

and therefore 
Ilu(t) 

- v(t)11�o G C2T(27+L(T))IIuo - voll., 

which yields the Lipschitz continuity of the map uo H u. Q 
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Remark 3.8 An immediate consequence of Theorem 3.4 is the existence of a 

continuous semigroup on L°° (1) defined by the family of solution operators 
{T(t), t> 0}, with T(t)uo def 

u(t; uo). Since the operator AE is bounded on 
L°° (S2), for all c>0, we may as well construct a unique local solution for back- 

ward time, defined on a maximal interval, say (-T, 0]. We thus get a flow defined 

on L00(S2), and so the problem (3.3.4) + (3.3.5) generates a dynamical system 
in L°°(Q). Under some restrictive conditions on f (e. g. f is bounded) one can 

extend the solution on (-T, 0] to a global one defined on the negative semi-axis. 

Remark 3.9 One can easily check that 

£(u) =4JJ Je(I x- yl)(u(y) - u(x))2 dydx +J F(u(x)) dx. (3.3.9) 

is a Lyapunov functional for the semigroup {T(t), t> 0}. Indeed, since J(. ) >0 

and F(u) is bounded below (being a double-well type function), the functional 

, C(u) is bounded below as well. We also have that 

c(u) -4 +oo, as IIUII2 -+ +00, 

and 

dt'C(T 
(t)uo) = -IIutIJz :50, (3.3.10) 

where the equality holds if u is an equilibrium solution for (3.3.1). 

Remark 3.10 If we take f (u) = u3 - u, which satisfies the assumption (3.3.6), 

and -1 < u(x, 0) < 1, xE SZ, then from the comparison principle (Lemma 3.5) 

we get the a priori bound 

-1<u(x, t)<1, xE1, forallt>0. 

Indeed, if we take uo(x) = u(x, 0), xE SZ in Lemma 3.5, and vo - 1, then 

u(x, t) < 1, xEQ, for all t>0. Similarly, we take uo - -1 and vo(x) _ 

u(x, 0), xE SZ, and get -1 < u(x, t), xE SZ, for all t>0. 

For essentially bounded initial data, we may prove the following result for the 

solutions of (3.3.1). 
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Proposition 3.11 Let uo E L°O(Sl) and suppose that f is as in Theorem 3.7. If 

u(x, t) denotes the global solution of (3.3.1)+(3.3.5), then we have 

I Iut(') t) 11 2 -+ 0, as t --4 oo. (3.3.11) 

Proof. Using (3.3.10) and the fact that £(u) is a Lyapunov functional for the 

semigroup generated by (3.3.1), we find two constants C1, C2 (which are inde- 

pendent of t) such that 

Cl < G(u(x, t)) < G(uo(x)) < C2, vt>0. (3.3.12) 

Integrating (3.3.10) with respect to time and using (3.3.12), results in 

f Ilut(", t) Il e dt <C< +oo, vt>0, (3.3.13) 

from which the convergence (3.3.11) follows if we manage to prove that the func- 

tion h(t) :_ IIut(", t)1I2 is uniformly continuous for all tc [0, oo). From Theorem 

3.7 we get that u(", t) is uniformly bounded in the L°°-norm. Hence from (3.3.1) 

and the boundedness of ýIAEI1,,,, we obtain the uniform boundedness of II ut(., t)1 1,,,, 
. 

Using the fact that f is locally Lipschitz and AE is bounded on L°°(Sl), then for 

all t>s>0 we have: 

Ih(t) - h(s) _ f[u(xt) - ut (x, s)] dxl 

jut(x, t) + ut(x, s)UUut(x, t) - ut(x, s))1 dx 

< Cl JI ut(x, t) - ut(x, s) 1 dx (since Ilut(", t)11�, < oo) 
sý 

= C1 j IA, (u(x, t) - u(x, s)) -f (u (x, t)) +f (u (x, s))l dx 

Cly 
in 

1 A, (u(x, t) - u(x, s))I dx + C1 J lI f (u (t» -f (u (s» 11ý dx 
n 

in 

< 2C, -yllu(t) - u(s)11 .. > +C1Lnllu(t) - u(s)11�� 

(since Af is bounded on L°°(Q) and f is locally Lipschitz) 

< CIt - 81 (since ty u(., t) is Cr on [s, t], and IlUtIl 
)< oo). 

This shows that h(t) is uniformly Lipschitz, thus the proof is complete. Q 
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3.4 Stationary solutions 

44 

A stationary solution uE LOO(SZ) is an extreme value of the free energy functional 

(3.2.8), that is, 

uE L°°(Q), such that d 
EK(u + hv)ih=o = 0, for all vE L°°(Q). 

Thus, the equilibrium solutions are solutions of the equation 

ry J JE(lx - yl) (u(y) - u(x))dy -f (u(x)) = 0, xE9. (3.4.1) 

The existence and stability of the solutions to (3.4.1) (with Jf = J) have been 

studied by Bates and Chmaj [5], in both cases J(") >0 and J changes sign. We 

start with the following lemma: 

Lemma 3.12 If f satisfies the assumption (3.3.6), then for all ry >0 the set of 

equilibria is bounded in L°°(1). 

Proof. Multiplying (3.4.1) by u and using the inequality (a - b)b < a2, we get 

f (u(x))u(x) = 'Y 
fn 

JE(I x- yD)(u(y) - u(x))u(x)dy 

ry 
fn 

JE(I x- yI)u2(y)dy 

< ryIIU110, for almost all xcQ. 

On the other hand, by choosing µ= 'y +1 in (3.3.8), we have 

(, r + 1)Iu(x)12 - c7 < f(u(x))u(x), 

which combined with (3.4.2) gives 

(ry + 1) Ju(x)12 - C7 < 7II lI.., for all xc S2, 

(3.4.2) 

with Cry a positive constant. By passing to the supremum in the left-hand side 

of the last inequality yields the L°°(Sl) boundedness of u. Q 

For definiteness, we shall take f (u) = u3 -u in the remaining sections of this 

chapter; however, the arguments below can be easily adapted to deal with any 
bistable nonlinearity. 
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In the particular case ry = 0, the equation (3.4.1) reduces to 

f (u(x)) = 0, xc9, (3.4.3) 

which admits three types of stationary solutions. We can write each stationary 

solution u(x) in the form 

u= 1XA + (-1)XB + OXf \(AUB), (3.4.4) 

where A, B are any measurable subsets of Q. If all the three sets in (3.4.4) have 

non-zero measure, we say that u is a three-phase solution; if exactly one of them 

has zero measure, we say that u is a two-phase solution; otherwise u is one of the 

three one-phase solutions, ±1 or 0. 

In what follows we shall be particularly interested in two-phase solutions to 

(3.4.3) on domains of size J52J =1 and their continuations to solutions to (3.4.1) 

with ry small enough. For a fixed number sE (0,1) and a, bE {-1,0,1}, we 
denote by [a, b], the set of stationary solutions u that take the value a on a set 

of measure s, and b on a set of measure 1-s. Obviously, Q1,01 and Q0,1] are 

the same sets if s= 1/2, but different otherwise. 
The results of this section hold for any e>0, and its value is not important 

in the calculations. Hence we shall fix e=1, which implies JE(") = J(. ). Let us 
denote by G(u, ry) the function in the left-hand side of equation (3.4.1). 

Theorem 3.13 Let sE (0,1) and let ü be an [a, bj solution of (3.4.3). There 

exists y* >0 such that every such solution has a locally unique continuation for 

all 0<ry<ry*. 

Proof. We prove this theorem by applying the Implicit Function Theorem. Let 

us define the following sets: 

Q+(ü) _ {x E St; ü(x) = +1}, 

Sto(ü) = {x E 9; ü(x) = 0}, 

SZ-(ü) = {x E SZ; ü(x) = -1}. 
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The stationary state ü= la, bI satisfies G(ü, 0) = 0. We prove now that in 
L°°(Q) every solution ü of G(u, 0) =0 is isolated, and hence locally unique. 
Let us suppose that there exists a sequence {h} ,, such that Ilh,, -+ 0 and 
f (ü + h,, ) =0 for all n. For small enough h, we have that 

f (ü + h) =f (ü) + f'(ü)h + w(ü, h), 
llW(u' h) lIOO 

where lim = 0. (3.4.5) 
Ilhll0-+o 111uII 

By writing (3.4.5) for h,, and using the fact that f (ü) = 0, we get 

-f'(ü)h,, = w(ü, ha), for all n, 

which implies that lim II f'(ü)I1 = 0. This is not true, since f (u) = u3 - u, IIhn1Ic- 0 
and so -f'(i) E {1, -2}. Thus, each solution i of G(u, 0) =0 is isolated in 
L°° (Sl) 

. The zero (ü, 0) of G has a locally unique continuation around ry =0 
if, by the Implicit Function Theorem, the map G is continuously differentiable, 

the derivative of G with respect to u, denoted by DG, is invertible at (fl, 0) and 
DG-1(ü, 0) is bounded. We want now to find DG(ü, 0). For all vE LO°(SI) we 
have 

dhG(u + hv, 'Y)Ih=o = dh{yý 
JE(Ix - yl)((u+ hv)(y) - (u + hv)(x))dy - 

-f 
((u + hv)(x))II 

h=o 

=, y 
f 

JE(Ix - yl)(v(y) - v(x))dy - f'(u)v, 

whence 
DG(ü, 0) _- f'(ü). 

Since -f'(ü) E {1, -2}, DG(ü, 0) is invertible, with the inverse DG-1(ii, 0) 
being the operator of multiplication by the L°° function 

1 g(x) = x9o(u)(x) - 2xn-(ü)UR+(u)(x). 
Hence JIDG-1(ü, 0)11 <1 for all sE (0,1) and by the Implicit Function Theorem 

there is ry* >0 such that G(u, ry) =0 has a locally unique solution u(-Y), u(0) = no 
for all sin (0,1), for all 0<ry<-y*. Q 

Remark 3.14 Following the remark of MacKay & Sepulchre [73], one can find 

a common lower bound ry*, for which all stationary states [a, b] have a locally 
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unique continuation to solutions of (3.4.1) with 0<y< y*. We also note that 

the upper bounds are clearly dependent on s, as we shall see in Section 3.5 for 

the particular case J(") - 1. Obviously, the above result holds for all 1yI < y*, 
but in our context the parameter y has to be positive. 

Since G(u, y) depends analytically on y, regular perturbation expansions in 

y for solutions of (3.4.1) converge for y sufficiently small. The next lemma states 
that if y is sufficiently small, then the locally unique continuations of a solution 
ü= Q1,01 will change sign in Q; it will be slightly less than 1 on the subset of 
Sl where ü=1, and slightly less than 0 on the subset of SZ where ü=0. This 

information is useful in the next subsection when we prove the non-coarsening 

property of solutions of (3.3.1). 

Lemma 3.15 If u(O) =ü is any [1,01 solution, then for sufficiently small ry > 0, 

the solution u(-y) of (3.4.1) satisfies u(ry)(x) = -ryCi(x) + O(y2) on Sto(ü) and 

u(ry)(x) =1 -'yC2(x) + 0(72) on Q+ (ft), where Ci(x), C2(x) are both 0(1) in SZ 

and positive. 

Proof. We seek a solution of (3.4.1) in the form 

Powers of ry° give 

which has solution 

Powers of 'y give 

u(Y)(x) = ü(x) +'Yui(x) + 0('y2). 

ü(x) - ü3(x) = 0, xE9, 

o, 
ü(x) = 

1, 

xE Slo(ü) 

xE Si+(it). 

(3.4.6) 

(3.4.7) 

in 
J(Ix - Yl)(ü(y) - ü(x))dy + ul(x) - 3ü2(x)ui(x) = 0, xEQ, 

from which we can get ul (x). If we denote by 

Ix- yI )dy, K(x) = 
fn 

J( 
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then 0< K(x) <1 and we have 

ul(x) _ 
fst J(Ix - yl)(ü(y) - ü(x)) dy 

- 3112(x) -1 
(3.4.8) 

fsi+(u) J(lx - yI )dy - K(x)ü(x) 
3ü2(x) -1 

r 
J(I x- yI )dy, xE sýo (ü) 

+(ü) 

12 
J(I x- yI )dy, xE Sý+(ü). 

fflno(fi) 

-Cl (x), xE p0 (u) 

= (3.4.9) 
-C2(x), XE SZ+(ü), 

where Cl and C2 are positive functions of x since J is a non-negative kernel, and 
C1(x), C2(x) are 0(1) in Q (being bounded in S2, as a consequence of JE L'(]1)). 
The conclusion of the lemma follows by substituting the expressions of ü(x) and 
ul(x) into (3.4.6). Q 

Remark 3.16 Obviously, a similar statement can be made for continuations of 
1-1,01 solutions. We can prove that if u(O) = i, is any [-1,01 solution, then for 

sufficiently small y>0, the solution u(y) of (3.4.1) satisfies 

u('Y)(x) _ 'yC3(x) +0 (ry2) on SZo(ü), 

and 

u(7)(x) = -1 + ryC4(x) + 0(y2) on SZ+(ü), 

where C3(x), C4(x) are both 0(1) in Q and positive. 

As we have noted in Section 2.2.2, the Allen-Cahn equation possesses a com- 
pact attractor. The next theorem shows that this is not the case for (3.3.1). 

Theorem 3.17 For sufficiently small y the set of equilibria is not compact, so 
the dynamical system generated by (3.3.1) cannot have a compact attractor. 
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Proof. We shall construct a sequence of equilibria which does not contain any 

convergent subsequence. Let us take a sequence 00, n=1,2, ... , of two-phase 

solutions of the equation (3.4.3), each element of the sequence being of one of 
the types [-1,01, JO, -11, [1,0], or Q0,11, where two elements of the same type 
differ by a set of positive measure, such that 

Ii- ü3Il = 1, for all i#j, i, j=1,2, 
... . 

By Theorem 3.13, for small enough ry each ii,, has a locally unique continuation, 

which we denote by u,, (-y). Using the representation (3.4.6) of u(ry)(x), where ul 
is given by (3.4.8), we have: 

un(l')(x) = un(x) +yuni(x) + w(x) 

= 2ln(x) -, y 

f J(Ix - YD(un(y) - un(x»dy 
+w( (x) 

l 
(x), 

1- 3ün 

where wa(x) is of order 0('y2). Using the fact that the operator Al is bounded 

in L°°(Sl) and the triangle inequality, we have that for any two elements of the 

sequence, ui(y) and uj(ry), 

h ai (ry) - u71'y) Il 
oo 

> II ui - üj + 7ui1 - ^Yuj ll 
loo 

- 
II Wi- Wj l 1. 

MIui - ü3 +'Yuii - 7ujl11. + 0('y2) 

> 1- rylluil - u, iII00 + o(-r2) 
1- y(IIII- + I1uji11) + O('r2) 

(___2lIüjl 21Iüj + >1-Y 
Il3icti-1ýý00+113ü? -1100)0('Y) 

>1 -7C+0(ry2), 

for some positive constant C. The last inequality implies that for sufficiently 
small -y the sequence {u, (y)}n is not Cauchy, and thus {un(ry)}n is not conver- 
gent. In fact, this sequence of equilibrium points does not contain any convergent 
subsequence. This means that the set of equilibria cannot be compact, which ends 
the proof of the theorem. Q 

Remark 3.18 The lack of compactness of equilibria prevents the semigroup 
{T (t), t> 0} from being a gradient system, and thus we cannot apply the the- 
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ory of Hale [62] for such systems, in particular we cannot apply Theorem 2.10, 
Section 2.1. 

3.5 Bifurcation diagram and coarsening 

We shall consider firstly the particular case J(. ) -1 and e=1, in which case we 
draw and discuss the bifurcation diagram for two-phase solutions, then we define 

what we mean by 'coarsening' and examine the coarsening of solutions of (3.3.1). 

At the end of the section we give general results for coarsening of solutions to 
(3.3.1) in the case J(. ) > 0. We set J52J = 1. 

Let us take J(. ) - 1. The equation (3.3.1) becomes 

Ut = 'Y 
U 

u(y)dy - u) +u- u3, xE SZ, t>0, (3.5.1) 

d the steady states are solutions of the equation an 

0=ry(J u(y)dy-u)+u-u3, xES2. (3.5.2) 

The spectrum of the linearization around a stationary solution v(x) is easily 
computed. Linearizing, we get 

ut=ryUn u(y)dy-u)+(1-3v2)u, xES2, t>0. 

If we look for solutions of the form u(x, t) = eatq5(x), we obtain the eigenvalue 

problem 
(A +, y + 3v2(x) - 1) ¢(x) = ry 

[(y) 

n 
dy. (3.5.3) 

Multiplying both sides by 0 and then integrating, we have 

r2 

J (A + -y + 3v2(x) - 1) 02(x) dx = -y 
(/ 

O(x) dx) 
, (3.5.4) 

which combined with the following inequality 

f2 CJ O(x) dx) <f 02(x) dx, 

gives 
in 

(A + 3v2(x) - 1) 02(x) dx < 0. (3.5.5) 
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If v(x) is such that 3v2(x) -1>0 for all xE SZ, then the last inequality implies 

that all the eigenvalues are negative. In particular, we get that the one-phase 

steady states v- ±1 are linearly stable. For v-0 and ry =1 in (3.5.3) we get a 

zero eigenvalue for which any function 0 of zero mass is an eigenfunction. 
One can also draw the global bifurcation diagram for two-phase and three- 

phase solutions, but here we shall treat only the case of two-phase solutions. 
Clearly, all multi-phase solutions in this case are piecewise constant. Any two- 

phase solution of (3.5.2) has the form 

u(x) = U1XA + U2Xc\A, 

where AC SZ and ul 0 u2. Setting JAI = s, sE (0,1), we obtain the following 

system of equations for ul, u2: 

I 'Y[sul + (1 
- s)u2 - ul] + ul - U3 =0 

(3.5.6) 
lry[sui+(1-s)u2-u2]+u2-uz=0. 

We analyse this system using MAPLE. Subtracting the two equations and elim- 
inating the non-zero term ul - u2, we get 

ui + u1u2 + uz + 'y -1=0. (3.5.7) 

We observe that the system (3.5.6) has solutions only for ry < 1; if 'y > 1, the 

equation (3.5.2) has only one-phase solutions. Eliminating ul in (3.5.6) by taking 

the resultant, we have a single equation in u2, that is: 

F 
U6 + (3, ys - 2)u2 + (3y2s2 - 3, ys + 1)U2 + ry3s2 - y2,92 = 0. (3.5.8) 

We fix s and treat -y as a bifurcation parameter. We obtain the bifurcation dia- 

grams shown in Figures 3.1 and 3.2, also obtained in [32]. As we can see in Figure 

3.2, the second pitchfork bifurcation is broken if s0 1/2. Here we have repre- 

sented the stable solutions by solid lines and the unstable ones by broken lines. 
We can draw the following conclusion: if ry < 1, then the equation (3.4.1) admits 

an uncountable number of non-constant solutions, since each branch represented 
in these figures corresponds to an uncountable equivalence class of stationary 

solutions. We can also prove the following Proposition: 
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Proposition 3.19 The branches connecting to u= XA - Xst\A and u= -XA + 

Xn\A as ry -4 0+ are locally asymptotically stable in the L°°-norm. 

Proof. The statement follows from (3.5.5). 

Let us define the following sets: 

S2+(uo) = {x E Q; uo(x) = +1}, 

9o(uo) = {x E SI; uo(x) = 01, 

9_(uo) = {x E 9; uo(x) = -1}. 

We now give the following definition: 

0 

Definition 3.20 Let u(t, uo) E L°°(S2) be the solution through the initial con- 

dition uo(x) and assume that uo(x) changes sign in Q, so that both ft (uo) and 
S2_ (uo) have nonzero measure. We say that the solution u does not coarsen if for 

each component A+ of the set Q+(uo) and component A_ of S2_(uo) there exist 

non-empty sets B+ and Bt such that u(t, uo) is positive on B+ and negative on 
Bt and A+ fl B+ 54 0 and A_ f Bt :0 for all tE [0, oo). 

Roughly speaking, coarsening means the disappearance of smaller scale struc- 

tures with time. As we can observe from Figures 3.1 and 3.2, we can rather 

talk about a lack of coarsening in this case, if the parameter y is small enough. 
The lack of coarsening can be briefly explained as follows. If y>1, then any 

initial condition lies in the domain of attraction of a stable constant solution, 

either u- -1 or u- +1. As y is decreased below 1, the equation (3.3.1) has an 

uncountable number of non-constant steady state solutions. As we shall prove 

rigorously in Theorem 3.22, if the initial condition uo changes sign in l and ry is 

small enough, then the solution of (3.3.1) starting from uo, u(t; uo), will preserve 
the number of changes of sign and consequently, the stationary solution will have 

the same property. Thus, this initial data will be attracted by a non-constant 

equilibrium which has the the same pattern of change of sign as uo, which means 
that the solution u cannot coarsen at all. 
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We would like now to find the values of y at which a second bifurcation 

phenomenon occurs and, in particular, if the occurrence of this phenomenon 
depends on s. To this end, we need the values of y and s for which the discriminant 

of (3.5.8) with respect to n2 vanishes. This happens when s and y satisfy the 

following relation: 

277482(1-8)2-18728(1-s)+ 4-y-1=0. 

If we denote by . y*(s) the value of ry for which a second bifurcation phenomenon 

occurs, then the above relation defines implicitly . y* as a function of s. The graph 

of this function is plotted in Figure 3.3. Clearly ry* (s) 74 0, which means that the 

second bifurcation occurs at a positive value of ry, regardless the value of s. 

1 

213 

y 0.5 

0.25 

0 

0 0.25 0.5 0.75 
s 

Figure 3.3: The relationship between ry* and s. 

We now remove the restrictions J(") -1 and e=1. Let us fix ry = 1, and 

consider f (u) = u3 -u and the kernel J such that 

JE C2(R), J(-x) = J(x), J(") > 0, 
(J(x) 

dx = 1, and 

JJ(x)x2dx < oo. 

The following result is concerned with coarsening of solutions to (3.3.1), and is 

due to Fife and Wang [48]. 
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Theorem 3.21 Assume that the kernel J satisfies the above conditions, and sup- 

pose that the initial data uo has IluolIcz(R) finite. Then there exist three positive 

constants, To (depending on f) and Mo, Ml (both depending on f and IIUOIIc2), 

such that for sufficiently small e>0 we have 

(i) if x is such that uo(x) > Mo fI In e1, then u(x, t) >1- Mle, 

for all t> roeI In -1, and 

(ii) if x is such that uo(x) < -Mov 11nel, then u(x, t) < -1 + M1E, 

for all t> Toe lnEI. 

Proof. See [48], Theorem 1. 0 

The theorem shows that if the initial data changes sign and e is small enough, the 

space is partitioned into state regions divided by thin layers which are generated 
in a time scale O(el lnel). In other words, a solution which starts from an initial 
data uo that changes sign does not coarsen in time if the value of e is small 
enough. We can prove a similar result for small enough values of the parameter 

ry > 0. Our theorem considers a more general class of initial data which includes 
discontinuous functions, and the assumptions on J are less restrictive. 
We fix e=1, while ry is a positive real number. 

Theorem 3.22 For every kernel J satisfying (WI), and every initial condition 

uo E L0O(1l) that changes sign, IluoIloo < 1, there is a value -YO = 'yo(uo) > 0, such 
that for all 0< ry < 7o the solution through uo does not coarsen at all. 

The idea of the proof is simple: we aim to trap the initial data uo between a pair 

of two-phase stationary solutions of (3.3.1) and thus, by the comparison principle 
stated in Lemma 3.5, the solution u(t, uo) will remain trapped at each time t. 
Consequently, the solution u cannot coarsen at all. 

The sets S2+(uo) and S2_(uo) may have up to an infinite components. Let us 
denote by A+ the i-th component of SZ+(uo), and by Aj- the j-th component of 
SL(u0). Before starting the proof we give the following definition: 

Definition 3.23 We say that a pair (u_, u+) is a blocking pair for uo if 
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i 

0 

Figure 3.4: A blocking pair for u0. 

1. u_ < uo < u+, and 

56 

2. for each i, j, the function u+ is positive on a set that contains A+ and 

negative on a subset of Aý ; and similarly, the function u_ is positive on a 

subset of A+ and negative on set containing A. 

Proof. (of Theorem 3.22) It remains only to show that for ry sufficiently small 

every initial data satisfying the conditions in the. theorem admits a blocking pair. 

For a given uo E L°° (Il) that changes sign, we can find a pair of two-phase 

solutions of (3.4.3), say u(x) and ü(x), such that 

1. u is either of type [-1,0] or Q0, -11; 

2.11 is either of type Q1,01 or Q0,11; 

3. u(x) < uo(x) < ü(x), for all xEQ. 

By Theorem 3.13 we can find a lower bound ry* >0 such that each of u(x) 

and ! I(x) have a unique continuation for all 0<y< ry*. Let us denote these 

continuations by u_ (ry) (x) and u+ (ry) (x), respectively. Using the properties of 
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these two stationary solutions (see Lemma 3.15), we can choose a small enough 

ry, say y, such that u± - u, (7) satisfies 

u_(x) < uo(x) < u+(x), for all xEQ. 

We claim that (u_, u+) is a blocking pair for u0, and thus the theorem is proved. 
See Figure 3.4 for an illustration of the construction. Q 

Remark 3.24 Clearly, the comparison principle implies that a solution u(t, uo) 

starting from a non-negative (resp. non-positive) initial data uo will also be non- 

negative (resp. non-positive). Theorem 3.22 states that for small enough 7 the 

evolution system does not define a length-scale. 

Remark 3.25 Let us mention that this theorem may also be adapted for a con- 

vex bounded domain S2 C R" (see also [32]). 

In the remainder of this section, we shall state and prove a generalization of 
Theorem 3.22, which does not contain any reference to a kernel J. Let us consider 

the following problem on L°°(SZ): 

ut = Ao. u - f(u) 
(3.5.9) 

u(0) = u0, 

with the following hypotheses on A,: 

AQ is bounded, linear operator on L°°(SZ) 

AQumin ! 0, Avumax <0 
(3.5.10) 

AQu =0 implies u= const. 

AQu=0(a2)as or --f0. 
The following arguments may be adapted for any bistable function (as in (7i2)) 

and, for simplicity, we take here f (u) = u3 - U. 
The global existence and uniqueness of a solution u(x, t; uo) E C' ([0, oo); L°° (S2)) 

follows exactly as in Section 3.3. Since Ao is a bounded operator on L°°(S2), for 

all or > 0, we may as well construct a unique local solution for backward time. 

We shall prove first that if AQ satisfies (3.5.10), - (3.5.10)3, then the comparison 

principle for solutions of (3.5.9) holds. We start with a lemma: 



CHAPTER THREE 58 

Lemma 3.26 Let AQ be an operator satisfying (3.5.10)1 - (3.5.10)3, and let 

c(x, t) be a bounded function in nx [0, T]. If w(x, t) is a solution of 

wt = A, w - c(x, t)w, (3.5.11) 

such that w(x, 0) >0 on Q, then 

w(x, t) >0 in9x(0, T) 

Proof. Suppose, by contradiction, that there exists a first time to E (0, T] such 

that w(xo, to) =0 for some xo E 0. It follows that 

a 
w(x0, t0) < 0, 

and from (3.5.11) we obtain 

A0. w(xo, to) < 0. (3.5.12) 

Since w(x, to) > w(xo, to) =0 for all xE SZ, the hypothesis (3.5.10)2 implies 

A, w(xo, to) ? 0. 

This relation combined with (3.5.12) yield 

AQw(xo, to) = 0, 

and thus w(x, to) = const. (= 0) for all xEn, by (3.5.10)3. By backward 

uniqueness of the initial value problem (3.5.11) + {w(x, to) = 0}, we get w=0. 
The contradiction arises from the fact that to was chosen to be the first time for 

which w(x, to) = 0. 0 

Proposition 3.27 Let u and v be solutions of (3.5.9)1 in 1x [0, T] satisfying 

u(x, 0) < v(x, 0), xE1. 

Then we have 

u(x, t) < v(x, t), for all (x, t) E SZ x (0, T). 
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Proof. Let w=v-n. Then 

where 

wt = A5w - c(x, t)w, (3.5.13) 

c(x t) _ .f 
(v) - .f 

(u) 
vu 

is a bounded function, since fE C1. It follows from the previous lemma that 

w(x, t) >0 for all (x, t) EQx (0, T), which ends the proof. Q 

We can now prove the following theorem: 

Theorem 3.28 Let As be such that the conditions (3.5.10) are satisfied. For 

every initial condition uo E L°°(SZ) that changes sign, IkuoIjoo < 1, there is a value 

o'o = cro(uo) > 0, such that for all 0<a< vo the solution of (3.5.9) through uo 

does not coarsen at all. 

Proof. The proof follows exactly the steps of the proof of Theorem 3.22. Due to 

the boundedness of A, one can apply the Implicit Function Theorem to obtain 
locally unique continuations of solutions of (3.4.3) to solutions of Aau =f (u) 

with a small enough. Thus, one can find a lower bound c* so that each of u(x) 

and U(x) (defined as in the proof of Theorem 3.22) have a unique continuation 
for all 0<a< a*. Let us denote these continuations by u_ (Q) (x) and u+(Q) (x). 

It remains to show the existence of a blocking pair for uo(x), which completes the 

proof of the theorem. To this end, one needs to prove that these continuations 
have similar properties to u_(7)(x) and u+(ry)(x) (see Lemma 3.15). We shall 

prove a variant of Lemma 3.15, which is Lemma 3.29, concerning properties of 

continuations of 11,01 solutions. A similar result can be proved for continuations 

of Q-1,0] solutions. Q 

Lemma 3.29 Let Ao be an operator that satisfies (3.5.10), and u(O) =ü any 
Q1,01 solution of f (u) = 0. Then, for sufficiently small o, > 0, the solution u(Q) 

of A, u =f (u) satisfies u(o, ) (x) = -Cl(x)a2 + 0(0.3) on S2o(ü) and u(or)(x) _ 
1-C2(x)a2+0(a3) on ft (ü), where Ci(x), C2(x) are both 0(1) in S2 and positive. 
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Proof. We seek a solution of A0. u =f (u) in the form: 

u(Q)(x) = ü(x) + uul(x) + o2u2(x) + o(a3). (3.5.14) 

We obtain: 

AQü + 0(a3) = (ü + Qul + Q2u2)3 -ü- Qul - Q2 u2 + O(a3). (3.5.15) 

Equating the corresponding 0(1) terms, we get 

ü-ü3=0, xES2, 

which has solution 
0, xE Qo (ü) 

ü(x) _ (3.5.16) 
1, xE S2+(ü). 

Powers of o give 
(W-1)ul=0, 

from which we get ul - 0. From (3.5.15) we also get 

AQü = (3ü2 - 1)u2Q2 + O(a3). (3.5.17) 

Due to (3.5.10)2 and (3.5.10)4, the previous relation implies that 

-Cl (x), on Sto (u) 
U2 (X) 

_ 

-C2(x), on Q+(ü), 

which completes the proof. Q 

Remark 3.30 As we shall see, by considering particular forms of A, one can 

get from this theorem the results of Theorems 3.22 and 3.21 (in the latter case 

some additional assumptions are required). In Section 2.2.2, we have seen that 

solutions of (2.2.14) do coarsen to a constant solution, regardless the choice of E 

or initial data uo. The differences between the coarsening properties of (2.2.14) 

and (3.3.1) are mainly due to the fact that Af is bounded, and the operator 620u 
is unbounded. Thus e2Au fails to obey the first requirement in (3.5.10), which 

makes Theorem 3.28 inapplicable for solutions of (2.2.14). 
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(1) Let us consider a kernel J satisfying (f1). One can easily check that the 

operator 

AQu(x) = Q2 Jf J(I x- yl)(u(y) - u(x)) dy, 

satisfies the hypotheses (3.5.10) (see also Lemma 3.2). In fact, this is the operator 

7AE (see (3.3.3)) with -y = a2 and e=1. Thus, the previous theorem proves the 

non-coarsening of solutions of (3.3.1) for small enough values of ry, i. e. the result 

of Theorem 3.22. 

(2) We now consider the operator 

AQu(x) =ýJ J(I x- y))(u(y) 
- u(x)) dy, (3.5.18) 

and, in addition to (fl), assume that 

p2 :=J J(Ixl)x2 dx < oo. (3.5.19) 

Obviously, the operator (3.5.18) is bounded and linear on L°°(cl), and satisfies 

the hypotheses (3.5.10)2 and (3.5.10)3. We would like to see whether (3.5.10)4 is 

also satisfied. Using a change of variable, we can write: 

AQu(x) =J J(I iiI)(u(x + a) - u(x)) dq. 

For small enough a we expand u(x + ar7) in a Taylor series about x, and obtain 

A, u(x) = 
(f J(InI)77 d77) ü (x)a+ (f J(Iiil)772dri) u"(x)a2 +0(a3) 

= p2'u"(x)a2+0(0,3). 

(To evaluate the first integral we used the positivity of J. ) We see that if the 

initial data of (3.5.9) is such that 

I UOIIC2(R) < 00, (3.5.20) 

then the solution uE CZ(R), and AQu = 0(a2) as a -* 0. Thus, if the hypothesis 

uo e LOO(Q) in Theorem 3.28 is replaced by (3.5.20), then the result of this 

theorem holds. Note that AQ given by (3.5.18) is in fact AE (with c= a), and 
(3.5.19), (3.5.20) are exactly the extra-conditions used in Theorem 3.21 to prove 

non-coarsening of solutions of (3.3.1) for small enough e. However, we believe 

that the restriction (3.5.20) used in Theorem 3.21 is a strong one, and the result 
holds for any uo E L°°(SZ) that changes sign. 
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3.6 Truncations 

The purpose of this section is to approximate the flow generated by 

Ut = 'Y 
fR 

J(I x- yl)[u(y) - u(x)]dy - .f 
(u), xE Ili, (3.6.1) 

by some flows which are obtained by taking Fade approximants. This equation is 

the L2(R) gradient flow of (3.2.3). As we can see later, one can derive formally the 

Ginzburg-Landau functional from (3.2.3) by expanding the term (u(y) - u(x)) in 

a Taylor series and truncating it at the first term. Difficulties arise if one tries to 

retain more than the leading term of the gradient expansion. In Subsection 3.6.2 

we shall show that retaining an even number of terms one obtains an ill-posed 

problem. However, if we retain an odd number of terms we do get a well-posed 

problem on the positive semi-axis (such problems where considered in [8] and 
[10]), but it is not clear how to approximate the solution of (3.6.1) with a given 

initial data by solutions of the truncated gradient flow. A similar truncation 

technique of a nonlocal term has been used by Gourley in [56], where he studied 
the travelling front solutions of a nonlocal extension of the Fisher's equation. 

In order to remove these difficulties we follow the idea in [90], and instead 

of polynomial approximations we use Pade approximants. The advantage of this 

method is that we find a new family of equations which are well-posed and we 
have the convergence property of solutions of this problems to the solution of the 

initial integro-differential equation (3.6.1). 

3.6.1 Pade approximants 

Pade approximants are rational approximations to functions defined as a for- 

mal power series expansion. Their power series expansion matches the series 

as far as possible, and are usually superior to Taylor series expansions when 
functions contain poles, because the use of rational functions allows them to be 

well-represented. Let f be a formal power series 

f(z) =co+clz+c2z2+"-- 
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Definition 3.31 We call the [p/q] Pade approximant of f, the rational function 

R(z) . 
ao + alz + a2z2 +... + apzp 
bo+blz+b2z2+"""+bgzq' 

such that its power series expansion in ascending powers of z agrees with that of 
f up to the order of zP+q+l, that is, 

f(z) - r(z) = 0(zP+'+l) 

When it exists, the Pade approximant to any power series is unique. 
For a thorough introduction in the Pade approximants theory and their prop- 

erties one can consult, for example, the work of C. Brezinski [12]. 

If ü(e) is the Fourier transform of u(x), then the Fourier inversion formula is 

u(x) = 21 
f 

ü( )etiýý (3.6.2) 

Differentiating (3.6.2), one obtains 

D'u(x) 1,2, .... 27r R 

where D" =- . Using the properties of the Fourier transform, if we apply Oxa 

to u(x) the differential operator 

p(D) =Ea,, D, (ate E R), 
IaI<k 

we get 

p(D)u(x) = 27r 

where 
p(ý) _ as a. 

jal<k 

The polynomial p(C) is called the symbol of the differential operator p(D). In the 

next subsections we shall denote the symbol of an operator A by S(A). 
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We aim to derive the truncated gradient flows of (3.2.3) by expanding in Taylor 

series the term (u(y)-u(x)) 
, and then truncate to some order the new expression. 

Since we are expanding the interface part of the free energy, we shall omit the 

bulk energy part in the computations below. We denote by L(u) the linear part 

of the free energy, that is 

L(u) ry ff J(I x- yI)(u(y) - u(x))2 dy dx. 
4I 

In this section we shall use the notation D' u for the k-th derivative of u. Setting 

x=ý- ij and y=ý-, q, and then expanding u(x) = u(e + r)) and u(y) = u(e -, q) 

about ý, we have formally 

L(u) 
2ff 

J(2H? 1H)[u(e - 77) - use + ? 7)J2 d? l d 

= 2, y 
IR 

J ýJ(21ý1) 
2k- 1 

Dzk-lu(f) 
2d 

d7J 
I (2k 1)t 

E 

= 2'Y 
f 

J(21u71) -ý C22k 1Dai-1u(Z)17ak-ai+lu( ) de dry, (3.6.3) 
IR k_1 

(2k)! 
z=1 

where C2 2t- is defined by 

ai-1 
= 

(2k)! 

C21 
, k=1,2,...; 2,..., k. (2i - 1)! (2k - 2i + 1)! 

We now truncate to the nth-order the last expression of L(u) and write 

Ln(u) = 2`Y 
fR 

J(2l7%I) E 71 1] C2k 1D2i-1u(e)D2k-2i+1u(e) dý dq. 
)! 

f 

i- k= _1 
2k 

_1 

Again, proceeding formally we compute the L2(Q) gradient flow of the trun- 

cated free energy E1, (u), where 

En(u) = L,, (u) +/ F(u(x))dx. 
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We have 

6E,, (u) 
Su , v> 

d= 
dE,, (u+ev)lo=o 

= 2'Y J(2I77I) 
(2k)! 
77 {E c2k i [D2i-lu(e)D2k-2i+iv(ý) + 

f 

k_ i_ 

JR 

+D2i-lv(e)D2k-2i+lu(e)]dý}drj +J f(u(ý))v(e) d R 

J(21771) E ? 72k { cik 1 [(-1)2k-2i+lD2ku(S) + = 2'Y 
fR 

k=l 
(2k)! 

i=l 

fR 
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+(-1)2i-1D 2ku(ý)Jv(ý)dýjd? 7+ Jf (u(ý))v(ý) dý (3.6.4) 

n 

!f 
J(2I7 II )rl2kd7l] D2ku(e) - .f 

(u(e)) v(ý)d _EL-1 
k_1 

n 
_ -7 

fR E P2kD2ku(e) f (u(ff )) v(ý)d , 
for all vE L2(S2), 

k=1 

where by P2k we have defined the non-negative quantities 
2zk+1 

P2k = T2k)! 
R 

(2k)! R 

J(2) , lI ), 12k d77, 

J(IzI)z2kdz, k=1,2,... (3.6.5) 

Note that in (3.6.4) we used integration by parts, and homogeneous boundary 

conditions for the derivatives of u of any order. 

For the infinite series to be at least formally defined we must assume that all 
the moments P2k of J(") are finite. 

Thus, the L2(S2) gradient flow is 

i (x, t) =YE P2kD2kU(X, t) -f (u(x, t)), xER. (3.6.6) 
k=l 

Remark 3.32 Note that we can also derive formally the L2-gradient flow of the 

expanded free energy (3.6.3). This is 

äu 00 

at - 'Y > P2kD2ku _ f(u), (3.6.7) 
k=1 



CHAPTER THREE 66 

which can be written in the form 

Ut = ry fR J(I zD) [cosh(zD)]u(x) dz -f (u), XE R, 

which is reminiscent of equations derived in [89]. By cosh(zD) we have defined 

the differential operator 

1 00 
cosh(zD)(u) _ (2k)ß 

V 
z2kD2ku. 

k=1 

The symbol of this operator is then 

cos(t) _ 
00 

(2 k)l 
ý(-1)kz2ke2k 

1 

k=1 

Therefore, if A denotes the bounded integral operator 

Au(x) =J J(Ix - yD)(u(y) - u(x)) dy, xER, (3.6.8) 

then the symbol of A is 

S(A)(ý) =J J(Izl)(cos(z6) - 1) dz. (3.6.9) 

This discussion suggests another way (also formal) of obtaining the equation 
(3.6.6). One can expand (cos(zý) - 1) in Taylor series and then integrate term 
by term, to get the series 

00 
E P2kD2ku (3.6.10) 

k=1 

Finally, we truncate the series to the nth order and obtain the differential operator 
in (3.6.6). 

Let us now define the operator 

_n Anu =E P2kD2kU, nEN, 

kk=l 

and for each nEN consider the following initial value problem in L2 (R) : 

(P. ) 
ut = yAnu -f (u), (x, t) ERx (0, oo). 

(3.6.11) 
u(0) = U0, 
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We can make the following discussion regarding the well-posedness of these prob- 
lems. If J(. ) > 0, then the operator (-1)"+'An is elliptic and so, for n even these 

problems are not well-posed in positive time, and for n odd the problems (Pn) 

are not well-posed in negative time. The natural question that can be raised here 

is: which is the right setting (if at all) in which these initial value problems are 

well-posed for all the values of n? 
In order to answer this question, we suggest approximating the flow generated 

by (3.6.1) by taking operator Pade approximants of (P ). Thus, for each n we 

aim to derive an equation that generates a semi-flow. Let S(A2n) be the symbol 

of the operator A2n (a polynomial of degree 4n). If 

Q2s is the [2n/2n] Pade approximant of S(A2�), 
r2� 

(where Pen, q2n are polynomials of degree 2n), then we consider the differential 

operators R. and Q, l of order 2n, such that 

S(Qn) = 42n and S(Rn) = r2n,. 

In this way, the truncation to degree 2n of the symbol of A2, R,,, is the symbol of 
Q. For each nEN we define the operator 

An = QnRn1 

00 

acting on L2(R), which is the [2n/2n] Pade approximant of E p2kD2ku. Thus, 

instead of the family of problems (' 
7, 
) we can the consider the following evolu- 

tionary problems: 

ut = 'yAnu -f (u), (x, t) ERx (0, oo), 
(Pa) 

u(0) = u0 
(3.6.12) 

. 
Remark 3.33 From the definition of A,., we have that 

S(A, )(ý) - S(A)(ý) = O(ý2n+1) (3.6.13) 

The symbol S(A) of A is a bounded function of C even if J(") is not always 

positive. Indeed, 

S(A)(ý)I < fR I J(Ie1)II cos(zý) -1I d<2, for all eER. 



CHAPTER THREE 68 

As we shall see in the next subsection, if the problem (P, 
ti) can be ill-posed, the 

problems (P,, ) derived by using Pade approximants will always be well-posed. 

Remark 3.34 The differential operators satisfy the commutativity property 

R Qn = QnR 

on smooth enough functions (usual property of differential operators with con- 

stant coefficients), and using this we can write (3.6.12)1 in the form 

R,,, (ut +f (u)) = Qnu, (x, t) ERx (0, oo), nEN. (3.6.14) 

There is a problem with the equation written in this form: in order to study 
(3.6.14) one also needs boundary conditions to be set, which are not required in 

the case of the initial value problem (3.6.12). 

However, if we consider the particular case n=1, then (3.6.14) turns out to 
be the following equation 

2\2 (P2I 

- P4 
5x2 

I (Ut + 
.f 

(u)) = 7P2 ax ,xER, (3.6.15) 

which must be considered together with appropriate boundary conditions, where 
I is the identity operator and p2i p4 are given by (3.6.5). 

3.6.3 Well-posedness and convergence 

For each nEN, we aim to derive a semigroup theory approach for the problem 
(P, ti) and, show that the family of solutions we obtain converge to the solution of 
the initial integro-differential problem. We start by the following lemma: 

Lemma 3.35 A, nEN, are bounded linear operators on L2 (R), 

Proof. Clearly, A,, is a linear operator for each nEN, since both Q,, and Rn 

are linear and the inverse of a linear operator is linear. From (3.6.13) and the 
fact that the symbol of A, given by (3.6.9), is a bounded function from R into R, 

we get that the symbols of A, nEN, are bounded. Therefore, by applying the 
Plancherel formula in the form 

IIAnuII2 
= 

II`4nuII2 
= 

IIS(An)aI12, 
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where ü is the Fourier transform of uE L2 (R), we see that A,, are bounded 

operators in L2 (R) 
.Q 

It is also possible to prove the boundedness of A,, in the L°°-norm, which would 

allow us to derive the semigroup theory approach in L° (R). We have the following 

lemma: 

Lemma 3.36 A, nEN, are bounded linear operators on L°° (IR) 
. 

To prove this result we shall work with the Schwartz space of tempered distribu- 

tions on R (see [93] for an introduction). Recall that a distribution TE D'(]1) is 

a continuous linear functional on D(R). If we define the space 

S(R) = {u E C°°(R) : for all a�Q E N, sup I xau('B) (x) I< oo}, 
xER 

then a tempered distribution on JR is a continuous linear functional on S(R), that 

is, a continuous linear map from S(R) to R. The space of tempered distributions 

is denoted by S'(R). Note that we have D(R) C S(R) C S'(R) C D'(R). If 

uE S(R), then the Fourier transform of u is the function defined by 

f 
. ý'u(ý) - ü() = e-'xf u(x)dx, for alle E R. (3.6.16) 

The Fourier transform can be extended to S'(R) as follows: for TE S'(R), define 

< T, o>=<T, O>, for all 0E S(R). (3.6.17) 

For a function uE LI (R) there is a natural distribution, also denoted by u, and 

sometimes called a generalized function, defined by 

U(O) =f u(e)¢(e)de, for all 0E D(R). 

We can easily see that for a function uE L°°(1[ß) CL öc(R), the corresponding 

generalized function u is a tempered distribution, and thus its Fourier transform 

is defined. With all these in mind we start now proving Lemma 3.36. 

Proof. (Lemma 3.36) Since A, au = Q,, Rn'u, then the theorem is proved if the 
following two inequalities hold: 
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" If uE L°°(R) and z is a weak solution of R,,, z =u in the distribution sense, 
then zE W2'"°°(R) and 

IIZIIW2n, 
oo(IR) 

< CInIlulIL-(R)" (3.6.18) 

" For zE W2n'°°(R), we have 

IIQnzIILoo(! ) < C2nhIzIIW2n. oo(R). (3.6.19) 

n 

Recall that Rn has the form R,,, z = a2kD2kz, where a2k are some real con- 
k-o 

stants. Since S(An) is bounded, we can suppose that 

n 
P() := S(Rn)( )_ E(-1)ka2k > 0, for all E R. 

k-o 

Let us now prove the first inequality. The function z is a weak solution of 
R,, z=uif 

R,, z=u, inD'(R), 

that is, 

(3.6.20) 

J R,,, z(ý)O(e)de =J u(ff)«(ý)dý, for all 0E D(R). 

As we discussed earlier, because uE L°°(R), the corresponding generalized func- 

tion, that is u, is in S'(R) C D'(R), hence its Fourier transform is defined. 

Taking the Fourier transform in (3.6.20), we get 

Rnz() = ü(), for all ýER, (3.6.21) 

where this equation is also considered in D'(R), and it is equivalent to 

P(ý)2(ý) = ü(ý), for all eER. (3.6.22) 

Since the symbol of R,,,, is positive, then for all k=0,1, ... , n, there exists some 

positive constant ak, such that 

aký2kz(ý) < P(e)z(e) = ir(e), for all ýER, (3.6.23) 

and thus 

akIDzkz(e)I 5 Iü(e)J, for all 
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which implies 

I 
fR 

D 2kgý)ý(ý)<j 
fR 

D2k Z 

CkI 
f 

R 

C'kj 
fR 

u(ý)ý(ý) dýj 

G CkI)ul)L°°(R)IIkL1(1[E), 
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k=1,2,..., n (3.6.24) 

for all 0E D(R), where Ck are some positive constants. From (3.6.24) we get 

that D21cz are in L°°(R) and 

JID2kzIlL-(R) < COUJILOO(R), for all k=1,2, 
... , n. 

Since the norm in W2n'°°(R) is given by 

2 
II4 

W2n, oo(R) = 
omaxn 

IIDkzIIG°O(1ß), 

from the previous inequalities we can conclude that 

zE W2n, °°(R) and jjZIIW2n, oo(R) < CinilUlIL°°(R)" 

Here C1 = max Ck. In order to prove (3.6.19) let us note that Q, has the form 
O<k<2n 

n 

Qnz =E b2kD2kz 

k-o 

where b2k are some real constants. Then (3.6.19) results from 
n 

IIQnzjIL-(R) C Ib2kIiID2kZJIL°O(R) 

k=O 
n 

< jb2k1) ö ax II D2kz{ILOO(R) k<n 
k=0 -- 

= C2n max JID2kZJJLý(R) 
O<k<n 

= C2nhIzIIW2n, 
-, (R). 

0 

Because L2 (]R) is a Hilbert space, and thus easier to use for our purposes, we 

shall continue our investigations in this space. We restrict ourselves to the space 
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{u E L2 (R); supp u=Qj, where Q is a bounded domain in IR, and for each 

uEN we study the following initial value problem 

ut = 'yAnu -f 
(u), 

(x, t) E1X (0,00), 

(3.6.25) 
u(0) = uo. 

We would like to prove that this problem generates a flow on L2(Q), a space in 

which the steady state patterns of interest lie. We make the following assump- 

tions: 

(Al) JE L'(R) and J J(x)exdx < oo; 

(A2) the function f: L2(SZ) -p L2(1) is locally Lipschitz continuous. 

Note that (Al) assures that all the coefficients P2k, kEN, are defined and, 

implicitly, the operator An is defined for each nEN. 

Definition 3.37 For a fixed nEN, we say that a function u: [0, T) L2 (S2) is 

a (classical) solution of (3.6.25) on [0, T) if u is continuous on [0, T), continuously 
differentiable on (0, T), and (3.6.25) is satisfied on [0, T). 

We have the following existence and uniqueness result: 

Theorem 3.38 Suppose that the hypotheses (Al) and (A2) are satisfied, and the 

function f has the additional property 

lim inf 
f (u) 

>_ 0. (3.6.26) 
11U112- OO U 

For each nEN, if uo E L2(Q), then the initial value problem (3.6.25) has a 

unique global solution un E C([0, oo); L2(S2)). Moreover, for each nEN the 

mapping uo -+ un is continuous in L2(1). 

Proof. We choose an arbitrary no E N, and then fix it. Since An,, is a bounded 

operator on L2 (R) and suppu = Q, then Ano is bounded on L2 (S2), and it is the 

infinitesimal generator of a uniformly continuous semigroup {Sno(t), t> 0}. For 

an initial condition uo E D(Ano) = L2(S2), the theory of Lipschitz perturbations 

of linear evolution equations (see Pazy [84]) assures the existence and uniqueness 



CHAPTER THREE 73 

of a local solution u, 0 
(x, t, uo), defined on a maximal interval of existence [0, Tn0 ) 

(with T'° depending on Ilu0 I), and also the continuity of u,, with respect to the 

initial condition. Moreover, if T"° < oo, then limt, Tno 11u(t)II = oc. We would 
like to show that solutions are defined for t>0, so we need to find an a priori 
bound of u,, 0 

(t) in L2 (S2). Since the operator A, LO is bounded, there is a positive 

constant MO such that 

< A, 
ou, u><M . 

IIuI12, for all uE L2(S2). 

The condition (3.6.26) implies that for any p>0 there is a positive constant Cµ 

such that 

-<f 
(u), u> f[- 

u- 
/ý]u2dx - u2 

< CN, -i IIull2. (3.6.27) 

Taking the inner product of (3.6.25)1 with u, and using (3.6.27) with p> yMn, o, 
then we have 

2 dt 
Il u(t) II2 = 'Y < Atzpu(t), u(t) >-<f (u (t)), u(t) 

< M. 0 - L)IIu(t) 12 + C, 
, 

for all uE L2(52), 

which, by Gronwall's inequality, implies that 

Ju(t)112 < IIuo1I2 exp(-Ct) +c [1 - exp(-Ct)] (3.6.28) 

max(J`uo112, 
C 

), for 0<t< r"0, 

where C= 2(µ -'yM,, o) > 0. In particular, we obtain the boundedness of u"o(t) 
in L2(t) and thus, the solution u,,,, (x, t; uo) is globally defined on L2(cl). Q 

Remark 3.39 For each nEN, we denote by u,, (x, t; uo) the solution to (3.6.25). 

Then, for each nEN, the solution operators {T7z(t) : L2(S2) --p L2(c ), t> 0}, 

defined by 
Tnýtýu0 = un(t; uo), t>0, 

form a continuous semigroup of bounded nonlinear operators. 
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The inequality (3.6.28) implies that for each nEN, 

lim sup ll un (t)112 <µ 
C 

t-+oo 

Setting po = (C, 
2/C)'12, we see that any ball of L2(S2), centered at 0 of radius 

p> po, is positively invariant for the semigroup {TT(t)}t>o. Also, it can be 

easily deduced from (3.6.28) that any ball B(0, p), p> po, is absorbing in L2(S2). 

Indeed, if we fix p arbitrarily, such that p> po, and let 8 be any bounded set 

of L2(S2) included in the ball B(0, R) for some R>0, then we get from (3.6.28) 

that 

Tnýtýý C 5(0, p), for t> to = to(ß, p), 

with 2 
to =1C, In 

R 

P2-P2 

Let us denote by u(x, t; uo) the solution to (3.6.1) with u(x, 0) = uo, and by 

{T(t) : L' (Q) -+ L2(cl), t> 0} the continuous semigroup of bounded nonlinear 

operators generated by (3.6.1). We would like now to show that solutions to 

(3.6.25) with u(x, 0) given, converge in the L2(Q) norm to solutions to (3.6.1) 

with the same initial data, as n -+ oo. To prove such a result we need the 

following lemma: 

Lemma 3.40 If X is a Banach space and the sequence {wn, nE N} C 

C([0, t]; X) converges to w in the sense of the norm of C([0, t]; X), then 

tt 
lim 

f. 

wn(r)dr w(r)dr, in the X norm. (3.6.29) 
n-+oo o JO 

Proof. See [11], Theorem 3.3. Q 

We can now prove the following approximation result: 

Theorem 3.41 For every uo E L2(SZ) and each t>0, we have that 

Iiun(t; uo) - u(t; uo)112 -+ 0, as n -* oo. (3.6.30) 
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Proof. Denote by {S(t); t> 0} and {S,, (t); t> 0} the linear continuous semi- 

groups generated by the linear continuous operators A and An, (n E N), respec- 

tively. Since these semigroups are bounded, we can find some positive constants 
M and M,, (n E N) so that JIS(t)112 <M and IISn(t)I12 < M, (n E N). If we 

let g(u) _-f (u), then the solutions of (3.6.1) and, respectively, (3.6.25) can be 

written in the form 

f 
u(t; u0) = S(t)uo + S(t - s)g(u(s)) ds, t >_ 0, 

and 
t 

un(t; u0) = Sn(t)u0 +f Sn(t - s)g(un(s)) ds, t>0, nEN. 
0 

The function g is locally Lipschitz continuous. Hence for every positive constant 

c there is a constant L, >0 such that 

JI9(u) - 9(v)112 < L, II u- V112 
holds for all u, vE L2(1l) with JIull2 < c, 11vII2 < c. Since S and S,,, n E N, are 

bounded semigroups on L2([l), we can choose c>0 to be their common L2-upper 

bound. Thus, abbreviating u(t; uo) and un(t; u0) to u(t) and un(t) respectively, 

it follows that, for all t>0, 

IIun(t) - u(t)112 
t 

ISn(t 
- S)9(Un(S)) - S(t 

- S)9(u(S))II2ds C IISn(t)u0 
- S(t)u0112 + 

fo 
I 

t 
Il[Sn(t) 

- 
S(t)]u0112 +J II[Sn(t 

- s) - S(t - s)19(U(S))112ds 

0 

+JI ISn(t 
- s)9(un(S)) - Sn(t - s)g(u(S))II2ds 

0 

pt < II [Sn(t) 
- 

S(t)]uoll2 +J (I [Sn(t 
- s) - 

S(t 
- s)]g(u(s))II2ds 

0 
ft 

+M,, Lc J IJun, (s) - u(s)hl2ds, 
0 

for all nEN. We can rewrite the last inequality as 
t 

Cýtle-MnLct 
Ilun(s) 

- u(S)112ds} < e-MnLt111 I8n(t) 
- S(t»uo)I2 

-{' 

+f tI[sý(t - S) - S(t - s)]9(u(s))112ds }, 
0 
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for all nEN. Then, using the above Lemma, the convergence (3.6.30) is proved 

if for all hE L2 (1) we have 

JI Sn(t)h - S(t)h112 -+ 0, as n --+ oc. (3.6.31) 

By the Trotter approximation theorem (see [84]), in order to have (3.6.31) it suf- 
fices to prove the following convergence in the L2(S2) norm, for the corresponding 

resolvents: 

for every hE L2(S2) and some A>0, 

R(A, A,, )h -+ R(A, A)h as n -+ oo, (3.6.32) 

where R(A, A) = (AI - A)-' and R(. A, A,, ) = (AI - An)-', nEN. Since A and 
An (n E N) are infinitesimal generators of the uniformly continuous semigroups 
{S(t), t> 0} and, respectively, {S,, (t), t> 0} (n E N), the Hille-Yosida theorem 

implies that the resolvent sets p(A) and p(A�) (n E N) contain (0, oo) and 

IIR(A, A)112 < M/A, JIR(A, A,, )112: 5 Mn/A for A>0, n=1,2,... 

Then, for all hE L2(Sl), we have : 

(IR(A, A,, )h - R(A, A)h112 = JIR(A, A,, ) {(AI - A) - (AI - A,, )}R(A, A)h112 

_ JIR(A, An)[A. - A]R(A, A)h1I2 

C II [An - A]R(A, A)h 1127 A>0. (3.6.33) 

On the other hand, for each nEN the symbol S(A,, ) is the [2n/2n] Pade approx- 
imant of S(A). This fact and the Plancherel formula implies 

II(An - A)e1I2 - 11 "'[(An - A)ý] 1I2 

= II [S(An) - S(A)]ýýII2 

< JIS(A, ) - S(A)112(1e112 n-a 0, for all ýE L2(SZ), (3.6.34) 

where 2 denotes the Fourier transform. From (3.6.34) and (3.6.33) we get 
(3.6.32), and this ends the proof. Q 
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Remark 3.42 Using a truncation scheme, we can easily derive the Cahn-Hilliard 

equation and the viscous diffusion equation (2.2.23) (see also [821) from the con- 

served order parameter version of (3.6.1), which is 

ut = -ryA o Au - Af (u), (x, t) ERx (0, oo), (3.6.35) 

where A is the operator (3.6.8) (the equation (3.6.35) will be discussed in Chapter 

4). Indeed, after we change the variables and expand in Taylor series, we obtain 
formally 

ut = -ryA,,,, o Amu + A,,, f (u), (3.6.36) 

where A,,,, denotes the operator (3.6.10). Truncating A. at the first term yields 

the Cahn-Hilliard equation written in the one dimensional form 

Ut = OX2 

2 
(f(u) 

- 7P2 

i9X2) 

, 
(x, t) ERx (0, oo). 

Furthermore, if we set ry =0 and take the [2/2] Pade approximant, we obtain the 

equation 
2 

(P2I - P4,9x2) ut = 'fP2 0X032 2f 
(u), (x, t) ERx (0, oc), 

which was derived and analyzed by A. Novick-Cohen and R. L. Pego in [82] 

(see also Section 2.2.4). 

3.7 Numerical analysis 
In this section we outline a numerical approximation method, using which we 

carry out experiments in order to verify and illustrate the results of Section 3.5. 

3.7.1 Numerical approximation 

We aim to approximate the equation (3.3.1) in one space dimension by a sys- 

tem of ordinary differential equations using discretisation in space. We take, for 
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simplicity, 1= [0,1] and f (u) = u3 - u. The equation (3.3.1) becomes 

78 

Ut 
(f1 

J(lx Y1)u(y)dy 
- u(x) 

f1 
J(I x YI )dy) +u - u3, XC (0,1). 

\oo 
(3.7.1) 

We denote by JE(x) = J(x). Let us partition the interval [0,1] by the equally 
e 

spaced points 

= Xo < X1 < ... < Xi-1 < xi < ... < XN = 1, 

where xi = iZx and Ax = 1/N. We approximate the solution of (3.7.1) by 

functions that are piecewise constant in space, 

u(x, t) ti ui(t)X(.; _,, x, )(x), for all xc (0,1). 

x'- 1 For each i=1,2, ... , 
N, we take x= x1_ 

2 
(= 

2) 
in (3.7.1). We get 

dui 
_ 

ry 

CL' JE(jxi-2 - yI)ukX(xk-i xk)(y)dy - ui 
f 

i6( xz-1 - yl )dy +ui-ui, 

(3.7.2) 

for all i=1,2, 
... , 

N. Using the approximation for u and the midpoint rule for 

numerical integration, we approximate the first integral in (3.7.1) by 

k=1 

(fxk N 

JE(1xi2 I )dUk - xk)UkX 
k-1 k=1 

N 

= JE(Xli-kl)UkOx. 

k=1 

Similarly, the second integral in (3.7.1) is approximated by 

N 
ýs(Xli-kl)AX- 

k=1 

Thus, the functions ui (t) satisfy the ordinary differential equations 

dui 
_ 

'y 
NN 

U3 dt Eý 
JE(xli-kl)uk 

- ui 
E JE(xli-kl) Ox + ui - 2Gi 

k=1 k=1 

for all i=1,2, ... , N. which can be rewritten in the form 

dtU 
=P U0x - g(U). (3.7.3) 
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Here we have set U= [ul U2 ... UN IT, g(U) = [f (ul) f (u2) 
... 

f (UN)]T, and 

r is a symmetric matrix with elements 

Jf(xiz-kI) 
,ik 

aik =N (3.7.4) 
J(O) - Je(xli-jI) ,i=k. 

j=1 

The matrix r has real eigenvalues; one is zero and all the other eigenvalues are 

negative. This system can be solved using standard ODE packages in MATLAB. 

3.7.2 Numerical experiments 

In this section we present the results of numerical simulations of the equation 
(3.3.1) using the numerical approximation described above. In the first two ex- 

periments of this section we take N= 140, f (u) = u3 - u, and 

0, x=0 
J(x) _ 40 

exp(-400x2), x> 0. 
V 7r 

Experiment 1. We fix c=1, and take the initial data 

uo(x) = 4x(1 - x) sin(10irx2), xc (0,1). (3.7.5) 

Time evolutions of the initial data to equilibrium for two values of the parameter 

! y, namely 7y = 0.2 and ry = 0.39, are shown in Figures 3.5 and 3.7, respectively. 
In the first figure we see that the solution through uo does not coarsen at all, 

while in the second one only a partial coarsening can be observed. As shown 
in Figure 3.7, a pattern of phase domains where u -: ±1 and transition layers 

quickly develop, followed by the shrinkage of the smaller scale domains. The 

latter process appears to be much slower than the first one. Finally, a steady 

state solution is attained at time t 160, a fact which also can be observed from 

Figure 3.8, which contains the graph of the Lyapunov function (3.2.8) versus time 

with y= 0.39 and = 1. 
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Experiment 2. We now fix -y =1 and let e to vary. The same initial data is 

used. As shown in Figure 3.6, if f=0.2 the solution through uo does not coarsen 

at all. Figure 3.9 illustrates the evolution of the solution having e=0.35 through 

to equilibrium. Again, domains where u ±1 separated by transition layers 

quickly appear, followed by the dissappearance of the smaller domains while the 

bigger ones grow. After the formation of positive and negative domains, the pro- 
file is undergoing a slower evolution that in the previous case, a fact which can 
be also observed in the plot of the Lyapunov functional (3.2.8). The equilibrium 

solution is partially coarsened and is attained when t 300. 

In Figures 3.11 and 3.12 we see the initial data uo (x) and final equilibrium 

solutions for a range of values of ry and e, respectively, while the other parame- 

ter is fixed to be 1. One can observe some similarities between these stationary 

solutions. For both 'y =0 or - -* 0, the equilibrium solution is u= signum(uo). 
When ry, respectively e, is big enough, the steady state is either +1 or -1, de- 

pending on the sign of uo(0). 

Experiment 3. We perform a two dimensional experiment on a unit square. In 

the approximation we use a 25 x 25 grid. In this experiment e=1, 'y = 0.8, 

At = 0.4, and 
0 x=0 

J(x) = 100 
exp(-251x12), x#0. 

ir 
The initial data uo is taken to be such that its value at each lattice site is a 

randomly generated number between -1 (black) and 1 (white). As we can see in 

Figure 3.13 the solution through uo partially coarsens to a spatially inhomoge- 

neous equilibrium, also represented in Figure 3.14. 
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Figure 3.5: Time evolution of the solution of (3.7.1) with y=0.2 and e=1. 
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Figure 3.6: The Lyapunov function (3.2.8) against time, for E=0.2 and ry = 1. 
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Figure 3.7: Time evolution of the solution of (3.7.1) with 7=0.39 and e=1. 
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Figure 3.8: The Lyapunov function (3.2.8) against time, for 'y = 0.39 and s=1. 
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Figure 3.9: Time evolution of the solution of (3.7.1) with ry =1 and e=0.35. 
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Figure 3.10: The Lyapunov function (3.2.8) against time, for y=1 and e=0.35. 
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Figure 3.11: Equilibrium solutions of (3.7.1) for different values of -y. 
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Figure 3.12: Equilibrium solutions of (3.7.1) for different values of e. 
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Figure 3.13: Time evolution of a solution of (3.7.1) with ry = 0.8 in two space 

dimensions. 
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Figure 3.14: Equilibrium solution of (3.7.1) with 'y = 0.8. 
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3.8 Conclusions 
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The initial-value problem (3.3.1)+(3.3.5) shares some properties with the one as- 

sociated with the Allen-Cahn equation (2.2.14). Both equations are L2-gradient 

flows of their- corresponding free energy functionals, (2.2.12) and (3.3.9), respec- 
tively, functionals which can also regarded as Lyapunov functions. For both 

equations the maximum principles and comparison principles hold (with the spec- 
ification that the kernel J must be non-negative in (3.3.1)), and the total amount 

of the order parameter is not conserved in time. As a consequence of the maxi- 

mum principle, the Matano principle [76] holds in both local and nonlocal cases. 
This implies that the number of zeros of a solution to (3.3.1) is non-increasing 
in time, a fact which also arises from the numerical experiments. Existence of 

monotone travelling waves have been shown in both cases (see for example, [47] 

for the Alle-Cahn equation and [9] for the nonlocal equation). If f (u) = u3 - u, 
then the equations (2.2.14) and (3.3.1) have L'-stable constant solutions equal 
to either of the two values u= ±1. 

However, it seems that there are more differences between these evolutions 
than similarities. If we consider the kinetic equation obtained by setting ry to zero 
in the integro-differential equation (3.3.4) or the Allen-Cahn equation (2.2.14), 

we get 

ut = -f(u), xEQ. (3.8.1) 

The major difference between (3.3.1) and (2.2.14) is that the Q(e2) term in 

(2.2.14) is a singular perturbation of the kinetic equation, while in (3.3.4) the 
O(ry) term is a regular perturbation, since AE is a bounded linear operator. As 

we have seen in Section 3.4, the equation (3.8.1) possesses an uncountable number 

of stationary solutions, and for 'y >0 small enough the number of steady state 

solutions for equation (3.3.1) remains uncountable, due to the boundedness of AE. 

This is not the case for the Allen-Cahn equation; in one space dimension, it was 

shown (see [25], [64]) that the associated stationary problem has a finite number 

of solutions. Another consequence of the boundedness of the nonlocal operator 
is that for a general initial data one can solve (3.3.1) forwards and backwards in 

time (if f is bounded, for example), but the local equation can only be solved 
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forward in time. While (2.2.14) is a gradient system and a whole theory for such 

systems is applicable for this equation (see [62], [63], [64]), the nonlocal equa- 

tion is not, since it fails to fulfill the precompactness requirement in Definition 

2.8. The evolution governed by (2.2.14) possesses a compact attractor formed 

by equilibria and their connecting orbits, while the attractor of the dynamical 

sytem generated by (3.3.1) is not compact (see Theorem 3.17). The stabilisa- 

tion of solutions of the Allen-Cahn equation to a steady state follows easily as a 

consequence of precompactness of the generated semigroup, and it is not obvious 
how to prove such a result for the nonlocal equation, even though stabilisation 
for (3.8.1) is trivial. 

There is also a significant difference between the coarsening processes of the 

solutions to (2.2.14) and (3.3.1) for small enough values of the parameters 6 or ry: 

as explained in Section 2.2.2, for all e>0 we have coarsening to one of the two 

stable solutions in the first case, and non-coarsening for small enough e or ry in 

the latter one (see Section 3.5). The non-coarsening property is mainly due to the 

fact that A, is a bounded operator, and it was proved only under the restriction 
Iluoll < 1. In the final chapter we discuss how this assumption can be removed. 

By expanding the nonlocal term in the expression of the free energy (3.2.3) in 

Taylor series and truncating the result, we find some unbounded flows which are 

not always well-posed, the well-posedness depending on the order of truncation 

and the direction of time chosen. It is not clear whether the solutions to the 

unbounded flows can approximate the solution to the bounded flow given by 

(3.3.1). By using Pade approximation, we approximated the flow generated by 

(3.3.1) by some bounded flows. The new equations have the advantage of being 

well-posed for all orders of the Pade approximation. 
In equation (2.2.14) the parameter e can represent the range of interactions 

in the system, as well as the strength of those interactions. For the nonlocal 

equation this fact is not possible, and this justifies the use of two dimensionless 

parameters, e and ry, to represent the above quantities, respectively. 



Chapter 4 

Nonlocal mass-conserving 

equations 

4.1 Introduction 

As one can easily observe, the nonlocal Allen-Cahn equation discussed in the pre- 

vious chapter does not conserve the average value of the order parameter, which 
is not an issue if we are modelling phase transitions in ferromagnetic materials. 
If instead we are modelling phase change in binary alloys, then the total amount 

of each species in the system must be conserved and consequently, the evolution- 

ary equation that models the phenomenon must have this property. This chapter 

deals with two mass-conserving integro-differential equations, more precisely with 

two nonlocal versions of the equations (2.2.20) and (2.2.19), which we propose as 

alternative models for the phase separation in binary alloys. The consideration of 

these equations is motivated by the discussion in [66], which concluded that the 

Cahn-Hilliard model fails to be applied when the scale of microstructure is very 

small. As we pointed out in Section 2.2.1, one can avoid the gradient expansion 

of the free energy by considering instead the functional (2.2.13). 

A natural way to derive an equation for the time evolution of a system is to 

consider constrained gradient flows of the free energy functional (3.2.3) on an 

88 
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appropriate linear manifold M, in an appropriate Hilbert space H. If the system 
is confined to a bounded region Q, and we choose H= L2(Q) and M to be the 

set of L2 (1) functions having the same mass, then the constrained gradient flow 

in the sense of the L2(S2) inner product leads to a nonlocal equation similar to 

the nonlocal reaction-diffusion equation (2.2.20), which instead of the Laplacian 

contains a bounded nonlocal operator. 

However, different choices of the Hilbert space, as well as of the inner product, 

will produce different evolutionary equations. As we shall see later in this chapter, 
by choosing a suitable inner product in the space of the L2 (S2) functions having 

zero-mass we get a similar equation to the Cahn-Hilliard equation in which, once 

again, the Laplacian is replaced by a bounded nonlocal operator. These two new 

equations can be used as alternatives for their local analogues, and some of their 

properties are studied in the following sections of this chapter. 

We start this chapter by deriving these equations. Then we discuss some prop- 

erties of their time-independent solutions, followed by a linear analysis and a 
discussion on the dispersion relation. At the end of the chapter we outline some 

numerical experiments for both models, showing that the non-coarsening phe- 

nomenon observed and proved in the last chapter for the nonlocal Allen-Cahn 

equation is also common for these equations. 

4.2 A nonlocal mass-conserving version of the 

reaction-diffusion equation 
This section deals with the following mass-conserving nonlocal equivalent of the 

reaction-diffusion equation 

uc J(Ix Yl)(u(y) 
- u(x)) dy -f (u) +A 

fn 
f (u(y))dy, xE S2, t>0, 

(4.2.1) 

where 0CR is a convex bounded domain, JQJ is the Lebesque measure of Q, and 
J, f, ry and e are as in the introduction of Chapter 3. Moreover, we shall assume 

throughout this chapter that J(") >0 on Q. 
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4.2.1 Derivation of the equation 

In order to get (4.2.1), we firstly derive the mass-conserving gradient flow of the 
free energy (3.2.3) with respect to the LZ (R) inner product, and then we restrict 

the equation to Q. We use the notations < ", "> and II - II for the inner product 

and, respectively, for the norm in L2. Let us consider the linear subspace of L2 (R) 

of functions with average (mass) zero, 

Mo =JUEL 2(R), J u(x)dx = 01, 

and for a given üE L2 (R) we introduce the affine linear manifold 

M=ü+M0. 

Due to the constraint (2.2.6), our interest is now to find the constrained gradient 

gradmEK(u) which, by Definition 2.11, must be an element of Mo = Mo. Using 

(3.2.4), for all vE Mo and CER we have 

< gradMEK(u), v>_< ry J J(Ix - yl)[u(x) - u(y)]dy +f (u), v> 

< ly 
f 

J(Ix - yi)[u(x) - u(y)]dy +f (u) + C, v >, 

implying that 

_7 
fR 

J(I x- yD)[u(y) - u(x)]dy + 1(u) -C 

is a candidate for the gradient. Since the gradient must be in Mo, we get 

C=f 
.f 

(u (y)) dy. 
IR 

We thus obtain the gradient in M, 
F 

gradmEK(u) = -'Y J 
J(Ix - yl)[u(y) - u(x)]dy +f (u) -ff (u(y)) dy, 

and the corresponding evolution equation 

Ut =7 
IR 

J(Ix - yl)[u(y) - u(x))dy - .f 
(u) + 

fR 
.f 

(u(y)) dy, xER, t>0. 

Rescaling the space by a positive constant e and then restricting the problem to 

1 yields (4.2.1). As we can readily check, we have 
d 
dt u(x) dx = 0, (4.2.2) 

n 
which means that the mass is preserved for the evolution governed by (4.2.1), as 

required. 
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4.2.2 The semigroup approach 
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We consider the following initial-value problem in a convex bounded domain 

SZCR: 

(NRS) Ut = ry 
in 

Jf (I x- yl)[u(y) - u(x)]dy - .f 
(u) + ICI 

j 
.f 

(u(y)) dy 

U(O) = U0, 

where JE is the given by (3.3.2). Because this equation conserves mass, spaces 
with an integral constraint are appropriate to work with. We suppose that the 

average of u over S2 is M, that is (2.2.6) is satisfied, and denote by X the Hilbert 

space 
X= {u E L2(1); In- J u(y) dy = 01, (4.2.3) 

endowed with the norm induced by the L2-norm. In order to work in this space 

we perform a change of variable and set ü=u-M. We obtain 

fit =Yf JE(Ix - yl)[u(y) - ü(x)ldy -f (ü + M) + ICI J .f 
(ü(y) + M) dy, t>0. 

Dropping the caret from ü we have the evolution equation 

ut = -yAEu - f(u + M) +Af f(u(y) + M) dy, t>0, (4.2.4) 

where A, is the operator given by (3.3.3). We would like to prove that the family 

of solutions to (4.2.4) with u(O) = uo forms a continuous semigroup on X. We 

rewrite the initial-value problem in the form 

ut = 'yAEu + g(u), t>0, 
(P) 

u(0) = uo, 

where 

9(u) _ -f (u + M) + ICI Jf (u(y) + M) dy, xE SZ. 

We start with the following lemma: 

Lemma 4.1 The linear operator Af given by (3.3.3) is bounded, non-positive and 

self-adjoint on X. 
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Proof. Obviously, AEu E X. For all uEX we have 

< AEu, u>=JJ JE(Ix - yl)u(x)[u(y) - u(x)]dydx 

_ -1 JJ JE(I x- yl)[u(y) - u(x)]2dydx 2 
< 0, (4.2.5) 

and thus AE is non-positive. The boundedness follows from (4.2.5) and the fol- 

lowing argument. For all uEX, 

< AEu, u>>-JJ JE(Ix - YI)[u2(y) + u2(x)]dydx 

JE(Ix - yi)u2(x)dydx _ -2 
fJ 

n n 

-2 
f (JJEIx_Y1dY)u2xdx 

sý 

-2 
f (JRJ¬x_y1dy)u2xdx 

_ -2 
(fR 

JE(I i71)di7 J (1uh12 
/ 

_ -2 IIuII2. 

For all u, vEX, wehave 

< AEu, v>=JJ JE({x - yl)[u(y) - u(x)]v(x) dydx 

_ -2 
ff 

JE(Ix - yI)[u(y) - u(x)][v(y) - v(x)] dydx 

=JJ JE(Ix - yl)u(x)[v(y) - v(x)} dydx 

_ <u, Afv>, 

which shows that Af is self-adjoint. Q 

Lemma 4.2 If f: L2(Q) -ý L2(Q) is locally Lipschitz, then the operator 

g: X -+ X is locally Lipschitz. 
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Proof. Obviously g(u) E X. For any c>0 and u, vEX with lull < c, jjvji < c, 

we have 

iss 
[g(u)(x) - g(v)(x)]2 dx = 

[f(u(x)+M)_f(v(x)+M)_ 

sý 
1f 12 

ICI f (f (u(y) + M) -f (v(y) + M)) dyJ dx 

<2J [f (u(x) + M) -f (v(x) + M)]2 dx + 
fl fl 

12 
+IQ12 

J Lf 
If(u(y) + M) - .f 

(v(y) + M) I dy] dx (4.2.6) 

< 211f (u(x) + M) -f (v(x) + M)112 +2 / If (u(y) + M) -f (v(y) + M)j2 dy 

= 211f(u+M) - f(v+M)112+2IIf(u+M) - f(v+M)112 

< 4L21 JU - V112, 

which implies that g: X -+ X is locally Lipschitz, with Lipschitz constant 2Lr. 

Note that inequality (4.2.6) has been obtained using the inequality (a - b)2 < 

2a2 + 2b2, and the second integral in (4.2.6) was evaluated using the Cauchy- 

Schwarz formula. o 

We define a solution for the problem (P) on an interval [0, T) to be a continuous 
function u: [0, T) -+ X, such that g(u(. )) : [0, T) -4 X is continuous, u satisfies 
(P)1 on (0, T) and u(0) = uo. We have the following existence and uniqueness 

result: 

Theorem 4.3 Suppose J satisfies the conditions (ill), f is locally Lipschitz on 
L2(1) and satisfies (3.6.26). Then for any initial data uo EX the problem (P) 

has a unique global solution u(t, x; uo) such that uE C1QO, 00), X). For all 
T>0 the mapping uo'-+ u is Lipschitz continuous from X into C([0, T), X). 

Proof. The local existence and uniqueness of a solution defined on a maxi- 

mal domain [0, T 
0) 

follows from the theory of locally Lipschitz perturbations of 
bounded operators on Banach spaces (See, for example, [64] Theorem 3.3.3. ). 
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We now prove that the solution is defined for any t>0. We consider the 
functional (3.3.9). For all solutions u(t) EX we have 

dtL(u)=-J utdx<0. (4.2.7) 

Furthermore, for any p>0, condition (3.6.26) implies that there is a positive 

constant Cµ such that 

F(s) _ 
%u[fr(r) 

- 2µ]r ds + µs2 Jo 

> -Cµ + µs2, for s>0. 

For s<0, one can obtain a similar estimate for F(s) so that 

F(s) > µs2 - Cµ, for all sER. (4.2.8) 

For any uEX, relations (4.2.7) and (4.2.8) imply 

pIIull2 - CN, < £(u) < C(uo) < C, 

from which we get the boundedness of u in the norm of X, and thus the solution 
is globally defined. We now prove the continuous dependence of the solution 

on the initial data. For all T>0 we take any two solutions of (P) on [0, T), 

u(t), v(t) E X, and write 

(u-v)t = -yAE(u-v)-(f (u)- f (v))+ 
ICI j [f (u(y))- f (v(y))] dy, for 0<t<T. 

Taking the L2-inner product of this equation with u-v (which has zero-mass) 

and using the non-positiveness of AE and the locally Lipschitz property of f, we 

obtain 

2dtIIu-vIl2<-< 
f(u) -fw), u-v> 

Lilu - vu12, 

with L>0, which gives 

(u(t) 
- v(t)112 < e2LTlluo _ v0II2 

This completes the proof. El 
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Remark 4.4 The family of solution operators, {T(t) :X -+ X, t> 0}, given by 

T(t)uo = u(x, t; uo), defines a continuous semigroup on X. It can be shown that 

the fuctional £(u) is a Lyapunov function for the semigroup. 

Remark 4.5 In the particular case f (u) = cx2u3 + cx1u2 - u, the hypothesis 

(3.6.26) is equivalent to the condition a2 > 0. Following the discussion in [39] 

regarding solutions of the Cahn-Hilliard equation, where it was proved that the 

sign of a2 is crucial for the existence of a global solution, we can show that this 

is also the case here. If a2 <0 (that is, (3.6.26) is not satisfied), then solutions 

starting from initial data with low energy will blow up in finite time. Indeed, we 
have the following theorem: 

Theorem 4.6 If a2 <0 and £(uo) is sufficiently low, then there is a time T* >0 

such that 

slum 
(Iu(t)112 = 00. (4.2.9) 

Proof. The Lyapunov function £(u) can be written in the form 

G(u) =2< -Afu, u>+J F(u(x)) dx. (4.2.10) 

Since G(u(t)) is decreasing in time, we get 

ry < -AEu, u>< 2G(uo) -2 in F(u(x) dx. 

Let us take the L2-scalar product of (4.2.4) with uEX. Using the previous 

inequalitj, we obtain 

2d IIu(t)IIZ = --y < -Afu, u>-< f(u+M), u> 
>2J F(u(x)) dx- <f (u + M), u> -2G(uo) 

r, f, 99n 
=-4 J 

u4(x)dx-S1J u3(x)dx-(2J u2(x)dx- 

a2 

C4 
4u (x) dx - 2G(uo), (4.2.11) 

where 
(1 = 3cx2M + 31 

and (2 = (302M + 2a1)M. 
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Since a2 < 0, there is a positive constant C (depending on al, a2 and S2) such 

that 

-4J u4(x) dx - (i 
f 

u3(x) dx - (2 
f 

u2(x) dx +C>0. 
rn, 

The Cauchy-Schwarz inequality implies that 

f \2 f 

Cu2(x) dx `<I 52i J u4(x) dx. 
/ sý 

Combining the last two inequalities with (4.2.11), gives 

dt 
II u(t) lI2 > Ci IIu(t) II4 - 2C - 4G(uo), 

with Cl =- 2I I>0. 
If initial data is such that 

uo 

then the limit (4.2.9) holds. 11 

Remark 4.7 By exhibiting positively invariant regions for u, one can also show 

the global existence of a solution u(t) E L°°(Q). We can prove the following 

result: 

Proposition 4.8 Let [a, b] be any interval on which f satisfies the condition 

f (a) <f (u) <f (b), for all uE (a, b). 

If u(x, t) is a solution to (P)1 in S2 x [0, T] and uo(x) is contained in (a, b), for 

all xE SZ, then u(x, t) E (a, b), for all (x, t) EQx [0, T]. 

Proof. Let us suppose, by contradiction, that there exists a first time to, 

0< to < T, such that u(x, t) leaves the interval (a, b), i. e., for some xo E S2 we 
have u(xo, to) =a or b. We take u(xo, to) = b, the other case being similar. It 
follows that 

Ut(x0, t0) ! 0, 

and 

AFu(xo, to) = 
fn 

JE(I x- yl)[u(y, to) - u(xo, to)] dy 

< 0. 
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Using these inequalities in (P)1 we obtain 

in 
[. f (u(y, to)) - .f 

(b)] dy > 0. 

Since a< u(y, to) <b for all yE S2, the hypothesis on f implies 

in [f (u(y, to)) -f (b)] dy < 0, 

97 

and thus we can only have f (u(y, to)) =f (b), for all yE SZ, which means that 

u(y, to) - b. But this contradicts the mass constraint (2.2.6). A similar argument 

in the case u(xo, to) =a proves the lemma. Q 

Corollary 4.9 (global existence in L°°(Q)) Suppose that J satisfies (W1), f is 

locally Lipschitz and satisfies 

lim inf f (z) <f (u) < lim sup f (z), for all uER. 
z-; -oo Z- OO 

Then if uo E L°°(1), there exists a unique global solution u(x, t) to (P) such that 

uE C1([O, oo), L°°(l))" 

Proof. The existence and uniqueness of a local solution can be proved by a 

standard fixed point argument. Then the local solution can be extended to a 

global one using the above proposition. Q 

Remark 4.10 Because of the nonlocal term fn f (u)dx, the comparison principle 

stated in Lemma 3.5 is no longer valid for solutions of (P). 

4.3 The nonlocal Cahn-Hilliard equation 

In this section we are concerned with the semigroup approach for a nonlocal 

version of the Cahn-Hilliard equation (2.2.19), i. e., with the equation 

ut = -Af(-yAEu -f (u)), xc9, t>0, (4.3.1) 

where AE is the operator given by (3.3.3). 
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4.3.1 Derivation of the equation 

To derive this equation we shall work in the same Hilbert space X defined in 
(4.2.3), but endowed with a new inner product. The Fredholm alternative applied 
to operator AE :X -+ X says that for a suitable Il, and for any function uEX, 
there is a unique solution w= SE (u) to the problem 

-Afw = 

f w(x)dx = 0. (4.3.2) 

This is due to the fact that the homogeneous problem has only the trivial solution 
w-0. Indeed, if w is a solution of the problem 

-AEw =0 

J w(x)dx = 0, 

then 

(4.3.3) 

< -AEw, w >: = 
2Jf 

JE(Jx - yI)[w(x) - w(y)]2 dydx = 0, 

which together with the mass constraint on w and JE (") >0 on Q, give w=0. 
Let us consider the following product: given u1, u2 E X, let 

ul, u2 »_< Se(in), u2 > (- < wl, -AEw2 >), (4.3.4) 

where < -, "> denotes the L2-inner product, and wti = SE(ui), (i = 1,2) are 
defined by (4.3.2). Since 

< -Awl, w2 >_< wl, -AEw2 > 
1r l' 

(4.3.5) 

2 112 
)12 JE(I x yl)[wi(x) - wi(y)][w2(x) - w2(y)]dydx, 

for all wl, w2 E X, then 

< Ui, S8(u2) ý> _< Se(ul), U2 >, (4.3.6) 

for all ul, u2 E X, and so it is clear that (4.3.4) defines an inner product on X, 
with the induced norm on X given by 

111u1112 =< SE(u), u> (4.3.7) 
(_ < -AEw, w>=2JJ JEax - yl)[w(x) - w(y)12 dydx), 
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where w= SE(u) is the unique solution of (4.3.2). 

Let us find the constrained gradient flow of the free energy £(u) corresponding 
to this inner product. We use again Definition 2.11, with Mo =X and M as in 

Section 4.2.1. Firstly, let us denote by Nf the following operator: 

NE u= ryAfu -f (u). (4.3.8) 

Following the same steps as in (3.2.4), we obtain 

, C(u + hv) lh=o =< ry J JE(I x- yI)[u(x) - u(y)]dy +f (u), v>. 

Using (4.3.4), we have: 

dh 
C(u + hv) lh=o =< -NE u, v> 

=< SE(A, (NE u)), v> 

= AE (NE v, ), v », 

for all vE Mo. Since 

f AENE u(x) dx = 0, 

the gradient of , C(u) corresponding to the inner product « ", "» is the 

element of Mo =X given by 

gradML (u) = AE(yAEu -f (u)), (4.3.9) 

which yields the gradient flow (4.3.1). We can easily check that (4.2.2) is satisfied, 

and thus (4.3.1) conserves mass. 

4.3.2 The semigroup approach 

We aim to prove the existence and uniqueness of a solution to the problem 

ut = -AE(yAEu - .f 
(u)), t>0, 

(NCH) 
U(O) = u0, 

in the space X defined by (4.2.3). If we suppose that the average of u over Q is 

M, then to be able to work in X we perform a change of variable, as we did in 

Section 4.2.1. Setting ü=u-M, we obtain 

fit= -AE(, yAEü- f(ü+M)), t>0, 
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which after dropping the caret gives 

100 

ut = yA, u + hE (u), t>0, (4.3.10) 

where 

, AEu = -AE 
(AEu) 

and 
he(u) = A, (f(u + M)). (4.3.11) 

Lemma 4.11 The linear operator AE :X -+ X is bounded, non-positive and 

self-adjoint with respect to the L2-scalar product. 

Proof. Obviously, Au is an element of X since 

fAeu(x)dx=O , foralluEX. 

For all u, vEX we have 

, A, u, v>_< -AE(AEu), v> 

_-< AEu, AEv > 

< U, -AE(A6v) >=<U, Agv 

which proves the self-adjointness of A,. Finally, the non-positiveness follows from 

the above relations by taking v=u. We get 

< AEu, u>= -IIAEuII2. 
0 

Lemma 4.12 If f is locally Lipschitz on L2 (1), then the operator hf :X -- X 

given by (4.3.11) is locally Lipschitz. 

Proof. Obviously, if uEX then hEu E X. The lemma follows from the following 

argument: for all u, vEX, 

IIhf(u) - h, (v)Il _ II A, (f (u + M) -f (v + M)II 

< 211f(u+M)- f(v+M)II. 



CHAPTER FOUR 101 

0 

Based on these two lemmas we can prove the theorem which gives the global 

existence and uniqueness of solutions to (4.3.10) starting from u(0) = uo. 

Theorem 4.13 Assume J satisfies (3 i), f is locally Lipschitz on L2(cl) and 

satisfies (3.6.26). Then for any initial data uo EX there exists a unique global 

solution u= u(t, x; uo) of (NCH) such that uE C1([O, oo); X). The mapping 

uo H u(t) is continuous in X, for all t>0. 

Proof. Taking into account the previous two lemmas, the application of Theorem 

3.3.3, [64] provides the local existence and uniqueness of a solution u= u(t, x, uo) 
defined on a maximal domain [0, T). The extension of this solution to a global 

one is proved using energy estimation arguments. Considering the free energy 
(3.3.9), we observe that this is non-increasing since 

d 
tL 

(u) _ «gradmG(u), ut » 

= ýý AE(NE u), Ut ii 

=« -Ut, Ut » 

= -11IutIll2, for all uEX. 

Using this fact and the estimate (4.2.8), we obtain 

IL IIuII2 < G(u(t)) + Cl, < £(u0) + Cu, < C, 

which implies that the solution u(t) is globally defined. 

We now prove the continuity of the solution with respect to initial data. For any 
T>0, let u and v be two solutions of (4.3.10) on [0, T) starting from uo and, 

respectively, vo. We then have 

(u - v)t = y, AE(u - v) + h, (u) - h£(v), 0<t<T. 
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Taking the L2-scalar product of this equation with (u - v) and using Lemma 4.11 

and Lemma 4.12, we find 

2dtIIu-vII =ly<AE(u-v), u-v>+<h6(u)-hf(v), u-v> 

<- IIh, (u) -h6(v)IIIIu-vii 
<21(f(u+M) - f(v+M)IIIIu-vii 
<Cllu-v112, 

where C is a positive constant depending on T. The last inequality implies 

IIu(t) - v(t)II' < e2 'Tlluo - voll, 

which completes the proof of the theorem. El 

Remark 4.14 The family of solution operators, {T(t) :X --+ X, t> 0}, given 

by T(t)uo = u(x, t; uo), define a continuous semigroup on X, and the functional 

£(u) is a Lyapunov function for the semigroup. 

4.4 The nonlocal viscous Cahn-Hilliard equa- 

tion 

In this section we shall consider the equation 

(1 - a)ut = -Ae(ryAEu -f (u) - aut), xE SZ, (4.4.1) 

or, written in an equivalent form, 

(1 - a)ut = -AE(NE u- aut), xE S2, (4.4.2) 

where 0<a<1 and the operators Af and NE are given by (3.3.3) and (4.3.8), 

respectively. This equation is considered together with the initial condition 

u(x, 0) = uo(x), x ESt. (4.4.3) 

One can easily check that this equation conserves mass, that is 

1 
IQI 

in L 
u(x, t) dx =II 

in 
uo(x) dx = M, for all t>0. (4.4.4) 
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Because of the term AEut we shall regard this equation as the nonlocal viscous 
Cahn-Hilliard equation. A motivation for considering an equation of this sort 
is that (4.4.1) is the analogue of the viscous Cahn-Hilliard equation, derived by 

Novick-Cohen [801. Note that if we take a=0, we get (4.3.1), and for a=1, 

the result is (4.2.1). We shall formulate (4.4.1)-(4.4.3) as an ordinary differential 

equation in a Banach space and apply the semigroup theory to prove existence 

and uniqueness results. For a=0 or 1 the existence and uniqueness theory for 

(4.4.1) has been carried out in the previous two sections. Following the idea of 
[59], we can rewrite (4.4.1) in a more useful way, that is 

(1 - a)ut = AErj, xE S2, t>0, (4.4.5) 

auf = ryAEu -f (u) + Ti + C, xE St, t>0, (4.4.6) 

with r, EX and Ca constant which can be determined by applying the condition 
(4.4.4) to (4.4.6). We find 

C= 
ICI f(ii(x)+C)dx=jf f (u (x» dx. 

Let SE :X -+ X be the solution operator given by the problem (4.3.2). We now 
introduce the invertible operator B.: X -+ X, defined by 

Bau = au + (1 - a)SEu. (4.4.7) 

Translating the variable u from u to u+M, (4.4.5) and (4.4.6) become 

Baut = ryAEu -f (u + M) + IýI 
f (u + M) dx, xE9, t>0. (4.4.8 

It follows that the problem (4.4.1)-(4.4.3) may be written as the abstract initial 

value problem 

where 

ut = rya"u + O(u), t>0, 
(NV) 

u(0) = uo, 

fau _ /Ba)-IAEuý (4.4.9) 

and 
O(u) (ICI ff (u + M) dx -f (u + M)). (4.4.10) 
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(The fact that B" is invertible will be shown later, in Lemma 4.17. ) 

Before starting the semigroup approach for (NV), let us define the following 

scalar product on X: 

<u, v>1=<-AEu, v>, U, VEX, (4.4.11) 

which induces the norm 

Valli =< -AEu, u> (= 
2ff 

JE(Ix - yi)[u(y) - u(x)]2dydx). (4.4.12) 

Using the properties of Af proved in Lemma 4.1, one can easily check that, indeed, 
11 " 11, defines a norm on X. From (4.4.12) and Lemma 4.1 we get 

lull, <f Ilull, for all uEX. (4.4.13) 

Using this inequality, one can prove 

Lemma 4.15 The linear operator AE :X -+ X is bounded, non-positive and 
self-adjoint with respect to the scalar product < ", " >1. 

Proof. Indeed, we have 

<Aeu, u>1=<AEu, -AEu>= -IIAEull2, for allUEX, 

which proves the non-positiveness of A. The continuity follows from the following 

arguments 

IAfulIi < 2IIAeu112 
r /' 

= 21 
2 

IJ JE(Ix - yI)(u(y) - u(x)) dyJ dx 
sý L ci 
/' [f 12 2 Jý f J1/2(Ix - yl)JE12(I X- yU(u(y) - u(x)) dy1 Ax (4.4.14) 

<2 JE(I x- yI) dy J(x - yl)(u(y) - u(x)2 
in [(j 

/ 

(in 
E dyl dx 

<2 
in [(JR 

JE(Ix - yI) dy) 
(J 

JE(I X- yl)(u(y) - u(x))2 dy dx 

=2J 1)(u(y) - u(x)2 J JE(Ix -y dydx 

= 411U112, 
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where in (4.4.14) we have used the Cauchy-Schwarz formula. The self-adjointness 
follows from the similar property of AE with respect to the L2-scalar product, 

proved in Lemma 4.1. Q 

Remark 4.16 The boundedness of AE in 11 " Iii implies that 

JAEwIjI < Cliwili, for all w solutions of (4.3.2), 

which is equivalent to 
Ilulll < CIIIUIII, uEX. (4.4.15) 

Let us use the notation 

Jul' =<B"u, u>, for all uEX. (4.4.16) 

For all uEX, we have 

lulä -<B, u, u> = <au+(1-a)SEu, u> 

= aIIuII2 + (1 - a)111ulil'. (4.4.17) 

The relations (4.4.13), (4.4.15) and (4.4.17) imply 

Iull1 < CIuIB, for all uEX. (4.4.18) 

Lemma 4.17 For aE (0,1] the linear operator B0 :X -+ X is non-negative, 

self-adjoint, invertible, and has a bounded inverse in X (with respect to the norm 

11 . 11 on)). 
Proof. The first property follows from (4.4.17). The self-adjointness follows from 

<BEu, v> = a<u, v>+(1-a)<SEu, v> 

= a<u, v>+(1-a)«u, v» 

= a<u, v>+(1-a)<u, SEv> 

=<u, av + (1 - a)Sv > 

= 2l, B, "4J >, 
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for all u, vEX, aE [0,1]. From (4.4.17) we get that 

Bau=O u=0, 

so Ba possesses an inverse (Br)-1 defined on X. To show that the inverse is 

bounded for each a>0, we will prove that there exists a positive constant C 

such that 

I1BauII > Quil, for all uEX. 

We have 

< au + (1 - a)SEu, au + (1 - a)SEu > 

= a2JIu112 + 2a(1 - a) < u, Su > +(1 - a)211SEull 

> a21JUJI2 + 2a(1- a) IIIU1112 
> C1lull2, if a00, 

which completes the proof. 

Lemma 4.18 If f: L2 (S2) --3 L2 (f) is locally Lipschitz, then the operator 
V) :X -+ X given by (4.4.10) is locally Lipschitz in the norm II " 11. 

Proof. Denote by g the operator 

g(u) = -I- 
If (u(x) + M) dx -f (u + M). 

Using the boundedness of (BE)-1 in the norm 11 " 11, for any u, vEX we have 

I0(u) - 0(v)ll = II (8, )-1[9(u) - 9(v)]l) 

< Cl I9(u) - g(v)ll. 

0 

The application of Lemma 4.2 completes the proof of the lemma. O 

We can now prove the existence and uniqueness theorem. 

Theorem 4.19 We assume that J satisfies (fl), the function f: L2(1) -f 
L2(Sl) is locally Lipschitz and satisfies (3.6.26). Then, for every uo given in X, 

the initial-value problem (NV) possesses a unique solution u which belongs to 

C([0, T]; X), for all T>0, and depends continuously on the initial data. The 

L(u) defined by (3.3.9 is the Lyapunov function for the generated semigroup. 
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Proof. Using the previous two lemmas, we get the existence and uniqueness of 
a local solution u(t) defined on a maximal interval [0, T). To prove the global 
existence of this solution we shall need some a priori bounds of u(t) on [0, T). 
We observe that for functions of zero-mass we can rewrite the functional £(u) 

given by (3.3.9) as 

£(u) =2 Ilulli +J F(u(x) + M) dx. (4.4.19) 
n 

Let us take the L2-inner product of (4.4.8) with ut. We get 

B ut, ut >_ -ry < -Agil, Ut >-<f (u + M), ut i 

2 dtIlulli -d td 
F(u + M) dx, 

valid for all uEX. We obtain 

d-L 
(u) _ -ýutJB - 

0, for all uEX, (4.4.20) 

and thus, G(u(t)) is decreasing in time, so we have 

G(u(t)) < C(uo) < C, for all t>0. (4.4.21) 

Using the estimates (4.2.8) and (4.4.13), we conclude that for all µ>0, there 

exist some positive constants Cl,, and C2N such that 

J 
[F(u) dx >_ CiL IIull l- C2µ, for all uEX, 

which implies 

G(u)>CiIIu{Ii-C2i for alluEX, 

for some constants Cl and C2. The previous inequality and (4.4.21) yields the a 
priori estimate 

Ilu(t)II1 < C, for all t>0, 

which establishes the global existence of the solution to (NV). 

If u, vEX are two solutions to (NV) starting from uo and vo, respectively, 
then 

Ba(u-v)t = ryA, (u-v)+ f (v+M)- f (u+M)+ 
ICI fn [f (u+M) -f (v+M)] dy. 
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Let us consider firstly the case aE (0,1]. Taking the L2-inner product of this 

with (u - v) and using the fact that AE is non-positive in X, we have 

2dtIu-v1B=<AE(u-v), 
u-v>-< f(u+M)- f(v+M), u- v> 

<-< f(u+M) - f(v+M), u-v 

< IIf(u+M)- f(v+M)IIIIu-vll 
<Cllu-v112 
<Clu-v1B, 

which implies that 

u(t) - v(t)IB < C(T)Iuo - VOI B, for tE [0, T). 

If a=0, then the property is proved in Theorem 4.13. Clearly, using (4.4.20) 

and the fact that £(u) is bounded from below (since F(u) is so), we conclude 
that the functional given by (4.4.19) is a Lyapunov function for the semigroup. 

4.5 Stationary solutions 

For definiteness, we shall take f (u) = a2u3 + alu2 - u, where al, a2 are some 

constants. An equilibrium point u for (4.4.1) is a mass-conserving extreme value 

of G, that is, 

uE L2(1l), such that 
dh 

C(u + hv)ln_o = 0, for all vE L2(S2), 

and 
i (ý) ICI ý 

u(x) dx = M. 4. x. 1 

Clearly, since the free energy functional £(u) given by (3.3.9) is independent of 

a, so will be the set of equilibria. Thus, we have the following 

Lemma 4.20 The problem of finding critical points of the functional £(u) over 
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{u E L2(SZ), 151, 
fn u(x) = M} is equivalent to the problem: 

ryAEu -f (u) + ICI ff (u(x))dx = 0, xc9, 
(S) 

1 /' 
ICI Jý u(x)dx = M. 

Proof. This follows immediately, since the constrained gradient of £(u) with 
respect to the inner product <, > is 

gradmG(u) = -ryAEu +f (u) - ICI f (u(x))dx. 

0 

Remark 4.21 Let us consider the equation obtained from (S)1 by setting ly to 

zero. We get 
f (u) -Jf (u(y) dy = 0, xEQ. (4.5.2) 

Since AE is a bounded operator, the O('y) term in (S)1 is a regular perturbation 

of (4.5.2). Because (4.5.2) possesses an uncountable number of solutions which 
satisfy the mass constraint (S)2, the number of solutions of (S) will also be 

uncountable if y is small enough. It is well known that the situation is different 

in the viscous Cahn-Hilliard case. It was shown in [103] that (2.2.15) possesses 
a finite number of steady states, which Grinfeld and Novick-Cohen [58] have 

counted. 

By translating the order parameter u, problem (S) reduces to 

ryAfu- f(u+M)+ 
IIJf 

(u(x) + M) dx = 0, xESl, 
(SO) r 

J u(x)dx = 0. 

In the particular case 'y = 0, al =0 and a2 = 1, we have 

F(u)=41 u4-2u2ý 

and the steady state problem reduces to 

Minimize J F(u(x)) dx - over all uE L2(SZ), (4.5.3) 
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subject to (4.5.1). Following [201, minimizers are either constant M (single-phase 

solutions) or piecewise constant (two-phase solutions), where in the latter case 
they have the form: 

-1, xE1l 
U(X) _ 

1, xEIl2i 
where 0i, 1 are disjoint measurable sets, such that SZ1 U Ste = S2. 

Obviously, if the mass IMF >1a two-phase solution of (4.5.3) is not possible, 
thus the minimizer is the single phase solution u(x) - M. 

In what follows we shall be concerned about solutions of (SO) with ry > 0. 

For simplicity we set 101 = 1. We start with the following 

Proposition 4.22 If a2 > 0, then the set of equilibria is bounded in X. 

Proof. We multiply (SO)1 by u and then integrate with respect to x over Q. 
Using the monotonicity property of AE and (SO)2, we get 

fn 
f (u + M)u dx < 0, 

which is equivalent to 

J [a2u2 + (3a2M + al)u + 3a2M2 + 2a1M -1] u2 dx < 0, (4.5.4) 

implying 

a2u2 + (3a2M + al)u + 3a2M2 + 2a1M -1<0, (4.5.5) 

from which we get that jjujjoo, and consequently Ijull, can only be bounded (be- 

cause a2 > 0). Q 

Theorem 4.23 If IMF is large enough, then the steady state problem (SO) has 

only the trivial solution u-0 (i. e., u-M is the only solution of (S)). 

Proof. Indeed, if IMF is large enough, then we have 

-3a2 M2 - 2ala2M + a1 + 4a2 < 0, 

which means that the left-hand side of (4.5.5) is positive defined. The inequality 
(4.5.4) implies that u=0 is the only solution of (SO). Q 

We can also prove the following 
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Theorem 4.24 Assume a2 > 0, J satisfies (? L1), and the mass M is given. Then 

for 7 large enough the steady state problem (SO) has only the trivial solution 

u-0. 

Proof. If u is a solution of (SO), then 

0= ry J JE(jx - yl)[u(x) - u(y)] dy +f (u + M) -ff (u + M) dy. (4.5.6) 

Multiplying (4.5.6) by u(x) and then integrating over SZ, 

0= ry JJ Jxx - yI)[u2(x) - u(x)u(y)] dydx +f Mx) + M)u(x) dx f 

ff 
JE(Ix - yI)[u(x) - u(y)]2 dydx + 

+J [a2u2(x) + (3a2M + al)u(x) + 3a2M2 + 2a1M -1] u2(x) dx 

st 
> ry JE(I x- yD)[u(x) - u(y)]Z dydx + C1IIu(12 -C 2 

ffl, fn 
2i (4.5.7) 

valid for all -y > 0, where C1, C2 are positive constants depending on M, al, a2. 
One can easily observe that the inequality (4.5.7) is always satisfied by u=0. 
Let us suppose that the problem (SO) has also a nontrivial solution u*. Then we 
have 

IIu*112=52>0, 
and 

ff 
JJ(I x- yD)[u*(x) - u`(y)]2 dydx = µ2 > 0. (since JE(") > 0) 

The inequality (4.5.7) applied to u' implies 

0> 2µ2 + C1(2 - C2. (4.5.8) 

Obviously, by choosing 

. y> 
2(C2-C1(2), 

µ 

such nontrivial solutions do not exist. o 

Remark 4.25 The last two results also hold for the equilibrium solutions of 
(2.2.15) (see [103]). This means that (4.4.1) and (2.2.15) have the same solution 
for large enough values of IMI or strength parameter (this is y for (4.4.1), and f 
for (2.2.15)). 
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4.6 Linear analysis 

112 

We prove now that if the mass M lies outside the spinodal region, that is f'(M) > 
0, then the trivial solution u-0 of (SO) is linearly stable. In order to simplify 

the calculation, we shall work on R rather than on Q. In this case, the problem 
(SO) can be written as: 

ryAEu- f(u+M)+J f(u(x)+M)dx=0, xER, 
(SOR) r 

J u(x)dx = 0, 

where 
AEu(x) =f JE(jx - yI)(u(y) - u(x)) dy, XE lIt (4.6.1) 

Let LEu be the linearization of the left-hand side of (SOR)1 about u=0, that is 

Lfu(x) = 'Y 
f 

JE(I x- yl)[u(y) - u(x)Jdy - f'(M)u(x), xER. 

Firstly, we investigate the spectrum of L. Y. Since 

(LE -A)0= Y 
IR 

JE(Ix-yI)O(y)dy-[-y+. f'(M)+, \]O 

[ry+f'(M) +A] 
[+f'+AL 

Jf(Ix-YI)«(y)dy-0l 
J 

we see that LE -A is invertible for 

fIIJEIILI(o) <IA+f'(M)+ /1" 
Since IIJEIILI(v) = 1, the spectrum of LE satisfies 

Q(Lf) C {A : IA + f'(M) + ryI < ry}. 

We see now that for f'(M) >0 the spectrum of LE lies in the left-half plane, and 
thus u-0 is linearly stable. 

In what follows we would like to get the dispersion relation (the relationship 
between the wavelength of a mode and its corresponding growth rate) imposed 
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by (4.4.1). Since a=1 is a critical case for (4.4.1), we shall discuss the case 

aE [0,1) firstly. Linearizing (4.4.1) about u-M, one obtains 

(1-a)ut= 

= -AE(LEu - aut) 

= -AE(Lfu) + aAE(ut) 

_ Jf(Ix - yl)[LEu(x) - Lfu(y)]dy+ a MIX - yl)[ut(y) - ut(x)]dy 
R 

=J J(Iwl)(LEu(x)-LEu(x+ew)]dw+aJ J(Iwl)(ut(x+e'w)-ut(x)]dw 
RR R 

='Y 
fR 

J(Iwl){ 
fR 

J(I771)[u(x+677)-u(x)]dr7 } dw- 

-'y 
f J(I wI ){ f J(177L)[u(x + 677 + ew)) - u(x + ew)]d? 7}dw (4.6.2) 

+. ff(M) f J(Iwl)[u(x + sw) - u(x)]dw +aJ J(I wI)[ut(x + -6W) - ut(x)]dw. 

We now look for solutions of the form u(x, t) = eAt+"kx Such solutions are possible 
if and only if 

/f2 
(1 - a)A = -, y (J J(Iwl)(1- cos(kwe))dw) 

-(f'(M) + aA) J J(I wl)(1 - cos(kwe))dw. (4.6.3) 

If we denote by 

h(k, c) =/ J(Iwl)(1 - cos(kwe))dw, (4.6.4) 
JR 

then we can write (4.6.3) as 

(1 - a)A = -h(k, E)[f'(M) + a. \ + ryh(k, E)]. 

or 

[1 -a+ ah(k, e)] )(k) = -h(k, -)[f'(M) +'yh(k, e)], aE [0,1). (4.6.5) 

The relation (4.6.5) represents the dispersion relation for (4.4.1) with aE [0,1). 

Note that h(k, 6) are the eigenvalues of the operator -AE, which are bounded 

(they belong to the interval [0,2]). Indeed, if v is an eigenvalue of -AE, then v 

satisfies 

v u(x) _-J J(Iw))(u(x) - u(x + ¬w)) dw. 
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If we are looking for solutions of the form u(x, t) = ezkx, we get 

v(k) =J J(IwI)(1 - eikew) dw 
RR 

=J J(I wD)(1 - cos(kew)) dw = h(k, e). 

In the special case a=1, equation (4.4.1) reduces to 

ut = 7AEu -f (u) +Jf (u (x» dx, xE IR, 

with AE given by (4.6.1). The linearized equation about u-M is 

ut=L£u, xER, 

and the dispersion relation is 

A(k) = -7h(k, E) - f'(M). (4.6.6) 

Remark 4.26 If the mass M lies outside the spinodal region, then f'(M) > 0, 

and relations (4.6.5) and (4.6.6) imply that the trivial solution u=M is linearly 

stable in the L'-norm, regardless the value of aE [0,1]. 

Remark 4.27 If we take ry =1 and approximate cos(kwe) by the first two terms 

of the Taylor series expansion, then from (4.6.5) and (4.6.6) we find the dispersion 

relation for the viscous Cahn-Hilliard (2.2.15) equation (after time scaling by s2). 
For aE [0,1) this is 

(1 
-a+ air2k2) ilk = -7r2k2(f'(M) + E27r2k2), (4.6.7) 

and for a=1, 
ýk = -f27r2k2 - f'(M)" (4.6.8) 

Note that due to the boundary conditions (2.2.17) the eigenvalues given by (4.6.7) 

or (4.6.8) correspond only to integer values of k. In Figure 4.1, we have plotted 
the continuous curves which contain these eigenvalues, for different values of a. 
One can see that the curves corresponding to aE [0,1) are "humped", while for 

a=1 the eigenvalues are strictly decreasing. For each value of a in [0,1), there 
is generically a unique fastest-growing mode, and the wavelength of this mode in 
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Figure 4.1: The dispersion relation (4.6.7) for different values of aE [0,1]. 

O(c) as c -+ 0 (see [57]). All eigenvalues of (4.3.1) approach -oo as k In 

[57] Grant proved that the fastest-growing mode will dominate the behaviour of 

most solutions of the Cahn-Hilliard equation (2.2.19) with initial values that are 

small perturbations from the constant mass solution. 

We are interested to see whether one can find a fastest growing mode in the 

case of (4.6.5). 

We shall discuss this problem only in a particular case, that is 

J(a-) -- 
ýe-', 

f (u) = u3 - u, and M=0. 

In this case we have 

h(k, c) =1- e-k2E2/4 E [0,1), f'(M) = -1. 

Once again, we discuss firstly the case aE [0,1). By differentiating (4.6.5) with 

respect to k and then multiplying the result by (1 - ar + cth(k, e)), we obtain 

2 dA öh'(k, e) 2 [1-a+ah(k, E)] da [a-yh (k, F)+27(1-cv)It (k, f)+a-1]. (4.6.9) 
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Since 
äh'(k, e) 

_ 2k¬2e-k2E2/4 > 0, for all k>0, 

the critical points of A (k) are k=0, or given by 

caryh2(k, e) + 2(1 - a)ryh(k, E) +a-1=0. (4.6.10) 

For a=0, from (4.6.10) we get 

h(k, e) =try, 

which for -y > 1/2 has a unique solution k* > 0. In this case 

A'(k) =1 k62e-k2,2/4(2, ye-k2e2/4 12 

which is positive for k< k* and negative for k> k*. This means that k* is a 
local maximum point for A(k), which corresponds to the fastest growing mode. 
In this case k=0 is a local minimum point for A. 

Consider now aE (0,1). The discriminant of (4.6.10) is 

0=47(1 -a)[a+(1 -a)7}, 

which is positive. Solving (4.6.10) with respect to h we get the solutions 

hi = 
(a 

a 

1) 
- -y 

[^/(l -a)(+- ary)] 2<0, and 

h2 = 
(a 

a 

1) 
+ ýY(1 - a) (a + ry - ary)] 2>0. 

a-y 
Thus, we may find at most one solution in [0,1) 

. We have h2 E [0,1) if ry > 
(1 - a)/(2 + a). Let us fix aE (0,1). For ry small enough, (4.6.10) has no 
solution in [0,11, which means that k=0 is the only critical point of )(k). Since 

A"(0) > 0, k=0 is a local minimum point. 
For large enough 7, the equation (4.6.10) has exactly one solution in [0,1], 

that is h2. Due to the continuity and strict monotonicity of h(k, e), we get a 
unique positive value of k, denoted by k*, such that h(k, e) = h2. Since A'(k) 
is positive for k< k* and negative for k> k*, the value k* is a local maximum 

point for A(k). In Figure 4.2 we plotted the dispersion relation (4.6.5) for different 
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Figure 4.2: The dispersion relation (4.6.5) for different values of aY E [0,1]. 

values of a. We see that the curves corresponding to aE [0,1) are "humped", 

and for a=1 the function A is a decreasing function of k. Generically, for large 

enough values of ry there is a fastest-growing mode. 

For a=1 the dispersion relation is given by (4.6.6). Differentiating this 

relation with respect to k, we get 

A'(lý) = --kfle-k2,2 2 

whence k=0 is the only critical value, which is the global maximum point for 

A(k). 
As shown in Figure 4.2, the function )(k) is not "humped" for ar = 1, but all 

the functions )(k) with ae [0,1) are bounded, unlike the eigenvalues of (2.2.15). 

Remark 4.28 As already mentioned in Section 2.2.3, the Cahn-Hilliard equa- 

tion can be used to model phase separation in molten binary alloys. When a 

spatially homogeneous molten binary mixture is suddenly quenched below the 

critical temperature, then a fine-grained decomposition into two distinct phases 

can be observed, a phenomenon which is known as spinodal decomrtposition. There 

are many papers in the literature dealing with spinodal decomposition, how this 
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phenomenon can be modelled by the Cahn-Hilliard equation and numerical simu- 
lations of this equation. We mention here only a few of them: [15], [16], [17], [35], 

[36], [57], [65], [74], [75]. In [57] Grant described this phenomenon in the one- 
dimensional case. He showed that for a generic small e, most solutions of (2.2.19) 

starting in a specific neighbourhood UE of the homogeneous solution u-M will 

stay close to the one-dimensional stable manifold of equilibria. It was rigorously 

shown that in the early stages of spinodal decomposition this unstable manifold 
is tangent to the eigenfunction corresponding to the largest eigenvalue, and so the 
fastest-growing mode dominates the behaviour of most solutions originating in U. 

A solution in this state appears to be periodic, with a large amplitude. It is inter- 

esting to note that practically every random perturbation yields the same result. 
After spinodal decomposition, the solution of (2.2.19) will eventually coarsen to 

a monotonic solution (see [20]). 

In higher space dimensions Grant's approach is not applicable, because it 

predicts patterns which are not observed in practice. Analytic and numerical 

studies of spinodal decomposition in higher space dimensions can be found in, 

among others, [35], [36], [74], [75]. 

In Experiment 3 we perform numerics for the nonlocal Cahn-Hilliard equation 
(4.3.1) showing that spinodal decomposition can also be observed in the case. 

The dispersion relation for the nonlocal Cahn-Hilliard equation can be ob- 
tained from (4.6.5) by taking a=0. This is 

A(k) = -h(k, e)[f'(M) +'Yh(k, e)], (4.6.11) 

where h(k, c) is given by (4.6.4). 

4.7 Numerical analysis 

In this section we carry out some numerical experiments showing that the non- 

coarsening phenomenon proved in the case of the non-conserving order parameter 
flow generated by (3.3.1) can be also observed for the mass-conserving flows 

generated by (NRS) and (NCH). 
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4.7.1 Numerical approximation 

For S2 = (0,1), the equations (4.2.1) and (4.3.1) become, respectively, 

Ut =Ef1 J( 
Ix yl )(u(y) - u(x)) dy - .f 

(u) +f1 
.f 

(u(y))dy, xE (0,1), t>0, 

(4.7.1) 

and 

ut = -AE('YAfu - f(u)), xc (0,1), t>0, (4.7.2) 

with AE given by 

i 
Afu(x) =f JE(I x- yl)(u(y) - u(x)) dy. 

0 

We use the same type of approximation scheme and notation as in Section 3.7. 

Let 
N 

o= AX f (Ui), 

Z-i 

and let 

h(U) = g(U) - aIN, 

with g(U) _ [f (ul) f (u2) 
... 

f (uN)]T and IN = [1 1 ... 11T. 

The equation (4.7.1) is approximated by the following system of ordinary 
differential equations: 

diU =! IF UOx - h(U), (4.7.3) 

where U= [u1 U2 ... UN]T, and the elements of the matrix IF are given by (3.7.4). 

We aim now to find an approximation for (4.7.2). Let us denote by V7 the 

vector 

v" _ (2r Uox - h(U))T. 
Then the equation (4.7.2) is approximated by the following system: 

dtU = -r v, ̂ ,. (4.7.4) 
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4.7.2 Numerical experiments 
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We present here the results of the numerical simulations for the equations (4.7.1) 

and (4.7.2) (with f (u) = u3 - u), using the above approximations. In computa- 

tions we take 

J(x) = 
0 , x=0 
10 

exp(-25x2) ,x>0. 

Experiment 1. We fix f=1, and take the initial data 

uo(x) = 4x(1 - x) sin(10irx2), (4.7.5) 

In this case the mass M=0.05 is in the spinodal region, (-3, *). We use 

100 lattice points to approximate the solutions of (4.2.1) and (4.3.1) for different 

values of ry. The results for ry = 0.25 are shown in Figures 4.3 and 4.4, where 

we observe a total noncoarsening of solutions to both equations. For y=0.5, 
Figures 4.5 and 4.7 show a partial coarsening of solutions. For both equations the 

graphs of the Lyapunov functional £(u) given by (3.3.9) (see Figures 4.6 and 4.8) 

show that, indeed, we reached equilibrium solutions, which are not continuous. 
We can see that for the evolution governed by (4.2.1) the steady state is reached 
for t slightly less than 60, when the Lyapunov function becomes minimum, and 
for the evolution governed by (4.3.1) the steady state is reached for tý 550. 

In Figure 4.9 and Figure 4.10 we see the initial data (4.7.5) and final equilib- 

rium solutions for a range of values of ry. One can observe that for small enough 

values of the parameter -y (e. g. 'y < 0.5), the solutions of both (4.2.1) and (4.3.1) 

do not coarsen. A partial coarsening of these solutions takes place for some values 

of ry, e. g. ry = 0.5. For ry = 1, the solutions of these equations do coarsen to a 

monotonic solution, while for ry big enough solutions coarsen to the constant mass 

solution, which is the only steady state (as proved in Theorem 4.24). 

Experiment 2. This time we fix -y =1 and leave e to vary. We take the same 
initial data as in the previous experiment and N= 128. In Figures 4.11 and 
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4.13 we represent the approximations of solutions of (4.7.1) with e=0.2, and of 
(4.7.2) with e=0.3, respectively. For these values of y and e the equilibrium 

solutions are only partially coarsened. Figures 4.12 and 4.14 show that these 

partial coarsened states minimize the Lyapunov function (3.2.3). 

We plot in Figures 4.15 and 4.16 the equilibrium solutions of (4.7.1) and re- 

spectively (4.7.2), starting from uo, for different values of E. We can observe that 

for this value of -y we could not find a value of c for which a solution converges 

to the constant mass solution, and this is because M lies in the spinodal region 

where u-M is unstable. We may get total non-coarsening of solutions for ei- 

ther small enough or big enough values of e. In other words, one can find two 

values of e, say e* and e** (e* < e**), so that if either e< e* or e> E** the 

solutions to (4.7.1) and (4.7.2) do not coarsen at all. If e=1.5, for example, then 

we find the nice coarsening of solutions of both equations to a monotonic solution. 

Experiment 3. We perform a two dimensional experiment for the equation (4.2.1) 

on a unit square. In the approximation we use a 25 x 25 grid. The parameters 

are: c=1, ry = 2, At = 0.4, and 

0 x=0 
J(x) = 100 

exp(-251 xf 2), x 54 0. 

The initial data uo is taken to be such that its value at each lattice site is a 

randomly generated number between -1 (black) and 1 (white). As we can see in 

Figure 4.17, in this case the solution through uo coarsens to a monotonic equilib- 

rium, also represented in Figure 4.18. 

Experiment 4. Let us take the initial data 

uo(x) = 0.01 sin(27rx), xE (0,1). 

Since M=0, the homogeneous state in this case is u-0. We take N= 100, y= 
1, e=0.8 and J as in Section 3.7.2. The time evolution of the solution to (4.7.2) 

through uo is represented in Figure 4.19. One can observe the development of 

small wavelength spatial oscillations with large amplitude. At time t=2x 104 the 
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solution appears to be periodic. The solution then coarsens to a final state which, 
unlike the equilibrium state of the Cahn-Hilliard equation, is not monotonic (it 
is only partially coarsened). 
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Figure 4.3: Time evolution of the solution of (4.7.1) with e=1 and y=0.25. 

0.5 

0 

-0.5 
t=0 

_1 

i 

- 

ILftRJÜ 

I 

0.5 
0 

-0.5 

t=100 

0 0.5 

t=5 Wo 

t=25 

ot-so 

-150- uul 
_uýýýi D 0.5 0 0.5 

Figure 4.4: Time evolution of the solution of (4.7.2) with e=1 and y=0.25. 



CHAPTER FOUR 

1 

0.5 

0 

-0.5 

-1 
t=0 

1 

0.5 

0 

-0.5 

_1 
t=7 

1 

0.5 

0 

-0.5 

_t 
t=35 

0 0.5 1 

/ j» -vm 
t=3 t=5 

W%t: 

50 tim 

0 0.5 100.5 1 

124 

Figure 4.5: Time evolution of the solution of (4.7.1) with e=1 and ry = 0.5. 
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Figure 4.6: The Lyapunov function against time calculated using the solutions of 

(4.7.1), for y=0.5, E=1. 
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Figure 4.7: Time evolution of the solution of (4.7.2) with e=1 and y=0.5. 
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Figure 4.8: The Lyapunov function against time calculated using the solutions of 

(4.7.2), for y=0.5, E=1. 
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Figure 4.9: Initial data and equilibrium solutions of (4.7.1) for different values of 

ryands=1. 

y=0 y=0.25 y=0.5 
1 

0.5 

0 

0.5 

-1 

y=1 

t 

0.5 

0 

-0.5 

_1 

r-6 y=12 

0 0.5 100.5 100.5 1 

Figure 4.10: Equilibrium solutions of (4.7.2) for different values of ry and e=1. 
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Figure 4.11: Time evolution of the solution of (4.7.1) with y=1 and e=0.2. 
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Figure 4.12: The Lyapunov function against time, calculated using the solutions 

of (4.7.1), for y=1, e=0.2. 
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Figure 4.13: Time evolution of the solution of (4.7.2) with -y =1 and e=0.3. 
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Figure 4.14: The Lyapunov function against time, calculated using the solutions 
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Figure 4.15: Initial data and equilibrium solutions of (4.7.1) for different values 

of E and 'y = 1. 
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Figure 4.16: Equilibrium solutions of (4.7.2) for different values of e and ry = 1. 
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Figure 4.17: Time evolution of the solutions of (4.7.1) with e=1 and 7=2. 
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Figure 4.18: Equilibrium solution of (4.7.1) with a=1 and y=2. 
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4.8 Conclusions 
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The equations introduced in this chapter are nonlocal versions of the following 

equations: the Rubinstein-Sternberg equation (2.2.20), the Cahn-Hilliard equa- 

tion (2.2.19) and the viscous Cahn-Hilliard equation (2.2.15). They are derived 

as gradient flows of the exact expression of the free energy functional in the mean- 
field approximation, given by (3.2.3). A motivation for considering these models 

rather than the classical ones is the fact that the gradient expansion of the free 

energy (3.2.3) (from which one can obtain (2.2.12) as the first-order truncation) 

is not valid when the wavelength of microstructure is very small, and the gradient 
flows derived from (2.2.12) fail to be applicable in this case (see [66]). 

We discussed the semigroup theory approach for each of these equations in 

appropriate Hilbert spaces and some properties of the steady state solutions in 

the case J() > 0. We also discussed the dispersion relation corresponding to 

the nonlocal viscous Cahn-Hilliard equation, in comparison with the dispersion 

relation for (2.2.15). 

The numerical experiments performed in the previous section show the non- 

coarsening property of solutions of (NRS) and (NCH) for certain values of the 

parameters e and y. This property is not common to their local analogues. Based 

on these experiments, we can conjecture the following: 

1. For c fixed, there are two values of y, say yl and y2 (yl < 72), so that 

for any 0< ry < yl solutions to either (NRS) or (NCH) do not coarsen at all 
(see Figures 4.3 and 4.4), and they partially coarsen for yE (y,, y2) (as shown 

in Figures 4.5 and 4.7). If y> y2, then the solutions of these two equations 
do coarsen to a final solution which is monotone. For large enough y this final 

solution is the constant mass solution (see Figures 4.9 and 4.10). 

2. Suppose that ry is fixed. There exist four values of E, say E1 < e2 < E3 < 1641 

such that solutions to either (NRS) or (NCH) do not coarsen at all if eE 
(0, E1) U(f41 oo), a partial coarsening takes place for fE (el, E2) U(E21 E3) (as 

shown in Figures 4.11 and 4.13). For cE (E2, E3) the solutions do coarsen to a 
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monotonic solution (see Figures 4.15 and 4.16). 

As in the case of the Cahn-Hilliard equation, one can observe numerically (see 

Figure 4.19) that most solutions of (NCH) starting in a small neighbourhood of 
the homogeneous solution undergo spinodal decomposition. The difference is 

that, after the fine-grained decomposition, solutions will partially coarsen, and 
the final solution is not necessarily monotonic. 



Chapter 5 

Models from Statistical 

Mechanics 

5.1 Introduction 

Statistical Mechanics provides a bridge between the macroscopic realm of clas- 

sical thermodynamics and the microscopic realm of atoms and molecules. One 

can calculate the thermodynamic properties of a system by applying Statistical 

Mechanics principles. Of particular interest for materials science is the ability to 

calculate free energies associated with a variety of processes, such as ferromag- 

netism and phase separation in binary mixtures. 

Statistical Mechanics has provided a good source of nonlocal evolution models 
for phase transitions. As we have seen in Chapter 1, the Ising model provides a 
useful description for physical systems in which certain variables of the system 

can take two distinct discrete values. 

The models (1.2.9) and (1.2.10) presented in Section 1.2.3 are deterministic 

equations for the expectation of site occupation as a function of time. It was 
shown [86] that each of these equations has a Lyapunov function, which can be 

interpreted as a free energy, even though the expression of the Lyapunov function 

in the Kawasaki dynamics case (see (1.2.14)) is not quite the free energy of the 

134 
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system in the mean-field approximation. 
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Until recent years the phase separation phenomenon in binary alloys was 

mostly studied using the direct-exchange between neighbouring atoms (see, for 

example, [26], [27]) despite the fact that this mechanism is unrealistic. However, 

in metallic alloys the atoms interchange places rather via a vacancy mechanism, 

which is explained in the beginning of the next section. 

The work of Yaldram and Binder [1011 is the first one in which a model of a 
binary alloy containing a small number of vacancies was considered. In this paper 

the diffusion process takes place only via the vacancy mechanism rather than by 

direct exchange. They performed Monte Carlo simulations for a binary alloy 

containing two types of atoms and a small number of vacancies, and found the 

same type of patterns for domain structure as in the case of the direct exchange 

model. It was concluded that the choice of diffusion mechanism (direct exchange 

or vacancy diffusion) is of minor importance for the phase separation process in 

a binary mixture. 

Comparative Monte Carlo simulations for the Kawasaki model on one side 
and a vacancy mediated model on the other were also performed in [491 (see 

also [51] and the comments in [50] and [52]), where there was considered only a 

vacant site, the other sites being occupied by A and B atoms. They observed 

some differences between these models in the very early stages, which are due to 

the fact that the vacancy acts locally in the beginning, but the patterns seemed 

to be extremely similar in the later stages. The surprise came from the fact that, 

in terms of computing time, the process went up to 30 times faster with vacancy 
diffusion. 

Representations of the diffusion process in real alloys via the vacancy mecha- 

nism have been also considered in [98] and [99] for the NCOP case. It was found 

that the vacancies prefer to stay in the disordered regions, and they concluded 
that the process cannot be described only by a system of two Allen-Cahn equa- 
tions. A third equation describing the dependence of the vacancy diffusion on 
the local order parameter must also be considered. 

Our purpose in this chapter is to study the mean-field dynamics of a binary 

mixture where the interchange of atoms is mediated by vacancies. To this end we 
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shall use and adapt the method developed by Penrose and presented in Section 

1.2.3. The dynamics can be described by using two equations, which we derive in 

the next section. We show that the new system of equations admits a Lyapunov 

functional, which can be useful in deducing mathematical properties of the solu- 

tions of the system. We also do some numerics and compare them with those of 

the mean-field equations derived using Kawasaki dynamics. 

5.2 Ising model with vacancy-driven dynamics 

Let us consider a lattice A which has a small (the meaning of this term will be 

specified later) number of empty sites, the other sites being populated by atoms 

of two types, A or B. At a given moment of time, t, each lattice site k can 
be occupied by either an A-atom with probability PA(k; t), or a B-atom with 

probability PB(k; t), or stay vacant with probability Pv(k; t). Clearly, these 

probabilities satisfy the following normalization condition 

PA(k; t) + PB(k; t) + Pv(k; t) = 1, for all kEA, t>0. 

To each lattice site k we assign three occupation variables (spins): 8k, rk and qr, 

such that Sk =1 if the site k is taken by an A-atom and sk =0 otherwise, rk =1 
if the site k is taken by a B-atom and rk =0 otherwise, qk =1 if the site k is 

vacant and qk =0 otherwise. Obviously, we have 

sk + rk + qk =1, for all kEA, 

which means that the system has two degrees of freedom, and thus two evolution 

equations are necessary to describe the occupancy of each site in time. We denote 

by N(k) the set of all nearest neighbour sites of the lattice site k and consider the 

configuration (s, r), where s= {sm, mE Al, r=nE Al. By a configuration 

we understand a specification of the values of spin components, which corresponds 

to a distribution of atoms on the lattice sites. If only the nearest neighbour 

interactions are taken into account, then the energy of the configuration (s, r) is 
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given by: 
W(S T) =-2 Jkl(8k - rk)(sl - r! ), (5.2.1) 1: F- 

kEA ! EN(k) 

where Jki is the Ising interaction between sites k and 1, which is assumed through- 

out to be nonnegative. As we can see, W (s, r) decreases if A-A and B-B 
bonds are created and increases for A-B and B-A bonds. This means that 

an A-atom (B-atom) dislikes nearest neighbour B-atoms (A-atoms) and prefers 
having nearest neighbour also an A-atom (B-atom, respectively), but it does not 
matter energetically whether its nearest neighbour is a vacancy. 

The system is considered to be initially at a high temperature, which is then 
decreased below a critical point where the structure may become unstable. We 

assume here the mechanism of diffusion via the interchange of atoms with vacan- 
cies: an A-atom or a B-atom may jump to a vacant nearest neighbour site with 

a certain transition probability (which depends upon the type of the atom and 
the neighbour lattice sites involved); no direct A-B interchanges are permitted. 
After a short transient we would expect to see the separation of the system into 
A-rich and B-rich regions. 

We now want to derive two equations which will describe the evolution of the 

system in time. Let us consider a pair of interchange sites at (k, 1), with kEA 

and la nearest-neighbouring site. If we have an A-atom at k and a vacancy 
at 1, we denote by wkl(s) the probability per unit time that the spins of the s- 
configuration at the two sites will change places (this represents the rate at which 
the A-atom jumps to the vacant site 1), and by wkl(ski) the probability per unit 
time that the spins at sites k and l of the configuration ski will change places, 
where s11 is the configuration obtained from s by interchanging sk and sl (this 

probability is the rate at which an A-atom appears at site k by jumping in from 

the vacant nearest neighbour site 1). Mathematically, we define the components 
of the configuration ski in the following way: 

sp, if p#k, l 

kt (S )p = Sk, if p=l 

s1, ifp=k. 
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For each lattice site k we aim to find the evolution equations for the expected 
value of the spins Sk and qk . To this end, we need to rewrite the energy (5.2.1) in 
terms of s and q -spins. For a configuration (s, q) = {(sm, q,, ); mEA, nE A}, 

the energy W (s, r) can be written as: 

1 
W(s, q) = -1 Jki(2sk + qk - 1)(2st + q1 - 1)" (5.2.2) 

kEA IEN(k) 

An A-atom can appear at site k if this site is vacant and a nearest-neighbour 
A-atom jumps in there, and it can disappear when a nearest-neighbour site is 

empty. At a given moment of time, t, we denote by PAV(k, 1; t) the probability 

of finding simultaneously an A-atom at site k and a vacancy at site 1, and by 

PVA(k, 1; t) the probability of finding simultaneously a vacancy at position k and 

an A-atom at site 1. Then the rate of change of the probability that the site k be 

occupied by an A-atom is given by: 

dtPA(k; 
t) _EI PVA(k, 1; t) Wki(skt) - PAV(k, 1; t)Wkl(s)}" (5.2.3) 

IEN(k) 

Equations of this type are usually called the master equations. We can write a 
similar equation for the rate of change of Pv(k; t), which involves joint probabil- 
ities of type Pvc(k, 1; t), where C is either an A-atom or an B-atom. We make 
here a simplifying assumption: we suppose that the number of vacancies in the 

system is very low, such that if a site is vacant, then all the nearest neighbour 

sites are not empty. In terms of probabilities, our assumption can be written as 

Pvc(k, 1; t) = Pv(k; t), for all sites k and 1. (5.2.4) 

With other words, (5.2.4) says that the conditional probability P(C E 11 VEk; t) 
is 1. The site k would become vacant if it has a vacant nearest neighbour site and 
the atom which is initially at k jumps in there with the probability WkI(q kt), and 
k would no longer be vacant when a nearest neighbour atom appears at site k 

with the rate wki(q). We thus can write the law for the rate of change of Pv(k; t): 

Pv 
at (k; t) =E{ PV (l; t) wkl (qk`) - Pv (k; t) wk, (q)}. (5.2.5) 

IEN(k) 
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A complete statistical description of this dynamical system model would con- 
sist of the knowledge of the probabilities PA(k; t), PB(k; t) and Pv(k; t), for each 
kEA, at any time t. This is, however, impossible to calculate in practice, because 

of the complexity of the equations in (5.2.3) and (5.2.5), but one can calculate 
instead the expectation values of the spins 8k, qk and rk. 

Let us denote the expected value of a random variable by the symbol E. Then 

E(sk) = PA(k; t), E(qk) = Pv(k; t), for all kEA, 

and we can write the equations (5.2.3) and (5.2.5) in terms of expected values. 
From the definitions of sk and qk, we get the following probability distributions: 

0 Wkl (Ski) 
SLQkWk! (Sk! ) 

1- PVA(k, 1; t) PVA(k, 1; t) 

and similarly, 

SkgiWkl(S) 
0 Wkj (g) 

1- PAv (k, 1; t) PAv (k, 1; t) 

(The first row contains the values of the random variable, and below each value 
is written the probability that the variable take the specified value. ) A simple 
calculation shows that 

E{(slgk - Skgl)Wkl(S)] - 
PVA(k, 1; 0 Wkl(Ski) - PAV(k, 1; t) wkl(s), 

and thus, we can write (5.2.3) in the form 

T E(sk) => E[(stgk - skgl)Wki(s)J. (5.2.6) 
IEN(k) 

In a similar manner, from (5.2.5) we get 

dtE(4'k) _ 1] E[9, - gk)Wkl(9)]. (5.2.7) 
IEN(k) 

It only remains now to specify the transition probabilities Wki(s) and Wki(q). 
Following [54] (see also [92]), if the equilibrium of the system is reached at some 
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temperature T, then each of these rates is inversely proportional to the Maxwell 

Boltzmann factor e-w(8, q)/lT, where the parameter ic is the Boltzmann's constant 
and T is the temperature. We shall denote 

T 
by , 0. These rates should thus 

satisfy the detailed balance conditions: 

Wkt(s)e-, 6w(s, a) = Wki(ski)e-, aw(8k`, 4) (5.2.8) 

and, respectively, 

Wki(9)e-ßW(9, a) = wkc(4kl)e-ßw(s, gkt) (5.2.9) 

A convenient choice of the transition rates which satisfy the detailed balance 

is the Glauber's hyperbolic tangent rule ([54], [86], [92]). For w(s) the rule is: 

W(s) = 21 
{1 - tanh[ 

/3öW(s)]}, 
(5.2.10) 

and for w(q), 

w(q) = 21 
{1 - tanh[136W(q)]}, (5.2.11) 

where SW (s) is the difference between the internal energy after and before the 

swap of the s-spins at positions k and 1. In our case w stands for Wki and 

SW (s) =W (ski, q) -W (s, q), 

6W (q) =W (s, qkl) -W (s, q) 

Let us now calculate 6W (s). We have: 

W(s, q) = -1 Jmn(2sm+gm - 1)(2sn+gn - 1) 2 
1: 

mEA nEN(k) 

2 
EE Jmn(2sm + Qm - 1)(2sn + Qn - j) 

m$k, 1 n k, l 

nEN(l) 

- Jtn(2s1 + 41 - 1)(2sn + qn - 1) 
n54k 

MEN(k) 

- 
Jkm(2sk + qk - 1)(2sm +qn 

- 1) 

M961 

-Jkl(2sk + qk - 1)(2s, + 91 - 1), 
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and 

W (skl, q) = -2 
EE Jmn(2sm + qm - 1)(2sn + q,, - 1) 

mi4k, l ng6k, l 

nEN(l) 

-E JJn(2sk+gz-1)(2sn+qn-1) 
nok 

mEN(k) 

-E Jkm(2s1 + qk - 1)(2sm + qm - 1) 
m3u 

-Jk1(2s1 + qk - 1)(2sk + q, - 1), 

where nE N(m) in the double sums of the above expressions. We thus get: 

8W(s) _ 
mEN(k) 

2(sk-sI)[ EJkm(2sm, +qm -1)- 
m541 

=2(sk-s1)[ 
E Jkm(2sm+qm-1)- 

mEN(k) 
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nEN(l) 
E Jln(2sn + qn - 1) + Jkl(gl 

- qk)) 

ng6k 

Jln(2Sn + qn - 1) + 2Jkl(Sk - Si)] 
nEN(l) 

In order to find the corresponding expression for 6W (q), we need W (s, qkl) 
This is given by 

W(s, q 
kl) 

1 

=-2 E EJmn(2sm+gm-1)(2sn+qn-1) 

mok, l n$k, l 

mEN(k) 

- Jkm(28k + ql - 1)(2sm + qm - 1) 
mil 

nEN(l) 

- Jln(2sl + qk - 1)(2Sn + qn - 1) 
n#k 

-Jkl(2sk + ql - 1)(2sl + qk - 1). 

Since 6W (q) =W (s, qkl) -W (s, q), we have 

6W(q) _ 
mEN(k) 

=(qk-qd)[ 
E Jkm(2sm+ 
m961 

=(qk-ql)[ 
> Jkm(2sm+qm-1)- 

mEN(k) 

nEN(I) 
E Jln(2sn+Qn- +ZJkl(s! -801 
wok 

E JJn(2sn + 9n - 1) + Jki(4k - 9l)] 
nEN(l) 
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Let us define the following two quantities: 

'Yk = Jkm(2sm + Qm - 1ý 

mEN(k) 

(= E Jkm(sm - rm)) 

mEN(k) 

and 
71 = Jln(2sn, + 4'n - 1) (= Jln(Sn 

- 7'n)) 

nEN(1) nEN(1) 

By substituting the expression of 6W (s) into (5.2.10), and then of OW (q) into 
(5.2.11), we get the expressions for the transition rates wkl(s) and Wk1(q), respec- 
tively. These are: 

WkL(S) = 21 
{1 - tanh[Q(sk - si)(-Yk - 7i + 2Jkl(Sk - Si))]} (5.2.12) 

and, respectively, 

Wkz(4) = 21 
{1 - tanh[2(gk - gt)('Yk -'Yt + Jkt(4k - 9t))]). (5.2.13) 

The above formulae are valid when k and l are nearest neighbour sites only. If 

this is not the case, we take wki = 0. Substitution of (5.2.12) and (5.2.13) into 

the time evolution equations (5.2.6) and (5.2.7), respectively, gives us: 

diE(sk) 
=2E E{(slgk - skgt)[1 - tanh(ß(Sk - s! )(7'k 

- 7'1 + 2Jkt(sk 
- 81)))]I 

lEN(k) 

d E(qk) =2E E{(q, - qk)[1 - tanh(ý(gk - gi)(yk - ryt + Jkt(gk - q: )))]}. 
EEN(k) 

Since (sk - si) E {-1,0,1} and (qk- qi) E J-1,0,1}, the above equations can 
be written as: 

dtE(sk) 
=211: E{(slgk - Skgz)[1 - (sk - st) tanh(Q('Yk '- 71 + 2Jki(sk 

- sl)))JJ 
lEN(k) 

d 
E(qk) =1E E{(qi - qk)[1 - (4k - q1) tanh(ß(-Yk -'Yi + Jki(gk - 4t)))]}. dt 21EN(k) 2 

For each lattice site k we have sk = 8k, qk = qk and 3kgk = 0. If IE N(k), 
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then one can easily check that 

(szgk - Skgl) _ (SIQk + Skgl)(Si - Sk) 

(SIQk 
- Skgq)(SI - Sk) _ (Slgk + Skgl)(1 - SISk) 

and 

Qt - Qk = (4't + 4k) (Q'l 
- qk) 

(Q1 - 4'k)2 = (q + qk)(1 - 4zgk) 
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In order to find a convenient approximate model we use these identities to trans- 
form the last two equations into 

d 
E(Sk) 

-2E 
E{(sjgk + Skgl)[(St - SO + 

IEN(k) 

+(1 - stsk) tanh(ß('yk - ryt + 2JM(sk - st)))]} (5.2.14) 

dtE(9k) =2E El (q, + gk)I(v - qk) - ! EN(k) 

-(1 - gtqk) tanh(2 ('Yk -'y, + Jk (qk - qt))))}. (5.2.15) 

Up to this point the equations (5.2.14) and (5.2.15) give us the exact descrip- 

tion of the kinetics of the dynamic Ising model with vacancy diffusion. Since 

these equations cannot be solved analytically, we would like to find some closed 

equations for E(sk) and E(qk). To this end, an approximation for the terms in- 

volving the expectation of the hyperbolic tangent is required. Due to the terms 

rye, in both equations the arguments of the hyperbolic tangent are sums of contri- 
butions from various parts of the system. We consider here a limiting case, when 
the interactions are very weak, so that we can assume that the fluctuations of 
these contributions about their mean values are independent. By applying a law 

of large numbers we get that fluctuations of each argument of the tanh function 

about its mean value will be small, and we can approximate the expectation of 
the tanh with the value of the tanh function at the expectation of the argument. 
Thus, we make the assumption that the expectation of a nonlinear function is the 

value of that function at the expectation of its argument. The resulting approxi- 

mate kinetic equations will involve some terms of the form E(sM), for example. 
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If we suppose that all the spins sp and qp, pEA, take values independently of 
the other spin values (statistical independence), then we can use the following 

approximation: 
E(skgl) ^_ E(sk)E(gi), for all k, 1. (5.2.16) 

Averaging out in (5.2.14) and (5.2.15), and using the above approximations, we 
finally obtain the system 

duk 
_1 dt 2E 

(ujwk + UkWI){UI - Uk+ 
IEN(k) 

+(1 - uluk) tanh[Q(Yk -Y+ 2Jk1(Uk 
- u1))]} 

(ABV) 
dwk 1 
dt 2E 

(WI +wk){wl - wk+ 
IEN(k) 

+(1 - w1wk) tanh[ 
2 

(Yk -Y+ Jkl(wk - WI))]} 

for all kEA, where we have set: 

u; = E(s; ), wi = E(q; ) 

and 
Y=E(ryi)= Jim(2Um+wm-1), i=k, 1. (5.2.17) 

mEN(i) 

Remark 5.1 This system is a generalization of the approximate kinetic equation 
(1.2.10) derived by O. Penrose in [86], representing the kinetic Ising model with 
Kawasaki (direct-exchange) dynamics. Note that in (1.2.10) the quantity Uk is 

the average of A-atoms at site k, and it is a value in the interval [-1,11. One can 
also derive this equation from the system formed by the exact equations (5.2.14) 

and (5.2.14) if we take q, = 1, for all kEA. Indeed, in this case we find that the 

system is equivalent to a single equation, 

diE(sk) 
=2T E{(s1 + sk)[(s` - SO + (5.2.18) 

IEN(k) 

+(1 - 818k) tanh(, ß('-yk - 71 + 2Jkl(sk - sz)))]}, 
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where now 

ryp =E 2Jpmsm, for all pEA. 
mEN(p) 

But 
(s1 + SO)(SI - Sk) = S` - Sk 

and 
(St + Sk)(1 - SISk) = (St 

- Sk)2, 

for all k, 1EA. The equation (5.2.18) can be written as 
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dtE(sk) =211: {E(s! - sk) + E[(s, - sk)2 tanh(ß('yk - 71 + 2Jkl(sk - st))))}, 
IEN(k) 

Changing the spin variable s to S, such that Sk = 2sk -1E {-1,1} for all lattice 

sites k, we get that 

ryp =E JpmSm := vp, for all pEA. 
mEN(p) 

and using the fact that 

(Si - Sk)2 = 2(1 - SISk), for all k, lEA, 

we recover the equation (1.2.10). 

Remark 5.2 It is not hard to show that the system (ABV) conserves mass, that 

is, 
d Euk=0 and 

dtEWk=0. 

kEA kEA 

Indeed, if we denote by Mik and, respectively, Nik the following expressions 

Mik = 
1(ulwk + ukWL){u, - Uk + (1 - uluk) tanh[ß(Yk -Y+ 2Jkl(uk - ul))]} 

Nlk = 
2(wt+wk){w! 

-Wk +(1-wiwk)tanh[2(Yk-Y+Jki(wk-wl))]}, 

then it is obvious that 

Mik = -Mkj and Niet = -Nkl. 
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The system (ABV) becomes: 

duk 
_ Mlk 

dt 
IEN(k) 

dwk 
_` Nlk, kEA. 

dt L 
IEN(k) 

Because 1E N(k) bkE N(l), then we can write 

and 

d 
EUk-E 

(fit 
=E MikMkl =o, 

kEA kEA kEA IEN(k) ! EA kEN(l) 

d 
dtEWk-ýddk 

NikNkt=O. 
kEA kEA kEA IEN(k) ! EA kEN(! ) 

5.3 The Lyapunov function 
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Provided that all the interaction energies Jki have the same value, which we 
denote by J, we show that for all kEA and IE N(k) the system (ABV) has 

a Lyapunov function, which can be interpreted as a free energy. Let us consider 
the function 0 given by (1.2.13), whose derivative is 

O'(z) = arctanh z. 

Consider now the following expression: 

(2uk+wk)(2u1+wl) - L(u, w) _ -4 
F-4 E 
kEA 1EN(k) 

-J 
E[u +w kJ 11 k+ E[O(uk) + O(Wk)]. (5.3.1) 
kEA kEA 

We then have 

Qau = 0'(uk) - Zk, 

k 

aL 
a, ý 

_ q5'(wk) - ®k, 
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for all kEA, where by Zk and Ok we have denoted the quantities 

Zk = 3J E (2u�ß + wm) + 2ßJuk 
MEN(k) 

= /3(Yk+2Juk)+zßJ, 

and 

®k= J (2um+wm)+ 
2JWk 

mEN(k) 

= 
2(Yk+Jwk)+ 2zJ. 

Due to the relation 1E N(k) kE N(l) we have 

dL 
_ý 

öL duk öL dwk 
dt 

1: 
öuk dt + öwk dt 
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äL aL 
Mik +> Nik 

kEA 
ask 

IEN(k) kEA 
awk 

IEN(k) 

1EEj öL 
_ 

öL jMlk +1Ej 
8L 

_ 
9L1Nik 

(5.3.2) 2 
kEA IEN(k) 

ask aul 2 
kEA IEN(k) 

awk awl 

We can rewrite M« in the following way: 

Mik =1 (uiwk + UkWI)(1 - uluk){ 
ul - Uk 

+ tanh[ß(Yk -Y+ 2J(uk - u1)))} 21- uluk 

= 21 
(utwk + UkWI)(1 - uiuk){tanh[c'(ul) - QV(uk)] + tanh[Zk - Z1]}. 

In a similar manner, Nik is written as 

Nik = 
1(wi 

+ Wk) (1 - WLWk){ 
Wl- Wk + tanh[2(Yk -Y+ J(wk - wi))]} 21- wiWk 2 

= 21 
(wI + Wk)(1 - wlwk){tanh[q'(wl) - q'(wk)] + tanh[ek - 9I]}. 

We now substitute the expressions of Mk and N1k into (5.3.2). Taking into 

account that (ulwk + UkWl), (WI + wk) and (1 - ujuk), (1 - WLWk) are all non- 
negative quantities, and a+0 and tanh a+ tanh /3 have the same sign for all a 
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and /3, we obtain 
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f 
dt 

= -- 
ZZ (utwk + ukWZ)(1 - utuk)[(ý1(u1) - Ot (uk)) + (Zk 

- Z! )] x 
kEA ! EN(k) 

x{tanh[q5'(ul) - O'(uk)] + tanh[Zk - Z1]} 

-11r 
E 

Lý 
(WI + Wk)(1 -'Wlwk)[(01(wt) - O'(wk)) + (©k 

- el)] x 
kEA IEN(k) 

x{tanh[J'(w, ) - O'(wk)] + tanh[Ak - ®i]} 

<0. 

The equality in (5.3.3) takes place when 

(5.3.3) 

1O'(U1) - O'(Uk) + 7ik 
- Zl =0 

Of(w1) - cb'(wk) + ek - 61 = 0, 
(5.3.4) 

for all kEA and IE N(k), which means that the pair of vectors (u, w) is the 

stationary solution of (ABV). Obviously, the function L(u, w) is bounded from 
below, and thus L is a Lyapunov function for the system. 

5.4 Critical temperature 

In this section we show the existence of a critical value for ,ß (which corresponds 
to a critical temperature) for each of the functionals EKaw(u) and L(u, w). We 
begin with EKaw(u) given by (1.2.14), and we consider only the case of solutions 
for which all components are equal. In this case EKaw(u) becomes 

E(u) = N(ý4(u) -z21 Ju2). 

We show the existence of 0, such that, below this critical point EKaw (u) is convex, 

and the uniform state u=0 is the only minimizer. If 0>0, then the global 

minimizer is a state u= (ul) u21 .... un) in which the components Uk can take 
two distinct values, -1 and 1. 

Since 
OE(u) 

= N(10'(u) - (z + 1) Ju), 
19U 0 
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a critical value of E(u) satisfies the equation 

u= tanh(, ß(z + 1)Ju). (5.4.1) 

One can find a value 0, such that for 0<Q, we can approximate 

tanh(Q(z + 1)Ju) = ß(z + 1)Ju, 

and (5.4.1) has only the trivial solution u=0. If ß>Q,, then the equation 
(5.4.1) has three solutions, 

u=o, u=-e, u=e (0E(0,11). 
The points u= -0 and u=0 are the global minimizers of E(u). Moreover, 

0 -- 1 as ß -+ oo (see Figure 5.1). 

In the case Uk -u and Wk =w for all kEA, the functional L(u, w) becomes: 

£(u, w) = -N[ 4 
(2u + w)2 - Jut -4 w2 + 

1(O(u) 
+ «(w))]. (5.4.2) 

13 
It turns out that there is a value & such that £(u, w) is convex for Q< fl 

, and 
(u, w) - (0,0) is the only minimizer. For > /3 then the absolute minimum of 
G is realized for some values u*, w* E (0,1] (see Figure 5.2). 

Figure 5.1: The function E(u) for three different values of 3. 
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1.5 

L 

0.5 

0 

1 

Figure 5.2: The function £(u, w) for /i > ß, 

5.5 Infinite temperature 

I")O 

In the case of infinite temperature, which means ,ß=0, it is easy to prove that 

the problem of stationary solutions for (1.2.10), that is the following system 

ZUk _ u1, kEA, (5.5.1) 
IEN(k) 

has only the constant mass solution. Here z is the coordination number, i. e. the 

number of nearest neighbours of a lattice site. To show this, let us recall that 

in the Penrose model the variables Ilk take values between -1 and 1. Since the 

variables (Uk + 1)/2 also satisfy (5.5.1), we may suppose Ilk E [0,11, for all k. Let, 

us suppose that the system also admits a nonconstant solution. For this solution 

we have 
1] (u1 - '11k)2 > 0, for all A: E A. (5.5.2) 

! EN(k) 
On the other hand, 

(uf 
- 'llk)2 = , ZU2 - 

2'11, k 
E 

'11,1 + 

IEN(k) IEN(k) IEN(k) 

= -zuk +ý 'flI. 

IEN(k) 
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Summing over all the sites in A, we have 

(ul-uk)2=>[ uI -zuk] 
kEA IEN(k) kEA IEN(k) 

= z1uk - z1uk 

kEA kEA 

= 0, 

which contradicts (5.5.2). Thus u- Mu is the only solution of (1.2.10) at infinite 
temperature. 

We aim to prove that this is also the case for the system (ABV) at infinite 

temperature. If 3=0, then we have 

0=E (Ulwk + Ukw()(U1 - Uk) 

(S) IEN(k) 

0=E (WI +Wk)(WI - Wk), 

! EN(k) 

for all kEA, with the mass constraints 

E uk = NMu and > wk = NM,,. 
kEA kEA 

Here N denotes the number of sites of A and 0< Mu, M. < 1. We shall prove 
that if Mu and Mw (M,,, 0) are given, then the system (S) has only the 

constant solution (u, w) - (Mu, Mw). Indeed, for an arbitrarily fixed site k, the 
last equation of (S) can be written as 

Ewk _ w2 
LEN(k) LEN(k) 

or, equivalently, 

zwk = wi . (5.5.3) 
IEN(k) 

Obviously wk cannot be 0 since this implies w-0, and thus Mw = 0. Using 
(5.5.3) we can write 

(WI 
- Wk)2 = wj - 2Wk wI +E W2 

IEN(k) IEN(k) IEN(k) IEN(k) 

= 2zw2 - 2Wk E wi 
IEN(k) 

= 2wk E (Wk - wI). (5.5.4) 
IEN(k) 
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If we suppose that w is not constant, then 

E (wI-wk)2>0, for alikE A. 
IEN(k) 

Since Wk # 0, (5.5.4) implies 

E (Wk - WI) > 0, for all kEA. (5.5.5) 
IEN(k) 

Taking in (5.5.5) the summation over all the sites k in A, we get 

E (wk 
- wl) > 0, 

kEA 1EN(k) 

which is false, since the mass constraint gives 

1] (wk - wl) = 0. 
kEA IEN(k) 

Thus, we can only have that w is constant for all the sites of the lattice. The first 

equation of (S) becomes now 

22 uk - ul, 

IEN(k) ZEN(k) 

and proceeding as we did for w, we get u- Mu, and thus the system has only 
the constant solution. 

5.6 Systems of discrete Cahn-Hilliard equations 
Phase separation of alloys with two or more than two components was studied, 

among others, by Eyre in [40] using systems of Cahn-Hilliard equations. Let us 

consider a stable homogeneous alloy having p+1 (p > 1) components, at high 

temperature. It has been experimentally observed that, when the temperature is 
lowered below a point where the homogeneous state is unstable, the components 

of the alloy show a tendency to separate into regions that have different com- 

positions. Due to the mass conservation, the generalization of the Cahn-Hilliard 
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equation (2.2.19) gives a system of p coupled partial differential equations. If we 
take the order parameter to be 

P 

X= (Xl, X2i ... , X. ), with EX, = 1, 
i=1 

then the system of equations on a bounded domain SZ CR can be written as 

d-X(x) 
= °[-rAX(x) + VxF(X(x))], XE si, t>o, (5.6.1) 

where 

r is a symmetric pxp constant matrix with real components, and 

F: RP -* R is the bulk free energy. 

For a particular case of the mobility matrix r, we will show here that we can get 

a similar system to (ABV) starting from the system (5.6.1). We consider the case 

of a ternary alloy, with 

ýro = 2, X= [u, w]T , 
F(X) = F(u, w), 

and we take 
2J J 

r= , J J/2 

where J is a positive scalar. The system (5.6.1) can be written as 

dtu 
= 0[V F(u, w) - J(20u + Aw)] 

(C-H) 

dtw = 0[V F(u, w) -2 (20u + Ow)). 
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If instead of 0ý we write E (& - ýk), then the system (SC-H) has the discrete 
! EN(k) 

analogue 
d 

Uk =Z {Fu(U1)w! ) 
- Fu(uk, wk) +Z J(2um + wm)- 

IEN(k) mEN(k) 

-E J(2u� + wn) + 2zJ(uz - Uk) + zJ(wi - Wk)} 
nEN(! ) 

(D) 
d 

Wk =E {Fw(ul, wt) - Fw(uk) Wk) +1Z J(2Um +Wm)- 

IEN(k) mEN(k) 

-2> J(2un + wn) + zJ(ui - Uk) +2 zJ(wt - wk) 
nEN(i) 

for all kEA. Here z is the coordination number of the lattice. 

We can show that the system (D) becomes similar to the system (ABV) 

provided we choose a suitable bulk free energy F(u, w). We choose J to be as 
in the previous section, i. e., to be the common value of all nearest neighbour 
interactions, and F(u, w) to be 

F(u, w) = , 
ß-10(u) +, ß-'q (w) - 

-J(2u + W)2 -Jut -4 Jw2. 

For all kEA, we have 

Fu(uk) Wk) = 3-1Of(uk) - 2(z + 1)Juk - ZJWk 

and 

F'w(uk, Wk) _ 0-1Of(wk) - 
2(z+ 

1) JWk - ZJUk. 

Substituting these expressions into (D) we obtain the system 
d 

Uk = 0_1 E {O (ut) - 0'(uk) + ß[Yk -Y+ 2J(uk - ui))} 
IEN(k) 

(*) 

d 
Wk ý_1 > {O'(WI) 

- OI(wk) + ON -Y+ J(wk - wi)I}i 
IEN(k) 
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for all kEA, where Yk and Y are the expressions (5.2.17), with J. n =J for all 
m, nEA. One can check that the functional L(n, w) is a Lyapunov function for 

the system (*). Using the notations used in Section 5.3, we have 

dL_1 /// 
dt =2ZE [(0'(ul) 

- 0Yluk)) + (Zk 
- Zl)] 2 

kEA IEN(k) 

2 
[(01(w1) 

- O'(wk)) + (E3k 
- 81)12 

kEA IEN(k) 

< 0. (5.6.2) 

The equality in (5.6.2) takes place when (u, w) satisfies (5.3.4). Since the systems 
(ABV) and (*) have the same Lyapunov function, they will also have the same 

equilibrium solutions. 

If we insert the positive factor ß(uiwk + ukWl)(1 - uiuk) in the first equation 

of (*), the positive factor , ß(wj + wk)(1 - wlwk) in the second one, and then 

replace the terms 0'(u1) - q'(uk), /'(WI) - O'(wk), , ß[Yk -Y+ 2J(uk - ui)] and 
/3[Yk -Y+ J(wk - wl)] by their hyperbolic tangents, we get the system (ABV). 

5.7 A Vineyard-type approach to vacancy me- 

diated diffusion 

Based on the Vineyard formalism described in Section 1.2.4, we shall derive in this 

section mean-field models for ordering in a binary mixture via the vacancy-driven 
mechanism. 

We consider a binary alloy with two kinds of atoms, A and B, and a small 

number of vacancies on a lattice A. For simplicity we shall regard vacancies as 
being a species of atoms. As in Section 1.2.4, by N(x) we denote the set of all 

nearest neighbour sites of the site x, and we refer to x+S as being an element 

of N(x). Define Pgl, a2 (x, x+S; t) to be the probability that at a given time t, 

the sites x and x+S are simultaneously occupied by atoms of type al and ce2, 

respectively (01,2 = A, B, or V). The structural state of the alloy at a given 
temperature can be completely described by the set of multiparticle distribution 
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functions PP,, a2 
(1,1 + a; t). We use here the vacancy mechanism explained in 

Section 5.2. 

Consider a pair consisting of an A-atom at site x and a vacant nearest neigh- 
bour site at x+6. Under the influences of some other atoms of the lattice, the 
A-atom may jump to the site x+6 and the site x will become empty. For simplic- 
ity, we suppose that only the atoms occupying the nearest neighbour sites around 
the pair (x, x+ 6) may exert an influence on the jump of the atom. Let us de- 

note by {y} the set of those nearest neighbour sites, by {X } the set of atoms or 
vacancies occupying the sites {y}, and by RAV({X }), the rate at which the jump 

is completed under these circumstances. Likewise, let us denote by RVA ({ X}) 

the jump rate of an A-atom situated at x+6 to the vacant site x and having the 

same environmental set IX}. If PAV{x} (x, x+d, {y}; t) denotes the probability 

of finding simultaneously an A-atom at x, a vacancy at x+6 and the set of atoms 
{X} on the neighbouring sites {y}, then we can write the law for the rate of 
change of PA(x; t): 

-pA(X; t): -- ZZ PvA{x} (x, X+S, {y}; t)RVA({X }) - 
a {x} 

- 
ZE PAv{x}(x, x+b, {y}; t)RAV({X }). (5.7.1) 

6 {X} 
Using similar considerations for the jump of an B-atom to a nearest neighbour 

site x+6, we can write the analogous law for the change in PB(x; t): 

tPB(x; 
t) = ZZPva{x}(x, x+8, {y}; t)RvB({X}) - 

a {x} 

-ZEPBv{x}(x, x+S, {y}; t)RBV({X}). (5.7.2) 
6 {x} 

In order to simplify the sums in the right hand side of equations (5.7.1) and (5.7.2), 

we use the simplest way to approximate the joint probabilities PAv{x}, PBv{x}, 

Pva{x}, and PVB{x} by assuming statistical independence among occupation 

probabilities. For example, we approximate 

P4v{x} (x, x S, {y}) ^-' P4(x)Pv(x + S)Px, (Yl) 
... Pxn (yn), 

where each y; is an individual site in the set {y}, and Xi is an atom (A or B) or 
a vacancy occupying yj (i = 1, ... , n). 
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It only remains now to specify the jump rates RAV({X }). In the system there 

exist bond energies only between nearest neighbours, of amounts JAA, JAB, and 
JBB between A-A, A-B and B-B pairs, respectively. All these quantities are 

considered to be non-negative and JAB = JBA. We suppose that the number of 

vacancies in the system is very small, such that if one of the given sites x or x+d 

is empty, then there are no vacancies around this pair of sites. We also suppose 

from the beginning that JAA = JBB and let 

JAA 
- 

JAB 

2 

We can see that e is positive for an ordering system. The energy of a system 

configuration is the sum of all bond energies. Since A-B, B-A, A-A and 
B-B interchanges are not permitted, we need to find the contributions of pairs 

such as A-V and B-V to the total energy. Let us consider an A-atom at 

site x and a vacant nearest neighbour site x+a. Suppose that the site x has 

a number nA(x) of nearest neighbouring sites occupied by A-atoms and nB(x) 

nearest neighbouring sites occupied by B-atoms. Also, let nA(x+6) and nB(x+6) 
be the number of sites around the site x+J. Since we assumed that there are no 

vacancies around this pair, we see that (1.2.17) is satisfied in this case also. 
The pair A-V situated at (x, x+ b) contributes to the total energy by the 

amount 

nA(X)JAA + na(x)JAB. 

After the jump of the A-atom to the vacant site is completed, the contribution 

of the new pair to the total energy will be 

nA(X + 6)JAA + nB(X + 8)JAB" 

Therefore, the net change in the energy is 

w(x) = 2e(nA(x + b) - nA(x)), 

which characterizes the influence of the atoms situated in the nearest neighbour 

sites around the pair. The energy for an A-atom at site x to jump to a site x+6 
is thus 

UA + 2E(nA(x + 6) - nA(x», 
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where UA is the activation energy, and the energy of an A-atom situated at site 
x+ö to jump to the vacancy at x is 

UA - 2e(nA(x + 6) - nA(x)). 

Based on the general theory of chemical kinetics, Vineyard concluded that the 
jump rate of the pair depends on w(x) and has the form 

RAV(IX }) 
= VAe-O(UA+2f(nA(x+6)-nA(2)))1 

where vA is the vibrational frequency of an A-type atom. It is easy to check that 
RAV({X }) satisfy the detailed balance condition, condition which is also satisfied 
by 

RAV({X}) = Hw(x) 

which may be obtained by rescaling time and setting vA exp(-, ßUA) = 1. For 

symmetry reasons we take 

RBv({X}) = RAV({X}) := e-ßw(x), 

and 
RVB({X}) = RVA({X}) := e'9' 

These are the forms of the jump rates that we shall consider from now on. 

5.8 The averaged equations 

We aim to simplify the equations (5.7.1) and (5.7.2) by averaging over the con- 
figurations. Let us define 

1, if the site x is occupied by an A-atom at time t 
NA(x, t) _ 

0, otherwise, 

and the corresponding occupancies for B-atoms and vacancies, NB (x, t) and 
NV (x, t), respectively. Obviously, 

NA(x, t) + Nu (x, t) + Nv (x, t) = 1, for all x and t, (5.8.1) 
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(NA(x, t)) = PA(x, t), (NB(x, t)) = PB(x, t), (Nv(x, t)) = Pv(x, t), 

where (") denotes the average (expected) value. By dropping the dependence on 

t, we can write the following equations: 

dt 
(NA(x)) = 

E(Nv(x)NA(x + 6)eßu'(') - Nv(x +. 5)NA(x)e-O'(x)) (5.8.2) 
6 

d (NB(x)) = E(Nv(x)NB(x + S)ef(x) - Nv(x + a)NB(x)e-aw(=)) (5.8.3) 
6 

We can rewrite (5.8.2) in the form 

d 
(N`q(x)) = 

E([Nv(x)NA(x + 6) + Nv(x + a)N. 9(x)]P(x)eßw(x)P(x)), (5.8.4) 
6 

where 

p(x) = NA(x + 8) - NA(x). 
Since pE {-1,0,1}, the following identity holds: 

pePX = pcosh X(1 +ptanhX). (5.8.5) 

Using this in (5.8.4) we obtain 

dt(Na(x)) _ 

_ E([Nv(x)N, 4(x + d) + Nv(x + 8)NA(x)] cosh(, ßw(x)) x 
d 

X {NA(x + 6) - NA(x) + (NA(x + 6) - NA(x))2 tanh(ßw(x))} ) 

E(cosh(ßw(x)) [Nv(x)NA(x + 6) + Nv(x + S)NA(x)] x 
b 

x{NA(x + 6) - NA(x) + (1 - NA(x)NA(x + b)) tanh(ßw(x))} ), (5.8.6) 

where in (5.8.6) we have used the following identity valid for all x and x+ö: 

[Nv(x)NA(x + 6) + Nv(x + ö)NA(x)J[NA(x + 6) - NA(x)12 = 

= [Nv(x)NA(x + J) + Nv(x + b)NA(x)][1 - NA(x)NA(x + a)]. 
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By adding (5.8.2) and (5.8.3) and using (5.8.1) we get 

dt 
(Nv (x)) _ 

= 
1: (Nv(x + ö)[NA(x) + Nß(x)]e-ß" - Nv(x)[NA(x + 6) + NB(x + 6)]e, 3"') 

a 

= 
E(Nv(x + ö)[1 - Nv(x)]e-ßW - Nv(x)[1 - Nv(x + 6)]eO' ) 

= E(Nv(x + 6)e-13w - Nv(x)eO') (since Nv(x)Nv(x + 6) = 0) 
b 

_ (q(x)e-PW(x)a(x) ), (5.8.7) 

where 

q(x) = Nv(x + S) - Nv(x) E {-1,0,1}. 

The identity (5.8.5) with q instead of p transforms (5.8.7) into 

d (Nv(x)) _ 

_ E(cosh(ßw)[Nv(x + 6) - Ni(x)]{1 + [Nv(x + b) - Ni(x)] tanh(, ßw)} 
a 

_ E(cosh(Qw)[Nv(x + Ö) + Ni(x)]{Nv(x + 6) - Nv(x) + 
6 

+[l - Nv(x)Nv(x + 5)] tanh(Ow)} ). (5.8.8) 

Let us use the following notation: 

u(x, t) = PA(x, t) = (NA(x)), XE A, for all t, 

w(x, t) = Pv(x, t) = (Nv(x)), xcA, for all t. 

and 

Y(x) _ E[2u(x ++ w(x +)- 1], 
boa 

Y(x+r5) = [2u(x+6 +'y)+w(x+S+7y) -1]. a+ry#o 
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With this notation we have 

(fi(x)) 
=e (nA(X + (ý) - nA(x) i-E (na(x + Ö) 

- nB(X) 

=e[E PA(x+8+ry)-EPA(x+6)]- 
a+7#o 646 

-e[ PB(x+a+ry) - 
EPB(x+ý)] 

bý ry0 01-16 
=6 [Y(x + ö) - Y(x)]. 

Averaging out in (5.8.6) and (5.8.8), and approximating the expectation of a 
nonlinear function by that function at the expectation of the argument, we finally 

get the following system 

ut(x) _ cosh[ß(Y(x + 6) - Y(x))] [u(x)w(x + 6) + w(x)u(x + 6)] x 

x{ u(x + 8) - u(x) + [1 - u(x)u(x + 8)] tanh[, 0(Y(x + 5) - Y(x))] } 
(V) 

wt(x) _E cosh[, ß(Y(x + 8) - Y(x))] [w(x) + w(x + 8)]{ w(x + 8) - w(x) + 
a 

+[1 - w(x)w(x + 5)] tanh[ß(Y(x + 8) - Y(x))] } 

where we have scaled the inverse temperature by 0+ eß. 

Remark 5.3 One can observe that this system is similar to (ABV), the difference 

being the hyperbolic cosine terms in both equations. The function L(u, w) given 
by (5.3.1) is also the Lyapunov function for this the system. 

Using the Vineyard formalism, M. Grinfeld and 0. Penrose [60] have derived 

the averaged equations for both Glauber dynamics and Kawasaki dynamics. For 

Glauber dynamics the equation is 

ut = cosh(ßv) [-u + tanh ßv], t>0, (5.8.9) 

where 

u(x, t) = 2PA(x, t) -1, and v(x, t) =E u(x + S, t), 
a 

which is similar to the equation (1.2.9), the difference being the mobility term 

cosh(ßv). Also, in the case of direct exchange dynamics they found a similar 
equation to (1.2.10), the differences being again an hyperbolic cosine term. 
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An interesting question regarding these new models is whether the flows gen- 

erated by the last system and (ABV), or by the equations (1.2.9) and (5.8.9) are 
topologically conjugate or not. 

5.9 Numerical analysis 

In this section we shall present the results of numerical simulations of the mean- 
field equations (1.2.10) and (ABV) using the explicit Euler scheme in one and 
two dimensions. In all computations we take Jkt = 1, for all k, 1. 

The one dimensional Euler scheme for the Kawasaki equation (1.2.10) is given 
by: 

Ö4Lk = 21uk-1 - 4Lk + (1 
- 2lk-luk) tanh[Q(uk+l - Uk-2)] + 

+ uk+l - 26k + ý1 
- 2lk+luk) tanh[Q(uk-1 - Uk+2)11, n=1,2, 

... , 

0 
Uk=uo, k=1,2,..., N, 

where 
un+l - Un 

aun= 
At n=1,2,..., 

and N is the number of lattice sites, At is the time step size. The mass conser- 

vation condition (1.2.11) can be written as 

1N 
NE7uk=Mu. 

k=l 

Experiment 1. We take ,3=0.2, 
At = 0.5 and use 100 lattice points. We 

take the initial data uo (and consequently vo) such that each component is a 

randomly generated value between -1 and +1. The time evolution of the so- 
lution u= (ul) u2i ... , uloo) (plotted with blue colour) is shown in Figure 5.3. 
The function drawn with red represents v= -u. The solution u appears to con- 

verge to the constant mass solution Mu of (1.2.10). In Figure (5.4) the Lyapunov 

function (1.2.14) is represented as a function of time. After the initial drop in 
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LKaw(u), the Lyapunov function remains fairly constant for very short periods, 

periods which become longer with time, and finally the function attains its min- 
imum when u becomes constant Mu. 

Experiment 2. In this experiment the parameter ß is increased to 0=1, the 

time step is taken to be At = 0.005 and the grid size N= 15. We consider the 

same type of initial data as in Experiment 1. The evolutions of u (blue) and 

v= -u (red) are represented in Figure 5.5. We observe that domains where 

u= -1 or u=1 appear and the solution undergoes long periods of very slow 

evolution. This very slow motion is consistent with the results of J. Carr and R. 

L. Pego [21], where they discovered an exponentially slow evolution in the case 

of the Allen-Cahn equation (2.2.14). The smaller scale domains appear to shrink 

with time and finally the solution will coarsen to a phase separated state which is 

monotonic and minimizes the Lyapunov function (1.2.14) represented in Figure 

5.6. 

Experiment 3. We perform a two dimensional experiment for (1.2.10) on a 
20 x 20 lattice. The initial data uo is taken to be a matrix with elements ran- 
domly generated values between -1 and 1. The time step is At = 0.1 x 10-4 

and ,ß=1. 
We represent in Figure 5.7 the initial data uo and the evolution of 

the solution to (1.2.10) at four different times: 103,104,105 and 106. As in the 

previous experiment, we observe the appearance of phase domains where u takes 

the values ±1, the coarsening process being again very slow. 

The one-dimensional explicit Euler scheme for the equation for vacancy-mediated 
diffusion, (ABV), is 
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au" =2 {(u tv" + w" u"`) (u" 
- u" + (1 

- un_luk) tanh ß(2uß+1 
- 2uk-2 + k-1 kk-1kk -1 k 

+wk+l + wk-1 - wk - wk-2)) + (uk+lwk + cuk+luk)[uk+l - uk + 

+ (1 - uk+luk) tanh, ß(2uk_1 - 2uß+2 + wý-i + wk+l - wý - wk+z)]} 

awn =2 {(wk-1 + wk )[wk-1 - wk + (1 - wý-1wk) tanh)3 (2uk-1 + 2un+1 - 

- 2uß-2 - 2un +w11- wý_2)] + (wý+1 + wn )[wý+1 - Wk + 

+ (1 - wý+lwk) tanh 
0 

(2un-1 + 2un+1 - 2un-2 - 2uk + wk-i - wý+2)] } 

fork=1,2,..., Nandn=1,2,..., with 

J uk = uo , 
lwo 

= wo, k=1,2, ..., 
N. 

Experiment 4. We take ,ß=0.1, 
At = 0.01 and the grid size N= 15. The 

initial data (uo, vo, wo) is such that the components of uo are randomly gener- 

ated values within the interval [0,0.8], wo has components which are random 

numbers between 0 and 0.15, and thus the components of vo =1- uo - wo are 

values between 0.05 and 1. The evolution of the solution of (ABV) having this 

initial data is represented in Figure 5.9 (we use blue to represent the average 

of A-atoms, red for the average of B-atoms and green for vacancies). One can 

observe the appearance of regions with A-rich and B-rich phases, with a higher 

average of vacancies in the interfaces that separate these regions. Finally, in this 

case the solution decays to the constant solution u= (Mu, M,,, M,,, ). In Figure 

5.10 we have plotted the Lyapunov function L(u, w) given by (5.3.1) as a function 

of time. We see that this function decreases in time along the solutions of (ABV). 

Experiment 5. The parameter ,ß is increased to /3 = 0.51, At =5x 10-4 and 

we take N= 12 lattice points. The initial data (uo, vo, wo) is as in the previous 

experiment. One can observe again the appearance of regions with A-rich and 
B-rich phases which coarsen in time. The system evolves very slowly towards a 

minimum of the Lyapunov functional drawn in Figure 5.12. 
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Based on these experiments we conjecture that there is a critical value for 0, 

say ß (which corresponds to a critical temperature TT) such that if 0< ,0<0, the 

solution of the equation (1.2.10) or of the system (ABV) decays to the constant 

mass solution which is stable, and if /j > ß,, then the solution evolves towards 

phase separation into domains having either A-atoms or B-atoms. 
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Figure 5.3: The solution of (1.2.10) with /3 = 0.2 at different values of time t (the 

grid size N= 100). 
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Figure 5.4: The Lyapunov functional (1.2.14) against time (, ß = 0.2, N= 100). 
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Figure 5.5: The solution of (1.2.10) with J=1 at different values of time t (the 

grid size N= 15). 
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Figure 5.6: The Lyapunov functional (1.2.14) against time (Q = 1, N= 15). 
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Figure 5.7: Morphological pattern formation and evolution during spinodal de- 

composition in the Kawasaki dynamics case. 
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Figure 5.9: The solution of (ABV) with 0=0.1 at different values of time t (the 

grid size N= 32). 
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Figure 5.11: The solution of (ABV) with ß=0.51 at different values of time t 

(the grid size N= 12). 
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Figure 5.12: The Lyapunov functional (5.3.1) against time ((3 = 0.51, N= 12). 
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5.10 Conclusions 

171 

In the first part of this chapter we derived a system of approximate equations for 
the Ising model with vacancy-driven dynamics. This model is a generalization of 
the approximate equation (1.2.10) derived by Penrose for the Ising model with 
Kawasaki dynamics. The system (ABV) possesses a Lyapunov function which 
can be interpreted as a free energy functional, and we have shown the existence 
of a critical value for temperature. For temperatures above the critical point the 
functional L(u, w) is convex, and the homogeneous phase is the only equilibrium 

state, and below TT, the minima of L(u, w) correspond to phase separated states. 
In the previous section we have carried out comparative numerical experiments 

for the evolutions governed by (1.2.10) and (ABV). From these experiments one 

can draw the following conclusions. For (1.2.10) (see Figures 5.3 - 5.6), there is 

a critical value for ß, say fr, (which implies a critical value for the temperature, 
T, ) such that if 0< 

,ß< , ß, solutions of (1.2.10) will decay to the constant mass 
solution, which is the global minimizer of the Lyapunov function (1.2.14). For 

,ß> /3,, solutions converge to a monotonic steady state solution. This means that 

at high temperatures the system will tend to the homogeneous state, and for low 

enough temperatures the equilibrium state of the mixture consists of two phases 
coexisting in equilibrium. The monotonicity of the equilibria is consistent with 
the similar result found by Carr et al [20] for the Cahn-Hilliard equation. 

A similar behaviour has been found for solutions of (ABV), but this time 

the evolution process is much slower (see Figures 5.9 - 5.12). The numerical 

experiments suggest the existence of a critical value ß,; if 0<ß<ß,, then the 

solution of (ABV) tends to the constant mass solution (Mu, Mw), and for ,ß> , Qc 

the system tends to separate into two different phases, with a higher average of 
vacancies in the interfaces. 

In Section 5.7 we derived a system of approximate equations for the same 
model, but this time using the Vineyard formalism described in the first Chapter. 
We found a system of equations which is similar to (ABV), the difference being 

some hyperbolic cosine terms. We would expect the evolution of this system to 
be similar to that of the system (ABV). 
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At the end of this chapter, let us mention that the continuous versions of 
(ABV) and (V) are systems of integro-differential equations, which can also be 

used to model phase separation in binary mixtures. If the lattice A covers a 

domain S2 E R, then a continuous version of (ABV) is 

dt 
(x) =2 (u(x)w(y) + u(y)w(x)){u(y) - u(x) + (1 - u(x)u(y)) x 

x tanh[ß(Y(x) - Y(y) - J(Ix - yi)(w(x) - w(y)))]} dy 

t 
(x) =2J (w(x) + w(y)){w(y) - w(x) + (1 - w(x)W(Y)) x 

x tanh[2 (Y(x) - Y(y) - 2J(ix - yl)(u(x) - u(y)))]} dy, 

xE S2, where Y(x) is defined here by 

Ix - zl)(2u(z) + w(z)) dz, xEQ. Y(x) = 
fn 

J( 

We easily see that this system conserves mass, since the expressions under the 

integral are anti-symmetric in x and y. 



Chapter 6 

Conclusions and further work 

In Chapter 3 we were concerned with a nonlocal version of the Allen-Cahn equa- 

tion. We proved that (3.3.1) generates a flow in L°°(Q) and we have discussed 

some qualitative properties of the solutions to the nonlocal Allen-Cahn equa- 

tion. We found that, unlike the solutions of the Allen-Cahn equation, solutions 

of (3.3.1) do not coarsen at all if the strength of interactions between particles 
in the system is small enough. We proved this result only for J>0, and the 

main key in the proof was the comparison principle. It is not clear yet what hap- 

pens with the coarsening process if the assumption J>0 is removed, since the 

comparison principle is no longer valid in this case. Although the non-coarsening 

property of solutions was proved under the restrictive condition Iluoll < 1, the 

result of Theorem 3.22 remains valid if this restriction is removed, but we are 

unable to use the same technique in proving the result (basically, we cannot use 

the comparison principle). For Knoll > 1, one can prove the non-coarsening of 

solutions to (3.3.1) using rather different ideas. For example, one can try to show 

that the number of zeros of solutions to (3.3.1) with small enough -y does not 
decrease to zero when t -+ oo. Alternatively, one can follow the ideas of Fife and 
Wang [48] in proving Theorem 3.21. 

We did not prove a stabilisation result for (3.3.1). In the case of equation 
(2.2.14), which generates a gradient system on L2([l), a stabilisation result follows 

from the general theory of such systems (e. g., see [24], [64]). This theory cannot 
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be applied to (3.3.1) because of the lack of compactness of the positive semi-orbits. 
In Section (3.6) we approximated the flow generated by the nonlocal Allen- 

Cahn equation by flows obtained using Pade approximants. Everything about the 

equations (P,, ) is open. It would be interesting to see whether the equilibrium 

solutions corresponding to (P,, ), and those of (3.3.1) have the same structural 

properties (cardinality, stability). 

Chapter 4 deals with nonlocal mass conserving versions of the following equa- 

tions: the Rubinstein-Sternberg equation (2.2.20), the Cahn-Hilliard equation 
(2.2.19) and the viscous Cahn-Hilliard equation (2.2.15). These equations are 
derived as constrained gradient flows of the free energy functional (3.3.9). We 

consider their associated initial value problems, and prove existence and unique- 

ness results. As we have shown in the last part of Section 3.6, one can obtain the 

Cahn-Hilliard equation (2.2.19) from (4.3.1) by using Pade approximation. 

All the nonlocal equations studied in Chapter 4 have the same stationary 

solutions, properties of which are discussed in Section 4.5. We find similarities 

between the properties of these solutions and the equilibria of (2.2.19), such as 
the unique constant mass solution for -y or IMI large enough. 

The numerical experiments show solutions to (4.2.1) and (4.3.1) do not coarsen 

if the parameters -y or e are small enough, a phenomenon which is not common 

to the local equations. The maximum principle does not hold here, hence the 

arguments of Chapter 3 are not applicable. 

We believe that these equations were never considered before; everything 

about their properties remains open. One also can consider systems of nonlocal 

Cahn-Hilliard equations, which can model phase separation in multi-component 

alloys, or systems of nonlocal Allen-Cahn and Cahn-Hilliard equations. One can 

also consider non-local Allen-Cahn or Cahn-Hilliard equations in which the mo- 
bility term (see Definition 2.12) is not constant. 

In Chapter 5 we derived mean-field equations directly from a microscopic 

model on a lattice. The model approximately represents the average behaviour 

of the Ising model, where the atoms are allowed to exchange places in the lattice 

via a vacancy mechanism. The proposed system is discussed in parallel with the 

mean-field equation derived by Penrose which represents the kinetic Ising model 
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with direct exchange dynamics. As in the case of the Penrose equation (1.2.10), 

we found that (ABV) possesses a Lyapunov function, which can be interpreted 

as a free energy. The numerical experiments show the existence of a critical 

temperature for this functional; above this critical point the system decays to 

the constant mass solution, and for temperatures below TT the mixture tends to 

separate into two phases. 
In the last part of the chapter we use the Vineyard formalism for the vacancy- 

interchange model to derive a similar system of equations to (ABV). It would be 

interesting to see whether the the flow generated by the new system is topologi- 

cally conjugate to the flow generated by (ABV). 
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