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Abstract

Defects such as cracks and spalling in reinforced concrete can have a detrimental effect

on structural integrity if unnoticed and left untreated. Inspection methods have largely

evolved over the years from traditional visual inspections to partially and fully auto-

mated inspections. One of the most common forms of automated inspections is the use

of cameras and application of deep learning algorithms to identify cracks and spalling

on the captured images. Automated inspections overcome limitations of visual in-

spections, mainly as it concerns inconsistency and subjectivity in the identification and

interpretation of cracks. Still, they do not come without their own caveats: autonomous

vehicles (e.g. drones) require an expert, trained and licenced user, the captured images

use diffused lighting that does not necessarily reveal the true geometric characteristics

of the crack or even the crack itself, and most deep learning algorithms developed for

crack detection and identification are not performing well with low quality images and

low light conditions and are mainly trained with diffused light images captured in the

lab. This thesis is focusing on addressing all of these challenges in the technology of

automated concrete structure inspections in Civil Engineering through the development

of both hardware and software.

Utilising the benefits of multi-directional, multi-angle lighting, which has been suc-

cessfully used in other disciplines (medicine) in highlighting features clearly, an auto-

mated platform called ALICS (Adaptive Lighting for Inspection of Concrete Structures)

has been developed. It captures images of concrete structures by creating and casting

shadows through illuminating light from multiple angles and multiple directions, mim-

icking what an experienced inspector would do during a visual inspection. The original
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design of ALICS has subsequently been modified to field-deployable hardware, suit-

able for carrying out inspections outside the lab. Following a number of experimental

setups where the angle of light was varied and analysis of the captured images using a

pretrained VGG-16 neural network model, the optimum angle was identified.

To overcome declined performance of the VGG-16 model, one of the most com-

monly used models in concrete crack identification in Civil Engineering, in the case of

low-quality images, an automated image quality assessment workflow was developed

based on BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) score and

incorporated into the VGG-16 model. The traditional VGG-16 and VGG-19 neural

network models are developed to satisfy three-channel diffused RGB images. To allow

for the analysis of directional lighting, i.e. for five channels, one for the gray scale image

in Right, Down, Left, Up and diffused directions each, novel five-channel VGG-16 and

VGG-19 were developed, capable to detect and classify cracks.

The VGG-16 five-channel neural network was further improved in terms of evalu-

ation time by utilising the light neural network model, MobileNetV2. The multi-channel

MobileNetV2 model, MCNet has been implemented similar to five-channel VGG mod-

els. The maximum-intensity fusion technique, which has been successfully used in

medical field to combine multiple images has been utilised to implement a fused neural

network model, FusedNN. The FusedNN, and MCNet models are developed to satisfy

three-channel RGB images, and five-channel images, respectively. The performance of

the traditional MobileNetV2 model, FusedNN, the five-channel VGG-16 model, and

MCNet were compared for crack detection and classification tasks, and MCNet demon-

strated the best performance. For detecting cracks and spalling, a comparison of the

four models: traditional, Zoubir, FusedNN, and MCNet, revealed that MCNet outper-

formed the others. This highlights the advantage of additional information provided

by directional lighting to enhance automated concrete crack inspection in Civil Engin-

eering. The performance of traditional model and the FusedNN model was compared

under increased exposure values to evaluate the advantages offered by the FusedNN

model over traditional model.

Overall, this research offers a comprehensive approach to automated concrete in-
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spection, leveraging, for the first time in Civil Engineering, advanced illumination tech-

nologies used successfully in other scientific fields. The results in this thesis show that

multi-directional lighting, combined with specifically adapted neural networks can suc-

cessfully identify cracks of widths 0.1mm.
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Chapter 1

Introduction

1.1 Introduction

Civil structures are susceptible to deterioration due to factors ranging from repetitive

traffic loads to natural disasters [1]. This gradual deterioration reduces the safety

margin and the lifespan of the structure, which in turn poses significant risks to both

human life and property [2]. Therefore, early awareness and identification of the defects

is crucial to extend lifespan and safety of reinforced concrete structures [3]. The primary

forms of defects include cracking and spalling [4].

Routine inspections in reinforced concrete structures are still predominantly con-

ducted visually. Manual visual inspections benefit from the adaptable decision-making

of people, but they present significant financial and time costs, often put inspectors at

risk, and suffer from low repeatability [5]. Robotics and deep learning are gradually

automating some aspects of inspection and image analysis, providing asset managers

with remote, consistent and cost-effective tools to maintain concrete structural health

and resilience [6].

Most of the automated inspections utilise cameras for image capture. The quality

of the captured images is influenced by factors such as lens quality, working distance,

brightness and lighting conditions [7, 8]. As it concerns the latter, many automated

systems still lack the adaptability to assess diverse defects under varying, low, and un-

controlled lighting conditions [9], with the quality of illumination significantly affecting
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the accuracy of image analysis results [10].

Geometrical illumination is commonly applied in surgery [11] to improve feature

contrast but has received limited attention in the context of Civil Engineering. Al-

though human inspectors often instinctively use directional lighting with flash-lights,

previous studies on crack detection has not fully utilised the additional data that dir-

ectional lighting could provide [12, 13].

Early studies explored various approaches, such as ring and angled lighting, to

identify textural differences associated with concrete cracking [12]. Another investig-

ation examined the impact of brightness and lighting direction on crack recognition

in ambient lighting conditions, where they found that low-intensity, low-angle lighting

was effective in detecting smaller crack widths [14]. Meanwhile, a separate study used

extreme dark-field imaging to detect air voids in concrete, employing nearly parallel

lighting to the concrete surface. However, this approach required significant preparation

of the substrate [9].

Previous studies on concrete crack detection have primarily focused on analysing

laboratory datasets [15]. This tendency is common in concrete defect detection liter-

ature, where hardware and software testing often relies on laboratory samples and as

such, do not fully capture the complexities of real-world concrete structures [16]. There

are no studies on testing and evaluation of directional lighting concrete inspection tech-

nology in real-world applications.

Engineering standards typically state that crack widths of 0.2mm to 0.4mm in con-

crete structures need immediate attention [17]. Previous studies have detected cracks

with widths less than 0.1mm on clear backgrounds but faced challenges in identifying

such cracks under low-light or uneven illumination conditions [18].

Regarding the image quality, the conventional subjective evaluation method that

relies on human perception to assess, is not only slow and costly but also prone to sub-

jective biases [19, 20]. Consequently, objective Image Quality Assessment (IQA) meth-

odologies have been developed to automate image quality prediction through diverse

algorithms [21, 22, 23]. Real-time automatic Image Quality Assessment has received

little attention in computer-aided Civil Engineering [24, 25].
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Previous studies have prioritised defect detection capabilities while neglecting the

significance of automating the evaluation of concrete image quality, which is essential

for effective crack detection. To add to this, currently there is a lack of image processing

algorithms that are trained on datasets comprised of directionally lit images.

This thesis focuses on the development of an automated inspection methodology

that leverages multi-angle and multi-directional lighting in low-light or challenging

environmental conditions to detect cracks in concrete with widths less than 0.1mm.

This research focuses solely on detection and classification, with crack segmentation

being beyond the scope of this thesis.

1.2 Thesis Overview

The outline of the remaining of this thesis is as follows:

Chapter 2 focuses on common defects in concrete structures such as, cracks and

spalling, exploring how they form, and why they happen. Traditional visual inspection

techniques are reviewed, including their advantages, disadvantages, and influencing

factors. The chapter also looks into semi-autonomous inspection methods, discussing

their benefits over traditional techniques, as well as their drawbacks. The Chapter

concludes with the suggestion that automated inspection methods could be a tool to

overcome the limitations of manual inspections.

Chapter 3 focuses on automated visual inspection techniques and deep learning

models utilised for Civil Engineering infrastructure today. It highlights the advantages

of using automated visual inspection methods and introduces black-box and white-box

crack analysis methods, with more emphasis on black-box methods. It presents recent

studies on image recognition, image classification and semantic segmentation used for

automated defect inspections in concrete structures. Further, it reviews illumination

methods employed to detect concrete defects in low-light environments, highlighting

the limitations present in existing literature and the research gaps that this thesis aims

to address.

Chapter 4 outlines the methodology and experimental setup for the implementation

3



Chapter 1. Introduction

of hardware (ALICS) and development of software (based on VGG-16 model) that

allows for the investigation of the potential of directional lighting and suitable optimal

illumination angle to provide enhanced inspections of concrete structures.

Chapter 5 presents the implementation of the Blind/Reference-less Image Spatial

Quality Evaluator (BRISQUE), a No-Reference IQA (NR-IQA) algorithm in the VGG-

16 algorithm. The BRISQUE score threshold (BT ), which significantly improved the

overall data quality for deep learning applications is introduced. An automated data

cleaning procedure based on a BRISQUE score threshold has been implemented and

integrated to ensure that only high-quality images are utilised for further image pro-

cessing.

Chapter 6 presents a novel approach to concrete crack detection and classification,

employing five-channel (multi-channel) neural network models based on the VGG-n

architecture (where n=16 and 19) utilising the multi-directional lighting. The study

evaluated and compared the performance of these multi-channel deep learning models

with their 3-channel versions commonly used for crack detection on Civil infrastructure,

for binary image classification tasks. The results show major improvements in crack

detection and classification in low-light conditions.

Chapter 7 focuses on multi-class image classification for crack and spalling detec-

tion. It implements two novel Convolutional Neural Network (CNN) models, FusedNN

and MCNet, which are developed based on the MobileNetV2 architecture using multi-

directional lighting approach. The chapter analyses the impact of exposure on diffused

and fused images, highlighting the advantages of utilising directional lighting in fused

images. It compares the performance of directional lighting-enhanced neural network

models with traditional model and advanced model in the literature for both binary and

multi-class image classification tasks. It compares the best performing neural network

model from Chapter 6 with the best-performing neural network model in Chapter 7,

highlighting the advantages of using directional lighting for classifying both cracks and

spalling. FusedNN and MCNet are compared to a SOTA model, Zoubir and are found

to exhibit superior performance.

Chapter 8 discusses the findings and outlines the future work for this thesis.
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Chapter 9 provides the conclusions of this thesis.

1.3 Contributions to Knowledge

The research contributions of the work carried out in this thesis are summarised as

follows:

• First study to assess the potential of directional lighting incident at an angle of

10 to 60 degrees on the surface of real world concrete structures, captured under

low-light conditions (Chapter 4). Geometrical illumination, commonly applied in

surgery to enhance feature contrast, has received limited attention in Civil Engin-

eering, particularly for defect detection in concrete structures. Previous studies

have successfully detected cracks smaller than 0.1mm on clear backgrounds but

have faced significant challenges when attempting to identify these cracks un-

der low-light or uneven illumination conditions. Based on the literature review

presented in Chapters 2 and 3, no other study was identified that utilised dir-

ectional lighting for crack identification, including those of widths < 0.1mm, in

concrete Civil infrastructure.

• Implementation of a novel end-to-end, automated process for data-cleaning via

a threshold based image quality assessment algorithm (Chapter 5). Unlike ex-

isting methods that might incorporate image quality assessment as a separate

pre-processing step after completion of image acquisition, this study incorpor-

ates Threshold-based IQA algorithm during image capture, ensuring that only

high-quality images are retained for subsequent image processing, and low-quality

images are discarded. This enhances the performance of the crack detection al-

gorithm.

• Developed a methodology for the implementation of multi-channel deep learning

models for detecting defects like cracks and spalling in concrete Civil Engineering

infrastructures (Chapter 6 and Chapter 7). Directional lighting was implemented

in this work through sets of 5 images, i.e. 5-channels instead of the commonly

5



Chapter 1. Introduction

used 3-channels in deep learning algorithms. To achieve this, multi-channel deep

learning models were developed. No multi-channel deep learning models used for

concrete defect detection exist in the reviewed literature. The proposed method-

ology for multi-channel deep learning models can be applied to any model.

• Developed the Fused Neural Network (FusedNN), a novel CNN model for detect-

ing cracks in concrete structures by using maximum intensity pixel-level image

fusion. This is a technique widely used in medical imaging but not in other fields,

including Civil Engineering (Chapter 7). Unlike traditional methods that rely on

single-image inputs under challenging lighting conditions, the FusedNN merges

multiple images captured from different lighting directions, enhancing contrast

and defect visibility in concrete structures. This is the first application of image

fusion for concrete defect detection in low-light and real-world conditions where

conventional approaches struggle.

• First study to demonstrate the effect of exposure on diffused and fused images,

particularly in the context of crack detection (Chapter 7).

In addition to the above contributions, the author of this thesis also contributed to

the following:

• The thesis is presenting the design of a lighting apparatus (ALICS rig) that

employs illumination techniques such as geometrical illumination (direction and

angle) in hardware to aid in automated defect detection/analysis. This is an essen-

tial aspect for addressing the current lack of illumination methods in automated

inspections. This apparatus is a first in hardware that utilises multi-directional

and multi-angle lighting approach to accurately detect concrete defects in low-

light environments.

• The author contributed to this hardware by developing and implementing the

initial design of the lighting rig along with its hardware components. More

specifically, a machine-vision camera and manually operated multi-direction and

6



Chapter 1. Introduction

multi-angle lighting rig were integrated onto a six-axis robotic arm. This integ-

ration was intended to capture thorough datasets of concrete specimen images in

controlled laboratory settings.

• Later, in collaboration with two other researchers, the lighting rig was modified

to automate multi-angle and multi-directional lighting. Following this, the author

took active part in the implementation of the first field deployable ALICS rig.

1.4 Research outputs

The research outputs derived from this thesis and related research work by the author

of this thesis are presented below.

1.4.1 Journal Articles

1. S. Pennada, M. Perry, J. McAlorum, H. Dow, and G. Dobie, “Threshold-based

BRISQUE-assisted deep learning for enhancing crack detection in concrete struc-

tures,” in J. Imaging 2023, 9, 218. The author carried out the conceptualisation,

data pre-processing, methodology, visualisation, validation, software implement-

ation, and original writing. Along with McAlorum and Dow, the author captured

the images. Perry and Dobie were involved in the supervision of this work.

https://doi.org/10.3390/jimaging9100218.

2. J. McAlorum, H. Dow, S. Pennada, M. Perry, and G. Dobie “Automated Con-

crete Crack Inspection with Directional Lighting Platform,” in IEEE Sensors

Letters. The author contributed to the hardware development (as described in

section 1.3), the author captured part of the images in the lab, and implemented

the VGG binary classifier outlined in this paper.

https://10.1109/LSENS.2023.3327611.

3. H. Dow, M. Perry, J. McAlorum, S. Pennada, and G. Dobie, “Skeleton-based

noise removal algorithm for binary concrete crack image segmentation,” in Auto-

mation in Construction, vol. 151, p. 104867, 2023. The author contributed to
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the development of the hardware (as described in section 1.3) which was utilised

to capture the images utilised in this paper, and captured part of the images used

in this paper.

https://doi.org/10.1016/j.autcon.2023.104867.

4. H. Dow, M. Perry, S. Pennada, R. Lunn, and S. Pytharouli, “3D reconstruction

and measurement of concrete spalling using near-field Photometric stereo and

YOLOv8,” in Automation in Construction, vol. 166, p. 105633, 2024. The author

contributed to the hardware (as described in section 1.3) which was utilised to

capture the images utilised in this paper.

https://doi.org/10.1016/j.autcon.2024.105633.

1.4.2 Conference Papers

1. S. Pennada, M. Perry, J. McAlorum, H. Dow, and G. Dobie, “Performance

evaluation of an improved deep CNN-based concrete crack detection algorithm,”

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

vol. 12486, p. 1248615, 2023. The author carried out the conceptualisation, data

pre-processing, methodology, visualisation, validation, software implementation,

and original writing. McAlorum and Dow helped with capturing the images used

in this study. Perry and Dobie were involved in the supervision of this research.

https://doi.org/10.1117/12.2657723.

2. J. McAlorum, M. Perry, H. Dow, and S. Pennada, “Robotic concrete inspection

with illumination-enhancement,” in Sensors and Smart Structures Technologies

for Civil, Mechanical, and Aerospace Systems 2023, vol. 12486,pp. 125–131,

SPIE, 2023. The author contributed to the hardware development (as described

in section 1.3), the author captured part of the images in the lab, and was the

reason for the utilisation of BRISQUE in this study. The author reviewed the

final draft of this paper.

https://doi.org/10.1117/12.2655938.

3. H. Dow, M. Perry, J. McAlorum, S. Pennada, and G. Dobie, “A novel direc-
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tional lighting algorithm for concrete crack pixel-level segmentation,” in Sensors

and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems

2023, vol. 12486, pp. 344–350, SPIE, 2023. The author contributed to the hard-

ware development (as described in section 1.3), and captured part of the images.

https://doi.org/10.1117/12.2657235.

4. H. Dow, M. Perry, J. McAlorum, and S. Pennada, “Concrete crack pixel-level

segmentation: a comparison of scene illumination angle of incidence,” in Proceed-

ings of the 11th European Workshop on Structural Health Monitoring, EWSHM

2024, Vol. EWSHM 2024. The author contributed to the hardware development

(as described in section 1.3).

https://doi.org/10.58286/29683.

1.5 Journal Articles (Under Peer Review)

1. S. Pennada, M. Perry, J. McAlorum, H. Dow, and G. Dobie, “Concrete Crack

and Spalling Detection: A Comparative Study of Conventional and Directional-

Lighting-Enhanced Deep Learning Models,” Submitted to Remote Sensing,

MDPI . The author carried out the conceptualisation, data pre-processing, meth-

odology, visualisation, validation, software implementation, and original writing.

McAlorum and Dow helped with capturing the images used in this study. Perry

and Dobie were involved in the supervision of this research.

2. H. Dow, M. Perry, J. McAlorum, S. Pennada, and G. Dobie, “Comparison of

directional and diffused lighting for pixel-level segmentation of concrete cracks,”

- Submitted to Infrastructures. I contributed to the hardware (as described

in section 1.3) which was utilised to capture the images utilised in this paper, and

also captured part of the images used in this paper.
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Chapter 2

Concrete inspection techniques

and structural health monitoring

2.1 Introduction

Defects in reinforced concrete structures can lead to significant damage, risking public

safety and causing financial cost. Deteriorating infrastructure requires regular inspec-

tions and timely maintenance. Structural Health Monitoring (SHM) includes various

inspection techniques to assess the condition of these structures over time. This chapter

focuses on traditional inspection techniques before conducting a literature review on

the state-of-the-art (SOTA) inspection procedures, highlighting their advantages and

disadvantages. Following this, a research gap is identified regarding the use of these in-

spection procedures for detecting cracks and spalling in reinforced concrete structures,

particularly in low-light environments.

Concrete is the second most widely consumed material globally after water and

the most consumed man-made material in the world, with a consumption rate of 14

billion m3 in 2020 [26, 27, 28]. The consumption of certain building materials, such as

concrete, is unlikely to decrease in the coming years; in fact, with population growth,

demand is expected to rise [29].

Design codes are standardised guidelines that outline the rules and specifications
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for the design, construction, and maintenance of structures. Various organisations

such as the American Concrete Institute (U.S.A), American Society of Civil Engineers

(U.S.A), British Standards Institution (U.K), and International Union of Laboratories

and Experts in Construction and Structures (France) have established guidance and

standards for evaluating the condition and performance of concrete structures [30, 31].

In the UK, structural designs typically follow the Eurocode 2 (EN 1992), a series

of European standards adopted by all countries in the European Union, for the design

of concrete structures in Civil Engineering. It details material properties, load calcu-

lations, structural analysis, and design requirements, ensuring concrete structures are

safe, efficient, and durable. Eurocode 2 specifies that maximum allowable crack widths

for regular reinforced and prestressed concrete structures range between 0.2mm and

0.4mm. Cracks wider than these limits could compromise the safety and durability of

concrete structures [32].

2.2 Concrete Defects

Concrete structures can exhibit various types and levels of structural defects, including

minor surface cracks and major issues such as spalling, delamination, and reinforcement

bar debonding [33]. Several factors contribute to such defects. For instance, cracks in

concrete structures immediately after construction are often due to the surface evap-

orating water at a faster rate than internal moisture, creating a moisture differential

and resulting in tensile strain. After approximately 24 hours, the tensile capacity of

concrete prevents this. Thermal strain can also cause early age cracking [34]. Addi-

tionally, lack of construction knowledge among contractors, poor cooperation between

contractors and designers (such as lack of communication or inconsistencies on project

specifications), and contractor negligence can further worsen these issues [35].

Cracks and spalling pose a significant risk to the structural integrity of concrete

elements and can result in rework costs, ranging from 6% to 12% of the total construc-

tion expenses [36]. Therefore, it is crucial to identify and address such defects early to

prevent further deterioration and additional costs. The review of literature will explore
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their definition, causes, and underlying mechanisms.

2.2.1 Cracking in Concrete: Definition, Categorisation, and Causes

A crack is a complete or incomplete separation that appears on the surface, dividing

the concrete into separate parts. Cracks can occur due to various factors such as elastic

deformation, thermal movement, shrinkage, and overloading.

Elastic deformation occurs in concrete when subjected to stress, especially when

combined with materials that have different elastic properties, for example concrete

and steel. The varying shear stresses where the materials meet can lead to cracks, as

the materials respond differently to the applied load due to their varying characteristics.

Fluctuation in temperature can cause concrete to expand and contract, resulting

in cracks. For instance, if a concrete slab heats up during the day and cools down at

night, it may crack if there is not enough space for it to expand and contract.

Shrinkage occurs as concrete dries and hardens, causing it to lose moisture and

contract (shrink). If this shrinkage is restricted (like if it is tightly packed against

another structure), it can lead to cracks. This is common in new concrete that has not

had enough time to cure properly.

Overloading occurs when a building is subjected to loads exceeding its designed load-

bearing capacity. Excessive weight can cause cracks, as the concrete and supporting

structures experience too much stress, leading to failure in those areas [37].

Figure 2.1: Thin concrete crack.
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Figure 2.2: Thick concrete crack.

Cracks can vary in shape, size, width, length, and depth. They may also differ

in severity ranging from hairline cracks, thin cracks (shown in Figure 2.1) to large,

thick and noticeable cracks (shown in Figure 2.2) that affect the structural integrity.

These are the sub-images obtained from real-world images captured using ALICS. The

severity of a crack is evaluated based on its width [17].

Table 2.1 shows the classification of cracks based on their widths. Thin cracks

are typically considered minor and do not significantly affect the structural integrity.

Medium cracks indicate moderate distress and needs monitoring or minor repairs, while

wide cracks are serious and require immediate attention and possible remedial measures

[38].

Table 2.1: Classification of Cracks based on width adapted from [38].

Classification Crack width

Thin <1mm

Medium 1mm to 2mm

Wide >2mm

2.2.2 Spalling: Definition, Categorisation, and Causes

Concrete spalling is a phenomenon where the surface layer of concrete breaks apart

and delaminates. An example of concrete spalling is shown in Figure 2.3. Table 2.2

summarises the key causes of concrete spalling.

There are three main types of spalling which occur in concrete [42]:
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Figure 2.3: Concrete spalling adapted from [39]. The image dimensions are 780× 440
pixels, and the scale is set at 1cm : 20 pixels.

• Aggregate spalling: This occurs when the connection between the aggregate and

the concrete matrix is weakened, often due to freezing and thawing cycles, cor-

rosion, or chemical exposure. As a result, the coarse aggregate in the concrete

surface may be lost.

• Corner spalling: This occurs at corners and edges of concrete surfaces, where

the concrete is more susceptible to stress and damage. Inadequate reinforcement

or a lack of proper waterproofing measures may result in water penetrating the

concrete and freezing, causing expansion and damage to the surface.

• Explosive spalling: This kind of spalling arises as a result of high-stress conditions,

for example sudden impact, fire, or thermal shock. If the internal pressure in the

concrete exceeds its strength, pieces of the concrete break and chip off from the

surface.

If left untreated, these types of spalling weaken the integrity of the structure by

reducing the load-bearing capacity of key elements such as beams and columns, posing

a significant threat to its safety. To effectively identify cracking and spalling structural

health monitoring and various inspection techniques are used.
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Table 2.2: Causes of Concrete Spalling [40, 41].

Cause of Concrete
Spalling

Description

Corrosion of Reinforce-
ment Bars (Rebars)

Moisture and oxygen penetrate the concrete,
corroding the steel bars, which expand and push
the concrete apart.

Sulfate Attack Sulfate ions from soil or water react with hy-
drated compounds in concrete, forming expans-
ive products that create internal stress and lead
to surface damage.

Alkali-Silica Reaction
(ASR)

Alkali hydroxides in the concrete react with re-
active silica in certain aggregates, producing a
gel that swells and cracks the concrete.

Freeze-Thaw Cycles Water trapped in the concrete expands when
frozen, creating internal pressure that can crack
and degrade the surface.

Thermal Stress Rapid heating rates and the formation of water
vapour and gas pressure within the concrete can
cause spalling.

Inadequate Depth of Rein-
forcement Cover

Insufficient concrete cover over reinforcement
can lead to exposure and spalling.

Low-Quality Concrete
Cover

Poor quality concrete cover fails to protect
the embedded reinforcement, leading to surface
damage and spalling.

Improperly Constructed
Joints

Faulty joints can allow water ingress and differ-
ential movement, causing cracking and spalling.

Improper Water Content Incorrect water content can lead to weak con-
crete, making it prone to spalling.

Poor Compaction of Con-
crete

Insufficient compaction leaves voids and weak-
nesses in the concrete, making it susceptible to
spalling.

Improper Installation
Practices

Lack of supervision, failure to vibrate the con-
crete, or carelessness during installation can lead
to spalling.

On-Site Actions by Person-
nel

Dislodging rebars or carelessly pouring concrete
can disrupt the integrity of the structure, lead-
ing to spalling.

Structural Parameters Factors such as hindered thermal expansion,
sharp corners, and inadequate reinforcement
cover can increase the likelihood of spalling.

High Applied Loads High loads can create stress and strain in the
concrete, making it more susceptible to spalling.

16



Chapter 2. Concrete inspection techniques and structural health monitoring

2.3 Structural Health Monitoring and Crack detection in

Concrete

SHM involves continuously monitoring the physical and functional condition of struc-

ture over time to detect deterioration since the last inspection. With advancements in

sensing technologies and data processing techniques, SHM is capable of collecting data

on issues like concrete deterioration, steel rebar corrosion, concrete cover delamination,

spalling, deflection or settlement, cracks, and changes in geometry. SHM plays a critical

role in extending the lifespan of structures and reducing the likelihood of catastrophic

failures by providing early warning signs of potential structural failures [43, 44, 45, 46].

Table 2.3 outlines several key SHM techniques to detect cracks. However, implementing

SHM poses several challenges [47, 48] as shown in Table 2.4.

Table 2.3: Studies on Structural Health Monitoring Techniques and Crack detection.

Method Description References

Signal-Based Methods Analyses signals from sensors

that measure vibrations, ac-

celerations, or strains using

signal processing techniques

to detect defects, including

crack identification in civil

structures.

Bakhshi and

Tehran [49]

Curvature Mode Shape-

Based Techniques

Analyses changes in the

curvature of mode shapes

to identify damages, partic-

ularly cracks by observing

deviations from expected

patterns.

Wahab and Roeck

[50]
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Damping-Based Meth-

ods

Assesses changes in the damp-

ing characteristics to evaluate

the performance and detect

cracks in civil structures.

Şafak [51]

Vision-Based Monitor-

ing System

A cost-effective system for

capturing dynamic responses

of civil structures in real-time,

utilising consumer-grade cam-

eras to support health monit-

oring.

Fukuda [52]

Microwave Interfero-

meter for Deflection

Measurement

Uses a non-contact microwave

interferometer to measure de-

flections in vibrating stay

cables, aiding in the health

monitoring of cable-stayed

bridges.

Gentile [53]

Table 2.4: Challenges faced by SHM.

Challenge Description

Environmental

Factors

Variations in environmental conditions can alter the dy-

namic behaviour of structures, making it challenging to ac-

curately detect damage.

Data Inaccuracies Many damage detection techniques can exhibit inaccuracies,

especially in large-scale structures, due to high noise levels

and missing measurements.

Complexity of

Large Structures

Large structures often have complex behaviours and diverse

material properties, complicating the analysis and interpret-

ation of SHM data.
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Instrumentation

and Technology

Limitations

Existing SHM systems face challenges in instrumentation,

communication, signal processing, and data storage, which

can affect their reliability and efficiency.

Anomalies in

Data

Abnormalities in data, such as missing observations and out-

liers, can hide the true condition of the structure, making

damage assessments more difficult.

Figure 2.4 compares two sets of operations: one with SHM deployment and one

without. The quality of the structure is determined by its functional value and main-

tenance cost. When a system does not have SHM, its functional value is initially high

but decreases as it ages, which also results in increasing maintenance costs. In contrast,

when SHM is deployed, the functional value of the system keeps increasing as it ages

with a constant maintenance cost. This means that SHM deployment can enhance the

quality and service life of the structural system with standard or lower maintenance

costs. Without SHM, a decrease in functional value and an increase in maintenance

costs occurs as the structure ages [54].

Figure 2.4: Comparison of structures with and without SHM taken from [54].
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Regular inspections of concrete structures are essential for identifying damage, fa-

cilitating repairs, and ensuring safety while maintaining structural integrity. General

inspections are carried out every 1 to 2 years, depending on the age of the structure,

condition, and use. For example, the bridges in UK are inspected every 1 to 3 years

to ensure safety regarding cracks and structural integrity [55]. Principal inspections,

which are more detailed, occur approximately every 6 years and involve a thorough

examination of the structural elements [56]. There are various levels of inspection

ranging from regular inspection techniques to specialised inspections using equipment

such as robots, crawlers, drones, etc., which are further described in detail in the fol-

lowing subsections. Inspections are categorised as destructive, semi-destructive, and

non-destructive inspections.

Destructive inspections involve testing methods that result in damage to the struc-

ture or sample being evaluated. This approach is used to obtain accurate data on the

strength of the concrete and its failure characteristics. Common techniques include:

• Load Testing: Applying a controlled load to a structure until failure to assess its

load-bearing capacity [57].

• Core Sampling: Removing a cylindrical section of concrete for laboratory analysis,

which cannot be reused [57].

Semi-destructive inspection methods cause minor, localised damage to the structure

while still allowing for some usability of the tested area. These methods provide valuable

information about the properties of the material without significantly compromising the

overall integrity.

• Pull-Off Tests: Measuring the bond strength of surface treatments by pulling a

small area of the material [58].

• localised Core Sampling: Extracting small samples from the structure that min-

imise impact on the surrounding concrete [59].

Non-destructive inspections (NDI) involve inspecting a structure to detect defects

without causing any damage. There are two key methods within NDI:
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• Non-Destructive Testing (NDT), which identifies defects [60], and

• Non-Destructive Evaluation (NDE), which assesses the nature and significance of

those defects [61].

Other methods include ultrasonic inspection, magnetic particle inspection, dye pen-

etrant inspection, eddy current inspection, acoustic emission monitoring, and ground

penetrating radar (GPR) [62].

One common technique is manual visual inspection, where trained inspectors exam-

ine surfaces for signs of wear, corrosion, or other visible defects. This involves physical

entry of the person into the field that needs to be inspected. The Bridge Inspec-

tion Certification Scheme establishes a regulated framework with structured training

for inspectors to possess all the necessary skills and knowledge to conduct thorough

inspections, promoting safety and reliability in bridge maintenance [63].

The inspector conducts a visual assessment of the entire structure to identify de-

fects using tools such as rulers, microscopes, magnifying glasses, and cameras, without

causing any damage to the structure. The output of a manual visual inspection can

be presented in various formats (e.g. documented reports, drawings, or images). For

example, based on the severity, a scoring system is applied ranging from 1 (indicating

the best condition) to 5 (indicating the worst condition), reflecting the extent of dam-

age in structures including bridges [56]. Table 2.5 below provides a detailed overview

of these scores.

Table 2.5: Severity Scores in Bridges.

Score Description Condition Impact

1-2 Minor defects Structure in good
condition

Minimal impact

3 Moderate defects Structure in fair
condition

Potential impact

4 Severe defects Structure in poor
condition

Significant im-
pact

5 Critical defects Structure in very
poor condition

Unsafe

Virtually all structures are manually inspected and this is ultimate method of as-
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sessment. The problem is that it is expensive and difficult with large infrastructures.

Hence the ‘shortcut’ methods of SHM etc. Also, these manual inspections often suffer

from high error rates, particularly in large-scale infrastructure inspections. These errors

occur due to several reasons, including task, environmental, individual, organizational,

and social factors, as shown in the Table 2.6 and adapted from [64].

Task refers to the characteristics of the inspection process itself, which affect how

easily defects can be identified. Environmental factors involve external conditions like

lighting, temperature, and noise, that can either enhance or slow down the ability of in-

spector to identify defects accurately. Individual factors relate to personal attributes of

the inspector, such as experience, intelligence, and fatigue, that affect the performance

of the inspector. Organizational factors includes the support and resources provided by

the organization, such as management, training, and feedback, which are essential for

effective inspections. Lastly, social factors involve interactions like communication, con-

sultation, and social pressure, which can impact inspection outcomes either positively

or negatively.

The factors have been reviewed based on practical understanding and experience

of the author of this thesis and are categorised into two groups: acceptable (those that

strongly influence inspection performance) and non-acceptable (those with minimal

impact or considered less relevant).

Table 2.6: Evaluation of factors impacting the performance of inspection: Acceptable
and non-acceptable factors.

Factor Category Acceptable? Explanation

Number of De-

fects

Task Yes As number of defects increases, the

difficulty of inspection and the like-

lihood of missing defects increases.
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Factor Category Acceptable? Explanation

Defect Type Task Yes Different types of defects vary in dif-

ficulty; wider cracks are relatively

easy to identify, while finer defects,

such as hairline cracks or thin cracks

near to edges, require closer and

more detailed inspection.

Size of the defect Task Yes Clearly visible defects are easier to

detect, but subtle ones such as hair-

line cracks require more focused in-

spection.

Defect Location Task Yes It is difficult to identify defects in

hard-to-reach or hidden areas dur-

ing manual inspections.

Pacing of inspec-

tions

Task Yes The speed of inspections affects the

performance; rushing can lead to

misclassifications, while going too

slowly reduces efficiency.

Multiple Inspec-

tions

Task Yes Conducting multiple inspections

can catch more defects, but too

many inspections can lead to

fatigue.

Overhead Data Task Yes Additional data can aid inspections,

but excessive information may be

distracting.

Sex Individual No Sex may influence physical abilities

or communication styles, but it is

not a major factor that impacts in-

spection performance.
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Factor Category Acceptable? Explanation

Age Individual Yes Age affects visual acuity and stam-

ina, which further impacts inspec-

tion performance.

Visual Acuity Individual Yes Good eyesight is crucial for detect-

ing small defects.

Intelligence Individual No A trained inspector is more effective

in detecting defects, independent of

their intelligence level.

Aptitude Individual Yes Natural ability to notice details and

perform technical tasks enhances in-

spection performance.

Duration of

Work/Day

Individual Yes More time in the role increases fa-

miliarity with common issues, im-

proving inspection skills.

Experience Individual Yes Experienced inspectors are better

at identifying defects and managing

complex situations based on past ex-

periences.

Visual Lobe Individual Yes A larger field of vision helps in see-

ing more at once, improving inspec-

tion efficiency.

Scanning

Strategy

Individual Yes A systematic scanning approach

helps ensure that defects are not

missed.
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Factor Category Acceptable? Explanation

Biases Individual Yes Cognitive biases can affect judge-

ment and lead to missed defects.

For example, if an inspector has re-

cently encountered a particular type

of defect, they may expect to find it

again, potentially diverting their at-

tention from recognising other types

of defects.

Lighting Environmental Yes Proper lighting is essential for de-

tecting defects clearly; poor light-

ing can misclassify or miss defects

in concrete structures.

Noise Environmental Yes Excessive noise can be distracting

and reduce focus during inspections.

Shift Duration Environmental Yes Long shifts can cause fatigue, affect-

ing attention and increasing the risk

of missing defects.

Temperature Environmental Yes Extreme temperatures can impact

comfort and focus during inspec-

tions.
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Factor Category Acceptable? Explanation

Time of Day Environmental Yes Performance can vary with the time

of day due to natural alertness

levels. Its very difficult to carry out

inspections in dark or low-light en-

vironment. Infrastructures like tun-

nels must be closed at night for

inspections. During these inspec-

tions, inspectors use head torches

to identify cracks in the harsh, low-

light conditions. This can reduce

visibility and lead to fatigue, in-

creasing the risk of missing defects

[65].

Management

Support

Organizational Yes Support from management provides

necessary resources and motivation,

leading to better performance.

Training Organizational Yes Proper training helps inspectors un-

derstand procedures and standards,

leading to more accurate detection.

Retraining Organizational Yes Ongoing retraining helps inspect-

ors stay updated with current tech-

niques and standards.

Instructions Organizational Yes Clear instructions help inspectors

know what to look for, reducing con-

fusion and errors.

Feed-forward In-

formation

Organizational Yes Providing information about poten-

tial issues before inspections helps

inspectors concentrate on critical

areas.
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Factor Category Acceptable? Explanation

Feedback Organizational Yes Regular feedback helps inspectors

learn from their mistakes and im-

prove performance.

Incentives Organizational Yes Incentives can motivate better per-

formance.

Job Rotation Organizational Yes Rotating jobs prevents boredom and

fatigue, keeping inspectors more en-

gaged and alert.

Isolation Social Partially Ac-

cepted

Isolation can improve focus, but too

much alone time can reduce motiv-

ation and collaboration with others.

Collaboration Social Yes Collaborating with colleagues or ex-

perts improves decision-making and

accuracy in inspections.

Communications Social Yes Effective communication ensures in-

spectors have all the necessary

information and understand their

tasks, reducing mistakes.

Inspection techniques are quite expensive, which can limit their accessibility and

usability. For example, the visual inspections of the Brooklyn Bridge in New York cost

about 1 million USD. Studies have shown that roughly 56% of the condition ratings

of concrete bridges are inaccurately assessed, and 95% of the data is based on visual

inspection. This is because inspecting all the bridge components, especially the under-

side, over a river or stream is challenging [66]. In [67], the consistency of 21 inspection

teams was compared across four bridges. The study highlighted significant variations

in how inspectors detected concrete cracks and revealed that some experienced in-

spectors missed cracks due to varying weather and traffic conditions. Therefore, it

emphasises the need to improve the consistency in reporting and detection of issues
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like cracking. Furthermore, manual inspection techniques tend to be time-consuming

and labour-intensive, which can lead to delays in identifying and addressing structural

issues promptly [68, 69]. Therefore, there is need to explore alternative approaches

that can overcome these limitations and deliver more effective and efficient inspection

results [70].

Some inspection tasks are hard for humans to do because they are in places that are

difficult to reach, like tight spaces inside air-conditioning ducts, water-filled pipelines,

offshore structures, or small gaps in walls. Some tasks are also dangerous for people,

such as inspecting tall structures, areas hit by natural disasters, or bridges. This high-

lights the need for semi-autonomous inspection techniques that involve autonomous

vehicle control with human review of data. In these inspection techniques, vehicles

such as robots, drones, ground vehicles, or climbers, equipped with cameras or any im-

age capturing device, operate independently while inspectors analyse the collected data

to detect defects. Different types of robots that move in various ways have been used

to inspect buildings. Examples include unmanned aerial vehicles (UAVs), unmanned

ground vehicles (UGVs), marine robots, wall-climbing robots, and cable-crawling ro-

bots.

Semi-autonomous inspection is a hybrid between manual and automated inspection

techniques. It utilises robotic or automated systems to collect data, while still involving

humans for data analysis. They are capable of performing inspections more quicker than

manual inspection techniques and also capable of accessing hard-to-reach places more

easily. While these inspection techniques often struggle to carry out inspections in low-

light conditions, leading to noisy data and increased risk of false positives or missed

defects [71]. They have difficulty in detecting sub-surface defects, such as hairline cracks

[72]. Also, the success of inspections often relies on the experience and judgement of

the operator, which can lead to inconsistencies in identifying defects [73]. Given these

limitations, there is an increasing need for a fully automated inspection processes that

leverage advanced algorithms for accurate defect classification, particularly in low-light

or dark environments, reducing dependence on human decision-making.
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2.4 Summary

Concrete, a widely used material in many industries, presents challenges such as crack-

ing, and spalling that affect structural integrity of concrete structures. To ensure the

health and safety of concrete structures, effective monitoring and inspection are essen-

tial. Traditional manual visual inspections, are often expensive, time-consuming, and

inconsistent. Semi-autonomous inspection techniques, which still rely partially on hu-

man decision, also face limitations, particularly in varying lighting conditions, low light

conditions, and rely on the experience and efficiency of the inspector inspecting the

field. Therefore, there is an increasing need for automated inspection processes that

leverage advanced algorithms for accurate defect classification, especially in challenging

lighting conditions, while minimising reliance on inspector decision. Automated visual

inspection is explored in detail in the next chapter.
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Automated Visual Inspection

Techniques and Deep learning

This chapter explores the state-of-the-art in automated visual inspection (AVI) tech-

niques with a focus on crack and spalling detection in low-light environments for Civil

Engineering infrastructure. It includes the details of AVI techniques, as well as machine

learning and deep learning models commonly utilised in the Civil Engineering sector.

3.1 Introduction

Automated visual inspections (AVI) have become increasingly popular amongst Civil

Engineering practitioners [74] due to the limitations in traditional inspection methods

(discussed in Chapter 2). AVI offers several benefits such as reduced costs, minimal

disruptions, and lower risk, as highlighted in [75].

Considerable progress has been made in the last two decades, establishing frame-

works for inspecting defects in various types of Civil infrastructure, such as bridges,

roads, tunnels, and general facilities using various robots. The use of robots for inspec-

tion provides a safer alternative to manual inspection. Automated robotic inspection

improves the frequency of inspections and reduces bias in error detection. Robots in-

clude UAVs, UGVs, marine vehicles, microbots, wall-climbing robots, cable-suspended

robots, cable-crawling robots and legged robots. Most common type of inspection ro-
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bots are UAVs and UGVs [76]. Robotic inspection technologies combined with deep

learning have been in use for inspecting the built environment for at least the last

decade [77].

Computer vision is an interdisciplinary area that enables machines to analyse di-

gital images and videos, thereby improving their capacity to recognise features and pat-

terns using visual information [18]. Deep learning models, particularly those leveraging

CNNs, have transformed the field of computer vision [78, 79]. While image processing

enables tasks such as image classification and object detection, deep learning further

enhances these capabilities, making a significant impact on industrial production [80].

The effectiveness of deep learning depends on the availability of large amounts of data,

powerful computing resources, specialised training methods, and advanced networks

that enable it to perform tasks intelligently and efficiently [18]. An important area of

applications and further development within image classification and segmentation is

the detection of structural defects on Civil infrastructure [18].

Figure 3.1: Computer vision pipeline designed for the manual or automated inspection
of Civil infrastructure modified after [81].

A typical computer-vision-based inspection pipeline for manual or automated in-

spection of civil infrastructure is shown in Figure 3.1. It comprises of five processes:

Acquisition, Detection, Measurement, Assessment, and Decision [81]. The process be-
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gins with the acquisition phase, where images or videos of Civil infrastructure are cap-

tured using various devices, such as cameras mounted on drones, vehicles, or handheld

devices. Once the images are obtained, the detection phase uses algorithms to identify

potential cracks or defects, employing either traditional inspection or advanced ma-

chine learning methods. After detecting a defect, the measurement phase calculates

important details such as the location, width, and depth of the crack. This is fol-

lowed by the assessment phase, where the severity of the detected cracks is evaluated

to determine their potential impact on the infrastructure. Based on this evaluation,

decisions are made regarding the necessary maintenance or repairs to ensure the safety

of the infrastructure.

3.2 Automated Crack Detection

Automated crack analysis can be categorised into three main types: detection, clas-

sification, and segmentation. Detection identifies the specific locations where cracks

are present within the image [82]. Classification involves determining whether or not a

crack exists in the image [83]. Segmentation provides a more detailed analysis by high-

lighting the exact crack pixels in that image [84]. Figure 3.2 provides an illustration of

this.

Automatic crack detection in concrete structures can be separated into two main

approaches: white-box and black-box techniques [75]. The former uses algorithms such

as edge detectors and thresholding [85], whereas the latter employs machine learning

and artificial neural networks [86]. Both methods have unique benefits that depend

on the application. Black-box methods tend to be more effective for detecting cracks

initially, while white-box methods are better for detailed, pixel-level segmentation [87].

Black-box methods that employ neural network-based defect detection algorithms

typically consist of two main stages: feature extraction and classification. Image pro-

cessing techniques are first used to extract relevant features from crack images, which

are then analysed by classifiers. However, if the extracted features do not accurately

represent the cracks, the performance of the classifier can be compromised.
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Figure 3.2: Image classification, object detection, and segmentation examples of con-
crete crack detection.
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Deep learning techniques, particularly convolutional neural networks (CNNs), have

improved traditional manual inspections by automatically extracting relevant features

and showing better performance in crack detection [88]. For example, cracks on pave-

ment surfaces [89], cracks in bridges [90], cracks in pavement structures [91], and pixel-

level cracks in concrete structures [92] can be automatically detected. Black-box models

are particularly effective at detecting complex patterns in images, enabling tasks such

as classification and detection. They learn from vast amounts of training data and can

then apply this knowledge to new, unseen data [93].

Machine learning algorithms consist of various methods that enable models to learn

from data and make predictions, and they can be classified into four main types: Super-

vised Learning, Semi-Supervised Learning, Unsupervised Learning, and Reinforcement

Learning. Supervised learning involves training a model on labelled data, where the

input-output pairs are known, allowing the model to learn. Semi-supervised learning

combines both labelled and unlabelled data, taking advantage of the large amounts

of unlabelled data to improve accuracy of prediction beyond what can be achieved

with labelled data alone. Unsupervised learning focuses on analysing unlabelled data

to find patterns, structures, or groupings without human intervention, making it use-

ful for tasks like clustering, dimensionality reduction, and anomaly detection. Lastly,

reinforcement learning makes decisions based on rewards or penalties, which helps to

optimise its behaviour over time [94].

Black-box algorithms offer several key advantages. They are highly scalable, cap-

able of handling large and dynamic datasets, and perform well on new and unseen

data. Their performance improves over time as more data become available provided

that the model is periodically retrained or updated with new data. These models can

handle binary tasks, such as binary image classification (classifies an image into one

of two classes), and more complex tasks, like multi-class image classification (classi-

fies an image into one of three or more classes). Once trained, they require minimum

human involvement in decision-making to complete tasks, making them efficient and

autonomous [93]. They are particularly effective in specific tasks such as detection,

classification, and segmentation, which are explained in detail below.
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3.2.1 Object Recognition (Crack Detection)

Crack detection is aimed at identifying cracked areas and highlight these using bound-

ing boxes as shown in Figure 3.2. In the field of computer vision, several architectural

families are commonly used for object recognition (OR), including region-based convo-

lutional neural networks (R-CNN) [95], You Only Look Once (YOLO) [96], and Single

Shot Detector (SSD) [97]. Among these, R-CNN architectures have been the most

widely utilised for crack detection. R-CNN, Fast R-CNN, Faster R-CNN are members

of this family, with Faster R-CNN [96] being the most popular choice in the field of

crack detection.

In [95], the authors presented the first automated crack detection method using

UAVs, deep learning, and high-resolution imaging. They utilised selective search with

a pre-trained CNN from the ImageNet dataset. Through transfer learning, they fine-

tuned a region-based CNN i.e, R-CNN using 384 manually labelled crack images (3-

channel i.e., RGB), allowing the system to identify and locate cracks on concrete sur-

faces. But the approach has faced several limitations, especially when it was tested

to detect hairline cracks under challenging environmental conditions such as shadows,

uneven lighting on dark background or dirty concrete surfaces. These issues reduced

the visibility of cracks increasing false negatives. Therefore, due to lighting conditions

there was a negative effect on the quality of images and in the detection of cracks in

concrete structures.

[96] focused on object detection in poor lighting conditions using YOLO and Faster

RCNN deep learning models. The images were categorised based on lighting types

such as Low, Ambient, Weak, Object, and Single to analyse their impact on object

detection. However, low-light settings led to loss of key features, and consequently

decreased detection accuracy and an increase in false positives and false negatives.

[97] introduced a large-scale road damage dataset of 9053 annotated images with

15435 instances of eight damage types (based on type of cracks such as linear cracks and

alligator cracks, corruptions such as potholes and rutting, along with road damages such

as blurring of white lines) captured using a smartphone mounted on a passenger car, and
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applied the Single Shot MultiBox Detector with InceptionV2 and MobileNet backbones.

The cost-effective image capturing process relied on semi-automated system, with a

human driver operating the vehicle. The low-light conditions remained a challenge,

particularly in distinguishing cracks from shadows, and reflections. As a result, if an

image was affected by shadows, reflections, or blur, it could not be recaptured, since

the image acquisition phase is separate from the image processing stage.

[98] developed a modified faster region-based convolution neural network to detect

concrete cracks and handwriting scripts in real-world bridge inspection images. By

labelling handwriting as a separate object class, the study improved crack detection

accuracy in complex backgrounds. As with the previous cases presented above, this

network also struggled to classify cracks under poor lighting conditions.

[99] explored low-light object detection by comparing various image enhancement al-

gorithms such as, ResNet-based CycleGAN and U-Net based CycleGAN models. These

adaptive image enhancement models also faced limitations in accurately detecting ob-

jects under low-light conditions, leading to lower detection performance.

Also, [100] proposed an automated damage detection algorithm for detecting defects

such as, cracks, spalling, rebar exposure, spot in concrete structures using EfficientNet

and MobileNetV3 architectures. While the improved model demonstrated strong per-

formance under uniform lighting conditions, its accuracy declined significantly when

evaluated under varying lighting conditions. Additionally, the model was not robust

enough in detecting defects when tested against complex backgrounds.

Even the most recent deep learning algorithms used in crack detection, e.g. Mobile-

NetV3, exhibit reduced performance when the lighting conditions are less than optimal.

This does not come as a surprise, as poor illumination introduces noise, lowers con-

trast, and can obstruct critical features such as cracks, spots, or spalling. As a result,

feature extraction becomes less reliable, reducing the accuracy of defect detection. If

deep learning algorithms are to become the main tool for crack detection and replace

manual inspections, they need to be able to perform even under unfavourable light

conditions, and/or complex backgrounds.
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3.2.2 Image Classification (Crack Classification)

Image classification makes decisions at the image or image patch level, where the trained

architecture determines whether the new input contains a crack or not, as shown in

Figure 3.2. The overall architecture consists of two parts: (1) extraction of features

from raw RGB images layer by layer, utilising successive convolutional and max-pooling

layers, where convolutional layers help in identifying local patterns such as edges and

textures and max-pooling layers downsamples the spatial dimensions of the feature

maps, (2) fully connected layers are used to classify the features into specific categories

(cracked or not cracked) [101].

An early CNN-based crack detection study [83], demonstrated the potential of deep

learning for concrete inspections for binary crack classification tasks. However, their

approach involved manually capturing images without automated platforms, such as

robots or drones, and required labour-intensive manual cropping of training patches.

This resulted in limited scalability for large-scale structural inspections. Further, the

detector exhibited poor performance on concrete images with stains, where it frequently

misclassified stains as cracks or failed to detect cracks near chalk letters.

Light conditions remains a factor that affects performance not only for crack de-

tection but also for crack classification. [91] investigated the effect of network depth

on crack classification, concluding that deeper networks are capable of learning more

information i.e., the deeper the networks are, the more it learns about detecting cracks.

The study also found that networks trained on images from a specific location do

not perform well when tested on images from a different location. Images were cap-

tured either manually or semi-automatically using smartphones, under ambient lighting

conditions, leading to performance degradation (85.6% precision) due to variations in

lighting across different locations.

[102] developed a novel method for automatic pavement crack detection and classi-

fication, utilising a CNN to detect cracks and principal component analysis to classify

them into longitudinal, transverse, and alligator cracks. The study found that pave-

ment images obtained outdoors have large illumination variations that can introduce
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challenges in classifying cracks from the background and no specific techniques were

proposed to address this drawback.

[87] compared a AlexNet deep convolutional neural network model with edge de-

tectors for image-based crack classification in concrete. The results were obtained

using high-quality images taken under good lighting conditions, free from other envir-

onmental factors. The extension of these findings to real-world scenarios, where lighting

conditions may be poor or uneven, is limited.

[103] conducted a comparative study between fully trained and transfer learning

modes using an AlexNet-based deep learning convolutional neural network for crack

classification tasks in small Unmanned Aerial Systems (sUAS)-assisted structural in-

spections of concrete bridge decks and buildings. The study highlights the need for

improved handling of poor lighting conditions, as along with image blurriness from

sUAS vibrations and low-resolution cameras, as they can negatively impact crack clas-

sification accuracy, potentially misleading both human inspectors and conventional

image-processing methods.

[104] proposed a CNN architecture for patch-based crack detection in black box

images, classifying road surface elements into three categories: crack, road marking,

and intact regions. However, the study highlights that image-processing techniques for

crack detection, including the proposed CNN, may not perform well under low lighting

conditions, which can lead to inaccuracies and misclassifications due to reduced contrast

and visibility of cracks.

All the studies mentioned above refer to crack detection and classification on con-

crete surfaces. There are very few studies for detecting and classifying spalling in

concrete. [105] has developed three Mask R-CNNs to detect cracks and spalling in con-

crete structures. A more recent study by [106] proposed an encoder-decoder-based deep

architecture for detecting and classifying the severity level of spalling. [107] combined

advanced image processing techniques, including entropy-based segmentation and noise

filtering, with machine learning models to accurately classify the spalling damage into

severity levels based on area and depth. [108] proposed an automated method for de-

tecting concrete spalling using a piecewise linear stochastic gradient descent logistic
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regression model combined with image texture analysis. This method extracts texture

features from concrete surface images to classify the image as image samples as spall or

no spall under well-lit conditions. To date, no studies have addressed the identification

of spalling under low-light conditions.

3.2.3 Semantic Segmentation (Crack Segmentation)

If the classification is performed at the pixel-level i.e., every pixel in an image is labelled

with a class then it is known as Semantic Segmentation [109]. The output of any

semantic segmentation framework is the input image where crack pixels are highlighted

in a different colour, usually white, making them distinguishable from the background

pixels, as shown in Figure 3.2. The image processing techniques (IPTs) are applied

independently or in combination with object recognition and image classification.

[84] proposed an effective framework (GoogLeNet, ResNet + IPTs) for crack detec-

tion and width measurement to automatically extract and localise cracks from concrete

images. Various image processing techniques, such as Otsu’s thresholding, median fil-

tering, and the Hessian matrix, were then applied to eliminate illumination effects and

produce a segmented crack image. The study highlights that illumination plays a cru-

cial role in crack detection accuracy, as variations in lighting can significantly impact

crack visibility, feature extraction, and segmentation quality.

In [110], transfer learning-based deep CNN was utilised to identify crack patches.

Fast block-wise segmentation was employed to create crack masks and improve crack

localisation. However, the study highlights that non-uniform lighting can pose chal-

lenges in crack segmentation, leading to misclassification of cracks and sealed cracks,

particularly when their intensities and widths are similar.

[111] presents a robust, fully automated hybrid method for concrete crack detection,

segmentation, and quantification under complex backgrounds and varying lighting con-

ditions leveraging Faster R-CNN, modified Tubularity Flow Field (TuFF) with CLAHE,

and modified DTM. The study used Faster R-CNN algorithm to detect crack regions,

which are then localised using bounding boxes. A modified TuFF algorithm is applied

to segment the crack pixels within the detected regions. To measure crack thickness and
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length, a modified DTM is used, providing precise pixel-level measurements. The study

also highlights that variations in illumination can impact accuracy of segmentation.

In [112], AlexNet was developed to classify image patches into crack, sealed crack,

and background classes. A Fully connected network was then applied for pixel-level

crack segmentation. In [113], a Sobel-edge adaptive sliding window was proposed for

efficient crack patch extraction. Non-maximum suppression was applied to retain im-

portant patches. The study highlights that these algorithms did not perform well under

different lighting conditions.

Existing literature highlights that most studies face significant challenges in de-

tecting defects under low-light conditions. Although numerous image enhancement

algorithms have been developed, they frequently fail to perform reliably in such envir-

onments due to the inherently poor quality of the captured images [114]. Moreover,

these approaches typically train neural network models using standard three-channel

RGB images [97, 115] or single-channel gray scale images only [102]. As a result, the

potential benefits of leveraging advanced lighting techniques or utilisation of additional

information that these lighting techniques can provide still remains unexplored in cur-

rent defect detection frameworks.

Furthermore, as shown in [97], when images captured in the field are later found

to suffer from issues such as reflections, blur, or noise, they cannot be corrected dur-

ing post-processing stage, and remained as drawback. This is primarily because the

image acquisition and image processing phases are carried out separately. In scenarios

where inspections take place in hazardous or hard-to-access environments such as in

nuclear sectors, returning to the field to recapture images is not feasible. Therefore,

there is a critical need to develop an on-board, image-quality-based algorithm capable

of detecting and recapturing low-quality, blurred, noisy, or degraded images in real

time during the image acquisition stage. This underscores the need for advanced pre-

processing techniques, advanced lighting techniques to enhance detection performance

under challenging lighting conditions.
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3.3 Model Architecture and Optimization Techniques

In this section, the two most commonly identified model architectures in crack detec-

tion are presented in more detail. These are the VGG16 and the MobileNetV2 neural

network models. Although these models were developed in 2015 [116] and 2018 [117],

respectively, VGG16 is still one of the most used network backbones for object classific-

ation and detection models [118] and MobileNetV2 is the light weight neural network

model suitable for real-world crack detection and classification applications because

of its computational efficiency [119, 120]. VGG-16 and its similar, VGG-19 are still

commonly used as the benchmark for comparative analysis amongst other, newer deep

image models [121]; and have been found to outperform other models used in crack

detection such as ResNet-50, and Inception V3 [18].

3.3.1 VGG16 neural network model

The VGG16 deep convolutional neural network, developed by the Visual Geometry

Group, is widely used for crack classification and it was shown to achieve high accuracy

and efficiency when using pretrained weights from ImageNet [121, 122]. It leverages

transfer learning to perform robustly on small datasets [121], making it suitable for the

image classification task such as those presented later in this thesis. Choosing a neural

network that is widely understood and extensively employed in the Civil Engineering

industry for crack detection was preferred over experimenting with newer or state-of-

the-art models.

The VGG-16 architecture consists of 16 layers, including 13 convolutional layers

and 3 fully connected layers. It accepts an input image of size 224×224×3 (height,

width, channels). The convolutional layers use small 3×3 filters with a stride of 1

and same padding to preserve spatial resolution, while max-pooling layers follow each

convolutional block with 2×2 filters and a stride of 2 to reduce dimensionality.

The network consists five sequential blocks. The first two blocks each contain two

convolutional layers with 64 and 128 filters, respectively, followed by a max-pooling

layer. The third block has three convolutional layers with 256 filters, followed by
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pooling. The fourth and fifth blocks each contain three convolutional layers with 512

filters and are also followed by pooling layers. After these feature extraction layers, the

architecture includes three fully connected layers, the first two have 4096 units with

ReLU activation, and the final layer has 1000 units with a sigmoid or softmax activation

for classification.

Utilising a widely adopted model that has proven to be successful in crack detection

and classification tasks, ensures compatibility with existing practices in the field [122,

123, 124]. The focus was to improve crack inspections in concrete structures and further

existing technologies in Civil Engineering using directional lighting. Segmentation-

focused models like UNet, which are used for pixel-level crack segmentation tasks [125]

were not utilised at this stage of work as the focus is on image-level crack classification

(crack and no-crack) tasks. For these reasons, no attempt was made to utilise a different

CNN.

Zoubir et al., developed an efficient and automated method for detecting defects in

concrete bridges such as cracks, efflorescence, and spalling using VGG-16 and transfer

learning [126]. To overcome the challenge of limited training data, the study employed

transfer learning by fine-tuning different layers of the pre-trained VGG16 model. Three

training configurations were compared: (a) retraining only the classification layers, (b)

retraining the classification layers and the last convolutional layer, and (c) retraining

the classification layers along with the last two convolutional layers. Among these,

configuration (c) achieved the best results with high accuracy and F1 scores across all

defect types. Therefore, the model developed in this study sets a strong benchmark for

concrete defect classification tasks.

3.3.2 MobileNetV2 neural network model

MobileNetV2, a lightweight convolutional neural network that has been proven effective

for crack detection in Civil infrastructure, offering significant advantages for resource-

constrained environments [117]. Its architecture, utilising inverted residual blocks,

depthwise separable convolutions, and linear bottlenecks, reduces computational com-

plexity by approximately 5.2 times compared to MobileNetV1, enabling deployment
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on mobile and embedded devices for real-time inspection of concrete structures, pave-

ments, and bridges.

MobileNetV2-based CNNs have a smaller size and better computational efficiency

without sacrificing performance [127]. It has a widespread use in civil engineering

applications with high success rate in detecting and classifying cracks in concrete

structures[128]. The light weight of the MobileNetV2 architecture combined with its

low computational cost and fast processing speed, make it suitable for real-time ap-

plications where images are captured using handheld devices, as described in Chapter

4 [119].

MobileNetV1 was developed based on the VGG architecture, and incorporated con-

volutional layers to enhance accuracy. However, adding more layers led to gradient van-

ishing issues, where the network struggles to learn effectively as explained in [129]. To

address this, ResNet (Residual Network) introduced the residual block, which enhances

information flow by incorporating skip connections. These connections allow the input

from one layer to bypass one or more intermediate layers and be added directly to the

output of a later layer. This design allows easier gradient flow during backpropagation,

enabling the effective training of deep neural networks [130].

MobileNetV2 improved upon MobileNetV1 by incorporating residual structure of

ResNet and adding a linear bottleneck implementation. The linear bottleneck reduces

computational complexity by simplifying convolution calculations, improving efficiency.

Additionally, MobileNetV2 uses depth-wise separable convolutions, which split the con-

volution into depth-wise and point-wise operations, reducing parameters and computa-

tional cost. The inverted residual block in MobileNetV2 allows for better information

flow and gradient propagation, improving effectiveness of training. These help in im-

proving the performance of MobileNetV2, exceeding the performance of MobileNetV1

in both accuracy and efficiency (Figure 3.3 and Table 3.1 [130]).

One way to transform features from N channels to M channels is by using a block

with a specified stride (s) and expansion factor (t). Stride (s) refers to the number of

pixels by which the filter moves across the input image during convolution. Expan-

sion factor (t) indicates the ratio of the number of input channels to the number of
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Table 3.1: Bottleneck of MobileNetV2 [130].

Input Operator Output

HxWxN 1x1 conv2d, ReLU6 HxWxtN

HxWxtN 3x3 dwise s=s, ReLU6 H/s x W/s x tN

H/s x W/s x tN linear 1x1 conv2d H/s x W/s x M

output channels in a layer, thereby controlling the width of the network. This block

with specified s and t includes a 1×1 convolutional layer followed by the depth-wise

convolutional layer, with linear activation instead of non-linear activation, after the

point-wise convolutional layer. Down-sampling can be achieved by adjusting the para-

meter ’s’ in the depth-wise convolutional layer [130]. MobileNetV2 utilises convolutions

and average pooling for processing the input data, with specific configurations denoted

by parameters such as c (number of output channels) and n (number of repetitions).

The overall network structure of MobileNetV2 is shown in Table 3.2 [130].

Figure 3.3: Inverted Residual Linear Bottleneck [130].

MobileNetV2 is a network architecture with 19 layers, designed for feature extrac-

tion and classification. The conventional MobileNetV2 model is shown in Figure 3.4.
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Figure 3.4: Architecture of the traditional three-channel MobileNetV2 model.
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Table 3.2: The Overall Network Structure of MobileNetV2 taken from [130].

Input Shape Operator t c n s

224 x 224 x 3 conv2d - 32 1 2

112 x 112 x 32 bottleneck 1 16 1 1

112 x 112 x 16 bottleneck 6 24 2 2

56 x 56 x 24 bottleneck 6 32 3 2

28 x 28 x 32 bottleneck 6 64 4 2

14 x 14 x 64 bottleneck 6 96 3 1

14 x 14 x 96 bottleneck 6 160 3 2

7 x 7 x 160 bottleneck 6 320 1 1

7 x 7 x 320 conv2d 1 x 1 - 1280 1 1

7 x 7 x 1280 avgpool 7 x 7 - - 1 -

1 x 1 x 1280 conv2d 1 x 1 - k -

3.3.3 Stratified k-fold cross-validation

A stratified k-fold cross-validation (SKCV) shown in Figure 3.5 is utilised in this re-

search. The k value is typically chosen as five or ten for balancing variance and bias

[131, 132]. SKCV divides the entire dataset into ’k’ equal-sized subsets, or ”folds,”

ensuring that each fold contains nearly same percentage of samples from both ma-

jority and minority classes, unlike k-fold cross validation. The process consists of ’k’

iterations, each using ’k-1’ folds for training the model and one fold for testing the

performance of the model [132, 133, 134].

3.3.4 Hyperparameter tuning and Regularization

Hyperparameter tuning refers to the process of optimising the hyperparameters of a

machine learning model to improve its performance. They are settings that are external

to the model and cannot be learned from the data, for example batch size, and learning

rate. Batch size determines the number of samples processed before updating the

model, and learning rate controls the step size during optimisation [135]. The goal of

hyperparameter tuning is to find the best combination of these parameters that results

in the most accurate and efficient model for a given dataset [136].

Overfitting in machine learning refers to a situation where a model fits the training

data too closely, resulting in poor generalisation to new, unseen data [137]. Regulariz-

46



Chapter 3. Automated Visual Inspection Techniques and Deep learning

Figure 3.5: Stratified five-fold cross-validation: The gray boxes represent the folds used
for testing the model, while the plain boxes represent the folds used for training the
model.

ation techniques are used to prevent overfitting by adding a penalty term to the loss

function of the model [136]. Early stopping is one such method, as it stops the training

process before the model becomes too complex and starts to overfit the training data.

By tracking accuracy on the validation set helps in finding the optimal hyperparameter

values without overfitting. This strategy ensures a higher level of generalisation and

helps in reducing bias while increasing variance, ultimately improving the performance

of the model. This approach reduces training time and once training stops, the model

with the best validation performance is selected for use [138].

3.4 Image Quality Assessment and Automated Visual In-

spections

For major civil and construction assets, semi-autonomous or remote inspections are

sometimes carried out with UAVs or wholesale robotic platforms fit with inspection

equipment, as reviewed in [139, 140, 141]. In the majority of the reported literature, the
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process of capturing images is typically conducted separately from the crack detection

phase [142]. In an industrial setting, this would mean that any errors or inaccuracies

occurring during image capture, such as improper lighting, could not be corrected or

adjusted on-site [7]. An automated image quality assessment method in real time allows

for the optional ’re-take’ of the image and the replacement of the original low quality

image with another one of higher quality. This not only reduces the time required for

inspection but also enhances the effectiveness of the defect detection algorithms.

Several factors affect the quality of an image when captured using a camera, in-

cluding lighting conditions, camera settings, motion blur, lens distortion, and noise

[7, 8]. Since it is uncertain whether a captured image will be natural, noisy, blurry, or

distorted in any other way, assigning a score based on the image quality can help in

determining the suitability of the image for training or testing the CNN models.

Image Quality Assessment is the process of evaluating the quality of an image. It is

widely used in machine learning, computer vision, neural physiology, image processing

and other domains where image quality plays an important role [143]. There are two

types of IQA methods.

3.4.1 Subjective Methods

Subjective image quality assessment methods involve gathering individual opinions on

the quality of images using a five-level rating scale without participants having full

access to the scores or information from others. By averaging the scores provided

by the participants, a reference point for image quality is established, and collecting

opinions from a larger number of individuals increases the reliability of these results

[19].

In practical applications, subjective evaluations are often considered the most ac-

curate for assessing image quality. However, they are expensive, time-consuming, not

suitable for real-time applications, and results are influenced by various factors like

lighting conditions and brightness [20]. Lighting conditions and brightness play a cru-

cial role in determining image quality and directly impact the performance of deep

learning algorithms. Under low-light conditions, images tend to exhibit increased noise,
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reduced contrast, and loss of features due to inadequate exposure, which can reduce

the performance of neural networks for defect detection tasks. Conversely, excessive

brightness may result in overexposed regions where fine important features are lost, in-

creasing the likelihood of false positives. These degradations that occur due to lighting

reduce the reliability of automated detection systems and highlight the necessity for

models to be robust against illumination.

3.4.2 Objective Methods

The development of accurate mathematical models to evaluate the quality of images

similar to human observers is the objective of objective IQA methods. These mod-

els aim to replicate image quality predictions similar to humans and provide efficient

and cost-effective image quality evaluation [144, 145]. Objective IQA methods extract

features from the image and analyse them using a quality score [146]. IQA can be

categorised into three frameworks: Full-Reference (FR), Reduced-Reference (RR), and

No-Reference (NR) or Blind [147] based on the availability of an undistorted, clear

quality image known as the reference image. FR methods require a reference image

to evaluate image quality, while RR methods use extracted features from the reference

image to evaluate image quality. On the other hand, NR methods can assess image

quality without the need for a reference image [148, 149, 150, 151]. Obtaining a ref-

erence image in real-world applications is challenging, therefore NR-IQA techniques

are more suitable. As the main focus of this thesis is not IQA, no extensive literature

review was carried out on existing NR-IQA methods. Instead, the Blind/Referenceless

Image Spatial Quality Evaluator (BRISQUE) was chosen as the tool to assess the image

quality as it predicts the quality of an image without a reference image [152].

3.3.2.1 BRISQUE Method

BRISQUE is effective in evaluating spatial quality making it a valuable tool for assessing

image quality in Civil Engineering applications [153]. Additionally, various studies

have explored its efficiency in assessing the quality of medical images [144]. Figure

3.6 provides an example of a raw image (natural image) and a degraded image (noisy
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image), along with their BRISQUE scores.

BRISQUE employs a support vector regression (SVR) model trained on images with

known distortions, such as blur, noise, and artefacts, to compute the image quality

score. It compares the distribution of the mean subtracted contrast normalisation

(MSCN) of the subject image to the database images. The MSCN of a pixel at location

(i, j) is defined by equation (3.1), where I represent the intensity of the pixel, µ is the

local mean, and σ is the local variance in intensity of the surrounding pixels.

MSCN(i, j) =
I(i, j) − µ(i, j)

σ(i, j) + 1
(3.1)

By analysing the shape and variance of the distribution a histogram of MSCN values

is then generated to detect various distortions such as blur, noise, and compression. The

model then compares these values to an image database and assigns a score ranging

from 1 to 100, with lower scores indicating better image quality. A score close to 0-30

suggests a good(high) image quality, while a score greater than 40 indicates a poor(low)

image quality. An example of this is shown in Figure 3.6.

(a) (b)

Figure 3.6: Comparison of image quality using BRISQUE scores. a) Natural image
with a BRISQUE score of 24.91, indicating better image quality. b) Noisy image with
a BRISQUE score of 71.05, indicating poor-image quality. (author’s own picture

3.3.2.2 The implementation of BRISQUE in deep learning algorithms

A study carried out in [7] on the evaluation of live road footage for road damage

detection using BRISQUE concluded that challenges arose in accurately assessing image
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quality due to varying lighting conditions such as harsh sunlight or dark environments.

This variability potentially led to inaccuracies in image processing and object detection

used for vehicle detection and road crack identification. In low visibility scenarios like

poor lighting, or adverse weather, the performance of the system was compromised,

affecting its overall accuracy.

[154] utilised BRISQUE to enhance visibility for identifying faulty porcelain insu-

lators in a low-voltage power distribution system. It involves creating a dataset with

various backgrounds and light conditions, adding faulty insulators from different angles

to evaluate the proposed YOLOV4 model with different object detection models. The

study underscores effectiveness of BRISQUE in image quality assessment and also high-

lights its limitation in accurately evaluating images under low-light conditions due to

reduced visibility and clarity. It is essential to address these limitations for real-world

applications by developing advanced image quality assessment techniques specifically

designed for challenging lighting conditions. This will improve defect detection capab-

ility for critical infrastructure maintenance and monitoring.

There are no studies in the reviewed literature that utilise BRISQUE for real-time

image quality assessment in low-light conditions, particularly in the context of con-

crete crack detection or explore the correlation between image quality assessment and

concrete crack detection using neural networks. Most existing studies utilise neural net-

work architectures capable of processing noisy, blurred, or otherwise degraded images

[10]. However, these image enhancement algorithms still struggle to carry out image

recognition tasks under various lighting conditions [114]. Also, all these algorithms are

implemented in the post-processing stage. It would be more advantageous to develop

image quality-based algorithms integrated into to the image acquisition stage to ensure

that only high-quality images are further forwarded for image processing.
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3.5 Illumination Techniques and Automated Visual In-

spections

Current automated inspection practices lack the adaptability required to assess a di-

verse number of defects under varying environmental conditions [13]. There may be

an overlooked opportunity to utilise advanced illumination techniques to enhance the

contrast of defects within the image to improve automatic defect detection methods.

Such methods include white-box image processing and black-box neural networks [87],

which were discussed earlier. These automatic analysis methods are also replacing

human-based analysis due to improved accuracy, consistency and time-efficiency [6].

Commercially available automatic inspection machines are mostly limited to either

ground-based (GB) or aerial(drone)-based image capturing platforms [139]. Images

are either captured under ambient lighting or with additional lighting during darker

environmental conditions. In other research fields, however lighting is utilised as a

method of enhancing the contrast of objects: during surgery [155], to improve worker

safety [156], and machine vision applications [157, 158]. To the knowledge of the author,

there are no examples of adaptive contrast enhancing illumination techniques applied

to automated inspections for concrete crack detection.

3.5.1 Conventional Techniques

Illumination is an important variable in both image capture and computer vision tasks.

Cameras operate by directing light to a sensor that reconstructs the scene using the

Photovoltaic effect. A scene is usually made up of one or more features within some

background. The objective of illumination is to create contrast between the feature(s)

and the background to make the feature more easily identifiable visually or to a machine.

Without adequate illumination, some features in the scene may be lost. Indeed, there

are many conventional illumination techniques that are used to create varying contrasts

for machine vision [159]. These techniques can be split into 4 categories:

• Geometry

• Spectrum
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• Type of light

• Filtering

In geometrical illumination techniques, the physical position, such as the direction

or angle of light is varied. This creates contrast by producing directional shadowing of

objects in the scene which highlights depth differences and orientation of objects. For

example, Figure 3.7 shows images of a pen against a surface captured under varying

geometrical illumination conditions. The top row shows lighting at a high angle and

bottom row at a low angle, with columns 1 - above, 2 - right and 3 - diffused directions.

It is clear that when light is projected perpendicularly to the pen at a lower angle

(above, low) there is a longer shadow enhancing the depth difference and orientation of

the pen. The insets in column 2 also show that the rough surface is more visible with

a lower lighting angle.

Projecting colours onto a scene creates contrast by highlighting objects of the op-

posite colour on the spectrum. By changing the type of illumination used, such as

the light source (LED, fluorescent, halogen, infrared) or the projection method (spot,

dome, line), can enhance contrast in some applications. For example, infrared light can

be used to reduce reflectivity of materials [160] or for internal defect detection [161].

Filtering, such as polarisation or neutral density, are physical films placed in front of a

camera lens in order to modify certain wavelengths of light. These are usually used to

provide more flexibility in aperture and exposure settings of the camera when in bright

or dark environments or to remove features such as reflections.

3.5.2 Illumination for concrete defect detection

One of the earliest examples of using illumination to improve crack detection was by

[12]. In [12], utilised angled lighting to highlight textural differences in concrete, but

found that this reduced the accuracy of crack detection neural networks, as the models

were trained on images lit using standard diffused lighting. The study acknowledged

the challenges posed by ambient lighting, but it lacks a robust solution to avoid its ef-

fects, which could compromise detection accuracy in various environmental conditions.

Furthermore, the absence of a mobile inspection device limits the practicality of the
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Figure 3.7: Geometrical illumination techniques to enhance contrast of depth and ori-
entation in an image. Inset: zoomed portion showcasing enhanced surface roughness.

method in real-world applications, where adaptability and mobility are essential for

effective monitoring of concrete structures.

[9] employed ”zero-angle” light to automate the detection of air voids in concrete.

By directing light parallel to the air voids (utilising extreme dark-field techniques), the

visibility of the perimeter of the voids is significantly improved. This approach enhances

the accuracy of void detection and measurement through segmentation. However, it

necessitates preparation of the concrete surface by skilled operators before image cap-

ture. Additionally, the study faced challenges in accurately segmenting irregularly

shaped voids, which limits its effectiveness in low-light environments and practical ap-

plications.

The effectiveness of crack detection using the deep learning model is heavily im-

pacted by different lighting conditions as explained in [162]. Photographs were ex-

amined under different weather conditions, such as sunny, cloudy, and foggy, as well

as at various times of day, including sunset, moonlight, and during specific hourly in-

tervals from 5:00 to 8:00 PM. Detection accuracy declined significantly under low-light

conditions, dropping by 50% during sunset and moonlight, about 25% from 6:00 to 7:00

PM, and sharply by 85% from 7:00 to 8:00 PM. However, between 5:00 and 6:00 PM,
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no major change was observed, highlighting the importance of adequate illumination

for accurate defect detection. These results emphasise the importance of proper illu-

mination for effective defect detection and indicate that improved lighting is required

to maintain performance in low-light conditions.

From these examples, it can be inferred that illumination techniques show promise

to improve automatic defect detection in concrete. However, there is a lack of research

into the different methods of illumination and the existing studies are either too focused

on a single method or are application specific.

3.5.3 Lighting in automated visual inspections

Automated visual inspection techniques are effective in capturing detailed information

about surfaces, as previously mentioned; however, it is important to note the vital

difference between capturing images and detecting cracks. Errors or inaccuracies during

image capture cannot be immediately corrected or adjusted, potentially leading to

imperfect analysis. Such irregularities could cause significant defects to go unnoticed

and require error correction.

Although these platforms can come equipped with lighting, this is to make ima-

ging possible in low-lighting conditions rather than to enhance the contrast with geo-

metrical illumination[163, 164, 165, 166]. To the knowledge of the author, there are

no commercially available automated inspection platforms that contain customisable

contrast-enhancing illumination methods.

Further, [167] used Light Emitting Diodes (LEDs) in the inspection of pipes in

the oil and gas sector. These LEDs are mandatory due to having no ambient light

within the pipes, but did not provide other capabilities for enhancing contrast. [92]

designed a wall-climbing robot for concrete structure inspection and provided an option

to add extra LEDs for compensation when ambient light was insufficient. Similarly,

[65, 165, 168] are all examples of autonomous inspection machines in civil sectors that

used illumination as a source of light to ensure correctly exposed image capture. Most

of these studies focused on capturing images in low-light conditions, yet they have

not explored advanced illumination techniques for improving crack detection in such
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environments.

3.5.4 Addressing Limitations in Concrete Crack Detection

In the study of concrete crack detection, algorithms are often challenged by uncon-

trolled or low-light conditions. For example, the Crack Image Analysis System in [77]

computes geometric parameters of crack networks under uniform illumination, typically

provided by a diffuse and evenly distributed light source. However, this dependence on

uniform lighting may limit its accuracy in low-light conditions, reducing the visibility

and contrast of crack features. Therefore, adapting the system for low-light conditions

could enhance its robustness and reliability.

Another approach employs a dual encoder network structure that combines fast

Fourier transform (FFT) with a CNN. The frequency domain branch of the model uses

FFT for spatial and frequency domain conversion, reducing the impact of low bright-

ness. The CNN coding branch extracts contextual information, and a feature fusion

detection module enhances crack localisation accuracy, making it effective for detec-

tion in low-light environments. However, the model may struggle with complex crack

patterns (hairline cracks) and capturing target areas in low-light conditions, indicating

areas for performance enhancement [169].

Another proposed algorithm improves crack detection in low-light conditions by first

removing haze from the image using a contrast stretching method. It then converts the

image to gray scale, applies thresholding, and utilises morphological skeletonisation for

accurate detection of hairline cracks. This algorithm may struggle to differentiate cracks

from background noise, especially in low-light images. Addressing these drawbacks is

essential to enhance effectiveness of the algorithm in accurately detecting cracks under

challenging lighting conditions [170]. Additional lighting can enhance crack visibility

and reduce noise in images, leading to more precise detection. However, even with

adequate lighting, image quality remains crucial. Poor image quality, indicated by

low resolution and high noise levels, can reduce crack detection accuracy. Therefore,

ensuring clear and high-resolution images is essential for optimising detection accuracy.

Advanced image processing methods often assume uniform lighting conditions for
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detecting cracks in concrete structures, but they struggled to detect hairline cracks

[171]. Therefore, exploring alternative geometrical illumination methods could further

enhance the accuracy and efficacy of these algorithms. By addressing the challenges

posed by low-light conditions and optimising lighting techniques, concrete crack detec-

tion algorithms can be significantly improved, leading to better maintenance and safety

of civil structures. This study uses geometrical illumination techniques, leveraging dif-

ferent lighting angles and directions to highlight small differences in texture and surface

properties of concrete cracks.

Previous studies mainly focused on laboratory datasets, which do not account for

the complexities and variations present in real-world scenarios, such as different illumin-

ation conditions and surface irregularities. They did not implement any lighting-based

neural network models to enhance defect detection capability [15]. This limitation

highlights the need for methods that can effectively handle the challenges posed by

real-world crack images.

Subsequent studies aimed to conduct crack detection in real-world settings but en-

countered challenges with illumination, obtaining clear images, and accurately identi-

fying defects [16]. Additionally, the quality of crack detection is affected by various

factors such as camera specifications, surface illumination, and environmental condi-

tions, leading to unclear images and increased false positive rates [87]. In [172], it was

found that the height of illumination sources had a significant impact on crack detec-

tion accuracy, with higher placements resulting in improved outcomes and a reduction

in false positives, suggesting that optimal lighting conditions are essential for effective

crack detection in visual inspection systems.

The SOTA automated inspections lack the following capabilities:

• Utilisation of hardware with illumination techniques such as geometrical illumin-

ation (direction and angle) to aid in automated defect detection/analysis, both

in laboratory-settings and in real-world scenarios.

• Automation of the data cleaning process utilising thresholding techniques, wherein

low-quality images are discarded while high-quality images are forwarded for fur-
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ther image processing to enhance concrete defect detection capabilities and thus,

reduce the need to repeat image collection in the field, i.e. a more cost-effective,

in terms of manpower and time, approach.

• Analysis of the influence of lighting direction and angle on the performance of

automated defect detection algorithms.

• Analysis of directional lighting utilised defect detection algorithms for binary and

multi-class image classification tasks.

The thesis aims to address these limitations in the current literature.

3.6 Summary

The literature review highlighted the following research gaps which this thesis will

be focusing on: 1. Lack of suitable hardware to apply geometrical illumination, a

technique that resembles the approach followed by experienced inspectors in manual

inspections and which has the potential to enhance crack detection and classification.

2. Automated workflow to assess the quality of acquired images of potential concrete

cracks in real-time. Higher quality images will ensure higher efficiency in any detection

and classification algorithm. 3. All deep learning algorithms used in crack detection

and classification in concrete civil infrastructure rely on RGB or gray scale input images

and do not explore novel input configurations or advanced lighting strategies to enhance

detection and classification under these poor lighting conditions. None can currently

accommodate a 5-channel data input (the data obtained by geometrical illumination).

A methodology that can adapt a deep learning algorithm to serve this purpose is

currently missing.

Addressing the three points above aims to (1) create an automated visual inspec-

tion system that employs directional and angled lighting configurations to enhance the

visibility of cracks and spalling in concrete in low-light conditions and (2) integrate dir-

ectional lighting with commonly used and new deep learning algorithms to improve the

accuracy of concrete crack detection for Civil infrastructure while at the same time,
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implement an image-quality-based algorithm to ensure only high quality images are

used for image processing tasks.

59



Chapter 4

The Conception and

Development of ALICS

Chapter 3 discussed the challenges of concrete crack detection in low-light conditions

and highlighted the necessity of geometrical illumination techniques to enhance auto-

mated defect detection and analysis in Civil Engineering. For this work, the author

of the thesis implemented the novel hardware and software platform called ALICS -

Adaptive Lighting for the Inspection of Concrete Structures and investigated the po-

tential of directional lighting and suitable optimal illumination angle, which allows for

multi-angle and multi-directional lighting for the inspection of concrete structures.

4.1 Introduction

This chapter presents ALICS, a hardware prototype capable of multi-directional, multi-

angled illumination of a concrete surface. The objective is to determine whether using

geometrical illumination techniques can improve automated defect detection perform-

ance using images captured by ALICS.
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4.2 The Hardware Development Journey of ALICS and

its iterations

ALICS was a large research initiative led by the author along with two collaborators.

The author’s work focuses on classifying severe defects such as cracks and spalling in

concrete structures using black-box techniques only. Figure 4.1 shows author’s primary

contributions were focused on tasks indicated by the red boxes, which included working

on initial prototypes. The green boxes represent areas where the author contributed in

completing the final inspection hardware and portable frame field deployable ALICS

rig. Conversely, the areas marked with blue boxes indicates the implementation of the

field-deployable ALICS version using a shroud design, which was led by other team

members. The following subsections will detail the step-by-step process involved in the

conception of lab-based and field-based ALICS designs.

4.2.1 Overview of Hardware

Table 4.1 provides an overview of the hardware components used in this research.

It represents a simplified hierarchical structure of the hardware components, starting

from individual elements like UR10, machine-vision camera, LED strips, ARDUINO,

and expanding into further details like interfacing, inspection hardware (ALICS), and

field deployable ALICS iterations.

4.2.1.1 Universal Robot UR10

Robotic inspection of the built environment has been made possible with the help of

robots equipped with various locomotion types and sensors. There are several types of

such robots, like UAVs, UGVs, marine vehicles, wall-climbing (CL) robots, and cable-

crawling (CR) robots. The use of robots for inspection provides a safer alternative to

manual inspection. Additionally, automated robotic inspection improves the frequency

of inspections and reduces subjectivity in detecting errors.

UAVs are popular for inspecting large areas such as bridges, power lines, and build-

ings because they can quickly cover a lot of ground and adjust their position for a better
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Figure 4.1: The Hardware Development Journey of ALICS. All of these are capable of
capturing images of size 5429 × 3458 pixels.
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Table 4.1: ALICS Hardware Overview: Components and Specifications.

Component Description

Universal Robot (UR10)
- Type: Collaborative tabletop robot

-360-degree rotation
- Axes: 6 (wrist 1, wrist 2, wrist 3, base, shoulder, elbow)

Image capture

- Camera: FLIR Blackfly 1” sensor machine vision camera
-Resolution: 5429×3458 pixels
- Lens: f1 = 8mm focal length

-Working Distance: D = 360 mm
- FOV: 576mm x 432mm

WS2812B LED Strip
- Type: Individually addressable RGB LED strips

-Key Feature: Microcontroller chip in each LED for control
-Power Requirement: 5V, 1.5A

ARDUINO

- Type: ARDUINO UNO with ATmega 328 microcontroller
- I/O Pins: 14 digital, 6 analog

- Operating Voltage: 5V
- Clock Speed: 16MHz

Interfacing of
ARDUINO with

WS2812B LED Strip

- Connection: ARDUINO UNO connected to WS2812B
LED strip

- Power Source: AC to DC power adapter (5V, 2A)
- Additional Components: Capacitor for power

stabilisation, resistors for noise reduction.

Inspection Hardware
(Lab-based ALICS rig)

- Components: Directional Lighting System with four
3-jointed servo-motorised arms, camera, UR10 robotic arm

- Lighting Adjustment: Arms can adjust light incident
angles (θL) and proximity (P )

- Lighting Conditions: Right, Down, Left, Up, Diffused

Field Deployable ALICS
rig (Two Iterations)

- First Iteration: Handheld and Portable ALICS Hardware.
- Frame Design: Portable and Handheld.

- Lighting Control: ”Curtain” mechanism for controlled
lighting.

-Second Iteration: Portable ALICS Hardware with
Directional Lighting.

- Design: Lightweight aluminium shroud to block ambient
light.

- Use Cases: Handheld device or can be mounted to a
six-axis robot.
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view. They are also cost-effective and easy to deploy. However, UAVs have some draw-

backs: they can be affected by bad weather, require special licenses and insurance, and

are prone to accidents. They also face issues with data security and legal restrictions

on where they can fly and what they can inspect. Additionally, their size, weight, and

power limitations can make them unsuitable for certain tasks [173, 174].

UGVs offer a simple and robust design, excellent stability for inspection and mon-

itoring tasks. They find applications in building inspections, bridge deck assessments,

and floor cleaning. However, UGVs face limitations due to their low profile, which

restricts their reach in spaces with high ceilings. They may also struggle on uneven

or cluttered terrains. UGVs require collaboration with other robots to overcome these

challenges, adding complexity to multi-platform missions [76].

Cobots, or collaborative robots, offer numerous advantages over UAVs, UGVs,

crawling, and climbing robots. They are flexible and can perform a wide range of tasks

without the need for specialised equipment or modifications. Cobots can also work

safely alongside human workers, increasing efficiency and communication [175, 176]. In

this research work, a six-axis robot known as a Universal Robot (UR10) is utilised as

shown in Figure 4.2.

UR10 is a small yet robust collaborative tabletop robot ideally suited for light as-

sembly tasks. The selection of the UR10 was based on several factors. Firstly, it is

certified for safe physical human-robot interaction, ensuring workplace safety. Secondly,

it offers a significant cost advantage compared to the current market alternative, MAKO

[177], being at least 10 times less expensive. Additionally, its 10 kg payload capacity

adequately supports the lighting rig being considered. Furthermore, the UR10’s large

reach of 1.3 meters exceeds that of many similar collaborative robots, enabling effective

scanning of large concrete surfaces [178]. The UR10’s 6-axis robot arm is capable of

full 360-degree rotation across all six axes: wrist 1, wrist 2, wrist 3, base, shoulder,

and elbow. In this particular arrangement, the UR10 plays a crucial role as an im-

portant component that is responsible for executing accurate movements and enabling

lighting modifications while capturing images. This harmonious integration of the UR

empowers the ALICS system with the adaptability necessary to execute concrete struc-
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ture inspection tasks.

Figure 4.2: Integration of ALICS onto a Six-Axis Universal Robot UR10.

4.2.1.2 Image capture

According to engineering standards, crack widths within the range of 0.2mm to 0.4mm

in concrete structures should be identified for further action [17]. Therefore, the ob-

jective is to achieve a minimum spatial resolution of ≤ 0.1 mm/pixel during image
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capture.

4.2.1.3 Hardware and settings

An illustration of the image acquisition hardware is provided in Figure 4.3. In this

work, a FLIR Blackfly 1” sensor machine vision camera, shown in Figure 4.4 was used.

The field of view defines the visible area of the object under inspection. The distance

from the front or initial surface of the lens to the object under inspection is called as

Working Distance (D). The dimension of a camera sensor’s active area, often indicated

horizontally or vertically is sensor size. The relation between all these parameters is

indicated in equation 4.1 and illustrated in Figure 4.5 [179].

Focal length =
sensor size × working distance

field of view
(4.1)

It has an imaging resolution of 5429 × 3458 pixels and a focal length, fl = 8mm.

Together, these provided a feature resolution of ≤ 0.1mm/pixel at a working distance

of D = 350mm, with a Field of View (FoV), of 574mm × 383mm [180]. For various

imaging applications, the lightweight design of FLIR Blackfly® S cameras make them a

popular choice. These cameras are equipped with several advanced features that make

them highly compatible with machine vision systems. Precise control over exposure,

gain, white balance, and colour correction are some of the features that contribute

to the effectiveness of the ALICS system. In achieving the desired image resolution

and quality for concrete structure inspection applications, selecting the FLIR Blackfly

1” sensor camera and its accompanying lens played a crucial role [181]. The camera

specifications are listed in Table 4.2.

The depth of field, DoF , defines the distances at which objects remain in focus:

DoF =
2 · F 2

d · fn · C
f2
l

, (4.2)

where fn = fl
ad

is the f-number i.e., the ratio of the focal length fl, to aperture diameter

ad. C is the circle of confusion: a subjective limit that defines an acceptable level of
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Figure 4.3: Illustration of variables during image capture. Light from an imaged object
passes through the lens and aperture onto the camera sensor.

Figure 4.4: FLIR Blackfly 1” sensor machine vision camera.
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Table 4.2: FLIR Blackfly S USB3 Camera Specifications taken from [182].

Specification Value

Firmware Version 1705.0.124.0
Resolution 5429×3458
Frame Rate 18 FPS
Megapixels 20MP
Chroma colour
Sensor Sony IMX183, CMOS, 1”
Readout Method Rolling shutter with global reset
Pixel Size 2.4µm
Lens Mount C-mount
ADC 10-bit / 12-bit
Minimum Frame Rate 1FPS
Gain Range 0 to 27dB
Exposure Range 69µs to 30s
Acquisition Modes Continuous, Single Frame, Multi Frame
Partial Image Modes Pixel binning, decimation, ROI
Image Processing colour correction matrix, gamma, lookup table, hue,

saturation, and sharpness
Sequencer Up to 8 sets using 5 features
Image Buffer 240MB
User Sets 2 user configuration sets for custom camera settings
Flash Memory 6 MB non-volatile memory
Opto-isolated I/O 1 input, 1 output
Non-isolated I/O 1 bi-directional, 1 input
Serial Port 1 (over non-isolated I/O)
Auxiliary Output 3.3V, 120mA maximum
Interface USB 3.1
Power Requirements 8 - 24V via GPIO or 5V via USB 3.1 interface
Power Consumption 3W maximum
Dimensions/Mass 29mm x 29mm x 30mm / 36g
Humidity Operating: 20% to 80% (no condensation), Storage:

30% to 95% (no condensation)
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Figure 4.5: Variable Distance from Lens to Concrete, modified from [179].

loss of focus. It is conventionally calculated by dividing the diagonal size of the camera

sensor by 1500 [183].

Equation (4.2) shows that controlling the f-number, fn and focal distance, Fd will

vary the available DoF. fn is typically limited to the following values: 1.4, 2, 2.8, 4,

5.6, 8, 16. When selecting fn, there is a trade-off for a constant D and Fd: opting for a

lower fn allows for faster image capture (higher exposure rate) and reduces diffraction,

but leads to blurred corners and a narrower depth of field (DoF). Diffraction causes a

loss of sharpness in an image due to interfering light waves. For consistency, all images

captured in this work were taken at a constant fn of 8 and Fd of 250. This provided a

balanced approach for avoiding diffraction and blurred corners, with sufficient DoF =

172 mm, covering D from 200 to 350 mm.

4.2.1.4 WS2812B LED Strips

The implementation of the ALICS platform included the effective integration of WS2812B

LED strips to enhance the adaptive lighting system for concrete structure inspection.
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Individually addressable RGB LED strips, such as the WS2812B, are widely used for

lighting purposes in various hardware setups [184, 185]. This particular strip was

chosen due to its simple interface, fast response time, and cost-effectiveness compared

to other options [186]. They are known for their unique ability to individually control

the brightness and colour of each LED [187].

Figure 4.6 shows an example of this LED strip, which consists of multiple WS2812B

LEDs connected in series. What distinguishes these LEDs is that they come equipped

with a micro-controller chip embedded within each LED. This chip enables communic-

ation through a single-wire interface, allowing it to control numerous LEDs using just

one digital pin of devices like an ARDUINO.

Figure 4.6: WS2812B LED Strip.

The microcontroller chip inside each LED manages its colour and brightness. These

RGB LEDs can emit a broad range of colours by combining red, green, and blue light,

which is a key feature of the WS2812B LEDs. Moreover, these LED strips are highly

adaptable and can be cut to various lengths depending on specific requirements.

It was crucial to ensure that the WS2812B LED strip receives adequate power for

optimal performance. At full brightness, each LED on the strip consumes approx-

imately 50mA of current. The total current required can be determined using the

equation:

Total Current (A) = Number of LEDs × Current per LED (4.3)

For 30 LEDs, the total current was 1.5A.

Total Current = 30 LEDs × 0.05 A/LED

Total Current = 1.5A
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To ensure consistent and reliable operation, it is crucial to select a power source

that can deliver a minimum of 1.5A of current. In this case, an AC to DC power

adapter with a 5V output and a 2A current rating was chosen. This choice exceeds the

minimum current requirement, providing a 2A current output, thus guaranteeing that

the LED strip is powered effectively. This arrangement allows the LED strip to function

optimally without encountering any power-related issues during the experiments.

4.2.1.5 ARDUINO

ARDUINO is a computing platform that is known for its versatility in developing inter-

active objects and interfacing with different software applications. It is an open-source

hardware and software project that features a user-friendly I/O board and utilises the

easy-to-learn processing/wiring language within its development environment. It has

been utilised in numerous crack detection studies due to its affordability and user-

friendly technology, attracting engineers, designers, and individuals alike [188, 189].

At the heart of ARDUINO lies the ATmega328 microcontroller, which is capable of

operating at 5V and comes with six analog input pins and fourteen digital I/O pins.

The board also features 32KB of flash memory, 2KB of SRAM, and 1KB of EEPROM,

and operates at a clock speed of 16MHz. One of the most popular ARDUINO boards

is the ARDUINO UNO, which can be powered using either a USB connection or an

external power supply. However, it is important to note that the recommended voltage

range for safe operation is between 7 volts and 12 volts [187, 190].

The key power pins on an ARDUINO board include VIN, which is the input voltage

pin that accepts power from an external source. The 5V pin is used to power the

microcontroller and other components on the board, while the 3V3 pin generates a

3.3-volt supply as shown in Figure 4.7. The board also has a GND pin, which is used

as a ground reference. Furthermore, ARDUINO has 14 digital pins, each of which

can function as an input or output using functions like pinMode(), digitalWrite(), and

digitalRead(). These pins operate at 5 volts and can handle up to 40mA of current,

with additional internal pull-up resistors. Moreover, the UNO model has six analog

inputs (A0 through A5), which expands its capabilities for processing analog signals.

71



Chapter 4. The Conception and Development of ALICS

Figure 4.7: ARDUINO Board.

4.2.1.6 Interfacing of ARDUINO with WS2812B LED strip

To power the LED strip, the 5V pin on an ARDUINO UNO board is utilised. In order to

stabilise the power supply and minimise electrical noise, a capacitor with a capacitance

ranging from 100 to 1000µF was connected between power and ground. Additionally, to

further reduce electrical interference, 470-ohm resistors were placed between the digital

input pin of the ARDUINO UNO and the data input pin of the LED strip. Upon

turning on the circuit, it will operate in accordance with the programmed code. See

Figure 4.8 for a visual representation of the setup [187].

Figure 4.8: Interfacing of WS2812B LED Strip with ARDUINO taken from [187].
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4.2.2 Failed Prototypes

The ALICS platform underwent several iterations, as shown in Figure 4.9, and Figure

4.10 to develop adaptive lighting for concrete structure inspection.

Figure 4.9: Prototype 1 - a) Lighting Rig Sketch and its digital image, b) Lighting Rig
design 1, c) A lighting rig consisting of a central ring light surrounded by four bar lights
is fitted to the UR10, which is mounted with a machine vision camera.

4.2.2.1 Prototype 1

The author implemented the initial prototype, which involved designing a lighting

rig for multi-directional illumination. The Machine Vision Lens calculator helps to

determine the field of view, focal length or working distance by providing any of the

two parameters. For example, if the sensor size of a machine vision camera is 1”

and the focal length is 8mm, and the desired FoV width is 576mm, inputting these

values into Focal length of FOV lens calculator in [191], yields a working distance of

360mm and a height of the area to be inspected as 432mm. This provides the target

area that needs to be inspected and the working distance. Subsequently, the initial

design of the lighting rig was implemented to achieve these parameters as shown in

Figure 4.9 (a). For a working distance of 360mm, the boom arms for the LEDs must

extend at least 360mm to adequately illuminate the surface. The FOV region thus
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Figure 4.10: Prototype 2: Lighting rig design 1 in Figure 4.9 has only arms, but this
modified design consists of shoulder, wrist and elbow allowing multi-angle lighting, with
ring light in the centre surrounded by four bar lights.
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obtained is (W×H) 576mm×432mm. However, this rig was only an initial prototype,

and industrial applications would require hundreds of images to be taken to do one

full lateral movement, capturing the entire surface of a structure in a detailed, side-

to-side manner. Following this, a multi-angle lighting rig has been developed and was

fitted to the Universal robot mounted with a machine vision camera. Each boom arm

can be rotated at two points and is held in place with nuts and bolts. This allows to

vary lighting angle manually if required. The device is mounted to the camera via an

aluminium filter plate which is screwed onto the end of the lens barrel, as shown in

Figure 4.9 (b) and Figure 4.9 (c).

The lighting rig consists of one ring light surrounded by four bar lights as shown in

Figure 4.9. The ring light is a 12V, 104mm diameter COB LED which can uniformly

light the surface. The bar lights are 12V, 170mm long COB LEDs. All lights have

a colour temperature of 6000K. This lighting rig was mounted onto machine vision

camera (section 4.2.1), which was further mounted onto the universal robot (section

4.2.1) to capture images of cracked concrete slabs. However, this design lacked flexibility

for achieving precise multi-angle lighting due to the fixed structure of bar lights. The

adaptability of the system was also limited by its fixed working distance, which prevents

clear views of thin cracks or surfaces at varying distances. Additionally, the use of a ring

light, along with bar lights resulted in bright spots and inconsistent lighting throughout

the illuminated area, creating shadows in certain regions. Bar lights have limitations in

providing directional lighting, making it difficult to illuminate specific areas accurately

and effectively highlighting cracks.

4.2.2.2 Prototype 2

In the second iteration of ALICS, the author concentrated on addressing the limitations

of the initial model. The design of the lighting rig was adjusted to include shoulder,

elbow, and wrist components, enabling multi-directional and multi-angled illumination

as shown in Figure 4.10. The improved lighting rig consisted of one central diffused ring

light surrounded by four bar lights placed on the wrists of the lighting rig. This device

was mounted on to the camera via an aluminium filter plate which was screwed onto the
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end of lens barrel. It was observed that ring lights caused inconsistent lighting across

the concrete surface, resulting in uneven illumination. The lack of flexibility in the

design of the lighting rig makes it difficult to achieve accurate multi-angle illumination,

especially around shoulder, elbow, and wrist joints. Additionally, bar lights may have

limited directionality which can make it challenging to precisely illuminate specific

areas such as cracks. Both prototypes faced challenges associated with fixed working

distances, which may limit adaptability to different scenarios. The drawbacks related

to the use of ring lights and bar lights were common to both prototypes and involve

issues like bright spots and limited directionality. The movement of the lighting rig is

limited. This led to the development of final ALICS device.

4.2.3 Final ALICS device

To address the limitations of Prototype 1 and 2 models, the author replaced bar lights

with four LED strips to create an adaptive lighting system and removed the ring

light. This modification made the lighting rig adaptable to support multi-directional

and multi-angle lighting, an important feature for ALICS functionality. However, the

manual implementation of multi-angle, multi-directional lighting in a scene necessitated

automation. To achieve this, the author contributed to the engineering of the lighting

rig featuring three-jointed servo motorised arms to control the shoulder, elbow, and

wrist joints. These arms were designed to manoeuvre the LED strips and project light

onto the concrete surface at angles of incidence ranging from θL = 10◦ to 60◦.

The motorised arm had a maximum limit of 60 degrees for upward movement.

Due to its geometric limitations, the lighting rig was incapable of ascending beyond 60

degrees, restricting the movement of the motorised arm. The author’s decision to in-

vestigate the parameter space to understand how various angles and lighting directions

influence the crack inspection process, was driven by the effectiveness of low-angle light-

ing demonstrated in previous research [9, 192]. The selection of intervals of 10 degrees

between the angles was motivated by [193], as coarser intervals simplify data inter-

pretation and provide clear distinctions between angles. Finally, the ALICS platform

was mounted onto a robotic arm fitted with machine-vision camera, allowing precise
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adjustments using a UR10, as shown in Figure 4.11.

Figure 4.11: ALICS: four 3-jointed servo-motorised arms with WS2812B RGB LED
strips surrounding a camera, mounted perpendicularly to a UR10 robotic arm. Each
arm can move individually and project light from the LEDs incident onto the surface
at angles ranging from 10◦ to 60◦ and at a required proximity.

4.2.3.1 Lighting rig and angle control

Figure 4.12 illustrates the design of a single arm. The three servo motors: shoulder

(S), elbow (E), and wrist (W), are utilised to incident light on the surface at angle, θL

and proximity, P . Other variables, such as working distance, D and arm lengths, L1

and L2 also influence the motor angles (Θ1 and Θ2). This may lead to several possible

solutions for the motor angles, necessitating a least-squares minimization approach.

From Figure 4.12, considering the arms as vectors, the horizontal components can be

summed as:

A + L1 cos θ1 = L2 cos θ2 + P cos θL, (4.4)
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Figure 4.12: Illustration of the 3-jointed motorised LED arms: required angle of incident
light, ΘL, is achieved by moving motors M1, M2 and M3 attached by arms of length L1
and L2. Working distance, D, and LED proximity, P , also influence motor positions.
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and the vertical components are:

D = L1 sin θ1 + L2 sin θ2 + P sin θL, (4.5)

where L1 = 260 mm and L2 = 270 mm are the lengths of the arms, A = 80 mm is the

distance from the centre of the lens to the shoulder joint at M1, and D is the working

distance of the camera or distance from M1 to the surface. The shoulder (M1) and

elbow (M2) joint angles were constrained to −90◦ ≤ θ1 ≤ 90◦ and 0◦ ≤ θ2 ≤ 180◦

respectively.

Equations (4.4) and (4.5) were solved using least-squares minimisation to find solu-

tions for θ1 and θ2 for set values of θL, P and D during image capture. Since these are

the angles between the arms and the horizontal, a second calculation must be made to

determine the angles of the servo motors. M1 is stationary, so M1 = θ1. M2 is relative

to arm L1, i.e. M2 = θ1 + θ2, which is the angle between L1 and L2. Finally M3 is

relative to L2, so M3 = (180◦ − θ2) + θ3, which is the angle between L2 and the LED

projection. An example result of this is given in Table 4.3.

Table 4.3: Example angle calculation by minimisation.

Category Variable Value

Desired Condition
D 300 mm
P 300 mm
θL 20°

Required Angles
θ1 -15°
θ2 80°
θ3 20°

Motor Angles
M1 -15°
M2 65°
M3 120°

4.2.3.2 Distortion correction

All camera lenses have distortion coefficients that can be calculated and compensated

for checker board calibrations. In this work, numerous images of a checkerboard pattern

at various distances and angles were captured. The pattern was automatically identified

79



Chapter 4. The Conception and Development of ALICS

and used to determine the coefficients required to reconstruct a straight checkerboard

pattern. These coefficients were then used to correct for distortion on every image

captured throughout this work.

4.2.3.3 Exposure and White Balance

White colour balance and exposure settings can be automatically calculated and adjus-

ted by a camera’s on-board algorithms, but this is a slow process relative to the rapid

changes in lighting conditions created by ALICS. Having preset values for exposure

and white-balance for each lighting condition ensures exposure changes are fast and

consistent.

For this work, it was assumed there is no ambient lighting interference. This is

achieved using field deployable ALICS rigs using shrouding as described in section

B, but was easily adjusted in a laboratory settings by directly mounting it onto the

universal robot. The exposure is only dependent on the illumination used.

A sensitivity study was conducted to find the camera’s recommended exposure and

white-balance settings across all lighting and working distance configurations (e.g. from

high angle and diffused at a large working distance, through to low angle and directional

at a short working distance). The recommended exposure was found using the in-built

auto-exposure algorithm of the camera [181]. In summary, this algorithm compares

a histogram of pixel brightness to an optimal mean and variance to find the optimal

exposure. While white-balance settings remained fairly constant, exposure settings

were found to be dependent on lighting angle when images were illuminated from a

single direction. The exposure setting required for a lighting angle θL is:

EθL =

[
2 −

(
50 − θL

50

)]
· E50 (4.6)

where E50 is the exposure setting required during diffused lighting at a 50◦ illumination

angle (calibrated once at the beginning of a scan). Essentially, it was found that the

auto-exposure for directional lighting was double the diffused exposure at 50-degree

lighting angle, and varied linearly with angle. This means a single auto-exposure cal-
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culation can be done at 50-degrees during diffused lighting and all other exposures can

be computed using equation 4.6.

4.2.3.4 Lab dataset acquisition

With the final ALICS device, it was possible to acquire lab datasets to implement

and evaluate image-processing algorithms that leverage directional lighting. Loads

were applied to reinforced concrete slabs producing various cracks on the surface with

different lengths, widths and orientations. Magnified ruler was used to measure cracks

ranging from 0.1 to 1mm in width and 10mm to 500mm in length.

Distinct 5429 × 3458 pixel images of concrete surfaces were acquired. Each area

was captured with single-direction lighting from orientations O = R,D,L,U,A, where

R,D,L,U,A are lighting from right, down, left, up, and diffused (i.e., all directions)

respectively. For each lighting orientation, incident light angles θL ranged from 10◦ to

60◦ in steps of 10◦. An example of an area of the slab during varying lighting conditions

is shown in Figure 4.13, with insets comparing a single 224 × 224 pixel block within the

larger image. Qualitatively, it is observable that this block exhibits enhanced shadowing

during the lower angle of 10◦ when compared to 50◦.

4.2.4 Field deployable ALICS rig

The ALICS design was effective in a controlled laboratory environment, but its limited

manoeuvrability, and requirement for it to use in complete darkness conditions made it

impractical for outdoor applications. To address these limitations, two new iterations

(Portable frame design, shroud design) of ALICS were developed, each enhancing the

portability and adaptability, and built upon my original idea of a lighting rig, as shown

in Figure 4.1.

The portable frame design incorporated LEDs inside a frame, and utilised a curtain

mechanism for regulating lighting conditions. Subsequent development were carried

out by another collaborator. The redesign specifically targeted enhancements in man-

oeuvrability, and adaptability to varying levels of outdoor lighting. The shroud design

was developed by two other researchers utilising the author’s initial lighting rig design
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Figure 4.13: Example of lighting conditions at 50◦ and 10◦. Inset: a single 224×224
block indicating enhanced shadowing.

and components, including LED strips for illumination and a machine vision camera

positioned on top of the shroud. This shroud effectively blocks out surrounding ambient

light, ensuring optimal system performance in both bright outdoor settings or darker

environments. Regardless of outdoor lighting levels, the shroud creates a darker set-

ting for image capture, allowing the system to operate efficiently in various challenging

lighting situations.

The field deployable ALICS rigs were designed to be used as handheld devices

for on-the-spot inspections or mounted onto a six-axis robot for data capture under

laboratory-settings.

4.2.5 Verification of ALICS hardware based on in-situ inspections

The aim of real-world deployment was to collect data from concrete assets in public

areas, and demonstrate the practical applications of ALICS beyond laboratory settings.

Therefore, field experiments were carried out in various locations in Glasgow, including
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the Carnbooth area, Kelvin bridge, Bowling Harbour area, and Babcock sites to acquire

images using a field-based ALICS rigs. The author, along with other researchers carried

out inspections in the Carnbooth area using portable frame design (See Figure 1),

and in Babcock using a shroud design (See Figure 3). Inspections at other locations

were conducted by other researchers alone and are therefore not detailed in this thesis

[194, 195].

Figure 4.14 indicates how images are captured using portable frame design in Carn-

booth area of Glasgow. The inspections were conducted under normal weather condi-

tions. However, the setup presented several challenges: one person needed to enter the

curtain to block ambient light and manually adjust multiple lighting angles as shown in

Figure 4.14, making the process inconvenient and time-consuming. Performing inspec-

tions required a minimum of two knowledgeable individuals. Additionally, establishing

a connection between the laptop and the portable frame design involved numerous wires,

increasing complexity and making management little difficult. Moreover, this design

was not suitable for performing inspections within tunnels. Despite the hardware com-

plexities, the captured images were clear and detailed. Concrete images showing thin

cracks, thick cracks, and spalling were successfully obtained and subsequently used for

the analysis described in Chapters 5, 6, and 7.

The practical challenges of using the portable frame design in real-world conditions

led to the development of a shroud-based design and was used to capture images at the

Babcock site as shown in Figure 4.15. It uses ”dome” shaped aluminium structure to

house the LEDs and provide darkness, enabling to capture images without requiring

a curtain. While the method of providing darkness varies between the two rigs, the

positioning of the inspection hardware (Camera and LEDs) is identical. The design

also automates the capture of images at multiple angles, making it ideal for on-site

applications. Additionally, the computer is directly integrated onto the device, simpli-

fying the analysis process. Only one person is required to operate it, and even those

with no prior knowledge can use it, as it automatically runs all iterations (multiple

directions and angles) with the press of a single button, capturing images from various

directions and angles. It can also carry out the inspection process in difficult-to-access
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Figure 4.14: Conducting fieldwork using a portable ALICS frame at Carnbooth area.
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locations like inside of tunnels. The images taken from this site included both cracks

and spalling, and these images were utilised for further analysis conducted in the sub-

sequent chapters. Therefore, these campaigns finalised the design of the hardware which

was then deemed satisfactory for both lab and field use under any lighting conditions.

Figure 4.15: Conducting fieldwork using a shroud-based ALICS rig at Babcock site.

A total of 45 images were obtained and image acquisition time is 4 seconds per

sample. Apart from real-world structures, 5 images were captured under laboratory

settings using Figure 4.11. The images captured in the field by the author, along with
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those taken by other researchers, have been used to determine the optimal angle, study

the effectiveness of directional lighting, develop image-quality based algorithms, and

implement advanced deep neural network models utilising multi-directional lighting.

4.2.6 Flowchart showing crack detection, classification and segment-

ation process

Utilisation of a hybrid approach, outlined in the flowchart in Figure 4.16, involves a

combination of techniques for efficient crack detection, classification and segmentation.

ALICS is an extensive project which involves author and two other researchers. The

red boxes in Figure 4.16 denote primary contributions of the author of this thesis.

4.2.6.1 R-CNN for Feature Detection

The application of Faster Region-Based Convolutional Neural Network (R-CNN), led by

McAlorum et al., (highlighted in green in the flowchart), is employed for the detection

and localisation of features, such as cracks, against a background. Bounding boxes

are generated, the image edges are trimmed, and the remaining portion is cropped

into 224×224 pixel blocks. Blocks within bounding boxes (with overlap) are labelled

as ”feature” and undergo further classification. Blocks outside bounding boxes are

designated as ”background.”

4.2.6.2 Visual Geometry Group-16 (VGG-16) Classification

The author of this thesis led the work, as indicated by the red box in the Figure 4.16.

The VGG-16 CNN is utilised when a bounding box containing a crack is identified by

R-CNN. The presence of cracks initiate white-box algorithm, which is used for pixel-

level segmentation, while negative detections result in the labelling of all pixels as

background.

4.2.6.3 White Box Segmentation

Dow et al., (shown in the blue box in the figure) managed the application of white-

box techniques to positive blocks i.e., cracks. The goal is to implement pixel-level
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segmentation to distinguish ”cracked” and ”background” pixels.

The hybrid approach involves running the white box on a reduced set of blocks

filtered by both R-CNN and VGG-16. This improves accuracy by eliminating back-

ground noise in ”negative” blocks and reduces false-positive pixels by filtering out

non-crack features. The description of white-box techniques is given for context only,

and is outside of the scope of this thesis.

4.3 Defining the optimum angle with ALICS

During the performance assessment of the ALICS, laboratory data was collected by

applying various loads to reinforced concrete slabs as explained in previous section.

Table 4.4: Auto-Exposure values for different directions.

Direction Auto-Exposure value (lux-seconds)

Diffused 470,000

Right 1.63 million

Down 1.65 million

Left 1.68 million

Up 1.71 million

The initial dataset included 9 concrete samples captured under diffused lighting

conditions in both laboratory using Figure 4.11 and in real-world using Figure 2, with

lighting angles ranging from 10 to 60 degrees, comprising 54 samples i.e., 9 images cap-

tured under diffused lighting at 6 distinct angles. Following this, the optimal lighting

angle was identified, and the same 9 samples were captured using directional lighting

(R, D, L, U, and A) in both laboratory and real-world settings, resulting in a collection

of 45 images. Consequently, the entire image, measuring 5429×3458 pixels, was divided

into 360 smaller images, each with dimensions of 224×224 pixels, to meet the input

requirements of the model. The dataset was manually labelled as crack (pixels corres-

ponding to cracks), and no crack (pixels without cracks). The initial angle-based data

is illustrated in Figure 4.17, while Figure 4.18 shows the directional lighting dataset.
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Figure 4.16: Annotated flowchart showing the hybrid crack detection, classification and
segmentation approach.
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Figure 4.17: Captured image areas (5429×3458 pixels) by ALICS, when light is incident
at 50◦, 40◦, 30◦, 20◦, and 10◦ respectively.
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Figure 4.18: Captured image areas (5429×3458 pixels) by ALICS, when light is projec-
ted from (a) right(R), (b) Down(D), (c) left(L), (d) up(U) and (e) diffused(A) directions,
respectively.
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4.4 VGG16 CNN model

The VGG16 neural network, a well-known pre-trained model, was utilised for crack

detection on concrete surfaces with ALICS. This model explained in Chapter 3, is

trained and tested on the multi-angle dataset. The performance of the trained model

is evaluated across different lighting angles (10◦ to 60◦)to determine its effectiveness.

This evaluation helps to identify the optimal lighting angle for effective concrete crack

detection. Later, images were captured under auto-exposure settings shown in Table

4.4 from different directions, including right, down, left, up, and diffused, at this op-

timal angle. A comparison between directional and diffused lighting was conducted

using performance metrics. Transfer learning and selective fine-tuning approaches were

utilised to enable the model to capture important features from the images and help in

more accurate detection [196, 197, 198, 199].

The binary classification of concrete images utilised a pre-trained VGG16 model,

previously trained on a large ImageNet dataset [200] as starting point, instead of build-

ing the model from scratch. This approach allowed to leverage learned features from

the VGG16 model, saving time and resources by avoiding long training on a specific

dataset. All layers, except the last six layers of the base model, were frozen to fine-tune

it as shown in Figure 4.19.

The Adam optimiser with binary cross-entropy loss and accuracy metrics was used

[201]. The model underwent 10 epochs of training, utilising different combinations of

batch size and learning rate using Grid search. After experimentation, a learning rate

of 0.001 and a batch size of 32 were found to yield the best performance. Subsequently,

the model was trained using these optimal values and evaluated on the testing data. To

prevent overfitting, dropout was incorporated into the network architecture. Addition-

ally, a dense layer with sigmoid activation was implemented for binary classification.

The model performs similarly well on both the training and testing datasets, with no

degradation or decline in performance on the testing dataset as training progresses.

Performance metrics were computed to evaluate the performance of the model at vari-

ous angles and directions.
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Figure 4.19: VGG16 crack classification model.
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4.5 Performance Metrics

A train-test dataset split was employed to divide the entire dataset into two parts:

one for training the model to learn features and the other for testing/evaluating the

performance of the VGG16 model on multi-angled, multi-directional datasets [202].

The model was trained on the training dataset and was used to generate predictions on

the testing dataset. The predicted probabilities were converted to binary class labels

using a threshold of 0.5. The performance of the model was assessed using a confusion

matrix generated by comparing the predicted labels to the actual labels of the testing

dataset.

The confusion matrix provided information about correctly and incorrectly classified

instances, represented by true positive (TP), true negative (TN), false positive (FP),

and false negative (FN) values. Finally, these values range from 0 to 1, with 1 indicating

good and 0 indicating bad, and are utilised to calculate various evaluation metrics as

shown in Table 4.5 [203].

Table 4.5: Performance metrics of a binary classifier.

Name Description Equation

TPR (Recall) The ratio of correctly predicted
positive instances to the total num-
ber of actual positive instances.

TP

TP + FN

Accuracy The measure of the model’s ability
to correctly predict the outcomes.

TP + TN

TP + FN + FP + TN

MCC The measure of the correlation
between predicted and actual la-
bels, accounting for true or false,
both positive and negative predic-
tions.

TP × TN − FP × FN√
(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

F1 Score The weighted average of recall and
precision.

2 × Precision × Recall

Precision + Recall
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4.6 Results

4.6.1 Multi-angle lighting

The VGG16 neural network model was trained on 600 sub-images and tested on 120 sub-

images. The datasets included images captured at lighting angles ranging from 10 to

60 degrees in 10-degree increments, all under conventional diffused lighting conditions.

The Figure 4.20 illustrates the performance of the model across these different angles.

Figure 4.20: Performance Across Multiple Lighting Angles.

The testing accuracy of the model starts at 83% at a 10-degree angle and increases

steadily, peaking at 94% at a 50-degree angle as shown in Figure 4.20. This indicates a

significant improvement in the ability of the model to accurately predict the presence

or absence of cracks as the lighting angle increases up to 50 degrees. However, at 60

degrees, there is a noticeable drop in accuracy to 85.1%. This improvement is also

evident in the F1 score, which rises from 83% at 10 degrees to 93.5% at 50 degrees. At

60 degrees, the F1 score drops to 85%, similar to the trend observed in accuracy.

The Matthews correlation coefficient (MCC), a fundamental measure for assessing

binary classifications with values between -1 and 1, consistently rises across different

lighting angles, with maximum value of 88% at 50 degrees. This indicates that the

model performs well across all four confusion matrix categories (TP, TN, FP, FN).
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However, at 60 degrees, the MCC value decreases to 70.5%, indicating a reduction in

overall classification performance.

In summary, the performance metrics indicated that 50 degrees is the ideal angle.

At this particular angle, the model achieved top scores in accuracy, F1 score, and MCC,

indicating its optimal overall performance in crack detection under conventional i.e.,

diffused lighting conditions.

4.6.2 Potential of Directional Lighting

The optimal angle determined based on above analysis is 50 degrees. At this angle,

images were captured with illumination from various directions: R, D, L, U, and A, for

multiple sets of samples. The primary aim of this analysis was to assess how lighting

direction affects the performance of the neural network model. Therefore, the VGG16

neural network model underwent training and tested these directionally-lit images,

covering 9 samples across five directions (9 samples × 5 directions = 45 images).

The performance of the VGG16 model in different lighting directions was investig-

ated using two distinct sets. A detailed analysis of Sets 1 and 2 showed trends in the

accuracy as shown in Figure 4.21. In Set 1, the model trained on images illuminated

from the left direction achieved highest accuracy of 93.1%. Also, the model trained

on images illuminated from right and down direction resulted in a higher true positive

rate of 96.2%.

Set 2 achieved highest accuracy of 89.4%, when trained and tested on diffused

images and the highest true positive rate of 89.7%, when trained and tested on the

the images captured in right direction. This shows that in Set 2, diffused lighting is

more favourable for overall accuracy, while identification of positive instances is best

achieved with lighting from the right direction.

The difference in the lighting orientation for accuracy and TPR emphasises the

possibility of optimising directional lighting. In particular, for Set 1, the model shows

good performance when trained on images lit from the left direction, whereas for Set

2, optimal performance is achieved with diffused lighting. These results highlight the

potential of directional lighting. The choice of the most suitable lighting direction
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Figure 4.21: Performance Across Multiple Lighting Directions.
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impacts the accuracy of the model and its TPR. In practical terms, optimising the

lighting direction conditions can improve the robustness of crack detection models in

real-world scenarios. The potential of directional lighting in comparison to diffused

lighting is evident, yet its full utilisation requires modifications or implementation of

new algorithms. Developing new algorithms or approaches could significantly enhance

defect detection capabilities in Civil Engineering.

4.7 Summary

ALICS is a novel contribution to automated concrete defect inspection, addressing

challenges faced by traditional visual inspections and prior automated techniques in

Civil Engineering. It leverages the potential of geometrical illumination techniques,

utilising multi-angle and multi-directional lighting approaches to improve the visibility

of concrete defects. The ALICS device designed for laboratory use offers a robust

framework for conducting testing in controlled environments. Meanwhile, the field-

deployable rigs expand their capabilities to real-world applications, capturing real-world

data in low-light or dark environments. This ensures that ALICS is not only effective

in controlled settings but can also handle the challenges of practical concrete inspection

in the field of Civil Engineering.

The images in laboratory and real-world are captured at different angles, ranging

from 10 to 60 degrees, and also in diverse lighting conditions i.e., right, down, left, up,

and diffused directions. The evaluation showed consistent improvement in accuracy, F1

Score, and MCC as the lighting angle increases, with the best performance observed

at 50 degrees, highlighting its significance in achieving overall optimal performance un-

der standard diffused lighting conditions. The multi-directional lighting experiments

indicated the potential of directional lighting in enhancing crack detection accuracy

compared to diffused lighting. Therefore, utilising these directionally lit images cap-

tured at an optimal angle of 50-degrees by ALICS could be further utilised to improve

crack detection accuracy, which will be studied in detail in subsequent chapters.
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Threshold-Based

BRISQUE-Assisted Deep

Learning Model

Chapter 3 presented a summary of the effects that images captured under challenging

lighting conditions have on the efficiency of deep learning models in the context of

crack detection and identified the need of hardware to allow the capture of images with

directional lighting. The hardware described in Chapter 4, is utilised to capture images

of concrete samples in low-light environments using directional lighting. However, using

robotics and cameras in low-light environments can introduce blur and noise during

image capture. These factors can significantly affect the quality of the captured images

and consequently affect the recognition capability of the model during the training

and testing phases [10]. This drawback poses a major challenge to Civil infrastructure

automatic inspections.

This chapter focuses on developing a method to improve the accuracy of deep learn-

ing algorithms for detecting cracks in concrete structures. More specifically it focuses

on incorporating BRISQUE (see Section 3.4.2) as an image quality assessment during

image capture to ensure that only high-quality images are retained for further image

processing. The reasoning behind this was to create a closed loop feedback to ALICS
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that will enable discarding low quality image and replacing it with a high quality image

captured in real time during the image acquisition stage in the field.

5.1 Methodology

In Chapter 4 it was shown that capturing images at an optimal 50-degree lighting

angle led to consistent improvements in accuracy, F1 score, and Matthews correlation

coefficient when using standard i.e., diffused lighting conditions. Consequently, for

analysis in this chapter, all images were captured at this optimal angle under diffused

lighting settings in low-light environments.

The workflow of the entire process is clearly shown step-by-step in Figure 5.1.

The Imaging Hardware used for data acquisition process is detailed in Section 5.2.

The curation of the Pristine dataset, along with the introduction of Gaussian noise

and Gaussian blur to generate Noisy and Blurred datasets, is also explained in this

section. The sensitivity of BRISQUE to noise and blur is discussed in Section 5.4.1.

The formation of testing matrices and the classification metrics used to evaluate them

are described in Section 5.3 and Section 5.4.2. The determination of the BRISQUE

score threshold is presented in Section 5.4.3. The implementation of an automated

BRISQUE-based data cleaning method and its evaluation on images captured outside

the lab are explained in Section 5.4.4 and Section 5.4.5, respectively.

Gaussian noise and Gaussian blur are the most common types of image degradations

frequently encountered in real-world imaging scenarios [204, 205]. Therefore, these

degradations were chosen to explore how they affect the BRISQUE scores. Images

captured by cameras often exhibit noise and blur due to various factors such as sensor

imperfections, environmental conditions, or motion during image acquisition. These

imperfections can arise from factors like sensor limitations, fluctuations in lighting

conditions, or unintended camera movements during image capture [7, 8]. As a result,

quantifying the effects of Gaussian noise and Gaussian blur is crucial for understanding

and improving performance of image processing algorithms in practical applications.

The analysis can be described in the following four steps:
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Figure 5.1: Workflow overview of Threshold-Based BRISQUE-Assisted Deep Learning
for Enhancing Crack Detection in Concrete Structures.
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1. The performance of the model is evaluated on both pristine images and their de-

graded images generated by artificially introducing Gaussian noise and Gaussian

blur to the pristine images. This measures the impact of image degradation on

crack classification metrics, including accuracy, F1 score, and MCC.

2. The BRISQUE scores of the degraded images are computed using equation 3.1

to study the sensitivity of BRISQUE to noise and blurred images.

3. The optimal BRISQUE score threshold, BT is determined by comparing the per-

formance of the VGG16 model across different datasets with varying BRISQUE

score threshold values.

4. The impact of BT and data-cleaning on the performance of the model is studied

by evaluating the trained Threshold-based BRISQUE-assisted VGG16 model on

an independent real-world testing dataset.

5.2 Dataset Acquisition and Pre-processing

For this study, images from a large dataset comprising 45 high-resolution images of

concrete surfaces with visible cracks was employed, as detailed in section 4.3. Out

of the 45 images available, only 9 images were captured at 50 degrees, i.e., the angle

that allows for the model to achieve highest accuracy (See Figure 4.20) under diffused

lighting settings. These 9 images captured in real world, along with one more concrete

image captured in laboratory was utilised. The images have either smooth areas or

rough areas in the background with cracks (hairline cracks or thick cracks or multiple

crack networks).

For example, the image captured in the laboratory as shown in Figure 5.2(a) has a

smooth surface but has multiple cracks on it. Of the remaining 9 real-world captured

images: four images display irregular cracks (two horizontal, one diagonal, and one

vertical) on a rough, greyish background; two images show multiple cracks and one

image features a single thin crack running horizontally through the centre on a dark

complex background (that has dark stains); and the remaining two images exhibit thin
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cracks running through the centre on a smooth concrete surface. Each of these 10 images

are further divided into 360 sub-images. This dataset covers different crack types and

was collected from various locations and environments, both indoors and outdoors, to

ensure that the damages reflect those typically found in Civil infrastructures. After

the pre-processing step, some sub-images have thin cracks or hairline cracks, some of

them have thick cracks, and some of them have no cracks, and some of them have

stains that resemble cracks. In Chapter 7, following the manual annotation of cracks

for the binary classification task, an additional preprocessing step was implemented to

prepare the data for multi-class image classification to differentiate thin cracks from

thick cracks. The Otsu thresholding algorithm was employed to identify thick cracks

[206]. In cases where the algorithm failed to form a bimodal histogram then those

images were classified as thin cracks [207]. The width of these cracks were found to be

within the range of 0.1mm to 0.5mm using crack width ruler.

Overall, a dataset of 3600 sub-images, each corresponding to a size of 224×224

pixels, was curated. Of this dataset, 2100 images displayed cracks, and 1500 images

displayed clear concrete surfaces, which were manually labelled by the author. The

”baseline” images were degraded by introducing common degradations such as Gaussian

noise and Gaussian blur. For each of these pixels, BRISQUE scores were calculated.

Subsequently, based on these BRISQUE scores, corresponding colour maps for all the

pixels were generated. The colour maps represent the quality of the images, i.e., lighter

pixels indicate better image quality, and darker pixels implies low image quality as

illustrated in Figure 5.2(b).

Gaussian noise was applied to the original images by increasing the magnitude of

the noise level from 10% to 50%; an example of this is shown in Figure 5.3 [208].

In equation (5.1), the coordinates (x,y) represent the pixel coordinates, s(x,y) is the

original image, n(x,y) is the added Gaussian noise, and w(x,y) is the resulting noisy

image [210].

w(x, y) = s(x, y) + n(x, y) (5.1)
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(a) (b)

Figure 5.2: a) Baseline (Pristine) image b) colour map of Pristine Image (lighter the
pixels, the better the image quality).

(a) (b)

Figure 5.3: a) Noisy image of noise factor 50 b) colour map of Noisy image (lighter the
pixels, the better the image quality) [208].

(a) (b)

Figure 5.4: a) Blurred image of blur factor 8 b) colour map of Blurred image (lighter
the pixels, the better the image quality) [209].
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Gaussian blur was applied to the images by adjusting the blur factor from 1% to

10%, aiming to replicate various levels of image blur [209] similar to real-world scenarios

such as motion, defocus, or optical irregularities. This range of blur factors helps to

explore how Gaussian blur affects images, from slight blurring to more identifiable

effects, represented by the equation (5.2),

Iblurred = I ⊗G(σ2) (5.2)

where I is the original image without the blur, Iblurred is the blurred image that

contains Gaussian blur, G is a Gaussian kernel with standard deviation σ and ⊗ denotes

the convolution operation [211].

The Gaussian blur operation was implemented through convolution with a Gaussian

kernel. This involves convolving the image with a Gaussian kernel with a specific stand-

ard deviation (σ) to create natural blurring found in real-world or practical settings.

By systematically varying the blur factor, the study aimed to examine the impact of

blur on image quality. Figure 5.4 shows blurred image and its corresponding colour

map.

Noise levels up to 50% were chosen because beyond this threshold, cracks in the

image become barely visible, making manual labelling challenging. Similarly, the choice

of blur levels up to 10% was made because further increase in blur reduces the clarity

of the image, making its features nearly invisible to the naked eye. At this stage,

changing the noise and blur levels to a point where features are still visible to the

naked eye is important for ground-truthing. Further, noise levels up to 50% and blur

levels up to 10% were chosen as they reflect real-world imaging conditions. Beyond

these limits, such extreme distortions are unlikely to occur naturally, making higher

levels impractical for consideration [212, 213, 214].

5.3 Evaluation of the VGG16 model

The VGG16 model was used for this work. The reasoning behind this was because it

is one of the most commonly used models for crack detection as described in Chapter

104



Chapter 5. Threshold-Based BRISQUE-Assisted Deep Learning Model

3. The performance evaluation of the VGG16 model, described in Figure 4.19, was

conducted on baseline (pristine), noisy, and blurred datasets using evaluation metrics,

outlined in Table 4.5. The positive predictive value (PPV), also called as Precision is

the ratio of correctly predicted positive instances (TP) to the total number of positive

predictions (TP+FP), as described in equation 5.3 was also computed [203].

PPV (Precision) =
TP

TP + FP
(5.3)

A testing matrix was created to evaluate the performance of the VGG16 model

under different conditions. This matrix outlines the different combinations of training

and testing scenarios used during the evaluation as shown in Table 5.1. The rows

indicate the testing conditions: noisy, blurred, and pristine images, while the columns

represent the training conditions: noisy, blurred, and pristine images. The ”x” marks

in the matrix indicate specific training and testing combinations. For example, ”Train

on Noisy, Test on Noisy” means that the model was trained on noisy images and then

tested on noisy images. Similarly, ”Train on Blur, Test on Pristine” means that the

model was trained on blur images and then tested on pristine images.

Table 5.1: Testing Matrix.

Train on
Noisy

Train on
Blur

Train on
Pristine

Test on
Noisy

x x

Test on
Blur

x x

Test on
Pristine

x

5.4 Results

Figure 5.2(a) and Figure 5.2(b) represents baseline (pristine/original) image and its cor-

responding colour map of BRISQUE scores, which is plotted after data pre-processing

as explained in subsection 5.2. Various types of degraded images with different levels
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of noise and blur were examined to evaluate their impact on BRISQUE scores within

the context of concrete crack detection for Civil infrastructure.

Figure 5.3 and Figure 5.4 display the images with noise level 50 and blur level 8,

respectively, along with their corresponding colour maps of BRSIQUE scores. The

colour maps clearly show that regions with greater noise or blur have darker pixels,

indicating higher BRISQUE scores i.e., lower image quality.

5.4.1 The Sensitivity of BRISQUE to Noise and Blur

Figure 5.5: Comparison of BRISQUE scores for various levels of noise and blur in image
processing.

Figure 5.5 displays the BRISQUE scores of training and testing datasets with dif-

ferent levels of noise (0% to 50% with an increment step of 10%) and blur (0%, 1%, 2%,

5%, 8%, and 10%). Both subplots feature a solid line representing the training data

and a dashed line representing the testing data. As seen from the plot, the BRISQUE

score increases as the levels of noise and blur increase in the datasets, indicating a

decline in image quality.

The colour maps and their corresponding BRSIQUE scores confirms the expected

impact of noise and blur on image quality i.e., the baseline image has the lowest score.
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As noise and blur levels increase, the BRSIQUE score increases, indicating a decline

in image quality. The figure illustrates that while noise levels increased by 10%, the

BRISQUE scores displayed a nearly linear relationship. In contrast, a mere 1% increase

in blur levels led to a more sensitive and gradually increasing trend in BRISQUE

scores. This difference indicates that blur has a more prominent effect on image quality

compared to noise levels.

For example, as noise levels increased from 10% to 50%, BRISQUE scores increased

by a total of 24, highlighting the sensitivity of BRISQUE to changes in noise. In

contrast, the sensitivity to blur levels exhibited a rise of 24 in BRISQUE scores as blur

levels increased from 1% to 10%, highlighting the greater impact of blur on BRISQUE

scores compared to noise levels. Therefore, it is essential to assess the quality of the

images and their impact on the model recognition capabilities. This can be achieved by

correlating BRISQUE scores with performance of the model, and develop a thorough

methodology for optimising image quality.

5.4.2 Classification metrics on Distorted Images

The VGG16 model underwent training and testing on both original (pristine) datasets

and datasets with varying noise or blur levels. The performance metrics are shown in

Figure 5.6 and Figure 5.7. For some, F1 and MCC scores were represented as zero in

Figure 5.7, suggesting no true positives were identified in the predictions. This could

be due to the inability of the model to correctly classify any images in the testing set,

indicating overfitting and poor performance on that dataset.

The X-axis in the graphs represents various datasets that were used to train and

test the VGG16 model. The Y-axis in the graphs represents the performance of each

model, as measured by three metrics - accuracy, F1 score, and MCC. The bar graphs

illustrate two scenarios. In the former scenario, the model was trained on a clean

dataset and tested on noisy datasets ranging from 0% to 50% noise, where 0% represents

pristine images. Conversely, in the latter scenario, the model was trained and tested on

datasets with increasing noise levels. Similarly, for blur evaluation, the model was either

trained on pristine images and tested on blurred datasets ranging from 0% to 10% blur,
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Figure 5.6: Performance comparison of VGG16 neural network model on Noisy images
using accuracy, F1 score and Matthew’s correlation coefficient metrics.
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Figure 5.7: Performance comparison of VGG16 neural network model on Blurred images
using accuracy, F1 score and Matthew’s correlation coefficient metrics.
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or trained and tested on datasets with increasing blur levels, where 0% blur denotes

pristine images. The black bars represent accuracy, the dark grey bars represent the

F1 score, and the light grey bars represent MCC.

In both cases the performance of the model declined with increasing levels of noise

and blur, consistently showing that the model trained and tested on pristine images

performed the best. For example, when tested on 0% noisy data, the model trained on

pristine images achieved an accuracy of 80.2%, whereas the accuracy dropped to 66.3%

when tested on 50% noisy data. Similarly, when tested on 0% blur data, the model

trained on pristine images achieved an accuracy of 80.2%, while the accuracy decreased

to 48.6% when tested on 10% blur data.

The model can classify degraded datasets more effectively when it is trained on

degraded images instead of pristine ones. This is expected, the network was trained

on degraded images, allowing it to recognise similar degradation during testing, which

helps it better identify cracks in such images. On the other hand, a network trained on

degraded images could result in reduced performance when tested on pristine images

[10] and as such, it could not generalise. An approach that would allow this would be

to ensure that the quality of the images used by the model are of high quality, through

an image quality assessment workflow.

To determine whether the differences in model performance results were statistic-

ally significant, a one-way analysis of variance (ANOVA) was performed [215]. This

analysis compares the means of three or more groups to see if there are significant dif-

ferences among them, based on the obtained p-values. A low p-value, generally below

0.05, suggests strong evidence against the null hypothesis, implying that the observed

differences are unlikely to be random and supporting the alternative hypothesis [88].

In our analysis, noisy images produced a p-value of 2.92e−09, indicating statistically

significant results and leading to the rejection of the null hypothesis. Additionally, the

ANOVA for blurred images resulted in a p-value of 0.0028, also suggesting support for

the alternative hypothesis.

The decline in the performance of the model, ranging from 10.4%-24.3% with in-

creasing levels of noise and blur highlights the critical role of careful data pre-processing
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i.e., ensuring clean, relevant, and high-quality data before training the model can re-

duce the effects of noise and blur in deep learning applications. The next step was to

automate this pre-processing stage to ensure that only high-quality images are utilised

for model training. This was achieved by establishing a threshold for BRISQUE scores

to assess the quality of images considered suitable for training.

5.4.3 Optimising BRISQUE score Threshold for crack detection

This work utilised a dataset comprising 5665 sub-images, containing both the pristine

and degraded images. BRISQUE scores of all these were computed and organised into

five datasets based on scores ranging between <45 and <85, as outlined in Table 5.2.

Subsequently, each dataset was split into train and test sets (70% train and 30% test),

manually labelled as positive (cracks) or negative (no cracks), to train and test the

VGG16 model.

The analysis revealed that the optimal performance of the model was achieved when

the BRISQUE score threshold was set to <45, despite the limited availability of training

images as shown in Table 5.2. The performance of the model gradually decreased as the

BRISQUE score threshold increased from <55 to <85. This decrease was not consist-

ently linear due to change in the number of training images used. The assumption that

performance of the model correlates positively with the number of training images is

common, yet the specific amount of training data required for deep learning to achieve

satisfactory performance remains uncertain [216]. Notably, increasing the training set

size from 720 to 2160 images has improved model performance for BRISQUE score

thresholds <55 and <65. However, the performance of the model decreased when the

dataset included images with BRISQUE scores <75 and <85. Interestingly, despite

having fewer training images (less than nearly 10 times), the model achieved its best

performance when the BRISQUE score threshold was set to <45.

The distribution of BRISQUE scores is visually represented in Figure 5.8, which

shows distinct score intervals created using histogram binning. It was observed when

the BRISQUE score threshold was set to <85 the model achieved accuracy of 0.61, F1

score of 0.69, and MCC of 0.30. Hence, images with high levels of degradation sig-
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Table 5.2: Comparison of model performance at different BRISQUE Score Threshold
values.

BRISQUE
Scores

Number of
training
images

Accuracy F1 score MCC

<45 360 0.8 0.77 0.61

<55 720 0.66 0.73 0.40

<65 2160 0.73 0.76 0.49

<75 3240 0.73 0.66 0.48

<85 3960 0.61 0.69 0.30

Figure 5.8: Performance comparison of VGG16 neural network model on images with
different BRISQUE score thresholds using accuracy, F1 score and Matthew’s correlation
coefficient metrics.
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nificantly degrade the performance of VGG16 model and should be discarded. These

findings reveal a previously unexplored relationship between BRISQUE scores, image

quality, and performance of neural network models for detecting cracks in low-light

environments.

Figure 5.9: BRISQUE-based Data Cleaning, where B and BT represents BRISQUE
score, and BRISQUE score threshold, respectively.

5.4.4 Automated BRISQUE-based Data Cleaning

Figure 5.9 illustrates the process of automated BRISQUE-based data cleaning of images

developed as part of this work. The algorithm initially loads images, computes the

BRISQUE scores (B) for each image, and compares them to a pre-defined threshold

value. In this study, the BRISQUE score threshold (BT ) is set at a constant value of

45 to address the requirements of detecting concrete cracks in low-light environments.
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Figure 5.10: Impact of BRISQUE Score Threshold (BT<= 45) on Model Performance
- where data cleaning indicates that the trained model is tested on images within
BRISQUE Score Threshold i.e., B<BT , and Inclusive Analysis indicate that the testing
dataset includes all images, both within and exceeding the BRISQUE score threshold
i.e., 0<B<100.

If the BRISQUE score of the image exceeds the set threshold, the image is discarded;

otherwise, it is retained for further image processing. Thus, this allows for the automatic

rejection of all low-quality images before VGG16 neural network model is used for

crack detection. Based on prior analysis and findings, the author set a BRISQUE score

threshold of 45. Therefore, when images are captured using the ALICS device under

low-light conditions, images under this BRISQUE score are considered to be of good

quality.

Since ALICS is designed for on-site image capture and crack detection, its ability

to filter out low-quality images directly improves detection accuracy. Future work will

involve the ALICS device capturing a new image if it finds any image with a BRISQUE

score above the threshold value, ensuring that only high-quality images are captured.

By ensuring that only high-quality images are processed, the algorithm improves the

performance without requiring additional post-processing steps. This approach makes

ALICS reliable for real-time crack detection applications.
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5.4.5 Evaluation of VGG16 using Threshold-based BRISQUE IQA

algorithm on images captured outside the lab

To further evaluate the performance of the model, an additional testing was conducted

using field data. Specifically, 11 new images captured under diffused lighting settings in

the low-light environments at Bowling Harbour area in Glasgow at 50 degrees were util-

ised. These images had a resolution of 5429×3458 pixels. Each image was subdivided

into 360 blocks of size 224×224 pixels, resulting in a total of 3960 images, including

both cracked and uncracked samples, which were manually labelled.

The model trained on images with a BRISQUE score <45 was used for testing, as

this threshold resulted in superior model performance when images are captured under

low-light condition using ALICS, as mentioned in the previous section. The model

was tested under two distinct scenarios, one involving data cleaning within a specified

BRISQUE score threshold <45 and the other omitting threshold-based data cleaning

process to include all images, both within and exceeding the BRISQUE score threshold

values i.e., 0<B<100 (includes all BRISQUE scores).

This inclusive dataset covered a broader range of image quality levels, leading to

a noticeable impact on the performance metrics of the model. It is worth noting

that the performance metrics showed significant improvements when data cleaning

was conducted within the BRISQUE score threshold range, as compared to the one

without data-cleaning as shown in Figure 5.10. The improvements in classification

metrics include:

• 6.9% increase in accuracy, indicates that the model classified concrete cracks and

non-cracks more effectively, reducing misclassifications.

• 15.9% increase in TPR indicates more effective crack detection rate.

• 0.6% improvement in PPV, which is relatively modest. However, it signifies a

slight reduction in false positives predictions, which further reduces unnecessary

inspections.

• 9.1% improvement in the F1 score, signifies an overall better performance of the
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model.

• 21.5% increase in MCC, reflects the ability of the model to handle imbalanced

datasets.

5.5 Summary

This chapter explored the correlation between the BRISQUE-IQA method and the

VGG16 crack classification model. The VGG16 model performed best when trained

and tested on clean datasets than degraded datasets containing Gaussian noise and

blur, as expected. The evaluation using BRISQUE scores showed that when the model

was trained on pristine data, as the noise or blur in the image increased, the BRISQUE

score also increased, indicating a decrease in image quality.

Incorporation of transfer learning and fine-tuning to the VGG architecture helped

in improving crack detection accuracy, thereby making a valuable contribution to the

field of structural health monitoring and image quality assessment. The model achieved

effective performance with BT values below 45, even when trained on 90% less data.

This study can also be applied to diverse fields, including medical imaging and face

recognition, where high-quality images are critical for accurate diagnoses.
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Chapter 6

Comparative Analysis of

Multi-channel VGG-n Models

implementing Directional

Lighting

Chapter 6 explores the advantages of directional lighting by implementing a novel

five-channel neural network model. It is customised based on the traditional VGG

architecture, which is initially trained on the ImageNet dataset utilising three-channel

colour (Red, Green, Blue) images. The objective is to adapt and effectively fine-tune

the pre-trained model to accept five-channel images and achieve accurate classification

results.

The following sections explore the concepts and methodologies underlying the sig-

nificance of this method in automated inspection systems.

6.1 Introduction

Numerous studies have demonstrated that brightness and lighting direction significantly

influence crack detection accuracy, yet they often fail to fully utilise the advantages of

117



Chapter 6. Comparative Analysis of Multi-channel VGG-n Models implementing
Directional Lighting

directional lighting [9] as explained in 3.5.4. [96, 99] employed various deep learn-

ing algorithms such as YOLO, Faster RCNN to investigate the effectiveness of CNN

techniques under challenging lighting conditions. However, all algorithms struggled

to accurately identify cracks due to poor lighting. Poor lighting reduces the contrast

between the cracks and the background, making it difficult for feature extraction as

explained in Chapter 3.

Directional lighting requires higher number of images than the standard diffused

lighting which uses 3-channel (RGB) images. Based on the reviewed literature, there is

currently no multi-channel deep learning model with detailed evaluation of directional

lighting concrete inspection technology. The development of a novel five-channel deep

learning algorithm is the focus of this chapter.

The VGG deep convolutional neural network architecture, commonly used for crack

detection for Civil infrastructure, was employed in this study [123, 217]. The five-

channel neural network model is implemented based on the VGG-16 and VGG-19 ar-

chitectures, referred to here as VGG-n, where n = 16 for VGG-16 and 19 for VGG-19.

Conventional CNNs typically use three-channel (RGB i.e., colour images) inputs.

However, the novel five-channel model incorporates images captured from five different

lighting directions: Right (R), Down (D), Left (L), Up (U), and Diffused (A) captured

using the hardware setup described in Chapter 4.

The main objectives of this chapter are as follows:

1. Investigate the potential of directional lighting in binary image classification

tasks.

2. Implement a novel five-channel DL model that utilises five-channel dataset, where

each channel represents the gray scale version of the image captured in R, D, L, U, and

A directions, respectively.

3. The traditional and five-channel neural network models implemented in this

chapter employ hyperparameter tuning, regularization techniques, and a stratified

cross-validation approach to avoid overfitting, ensuring that the models can generalise

well to new, unseen data.

4. Evaluate the performance of the five-channel VGG-n neural network models
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and compare it with their conventional (traditional) three-channel models that utilise

diffused images alone.

6.2 Methodology

ALICS, described in Chapter 4, is used to capture images in low-light conditions using

a directional lighting approach to extract crack information effectively. The following

subsections provide a detailed description of each step involved in implementing the

VGG-n multi-channel neural network models in detecting cracks from images captured

by ALICS.

6.2.1 Dataset Description and Pre-processing

ALICS captures images of size 5429×3458 pixels in R, D, L, U, and A directions

respectively, as shown in Figure 4.18 and are further cropped into smaller blocks of

size 224×224 pixels to match the input size requirements of traditional VGG-n models.

These images are combined to create a five-channel tag image file format (TIFF) image,

where each channel represents a specific lighting direction.

TIFF is a widely used file format for storing high-quality images, making them

suitable for multi-channel image analysis applications [218]. Transfer learning and

fine-tuning approaches are utilised with the multi-channel VGG-n architectures to ac-

curately classify cracks. For dataset preparation, a well-balanced dataset is created

for training and testing the neural network models, The performance of the model is

evaluated for binary image classification tasks as explained in Section 6.3.2.

6.2.2 Stratified five-fold cross validation, Hyperparameter tuning, and

Regularization

In this work, a stratified five-fold cross-validation technique is implemented, where one

subset was selected as the test set in every iteration, while the remaining four were used

for training the model as shown in Figure 3.5. Performance metrics such as accuracy,

precision, F1-score, recall, and MCC are calculated on the test fold for each iteration.
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After all the ’k’ iterations are complete, the average performance across all iterations

is calculated using equations described in Section 6.3.2. This provides an estimate of

how well the model will perform on new, unseen data. Repeating the process ’k’ times

with different training and test fold combinations reduces the performance estimate

variance. The study also employs Hyperparameter tuning, Regularization, and early

stopping techniques as explained in detail in Chapter 3.

6.2.3 Generation of five channel image

When using the conventional VGG-n architectures, an input image of size 224×224

pixels, with three colour channels (red, green, and blue) is required. However, the

proposed deep learning model utilises a five-channel TIFF input image. To generate a

five-channel TIFF image, the initial step involves converting the original three-channel

images captured under different lighting directions (R, D, L, U, A), into gray scale im-

ages (224, 224, 1) i.e., images of size 224×224 pixels with single gray channel. These

gray scale images are then stacked together along the third dimension to form a single

five-channel image (224, 224, 5) i.e., each gray scale image becomes a separate channel

in the new multi-channel image. Therefore, each gray scale image corresponds to one

channel, allowing the combined image to capture information from all the five lighting

directions. Finally, the resulting multi-channel image is saved in TIFF format, denoted

by the .tiff extension, as illustrated in Figure 6.1. Since the five-channel generated im-

ages are of very high quality and contain image information from all five images, they

are stored in TIFF format. These five-channel images constitute the five-channel data-

set used for training and testing the novel five-channel VGG-n model, which utilises an

input image of dimensions (224, 224, 5).

6.2.4 Implementation of VGG-n multi-channel neural network models

The conventional three-channel VGG-n model accepts an input image of size (224, 224, 3),

where 3 represents the RGB colour channels. The five-channel VGG-n model requires

an input image of size (224, 224, 5), where 5 channels represents the gray scaled version

of the image captured in R, D, L, U, and A, directions respectively. To implement the
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Figure 6.1: Generation of five-channel TIFF image. The three-channel (RGB) colour
images (224, 224, 3) are captured in the right, down, left, up, and diffused directions
(top row). These five images are further converted to one-channel gray scale images
(224, 224, 1) (second row). These images are combined together to form a single five-
channel TIFF image of size (224, 224, 5) (bottom row).
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five-channel model from the traditional three channel model, the number of channels

should be adjusted from 3 to 5. When transitioning from a three-channel input image

to a five-channel input image, only the trainable parameters in the first convolutional

layer are affected, while the other convolutional layers remain unchanged as shown in

Figure 6.2 and Figure 6.3.

Figure 6.2: Summary of VGG-16 three-channel and five-channel models.

The change in the number of trainable parameters from 1792 to 2944 in the first

convolutional layer of the proposed model is detailed in Table 6.1. For conventional

models, there are 64 filters of size 3×3 kernel, resulting in a total of 576 weights.

With three channels, the total number of weights become 1728. Additionally, there
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Figure 6.3: Summary of VGG-19 three-channel and five-channel models.
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are 64 biases, bringing the total trainable parameters to 1792. In the case of the five-

channel models, the values for the number of filters, filter size, and number of weights

per filter remain the same. However, with five channels, the total number of weights

become 2880. Similar to three-channel, there are 64 biases, resulting in a total of 2944

trainable parameters. This highlights the impact of the number of channels on the

total trainable parameters in the first convolutional layer of the VGG-16 and VGG-19

models.

Table 6.1: Parameter Comparison: 3-channel vs 5-channel VGG-16/VGG-19 models in
the first convolutional layer.

Parameter Values for 3-channel Values for 5-channel

Number of filters 64 64

Filter size 3×3 3×3

Number of weights per filter 9 9

Total weights for all filters 64×9 = 576 64×9 = 576

Number of channels 3 5

Total weights for all channels 576×3 = 1728 576×5 = 2880

Number of biases 64 64

Total trainable parameters 1728 + 64 = 1792 1728 + 64 = 2944

This approach takes the advantage of the pre-trained VGG-n models by transferring

their weights to the corresponding layers of the five-channel VGG-n models, except

for the first convolutional layer. The weights of the first three channels of the first

convolutional layer in are copied as it is, while those of the additional two channels are

calculated by averaging across the existing channels, as illustrated in Figure 6.4 and

Figure 6.5. This step allows to extend the capability of the proposed models to handle

five-channel input, while still benefiting from the pre-existing weights for the initial

three channels [75].

To optimise the performance of the proposed model in classifying the five-channel

dataset as either crack or no crack, transfer learning and fine-tuning techniques are em-

ployed. This involves utilising the pre-trained weights of the VGG-16 and VGG-19 mod-

els and fine-tuning them to adapt to the specific features of the new five-channel dataset

implemented for this research, enabling the model to efficiently learn the new relevant

features. The step-by-step implementation of the customised five-channel VGG-16 and
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Figure 6.4: Calculating weight values for additional channels in the first convolutional
layer of the proposed VGG-16 five-channel neural network model.
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Figure 6.5: Calculating weight values for additional channels in the first convolutional
layer of the proposed VGG-19 five-channel neural network model.
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VGG-19 models is elaborated in detail in the following section.

6.3 Research Implementation

This section outlines the detailed implementation of both the traditional three-channel

VGG-n architecture and the proposed five-channel VGG-n architecture. Subsequently,

the performance of these models is evaluated on real-world scenarios using various

performance metrics for binary crack classification tasks.

6.3.1 Implementation of Traditional VGG-n Model

The conventional VGG-16 model has 16 weight layers (13 convolutional and 3 fully

connected) as shown in Figure 6.6, and the conventional VGG-19 model has 19 weight

layers (16 convolutional and 3 fully connected) as shown in Figure 6.7. The two tradi-

tional models are trained and tested on three-channel images i.e., the diffused images

utilising stratified five-fold cross-validation, hyperparameter tuning, and early stopping

regularization techniques to prevent overfitting. The hyperparameter tuning is per-

formed using learning rates of 0.1, 0.01, and 0.001, and batch sizes of 16, 32, and 64.

The number of epochs is set to 100 with early stopping criteria.

6.3.2 Implementation of the Five-Channel VGG-n architecture for

Image Classification

The block diagram in Figure 6.8 showcases the step-by-step process involved in modify-

ing and fine-tuning the VGG-n model for five channel crack classification. The VGG-n

(where n=16, 19) five channel binary classifier models are represented in detail in Figure

6.9 and Figure 6.10, respectively.

1. Five-channel dataset preparation: To prepare data compatible with the im-

plemented five-channel deep learning model, a dataset of five-channel TIFF images is

created as explained in subsection 6.2.3. The entire five-channel dataset of 1335 images

is split into training and testing sets, and these images are manually annotated as crack

or no crack. For these 1335 images, stratified five-fold cross-validation splits the dataset

127



Chapter 6. Comparative Analysis of Multi-channel VGG-n Models implementing
Directional Lighting

Figure 6.6: Architecture of Traditional VGG-16 3-channel model.
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Figure 6.7: Architecture of Traditional VGG-19 3-channel model.
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Figure 6.8: Step-by-step Implementation of the five-channel/modified VGG-n Model
for crack classification, utilising transfer learning and fine-tuning approaches.
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into five folds, each containing 267 images. In each iteration, 1068 images (four folds)

are used for training, while 267 images (one fold) are used as the test set. This process

repeats five times, ensuring each fold is used as a test set once as shown in Figure 3.5.

2. Five-Channel VGG-n Model Architecture: The five-channel model is imple-

mented using the conventional three-channel model without including the top (fully

connected) layers. The input shape of the traditional model is adjusted to accommod-

ate the five-channel images by modifying its configuration as explained in subsection

6.2.4.

3. Fine-Tuning: To fine-tune the model, most of the layers are made non-trainable,

except for the last six layers. This means that during training, only the weights of

these six layers will be updated. A custom sequential model is built on top of the base

model as shown in Figure 6.9 and Figure 6.10.

4. Model Training: The implemented five-channel model was trained on the training

data. After experimenting with various combinations of batch size and learning rate,

the optimal performance was achieved with a learning rate of 0.01 and a batch size of

32. The model was compiled using the Adam optimiser and the binary cross-entropy

loss function.

5. Model Evaluation: After training, the performance of the model is evaluated

on testing dataset using evaluation metrics described in section 5.3. The proportion

of false positive predictions out of all actual negative instances, known as the False

Positive Rate (FPR) shown in equation 6.1, is also computed.

PPV =
FP

TN + FP
(6.1)

6. Prediction and Confusion Matrix: The trained model is the used to make pre-

dictions and the predicted probabilities are converted into binary class labels (0 or 1).

To further assess the performance of the model, a confusion matrix is computed. The

performance of the conventional three-channel VGG-n models and five-channel VGG-n

model is evaluated using various metrics described in Section 5.3 for binary crack clas-

sification tasks. To determine these metrics, the precision, recall, accuracy, F1 score,
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Figure 6.9: Architecture of VGG-16 Five-channel binary classification model.
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Figure 6.10: Architecture of VGG-19 Five-channel binary classification model.
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and MCC are calculated for each of the five folds of the model and then averaged using

equations (6.2) - (6.6).

Overall Precision =
1

k

k∑
i=1

Prei (6.2)

Overall Recall =
1

k

k∑
i=1

Reci (6.3)

Overall Accuracy =
1

k

k∑
i=1

Acci (6.4)

Overall F1 score =
1

k

k∑
i=1

F1i (6.5)

Overall MCC =
1

k

k∑
i=1

MCCi (6.6)

where:

• i indicates the range of folds, which vary from 1 to k;

• k indicates the total number of folds in the cross-validation;

• Pre indicates Precision;

• Rec indicates Recall;

• Acc indicates the Accuracy;

• F1 indicates F1 score;

• MCC indicates Matthew’s correlation coefficient.

Figure 6.11 provides a visual representation of the data preparation, model archi-

tecture, and crack classification process. This design aims to leverage the capabilities

of the modified model to accurately classify concrete crack specimens based on the

images captured under directional lighting conditions. The VGG-n-five-channel takes
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the five-channel images as input and provides a binary classification result as either

positive or negative, indicating the presence or absence of a crack, respectively.

6.4 Results

6.4.1 Determination of best performing three and five channel models

The average accuracy across all folds for different combinations of hyperparameters

was computed as shown in Figure 6.12 and Figure 6.13. It is evident from the graph

that the accuracy of the five-channel models is consistently better compared to the

three-channel models in both VGG-16 and VGG-19 architectures.

Figure 6.12 illustrates that the VGG-16 five-channel model achieved the highest

accuracy of 95.1% using the hyperparameter combination (32, 0.001), exceeding the

VGG-16 three-channel model’s highest accuracy of 89% with the same hyperparamet-

ers. Similarly, Figure 6.13 shows that the VGG-19 five-channel model, using the hy-

perparameter combination (64, 0.001), achieved the highest accuracy of 91.4%, outper-

forming the VGG-19 three-channel model’s highest accuracy of 88.4% obtained with

the (32, 0.001) hyperparameter combination.

6.4.2 Comparison of VGG-n three and five channel models

Figure 6.14 provides a detailed comparison of the performance metrics between the top-

performing VGG-16 and VGG-19 models across both three-channel and five-channel

configurations. Additionally, Table 6.2 displays the corresponding confusion matrices

for these models. In the case of VGG-16, transitioning from the three-channel to

the five-channel configuration resulted in significant improvements across all metrics:

accuracy increased from 89% to 95.1%, precision from 89% to 96.3%, recall from 89%

to 94.2%, F1 score from 89% to 95.2%, and MCC from 77.5% to 90.3%. Similarly,

for VGG-19, the five-channel model showed noticeable improvements compared to the

three-channel model: accuracy improved from 88.4% to 91.4%, precision from 90.3%

to 92.5%, recall from 87.1% to 90.5%, F1 score from 88.6% to 91.5%, and MCC from

77% to 83%.
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Figure 6.11: Step-by-step Implementation of the Modified VGG-n Model for Five-
Channel Image Classification.
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Figure 6.12: VGG-16 three-channel crack classification model vs VGG-16 five-channel
crack classification model across different combinations of hyperparameters.
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Figure 6.13: VGG-19 three-channel crack classification model vs VGG-19 five-channel
crack classification model across different combinations of hyperparameters.

138



Chapter 6. Comparative Analysis of Multi-channel VGG-n Models implementing
Directional Lighting

Figure 6.14: Comparison of performance metrics across VGG-n three and five channel
models.
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Therefore in both architectures, the five-channel models consistently exhibited higher

accuracy, indicating their improved ability to accurately classify cracks. They also

achieved higher precision, i.e., they make fewer false positive predictions. Additionally,

their higher recall rate signifies fewer false negatives, ensuring that most of the actual

cracks were detected. Moreover, the higher F1 score demonstrates a balanced per-

formance between precision and recall, indicating accurate classification of both cracks

and non-cracks without bias towards either class. Furthermore, the Matthews correla-

tion coefficient reflects improved overall performance in crack detection tasks i.e., the

five-channel models perform well across all aspects of classification. The findings sug-

gest that the five-channel models exhibit better performance compared to traditional

three-channel models. This is because, incorporation of additional channels into the

traditional models provided additional information and features, thereby improving

their ability to learn more distinctive representations of concrete cracks.

Table 6.2: Confusion matrices of VGG-n three and five channel models.

Model TP FP FN TN

VGG-16 3-channel 119 15 15 118

VGG-16 5-channel 129 5 8 125

VGG-19 3-channel 121 13 18 116

VGG-19 5-channel 124 10 13 121

When comparing the five-channel configurations of VGG-16 and VGG-19 across

various performance metrics, VGG-16 consistently outperformed VGG-19. Specifically,

VGG-16 five-channel demonstrated an accuracy of 95.1%, precision of 96.3%, recall of

94.2%, F1 score of 95.2%, and MCC of 90.3%, whereas VGG-19 five-channel achieved

91.4% accuracy, 92.5% precision, 90.5% recall, 91.5% F1 score, and 83% MCC. These

findings indicate that VGG-16 five-channel outperformed VGG-19 five-channel in ac-

curately identifying and categorising cracks from non-crack regions. The improved ac-

curacy in VGG-16 five-channel model is likely due to the additional spatial information

captured from different directions, enhancing feature extraction. The VGG16 outper-

forming VGG19 has been observed before in the international literature by [219]. Tra-

ditional models learn features obtained from single image only, while the five-channel
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model leverages information from five different images captured from different direc-

tions, thereby enhancing its robustness and ability to learn significant features. In

case of traditional models that utilise only information obtained from one single image,

whereas in case of five-channel images the model learn important features from five

different images, making model more robust.

6.4.3 Evaluation Time

The evaluation times of various VGG-16 and VGG-19 model configurations were meas-

ured to assess their computational efficiency. The results indicate that the five-channel

configurations are faster in testing an image compared to their three-channel models.

Each channel captures a gray scale version of the image from different lighting direc-

tions, allowing the model to better understand texture, and edge details. In contrast,

the three-channel RGB model relies on colour variations, which may be less effective

in highlighting structural differences.

The trained five-channel and traditional three-channel models were used to evaluate

whether an image contained a crack. The five-channel VGG-16 model required 57

milliseconds, and the five-channel VGG-19 model took 65 milliseconds. In contrast, the

traditional VGG-16 and VGG-19 models required 87 milliseconds and 107 milliseconds,

respectively. These results indicate that the five-channel models, particularly the five-

channel VGG-16, achieved faster evaluation times compared to the traditional models.

The improvement is due to the reduced complexity of grayscale images in the five-

channel model compared to the RGB images in the three-channel model. In an RGB

image, each pixel has three colour values (Red, Green, and Blue), each having its own

intensity value, requiring the model to process colour dependencies. In contrast, a five-

channel gray scale image consists of five gray scale images, each with a single intensity

value per pixel (0-255), eliminating colour information and simplifying data processing

per channel. Although the five-channel model has more channels, the gray scale inputs

reduce the computational load by focusing on structural features relevant to tasks like

crack detection, enabling fewer convolutional operations in early layers and producing

more efficient feature maps, thereby leading to faster evaluation times. Additionally,
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the simpler gray scale images allow for more efficient memory access, further enhancing

processing times. These findings highlight the advantages of utilising additional chan-

nels, with VGG-16 five-channel models demonstrating the shortest evaluation times

among all configurations used in this chapter. Figure 6.15 visually illustrates these

differences, where VGG-16 three-channel model was represented in dark grey, VGG-16

five-channel in black, VGG-19 three-channel in light grey, and VGG-19 five-channel in

grey, allowing clear comparison of their respective evaluation speeds.

Figure 6.15: Evaluation Time for VGG-16 and VGG-19 three and five channel models.

6.5 Summary

The comparative analysis of VGG-16 and VGG-19 with both three-channel and five-

channel configurations revealed that the five-channel models improved crack detection

and classification in concrete structures, particularly in low-light environments. The

study employed various methodologies such as hyperparameter tuning, regularization

techniques, and stratified five-fold cross-validation to enhance performance of the model
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and minimise the risk of overfitting. These approaches are crucial for improving the

robustness of the model on new and unseen data.

When comparing the three-channel and five-channel models, the five-channel models

consistently outperformed their three-channel models across different evaluation metrics

such as TPR, FPR, precision, F1 score, accuracy, and MCC. Furthermore, a comparison

of the two five-channel VGG models showed the superiority of VGG-16 over VGG-19,

with performance improvements ranging from 4% to 9% across different evaluation

metrics. These findings highlight the effectiveness of the five-channel VGG-16 model

and its ability to accurately detect and classify cracks with widths as small as 0.1mm.

The incorporation of directional lighting, transfer learning, and fine-tuning ap-

proaches significantly contributed in improving the overall performance of the proposed

models. The VGG-16 five-channel model took the shortest time to evaluate an image,

requiring nearly 57 milliseconds, compared to both the VGG-19 models and the tra-

ditional VGG-16 model. This highlights the potential benefits of utilising additional

channels for improved computational efficiency in image processing tasks. As presented

in Chapter 3, despite it being developed a decade ago, the VGG16 model is actively

used in research for crack detection and this work contributes to this through the de-

velopment of a new VGG16 model that allows for the implementation of directional

lighting in deep learning.
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Directional Lighting Enhanced

Crack and Spalling Detection in

Concrete Structures

Chapter 6 demonstrated the significance of directional lighting and made such images

possible within deep learning by implementing a five-channel neural network model

using the VGG architecture. The VGG model exhibited an evaluation time of 57 ms,

and was focused on crack detection as the initial dataset contained images captured

from laboratory and real-world concrete structures that contained only cracked samples.

VGG-based models can be computationally expensive due to their large number of

parameters [120, 220]. These models are best suited for use in controlled environments

such as research laboratories, where computational resources are readily available and

processing time is not a critical constraint. The deeper architecture of VGG model

enables the extraction of spatial features, making them particularly suitable for tasks

requiring detailed visual analysis [120, 221]. As a next step, this Chapter expands

the dataset and methodology to detect additional types of damage, such as spalling in

concrete structures.

At the earlier stages of this research, VGG16 was selected due to its well known re-

cognition in various image classification and feature extraction tasks and its simplicity
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compared to other models [121, 122]. Its deep architecture made it a favourable choice

as an initial baseline model for detecting structural defects in images. However, as the

research progressed over time, the computational limitations and relatively large num-

ber of parameters in VGG16 became more apparent, especially when aiming for faster

speeds and potential deployment in real-time or resource-constrained environments. As

future aim of ALICS is to integrate the NN model into the hardware, so that image

capture and image processing go simultaneously, it is essential that the model needs

be light weight, and faster. MobileNetV2 offered a significant advantage in terms of

computational efficiency, achieving comparable performance with a reduced number of

parameters compared to VGG16 as demonstrated in [119, 120]. So, MobileNetV2 was

chosen in this study.

7.1 Introduction

This research aims to closely replicate the methods used by the human inspectors in

automated inspection systems, while at the same time lead to results faster and in

a more systematic, less subjective, way. Two models, FusedNN and MCNet, were

developed that used images captured under directional lighting conditions. The direc-

tional images Right (R), Down (D), Left (L), Up (U), and Diffused (A) are captured

using ALICS (described in Chapter 4). The workflow in this chapter is summarised as:

1. Investigate the importance and potentiality of directional lighting in multi-class

image classification tasks, as opposed to binary crack classification presented in Chapter

6.

2. Introduce a novel model, FusedNN, which employs pixel-based maximum intens-

ity image fusion technique to obtain a single fused image from the five images captured

under different lighting conditions.

3. Develop five-channel neural network model, called multi-channel neural network

model (MCNet) to effectively classify cracks and spalling in concrete structures and

reduce evaluation time.

4. Compare the performance of the FusedNN and MCNet models with the con-
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ventional (traditional) three-channel model and one of the advanced models in the

literature i.e., Zoubir’s model [126] which was described in Section 3.3.

5. Compare VGG-16 five-channel neural network model (Chapter 6) with the

MCNet model developed in this chapter for binary classification. The best-performing

model will be further utilised to implement a multi-class classifier.

6. Investigate how increased exposure impacts pixel intensity in fused images and

evaluate whether this impact is similar for fused and diffused images and assess the

subsequent impact on the performance of neural network model.

7.2 Background

The maximum intensity pixel-level image fusion method [222] is widely utilised in the

medical field to merge information from various modalities and improves the quality

and clarity of medical images by selecting the pixel with the highest intensity from

each corresponding location in the input images. This method can be a powerful tool

for detection of defects for civil infrastructure. In this chapter, the author introduces a

novel fused neural network model, named FusedNN, which generates a directionally lit

fused image by selecting the maximum intensity value for each pixel from five directional

images.

This study implements two novel models based on MobileNetV2 architecture ex-

plained in Section 3.3. The traditional model shown in Figure 3.4 is trained and tested

on three channel diffused images.

7.3 Methodology

The traditional MobileNetV2 model has three-channel input which corresponds to the

RGB components of an image. The author proposes two new models, FusedNN and

MCNet to utilise images captured in five lighting directions to generate fused and five-

channel images, with three and five channel inputs, respectively. The implementation

of the three-channel FusedNN model is straightforward and similar to the traditional

three-channel model but uses fused images instead. Therefore, the input shape of the
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MCNet model should be modified to accept five channel images. The implementation

of the multi-channel neural network model, named as MCNet by the author, is similar

to the VGG-n five-channel model, as explained in Section 6.2.3 and Section 6.2.4, but

utilises MobileNetV2 architecture instead.

7.3.1 Dataset Description and Pre-processing

The same dataset presnted and used in Chapter 4, is used for the work described in

this Chapter too. A total of 45 images were captured, by projecting light onto concrete

surfaces in R, D, L, U, and A directions, respectively as shown in Figure 4.18 and

explained in Section 4.3. The acceptable input size of the MobileNetV2 architecture is

224×224 pixels. Therefore, a pre-processing step was applied to the original images of

dimensions 5429×3458 pixels. These images are cropped into multiple 224×224 pixel

blocks. The cropped blocks undergo further pre-processing to form five-channel and

fused images before being fed into the proposed models.

For the binary classification models, a total of 1335 sub-images were utilised, while

for the multi-class image classification task, a dataset of 520 sub-images were used.

These images were manually labelled as ’cracked’ or ’uncracked’ for evaluating the

performance of four models in binary classification tasks. For multi-class image clas-

sification, the sub-images were annotated as ”thick cracks,” ”thin cracks,” ”spalling,”

and ”uncracked.”

For 1335 images, stratified five-fold cross-validation splits the dataset into five folds,

each containing 267 images. In each iteration, 1068 images (four folds) are used for

training, while 267 images (one fold) are used as the test set. For 520 images, each fold

consists of 104 images, with 416 images used for training and 104 images for testing in

each iteration. This process repeats five times, ensuring each fold is used as a test set

once.

7.3.2 Generation of five-channel image

MCNet utilises five-channel input image of dimension (224, 224, 5), which was generated

as explained in Section 6.2.3. The architecture of the five-channel MobileNetV2 model
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i.e., MCNet was modified to accept an input image of dimension (224, 224, 5).

7.3.3 Generation of fused image

The maximum intensity image fusion technique [222] is used to obtain a single fused

image from the five images captured under different lighting conditions. This involves

comparing the pixel values of corresponding pixels from the five directional images at

each pixel position (x,y). The maximum value among the five input images is selected

for each pixel. This process is repeated for each pixel across all five input images to

generate the final fused image, as shown in Figure 7.1. This algorithm selects the

brightest regions from each input image by choosing the greatest intensity value for

each pixel. The heatmap clearly indicates the contributing pixels from each direction.

The maximum intensity fusion technique for the directional images can be expressed

using equation (7.1).

Fxy =
5429∑
x=1

3458∑
y=1

max (Rxy, Dxy, Lxy, Uxy, Axy) (7.1)

where Fxy represents the pixel intensity value at position (x,y) in the output fused

image F. Rxy, Dxy, Lxy, Uxy, Axy are the pixel intensity values at position (x,y) in five

directional input images R, D, L, U, and A, respectively.

7.4 Research Implementation

All the models are implemented using hyperparameter tuning, the early stopping reg-

ularization technique, and a stratified five-fold cross-validation approach. The hyper-

parameter tuning is performed using learning rates of 0.1, 0.01, and 0.001, and batch

sizes of 16, 32, and 64. A stratified five-fold cross-validation approach was used to en-

sure that the performance of the model was consistent across multiple (five) balanced

subsets of the data, rather than relying on a single train-test split. This helps to detect

if the model is overfitting to specific data partitions. An early stopping was applied

during training, with monitoring on the validation loss. If the validation loss did not

improve over a predefined number of epochs (patience), training was stopped at that
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Figure 7.1: The images are captured in R, D, L, U, and A directions, respectively.
These images are fused into a single image using the maximum-intensity image fusion
technique. The heatmap of the resulting fused image indicates the contributing pixels
from each direction.
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point. This not only reduces overfitting but also optimizes training time. The number

of epochs is set to 100 with early stopping criteria.

The following sections outline the implementation of the proposed models shown

schematically in Figure 7.2.

7.4.1 Implementation of the FusedNN Model

The architecture of FusedNN is shown in Figure 7.3. FusedNN that uses MobileNetV2

architecture was initially trained on pre-trained neural network model using ImageNet

dataset and further trained on fused image dataset to adapt to the new task. A custom

sequential model is built on top of the base MobileNetV2, including two Dense lay-

ers with ReLU (Rectified Linear Unit) activation, and a final Dense layer with either a

sigmoid activation function for binary classification or softmax for multi-class classifica-

tion. The model is compiled with the Adam optimiser and uses the binary cross-entropy

loss function for binary image classification and sparse categorical cross-entropy loss

function for multi-class image classification.

7.4.2 Evaluating the Impact of Exposure Control on FusedNN and

Traditional Model Performance

The FusedNN model uses fused images generated through the maximum intensity fu-

sion technique, where all images are captured under auto-exposure settings. A key

concern is whether increasing exposure could produce diffused images with brighter

pixels that resemble those selected by FusedNN’s maximum intensity fusion process. If

so, implementing the fusion technique may not offer additional advantage against ex-

isting models. Therefore, it is important to evaluate and compare the performance of

two models—FusedNN and a traditional MobileNetV2 model across various exposure

settings. This investigation aims to determine if adjusting exposure levels of directional

images can improve the performance of the traditional model compared to the FusedNN

model.

For this examination, two distinct concrete samples generated in the laboratory were

chosen. These images were captured under diffused lighting conditions with exposure
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Figure 7.2: Step-by-step implementation of FusedNN and MCNet models for binary
and multi-class image classification.
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Figure 7.3: Architecture of FusedNN model.

values ranging from 200,000 to 900,000 lux-seconds, and an auto-exposure value of

470,000 lux-seconds was recorded. Additionally, directional images were captured with

exposures ranging from 1.2 million to 2.2 million lux-seconds, and specific auto-exposure

values were recorded for each direction: right (1.7 million lux-seconds), down (1.65

million lux-seconds), left (1.58 million lux-seconds), and up (1.7 million lux-seconds).

Following image capture, data pre-processing, detailed in Section 7.3.1, was con-

ducted and divided the dataset of 1335 images into positive (cracked) and negative

(uncracked) classes for subsequent analysis. To study the influence of exposure un-

der various lighting conditions, the performance of the traditional MobileNetV2 model

(detailed in Section 3.3) and the FusedNN model (outlined in Section 7.4.1) were eval-

uated. Both models were trained on the aforementioned images, aiming to understand

how exposure affects the performance of these two models.

The FusedNN model, trained on fused images obtained at increased exposure levels,

was compared with the Traditional MobileNetV2 model trained on diffused images
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acquired under similar exposure conditions. Additionally, another comparison was

conducted between the FusedNN model trained on fused images captured at auto-

exposure levels and the traditional MobileNetV2 model trained on diffused images

obtained under similar auto-exposure conditions. The performance of these models

was evaluated using various evaluation metrics. This helps to explore how exposure

settings and image fusion techniques influence crack detection accuracy across diverse

lighting conditions.

7.4.3 Implementation of the MCNet Model

The MCNet model was developed to improve defect detection in concrete structures

by utilising a customised five-channel input obtained from gray scale images captured

under various lighting conditions as explained in Section 7.3.2. Table 7.1 shows that

the three-channel models have 32 filters of size 3×3 kernel, resulting in a total of 288

weights. With three channels, the total number of weights are 864. In the case of the

five-channel models, the number of filters, filter size, and number of weights per filter

are the same. However, with five channels, the total number of weights becomes 1440.

Therefore, the number of trainable parameters for the three-channel and five-channel

MobileNetV2 models are 864 and 1440, respectively. This highlights the impact of the

number of channels on the total trainable parameters in the first convolutional layer of

the MobielNetV2 model, similar to that of five-channel VGG models implemented in

Chapter 6.

Therefore, modifications were focused on adjusting the trainable parameters in the

first convolutional layer to accommodate the five-channel input. The weights of the

remaining convolutional layers were directly transferred as it is from a pre-trained Mo-

bileNetV2 model (as they are unchanged). To handle the additional two channels,

weight values were computed by averaging existing channel weights, similar to that of

the multi-channel neural network model discussed in previous chapter, where Mobile-

NetV2 replaced VGG-n to optimise evaluation time. The block diagram in Figure 7.2

showcases the step-by-step implementation of FusedNN and MCNet models for binary

and multi-class image classification. Each block represents a distinct stage or operation
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involved in the process, demonstrating the logical flow of tasks.

Table 7.1: Parameter Comparison: 3-channel vs 5-channel MobileNetV2 models in the
first convolutional layer.

Parameter
Values for three-channel

MobileNetV2
Values for five-channel

MobileNetV2

Number of filters 32 32

Filter size 3 x 3 3 x 3

Number of weights per filter 9 9

Total weights for all filters 32 x 9 = 288 32 x 9 = 288

Number of channels 3 5

Total weights for all channels 288 x 3 = 864 288 x 5 = 1440

Total trainable parameters 864 1440

7.4.3.1 Five-channel dataset preparation

Initially, the focus of this thesis was limited to crack detection due to the availability

of a smaller dataset, which only included images of concrete cracks. This formed the

basis of the research presented in the previous Chapters. As the research progressed and

more annotated data became available, specifically for spalling, the scope of the study

was expanded. In this Chapter, additional classes such as spalling were incorporated

into the dataset. Consequently, the analysis for the work presented in this Chapter

was conducted using an extended dataset, and the newer models such as MCNet and

FusedNN were explored in combination with spalling data.

A five-channel dataset of 1335 images and 520 images was prepared to align with

the requirements of the MCNet binary and multi-class image classification models,

respectively. For binary classification, the labels were positive (crack-1) and negative

(no crack-0). For multi-class image classification, the labels were thin crack-0, thick

crack-1, spalling-2, and none-3.

7.4.3.2 Five-Channel MobileNetV2 (MCNet) Model Architecture

Figure 7.4 illustrates the architecture of MCNet model. MCNet was built upon the

MobileNetV2 architecture, which was originally trained on ImageNet dataset, enabling

it to capture low-level patterns and useful features from the images. During fine-tuning,
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the weights of the pre-trained model are adjusted through training to accommodate the

new five-channel dataset. To preserve the generalisation capabilities of the pre-trained

model and prevent overfitting, the early layers were frozen while the later layers were

made trainable. Specifically, only the weights of the last six layers are updated during

training. This improves the robustness and accuracy of the model in image classification

tasks.

The model, built as described in Section 7.4.3, is compiled with the Adam optimizer

and uses binary cross-entropy for binary classification, while sparse categorical cross-

entropy is used for multi-class classification.

Figure 7.4: Architecture of five-channel MobileNetV2 (MCNet) model.

7.4.4 Benchmarking and Performance Evaluation

Hyperparameter tuning is conducted to identify the optimal learning rate and batch

size, ensuring the most accurate and efficient model for the given datasets. The mod-
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els also incorporate early stopping to prevent overfitting and employs five-fold cross-

validation to ensure robust performance on unseen data. The performance of the con-

ventional three-channel MobileNetV2, FusedNN, MCNet, and Zoubir’s model is eval-

uated using the metrics described in Section 6.3.2 for binary-classification tasks. To

determine these metrics, the precision, recall, accuracy, F1 score, and MCC are calcu-

lated for each of the five folds of the model and then averaged using equations (6.2)

- (6.6). Table 7.2 was utilised to assess the performance of the model for multi-class

image classification tasks.

7.5 Results and Discussion

One advantage of using multiple directions for image capture in FusedNN and MCNet is

the availability of additional information that can aid in defect detection. To maintain

consistency across the models, all four models were trained and tested using the same

image captured under different lighting conditions as shown in Figure 4.18. The Zoubir

model, similar to traditional model is trained and evaluated on diffused images. For

example, an image captured under diffused lighting was used to train and test the

MobileNetV2 and Zoubir model, similarly the same image captured under directional

lighting (R,D, L, U, and A) was used to form a fused image and a five-channel image as

shown in Figure 7.1 and Figure 6.1 to train and test the FusedNN and MCNet models,

respectively. This step is crucial to ensure that any observed performance differences

are primarily due to architectural variations. For each of the four models, the specific

hyperparameter values that yielded the best performance were identified. These optimal

hyperparameter values were further used to implement their corresponding multi-class

image classification models.

7.5.1 Traditional MobileNetV2 Vs Zoubir Vs FusedNN Vs MCNet

models for binary crack classification

Figure 7.5 shows a comparison of two proposed models: FusedNN and MCNet with the

traditional and Zoubir models. All models achieved optimal performance with a batch
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Table 7.2: Performance metrics of a multi-class image classification, where i ranges
from 1 to the total number of classes, l. The average of the metric across all the classes
is computed to obtain the macro average metric. M represents macro averaging. β
controls the balance between precision and recall.

Metric Description Equation

AccuracyM The accuracy of each class
is computed separately,
and then take the aver-
age of all the accuracies
to obtain macro-averaged
accuracy.

∑l
i=1

1
l

TPi+TNi
TPi+TNi+FPi+FNi

PrecisionM The precision of each class
is computed separately,
and then take the average
of all the precisions to ob-
tain macro-averaged pre-
cision.

∑l
i=1

1
l

TPi
TPi+FPi

RecallM The recall of each class is
computed separately, and
then take the average of
all the recalls to obtain
macro-averaged recall.

∑l
i=1

1
l

TPi
TPi+FNi

MCCM The MCC of each class is
computed separately, and
then take the average of
all the MCCs to obtain
macro-averaged MCC.

∑l
i=1

1
l

TPi×TNi−FPi×FNi√
(TPi+FPi)×(TPi+FNi)×(TNi+FPi)×(TNi+FNi)

F1-ScoreM The F1 score of each
class is computed separ-
ately, and then the aver-
age of all the F1 scores
is taken to obtain the
macro-averaged F1 score.

(1+β2)×PrecisionM×RecallM
(β2×PrecisionM )+RecallM
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size of 32 and a learning rate of 0.001. The comparison of the best-performing models,

along with their confusion matrices, is shown below.

Figure 7.5: Comparison of classification metrics across Traditional MobileNetV2,
Zoubir, FusedNN, and MCNet models.

FusedNN achieved a 1.3% higher accuracy, a 4.6% increase in recall, a 1% better

F1 score, and a 2.4% improvement in MCC compared to the traditional MobileNetV2

model. Although FusedNN’s precision is 2.7% lower than that of Traditional Mobile-

NetV2, these metrics indicate that FusedNN is more effective overall, particularly in

identifying actual cracks. The improved recall value demonstrates FusedNN’s capability
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to detect a higher number of true positives, minimising the risk of missing any cracks.

The improved F1 score suggests that FusedNN maintains a good balance between preci-

sion and recall, ensuring both false positives and false negatives are well identified. The

higher MCC value further validates the overall robustness and reliability of FusedNN in

crack classification compared to traditional model. Although there is a slight decrease

in precision, indicating a marginally higher rate of false positives, this trade-off is con-

sidered acceptable given the importance of identifying all potential cracks to prevent

serious consequences for Civil infrastructure. This prioritises the identification of all

potential cracks, even if it means tolerating a small number of false alarms.

When compared to Zoubir, FusedNN shows a slight edge in performance. It has

a 1% higher accuracy and a 1.5% better recall, indicating a greater capability to cor-

rectly identify and detect cracks. FusedNN also has a 0.2% higher precision, reflecting

a slightly lower rate of false positives. Notably, 0.9% F1 Score higher and 1.7% higher

MCC than Zoubir’s model, underscoring FusedNN’s overall robustness and reliabil-

ity in crack detection. Overall, the higher accuracy, recall, F1 Score, and MCC of

FusedNN compared to Zoubir highlight its superior performance and effectiveness in

detecting and classifying cracks. The use of fused images, which involves selecting the

maximum intensity pixel value from a directionally lit dataset as shown in Figure 7.1,

improved crack visibility within the FusedNN model. This highlights the potential of

directional lighting, thereby strengthening FusedNN’s ability to accurately detect and

classify cracks.

In the comparison between FusedNN and MCNet for crack classification, MCNet

consistently demonstrated superior performance across various metrics. MCNet achieved

an accuracy of 96.6%, surpassing FusedNN by 3.6%, indicating its ability to classify a

higher percentage of cracks correctly. Moreover, MCNet exhibited higher precision at

96.3%, outperforming FusedNN by 4.3%, which signifies its lower rate of false positives

and better precision in identifying actual cracks. In terms of recall, MCNet achieved

97.0%, which is 3% higher than FusedNN’s recall of 94.0%, highlights MCNet’s su-

perior capability to detect more true positive cracks. Additionally, MCNet achieved

a higher F1 score of 96.6%, compared to FusedNN’s F1 score of 93%, indicating that
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MCNet showed a better overall balance between precision and recall. When consider-

ing the MCC, which measures the performance of model accounting for true and false

positives and negatives, MCNet significantly outperformed FusedNN by 7.3%. While

both FusedNN and MCNet utilise directional lighting, MCNet adopts a multi-channel

neural network approach that incorporates features from all directional images to en-

hance crack detection. The confusion matrices of all the models is shown in Figure

7.6.

Figure 7.7 shows qualitative results obtained when four trained models are tested

on various samples. When the crack is relatively thick and runs through the centre

(Sample 1), all models successfully classified it with high confidence. However, when

the crack is located near the extremities, such as along the edges (Sample 4 in Figure

7.7), all models failed to detect it. When the crack is near but not at the edges

(Sample 3), both MCNet and FusedNN models were able to detect it. This suggests

that directional lighting casts shadows in the defects, and help the models in detecting

cracks more effectively compared to the traditional and Zoubir’s models. On uneven

surfaces where the background is unclear, such as when algae are present (Sample 2), all

models except MCNet mistakenly identified the algae as cracks. Additionally, when the

sample has algae and the crack is slightly wide and runs through the centre (Sample 5),

all models except the traditional model correctly identified the crack. From Figure 7.7

it is shown that MCNet which utilises directionally lit images outperformed the other

three models, demonstrating the significance of directional lighting for crack detection

on Civil infrastructure. Although the FusedNN model incorporates directional lighting,

it relies solely on the pixels with maximum intensity values to form the final image i.e,

it only selects one pixel value out of all the five images. In contrast, MCNet utilises

each channel to represent gray scale images captured in R, D, L, U, and A, allowing

MCNet to learn and extract additional features from all the five images more effectively

than FusedNN.
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Figure 7.6: Confusion matrices of Traditional MobileNetV2, Zoubir, FusedNN, and
MCNet models for binary crack classification models.
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Figure 7.7: Model comparison for binary image classification on various samples.

7.5.2 Comparative analysis of VGG-16 five-channel and MCNet mod-

els

Based on the above comparison, the top-performing MCNet model is compared with the

best-performing VGG-16 five-channel neural network model implemented in Chapter

6. Figure 7.8 shows that MCNet demonstrated superior performance compared to the

VGG-16 Five-Channel model across most metrics. MCNet outperformed the VGG-

16 five-channel model in accuracy by 1.5%. Both models exhibited identical precision

at 96.3%, showing equal effectiveness in minimising false positives. However, MCNet

significantly outperformed VGG-16 five-channel in recall by 2.8%, indicating MCNet’s

efficiency in detecting true positives i.e., cracks. Furthermore, MCNet outperformed

the VGG-16 five-channel model by a 1.4% increase in F1 score, indicating a more

balance between precision and recall. MCC further highlighted MCNet’s superiority,

with MCNet achieving a score of 93.3%, while the VGG-16 Five-Channel model scored

90.3%, indicating a 3% improvement. These metrics highlights the enhanced capab-

ility of MCNet in accurately identifying cracks, making it a more effective tool for

applications, where detection of crack is crucial.
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Figure 7.8: Comparative Analysis of VGG16 and MobileNetV2 five-channel models.
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Figure 7.9: Comparison of evaluation times for VGG-16 and MobileNetV2 five-channel
crack classification models.
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The evaluation times for the VGG-16 Five-Channel and MCNet models, as illus-

trated in Figure 7.9, highlight a significant advantage of MCNet in terms of processing

speed. The VGG-16 Five-Channel model requires 57 milliseconds to evaluate an image,

whereas MCNet only needs 11 milliseconds, making MCNet approximately five times

faster. Such faster evaluation times are crucial for tasks like concrete structure inspec-

tions, where timely and accurate crack detection is essential for maintaining structural

integrity and safety. MCNet’s ability to deliver fast and reliable results makes it a

superior choice for these critical applications in the field of Civil Engineering.

7.5.3 Multi-class Image Classification Metrics

In Figure 7.10, the multi-class image classification evaluation metrics show that accur-

acy, precision, recall, F1 score, and MCC are almost similar for the different methods,

with MCNet performing slightly better, supporting the argument that more advanced

models can improve concrete defect detection.

A series of heatmaps are used to visualise these metrics across different classes as

shown in Figure 7.11. The heatmap rows depict the models - Traditional MobileNetV2,

Zoubir’s model, FusedNN, and MCNet models, while the columns represent the target

classes - thin cracks, thick cracks, spalling, and none. The colour shades in each cell

indicate the magnitude of the associated metric. Lighter shades indicate lower values,

while darker shades represent higher values. The evaluation of various defect detection

models using multiple performance metrics shows the advantages of the these improved

models, MCNet and FusedNN, over the Traditional and Zoubir model.

In the accuracy heatmap, MCNet and FusedNN demonstrated similar performance

for detecting thin cracks. However, MCNet exceeded in detecting thick cracks, and

achieved highest accuracy of 92%. Notably, MCNet achieved 100% accuracy in identi-

fying spalling. FusedNN outperformed both the traditional model and Zoubir’s model

in detecting thin cracks. The performance of all models were comparable for detect-

ing thick cracks and spalling. However, FusedNN consistently performed better than

the traditional model and Zoubir’s model. Zoubir’s model and the traditional model

exhibited similar metrics, with the traditional model slightly trailing behind.
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Figure 7.10: Confusion matrices of Traditional MobileNetV2, Zoubir, FusedNN, and
MCNet model for multi-class image classification.
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Figure 7.11: Heatmaps for Traditional MobileNetV2 vs Zoubir vs FusedNN vs MCNet
models for multi-class image classification.
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In terms of precision, both MCNet and FusedNN exhibited superior performance in

detecting thick cracks, spalling, and the absence of defects compared to the Traditional

model and Zoubir’s Model. For thin cracks, MCNet achieved an identical precision

of 93%, while FusedNN is slightly lower at 89%. Zoubir’s Model falls between the

Traditional and the proposed models, showing intermediate precision values.

The recall heatmap demonstrates that MCNet achieves the highest recall across

most defect categories, indicating its effectiveness in identifying true positives and min-

imizing missed defects. MCNet and FusedNN both outperformed the traditional model

and Zoubir’s model in detecting thin and thick cracks, with MCNet showing excep-

tional recall for spalling. FusedNN also shows high recall values but slightly lags behind

MCNet. Zoubir’s Model, while performing well, does not match the proposed models

in overall recall. FusedNN also performed competitively, particularly for thick cracks

and spalling, but with slightly lower scores compared to MCNet. Both the proposed

models has shown better F1 scores than the three-channel models.

The MCC heatmap indicates that MCNet achieves the highest MCC scores across

most defect categories, highlighting its robustness in predicting both true positives and

true negatives while minimizing false positives and false negatives. FusedNN also per-

formed well, especially for thick cracks and spalling, but slightly trails behind MCNet.

The traditional model and Zoubir’s model has shown moderate MCC scores, with

Zoubir’s model generally positioned between the traditional model and the advanced

models.

Across all metrics, MCNet and FusedNN consistently outperformed the traditional

model and Zoubir’s model, with MCNet often leading in performance. MCNet is par-

ticularly strong in detecting specific types of defects, such as spalling, making it the

preferred choice for applications requiring high accuracy in defect detection. For bal-

anced performance across various defect types, both MCNet and FusedNN are suitable,

though MCNet holds a slight edge due to its superior performance across multiple

metrics. Zoubir’s model performs well but does too general and did not reach the

performance scores of the advanced models.

Figure 7.12 shows qualitative results obtained when four trained models are tested
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on various samples (described in Chapter 4) to detect cracks and spalling. When the

crack is located near the extremities, such as along the edges (Sample 1), all models

failed to detect it. Both proposed models detected the hairline crack passing almost

through the centre (Sample 2). When the crack is thick and passes through the centre

(Sample 3), both proposed models and Zoubir’s model correctly detected it as thick

crack, unlike the traditional model which misclassified it as a thin crack.

Both the proposed models identified spalling in Sample 4. The traditional and

Zoubir’s models mistakenly identified Sample 5 as spalling. Overall, it is evident that

MCNet outperforms the other three models in detecting both cracks and spalling. This

superior performance is due to the light being projected onto the surface from all dir-

ections, which enhances the visibility of crack extremities and thereby improves defect

detection in civil engineering applications. For applications requiring high accuracy in

detecting specific types of defects, especially spalling, MCNet would be the preferred

choice. However, for a balanced performance across various defect types, both MCNet

and FusedNN are suitable, with MCNet having a slight better performance.

The five-channel model demonstrated superior performance compared to FusedNN,

but the FusedNN model still outperformed both traditional and advanced models in the

literature, such as the Zoubir model, for both binary and multi-class image classification

tasks. Therefore, FusedNN can be effectively applied in scenarios where standard neural

network models are typically used, particularly in cases where the format of the model

input cannot be adapted to accommodate non-traditional inputs like five-channel data.

7.5.4 Effect of exposure on Diffused and Fused Images

7.5.4.1 Analyse the performance of Diffused Images captured under different

exposure values

The traditional MobileNetV2 model uses diffused images, while FusedNN creates a

fused image by selecting the maximum intensity pixel values from the directional im-

ages. So far, the analysis has been conducted under auto exposure settings.

If the images are captured under increased exposure conditions, the resulting images
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Figure 7.12: Model comparison for multi-class image classification on various samples.

will display brighter pixels. Since the FusedNN model selects the maximum intensity

pixel values, the pixels from the directional images will also have high exposure values.

At a certain point, even though FusedNN selects the maximum intensity pixels, the

fused image and the diffused image could become identical due to the uniformly high

exposure. If this occurs, the advantage of using FusedNN diminishes, as there would

be no significant difference between the fused image and the diffused image. Thus, the

potential benefit of FusedNN in enhancing defect detection would be negated under

such high exposure conditions.

This scenario highlights the importance of considering exposure settings in evaluat-

ing the true efficiency of FusedNN compared to traditional methods. For this reason, an

evaluation was conducted to compare the performance of the traditional MobileNetV2

and FusedNN models under different exposure conditions. Various performance met-

rics were utilised to assess the performance of the model, including accuracy, precision,

recall, F1 score, and MCC.

Images of two concrete slabs were captured using auto exposure settings, starting

with an initial value of 470,000 lux-seconds. To create underexposed and overexposed
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conditions, the exposure value was adjusted between 200,000 and 900,000 lux-seconds.

This process was repeated to capture directional images (R, D, L, U), all at an optimal

angle of 50 degrees. A stratified five-fold cross-validation technique was then employed

for binary classification of these images, training and testing the model on datasets

with exposure values ranging from 200,000 to 900,000 lux-seconds. The objective was

to identify the optimal exposure value.

Table 7.3: Performance Metrics at Different Exposure Levels.

Exposure Values (in lux-seconds) Accuracy F1 Score MCC

200,000 89.3 88.8 79.4

300,000 90.6 90 81.6

400,000 92 91.9 84.4

470,000 (Auto-Exposure) 92.36 92 85

500,000 92.5 92.2 85.4

600,000 92.6 92.5 85.5

700,000 92.2 91.83 84.9

800,000 91.53 91.3 83.6

900,000 90.3 89.5 81.2

The results of the evaluation as shown in Table 7.3 show that the traditional Mobile-

Net model consistently achieved high accuracy across different exposure values, ranging

from 89.3% to 92.6%, with the highest accuracy of 92.6% being achieved at an exposure

value of 600,000 lux-seconds. The F1 scores, representing the harmonic mean of preci-

sion and recall, followed a similar trend, with the highest F1 score of 92.5% observed at

the optimal exposure value of 600,000 lux-seconds. Moreover, the MCC values, assess-

ing the quality of binary classifications, maintained a consistent pattern, with the peak

MCC of 85.5% achieved at an exposure value of 600,000 lux-seconds. Based on these

performance metrics, it can be concluded that an exposure value of 600,000 lux-seconds

is the optimal setting for this model when utilising diffused images. The ability of the

model to differentiate between cracked and uncracked samples under different lighting

conditions is highlighted by its strong performance at this exposure value.
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Figure 7.13: Comparison of model performance in auto-exposure settings.

Figure 7.14: Comparison of model performance in increased-exposure settings.
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7.5.4.2 Evaluation of Fused and Diffused Images

After obtaining the optimal exposure value, the aim was to explore the potential of

fused images. To achieve this, images were captured under different lighting directions,

each sharing similar exposure levels. These values were as follows:

• Right Direction: 1.63 million lux-seconds

• Down Direction: 1.65 million lux-seconds

• Left Direction: 1.68 million lux-seconds

• Up Direction: 1.71 million lux-seconds

These images were combined with the diffused image captured at the optimal ex-

posure value of 600,000 lux-seconds to create a fused image. The main objective was to

evaluate the performance of these fused images against the diffused image and to study

the effect of increased exposure on performance of the model. The research comprised

two distinctive scenarios to assess the performance of the model:

i. Auto-Exposure Comparison: In this scenario, traditional MobileNetV2 and

FusedNN models were trained and tested using the auto-exposure diffused image and

the auto-exposure fused image, respectively. The aim was to understand how well

these models performed using images captured at their auto-exposure values. Figure

7.13 draws the following conclusions:

• Accuracy: FusedNN achieved an accuracy of 91.1%, exceeding the traditional

model’s accuracy of 90.4%.

• F1Score: The F1 score was 91% FusedNN, exceeding traditional model’s F1 score

of 90.24%.

• MCC: Finally, FusedNN achieved higher MCC of 82.7% compared to the tradi-

tional model’s MCC of 81.77%.
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This indicates that FusedNN had a superior ability to make accurate binary classi-

fications under auto-exposure conditions.

ii. Increased Exposure Comparison: The second scenario focused on the im-

pact of increased exposure on performance of the model. Here, the performance of the

MobileNetV2 and FusedNN models was evaluated when trained and tested on diffused

and fused images, respectively, under increased exposure conditions. The aim is to

understand how increased exposure levels affect the performance of the model for crack

classification. Figure 7.14 draws the following conclusions:

• Accuracy: The traditional model achieved an accuracy of 92.1%, while FusedNN

reached an accuracy of 92.22%. Both models performed well, with FusedNN

maintaining a slight edge.

• F1Score: The F1 score reflects the balance between precision and recall. The

traditional model achieved an F1 score of 91.53, while FusedNN obtained high

F1 score of 92.3.

• Matthews Correlation Coefficient: The traditional model reached an MCC of 85,

while FusedNN achieved an MCC of 85, indicating strong binary classification

capabilities.

In the increased exposure scenario, FusedNN still demonstrated superior perform-

ance compared to the traditional MobileNetV2 model. This suggests that FusedNN is

more reliable and robust in accurately identifying cracked samples, regardless of the

exposure conditions.

The study showed that the FusedNN model using fused images (directional im-

ages) was effective in auto-exposure and increased exposure settings compared to the

traditional model using diffused images alone. This highlights the adaptability and

robustness of the fused image approach. This indicates that the dependence of the

FusedNN model on maximum-intensity pixel values remains effective under varying ex-

posure settings. In conclusion, this study highlights the potential of the fused image
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technique, which outperforms traditional diffused images and maintains its effectiveness

under modified exposure levels.

(a) Fused Image at auto-exposure (b) Fused Image at increased-exposure

Figure 7.15: Sample 1: Comparison of fused images generated using directional images
captured at auto-exposure and increased-exposure settings.

(a) Fused Image at auto-exposure (b) Fused Image at increased-exposure

Figure 7.16: Sample 2: Comparison of fused images generated using directional images
captured at auto-exposure and increased-exposure settings.

Figure 7.15 and Figure 7.16 represent the heatmaps of the fused images generated

using images captured at auto-exposure and increased-exposure settings for samples -

1 and 2. Even with higher exposure levels, the fused image still depended on selecting

the maximum intensity pixels from the directional images. This approach helped in

extracting valuable information from varying lighting conditions, leading to enhanced

visibility of cracks and an improved classification rate, as shown in Figure 7.13 and

Figure 7.14.
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7.5.4.3 Comparative Analysis of Traditional MobileNetV2 and FusedNN

models under Different Exposure Settings

The comparative analysis of the Traditional MobileNetV2 and FusedNN models, as

shown in Figure 7.17, clearly demonstrates the advantage of FusedNN over the Tradi-

tional MobileNetV2 model. The X-axis represents various exposure values, including

both auto-exposure and increased exposure settings, along with the corresponding F1

scores on Y-axis for both models. The best fit lines indicate the trend in their F1

scores, indicating that as the exposure value increases, the performance of both models

also increases. However, FusedNN consistently outperformed Traditional MobileNetV2

across all exposure settings.

Figure 7.17: Comparative Performance of Traditional MobileNetV2 and FusedNN Mod-
els under Auto and Increased Exposure Settings.

The improved performance of FusedNN is due to its novel approach of selecting the

maximum intensity pixels, which proves to be advantageous compared to Traditional

MobileNetV2 model. In summary, increasing the exposure improves the performance

of vision models, particularly in terms of the F1 score. However, FusedNN outperforms

Traditional MobileNetV2 as a more efficient model across different exposure settings.
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This makes FusedNN an ideal choice for a wide range of applications in the field of

Civil Engineering.

7.5.4.4 Examining the Effects of Auto-Exposure on Machine Vision

Auto-exposure is an algorithm that creates brighter images by adapting camera settings

like aperture, shutter speed, and ISO. Generated image are designed with human view-

ers in mind, which can sometimes lead to conflict with machine vision systems need for

accurate image data. Under sub-optimal lighting conditions—including low light, un-

even light, and back-lighting—auto-exposure can cause severe distortions and degrade

the image quality. For example, uneven lighting can result in both overexposed and

underexposed regions, impacting human visual perception as well as image recognition

capabilities. In the case of high-contrast scenes, auto-exposure algorithms often face

challenges as they struggle or try to achieve a balanced exposure throughout the image.

This can lead to overexposed shadows and underexposed bright areas. Such imbalance

can be harmful when trying to detect features such as cracks in concrete structures

[223]. FusedNN, by utilising maximum-intensity pixels in fused images, exceeds auto-

exposure algorithms in multiple scenarios. This method maintains the ability of the

model to detect fine details, even in challenging lighting environments.

7.5.4.5 Advantages of Fused Image Technique under Varying Exposure Con-

ditions

The findings highlight the strong performance and reliability of the FusedNN model

utilising fused image technique when faced with varying exposure conditions. By util-

ising maximum-intensity pixel values, FusedNN is able to effectively handle different

levels of exposure while maintaining high accuracy in distinguishing between cracked

and uncracked samples. This approach guarantees that crucial crack details are pre-

served, ensuring accurate identification of cracks. The adaptability of the fused image

technique is further highlighted in these findings. It efficiently handles variations in

lighting conditions, demonstrating that FusedNN maintains its effectiveness even when

exposed to different illumination levels. This highlights the potential of the fused image

177



Chapter 7. Directional Lighting Enhanced Crack and Spalling Detection in Concrete
Structures

technique, exceeding traditional diffused images under various exposure settings.

7.6 Summary

The methods, FusedNN and MCNet, utilise images captured under right, down, left,

up, and diffused directions, respectively. The focus was to improve the time required

in automated crack and spalling inspections in concrete structures under challenging

lighting conditions by utilising directional lighting.

Stratified five-fold cross validation, hyperparameter tuning and regularization tech-

niques were utilised to avoid overfitting and generalise well on new and unseen data.

These models are evaluated both on images captured in both laboratory and real world.

In binary crack classification, MCNet outperformed FusedNN by 3.6%, Zoubir’s model

by 4.5% and traditional model by 4.9%. Similarly, for multi class image classification,

MCNet outperformed all the models and achieved highest accuracy in detecting thin

cracks, thick cracks, and spalling, respectively. The proposed models are capable of

detecting cracks of width as small as 0.1mm. The MCNet model evaluates images five

times faster than the VGG-16 five-channel model. These neural network models can

be used to detect defects such as cracks and spalling in real-world concrete structures.

Also, the proposed models achieve improved performance without a significant increase

in evaluation time.

In conclusion, this Chapter highlights the potential of directional lighting techniques

for accurate defect detection in concrete structures. It was the first study to evaluate

the performance of directional lighting based deep learning models on real world con-

crete structures. These models offer a valuable solution for automated infrastructure

assessment, capable of identifying cracks as narrow as 0.1mm.
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8.1 Discussion on Research Findings

The aim of this research was to investigate if multi-directional lighting could enhance

the detection of cracks in concrete by comparing directional lighting images to diffused

lighting images using the same algorithm. The investigation took into account multiple

directions of light, to simulate an approach followed by many experienced inspectors

in order to enhance manual crack detection and thus supporting the use of directional

lighting. Instead of using individual photos per light direction, this research went a

step further by combining them all and developed algorithms to do so automatically.

The final goal was to innovate how civil inspectors use convolutional neural networks

for concrete crack detection. This was achieved by (1) modifying the inputs to CNNs

(5 images instead of 3), (2) adjusting those CNNs to accept the new, increased number

inputs and (3) demonstrating the benefits of doing so. The choice of which CNN to

use is arbitrary. The results presented in this thesis show that images captured with

multi-directional lighting can indeed enhance the detection of thin cracks in concrete,

while neural networks adapted to achieve the analyses of 5-channel input data remain

time and cost-effective.

Eurocode 2 specifies that maximum allowable crack widths for regular reinforced

and prestressed concrete structures range between 0.2mm and 0.4mm. Past research

indicated that proper illumination is vital for accurate detection of concrete defects,
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especially in low-light situations. However, with uniform lighting, the detection of hair-

line cracks often fails. Most studies have utilised lighting only to improve visibility in

low-light conditions, and overlooked the potential advantage that directional lighting

can offer for detection of concrete defects on Civil infrastructure. To address this issue,

this thesis introduced the implementation of ALICS, the first adaptive lighting platform

designed to capture images automatically in multi-directional and multi-angle config-

urations, enabling the detection of cracks as thin as 0.1mm, exceeding the requirements

by the Eurocode 2. The author is one of the developers of ALICS, having developed the

very first and second prototypes and heavily contributed to the development of the cur-

rent ALICS version. ALICS testing extended beyond laboratory experiments, and was

successfully utilised in real-world scenarios. From the reviewed international literature,

there is no other existing hardware capable of providing images with multi-directional,

multi-angle lighting. ALICS was developed to address specifically this technology gap.

Since this was a first in its kind, there is no hardware benchmark to evaluate ALICS

against. However, the effectiveness of the hardware was manually assessed in the lab

and later in applications outdoors as detailed in Chapter 4. The author conducted

in-situ tests at the Carnbooth and Babcock sites, and these are included in this thesis.

Additional tests using the ALICS hardware were performed by other researchers and

are therefore not detailed here.

In this study, the results from the crack detection models were benchmarked against

human-defined ground truths i.e., annotated labels (crack/no crack). Although these

ground truths may not represent the state-of-the-art, they closely resemble human

inspector reports, which are considered the state-of-the-art in visual inspection. The

work in this thesis has improved visual inspections of concrete civil infrastructure by

providing an automated, faster and reliable solution.

Automated inspections often struggle to detect defects under low-light or challen-

ging environmental conditions. It has been shown in the literature that higher quality

images can enhance the performance of neural network models. When using the ALICS

device for automatic image capture, there are instances where low-quality images may

still be recorded. Rather than relying solely on robust neural network algorithms, such
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as noise removal or blur removal algorithms to address this issue, the author proposed

a threshold-based BRISQUE-assisted data cleaning process. This method involved set-

ting a threshold value—if an image falls below this threshold, the device re-captures an-

other image ensuring that only high-quality images are forwarded for image-processing.

The goal was to focus on capturing quality images initially, rather than trying to im-

prove them during the preprocessing stage. With this algorithm implemented, whenever

the ALICS device detected an image that did not meet the threshold BRISQUE score,

it automatically discards that image and re-captures another one, guaranteeing that

only high-quality images were retained. As a result, training the neural network model

with these high-quality images led to enhanced model performance. This approach

was deemed more favourable as training a model with noisy images could improve its

performance on identifying cracks on noisy images but does not necessarily mean it will

perform well on high quality images, as has been shown in the reviewed literature.

The BRISQUE-based crack detection model implemented in this study cannot be

tested on public datasets such as [224], due to fundamental differences in data ac-

quisition settings. Public datasets are usually captured under well-lit conditions (i.e.,

daylight settings), while the datasets used in this study are captured under low-light

conditions, with illumination projected from the right, down, left, and up directions.

This lighting configuration significantly alters the visual characteristics of the images

compared to those captured under standard lighting conditions. As a result, direct

comparison with publicly available datasets is not valid. Moreover, the main aim of

implementing the BRISQUE-based approach is to evaluate the quality of the images

captured in dark or low-light environments, and recapture those images that fall below

BT to ensure that only high-quality images are forwarded for image processing.

Novel five-channel VGG-16 and VGG-19 neural network models were developed and

their performance was compared against conventional approaches. The VGG model

was chosen as it is well-recognised and commonly employed for detecting cracks in

reinforced concrete structures. The use of VGG instead of SOTA models and later the

comparison of the five-channel VGG against a 3-channel model do not restrain, limit

or invalidate the results of this study, although it was demonstrated in Chapter 3 that
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VGG model is still commonly used in research studies today. The choice of the CNN

used is arbitrary. The outcome of this research and novelty is the methodology for the

incorporation of additional channels in the model, it is not about the actual NN model

used. The five-channel models demonstrated a reduction in image evaluation time

compared to traditional models used for crack detection in concrete, particularly in

low-light environments, thus pushing the discipline boundaries of developed technology

further. This thesis developed and fully described an approach that can be modified

for any neural network model, using the same methodology utilised to create the five-

channel model, which is applicable or can be extended to a wide range of existing models

in the literature. Furthermore, this approach can be expanded to n-channel models, if

one would like to add additional lighting directions, following the same procedures and

implementation strategies.

The evaluation time was further reduced by using MobileNetV2. As mentioned

previously, the choice of the model is not what makes this research unique and is not

the focus of the study. One could argue that instead of MobileNetV2, the MobileNetV3

or newer versions could have been used. This is true, but it would not change the final

goal: whatever the model, it still uses uniform /diffused lighting. By incorporating

directional lighting into the model, the crack detection performance increases with less

evaluation time. The MobileNetV2 model was not used in the previous, earlier steps of

the research because, given the total lack of detection algorithms that worked with more

than 3 channels, it was deemed necessary to first start with a well-known, commonly

used network, i.e. the VGG.

Later, FusedNN and MCNet were developed for binary and multi-class image clas-

sifications tasks, and a comparison between them was provided. Both models included

a five-channel approach similar to the VGG-n models, but the FusedNN specifically

applied the maximum intensity fusion technique. The MCNet and FusedNN mod-

els were evaluated for both binary and multi-class image classification tasks to detect

both cracks and spalling in concrete structures. In the binary classification scenario,

MCNet outperformed all other models, followed closely by FusedNN. For multi-class

image classification, MCNet also showed the best performance. Since FusedNN selects
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pixels based on maximum brightness, increasing exposure could result in selected pixels

matching those in diffused images captured with higher exposure rates. To investig-

ate this, the author compared performance of both models under increased exposure

conditions and found that the fused images still provided advantages over traditional

models. Despite the fact that the 5-channel VGG model is outperformed by FusedNN

and MCNet, it can still be used for benchmarking future research that incorporates

multi-channel approaches given that VGG is still a benchmark model.

Extensive measures were taken to ensure a fair comparison between FusedNN and

MCNet models. Although FusedNN and MCNet models demonstrated superior per-

formance, they are more complex than traditional three-channel models and other

existing models in literature due to their use of directional images to generate fused

and five-channel images. The traditional model uses a single diffused image, while

FusedNN and MCNet models consider images from five different directions. Although

the input data is different it is still adequate to demonstrate that directional lighting

can improve accuracy in real-world scenarios and as such, provide a novel approach

that can be integrated into any neural network model.

The Zoubir model outperformed the traditional three-channel MobileNetV2 model;

however, it did not surpass the performance of the two novel models, MCNet and

FusedNN. This is because Zoubir model utilised diffused RGB images similar to tra-

ditional models, and all existing models in the literature. Therefore, the additional

information provided by additional channels in FusedNN and MCNet models offers

an advantage in extracting more features, providing more information, and there by

improving the performance.

The results in this thesis highlighted the potential of directional lighting techniques

for accurate defect detection in concrete structures. This research is the first study to

develop hardware for and the performance of directional lighting based deep learning

models on real world concrete structures. These models offer a solution for automated

infrastructure assessment, capable of identifying cracks as narrow as 0.1 mm, much

lower than the required abilities set by the Eurocode 2.
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8.2 Future Study

The methodologies and results from this research can be applied to various image-based

classification problems beyond concrete crack detection, such as autonomous driving

and surveillance systems.

Future studies should explore the integration of drones for automated inspections

as a potential alternative to the current Universal Robots method. Drones offer greater

adaptability, especially when assessing large or complex structures and hard-to-reach

areas. The integration of hardware platforms in autonomous navigation systems, allow-

ing real-time analysis of image data, is also an area for future exploration. Optimising

computational speed for image processing and analysing multi-modal data, such as

infrared imaging, will enhance defect detection and provide a more understanding of

structural integrity.

Research on reducing resource requirements without compromising performance of

the model, by exploring model compression techniques or hardware solutions that can

efficiently handle larger datasets is recommended. Additionally, a cost-benefit analysis

of hardware modifications for capturing images from different directions is necessary

to evaluate the practicality and economic feasibility of these changes. Time-series data

should be analysed to monitor long-term changes in concrete structures, and algorithms

developed to detect and track cracks and spalling. This will help us understand how

the structural health evolves over time.

Regarding the hardware system, a potential direction would be to explore the pos-

sibility of integrating GPS positioning information to allow for revisiting locations and

recapture images if the quality falls below the specified threshold. This iterative ap-

proach allows to continuously enhance the capability of the system while effectively

addressing real-world challenges. Future investigation could explore the use of the

threshold-based BRISQUE-assisted data cleaning approach with SOTA models.

Gaussian noise and Gaussian blur are the most common types of image degrada-

tions encountered in real-world imaging scenarios; however, they do not account for all

possible factors affecting image quality. Future study should explore all other degrad-
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ations such as compression artifacts, salt and pepper noise that impact quality of an

image.

The FusedNN and MCNet concepts could be further expanded to identify efflor-

escence, corrosion, delamination in concrete structures. While the models performed

well in challenging lighting conditions; they have not been tested under adverse weather

conditions, which could be an area for future investigation. Multi-channel and fused

neural networks can be applied to SOTA models that primarily use diffused lighting

or three-channel images. Applying multi-channel techniques to these models can help

in studying their performance and serve as a potential area for future research. Look-

ing into multi-channel and image fusion techniques, including white-box methods, to

further increase the performance of the model is also a research direction that should

be explored. Additionally, by leveraging more powerful hardware, such as graphics

processing units, the performance of the model in developing automated systems for

infrastructure assessment and defect detection in Civil Engineering could be further

enhanced.
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This thesis implemented Adaptive Lighting for the Inspection of Concrete Structures

(ALICS), a novel hardware device that utilises advanced illumination techniques i.e.,

multi-directional and multi-angle directional lighting, to enhance detection of crack and

spalling in reinforced concrete in both laboratory and real-world environments. A first

design of a prototype was proposed by the author. This design was subsequently further

developed by McAlorum et al. ALICS is mounted onto a Universal Robot, allowing

for automatic image capture, while the field-deployable ALICS rigs extend capabilities

of ALICS to real-world applications. This setup captures images in multiple directions

(right, down, left, up, and diffused) and at various angles (ranging from 10 to 60

degrees), creating an initial dataset for analysis. Using a pre-trained VGG-16 neural

network model, it was found that a 50-degree angle consistently provided the best

performance metrics. Additionally, the analysis showed that directional lighting has a

greater potential for detecting cracks compared to standard diffused lighting, allowing

for its use in deep learning models. Since the optimal angle was found to be 50-degrees,

so throughout the thesis the images were captured at this angle.

In order to study the existing technology that is prevalent in Civil Engineering, the

initial datasets were captured under diffused lighting settings in low-light environments.

It was observed that the images are not very clear, as several factors can impact image

quality, including lighting conditions, camera settings, motion blur, lens distortion, and

noise. Therefore, it was essential to evaluate the quality of the concrete crack images
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captured under these conditions, and BRISQUE played a key role in this process. The

correlation between image quality, assessed using the BRISQUE algorithm, and the

effectiveness of crack inspection algorithms, particularly those utilising the VGG-16

neural network model, was examined. It was found that the sensitivity of BRISQUE

increases with higher levels of noise and blur in the images. Consequently, as the noise

or blur level increases, the performance of the model declined, consistently showing

that a model trained on pristine images performed the best. This decline in the per-

formance of the model highlights the importance of data pre-processing, leading to the

implementation of BRISQUE score thresholding technique to identify and discard low-

quality images during pre-processing stage. This ensures that only clean, high-quality

images are further forwarded for training the neural network model. This automated

BRISQUE-based data cleaning technique was applied to real-world images, resulting

in a significant improvement in the performance metrics of the model. The threshold-

based BRISQUE IQA approach is not restricted to a specific neural network model;

however, the author opted for VGG16 due to its widespread use by civil inspectors in

various projects. Importantly, this BRISQUE-based data cleaning approach can be in-

corporated into any SOTA neural network models or other deep learning architectures

found in the literature.

The potential of directional lighting was analysed by implementing a novel five-

channel VGG-16/19 neural network model, where each channel represented the gray

scale version of the image captured in R, D, L, U, and A directions, respectively.

The conventional VGG-16/19 model has three-channel diffused RGB images as input.

The five-channel model was developed in such a way to accept the five-channel input

image, and was trained and tested on five-channel directionally-lit datasets. All the

models utilised hyperparameter tuning, regularization techniques and stratified cross-

validation approaches to avoid overfitting and to ensure that the models perform well

on any unseen data or any data variant from the data they were trained on. The ini-

tial comparison between VGG-16/19 traditional and five-channel models demonstrated

that the five-channel model consistently outperformed the traditional model across all

the combinations of hyper parameters. Additionally, when compared to VGG-16 and
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VGG-19 five-channel models, VGG-16 significantly outperformed VGG-19 by 4%-9%

in evaluation metrics. The evaluation time of five-channel models is better than that of

three-channel models due to the smaller data size of gray scale images used in the five-

channel model compared to RGB images in the three-channel model. Smaller data size

decreases memory utilisation and speeds up processing times within the model layers.

This shows the advantage of using extra channels, with VGG-16 having the shortest

evaluation time of all the configurations. These findings underscored the effectiveness

of the five-channel model in accurately detecting and classifying cracks of widths as

small as 0.1mm.

The maximum intensity fusion technique which has been successful in the field

of medical imaging was utilised in this research to develop a novel maximum intensity

fused neural network model, called FusedNN, to test its effectiveness in the field of Civil

Engineering. Also, the VGG-16 five-channel neural network model implemented earlier

was further improved by utilising light neural network model, MobileNetV2 (called

as MCNet) to improve evaluation time and was compared with FusedNN, traditional

and Zoubir’s models. FusedNN uses a pixel-based maximum intensity image fusion

technique, where the highest intensity value from the five input images is selected

across each pixel to create a fused image. The FusedNN model uses fused images as

input and has a structure similar to the traditional MobileNetV2 model. All four models

(Traditional, Zoubir, FusedNN, MCNet) were then compared for both binary and multi-

class image classification, with MCNet and FusedNN outperforming both the traditional

and Zoubir’s models, and MCNet being the best. The best-performing VGG-16 five-

channel model was compared to MCNet, and MCNet showed a 1.5% to 3% improvement

across all metrics while requiring only 20% of the evaluation time needed by the VGG-16

five-channel model. Therefore, by implementing these kind of customised deep learning

models, civil engineers can accurately detect potential issues early on, reducing the risk

of structural failures and extending the lifespan of Civil infrastructures. The FusedNN

model uses a maximum intensity fusion technique, selecting only the brightest pixels.

However, if the exposure of the images increases, and the brightest pixels chosen during

maximum intensity fusion technique matches the exposure of the diffused image used
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in the traditional model, then the advantage of FusedNN could be diminished. To

address this, the performance of the traditional model across varying exposure levels

was evaluated. It was found that the traditional model performed best at an exposure of

600,000 lux-seconds. So, all the directional images were captured at an exposure similar

to that of the diffused image, and the corresponding fused images were generated. A

comparison of the traditional and FusedNN models at this exposure level showed that,

despite the increased exposure, FusedNN still outperformed the traditional model. This

result highlights the adaptability and robustness of FusedNN in accurately identifying

cracks, regardless of exposure conditions.
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Appendix

A Portable Frame Design

The first iteration of the ALICS system (shown in Figure 1) is designed to be portable

and handheld, offering a more flexible and manoeuvrable solution. Unlike the ini-

tial design, which relied on complete darkness, this iteration features a frame housing

LEDs and employs a ”curtain” mechanism to create a controlled lighting environment.

Additionally, it has been designed to effectively operate in varying levels of outdoor

illuminance.

B Shroud Design

The second iteration of ALICS introduces a lightweight aluminium shroud to address

issues related to ambient lighting. This design utilises strips of LEDs to provide the

necessary illumination, while the machine vision camera is positioned at the apex of

the shroud, directed toward the target surface, as shown in Figure 2 and Figure 3.

The shroud effectively blocks out ambient light, ensuring that the system can operate

optimally in dark or low-light outdoor environments.

Both iterations of ALICS can function as handheld devices, allowing inspectors to

conduct on-the-spot inspections, or can be mounted to a six-axis robot for controlled

and precise movements during data capture. Furthermore, image processing can be

carried out onboard or on an attached single-board computer, providing immediate

analysis capabilities, or data can be streamed to external computing resources for offline

processing.
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Figure 1: First Iteration of Handheld and Portable ALICS Hardware. Captures images
of size 5429×3458 pixels.
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Figure 2: Second iteration of ALICS’s hardware, along with the directional lighting
prototype, demonstrates its functionality as an inspection platform integrated onto a
six-axis robot. Captures images of size 5429×3458 pixels.

Figure 3: Second iteration of ALICS’s hardware, along with the directional lighting
prototype, demonstrates its utility as a handheld device designed for manual inspection.
Captures images of size 5429×3458 pixels.
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Field deployment of these designs has provided the opportunity to capture real-

world data sets from concrete assets located in public areas. These iterations help in

bringing the ALICS out of the laboratory and into practical, real-world scenarios. Their

versatility, and adaptability is useful in various potential applications for automated

concrete structure inspection in outdoor and public settings.
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