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Thesis Abstract

Chronic inflammatory diseases of the gut, including inflammatory bowel disease (IBD) and
coeliac disease (CoD), present major diagnostic and therapeutic challenges due to their
heterogeneous clinical presentation, reliance on invasive biomarkers, and limited specificity
of existing tests. Liquid chromatography-based mass spectrometry (LC-MS)-based
metabolomics provides a powerful means of characterising small molecule signatures of
disease and treatment response. This thesis advances the field by establishing optimised
high-throughput LC-MS workflows for gastrointestinal metabolomics and applying them to

large-scale clinical cohorts to identify novel disease-relevant metabolic alterations.

A monophasic faecal extraction protocol was developed and systemically optimised,
ensuring broad metabolite coverage and reproducibility for both untargeted and targeted
analyses. Applied to paediatric CoD cohorts, this method revealed three major groups of
candidate biomarkers. Firstly, we identified a panel of 12 CoD-specific, non-treatment
responsive metabolites spanning bile acids and amino acid derivatives that remain
persistently altered despite adherence to a gluten-free diet (GFD). Secondly, we note a
group of treatment-responsive metabolites, including amino acid dipeptides and indole and
purine related metabolites, which normalised following dietary treatment. Finally, we
identified treatment dependent, non-disease-specific metabolites driven by dietary change

rather than CoD itself, such as indole-derived compounds and acylcarnitines.

In parallel, a rapid LC-MS workflow for urine was developed and systematically optimised to
ensure robust application in large-scale clinical studies. Eight individual parameters were
sequentially evaluated, spanning across sample preparation, LC and MS elements of the
workflow. This iterative workflow produced a high-throughput protocol with a 6.5-minute
data collection time, while maintaining peak resolution, reproducibility, and broad
metabolite coverage. This optimised protocol was used to analyse 1094 urine samples from
IBD patients and healthy controls, representing the largest urinary metabolomics study of

IBD performed to date.

Finally, a critical review was conducted on the impact of food additives on gut inflammation.

This synthesis underscored the dual potential of additives as either inflammatory or



therapeutic modulators, reinforcing diet as both a confounder and a therapeutic axis in

gastrointestinal disease.

Collectively, this thesis provides methodological advancement that strengthens
standardisation in LC-MS-based gastrointestinal metabolomics and delivers biological
insights into the pathophysiology of disease. This work contributes to the development of

non-invasive biomarkers for future clinical translation of metabolomics in gut health.
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List of Figures

CHAPTER 1

Figure 1. Differences between Crohn’s disease (CD) and ulcerative colitis (UC). The
anatomical and histological features differ between the two phenotypic forms of IBD. In CD
(left), inflammation can occur throughout the gastrointestinal tract and is typically
discontinuous. In contrast, UC (right) is restricted to the colon and rectum, with

inflammation spreading continuously. Red areas in the schematic represent inflammation.

Figure 2. The multifaceted nature of IBD. Complex interactions between genetics,
environment, immune response, microbiota, and metabolites result in the onset and
development of IBD. 16S rRNA, 16S ribosomal ribonucleic acid; AA, amino acids; ATG161L,
autophagy gene 161L; BA, bile acids; ELISA, enzyme-linked Immunosorbent Assay; FFQ,
food frequency questionnaire; GC-MS, gas chromatography-mass spectrometry, IRGM,
immunity-related GTPase family M; IL-23R, interleukin-23 receptor; LC-MS, liquid
chromatography-mass spectrometry; NMR, nuclear magnetic resonance; NOD2, Nucleotide
Oligomerisation Domain containing protein 2; PCR, polymerase chain reaction; qPCR,

guantitative polymerase chain reaction; SCFAs, short-chain fatty acids.

Figure 3. Overview of IBD Pathophysiology. Translocation of commensal bacteria through a
degraded epithelial layer initiates an inflammatory cascade predominantly driven by the
differentiation and effect of Th1 and Th17 cells. Increased pro-inflammatory signalling

molecules feed back into the exacerbation of disease.

Figure 4. Immune mechanisms implicated in IBD pathogenesis. (A) Intestinal barrier
dysfunction and downregulation of tight junction proteins in IBD. Schematic illustrating
compromised intestinal epithelial integrity in IBD, which is indicated by mechanisms
including increased enterocyte apoptosis, reduced numbers of granules containing anti-
microbial peptides, decreased thickness of the mucus layer, altered enteroendocrine cell
expression and hormone secretion, and decreased tight junction proteins (right panel). (B)
Cytokine production and inflammation. An imbalance between pro-inflammatory (red) and

anti-inflammatory (green) pathways results in an increase in pro-inflammatory cytokines.
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This immunological shift gives rise to an inflammatory state in the gastrointestinal tract. (C)
Circular model of the chronic nature of IBD. The cycle of inflammation occurring in IBD

persists due to the chronic progression and amplification of disease.

Figure 5. Pathophysiology of Coeliac Disease. Coeliac disease is characterised by an
inappropriate immune response to dietary gluten, resulting in inflammation and damage to
the small intestinal mucosa. In the small intestinal lumen, gluten proteins undergo partial
digestion by proteases, producing gliadin peptides. In susceptible individuals, increased
intestinal permeability allows translocation of gliadin peptides into the lamina propria.
Here, gliadin is deamidated by tissue transglutaminase 2 (TG2). Antigen-presenting cells
(APCs) present deamidated gliadin peptides to CD4* T cells, which become activated and
secrete pro-inflammatory cytokines such as IFN-y, TNF, and IL-2. These T cells also stimulate
B cells to produce antibodies against gliadin and TG2. The combined effects of epithelial
barrier disruption, cytokine-mediated inflammation, and autoantibody production lead to

villous atrophy, crypt hyperplasia, and chronic inflammation.

Figure 6. The Central Dogma of Molecular Biology. The flow of information from DNA to
metabolites through transcription, translation, and metabolism, together forming the

backbone of -omics fields.

Figure 7. Metabolomics Workflow. Protocols for metabolomic analysis generally follow a
method consisting of sample collection, extraction, data acquisition, data analysis, and

biological interpretation.

Figure 8. Metabolomics Data Acquisition. Untargeted metabolomics approaches generate
hypotheses by identifying as many metabolites as possible in a sample, providing an
indication of those which may be involved in disease. Absolute quantification of a pre-
defined chemically characterised set of metabolites can be performed by targeted
metabolomics to test such hypotheses. MRM, multiple reaction monitoring; QQQ, triple

qguadrupole.

Figure 9. Schematic representation of the internal architecture of an Orbitrap LC-MS

system. The diagram illustrates the integration of liquid chromatography with a mass
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spectrometer. In the LC module, analytes are separated based on their physicochemical
properties as they pass through a chromatographic column. The eluent enters the ESI
source, where analytes are converted into gas-phase ions. These ions are guided through
the various ion optics and mass filtering components. AQT, quadrupole mass filter with

Advanced Quadrupole Technology; HPLC, high performance liquid chromatography.

CHAPTER 2

Graphical Abstract. Overview of experimental design for metabolomics method
optimisation. LC-MS method development was carried out on samples from patients with

gastrointestinal disease to maximise metabolite coverage.

Figure 1. The effect of sample weight on features of metabolomic analysis. 1 uL of 20 mg
and 50 mg sample was injected onto a C18 column (n = 3), performed in triplicate. (a) PCA
of metabolomic profiles obtained as a function of sample weight. PCA score plots
demonstrating extracted faecal metabolites between different sample weights.
Discrimination between 20 mg (blue) and 50 mg (orange) samples was characterised by a
variability of 53.1%. (b) A Venn diagram of the mean number of metabolites detected
between each method. (c) The total number of m/z features and (d) total number of
putatively identified metabolites were calculated in positive ionisation mode and (e) the
overall mean signal intensity of each sample weight was assessed. (f) A metabolite class
guantification demonstrating the faecal metabolome patterns according to chemical class in
20 mg and 50 mg samples. The bar chart data were expressed as mean + SEM and statistical

significance was assessed using an unpaired t-test. * p < 0.05, ***p < 0.001.

Figure 2. Untargeted metabolite class analysis of sample weight. (A) Comparison of the
total number of metabolites identified by chemical class in 20 mg and 50 mg samples (n=3),
performed in triplicate. (B) Radar plot comparing the relative abundance of metabolite
classes in 20 mg and 50 mg samples. Data were expressed as mean + SEM and statistical

significance was assessed using unpaired t-test.

Figure 3. The effect of extraction solvents, MeOH, MeOH/H,0, and CHCls/MeOH, on

features of metabolomic analysis. 1 L of each extraction sample was injected onto a C18
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column (n = 3), performed in triplicate. (a) PCA of metabolomic profiles obtained as a
function of extraction solvent. PCA score plots demonstrating extracted faecal metabolites
between different extraction solvents. Discrimination between extraction solvents MeOH
(light blue), MeOH/H,0 (orange), and CHCl3/MeOH (dark blue) was characterised by a
variability of 40.2%. (b) A Venn diagram of the mean number of metabolites detected
between each method. (c) The total number of m/z features and (d) total number of
putatively identified metabolites were calculated in positive ionisation mode and (e) the
overall mean signal intensity of each extraction solvent was assessed. (f) The metabolite
class quantification demonstrating the faecal metabolome patterns according to chemical
class in each extraction sample. The bar chart data were expressed as mean + SEM and
statistical significance was assessed using one-way ANOVA. *p < 0.05, ** p < 0.01, *** p<

0.001

Figure 4. Untargeted metabolite class analysis of extraction solvent. (A) Comparison of the
total number of metabolites identified by chemical class in samples extracted with MeOH,
MeOH/H,0, and CHCl3/ MeOH (n=3), performed in triplicate. (B) Radar plot comparing the
relative abundance of metabolite classes in samples extracted with MeOH/ H,0, MeOH,
and CHCls/ MeOH. Data were expressed as mean = SEM and statistical significance was

assessed using a one-way ANOVA. *p < 0.05, **** p < 0.0001.

Figure 5. The effect of cellular disruption methods, bead beating, sonication, and freeze-
thaw cycles, on features of metabolomic analysis. 1 uL of each extraction sample was
injected onto a C18 column (n = 3), performed in triplicate. (a) PCA of metabolomic profiles
obtained as a function of disruption method. PCA score plots demonstrating extracted
faecal metabolites between bead beating, sonication, and freeze-thaw cycles.
Discrimination between extraction solvents A, bead beating (dark blue); B, sonication
(orange) and C, freeze-thaw cycles (light blue) was characterised by a variability of 33.5%.
(b) A Venn diagram of the mean number of metabolites detected between each method.
(c) The total number of m/z features and (d) total number of putatively identified
metabolites were calculated in positive ionisation mode and (e) the overall mean signal
intensity of each disruption method was assessed. (f) The metabolite class quantification
demonstrating the faecal metabolome patterns according to chemical class in each
extraction sample. The bar chart data were expressed as mean + SEM and statistical

significance was assessed using a one-way ANOVA. *p < 0.05, ** p < 0.01.
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Figure 6. Untargeted metabolite class analysis of cellular disruption method. (A)
Comparison of the total number of metabolites identified by chemical class in samples
extracted using bead beating, sonication, and freeze-thaw cycles (n=3), performed in
triplicate. (B) Radar plot comparing the relative abundance of metabolite classes in samples
extracted using bead beating, sonication, and freeze-thaw cycles. Data are expressed as
mean + SEM and statistical significance was assessed using a one-way ANOVA, **** p <

0.0001.

Figure 7. The effect of sample-solvent ratio on features of metabolomic analysis. 1 pL of
each extraction sample was injected onto a C18 column (n = 3), performed in triplicate. (a)
PCA of metabolomic profiles obtained as a function of sample-to-solvent ratio. PCA score
plots demonstrating extracted faecal metabolites between different ratios. Discrimination
between extraction solvents 1:5 (dark blue), 1:10 (orange) and 1:20 (light blue) was
characterised by a variability of 33.3%. (b) A Venn diagram of the mean number of
metabolites detected between each method. (c) The total number of m/z features and (d)
total number of putatively identified metabolites were calculated in positive ionisation
mode and (e) the overall mean signal intensity of each sample-to-solvent-ratio was
assessed. (f) The metabolite class quantification demonstrating the faecal metabolome
patterns according to chemical class in each extraction sample. The bar chart data were
expressed as mean + SEM and statistical significance was assessed using a one-way ANOVA.

*p < 0.05 ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Figure 8. Untargeted metabolite class analysis of sample-to-solvent ratio. (A) Comparison
of the total number of metabolites identified by chemical class in samples extracted using
sample-to-solvent ratios of 1:5, 1:10, 1:20 (n=3), performed in triplicate. (B) Radar plot
comparing the relative abundance of metabolite classes in samples extracted using 1:5,
1:10, 1:20. Data were expressed as mean = SEM and statistical significance was assessed

using a one-way ANOVA., ** p < 0.01, **** p < 0.0001.

Figure 9. Comparison of individual optimization experiments. Total number of putatively
identified metabolites given by optimal parameters of each experiment. Experiment 1,
Analysis of Extraction Weight; Experiment 2, Analysis of Extraction Solvent; Experiment 3;

Analysis of Cellular Disruption Method; Experiment 4, Analysis of Sample-to-Solvent Ratio.
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Data were expressed as mean = SEM and statistical significance was assessed using a one-

way ANOVA. **p < 0.01, *** p < 0.001, **** p < 0.0001.

Figure 10. PCA of metabolomic profiles based on untargeted analysis of gastrointestinal
disease. PCA score plots demonstrating extracted faecal metabolites between patient
groups. Principle Component 1 directionality describes the variance between CD (dark
blue), CoD (orange) and HC (light blue) and explains 17.7% of the total variance of the data.
QCs are shown in green. The samples were performed in triplicate and are shown as

individual datapoints to represent the variance in the dataset.

Figure 11. PCA of the metabolomic profiles based on targeted analysis of gastrointestinal
disease. PCA score plots demonstrating extracted faecal metabolites between CD (dark
blue), CoD (orange) and HC (light blue). The discrimination between (a) CD vs. HC, (b) CoD
vs. HC, and (c) CD vs. Co was characterised by variabilities of 34.5%, 31.3%, and 10.5%,
respectively. The samples were performed in triplicate and are shown as individual

datapoints to represent the variance in the dataset.

Figure 12. Central network analysis of developed metabolite extraction method. Circles
shown in green represent metabolites successfully extracted using the developed method
and circles shown in red represent metabolites not found using the developed method.
C1P, Ceramide-1-phosphate; AA, Arachidonic acid; EPA, Eicosapentanenoic acid; DGLA,

Dihomo-gamma linolenic acid.

CHAPTER 2 SUPPLEMENTARY

Figure S1. Untargeted differential analysis of sample weight showing volcano plot of altered
metabolites, plotted as log2 fold change vs -log10P. Metabolites that are significantly
increased in 50 mg samples compared to 20 mg samples are highlighted in red and those
that are significantly decreased are shown in green. Differences in metabolite level were

defined by a log2 fold change of 1 and the significance level was set at p < 0.05.

Figure S2. Untargeted differential analysis of extraction solvent showing volcano plot of
altered metabolites between (A) MeOH vs. MeOH/ H,0, (B) CHCl3/ MeOH vs. MeOH/ H,0,
and (C) CHCls/ MeOH vs MeOH, plotted as log2 fold change vs -log10P. Metabolites that are

17



significantly increased are highlighted in red and those that are significantly decreased are
shown in green. Differences in metabolite level were defined by a log2 fold change of 1 and

the significance level was set at p < 0.05.

Figure S3. Untargeted differential analysis of extraction solvent showing the volcano plot of
altered metabolites between (A) sonication vs. bead beating, (B) freeze-thaw vs. bead
beating and (C) freeze-thaw vs. sonication, plotted as log2 fold change vs -log10P.
Metabolites that are significantly increased are highlighted in red and those that are
significantly decreased are shown in green. Differences in metabolite levels were defined

by a log2 fold change of 1 and the significance level was set at p < 0.05.

Figure S4. Untargeted differential analysis of sample-solvent ratio showing volcano plot of
altered metabolites between (A) 1:10 vs. 1:5, (B) 1:20 vs. 1:5 and (C) 1:20: vs. 1:10, plotted
as log2 fold change vs -log10P. Metabolites that are significantly increased are highlighted
red and those that are significantly decreased are shown in green. Differences in metabolite

level were defined by a log2 fold change of 1 and the significance level was set at p < 0.05.

Figure S5. Untargeted differential analysis of cell lysis techniques. Volcano plot of (A) HC vs.
CD; (B) CoD vs. CD (C) HC vs. CoD, for all patients. Log2 fold change vs. -log10P.
Metabolites. Metabolites that are significantly increased are highlighted in red and those
that are significantly decreased are shown in green. Differences in metabolite level were

defined by a log2 fold change of 1 and the significance level was set at p < 0.05.

Figure S6. Summary of the developed methodology pipeline. Multi-parameter analysis
showed that 50 mg samples give the strongest MS output, and from the extraction solvents
analysed, MeOH is the most effective. Additionally, cellular metabolite release is optimal
using bead beating as the cell lysis method. Combining optimised parameters provides an
experimental protocol for faecal metabolite extraction that can be used for metabolomic

analysis.
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CHAPTER 3

Figure 1. Overall experimental workflow following stages of sample collection, metabolite
extraction using optimised method, data acquisition and analysis, and biological

interpretation.

Figure 2. Metabolome profile for the cross-sectional (A) and prospective (B) cohorts.
Principal Coordinates—Canonical Variate Analysis (PC-CVA) of the faecal metabolome across
study groups (TCD, UCD, and HC) and throughout treatment timepoints (before GFD, 6
months on GFD, and 12 months on GFD) show group centroids and 95% confidence ellipses

based on canonical variates. Boxplots show comparison of the CV1 values between groups.

Figure 3. Principal Component Analysis (PCA) of targeted amino acid profiles across study
groups. Each point represents an individual sample, and ellipses indicate the 95%

confidence interval for each group.

Figure 4. Metabolome profile of children with newly diagnosed coeliac disease compared to
healthy controls (n = 82). (A) Scores plot of the orthogonal partial least square discriminant
analysis (OPLS-DA) model with R%Y= 0.555, Q= 0.267. (B) Volcano plot of significantly
differential faecal metabolites comparing children with newly diagnosed coeliac disease
compared to healthy controls, p < 0.05, fold change = 2. (C) Box and whisker plots of the top
significantly differential faecal metabolites from the untargeted analysis and (D) the

targeted analysis.

Figure 5. Treatment-responsive faecal metabolites in patients with CoD. Boxplots showing
the relative intensities of metabolites significantly altered between untreated coeliac
disease (UCD, red) and treated coeliac disease (TCD, blue). Statistical significance is

indicated by *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 6. Treatment responsive metabolites in all participants. Boxplots showing the relative

intensities of metabolites significantly altered in both untreated coeliac disease (UCD, red)

and HCs (green) compared with treated coeliac disease (TCD, blue). These metabolites
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reflect changes driven by a GFD rather than CoD status. Statistical significance is indicated

by *p <0.05, **p < 0.01, ***p < 0.001.

Figure 7. Most influential metabolites. (A) Boxplots of CoD-specific metabolites. (B)
Receiver operating characteristic (ROC) curve using the top 10 metabolites from the VIP

plot. (C) Combined ROC.

Figure 8. Statistically significant differences (log2 fold change) in metabolite levels between

coeliac disease diagnosis and follow-up time points on a gluten-free diet.

Figure 9. Metabolomics analysis comparing treated coeliac disease (TCD) and healthy
controls (HC) with unaffected siblings. (A) OPLS-DA scores plot for TCD vs siblings (ellipses =
95% confidence intervals). (B) Volcano plot of differential metabolite features for TCD vs
siblings (p < 0.05, fold change > 1.5, log2FC = TCD/S). (C) OPLS-DA scores plot for HC vs
siblings (ellipses = 95% confidence intervals). (D) Volcano plot of differential faecal

metabolite features for HC vs siblings (p < 0.05, fold change > 1.5, log2FC = HC/S).

CHAPTER 3 SUPPLEMENTARY

Figure S1. Variable importance in projection (VIP) plot showing the top differential
metabolites from the orthogonal partial least square discriminant analysis (OPLS-DA) model

comparing UCD vs. HC.

Figure S2. Orthogonal partial least square discriminant analysis (OPLS-DA) and variable
importance for treated vs untreated coeliac disease (TCD vs UCD). (A) OPLS-DA scores plot
comparing TCD vs UCD with points representing individual samples and ellipses showing
95% confidence intervals, R2Y = 0.767, Q2 = 0.0963. (B) Variable importance in projection
(VIP) plot showing the top differential metabolites from the orthogonal partial least square

discriminant analysis (OPLS-DA) model comparing TCD vs. UCD.

Figure S3. Orthogonal partial least square discriminant analysis (OPLS-DA) and variable

importance for treated coeliac disease (TCD) vs HCs. (A) OPLS-DA scores plot comparing TCD
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vs HC with points representing individual samples and ellipses showing 95% confidence
intervals, R2Y = 0.843, Q2 = 0.548. (B) Variable importance in projection (VIP) plot showing
the top differential metabolites from the orthogonal partial least square discriminant

analysis (OPLS-DA) model comparing TCD vs. HC.

Figure S4. tTG and PedsQL-GS levels in coeliac disease patients throughout 6 and 12 months
on a GFD.

CHAPTER 4

Graphical Abstract. Overview of Experimental Design for Untargeted Urinary Metabolomics
Optimisation. Eight parameters were optimised across the protocol, including sample
preparation, LC and MS analytical conditions of the experimental pipeline. Outcomes were
measured by peak quality attributes, analysis time, and metabolite detection. AGC,

automatic gain control; MSMS, tandem mass spectrometry.

Figure 1. Peak Quality Factor (PQF) metric description. The (A) zig-zag quality factor, (B)
FWHMZ2Base, (C) jaggedness, and (D) modality quality factors are described, using example

peaks from acquired data.

Figure 2. The effect of the extraction solvent on untargeted urinary metabolomics.
Outcomes were assessed by (A) the number of metabolites detected, (B) the peak
performance of creatinine, as measured by the quantification of peak quality factors (PQF)s,
Zigzag, FWHM2Base, Jaggedness, and Modality indices, (C) average peak rating of all
metabolites, (D) the area under the curve (AUC) of the detected creatinine peak and (E) the
associated creatinine peak rating. Creatinine was not detected when IPA/H,0 or MeOH

were used as the extraction solvents.

Figure 3. The effect of the dilution factor on untargeted urinary metabolomics. Outcomes
were assessed by (A) chromatographic visualisation, (B) the number of metabolites
detected, (C) their average peak rating, (D) the area under the curve (AUC) of the detected

creatinine peak and (E) the associated peak rating. The peak performance of creatinine was
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further evaluated, as measured by the quantification of peak quality factors (PQF)s, (F)
FWHMZ2Base, (G) Jaggedness, and (H) Modality indices. The chromatogram presented in (A)
represents the optimised method parameter selected for the method. The zig-zag indices

are not shown as all parameters tested gave a zero value.

Figure 4. The effect of chromatography gradient elution time. The effects of the
chromatography analysis time on untargeted urinary metabolomics were assessed by (A)
the number of metabolites detected, (B) their average peak rating, (C) the area under the
curve (AUC) of the detected creatinine peak and (D) the associated peak rating. The peak
performance creatinine of creatinine further evaluated, as measured by the quantification
of peak quality factors (PQF)s, (E) FWHM2Base, (F) Jaggedness, and (G) Modality indices.

The zig-zag indices are not shown as all parameters tested gave a zero value.

Figure 5. The effect of injection volume on untargeted urinary metabolomics. Outcomes
were assessed by (A) chromatographic visualisation, (B) the number of metabolites
detected, (C) their average peak rating, (D) the area under the curve (AUC) of the detected
creatinine peak and (E) the associated peak rating. The peak performance creatinine of
creatinine further evaluated, as measured by (F) the FWHM2Base. The chromatogram
presented in (A) represents the optimised method parameter selected for the method. The
zigzag, jaggedness, and modality indices are not shown as all parameters tested gave a zero

value.

Figure 6. The impact of flow rate on untargeted urinary metabolomics. Outcomes were
assessed by (A) chromatographic visualisation, (B) the number of metabolites detected, (C)
their average peak rating, (D) the area under the curve (AUC) of the detected creatinine
peak and (E) the associated peak rating. The peak performance of creatinine was further
evaluated, as measured by the quantification of peak quality factors (PQF)s, (F) Zigzag, (G)
FWHM2Base, (H) Jaggedness, and (1) Modality indices. The chromatogram presented in (A)

represents the optimised method parameter selected for the method.

Figure 7. The impact of gradient curve on untargeted urinary metabolomics. Outcomes

were assessed by (A) chromatographic visualisation, (B) the number of metabolites

detected, (C) their average peak rating, (D) the area under the curve (AUC) of the detected
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creatinine peak and (E) the associated peak rating. The peak performance of creatinine was
further evaluated, as measured by the quantification of peak quality factors (PQF)s, (F)
FWHMZ2Base, (G) Jaggedness, and (H) Modality indices. The chromatogram presented in (A)
represents the optimised method parameter selected for the method. The zig-zag indices

are not shown as all parameters tested gave a zero value.

Figure 8. Comparison of AGC parameters and their impact on untargeted urinary
metabolomics. Outcomes were assessed by (A) the number of metabolites detected per full
scan AGC parameter, (B) the associated peak performance of creatinine, as measured by the
guantification of peak quality factors (PQF)s, Zigzag, FWHM2Base, Jaggedness, and

Modality indices, (C) the number of metabolites detected per MSMS scan AGC parameter,
and (D) peak performance characteristics for the MSMS scan settings. The zig-zag indices

are not shown as all parameters tested gave a zero value.

Figure 9. Comparison of full scan AGC parameters and their impact on untargeted urinary
metabolomics. Outcomes were assessed by (A) the number of metabolites detected, (B)
their average peak rating, (C) the area under the curve (AUC) of the detected creatinine
peak and (D) the associated peak rating. The peak performance of creatinine was further
evaluated, as measured by the quantification of peak quality factors (PQF)s, (E)
FWHMZ2Base, (F) Jaggedness, and (G) Modality indices. The zig-zag indices are not shown as

all parameters tested gave a zero value.

Figure 10. Comparison of MSMS scan AGC parameters and their impact on untargeted
urinary metabolomics. Outcomes were assessed by (A) the number of metabolites
detected, (B) their average peak rating, (C) the area under the curve (AUC) of the detected
creatinine peak and (D) the associated peak rating. The peak performance of creatinine was
further evaluated, as measured by the quantification of peak quality factors (PQF)s, (E)
Jaggedness, (F) Modality, and (G) FWHM2Base indices. The zig-zag indices are not shown as

all parameters tested gave a zero value.

Figure 11. Method Optimisation Overview. Comparison of (A) the original 15-minute

method and (B) shortened 10-minute chromatography gradient.
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Figure 12. Final optimised workflow for the analysis of urine samples using untargeted
UHPLC-MS and application of the optimised method to a clinical trial for urine
metabolomics analysis. Schematic representation of the optimised method, which includes
the selection of specific sample preparation and LC-MS parameters to ensure the
comprehensive and reproducible profiling of urinary metabolites. lllustration of the clinical
trial workflow, consisting of three independent studies which aimed to measure the global
urine metabolic profile. The total analysis time of the urine samples for all three studies was

182.3 hours and over 1500 metabolites were putatively identified.

Figure 13. Number of metabolites with coefficient of variation (CV) < 20% across three
normalisation methods. The bar plot shows the total number of metabolites meeting a CV
threshold of £ 20% for non-normalised data, creatinine normalised data, and probabilistic

guotient normalisation (PQN) normalised data.

CHAPTER 4 SUPPLEMENTARY

Figure S1. Comparison of chromatograms obtained from untargeted LC-MS analysis using
different solvent systems for method optimisation. Each colour represents a solvent used
for extraction with signal intensities shown. The colours are represented by the following
solvents: black — Acetonitrile (1.90E9), red - Acetonitrile/ H,O (2.5E9), blue — H,0 (2.3E9),
orange — IPA (1.81E9), pink — IPA/ ACN (2.22E9), green — IPA/ H,0 (2.07E9), brown —
IPA/MeOH (2.05E9), light blue — MeOH (2.39E9), grey — MeOH/ ACN (2.44E9), purple —
MeOH/H,0 (2.22E9).

Figure S2. The effect of the extraction solvent on untargeted urinary metabolomics.
Outcomes were assessed by (A) the number of metabolites detected, (B) their average peak
rating, (C) the area under the curve (AUC) of the detected creatinine peak and (D) the
associated peak rating. The peak performance creatinine of creatinine further evaluated, as
measured by the quantification of peak quality factors (PQF)s, (E) Zigzag, (F) FWHM2Base,
(G) Jaggedness, and (H) Modality indices. *Creatinine was not detected when IPA/H,0 or

MeOH were used as the extraction solvents.
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Figure S3. Comparison of chromatograms obtained from untargeted LC-MS analysis using
different extraction solvent dilution factors for method optimisation. Each colour represents
a solvent used for extraction with signal intensities shown. The colours are represented by
the following solvents: black — dilution factor 1 (1.7E9), red — dilution factor 2 (2.21E9),
green — dilution facctor 5 (1.7E9), blue — dilution factor 10 (1.34E9).

Figure S4. Comparison of chromatograms obtained from untargeted LC-MS analysis using
different injection volumes for method optimisation. Each colour represents a solvent used
for extraction with signal intensities shown. The colours are represented by the following

solvents: black — 0.5 (5.09E8), red — 1 (8.3E8), green — 2 (1.31E9), blue — 5 (2.07E9).

Figure S5. Comparison of chromatograms obtained from untargeted LC-MS analysis using
different flow rates for method optimisation. Each colour represents a solvent used for
extraction with signal intensities shown. The colours are represented by the following
solvents: black — 0.25 mL/min (1.86E9), red — 0.3 mL/min (2.42E9), green — 0.4 mL/min
(2.31E9), blue — 0.5 mL/min (2.35E9), pink — 0.6 mL/min (2.30E9).

Figure S6. Comparison of chromatograms obtained from untargeted LC-MS analysis using
different gradient curve parameter values for method optimisation. Each colour represents
a solvent used for extraction with signal intensities shown. The colours are represented by
the following solvents: black — gradient curve of 3 (2.17E9), red — 5 (1.96E9), green — 7
(1.84E9).

Figure S7. Principal component analysis (PCA) plots comparing three normalisation

strategies, evaluating two study groups. (A) Non-normalised, (B) Creatinine normalised, and

(C) PQN normalised urine data.

CHAPTER 5

Graphical Abstract. Mechanisms of food additives in the prevention or promotion of

gastrointestinal inflammation. Food additives have been shown to influence gut microbial
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composition and their released metabolites, reactive oxygen species (ROS) and antioxidant

balance, immune function, and epithelial barrier integrity.

Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow
diagram of literature database search. Selection criteria including paper identification,
screening and eligibility, excluding duplicate papers, unavailable papers, and those unspecific
to Gl inflammation, and final selection of articles included in the review, according to food

additive classification.

Figure 2. Food additives implicated in gastrointestinal inflammation. Food additives, grouped
according to their functional class, (colours, preservatives, antioxidants, sweeteners, and
emulsifiers) shown to either enhance or mitigate gastrointestinal inflammation. P80;
polysorbate 80, CMC; carboxymethylcellulose, SSL; sodium stearoyl lactylate, SMS; sorbitan

monostearate, KGM; konjac glucomannan.

Figure 3. Food colourants impacting gastrointestinal inflammation. The inner circle
represents food colours that demonstrate inflammatory properties; outer circle represents
food colours that demonstrate therapeutic properties, in the context of Gl health. Food
additives are shown with their maximum absorbance wavelengths: Riboflavin: 440 nm [24],
Curcumin: 425 nm [25], Lutein: 445 nm [26], Fast green FCF: 620 nm [27], Brilliant blue FCF:
630 nm [28], Anthocyanins: 520 nm [29], Beta-carotene: 470 nm [30], Tartrazine: 426 nm
[31], Sunset yellow FCF: 480 nm [32], Allura red AC: 504 nm [33].

Figure 4. Overview of mechanistic effects of food additives on the Gl system. (A) Mechanisms
of food additives promoting intestinal inflammation. Food additives which exert a pro-
inflammatory effect disrupt epithelial barrier integrity, for example through increased
intestinal permeability, epithelial cell loss, and decreased mucin production, promoting
translocation of bacteria into the intestinal lumen, where an adaptive immune response is
elicited. (B) Mechanisms of food additives promoting intestinal healing. Food additives which
exert an anti-inflammatory effect restore intestinal homeostasis via epithelial barrier and
microbial restructuring, which is associated with a downregulated inflammatory immune
response, e.g., decreased production of pro-inflammatory cytokines and ROS. Muc2: mucin2;

MLCK: mysosin light-chain kinase; 5-HT: 5-hydroxytrypamine; STAT3: signal transducer and

26



activator of transcription; CAT: catalase; SOD: superoxide dismutase; GSH-Px: glutathione
peroxidase; ZO-1: zonula occludens 1; SCFA: short chain fatty acid; COX-2: cyclooxygenase-2;
MAPK: mitogen-activated protein kinases; GST: glutathione S-transferase; GSH: glutathione;

iNOS: inducible nitric oxide synthase; myeloperoxidase; MDA: malondialdehyde.

Figure 5. Potential opportunities for utilising mechanistic knowledge of food additives, upon
further human research and controlled trials. Future applications may include altered intake
of food additives, pre/ probiotics, novel targeted therapies, personalised nutrition, exclusive

enteral nutrition, and unravelling mechanisms of dietary-associated disease.
Figure 6. Food additives present in EEN formulas, adapted from Logan M et al., 2020 [140].
(A) Food additives in EEN formulas with inflammatory potential; (B) Food additives in EEN

formulas with therapeutic potential.

Figure 7. Roadmap to an evidence-driven future of improved food additive utilisation within

the food and pharmaceutical industries.
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1.0 CHAPTER 1

INTRODUCTION

The gastrointestinal tract (Gl), also known as the gut, is a complex system comprising
several key structures and organs including the mouth, oesophagus, stomach, small
intestine, and large intestine. This vital organ system is responsible for many key functions
including digestion, nutrient absorption, and waste elimination, with important roles
extending to immune function [1], hormone regulation [2], and the association with other
organs to form functional circuit pathways including the gut-brain axis [3] and the gut-liver
axis [4]. Approximately 70% of the body’s immune system resides in the gut, which makes
the gut a unique space due to the requirement to maintain a balance between protecting

the body from harmful triggers and establishing immune tolerance and defence.

The human gut is home to around 100 trillion of symbiotic microorganisms [5] ,collectively
known as the host microbiota. The collective composition of the intestinal microbiota,
referring to bacteria, viruses, archaea, and protozoa, form a complex and heterogenic
network which largely impacts intestinal health. With increasing recognition of the wide
range of functions conveyed by the gut microbiota in line with the advancement of
sequencing technologies, the focus on the microbiome in gut health has soared in recent
years. An individual’s microbiome is shaped in early life, where it is suggested that a stable
community is reached after three years [6]. The large number of factors contributing to
microbial acquisition and development, such as delivery type, method of milk feeding, and
antibiotic use, provides a microbial composition unique to the individual. Despite the highly
complex and specific nature of the microbiome, there are compositional regularities which
exist between healthy individuals: A diverse microbiome rich in Bacteroidetes and
Firmicutes, for example, is found in a healthy and well-tolerated intestine [7]. It can
additionally be noted that alterations in the composition occur throughout the lifetime of

an individual in line with environmental pressures [8] and with increasing age [9].

Coevolution of the microbiota and host has provided many physiological benefits in
maintaining a delicate balance between pathogen invasion and self-tolerance. As such, this
close interplay has allowed the development of protective mechanisms to prevent T cell

responses being directed towards the resident microbiota. In return for the provision of a

40



stable anoxic environment and substrates by the host, a myriad of crucial functions is given
by the microbiome to maintain this symbiotic relationship. Under normal conditions, a
stable environment is provided by the diverse community of microbes which, along with
the intestinal epithelium, acts as a physical protective barrier to potential pathogens.
Enteric pathogens are first exposed to the microbial layer, to which the structure exhibits
colonisation resistance mechanisms. Colonisation resistance is a term describing the
specific colonisation and growth inhibition mechanisms provided by microbiota to maintain
homeostasis [10]. Microbial structure therefore enhances epithelial integrity, which is
evident in the finding that the microbial composition largely impacts the maintenance of
tight junctions [11]. One hypothesis describing this phenomenon is the competitive
exclusion model, which suggests that the host microbes outcompete pathogens for
nutrients, resources, and receptors [12]. While this has proven to be a useful model in
explaining direct pathogen inhibition, it is important to highlight additional indirect
biomechanical mechanisms that mediate colonisation resistance. These include the pH
modification, production of antimicrobial peptides and enzymes, and type VI secretion
systems (T6SS) [13]. Immunomodulation is another important feature of the gut
microbiome via regulation of innate and adaptive immune homeostasis. Microbial
composition influences the subsequent immune response via engagement with pattern
recognition receptors (PRRs), e.g., Toll-like receptors (TLRs), to initiate appropriate
signalling cascades. This crucial crosstalk between the microbiota and the immune system

provides the delicately controlled response which exists in homeostatic states.

An increasing understanding of the extent to which the gut impacts overall wellbeing and
the association to an increasing number of diseases has placed gut health at a central area
of scientific and medical research with widely extending implications. Chronic diseases of
the gut are of increasing prevalence, particularly in the UK and Western countries due to
lifestyle and environmental factors and pose significant health challenges. Continued
research exploring the onset, development, and management of gut diseases is crucial for
improved disease management and treatment. Of particular interest in this project is the

investigation of inflammatory bowel disease (IBD) and coeliac disease (CoD).
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1.1 Inflammatory Bowel Disease (IBD)

Inflammatory Bowel Disease (IBD) is an autoimmune disorder describing chronic
inflammation of the gastrointestinal tract (GIT) and involves disruption of normal intestinal
homeostasis. This presents symptomatically as abdominal pain, diarrhoea, anaemia, weight
loss, and fatigue, which together reduce patients’ overall quality of life. IBD follows a
relapsing and remitting disease course, consisting of repeating cycles of active flare-ups
followed by periods of quiescent disease. These waves of disease activity are unpredictable
and show great variation between patients. Although IBD may present at any age, bimodal
age distribution of disease onset shows a large peak in adolescents as well as a smaller peak
in older adults [14]. In 2019, 4.9 million IBD cases were reported globally [15], with disease
incidence and prevalence expected to continue rising, projected at an average annual 5%

increase [16].

Two main forms of IBD exist: Crohn’s Disease (CD) and Ulcerative Colitis (UC). Although they
each follow a similar inflammatory process with overlapping symptoms, the two related
conditions have significant differences, primarily in terms of the location and extent of
inflammation (Figure 1). CD is characterised by transmural inflammation at any point
throughout the gastrointestinal tract, although presentation occurs primarily in the colon
and ileum, which can extend throughout the entire intestinal wall. This inflammation
presents as non-continuous patches, often with deep fissures in affected areas, giving a
cobblestone endoscopic appearance with thickened walls. By contrast, the inflammation
caused by UC is localised to the large intestine and is limited to the inner lining of the gut.
Furthermore, this inflammation is continuous and spread proximally, commonly marked by
pseudopolyps. It is important to note that in approximately 5-15% of cases, patients present
with features that are insufficient to definitively classify the disease as either CD or UC,

leading to a diagnosis of indeterminate colitis (IC) [17, 18].
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Figure 1. Differences between Crohn’s disease (CD) and ulcerative colitis (UC). The anatomical and
histological features differ between the two phenotypic forms of IBD. In CD (left), inflammation can
occur throughout the gastrointestinal tract and is typically discontinuous. In contrast, UC (right) is
restricted to the colon and rectum, with inflammation spreading continuously. Red areas in the
schematic represent inflammation.

In line with current guidelines, diagnosis is given based on several factors, including clinical
examination, ileocolonoscopy, histology, and blood tests. A full ileocolonoscopy assessment
is important to determine the location and extent of inflammation presented. Key features
of colonoscopy assessment include anatomical distribution, bowel wall thickness in parallel
with vascularisation observations [19], and clinical manifestations. Moreover, during initial
colonoscopy evaluation at least two biopsy samples should be taken at five separate sites
for histological assessment. Diagnostic limitations still exist, however, with notable
inconsistencies in disease interpretation [20]. For example, it has been shown that disease
location not only determines subclassification but is also a predictor of disease treatment
outcomes [21]. This is further complicated by large interindividual variability at time of
diagnosis, due to the wide range of clinical and symptomatic presentations. As the specific
diagnosis and classification of disease lead to different treatment and management

interventions, an accurate diagnosis is vital in determining the direction of treatment.

Clinical outcomes of IBD can be assessed by several parameters. Mucosal healing, for
example, is strongly associated with reduced disease activity, with evidence demonstrating
that in early-stage patients mucosal healing is a predictor of remission [22]. Implementing

disease evaluation methods into quantitative framework is important for therapeutic
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monitoring and informing treatment choices (Table 1). This allows clinical response to be
defined and compared throughout a time course. The most common index for CD
assessment is the Crohn’s Disease Activity Index (CDAI), a scoring system developed in 1976
[23] which categorises patients based on clinical outcomes such as abdominal pain, weight
change, and complications. While this is the current gold standard for disease evaluation
[24], limitations can be noted in the associated subjectivity resulting from the high
dependency on patient answers. Furthermore, the large number of variables required for
CDAI calculations bring complexities in interpretation, and therefore a simplified version of
the CDAI, named the Harvey-Bradshaw Index, was developed, which uses five equally
weighted variables to assess disease activity. Inclusion of endoscopic data was identified as
an important factor for disease evaluation, which led to the creation of the Crohn’s Disease
Endoscopic Index of Severity (CDEIS). This scoring system is based on objective parameters
from endoscopy assessment. The simple endoscopic score for CD (SES-CD) is another index
that has been developed as a simpler and more routine alternative to CDEIS, and measures
parameters such as ulcers and surface involvement. Disease activity in UC patients is
predominantly assessed by two similar methods: The Ulcerative Colitis Disease Activity
Index (UCDAI) and the Mayo score [25]. Both indices use an objective scoring system which
include endoscopic data, and while this allows good reproducibility, neither tool has yet
been validated. An additional assessment of UC activity that is used is the Truelove and

Witts Severity Index classification, although this is much less common at the clinical level.
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Table 1. Classification systems used to assess IBD disease activity.

Index

IBD Subclass

Number of
Parameters
Assessed

Classification

Reference

CDAI

CcD

8

Remission: <150
Mild: 150-219
Moderate: 220-
450

Severe: >450

Clinical response:

Decrease >70

(23]

Harvey-
Bradshaw
Index

CcD

Remission: <5
Mild: 5-7
Moderate: 8-16
Severe: >16

[26]

CDEIS

CcD

Remission: <3
Mild: 3-8
Moderate: 9-12
Severe: >12

(27]

SES-CD

CcD

Remission: 0-2
Mild: 3-6
Moderate: 7-15
Severe: >15

(27]

UCDAI

uc

Remission: 0
Mild: 1
Moderate: 2
Severe: 3

[25]

PUCAI

uc

Remission: <10
Mild: 10-34
Moderate: 35-64
Severe: >65

(28]

Mayo score

uc

Remission: 0-2
Mild: 3-5
Moderate: 6-10
Severe: >10

[25]

Truelove and
Witts Severity
Index

uc

Mild: <4
Moderate: 4-6
Severe: >6

[29]

While these classification systems provide a basis for clinicians to assess disease severity at

different levels, several limitations are inherent in their application. With only a small

number of parameters assessed by each of the current systems, an overarching simplicity

undernote the calculated outcomes. Several studies have been carried out to investigate

associations of disease activity classification systems with molecular evidence of disease

45



pathology, with mixed results. For example, one research group found no significant
correlation between CDAl and numbers of lymphocytes [30]. This indicates that assessing
disease activity by clinical parameters alone is not sufficient to provide an accurate
evaluation of the true disease state, and therefore it is reasonable to suggest that molecular
measurements at the gastrointestinal level could enhance such investigations. Interestingly,
comparisons of the different systems are limited, with a general consensus that there are no
major consistent correlations between clinical scales, which is likely due to the high

subjectivity of the indices.

The onset of IBD is an integrative result of a complex network of factors, including genetics,
environment, immune response, microbiota, and metabolite profile (Figure 2). This multi-
directional relationship presents a complex nature of disease predisposition which together

determines the overall trajectory of disease course [31].
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Figure 2. The multifaceted nature of IBD. Complex interactions between genetics, environment,
immune response, microbiota, and metabolites result in the onset and development of IBD. 16S
rRNA, 16S ribosomal ribonucleic acid; AA, amino acids; ATG161L, autophagy gene 161L; BA, bile
acids; ELISA, enzyme-linked Immunosorbent Assay; FFQ, food frequency questionnaire; GC-MS, gas
chromatography-mass spectrometry, IRGM, immunity-related GTPase family M; IL-23R, interleukin-
23 receptor; LC-MS, liquid chromatography-mass spectrometry; NMR, nuclear magnetic resonance;
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NOD2, Nucleotide Oligomerisation Domain containing protein 2; PCR, polymerase chain reaction;
gPCR, quantitative polymerase chain reaction; SCFAs, short-chain fatty acids.

1.1.1 IBD Risk Factors

IBD is a complex polygenic disorder, with an individual’s genetic profile contributing to the
risk of developing disease. Several lines of evidence, including familial association [32], twin
studies [33], and identification of various susceptibility loci in patients [34], suggest that
genetic factors are closely involved in IBD pathogenesis. Nucleotide Oligomerisation Domain
containing protein 2 (NOD2) was the first gene to be linked to IBD in the Western
population in 2001 by candidate gene analysis [35, 36], with a more recent study suggesting
that up to 50% of CD patients carry a mutated form of the NOD2 gene [37]. NOD2 is a
cytoplasmic protein expressed in Paneth cells and has important roles in mucosal
homeostasis. The leucine-rich repeat (LRR) domain recognises and binds to its ligand
muramyl dipeptide (MDP), an immunoreactive peptidoglycan present in bacterial cell walls.
This interaction triggers a network of immune responses leading to the activation of nuclear
factor kappa B (NF- kB) and production of pro-inflammatory cytokines. Mutations of the
NOD2 gene have been associated with IBD susceptibility in European and North American
populations. Genome-wide association studies (GWAS), observational research approaches
used to detect disease-associated genetic variants, have identified further susceptibility
genes with involvement across a wide range of areas including innate immunity, epithelial
integrity, drug transport, and adhesion. To date, GWAS have identified 201 susceptibility loci
for IBD [34, 38]. Those exhibiting the strongest associations are highlighted in Table 2.
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Table 2. IBD Susceptibility Genes. NOD2, Nucleotide Oligomerisation Domain containing protein 2;
ATG161L, autophagy gene 161L; IRGM, immunity-related GTPase family M; IL-23R, interleukin-23
receptor; TNFSF15, vascular endothelial growth inhibitor; CDH1, Cadherin 1.

Gene Function of Protein Mutations Reference
NOD2 Production of pro- Arg702Trp [39]
inflammatory cytokines  Gly908Arg

via NF- kB pathway Leu1007fsinsC
ATG16L1 Autophagy rs2241879 [40]
rs2241880
IRGM Autophagy rs1000113 [41]
rs9637876
rs13361189
IL23R Differentiation of Thl rs1004819 [42]
and Th17 T- rs11209032
lymphocytes
TNFSF15 T cell activation and rs6478109 [43]
proliferation rs7848647
rs10817678
CDH1 Involved in epithelial rs12597188 [44]

adherens junction

The genetic contribution of IBD risk is additionally indicated by patterns of familial
predisposition: It is estimated that around 5.2% - 22.5% of IBD patients have an affected
family member [45]. Variance in familial risk in IBD can also be noted between populations,

for example white populations have the highest prevalence of family history [46].

Genetic involvement is confirmed by evidence from twin studies. One study found the
concordance rate for CD in monozygotic twins to be 50%, in comparison to 4% in dizygotic
twins [47]. Similar findings were observed in the study underpinning the genetic basis of UC
but to a lesser extent, with the concordance rate in monozygotic twins 19% compared to 0%
in dizygotic twins. This data ultimately shows that identical twins are more concordant than
non-identical twins, highlighting the genetic basis of IBD. It is important to note that these

findings are again dependent on population ethnic differences.

Genetic factors alone are not sufficient to account for the development of IBD, and diverse
environmental factors also have a critical role in its increasing global incidence. The rate at
which IBD prevalence has markedly risen in recent years, estimated at a 33.8% increase
between 2006 and 2016 [48], surpasses the rate increase that could be explained by genetic

drift. Influential environmental factors include smoking, geographical and social status,
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pathogen infections, stress, antibiotic treatment, and diet. For example, evidence indicates
that disease incidence is higher in developed countries [49]. Each individual factor has an
important role in the predisposition, initiation, and outcome of disease. These interactions
are complex and not of equal impact between disease type, however the reasons for this

are unclear.

1.1.2 IBD Pathophysiology

The aetiology of IBD is yet to be fully resolved, however, it is widely accepted that exposure
to a triggering environmental factor(s) leads to an aberrant immune response in genetically
predisposed individuals. This immune response is directed towards the body’s own gut

microbiota, giving rise to a chronic, autoimmune reaction in the GIT (Figure 3). Both innate

and adaptive immune responses contribute to the inflammatory process in IBD patients.
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Figure 3. Overview of IBD Pathophysiology. Translocation of commensal bacteria through a degraded epithelial layer initiates an inflammatory cascade
predominantly driven by the differentiation and effect of Th1l and Th17 cells. Increased pro-inflammatory signalling molecules feed back into the exacerbation of
disease.
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1.1.3 Immune Response

The innate and adaptive immune response both play a role in the pathophysiology of IBD.
Impairment in the mechanisms which usually exist to protect the body and limit invasion of
pathogenic factors initiates the immune response and subsequent inflammatory cascade.
Understanding the cellular and molecular dynamics of the immune response to IBD requires
a comprehensive toolkit of experimental techniques. For example, flow cytometry and its
specialised form, fluorescence activated cell sorting (FACS), are commonly used to quantify
immune cell subsets [50]. Visualisation of immune cells within the intestinal tissue can be
achieved using immunohistochemistry (IHC) [51], which can reveal spatial information of
immune markers. At the molecular level, gPCR [52] and bulk RNA and single-cell RNA
sequencing [53] provide quantification of gene expression patterns. Insights into functional
immune activity can be enabled by enzyme-linked immunosorbent assays (ELISA) and
multiplex cytokine assays [54, 55], which can be applied for analysing both local and
systemic immune responses. For example, a recent study integrated transcriptomics, qPCR,
and ELISA to show that IL1B* macrophages and CD14* monocytes drive immune
dysregulation in IBD [56]. Collectively, these techniques enable a multidimensional analysis

of the immune response in IBD, providing an understanding of the stages of pathogenesis.

The intestinal epithelial layer represents an interface between the host and the luminal
microenvironment, providing a physical and biochemical barrier to commensal and
pathogenic organisms. The large source of potential stimuli that come into contact with the
mucosal surface of the GIT, as given by its large surface area meeting the external
environment, requires strict control to maintain homeostasis. Normal functioning of the GIT
is dependent on the selective permeability of molecules through the intestinal epithelium.
As such, the structure of the intestinal epithelium allows the absorption of water and
nutrients, without permitting translocation of noxious substances. Together, the physical
and biological functions of the epithelial barrier are critical in conserving host-microbe
interactions. Breakdown of epithelial regulatory mechanisms is implicated in the
development of various diseases, including IBD. Significantly, the loss of integrity of the
epithelial barrier allows commensal bacteria to move into the intestinal lumen, where a
further immune response is elicited. Loss of epithelial barrier function occurs through

several methods.
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Intestinal epithelial cells (IECs), including enterocytes, Paneth cells, goblet cells, and
neuroendocrine cells, make up the epithelial layer and act as the first line of defence against
pathogens in the gut. Several diverse regulatory mechanisms are given by the epithelial
cells to maintain tissue homeostasis, in addition to its role in providing a physical barrier
between the intestinal lumen and the extracellular milieu of the body. Enterocytes make up
the majority of small IECs and maintain epithelial integrity, as determined by their structural
properties and cell polarity [57]. The importance of enterocyte function in IBD is
demonstrated by findings of increased enterocyte apoptosis in patients [58]. The same
study found significant differences in the percentages of apoptotic enterocytes in inflamed
intestinal areas compared to non-inflamed areas, highlighting their involvement in active

disease pathogenesis.

Paneth cells, located in the small intestinal crypts, produce granules which hold
antimicrobial peptides and immunomodulating proteins. These include a-defensins,
lysozyme C, phospholipases, and C-type lectins, which have a critical role in host defence.
The function of defensins, for example, is to inhibit bacterial action via membrane pore
formation. The altered function of a-defensins in IBD, as shown by their attenuated
expression in parallel with reduced antibacterial activity in patients [59] provides evidence

signifying Paneth cell involvement in the disease process.

A variety of mucins and peptides with important roles in growth and repair are produced by
Goblet cells [60]. Intestinal epithelial barrier integrity depends on mucus production; the
colonic inner mucus layer provides a continuous protective coating over the gastric mucosal
surfaces and modulates intestinal homeostasis. 29 core proteins form the mucus barrier,
which aid in the limitation of pathogen exposure and influences multiple cell interactions
and signalling pathways [61]. Of significant note, the secretion of mucin 2 (Muc2), the major
component of mucus, is decreased in IBD patients [62]. Other prominent associations
between mucus component composition and increased epithelial permeability in IBD
patients include decreased glycosylation products [63] and trefoil factors [64]. Trefoil factors
1, 2, and 3 (TFF1-3) are peptides with important roles in the protection and repair of IECs;
the process of restitution, for example is dependent on their function. Further supporting

evidence is provided by histopathology analysis, revealing that the mucus layer is
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significantly thinner in IBD patients [65]. One study found that the thickness of the mucus
layer was decreased by an average of 144 and 135 um between controls and CD and UC
patients, respectively [66]. As the first anatomical point of contact for bacteria, such
modulation of the mucosal layer resulting in decreased thickness and increased

penetrability has important implications in disease onset and progression.

The epithelial lining is also precisely regulated by multiprotein complexes known as tight
junctions (TJs), formed by assembly of the proteins claudin, occludin and junctional
adhesion molecule (JAM) and connected to the actin cytoskeleton via zonula occludins [67].
The phosphorylation and expression of these TJ proteins influence the protective outcome
of the barrier. The overall TJ structure contributes to epithelial barrier integrity by
controlling paracellular transport of molecules between cells [68] and protecting against
inflammatory stress stimuli. Alterations in gut junctional complexes are a key feature of
both active and quiescent IBD, with evidence demonstrating that patients have decreased
phosphorylation levels of TJ proteins [69]. Loss of the regulatory mechanisms provided by
TJs which control paracellular permeability therefore damages barrier integrity and
promotes exposure to harmful luminal contents such as microbial antigens, toxins, and

dietary components, thereby triggering mucosal immune activation and inflammation.

The described mechanisms ultimately lead to the priming of naive CD4+ T cells into specific
inflammatory subgroups, characterised by the cytokine production profile [70]. The
adaptive immune response is a system of specific regulatory mechanisms following antigen
presentation, primarily driven towards the polarisation of T cells. In 1991, defined patterns
of T cell profiles in response to different stimuli were established in humans [71].
Progression of the field has since provided an understanding of distinct T cell subsets and
their roles in the immune response [72]. A key underlying theme is the categorisation of
Th1 and Th17 subsets as pro-inflammatory, in contrast to anti-inflammatory Th2 and Treg
subsets. As recognised in many diseases including IBD, this has important implications in
inflammatory research. T cell differentiation models have become extensively studied
hallmarks of IBD pathogenesis. In a healthy intestine there is a balance between pro-
inflammatory Thl and Th17 subtypes, and anti-inflammatory Th2 and Treg cells. It is
understood that under conditions of IBD, this balance is offset [73]. Inflammation results

from excessive production of pro-inflammatory cytokines and chemokines such as TNF-a,
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IL-1B, and IL-6, in line with downregulation of protective pathways including IL-10 and TGF-
B. Several adaptive immune mechanisms associated with the T cell differentiation paradigm
have been reported in disease development. These intracellular signalling pathways give a
diversity in cytokine response that requires strict control to maintain a delicate balance
between protection and inflammatory mechanisms. In IBD, the altered T cell polarisation
favouring pro-inflammatory responses drives the pathogenic cascade that contributes to
the gastrointestinal inflammation. Moreover, while the Thl, Th17, Th2, and Treg subsets are
well evidenced adaptive elements of IBD pathogenesis demonstrating strong association to
disease, recent years has seen emergence of evidence suggesting the role of other T cell
phenotypes in pathogenesis (Th9, Th22, Tfh, cytotoxic CD8*). The current most widely
accepted hypothesis of IBD pathogenesis can therefore be generally stated as excessive

effector T cell function and/ or deficient regulatory T cell function.

As IBD is a chronic autoimmune disease, inflammation is persistent over long periods of
time meaning that pro-inflammatory cytokines released in inflamed tissues further
propagate the immune response, acting as a feedback loop to allow continuation of disease
activity [74]. Such overactivation of the immune response causes additional breakdown of
epithelial barrier function, which in turn increases translocation of bacteria and exacerbates
the inflammatory response. This persistent cycle gives IBD its chronic nature, which results

in tissue damage unless the cycle can be broken by successful intervention.

54



.. Healthy IBD

1
1
1
1
® e oo 1 M
1
.
1
®o¢ 1
%es o 1
Mucus layer ‘o0

| m~ \ [l ele] Hﬂww_ﬂwmwm

Intestinal [pmchuw 1
1
1
1
1
1
1
l

== | ‘
— ‘géf E,
m'" = -
PR { £ K ‘
Gap junction _E .__,_) T

f
wq:m,

it

n.-zs. - A
&° A %° Epithelial barrier
-
:, STATI suu TNF-« damage Translocation of
. i commensal microbiota
STAT3 H '.
C. . s o
% =--»{ Thl
-4 N WA 1L-17
® % A oo ..
9‘5«: RIS ol Th17 [~ {-°
&/
o ° | °
T W Th2 b+ 14
f 13
TGF-p Q Production of
o‘_ “““ Smad3 eceotooocdanc > Treg .[s ., pro-inflammatory cytokines
.o’ o Immune response
N
° IL-10
TGF-§

Figure 4. Immune mechanisms implicated in IBD pathogenesis. (A) Intestinal barrier dysfunction and
downregulation of tight junction proteins in IBD. Schematic illustrating compromised intestinal
epithelial integrity in IBD, which is indicated by mechanisms including increased enterocyte
apoptosis, reduced numbers of granules containing anti-microbial peptides, decreased thickness of
the mucus layer, altered enteroendocrine cell expression and hormone secretion, and decreased
tight junction proteins (right panel). (B) Cytokine production and inflammation. An imbalance
between pro-inflammatory (red) and anti-inflammatory (green) pathways results in an increase in
pro-inflammatory cytokines. This immunological shift gives rise to an inflammatory state in the
gastrointestinal tract. (C) Circular model of the chronic nature of IBD. The cycle of inflammation
occurring in IBD persists due to the chronic progression and amplification of disease.
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1.1.4 Role of the Microbiome in IBD

Changes to the structure, composition, and function of the gut microbiome is an integral
part of IBD pathogenesis. This alteration of gut microbiota, termed dysbiosis, changes the
intestinal homeostatic dynamic and is associated with intestinal inflammation. This can be
attributed to the loss of the symbiotic microbiome-host relationship and therefore also the
protective functions that come with it. To investigate the dynamic interactions between the
microbiota and host in IBD, a range of high-resolution techniques can be used to profile the
microbiome. One of the most widely used methods for profiling microbial communities is
16S ribosomal RNA (rRNA) gene sequencing, which leverages the highly conserved nature of
the 16S rRNA gene of prokaryotes and can be used to compare bacteria present within a
given sample [75]. In IBD research, this provides a foundational tool for identifying microbial
signatures associated with aspects of disease, including inflammation, disease severity, and
treatment response [76]. Shotgun metagenomics is a technique used to provide
comprehensive insights into the full repertoire of microbial taxa using untargeted
sequencing of genomic content and is frequently used in IBD research [77, 78]. Often used
to complement metagenomics, metatranscriptomics captures the active gene expression of

microbial communities through sequencing of total microbial RNA [79].

Not surprisingly, the microbiome has become a subject of considerable interest in IBD
research. Accumulating evidence has shown an altered microbial composition in patients,
and while no definitive uniform profile of disease has been identified, some common trends
have emerged. There is a general observation of an increase in harmful species and
decrease in protective species under disease conditions [80]. Table 3 displays the primary
microbial species alterations observed in IBD patients. These key changes to important
microbial species demonstrate a link between microbial composition and disease state. It is
difficult, however, to differentiate association from causation, and microbiome complexity

in humans brings challenges in providing strong evidence for causation.
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Table 3. Dysbiosis of gut microbial composition in IBD. Alterations in the composition of bacteria

phyla and species in IBD patients. There is an overall increase in harmful species and a decrease in

protective species.

Phylum

Species Increased in
IBD

Species Decreased in
IBD

Reference

Bacteroidetes

Alistipes putredinis
Bacteroides coprocola
Bacteroides uniformis
Bacteroides
cellulosilyticu
Bacteroides intestinalis
Parabacteroides
goldsteinii

(81]

Firmicutes

Ruminococcus gnavus
Lactobacillus

Dialister invisus
Faecalibacterium
prausnitzii
Eubacterium hallii

[82] [83] [84]
(85]

Actinobacteria [86]
Bifidobacterium
adolescentis
Proteobacteria [87] [88]
Escherichia coli
Klebsiella pneumoniae
Fusobacteria [89]
Fusobacterium
Verrucomicrobia [90]
Akkermansia
muciniphila
Uroviricota [91]
Caudovirales

Moreover, microbial compositional analysis reveals a decrease in the overall diversity of

commensal bacteria in IBD patients. One study reported that on average, IBD patients have

25% fewer microbial genes than healthy individuals [92]. This is significant as the diverse

community of microbes that make up the protective barrier determines the overall capacity

to limit exposure of pathogens. Thus, a decreased diversity is associated with a reduced

ability to regulate entry of harmful microorganisms. This is consistent with reports of

increased epithelial barrier degradation in IBD patients. Furthermore, a correlation between

loss of species diversity and the disease activity of CD patients confirms the involvement of

the microbiota at the clinical level.
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Differences in gut microbiota composition and function at the intra-individual level are
found depending on the specific anatomical region of the GIT. This is due to location-
dependent microbiological differences such as oxygen tension, pH, and digestion flow rate,
which generate overall conditions suitable for different microorganisms. It is significant to
note that a bidirectional interaction exists between microbial alterations and inflammation.
The microbial composition is also altered by mucosal inflammation through various
mechanisms, including oxidative stress [93]. Furthermore, it has been shown that colonic
inflammation changes luminal bacterial gene expression in mice models of IBD [94].
Although microbial dysbiosis is evident as a central component of disease pathogenesis,
these findings also reinforce the uncertainty around the chronology of IBD pathogenesis.
This reintroduces the pathogenic feedback model in IBD, demonstrating an undetermined
structure of cause and consequence in the sequence of events. While a precise causal
relationship is unknown, the involvement of commensal microbiota in IBD is clear
nonetheless and therefore continued focus on specific mechanistic roles will enable further

progress in the field.

1.1.5 Metabolism and IBD

There is a crucial role of metabolic programming and specific metabolic pathways in the
development and perpetuation of intestinal inflammation, with recent evidence
demonstrating the metabolic nature of IBD [95]. It is shown that metabolic dysregulation is
a central feature of IBD pathogenesis, influencing the immune response, epithelial integrity,
and microbial interactions [96]. Understanding these biochemical processes helps to
unravel disease mechanisms and provides a foundation for novel metabolism-targeted

therapeutic strategies in IBD.

The interplay between immune activity and cellular metabolism is a key feature of IBD
pathogenesis, highlighting how metabolic dysregulation actively drives disease progression.
As noted earlier, chronic activation of the mucosal immune system is a hallmark of IBD, and
this activation is accompanied by profound shifts in immune cell metabolism to support
sustained inflammatory responses [97]. Under normal, homeostatic conditions, Tregs and

M2 macrophages primarily rely on oxidative phosphorylation and fatty acid oxidation to
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meet their energy needs [98]. These pathways support anti-inflammatory functions and
maintain immune tolerance in the gut. However, in the inflamed gut environment
characteristic of IBD, there is a metabolic reprogramming whereby immune cells shift
toward a glycolysis-dominant profile, especially in effector T cells (Teffs) and M1
macrophages [99, 100]. Activated Teffs upregulate glucose transporter 1 (GLUT1) to
enhance glucose uptake and fuel aerobic glycolysis, a process where glucose is fermented to
lactate even in the presence of oxygen [101, 102]. This shift, known as the Warburg effect,
not only meets the high energetic and biosynthetic demands of inflammation but also
results in lactate accumulation and acidification of the local tissue environment [103]. These
conditions further potentiate inflammation by promoting the expression of pro-
inflammatory cytokines such as IL-17 [104]. Concurrently, oxidative phosphorylation
becomes impaired in both immune and epithelial cells during inflammation. For epithelial
cells, which are highly dependent on mitochondrial energy production, this results in a
significant energy deficit [105]. As a consequence, essential functions such as nutrient
absorption, mucosal barrier maintenance, and tissue repair are compromised, further

exacerbating the cycle of inflammation and tissue damage seen in IBD.

1.2 Coeliac Disease

Coeliac disease (CoD) is a chronic autoimmune disorder of the small intestine, characterised
by an abnormal immune response to gluten that leads to intestinal damage and nutrient
malabsorption. The incidence of CoD has increased in recent years, with an estimated 1.4%
of the global population affected [106]. Gluten is composed of two main proteins, gliadin
and glutenin, which are found primarily in grains such as wheat, barley, and rye, and help
provide the structure and functions of gluten, particularly in food production and baking.
Gliadin, a prolamin rich in proline and glutamine responsible for the stretchiness of dough,
is the main component implicated in the triggering of an immune response in CoD [107].
While beneficial for food structure, the gliadin proteins that make up gluten trigger an
unregulated immune reaction in genetically predisposed individuals. Currently, the only

effective treatment of CoD is the strict adherence to a gluten-free diet (GFD) [108].
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CoD is a complex disorder with various clinical presentations based on histopathological

findings, clinical presentation of disease, and response to treatment. Five types of

subclassification exist: classical [109], non-classical [110], silent [111], refractory [112], and

potential CoD [113] (Table 4). Each classification of disease represents a different

inflammatory manifestation which can result in subtle differences in symptoms and

response to treatment. Understanding the different subtypes is therefore essential for an

accurate diagnosis, effective treatment strategies, and overall patient outcomes.

Histopathological classification systems are applied to help indicate each clinical phenotype,

including the Marsch, Marsch-Oberhuber, and Corazza systems [114].

Table 4. Clinical Classifications of Coeliac Disease.

Coeliac Disease

. Description Symptoms Reference
Classification
The most common . .
Abdominal pain
form of CoD .
i Bloating
. characterised by Gl .
Classical Weight loss [109]
symptoms from -
) ) Chronic diarrhoea
small intestinal .
. Malabsorption
villous atrophy.
Characterised by a
potential lack of .
. Anaemia
typical CoD- .
. Fatigue
. associated-Gl
Non-classical Weakness [110]
symptoms and .
Osteoporosis
presence of . )
. . Joint pain
extra-intestinal
manifestations.
Charactered by the
presence of small
intestinal damage
Silent and positive No overt symptoms [111]
serological markers
without noticeable
symptoms.
Abdominal pain
A severe form of .
Bloating
CoD where .
. Weight loss
Refractory symptoms persist o [112]
. . Chronic diarrhoea
despite strict
Severe

adherence to a GFD

malabsorption
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for at least 12
months.

Characterised by
positive serological
. markers without
Potential . . No overt symptoms [113]
intestinal damage
or symptoms at the

time of diagnosis.

In addition to the existence of multiple disease subtypes, CoD can be challenging to
diagnose due to symptom overlap with other gastrointestinal disorders such as non-coeliac
gluten sensitivity [115] and wheat allergy [116]. Furthermore, there is a requirement for
gluten to have been consumed regularly (typically at least one-three slices of bread or
equivalent per day) for at least 6-8 weeks prior to diagnosis for an accurate outcome [117-
119]. This can be challenging for many individuals, as they may experience severe
symptoms when reintroducing gluten, or have anxiety and fear around the risk of long-term
damage, which makes compliance difficult. The variability in the gluten immune response
additionally means that some individuals may react strongly to small amounts of gluten,
making it challenging to consume the recommended intake required for a diagnosis. As a
result, CoD is commonly underdiagnosed or misdiagnosed [120-122], which brings further
complications if left untreated, CoD can lead to long-term complications and nutrient

deficiencies, including vitamin deficiencies and malignancies.

A combination of diagnostic tools is therefore required in combination with evidence of
clinical manifestations to obtain an accurate diagnosis. Firstly, serological tests are used to
measure levels of IgA anti-tissue transglutaminase antibodies (tTG) and anti-endomysial
antibodies (EMA), which are produced in response to gluten-activated immune pathways.
Although these measurements provide an insight into the inflammatory immune response,
their measures are not specific to CoD. Therefore, if positive blood tests are obtained,
endoscopic evaluation is required to examine small intestinal damage, with disease
presence indicated by duodenal villous atrophy and crypt hyperplasia [123]. To confirm
diagnosis, small intestinal mucosal biopsies are taken for histopathological assessment,
where application of a classification system, such as the Marsh classification system, are
then used to characterise disease, as described above. As per the European Society for

Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) guidelines, a biopsy is
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required for a confirmed CoD diagnosis in adults, however in children, a biopsy may be

skipped if all three of the following criteria are met: (1) the tTG-IgA levels are greater than
10 times the upper limit of normal, (2) a second antibody test such as EMA-IgA is positive,
and (3) symptoms consistent with CoD are presented [124]. If any one of these criteria are

missing, a small intestinal biopsy is also required to confirm a CoD diagnosis.

While advances have been made to improve the diagnosis of CoD in recent years, the
challenges associated with the current process remain significant. This is highlighted by the
prevalent diagnostic delay that has been revealed, with an average time to a CoD diagnosis
in the UK of 13 years [125], which has a huge impact on quality of life [126]. There is a clear
need for better diagnostic approaches for CoD patients, with a core issue identified in its
early diagnosis. There is growing interest in the potential for earlier identification of disease
during its prodromal phase, prior to the occurrence of overt mucosal damage or clinical
symptoms [127, 128]. This preclinical window represents a critical frontier in CoD research,
where predictive screening strategies could significantly reshape the course of disease. This
potential is demonstrated in studies showing that antibody seroconversion can precede
presentation of symptoms in genetically predisposed individuals. The prospect of
integrating genetic risk profiling and novel biomarkers such as gut microbiome and
metabolome signatures holds promise for determining disease presence prior to any
pathophysiological presentation. Achieving this goal would not only allow for timely dietary
intervention but could also prevent long-term complications and shift the clinical paradigm

from reactive to proactive care.

1.2.1 CoD Risk Factors

Genetic predisposition is a key determinant in CoD, with Human Leukocyte Antigen (HLA)-
DQ8 and HLA-DQ-2 established as primary genetic risk factors of CoD [129]. It has been
shown that more than 90% of patients carry the DQ2 allele and the majority of the
remaining 10% carry the DQS8 allele. Non-HLA genes have additionally been found to
contribute to disease susceptibility, although at a much lower prevalence. Over 40 non-HLA
risk loci have been identified by genome-wide association studies (GWAS), many of which

have important implications in immune regulation pathways [130]. Examples include
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cytotoxic T-lymphocyte antigen 4 (CTLA4) [131] and tumor necrosis factor alpha-induced
protein 3 (TNFAIP3) [132].

While CoD is primarily a genetically driven disease and the presence of HLA-DQ8 and HLD-
DQ-2 haplotypes is necessary for the development of CoD, it is not sufficient to cause
disease on its own as 30-40 % of the general population carry them without developing CoD
[133]. Gluten exposure is the essential environmental risk factor triggering onset of the
disease; however, research has revealed that aspects of gluten exposure in early life may
contribute to disease risk and severity, with evidence suggesting that the early introduction
or the delayed introduction of gluten impacts CoD risk [134]. Uncertainty still surrounds this
relationship, as other studies have demonstrated the absence of a strong correlation
between early gluten consumption and disease onset in later life [135], and therefore
further research is required to confirm this hypothesis. Certain infections have also been
implicated in increasing the risk of CoD. For example, early childhood infections with
enterovirus [136] and rotavirus [137] have been linked to an increased risk of CoD.
Additional environmental risk factors for CoD have been suggested, including antibiotic use
[138], breastfeeding [139], and pregnancy outcome [140], however conclusive evidence for
these are limited. Therefore, no specific recommendations can currently be provided on

optimal gluten introduction or breastfeeding duration for CoD prevention.

1.2.2 CoD Pathophysiology

The pathophysiology of CoD is charactered by the dysregulation of gluten processing and
resulting activation of the immune response, leading to intestinal damage [141]. In healthy
individuals, gluten processing follows a typical digestive pathway without triggering an
immune response. This consists of the breakdown of gluten into smaller peptides in the
stomach by pepsin and gastric acid, followed by further enzymatic breakdown by peptidases
in the small intestine [142, 143]. In CoD, however, gluten processing is significantly affected.
Partial breakdown of gluten by gastric acid and pepsin results in the inability of enzymes to
fully degrade the gluten peptides, particularly gliadin, which resist further breakdown and
accumulation in the lumen [144-146]. Gliadin is then able to stimulate zonulin, a protein

which increases the permeability of the small intestine’s epithelial layer and has therefore
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also recently been investigated for use as a biomarker for the development of CoD [147].
The increased small intestinal barrier permeability allows gliadin peptides to translocate

through the epithelial barrier into the lamina propria [148, 149].

Immune activation occurs following gliadin translocation into the lamina propria and
ultimately results in the inflammation and intestinal damage that is characteristic of CoD
[150]. The mechanisms by which this takes effect can be first explained by the deamidation
of gliadin by tTG, increasing its immunogenicity. Antigen presenting cells (APCs) present
deamidated gliadin to CD4+ T cells via HLA-DQ2 or HLA-DQS8, which triggers the production
of pro-inflammatory cytokines such as IL-2, IL-6, IFN-y, and TNF-a. Further elements of the
immune response shown to be upregulated in CoD include the production of anti-tTG-IgA
autoantibodies by B cells, endomysium, and gliadin peptides, and the attack of enterocytes

by cytotoxic IELs driven by IL-15 activation.

The resulting inflammation leads to small intestinal epithelial damage, with key histological
and structural features. Villous atrophy, defined as the flattening and loss of the villi lining
the small intestine and resulting decreased absorptive surface area and subsequent
malabsorption, is one of the key defining features of active CoD [151]. This is primarily
assessed through duodenal biopsy via upper endoscopy and can be measured using the
villous-to-crypt ratio (Vh:Cd ratio), where a normal Vh:Cd ratio is defined as 23:1, meaning
that the villous height is at least three times the crypt depth. This ratio is reduced due to
villous atrophy and informs categorisation according to the Marsh classification system. This
measurement carries additional importance due to the finding that persistent villous
atrophy can predict the development of complications and mortality in adult CoD patients
[152]. However, a lack of correlation between the degree of villous atrophy and the severity
of disease presentation brings challenges in using this feature for specific disease
phenotyping and management. Crypt hyperplasia refers to the elongation and deepening of
the intestinal crypts due to increased proliferation of intestinal epithelial cells and is
suggested to reflect an attempt to compensate for villous loss [153]. The Vh:Cd ratio can
also be used to measure crypt hyperplasia, with additional quantification provided by
microscopic measurement of crypts under haematoxylin and eosin (H&E) staining, where a
significant increase in crypt depth observed in CoD patients in comparison to healthy

individuals [154]. Inflammation can additionally be measured by quantification of IELs, with
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an increase in the number of cells observed in CoD patients [155, 156], even at early stages
of pathogenesis [157]. Persistence of these inflammatory features of CoD lead to the

resulting disease symptoms such as abdominal pain, diarrhoea, bloating, and weight loss.
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Figure 5. Pathophysiology of Coeliac Disease. Coeliac disease is characterised by an inappropriate
immune response to dietary gluten, resulting in inflammation and damage to the small intestinal
mucosa. In the small intestinal lumen, gluten proteins undergo partial digestion by proteases,
producing gliadin peptides. In susceptible individuals, increased intestinal permeability allows
translocation of gliadin peptides into the lamina propria. Here, gliadin is deamidated by tissue
transglutaminase 2 (TG2). Antigen-presenting cells (APCs) present deamidated gliadin peptides to
CD4* T cells, which become activated and secrete pro-inflammatory cytokines such as IFN-y, TNF, and
IL-2. These T cells also stimulate B cells to produce antibodies against gliadin and TG2. The combined
effects of epithelial barrier disruption, cytokine-mediated inflammation, and autoantibody
production lead to villous atrophy, crypt hyperplasia, and chronic inflammation.
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1.2.3 Role of the Microbiome in CoD

Increasing attention has been given to the role of the gut microbiome in CoD, with distinct

alterations noted in the microbial composition of CoD patients in comparisons to healthy

controls. It is not yet certain whether this dysbiosis precedes disease symptoms or is a

consequence of disease pathophysiology, however recent research has provided a strong

case for the latter [158]. The microbial alterations characteristic of CoD may have important

implications by influencing the development and severity of the disease through several

potential mechanisms including modulation of the immune response, increasing intestinal

barrier permeability, altered enzymatic modulation of gluten, and inflammatory

environment regulation via altered short-chain fatty acid (SCFA) production.

Table 5. Dysbiosis of gut microbial composition in CoD. Alterations in the composition of bacteria
phyla and species in CoD patients.

Phylum

Species Increased in/

Associated with CoD

Species Decreased in

CoD/ Used as a

Potential Intervention

References

Bacteroidetes

Bacteroides fragilis

Bacteroides dorei

Bacteroides ovatus

Bacteroides vulgatus

[159] [160]

Firmicutes Lactobacillus spp. Faecalibacterium [161] [162] [163]
Enterococcus spp. prausnitzii [164]
Clostridium leptum
Actinobacteria Collinsella spp. Bifidobacterium spp. [165] [166] [167]
Eggerthella lenta

Proteobacteria

Escherichia coli

[167] [168]

Klebsiella spp.
Fusobacteria Fusobacterium spp. [169]
Verrucomicrobia  Akkermansia [170]
muciniphila
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1.2.4 Metabolism and Coeliac Disease

While the immunological and genetic underpinnings of CoD are well-documented, emerging
evidence highlights the significant role of dysregulated metabolism in its pathogenesis.
Altered energy metabolism [171], mitochondrial stress [172] and metabolic shifts in
immune and epithelial cells [173] have been shown to contribute to the inflammatory
environment in CoD. The small intestine is a metabolically active tissue that relies on tightly
regulated energy metabolism for absorption, barrier function, and epithelial renewal. In
CoD, villous atrophy and crypt hyperplasia profoundly disrupt this balance, leading to
nutrient malabsorption and impaired metabolic function at the cellular level. Studies have
shown that epithelial cells in CoD patients exhibit mitochondrial dysfunction, evidenced by
reduced oxidative phosphorylation and increased oxidative stress [174]. This metabolic
imbalance not only contributes to impaired epithelial integrity [175] but also perpetuates
inflammation through the production of ROS and the activation of NF-kB [176]. The immune
activation in response to gluten observed in CoD is a metabolically demanding process and
requires a reprogramming of immune cell metabolism to support cytokine production,
proliferation, and effector functions. Once activated by gliadin-derived peptides, CD4* T
cells in the lamina propria exhibit a metabolic phenotype dominated by glycolysis [177,
178]. The upregulation of GLUT1 supports their rapid expansion and the production of pro-
inflammatory cytokines such as IFN-y which contribute to tissue damage, promote B cell

activation, and support the generation of anti-tTG2 autoantibodies [179].

Several metabolites derived from host and microbial metabolism have been shown to
influence disease inflammation and pathology via specific mechanisms. For example,
glutamine, a critical fuel for enterocytes, is depleted in active CoD [180, 181], impairing
epithelial regeneration and contributing to barrier dysfunction [182]. Abnormalities in lipid
metabolism have also been observed, with some studies indicating altered expression of

genes involved in fatty acid uptake and B-oxidation [183, 184].

Metabolism in relation to nutrition is a vital aspect of CoD research, with malnutrition
observed in patients both at diagnosis and while under treatment. One recent study
revealed that malnutrition was prevalent in 8.3% of CoD patients, with additional findings

that these patients have a 108% higher risk of mortality [185]. The intestinal damage caused
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by gluten-induced inflammation leads to malabsorption and impact systemic metabolic
pathways, influencing overall health. It has been shown that fat and carbohydrate
metabolism in CoD patients is altered in comparison to healthy individuals [186, 187]. This
is due to the villous atrophy which occurs during disease pathogenesis, where the normal
villous architecture becomes flattened and loss of absorptive area, resulting in reduced
nutrient absorption, including carbohydrates. The efficiency of disaccharidase enzymes such
as lactase, maltase, and sucrase in the brush border of enterocytes is also impaired [188,
189], and therefore complex carbohydrates are not adequately hydrolysed into
monosaccharides. This subsequently leads to the accumulation of undigested
carbohydrates in the intestinal lumen, which are fermented by gut bacteria, altering their
metabolite production [190]. Fat metabolism can be compromised in CoD patients due to
defects in bile acid reabsorption [191], resulting in deficiencies in fat-soluble vitamins (A, D,
E, K) [192]. It is also important to note that a GFD, while effective at resolving intestinal
inflammation, may itself influence systemic metabolism. Therefore, dietary management of
coeliac disease must balance gluten elimination with the maintenance of metabolic health.
Further investigation into the metabolic effects of both the disease itself and of a GFD are

required to understand true impacts on metabolism and health.

1.3 Diet and Gut Health

The relationship between diet and gut health is profound, with the intake of food
components having a direct impact on the microbiome, immune system, and overall health.
A significant finding in dietary research is the observed loss of certain gut microbial species
in humans, with the resulting loss in overall microbial diversity [6, 193]. This parallels trends
of increasing non-communicable diseases, including IBD and CoD in a similar timeframe.
Research into the role of diet in the predisposition of gut disease and in disease
management is therefore crucial. Significantly, diet plays a key role in the pathogenesis of
IBD, influencing disease risk, progression, and clinical outcome [194]. Dietary research into
CoD is predominantly focuses on the dysregulated processing of gluten and the impacts of a
GFD. Continued diet-focused investigation into gut health and disease is a powerful step
towards improving patients’ quality of life through disease management and also in the

prevention of chronic diseases.
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1.3.1 Diet and IBD

The association between diet and IBD can firstly be demonstrated by evidence linking
disease incidence to the Western diet. This is supported by the increasing incidence and
prevalence of IBD in conventionally low-incidence areas, such as Asia where a Western diet
is becoming progressively adopted [195]. The Western diet refers to a modern nutritional
lifestyle with characteristics relating to common food signatures and processing procedures,
encompassing a diet high in fat, processed sugars/ sweeteners, and protein and low in fruits
and vegetables. The changes associated with the Western diet have evolved in line with
ancestorial adaptations associated with the agricultural and industrial revolution and
impact risk of IBD to modern populations [196]. It is also noteworthy that human migration
and evolution have shaped our digestive systems, as humans migrated from Africa and
settled in diverse environments, adapting to diverse diets through natural selection. These
adaptations occurred over thousands of years, allowing our alimentary canals and gut
microbiota to co-evolve with regional food sources [197, 198]. In contrast, the rapid
adoption of modern Western diets has outpaced these adaptations, potentially contributing
to this rise of IBD. Several other dietary intake patterns have been associated with IBD risk
and outcome (Table 6). In its broadest sense, these findings can be expressed through
guidelines of eating a well-balanced diet ensuring a variety of lean proteins, healthy fats,

fruits, and vegetables, with avoidance of processed foods.

Table 6. Impact of Specific Diets on IBD.

IBD Impact Diet Features Reference
Increases risk/ Western High content of protein, [199]
exacerbates saturated fat; low fruit and
inflammation vegetable content

High salt High salt content [200]

High fat High fat content [201]
Decreases Vegetarian Elimination of meat, fish, [202]
risk/ and poultry
promotes Vegan Elimination of animal [202]
healing products
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Low FODMAP Reduced consumption of [203]
short-chain carbohydrates
Paleo Limited consumption of [204]
processed foods; high
content of lean meats, fish,
fruits, and vegetables
IBD Anti- Elimination of trans-fats, [205]
inflammatory Diet wheat, corn, lactose, and
(IBD-AID) sucrose
Mediterranean Increased fruits, vegetables, [206]
and whole grains;
decreased meat and dairy.
Specific Elimination of grains; low in  [207]
Carbohydrate sugar and lactose
Diet
Low residue Limited consumption of [208]

high-fibre foods, nuts,
seeds, raw fruits, and

vegetables

While identification of dietary trends impacting IBD have provided general suggestions for

decreasing risk and improving symptoms, they are a long way from providing specific

criteria in a therapeutic sense. Strong interindividual variability in response makes it difficult

to identify specific appropriate dietary habits. Despite considerable research focusing on
advancing knowledge in this field, specific data obtained from human studies are both
limited and conflicting. This inconsistency is particularly evident when translating findings

into concrete dietary recommendations, as studies often differ in patient populations,

intervention types, and outcome measures. This limits their practical application in clinical

guidance and reflects the great complexities of the relationship between diet and

gastrointestinal health.

In a 2017 partnership collaboration involving multidisciplinary clinicians, patients, and

organisations supporting patients to identify the top priorities of IBD research, the impact
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of diet was recognised as one of the highest rated subjects requiring further research [209].
The results identified diet as the central topic of the third and seventh overall top priority
guestions, which address the role of diet in disease management and optimising treatment,
respectively. This framework therefore places diet amongst the current most important
research areas of IBD. Furthermore, it has been revealed that malnutrition is a disease-
associated feature for up to 85% of IBD patients [210]. It is therefore vital to elucidate the

mechanisms by which dietary factors impact disease state.

Several specific food components, including macronutrients, micronutrients, and food
additives, have been suggested to impact IBD. Macronutrients are the nutrients providing
energy that are required in large quantities, comprising three main groups, fat, protein, and
carbohydrates. Carbohydrates serve as the primary energy source, with effects on gut
health depending on the type and source. Complex carbohydrates including fruits,
vegetables and grains provide dietary fibre and have been shown to support gut health
[211]. On the other hand, refined carbohydrates are associated with gut dysbiosis and gut
inflammation [212]. Fats play a crucial role in energy metabolism and cellular function, with
their type and composition shown to significantly influence gut health and inflammation.
For example, saturated fats, commonly found in processed foods, have been linked to an
exacerbated inflammatory response [213], whereas monounsaturated fats and
polyunsaturated fats have been associated with beneficial immune modulation and anti-
inflammatory effects. Protein is essential for immune function, tissue repair, and
maintaining muscle mass, making it an important dietary consideration for IBD.
Micronutrients encompass the vitamins and minerals required by the body which are
required only in small quantities, including iron, folate, vitamin B12, vitamin D, and zinc. It
has been suggested that these micronutrients could play a key role in the management of
IBD by supporting immune function, reducing inflammation, and preventing complications
associated with malnutrition. It has been revealed that micronutrient deficiencies are
observed in greater than 50% of IBD patients [214]. In addition to macro- and micro-
nutrients, the relationship between diet and IBD incidence can has linked to the increasing
use of food additives in processed foods. Despite legislations requiring an FDA classification
of Generally Regarded as Safe (GRAS), evidence indicates that food additives may be key

drivers of gastrointestinal inflammation [215]. As such, recent years have seen a growing
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body of evidence indicating the involvement of common food additives in inflammation

[216-218], which has propelled an interest in their role in IBD.

1.3.2 Nutritional Interventions for IBD

Standard treatment for IBD aims to supress the inflammatory immune response and control
associated disease symptoms. As there is no cure for IBD, current treatments aim to induce
and maximise time in complete remission. This is done using varying forms of medical
strategies, including biologics and small molecule drugs [219], as well as dietary changes
and nutritional therapies [220]. It can be noted that the choice of treatment is dependent
on many factors, including disease severity and previous treatment responses, and different
treatments may be required throughout the disease course. This is particularly important
when considering the two stages of IBD, active and quiescent, as different strategies may be
applied for treating a disease relapse compared to maintaining remission. One crucial
component in effective disease management is the diet, which is key area of interest to
patients, researchers, and clinicians. With the additional advantage of providing selective
and non-invasive methods of patient management, this has placed an increasing interest in
non-pharmacological approaches to managing IBD such as nutritional interventions. This

makes dietary therapies an attractive option for the treatment of IBD patients.

Exclusive enteral nutrition (EEN) is a nutritionally complete liquid dietary therapy used as
the primary treatment for paediatric CD patients in Europe [221, 222]. The liquid-only diet
consists of a variable nutritional composition, including carbohydrates (22.8%-89.3%),
protein (7.8%-30.1%), and fat (0%-52.5%) [223]. EEN formulas are also fortified with
essential vitamins and minerals to provide the required micronutrients. Treatment consists
of following the liquid-only diet for a specified period, which is typically 6-12 weeks, and has
been shown to induce clinical remission in approximately 80% of patients [224]. The exact
mechanisms by which EEN exerts its therapeutic effects are not yet fully understood;
however, several potential mechanisms have been proposed. Microbial modulation and
subsequent reduction in gut inflammation have been hypothesised as a consequence of
EEN treatment [225, 226]. Further research has shown that gut microbiome and
metabolome signatures can predict response to EEN treatment [227]. The anti-

inflammatory nature of EEN is additionally supported by evidence demonstrating the
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reduction in levels of inflammatory markers such as IL-6 [228]. Furthermore, it has been
suggested that the consistent nutrient provision by EEN consumption may result in mucosal
healing and restoration of epithelial barrier function [229, 230]. Despite its effectiveness,
EEN is a very restrictive diet which presents several limitations and challenges. Adherence
to the liquid diet can be difficult for patients, particularly with the associated length of
treatment which is not always well tolerated due to taste and palatability preferences.
While EEN is effective at inducing remission in the short-term, it’s long-term use is

constrained by these practical limitations, making sustained adherence challenging [231].

To overcome some of the limitations associated with EEN, researchers developed the
Crohn’s Disease Treatment with EATing (CD-TREAT) diet [232]. CD-TREAT is a solid food-
based nutritional intervention designed to mimic the beneficial effects of EEN while
allowing for a more varied and palatable diet. Based on the idea that specific food
components influence the gut microbiome composition and gut inflammation, CD-TREAT
replicates EEN by excluding dietary components such as gluten, lactose, and alcohol, and
matching fibre and other macro- and micro- nutrients. The use of CD-TREAT as a therapeutic
strategy for CD patients has shown to be successful, with the CD-TREAT diet showing
improved tolerability and inducing similar effects on the microbiome and metabolome in
comparison to EEN. Metabolomics applications have the potential to shed light on the
mechanism of EEN by revealing how it influences host metabolism and gut microbial
properties. Metabolites such as SCFAs and bile acids, for example, are key mediators in gut
health and inflammation, both of which are central to EENs therapeutic effects. Profiling
these molecules at different stages of treatment can allow identification of physiological
changes and potential biomarkers associated with clinical outcomes. This molecular insight
can help clarify how EEN exerts its anti-inflammatory effects, ultimately refining its

application and enhancing its clinical use.
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1.4 Metabolomics

Metabolomics, which can be broadly defined as the study of small molecule intermediates
and end products in a biological system, allows the analysis of molecular patterns at a
specific timepoint. This is particularly beneficial as the metabolite profile represents the
endpoint of gene expression in the “central dogma of molecular biology.” This flux of
genetic information, first graphically demonstrated by Francis Crick in 1957, describes the
path from DNA to the biological phenotype (Figure 6). While investigations into each of
these stages is pivotal in elucidating disease processes, it is key to note that alterations in
mRNA levels may not cause changes in protein levels, and similarly, changes in protein
concentration are not guaranteed to cause associated alterations in protein function.
Analysis of changes at the metabolite level may therefore provide a more accurate
reflection of the true biochemical state at a specific timepoint. Thus, the metabolite profile

is considered the closest representation of the phenotype.

Protein Metabolite
DNA MRNA T Phenotype
MOVOK et < e v N
Transcription Translation Metabolism
Genomics Transcriptomics Proteomics Metabolomics
~20,000 genes ~20,000 canonical ~20,000 canonical ~220,000 metabolites
transcripts proteins

Figure 6. The Central Dogma of Molecular Biology. The flow of information from DNA to metabolites
through transcription, translation, and metabolism, together forming the backbone of -omics fields.

The accurate analysis of metabolites in biological samples requires a reproducible and
robust approach. A metabolomics workflow consisting of several stages is typically followed
in such investigations, consisting of study design, sample collection, extraction, data
acquisition, data analysis, and biological interpretation (Figure 7). It is important to
recognise that metabolomics is fundamentally a hypothesis-generating approach and
therefore the putative targets or metabolic signatures uncovered require rigorous validation

in independent cohorts.
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Figure 7. Metabolomics Workflow. Protocols for metabolomic analysis generally follow a method
consisting of sample collection, extraction, data acquisition, data analysis, and biological
interpretation.

1.4.1 Study Design

Designing a metabolomics study requires careful consideration of various factors to ensure
that the data obtained are robust, reproducible, and meaningful. The study design should
consider the biological questions being asked, the types of metabolites of interest, the
methodologies used for metabolite measurement, and the statistical tools required for data
analysis [233]. Defining the research objectives is an important starting point, as the
hypothesis will guide sample selection and grouping, ensuring that experimental groups are
well-defined and take into consideration factors such as age or disease status. Additionally,
sample size is a critical factor to consider for a metabolomics experiment in ensuring
reliability and statistical power. A power analysis helps determine the minimum number of
samples required to detect significant differences [234, 235], with the appropriate sample
ensuring that findings are robust and reproducible. This not only strengthens the study’s
conclusions but also supports the identification of reliable biomarkers and metabolic

pathways with high confidence, leading to more impactful scientific insights.

1.4.2 Sample Collection and Storage

Sample collection from the appropriate patients and controls for the study is an important
first step in the metabolomics workflow. During the design of metabolomics experiments
there are numerous considerations for optimal analysis which set the trajectory of

subsequent interpretations and conclusions. Firstly, understanding human metabolome
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variation is crucial for sample collection and storage choices. Variables to be considered
during sample collection include the gender and age of subjects, environmental factors such
as diet and exercise, and time of sample collection. Metabolic variations are evident
between gender and age groups, with one third of serum metabolites suggested to be
different between females and males [236] and over 1500 ageing-related differences
identified on The MetaboAge database [237]. Additionally, as circadian rhythmicity is known
to influence metabolite profile, it is also important to note the time of day that samples are
collected. Taking these steps to recognise potential variations in downstream metabolic

output will allow for more accurate and representative data interpretations.

A range of biological samples can be used in metabolomics experiments; blood, urine,
faeces, and tissue are common in IBD studies. The choice of sample is specific to the aims of
the study and the biological system under investigation, which will ultimately influence
interpretation of the data. Upon collection, most samples should be stored at -80°C to
ensure sample stability [238]. There are certain recommendations for each sample, for
example tissues should ideally be snap-frozen in liquid nitrogen immediately after collection
and homogenised [239]. The timing of preparation stages is essential as delays in freezing
can lead to changes in metabolism which will be reflected in the LC-MS analysis. Aliquoting
samples into multiple replicates and thus minimising the number of freeze-thaw cycles is

also recommended.

1.4.3 Metabolite Extraction

It is imperative that pre-analytical processing of samples is carried out efficiently as the
quality of data obtained is largely dependent on this stage. Extraction methods aim to
release the metabolites from the sample, providing a smaller, concentrated volume for
analysis. Effective metabolite extraction is essential for elution of metabolites of interest.
Liquid-liquid extractions (LLEs) are commonly used in metabolomics experiments, which
utilise solvent solubility and immiscibility for partitioning. The sample size, extraction
solvent, and reconstitution solvent used in the extraction method will influence the
detected metabolite pool. However, it is important to recognise that no single
metabolomics experiment can capture the full scope of the metabolome, estimated at over

220,000 metabolites. Each methodological decision inherently selects for a small fraction of
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this total pool, with pre-selection bias inevitable due to factors such as solubility, stability,
and ionisation efficiency. Therefore, careful optimisation and awareness of these limitations

are essential for experimental study design and data interpretation.

1.4.4 Data acquisition

Acquiring data through metabolomics analysis can be done in two distinct approaches:
untargeted metabolomics, a comprehensive exploration of the total number of measurable
metabolites in a sample, and targeted metabolomics, the measurement of pre-defined
molecules. Untargeted metabolomics, otherwise known as global metabolomics, aims to
reproducibly analyse as many compounds as possible under specific analytical conditions
[240]. Untargeted metabolomics studies are typically followed by targeted metabolomics to
validate and precisely quantify selected metabolites of interest (Figure 8). These studies use
optimised methods with reference standards to ensure accurate identification. In this way,
untargeted metabolomics acts as a hypothesis generating approach, guiding the

development of focused targeted assays to support biomarker validation and clinical

translation.
~ Untargeted Metabolomi }
Extraction Method set ‘ e
. _ protocol to analyse Mass [ a:ﬁ(rer?telgﬁgllggsﬁfn
Hypothesis generating chosen to global Detection 2 sample
maximise metabolite e P
metabolic profile Data acquisition
coverage (Orbitrap)
: —| Targeted Metabolomics }
Hypothesis L
i . Extraction . .
driven Identify protocol Method set Mass Quantification
megabohtes of ‘ based on to analyse = detection, of sele_cted_
interest chemistry of pre-defined MRM metabolites in
specific metabolites Data acquisition asample
metabolites (QQQ)

Figure 8. Metabolomics Data Acquisition. Untargeted metabolomics approaches generate
hypotheses by identifying as many metabolites as possible in a sample, providing an indication of
those which may be involved in disease. Absolute quantification of a pre-defined chemically
characterised set of metabolites can be performed by targeted metabolomics to test such
hypotheses. MRM, multiple reaction monitoring; QQQ, triple quadrupole.
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Advances in technology have led to the development of methodologies to detect a broad
range of metabolites in different biomatrices, thereby allowing in-depth study of the GIT.
One of the main platforms used in the detection and quantification of metabolites is mass
spectrometry (MS). MS, when used in a metabolomics context, is a high throughput
analytical technology which measures the mass-to-charge ratio (m/z) of molecular ions.
When MS is used in combination with separation techniques such as liquid chromatography
(LC), quantitative analysis and identification of metabolic entities can be accurately
performed. LC-MS is a common and robust method which can be applied to a large range of
biological samples, and the high sensitivity of LC-MS analyses has made it a popular

approach of choice among researchers.

LC separations are performed by passing a liquid mobile phase (the mixture that contains
the sample) through a solid stationary phase. The rate at which the molecules travel
through the column is dependent on their size and charge, therefore providing different
elution conditions, allowing them to be separated over time. This separation step permits
individual introduction of metabolites into the MS system. Following chromatographic
separation, ionisation techniques are applied to the samples at the LC-MS interface to
facilitate detection. The mass analyser can then separate ions according to their m/z which
are subsequently detected and quantified. The working principle and instrument schematic

of LC-MS, with the example of an Orbitrap mass analyser, is shown in Figure 9.
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Figure 9. Schematic representation of the internal architecture of an Orbitrap LC-MS system. The
diagram illustrates the integration of liquid chromatography with a mass spectrometer. In the LC
module, analytes are separated based on their physicochemical properties as they pass through a
chromatographic column. The eluent enters the ESI source, where analytes are converted into gas-
phase ions. These ions are guided through the various ion optics and mass filtering components. AQT,
quadrupole mass filter with Advanced Quadrupole Technology; HPLC, high performance liquid
chromatography.
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1.4.5 Data analysis

Metabolomics analyses produce a large volume of data from a range of variables and
therefore appropriate data analysis is crucial for accurate interpretation of results. While
the software used to analyse raw data is chosen independently by the specific laboratory,
each processing solution similarly handles data preparation and presentation. Prior to
statistical interpretation, raw data generated by mass spectrometry must be transformed
into a structured format, typically a feature matrix. Raw files are first converted to an open
format (e.g., mzML), which then undergo processes of peak detection, deconvolution, and
retention time alignment [241]. This can be done using a selection of tools and software,
including Compound Discoverer (ThermoScientific), R packages such as XCMS, MZmine, and
MS-DIAL. Quality control (QC) samples are used throughout preprocessing approaches to
monitor instrument performance [242]. Samples are often run across multiples batches or
over extended periods of time in large-scale metabolomics experiments, thereby
introducing systemic variation. QC samples are therefore also used for batch alignment and
correction to mitigate these effects. Software such as Quality Control-based Metabolite
eXpression Preprocessing (QC:MXP) [243] utilises QC samples for batch correction and
normalisation across batches, assuming that any systemic variation observed in the QCs can
be used to correct the features in the samples. This correction enhances data comparability
and reproducibility for large and complex datasets. Ultimately, the preprocessing stage is a

crucial determinant of data quality and biological interpretation.

Multivariate statistical analysis methods are used to communicate the large volume of MS
data into an interpretable model. One powerful method of data dimensionality reduction
common in metabolomics investigations is principal component analysis (PCA) [244]. PCA is
an unsupervised learning method, through which the algorithms are trained on unlabelled
datasets. A set of observations can be transformed into a set of variables termed principal
components that have potential linear correlation. The first principal component (PC1) is
the linear set of variables that explains the maximum variance, PC2 explains the second
amount of variation, and so on. In a PCA plot, the x-axis is considered the most important
dimension and the strongest contributor of variance, and as all axes are mutually
orthogonal, there is no association of variance between the axes. PCA therefore provides a

succession of principal components that correspond to the maximum axes of variation. In
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this way, relevant information is extracted from large and complex datasets and separations
between groups identified. In the context of disease-applied metabolomics, this is a
valuable tool for assessing whether experimental classification, for example IBD patients

versus healthy controls, show significant variance in metabolic profile.

Partial least squares (PLS) is a supervised multivariate statistical analysis method that is also
used to interpret metabolomics data. PLS simultaneously models the relationship between
multiple independent and dependent variables through latent components [245]. The
primary strength of PLS lies in its ability to handle data with many collinear variables, which
is common in metabolomics data. Two common variants of PLS are partial least squares
discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis
(OPLS-DA), which build upon the basic PLS framework, but each is tailored for specific
objectives. PLS-DA is primarily used for classification, where the goal is to classify samples
into distinct groups, for example healthy vs. diseased or treated vs. untreated [246]. It is
designed to maximise the separation between the groups based on the metabolites in the
dataset. OPLS-DA is an enhanced version of PLS-DA that aims to improve the interpretability
of the model by separating the variation into two components, the predictive component
and the orthogonal component [247]. Each of these statistical techniques are crucial in
metabolomics data processing as they enable the analysis and interpretation of complex

and high-dimensional metabolomics data.

1.4.6 Biological interpretation

The biological interpretation of data from metabolomics experiments can be a challenging
task, particularly in the case of untargeted methods. Metabolites do not act in isolation but
are part of interconnected metabolic networks and therefore a change in one metabolite
can affect the levels of many others [248]. Moreover, the functional relevance of
metabolites in specific biological processes or disease pathology may not always be clear
due to the high complexity of metabolic interactions and networks. To address these
challenges, researchers utilise various strategies to aid biological interpretation through
biochemical pathway analysis and network formations, which map observed metabolite
changes to metabolic pathways. Metabolic networks can be built from a variety of methods

and platforms utilising computational strategies. These tools include pathway analysis
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environments including databases such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) [249] and Human Metabolome Database (HMDB) [250], in addition to tools such as
Cytoscape [251], which allow researchers to visualize and explore metabolic networks.
Specialised metabolomics-focused platforms such as MetaboAnalyst [252], Mummichog
[253], XCMS Online [254], and various programming packages, additionally offer capabilities

for functional interpretation and biomarker identification.

Despite these advances, there are several limitations associated with biological
interpretation of metabolomics data. Pathway analysis, in particular, presents challenges
because it is largely adopted from genomics. In metabolomics analysis, many metabolites
lack consistent or universally accepted identifiers in pathway databases, meaning that a
substantial portion of detected metabolites may be excluded from pathway-based analysis.
This can bias results towards well-characterised metabolic pathways and omit novel or
poorly annotated metabolites that may be biologically significant. When pathway analysis is
performed in conjunction with multi-omics integration, it provides a more holistic view of
biological systems [255], yet the limitations of database coverage, annotation quality, and
cross-platform integration continue to pose challenges for achieving a fully comprehensive

understanding of disease mechanisms.

1.4.7 Application of Metabolomics to Gut Disease Research

Through metabolomic analysis, changes in metabolite levels can be detected between
groups, which may reflect mechanisms of disease pathogenesis. Studying the human
metabolome is therefore valuable for investigating mechanisms underlying disease
development and progression. This is done through discrimination of metabolic profiles
between disease and non-disease states as well as disease activity-based subtyping. Deeper
analyses can then reveal the metabolites and associated pathways implicated in various
stages of disease, which can lead to identification of novel prognostic and diagnostic
biomarkers. Pathophysiology process elucidation can additionally be applied to therapeutic
investigations, through which the mechanism of action for pharmaceutical drugs and
disease interventions can be assessed. Furthermore, the determination of response to

treatment is another fundamental application of metabolomics, an increasingly popular
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subdivision of precision medicine termed pharmacometabolomics [256]. Identification of
patients expected to respond to treatment and those who will likely show no response, or
at risk of adverse drug reactions, brings benefits to patients and clinicians throughout the

therapeutic pipeline.

The potential of metabolomics applications in IBD research has been shown by recent
studies providing valuable insights into metabolic alterations associated with disease and
treatment. Significant alterations in the faecal, urine, blood, and tissue metabolome of IBD
patients have been described [257-260], reflecting shifts in metabolic processes
underpinning disease progression. One consistently observed alterations in metabolomics
research of IBD is the significant change in levels of amino acids [261]. For example, a
reduction in levels of tryptophan have been reported in IBD patients in comparison to
healthy controls due to increased catabolism via the kynurenine pathway [262, 263].
Metabolites produced by gut bacteria are an area of interest in IBD research due to the
significant involvement of the gut microbiome in disease pathophysiology. For example,
current research shows that levels of microbially-produced metabolites including SCFAs
[264, 265] and bile acids [266, 267] are altered in IBD patients. Metabolomics research has
additionally started to uncover a wide array of further metabolic alterations in IBD,
spanning organic acids [268], lipids [269] and carbohydrates [270], reflecting the complex
and multifactorial nature of disease. While significant progress has been made in identifying
metabolic changes associated with IBD, it has been noted that inconsistent findings across
studies currently limits a full understanding of the metabolic basis of disease and their role
as potential biomarkers [271]. Continued metabolomics investigation in IBD will be crucial
for determining specific metabolic roles and translating metabolic insights into reliable

diagnostic tools and targeted therapies.

One of the main goals of metabolomics research is the identification of biomarkers that can
diagnose, classify, or monitor disease. Although single biomarkers alone are unlikely to give
an accurate diagnosis or classification of disease, there are several serological, faecal, and
histologic markers which are currently used as an adjunct to image diagnostic measures.
This can help differentiate between; presence and absence of disease, subclassification of
disease, and between active or quiescent disease. Given diagnostic issues of patient

heterogeneity and misalignments in clinical symptoms and disease activity, a combination
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of disease assessment methods is recommended for physicians to provide an optimal

evaluation.

Biomarkers have been successfully applied to the clinic for a variety of diseases including
IBD and CoD. For example, C-reactive protein (CRP) is an acute phase molecule produced in
the liver in response to inflammatory cytokines. CRP is the most widely used serum
biomarker to assess inflammation in IBD, with endoscopic and histological evaluation
correlating well with CRP measurements [272]. Measurements of CRP provide a guide to
assess disease severity and extent of inflammation; however, CRP is not specific to IBD.
Wherein elevated levels indicate an increased inflammatory state, this does not explicitly
signify the presence of one disease, only a general state of inflammation. This underlines
the requirement for the combined use of biomarkers with additional methods of disease
assessment. Other serum biomarkers used in IBD evaluation include serum antibodies,
cytokines, and serum amyloid A [273]. Faecal biomarkers are also used in IBD practice as
measurements of inflammatory activity. Faecal calprotectin (FC), a calcium-binding protein
released by neutrophils upon inflammatory stimulation, is extensively used as a biomarker
for IBD [274]. FC release reflects the number of neutrophils involved in the inflammatory
process and is therefore proportionate to the extent of inflammation. Similarly, however, FC
levels are not disease specific, which carries limitations in confirming the precise cause of

the inflammation [275].

The wealth of information given by metabolic profiling which links immune processes, gut
microbial activity, and diet, places metabolomics as an ideal approach to both IBD and CoD
research. Determining metabolic signatures of gut inflammation in patients with disease is

therefore imperative in driving the research field forward.

1.5 Aims

Research knowledge around mechanisms of inflammatory diseases of the gut including IBD
and CoD has expanded rapidly in recent years, however uncertainty still surrounds the
specific biochemical events involved in disease processes, particularly at the metabolic
level. Advances in mass spectrometry-based metabolomics has provided an invaluable

approach for profiling metabolites and understanding metabolic changes in different
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disease states and treatment responses. Application of LC-MS-based metabolomics
approaches to the study of gastrointestinal disease through both untargeted and targeted
methodologies can therefore provide crucial disease-specific insights, potential novel

biomarkers, and therapeutic targets.

The overall aim of this thesis is to develop and employ advanced metabolomics
methodologies to investigate molecular mechanisms of gastrointestinal disease, with a
particular focus on how metabolic alterations contribute to IBD and CoD. Through the
optimisation of LC-MS methods across stages of the analysis pipeline and specific to the
biomatrix used, this research aims to provide comprehensive insights into the metabolic
nature of these diseases using optimal and robust methodologies. Furthermore, the
application of the developed methods to patient cohorts including large-scale clinical trials,
allows for the investigation into real-life clinical populations and aims to facilitate our
understanding of metabolic pathways that may drive disease mechanisms and inform
treatment strategies for IBD and CoD. The specific aims of the chapters are further detailed

below.

The second chapter investigates how metabolite extraction from faecal samples can be
optimised for both untargeted and targeted metabolomics analyses. It also examines
whether the optimised extraction protocol is suitable for analysing samples from patients
with gastrointestinal disease, providing a methodological foundation for subsequent

studies.

Building on this, Chapter 3 explores how the faecal metabolome of children with CoD can
reveal mechanistic insights about disease and changes upon treatment with a gluten-free
diet (GFD). It addresses the research question of what patterns emerge from a combined
cross-sectional and prospective cohort analysis using untargeted and targeted LC-MS,
providing the first comprehensive profiling of the faecal metabolome in this patient

population.

Chapter 4 focuses on urinary metabolomics, investigating how an untargeted LC-MS

method can be optimised for large-scale clinical studies. It evaluates the efficiency and

84



applicability of the optimised method in analysing urine samples from both IBD patients

and healthy controls, representing the largest urinary metabolomics study of IBD to date.

The role of specific food additives in the context of IBD were examined in Chapter 5,
investigating the mechanisms by which they promote or reduce gastrointestinal
inflammation. This chapter also considers how current evidence can inform the design of

dietary interventions to improve disease management.
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2.1. Abstract

Liquid chromatography coupled with mass spectrometry (LC-MS) metabolomic approaches
are widely used to investigate underlying pathogenesis of gastrointestinal disease and
mechanism of action of treatments. However, there is an unmet requirement to assess
faecal metabolite extraction methods for large-scale metabolomics studies. Current
methods often rely on biphasic extractions using harmful halogenated solvents, making
automation and large-scale studies challenging. The present study reports an optimised
monophasic faecal extraction protocol that is suitable for untargeted and targeted LC-MS
analyses. The impact of several experimental parameters, including sample weight,
extraction solvent, cellular disruption method, and sample-to-solvent ratio, were
investigated. It is suggested that a 50 mg freeze-dried faecal sample should be used in a
methanol extraction (1:20) using bead beating as the means of cell disruption. This is
revealed by a significant increase in number of metabolites detected, improved signal
intensity, and wide metabolic coverage given by each of the above extraction parameters.
Finally, we addressed the applicability of the method on faecal samples from patients with
Crohn’s disease (CD) and coeliac disease (CoD), two distinct chronic gastrointestinal
diseases involving metabolic perturbations. Untargeted and targeted metabolomic analysis
demonstrated the ability of the developed method to detect and stratify metabolites
extracted from patient groups and healthy controls (HC), highlighting characteristic changes
in the faecal metabolome according to disease. The method developed is, therefore,
suitable for the analysis of patients with gastrointestinal disease and can be used to detect

and distinguish differences in the metabolomes of CD, CoD, and HC.

Keywords: mass spectrometry; metabolite extraction; inflammatory bowel disease; Crohn’s

disease; coeliac disease
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Graphical Abstract. Overview of experimental design for metabolomics method optimisation. LC-MS
method development was carried out on samples from patients with gastrointestinal disease to
maximise metabolite coverage.

2.2 Introduction

Metabolomics is a powerful tool for detecting small molecule cellular and microbial
products. Through the reflection of active physiological mechanisms, metabolite
characterisation and quantification can give critical insights into human health and disease.
The large abundance and diversity of metabolites that are present in human faecal
samples, as given by the identification of 6791 faecal metabolites on the Human
Metabolome Database (HMBD) [1], provides an ideal target for metabolomic analysis [2]
and, thus, allows for insights into the outcomes of gut-microbial interactions and dietary
impacts on disease [3]. Accumulating evidence indicating the involvement of the gut
metabolome in a multitude of diseases [4—6] has propelled an intense interest in the role of
faecal metabolites under certain environments. The accurate quantification of metabolites
in faecal samples, therefore, holds value in a wide range of research areas. A clear role of
faecal metabolomics has been demonstrated in the field of gastrointestinal disease,
including inflammatory bowel disease (IBD) [7] and coeliac disease (CoD) [8]. Although the
aetiology of such diseases remains elusive, shifts in metabolic profile are associated with
disease activity and may represent central components of pathogenesis [9-12].
Irrespective, detection of altered patient metabolites may help unravel underlying disease

mechanisms or reveal new diagnostic or prognostic markers of clinical utility.

Liquid-chromatography mass spectrometry (LC-MS) is a popular metabolite analysis

technique due to its high sensitivity and selectivity. Sample preparation and pre-treatment

is a vital stage of the LC-MS workflow, providing the scaffolding to support metabolite
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detection. The experimental framework therefore shapes the biological interpretation of a
metabolomics study, and so it is crucial to consider best practices regarding specific study
aims. Certain challenges are inherent in the sample preparation phase, such as the large
physio-chemical variation of the target metabolite pool, technical and environmental
variation, and the complex and heterogeneous nature of human faeces. This brings
difficulties in standardising metabolomic methods, which is evident in the lack of “gold
standard” metabolite extraction procedures. As the effective and reliable identification of
metabolites is largely dependent on the extraction method used, it is imperative to
consider sample preparation when comparing results between studies. To date, previous
studies have addressed some of the challenges associated with metabolomic sample
preparation [13—15]; however, these are mainly based on biphasic extraction protocols
with limitations in scalability. While efficient biphasic extraction systems for faecal analysis
contribute towards protocol standardisation, they are associated with complicated
handling due to the requirement for phase separation. It can, therefore, be challenging to
utilise two-phase protocols in large scale clinical studies, with further limitations in protocol
automation. With the increasing demand for translating metabolomics data into
meaningful clinical output, one major requirement for bridging the bench to bedside gap is
the use of large population studies. It is, therefore, also important to optimise less-complex
monophasic extraction protocols that can be used as an alternative to classical biphasic
protocols for LC-MS analysis. Moreover, the applicability of metabolite extraction in the
context of gastrointestinal disease requires further acknowledgement. Thus, the present
study has the goal of advancing a method for monophasic metabolite extraction that can be
easily implemented in large scale clinical studies investigating gastrointestinal disease. To
the best of our knowledge, there is no current documentation on optimal extraction
methods for IBD or CoD samples for LC-MS analysis. There is an important unmet
requirement for the effect of faecal sample type to be explored, which is exemplified here

in the comparison between gastrointestinal disease and the non-disease state.

Herein, we evaluate different faecal extraction methods for metabolomic measurements in
human faecal samples from healthy individuals, Crohn’s Disease (CD) and CoD patients. A
range of trial experiments were performed to determine the optimal sample weight,
extraction solvent, disruption method, and sample-to-solvent ratio using LC-MS. The overall

aim of this study is twofold; firstly, to optimise metabolite extraction parameters for faecal
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samples and secondly, to determine whether this optimised extraction protocol is suitable
for analysis of samples from patients with gastrointestinal disease. To capture the large
guantity of metabolites and ensure maximal coverage in the method development phase,
untargeted metabolomic analysis was performed to assess each sample parameter.
Targeted metabolomic analysis was subsequently applied to assess method suitability in

patients with disease.

2.3 Materials and Methods

2.3.1 Ethics Statement

All participants and their carers provided written informed consent. The study was
approved by the NHS West of Scotland Research Ethics Committee (14/WS/1004 for
Crohn’s disease patients and 11/WS/0006 for patients with coeliac disease). Ethical
approval from the University of Strathclyde Departmental Ethics Committee (DEC) was not
required for this study, as all research activities involved anonymised patient samples
collected under NHS approval. All patient data were treated in accordance with data.

protection regulations, anonymised prior to analyses, with confidentiality ensured.

2.3.2 Faecal Samples

Faecal samples were collected for metabolomic analysis within 2 h of passage, kept in
anaerobic conditions (Anaerocult™ A) and inside an ice box with ice packs. The samples
were transferred to the laboratory immediately, homogenised with mechanical kneading,
and aliquots were kept at =80 °C until further processing. After metabolite extraction, the
samples were again kept at —80 °C until LC-MS analysis. The samples were kept on ice

during transportation.

2.3.3 Chemicals and Reagents
LC-MS grade methanol (MeOH), acetonitrile (ACN), chloroform (CHCls), and water (H,0)
were purchased from Fisher Scientific (Geel, Belgium). LC-MS grade formic acid was

purchased from Thermo Scientific (Prague, Czech Republic).
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2.3.4 Extraction Protocol

Freeze-dried faecal samples were added to the extraction solvent and the cells were
disrupted using bead beating (FastPrep 24 MP Biomedicals), sonication, and freeze-thaw
lysis methods. The samples were then centrifuged at 13,000x g for 15 min and the
supernatant recovered. The samples were evaporated to dryness using a SpeedVac Savant
SPD121P system (Thermo Scientific, Milford, UK) and stored at —-80 °C until further
processing. Reconstitution was performed in 250 pL 50/50 H,0: acetonitrile (ACN),
vortexed for 1 min and centrifuged at 15,000x g for 15 min, and aliquots transferred into
glass vials for MS analysis. Quality control (QC) samples were prepared by pooling samples
across all groups undergoing simultaneous analysis. Solvent blanks and QC samples were
entered at the beginning of every analytical run, and after every five samples in each batch
over the course of the study to assess background in the system and detect potential

contaminations. Experimental details for each extraction parameter are shown (Table 1).

Table 1. Experimental conditions for each extraction parameter.

Independent
Experiment Sample Weight  Solvent Used Cell Lysis Method
Variable
10 mg, 20 mg, 50 Bead beating (5
1 Sample weight MeOH
mg, 100 mg ms™?, 60 s)
MeOH,
Bead beating (5
p Extraction solvent 50 mg 1:1 MeOH/H-0,
ms™?, 60 s)
2:1 CHCl3/MeOH
Bead beating (5
ms?, 60 s),
3 Cell lysis method 50 mg MeOH sonication (40
kHz) freeze-thaw
cycle (24 h)
Sample-to-solvent Bead beating (5
4 50 mg MeOH
ratio ms™?, 60 s)
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2.3.5 Untargeted LC-MS Metabolite Measurement

Untargeted metabolomic analysis was performed on an ultra-high performance liquid
chromatography (UHPLC) system (ThermoFisher Scientific) coupled to an Orbitrap Exploris
240 (ThermoFisher Scientific) mass spectrometer. The LC-MS method was previously
optimised on the Orbitrap system, with the settings transferred from the applied method
[16]. Chromatographic separation was performed on a Vanquish Accucore C18 + UHPLC
analytical column (ThermoScientific, 100 mm x 2.1 mm, 2.6 uM) at a flow rate of 400 pL
min~. Mobile phase A was composed of 99.9% water + 0.1% formic acid and mobile B was
composed of 99.9% MeOH + 0.1% formic acid. Electrospray ionisation (ESI) was used as the
ionisation method, set at 3900 V and 2500 V for positive and negative mode, respectively.
The elution gradient used can be found in Supplementary Information Table S1. The source-
dependent parameters were operated under the following conditions: sheath gas, 40 Arb;
auxiliary gas, 10 Arb; sweep gas, 1 Arb; ion transfer tube temperature, 300 °C; vaporiser
temperature, 280 °C. Instrument calibration was performed using Pierce™ FlexMix™
calibration solution (Thermo Scientific) and ran under vendor recommended settings. MS
data collection was performed in a top-5 data dependent acquisition mode (DDA) to give

putative metabolite identification at MSI level 2.

2.3.6 Targeted LC-MS Metabolite Measurement

Targeted metabolomic analysis was performed on a UHPLC system coupled to a triple
guadrupole mass spectrometer (Shimadzu 8060NX, Kyoto, Japan). The method used for
metabolite detection and quantification was provided by the vendor; Primary Metabolites
LC/MS/MS Method Package version 2.0 (Shimadzu, Kyoto, Japan). The method was
designed to detect 97 metabolites. The list of 97 detected metabolites and associated
parameters are shown in Supplementary Information Table S4. Chromatographic
separation was performed on a pentafluorophenylpropyl (PFPP) + UHPLC analytical column
(Merck, 150 mm x 2.1 mm, 3 uM) at a flow rate of 400 pL min™. Mobile phase A was
composed of 99.9% water + 0.1% formic acid and mobile B was composed of 99.9%
acetonitrile + 0.1% formic acid. Electrospray ionisation (ESI) was used as the ionisation
method, set at 3900 V and 2500 V for positive and negative mode, respectively. The source-
dependent parameters were operated under the following conditions: column oven

temperature, 40 °C, nebulising gas flow rate, 3.0 L min™?, drying gas flow rate, 10 L min™,
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desolvation line temperature, 250 °C, and block heater temperature, 400 °C. The elution

gradient used can be found in Supplementary Information Table S2.

2.3.7 Method Application

We applied the method to three biological groups: CD patients, CoD patients, and HCs
(Table 2). CD patients were undergoing varying forms of treatment and CoD patients were
following a gluten-free diet. HCs were defined as individuals with the absence of
gastrointestinal disease. Both untargeted and targeted metabolomic analyses were applied

to the sample sets combined after randomisation.

This analysis was conducted as a subset study, using a smaller group of 20 patients selected
from larger disease cohorts to assess method application. While the primary studies were
powered to detect a difference in faecal calprotectin levels between intervention and
control groups in the full cohort, no formal power calculation was performed specifically for
this subset. This subset was chosen to balance sample availability, resource costs, and
expected variability in metabolic measurements, while maintaining representation across

the study arms.

Table 2. Table of patient demographics.

HC ch CoD
Variable
n=20 n=20 n=20
Gender
Female (%) 45 40 60
Male (%) 55 60 40
Age (range) 6.6 (2.3-13.7) 12.3(7.6-14.8) 9.2 (4.0-14.8)
BMI z-score 0.3 -0.7 0.2

HC, healthy control; CD, Crohn’s disease, CoD, Coeliac disease.
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2.3.8 Mass Spectrometry Data Processing

For the processing of untargeted metabolomics data, Thermo Scientific Xcalibur format raw
data files (.RAW) were imported into Compound Discoverer software version 3.2 (Thermo
Fisher Scientific, Waltham, MA, USA). Details of the workflow for analysis in Compound
Discoverer is included in Supplementary Information Table S5. The targeted metabolomics
data were converted from Shimazdu vendor format (.lcd) to mzML format. A data matrix of
identified metabolites and associated peak areas was constructed and processed using R-

Studio v 3.5.2 (RStudio, PBC MA, USA).

2.3.9 Data and Statistical Analysis

For untargeted analysis, principal component analysis (PCA) was performed using
Compound Discoverer software 3.2 (Thermo Fisher Scientific, Waltham, MA, USA). For
targeted analysis, PCA was performed using Lab Profiling Solutions software version 5.6
(Shimadzu, Kyoto, Japan) and R-Studio (RStudio, PBC, MA, USA). PCs were calculated using
prcomp function and PCA scores plots were generated using the following packages in R:
gegplot2, ggfortify, grid, and gridExtra. Differential analysis using volcano plots allowed
significant differences between groups to be determined. Univariate statistical analyses
were performed using unpaired t-test and one-way ANOVA, with the level of significance
set at p < 0.05. Central network analysis was performed in R-studio (RStudio, PBC, MA, USA)

using the igraph package.

2.3.10 Putative Metabolite Identification

Putative metabolite identification was performed by assigning likely metabolite identities
to detected features in a metabolomics dataset based on accurate mass, fragmentation
patterns, and database matches, without conforming the identity using authentic chemical
standards. The inclusion criteria for putative metabolite identification were set and applied
to refine the total number of features in the metabolomics dataset. Only features with a
full mzCloud match and mass accuracy within 4 ppm were retained, and duplicate entries
were removed. Contaminants were excluded by analysing blank samples interspersed
throughout the analysis. Metabolite identification was performed both manually and using
reference databases, with the Human Metabolome Database (HMDB) [1] serving as the

primary source for metabolite identification.
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2.4 Results

For method development, metabolites were measured in freeze-dried faecal samples
obtained from healthy participants. The metabolic output was first measured by PCA to
observe any differences in the overall metabolic signature obtained from each method.
Further statistical analysis was performed for data quantification by calculating the number

of m/z features, putatively identified metabolites, signal intensity, and metabolic coverage.

2.4.1. Analysis of Sample Weight

Positive ionisation mode was used for analysis of experimental parameters as previous
investigations found that a significantly higher number of m/z features were detected in
comparison to the negative ionisation mode. While examining the effect of sample weight,
10 mg samples were disregarded during the extraction process as the aliquots had very
little extractable supernatant for subsequent processing. This was likely due to the sample
being absorbed by the zirconium beads as the sample weight was too small for the solvent
volume. During the reconstitution step, the 100 mg sample was also disregarded as there
was too much particulate left undissolved. The metabolites were successfully extracted
from 20 mg and 50 mg samples and measured using LC-MS and PCA demonstrated clear
separation of the two sample weight groups (Figure 1). In this case, 50 mg samples showed
a significantly higher mean number of m/z features and mean number of putatively
identified metabolites in comparison to 20 mg samples. Furthermore, the mean signal
intensity given by 50 mg samples (2.1 x 10) was significantly increased compared to 20 mg
samples (1.2 x 107). As shown in Figure 1F, both sample weight displayed similar overall
distributions of metabolite classes. It was furthermore demonstrated that 69.1% of
detected metabolites were found at significantly increased levels in 50 mg samples
compared to 20 mg samples (Supplementary Information Figure S1). A comparison of the
total number of metabolites per chemical class from each sample weight is shown in Figure

2.
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Figure 1. The effect of sample weight on features of metabolomic analysis. 1 pL of 20 mg and 50 mg
sample was injected onto a C18 column (n = 3), performed in triplicate. (a) PCA of metabolomic
profiles obtained as a function of sample weight. PCA score plots demonstrating extracted faecal
metabolites between different sample weights. Discrimination between 20 mg (blue) and 50 mg
(orange) samples was characterised by a variability of 53.1%. (b) A Venn diagram of the mean
number of metabolites detected between each method. (c) The total number of m/z features and (d)
total number of putatively identified metabolites were calculated in positive ionisation mode and (e)
the overall mean signal intensity of each sample weight was assessed. (f) A metabolite class
quantification demonstrating the faecal metabolome patterns according to chemical class in 20 mg
and 50 mg samples. The bar chart data were expressed as mean + SEM and statistical significance
was assessed using an unpaired t-test. * p < 0.05, ***p < 0.001.
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Figure 2. Untargeted metabolite class analysis of sample weight. (A) Comparison of the total number
of metabolites identified by chemical class in 20 mg and 50 mg samples (n=3), performed in
triplicate. (B) Radar plot comparing the relative abundance of metabolite classes in 20 mg and 50 mg
samples. Data were expressed as mean + SEM and statistical significance was assessed using
unpaired t-test.

2.4.2 Analysis of Extraction Solvent

PCA demonstrated a clear separation of the extraction solvents (Figure 3). Using 100%
MeOH gave a significantly higher number of m/z features in comparison to 1:1 MeOH/H,0
and a significantly higher number of putatively identified metabolites than both MeOH/H,0
and 2:1 CHCl3/MeOH. No significant differences were observed in the signal intensity
between the extraction solvents. Differential analysis revealed a significant increase in the
levels of 30.6% and 20.9% of metabolites detected using MeOH as the extraction solvent in
comparison to MeOH/H,0 and CHCl;/MeOH, respectively (Supplementary Information
Figure S2). In this case, 32.0% of metabolites detected were found at significantly increased
levels in CHCl3/MeOH compared to MeOH/H,0. MeOH extractions additionally had a
significantly increased number of lipids compared to MeOH/H,0 extractions. Once more, all
metabolite classes were detected from all extraction solvents, with a similar structure of
metabolite classification. A comparison of the total number of metabolites per chemical

class from each extraction solvent is shown in Figure 4.
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Figure 3. The effect of extraction solvents, MeOH, MeOH/H0, and CHCl3/MeOH, on features of
metabolomic analysis. 1 pL of each extraction sample was injected onto a C18 column (n = 3),
performed in triplicate. (a) PCA of metabolomic profiles obtained as a function of extraction solvent.
PCA score plots demonstrating extracted faecal metabolites between different extraction solvents.
Discrimination between extraction solvents MeOH (light blue), MeOH/H,0 (orange), and
CHCl3/MeOH (dark blue) was characterised by a variability of 40.2%. (b) A Venn diagram of the mean
number of metabolites detected between each method. (c) The total number of m/z features and (d)
total number of putatively identified metabolites were calculated in positive ionisation mode and (e)
the overall mean signal intensity of each extraction solvent was assessed. (f) The metabolite class
guantification demonstrating the faecal metabolome patterns according to chemical class in each
extraction sample. The bar chart data were expressed as mean = SEM and statistical significance was
assessed using one-way ANOVA. *p < 0.05, ** p <0.01, *** p <0.001.
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Figure 4. Untargeted metabolite class analysis of extraction solvent. (A) Comparison of the total
number of metabolites identified by chemical class in samples extracted with MeOH, MeOH/H,0,
and CHCl3/ MeOH (n=3), performed in triplicate. (B) Radar plot comparing the relative abundance of
metabolite classes in samples extracted with MeOH/ H,0, MeOH, and CHCl;/ MeOH. Data were
expressed as mean = SEM and statistical significance was assessed using a one-way ANOVA. *p <
0.05, **** n < 0.0001.

2.4.3 Analysis of the Cellular Disruption Method

The choice of cellular disruption method affected the overall metabolic output, as shown by
PCA which demonstrated a clear separation between the three groups (Figure 5). Bead
beating extracted a significantly higher mean number of m/z features in comparison to
freeze-thawing and a significantly higher number of putatively identified metabolites than
both sonication and freeze-thawing. No significant differences were observed in the signal
intensity between lysis methods. A significant increase in the levels of 29.5% and 48.4% of
metabolites detected were found using bead beating as the method of cellular disruption
compared to sonication and freeze-thawing, respectively (Supplementary Information
Figure S3). Of the metabolites identified, 23.7% were found at significantly increased levels
in sonicated samples in comparison to freeze-thawing. Each disruption method allowed for
the measurement of metabolites from all classification groups. While similar patterns of
metabolite classification are shown between methods, it was shown that bead beating led
to detection of a significantly increased number of lipids compared to the other lysis
techniques. A comparison of the total number of metabolites per chemical class using each

cellular disruption method is shown in Figure 6.
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Figure 5. The effect of cellular disruption methods, bead beating, sonication, and freeze-thaw cycles,
on features of metabolomic analysis. 1 pL of each extraction sample was injected onto a C18 column
(n =3), performed in triplicate. (a) PCA of metabolomic profiles obtained as a function of disruption
method. PCA score plots demonstrating extracted faecal metabolites between bead beating,
sonication, and freeze-thaw cycles. Discrimination between extraction solvents A, bead beating (dark
blue); B, sonication (orange) and C, freeze-thaw cycles (light blue) was characterised by a variability
of 33.5%. (b) A Venn diagram of the mean number of metabolites detected between each method.
(c) The total number of m/z features and (d) total number of putatively identified metabolites were
calculated in positive ionisation mode and (e) the overall mean signal intensity of each disruption
method was assessed. (f) The metabolite class quantification demonstrating the faecal metabolome
patterns according to chemical class in each extraction sample. The bar chart data were expressed as
mean + SEM and statistical significance was assessed using a one-way ANOVA. *p < 0.05, ** p <0.01.
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Figure 6. Untargeted metabolite class analysis of cellular disruption method. (A) Comparison of the
total number of metabolites identified by chemical class in samples extracted using bead beating,
sonication, and freeze-thaw cycles (n=3), performed in triplicate. (B) Radar plot comparing the
relative abundance of metabolite classes in samples extracted using bead beating, sonication, and
freeze-thaw cycles. Data are expressed as mean + SEM and statistical significance was assessed using
a one-way ANOVA, **** p < 0.0001.

2.4.4 Analysis of Sample-to Solvent Ratio

A clear separation was observed between the three different sample-solvent ratios by PCA
(Figure 7). Performing extractions using a ratio of 1:20 gave a significantly higher mean
number of m/z features and putatively identified metabolites than ratios of 1:5 and 1:10.
Furthermore, a significant increase in the signal intensity of samples of a 1:20 ratio was
observed in comparison to the other groups. A significant increase in the levels of 70.0%
and 66.7% of metabolites detected were found using a ratio of 1:20 in comparison to ratios
of 1:5 and 1:10, respectively (Supplementary Information Figure S4). In this case, 43.5% of
metabolites detected were found at significantly increased levels in samples extracted
using a ratio of 1:10 compared to 1:5. Several metabolite classes were increased in
extractions carried out using a ratio of 1:20 compared to the other groups. Additionally, the
overall composition according to chemical class of each sample remained similar between
each group. A comparison of the total number of metabolites per chemical class using each

sample-to-solvent ratio is shown in Figure 8.
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Figure 7. The effect of sample-solvent ratio on features of metabolomic analysis. 1 pL of each
extraction sample was injected onto a C18 column (n = 3), performed in triplicate. (a) PCA of
metabolomic profiles obtained as a function of sample-to-solvent ratio. PCA score plots
demonstrating extracted faecal metabolites between different ratios. Discrimination between
extraction solvents 1:5 (dark blue), 1:10 (orange) and 1:20 (light blue) was characterised by a
variability of 33.3%. (b) A Venn diagram of the mean number of metabolites detected between each
method. (c) The total number of m/z features and (d) total number of putatively identified
metabolites were calculated in positive ionisation mode and (e) the overall mean signal intensity of
each sample-to-solvent-ratio was assessed. (f) The metabolite class quantification demonstrating the
faecal metabolome patterns according to chemical class in each extraction sample. The bar chart
data were expressed as mean + SEM and statistical significance was assessed using a one-way
ANOVA. *p < 0.05 ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 8. Untargeted metabolite class analysis of sample-to-solvent ratio. (A) Comparison of the total
number of metabolites identified by chemical class in samples extracted using sample-to-solvent
ratios of 1:5, 1:10, 1:20 (n=3), performed in triplicate. (B) Radar plot comparing the relative
abundance of metabolite classes in samples extracted using 1:5, 1:10, 1:20. Data were expressed as
mean + SEM and statistical significance was assessed using a one-way ANOVA., ** p < 0.01, **** p <
0.0001.

Through the exploration of the overall metabolite extraction efficiency through the
optimisation process, it was observed that the number of putatively identified metabolites
significantly increased throughout stages of method optimisation with the improvement of

each individual extraction parameter (Figure 9).
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Figure 9. Comparison of individual optimization experiments. Total number of putatively identified
metabolites given by optimal parameters of each experiment. Experiment 1, Analysis of Extraction
Weight; Experiment 2, Analysis of Extraction Solvent; Experiment 3; Analysis of Cellular Disruption
Method; Experiment 4, Analysis of Sample-to-Solvent Ratio. Data were expressed as mean + SEM
and statistical significance was assessed using a one-way ANOVA. **p < 0.01, *** p < 0.001, **** p <
0.0001.
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2.4.5 Applicability of the Method to Patients with Gastrointestinal Disease

To assess the applicability of the developed method, we applied the protocol to CD, CoD,
and HC groups and compared the metabolic differences. In an untargeted analysis, PCA
demonstrated a clear separation between CD samples and the other groups (Figure 10). A
significant decrease in the levels of 72.3% of metabolites detected were found in CD
samples compared to HCs, and 74.1% compared to CoD samples (Supplementary
Information Figure S5). Of the metabolites detected, 27.1% were found to be at
significantly decreased levels in CoD samples in comparison to HCs. Furthermore, targeted
metabolomics analysis further confirmed the ability of the method to both detect and
stratify metabolites extracted from faecal sample from patients with CD and CoD and
healthy individuals. PCA showed characteristic changes in the faecal metabolome between
each of the groups (Figure 11). In order to ensure the present method was effective in the
specific context of gastrointestinal disease, we carried out further analysis investigating
metabolites that are important in IBD. The metabolites that were putatively identified in
the current method and throughout the literature in the context of IBD are compared

(Figure 12).
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Figure 10. PCA of metabolomic profiles based on untargeted analysis of gastrointestinal disease. PCA
score plots demonstrating extracted faecal metabolites between patient groups. Principle
Component 1 directionality describes the variance between CD (dark blue), CoD (orange) and HC
(light blue) and explains 17.7% of the total variance of the data. QCs are shown in green. The
samples were performed in triplicate and are shown as individual datapoints to represent the
variance in the dataset.
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Figure 11. PCA of the metabolomic profiles based on targeted analysis of gastrointestinal disease.
PCA score plots demonstrating extracted faecal metabolites between CD (dark blue), CoD (orange)
and HC (light blue). The discrimination between (a) CD vs. HC, (b) CoD vs. HC, and (c) CD vs. Co was
characterised by variabilities of 34.5%, 31.3%, and 10.5%, respectively. The samples were performed
in triplicate and are shown as individual datapoints to represent the variance in the dataset.
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Figure 12. Central network analysis of developed metabolite extraction method. Circles shown in
green represent metabolites successfully extracted using the developed method and circles shown in
red represent metabolites not found using the developed method. C1P, Ceramide-1-phosphate; AA,

Arachidonic acid; EPA, Eicosapentanenoic acid; DGLA, Dihomo-gamma linolenic acid.

2.5 Discussion

Since extraction methodology directly affects metabolite constitution within MS
metabolomics experiments, it was important to optimise a range of experimental
parameters and to document the chemical coverage in faecal samples. To this end, the
present study first aimed to assess parameters of maximal metabolic LC-MS output,
utilising an untargeted metabolomics approach to allow fingerprinting of the total
metabolite profile in samples. The ideal extraction protocol was therefore one that
elucidated the greatest number of metabolites whilst minimising interferences. As such,
methods were evaluated by measuring the total number of metabolites detected using
each protocol. Since we cannot assume that the number of features is equal to the number

of correctly identified metabolites, due to unmatched features, blanks, and duplicate
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readings, further refinement methods were applied to allow for a more accurate evaluation
of the protocols. Additionally, the markedly different characteristics of metabolites in the
faecal metabolite pool brings challenges in extracting all the metabolites present in each
sample. For this reason, it was important to assess the number of metabolites belonging to
different metabolic classes from each method to ensure maximum chemical coverage.
Feature annotation was performed to quantify and compare metabolite classifications
between the extraction methods. As a complete characterisation of the metabolome is not
possible, a compromise will always exist in practice; however, the multi-parameter method
used in the present study allows for the selection of the greatest metabolite signal and

coverage.

Herein, we describe an optimised protocol for extraction of metabolites from human faecal
samples, thus providing an efficient setup for subsequent metabolomic analysis. The
method is recapitulated in the following stages: (1) 50 mg sample weighed out, (2) 1000 pL
MeOH added to sample and cell lysed by bead beating, (3) samples evaporated to dryness
under vacuum and stored at —-80 °C until further processing, (4) reconstitution carried out in
50/50 ACN: H,0, (5) LC-MS analysis using 1 pL injection volume (Supplementary

Information Figure S12).

The metabolite extraction from 10 mg and 100 mg samples were unsuitable for
metabolomic analysis and therefore not included in the results. This is important, as when
run on the MS, sample particulate may crash the column and lead to instrument
breakdown. The faeces weight-to-solvent ratio (100 pL of solvent for every 10 mg of
sample) was, therefore, not sufficient for samples out with a 20-50 mg range. For this
reason, we explored the impact of sample-solvent ratio on metabolic output in a further
analysis. In consideration to this, for the assessment of sample weight, 20 mg and 50 mg
samples were successfully extracted and metabolomic analysis was continued. A clear
separation was shown by the PCA comparing 20 mg and 50 mg samples, indicating the
different metabolite profiles given by the two groups. Further analysis showed that 50 mg
samples additionally contained an increased number of m/z features, identified
metabolites, and signal intensity—this result was to be expected due to the increased levels
of biomass in the 50 mg samples. It was also important to investigate whether the observed

differences in metabolite numbers were reflected in the overall metabolic coverage. Thus,
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the detected metabolites were grouped according to their chemical classification, and
calculation of the number of metabolites in each class was used as a measurement of
metabolic coverage. This is essential for untargeted metabolomics experiments, as the
analytical conditions should aim to detect a broad range of metabolites of different
chemical properties that may be implicated in disease. As such, expansion of metabolic
coverage is important to maximise information for hypothesis generation. From the
classification analysis, it was revealed that metabolite class is conserved across sample
weight. Using 50 mg faecal samples for metabolite extraction aligns with previously
reported studies [3,17-19], in which 50 mg samples were also used as the starting point for
sample preparation and subsequent analysis. Based on findings of increased metabolite
numbers without compromising metabolic coverage or signal intensity, it is reasonable to

suggest that 50 mg samples are optimal for use in faecal extraction protocols.

While investigation into extraction solvent was here carried out using MeOH, MeOH/H,0,
and CHCl3/MeOH, it is worth mentioning that other solvents, such as ACN and isopropanol
have previously been used in faecal extractions. However, due to limited clinical sample
availability, the extraction solvents for this study were chosen based on a previous
literature search. The results from this analysis showed a clear separation between
protocols using MeOH, MeOH/H-0, and CHCl3/MeOQOH, with an increased number of m/z
features and identified metabolites given by pure MeOH extractions. While it was shown
that the number of lipids and derivatives were increased in the samples extracted using
MeOH in comparison to the other groups, the overall metabolic coverage was very similar
for all extraction solvents investigated. As maximal chemical coverage is largely maintained,
it can again be noted that metabolite class is conserved across extraction solvents. As the
use of pure MeOH increases overall metabolic features obtained from molecules across a
wide range of different chemical properties, its use can therefore be recommended as the
optimal solvent for faecal extraction. This result agrees with a recently reported study,
where MeOH was chosen as the optimal solvent for the extraction of metabolites from
human faecal samples in order to assess gut health [20]. Furthermore, MeOH has been
found to be the optimal extraction solvent in a range of metabolomics studies, including
the investigation of dietary influences in faecal samples [3], serum metabolite profiling [21],
and Blastocystis’ metabolism [22]. In comparison with one of the current most used

extraction solvents, phosphate buffer saline (PBS) [23], the recognition of MeOH as an
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efficient organic buffer and resultant choice in a range of sample preparation methods may
be attributed to effective protein denaturation [24] and multi-polarity chemical capture

[25].

Cell lysis is the process of breaking down the cell membrane to release contents contained
inside the cell for molecular analysis. Bead beating, sonication, and cycles of freeze-thawing
are common techniques used to disrupt the cell, and a sense of uncertainty resides about
optimal methodological choice. The samples that underwent cell lysis using bead beating
contained a significantly higher number of m/z features than freeze-thawing and a
significantly increased number of identified metabolites than both those with sonication
and freeze-thawing. Moreover, cell disruption by bead beating had a significantly increased
number of lipids compared to both other methods. Overall, these findings indicate that
bead beating was the most effective cell lysis method for extracting metabolites from
human faecal samples. Additional studies have found analogous findings; for example, one
study showed that bead beating was the best method for cell disruption and subsequent
extraction of both polar and non-polar compounds from platelet samples, as given by
optimal extraction efficiencies [26]. Bead beating has also previously been used as the cell
lysis method of choice in the sample preparation of human faecal samples [27], as well as

for gastrointestinal stromal tumour [28] and the characterisation of tissue samples [29].

Sample-to-solvent ratio, as aforementioned, is vital not only to maximise the data obtained,
but also to ensure sufficient sample quality for LC-MS analysis so as not to cause blockage
and instrument breakdown. This is particularly important for complex biomatrices such as
faeces, which are composed of an abundance of organic and cellular material. The sample-
to-solvent ratio, therefore, must allow extraction of large metabolite numbers that are
compatible with LC-MS systems. Therefore, the metabolic output resulting from sample-to-
solvent ratios of 1:5, 1:10, and 1:20 were assessed. Different metabolite quantification
analyses identified a higher number of m/z features, identified metabolites, and signal
intensity were given by samples using a sample-solvent ratio of 1:20 compared to the other
tested ratios. Over 300 m/z features were detected and putatively identified using the
optimal procedure with a 1:20 sample-solvent ratio, which holds great promise for
maximising capture of biological information in future metabolomic studies. It is important

to note that this work is part of an ongoing effort to document the metabolites putatively
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identified in faecal samples, which will in future will be built upon by the creation of a
standards library and the additional use of pure standards. Putative metabolite
identification at MSI level 2 without the use of internal standards is, however, a current
limitation of the present study, and the resulting lack of validation techniques must also be
highlighted. Nonetheless, this work algins with the reporting standards of chemical analysis
[30] and will be extended in future in order to increase the confidence of identification and

validity of findings.

While contradictive reports are found regarding metabolite extraction procedures, it is
important to bring to light methods that are suitable in specific contexts to continue the
drive towards standardisation. The use of biphasic extraction protocols is common in
metabolomics sample preparation; however, method advancement must also reflect
amenability to study design. A considerable amount of research [29,31-33] suggests the
importance of single-phase extraction procedures that can be used as simple, fast, and
scalable alternatives to some of the more extensive approaches, giving impetus for
investigating the optimal monophasic extraction protocol for human faecal samples. Rapid
and easy-to-use methods can greatly simplify metabolite extraction and thereby improve
scalability and application in large clinical studies. In this sense, single-phase methods are
advantageous as the single layer can easily be removed, minimising the risk of sample loss
and contamination [34,35]. This is of paramount importance for large studies as well as
those with limited sample amounts. Moreover, the method developed in this study uses
fewer toxic chemicals and can, therefore, be deemed as more friendly to both the operator
and environment [36,37]. However, it must also be noted that while monophasic protocols
provide simple and scalable extractions, consideration must also be given to the potential
trade-off regarding metabolome coverage in comparison to biphasic methods.
Improvements to the automation and scaling of extraction methods for large studies using
monophasic methods should be conducted without significantly reducing the metabolome
coverage. Extraction methods utilising biphasic partitioning are advantageous in their
ability to separately recover polar and non-polar metabolites, ensuring coverage across the
polarity scale. While contradictive reports have previously been noted regarding the
comparative coverage of monophasic and biphasic approaches [13,37], recent research has
provided evidence to suggest the differences in coverage between the two approaches may

not be significant. For example, recent studies have demonstrated that single-step sample
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preparation methods showed metabolome coverage and signal intensities equivalent to or
greater than biphasic methods [33,38,39]. Careful consideration is required when
implementing metabolite extraction methods to fit the specific study aims; however, in
addressing the requirement for simple and rapid extraction methods for large-scale studies,
it can be suggested that monophasic methods may be implemented as the best

compromise for both scalability and coverage.

Finally, we demonstrated the applicability of the method on samples from patients with
two forms of gastrointestinal disease involving metabolic and microbial perturbation, CD
and CoD [40,41]. The developed method successfully detected and differentiated metabolic
patterns of each group with a wide coverage. The method demonstrates strong cross-
platform compatibility, with successful method application using two distinct analytical
platforms, Orbitrap 240 LC-MS (ThermoFisher Scientific) and targeted triple-quadrupole
(Shimadzu, Kyoto, Japan). This is valuable for future use of the method in laboratories using

different technologies for metabolomic analysis.

In summary, the untargeted and targeted LC-MS analyses of different extraction factors
provide insights into specific methods which give the strongest metabolic output.
Optimised sample pre-treatment and extraction methods ultimately improve protocol
efficiency while simultaneously enhancing the MS signal obtained [42]. Each small
parameter change may cause a small increase in the efficiency of LC-MS characteristics and
so when combined, the accumulated difference in the overall protocol can result in a large
improvement to the number and coverage of metabolites detected (Supplementary
Information Figure S9). Furthermore, reproducibility of the method and the instrument are
increased by documenting and working towards method standardisation. As the results
from this study bring together some of the parameters of faecal metabolite extraction in
agreement with existing studies, this supports evidence of an optimised and reproducible
protocol that can be applied in a vast array of research and clinical settings. Moreover, the
method covers a wide range of metabolites of different physiochemical properties to
increase the capture of biological compounds. As an extension, employing the method to
patients with gastrointestinal disease expands the protocol applicability to different sample
types. This method addresses the requirement for affordable, reproducible, and

environmentally friendly metabolite extraction protocols. Thus, the method described build
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on the foundations of protocol standardisation, allowing for improved comparisons of

future metabolomics studies using faecal samples.

2.6 Conclusion

Based on a series of optimisation experiments, we describe a protocol to extract
metabolites from faecal samples for metabolomic analysis using an LC-MS system. We
recommend the use of 50 mg freeze-dried faecal samples in a 1000 pL MeOH and bead
beating extraction, as given by a reproducible increased metabolite measurement. The
optimised faecal extraction method described here can be used for metabolomics

investigations of a wide array of applications, with strong evidence for its suitability in

studies of gastrointestinal disease. This contributes towards standardising a framework of

sample preparation, allowing for easier and more accurate comparisons between studies.
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3.1 Abstract

Coeliac disease (CoD) is an autoimmune disorder triggered by gluten ingestion, and strict
adherence to a gluten-free diet (GFD) remains the only effective treatment. To investigate
the metabolic impact of CoD and dietary intervention, we characterised the faecal
metabolome of children with untreated CoD (UCD), treated CoD on a GFD (TCD), healthy
controls (HC), and unaffected siblings using untargeted LC-MS. Across 143 participants,
1,749 metabolite features were detected, and multivariate analysis revealed distinct
clustering between groups. Comparison of UCD and HC identified 58 significantly altered
metabolites, including elevations in bile acid derivatives, acylcarnitines, and amino acid
dipeptides. Treatment with a GFD led to partial restoration of the metabolome, with 27
treatment-responsive metabolites altered between UCD and TCD, primarily amino acid
dipeptides and oligopeptides, alongside changes in purine and phenolic metabolites.
However, several metabolite classes such as bile acids, sterols, and microbial-derived
metabolites remained persistently altered in both UCD and TCD compared with HC,
indicating a core CoD-specific signature independent of diet. Additional diet-driven changes
were identified in TCD patients, including shifts in amino acid derivatives and purine
metabolism, reflecting secondary effects of dietary exclusion. Collectively, our findings
demonstrate that paediatric CoD is characterised by distinct metabolic signatures across
CoD-specific, treatment-responsive, and diet-driven metabolite groups. These insights
highlight the potential of faecal metabolomics as a non-invasive tool for biomarker
discovery, dietary monitoring, and identification of patients at risk of non-responsive

disease.
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3.2 Introduction

Coeliac disease (CoD) is a multifactorial autoimmune disorder of the small intestine which is
caused by ingestion of gluten in genetically predisposed individuals. Disease incidence has
increased in recent years, with 1.4% of the global population currently estimated to be
living with the condition [1]. CoD results in small intestine villi atrophy and inflammation

causing nutrient malabsorption abdominal pain, diarrhoea, bloating, and weight loss.

CoD can be challenging to diagnose due to symptom overlap, particularly in patients with
silent disease phenotype who do not have overt gastrointestinal symptoms. A combination
of diagnostic tools is therefore required along with evidence of clinical manifestations to
obtain an accurate diagnosis. Firstly, serological tests are used to measure levels of IgA anti-
tissue transglutaminase antibodies (tTG) and anti-endomysial antibodies (EMA), which are
produced in response to gluten-activated immune pathways. Although these measurements
provide an insight into the inflammatory immune response, their measures are not specific
to CoD. Therefore, if positive blood tests are obtained, endoscopic evaluation is required to
examine small intestinal damage, with disease presence indicated by duodenal villous
atrophy and crypt hyperplasia [2]. To confirm diagnosis, small intestinal mucosal biopsies
are taken for histopathological assessment, where application of a classification system,
such as the Marsh classification system, are then used to characterise disease, with stages
ranging from normal mucosa to severe villous atrophy. As per the European Society for
Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) guidelines, a biopsy is
required for a confirmed CoD diagnosis in adults, however in children, a biopsy may be
skipped if all three of the following criteria are met: (1) the tTG-IgA levels are greater than
10 times the upper limit of normal, (2) a second antibody test such as EMA-IgA is positive,
and (3) symptoms consistent with CoD are presented [3]. If any one of these criteria are

missing, a small intestinal biopsy is also required to confirm a CoD diagnosis.

The only effective treatment at present is the strict adherence to a gluten-free diet (GFD)
which can often be challenging to adhere to. The currently limited therapeutic options
highlight the need for an improved understanding of disease pathogenesis. |dentification of

novel disease biomarkers and mechanistic insights will help to improve patient outcomes
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through earlier diagnoses, improved disease and treatment monitoring, and prediction of

complications.

It is now recognised with increasing evidence that the gut microbiota plays a crucial role in
CoD pathophysiology [4, 5]. A recent study observed distinct changes in the gut microbiota
in children with CoD compared to healthy children [6]. Most notably, a microbial signature
specific to CoD was identified comprising eleven operational taxonomic units, with a distinct
altered microbial composition found following a GFD. Furthermore, the predictive ability of
the gut microbiota in the diagnosis of CoD has been revealed. Recent studies have shown
that the gut microbiota may serve as non-invasive diagnostic or early predictive biomarkers
for CoD, achieving up to 82% accuracy [7] and identifying microbial and metabolite shifts 18
months before disease onset in at-risk infants [8, 9]. In line with evidence supporting an
altered microbiome as part of CoD pathophysiology, study of the metabolome can be
utilised to facilitate disease understanding and interactions at the level of metabolism.
Through the detection and measurement of small molecules, metabolomics is a valuable
tool to enable understanding of the underlying molecular mechanisms governing the onset
and progression of disease. Progress has been made to establish the molecular effects of
CoD, with metabolomics studies beginning to characterise the CoD metabolome [10-12].
While there is clear evidence for disease-associated metabolic alterations, the
determination of a metabolic fingerprint for CoD is still in the early phases. Liquid
chromatography mass spectrometry (LC-MS) approaches are beneficial for the analysis of
metabolism due to their high sensitivity and selectivity for detecting molecules in a range of
applications. Importantly, stool samples are an advantageous non-invasive biomatrix for
studying gastrointestinal disease, providing a window into gut microbial and metabolic
function. Using faecal metabolomics to investigate disease therefore has the potential to
unravel complex relationships between microbial metabolism, the immune response, and
the diet, three major pillars of CoD. This will help not only in the understanding of disease
mechanisms and dietary impact but also holds promise in complementary diagnostic and

prognostic tools through biomarker development.

The aim of the present study is to characterise the faecal metabolome of children with CoD.

The utilisation of both cross-sectional and prospective cohorts allowed an in-depth analysis

of the metabolic impact of disease and treatment. Comparisons were performed between

143



untreated CoD patients at the point of disease diagnosis (UCD), patients with established
CoD and on a GFD (TCD), healthy siblings of TCD patients, and healthy controls (HC). UCD
patients were examined at the time of diagnosis and additionally at 6- and 12- month
follow-up time points after treatment with a GFD. Analysis was further extended to utilise
faecal gluten immunogenic peptide (GIP), a sensitive and specific biomarker of GFD
compliance. This study provides the first combined cross-sectional and prospective cohort

analysis of the faecal metabolome of CoD patients using untargeted LC-MS.

3.3 Materials and Methods

3.3.1 Ethics Statement

The study was approved by the West of Scotland Research Ethics Committee (reference

no.11/WS/0006). All participants and their carers provided written consent.

3.3.2 Subjects

Faecal samples were collected from children with CoD receiving care at the Royal Hospital
for Children in Glasgow for metabolomics analysis. For participant selection, children with a
confirmed diagnosis of CoD were recruited from annual clinic appointments, while newly
diagnosed CoD cases were referred by primary healthcare services. For the control group,
healthy children displaying no clinical symptoms and who tested negative for tissue
transglutaminase IgA were recruited through advertisement methods, and unaffected
siblings of children diagnosed with CoD were also recruited in the same way. Tissue
transglutaminase IgA antibody (tTG) was measured in UCD children at the time of their
diagnosis and at follow up time points upon the initiation of a GFD and in TCD children
during their clinic visit. In both groups, a healthy status denoted children who did not have
regular medical consultations, were not on routine medication, and had no history of Gl
disorders. Inclusion was extended to all eligible children, except those who met exclusion
criteria such as recent antibiotic use, regular prebiotic/ probiotic use, or presence of other
comorbidities. For this piece of work, no additional tests beyond metabolomics analyses

were undertaken.
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Confirmation of a CoD diagnosis was given by small bowel biopsy, following the UK
guidelines that were effective at the time of recruitment [13]. Assessment of Gl

symptoms was carried out using the PedsQL-GS questionnaire (version 1) [14], a symptom
measurement scale in which a higher the PedsQL-GS score is associated with lower levels of
Gl symptoms. Compliance to GFD was assessed by measuring faecal GIP levels (iVYLISA;

Biomedal, Seville, Spain) [15].

3.3.3 Sample Collection and Storage

Complete faecal samples were collected and stored under cold anaerobic conditions
(Anaerocult A; Merck, Darmstadt, Germany) within 2 hours. Samples were homogenized and
stored at -80 °C until further processing. A single faecal sample was obtained from all groups
except the UCD cohort, from which three samples were collected: a baseline sample prior to
diagnostic endoscopy while patients were consuming a gluten-containing diet, and follow-up

samples at 6 and 12 months after commencing a gluten-free diet (GFD).

3.3.4 Chemicals and Reagents
LC-MS grade methanol (MeOH), acetonitrile (ACN) and water (H.O) were purchased from
Fisher Scientific (Geel, Belgium). LC-MS grade formic acid (FA) was purchased from Thermo

Scientific (Czech Republic).

3.3.5 Faecal Metabolite Extraction Protocol

LC-MS grade methanol, acetonitrile and water were purchased from Fisher Scientific (Geel,
Belgium). LC-MS grade formic acid was purchased from Thermo Scientific (Czech Republic).
Metabolite extraction was performed using a previously optimised method for LC-MS
analysis of faecal samples [16]. In brief, freeze-dried faecal samples were added to
methanol and cells were lysed using bead beating at 5 ms™ for 60s (FastPrep 24 MP
Biomedicals). Samples were then centrifuged at 13,000 g for 15 minutes and the
supernatant recovered. Samples were dried using a SpeedVac system and stored at -80 °C
until further processing. Reconstitution was performed in 250 pL 50/50 H,O: acetonitrile,
vortexed for 1 minute and centrifuged at 15,000 g for 15 minutes, and aliquots transferred

into glass vials for MS analysis.
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3.3.6 Untargeted LC-MS Metabolite Measurement

Untargeted metabolomics analysis was performed on a binary Vanquish ultra-high
performance liquid chromatography UHPLC system (ThermoFisher Scientific, Bremen,
Germany) coupled to an Orbitrap Exploris 240 (ThermoFisher Scientific, Bremen, Germany)
orbitrap based mass spectrometer. Chromatographic separation was performed on a
Vanquish Accucore C18 UHPLC analytical column (ThermoScientific, 100 mm x 2.1 mm, 2.6
uM) at a flow rate of 400 pL min . Mobile phase A was composed of 99.9% water + 0.1%
formic acid and mobile B was composed of 99.9% MeOH + 0.1% formic acid. Electrospray

ionization was used as the ionization method, set at 3900 V.

Quality control samples were prepared by pooling samples across all groups undergoing
analysis. Solvent blanks and quality control samples were entered at the beginning of every
analytical run and after every five samples in each batch over the course of the study to
assess background in the system and detect potential contaminations. Instrument
performance was assessed using 3C-labelled L-glutamine as an internal standard. 400
ng/mL 3C-glutamine was spiked into each sample and the signal stability, and any retention

time drift was measured.

3.3.7 Targeted LC-MS Metabolite Measurement

Targeted metabolomic analysis was performed on a UHPLC system coupled to a Shimadzu
8060NX triple quadrupole mass spectrometer (Shimadzu Corp, Kyoto, Japan). The method
used for metabolite detection and quantification was provided by the vendor; Primary
Metabolites LC/MS/MS Method Package version 2.0 (Shimadzu Corp, Kyoto, lapan).
Chromatographic separation was performed on a pentafluorophenylpropyl (PFPP) + UHPLC
analytical column (Merck, 150 mm x 2.1 mm, 3 uM) at a flow rate of 400 pL min ~X. Mobile
phase A was composed of 99.9% water + 0.1% formic acid and mobile B was composed of

99.9% acetonitrile + 0.1% formic acid, with ESI used as the ionisation method.

3.3.8 Mass Spectrometry Data Processing

For the processing of untargeted metabolomics data, Thermo Scientific Xcalibur format raw
data files (.RAW) were uploaded and processed using Compound Discoverer 3.2. Data was

filtered by removing duplicate compound detections and setting the mass deviation to
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within 5 ppm. A data matrix of identified metabolites and associated peak areas was

constructed.

3.3.9 Batch Alignment

Samples were run in two batches and aligned using Quality Control-based Metabolite
eXpression Preprocessing (QC:MXP) software version 1.1.0 hosted in Matlab [17].
Metabolites with more than 20% missing values were excluded. Configuration settings were
as follows: {"LogTransform": true, "RemoveZeros": true, "OutlierScope": "Local",
"OutlierMethod": "Linear", "OutlierCI": 0.95, "OutlierPostHoc": "MPV", "QCRSCmode":
"Spline", "QCRSCgammaRange": "1:0.5:4", "QCRSCcvMethod": "5-Fold", "QCRSCmcReps":
5, "QCRSCtype": "Subtract", "BlankRatioMethod": "QC", "RelativeLOD": 1.5,
"StatsParametric": true, "ParallelProcess": true}. Missing values were imputed using k-

Nearest Neighbours (KNN).

3.3.10 Tissue Transglutaminase (tTG) Antibody Measurement

Serological measurement of tissue transglutaminase (tTG) antibodies was performed as part
of routine clinical care. Samples were analysed by the NHS Greater Glasgow and Clyde
(GGC) Diagnostic Laboratory, Immunology Department, using their standard accredited

protocol, conducted according to established laboratory procedures and quality control

3.3.11 Data and Statistical Analysis

Identification of metabolite changes were based on univariate and multivariant analysis.
Data and statistical analysis were performed primarily using MetaboAnalyst 5.0. Orthogonal
partial least squares discriminant analysis (OPLS-DA) was used to reveal significant
differences between the experimental groups and understand clustering patterns. Method
validity was assessed using the goodness of fit and predictive ability of the OPLS-DA models
evaluated by R? and Q? values, respectively, with a good quality of model defined by
parameter values greater than 0.5. Differential analysis using volcano plots allowed
significant metabolite differences between groups to be determined. Univariate statistical
analyses were additionally performed using unpaired t-tests and one-way ANOVA, with
significance determined by false discovery rate (FDR)-adjusted p-values < 0.05 to account

for multiple testing.
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3.3.12 Receiver Operating Characteristic (ROC) Analysis

Receiver Operating Characteristic (ROC) analyses were performed to assess the

discriminatory performance of selected metabolites using the pROC R package. To evaluate

the combined predictive power of the metabolite panel, least absolute shrinkage and

selection operator (LASSO) logistic regression was applied with stratified 5-fold cross-

validation using the gimnet package.

3.3.13 Metabolomics Pathway Analysis

Pathway analysis was performed in MetaboAnalyst 5.0 by matching identified metabolites

to the KEGG database (p < 0.05).

3.3.14 Overall Experimental Workflow

Sample Collection

Metabolite Extraction

Data Acquisition Data Analysis Biological Interpretation

O [

[ ] [
Healthy Untreated
controls coeliac disease
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coeliac disease siblings

Candidate biomarker
Identification

Univariate statistical analysis

—_— Extracted 1
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Multivariate statistical analysis

Metabolic Pathway Analysis
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(S

Extraction R
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dried faecal
sample

Extraction solvent

100% MeOH (w1:v20) Reconstitution solvent

50/50 Acetonitrile: H,0
Disruption method
Bead beating

Figure 1. Overall experimental workflow following stages of sample collection, metabolite extraction
using optimised method, data acquisition and analysis, and biological interpretation.
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3.4. Results

3.4.1 Demographics and Clinical Parameters

This study investigated a total of 143 participants aged between two and fifteen, including
56 HCs, 27 UCD children, 40 TCD children on a GFD, and 20 unaffected siblings of TCD
children (Table 1). Patients in the TCD group were children with pre-established disease,
with a mean time since diagnosis of 4.6 years, and recommended to follow a GFD as a
treatment strategy. There were no significant differences in the mean age, gender, weight,
and BMI among the study groups (p < 0.05). UCD children had a higher incidence of
gastrointestinal issues in comparison to both the TCD group and HCs. This aligns with results
from the Paediatric Quality of Life Inventory Gastrointestinal Symptoms (PedsQL-GS),
showing that the TCD group additionally presented a lower PedsQL-GS score than HCs. As
expected, tTG levels were shown to decrease throughout the duration of a GFD. In the
prospective cohort of new-onset CoD patients, analysis of the clinical parameters revealed

that tTG levels decreased with GFD treatment, paralleled by an increase in PedsQL-GS score.

Table 1. Patient demographics of cross-sectional and prospective cohorts.

Cross-Sectional Study Prospective Study
Variable HC Siblings | UCD TCD At GFD 6 GFD 12
n=56 |[n=20 group group diagnosis | months | months
n=27 n=40 n=12 n=12 n=12
Age 7.8 9.3 9.6 9.2 9.3 9.9 10.5
(y) (0.41) | (0.62) (0.60) (0.48) (0.92) (0.92) (0.91)
Gender 30/26 | 10/10 14/13 23/17 6/6 6/6 6/6
(F/M)
Weight z- | 0.14 0.34 -0.19 0.15 -0.30 -0.35 -0.29
score (0.15) | (0.26) (0.27) (0.18) (0.36) (0.33) (0.32)
Height z- | 0.27 0.55 -0.18 -0.05 -0.02 -0.02 -0.06
score (0.15) | (0.28) (0.20) (0.16) (0.27) (0.27) (0.26)
BMI 16.8 17.3 17.2 17.5 16.3 16.4 16.8
(kg/m?) (0.46) | (0.68) (0.75) (0.41) (0.69) (0.72) (0.79)
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BMI z- 0.05 |0.08 -0.15 0.26 -0.46 -0.53 -0.41
score (0.14) | (0.24) | (0.25) (0.17) | (0.36) (0.35) (0.35)
tTG _ _ 75.3 11.7 105.7 23.9 7.7
(U/mL) (11.21) | (4.41) | (14.37) | (11.97) | (2.08)
PedsQL- | 1000 | _ 56.3 77.7 51.2 65.97 71.2
GSscore | (2.32) (7.28) (3.95) | (6.60) (5.66) (8.73)

Values are mean (SEM) unless otherwise stated. HC, healthy control; UCD, Untreated coeliac disease,
TCD, Treated coeliac disease.

3.4.2 Faecal Metabolome Profiling

In total, 1749 unigue m/z features were detected through untargeted LC-MS analysis at MSI
level 2. To explore overall metabolic variation across study groups, we performed Principal
Coordinates—Canonical Variate Analysis (PC-CVA) on the faecal metabolomics dataset. In the
cross-sectional cohort, this approach revealed clear group-level clustering between healthy
controls (HC), untreated coeliac disease (UCD), and treated coeliac disease (TCD) individuals
(Figure 2A). In the prospective cohort, global metabolite changes across the treatment
period were observed, with PC-CVA plot illustrating metabolic trajectories over 0, 6, and 12
months of treatment with a gluten-free diet (Figure 2B). PC-CVA model showing metabolite
trajectories across treatment duration, comparing UCD patients at time of diagnosis and

after following a GFD for 6 months (n = 40) and 12 months (n = 42).
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Figure 2. Metabolome profile for the cross-sectional (A) and prospective (B) cohorts. Principal
Coordinates—Canonical Variate Analysis (PC-CVA) of the faecal metabolome across study groups (TCD,
UCD, and HC) and throughout treatment timepoints (before GFD, 6 months on GFD, and 12 months
on GFD) show group centroids and 95% confidence ellipses based on canonical variates. Boxplots
show comparison of the CV1 values between groups.

In contrast to the widespread differences observed in the untargeted analysis, the targeted
profiling revealed limited changes (Figure 3). A more detailed view of amino acid
quantification is provided in Supplementary Information Table S1, which illustrates the
largely comparable levels of most amino acids despite subtle fluctuations at different

disease and treatment strategies.
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Figure 3. Principal Component Analysis (PCA) of targeted amino acid profiles across study groups.
Each point represents an individual sample, and ellipses indicate the 95% confidence interval for

each group.

3.4.3 Differential Analysis in Metabolome between Untreated CoD and HCs

Multivariate analysis using orthogonal partial least squares discriminant analysis (OPLS-DA)
revealed partial separation of the global metabolome between UCD patients and HCs (R?Y=
0.555, Q%= 0.267; Figure 4A), identifying key metabolites driving class discrimination based
on their variable importance in projection (VIP) scores (Supplementary Information Figure
S1). Subsequent univariate analysis identified 58 metabolites to be significantly altered
between the two groups, with 31 metabolites increased and 27 decreased relative to
controls (Figure 4B). The top differentiating metabolites are illustrated in Figure 3C through

representative boxplots (Figure 4C).
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Figure 4. Metabolome profile of children with newly diagnosed coeliac disease compared to healthy

controls (n = 82). (A) Scores plot of the orthogonal partial least square discriminant analysis (OPLS-
DA) model with R?Y= 0.555, Q%= 0.267. (B) Volcano plot of significantly differential faecal metabolites
comparing children with newly diagnosed coeliac disease compared to healthy controls, p < 0.05,
fold change = 2. Box and whisker plots of the top significantly differential faecal metabolites from (C)
the untargeted analysis and (D) the targeted analysis.
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3.4.4 Differential Analysis in Metabolome Between Patients on Recommendation to a GFD
with Untreated CoD or HCs

To investigate the impact that a GFD has on the faecal metabolome, we compared
metabolite profiles between TCD patients with both UCD patients and HC groups. We first
explored the effects of a GFD on the metabolome of CoD patients, with VIP scores from the
OPLS-DA model, highlighting the metabolites that most strongly contributed to
distinguishing TCD from UCD patients (Supplementary Figure S2). This was complemented
by pairwise analysis identifying 27 significantly altered metabolites (11 decreased and 22
increased), relative to UCD. The metabolites which are altered only between TCD and UCD
groups, reflecting the metabolic changes upon a GFD in individuals with CoD, are shown in

Figure 5.

Next, metabolite profiles were compared between TCD patients and HCs. The
corresponding VIP plot identified metabolites contributing to this difference, with univariate
analysis identifying 24 metabolites altered between the two groups (OPLS-DA and VIP plot
shown in Supplementary Figure S3). This reveals persistent metabolic alterations in TCD
patients compared with HCs. Of the metabolites altered between TCD and HC, 11 (46%)
were also significantly altered between TCD and UCD groups, indicating that treatment with

a GFD influences these metabolites independently of disease status (Figure 6).
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Figure 5. Treatment-responsive faecal metabolites in patients with CoD. Boxplots showing the
relative intensities of metabolites significantly altered between untreated coeliac disease (UCD, red)
and treated coeliac disease (TCD, blue). Statistical significance is indicated by *p < 0.05, **p < 0.01,

***p < 0.001.
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Figure 6. Treatment responsive metabolites in all participants. Boxplots showing the relative
intensities of metabolites significantly altered in both untreated coeliac disease (UCD, red) and HCs
(green) compared with treated coeliac disease (TCD, blue). These metabolites reflect changes driven
by a GFD rather than CoD status. Statistical significance is indicated by *p < 0.05, **p < 0.01, ***p <
0.001.

3.4.5 Coeliac Disease-specific Metabolome Signature

To identify metabolite features specific to CoD, we identified the metabolites that are
significantly altered between both HCs and UCD as well as between HCs and TCD (Figure 7).
These metabolites are therefore potential disease-specific biomarkers. Receiver operating
characteristic (ROC) analysis was performed to characterise the predictive value of the most
influential disease metabolites, with results showing an area under the curve (AUC) value of

0.885.

156



A

3-Oxocholic acid

4e+06
2>3e+06
B
C
@
€ 20406
1e+06
0e+00 - - -
HC UCD TCD
Group

6e+08

Intensity

2e+08

2e+08

Intensity

1e+0

Sensitivity

025

4e+08

Leucylproline

HC UCD TCD

Group
Valylproline

8

HC

ucbh TCD
Group

Hippuric acid leu-pro-tyr
6e+06
3e+07
> 4e+06
2 26407 £
c f
i} S
£ £
16407 26406
0e+00 ' T Y 0e+00 0 T I
HC UCD TCD HC UCD TCD
Group Group
9(11)-dehydroaxinysterol S-Allyl-L-cysteine
12e+07 5 wxx
|
3e407 | T
9.0e+06 >
..
= = »
o G 2e+07
C 6.0e+06 f b
i} S i
c c
£ £ .
3.0e+06 Tex07 i L
0.0e+00 0e+00 S %
HC UCD TCD HC UCD TCD
Group Group
D-ribosylnicotinate Nicotinic acid
s T S 1.6e+08
2e+
de+06 122208
= =
2 2
K] & 8.0e+07
c c
—  2e+06 -
4.0e+07
0e+00 L —
HC UCD TCD HC UCD TCD
Group Group

050
1- Specificity

Sensitivity

1.00

025

4e+05

£ 3e+05

Intensity

2e+05

1e+05

6e+07

4e+07

Intensity

2e+07

0e+00

2-Methylhippuric Acid

ucbh TCD
Group

HC

Phenyl D-glucopyranosiduronic acid

HC UCD TCD

Group

4.Hydroxyprolylleucine

1
2%
3e+07 0 *
- N
o
2e+07 I
° .. 03
1e+07 o N
0e+00 | = é
HC UuCD TCD
Group
CV AUC =0.842

1 - Specificity

Figure 7. Most influential metabolites. (A) Boxplots of CoD-specific metabolites. (B) Receiver

operating characteristic (ROC) curve using the top 10 metabolites from the VIP plot. (C) Combined

ROC.

SampleType
E9 He
£ uco
B9 T

157



3.4.6 Discriminant Analysis in Metabolome Profile in New-onset CoD After
Recommendation to a GFD

Analysis of the prospective cohort was performed, whereby samples were taken and
analysed at three timepoints: (1) at time of disease diagnosis, (2) 6 months and (3) 12
months following a GFD. 15 and 23% of patients had detectable levels of faecal GIP at 6 and
12 month follow ups respectively, indicating recent consumption of gluten. GIP positive
patients were removed from the analysis, and therefore the results show the true metabolic

impact of following a GFD.

In this cohort, 10 and 9 metabolites were significantly altered at 6 and 12 months after
initiation of a GFD, respectively (Figure 8). 7 metabolites were only increased at 6 months
on a GFD, while 6 metabolites were only increased at 12 months on a GFD. Compared with
CoD diagnosis, monolinolenin, N-indole-3-acetyl-leucine, and 9(11)-dehydroaxinysterol
were consistently altered in both groups. These findings align with trends observed in the
cross-sectional cohort, where 10 out of the 16 metabolites were also altered in this cohort
(Supplementary Table S2). tTG and PedsQL-GS levels in coeliac disease patients throughout

the duration of a GFD are shown in Supplementary Figure S4.
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Figure 8. Statistically significant differences (log2 fold change) in metabolite levels between coeliac
disease diagnosis and follow-up time points on a gluten-free diet.
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3.4.7 Comparison in Metabolome Between Treated Patients with CoD and Their
Unaffected Siblings

The faecal metabolome between treated CoD patients and their unaffected siblings was
compared to distinguish metabolic alterations specifically associated with CoD from those
related to shared genetic risk (Figure 9). 23 metabolites differed significantly between TCD
and their unaffected siblings (10 decreased and 13 increased). 19 metabolites were
significantly altered between the unaffected siblings of TCD children and HCs (7 decreased

and 12 increased). OPLS-DA showed separation in both groups (TCD vs siblings and HC vs
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Figure 9. Metabolomics analysis comparing treated coeliac disease (TCD) and healthy controls (HC)
with unaffected siblings. (A) OPLS-DA scores plot for TCD vs siblings (ellipses = 95% confidence
intervals). (B) Volcano plot of differential metabolite features for TCD vs siblings (p < 0.05, fold
change > 1.5, log2FC = TCD/S). (C) OPLS-DA scores plot for HC vs siblings (ellipses = 95% confidence
intervals). (D) Volcano plot of differential faecal metabolite features for HC vs siblings (p < 0.05, fold
change > 1.5, log2FC = HC/S).
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3.5. Discussion

While previous studies have characterised microbial alterations in CoD, the corresponding
functional consequences on the gut metabolome remain largely unexplored. In this study,
we profiled the faecal metabolome of children with new-onset and treated CoD, alongside
healthy controls and first-degree relatives using untargeted LC-MS, to identify metabolites
that may reflect disease processes or treatment effects. The majority of CoD metabolomics
work to date has focussed on serum or plasma samples [11, 20-23], which are critical for
understanding systemic disease mechanisms. However, there is a growing need to
investigate intestinal disorders using faecal samples, given their non-invasive nature and
their ability to provide direct insights into gut environment. Faecal samples reflect both the
composition and functional activity of the gut microbiota, as well as microbial-derived
metabolites that influence host physiology. This is particularly pertinent in CoD, where

microbial dysbiosis has been increasingly implicated in disease pathogenesis.

Our analysis revealed distinct clustering between HCs, UCD patients, and TCD patients,
highlighting the presence of disease and treatment associated metabolic signatures.
Consistent with the absence of pronounced microbial dysbiosis reported previously [6, 24],
UCD patients showed largely unchanged global faecal metabolome profiles compared with
HCs, yet specific metabolites were differentially altered between the groups. UCD patients
exhibited subtle alterations in amino acid, bile acid, and lipid metabolites compared with
HCs, suggesting early shifts in nutrient absorption and microbial metabolism. Notably, UCD
patients showed increased levels of acylcarnitines (acetylcarnitine, undecanoylcarnitine),
bile acid derivatives (nutriacholic acid), amino acids and dipeptides (glycine, leucyl-prolyl-

tyrosine), and microbial metabolites.

Importantly, three major patterns of metabolite profiles were identified, analogous to the
microbial groups previously described in this cohort. Firstly, a distinct panel of 12 CoD-
specific, non-treatment responsive metabolites were identified, reflecting core disease-
associated metabolic signatures that are not fully corrected by dietary treatment. These
metabolites spanned several chemical classes, including the disruption of bile acid
metabolism, with 3-oxocholic acid elevated in both untreated and treated patient groups.

Amino acid related metabolites showed widespread alterations, including leu-pro-tyr,
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leucylproline, valylproline, 4-hydroxyprolylleucine, S-allyl-L-cysteine, and nicotinic acid,
indicating persistent dysregulation of protein turnover and amino acid catabolism. Microbial
co-metabolites, such as hippuric acid, 2-methylhippuric acid, and phenyl-D-
glucopyranosiduronic acid were also consistently perturbed, pointing to altered host—
microbiota metabolic interactions, and changes in sterol metabolism were evident through
the persistent alteration of 9(11)-dehydroaxinysterol. Receiver operating characteristic
(ROC) analysis confirmed the diagnostic potential of this 12-metabolite panel, with the top
features achieving an AUC of 0.885. Collectively, these findings indicate a panel of disease-
specific metabolites, serving as candidate biomarkers of CoD independent of gluten

exposure.

Another group of metabolites identified in this study comprises treatment-responsive
metabolites associated with new-onset CoD. These metabolites are altered in UCD patients
relative to HCs but normalise following treatment with a GFD, reflecting dietary modulation
of disease-associated pathways. Comparison of TCD and UCD patients identified 27
metabolites significantly altered by dietary intervention. Most of these changes involved
amino acid dipeptides and oligopeptides, including Leu-Ala-Ser, Val-Leu, Trileucine, lle-Leu,
Leu-Leu, Val-Tyr, and L-Valyl-L-tyrosine, which were consistently increased in TCD relative to
UCD. These findings suggest enhanced protein catabolism and remodelling of amino acid
metabolism during dietary recovery. Indole-3-lactic acid, a tryptophan-derived microbial
product, and 1,7-dimethyluric acid, a purine metabolite, were additionally reduced in TCD
patients, reflecting shifts in gut microbial activity and nucleotide metabolism with gluten

exclusion.

The third group comprises treatment-dependent, non-disease-specific metabolites that are
primarily influenced by dietary intervention rather than disease status. Comparison of TCD
patients with HCs revealed 24 metabolites significantly altered following GFD adherence, of
which nearly half (46%) overlapped with metabolites also altered between TCD and UCD
patients. This suggests that many of these changes occur independently of CoD itself and
are likely driven by the GFD. Among the most prominent alterations were amino acid—
related metabolites. Levels of 2-aminobutanoic acid, DL-phenylalanine, and N-(indole-3-
acetyl) leucine were significantly reduced in TCD patients, suggesting remodelling of amino

acid metabolism during dietary adaptation. In particular, the reduction in indole-derived
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compounds highlights shifts in microbial tryptophan catabolism, consistent with dietary
modulation of host-microbe interactions. Isovaline, a non-proteinogenic amino acid, was
also altered, further supporting broad impacts of GFD on nitrogen and amino acid

metabolism.

In parallel, several metabolites linked to microbial and host co-metabolism were altered by
a GFD. Xanthurenic acid and xanthine, both intermediates of tryptophan and purine
metabolism, remained perturbed in TCD compared with HCs, pointing to persistent
alterations in nucleotide turnover and kynurenine pathway activity. Similarly, changes in N-
acetylmuramic acid, a bacterial cell wall component, indicate modulation of gut microbial
composition under dietary treatment. Additional alterations were observed in energy and
lipid-related metabolites. C12-carnitine, a medium-chain acylcarnitine, was reduced in TCD,
suggesting changes in mitochondrial B-oxidation and fatty acid handling with dietary
restriction. The decreased abundance of galactosylhydroxylysine, a collagen-derived
metabolite, may reflect shifts in extracellular matrix remodelling or microbial proteolysis.
These findings underscore the importance of considering diet-driven metabolic effects
when interpreting faecal metabolomic profiles, particularly in treated CoD patients, where
residual changes may not reflect disease activity but rather secondary dietary
consequences. Persistent disturbances despite adherence may signal ongoing inflammation
or incomplete remission, underscoring the need to map key metabolic changes to
inflammatory markers and clinical outcomes. This is particularly important in non-
responsive or refractory CoD, where patients face higher risks of complications, including
intestinal lymphoma and adenocarcinoma [32] and may require additional drug treatments,

emphasising the value of early identification of this patient subgroup.

To gain further insights into CoD, investigation was carried out into the metabolome of
unaffected siblings by comparing them to the TCD group. Unaffected siblings are an
informative reference group as they share genetic susceptibility and often similar
environmental exposures, but do not develop disease. By comparing their metabolomic
profiles to those of treated CoD patients, we can identify metabolic alterations that are

associated with disease, rather than genetic susceptibility or lifestyle factors.
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The outcomes observed from analysis of the prospective cohort build upon the findings
obtained from the cross-sectional study. Looking into the effect of a GFD across 6-months, it
was shown that aspartic acid, malic acid, and serine metabolites increased, while only
ornithine was shown at higher levels after 12-months of treatment. This co-occurred with a
decrease in tTG levels and an increase in PedsQL-GS score, indicating improvement of Gl
symptoms upon initiation of a GFD. While it is interesting to note that metabolic alteration
was more profound at 6 months than at 12 months on a GFD, the same finding were
revealed in the microbiome analysis of the same CoD study cohort [6]. The authors
assumed that this can likely be explained by loss of adherence to GFD with time, as
supported by the change in GIP levels, which further emphasises the difficulties associated
with sustaining complete exclusion of gluten in the diet. These findings do however contrast
those of a different study suggesting the metabolome fingerprint returns to normal after 12

months [21] as we did not observe complete metabolic restoration after this time.

This study has various limitations; firstly, there was a relatively small size included in the
prospective cohort, partly due to unavailability of follow-up measurements for some of the
patients. This is particularly relevant for analysis of faecal samples which are inherently
complex and interindividual metabolite matrices, highly influenced by factors such as
geographical location (e.g., regional dietary patterns or food availability) and cultural dietary
practices. While untargeted metabolomics is unable to capture the complete metabolite
pool in each sample, we utilised a previously optimised method which maximised
metabolite detection and coverage. A further challenge relates to the inherent ambiguity in
interpreting faecal metabolomic data. Reductions in the stool abundance of a given
metabolite may reflect decreased microbial or host production, but it could equally indicate
increased utilisation or absorption in the body. Conversely, elevated faecal levels may arise
from enhanced production, reduced utilisation, impaired absorption, or dietary changes.
These factors underscore the importance of cautious interpretation, and integration with
dietary records, microbial profiling, and host biomarker measurements is therefore
important to distinguish relevant biological effects. Future work should work on building the
current findings to provide a deeper understanding of the intricate interplay between the
microbiome, metabolome, and disease to derive clinical relevance of CoD through omics.

Integrating metabolomic and microbiome data will offer deeper insights into disease
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pathogenesis and its downstream consequences, ultimately guiding strategies to improve

patient outcomes.

3.6. Conclusion

This study provides a comprehensive characterisation of the faecal metabolome in children
with coeliac disease (CoD), revealing a distinct metabolic fingerprint involving perturbations
in amino acid, bile acid, lipid, and microbial metabolites. While adherence to a gluten-free
diet (GFD) improved clinical parameters and partially restored the metabolome, a subset of
metabolites remained persistently altered, indicating core dysregulation not fully corrected
by diet and potentially linked to long-term mucosal injury, host-microbiota interactions, or
dietary restriction. By distinguishing CoD-specific metabolites (e.g., bile acids, sterols, and
microbial co-metabolites), treatment-responsive metabolites (predominantly amino acid
dipeptides and oligopeptides), and diet-driven metabolites (notably amino acid derivatives
and purine-related compounds), we reveal distinct metabolic signatures associated with
disease, recovery, and dietary effects. These findings underscore the value of faecal
metabolomics as a non-invasive tool for biomarker discovery, disease monitoring, and the
identification of non-responsive or refractory cases, with future integration of metabolomic,
microbiome, and clinical data needed to guide improved diagnostic and therapeutic

strategies.
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4.1 Abstract

Urinary metabolomics using liquid chromatography-mass spectrometry (LC-MS) holds great
potential for biomarker development and clinical application for a variety of diseases. Large-
scale clinical studies uniquely require a rapid and high-throughput method which can be
easily scaled for the analysis of large sample numbers in a minimal timeframe. While several
extraction and LC-MS methods currently exist for urine samples, there is a lack of

standardisation and method recommendations for larger studies and clinical trials.

In the current study, we herein optimised a method for urinary metabolite extraction and
untargeted ultra-high-performance LC-MS (UHPLC-MS) analysis for large scale studies. Eight
UHPLC-MS parameters were optimised based on the quantification of the following
outcomes: the number of metabolites measured, peak quality, creatinine performance, and
peak quality factors (PQFs). The extraction solvent, dilution factor, chromatography
gradient, injection volume, flow rate, gradient curve factor, full scan AGC, and MSMS AGC
were all considered to complete a comprehensive method optimisation. A rapid
chromatographic separation with a 6.5-minute data collection time on a C18 column was
developed in positive ionisation mode, using water + 0.1% FA (v/v) and acetonitrile + 0.1%
FA (v/v) as the mobile phases. The total run time of the optimised method, including a

cleaning step, was 10 minutes.

To demonstrate the effectiveness of the optimised method, 1094 urine samples from
healthy controls and inflammatory bowel disease (IBD) patients were analysed, where over
1500 metabolites were putatively identified with an analysis time of 182.3 hours, saving
over 91 hours of total LC-MS instrument running time in comparison to the previously used

method.
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Graphical Abstract. Overview of Experimental Design for Untargeted Urinary Metabolomics
Optimisation. Eight parameters were optimised across the protocol, including sample preparation, LC
and MS analytical conditions of the experimental pipeline. Outcomes were measured by peak quality
attributes, analysis time, and metabolite detection. AGC, automatic gain control; MSMS, tandem
mass spectrometry.

4.2 Introduction

Urine is a valuable sample biomatrix for disease research due to the ease and non-invasive
nature of collection, making it preferable for large-scale studies [1]. The large quantity of
urine produced by humans allows for multiple tests to be conducted on the same sample,
thereby enabling easier replication and validation and ensuring data consistency across
experimental techniques. Furthermore, due to the frequent production of urine,
longitudinal studies can be performed more easily, for example to monitor response to
treatment or disease progression over time [2]. Urine contains a diverse range of biological
molecules which reflect metabolic and physiological changes and can therefore act as
biomarkers for a multitude of diseases. Urinary biomarkers have been successfully
established for a number of diseases and have had significant impacts on clinical care. For
example, urinary albumin is a recognised biomarker of kidney damage [3], with the
albumin-to-creatinine ratio (ACR) routinely used to diagnose and monitor disease such as
chronic kidney disease (CKD) [4]. Urinary biomarkers have also shown great promise in
cancer research, with prostate cancer antigen 3 (PCA3) now used as a biomarker for the
diagnosis of prostate cancer [5, 6], and in many other fields including metabolic disease [7]
and neurology research [8]. Among the approaches used for biomarker discovery,
metabolomics, the study of small molecules and products of metabolism, has more recently

emerged as a tool with great potential to give unique disease insights. 2-hydroxyglutarate,
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for example, is used as a metabolite biomarker for certain types of brain tumour,

particularly gliomas [9, 10] and acute myeloid leukaemia [11].

The identification of urinary biomarkers and their translation into clinical use has been
enabled by advances in the analytical technologies that are used to detect biomarkers.
Liguid-chromatography mass spectrometry (LC-MS) is a powerful analytical tool for
biomarker discovery and disease mechanism studies, particularly through untargeted
approaches, due to its high sensitivity and selectivity and ability to analyse a comprehensive
range of chemical molecules found in urine [12, 13]. Large-scale clinical studies routinely
utilise untargeted LC-MS approaches for the identification, validation, and clinical
application of biomarkers. The use of a method which both maximises chemical coverage
and minimises analysis time and sample deterioration, particularly for the analysis of

sensitive metabolites, is therefore vital for application to larger studies.

The pipeline of urinary metabolomics analysis involves several steps, including metabolite
extraction, UHPLC-MS data acquisition, and data analysis. Optimisation of the associated
method parameters is crucial for accurately detecting the metabolites of interest for the
specific aims of a study, which is particularly important in untargeted metabolomics studies
where the aim is to maximise coverage of the large range of chemically diverse compounds
found in complex biofluids such as urine. Crucially, for large scale metabolomics studies, fast
sample preparation and analysis is essential to prevent sample degradation. A rapid
extraction and LC-MS method for urinary metabolite detection is therefore optimal for large
scale studies to reduce the overall run time and therefore minimise sample degradation

across the study duration.

The “dilute-and-shoot” urine extraction method, which involves diluting the collected
sample with a chosen solvent and directly injecting it into the LC-MS system [14, 15], offers
numerous benefits in large-scale clinical studies, where the focus is on high-throughput and
cost-effective analysis of a large number of samples [16]. In comparison to alternative
methods, including solid phase extraction (SPE), advantages of the dilute-and-shoot method
include a simplified workflow with a reduced processing time, minimal sample handling and
sample loss, and ease of automation and scalability [17, 18]. As the need for large-scale

clinical trials investigating urinary metabolomics grows, the dilute-and-shoot approach will
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remain essential in biomarker discovery and monitoring. It is therefore vital to work towards
the standardisation of an optimal LC-MS method using the dilute-and-shoot extraction

approach.

In this investigation, we aimed to optimise an untargeted UHPLC-MS method for urinary
metabolomics analysis for large-scale studies while reserving the simplicity of the dilute-
and-shoot method. Parameter optimisation was performed across stages of the analysis
pipeline, including metabolite extraction, LC, and MS analysis to maximise metabolite
identification in urine samples with a reduced preparation and analysis time. To
demonstrate the efficiency and applicability of the optimised method, 1094 urine samples
from inflammatory bowel disease (IBD) patients and healthy controls were analysed,

concluding the largest global IBD urinary metabolomics study performed to date.

4.3 Experimental

4.3.1 Ethics Statement

All participants and their carers provided written informed consent. Approval for the iPENS
and CD-TREAT clinical trial studies were granted by the West of Scotland Research Ethics
Committee (REC reference: 17/WS/0119, 19/WS/0163, respectively) and NHS Research and
Development office. For ENIP the original approval was granted by the College of Medical,
Veterinary and Life Sciences Ethics Committee, University of Glasgow (Project number:

200220086). All studies were registered on https://clinicaltrials.gov (identifier NCT number:

IPENS, NCT04225689; CD-TREAT, NCT03171246; ENIP, NCT06828094).

4.3.2 Study Design

Individual parameter optimisation was carried out sequentially to improve the performance
of the overall method across the experimental pipeline, including the sample preparation
protocol and UHPLC-MS method. The best performing parameters were selected using
multiple outcome measures, including peak quality attributes, analysis time, and metabolite

detection.
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4.3.3 Human Urine Sample Collection

Urine samples were collected from healthy individuals and IBD patients aged 6-17 and
stored at -80 °C until processing. For the clinical study and application, 1094 urine samples

were collected and analysed using the optimised method.

4.3.4 Chemicals and Reagents

LC-MS grade water (H,0) and acetonitrile (ACN) were purchased from Fisher Scientific
(Geel, Belgium). LC-MS grade formic acid was purchased from Thermo Scientific (Prague,

Czech Republic).

4.3.5 Urine Sample Preparation

Urine samples were aliquoted into a 96-well plate and diluted with solvent at differing ratios
according to the method optimisation stage. The samples were then mixed with a pipette to
ensure solvent distribution, and the plate was submitted for UHPLC-MS analysis. 13C labelled
tryptophan was used as an internal standard for assessing instrument stability and

experimental conditions.

4.3.6 Untargeted LC-MS Metabolite Measurement

Untargeted metabolomic analysis was performed on an ultra-high performance liquid
chromatography (UHPLC) system (ThermoFisher Scientific) coupled to an Orbitrap Exploris
240 (ThermoFisher Scientific) mass spectrometer. Chromatographic separation was
performed on a Vanquish Accucore C18 + UHPLC analytical column (ThermoScientific, 100
mm x 2.1 mm, 2.6 uM). Mobile phase A was composed of 99.9% water + 0.1% formic acid
and mobile B was composed of 99.9% ACN + 0.1% formic acid. Electrospray ionisation (ESI)
was used as the ionisation method in positive mode (3900 V). The elution gradient used can
be found in Supplementary Information Table S1. The source-dependent parameters were
operated under the following conditions: sheath gas, 40 Arb; auxiliary gas, 10 Arb; sweep
gas, 1 Arb; ion transfer tube temperature, 300 °C; vaporiser temperature, 280 °C.
Instrument calibration was performed using Pierce™ FlexMix™ calibration solution

(Thermo Scientific) and ran under vendor recommended settings. MS data collection was

174



performed in data dependent acquisition mode (DDA) to give putative metabolite

identification at MSI level 2.

4.3.7 Feature Annotation and Metabolite Identification

Feature annotation and metabolite identification at MSI Level 2 were performed using
Compound Discoverer version 3.3 and metabolites were matched to mzCloud [19] and
ChemSpider [20] databases. Data processing involved feature filtration according to pre-
defined criteria (Supplementary Information Table S1) and peak quality factor (PQF)

guantification was subsequently performed.

4.3.8 Statistical Analysis

Chromatographic data processing and visualisation was carried out using FreeStyle software
(Thermo Fisher Scientific). Mass spectrometry data processing and analysis was performed
using Compound Discoverer software 3.3 (Thermo Fisher Scientific, Waltham, MA, USA),
with processing settings displayed in Supplementary Information Table S2. Statistical

analysis was additionally performed using Prism software 10.4.1.

4.4 Results and Discussion

Optimisation of the sample preparation protocol and UHPLC-MS method focused on eight
key parameters to enhance the overall performance and decrease the analysis time of the
method. This was carried out sequentially, by firstly optimising the sample preparation
method, followed by the liquid chromatography parameters, and finishing with systematic
adjustments to mass spectrometry settings. Together, this study analyses sixty parameter
comparisons via LC-MS which were analysed in triplicate in Compound Discoverer to make a

total of 180 comparisons.
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Table 1. Overall Summary of LC-MS protocol parameter optimisation. AGC, automatic gain control.

Number of
Protocol Section Parameter Parameter Settings
Tested
Metabolite Extraction Extraction solvent 10
Dilution factor 4
Chromatography gradient time 2
Liquid Chromatography Injection volume 4
Flow rate 5
Gradient curve 3
Full scan AGC 16
Mass Spectrometry MSMS scan AGC 16

The primary metrics used to evaluate parameter performance were the number of
metabolites detected after post-acquisition filtration processing and their peak ratings.
Additionally, the peak performance of creatinine was evaluated as a metric for evaluating
optimisation parameters. Creatinine is a well-characterised stable and endogenous marker
present in all urine samples that is commonly used as a reference standard for data
normalisation [21]. Evaluation of its peak performance therefore aids in the assessment of
the UHPLC-MS method. Peak quality factors (PQFs) were used to assess peak performance,
including the zig-zag index, full width at half maximum to base width (FWHM2Base),
jaggedness, and modality factors of individual peaks. Visual representation of each of the
PQFs evaluated is provided in Figure 1, and an overview of outcome parameters is provided
in Supplementary Information Table S3. For all PQF settings, a low/ zero value refers to a

high-quality peak profile, whereas a higher value suggests a poorer peak profile.
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Figure 1. Peak Quality Factor (PQF) metric description. The (A) zig-zag quality factor, (B) FWHM2Base,
(C) jaggedness, and (D) modality quality factors are described, using example peaks from acquired
data [22].

4.4.1 Sample Preparation Optimisation

Sample preparation is a key determinant of a metabolomics experiment. The ‘dilute-and-
shoot’ method was chosen as the urine preparation protocol due to the ease and speed of
the preparation protocol, which is a priority for large scale clinical studies. The solvent used

for urine metabolite extraction and the dilution factor were investigated in the present

study.

4.4.2 Extraction Solvent
For untargeted LC-MS analysis of urine samples using the ‘dilute-and-shoot’ approach, the

choice of solvent is crucial to ensure maximal metabolite detection of a wide range of
chemical classes. Here, ten solvents/ solvent combinations were tested to select the best
performing solvent. This was first assessed by analysis of the chromatography of each of the
solvents (Supplementary Information Figure S1) and further method performance was
measured by quantifying the total number of metabolites detected, their peak rating, and

assessment of creatinine as a reference standard (Figure 2).
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Figure 2. The effect of the extraction solvent on untargeted urinary metabolomics. Outcomes were
assessed by (A) the number of metabolites detected, (B) the peak performance of creatinine, as
measured by the quantification of peak quality factors (PQF)s, Zigzag, FWHM2Base, Jaggedness, and
Modality indices, (C) average peak rating of all metabolites, (D) the area under the curve (AUC) of the
detected creatinine peak and (E) the associated creatinine peak rating. Creatinine was not detected
when IPA/H,0 or MeOH were used as the extraction solvents.

Visual inspection of the solvent chromatograms revealed that H,O was the only solvent
showing successful resolution of peaks between 0.5-2.5 minutes in the method. It was also
shown that a 100% H,O solvent extraction revealed the highest number of detected
metabolites in comparison to all other solvents tested (114), with a significant increase
notable when compared to five of the other solvents tested. A significantly higher average
peak rating of all metabolites was additionally observed in comparison to three of the other
solvents tested. When looking at the values of the creatinine peak PQFs of the different
solvents/solvent combinations, there were varied results, however; no significant
differences were observed between any of the groups. It can be noted that creatinine was
not detected when IPA/H,0 or MeOH were used as the extraction solvents and therefore
PQF analysis was unable to be carried out for these groups. When selecting high quality
data in regard to PQF analysis, lower PQF values (e.g., PQF index = 1) correlate to higher
quality peaks and higher PQF values (e.g., PQF = 10) correlate to lower quality peaks. With
the exception of peak jaggedness, H,O showed low/ zero creatinine PQF values, indicating a

high-quality peak shape and resolution. Parameter data is displayed in more detail in
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Supplementary Information Figure S2 and a comparison of the chromatograms obtained
from the analysis of different extraction solvents is shown in Supplementary Information
Figure S3. As demonstrated by an optimal extraction performance and peak performance,
H,O was therefore selected as the solvent for untargeted LC-MS analysis, and further
parameter optimisation was subsequently performed using a H,O as the extraction solvent.
This is in alignment with other LC-MS methods that have also used a H,0 extraction for a
variety of applications of urinary metabolomics [14, 23]. While it can be noted that there
are some studies which suggest that other solvents, for example the use of 25/75 H,O/ACN
[24] result in a greater number of metabolite features extracted, sample preparation and
treatment prior to LC-MS analysis differs between these studies, and therefore we highlight

that the H,0 extraction was found to be optimal for a dilute-and-shoot preparation method.

4.4.3 Dilution Factor

The dilution factor used for the H,0 extraction was subsequently optimised, with the aim of
simultaneously maintaining detection of low abundance metabolites, preventing
instrument overload, and minimising matrix effects. Figure 3 displays the peak performance
characteristics that were obtained during optimisation. The number of metabolites
detected was significantly higher when a 1:1 dilution was used in comparison to both a 1:5
and a 1:10 dilution. Results additionally showed that there were no significant differences
observed in the average peak rating between the different dilution factors tested. The AUC
for the creatinine peak was significantly highest for the 1:1 dilution in comparison to all
other parameters tested, with a decreasing trend observed as the dilution factor increased.
However, the opposite trend was observed for the peak rating of creatinine, where we see
the highest average peak rating for the highest dilution factor used. Creatinine PQF analysis
showed no significant differences between the dilution factors for FWHM2Base, and only a
1:1 urine: H,0 ratio gave a non-zero value for jaggedness and modality factors, indicating a
lower peak quality. Through consideration of all evaluated outcomes, a dilution factor of 1:5
appeared to provide an optimal balance between metabolite detection and peak quality

and was therefore selected to be used for the extraction protocol.
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Figure 3. The effect of the dilution factor on untargeted urinary metabolomics. Outcomes were
assessed by (A) chromatographic visualisation, (B) the number of metabolites detected, (C) their
average peak rating, (D) the area under the curve (AUC) of the detected creatinine peak and (E) the
associated peak rating. The peak performance of creatinine was further evaluated, as measured by
the quantification of peak quality factors (PQF)s, (F) FWHM2Base, (G) Jaggedness, and (H) Modality
indices. The chromatogram presented in (A) represents the optimised method parameter selected
for the method. The zig-zag indices are not shown as all parameters tested gave a zero value.

4.4.4 Liquid Chromatography Parameter Optimisation

Following sample preparation, the urine samples were subjected to separation by liquid
chromatography, which required the selection of several settings. The chromatography run
time, flow rate, and injection volume were individually optimised to define an effective

method for untargeted urine metabolomics studies.
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4.4.5 Chromatography Gradient Time

A short chromatography method, without significantly compromising metabolite detection,
is desirable for use in large-scale clinical studies by enabling high-throughput analysis. In
this study, we aimed to reduce the run time of UHPLC-MS urine analysis by shortening the

time for chromatographic separation.

The chromatography was optimised to give a method with a data collection time of 6.5 mins
(70-1000 scan range), with a 3.5-minute cleaning step to give a total run time of 10 minutes.
The gradient was designed to maximise metabolite detection throughout the analysis time
and avoid empty chromatographic space. It is essential during method optimisation to
ensure that a shorter chromatographic analysis time doesn’t significantly sacrifice
metabolite detection, and therefore the two methods were compared in regard to the
number of metabolites identified by each method and their PQFs (Figure 4). There was no
significant difference in the number of metabolites detected or the peak quality between
the two methods, confirming that the 6.5-minute method provides a shorter overall
analysis time without sacrificing metabolite detection, which is an essential consideration
for clinical metabolomics studies. The AUC for creatinine was shown to be significantly
lower in the optimised method, however the inverse relationship was observed for the peak
quality of creatinine, although the differential peak quality did not reach significance. No
significant differences were observed for the PQF rating of either FWHM2Base, jaggedness,
or modality, however the optimised method gave a zero value for the latter, indicating

improved peak shape of the new shorter method.
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Figure 4. The effect of chromatography gradient elution time. The effects of the chromatography
analysis time on untargeted urinary metabolomics were assessed by (A) the number of metabolites
detected, (B) their average peak rating, (C) the area under the curve (AUC) of the detected creatinine
peak and (D) the associated peak rating. The peak performance creatinine of creatinine further
evaluated, as measured by the quantification of peak quality factors (PQF)s, (E) FWHM2Base, (F)
Jaggedness, and (G) Modality indices. The zig-zag indices are not shown as all parameters tested gave
a zero value.

4.4.6 Injection Volume

The injection volume used in an LC-MS run is a critical method parameter directly affecting
the analytical performance of an experiment. The specific amount of analyte injected into
the column affects the peak shape and resolution of the data obtained, and a balance is
required to determine a large enough signal intensity for optimal detection of metabolites,
including low-abundance metabolites, and preventing column overload. A variety of
injection volumes ranging from 0.5-5uL were compared in the current study to determine
the optimal volume for untargeted urine metabolomics using the Orbitrap-240 system, as
shown in Figure 5. Examination of method parameters revealed that an injection volume of
5 uL resulted in the greatest number of metabolites detected, with no significant
differences in their average peak rating. However, when a 5 uL injection volume was used,
the creatinine peak rating was significantly lower than a 1 pL and 2 pL injection volume.
While metabolite quantification would initially suggest that a 5 L injection volume may be

optimal for the UHPLC-MS method, the poor peak quality of creatinine, as demonstrated by
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the peak broadening in the creatinine chromatogram and large creatinine AUC, led to the
selection of a 2 pL as the optimal injection volume. This additionally reduces the risk of
column overload, which is an important consideration for studies analysing a large number
of samples. Several published studies have also utilised an injection volume of 2 uL in
urinary mass spectrometric analysis [25-27] which support the results obtained from the
present analysis. A comparison of the chromatograms obtained from the analysis of

different injection volumes is shown in Supplementary Information Figure S4.

A - B Aok | C
100
ook
*] 1009 il »__ 8
30 =
70 870
1 i 80 |
60 § 6
o
0- | g 60 s
2 2 4
| 3 %
z 2 0 T &
e |3
.93 L29 145 5.0 o E 2
! |.,l!->, . 56 | \ £ 209
12 WHIEZ 256 410 572 / 2
3 [ 10 T T T T T T T T
Time (m 05 1 2 5 05 1 2 5
Injection volume (pL) Injection volume (uL)
tt“
D E F

uu 109 - 0.207

s

3x10°7

Creatiine AUC
PQF: FWHM2Base
o
5

Creatinine Peak Rating

T T T T T . J 1 ! T
05 1 2 5 05 1 2 5 05 1 2 5

Injection volume (L) Injection volume (uL ) Injection volume (uL)

Figure 5. The effect of injection volume on untargeted urinary metabolomics. Outcomes were
assessed by (A) chromatographic visualisation, (B) the number of metabolites detected, (C) their
average peak rating, (D) the area under the curve (AUC) of the detected creatinine peak and (E) the
associated peak rating. The peak performance creatinine of creatinine further evaluated, as
measured by (F) the FWHM2Base. The chromatogram presented in (A) represents the optimised
method parameter selected for the method. The zigzag, jaggedness, and modality indices are not
shown as all parameters tested gave a zero value.

4.4.7 Flow Rate

The rate at which the solvent passes through the system also affects chromatographic and
ionisation performance and is therefore a crucial parameter to be optimised as part of
method development. A range of flow rates were applied to the method with multiple

outcomes compared (Figure 6). The number of metabolites detected was significantly
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higher at 0.4 mL/min when compared to all other flow rates investigated. For the average
peak quality of all putatively identified metabolites, an increasing trend was observed, with
0.4 mL/min showing a significantly higher peak quality in comparison to the lower flow
rates, but lower when compared to the higher flow rates. When looking into detection
quality of creatinine, we can see that 0.4 mL/min shows the highest AUC and a significantly
higher peak rating than 0.25 mL/min. The jaggedness was the only PQF that demonstrated
differential significance, with 0.25 mL/min showing a higher value than all other flow rates.
Due to the significantly increased metabolite detection, high performing average peak and
creatinine peak data, and prevention of column overload, 0.4 mL/min was chosen as the
optimal flow rate parameter for the current method. This view is supported by a range of
studies noting the use of a 0.4 mL/min flow rate for LC-MS methods analysing urine samples
[28-30]. A comparison of the chromatograms obtained from the analysis of different flow

rates is shown in Supplementary Information Figure S5.
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Figure 6. The impact of flow rate on untargeted urinary metabolomics. Outcomes were assessed by
(A) chromatographic visualisation, (B) the number of metabolites detected, (C) their average peak
rating, (D) the area under the curve (AUC) of the detected creatinine peak and (E) the associated
peak rating. The peak performance of creatinine was further evaluated, as measured by the
quantification of peak quality factors (PQF)s, (F) Zigzag, (G) FWHM2Base, (H) Jaggedness, and (1)
Modality indices. The chromatogram presented in (A) represents the optimised method parameter
selected for the method.

4.4.8 Gradient Curve

During the chromatographic separation process, the gradient of the mobile phase is
represented by the composition change of solvent A (in this case, water + 0.1% FA) and
solvent B (acetonitrile + 0.1% FA) over time. The gradient curve refers to the curve shape

parameter, defining how the solvent gradient progresses throughout the method, and the
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rate of solvent composition change. The value of the gradient curve is therefore important
to optimise in an LC-MS method, as it directly impacts the retention time and separation
efficiency of detected metabolites. A gradient curve of 3, 5, and 7 were applied to the
method and analysed (Figure 7). There were no significant differences observed in any of
the outcomes measured for the gradient curve analysis, with a value of three, five, and
seven showing a similar metabolite detection and peak performance. Selection for this
parameter was therefore made based on chromatographic performance, with a gradient
curve of seven chosen due to an overall higher signal intensity of the metabolites detected
and better resolution of peaks from visual inspection. Details of the final chromatography
elution gradient, including each of the liquid-chromatography method parameters
optimised, are shown in Supplementary Information Table S4 and a comparison of the
chromatograms obtained from the analysis of different gradient curves shown in

Supplementary Information Figure S6.
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Figure 7. The impact of gradient curve on untargeted urinary metabolomics. Outcomes were
assessed by (A) chromatographic visualisation, (B) the number of metabolites detected, (C) their

average peak rating, (D) the area under the curve (AUC) of the detected creatinine peak and (E) the
associated peak rating. The peak performance of creatinine was further evaluated, as measured by
the quantification of peak quality factors (PQF)s, (F) FWHM2Base, (G) Jaggedness, and (H) Modality
indices. The chromatogram presented in (A) represents the optimised method parameter selected

for the method. The zig-zag indices are not shown as all parameters tested gave a zero value.

187



4.4.9. Mass Spectrometer Parameter Optimisation

4.4.10 Automatic Gain Control (AGC)

The automatic gain control (AGC) is used for controlling the number of ions that are
accumulated during a survey scan in the orbitrap analyser. A higher target value refers to a
longer accumulation time and therefore implicates an increased analysis time with
improved sensitivity, and vice versa. This accumulation time, also known as transient time,
is a critical factor in determining the resolution of the mass analyser. Longer transient times
allow more precise measurement of ion oscillations, increasing resolution and enabling
more accurate assignment of m/z values to detected ions. However, this sacrifices the cost
of throughput, as longer transients reduce the number of spectra required per unit time,
linking AGC settings closely with both data quality and acquisition speed. The maximum ion
injection time setting controls the maximum time the instrument will spend accumulating
ions for each scan, which requires a balance between ensuring enough time for appropriate
ion accumulation and speed of overall analysis. Optimisation of the specific AGC target
value and maximum ion injection time settings is a powerful tool to control the analytical
output and peak parameters. We therefore performed method optimisation of AGC

parameters for both full and MSMS scans.

The full scan and MSMS AGC parameters were optimised, with all potential setting
combinations on the Orbitrap 240 analysed and compared (Figure 8). This included four
AGC target values, expressed as percentage AGC, and four maximum injection time values.
Analysis was further extended to optimisation of MSMS AGC parameters, which similarly
involved investigation into all potential settings on the Orbitrap 240 (four AGC target values
and four maximum injection time values) for the tandem mass spectrometry settings.
Detailed parameter analysis of the full scan and MSMS AGC optimisation are displayed in

Figures 9-10.
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Figure 8. Comparison of AGC parameters and their impact on untargeted urinary metabolomics.
Outcomes were assessed by (A) the number of metabolites detected per full scan AGC parameter, (B)
the associated peak performance of creatinine, as measured by the quantification of peak quality
factors (PQF)s, Zigzag, FWHM2Base, Jaggedness, and Modality indices, (C) the number of metabolites
detected per MSMS scan AGC parameter, and (D) peak performance characteristics for the MSMS
scan settings. The zig-zag indices are not shown as all parameters tested gave a zero value.
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Figure 9. Comparison of full scan AGC parameters and their impact on untargeted urinary

metabolomics. Outcomes were assessed by (A) the number of metabolites detected, (B) their

average peak rating, (C) the area under the curve (AUC) of the detected creatinine peak and (D) the

associated peak rating. The peak performance of creatinine was further evaluated, as measured by

the quantification of peak quality factors (PQF)s, (E) FWHM2Base, (F) Jaggedness, and (G) Modality

indices. The zig-zag indices are not shown as all parameters tested gave a zero value.
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Figure 10. Comparison of MSMS scan AGC parameters and their impact on untargeted urinary
metabolomics. Outcomes were assessed by (A) the number of metabolites detected, (B) their
average peak rating, (C) the area under the curve (AUC) of the detected creatinine peak and (D) the
associated peak rating. The peak performance of creatinine was further evaluated, as measured by
the quantification of peak quality factors (PQF)s, (E) Jaggedness, (F) Modality, and (G) FWHM2Base
indices. The zig-zag indices are not shown as all parameters tested gave a zero value.
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Notably, no significant differences were observed in the number of metabolites detected,
the creatine AUC and peak rating, or PQFs for the full scan AGC analysis, however, we can
comment on some data trends. When comparing the four AGC parameters, 50% and 100%
target values showed a more variable peak performance when looking at the PQF analysis,
which may be explained by insufficient ion accumulation at these lower values. On the
other hand, the highest AGC target of 200% resulted in a slight increase in signal intensity
but did not significantly improve the number of metabolites detected. Alongside analysis of
the chromatograms obtained from each parameter, the decision was made to select an AGC
target of 150%, as driven by its peak performance, signal intensity, and metabolite
detection. Similarly, the choice of a maximum injection time of 100 ms provided a
favourable balance between ion collection and spectral acquisition speed. Overall, a full
scan AGC target of 150% with a 100 ms maximum injection time was selected to be the

most effective configuration for this method.

For the MSMS scan analysis, it was observed that increasing the AGC target above 100%
resulted in a slight increase in signal intensity, however it did not significantly enhance the
overall number of metabolites detected. This suggests that ion saturation may occur at
higher MSMS AGC settings [31]. A 100% AGC target is therefore suggested for optimal ion
accumulation without the increased risk of saturation. A maximum injection speed of 50 ms
maintained high PQFs, particularly with respect to the zigzag, jaggedness, and modality
metrics which consistently showed zero values. An MSMS AGC target of 100% with a 50 ms
maximum injection time was therefore selected to be the most effective configuration,
which completed the parameter optimisation to finalise the method. The final optimised
method for untargeted urinary UHPLC-MS analysis includes a streamlined and shortened
preparation and analysis process with improved metabolite detection and peak
performance metrics. A chromatographic overview of the two methods is shown in Figure

11.
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Figure 11. Method Optimisation Overview. Comparison of (A) the original 15-minute method and (B)
shortened 10-minute chromatography gradient.

4.4.11 Application of the Method to a Clinical Trial

The optimised method was subsequently applied to a clinical study which analysed 1094
urine samples from healthy individuals and IBD patients, making this the world’s largest
study to date investigating urinary metabolomics of IBD. The whole trial consisted of three
different patient cohorts: The ENIP (Exclusive or partial enteral nutrition in healthy
individuals) study investigated the effect of enteral nutrition, a nutritionally complete liquid
diet used as the primary treatment for patients with paediatric Crohn’s disease [32], and
explored the impact on healthy individuals, and involved the analysis of 107 urine samples.
The CD-TREAT (Crohn’s Disease Treatment-with-EATing) diet is a prescriptive and
personalised diet which recreates Exclusive Enteral Nutrition (EEN). The optimised urine
method was applied to investigate disease outcomes and prediction response of CD-TREAT
using UHPLC-MS, where 125 urine samples were analysed. The intensive Post Exclusive
Enteral Nutrition Study (iPENS) study, a randomised trial to evaluate CD-TREAT diet as a
food reintroduction regime in children and young adults with Crohn’s disease, looked into
metabolic signatures in different biomatrices including urine. 862 urine samples were
analysed as part of the iPENS project using the optimised method. In total, 1094 urine
samples were analysed throughout the clinical trial using the method presented in this

paper, as displayed in Figure 12.
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Figure 12. Final optimised workflow for the analysis of urine samples using untargeted UHPLC-MS
and application of the optimised method to a clinical trial for urine metabolomics analysis. Schematic
representation of the optimised method, which includes the selection of specific sample preparation
and LC-MS parameters to ensure the comprehensive and reproducible profiling of urinary
metabolites. Illustration of the clinical trial workflow, consisting of three independent studies which
aimed to measure the global urine metabolic profile. The total analysis time of the urine samples for
all three studies was 182.3 hours and over 1500 metabolites were putatively identified.

In comparison to the previous method which had a run time of 15 minutes and equating to
273.5 hours of analysis time, the optimised 10-minute method allowed all samples to be
run in 182.3 hours, saving a total of over 91 hours of LC-MS analysis time throughout the
clinical trial and therefore demonstrating an improvement in method throughput, without
sacrificing data quality. This has important implications for future large-scale studies, where
time of analysis is an essential factor to prevent sample degradation during the duration of
sample preparation and analysis. Many existing large scale urinary metabolomics studies to
date have used longer chromatography elution gradients. For example, the analysis of urine
samples from 348 healthy children and 315 adults characterising age- and sex-dependent
metabolic variations used an 18-minute chromatography method [33], a 28.5-minute
elution gradient was used to identify urinary biomarkers of type 2 diabetes patients [34],
and a 29-minute elution gradient was used for the comprehensive profiling of the normal
human metabolome using 663 urine samples [35]. This demonstrates the varied application
of urinary LC-MS studies and the potential for method standardisation, efficiency

improvement, and cost reduction.
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4.4.12 Comparison of Urine Normalisation Strategies for Adjusting Urine Dilution

Normalisation is essential in urinary metabolomics to correct for differential sample
dilution, particularly in untargeted LC-MS workflows. Creatinine normalisation and
probabilistic quotient normalisation (PQN) are two widely used approaches for adjusting
urine data post-acquisition. Creatinine normalisation corrects for dilution based on the
concentration of urinary creatinine, while PQN adjusts each sample based on the overall
distribution of metabolites relative to quality control (QC) reference samples. In this study,
we compared both approaches alongside non-normalised data to evaluate their impact on
data quality. To assess the global impact of normalisation on data structure, principal
component analysis (PCA) was performed on each dataset. Minimal differences were
observed in the PCA plots between the three conditions (Supplementary Figure S7),
suggesting that PCA-based evaluation alone is insufficient to differentiate between data

quality of the normalisation methods.

The coefficient of variation (CV) was calculated for each metabolite across QC samples to
evaluate the precision of each normalisation strategy. A CV threshold of £ 20% was applied,
and the number of metabolites that met the cut-off using each normalisation method were
quantified (Figure 13). PQN normalisation showed the highest number of metabolites that
met this criterion (n = 320), followed by the non-normalised data (n = 308). In contrast,
creatinine normalisation resulted in substantially fewer metabolites below the threshold (n
= 138). These findings suggest that PQN normalisation offers superior performance in terms
of analytical precision as measured by CV. Detailed CV values for the detected metabolites
(MSI level 2) using each of the normalisation methods are provided in Supplementary

Information Table S5.
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Figure 13. Number of metabolites with coefficient of variation (CV) < 20% across three normalisation
methods. The bar plot shows the total number of metabolites meeting a CV threshold of < 20% for
non-normalised data, creatinine normalised data, and probabilistic quotient normalisation (PQN)
normalised data.

While post-acquisition normalisation strategies such as creatinine adjustment and PQN are
valuable for mitigating dilution effects, they also have inherent limitations. These include
their reliance on assumptions about the stability of reference metabolites or the
representativeness of QC samples. For this reason, pre-acquisition methods such as specific
gravity or osmolality measurements can be employed to correct for urine dilution at the
point of sample preparation prior to LC-MS analysis. Such approaches directly account for
sample concentration before analysis, providing a more physiologically meaningful
normalisation framework. Nonetheless, post-acquisition normalisation remains a practical
and widely adopted solution in large-scale studies, where pre-acquisition measurements

may not be feasible due to time constraints.

4.5 Conclusions

The main purpose of this study was to develop a rapid and reliable method for large-scale
comprehensive LC-MS metabolic profiling. We present a 10-minute UHPLC-MS method,
comprised of a 6.5-minute data collection time and a 3.5-minute cleaning step, based on
urine samples extracted using the dilute-and-shoot method. Optimisation of eight
individual method parameters were sequentially carried out to provide an overall method
which effectively detects a large number of metabolites of high data quality, as determined
by a range of peak performance quality factors. Additionally, probabilistic quotient

normalisation (PQN) was identified as the most effective post-acquisition strategy for
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correcting urine dilution, compared to creatinine or no-normalisation. This study
successfully investigated the possibility to reduce the overall UHPLC-MS method analysis
time for untargeted urinary metabolomics, which has positive implications for high-
throughput and large-scale clinical trials, as demonstrated through the application of the

optimised method to large urinary metabolomics study.
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5.1 Abstract

Current nutritional recommendations for inflammatory bowel disease (IBD) patients are
limited due to challenges in translating preclinical nutritional research into successful clinical
trials. The increasing body of evidence associating food additives to the western diet-driven
surge of IBD may have contributed to the adoption of highly restrictive elimination diets,
which are often not practical in the long-term. However, a strong body of emerging evidence
suggests that many food additives have beneficial effects with therapeutic potential for IBD.
This review explores the physiological mechanisms of food additives shown to specifically
affect gastrointestinal (Gl) inflammation from both a pro- and anti-inflammatory viewpoint,
thus providing a comprehensive review of additives in relation to their role in IBD. We
highlight that existing research into the effects of food additives on gut health is
predominantly based on evidence from in vitro and in vivo studies, with limited studies
carried out in humans. While the potential mechanisms of certain food additives are known,
randomised controlled trials (RCTs) in humans are required to confirm their potential
implications in IBD. In this review we demonstrate that food additives have widespread roles
in preclinical models of IBD of both beneficial and harmful nature and their effects should
therefore not be generalised in human health. Pending further human studies, the roles of
food additives may bring new perspectives on diet in IBD and contribute to the continually

changing dynamics of food additive frameworks within the food industry.
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Graphical Abstract. Mechanisms of food additives in the prevention or promotion of gastrointestinal
inflammation. Food additives have been shown to influence gut microbial composition and their
released metabolites, reactive oxygen species (ROS) and antioxidant balance, immune function, and
epithelial barrier integrity.

5.2 Introduction

Intestinal inflammation and the functions of the digestive tract are strongly influenced by
diet, rendering it a significant modifiable risk factor in disease [1]. Common themes have
emerged from studies linking diet to gastrointestinal (Gl) diseases in recent years, and of
significant importance is the association with the Western diet, a diet characterised by low
intake of fruits and vegetables and high sugar, salt and saturated fat content. The increased
adoption of Western dietary habits has paralleled the rise in dietary-associated intestinal
disorders, including inflammatory bowel disease (IBD) [2]. IBD is a multifaceted disease with
a complex pathogenesis involving genetic and environmental factors. The aetiology of IBD
remains unclear, however gut microbial dysbiosis [3-6], epithelial barrier dysfunction [7-9],
and pro-inflammatory immune activation [10, 11] have been evidenced as important
mechanisms of disease initiation and progression. In 2017, 6.8 million individuals were
estimated to be affected by IBD globally [12], representing a 20% increase in cases since 2004,

which is projected to rise at an annual rate of 5% [13].
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An aspect of the Western diet that has received increasing interest is the impact of food
additives and their role in disease pathophysiology [14-16]. Food additives are substances
that are added to enhance one or more properties of a food product and with improved
marketability through enhanced taste, visual appearance and increased shelf life, the use of
additives is increasingly popular within the food industry. The demand for food additives
continues to rise, with the global market value sized at $107 billion in 2022 and projected to
be worth $176.79 billion by 2028 [17]. In Europe, substances approved for use as food
additives are given specified Europe numbers (E numbers), which can be located on food
labels. Mounting evidence has linked food additives to Gl inflammation and disease; with the
rise in food additives in recent years being observed alongside an increased incidence of diet-
related diseases [13, 14]. The role of diet and food additives is therefore an important
consideration for both development and management of IBD. Nutritional epidemiological
studies have revealed associations between dietary patterns and IBD risk [18-20], however
direct links with specific food additives are less characterised. When considering the role of
food additives on inflammation, researchers aim to understand additives that initiate and
exacerbate disease state, with current reviews considering food additives with therapeutic
relevance being limited in number. This is important as there remains an unmet need for
patient dietary advice and therapies, predominantly due to the lack of translation from

preclinical studies to human randomised control trials (RCTs).

This review provides a comprehensive analysis of both inflammatory and therapeutic food
additives in the context of IBD. The food additives discussed in this review are authorised for
use in the European Union (EU). We present current evidence of the mechanisms of food
additives which specifically promote or reduce gastrointestinal inflammation and discuss

future directions to inform the design of dietary interventions in the management of IBD.
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5.3 Methods

A PRISMA designed literature search was performed in PubMed and Google Scholar and
articles were screened for eligibility (Figure 1). Search terms included “food additives,”
“food colourants “preservatives,” “antioxidants,” “sweeteners,” “emulsifiers,” “thickeners,”

“stabilisers,” “Inflammatory Bowel Disease,” “gastrointestinal inflammation,” “Crohn’s

Disease,” “Ulcerative Colitis.”
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Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram
of literature database search. Selection criteria including paper identification, screening and eligibility,
excluding duplicate papers, unavailable papers, and those unspecific to Gl inflammation, and final
selection of articles included in the review, according to food additive classification.
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5.4 Food Additives

Diet may represent a non-pharmacologic strategy to manage intestinal inflammation,
however, due to the diversity of food product availability and interindividual differences in

the Gl tract, elucidating the role of diet remains a complex factor to establish.

Food additives can be categorised according to their functional role in a food product,
including colourants, preservatives, sweeteners, and emulsifiers. Controlled safety
assessments determine an accepted daily intake (ADI) for each additive, which is based on
the lowest no observed adverse effect level (NOAEL) obtained from longitudinal in vivo
studies [21]. ADI levels are evaluated by regulatory authorities, the European Food Safety
Authority (EFSA-EU) and the Joint Expert Committee on Food Additives (JECFA) and World
Health Organisation (WHO) internationally. In parallel with regulatory assessment, analytical
methodologies have been developed to accurately measure the presence of food additives
in complex food matrices. Among these, liquid chromatography coupled with mass
spectrometry (LC-MS) has emerged as a widely accepted technique, which enables the

simultaneous detection and quantification of multiple additives.

Over 300 food additives are currently authorised for consumption in Europe, and a growing
number of research studies have explored their physiological roles in the context of
gastrointestinal health. Based on existing evidence, food additives can be differentiated
according to their effect on intestinal inflammatory state, with experimental and clinical data
showing harmful effects of some food additives on intestinal physiology, while others exhibit

therapeutic properties (Figure 2).
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Figure 2. Food additives implicated in gastrointestinal inflammation. Food additives, grouped according
to their functional class, (colours, preservatives, antioxidants, sweeteners, and emulsifiers) shown to
either enhance or mitigate gastrointestinal inflammation. P80; polysorbate 80, CMC;
carboxymethylcellulose, SSL; sodium stearoyl lactylate, SMS; sorbitan monostearate, KGM; konjac
glucomannan.

5.5 Food Colours

Colour is a property that motivates consumers to purchase certain foods, thus driving
manufacturing processes to enhance products through colour additives [22]. Food dyes of
natural or synthetic origin drive a global market of $2.5 billion in 2018, projected to reach
$4.77 billion by 2028 [23]. A multitude of studies have demonstrated the impact of different
food dyes on intestinal pathophysiology, with different colourants being implicated in
inflammatory processes. Figure 3 shows the variety of food colorants shown to impact
intestinal homeostasis and Supplementary Table 1 documents food colours suggested to

exert anti/inflammatory or therapeutic effects on IBD.
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Figure 3. Food colourants impacting gastrointestinal inflammation. The inner circle represents food
colours that demonstrate inflammatory properties; outer circle represents food colours that
demonstrate therapeutic properties, in the context of Gl health. Food additives are shown with their
maximum absorbance wavelengths: Riboflavin: 440 nm [24], Curcumin: 425 nm [25], Lutein: 445 nm
[26], Fast green FCF: 620 nm [27], Brilliant blue FCF: 630 nm [28], Anthocyanins: 520 nm [29], Beta-
carotene: 470 nm [30], Tartrazine: 426 nm [31], Sunset yellow FCF: 480 nm [32], Allura red AC: 504 nm
[33].

Beyond classification by colour, food colorants are grouped according to their origin and
chemical structure. Azo dyes, characterised by >1-N = N- linkage, are used in the food,
pharmaceutical, textile, and cosmetics industries [34, 35]. While safety reports have deemed
azo dyes such as tartrazine, sunset yellow FCF, and Allura Red AC as safe for human
consumption within defined ADI limits, they have been linked to concerns about their
carcinogenicity [36, 37]. Their carcinogenicity is largely due to degradation by reduction
reactions in intestinal [38] and skin [39] microbiota, resulting in the production of aromatic

amines, which are carcinogenic [40].
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Food colourants that have demonstrated intestinal inflammatory outcomes include the azo
dyes tartrazine (E102), sunset yellow FCF (E110), and Allura Red AC (E129). Tartrazine is a
synthetic yellow dye commonly used in confectionary. It has been demonstrated that low
tartrazine intake (1.4 mg/kg bodyweight /day) is associated with an increased IL-6 and TNF-a
levels (proinflammatory), with a decrease in activities of the antioxidant enzymes catalase
(CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) [41]. Furthermore,
tartrazine intake resulted in altered intestinal microbiota, as characterised by reductions in
Bacteroides, Clostridium, and Bacillus. These observations were further supported by
investigations demonstrating the induction of colonic DNA damage in ddYmice [42], toxic
histological changes in rat gastric mucosa [43], and increased intestinal lymphocytes and
eosinophils [44] in response to tartrazine consumption. Sunset yellow, another example of
an azo dye, has also shown to exercise profound effects on intestinal inflammation. Its intake
has been associated with an increased disease activity index and increased levels of IL-1p and
TNF-a in dextran sulfate sodium (DSS)-induced colitis in addition to inhibited growth of
murine intestinal organoids [45]. Recently it was shown that prolonged consumption of Allura
Red AC caused colitis in C57BL/6 mice, which manifested as damage of the intestinal
epithelial barrier through dysregulation of the myosin light chain kinase (MLCK) pathway, an

effect which is dependent on the activity of colonic serotonin [46].

In addition to the well documented colour additives with inflammatory potential, data from
several studies have identified anti-inflammatory properties of certain food colours.
Curcumin (E100), a natural phenolic compound obtained from plants, mediates protective
effects via inhibition of the mitogen-activated protein kinase (MAPK) signalling pathway,
resulting in the downregulation of pro-inflammatory cytokines including TNF-a [47]. This view
is supported by the alleviation of symptoms and intestinal mucosal damage in mice models
of IBD upon exposure to the food additive [48]. Additional studies have shown analogous
findings, including the downregulation of phosphoinositide 3-kinase (PI3K), extracellular
signal-regulated kinase 1 (ERK1), fibronectin 1 (FN1), and TNF superfamily member 1
(TNFS12) [49], and decreases in genes associated with oxidative stress [50]. Importantly, this
animal data is corroborated by a number of clinical studies showing the anti-inflammatory
potential of curcumin for IBD [51-55]. Riboflavin (E101), vitamin B2, is a yellow-orange food
colourant. Daily supplementation of 100 mg riboflavin for three weeks resulted in a reduction

in serum IL-2 in CD patients with low FC [56]. In CD patients with high FC, C-reactive protein
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(CRP) decreased, while elevated levels of plasma free thiols, indicative of reduced
inflammation and oxidative stress were observed. Brilliant Blue (E133) and Fast Green FCF
(E143) are selective inhibitors of Pannexin 1 (Panx1) [57], an ATP release channel, which when
blocked results in a decrease in the inflammatory response. Therefore, the inhibition of Panx1
via Brilliant Blue or Fast Green can achieve an anti-inflammatory effect. B-carotene (E160a),
a precursor to vitamin A, is a naturally occurring orange pigment promoting levels of the tight
junction proteins claudin-1 and occludin, and regulating the toll-like receptor 4 (TLR4)
signalling pathway in HT-29 cells [58]. Another carotenoid, lutein (E161b), decreases
inflammation in DSS-induced colitis via a reduction in IL-6 levels, serum amyloid A (SAA), and
myeloperoxidase (MPQ), when given in combination with fucoidan [59]. This is confirmed by
findings in patients with UC, in which lutein intake was associated with reduced faecal blood
and mucus [60]. However, a different study found that lutein is depleted during exclusive
enteral nutrition (EEN), a dietary therapy for paediatric CD patients [61] which highlights the
current knowledge gap on food additives particularly in the translation from animal models
to humans. Anthocyanins (E163) are a group of food colours for which there is increasing
evidence for the improvement of intestinal inflammation upon consumption, including
mechanisms of enhanced barrier function [62], tight junction regulation [63], and microbial
regulation [64]. In Caco-2 cells, anthocyanin supplementation increased GLP-2 and MUC2
levels and prevented TNF-a-induced monolayer permeabilization. Furthermore, a 20 mg/ kg
bw/ day dose of bilberry anthocyanin extract, given to female Sprague-Dawley (SD) rats,
promoted intestinal barrier function via microbial modulation. When a 50- 200 mg/ kg
bw/day anthocyanin dose was given to male pathogen-free C57BL/6J mice, SCFA-producing
bacteria (e.g., Ruminococcaceae, Muribaculaceae, Akkermansia) were enriched, alongside
increased intestinal tight junction mRNA expression levels, and decreased intestinal
permeability. Food colours and their effects on gut inflammation are summarised in

Supplementary Table 1.

5.6 Preservatives

Preservatives are substances added to foods to minimise or prevent product deterioration
caused by microbial growth, oxidation, or physical factors such as temperature and light.
Preservatives provide benefits to overall product quality by increasing shelf-life, maintaining

taste and appearance, and reducing cost, leading to a global market value of $2.77 billion in
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2021 [65]. Various physiological effects to been noted upon their use in different models,
some of which have demonstrated harmful effects on the Gl system. For example, potassium
sorbate (E202) negatively influences the gut microbial composition by decreasing the
abundance of specific genera in zebrafish [66]. Similar findings were demonstrated in
experimental mouse models, with alterations in the abundance of Bacteroidetes,
Verrucomicrobia, and Proteobacteria, contributing to an overall decreased microbial diversity
[67, 68]. Sodium sulfite (E221) has also been raised as a safety concern for Gl inflammation,
due to its microbial diversity diminishing effects including significant reductions in
Faecalibacterium prausnitzii [69] and Lactobacillus species [70]. More recently, it was shown
that sodium sulfite exerted cytotoxicity and cell death of rat gastric mucosal cells

accompanied by an increase in oxidative stress markers [71].

Research into additional preservatives have generated conflicting results deriving differing
outcomes on gut inflammation. Benzoic acid (E210) supplementation improved Gl
development in weaner pigs, with increased nitrogen digestibility, villous height, and
microbial diversity [72]. Moreover, benzoic acid enhanced gut barrier function by stimulating
insulin-like growth factor 1 (IGF-1), glucagon-like peptide 2 (GLP-2), zonula occludens-1 (ZO-
1), and occludin expression via mammalian target of rapamycin (mTOR) and nuclear factor
erythroid 2-related factor 2 (Nrf2) signalling pathways [73]. However, a benzoic acid
exclusion diet is a mainstream treatment for orofacial granulomatosis [74], a common
reported co-morbidity associated with CD [75]. Evidence indicating the physiological effects
of sodium benzoate (E211) are disparate; however, results from experimental IBD models
suggest potential anti-inflammatory effects in the gut. In an acetic acid-induced rat model of
UC, sodium benzoate decreased levels of MPO and increased levels of GSH, with an
associated improvement of disease activity [76]. Detailed examination of the immunological
effects of sodium benzoate on THP-1 cells showed inhibition of IL-6 and IL-1B, concluding a
major attenuating effect exerted by the additive on the immune response [77]. While
controversy surrounds the use of sulphur dioxide (E220) as a food additive, recent data has
revealed the reversal of several inflammatory factors that arose upon induction of
experimental colitis, including NF-kB activation and increased oxidative stress [78]. From
these findings it was suggested that the sulphur dioxide/ glutamate oxaloacetate
transaminase pathway may be implicated in IBD. Sodium propionate (E281) and calcium

propionate (E282) are both commonly used preservatives in the food industry, with
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inconsistencies in the literature regarding their impact on gut function. One study showed
that sodium propionate improved experimental colitis, predominantly through restoring
intestinal barrier function and decreasing inflammation [79]. This was achieved through
inhibiting activation of the STAT3 signalling pathway via downregulation of IL-6, IL-18, TNF-a,
and MPO and increasing SOD and CAT levels. Furthermore, this view is supported by reduced
pro-inflammatory and oxidative stress markers upon sodium propionate supplementation
[80]. Calcium propionate was shown to reduce plasma IFN-y and calprotectin in DSS-induced
colitis, which resulted in the improved histological scores and overall attenuation of colitis
[81]. In contrast, propionate induced virulent properties of CD-associated Escherichia coli

[82, 83].

Antioxidants are a classification of preservatives, used to prevent or limit food product
deterioration. Ascorbic acid (E300), known as vitamin C, is used frequently in the food
industry due to its antioxidant properties. One study observed a decrease in inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in DSS-induced colitis upon
ascorbic acid consumption [84]. This effect may be attributed to the inhibition of the
nuclear factor kappa B (NF-kB) pathway. Furthermore, levels of pro-inflammatory cytokines
decreased with ascorbic acid exposure alongside MPO and malondialdehyde (MDA)
activities. These changes paralleled an increase in superoxide dismutase (SOD) and
glutathione peroxidase (GPx) activity, evidencing improved physiological effects of IBD
resulting from ascorbic acid. This is supported by a further study demonstrating mucosal
barrier repair through regulation of tight junction proteins [85]. Following combination
treatment of ascorbic acid and vitamin D, ZO-1 mRNA and neurogenic locus notch homolog
protein 1 (Notch-1) levels increased, while claudin-2 expression decreased. a- and y-
tocopherol (E307 and E308, respectively) are forms of vitamin E which exhibit intestinal
restorative functions: by altering gut bacteria and promoting epithelial barrier integrity, a-
and y- tocopherol can improve colitis in experimental mice models [86]. These results were
in accordance with a study carried out in humans to investigate the effects of using d-a-
tocopherol as a treatment for mild and moderately active UC [87]. It was found that the
average disease activity index (DAI) score was significantly lower after twelve weeks post
treatment compared to measurements at baseline, however, no objective inflammatory
markers were measured to support this. This effect may be explained by the inhibition of

NF-kB, a finding previously observed in a human monocytic cell line [88]. The antioxidant
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and food additive propyl gallate (E310) demonstrates Gl healing properties via several
mechanisms. Levels of ROS and of TNF-q, IL-6, IL-13, and IFN-y decreased in mice with DSS-
colitis treated with propyl gallate [89] . Treatment also positively affected clinical
manifestations, including improvement of DAl score, body weight, and colon length. The
effects of preservatives suggested to exert inflammatory or therapeutic effects on IBD are

documented in Supplementary Table 2.

5.7 Sweeteners

The global market for food sweeteners has been valued at $79 billion in 2021 [90] and is
driven by the increasing demand for low sugar and sugar-free products (a response to the
obesity pandemic and regulations around sugar tax) several artificial sweeteners have been
introduced in food industry. The long-term impact of sweeteners on human health is
currently poorly understood, particularly in the long-term. Considerable interest and
research have begun to focus on unravelling their effects, and a number of sweeteners have
been identified as having a harmful effect to the Gl tract, including acesulfame potassium
(Ace-K, E950), no-calorie sweetener which increases small intestinal injury in mice [91]. It was
shown that expression of pro-inflammatory cytokines and lymphocyte migration to the
mucosa increased when mice consumed Ace-K, with decreased expression of glucagon-like
peptide-1 and 2 receptors (GLP-1R/ GLP-R2). Microbial dysbiosis was also noted upon
treatment with Ace-K. Similarly, sucralose (E955) has been found to result in an alteration in
the gut microbiome of male C57BL/6 mice with results showing alterations in several
bacterial phylum [92]. Bacterial dysbiosis is therefore one of the proposed mechanisms
contributing to the sucralose-induced enhanced susceptibility to DSS-induced colitis. Other
mechanisms include a rise in pro-inflammatory cytokines, which, in combination with
increased signal transducer and activator of transcription/vascular endothelial growth factor
(STAT3/VEGF) signalling, also promotes colitis-associated colorectal cancer [93]. Neotame
(E961) has also displayed adverse effects on the gut, including reduction in a and B diversity
and escalations of fatty acids and lipids [94]. Alterations in gut microbial composition are
additionally observed in response to xylitol (E967), increasing risk of intestinal inflammation

and IBD [95].
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Conversely, several studies have emphasised beneficial effects of sweeteners in IBD. The
bifidogenic properties of isomalt (E953) [96] denotes a capability of promoting a healthy
colonic mucosal environment. Isomalt, having shown to exercise a profound growth of
Bifidobacterium, is therefore regarded as a prebiotic carbohydrate. Thaumatin (E957) is a
plant-derived sweetener that is 100,000 times sweeter than sucrose. It has been shown that
thaumatin contributes to restoration of microbial balance by increasing intestinal
Butyricioccus [97], a bacteria genus that has anti-inflammatory properties and has been
found to exist at significantly lower levels in IBD patients in comparison to healthy controls
[98]. Also influencing gut microbiome composition is the additive neohesperidin
dihydrochalcone (NHDC, E959), an intense sweetener derived from citrus. It was reported
that treatment with NHDC resulted in an increase in the levels of Lactobacillus [99]. This
observation was additionally associated with anti-inflammatory effects, including the
promotion of oxidative phosphorylation. Another important group of sweeteners that may
contribute to intestinal healing are steviol glycosides (E960), the most abundant of which is
stevioside, shown to exert several anti-inflammatory properties. One of the proposed anti-
inflammatory mechanisms of stevioside is the reduction in TNF-q, IL-6, COX-2, and iNOS via
inhibition of the NF-kB and MAPK pathways, which was highlighted in the decreased of p38,
ERK, and June N-terminal kinase (JNK) phosphorylation in colonic tissue of DSS-induced UC
upon consumption [100]. Furthermore, this study demonstrated that stevioside promoted
SOD, catalase, and glutathione s-transferase. Another study considered the relationship
between erythritol (E968), a sugar alcohol, and inflammation [101]. Findings from this study
revealed that erythritol increased levels of butyric acid, which has also previously
demonstrated anti-inflammatory properties [102]. Findings on the impact of sweeteners on

intestinal inflammation are summarised in Supplementary Table 3.

5.8 Emulsifiers, Stabilisers, and Thickeners

Emulsifiers are food additives widely used in food manufacturing (estimated global market
size valued at $7.87 billion in 2023 [103]) to aid mixing of otherwise immiscible substances.
While emulsifiers have been long used in the food industry, their effects on gut health have
only more recently been proposed. Emulsifiers are often categorised alongside thickeners
and stabilisers within the food industry and are therefore also discussed together in the

present review. A number of studies have indicated both harmful and beneficial emulsifiers,
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stabilisers, and thickeners in the context of Gl health (Supplementary Table 4). Carrageenan
(E407) is a natural polysaccharide extracted from red algae commonly used as a stabiliser or
thickener. Increasing evidence suggests that carrageenan is associated with intestinal
damage. One study found that a high carrageenan diet (given in drinking water at 50g/L)
caused ulcers in guinea pig colons [104] with further studies in rats revealing that
consumption of the emulsifier at the same concentration resulted in increased intestinal
permeability [105], epithelial cell loss [106], and diarrhoea [107]. While these studies
collectively demonstrate the potential effects of carrageenan, it is important to note that the
doses used were high, stated at a maximum 2 g/kg bw/day (in comparison to the ADI for
humans which is 75 mg/kg bw/day [108]). In vitro experiments have supported these
findings, showing increased expression of pro-inflammatory molecules [109] and reduced
sulfatase enzyme activity resulting from carrageenan exposure in human intestinal cells [110].
Importantly, a randomised clinical trial in twelve patients receiving either carrageenan-
containing capsules or a placebo [111] showed that three patients receiving the carrageenan
capsule relapsed, in comparison to none of the patients in the placebo group reporting
disease relapse. There is also significant evidence to suggest that guar gum (E412), a soluble
fibre extracted from guar beans, is detrimental to gut health. Mice receiving a diet containing
guar gum presented severe colonic inflammation, as shown by colon thickening and
increased levels of IL-1B, effects which were not observed in control mice [112]. Recently
Polysorbate 80 (P80, E436) and carboxymethylcellulose (CMC, E466) have received attention
due to their frequent use in the Western diet. Preclinical evidence supports the notion that
both P80 and CMC induce intestinal inflammation via several mechanisms. Microbial
dysregulation, including a decrease in Streptococcus and Faecalibacterium, has been noted
upon consumption of these additives [113], with CMC inducing a more aggressive form of
colitis [114]. CMC exposure also damages the intestinal epithelial barrier and increases
expression of pro-inflammatory cytokines including TNF-a [115]. Additional mechanisms of
action for P80 have been proposed, including reduced mucin thickness due to decreased
Mucin2 (Muc2) RNA expression, thereby leading to increased intestinal permeability and
increased microbial translocation across the epithelial barrier [116]. Sodium stearoyl lactylate
(SSL, E481) is a dietary emulsifier commonly used in bread products. To better understand
the impact of SSL, it was added to an in vitro model and microbial analysis was performed,
with findings that the abundance of Clostridia and bacterial butyrate producers were

inhibited [117]. Microbial dysbiosis was also observed from exposure to sorbitan
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monostearate (SMS, E491) [113]. Experimental data pertaining to the effects of maltodextrin
(E1400), a polysaccharide derived from starch hydrolysis, indicates an increased severity of
colitis resulting from reduced levels of mucus producing cells, altered microbiome, and crypt

hyperplasia [118].

Research into the possible beneficial role of food additives has led to the recognition of
certain emulsifiers with beneficial properties that may be utilised in the context of IBD and
intestinal inflammatory disorders. Evaluation of sodium alginate (E401), the sodium salt of
alginic acid, revealed its therapeutic potential in experimental UC [119]. Oral administration
of sodium alginate in drinking water of 2,4,6-Trinitrobenzene sulfonic acid (TNBS)-induced
mice resulted in a significant decrease in pro-inflammatory cytokines and matrix
metalloproteinase-2 (MMP-2) activity. This was reinforced by findings from a similar study
showing that DSS- and TNBS-induced colitis was diminished after sodium alginate treatment
[120]. The anti-inflammatory activity of acacia gum (E414) was demonstrated in a study
where supplementation decreased the abundance of clostridium histolyticum and increased
abundances of Bifidobacteria [121]. Konjac glucomannan (KGM, E425) is a soluble fibre
extracted from the Amorphophallus konjac plant. In addition to its role as a stabiliser and
substitute for gelatine, it also has potential roles as an anti-inflammatory agent: treatment
with KGM ameliorated DSS-induced colitis and repaired the intestinal epithelial barrier, an
outcome suggested to be predominantly attributed to prebiotic effects [122]. Other
associated changes noted upon KGM treatment include the reduction of pro-inflammatory
factors, increased weight, and alteration of gut microbial composition. A major influence on
gut inflammation has also been established by pectin (E440), a common fibre found in fruits
including improvement of experimental colitis in mice fed with pectin [123]. This was
characterised by a reduction in inflammatory cytokine levels and histological scores, in
comparison to the control group of mice. To further facilitate research on pectin, another
study set out to characterise the immune response to pectin treatment using an IL-10
deficient mouse model of colitis [124]. Observed effects included an increase in NLR family
CARD domain-containing protein 4 (NLRC4) and a decrease in colonic IL-18 and
Verrucomicrovia abundance. The authors therefore concluded that pectin exhibits anti-

inflammatory properties via microbial and immune restoration.
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Overall, the predominant mechanisms of food additive action include changes to gut
microbial composition and function, altered ROS/ antioxidant balance, immune function, and
epithelial barrier integrity. These mechanisms are similar to those governing the

pathophysiology of IBD and therapeutic targets and are documented in Figure 4.
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Figure 4. Overview of mechanistic effects of food additives on the Gl system. (A) Mechanisms of food
additives promoting intestinal inflammation. Food additives which exert a pro-inflammatory effect
disrupt epithelial barrier integrity, for example through increased intestinal permeability, epithelial cell
loss, and decreased mucin production, promoting translocation of bacteria into the intestinal lumen,
where an adaptive immune response is elicited. (B) Mechanisms of food additives promoting intestinal
healing. Food additives which exert an anti-inflammatory effect restore intestinal homeostasis via
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epithelial barrier and microbial restructuring, which is associated with a downregulated inflammatory
immune response, e.g., decreased production of pro-inflammatory cytokines and ROS. Muc2: mucin2;
MLCK: mysosin light-chain kinase; 5-HT: 5-hydroxytrypamine; STAT3: signal transducer and activator of
transcription; CAT: catalase; SOD: superoxide dismutase; GSH-Px: glutathione peroxidase; ZO-1: zonula
occludens 1; SCFA: short chain fatty acid; COX-2: cyclooxygenase-2; MAPK: mitogen-activated protein
kinases; GST: glutathione S-transferase; GSH: glutathione; iNOS: inducible nitric oxide synthase;
myeloperoxidase; MDA: malondialdehyde.

5.9 Applications in Dietary Management

Considering the impact of a single food additive on Gl inflammation, the total food additive
consumption in an individual’'s diet has significant potential to alter the intestinal
environment and physiology. In addition to the exclusion of food additives that exacerbate
inflammation, the therapeutic potential demonstrated by certain food additives provides
scope for their use in ameliorating disease. This can be achieved through increased intake or
supplementation, for example as pre- and pro- biotics. While the majority of clinical trials
with pre- and pro- biotics have shown no success to date, as more research is conducted
alongside advancing characterisation of what constitutes a healthy human microbiome, this
may allow development of novel strategies to substantiate potential health benefits. Further
prospective uses include the utilisation of the molecule in the development of a targeted
therapy, and as adjuvants to other therapeutic approaches. Each of the mechanisms
discussed in the current review represents a potential strategy or target for treatment and
future investigation of food additives may drive mechanistic insights of disease
pathophysiology and treatment actions. It is crucial to note that current research on the
impact and mechanisms of food additives in humans is not yet at a place where we can put
this into clinical practice as extensive further research is required before implementation of
dietary guidelines. Here, we summarise the food additives that have preclinical evidence of
benefit to gut inflammation and propose them to be further tested with RCTs. Potential

considerations for food additives in RCTs are shown (Figure 5).
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Figure 5. Potential opportunities for utilising mechanistic knowledge of food additives, upon further
human research and controlled trials. Future applications may include altered intake of food additives,
pre/ probiotics, novel targeted therapies, personalised nutrition, exclusive enteral nutrition, and
unravelling mechanisms of dietary-associated disease.

In addition to the limited completed clinical trials, as discussed in this review within the

context of each additive, there are a number of further ongoing trials investigating their

effects in relation to different aspects of gut health (Table 1). Clinical trials displayed are those

listed by the Clinical Trials database [125] and the International Clinical Trials Registry

Platform [126]. While results are not yet available on their outcomes, they will expand

knowledge of their mechanistic and clinical effects in humans and provide more data on food

additives and begin to bridge the translational gap between animal and human studies.
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Table 1. Overview of food additive clinical trials in Gl health. Clinical trial status information was last verified in September 2025.

Clinical Trial ID Title Additive(s) Population Outcomes Measured Status
NCT05743374 Micronutrient and  Emulsifying 70 UC patients, Disease activity (diarrhoea frequency, blood in Recruiting
Additive agents elimination diet stools, abdominal pain, CRP, and calprotectin) and
Modifications may  within the (n=35), normal microbial analysis (dysbiosis index)
Optimise Diet to E400 group  diet (n=35)
Health
(Mammoth)
NCT04046913 The ADDapt Diet Food Mildly active CD CD activity, health-related quality of life, gut Active
in Reducing additives patients bacteria, gut permeability, gut inflammation, and
Crohn's Disease associated dietary intake
Inflammation with the
Western
diet
NCT05852587 Xylitol Use for Xylitol 72 1BD patients, Decolonization of C. Difficile, disease activity, and Not yet
Decolonization of xylitol (n=36), development of CDI recruiting
C. Difficile in placebo (n=36)
Patients With IBD
NCT05849012 A Pilot Study Sulfur CD patients Small intestinal bacterial overgrowth, and intestinal Recruiting

Examining Low
Sulfur Diet as

Treatment for

permeability
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Persistent
Symptoms in
Quiescent Crohn's

Disease

NCT03500653

Curcumin Curcumin
Supplementation

as an Add on

Treatment for

Patients With

Inflammatory

Bowel Diseases

Treated With

Vedolizumab

IBD patients
(n=84)

CDAI, FC, and CRP.

Unknown

NCT02683733

Bio-enhanced Curcumin
Curcumin as an

Add-On Treatment

in Mild to

Moderate

Ulcerative Colitis

Mild to moderate
UC patients
(n=50)

Time to induction of clinical and endoscopic

remission

Unknown

NCT02683759

Bio-enhanced Curcumin
Curcumin as an

Add-on Treatment

UC patients in

remission (n=50)

Maintenance of clinical and endoscopic remission

Unknown
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in Maintaining
Remission of

Ulcerative Colitis

NCT05803811

Effect of Colon
Delivered Vitamin
B2 on Gut
Microbiota and
Related Health
Biomarkers in
Healthy Older
Adults

Riboflavin

Healthy older
adults (n=348)

Faecal microbial composition and diversity, fatty acid
content, intestinal inflammation, intestinal barrier

integrity.

Recruiting

NCT00275418

Beta Carotene
From Natural
Source for Patients
With Non-Active

Crohn's Disease

Beta-

carotene

CD patients in

remission (n=300)

CDAI score

Unknown

NCT04000139

Anthocyanin Rich
Extract (ACRE) in
Patients With

Ulcerative Colitis

(ACRE)

Anthocyanin

UC patients
(n=48)

Clinical response, clinical remission, rectal bleeding,

stool frequency, FC.

Completed,
results not

available
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ACTRN12619001099112 The role of a low Emulsifiers 40 patients with Change in Harvey-Bradshaw Crohn’s Disease Activity = Recruiting

emulsifier diet in mild CD Index, faecal calprotectin, and intestinal wall

treating intestinal thickness.
inflammation in
patients with

Crohn’s disease
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5.9.1 Exclusive Enteral Nutrition

Exclusive enteral nutrition (EEN) is an entirely liquid formulated diet which provides all
nutritional requirements, typically given for up to 8 weeks orally or through a nasogastric
tube [127]. With improved endoscopic, and histological remission in comparison to
corticosteroids [128-130], in addition to benefits of minimal side effects [131-133], EEN is
currently used as the first line of treatment for adolescent CD patients in Europe [134, 135].
The mechanisms by which EEN induces remission and improves Gl inflammation remain
unclear; however, microbial and metabolic alteration [136-138] are associated with EEN
forming the subject of a multitude of clinical trials exploring molecular mechanisms and

clinical outcomes (Table 2).
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Table 2. Overview of enteral nutrition clinical trials in Gl health, CD-TREAT; Crohn’s Disease
Treatment-with-EATing, PEN; partial enteral nutrition, SEN; standard enteral nutrition, EEN; exclusive
enteral nutrition. Clinical trial status information was last verified in September 2025.

Clinical Trial ID Title Diet Population Outcomes
Measured
NCT04225689 The Intensive Post CD-TREAT 60 adult CD Disease activity,
Exclusive Enteral patients, CD- anthropometric
Nutrition Study TREAT diet (n=30), measures, FC
(iPENS) unrestricted diet levels, and quality
(n=30) of life
NCT04859088 Biologics and Partial PEN 80 adult CD Remission rates,
Enteral Nutrition patients bacteria and
Study (BIOPIC) metabolite changes
NCT02341248 Bacteria & SEN 42 paediatric CD Bacterial
Inflammation in the patients composition, CD
Gut (BIG) Study (BIG) faecal and urine

biomarkers,

bacterial
metabolites.
NCT02426567 The Impact of "Crohn's  CD-TREAT CD adult CD Gut microbiota
Disease-TReatment- patients composition and
with-EATing" Diet and metabolic activity
Exclusive Enteral
Nutrition on Healthy
Gut Bacteria [139]
NCT03171246 CD-TREAT Diet: a CD-TREAT 10 adult and 10 Blood and faecal
Novel Therapy for paediatric CD inflammatory
Active Luminal Crohn's patients markers, disease
Disease activity, faecal

bacteria and

metabolites
NCT02521064 Effects of Exclusive EEN Paediatric CD Clinical,
Enteral Nutrition on patients biochemical, and
the Microbiome in microbial changes

Pediatric Inflammatory

Bowel Disease

Different compositions of EEN have been formulated by manufacturers and from their

compositional analysis , various levels of food additives have been identified as ingredients
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[140]. The presence of food additives in EEN shown to be effective in inducing remission in
paediatric IBD patients denotes the importance of these substances in nutritional therapies.
However, the food additives identified in EEN, at therapeutic levels consumed, are unlikely
to impact on Gl inflammation. The main conclusion of this study is that preclinical data does
not translate to humans. Based on the evidence presented in the current review, both

inflammatory and anti-inflammatory additives, in relation to IBD, can be found in EEN

40

(Figure 6).
A B
Carrageenan
Soy lecithin
Guar gum
cmc Carotenoids
Sucralose
Curcumin
P80
Potassium sorbate Acacia gum
Xanthan gum
Pectin
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Figure 6. Food additives present in EEN formulas, adapted from Logan M et al., 2020 [140]. (A) Food
additives in EEN formulas with inflammatory potential; (B) Food additives in EEN formulas with
therapeutic potential.

5.10 Discussion

As dietary constituents significantly affect intestinal physiology, it is vital to understand the
mechanisms of specific components, particularly for improving therapeutic outcomes for
patients with Gl inflammation such as IBD. Food additives, seen in an expansive variety of
products, have become a key focus of dietary research; however, the true impact of food
additives on human health remains unclear. In this review we provide a detailed list of food
additives with evidence of promoting intestinal inflammation along with a list of food
additives which may promote intestinal healing. By addressing the conflicting evidence of
food additives on gut inflammation with different models and doses, we highlight existing

gaps in our understanding of their mechanisms and future areas of investigation. Continued
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emphasis on the molecular outcomes of food additives will promote renewed interest into

dietary safety outcomes and build upon existing dietary knowledge.

Importantly, food additive research to date has predominantly been conducted using animal
or cell models, with very limited human data. Available clinical data is discussed within the
context of specific food additives in this review; however, it is clear that the evidence does
not provide strong enough conclusions to make dietary recommendations. While in vitro
and preclinical models provide useful insights into chemical-driven inflammatory
mechanisms, it is unclear how these findings can be extrapolated to humans, apparent from
inconsistencies between animal and human data and lack of successful clinical trials to-
date. A reason for contrasting findings may be the difference in food additive doses used in
research studies. Animal studies often use larger doses than the maximum ADI defined by
regulatory bodies, overall, not reflecting human consumption and rendering comparison of
physiological outcomes challenging. Therefore, further longitudinal RCTs with appropriate

physiological and clinical outcomes are required.

Knowledge of food additives worsening disease is undeniably crucial to progressing dietary
management, however it is also important not to overlook food additives that can provide
therapeutic effects. Viewing diet holistically allows a more representative outlook of diet in
human health and is crucial for recognising the multifaceted impact of diet on the gut. IBD,
associated with reduced quality of life, health costs, and undesirable adverse effects
associated with existing treatments, presents an unmet need for more effective
management strategies. Utilising food additives in restorative and therapeutic strategies is a
desirable approach, as they are frequently consumed in diet and may be better tolerated
with less side effects than traditional medications. Dietary advice, novel target
development, and nutraceutical adjuncts are suggestions of how food additives can be
utilised to improve IBD management strategies in the future, however given the current lack
of clinical evidence, considerable research is needed to substantiate their health benefits in
humans prior to making dietary recommendations. A crucial aspect deserving attention is
the duration of additive exposure: The impact of short-term consumption on human health
may differ significantly to long-term exposure, and inconsistencies in the duration of
existing studies and additive doses used underlines a considerable challenge in deriving

human application. For example, one study looking into the short-term exposure of CMC
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[141] addresses the need for additional studies investigating the impact of long-term
consumption. Furthermore, to achieve the desired effects of dietary modulation, one must
also consider a molecule’s metabolism upon digestion: if the additive is degraded or
absorbed or modified before it reaches the target site, the desired effects may not be
attained or exacerbated by the new version or product of food additive metabolism.
Consideration of food additive metabolism is necessary to employ food molecules in a
therapeutic sense. In this way, metabolomics approaches can be employed as a powerful
tool to investigate the metabolic fate of food additives under different conditions and may
further progress dietary strategies. Advances in metabolomics tools and food biomarker

approaches are integral to this goal [142, 143].

Fundamental to understanding food additives in human health is the recognition that diet
may play a differing role in triggering IBD compared to managing the disease, and due to the
chronic relapsing nature of IBD, this also includes impacts at different disease stages, i.e.,
active disease vs. remission. It is yet to be elucidated whether food additives are equally
important for disease development and management, an issue which has been recently
highlighted in the literature [144]. For future research, the presence of food additives in EEN,
which is used frequently in IBD patients worldwide, provides a widow of opportunity for
nutrition research. It is well evidenced that the use of EEN is effective at inducing remission
in children with CD throughout the course of treatment; however, after reinduction of a solid-
based food diet, it is frequently observed that inflammation increases and disease relapses.
It has been suggested that there is a critical time period after returning to a solid food diet
which may determine the subsequent trajectory of disease state. As such, the specific dietary
components consumed during this period are of great significance. Consideration of the food
additives that are taken by an individual post-EEN treatment as part of the reintroduction diet
provides one example of how data can be better utilised to provide information on the role
of food additives in IBD. While little evidence is currently available around the food
reintroduction phase post-EEN, the Intensive Post Exclusive Enteral Nutrition Study (iPENS) is
collecting data to assess gut inflammation at this stage [145], results from which may help

progress our understanding of the role of diet in disease management.

In this paper, we focus on the documented influences of food additives that impact the Gl

system. This is relevant for improving knowledge and future management of diseases of
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intestinal inflammation such as IBD, however this does not capture all food additives that are
consumed by humans and their effects may also be more complicated when one considers
their impact beyond the Gl system. Although not the focus of this review, there is a
requirement for collated knowledge of food additives and their systemic effects prior to
dietary suggestions. This captures a further limitation of in vivo models and lack of human
evidence, as a full understanding of their role and potential side effects remains unknown.
Additionally, there are still gaps in our understanding of the role of food additives in
combination with other additives and ingredients, which may further enhance or mitigate
their individual effects. It is clear that collaborative research is needed to establish effects in

humans and assess suitability for disease management in humans.

In addition to utilising mechanistic food additive knowledge within the realms of currently
available food products, there is impetus to suggest a role within the changing dynamics of
the food industry. The requirement for safer alternatives in food products is clear; however,
several challenges exist in the road towards improved food additive utilisation for human
health. Currently, one of the biggest limitations in enabling the incorporation of therapeutic
food additives in products is improving their chemical performance to maximise properties
such stability and shelf-life. Optimising food additive choice based on chemistry and stability
remains challenging task, for example, as synthetic food additives tend to be more stable than
natural alternatives and so they are easier to process at various temperatures and solubilities
[146-148]. However, the use of additives in the food industry is continually changing and
increased understanding of their physiological mechanisms ensure that safety guidelines are
updated in line with new evidence of their effects, thereby providing opportunities for
product changes. Optimising their use simultaneously for human health and product stability
is an open challenge and we have begun to see a change in the direction of food
manufacturing as a result. For example, titanium dioxide was previously used as a food
additive in a white food colourant, however upon recent safety re-evaluations, the EFSA
deemed that it could no longer be considered safe due to genotoxicity concerns [149-151].
This opened a gap for white colourants within the food industry which, through increased
efforts and improved formulations, was subsequently filled with safer alternatives. Similarly,
the safety of the food additive sodium tetraborate, also known as borax, was reassessed in
2010, as potential impacts on reproductive health and increased risk of liver cancer resulted

it its ban in Europe [152, 153]. This model of continual reassessment which brings in stricter
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and safer regulations may provide a shift in dietary components to include more natural and
less harmful alternatives. This provides a window of opportunity for food additive research
to be utilised in both the food and pharmaceutical industries. Improved and standardised
methods of food additive analysis will allow the progression of dietary knowledge for healthy
populations through maintenance of gut homeostasis and patients of gastrointestinal disease
through restoration of disrupted pathways. In consideration to these challenges and

requirements, we here set out perspectives on future research (Figure 7).

Food Additives Research

| l

Studies using humans/ Combination/ ——p
human samples interaction studies

Improved detection
methods

food additives

components

H

Alianti . Utilisation of food
U"';ig:z&"' I(::ICS additive metabolism
o9 knowledge

Figure 7. Roadmap to an evidence-driven future of improved food additive utilisation within the food
and pharmaceutical industries.

5.11 Conclusions

Food additives are ubiquitous in the Western diet with important physiological influences
on gut health. We here demonstrate that the roles of food additives can be of either an
inflammatory or anti-inflammatory nature depending on their mechanism, which may bring
important implications for the treatment and management of IBD. However, the proposed
mechanisms are predominantly derived from preclinical models with undefined translation
to human health, and therefore further research exploring food additive interactions and
outcomes using controlled clinical trials are required to gain a better understanding of their
true effects. The continued movement towards improved health outcomes through food

additives represents a growing opportunity for IBD management.
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6.0 CHAPTER 6

DISCUSSION

Current investigative, diagnostic, and monitoring methods for chronic inflammatory
diseases of the gut, including IBD and CoD, rely on clinical symptoms and invasive
biomarkers. While such measures are widely used, they are limited by poor specificity,
variability in patient presentation, and frequent delays in achieving a definitive diagnosis [1-
3]. In recent years, LC-MS-based metabolomics has emerged as a powerful complementary
approach, capable of capturing disease-associated metabolic interactions and offering new
insights into pathophysiology, biomarker discovery, and therapeutic response [4-7]. By
profiling small molecules that represent the downstream products of cellular metabolism,
metabolomics enables the characterisation of biochemical perturbations more directly
linked to disease processes. Importantly, this analysis can be performed on non-invasive
biomatrices such as stool and urine, which are particularly valuable for longitudinal
monitoring and large-scale clinical studies. The use of stool and urine as biomatrices
therefore not only facilitates biomarker discovery but also supports the development of

non-invasive tools for disease diagnosis, patient stratification, and treatment monitoring.

However, despite the promise of LC-MS for advancing gut metabolomics, progress is
hindered by the lack of standardised methodologies across laboratories [8, 9], which limit
reproducibility, comparability of findings, and ultimately the translation of biomarkers into
clinical practice. Addressing these challenges is essential for improving data reproducibility
and clinical translation. In this thesis, an in-depth multi-parameter optimisation of LC-MS-
based metabolomics methods designed for the analysis of human stool and urine samples
was conducted. The developed methods were subsequently applied to characterise the
metabolic phenotype of gastrointestinal disease and includes a clinical study investigating
mechanisms of CoD and the analysis of the largest urinary metabolomics investigation of

IBD.

A powerful contribution of this thesis is the establishment of robust, high-throughput LC-MS

pipelines for non-invasive biomarkers. The optimisation of a faecal extraction method

identified a reproducible protocol that enabled consistent metabolite detection and
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stratification of patient groups. The use of 50 mg freeze-dried faecal samples in a 1000 pL
MeOH and bead beating extraction can be recommended as an optimal extraction strategy
for metabolomics analysis, which maximises metabolite coverage and reproducibility while
maintaining compatibility with both untargeted and targeted workflows. Importantly, the
utility of this optimised approach was demonstrated through its application to a clinical
cohort of paediatric CoD patients, where it facilitated the characterisation of disease-
associated metabolic alterations and the identification of treatment responsive metabolic
signatures following adherence to a GFD. While previous studies have focused largely on
serum or plasma metabolomics, this work highlights the value of faecal sample analysis,
which captures host-microbe metabolic interactions and directly reflect the gut
environment. Our analyses revealed three distinct patterns of metabolic signatures. Firstly,
we observed a panel of 12 CoD-associated metabolites that were unaffected by treatment,
with persistent disruptions across bile acids and amino acid derivatives. A group of
treatment-responsive metabolites were also identified, including amino acid dipeptides and
indole- and purine- related metabolites, which normalised following dietary treatment.
Finally, a third group of metabolites emerged that were non-disease-specific and shaped
primarily by the GFD itself, such as indole-derived compounds, purine intermediates, and
acylcarnitines, reflecting the broader metabolic consequence of dietary intervention.
Longitudinal analysis extended these findings, showing that the most pronounced shifts
occurred within 6 months of dietary treatment, coinciding with improved tTG and PedsQL-
GS scores, but were less evident at 12 months. The methodological advances established in
this work therefore not only strengthen the pipeline for biomarker discovery but also show
potential for their application in non-invasive tests, disease monitoring, and the
stratification of patients at risk of refractory disease. Such insights may ultimately guide
personalised medicine and nutrition, as well as the development of adjunctive or

alternative therapies.

Beyond the methodological and translational significance of these findings, this work also
offers novel biological insights into CoD pathophysiology. The identification of CoD-specific,
treatment-unresponsive metabolites is a particularly important finding, as it suggests that
fundamental disturbances in amino acid turnover and bile acid metabolism persist despite
strict adherence to a GFD. This challenges the prevailing assumption that dietary exclusion

alone is sufficient to restore intestinal homeostasis and instead indicates that metabolic
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dysregulation may represent an intrinsic feature of CoD pathophysiology. Such persistent
alterations could contribute to ongoing low-grade inflammation, incomplete mucosal
healing, or long-term complications, thereby offering mechanistic explanations for why
some patients remain symptomatic or progress to refractory disease. Equally important are
the treatment-responsive group of metabolites, which demonstrate that faecal
metabolomics can capture early biochemical improvements following dietary therapy.
Moreover, the detection of diet-driven, non-disease-specific metabolites highlights the
broader metabolic footprint of a GFD, offering important context for interpreting
metabolomics data in treated CoD patients and pointing to possible unintended nutritional

or microbial consequences of long-term dietary restriction.

The approach to developing a metabolomics workflow was broadened to urine, expanding
the potential of non-invasive biomarker discovery across multiple biological matrices. A
rapid chromatographic separation with a 6.5-minute data collection time was developed, as
determined by a range of peak performance quality factors. The potential of scaling the LC-
MS protocol was again demonstrated within a clinical trial setting, illustrating the
practicality of applying metabolomics at scale. The reduction in overall LC-MS analysis time
for untargeted metabolomics highlights the potential to streamline workflows, enabling
high-throughput, cost-effective implementation in large-scale clinical trials and enhancing
the feasibility of metabolomics as a routine tool for patient stratification and disease

monitoring.

The scope of this thesis was extended to a dietary context through a critical evaluation of
food additives as potential modulators of gut inflammation, situating the findings within the
wider framework of diet-gut interactions and their implications for IBD management. The
effect of food additives on gut health is an important consideration for both the
development and management of IBD, and in this work we reframe the traditional view of
food additives by understanding the mechanisms of additives in the context of IBD.
Importantly, we demonstrate that the roles of food additives can be of either an
inflammatory or anti-inflammatory nature depending on their mechanism, which may bring
important implications for the treatment and management of IBD. This is critical as there
remains an unmet need for patient dietary advice and therapies, predominantly due to the

lack of translation from preclinical studies to human RCTs [10]. Furthermore, we address the
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requirement for safer alternatives in food products and the challenges that exist to achieve
this and set out perspectives on future research. Ultimately, by addressing the conflicting
evidence of food additives on gut inflammation with different models and doses, we
highlight existing gaps in our understanding of their mechanisms and future areas of

investigation.

This section of work highlights an important issue in gastrointestinal disease research,
which is the complex relationship between diet and human health [11-13]. Dietary intake
influences both host metabolism and the gut microbiome, making it a major determinant of
metabolic readouts in biomatrices such as stool and urine. In the context, diet represents
both a variable of interest and a potential cofounder. For example, in the CoD cohort,
adherence to a GFD was not only the primary therapeutic intervention but also a significant
driver of metabolic changes, complicating the separation of treatment effects from disease
mechanisms. Similarly, in the IBD studies, differences in dietary intake may contribute to
metabolic heterogeneity across patient groups, underscoring the importance of integrating
metadate with metabolomics analysis. The review of food additives further reinforces this
point by illustrating how individual dietary components can exert inflammatory or
therapeutic effects, thereby shaping metabolic outcomes. Addressing the diet in greater
detail in studies of gut disease is therefore essential for advancing metabolomics-based
biomarker discovery and for ensuring that identified signatures are truly reflective of

disease rather than dietary intervention.

Several strengths underpin this work. First, the systematic optimisation of multiple method
parameters across stool and urine matrices represents a comprehensive evaluation of LC-
MS workflows in gastrointestinal disease. The combined optimisation and application of
these workflows help bridge the gap between methodological development and clinical
utility, as demonstrated by their use in large-scale clinical cohorts. Furthermore, the
integration of clinical metadata, objective adherence markers, and metabolic outcomes
exemplifies the multi-layered approach necessary for translational success. This is evident in
the CoD cohort, where treatment-responsive metabolic signatures were characterised in
parallel with improvements in serological markers (tTG), quality of life measures (PedsQL-
GS), and objective measures of gluten intake (gluten immunogenic peptide). The ability to

link metabolomic findings with patient-reported and clinical outcome strengthens the
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clinical relevance of the results. Importantly, this work also extends beyond single matrix
analyses, with stool and urine samples optimised and prepared for metabolomics, setting
the foundation for future multi-omics integration. Finally, the inclusion of a detailed insights
into the role of food additives in gastrointestinal health broadens the scope of the thesis,
highlighting the importance of diet and potential therapeutic strategies in disease
management. These strengths position this work at the intersection of methodological
innovation and translational application, demonstrating the potential of LC-MS

metabolomics to move towards clinical impact in gut health research.

The limitations of this thesis must also be acknowledged. Metabolite identification
confidence of the features identified in this work were at MSI level 2 [14], underscoring the
need for expanded in-house reference libraries. The overall size for the prospective CoD
cohort limited the statistical power of the longitudinal analysis, highlighting the importance
of validation in larger prospective studies. Additionally, method development in this work
was carried out on a ThermoFisher Orbitrap 240 system; however, to enhance the broader
applicability of the protocol, it is important to evaluate whether the optimised protocols can
be reproduced across different LC-MS platforms and laboratory settings. A further limitation
is the absence of direct clinical validation of the identified metabolic signatures, which is
essential to establish their robustness, reproducibility, and added diagnostic or prognostic
value across diverse patient populations and clinical settings [15]. Therefore, while this
thesis demonstrates proof-of-concept applications in IBD and CoD, the translation of
metabolomic biomarkers into routine clinical practice requires rigorous testing, integration
with established clinical endpoints, and demonstration of diagnostic or prognostic utility.
Without this level of clinical validation, the biomarkers identified remain exploratory. To
progress towards clinical adoption, candidate biomarkers must meet several critical
requirements [16]. Biomarkers must demonstrate robustness and reliability, being
detectable despite potential dietary or environmental confounders. Equally important are
stability in biofluids and analytical performance, such as accuracy, precision, sensitivity, and
specificity under laboratory conditions. This includes disease specificity, as it is crucial that a
biomarker can distinguish a disease such as IBD from other conditions that also present
with gut inflammation. This is important as generic markers of intestinal inflammation (e.g.,

faecal calprotectin and C-reactive protein (CRP)) often lack discriminatory power and can be
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elevated across multiple diseases [17]. A successful biomarker must therefore be unique to

the disease of interest rather than reflecting non-specific inflammation.

The progression of this research can be viewed as a pipeline of interconnected
methodological and clinical contributions. The large clinical study cohorts recruited patients
between 2020 and 2024, which generated a substantial collection of faecal, urine, plasma,
and dietary samples, together with detailed clinical and nutritional metadata, creating a
unique source for metabolomics research. The early stages of this thesis centred on
optimising faecal extraction protocols, where a reproducible extraction method was
developed to establish a foundation for standardised LC-MS analysis of gastrointestinal
disease. Building on this methodological framework, subsequent work applied the
optimised approach to clinical cohorts on paediatric CoD patients. At the same time, work
was conducted on the optimisation of a rapid dilute-and-shoot LC-MS workflow that
enabled high-throughput application in large-scale clinical studies. These datasets will
ultimately be integrated across multiple biomatrices and combined with microbiome and
immunological data, in addition to dietary and clinical metadata to advance a multi-omics
framework for understanding gastrointestinal disease mechanisms and guiding personalised

nutritional interventions.

Conclusions

This thesis demonstrated how carefully optimised LC-MS methods can deliver biological
insights that extend beyond descriptive profiling, providing a foundation for translational
research in gastrointestinal disease. The development of robust workflows for stool and
urine provided reproducible pipelines that enabled large-scale analyses. By applying these
optimised methods to IBD and CoD patient cohorts, this work highlights the value of mass
spectrometry-based metabolomics in advancing mechanistic understanding of
gastrointestinal disease, identifying specific metabolites implicated in pathophysiology and
treatment response. These studies illustrate how accelerated LC-MS protocols can make
high-throughout, clinically embedded metabolomics achievable, a prerequisite for
integration into patient stratification and monitoring strategies. Together with continued

collaborative clinical efforts and technological advancements, this work contributes to the
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establishment of standardised LC-MS frameworks, paving the way for robust biomarker

discovery, mechanistic insight, and clinical application in gastrointestinal health and disease.
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Table S1. Untargeted metabolomics experiment elution gradient. Mobile phase A, 99.9% water +
0.1% formic acid; Mobile B, 99.99% MeOH + 0.1% formic acid.

Time (min) Mobile Phase A (%) | Mobile Phase B (%) | Flow rate (mL/min)
0.0 99.0 1.0 0.4
0.5 99.0 1.0 0.4
2.0 50.0 50.0 0.4
10.5 1.0 99.0 0.4
11.0 1.0 99.0 0.4
115 99.0 1.0 0.4
14.9 99.0 1.0 0.4
15.0 99.0 1.0 0.4

Table S2. Targeted metabolomics experiment elution gradient. Mobile phase A, 99.9% H,0 + 0.1%
formic acid; Mobile phase B, 99.9% Acetonitrile + 0.1% formic acid.

Time (min) Mobile Phase A (%) | Mobile Phase B (%) | Flow rate (mL/min)
0 100 0 0.4
2 100 0 0.4
5 75 25 0.4
11 65 35 0.4
15 5 95 0.4
20 5 95 0.4
201 100 0 0.4
20.5 100 0 0.4

Table S3. Overview of Untargeted Metabolite Identification Levels

Number of Metabolites

MSI Identification Level 2 424

MSI Identification Level 3 267

257



Table S4. List of metabolites included in targeted metabolomics method.

Name Molecular | Classific | Precurs | Product | Retent | Ref.(1) Ref.(1) | Target Target Targe | Ref.(1 | Ref.(1) Ref.(1
Formula ation orm/z m/z ion Precurs | Produ | Q1 Pre Collision | t Q3 )Ql Collision | ) Q3
Time orm/z ctm/z | Bias Energy Pre Pre Energy Pre
Bias Bias Bias
2-Aminobutyric | C4HsNO> Organic -26 -12 -11 -26 -26 -17
acid acid 104.1 58.05 2.831 104.1 41.05
2-Ketoglutaric CsHs0O5 Organic 23 12 18 23 13 21
acid acid 144.9 101.1 2.317 144.9 57.05
4-Aminobutyric | C4HsNO; Organic -28 -14 -17 -28 -22 -18
acid acid 104.1 87.05 3.69 104.1 45.1
4- CsHsNOz; | Amino -10 -15 -18 -10 -22 -13
Hydroxyproline acid 132.1 86.05 1.991 132.1 68.05
Acetylcarnitine | CoH1;NOs | Peptide | 204.1 85.05 8.929 | 204.1 60.1 -16 -22 -18 -16 -16 -12
Acetylcholine CH16NO; | Lipid 147.1 87.05 9.165 147.1 88.05 | -12 -16 -17 -12 -16 -17
Aconitic acid CsHsOs Choline | 172.9 85.05 3.536 | 172.9 129.1 | 14 14 16 14 13 12
Adenine CsHsNs Organic -10 -26 -23 -10 -41 -13
acid 136 119.05 6.46 136 65
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Adenosine Ci0H13NsO | Purine -21 -18 -15 -21 -47 -23
4 base 268.1 136.05 6.764 | 268.1 119

Adenosine 3',5'- | CioH12Ns0 | Nucleosi -26 -26 -30 -26 -54 -23

cyclic 6P de

monophosphate 330 136.05 6.179 | 330 119.1

Adenosine C10H14Ns50 | Nucleoti -13 -20 -28 -13 -31 -20

monophosphate | ;P de 348 136.05 2.969 | 348 97.1

Adenylsuccinic C14H1sNsO | Nucleoti -18 -21 -18 -18 -47 -17

acid 1P de 464.1 2521 6.183 | 464.1 162

Alanine CsH;NO; Organic -22 -12 -18
acid 157 97.1 1.927 | 157 42.05

Allantoin C4HsN4O3 | Amino 18 15 18 18 10 15
acid 175.1 70.1 3.365 | 175.1 60.1

Arginine CsH14N4O; | Purine -13 -23 -13 -13 -16 -12
derivati
ve 291 70.1 3.057 | 291 116.05

Argininosuccinic | CioH1sN4sO | Amino -24 -35 -14 -24 -21 -25

acid 6 acid 133.1 87.15 1.953 | 133.1 28.05

Asparagine C4HsN20O; | Organic -20 -12 -18 -20 -29 -30
acid 134 74.05 1.953 | 134 88.1
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Aspartic acid CsH7NO4 Amino -30 -15 -14 -30 -13 -17
acid 134 74.05 1.953 | 134 88.1

Asymmetric CsH1sN4O; | Amino -17 -25 -13 -17 -17 -19

dimethylarginin acid

e 203.1 70.1 7.207 | 203.1 46.1

Carnitine C/HisNOz | Amino -13 -18 -22 -13 -17 -12
acid 162.1 103.05 5.284 | 162.1 60.1

Carnosine CoH14N403 | Amino -18 -24 -23 -18 -16 -17
acid
derivati
ve 2271 110.05 5.365 | 227.1 156.05

Cholic acid C24H4005 Peptide | 407.2 343.15 14.051 | 407.2 345.25 | 13 34 24 13 32 24

Choline CsH14NO Organic -27 -22 -11 -27 -23 -18
acid 104.1 60.05 4436 | 1041 45.1

Citicoline C14H26N40O | Choline -20 -43 -20 -20 -25 -30

11P2 489.1 184.1 2.045 | 489.1 264.05

Citric acid CsHsO7 Nucleoti 12 13 21 12 20 16
de 191.2 111.1 3.209 | 191.2 87.05

Citrulline CeH13N303 | Organic -12 -25 -14 -12 -14 -18
acid 176.1 70.05 2.321 | 176.1 159.05
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Creatine C4H9N30, | Amino -11 -22 -18 -11 -15 -18
acid 132.1 44.05 3431 | 1321 90.05

Creatinine C4H7N50 Organic -10 -19 -18
acid 114.1 44.05 4.82

Cystathionine CsH14N>04 | Lactam -17 -27 -18 -17 -15 -15

S 223 88.05 2.028 | 223 134

Cysteamine C2H7NS Amino -19 -13 -25
acid 78.1 61.05 3.98

Cysteine CsH7;NO,S | Aminoth -29 -16 -16 -29 -25 -23
iol 122 76.05 2.148 | 122 59

Cystine CsH12N>04 | Amino -19 -14 -17 -19 -29 -15

Sz acid 241 151.95 1.908 | 241 73.9

Cytidine CoH13N305 | Amino -19 -13 -23 -19 -42 -19
acid 2441 112.05 6.393 | 244.1 95

Cytidine 3',5'- CsH12N307 | Nucleosi -11 -22 -22

cyclic P de

monophosphate 306 112.1 4.093

Cytidine CoH14N30s | Nucleoti -26 -14 -23 -26 -54 -19

monophosphate | P de

324 112.05 2.26 324 95
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Cytosine C4HsNsO Nucleoti -30 -23 -20
de 112 95.1 4.044

Dimethylglycine | CsHoNO; Amino -12 -16 -11 -12 -38 -17
acid 104.1 58.05 2.189 | 104.1 44.05

Dopa CoH1:NO4s | Amino -30 -14 -11
acid 198.1 152.1 6.278

Dopamine CsH11NO; | Amino -13 -27 -19 -13 -15 -15
acid
derivati
ve 154.1 91.05 8.078 | 154.1 137.05

Epinephrine CoHisNOs; | Catecho -15 -12 -19 -15 -44 -15
lamine 184.1 166.1 7.164 | 184.1 77

FAD Cy7H33P2N | Catecho -32 -47 -28 -32 -23 -26

9015 lamine 786.15 136.1 6.213 | 786.15 348.1
FMN Ci7H21N4O | Coenzy 24 28 18 24 38 14
oP me 455 97 6.193 | 455 78.9

Fumaric acid C4H404 Coenzy 12 11 12 12 14 26
me 115 71.1 4571 | 115 26.95

Glutamic acid CsHoNO, Organic -11 -17 -17 -11 -30 -23
acid 147.9 84.1 2.253 | 147.9 56.1

262




Glutamine CsH1oN20s | Amino -11 -18 -17 -11 -16 -27
acid 147.1 84.15 2.073 | 1471 130.1
Glutathione C10H17N30 | Amino -25 -13 -13
6S acid 308 179.1 4.543
Glycine C:HsNO; Peptide | 75.9 30.15 2.029 -17 -11 -30
Guanine CsHsNsO Amino 17 19 17 30
acid 150 133 5.623 | 150 66.1
Guanosine C10H13NsO | Purine -22 -12 -17 -22 -39 -15
5 base 284 152 6.187 | 284 135
Guanosine 3',5'- | C1oH12NsO | Nucleosi -28 -22 -17 -28 -48 -27
cyclic 7P de
monophosphate 346 152.05 5.393 | 346 135.05
Guanosine C10H12NsO | Nucleoti -30 -17 -17 -30 -49 -27
monophosphate | sP de 364 152.05 2.552 | 364 135
Histamine CsHoN3 Nucleoti -30 -17 -20 -30 -29 -17
de 112.1 95.05 5.803 | 112.1 41.05
Histidine CeHgN3O2 | Amino -18 -15 -23 -18 -35 -22
acid
derivati
ve 155.9 110.1 2901 | 155.9 56.1
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Homocysteine C4H9sNO,S | Amino -10 -13 -18 -10 -22 -21
acid 136 90.1 3.188 | 136 56.1
Homocystine CsH1N204 | Amino -21 -11 -15 -21 -34 -19
Sz acid
3 1 269 136.05 | 4.321
Hypoxanthine CsHaN4,O Amino -10 -32 -22 -10 -22 -23
acid 137 55.05 4251 | 137 110
Inosine C10H12N4O | Purine -23 -10 -15 -23 -41 -24
5 derivati
ve 269.1 137.05 6.211 | 269.1 118.95
Isocitric acid CeHsO- Nucleosi 12 15 20 12 24 27
de 191.2 111.1 2.358 | 191.2 73
Isoleucine CsH13NO; | Organic -30 -12 -17 -30 -19 -14
acid 132.1 86.2 7.241 | 1321 69.15
Kynurenine Ci0H12N20 | Amino -18 -11 -22 -18 -14 -19
3 acid 209.1 192.05 8.34 209.1 94.1
Lactic acid C3HeO3 Amino 10 7 17
acid
derivati
ve 89.3 89.05 2.795
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Leucine CsH13NO; | Organic -30 -12 -17 -30 -18 -29
acid 132.1 86.05 7.52 132.1 30.05
Lysine CsH14N,0; | Amino -11 -18 -18
acid 147.1 84.1 2.894
Malic acid C4HeOs Amino 18 17 24 18 17 26
acid 133.1 114.95 2.358 | 133.1 71.15
Methionine CsH11NO; | Organic -11 -18 -11 -11 -14 -21
S acid 149.9 56.1 5.304 | 149.9 104.1
Methionine CsH1:NOs | Amino 19 15 14
sulfone S acid 180 79.2 2.184
Methionine CsH1:NOs | Amino -12 -14 -15 -12 -25 -22
sulfoxide S acid 166 74.1 2.206 | 166 55.95
NAD C21H27N7O | Coenzy 26 17 38 26 17 26
14P2 me 663.1 541.05 3.882 | 663.1 540.1
Niacinamide CeHsN2O | Vitamin | 123.1 80.05 5.344 | 1231 53.1 -10 -23 -16 -10 -31 -21
Nicotinic acid CeHsNO, Organic -17 -22 -15 -17 -24 -15
acid 124.05 80.05 4.08 124.05 78.05
Norepinephrine | CgH11:NO; | Catecho -14 -10 -17 -14 -21 -22
lamine 170.1 152.15 | 4.988 | 170.1 107.1

265




Ophthalmic acid | C11H19N3O | Organic -24 -23 -23 -24 -13 -18
6 acid 290.1 58.1 5.35 290.1 161.1

Ornitine CsH12N20, | Amino -10 -18 -14 -10 -15 -24
acid 133.1 70.1 2.679 | 133.1 116.05

Orotic acid CsH4N2O4 | Organic 17 13 22 17 22 15
acid 155 111.1 2.588 | 155 421

Oxidized Ca0H3:N6O | Peptide 24 24 20 24 48 28

glutathione 1252 611.1 306 6.253 | 611.1 143.05

Pantothenic CoH7NOs | Organic -18 -15 -18 -18 -23 -14

acid acid 220.1 90.15 6.249 | 220.1 72.05

Phenylalanine CoH1:NO; | Amino -12 -15 -24 -12 -29 -20
acid 166.1 120.1 8.068 | 166.1 103.1

Proline CsHgoNO2 | Amino -30 -18 -14 -30 -35 -30
acid 116.1 70.15 2.609 | 116.1 28.05

Pyruvic acid C3H405 Organic 12 7 16 12 12 15
acid 86.9 87.05 2.585 | 86.9 42.95

S- C14H20N6O | Amino -15 -21 -15 -15 -21 -29

Adenosylhomoc | sS acid

ysteine derivati
ve 385.1 134 8.197 | 385.1 136.05
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S- CisH22N6O | Amino -15 -16 -18 -15 -30 -29
Adenosylmethio | sS acid
nine derivati
ve 399.1 250.05 6.939 | 399.1 136.1
Serine C3H7NOs Amino -25 -12 -11
acid 105.9 60.1 1.96
Serotonin CioH12N20 | Amino -15 -13 -18 -15 -49 -14
acid
derivati
ve 177.1 160.1 10.527 | 177.1 77.05
Succinic acid C4HgO4 Organic 13 13 28 13 14 19
acid 117.3 73 4.055 | 117.3 99.05
Symmetric CsHisN4O; | Amino -17 -27 -13 -17 -27 -14
dimethylarginin acid
e 203.1 70.15 6.817 | 203.1 71.1
Taurocholic acid | C2H4sNO; | Organic 30 55 20 30 55 25
S acid 514.2 107.1 7.781 | 514.2 124.05
Threonine CsHoNO3 Amino -27 -13 -14 -27 -17 -11
acid 120.1 74.15 2.133 | 120.1 56.05
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Thymidine Ci0H14N20 | Nucleosi -18 -12 -14
5 de 243.1 127.1 6.175

Thymidine Ci0H13N20 | Nucleoti -25 -22 -16 -25 -9 -15

monophosphate | sP, de 322.9 81.1 3.07 322.9 207.1

Thymine CsHeN202 | Pyrimidi -11 -29 -23 -11 -8 -21
ne base | 127.1 54.05 5.448 | 127.1 110.05

Tryptophan C11H12N20 | Amino -16 -12 -23 -16 -18 -17

2 acid 205.1 188.15 10.092 | 205.1 146.1

Tyrosine CoH11NO3 | Amino -14 -15 -27 -14 -30 -18
acid 182.1 136.1 6.694 | 182.1 91.1

Uracil CsHsN202 | Nucleosi -20 -17 -13
de 113 70 2.986

Uric acid CsH4N4O3 | Organic 12 19 24 12 19 17
acid 167.1 123.95 3.159 | 167.1 96.2

Uridine CoH1:N,06 | Nucleosi -19 -10 -23
de 245 113.05 | 4.444

Valine CoH12N206 | Amino -27 -13 -15 -27 -24 -11
acid 118.1 72.15 4761 | 1181 55.05

Xanthine CsHaN4O2 | Purine 17 20 20 17 21 15
base 151 108 4.093 | 151 42
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Table S5. Parameters of Compound Discoverer workflow.

Workflow Node

Workflow Parameter

Workflow Information

Input files

.raw data

Select Spectra

Spectrum Properties

Filter

Lower RT limit: O

Upper RT limit: 0

Scan Event Filters

Polarity Mode: Is +

Align Retention Times

General Settings

Alignment Model: Adaptive
curve
Maximum Shift [min]: 0.3

Mass Tolerance: 2 ppm

Detect Compounds

General Settings

Mass Tolerance: 2 ppm
Intensity Tolerance [%]: 30
S/N Threshold: 5

Min. Peak Intensity: 500 000
lons: [2M + FA + H]-1; [2M +
H]+1; [2M + K]+1; [2M +
Nal]+1; [2M - H]-1; [M + 2H]+2;
[M+Cl]-1; [M + FA - H]-1; [M +
H]+1; [M+H+K]+2; 2M + H +
MeOH]+1; [M + H + Na]+2; [M
+H—=H,0]+1; [M +K]+1; [M +
Na]+1; [M - 2H]-2; [M + 2H +
K]-1; [M -H]-1; [M -H,0]-1
Min. Element Counts: CH
Max. Element Counts: C90
H190 Br3 Cl4 K2 N10 Na2 015
P5 S5

Group Compounds

Compound

Consolidation

Mass Tolerance: 2 ppm

RT Tolerance [min]: 0.2

Fragment Data

Selection

Preferred lons: [M - H] +1; [M-
H] -1
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Search mzCloud

General Settings

Compound Classes:
Endogenous Metabolites,
Excipients/ Additives/
Colourants, Extractables/
Leachables, Natural Products/
Medicines, Natural Toxins,
Personal Care Products/
Cosmetics, Small Molecule
Chemicals, Steroids/ Vitamins/
Hormones, Therapeutic/
Prescription Drugs

Precursor Mass Tolerance: 10
ppm

FT Fragment Mass Tolerance:
10 ppm

Library: Autoprocessed,
Reference

Post. Processing: Recalibrated
Annotation Matching.

Fragments: True

DDA Search

Identity Search: Cosine
Match Activation Type: True
Match Activation Energy:
Match with Tolerance
Activation Energy: 20

Apply Intensity Threshold:
True

Similarity Search: None

Match Factor Threshold: 60

DIA Search

Use DIA Scans: False
Max. Isolation Width [Da]: 500
Match Activation Type: False

Match Activation Energy: Any
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Activation Energy Tolerance:
100

Apply Intensity Threshold:
False

Match Factor Threshold: 20

Predict Compositions

Prediction Settings

Mass Tolerance: 2 ppm
Min. Element Counts: C. H
Max. Element Counts: C90
H190 Br3 Cl4 K2 N10 Na2 015
P5 S5

Min. RDBE: 0

Max. RDBE: 40

Min. H/C: 0.1

Max. H/C: 4

Max.# Candidates: 10
Max.# Internal Candidates:

200

Pattern Matching

Intensity Tolerance [%]: 30
Intensity Threshold [%]: 0.1
S/N Threshold: 3

Min. Spectral Fit [%]: 30
Min. Pattern Cov. [%]: 90
Use Dynamic Recalibration:

True

Fragments Matching

Use Fragments: True
Mass Tolerance: 2 ppm

S/N Threshold: 5

Map to Metabolika

Pathways

Search Settings

Metabolika pathways: All
Search Mode: By Formula or

Mass

By Mass Search Settings

Mass Tolerance: 2 ppm
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By Formula Search

Settings

Max. # of Predicted
Compositions to be searched

per Compound: 3

Display Settings

Max. # of Pathways in

‘Pathways’ column: 20

Apply mzLogic

General Settings

FT Fragment Mass Tolerance:
10 ppm

IT Fragment Mass Tolerance:
0.4 Da

Max. # Compounds: 0

Max. # mzCloud Similarity
Results to consider per
Compound: 10

Match Factor Threshold: 30

Assign Compound

Annotations

General Settings

Mass Tolerance: 2 ppm

Data Sources

Data source #1: mzCloud
Search

Data source #2: Predicted
Compositions

Data source #3: MassList
Search

Data source #4: ChemSpider
Search

Data source #5: Metabolika

Search

Sorting Rules

Use mzLogic: True

Use Spectral Distance: True
SFit Threshold: 20

SFit Range: 20

Fill Gaps General Settings Mass Tolerance: 2 ppm

S/N Threshold: 5

Use Real Peak Detection: True
Apply QC Correction General Settings Min. QC Coverage [%]: 30
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Max. QC Area. RSD [%]: 30
Max. Corrected QC Area RSD
[%]: 25

Max. # Files Between QC Files:

15
Mark Background General Settings Max. Sample/ Blank: 5
Compounds Max. Blank/ Sample: 0

Hide Background: True

Differential Analysis General Settings Log10 Transform Values: True

-Log10 P-value

Log2 Fold Change

Figure S1. Untargeted differential analysis of sample weight showing volcano plot of altered
metabolites, plotted as log2 fold change vs -log10P. Metabolites that are significantly increased in 50
mg samples compared to 20 mg samples are highlighted in red and those that are significantly
decreased are shown in green. Differences in metabolite level were defined by a log2 fold change of

1 and the significance level was set at p < 0.05.
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Figure S2. Untargeted differential analysis of extraction solvent showing volcano plot of altered
metabolites between (A) MeOH vs. MeOH/ H,0, (B) CHCls/ MeOH vs. MeOH/ H,0, and (C) CHCls/
MeOH vs MeOH, plotted as log2 fold change vs -log10P. Metabolites that are significantly increased
are highlighted in red and those that are significantly decreased are shown in green. Differences in
metabolite level were defined by a log2 fold change of 1 and the significance level was set at p <

0.05.
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Figure S3. Untargeted differential analysis of extraction solvent showing the volcano plot of altered
metabolites between (A) sonication vs. bead beating, (B) freeze-thaw vs. bead beating and (C)
freeze-thaw vs. sonication, plotted as log2 fold change vs -log10P. Metabolites that are significantly
increased are highlighted in red and those that are significantly decreased are shown in green.
Differences in metabolite levels were defined by a log2 fold change of 1 and the significance level

was set at p < 0.05.
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Figure S4. Untargeted differential analysis of sample-solvent ratio showing volcano plot of altered
metabolites between (A) 1:10 vs. 1:5, (B) 1:20 vs. 1:5 and (C) 1:20: vs. 1:10, plotted as log2 fold
change vs -log10P. Metabolites that are significantly increased are highlighted red and those that are
significantly decreased are shown in green. Differences in metabolite level were defined by a log2

fold change of 1 and the significance level was set at p < 0.05.

276



“Logl0 P-value

“Log10 P-value

Log2 Fold Change

Log2 Fold Change

-Logl0 P-value
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Figure S5. Untargeted differential analysis of cell lysis techniques. Volcano plot of (A) HC vs. CD; (B)
CoD vs. CD (C) HC vs. CoD, for all patients. Log2 fold change vs. -log10P. Metabolites. Metabolites
that are significantly increased are highlighted in red and those that are significantly decreased are
shown in green. Differences in metabolite level were defined by a log2 fold change of 1 and the

significance level was set at p < 0.05.

[ Optimised Faecal Extraction Protocol ]

/—[ Extraction Reconstitution ]ﬁ /‘[ LC-MS }—\

Injection volume
1L

Extraction solvent

\j | 100% MeOH (w1:v20) Reconstitution solvent _
. 50/50 Acetonitrile: H,O
50 mg freeze- Disrupti
. ption method
dried faccal Bead beating \

sample

i

Figure S6. Summary of the developed methodology pipeline. Multi-parameter analysis showed that
50 mg samples give the strongest MS output, and from the extraction solvents analysed, MeOH is the
most effective. Additionally, cellular metabolite release is optimal using bead beating as the cell lysis
method. Combining optimised parameters provides an experimental protocol for faecal metabolite

extraction that can be used for metabolomic analysis.
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Table S1. Quantification of amino acids in coeliac disease. Values given as mean + SEM.

Cross-Sectional Study Prospective Study
Amino Acid HC Siblings ucD TCD At GFD 6 GFD 12
group group diagnosis | months months
Arginine 1588082 | 1786225 | 1261866 | 1513880 | 1261866 | 1434455 | 8122521
4 1 5 8 2 8 (138977
(278346 | (713441 | (333412 | (362721 | (3334124 | (479019 7)
7) 3) 4) 1) ) 2)

Aspartic acid | 6020308 | 4753226 | 4073034 | 4606635 | 4073033 | 6781616 | 5503273
(122863 | (941970) | (350347) | (643270 | (350347) | (173170 | (113243
9) ) 1) 1)
Cysteine 62677 | 50678 | 52651 | 48658 52650 72165 63446
(3399) | (6704) | (5191) | (4457) | (5191) | (11768) | (8108)

Glutamine 1289084 | 1338287 | 1762913 | 1952446 | 1762913 | 2357966 | 3145746

3 0 3 5 2 4 3

(201464 | (250578 | (326502 | (355535 | (3265021 | (138077 | (100805
7) 1) 1) 8) ) 7) 43)

Glutamic acid | 6524902 | 4300235 | 6505539 | 5273210 | 6505539 | 8382859 | 7426237
1 9 7 4 7 9 2
(541387 | (610556 | (747377 | (575533 | (7473774 | (710856 | (932755

5) 3) 4) 6) ) 5) 4)
Histidine 5389946 | 3736512 | 3335733 | 5712237 | 3335732 | 3031059 | 4812482
(606537) | (673736) | (607412) | (909728 3 (748452) | (103476
) (607412) 5)
Isoleucine 2187470 | 1816400 | 2132814 | 1768099 | 2132814 | 2890452 | 2078249
74 08 25 12 25 32 46

(160858 | (222727 | (227360 | (176102 | (2273602 | (436857 | (250568

24) 77) 24) 76) 4) 56) 48)
Leucine 2378643 | 2075883 | 2684815 | 2136742 | 2684815 | 3057547 | 2489422
29 67 34 63 33 77 58

(166523 | (261195 | (286431 | (208595 | (2864317 | (448883 | (320624
80) 20) 76) 91) 6) 53) 11)

Methionine 4072592 | 1393068 | 3879236 | 2814854 | 3879236 | 6084588 | 4832659
8 8 3 2 3 9 0
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(592856 | (329328 | (709836 | (549806 | (7098365 | (130296 | (903528
7) 1) 5) 5) ) 08) 8)
Phenylalanin | 1233601 | 1112691 | 1145552 | 1070965 | 1145552 | 1285291 | 1188512
e 37 82 19 46 19 34 81
(274113 | (384227 | (533550 | (487749 | (5335509 | (661029 | (459465
5) 7) 9) 1) ) 7) 5)
Proline 7079344 | 5397336 | 7550354 | 5597088 | 7550354 | 8960039 | 8143439
4 7 6 8 7 6 5
(472204 | (875407 | (768995 | (586771 | (7689958 | (769020 | (943391
7) 1) 8) 2) ) 4) 9)
Serine 1522123 | 1072567 | 1205871 | 1172239 | 1205871 | 1928426 | 1677558
4 4 4 5 4 5 8
(153987 | (169594 | (140253 | (146823 | (1402536 | (346284 | (328447
9) 9) 6) 2) ) 3) 1)
Threonine 1874590 | 1320964 | 1539757 | 1367155 | 1539757 | 2121681 | 1837300
9 9 0 1 0 9 6
(109563 | (136177 | (155266 | (134711 | (1552669 | (328654 | (253091
4) 8) 9) 5) ) 2) 3)
Tryptophan | 5533279 | 3824524 | 5232059 | 4392343 | 5232059 | 5608443 | 4922937
4 1 8 9 8 6 7
(409853 | (451118 | (550996 | (491576 | (5509960 | (962685 | (712158
9) 4) 0) 5) ) 0) 6)
Tyrosine 7299983 | 6346050 | 6734320 | 6118833 | 6734320 | 7470358 | 7054669
9 7 7 2 7 3 9
(259695 | (454442 | (391553 | (389872 | (3915537 | (485087 | (352407
1) 0) 7) 5) ) 8) 6)
Valine 1989514 | 1687026 | 1869735 | 1615050 | 1869735 | 2231506 | 1917129
68 66 63 64 63 79 23
(741540 | (104796 | (125382 | (107048 | (1253823 | (169740 | (134311
9) 70) 38) 12) 8) 42) 42)
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Hippuric.acid
Glycine
Lauramide

leu.pro.tyr
B ncreaseainte

. Increased in UCD

Metabolite

Nutriacholic.acid

Undecanoylcarnitine

Monolaurin

X9.11..dehydroaxinysterol

S.Allyl.L.cysteine

2 -1 0
Signed VIP Score

Figure S1. Variable importance in projection (VIP) plot showing the top differential metabolites from
the orthogonal partial least square discriminant analysis (OPLS-DA) model comparing UCD vs. HC.
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Figure S2. Orthogonal partial least square discriminant analysis (OPLS-DA) and variable importance
for treated vs untreated coeliac disease (TCD vs UCD). (A) OPLS-DA scores plot comparing TCD vs UCD
with points representing individual samples and ellipses showing 95% confidence intervals, R2Y =

0.767, Q2 = 0.0963. (B) Variable importance in projection (VIP) plot showing the top differential
metabolites from the orthogonal partial least square discriminant analysis (OPLS-DA) model

comparing TCD vs. UCD.
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Figure S3. Orthogonal partial least square discriminant analysis (OPLS-DA) and variable importance
for treated coeliac disease (TCD) vs HCs. (A) OPLS-DA scores plot comparing TCD vs HC with points
representing individual samples and ellipses showing 95% confidence intervals, R2Y = 0.843, Q2 =
0.548. (B) Variable importance in projection (VIP) plot showing the top differential metabolites from
the orthogonal partial least square discriminant analysis (OPLS-DA) model comparing TCD vs. HC.

283



Table S2. Top differentially abundant metabolites identified in the prospective cohort, with
corresponding VIP scores in the cross-sectional cohort.

Variable Direction VIP Score
Monolinolenin Increased in TCD 1.055896
N-Acetyl-L-glutamic acid Low model
contribution VIP<1
N-[(2S)-2-Hydroxypropanoyl]-L- Increased in TCD
phenylalanine 1.465013
Xanthurenic acid Increased in TCD 1.956463
Methyl-alpha-aspartyl phenylalaninate Low model VIP<1
contribution
3-Amino-4,7-dihydroxy-8- Low model VIP<1
methylcoumarin contribution
L-Alanyl-L-proline Low model VIP<1
contribution
Phenylalanine Increased in TCD 1.009252
O-alpha-D-mannosyl-L-threonine Low model
contribution VIP<1
Galactosylhydroxylysine Increased in UCD 2.110364
N-indole-3-acetyl-leucine Increased in UCD 2.199974
Pyridoxine Increased in UCD 1.177892
Butyryl-L-homoserine-lactone Increased in UCD 1.268518
9(11)-dehydroaxinysterol Increased in UCD 2.040323
N-alpha-methyl-L-lysine Low model
contribution VIP<1
Bz-Arg-OEt Increased in UCD 1.140965
150
® (TG
# PedsQL-GS
100
- "
50
e
At Dll;mlll 6 mont;u GFD 12 mon:hl GFD

Figure S4. tTG and PedsQL-GS levels in coeliac disease patients throughout 6 and 12 months on a
GFD.
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7.3 APPENDIX 3

SUPPLEMENTARY INFORMATION FOR

Optimisation of a Dilute-and-Shoot UHPLC-MS Method for High-Throughput Urinary
Metabolomics

Patricia E. Kelly , Gillian Farrell , Konstantinos Gkikas?, Caroline Kerbiriou?, Bernadette White?,

Konstantinos Gerasimidis?, Nicholas J. W. Rattray?.

!Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of
Strathclyde, Glasgow G4 ORE, UK.

2School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow Royal Infirmary,
Glasgow G12 8QQ, UK.
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Table S1. Compound Discoverer metabolite filter settings.

Compound Discoverer Filter

Setting

Name

Is not blank

Annotated A Mass [ppm]

Is between -5.00 and 5.00

Annotation Source

Has status full match in source

Predicted Compositions

Annotation Source

Has status full match in source

ChemSpider Search

MS2

Is not equal to No MS2

Table S2. Compound Discoverer workflow settings.

Workflow Node

Workflow Parameter

Workflow Information

Input files

.raw data

Select Spectra

Spectrum Properties

Filter

Lower RT limit: O

Upper RT limit: 0

Scan Event Filters

Polarity Mode: Is +

Align Retention Times

General Settings

Alignment Model: Adaptive
curve
Maximum Shift [min]: 0.3

Mass Tolerance: 2 ppm

Detect Compounds

General Settings

Mass Tolerance: 2 ppm
Intensity Tolerance [%]: 30
S/N Threshold: 5

Min. Peak Intensity: 2 000 000
lons: [2M + FA + H]-1; [2M +
H]+1; [2M + K]+1; [2M +
Nal]+1; [2M - H]-1; [M + 2H]+2;
[M+Cl]-1; [M + FA - H]-1; [M +
H]+1; [M+H +K]+2; 2M + H +
MeOH]+1; [M + H + Na]+2; [M
+H—=Hy0]+1; [M +K]+1; [M +
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Na]+1; [M - 2H]-2; [M + 2H +
K]-1; [M -H]-1; [M -H,0]-1
Min. Element Counts: CH
Max. Element Counts: C90

H190 Br3 Cl4 K2 N10 Na2 015

P5 S5
Group Compounds Compound Mass Tolerance: 2 ppm
Consolidation RT Tolerance [min]: 0.2
Fragment Data Preferred lons: [M - H] +1; [M-
Selection H] -1
Search mzCloud General Settings Compound Classes:

Endogenous Metabolites,
Excipients/ Additives/
Colourants, Extractables/
Leachables, Natural Products/
Medicines, Natural Toxins,
Personal Care Products/
Cosmetics, Small Molecule
Chemicals, Steroids/ Vitamins/
Hormones, Therapeutic/
Prescription Drugs

Precursor Mass Tolerance: 10
ppm

FT Fragment Mass Tolerance:
10 ppm

Library: Autoprocessed,
Reference

Post. Processing: Recalibrated
Annotation Matching.

Fragments: True

DDA Search Identity Search: Cosine

Match Activation Type: True
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Match Activation Energy:
Match with Tolerance
Activation Energy: 20
Apply Intensity Threshold:
True

Similarity Search: None

Match Factor Threshold: 60

DIA Search Use DIA Scans: False

Max. Isolation Width [Da]: 500
Match Activation Type: False
Match Activation Energy: Any
Activation Energy Tolerance:
100

Apply Intensity Threshold:
False

Match Factor Threshold: 20

Predict Compositions Prediction Settings Mass Tolerance: 2 ppm
Min. Element Counts: C. H
Max. Element Counts: C90
H190 Br3 Cl4 K2 N10 Na2 015
P5 S5

Min. RDBE: 0

Max. RDBE: 40

Min. H/C: 0.1

Max. H/C: 4

Max.# Candidates: 10
Max.# Internal Candidates:

200

Pattern Matching Intensity Tolerance [%]: 30
Intensity Threshold [%]: 0.1
S/N Threshold: 3

Min. Spectral Fit [%]: 30
Min. Pattern Cov. [%]: 90

288



Use Dynamic Recalibration:

True

Fragments Matching Use Fragments: True
Mass Tolerance: 2 ppm

S/N Threshold: 5

Map to Metabolika Search Settings Metabolika pathways: All
Pathways Search Mode: By Formula or
Mass

By Mass Search Settings | Mass Tolerance: 2 ppm

By Formula Search Max. # of Predicted
Settings Compositions to be searched

per Compound: 3

Display Settings Max. # of Pathways in

‘Pathways’ column: 20

Apply mzLogic General Settings FT Fragment Mass Tolerance:
10 ppm

IT Fragment Mass Tolerance:
0.4 Da

Max. # Compounds: 0

Max. # mzCloud Similarity
Results to consider per
Compound: 10

Match Factor Threshold: 30

Assign Compound General Settings Mass Tolerance: 2 ppm
Annotations Data Sources Data source #1: mzCloud
Search

Data source #2: Predicted
Compositions

Data source #3: MassList
Search

Data source #4: ChemSpider

Search
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Data source #5: Metabolika

Search

Sorting Rules Use mzLogic: True

Use Spectral Distance: True
SFit Threshold: 20

SFit Range: 20

Fill Gaps General Settings Mass Tolerance: 2 ppm

S/N Threshold: 5

Use Real Peak Detection: True
Apply QC Correction General Settings Min. QC Coverage [%]: 30

Max. QC Area. RSD [%]: 30
Max. Corrected QC Area RSD
[%]: 25

Max. # Files Between QC Files:
15

Mark Background

Compounds

General Settings Max. Sample/ Blank: 5
Max. Blank/ Sample: 0

Hide Background: True

Differential Analysis

General Settings Log10 Transform Values: True

Table S3. Peak Quality Factor Descriptions.

Peak Quality Factor (PQF)

Description

Zig-zag

The zig-zag index measures the vertical peak smoothness,
which is quantified by calculating the number and
magnitude of vertical fluctuations, i.e., zig-zags in the signal

intensity profile.

FWHMZ2Base

The FWHM2Base is defined as the ratio of the FWHM to the
full width at baseline, thereby providing a metric for

qguantifying peak symmetry, resolution, and tailing.

Jaggedness

A quantification of the smoothness of a peak as measured by

the irregularity or variability of the signal intensity.

Modality

The modality index indicates the number of peak apexs and

infers the peak resolution and elution properties.
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Figure S1. Comparison of chromatograms obtained from untargeted LC-MS analysis using different
solvent systems for method optimisation. Each colour represents a solvent used for extraction with
signal intensities shown. The colours are represented by the following solvents: black — Acetonitrile
(1.90E9), red - Acetonitrile/ H2O (2.5E9), blue — H,0 (2.3E9), orange — IPA (1.81E9), pink — IPA/ ACN

(2.22E9), green — IPA/ H,0 (2.07E9), brown — IPA/MeOH (2.05E9), light blue — MeOH (2.39E9), grey —
MeOH/ ACN (2.44E9), purple — MeOH/H,0 (2.22E9).
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Figure S2. The effect of the extraction solvent on untargeted urinary metabolomics. Outcomes were
assessed by (A) the number of metabolites detected, (B) their average peak rating, (C) the area under
the curve (AUC) of the detected creatinine peak and (D) the associated peak rating. The peak
performance creatinine of creatinine further evaluated, as measured by the quantification of peak
quality factors (PQF)s, (E) Zigzag, (F) FWHM2Base, (G) Jaggedness, and (H) Modality indices.
*Creatinine was not detected when IPA/H,0 or MeOH were used as the extraction solvents.
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Figure S3. Comparison of chromatograms obtained from untargeted LC-MS analysis using different
extraction solvent dilution factors for method optimisation. Each colour represents a solvent used for
extraction with signal intensities shown. The colours are represented by the following solvents: black
— dilution factor 1 (1.7E9), red — dilution factor 2 (2.21E9), green — dilution facctor 5 (1.7E9), blue —
dilution factor 10 (1.34E9).
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Figure S4. Comparison of chromatograms obtained from untargeted LC-MS analysis using different
injection volumes for method optimisation. Each colour represents a solvent used for extraction with
signal intensities shown. The colours are represented by the following solvents: black — 0.5 (5.09E8),
red — 1 (8.3E8), green — 2 (1.31E9), blue — 5 (2.07E9).
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Figure S5. Comparison of chromatograms obtained from untargeted LC-MS analysis using different
flow rates for method optimisation. Each colour represents a solvent used for extraction with signal
intensities shown. The colours are represented by the following solvents: black — 0.25 mL/min
(1.86E9), red — 0.3 mL/min (2.42E9), green — 0.4 mL/min (2.31E9), blue — 0.5 mL/min (2.35E9), pink —
0.6 mL/min (2.30E9).
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Figure S6. Comparison of chromatograms obtained from untargeted LC-MS analysis using different
gradient curve parameter values for method optimisation. Each colour represents a solvent used for
extraction with signal intensities shown. The colours are represented by the following solvents: black
— gradient curve of 3 (2.17E9), red — 5 (1.96E9), green — 7 (1.84E9).

Table S4. Untargeted metabolomics experiment elution gradient. Mobile phase A, 99.9% water +

0.1% formic acid, mobile phase B, 99.9% ACN + 0.1% formic acid.

Time (min) Mobile Phase A | Mobile Phase B | Flow rate Gradient
(%) (%) (mL/min) curve
0.0 99.0 1.0 0.4 7
0.5 99.0 1.0 0.4 7
4.0 50.0 50.0 0.4 7
6.0 5.0 55.0 0.4 7
6.01 1.0 99.0 0.4 7
8.0 1.0 99.0 0.4 7
9.5 99.0 1.0 0.4 7
10.0 99.0 1.0 0.4 7
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Figure S7. Principal component analysis (PCA) plots comparing three normalisation strategies,
evaluating two study groups. (A) Non-normalised, (B) Creatinine normalised, and (C) PQN normalised
urine data.
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Table S5. Coefficient of Variation (CV) values for metabolites detected in three normalisation

methods. Metabolites were detected at MSI level 2.

Metabolite

Acadesine
Acetaminophen glucuronide
Acetanilide
Acetoacetic acid
Acetyl-L-carnitine
Acetylagmatine
Acronycidine
Adenosine

Aderbasib

Ala-pro

alangiside
Alanyltyrosine
alloxydim

Allyl cyclohexanevalerate
Allyl undecylenate
alpha-CEHC
Aminoadipic acid
Amoxicillin
Amylbenzene
Anhydrovitamin A
Ankorine

anticapsin

Apiin

Aprobarbital
Arginyltyrosine
Artesunate

Ascorbic acid

asp-gin

asp-leu

Asp-tyr

Aspartame
Aspartyl-L-proline
Aspartylphenylalanine
Asymmetric dimethylarginine
Azathioprine
Bakankosin
Benzaldehyde
Benzenepentol

Benzyl 6-0-D-xylopyranosyl-D-glucopyranoside
Bicyclomycin

Bilirubin

Coefficient of Variation (CV)

Non-
Normalise

0.331688
0.164351
0.248759
0.155875
0.342468
0.391684
0.2768
1.25527
0.424737
0.31781
0.256917
0.340473
0.327958
0.211445
0.185418
0.150504
0.497858
0.150426
0.190241
0.192672
0.318115
0.220638
0.184699
0.714812
0.992742
0.154425
0.676673
0.420086
0.206243
0.380151
0.147943
0.253005
0.144494
1.375601
0.141684
0.183495
0.159799
0.223226
0.186646
0.47775
0.270926

Creatinine
Normalised

0.560431
0.223531
1.711
0.803121
0.300348
0.587913
0.26706
1.349067
0.510881
0.295325
0.296218
0.280605
0.367294
0.293483
0.153912
0.52575
0.423307
0.285977
0.198508
0.196269
0.360032
0.140762
0.182665
2.368973
1.043739
0.206209
0.651875
0.35792
0.387374
0.315801
0.199428
0.336906
0.198865
1.462349
0.271926
0.220842
0.17218
0.23625
0.232944
0.420024
0.339281

PQN
Normalise

0.370701
0.104566
2.520153
2.009837
0.298355
0.416512
0.250245
1.266701

0.40471
0.268673
0.246416
0.292433
0.301518
0.278732
0.110492
1.339858
0.491964

0.13401
0.124037

0.19329
0.305704
0.136709
0.103117
3.805627
1.058323
0.088057
0.631369
0.367315
0.227824
0.331717
0.107807
0.230723
0.102862
1.701033
0.120996
0.120613
0.329652
0.190758
0.128437
0.423532
0.384622
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Binapacryl
Biopterin

Biotin

Biotin sulfone
bispyribac
Boschnaloside
Buchananine
Bufadienolide
Buflomedil
Butenylcarnitine
butilfenin
butoctamide

Butyl 3-(2-butoxy-2-oxoethyl)-3-hydroxy-4-oxo-2-
oxetanecarboxylate
C12-Carnitine

Capric acid
Caprolactam
Capryloylglycine
carbapenem MM22383
carbazeran
Carbidopa
Carbinoxamine
Carboxy-ibuprofen
Carboxytolbutamide
Carminomycin |
Carvone

Cassaidine
Cervonoyl ethanolamide
Cetirizine

Cetraxate
Chlorpheniramine
Ciclopirox
Cinnamoylglycine
cis-trihomoaconitic acid
Citric acid
Coronatine
Corticosterone
Cortisol

Creatine

Creatinine
crinamidine
Crotonic acid
Cyclamic acid

cyclic Melatonin
Cyclo(leucylleucine)
Cyclohexylamine

0.393696
0.495612
0.209777
0.559814
0.870502
0.149748

0.53707
0.280447
0.338015
0.283405
0.157854
0.609991
0.191025

0.610126
0.286486

0.18946
0.162916
0.166343
0.150181
0.154507
0.481381
0.766323
0.189998
0.288822
0.275154
0.170115
0.149239
0.175663
0.259837
0.435135
0.480207
0.149903
0.204978
0.468642

0.29638
0.429358
0.178864
0.203362
0.205989
0.350479
1.772563
0.366809
0.181304
0.339559
0.335535

0.456469
0.653828
0.151497

0.57346
0.922125

0.20617
0.431021
0.345598
0.379196
0.194321

0.19916
0.689398
0.223066

0.603067
0.310978
1.590292
0.816068
0.189836
0.202463
0.274143
0.458593
0.882086
0.322531
0.490485

0.34754
0.171355
0.208235
0.184145
0.248949
0.337113
1.704539
0.195858
0.304273
0.703948
0.340257
0.432366
0.236692
0.104461
0.205989
0.360186
1.740595
0.291482
0.178561
0.437208
1.149178

0.37949
0.512979

0.14408
0.542461
0.868396
0.090828
0.477016
0.270061
0.326198
0.225307
0.072822
0.642857

0.16371

0.578048
0.38058
2.806307
1.555328
0.112196
0.083905
0.126903
0.674575
0.778611
0.184449
0.840031
0.27638
0.164251
0.175742
0.12115
0.191821
0.433725
3.007247
0.118189
0.159975
0.509385
0.424193
0.409621
0.131256
0.142706
0.408276
0.3418
1.810214
0.317842
0.127048
0.317552
2.412831
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cypendazole
Cyprodenate

cys-his

Cytarabine
D-(+)-Pyroglutamic Acid
D-(+)-Tryptophan

D-Lysyl-L-valyl-D-valyl-L-allothreonine

Decanohydroxamic acid
Decanoylcarnitine
delcorine
Demethylalangiside
deoxyhypusine
Desloratadine

Dhurrin

Diaminopimelic acid
diethyl oxalpropionate
Diethylcarbamazine N-oxide
dihomomethionine

Dihydrocaffeic acid 3-O-glucuronide

Dihydroconiferin
Dihydrothymine
Dihyroxy-1H-indole glucuronide |
Dinoseb

Dipivefrin

DL-Carnitine
DL-Aminocaprylic acid
Docosahexaenoic acid ethyl ester
Dodecanedioic acid
Dopamine

Dynone

Ecgonine

Ecgonine methyl ester
Ectoine

Elacytarabine
Epinephrine
Epinephrine glucuronide
Epinephrine sulfate
Epithienamycin E
Ergonovine

Esmolol

Eterobarb

Ethychlozate

Ethyl {2-[(2E)-5-(hexopyranosyloxy)-2-penten-1-yl]-

3-oxocyclopentyl}acetate
Ethyl butylacetylaminopropionate
Ethyl methylphenylglycidate

0.47187
0.158089
0.210014
0.256925
0.235877
0.155632
0.201977

0.14702
0.305246
0.309998
0.217644
0.321101
0.169599
0.843351
0.508944
0.159229
0.249947
0.201114
0.261502
0.165359
0.204331
0.388787
0.353421
0.210077
0.244206
0.167564
0.211067
0.148114
2.489068
0.490969
0.154566
0.175907
0.318361
0.489785
0.147356
1.886223
0.413029
0.849786
0.213346
0.246455
0.161949
0.166104
0.276538

0.157822
0.419673

0.40928
0.202698
0.224411
0.348519
0.516011
0.301537
1.356479
0.212356
0.327253
0.344542
0.231229
0.230469
1.285405
0.777095
0.425101
0.219939
0.221475

0.20775
0.407591
0.219242
0.066222
0.392393
0.404443

0.26613
0.102423
0.191454

0.23706
0.181343
2.848741
0.415169
0.213666
0.362642
0.213948
0.473824
0.177008
2.002812
0.439102
0.744306
0.179154
0.217002
0.203795
0.214088
0.343872

0.222262
0.538436

0.470699
0.100317
0.162586
0.228832
1.867827
0.159441

2.08465
0.168328
0.280795
0.361682
0.149617
0.267052
2.294232
0.847057
0.466074
0.077385
0.218731
0.151185
0.605558
0.097977
0.249492
0.344731
0.316515
0.166644
0.184625

0.11783
0.176818
0.065507
3.345976
0.475163
0.353273
0.799798
0.261204
0.588573

0.06129
1.924165
0.394113
0.804779

0.15519
0.193084

0.09059
0.252722
0.489263

0.248788
0.422145
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Ethylbenzene
Ethylenediamine-N,N'-diacetic acid
Fenethylline

Fenitropan

Ferulic acid

Fesoterodine

Fexofenadine

fosfocreatinine

Fraxin

Furmecyclox
Fusarochromanone

Gabexate

Galantamine

Gentisuric acid

gibberellin A(3) O-D-glucoside
glaucarubinone

GIn-GIn

gln-phe

Glucosylgalactosyl hydroxylysine
Glutarylcarnitine

Gly-DL-Phe

Glycinexylidide

Glycodiazine
Glycyl-L-asparaginyl-D-leucine
Glycylglutamine

Glycylproline

Guanadrel

Guvacoline

Gynocardin

Hawkinsin

HC Blue 1

HC blue 2

Heliotron

Heptylbenzene
hercynylcysteine sulfoxide
Hesperetin 7-O-glucuronide
Hexadecanedioic acid mono-L-carnitine ester
Hexadienic acid
hexahomomethionine
Hexanoylcarnitine

Hippuric acid

His-pro

Histamine

Histidinol

Homo-L-arginine
Hostmaniane

0.160197
0.297495
0.156587
0.158359
0.184779
0.187629
0.159324
0.244949
0.18396
0.285387
0.203979
0.193036
0.241581
0.483957
0.264389
0.279087
0.537328
0.276119
0.337886
0.345741
0.255917
0.20543
0.183288
0.182829
0.433104
0.296133
0.238543
0.177359
0.460024
0.627212
0.162341
0.487953
0.729528
0.280753
0.296864
0.290197
0.739949
0.275793
0.287371
0.298564
0.142487
0.373188
0.289122
0.247367
0.1958
0.161938

0.204977
0.294168
0.192454
0.193679
0.218278
0.163314
0.197178
0.174223
0.282202
0.329559
0.179944
0.182213
0.162279

0.41269
0.391938
0.270198
0.492761
0.264919
0.247756
0.507643
0.444448
0.269173
0.278163
0.193662
0.345923
0.237142
0.309154
0.364491
0.660554
0.536181
0.246389
0.441689
0.688243

0.23201
0.307135
0.248552
0.643359
1.459118

0.31689

0.34525
0.204384
0.419367
0.191359
0.384297
0.136096
0.446571

0.09234
0.259281
0.082502
0.072068
0.488299
0.112165
0.147096
0.207969
0.406463
0.266969
0.108891
0.174989
0.229246
0.439795
0.287664
0.254165
0.510629
0.443854
0.332777
0.386649
0.278562

0.16598
0.152087
0.117845
0.388222
0.243368
0.194018
2.119097
0.483235
0.602509
0.127131

0.45446

0.7117
0.266212
0.276555
0.228185
0.677168
2.639353
0.243606
0.276389
0.077657
0.449158
0.229764
0.675695
0.173443
0.636659
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Hydroxyphenylacetylglycine
Hymexazol N-glucoside
Hymexazol O-glucoside
Hypusine

Imidazolelactic acid
Indicine

indol-2-one
Indole-3-acetic-acid-O-glucuronide
Indole-3-lactic acid
Indoleacetyl glutamic acid
Indoleacetyl glutamine
Indoleacetylaspartate
Indoxyl-D-glucuronide
Ingenol mebutate
Integerrimine
Isoamylamine
Isocromadurine
Isoetharine

Isofraxidin

Isohomovanillic acid
Isopropyl D-galactopyranoside
Istamycin C1

Jasmonic acid
L-(-)-Methionine
L-(+)-Citrulline
L-dihydroanticapsin
L-Dopa

L-Fucose

L-Glutamine
L-Hexanoylcarnitine
L-Histidine

L-Kynurenine

L-Lysine

L-Norleucine
L-Phenylalanine
L-Prolyl-4-hydroxy-L-prolin
L-Tyrosine
L-Tyrosyl-L-prolyl-L-tryptophyl-L-threonine
L-Valine
L-Glutamyl-L-valine
Lacosamide

Lenticin

leu-gin

Leu-Val

Leucylasparagine
Leucylphenylalanine

0.28416
0.532662
0.380657
0.268522
0.218811
0.472134
0.167712
0.147009
0.154059
0.163304

0.14718
0.165199
0.171099
0.228816
0.159928

0.45038

0.18373
0.194218
0.229667
0.189483
0.281203
0.159864
0.826192
0.193416
0.290849

0.76921
0.635251
0.394307

0.16719
0.179523
0.299082
0.241936
0.253939
0.523615
0.223008
0.486566

0.67572

0.27627
0.251274
0.242976
0.362168

0.16022
0.942871
0.378883
0.423208
0.163508

0.314002
0.595535
0.323573
0.182997
0.091507
0.432033
0.300046
0.205831

0.20254
0.196731
0.200903
0.177339
0.275101
0.319057
0.184717
1.967554
0.175259
0.266554
0.290378
0.205123
0.622895
0.590179
2.410488
0.253963
0.193134
0.714401

0.54845

0.32819

0.28502
0.214972
0.357517
0.173924
0.259965
1.325822
0.138711
0.400441
0.649253
0.293397
2.326997
0.150224
0.358232
0.209501
0.887265
0.296812
0.352995
0.209994

0.27093
0.516619
0.338524
0.198424
0.296764
0.535858
0.140461
0.104993
0.111446
0.100034
0.105389
0.056579
0.131407

0.22163
0.107912
3.277011
0.104885
0.155272
0.445235
0.132522
1.212605
1.041499
3.711872
0.229807
0.237147
0.738968
0.597785
0.335018
0.160159
0.115176
0.720725
0.279605
0.692792
1.933269
0.165768
0.439451
0.653036
0.202258
3.576211
0.191378
0.329935
0.108546

0.91859
0.339353
0.407638

0.07569
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Leucylproline

Levetiracetam

Levodropropizine

Lidocaine

Lincomycin

Lorbamate

Lovastatin

lys-leu

Lysylvaline

Maculosin

Malonylcarnitine

Mercaptopurine

merimepodib

Metanephrine

Metaproterenol

Metharbital

Methotrexate

Methyl (3aR,5Z,9E,11aS)-10-methyl-3-methylene-2-
oxo-2,3,33,4,7,8,11,11a-
octahydrocyclodeca[blfuran-6-carboxylate
Methyl {2-[(2E)-5-(hexopyranosyloxy)-2-penten-1-
yl]-3-oxocyclopentyl}acetate

methyl 1-methyl-1,2,5,6-tetrahydropyridine-3-
carboxylate hydrobromide

methyl 2-(benzoylamino)acetate

Methyl 2-deoxy-3-0-(4-deoxy-4-methyl-D-
glucopyranuronosyl)-2-[(Z)-(1-
hydroxyethylidene)amino]-D-galactopyranoside
Methyl 2,3-dihydro-3-hydroxy-2-oxo-1H-indole-3-
acetate

Methyl O-sulfo-L-tyrosinate
Methylimidazoleacetic acid

Methylone

Methylphenidate

Metronidazole

Miglustat

Miraxanthin-I|

Monobutyl phthalate

Monocrotaline

Mycalamide A

Myriocin

Myxalamid A

Myxochelin A
N-(2-Amino-3-phenylpropanoyl)glutamine
N-(2-Furylmethyl)-7-(D-glucopyranosyl)-7H-purin-6-
amine

N-(2,3,4-Trimethoxybenzoyl)glycine

0.148412
2.381772
0.322456
0.138593
0.18303
0.151322
0.151619
0.396623
0.186148
0.165839
0.412071
0.319764
0.4767
0.159321
0.202729
0.304391
0.171295
0.15818

0.150116

0.428445

0.151156
0.539998

0.286039

0.36435
0.206398

0.16921
0.154032
0.184129
0.227881
0.219989
0.160886
0.185007
0.148155
0.151595
0.252481
0.514659
0.145898
1.248388

0.545433

0.235863
2.229663
0.361108
0.208654
0.245908
0.197298
0.183767
0.492484
0.280986
0.166447
0.328398
0.226919
0.511171
0.184378
0.188581
0.178655
0.226753
0.246242

0.221298

0.364538

0.201633
0.610709

0.471623

0.535876
0.254213
0.161331
0.421352
0.330791
0.369665
0.197496
0.225703
0.230135
0.186483
0.195201
0.284929

0.57637
0.190044
1.390662

0.451145

0.094682
2.246061
0.372482
0.109192
0.113663

0.10497

0.10349
0.394544
0.166515
0.091521
0.370772
0.257342
0.461507
0.083612
0.139127
0.246544

0.11013
0.263893

0.082561

0.542968

0.070434
0.673654

0.853315

0.412776
1.507307
0.071626
0.617855
0.187088
0.224221
0.222078
0.132681
0.114397
0.099777
0.113412
0.208852

0.83752
0.077515
1.258077

0.536334
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N-(3-Carboxypropanoyl)-5-hydroxynorvaline
N-(4-Heptanyl)-1,3-benzodioxole-5-carboxamide
N-(N-(3-Amino-3-carboxypropyl)-3-amino-3-
carboxypropyl)azetidine-2-carboxylic acid
N-[(1S)-4-Carbamimidamido-1-
carboxybutyl]asparaginylaspartic acid
N-[(5S)-5-Amino-5-carboxypentanoyl]cysteinyl-D-
valine

N-[3-Carboxy-2-(carboxymethyl)-2-
hydroxypropanoyllglutamic acid
N-[4-(5-Amino-2,2-dimethyl-4-oxo-3,4-dihydro-2H-
chromen-6-yl)-1-hydroxy-4-oxo-2-
butanyl]acetamide
N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid
N-{3-[(4-Acetamidobutyl)amino]propyl}acetamide
N-a-Acetyl-L-arginine
N-Acetyl-1-aspartylglutamic acid
N-Acetyl-D-lactosamine

N-Acetyl-L-aspartic acid
N-Acetyl-L-carnosine

N-Acetyl-L-cysteine

N-Acetyl-L-glutamic acid
N-Acetyl-L-histidine

N-Acetyl-L-leucine

N-Acetyl-L-phenylalanine
N-Acetyl-L-tyrosine
N-acetyl-S-(N-allylthiocarbamoyl)-L-cysteine
N-Acetyl-S-2-hydroxyethyl-L-cysteine
N-Acetyl-D-glucosamine

N-Acetylglutamine

N-Acetylhistamine

N-Acetylleucylleucine

N-Acetylneuraminic acid

N-Acetylputrescine

N-Acetylserotonin

N-Acetyltryptophan

N-Acetylvanilalanine

N-Formyl-L-methionine

N-lauroylglycine

N-Methylhydantoin

N-Methyltryptamine

N-Nitrosodibutylamine
N-Phenyl-D-glucopyranosylamine
N-Phenylacetylglutamic acid
N-Phenylacetylglutamine
N-Phenylacetylphenylalanine
N-Propionylmethionine

0.204847
0.151245
0.156409

0.199077

0.243922

0.67086

0.484051

0.192549
0.363407
0.281418

0.27831
0.252648
0.438187
0.337344
0.284255
0.283404
0.263607
0.148272
0.222097
0.146561
0.157649
0.355982
0.521256
0.399395
0.277219
0.230877

0.52682

0.25504
0.167842
0.140351
0.191411
0.368457
0.189277
0.513828
0.167143
0.227034
0.204544
0.149707

0.14445

0.15486
0.175014

0.305035
0.171053
0.274021

0.286247

0.248057

0.879566

0.710285

0.297121
0.590073
0.200804
0.387451
0.255438
0.564806
0.265729
0.302959
0.431851
0.167046
0.201481
0.214958
0.226592
0.192294
0.321149
0.541227
0.375086
0.173322
0.165707
3.481264
0.147585

0.29944
0.176916
0.223194
0.372596

0.23854
2.040917
0.285684
0.248912
0.180672
0.190315
0.189237
0.168287
0.180023

0.159285
0.093215
0.146954

0.152527

0.179768

0.722492

1.165616

0.290482
0.399255
0.22753
0.276376
0.321597
0.444441
0.28774
0.263248
0.298402
0.635833
0.192337
0.158961
0.102458
0.090869
0.315127
0.96582
0.364154
0.21545
0.153911
4.566382
0.339673
0.138583
0.084884
0.145415
0.327426
0.150151
3.34829
0.140871
0.198799
0.141962
0.103635
0.109358
0.0908
0.104914
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N-Undecanoylglycine

N,N-Bis(2-hydroxyethyl)dodecanamide

N~2~-(Carboxymethyl)arginine
N~6~-Octanoyllysine
N2-Acetylornithine
N2-Methylguanosine
N4-Acetylcytidine
N6-Acetyl-L-lysine
N6-Me-Adenosine
N6-threonylcarbamoyladenosine
N8-Acetylspermidine
Nadolol

Nalidixic acid

NAPQI

Naringenin 5-O-glucuronide
Naringeninchalcone
Neopterin

Nicotine

Nicotinic acid

Nicotinuric acid
Nigakilactone N
Nikethamide

Nipradilol

Nitrendipine
Nitrosoguvacoline
Nivalenol
Nonanoylcarnitine
Norepinephrine sulfate
Norlidocaine

NP-001346

NP-008998

NP-015114

NP-022229

nylon cyclic dimer
0O-(4,8-dimethylnonanoyl)carnitine
O-heptanoylcarnitine
O-ureido-D-serine
Ondansetron

ophthalmic acid
ornithinoalanine
Oxamniquine

Oxepanone

Oxirane, 2-(6-heptenyl)-3-(2,4-pentadiynyl)-

Oxprenolol
p-Cresol
Panthenol

0.233495
1.089717
0.296249
0.184044

0.37063
0.647697
0.174486
0.323827
0.226859
0.152505
0.340977

0.20111
0.176426
0.164552
0.169561
0.236606
0.451713
0.283076

0.20623
0.139317
0.392138
0.201938

0.22576
0.177238

0.24415
0.172226
0.233895
0.295327
0.229815
0.158958
0.354106
0.227729
0.331123
0.314564
0.410737
0.144191
0.330518
0.179822
0.238684
0.242802
0.266799
0.202331
0.963779
0.158189
0.164323
0.182662

2.57094
4.574854
0.206247
0.204302
0.259675
0.629113
0.184393
0.215362
0.234606
0.202709
0.210551
0.238502
0.193687

0.23256
0.202194
0.201699
0.408871
0.246242
0.416905
0.233614
0.481155
0.252871
0.225399
0.186977
0.143701
0.222967
5.075334
0.471569

0.32373
0.229062
1.386893
0.343428

0.35676
0.214933
0.461419
0.192052
0.252138
0.243813
0.150508
0.309088
0.343666
0.329517
0.957275
0.264899
0.238606

0.25095

4.182982
6.352043
0.252059
0.127928
0.317642
0.635784
0.122642
0.280305
0.1859
0.116409
0.27856
0.216754
0.132602
0.10309
0.151012
0.281431
0.410897
0.34983
0.860414
0.082143
0.424544
0.192334
0.165233
0.099717
0.193018
0.10488
6.13448
0.313336
0.210802
0.124838
2.041588
0.218186
0.302823
0.276207
0.399308
0.117882
0.448852
0.127262
0.183106
0.199134
0.235679
0.284829
0.944684
0.127755
0.413346
0.149079
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Pantothenic acid
Paracetamol
Paracetamol-cysteine
Paucin

pC-HSL

PEG n6

PEG n7

PEG n8

Peimine
Pentadecanoylcarnitine
pentahomomethionine
pentigetide
Perindopril
Phendimetrazine
Phenol
Phenylacetylglutamine
Phenylglucuronide
Pilocarpine

Pindolol

Pipecolic acid
Pirfenidone
Prednisolone
pretyrosine
Prilocaine

Primidolol
Proacaciberin
prohydrojasmon
Proline

promolate
Proparacaine
Propionylcarnitine
Pulcherriminic acid
Pyridoxal
Pyridoxamine
Pyridoxine

Pyrogallol-2-O-glucuronide

Pyrraline
Quinoline
Rehmaionoside C
Reproterol

Resorcinol diglycidyl ether

Retinoyl b-glucuronide
Riboflavin reduced
Ricinine

Riddelliine
Rimexolone

0.194529
0.157065
0.196659
0.198271
0.270358
0.110793
0.163204
0.165874
0.149702
0.193626
0.1745
0.23274
0.186217
0.177205
0.145026
0.652851
0.178633
0.171152
0.223284
0.560622
0.304433
0.172187
0.351671
0.141257
0.140712
0.206209
0.180909
0.335728
0.232785
0.23695
0.311119
0.151327
0.214617
0.375743
0.359944
0.629119
0.187039
0.147601
0.143138
0.562148
0.187084
0.363992
0.170393
0.206369
0.161288
0.167803

0.354304
0.287579
0.152786
0.306611
0.386706
1.136993
0.538931
0.482854
0.215384
0.229951
0.2415
0.213495
0.248316
0.297735
0.192206
0.707634
0.299124
0.249467
0.189929
0.715232
0.40387
0.245322
0.446817
0.22835
0.219276
0.235968
0.214508
0.328209
0.249983
0.244662
0.199369
0.201255
0.19916
0.853103
1.206134
0.612531
0.352668
0.203286
0.220702
0.685498
0.18282
0.473172
0.218638
0.511904
0.211871
0.184154

0.195236
0.254364
0.144436
0.198089
0.273914
2.076918
0.974217

0.82985
0.104081
0.212569
0.142768
0.169501
0.139696
0.387348
0.096181
0.996101
0.154602
0.113951
0.164897
1.240568
0.770898
0.136126
0.341285
0.107283
0.068338
0.148355
0.131466

0.54103
0.172716
0.242576
0.263527
0.106939
0.262255
1.510623
2.313478
0.609958

0.19961
0.102019
0.132793
0.640339

0.10774
0.390087
0.230438
1.034023
0.105205
0.178869

306



Ritalinic acid
Rosmarinine

S-(Hydroxyphenylacetothiohydroximoyl)-L-cysteine
S-{[(1aR,7aS,10aS,10bR)-1a,5-Dimethyl-9-oxo-

1a,2,3,6,7,73,8,9,10a,10b-

decahydrooxireno[9,10]cyclodeca[1,2-b]furan-8-

yllmethyl}-L-cysteine
S-3-oxodecanoyl cysteamine
S-Adenosylhomocysteine
S-Allylcysteine
Salbutamol

Salbutamol 4-O-sulfate
salicyluric D-glucuronide
Salidroside
salinosporamide B
Salsolinol

Sebacic acid

Sedanolide
Senkyunolide

Sertraline

Sinapinic acid
sinapoyltartronic acid
Solasodine

Sorbitan, monododecanoate
Spermidine

Spermine
streptobiosamine
Suberic acid
Suberylglycine
Succinyladenosine
Succinylcarnitine
Sulcatol
Sulfamethoxazole
Sulfisoxazole
Sulforaphane
Sulforaphane-N-acetylcysteine
Sulfurol propionate
Sulpiride

Taurocholic acid
Tazobactam

Terbutaline

terpendole K
Tetradecanedioic acid
Tetraglycol
tetrahomomethionine
Tetrahydrocortisone
Tetrahydrodeoxycorticosterone

0.14142
0.200348
0.408751
0.465386

0.338514
0.602834
0.162633
0.190686
0.517906
0.219252
0.502534
0.163227
0.194174
0.156706
0.139127

0.85224
0.341986
0.175468
0.314356
0.150339
0.210312
0.400294
0.511136
0.215078

0.14676
0.144507
0.182323
0.197236
0.214047
0.354594
0.165422
0.180415
0.168102
0.348165
0.701935
0.312682

0.79147
0.152427
0.321131

0.17236
0.216286

0.28373
0.157787
0.157561

0.204418
0.214554
0.453504
0.485365

0.390078
0.831539
0.188669
0.212488
0.468755

0.29954
0.530941
0.160661
0.189226
0.220601
0.820194
1.293216
1.318373
0.254403
0.215867
0.200107
0.236926
0.340448
0.484167
0.257041
0.744518
0.210205
0.352256
0.194728
0.243421
0.605785

0.32267
0.976828
0.168937
0.334826

0.81657

0.36701
0.935795
0.184747
0.542516
0.198547
1.326633

0.36305
0.192819
0.191159

0.096882
0.128489
0.420195
0.482862

0.32874
0.643527
0.103062
0.125309

0.56292
0.172677
0.549261

0.09026
0.213657
0.080734
1.358763
2.577889
2.418345
0.117383
0.272873
0.087041
0.198781
0.361949
0.572616
0.164968
3.657796
0.098062
0.194563
0.114244
0.260388
0.713066
0.157768
2.238646
0.090055
0.327847
0.704828

0.3232
0.813885
0.098546
0.978596
0.128988
2.600929
0.252061
0.122029
0.144828
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tetrahydrothiophene
Theobromine
Theodrenaline
threonylphenylalanine
thymol sulfate
Tiglylcarnitine

Tilisolol

Tixocortol pivalate
Tomatidine

Tranexamic Acid
trans-3-Hexenoic acid
trans-3-Hydroxycotinine glucuronide
trans-3-Indoleacrylic acid
trans-Aconitic acid
trans-Cinnamaldehyde
trans-Zeatin
Trepibutone
Triazolealanine

Triethyl citrate
trilobolide

Trilostane

Tripropionin
Tris(2-chloroethyl) phosphate
Troxipide

trp-asn

trp-gin

Tyramine
Tyramine-O-sulfate
Tyrosylleucine
Ubiquinones
Undecylenic acid

Uric acid

Urolithin A-3-O-glucuronide
Valerylglycine

Valproic acid glucuronide
Valyl-4-hydroxyproline
Valylproline

Valylvaline

Viloxazine

Voglibose

Volkenin

Xamoterol

Xanthine

Xanthurenic acid
Zizyphine A
Aspartylphenylalanine

0.292711
0.390348
0.256128
0.155584
0.170225
0.143955
0.297271
0.546773
0.155223
0.224919
0.176523
0.186818
0.148308
0.497782
0.519516
0.285318
0.765782

0.40605
0.224506
0.150284
0.225365
0.154557
0.596277
0.171437

0.26009
1.251359
0.216763
0.328387
0.171313
0.143381
0.415197
0.384076
0.233669
0.181983

0.29027
0.173664
0.200726
0.284595
0.224811
0.772722
0.184812
0.193878

0.63263
0.204458
0.347744
0.142998

0.376661
0.568461
0.283413
0.200906
0.303033
0.223793
0.317945
0.591653
0.202701
0.199024
0.297176
0.230659
0.278071
0.735006
0.567103
0.419152
0.798173
2.407128

0.23993
0.195618
0.807984
0.215207
3.360629
0.209572
0.318562
1.202536
0.173506
0.236152
0.303673
0.196457
0.466046
0.464273
0.249989
1.076733
0.342244
0.194153
0.375608
0.204871
0.241033
0.708369
0.249742
0.177453
0.881734
0.313938
0.363505
0.219259

0.396093
0.475733
0.292816
0.082986
0.146923
0.118754
0.285394
0.551898
0.116408
0.151521
0.546455

0.13969
0.138858
0.534719
0.688743

0.28294
0.764142
3.400803
0.181852
0.066166
1.523081

0.10837
5.340446
0.109803
0.318903
1.410074
0.158297

0.26304
0.161411
0.098909
0.531941
0.362455
0.227947
2.068156
0.292613
0.081477
0.202452
0.228331
0.297489
0.723647
0.121438
0.117697
0.675956
0.191564
0.397917

0.10682
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Aminobutyryl-lysine

Glu-Ala

Glu-Gly

(-)-Caryophyllene oxide

(-)-Epicatechin 7-O-glucuronide

(-)-Slaframine

(+)-ar-Turmerone
(1R,2R,3S,6S,7R,95,10S,11S,13R,14R)-11-(1-
Hydroxy-2-propanyl)-3,7,10-trimethyl-15-
oxapentacyclopentadecane-2,6,9,11,13,14-hexol
4-(hydroxymethyl)-4-cyclohexene-1,2,3-triol]
(1S,3R,4R,5R)-1,3,4-trihydroxy-5-{[(2E)-3-(4-
hydroxy-3-methoxyphenyl)prop-2-
enoyl]oxy}cyclohexane-1-carboxylic acid
(1S,4S)-menthone-8-thioacetate
(1S,5R,9R,13R)-1,5,9-trimethyl-11,14,15,16-
tetraoxatetracyclohexadecan-10-one
(1S,5R)-5-Isopropenyl-2-methyl-2-cyclohexen-1-yl
12-D-glucopyranoside
(2E)-3-Methyl-4-(sulfooxy)-2-butenoic acid
(2E)-N-(4-Amino-2-hydroxybutyl)-3-(3,4-
dihydroxyphenyl)acrylamide
(2R,35,4S,5R,6S)-2-(Hydroxymethyl)-6-[4-(3-
hydroxyprop-1-enyl)-2,6-dimethoxyphenoxy]oxane-
3,4,5-triol
(2S,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-
dihydroxyoxolane-2-carboxamide
(2S,4R,9aR)-4-(2-Acetyl-4-oxo-3(4H)-quinazolinyl)-
dimethyl-1,9a-dihydro-3H-spiro[furan-2,9-
imidazo[1,2-a]indole]-3,5(2H,4H)-dione
(2S,4R,9aS)-4-(2-Acetyl-4-oxo-3(4H)-quinazolinyl)-
hydroxy-2-dimethyl-1-dihydro-3H-spiro[furan-2,9-
imidazo[1,2-a]indole]-3,5(2H,4H)-dione
(2S,45)-hypoglycin B
(2S,8R)-2-Amino-8-hydroxydecanoic acid
(25)-3-(1H-Imidazol-4-yl)-2-({[(3S,4S,5R)-2,3,4-
trihydroxy-5-(hydroxymethyl)tetrahydro-2-
furanyllmethyl}amino)propanoic acid
(2S)-3-Phenyl-2-({[(3S,4S,5R)-2,3,4-trihydroxy-5-
(hydroxymethyl)tetrahydro-2-
furanyllmethyl}amino)propanoic acid
(2S)-4-Methyl-2-({[(3S,4S,5R)-2,3,4-trihydroxy-5-
(hydroxymethyl)tetrahydro-2-
furanyllmethyl}amino)pentanoic acid
(22)-12-Hydroxy-2-(hydroxymethyl)-1-methoxy-11-
methyl-7-methylene-6-oxo0-5,14-
dioxatricyclo[9.2.1.0~4,8~]tetradec-2-en-9-yl (22)-2-
methyl-2-butenoate
(22)-2-(2-Ethoxy-2-oxoethylidene)succinic acid
(22)-2-Benzylideneheptyl hydrogen sulfate

0.481968
0.310242

0.3239
0.254561
0.195062
0.171492
1.456936
0.347949

0.229718
0.157461

0.359417

0.547882

0.366548

1.756889
0.170207

0.158707

0.249847

1.432741

0.216387

0.19171
0.170426
0.417627

0.163067

0.291007

0.554219

0.169328
0.465283

0.830146
0.415253
0.260512
0.264222
0.210161
0.202027
1.411757
0.401549

0.310433
0.220712

0.37052

0.665347

0.454958

2.583507
0.192946

0.225907

0.187143

1.334294

0.230962

0.369998
0.222746
0.368444

0.235149

0.21632

0.646187

0.198687
0.719191

1.452028
0.291309
0.263579

0.27309
0.108122
0.120046
1.404034
0.348237

0.410693
0.117491

0.317329
0.790285

0.452968

3.248098
0.114848

0.09472

0.195592

1.627176

0.149094

0.206855
0.115551
0.376403

0.090232

0.238382

0.567906

0.090592
1.230672
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(3E,5S,6S,7S,9R,11E,13E,15R,16R)-16-Ethyl-15-
(hydroxymethyl)-5,7,9-trimethyl-2,10-
dioxooxacyclohexadeca-3,11,13-trien-6-yl 3,4,6-
trideoxy-3-(dimethylamino)-D-xylo-hexopyranoside
(3R,5aS,6S,10aR)-6-Hydroxy-3-(hydroxymethyl)-2-
methyl-10a-(methylsulfanyl)-3-sulfanyl-
2,3,5a,6,10,10a-hexahydropyrazino[1,2-alindole-
1,4-dione
(3R,5aS,6S,10aR)-6-Hydroxy-3-(hydroxymethyl)-2-
methyl-3,10a-disulfanyl-2,3,5a,6,10,10a-
hexahydropyrazino[1,2-alindole-1,4-dione
(3s,6R,75)-6,7-Dihydroxy-8-methyl-8-
azabicyclo[3.2.1]oct-3-yl (2E)-2-methyl-2-butenoate
(3S,95,14aR)-3,6-Dimethyl-9-{6-[(25)-2-oxiranyl]-6-
oxohexyl}decahydropyrrolo[1,2-
al[1,4,7,10]tetraazacyclododecine-1,4,7,10-tetrone
(35)-3-{(2)-[(35)-3-{(2)-[(3R)-3-Amino-1-hydroxy-4-
methylpentylidenelamino}-1-
hydroxybutylidenelamino}-5-methylhexanoic acid
4,15-Diacetoxy-3-hydroxy-12,13-epoxytrichothec-9-
en-8-yl propionate
(4S)-4-{[2-O-(L-Arabinofuranosyl)-L-
arabinofuranosyl]oxy}proline
(5Z,82)-5,8-Tetradecadienoic acid
(pabeta)-Tazettine
(6R,82)-6-Hydroxy-3-oxo-8-tetradecenoic acid
(6R)-5-Acetamido-4-0-acetyl-3,5-dideoxy-6-[(1R)-
1,2,3-trihydroxypropyl]-L-threo-hex-2-
ulopyranosonic acid
(8S,92)-9-Heptadecene-4,6-diyne-1,8-diol
(Carbamoylamino)(4-hydroxyphenyl)acetic acid
(E)-1,3-Tridecadiene-5,7,9,11-tetrayne
(E)-3-O-Methyl entacapone
(R)-1-Aminopropan-2-yl phosphate
(S)-2-hydrazino-3-(4-hydroxy-3-methoxyphenyl)-2-
methylpropionic acid
(2,52)-5-{[(1Z,25)-6-Amino-1-{[(1Z,2R)-1-{[(1R)-1-
carboxyethyllimino}-1-hydroxy-2-propanyl]imino}-
1-hydroxy-2-hexanyl]imino}-N-[(2S)-2-amino-1-
hydroxypropylidene]-5-hydroxy-L-norvaline
(2)-desulfoglucotropeolin
[(1S,2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-
yl]l(6-methoxyquinolin-4-yl)methanol
[3-(Hydroxymethyl)-3-methyl-2-
oxobicyclo[2.2.1]hept-1-ylimethyl hexopyranoside
[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-buten-1-
yl)phenyl]acetic acid
[7-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-
(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydro-2-
naphthalenyllmethyl pentofuranoside

0.178163

0.217555

0.181181

0.169978

0.174336

0.142592

0.155358

0.630996

0.184557

0.4766
0.701005
0.540722

0.184325
0.760532
0.372078
0.328584
0.334285
0.159402

0.188247

0.220312
0.278387

0.179269

0.183173

0.381939

0.204171

0.310916

0.18985

0.203964

0.212615

0.215664

0.220004

0.600658

0.22928
0.471912
0.790497
0.771716

0.214268
0.871514
0.270637
0.323197
1.032856
0.204186

0.228683

0.330183
0.355977

0.253483

0.245038

0.400269

0.225226

0.5248

0.117874

0.105052

0.102292

0.10452

0.438429

0.607729

0.168216
0.596421
0.743858
0.578806

0.124491
0.815612
0.422015
0.271197
1.898265
0.109865

0.22372

0.506384
0.277265

0.155587

0.150582

0.381955
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{(1R,2R)-2-[(2Z)-5-(D-glucopyranosyloxy)pent-2-en-
1-yl]-3-oxocyclopentyl}acetic acid
{2-[2-(Isobutyryloxy)-4-methylphenyl]-2-
oxiranyl}methyl 2-methylbutanoate
1-(3-Furyl)-1,4-pentanediol
1-(4-Hydroxy-3-methoxyphenyl)-3,5-
hexadecanedione
1-(D-Ribofuranosyl)-1,3,4,7-tetrahydro-2H-1,3-
diazepin-2-one
1-[(5-Amino-5-carboxypentyl)amino]-1-
deoxyfructose
1-[3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-
hydroxyimidazole-4-carboxamide
1-Adamantanamine

1-Hexyl-2-methylbenzene
1-hydroxyhexanoylglycine
1-Isothiocyanato-2-(methylthio)ethane
1-Methyladenine

1-Methylguanine

1-Methylinosine

1-Methyluric acid
1-0-3,7,12-Trihydroxy-24-oxocholan-24-yl]-D-
galactopyranose

1,2-Benzisothiazolin-3-one
1,2,3,4,Tetrahydro-1,5,7-trimethylnapthalene
1,2,4-Trimethoxy-5-propenylbenzene
1,3-Dimethyluric acid

1,3,5-Heptatriene, (E,E)-
1,3,7-trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-
dione

1,4-Dihydroxy-7-isopropylidene-1,4-
dimethyloctahydro-6(1H)-azulenone
1,5-Anhydro-1-(2,4,6-trihydroxyphenyl)hexitol
1,5-Anhydro-1-{2-(3,4-dihydroxytetrahydro-2-
furanyl)-4,7-dihydroxy-5-[(2E)-3-(4-hydroxyphenyl)-
2-propenoyl]-6-oxo0-6,7-dihydro-1H-indol-7-
ylthexitol

1,7-Dihydroxy-12-methyl-13-vinyl-2,10-
dioxatetracyclo[5.4.1.1~8,11~.0~4,12~]tridecan-9-
one
1,7-Dihydroxy-6,6-dimethyl-3,5,5a,6,7,8,9a,9b-
octahydronaphtho[1,2-c]furan-9(1H)-one
1,7-Dimethyluric acid

11-Aminoundecanoic acid
17alpha-Hydroxyprogesterone
2-({6-O-[(2R,3R,4R)-3,4-Dihydroxy-4-
(hydroxymethyl)tetrahydro-2-furanyl]-D-
glucopyranosyl}oxy)-2-methylbutanenitrile

0.148836

0.154156

0.508593
0.155108

0.312326

0.387269

0.469088

0.222371
0.219908
0.148515
0.224669
0.355671
0.184886
0.490488
0.289896
0.231936

0.316986
0.184287
0.380795

0.15584
0.491579
0.142649

0.411179

0.182413
0.703824

0.199029

0.338206

0.169119
0.153241

0.31664
0.214494

0.223791

0.225723

1.430635
0.251377

0.331567

0.423362

0.423151

0.385806
0.188479
0.236306
0.382016
0.283926
0.348895
0.436427
0.202773
0.303844

0.367303
0.173624
0.402225
0.278945
0.506304

0.22335

0.433516

0.191995
0.662692

0.266665

0.373766

0.315508
0.197521
0.331576
0.216444

0.116434

0.107515

2.158423
0.107449

0.287692

0.597084

0.420527

0.567985
0.172605
0.143552
0.659646
0.306878
0.199224
0.461799
0.229528
0.241729

0.322575
0.090317
0.522571
0.121609

0.4778
0.107944

0.380939

0.102707
0.819274

0.162491

0.345525

0.169573
0.077423
0.280233
0.155469
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2-(1-Hydroxy-2,2,4,6-tetramethyl-3-oxo0-2,3-
dihydro-1H-inden-5-yl)ethyl hexopyranoside
2-(1,2-Dihydroxy-2-propanyl)-6,10-
dimethylspiro[4.5]dec-6-en-8-one
2-(2-Carboxyethyl)-4-methyl-5-pentyl-3-furoic acid
2-(4-Methyl-5-thiazolyl)ethyl decanoate
2-(4-Methylthiazol-5-yl)ethyl butyrate
2-(6,10-Dimethyl-8-oxospiro[4.5]dec-6-en-2-yl)-2-
hydroxypropyl hexopyranoside
2-(acetylamino)-3-(1H-indol-3-yl)propanoic acid
2-(Dimethylamino)-5,6-dimethylpyrimidin-4-ol
2-[4-(3-Hydroxypropyl)-2-methoxyphenoxy]-1,3-
propanediol
2-Acetamido-2-deoxy-3-0-(6-deoxy-L-
galactopyranosyl)-D-glucose

2-Acetamido-2-deoxy-D-galactopyranosyl-(1->4)-[6-

deoxy-L-galactopyranosyl-(1->5)]-4-C-methyl-D-
arabinitol

2-Acrylamido-2-methyl-1-propane sulfonic acid
2-Amino-2-deoxy-D-gluconic acid
2-Amino-3-hydroxy-3-phenylpropanoic acid
2-Amino-5-[2-(4-formylphenyl)hydrazino]-5-
oxopentanoic acid
2-Amino-6-[(E)-(5-amino-5-carboxy-2-

hydroxypentylidene)amino]-5-hydroxyhexanoic acid

2-Aminoadenosine

2-aminophenol sulphate

2-Butenedioic acid (2E)-, 1,4-diethyl ester
2-Butyl-5-ethyl-4-methyloxazole
2-Hexenoylcarnitine
2-Hydroxydecanedioic acid
2-Hydroxyhippuric acid
2-Isocapryloyl-3R-hydroxymethyl-butyrolactone
2-Methoxy-1,3-benzenediol
2-Methyl-3-phenylpropyl hydrogen sulfate
2-Methylbutyroylcarnitine
2-Methylhippuric acid

2-nonenoylglycine

2-octenoylglycine
2-0x0-10-methylthiodecanoic acid
2-0x0-6-pentyltetrahydro-2H-pyran-3-carboxylic
acid

2-oxo0-8-methylthiooctanoic acid
2-Oxoarginine

2-Phenylethyl 6-O-D-xylopyranosyl-D-
glucopyranoside

2-Phenylethyl D-glucopyranoside
2,3-Diaminosalicylic acid

0.172566

0.353895

0.144226
0.218399
0.300344
0.198571

0.149953
0.252255
0.6058

0.199538

0.242385

0.452646
0.512598
0.209674
0.273086

0.360357

0.157398
0.484521
0.177766
0.164809
0.175886
0.167621
0.154246
0.196097
0.273715

0.1516
0.147951
0.149366
0.169759
0.138892
0.282385
0.141398

0.181049
0.323422
0.183369

0.149423
0.173798

0.224579

0.406896

0.223139
0.237679
0.750074
0.252302

0.283641
0.167045
0.809456

0.224343

0.259127

0.673284
0.563203
0.322165
0.372795

0.271052

0.226053
0.394291
0.272696
0.165623
0.160825
0.223469
0.228926
0.565906
4.247725
0.197112
0.239368
0.198553
0.186457
0.175479
0.274556
0.248805

0.176821
0.260614
0.206561

0.216648
0.144962

0.117283

0.403242

0.133948
0.190798
2.089478
0.211591

0.593806
0.197579
2.365916

0.140353

0.288263

0.488075
0.498325
0.572911
0.613044

0.307605

0.106028
0.420015
0.136496
0.121344

0.12889
0.091037

0.18942
0.966476
5.343949
0.079854
0.122285
0.257756
0.105281
0.139017
0.226472
0.359122

0.082944
0.273092
0.105387

0.100674
0.164676
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2,3-Dimethoxy-5-methyl-6-(3-methyl-2-buten-1-yl)-
1,4-benzenediol

2,3-Methyleneglutaric acid
2,3,4,5-tetrahydrodipicolinic acid
2,3,4,5,6-Pentahydroxy-N-(2-
hydroxyethyl)hexanamide
2,3,4,9-Tetrahydro-1H-carboline-3-carboxylic acid
2,4-diacetamido-2,4,6-trideoxy-L-altrose
2,4-Diamino-6-nitrotoluene
2,4-Dihydroxy-2H-1,4-benzoxazin-3(4H)-one
2,4-Undecadien-1-al
2,8-Dihydroxyquinoline-beta-D-glucuronide

20 Dihydrocortisol
3-(1-carboxyvinyloxy)anthranilic acid
3-(2-methylpropyl)-octahydropyrrolo[1,2-
alpyrazine-1,4-dione
3-(3,4-Dimethoxyphenyl)-2-propenoic acid
3-(6-Amino-1H-purin-1-yl)-1-propanol
3-(6-hydroxyindol-3-yl)lactic acid
3-(Hydroxymethyl)-1-oxo-1H-isochromen-6-yl
hexopyranosiduronic acid
3-[(1S)-2-Cyclohexen-1-yl]-L-alanine
3-[(2-Carboxy-2-hydroxyethyl)dithio]-L-alanine
3-[(2Z)-1-Hydroxy-2-buten-2-yl]pentanedioic acid
3-[(3-Hydroxyheptanoyl)oxy]-4-
(trimethylammonio)butanoate
3-[(3-Hydroxynonanoyl)oxy]-4-
(trimethylammonio)butanoate
3-[(4-hydroxyphenyl)methyl]-octahydropyrrolo[1,2-
alpyrazine-1,4-dione

3-[(6-Oxodecanoyl)oxy]-4-
(trimethylammonio)butanoate
3-{[(2E)-4-Methoxy-4-oxo-2-butenoyl]amino}-L-
alanyl-L-leucine
3-Acetyl-6-hydroxy-4a,5-dimethyl-4a,5,6,7,8,8a-
hexahydro-2(1H)-naphthalenone
3-Hydroxycarbofuran

3-hydroxydecanoyl carnitine
3-Hydroxydodecanedioic acid
3-hydroxydodecanoyl carnitine
3-Hydroxyhexanoylcarnitine

3-hydroxyoctanoyl carnitine

3-Hydroxysebacic acid
3-Hydroxytetradecanedioic acid
3-Ketocarbofuran

3-Mercaptohexyl butyrate
3-Methoxyestra-1,3,5(10),16-tetraene
3-Methoxytyrosine

0.525022

0.174119
0.38128
0.242924

0.156567
0.156606
0.443782
0.311841
0.190266
0.196727

0.18455
0.150293
0.136496

0.161798
0.165556
0.145131
0.279528

0.125672
0.376044
0.152326
0.162271

0.171243

0.381629

0.793184

0.159157

0.292538

0.151437
0.174724
0.153818
0.255821
0.148089
0.289159
0.163365
0.154293

0.16722
0.314869
0.171769
0.387678

0.540159

0.199796
0.351942
0.329846

0.262321
0.227991
5.477325
0.395709
0.199006
0.322235
0.192592

0.2165
0.192154

0.188551
0.192334
0.200803
0.388844

1.088026
0.327648
0.212775

0.25487

0.238181

0.582612

0.697618

0.20074

0.530848

0.186843
0.219724
0.222291
0.261539
0.275076
0.336023
0.281898
0.218632

0.19949
0.212759
0.176199
0.334298

0.472497

0.097909
0.345284
0.207426

0.126225
0.142852
6.553687
0.562996
0.124952
0.206232

0.12144
0.105591
0.138914

0.08955
0.094933
0.072638
0.585382

2.109898
0.326819

0.15662
0.115731

0.121037

0.763403

0.777755

0.110046

0.75668

0.08417
0.117799
0.095541
0.192456
0.150865
0.272159
0.144306
0.105431
0.091528
0.261729
0.102384
0.372071
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3-Methylcrotonylglycine

3-Methylglutarylcarnitine

3-Methylhistamine

3-0-(L-olivosyl)oleandolide

3-ox0-C12-HSL

3-Oxoglutaric acid

3-Oxotetradecanoic acid

3-Phenylpent-4-enal

3-Ureidopropionic acid
3,10-Diamino-14-methyl-5,6,6a,6b,7,9-hexahydro-
4H-pyrimido[1,4]diazepinopyrrolo[1,2-f]pteridine-
1,12-dione
3,12,13-Trihydroxy-11-methyl-6-methylene-16-oxo-
15-oxapentacycloheptadecane-9-carboxylic acid
3,4-Dimethyl-5-pentyl-2-furanpropanoic acid
3,4-Methyleneazelaic acid

3,4-Methylenesebacic acid
3,7-Dimethyl-2,6-octadienal
3'-Amino-3'-deoxythimidine glucuronide
3',5,7-Trihydroxy-4'-methoxyflavanone
4-(1-Carboxyethyl)-3-hydroxy-2-(3-methyl-2-buten-
1-yl)phenyl hexopyranosiduronic acid
4-(5-Hydroxy-2-methyl-2-azabicyclo[2.2.2]oct-5-yl)-
3-methylbutanoic acid
4-[(2-Isopropyl-5-methylcyclohexyl)oxy]-4-
oxobutanoic acid
4-[(2-Methyl-3-furyl)thio]-5-nonanone
4-[2-Amino-3-(D-glucopyranosyloxy)phenyl]-4-
oxobutanoic acid

4-Acetamidobutanoic acid
4-Acetoxy-2-hexyltetrahydrofuran
4-Aminohippuric acid

4-Guanidinobutyric acid
4-hydroxy-4-(indol-3-ylmethyl)glutamic acid
4-Hydroxy-5-(2-hydroxy-2-propanyl)-2-
methylbicyclo[3.1.0]hex-2-yl hexopyranoside
4-Hydroxy-5-methoxy-4-[2-methyl-3-(3-methylbut-
2-en-1-yl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-one
4-Hydroxy-8-(D-talopyranosyloxy)-2-
quinolinecarboxylic acid
4-Hydroxycyclohexylcarboxylic acid
4-Hydroxyprolyltryptophan
4-Imino-1-(D-ribofuranosyl)-1,4-dihydro-3-
pyridinecarboxylic acid

4-Methoxycinnamaldehyde
4-Methyl-2-propyltetrahydro-2H-pyran-4-yl acetate
4-Methylesculetin

4-Methylumbelliferone hydrate

0.152271
0.224688
0.378316

0.35047
0.751008
0.548103

0.17157
0.267103
0.388325
1.283515

0.385887

0.428036
0.167778
0.490227
0.337801
0.174598
0.182911
0.227434

0.307806

0.383146

0.299962
0.407868

0.272663
0.250128
0.223261
0.260028
0.153439
0.159323

0.415667

1.194884

0.330318
0.21241
0.626393

0.156663
0.270894
0.170987
0.181344

0.256121
0.389234
0.301151
0.377737
0.686687
0.797772
0.164323
0.282215
0.326225
1.315622

0.535815

0.428799
0.454175
0.528759
0.581575
0.233698

0.17229
0.222286

0.327221

0.439739

0.388813
0.413303

0.144693
0.396294
0.401759
0.186348
0.216014
0.227224

0.494686

1.290445

0.842766
0.320296
0.58948

0.179693
0.253541
0.200403
0.168817

0.196175
0.235568
0.450531
0.387308
0.842353

0.58469
0.092652
0.295089
0.330726
1.337591

0.48349

0.398135
0.8604
0.48135
1.107551
0.140336
0.131611
0.204948

0.309732

0.392837

0.287204
0.607887

0.216044
0.536649
0.245998
0.205836
0.096546
0.107927

0.427246

1.196596

2.403774
0.355715
0.605776

0.083338
0.296031
0.095914
0.114255
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4-0-(4-Deoxy-L-threo-hex-4-enopyranuronosyl)-D-
galactopyranuronic acid

4-0-(L-Araf)-cis-L-Hyp
4-0-D-Glucopyranosylmoranoline

4-Octylphenol

4-Phenyl-3-buten-2-one

4-Phenylbutyric acid

4-Pyridoxic acid

4-Trimethylammoniobutanoic acid
4,4-Thiobis(2-butanone)
4,5-Dihydroxy-3-oxo-1-cyclohexene-1-carboxylic
acid

4,7-Dimethoxy-3-oxo-3,4-dihydro-2H-1,4-
benzoxazin-2-yl D-glucopyranoside
4'-Methoxyacetophenone

4a,5-dihydroriboflavin
5-(2,3-Dihydroxy-3-methylbutyl)-4-[(3,3-dimethyl-2-
oxiranyl)acetyl]-3,4-dihydroxy-2-(3-
methylbutanoyl)-2-cyclopenten-1-one
5-(3',4'-Dihydroxyphenyl)-gamma-valerolactone-3'-
O-methyl-4'-O-glucuronide
5-[(Z)-(4-Ethyl-3-methyl-5-0x0-1,5-dihydro-2H-
pyrrol-2-ylidene)methyl]-5-methoxy-3-methyl-4-
vinyl-1,5-dihydro-2H-pyrrol-2-one
5-Acetylamino-6-amino-3-methyluracil
5-aminosalicyluric acid

5-Butyloxazole

5-Hydantoinpropionic acid
5-Hydroxy-3-(4-hydroxyphenyl)-6-methoxy-7-
[(2S,4S,5S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-
2-ylloxychromen-4-one

5-Hydroxy-L-tryptophan
5-Hydroxyindole-3-acetic acid
5-Hydroxyindoleacetaldehyde
5-Hydroxyomeprazole

5-Methoxybenzimidazole

5-Methylangelicin

5-Methyltetrahydrofolic acid

5-methylthioribose

5-Nitro-o-toluidine

5-Sulfanyl-L-histidine
5,5-Dihydroxy-tetramethyl-4,5-dihydro-2H,3H-
spiro[furan-2,6-[7]oxabicyclo[3.2.1]oct[3]en]-one
5,7,11-Trihydroxy-7-(methoxymethyl)-2-methyl-
10H-spiro[9-oxatricyclo[6.3.1.0~1,5]dodecane-
6,30oxetane]10-dione
5,8,12-Trihydroxy-2-oxododecanoic acid
5'-0-beta-D-Glucosylpyridoxine

0.168893

0.395347
0.198436
0.169418
0.253315
0.169971
0.289085
0.378977
0.156203
0.306024

0.206043

0.180561
0.292451
0.340216

0.20333

0.171866

0.338826
0.412906
0.146182
0.382711
0.206416

0.205894
0.152693
0.4765
0.159076
0.361537
0.315496
0.40529
0.394543
0.298825
0.216084
0.137773

0.214861

0.188282
0.187962

0.258251

0.54945
0.303968
0.195086
0.292761
0.178328

0.18074

0.33956
0.219842
0.483998

0.22405

0.168285
0.376518
0.425656

0.276096

0.184286

0.265549
0.364822
0.244515
0.514114
0.238639

0.157593

0.21621
4.849618
0.226776
0.512448
0.261319
0.457839
0.344147
0.169064
0.268094
0.216802

0.269513

0.239948
0.2812

0.123337

0.407396
0.165604
0.113232
0.421501

0.22612
0.236838
0.333835
0.114154
0.334126

0.1391

0.115596
0.296891
0.33139

0.242057

0.116829

0.320089
0.356586
0.110065
0.375364
0.194096

0.151588
0.122772
5.860421
0.115586
0.500621
0.267641
0.372005
0.356216
0.227641
0.167938
0.091906

0.148408

0.117795
0.133289
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6 Hydroxycortisol
6-[(1E)-3,4-Dihydroxy-3-methyl-1-buten-1-yl]-7-
methoxy-2H-chromen-2-one
6-[(1R,2S)-1,2-Dihydroxypropyl]-3,4-dihydro-2,4-
pteridinediol

6-Amino-2-methyl-2-heptanyl (1,3-dimethyl-2,6-
dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetate
6-Hydroxy-5-methoxyindole glucuronide
6-Hydroxy-5-methyl-4,11-dioxoundecanoic acid
6-Hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-3-yl 3-
hydroxy-2-phenylpropanoate
6-Hydroxypentadecanedioic acid
6-Sulfatoxymelatonin

6-Thiouric acid
7-(3-Amino-3-carboxypropyl)-4,6-dimethyl-3-(D-
ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-
9-one

7-[1-Formyl-6-hydroxy-6-
(hydroxymethyl)bicyclo[3.2.1]oct-2-yl]-3a,7-
dimethyl-3-oxooctahydro-2-benzofuran-1-yl
hexopyranoside
7-lsopropyl-4a-methyl-1-methylene-
1,2,3,4,4a,9,10,10a-octahydrophenanthrene
7-Mercaptoheptanoylthreonine
7-Methylxanthine

7,8-Dihydrobiopterin
7alpha,17beta-Dihydroxyandrost-4-en-3-one
7C-aglycone
8-(3-Furyl)-5-hydroxy-1,1,5a,7a,11b-
pentamethyldecahydrooxireno[4,4a]isochromeno[6
,5-gl[2]benzoxepine-3,10,12(1H,4H,10aH)-trione
8-{[2-Hydroxy-2-(4-
hydroxyphenyl)ethyl](methyl)amino}-1,3,7-
trimethyl-3,7-dihydro-1H-purine-2,6-dione
8-Epideoxyloganic acid
8-Hydroxy-4-methoxy-7-methyl-7,8-dihydro-5H-
furo[2,3-glisochromen-5-one
8-Hydroxy-5,6-octadienoic acid
8,8a-Diepiswainsonine
9-(D-glucosyl)dihydrozeatin

9-Decenoylcarnitine

9-Methyluric acid
9-0-Demethyl-2-hydroxyhomolycorine
9,10,13-TriHOME

9,12,13-TriHOME

0.145399
0.287639

0.233104

0.33222

0.151974
0.375479
0.180543

0.519186
0.216703
0.406417
0.287992

0.285725

0.271392

0.890246
0.211842
0.359871
0.227127
0.165707

0.34269

0.19955

0.183087
0.179834

0.165926
0.152113
0.221436
0.153543

0.58836
0.438753
0.084229
0.076221

0.207275
0.334916

0.153092

0.393949

0.208701
1.894208
0.23578

0.580059
0.374362
0.576783

0.29128

0.360454

0.287626

0.925024
0.2442
0.582503
0.224643
0.19427
0.393447

0.254938

0.227335
0.245997

0.698742
0.231649

0.21907
0.175939
0.538194
0.428139
3.084001
2.964374

0.090997
0.344308

0.176159

0.350302

0.097173
3.091779
0.149031

0.593053
0.203563
0.424949
0.261668

0.267243

0.247027

0.890357
0.138329
0.401795
0.237475
0.103244
0.417367

0.12742

0.138661
0.144333

1.209775
0.074541
0.169796
0.129682
0.552006
0.416089
4.752036
4.577394
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SUPPLEMENTARY INFORMATION FOR

Understanding Food Additives in Inflammatory Bowel Disease: Challenging Perceptions to
Improve Gastrointestinal Health

Patricia Kelly!, Zahra Rattray?, Konstantinos Gerasimidis?, Nicholas JW Rattray?
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Cathedral Street, Glasgow, UK, G4 ORE
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Table S1. Effects of colours suggested to exert inflammatory or therapeutic effects on IBD, red E numbers represent inflammatory food colours, green E numbers
represent anti-inflammatory food colours. For additives with an unspecified ADI, the average daily intake or recommended daily intake values are given.

E Number  Additive  Chemical Structure Main Findings Disease Dose Used ADI
Model (mg/kg
bw/day)
E102 Tartrazine o Tartrazine induced microbial Cruciancarp 1.4 - 10 10
(Yellow o /©/S\\o _ dysbiosis and adverse mg/kg  bw/
No. 5) _‘E N N intestinal changes [1] day for 60
Na* S\Q\N/ =N days
o
Nat O
E110 Sunset Sunset yellow inhibited Murine 40 mg/kg 4
Yellow Nap'\//s/f) organoid growth and increased intestinal bw/day for 7
FCF © N\\N/©/ levels of TNF-a and IL-1 [2] organoids days
(Yellow O OH
No.6)
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Allura Allura red AC consumption C57BL/6 7 mg/kgbw/ 7
Red AC induces colitis [3] mice day for 12
(Red 40) weeks
Curcumin Curcumin decreased TNF-q, TNBS- 50-100
(Natural MPO, COX-2, and iNOS [4] induced mg/kg
o N Pz o
Yellow) O O colitis bw/day for 2
° ° weeks
Curcumin restored balance of  DSS-induced 100 mg/kg
cytokine involved in the colitis bw/day for 7
Treg/T17 pathway and days
decreased DAI [5]
Curcumin reduced colonic Mdria (-/-) Feed + 0.2%
injury and decreased mouse curcumin for
inflammatory markers [6] model 12 weeks
Curcumin downregulated pro- Mdrla (-/-) Feed + 0.2%
inflammatory pathways and mouse curcumin for
reduced histopathological model 17 weeks

inflammation [7]




E101 Riboflavin Riboflavin consumption Patients with 100 mg for 0.5
(Vitamin decreased serum CcD three weeks
B2) inflammatory factors [8]

E133 Brilliant Brilliant blue selectively Oocytes ICso of 0.27 6
Blue FCF inhibits Panx1 [9] UM
(Blue 1)

E143 Fast Panx1 channels, involved in Oocytes ICsp of 3 UM 25
Green FCF ATP release, are inhibited by
(Food fast green FCF [9]
Green 3)
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E160a Beta- B-Carotene decreased pro- HT-29 cells 20 mg/ kg 5
carotene * inflammatory cytokine levels bw/day for
(Food and enhanced tight junction 28 days
Orange 5) protein levels [10]
El61b Lutein Lutein reduced reactive Male Swiss 24.6 mg/kg 1
oxygen species and nitric mouse bw/ day for 7
HO" oxide production in vitro and model of UC  days
decreased disease activity
index in vivo [11]
E163 Anthocya OH Anthocyanins protected TNBS- 10-40 mg/kg 2.5
nins, HO O = +| O OH against colonic damage induced bw/ day for 6
e.g., X"on through restoring IL-10 and colitis days
Cyanidin o decreasing NO, MPO, IL-12,

TNF-a and IFN-y levels [12]
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Table S2. Effects of preservatives suggested to exert inflammatory or therapeutic effects on IBD, red E numbers represent inflammatory preservatives, green E
numbers represent anti-inflammatory preservatives. For additives with an unspecified ADI, the average daily intake or recommended daily intake values are given.

E Number Additive Chemical Structure Main Findings Disease Model Dose Used ADI (mg/
kg
bw/day)

E202 Potassium o Potassium Zebrafish 0.1-1g/Lfor 11

PN
sorbate ° sorbate 2 weeks
decreased TNF-a
and IL-18 [13]
E221 Sodium o Sodium sulfite Faecalibacterium  0.1% 0.7
sulfite 218\0' - inhibited growth  prausnitzii culture  (wt/vol) in
) of media
Faecalibacterium
prausnitzii, a
protective
microbial species
[14]
E210 Benzoic acid o Benzoic acid Female weaner 5g/kg for 2 20
@OH consumption pigs weeks
resulted in
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intestinal healing

(15]
E211 Sodium O High doses of Acetic acid- 400-800 5
benzoate @O' " sodium benzoate  induced UC. mg/kg i.p.
reduced MPO and for 7 days
GSH levels [16]
E220 Sulphur 0=S=0 Sulphur dioxide TNBS-induced 0.18-0.54 0.7
dioxide decreased NF-kB colitis mmol/kg for
and 72 hours
inflaimmasome
activation [17]
E281 Sodium o Sodium DSS-induced 1% (w/v) in 20
propionate \)ko' - propionate colitis drinking
inhibited water for 14

inflammatory
factors indicative
of intestinal

inflammation [18]

days

Sodium 1774-A1 cell line

propionate

0.1-10 mM 20

for 24 hours
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decreased iNOS,
COX-2 and
inflammatory

markers [19]

E282 Calcium \)(L \)‘L ot Calcium DSS-induced 3.85% (w/v) 1
propionate o o propionate colitis in drinking
decreased IFN-y water for 7
and calprotectin days
and increased
PGIyRP3 [20]
E300 Ascorbic acid HQ OH Ascorbic acid DSS-induced 100 mg/kg 1.3 (RDI)
o:\)jA decreased colitis bw/ day for
o) - OH
OH inflammatory and 7 days
oxidative stress
markers [21]
Ascorbic acid Guinea pig and 10-200 1.3 (RDI)
supplementation  SW480 cells. mg/kg
increased levels of bw/day for 4
Z0-1 mRNA in days

guinea pigs and
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increased
expression of

Notch 1 in SW480

cells [22]

E307 a-tocopherol on a-tocopherol Caco-2 cells 5 mg/kg 2
improved bw/day
intestinal barrier
function [23]

DAI score Human trial 8000 U/d 2
significantly enema for
decreased after 12 weeks

12 weeks of a-

tocopherol

administration,

with 64%

achieving

remission [24]

E308 y- tocopherol OH y- tocopherol DSS-induced 5 mg/kg 2
restored microbial colitis and Caco-2  bw/day

balance in mice cells
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induced with
colitis and
improved
intestinal barrier

function in Caco-2

E310

Propyl gallate

HO

HO

OH

O

cells [23]
Propyl gallate DSS-induced
reduced pro- colitis

inflammatory
cytokines and
oxidative stress
markers, reducing
colitis severity

[25]

50 mg/kg
bw/ day for
21 days

0.5
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Table S3. Effects of sweeteners suggested to exert inflammatory or therapeutic effects on IBD, red E numbers represent inflammatory sweeteners, green E

numbers represent anti-inflammatory sweeteners. For additives with an unspecified ADI, the average daily intake or recommended daily intake values are given.

E Number Additive Chemical Structure Main Findings Disease Dose Used ADI (mg/
Model kg
bw/day)
E950 Acesulfame o\s//go Ace-K amplified the C57BL/6) 150 mg/kg 9
potassium \@;N expression of pro- mice bw/day
O inflammatory cytokines for 8
and decreased the weeks
expression of GLP1R and
GLP2R [26]
E955 Sucralose C'\: Sucralose caused C57BL/6 5 mg/kg 15
ﬁ/OH microbial dysbiosis, male mice  bw/day
CCI) o “OH increasing risk of intestinal for6
HO/IQ inflammation [27] months
cl ‘OH
OH Sucralose increased DSS- 1.5mg/mL 15
expression of pro- induced in drinking
inflammatory cytokines colitis water for
and exacerbates DSS- 6 weeks

induced colorectal

tumours [28]
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E961 Neotame )CJ’\ Neotame induced gut CD-1 mice 0.75 2
H ji)< microbial dysbiosis with mg/kg
~N
° IWAN alterations in o and B bw/day
diversity [29] for 4
weeks
E967 Xylitol OH Xylitol increased SCFA C57BL/6 2.17-5.43 428 (RDI)
HO OH production, with mice and g/kg
OH OH
significant shift in in vitro bw/day in
propionate [30] colon food for 3
model months
(CDMN)
E953 Isomalt oH OH Isomalt caused a Healthy 30g/day 25
HO protective shift in gut human for four
OH OH
microbial composition [31] individuals weeks
E957 Thaumatin HY Thaumatin increases the Human 1.1
O\\S/©/ o total biomass of the faecal
N o
microbiome samples

K\
(.
7
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NHDC induced microbial Suckling 0.5 mMin
shifts towards a protective Landrace X growth
phenotype [32] Large media
White
piglets
Stevioside decreased DSS- 50-100
levels of TNF-acand IL-6 in induced mg/ kg bw
RAW?264.7 cells and colitisand  for 12
improved inflammationin  RAW264.7 days
DSS-induced mice models  cells
(33]
Steviol glycoside Human 6.2 mg/kg
supplementation resulted  faecal bw/day
in changes to the gut smaples for 2
microbiome [34] and Cebus weeks
apella

model




E968

Erythritol

OH

- OH
HO/Y\/

OH

Erythritol Human 6.2 mg/kg 500
supplementation resulted  faecal bw/day
in changes to the gut smaples for 2
microbiome [34] and Cebus weeks
apella
model
Erythritol increased SCFAs, C57BL/6)J 5% in 500
ILC3 and ILC2 [35] mice drinking
water for
12 weeks
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Table S4. Effects of emulsifiers, thickeners, and stabilisers exerting inflammatory or therapeutic effects on IBD, red E numbers represent inflammatory additives,
green E numbers represent anti-inflammatory additives. For additives with an unspecified ADI, the average daily intake or recommended daily intake values are

iven.
gE Additive Chemical Structure Main Findings Disease Dose Used ADI (mg/ kg
Numbe Model bw/day)
r
E407 Carrageenan HOs80 o Carrageenan Guinea pigs 5% aqueous 75
o -0 stimulated inflammtory solution in
OH OH | features comparable to drinking
UC [36] water for 45
days
Carrageenanincreased Male 50g/Lin 75
PEG-900 absorption Sprague- drinking
[37] Dawley rats  water for 4
and weeks
weanling
guinea pigs
Carrageenan Rats and 0.25-5% 75
consumption caused guinea pigs  solution in
severe diarrhoea in rats drinking

and colonic ulcerations

in guinea pigs [38]

water for 12

weeks
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Carrageenan increased NCM460 1pg/mLfor 75
activation of NFkBand  and HT29 60 hours
BCL10 [39] cells
Carrageenan exposure  NCM460, 1pg/mLfor 75
inhibited sulfatase T84, and 4 days
activity and increased CaCo02 cells.
glycosaminoglycans
[40]
E412 Guar gum OH _OH o Guar gum exacerbated  DSS-induced 7.5% (w/w) 6.1 (RDI)
"~ on inflammatory signs colitis, IL- in diet for 7
< including increased 10R days

n

levels of Lcn2, IL-1B KC,
and SAA [41]

neutralizatio

n.
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E436 Polysorbate 80 o/\]/OH P80 induced a Human 0.1% added 25
& \A)?\’o/\}/% detrimental shift in the  faecal to
OH gut microbiota [42] samples bioreactor
W x4y 47220 medium for
216 hours
P80 consumption C57BL/6) 1% (w/v)in 25
resulted in mice drinking
inflammation and water for 3
damage to the weeks
intestinal barrier in
offspring [43]
E466 Carboxymethyl OR oR A Hor CMCinduced a Human 0.1% added 900
cellulose ) %ﬁ/owo ’ *\)oL detrimental shift in the faecal to
OR OH
OR . gut microbiota [42] samples bioreactor
medium for
216 hours
CMC treatment Faecal 1% in 900
increased Lcn2 and transplant drinking
inflammatory cytokine water for
expression, in four weeks
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comparison to P80 and  colonised
controls [44] ex-GF
IL107~ mice
CMC increased levels of C57BL/6 100 mg daily 900
flagellin and other mice for three
inflammatory bacteria weeks
[45]
E481 Sodium /\/\/\/V\AA/\)?\ o Q ) SSLincreased levels of ~ Human 0.025% 22
stearoyl OJ}J \Hko- ) pro-inflammatory faecal (w/v)
lactylate microbial communities  samples
[46]
E491 Sorbitan OH SMS impacted bacterial Human 0.1% added 25
monostearate o © OH composition and faecal to
Wo OH function in a non- samples bioreactor
reversible manner and medium for
216 hours
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increased LPS levels

[42]
E1400 Maltodextrin OH Maltodextrin ILLOKO mice 1% (w/w)in  428.6 (RDI)
H
Ho exacerbated colitis and food for 11
Br\ H
HH © decreased gut weeks
microbial diversity [47]
E401 Sodium ONa Sodium alginate Aceticacid-  0.5% (w/v) 0.4 (RDI)
alginate o OH o administration induced in drinking
~|oH
o n decreased colitis water for
inflammatory markers one week

and increased
protective markers,
reducing colonic

damage score [48]

Sodium alginate DSS- and 500-1000 0.4 (RDI)
treatment improved TNBS- mg/kg/day
for 7 days
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colitis and repaired induced
goblet cell damage [49] colitis
E414 Acacia gum B HO ] Gum Arabic DSS-induced 140 g/Lin 6.1 (RDI)
OH&\ demonstrated colitis drinking
HO .G Ho M o ° HO Y o protective effects via water
w&&/o 2 O%&/O@@Vo% reduced colonic fibrosis
o o on oH and TGFB1 expression
- - [50]
Acacia gum altered gut  In vitro 0.1% added 6.1 (RDI)
bacteria towards an colon model to culture
anti-inflammatory with human  vessels for
pDFhenotype [51] faecal 24 hours
microbiota
E425 Konjac B CH, ] KGM decreased levels DSS-induced 2% (w/w)in 7.1 (RDI)
glucomannan OH OH O:<o OH of pro-inflammatory colitis food for 29
”ﬂﬂﬂﬂﬂ@&&@vw cytokines and days
OH OH

leukocyte infiltration

(52]
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E440

Pectin

Mice fed with orange
pectin prior to
induction of colitis had
reduced signs of

inflammation [53]

DSS- and
TNBS-
induced

colitis

5% dietary
pectin for

14 days

7.4 (RDI)
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