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Abstract

Particle-based fluid simulations can be utilised to study phenomena ranging from galaxy-

scale, using smoothed particle hydrodynamics, plasma physics with particle-in-cell meth-

ods, aerospace re-entry problems, using direct simulation Monte Carlo, down to chem-

ical, biological and fluid properties at the nanoscale with molecular dynamics and dis-

sipative particle dynamics. The information generated by particle methods, such as

molecular dynamics, is converted to macroscopic observables by means of statistical

averaging. A significant drawback of nano- or micro-scale modelling is the substantial

noise associated with particle techniques, which disturbs the analysis of the results. The

uncertainty in the mean of the ensemble is due to fluctuations caused e.g. by additional

forcing terms (thermostats). Extracting the genuine information from indirect, noisy

measurements is analogous to solving the ill-posed statistical inverse problem, where

the object of interest is not easily accessible. The presence of noise in the data can be

reduced by averaging over a large number of samples, but the computational intensity

of the simulations would then be substantially increased.

In order to improve the efficiency of estimating the unknown structure from the

disturbed observations, a number of decomposition techniques have been applied, in-

cluding: proper orthogonal decomposition, singular spectrum analysis, random QR

de-noising, wavelet transform, and empirical mode decomposition. In the present work,

the strengths and weaknesses of each approach, and their extensions to solving statis-

tical inverse problems for particle simulations, are evaluated. Furthermore, we propose

several novel combinations of these methods, that have the capability to improve the

signal-to-noise ratio and reduce the computational cost.
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“Most people, if you describe a train of events to them, will tell you what the result

would be. They can put those events together in their minds, and argue from them that

something will come to pass. There are few people, however, who, if you told them a

result, would be able to evolve from their own inner consciousness what the steps were

which led up to that result. This power is what I mean when I talk of reasoning back-

wards, or analytically. (...) Now let me endeavour to show you the different steps in

my reasoning. To begin at the beginning.”

Sherlock Holmes to Dr. Watson in A Study in Scarlet

Sir Arthur Conan Doyle, 1887.
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Chapter 1

Introduction

“If we knew what it was we were doing, it would not be called research, would it?”

Albert Einstein, (1879-1955).

Nowadays, large amounts of data are processed and the task of extracting important

information from the measurements, i.e., solving inverse problems, becomes one of the

central issues. Direct observations on the system of interest are not always possible,

and only estimates can be derived. The whole process becomes more challenging when

the available data-sets are perturbed by some uncontrollable element, often referred to

as noise. This thesis investigates the numerical treatment of such ill-posed statistical

inverse problems that arise in the field of computational nanofluidics. Similar challenges

are also encountered in many other disciplines such as geophysics [1], acoustics [2], image

and signal processing [3, 4], and astrophysics [5]. Therefore, the discussed procedures

are versatile and inter-disciplinary in nature.

The concept of an ill-posed problem was introduced by Hadamard [6] in cases where

the solution was non-unique, unstable, or discontinuous with respect to the data, i.e.,

an arbitrarily small perturbation in the data leads to a large modification in the model.

Hadamard believed that such cases were artificial and they resulted only from an incor-

rect physical representation of the system. However, this is not the case, and ill-posed

problems were shown to exist in the form of inverse problems in many areas of science

and engineering [7]. An interesting example is the story of Hubble Space Telescope

1
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which was launched in 19901 as a joint project of the North American and European

space agencies, NASA and ESA. This optical observatory was supposed to provide space

images with a very high spatial resolution and to mark the most significant advance in

astronomy since Galileo’s telescope. Unfortunately, it happened to have a manufactur-

ing error (flawed main mirror) which resulted in fuzzy, almost out-of-focus images sent

back to Earth. Before the telescope could be fixed in 1993, the astronomers had been

improving the blurred images by numerical reconstruction, i.e., by solving an inverse

problem [8].

Analogous to the given example, the ill-posedness in simulation data comes from the

fact that we want to obtain specific information about the system, such as the molecular

velocity distribution, which can often be distorted by effects such as thermal fluctuations

or finite sampling. Computing derivatives or other properties of a function specified by

contaminated samples further amplifies the discrepancies, making the calculation very

sensitive to the data. To extract any meaningful information the data first needs to be

filtered, or de-noised, to uncover any underlying structures masked by errors and enable

further execution of data-dependent tasks.

This thesis attempts to find solutions (approximations) to these discrete inverse

problems, which are encountered in many particle-based simulations, through apply-

ing the following methods: proper orthogonal decomposition (POD), singular spectrum

analysis (SSA), random QR de-noising (rQRd), wavelet thresholding, wavelet-based

WienerChop filtering, empirical mode decomposition (EMD) interval thresholding, and

their combinations. These methodologies originate from different constraints or regu-

larisation procedures, but they have a common denominator – they search for a domain

wherein signal and noise, that initially appeared inextricably tangled, can be separated.

Apart from being useful alternatives to statistical averaging, the transforms offer addi-

tional information about the nature of the signal and the simulation.
1More details on the story can be found on NASA website, www.nasa.gov/mission_pages/hubble/

main.

www.nasa.gov/mission_pages/hubble/main
www.nasa.gov/mission_pages/hubble/main
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1.1 Motivation

Numerical simulation techniques are indispensable tools for gaining a better under-

standing of many physical phenomena that can be difficult to describe with analytical

methods or experimental studies. The statistical mechanics of complex systems is often

analysed with molecular dynamics (MD) or Monte Carlo methods, e.g. direct simu-

lation Monte Carlo (DSMC) [9]. These procedures can be used to accurately resolve

dynamics at the atomistic scale and are widely used to simulate nano/microfluid flows

e.g. confined in channels such as nanotubes [10, 11]. In addition, information obtained

from molecular simulations forms the basis of new emerging hybrid multi-scale mod-

elling methods for physical and biological applications (see Mohamed and Mohamad

[12] for a review). Examples demonstrating the ubiquity of multi-scale, multi-physics

applications include the dynamics of complex fluid flows [13], such as the physiology of

red blood cells and blood flow [14], the classical turbulence problem [15], meteorologi-

cal predictions [16], chemical and biological reactions [17], and emergent rheology [18].

Moreover, there is significant potential to apply multi-scale techniques to sociological

problems, such as crowd and traffic flow [19]. The central problems with all particle-

based and multi-scale modelling are the computational cost and the accurate transfer of

information across disparate length and time scales; there currently exist many sources

of uncertainty and noise disturbing this intra-scale transfer, with a concomitant loss of

simulation fidelity.

Multi-scale modelling strategies to couple molecular simulations to continuum dy-

namics require smooth gradients and accurate particle distribution descriptions. For

many problems, the conversion of the microscopic information to macroscopic observ-

ables is done through simple averaging. This procedure can be a poor choice, however,

due to low resolution and statistical noise; circumventing this problem requires large

samples and long averaging periods, resulting in bottlenecks in intra-scale communi-

cation and computationally expensive calculations. There is a clear and growing need

for a systematic, mathematically rigorous de-noising approach for extracting coherent

structures (and hence, emergent macro-scale fields) from particle data in stationary and

non-stationary fluid flow simulations.
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1.1.1 Noise classification

Noise can be defined as an unwanted disturbance that interferes with the measurement

and processing of a signal, or a system’s communication. It can cause calculation errors,

and disrupt data transmission and analysis; therefore noise reduction is an important

part of computational modelling. Noise can be classified as white or coloured depending

on its frequency spectrum, obtained via Fourier analysis (called sampled spectrum or

periodogram [20]), or time characteristics.

White noise is defined as an uncorrelated random process with a flat power spectrum,

i.e. equal power, variance distribution, at all frequencies (see Fig. 1.1). It is a theoretical

(a) White noise. (b) Periodogram of white noise.

Figure 1.1: White noise characteristics.

concept since its existence would require an infinite energy to cover an infinite range

of frequencies. In addition, discrete-time signals by necessity need to be band-limited

[21]. Therefore, in practice, a random signal is considered as white if it has a flat

spectrum over a definite bandwidth (analogous to white light which contains all the

visible frequencies at equal amplitudes). Thermal noise, which is generated by the

random movement of thermally energised particles, is an example of fluctuations with

a white (flat) spectrum. Additive white Gaussian noise is a basic noise model used to

mimic the effect of many random processes that occur in nature. Gaussian noise has a

probability density function equal to that of the normal (Gaussian) distribution in the

time domain, with an average time domain value of zero. Other popular models include

uniform, Laplace, and Cauchy distributions [22].

In reality, analysed systems are often contaminated with noise that is correlated
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with itself or with the signal, not continuous, and not stationary. Fluctuations that are

non-white are often referred to as coloured or 1/fα noise2. The latter name derives from

the observation that they have spectra growing with low frequency as 1/fα, where f is

the cyclic frequency and α is a real number usually between 0 and 2. Two classic exam-

ples of noise colours are the pink (with α = 1) and brown (also called red, with α = 2)

shown in Fig. 1.2 . The long memory, or correlation property of some disturbances

(a) Pink noise, 1/f . (b) Brown noise, 1/f2.

(c) Comparison of spectra.

Figure 1.2: Correlated noise: pink and brown.

has been observed in many diverse fields such as economics, music, traffic, physics,

and engineering [23]. In this thesis, it is shown that data obtained from particle-based

simulations is also subject to variations, with energy shifted towards lower frequencies

due to finite sampling, additional force terms, and small characteristic time scales of

the system. More specifically, during this research it was observed that artificial effects
2They are sometimes also referred to as flicker, burst, low frequency divergent, and fractional noise

[23].
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from MD thermostats, e.g. the Berendsen thermostat, contribute to correlated fluctua-

tions, which do not exist independently of the underlying physical process. Recent work

by Sanghi and Aluru [24] on noise extracted from MD simulation without temperature

control reveals that, for both bulk and confined fluids, the distribution function of the

thermal force is not strictly Gaussian. The fact that noise present in results obtained

with particle-based simulations can be correlated is of importance when solving inverse

problems. Most of the estimators assume randomness of the noise and they treat coher-

ence as the information to be recovered. Due to the fact that both the data and noise

have a pattern, identification of coloured fluctuations could be enhanced in a transform

domain that can adapt to the signal’s locality. On the other hand, such procedures are

often conditioned by a number of parameters. In this thesis, different methodologies

are applied to particle-based nanofluid flow simulations with the goal of assessing their

effectiveness in separating different types of noise encountered in the data.

1.1.2 Previous work

To the author’s best knowledge, little work has been done on noise cancellation in

particle-based fluid flow simulations. The main contribution in the field is the compre-

hensive research performed by Grinberg [25], in which he introduced the proper orthog-

onal decomposition method with an adaptive time-window for analysing MD, DPD, and

multi-scale data. Habasaki [26, 27] mentions using singular spectrum analysis, to sepa-

rate signals of physical interest from contamination of thermal noise, in MD modelling

of ion dynamics in ion-conducting materials and ionic liquids. The wavelet transform

is known to the molecular dynamics community and was applied to characterise many-

body dynamics in early work by Li et al. [28]. However, wavelet-based thresholding

has not been much applied for filtering the observables obtained from particle simu-

lations. An exception is the work of Albert et al. [29] in which wavelet de-noising

was employed in shear crack modelling performed with MD. No research results have

been published that use EMD interval thresholding, a WienerChop filter, or rQRd for

processing measurements obtained from nanofluidic simulations.
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1.2 Research objectives

The objective of this thesis is to investigate the capabilities of various mathematical

transforms, introduced by different scientific communities, in assisting noise reduction

in particle-based modelling. Different evaluation criteria, including processing time,

signal-to-noise ratios, errors in norms, and data-adaptivity, are employed to evaluate

their performance. A number of benchmark fluid flow problems were designed to in-

vestigate the usefulness of the considered methodologies and provide guidelines on how

the algorithms can be successfully utilised. In addition to analysing the strengths and

weaknesses of existing methods, the aim is to develop novel and efficient de-noising

techniques to improve the quality of simulations results. The focus of the research is

on evolving procedures that can provide rapid, adaptive, noise-free coarse-graining of

micro-scale phenomena, and can further be employed in molecular-continuum simula-

tions. This project directly tackles the important challenge of extracting information

from the data without the need for long averaging periods.

Two of the methods, windowed proper orthogonal decomposition and its coupling

with wavelet thresholding (using the C++ wavelet library3), have been implemented in

the molecular dynamics code that is a part of the Open Field Operation and Manip-

ulation (OpenFOAM) C++ fluid dynamics toolbox4. In addition, the other filtering

utilities, apart from EMD routines which were written by Kopsinis and McLaughlin

[30], and Rilling and Flandrin [31], were developed during this research as MATLAB

scripts (some based on the original codes written in different programming languages)

and can be applied to post-process the simulation results.

1.3 Thesis outline

This study introduces to computational nanofluidics methodologies, such as rQRd,

urQRd, EMD-IT, which were utilised in other fields of science but never before used to

reduce discrepancies in particle-based simulations. In addition, based on the research

conducted, we propose a number of novel methods referred to as POD+ techniques

which, for the first time, combine different de-noising approaches with POD. Moreover,
3www.wavelet2d.sourceforge.net
4www.openfoam.org

www.wavelet2d.sourceforge.net
www.openfoam.org
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we test analytical procedures, only recently developed by the statistics community, for

automated truncation of singular values in order to design simplified data filtering ap-

proaches for multi-scale modelling.

In Chapter 2, the molecular dynamics (MD), dissipative particle dynamics (DPD),

and direct simulation Monte Carlo (DSMC) methods used to perform the fluid flow

simulations in this thesis are briefly introduced. Chapter 3 is a review of all the mathe-

matical procedures and their extensions applied in the research for data processing. We

discuss their strengths and weaknesses and provide guidelines on how to utilise them

for signal de-noising. The theoretical basis is followed by the results of employing the

filtering methodologies to synthetic signals in Chapter 4. A comparison of the perfor-

mance of each technique in extracting information from particle-based simulations is

presented in Chapter 5, followed by concluding remarks on the new developments. The

key findings of this research are summarised in Chapter 6 together with a discussion of

future work.



Chapter 2

Computational Methods for

Particle-Based Simulations

“I would like to describe a field, in which little has been done, but in which an

enormous amount can be done in principle. (...) What I want to talk about

is the problem of manipulating and controlling things on a small scale.”

Richard Feynman, 1959.

Feynman’s famous talk There’s plenty of room at the bottom [32] was delivered over

50 years ago at the annual meeting of the American Physical Society, and referred to

what later became known as nano-science and nanotechnology. The Nobel prize win-

ner stressed the importance of miniaturisation and molecular manufacturing that gives

the ability to, as Feynman put it, “manoeuvre things atom by atom”. This famous

lecture with its visionary power began a string of remarkable achievements, including

development of small-scale machines referred to as MEMS (Micro Electro-Mechanical

Systems). The increasing number of applications for microsystems, which are char-

acterised by large surface-to-volume ratios, causing boundary effects to be significant,

has led to the emerging technology of nano/microfluidics [33]. Even though progress in

nanotechnology is tremendous, there is still plenty of room for advancement.

Particle-based simulation methods serve an important function in understanding

fluids at the small scale, and enable the analysis of numerous physical phenomena in

the field of nanofluidics (e.g. slip at a fluid-solid interface) that are very challenging to

9
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study experimentally. Much of the interesting physics encountered in nanoflows can be

understood by studying simple fluids, such as Lennard-Jones model liquids, confined

in nanochannels. As the modelling techniques tend to be computationally expensive, a

common approach is to utilise parallel-processing allowing the entire algorithm to run

simultaneously on many computer processors. Moreover, GPU computing offers the

potential of additional performance gains. This chapter provides a brief introduction to

the modelling techniques utilised in this work for simulating nano-scale flows: molecular

dynamics for liquid flows; its meso-scale counterpart, dissipative particle dynamics; and

the direct simulation Monte Carlo method for rarefied gas dynamics.

2.1 Basics of molecular dynamics

Today, computer simulations play a significant role in nearly all branches of scientific

research. Molecular dynamics is thought to be conceptually the simplest approach to

study many-body problems, especially if non-equilibrium states and the evolution of

the system are considered. The method is suitable for simulating very small systems

with linear dimensions on the order of 100 nm or less, for time-scales of several tens

of nanoseconds [9]. In this section, the methodology behind molecular dynamics is

presented based on exhaustive reviews found in [9, 34–37].

The basis of the MD approach is classical mechanics1 – solving numerically Newton’s

equation of motion for an interacting (through, e.g., pair potentials) multi-particle sys-

tem. If a system of Np particles with Cartesian coordinates r(i) =
(
x(i), y(i), z(i)

)
, i =

1, . . . , Np, is considered, the dynamics can be described in the following form:

d

dt
r(i)(t) = ṙ(i) = v(i)(t), (2.1)

m(i) d

dt
v(i)(t) = m(i)v̇(i) = F(i)(t), (2.2)

with v(i), m(i), F(i) denoting a particle’s velocity, mass, and acting force, respectively.

Simulations performed with MD, therefore, consider a set of particles (here atoms, or
1It should be stated that quantum mechanics describes the basic physics of condensed matter, and

not the classical approach. However, solving the Schrödinger equation (with the Born-Oppenheimer
approximation) for multi-particle systems is still not entirely feasible [35]. For that reason, classical
MD serves as a good alternative.
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molecules) moving in a defined space. The idea behind this technique is to calculate

trajectories of the nuclei. The time averages of observables (e.g., temperature, pressure,

diffusion constant) are extracted along the trajectories in the system and linked to

macroscopic properties with the use of statistical mechanics. The ergodicity hypothesis

relates the ensemble average, defined as a collection of all possible systems differing

in microscopic states, but having an identical macroscopic or thermodynamic state, to

measurements carried out for a single equilibrium during the system’s evolution. It is

then assumed that the average of a process property over time and the average over the

statistical ensemble should be the same. Different ensembles of statistical mechanics can

be realised, by introducing a coupling to appropriate thermostats or barostats, including

• Microcanonical ensemble, NVE – The thermodynamic state characterised by a

fixed number of particles (denoted here by N), volume (V), and a fixed energy

(E); it corresponds to an isolated system.

• Canonical Ensemble, NVT – This is a collection of all systems with a thermo-

dynamic state defined by a constant number of particles (N), volume (V), and

temperature (T); such systems are considered in the simulations that follow.

• Isobaric-isothermal ensemble, NPT – System having a fixed number of particles

(N), pressure (P) and temperature (T).

In the non-equilibrium case, the time evolution of the system is considered. Initial

molecular positions within the ensemble are usually random and the initial velocities

are assigned according to the Maxwell-Boltzmann distribution. The two main categories

of molecular models are soft and hard sphere. The first MD implementation sampled the

phase space of a system of hard spheres, and was performed by Alder and Wainwright

[38] over 50 years ago. Hard sphere systems define molecular interactions through

impulsive, instantaneous collisions, with free movement between them. In soft sphere

systems, particles interact via a potential model, such as the Lennard-Jones potential

(L-J).

In addition to classical MD, other methods for studying nanofluidics include the

Monte Carlo (MC) techniques, the ab initio MD, or Car-Parrinello method. A major

advantage of some of these procedures is the lack of dependency on the effective inter-
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particle potential, which often is not precise and is chosen without any firm chemical

foundation [35]. Nevertheless, for most fluids, the classical MD soft sphere approach is

fast and generally effective and is utilised for many modern applications.

2.1.1 MD integration algorithms

The Verlet algorithm is a widely used method to solve Eq. (2.1) and (2.2) directly from

the Taylor expansions of r(i)(t):

r(i)(t+ ∆t) = r(i)(t) + ∆tṙ(i)(t) +
(∆t)2

2
r̈(i)(t) +

(∆t)3

6

...r (i)(t) +O(∆t4), (2.3)

r(i)(t−∆t) = r(i)(t)−∆tṙ(i)(t) +
(∆t)2

2
r̈(i)(t)− (∆t)3

6

...r (i)(t) +O(∆t4). (2.4)

Adding Eq. (2.3) to (2.4) yields for the time evolution:

r(i)(t+ ∆t) = 2r(i)(t)− r(i)(t−∆t) + ∆t2r̈(i)(t) +O(∆t4). (2.5)

While this is quite straightforward, it is not very accurate. To reduce the influence of

numerical rounding error occurring in Eq. (2.5), the Verlet Leapfrog algorithm was in-

troduced. The simulation sequence proceeds as follows for one time-step t→ t+∆t [37]:

• Step 1 : Calculate projected velocity at time t+ ∆t/2 for all Np particles

v(i)

(
t+

∆t

2

)
= v(i)(t) +

1

2
v̇(i)(t)∆t, (2.6)

where v̇(i)(t) is the acceleration.

• Step 2 : Update position of particles at t+ ∆t

r(i)(t+ ∆t) = r(i)(t) + v(i)

(
t+

∆t

2

)
∆t. (2.7)

• Step 3 : Compute the interparticle forces acting on all molecules in the system

F(i)(t+ ∆t) =

Np∑
j=1(6=i)

−∇Up
(
r(ij)

)
=

Np∑
j=1(6=i)

F(ij), (2.8)
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where r(ij) = r(i) − r(j) at time-step (t + ∆t) and ∇Up
(
r(ij)

)
is the potential

difference.

• Step 4 : Determine the acceleration of every particle

v̇(i)(t+ ∆t) =
F(i)(t+ ∆t)

m(i)
. (2.9)

• Step 5 : Obtain the particle’s velocity

v(i)(t+ ∆t) = v(i)

(
t+

∆t

2

)
+

1

2
v̇(i)(t+ ∆t)∆t. (2.10)

• Step 6 : Repeat from the first step above until the simulation is statistically con-

verged. A widely used approach to determine this is to inspect the evolution of

observables (e.g. temperature, density, mass flux).

The above procedure is the version of the Verlet Leapfrog method that is implemented

in the MD solver used for this research.

2.1.2 Force calculation: Potential energy model

In a soft sphere MD simulation, particle interaction is based on the potential energy

function, and the force is a gradient of the potential, as shown in Eq. (2.8). Two classes of

interaction can be distinguished: non-bonded, and bonded. Bonded interactions model

strong chemical bonds; the potentials used for the simulations are bond angle potentials

and torsion potentials [35]. Non-bonded interactions between particle pairs commonly

include the Coulomb (long range) and van der Waals (short range) interactions.

The Lennard-Jones potential is often used as an approximate model of the short

range pair-wise interactions in MD simulations. It is also utilised to simulate the be-

haviour of noble gases (its first application was related to liquid argon). For the purpose

of theoretical research, the Lennard-Jones parameters are sometimes used to describe a

system based on unrealistic materials (tuning the coefficients to obtain desired interac-

tions without chemical consideration). The L-J potential is defined as

UL−J = 4εL−J

((σL−J
r(ij)

)12
−
(σL−J
r(ij)

)6
)
, (2.11)
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where the depth of the potential well (strength of the interaction) is determined by

εL−J , and the distance at which the interparticle potential is zero by σL−J .

In MD simulations incorporating the L-J potential, physical quantities are typically

computed using reduced units. Table 2.1 summarises the units used for various quanti-

ties, with kB denoting the Boltzmann constant. In all of our results the quantities are

reported in reduced units.

Fundamental quantities

length l∗ = l/(σL−J)r (σL−J)r = 0.34 · 10−9 m

energy ε∗ = εL−J/(εL−J)r (εL−J)r = 1.65678 · 10−21 J

mass m∗ = m/mr mr = 6.6904 · 10−26 kg

Derived quantities

time t∗ = t/tr tr =
√
mr(σL−J)2

r/(εL−J)r = 2.16059 · 10−12 s

force F∗ = F/Fr Fr = (εL−J)r/(σL−J)r = 4.87288 · 10−12 N

acceleration a∗ = a/ar ar = mr(εL−J)r/(σL−J)r = 7.28340 · 10−13 ms−2

velocity v∗ = v/vr vr = (
√

(εL−J)r/mr) = 157.364 ms−1

density ρ∗ = ρ/ρr ρr = (σL−J)−3
r = 1702.22 m−3

temperature T∗ = T/Tr Tr = (εL−J)r/kb = 120 K

pressure p∗ = p/pr pr = (εL−J)r/(σL−J)3
r = 42.153 · 106 Nm−2

viscosity η∗ = η/ηr ηr =
√

(εL−J)rmr/(σL−J)2
r = 9.10753 · 10−5 kgm−1s−1

Table 2.1: Table of reduced units used in atomistic simulations performed with MD. Lennard-
Jones potential quantities for argon serve as the reference values ()r, which allow to convert a
property, originally in SI units, into reduced units ()∗.

According to Eqs. (2.8) and (2.11), the force of interaction between particles is

defined by:

F(ij) = 4εL−J

(
12
(σL−J
r(ij)

)12
− 6

(σL−J
r(ij)

)6
)(

r(ij)(
r(ij)

)2
)
. (2.12)

This Lennard-Jones force decays reasonably fast for increasing particle separation. Nev-
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ertheless, all particle pairs should be considered to compute the forces on a single atom.

The computational cost of the force calculation, which is an O
(
N2
p

)
procedure, is the

main drawback of MD. Approximations are widely introduced to improve the efficiency

of the method, including the use of a cut-off radius, rcut, beyond which the force van-

ishes. The potential truncated at a separation distance, rcut, defines a spherical region

within which particles interact. Avoiding double-counting enables a reduction in the

computational cost by computing the force between particles i and j only once, as the

pair-potential calculations are symmetric. Details of the implementation of molecular

dynamics have been given in previous works by Rapaport [36], Borg [37], and Nicholls

[39].

2.1.3 Errors in MD

The systematic errors present in molecular dynamics are mainly due to finite system

sizes, poor equilibration, and the possible influence of the random number generators

[9, 34]. Moreover, statistical errors due to finite sampling in the presence of thermal

fluctuations introduced by thermostats strongly affect the simulation results. In par-

ticle simulations, due to the finite time-steps on the scale of femtoseconds, there is no

guarantee that instantaneous estimates are sufficiently independent. This makes the

statistical analysis more difficult as the variance in the mean of a property, given by

s2
N (〈A〉run) = s2

N

(
1

τrun

τrun∑
τ=1

A(τ)

)
=

1

τrun
s2
N (A), (2.13)

where

s2
N (A) =

1

τrun

τrun∑
τ=1

(A(τ)− 〈A〉run)2, (2.14)

is underestimated. In Eq. (2.13), 〈A〉run is a mean of the data and A(τ) is a measure-

ment at time, τ . In order to avoid lack of accuracy due to strong correlations within

the measurements, the statistical inefficiency method presented by Friedberg [40], and

Allen and Tildesley [34], also referred to as block-averaging by Rapaport [36], should

be utilised. In this procedure, the sequence of steps is broken up into nb blocks each

of length τb, so that nbτb = τrun gives the total size of the data set. The statistical
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inefficiency sin is then defined as:

sin = lim
τb→∞

τbs
2
N (〈A〉b)
s2
N (A)

, (2.15)

where s2
N (〈A〉b) is the block variance. The result is plotted against τ0.5

b until a plateau

is eventually reached; according to Rapaport [36], the point at the start of the plateau

is an indication of the extent to which the samples are correlated, i.e. lower bound. For

a particle simulation time-step, ∆t, the plateau value of sin indicates that data should

be sampled at every time interval, tw = ∆t ·sin, to ensure statistical independence. The

statistical inefficiency informs which data can be ignored to reduce redundancy. Figure

2.1(a) shows the plateau for correlated MD data, and in Fig. 2.1(b) the statistical

inefficiency is plotted for the sequence consisting of every 24th time-step. It can be seen

that estimation of an effective time-step, in this case tw = 24∆t, ensures an appreciable

difference among successive measurements. Figure 2.1(a) suggests that the system was

sampled too often and repetitions of the same state are present. In contrast, in Fig.

2.1(b) the plateau is below sin = 2 indicating that now every sample provides new

information.

(a) Data sampled at every time-step. (b) Statistical inefficiency for every 24th succes-
sive measurement.

Figure 2.1: The calculation of statistical inefficiency sin with approach to the plateau for velocity
data from MD simulation of Poiseuille flow of water.
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2.2 Dissipative particle dynamics

Dissipative particle dynamics is a stochastic particle-based technique for simulating sys-

tems at scales often not reachable by other atomistic methods. This mesoscopic model

was originally introduced by Hoogerbrugge and Koelman [41] in 1992 as an off-lattice

version of lattice gas automata (LGA). As noted by Hoogerbrugge and Koelman [41],

lattice models introduce two fundamental problems: isotropy and Galilean invariance2

are both broken, which DPD overcomes. In 1995, the method was put into a formal

statistical mechanics context [43]. In the case of DPD, interactions are soft, repulsive,

and short-ranged. The soft potential enables the use of a time-step that is up to an order

of magnitude larger than the values typically used in MD simulations. Moreover, the

soft interactions reduce the complexity of the DPD method by decreasing the number

of degrees of freedom for particles. In the original technique, each dissipative particle is

regarded not as a single molecule of the fluid (as with MD), but rather as an assembly

or collection of molecules.

2.2.1 Methodology of DPD

Dissipative particle dynamics can be seen as a coarse-graining of molecular dynamics

[44]. The method’s simplicity and flexibility make it a competitive technique in the

field of modelling complex fluids. Similar to molecular dynamics, the time evolution in

DPD simulations is governed by Newton’s equations of motion (see Eq. (2.1) and (2.2)).

However, in the standard DPD method, particles interact with a pairwise additive force

defined as a sum of three contributions [45]:

F(i) =
∑
j 6=i

(
F(ij)
C + F(ij)

R + F(ij)
D

)
, (2.16)

where F(ij)
C , F(ij)

R and F(ij)
D are the conservative, random (stochastic) and dissipative pair

forces, respectively. The conservative repulsive force is related to the soft interaction
2Galilean invariance implies that motion is the same in a coordinate system that moves with constant

velocity, which is equivalent to the conservation of total linear momentum [42].
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potential and is represented as follows:

F(ij)
C = A

(ij)
C wC

(
r(ij)

) r(ij)

r(ij)
, (2.17)

where r(ij) =
∣∣r(ij)

∣∣ =
∣∣r(i) − r(j)

∣∣, and A
(ij)
C is the interaction strength (maximum

repulsion parameter). The switching function wC
(
r(ij)

)
is equal to 1 − r(ij)/rcut for

r(ij) < rcut, and vanishes for r(ij) ≥ rcut, where rcut is a cut-off radius. The dissipative

and random forces are given by

F(ij)
D = −γ(ij)

D wD

(
r(ij)

)(
r(ij) · v(ij)

) r(ij)(
r(ij)

)2 , (2.18)

F(ij)
R = σ

(ij)
R wR

(
r(ij)

)
ζ(ij)∆t−

1
2
r(ij)

r(ij)
, (2.19)

where ∆t is the time-step, v(ij) = v(i)−v(j) is the relative velocity, and ζ(ij) is a random

number with zero mean and unit variance; γ(ij)
D and σ(ij)

R are the dissipation strength and

noise strength, respectively. The terms wD
(
r(ij)

)
and wR

(
r(ij)

)
are weighting functions

which are given by wD
(
r(ij)

)
=
(
wR
(
r(ij)

))2
=
(
1− r(ij)/rcut

)2, if r(ij) < rcut, and zero

for r(ij) ≥ rcut. The dissipative term, F(ij)
D , can be considered as friction that acts on

the relative velocities of particles. The random force is related to temperature. The

force F(ij)
R can compensate for the loss of energy due to the dissipation. Therefore, both

drag and random forces may be used as a system thermostat provided that the weight

functions and amplitudes obey a fluctuation-dissipation theorem [46]:

σ2
R = 2γDkBT. (2.20)

All the interactions in DPD are pairwise, which means that the method obeys Galilean

invariance and isotropy. The mass and momentum are conserved to preserve the hy-

drodynamics of the system [47, 48] and the three types of forces satisfy Newton’s Third

Law.

2.2.2 Many-body DPD

Despite the method’s versatility, it was noted by Louis et al. [49] that the quadratic

equation of state derived from the conservative force does not contain a van der Waals
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loop necessary for describing a vapour-liquid coexistence e.g. for a droplet study. In

DPD, the effective force is solely repulsive, which makes it impossible to consider systems

with free surfaces [50]. Many-body DPD is a technique which provides a large range of

thermodynamic behaviours for the DPD particles [47, 48].

Many Body Dissipative Particle Dynamics (MDPD) is a promising mesoscopic method

for simulating fluid interfaces. Based on the work of Pagonabarraga and Frenkel [51],

and further developed by Trofimov [52, 53] and Warren [46], MDPD introduces a

density-dependence into conservative forces:

F(ij)
C =

[
A

(ij)
C wC +B

(ij)
C (ρ̄(i) + ρ̄(j))wd

]
, (2.21)

where ρ̄(i) represents the average local density at the position of particle i defined as

ρ̄(i) =
∑
j 6=i

wρ

(
r(ij)

)
. (2.22)

The weight function wρ
(
r(ij)

)
is normalised so that

∫∞
0 4πr2wρ(r)dr = 1 [54]. The

other function, wd, is chosen to be equal to 1 − r(ij)

rd
for r(ij) < rd and 0 if r(ij) ≥ rd,

where rd is a new cut-off radius. This modification divides the conservative force into

two parts: an attractive component obtained by setting the parameter A(ij)
C < 0 with

cut-off usually being rcut = 1, and a repulsive force with B(ij)
C > 0 and shorter cut-off

e.g. rd = 0.75rcut. According to Warren [55] the force law is not conservative unless

B
(ij)
C is a constant matrix. This has been defined as the no-go theorem. In most of

the simulations described in the literature the change in particle interaction is obtained

by tuning the value of A(ij)
C , with B(ij)

C being unchanged [54, 56, 57]. MDPD enables

simulation of vapour/liquid interfaces: allowing the study of surface wetting properties

[58], droplets [45], calculation of surface tension [54], capillary problems, such as the

distribution of liquids in porous media, and water-oil displacements [50]. In the current

study, the simulation of liquids confined in a channel were the main focus, and dissipative

particle dynamics (not MDPD) was the preferred numerical choice.
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2.3 Direct simulation Monte Carlo

Gas flows can be characterised by a parameter known as the Knudsen number, Kn,

which measures the degree of non-equilibrium of the fluid flow. This dimensionless

quantity is defined as

Kn =
λKn
L

, (2.23)

where λKn is a molecular mean free path, and L denotes a characteristic length scale of

the system. The continuum fluid formulation breaks down when the geometric length

L is comparable to the mean free path of the molecules in the gas. In general, the

continuum description based on partial differential equations is inadequate when Kn >

0.1, and a particle-based approach is needed. Despite significant progress in solving the

Boltzmann equation [59], the direct simulation Monte Carlo technique, developed by

Bird in the 1960’s for kinetic scale simulations [60, 61], remains the dominant numerical

method for the simulation of dilute gases. Since the technique was introduced, it has

been quickly adopted for many problems where the Knudsen number is significant.

Initially the focus was on hypersonic aerospace applications, such as the simulation of

re-entry flight in the upper atmosphere. Today DSMC is also used to study gaseous

flows in microfluidic devices, as the small length scales of such systems, even under

atmospheric pressure, suggest the presence of rarefaction effects and the continuum

assumptions of the Navier-Stokes equations are no longer valid.

DSMC models the gas at a microscopic level using particles representing a large

number of physical molecules or atoms. The method defines the physics of the gas

through the motion of particles in a discretised computational domain, and collisional

interactions between them. A fundamental assumption of DSMC is that particle move-

ment can be decoupled from particle collisions, which is valid for dilute gases. Particles

then move according to discrete changes in velocity and energy caused by collisions. A

successful DSMC simulation is dependent on the following conditions [9, 62–64]:

• The time-step ∆t is chosen to be smaller than the mean collision time.

• The DSMC cell size is a fraction of the mean free path, λKn; the average cell size

is about λKn/3.
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• There is a sufficient number of simulated particles per cell (≥ 20).

• Collision-rate and reaction-probabilities are defined correctly.

As described in [9, 62–66], the DSMC algorithm can be broken down into the following

operations:

• Step 1 : Move all particles according to their molecular velocity for a given time-

step, ∆t.

• Step 2 : Index and track the particles, calculate boundary interactions i.e. gen-

erate/move inflow particles, remove outflow particles, and process reflections at

solid boundaries.

• Step 3 : Compute collisions via a probabilistic approach.

• Step 4 : Sample macroscopic flow properties within the cell, and iterate the whole

procedure.

When a pair of particles is selected for a collision, momentum and energy are ex-

changed between them. The scattering angle and degree of inelasticity are defined

statistically in order to generate post-collision properties. The collision cross-section

schemes that have been utilised in this work (for simulating argon gas flow) are the

hard and variable hard sphere models, as they are sufficient for monatomic gases, for

which the vibrational and rotational non-equilibrium effects are negligible [9]. In the

hard sphere approach, the interparticle force, defined as the inverse of the repulsive

power force,

Fn =
Cp
rηp
, (2.24)

has η → ∞ [65], where rp is the distance between the colliding particles, and Cp is a

constant. The hard sphere model is considered to be the simplest and most efficient.

In the last step of the DSMC procedure, the macroscopic properties are obtained

through time-averaging for steady-state flows, or by calculating the mean ensemble of

many independent calculations. One of the main drawbacks associated with DSMC is a

significant statistical scatter in the results, particularly in low velocity applications; the

uncertainty in the recovered velocity is inversely proportional to the square of the Mach
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number [67]. For that reason, DSMC velocity measurements are used in this research,

together with MD and DPD data, to study the performance of de-noising techniques.



Chapter 3

Noise Reduction Techniques

This chapter provides a review of all the algorithms utilised in the present work for noise

reduction. It is divided into seven sections, each introducing a different technique. The

first section is concerned with proper orthogonal decomposition and how it can be used

for filtering simulation data. The second part of the review focuses on singular spectrum

analysis, which can be seen as a modification of proper orthogonal decomposition for

analysing one-dimensional data arrays (signals). Improvement of the method, referred

to as random QR de-noising, is discussed in Sec. 3.3. A brief mathematical description

of the wavelet transform and wavelet-based thresholding is then presented. Section 3.5

discusses recent applications of empirical mode decomposition for removing noise from

signals. Novel couplings of proper orthogonal decomposition with other algorithms are

introduced in Sec. 3.6. The methods presented in this chapter enhance de-noising of

simulation data, as shown in the chapters that follow. For completeness, the final section

is concerned with dynamic mode decomposition: this recently developed approach has

promising features that should be the subject of future studies.

3.1 Proper orthogonal decomposition

Proper orthogonal decomposition is a statistical method that finds a low-dimensional

approximate description of high-dimensional data containing a large number of interre-

lated variables. In addition to reducing order, POD is also used for feature extraction

by revealing coherent structures within the data (e.g. simulation results, experimental

23
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measurements). The method was introduced to the turbulence community by Lumley

(1967) [68]. However, the same procedure was developed independently by several sci-

entists and is known under different names depending on the area of application. Its

exact origins are therefore difficult to trace.

The review by Stewart [69] focuses on the early history of singular value decom-

position (SVD), which is closely connected to POD, and mentions the contributions

of five mathematicians in its development. These are Betrami (1835-1899), Jordan

(1838-1921), Schmidt (1876-1959), Sylvester (1814-1897), and Weyl (1885-1955) who

established “one of the most fruitful ideas in the theory of matrices”. In statistics, POD

is referred to as principal component analysis (PCA) and originated with the work of

Pearson [70] on fitting lines and planes to a set of points in n-dimensional space. It was

also independently proposed and named by Hotelling [71] in 1933. In signal processing,

the method is known as the Karhunen-Loève decomposition (KLD) or theorem, due to

the work of Karhunen [72] from 1946 and Loevè [73] from 1948. In some papers it is also

referred to as the Kosambi-Karhunen-Loève theorem [74], in order to acknowledge the

earlier contribution of Kosambi [75]. Other names that have appeared in the literature

include empirical orthogonal function (EOF) in oceanography [76] and meteorology [77],

and factor analysis in social sciences [78, 79].

The method has been utilised for different applications in each mentioned field of

science. In this thesis, however, noise reduction is the main interest and the POD tech-

nique has been investigated in the context of its capabilities to extract high quality

information from numerical data. This section begins with the mathematical formula-

tion of POD. Different means of performing POD are explained in 3.1.2. The last part

discusses the issue of determining the number of components that account for significant

structures contained in the data.

3.1.1 Mathematical formulation

The following mathematical description of proper orthogonal decomposition is based

on the formulations presented in [80–83]. We wish to describe a real function f(x, t),
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which is a random field on a domain, Ψ, as a finite sum of its variables:

f(x, t) ≈
r∑
i=1

αi(t)φi(x), (3.1)

where the coefficients α(t) represent temporal information and φ contains spatial com-

ponents (t denotes time and x space). In terms of fluid mechanics, the space Ψ can

be considered as a domain of flow-fields at a given instant in time. An element of Ψ is

therefore a snapshot of the flow. When r (the number of elements) approaches infinity,

the estimate becomes exact. Classical orthogonal approaches allow for such a decom-

position by establishing a set of orthonormal basis functions, {φi(x)}, such that its first

k < r terms provide the best approximation of the function f(x, t).

Seeking a structure that resembles an ensemble of observations {fs} of the field

f(x, t) corresponds to seeking a function φ such that the average squared error between

fs and its projection onto φ is minimised:

min

〈∥∥∥∥fs − (fs, φ)

‖φ‖2
φ

∥∥∥∥2
〉
, (3.2)

where fs is a snapshot, fs(x) = f(x, ts), obtained from successive measurements at

time ts during the simulation, and (fs, φ) =
∫

Ψ f
sφdΨ denotes the real inner product

in Ψ; 〈.〉 indicates an appropriately defined ensemble average, e.g. time, space, or phase

average; ‖.‖ = (., .)
1
2 is the induced norm. This reasoning is equivalent to finding φ to

maximise the averaged projection:

max

〈
|(fs, φ)|2

〉
‖φ‖2

, (3.3)

where |.| represents the modulus. Equation (3.3) means that if fs is projected along

φ, the average energy content is greater than if it is projected along any other basis.

It should be noted that the energy associated discussed here is not a physical energy.

However, for some cases, e.g. velocity measurements in fluid dynamics, this energy is

strongly related to the kinetic energy of the system. Proper orthogonal decomposition

is concerned with orthonormal basis functions, i.e. functions that are both orthogonal

((φi, φj) = 0 if i 6= j) and normalised, ‖φ‖2 = 1, which satisfies Eq. (3.3), resulting in
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the best approximation to the elements of {fs}. Holmes [80] explained that according

to spectral theory, for Eq. (3.3) to be satisfied, φ needs to be an eigenfunction of a

two-point correlation tensor:

∫
Ψ

〈
fs(x)fs(x′)

〉
φ(x′)dx′ = λφ(x). (3.4)

A prime in Eq. (3.4) denotes evaluation of the field at the displaced position x′ = x+∆x,

and λ is an eigenfunction. This constraint1 is a result of solving a condition for extrema

of a corresponding Lagrange multiplier with normalised ‖φ‖2 = 1:

J [φ] =
〈
|(f s, φ)|2

〉
− λ

(
‖φ‖2 − 1

)
. (3.5)

Setting the functional derivative to zero for all variations of φ leads to the solution of Eq.

(3.3), which is given by the orthogonal eigenfunctions {φk(x)}, often called the POD

modes, or empirical orthogonal functions (EOFs), and the corresponding eigenvalues,

λk, of Eq. (3.5). The modal coefficients αk(t) in Eq. (3.1) are uncorrelated, i.e.,

〈αkαk′〉 = δkk′λk, (3.6)

and are determined by αk(t) = (f(x, t), φk(x)); δkk′ is the Kronecker delta, i.e.

δij =

1, i = j

0, i 6= j
(3.7)

There is an infinite number of solutions to Eq. (3.4). The energy, E, contained in

the data having r elements (matrix of rank r) is defined as the sum of the eigenvalues,

E =

r∑
i=1

λi. (3.8)

The percentage of variance contained in the k-th eigenvalue is given as

E
(k)
λ =

λk
E
. (3.9)

1In the calculus of variations, Eq. (3.4) is known as the Fredholm integral equation of the second
kind, and it is an ill-posed problem [84].
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Since the eigenvalues are arranged in a specific order, the index k can be called the

mode number. Having the eigenvalues ordered by λk ≥ λk+1, the optimal vector to

approximate the ensemble of snapshots is the one corresponding to the first eigenvalue,

λk=1. The mode associated with the second greatest eigenvalue, φk=2, is the optimal

solution to characterise the ensemble of snapshots, but is restricted to the space orthog-

onal to φk=1. This reasoning is extended to all the modes. It is desired to find the basis

{φk(x)} which determines all the variations in the function f(x, t) with a small number

of modes k in a least squares sense, i.e., capturing most of the energy contained in the

data.

3.1.2 Finite-dimensional case: computation of the decomposition

For practical purposes, a discretised set of data in time and space is considered. In the

case of a large number of points, the direct method of finding the eigenfunctions becomes

challenging. Sirovich [85] stressed that the temporal correlation matrix will yield the

same dominant spatial modes, but is a less computationally expensive eigenproblem.

The approach proposed is generally referred to as the method of snapshots. For simplic-

ity, consider a real matrix A, which is a collection of M simultaneous measurements of

some variable at N instants of time. In such an arrangement, the element Ai,j of the

N ×M matrix is a measurement from the j-th probe taken at the i-th time instant.

Finding POD modes and corresponding eigenvalues is associated with eigensolutions of

a symmetric matrix C = AA† (or A†A if N > M). The superscript † indicates matrix

transpose as we are analysing a real data-set; if the matrix is complex then the conju-

gate transpose is performed instead, i.e C = AA∗, where the A∗ is obtained by taking

the transpose and then calculating the complex conjugate of each complex entry. The

discrete formulation of Eq. (3.4) involves computing the eigenvectors of the equation

Cv = λv, (3.10)

where v is an eigenvector and λ is a scalar eigenvalue defined previously. Diagonalisation

of the symmetric matrix gives the following decomposition:

C = V ΛV †, (3.11)
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where V is a set of eigenvectors corresponding to eigenvalues contained in the diagonal

matrix Λ. This representation of a square matrix is referred to as eigenvalue decompo-

sition (EVD).

Proper orthogonal decomposition can also determine the optimal approximation of

the matrix, Ak (Ak ≈ A), by first performing singular value decomposition (SVD) of

the original real N ×M matrix A:

A = UΣV †, (3.12)

where, in case of full SVD, U is an N×N orthogonal matrix, V is anM×M orthogonal

matrix, and Σ is an N ×M diagonal matrix. Columns of U and V are left and right

singular vectors, respectively. The singular vectors can be considered as rotations and

reflections, and Σ as a stretching matrix. Diagonal entries of Σ, called singular values

of A, are non-negative numbers (greater than or equal to zero) arranged in decreasing

order:

s1 ≥ s2 ≥ . . . ≥ sr ≥ 0. (3.13)

In Appendix A it is explained how SVD can be computed manually. It should be

stressed that SVD analysis allows us to unveil some useful facts about the matrix A,

e.g.

1. The number of non-zero singular values defines the rank of the original matrix A

(r = min(N,M)).

2. If A is a square N ×N matrix, the absolute value of its determinant is equal to

the product of its singular values,

|det(A)| =
N∏
i

si, (3.14)

as U and V are unitary matrices.

3. SVD can be used to calculate a pseudoinverse of A, A+=V Σ+U †, where Σ+ is

formed by replacing every non-zero diagonal entry by its reciprocal and transpos-

ing the resulting matrix [86].
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4. The matrix norms can be calculated based on singular values, ‖A‖2 = s1,

‖A‖F =
√
s2

1 + s2
2 + . . .+ s2

r , where ‖.‖F and ‖.‖2 indicate Frobenius and L2

norms, respectively.

Equation (3.12) can also be expressed in the form

A = QV † =
r∑
i=1

qiv
†
i , (3.15)

where Q = UΣ, A represents the function f(t, x) from Eq. (3.1), qi is a column matrix

corresponding to αk(t), and v
†
i is a vector matrix representing φk(x). The description

in Eq. (3.15) is an accurate approximation as the data set has a finite size. To construct

an optimal lower-rank estimate of A, for a determined value k < r, the matrix Σk is

obtained by setting sk+1 = sk+2 = ... = sr = 0,

Ak = UΣkV
† =

k∑
i=1

siuivi. (3.16)

To save computational time, U and V can be replaced by matrices consisting of their

first k columns and Σk can be replaced by its k × k principle minor. Throughout this

thesis, the rank k of the best matrix approximation will be referred to as the number

of the dominant modes.

Geometric interpretations

Singular value decomposition can be better understood by visualising how the N ×M

matrix A deforms an M -dimensional space to an N -dimensional space [87]. Since the

matrix V is unitary (i.e. V † = V −1), Eq. (3.12) can be rearranged:

A = UΣV † ⇐⇒ AV = UΣ. (3.17)

If each vector is considered separately, Eq. (3.17) can be expressed as

Avi = siui, i = 1, . . . ,M. (3.18)
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It can be seen that A maps the set of unit vectors of an orthogonal coordinate system

vi, onto a new scaled system, siui. The unit sphere with respect to the matrix L2 norm

(the square root of sum of squares of elements) gets mapped to an ellipsoid in a new

N -dimensional space. Singular values si define the lengths of the semi-axes which are

spanned in the direction ui. Figure 3.1 summarises the whole procedure for M = 3 and

N = 2; M −N dimensions of the domain collapse, then the remaining dimensions are

stretched and rotated. As the higher singular values can be equal to zero, it should be

specified that SVD maps a unit sphere onto an r-dimensional space.

Another way to interpret the decomposition comes directly from the least squares

optimisation defined in Eq. (3.2). Chatterjee [83] explained that the matrix A can be

seen as a collection of coordinates of N points in M -dimensional space. We are seeking

a new k-dimensional subspace (k ≤ M) which has the smallest mean square distance

from the set of points. The solution is a projection of the points on the new subspace.

A basis for this subspace is given by the first k columns of V .

v1
v2v1

v2

v3

s2u2

s1u1

Figure 3.1: Geometrical interpretation of singular value decomposition.

SVD vs eigenvalue decomposition

There is a direct relation between SVD and eigenvalue decomposition; for A which can

be mean-centred, i.e. the mean of A is subtracted from each column, or have non-

zero mean, the principal components can be determined from the symmetric matrix,

C = AA† or C = A†A. Making use of the orthonormality of U and V , SVD can be
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performed by solving two eigenvalue problems:

C = AA† = UΣV †V ΣU † = UΣ2U †, (3.19)

C = A†A = V ΣU †UΣV † = V Σ2V †, (3.20)

where V is a matrix of eigenvectors of the M ×M square matrix of A, A†A, and the

left singular vectors U are the eigenvectors of the symmetric N ×N matrix AA†. The

squares of singular values are the r largest eigenvalues,

λ = s2, (3.21)

common to both symmetric matrices of A.

Kalman [87] stressed that the EVD and the SVD are the same for real and symmetric

matrices, except that the singular values are the absolute values of the eigenvalues. The

elements of SVD remain within a real domain whenever A is real. However, according

to Chatterjee [83], eigenvalues and eigenvectors of unsymmetric real matrices can be

complex. In case of rectangular matrices, numerical analysts consider SVD as being

superior to EVD because it is more accurate [87, 88], since the formation of matrix

cross-products in EVD can lead to round-off errors. In contrast, SVD can be directly

applied to the original arbitrary matrix A, avoiding degradation of results. On the

other hand, EVD is computationally less expensive. Kerschen et al. [82] and Hansen

[84] claim that another advantage of using SVD is that more information on the spectral

properties of the data can be obtained through singular vectors.

Mean-centring before SVD and EVD

It is quite common to mean-centre the data in A before performing SVD. If A is vi-

sualised as a set of N points, subtracting the mean from the data is equivalent to

shifting the mean of the point cloud towards the origin of the coordinate system. This

is equivalent to performing eigenvalue decomposition on a covariance matrix (or, after

normalising, a correlation matrix). Following this procedure does not influence the main

calculation, but it can affect the interpretation of the results.

It has been widely debated whether mean-centring is a necessary step [83, 89, 90].
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Chen et al. [90] argued that refraining from subtracting the mean is advantageous in

many practical applications, e.g. while analysing in-cylinder engine flows. In their work,

it is demonstrated that performing POD without subtracting the ensemble average is

beneficial as the coefficient of the first mode can reveal the extent to which the mean

flow is present and its cycle-to-cycle variability. This could also be important if SVD

is used to assess whether the simulation has reached a steady-state. For the purpose of

solving a statistical inverse problem, no benefit is seen in performing mean-centring of

the noisy measurements. The comparison of the first POD mode, which represents the

mean, with the other modes can assist in partial reconstructions which are performed

when solving statistical inverse problems. In Chapter 4, examples are shown which

confirm that mean-centring the data before performing SVD is unnecessary, and does

not lead to any improvements in terms of the quality of results or processing time. In

the present thesis, SVD has only been applied to the non-zero mean data.

3.1.3 Noise filtering with proper orthogonal decomposition

The two methods discussed, SVD and EVD, may also be considered as energy decom-

positions which have the capability to filter out low energy spectra (i.e. noise) from raw

data. If the previously considered matrix, A, is now a collection of M noisy measure-

ments at N instants of time, it can be represented as a composition of the form

A = Atrue +B, (3.22)

where Atrue is the N ×M matrix that contains the true signal, and B is a matrix that

denotes the unwanted noise. In general, we only know the original matrix A and we need

to remove the noise to extract the true information contained in Atrue. For the special

case of a synthetically generated matrix A, we will know Atrue and corrupt the signal

with artificially generated noise, represented by matrix B. Using POD, we can remove

the noise from the matrix A by creating a corresponding approximation matrix of rank

k, Ak, that contains all the correlations from the original data, i.e. Ak ≈ Atrue. The

approximation is obtained by truncating the singular values as described in Eq. (3.16);

such a procedure is referred to as truncated singular value decomposition (TSVD).

The solution is optimal with respect to the induced L2 matrix norm (spectral), defined
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previously as the largest singular value of the matrix, and the Frobenius norm, calculated

as the square root of the sums of squares of the entries (or singular values). In other

words, POD yields the matrix Ak with the lowest possible Frobenius (or spectral) error.

In the case of simulation data, Grinberg [25] developed an extension to POD for par-

ticle simulations, which is based on time-windows and generally referred to as WPOD:

TPOD = NPODNts∆t, (3.23)

where NPOD is the number of time averages used, Nts defines how many observations are

in one average, and ∆t is the simulation time-step. In this work, WPOD is utilised to

filter out noise in molecular simulations based on the approach presented by Grinberg.

For a set of noisy observations (snapshots), A(ts, x), defined as a field at positions in

space xεRd, d = 1, 2, 3 and at discrete times ts, s = 1, 2, ..., NPOD, WPOD calculates a

set of orthogonal basis modes by applying SVD to the POD window, SVD(A = TPOD).

The estimation of statistical inefficiency (see Sec. 2.1.3) may be used to determine the

window size, where NPOD = nb and Nts = τB from Eq. 2.15. Throughout this thesis

the singular vectors are referred to as spatial and temporal POD modes as they contain

information either about the shape of the signal or its time nature. In the case of

the matrix A(ts, x), a temporal POD mode (related to temporal coefficient αk(t) from

Eq. (3.1)) corresponding to mode number k is a left singular vector uk (column k of

matrix U) and a spatial mode is a right singular vector, vk. In terms of the eigenvalue

problem, the temporal information is held by the eigenvectors of a correlation matrix,

C = AA†, and the spatial mode is defined as the product of the eigenvector and the

original matrix, A.

Choosing a subset of significant modes

If we consider again the noisy N ×M matrix A, defined in Eq. (3.22), we can re-write

the equation as:

A = Atrue + σnBr, (3.24)

where the noisy matrix, B, is now defined as the product of a matrix, Br, whose entries

are independent, zero-mean variables, and σn represents noise level. The matrix, Atrue,
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is to be estimated from the noisy measurement contained in matrix A. As mentioned

previously, the default technique for solving this statistical inverse problem is a trun-

cation of singular values, i.e. setting to zero the singular values which correspond to

noise and calculating the approximation, Ak, according to Eq. (3.16). To obtain the

best estimate of Atrue, the number, k, of singular values required for data reconstruction

needs to be carefully determined.

The main rationale of using SVD (or EVD) to filter out noise is based on the

assumption that, unlike unwanted fluctuations, important (coherent) structures are

energetic. One natural criterion for choosing k is to select the cumulative percentage of

total energy (e.g. 90%) that the selected modes contribute. In other words, the number

of singular values (or eigenvalues) used for data reconstruction is defined by the smallest

value of k for which this chosen percentage is exceeded:

∑k
i=1E

(i)
λ

E
100% ≥ 90%, (3.25)

where Eλ, explained in Eq. (3.9), can be expressed in terms of singular values by replac-

ing λk = s2
k. This is valid for both approaches, when SVD is applied to mean-centred

and the original data. The energy threshold is often chosen arbitrarily, and it can

depend on some practical details of a considered data set. In the case of particle sim-

ulations, defining a cut-off based on energy poses difficulties, as it often happens that

structures of interest contain very little energy when compared to dominant features.

Additional analysis needs to be performed in order to establish an appropriate subset

of significant modes. The following techniques can be applied to both singular values

and eigenvalues, based on the equivalence defined in Eq. (3.21).

In factor analysis, Kaiser [91] proposed a new rule in 1960, in which he states that

any eigenvalue smaller than a threshold, th = 1, contains less information than the

original component and should be rejected. It was argued that despite the simplicity of

this method, Kaiser’s rule is quite inefficient and either overestimates or retains too few

modes; different cut-off values were also proposed following Kaiser’s work, e.g. th = 0.7

by Jolliffe [92]. The rule is specifically designed for correlation matrices, and if the

covariance matrix is of interest, the threshold should be set to the statistical mean of



CHAPTER 3 NOISE REDUCTION TECHNIQUES 35

the eigenvalues th = s̄2. This implementation can be found in commercial packages,

e.g. MATLAB.

Another popular approach, discussed and named by Cattell (1966) [93], involves

a visual study of a plot of eigenvalues against their position index, or mode number.

In the scree graph, the eigenvalues are plotted in descending order and can be linked

with a line. When the line creates a steep change, as in Fig. 3.2, or where the line

levels off, a breaking point (an elbow) defines that all eigenvalues located above it are

significant. Cattell [93] even suggested that beyond that point of change the eigenvalues

should follow an almost straight line. The logic behind this procedure is that such a

break in the plot divides the important or dominant factors from the trivial elements.

The spectrum needs to be truncated at the first point (rank) when a plateau in the

singular values begins. Donoho and Gavish [94] explained that when Atrue, in Eq.

(3.24), is exactly or approximately low-rank, and the entries of Br are of zero mean and

unit variance, the empirical distribution of singular values of the N ×M matrix, A,

forms a quarter-circle bulk with a boundary edge defined by
(

1 +
√

N
M

)√
Mσn. The

singular values that are larger than that boundary are visible in the scree-graph above

the elbow, which represents the edge. This method is sometimes referred to as bulk-edge

hard thresholding [94]. However simple, the scree graph has been criticised for being

subjective, and difficult to interpret in cases where various drops and possible cut-off

points appear in the data [89].

An alternative but similar approach to the scree plot is a log-eigenvalue diagram

(LEV), and its first description is often associated with the work of Craddock and

Flood (1969) [95]. Instead of plotting the eigenvalues against the index number, their

logarithms are considered, log(λ = s2). Choosing the truncation based on LEV is

motivated by the idea that, if higher modes represent uncorrelated noise, then the

corresponding eigenvalues should decay exponentially with increasing mode number

[96]. The smoother2 the kernel 〈fs(x)fs(x′)〉 from Eq. (3.4), the faster the eigenvalues

should decay to zero [84]. Craddock and Flood showed that, in meteorology, eigenvalues

representing noise are decaying in a geometric progression, almost forming a straight

line on a LEV diagram. In other words, the slow-decaying eigenvalues represent short
2Smoothness is measured by the number of continuous partial derrivatives.



CHAPTER 3 NOISE REDUCTION TECHNIQUES 36

Elbow= breaking point !

0

40

80

120

0 5 10 15 20 25

k

Mode number, k

Straight line

Figure 3.2: Scree diagram of synthetically generated signal; two eigenvalues emerge as dominant
modes.

correlation times.

Choosing the number of significant singular values (or eigenvalues) is equivalent

to determining which singular vectors (or eigenvectors) define the signal’s subspace.

When any low-rank data is corrupted by statistical fluctuations, higher singular values

and corresponding modes are associated with the unwanted disturbances. Grinberg

[25] suggested that for filtering simulation data, it is helpful to investigate the tem-

poral modes directly, and assess which of them can be accurately approximated with

a smooth function, e.g., high-order polynomials. For dynamic problems, information

about the evolution of the signal is clearly represented by dominant temporal modes

(or eigenvectors), as shown in Fig 3.3. The smaller the singular values, the more oscil-

lations are contained in the singular functions uk and vk. It is a consequence of the fact

that the singular value system is the analogue of the Fourier expansion of the kernel

〈fs(x)fs(x′)〉, from Eq. (3.4), in the sense that low frequency singular functions corre-

spond to the large singular values and higher frequency singular functions correspond

to smaller singular values [84, 97]. Rejecting all the vectors containing high frequencies

eliminates noise from the system. In this thesis, the smoothness of temporal modes (or

eigenvectors) is taken into account.

Grinberg [25] also proposed another criterion based on an analysis of the temporal

modes, uk. He considered flows simulated with atomistic solvers, in which only the
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fluctuating component resulting from the temperature control (thermostat) contributes

to the slow converging modes. In the case of controllers which employ random forces to

regulate the system’s energy, it is expected that the thermal disturbances will have a

zero mean. Consequently, the temporal modes corresponding to noise will also have zero

mean. The standard deviation of a temporal mode representing unwanted fluctuations

effectively is defined as

STD(vk) =

√∑NPOD
i (vk(τ i)− 〈vk〉)2

NPOD − 1
=

1√
NPOD − 1

, (3.26)

as vk · vk ≡ 1 , 〈vk〉 = N−1
POD

∑NPOD
i vk

(
τ i
)
and NPOD is defined in Eq. (3.23).

Recent work [94, 98] has focused on finding a universal threshold value for truncating

singular values. Donoho and Gavish [94] try to establish a singular value hard threshold

(SVHT) which successfully adapts to unknown rank and noise level, and performs as

well if the rank of Atrue was given. Their study is based on the asymptotic mean square

error in a framework where the matrix size is large compared to the rank that should

be recovered. Donoho and Gavish [94] show that the optimal choice of the truncated

SVD, a hard threshold, in the case of a square N ×N matrix, A, with white noise level

σn, is exactly

th =
4√
3

√
Nσn ≈ 2.309

√
Nσn, (3.27)

when the noise variance is known, or when σn is unknown

th = 2.858 · ymed, (3.28)

where ymed is a median empirical singular value. For a non-square N×M matrix A, the

thresholding coefficients are replaced with different values based on a relation β = N
M :

th(β) =

√
2(β + 1) +

8β

(β + 1) +
√
β2 + 14β + 1

· ymed√
µB

, (3.29)

where µB is the Marčenko-Pastur distribution [94]. If the noise level is known, ymed√
µB

in

Eq. (3.29) is replaced with
√
Nσn, accordingly. In the case of a real inverse problem,

the noise level is not given and in most cases, the simulation data forms a rectangular
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matrix and Eq. (3.29) is preferred and used in the present work. However, in the case of

synthetically generated signals, the equations for known variance can be used to verify

the results obtained.

This list of criteria presented for determining the number of significant modes, k, is

by no means exhaustive. A large amount of research has been done in order to improve

extraction of a true low-rank approximation of the noisy data. More examples can be

found in the literature [89, 99]. However, even though more complex rules are available,

the simplest tests still seem to be the most beneficial and widely used in different fields

of science. In the present thesis, most of the data is analysed with the LEV diagram, by

analysing the energy content of eigenvalues, investigating the smoothness of temporal

modes, and in some cases verified with the SVHT value defined in Eq. (3.29).

In order to visualise how some of the tests are being performed to aid the process

of noise filtration, the following example of a disturbed synthetic signal is presented in

Fig. 3.3. The original smooth data matrix was generated as follows:

Atrue (t, x) = sin
(πx
M

)
cos

(
πt

N

)
+ 0.8e(−3πx/M) sin

(
9πx

M

)
, (3.30)

looping over t = 1 : N and x = 1 : M . Proper orthogonal decomposition was applied to

the matrix with one-dimensional (1D) signals of length set to M = 250 and the number

of observations was set to N = 200. The initial smooth non-steady signals were dis-

turbed by adding Gaussian noise (with zero mean and unit variance) using MATLAB’s

pseudo-random number generator, B = σnBr = 0.1randn(N,M), constructing a noisy

matrix A with signal-to-noise ratio3, SNR = 12.4752 dB.

Previously described criteria were employed to select dominant POD modes. In this

case, only two modes, k = 2, were selected for approximation of the original matrix as

a result of applying the smoothness test of temporal modes and investigating the rate

of decay of eigenvalues. Our reconstructed matrix had SNR = 30.2052 dB, about 142%

higher than the original noisy signals, and is plotted in Fig. 3.3(a) with blue lines against

Atrue presented with green lines. The first and the second eigenvalue, λk=1 = s2
1 and

λk=2 = s2
2, were the most energetic, containing together 96.42% of the total variance.

In practice, it is common to select levels of energy threshold between 70% to 95% [92].
3Defined as the ratio of signal power to the noise power, expressed in decibels.
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It is clear that the first two modes retained most of the significant information, and

the third eigenvalue corresponded to only 0.066% of the cumulative energy. When the

LEV diagram of y(k) = log10(λk) was plotted, the first two eigenvalues also appeared

to be fast-decaying (see Fig. 3.3(b)), while the other points formed almost a straight

line. The corresponding eigenvectors were smoother than other temporal modes which

clearly contained higher frequencies.

The choice of k was further confirmed by applying the SVHT, which retained a
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Figure 3.3: Result of applying POD to synthetically generated noisy signals, and investigating
criteria for the choice of significant k: (a) filtered signal plotted against noisy and smooth profiles,
(b) LEV diagram with the 1st and 3rd eigenvector highlighted.
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threshold of th = 3.4601 for the known noise (σn = 0.1), and similar th = 3.4583

for unknown variance and β = N
M = 200

250 = 0.8; the third singular value was smaller

than the threshold, s3 = 3.0014 < th resulting in only two modes being recovered. It is

important to consider all the criteria because any single test on its own may not provide

enough information to capture the significant phenomena. To achieve higher confidence

in selecting an appropriate k it is advisable to analyse POD (or WPOD for simulation

data) results with at least two tests.

3.2 Singular spectrum analysis

Proper orthogonal decomposition can successfully extract trends and oscillations of the

signal from its noise-contaminated measurements. However, when applied to stationary

data, it appears to be no more efficient in separating unwanted components from the

mean ensemble than statistical averaging. In order to reduce the computational cost

of de-noising the results from steady-state simulations, another method needs to be

applied. Utilising wavelet thresholding for recovering the data’s mean is a possible

alternative to classical orthogonal basis methods (see Sec. 3.4). The main drawback

of using wavelet transforms and multiresolution analysis is the number of parameters

that need to be considered a priori, e.g. mother wavelet, number of vanishing moments,

and levels of decomposition. The choice of an appropriate model is often problematic

and may lead to data misinterpretation if any deviations from it appear. Having a

technique that uses a basis that is adaptive to the signal instead of an a priori basis

is then desired. This statistical method, related to the Karhunen-Loéve transform,

was described by Broomhead and King [100, 101] and is known as a singular spectrum

analysis. It is also based on SVD, hence its name. Sometimes referred to as Cadzow’s

method4 [103], SSA aims at decomposing the original temporal or spatial series into a

collection of a slowly varying trends, oscillatory components, and noise. By applying

singular value decomposition analysis to the ensemble mean, it results in more efficient

noise reduction.
4Under certain conditions SSA may be considered as one iteration of Cadzow’s basic algorithm.

Performing many iterations does not necessarily lead to better results than the basic SSA [102].
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3.2.1 Basic SSA

The method has been widely used in the analysis of climatic, meteorological, geophysi-

cal, and electrical data series, where its de-noising and forecasting abilities are employed.

The basic scheme of SSA can be found in Ref. [104, 105] and is presented graphically

in Fig. 3.4. The algorithm consists of four main steps (two for the decomposition stage,

and two for the reconstruction): embedding, SVD, eigentriple grouping and diagonal

averaging. In the embedding stage, the series X of length M is broken into a sequence

of lagged vectors of size L by forming

Xi = (xi, . . . xi+L−1)†, (1 ≤ i ≤ K), (3.31)

where K = M − L+ 1. As a result, a trajectory matrix Y of series X is formed:

Y = [X1 : ... : XK ] = (xij)
L,K
i,j=1 =



x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2

...
...

...
. . .

...

xL xL+1 xL+2 ... xM


. (3.32)

In other words, by sliding a window of length L, often chosen to be 2 < L < M
2 , the

data contained in X is mapped onto a L×K matrix, permitting further analysis. The

new data set Y is a structured matrix with constant values on the diagonals, hence it

is a Hankel matrix. For a stationary series, it is recommended to perform a centring

procedure before processing (i.e. subtracting the mean from the data), and constructing

a Toeplitz matrix for analysis using SSA [106–108].

In the second key step of the decomposition process, the trajectory matrix is subject

to singular value decomposition (or eigenvalue decomposition of a symmetric matrix

Y Y †). As explained in Sec. 3.1.2, SVD produces a set of left and right singular vectors

U, V , also known as empirical orthogonal functions, or modes, and singular values Σ.

As the SVD may be costly to perform, it can be substituted with other algorithms, e.g.

QR factorisation, or the Lanczos method [109]. The Lanczos method, however, leads

to reduced numerical accuracy even for relatively small matrix sizes, most likely due to
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Figure 3.4: Schematic diagram of SSA algorithm.

the loss of mutual orthogonality of the vectors generated by the algorithm [110].

The following reconstruction process reduces the rank of the trajectory matrix based

on finding a threshold of a noise floor in a scree diagram of singular values (or eigenvalues

given in a descending order). In the case of noisy data sets, the Hankel matrix has a full-

rank because of the partial de-correlation of the disturbed data points [111]. Otherwise

its rank is limited. Analysis of the eigenspectrum enables finding the number k of

significant EOFs, which is equivalent to the rank of a clean matrix. The outcome of the

grouping stage, is then a collection of k < L orthogonal functions (or eigentriples),

U(L×k)Σ(k×k)V
†

(M×k) = Σk
i=1uisiv

†
i . (3.33)

The symbols are the same as in Sec. 3.1. Eigentriples determine a k-dimensional sub-

space in RL of dominant frequencies, onto which the Hankel matrix is then projected
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forming a new data-set, Ỹ . This projection onto the highest-ranked EOFs provides

an optimal linear filter for white (uncorrelated) noise. The subsequent averaging over

its diagonals, performed in the last stage of the reconstruction process, yields a new

series X̃, which is an approximation of X. In Appendix B it is shown how to perform

SSA on a short signal. The rank k of the new matrix should ensure that the distance∥∥∥X − X̃∥∥∥ is small. If X is assumed to be a set of noisy measurements, a composition

of the true signal, S, and some random residual (noise), RN , X = S + RN , then SSA

provides the estimate of the component of interest, X̃ ≈ S. The residual is defined

as RN = X − X̃ = ΣL
i=k+1uisiv

†
i . A good reconstruction of the signal is obtained in

the case of its approximate separability from the unwanted components [108]. All the

steps can be applied iteratively, starting each cycle with the reconstructed series. The

computational cost of one iteration of basic SSA can be up to O(M3). An improved im-

plementation with the use of the fast Fourier transform was presented by Korobeynikov

[112], and leads to reduced complexity of the order of O(kM log(M) + k2M), where k

is the number of eigentriples.

A scree diagram, described in Sec. 3.1.3 as a plot of λk against the mode number k, is

often used in the literature as a graphical method for selecting the significant structures.

However, it can also be defined as a plot of total relative energy captured, Eλ, which

represents the percentage variance held by each eigenvalue. The latter approach is

preferred in this thesis as it gives information about the cumulative portion of variance

contained in the first modes. It is essential to stress the importance of not relying

solely on any single examination. The quality of the eigenspectrum strongly depends

on the window length chosen, and in SSA, as well as in POD, additional tests need to

be performed to make a confident selection of empirical orthogonal functions (modes)

for signal reconstruction. This issue is further discussed in Sec. 3.2.2.

Any knowledge of the nature of a signal can help in extracting useful information

from noisy measurements. Objects, such as a time-series or image, produce a trajectory

matrix with a finite rank, which is equivalent to the number of components (frequencies)

that they contain. Reconstruction of the desired data depends on the proper choice of

the SVD modes (grouping), and defining an accurate rank of the true object. For

example, to obtain the exponential trend, only one SVD component is needed, which
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means that the data has rank one [113]. If the rank of the information that we want

to extract is known prior to de-noising, the signal reconstruction can be very effective.

If an assumed rank number is incorrect, the signal approximation can be polluted with

spurious artifacts.

3.2.2 Window length and separability

The window length, L, is the only parameter that has to be determined prior to the SSA.

Its choice may result in a weaker (or stronger) separability between genuine information

and noise, influencing the effectiveness of the signal reconstruction process. There is no

universal rule regarding the optimal value of L, but several general principles have been

described by Golyandina and Zhigljavsky [105]:

• Theoretical results show that the window should not be greater than half of the

length M of the analysed series, L ≤ M
2 [114];

• For larger values of L ∈
[
0; M2

]
, the decomposition retains more details, with

L = M
2 producing the most detailed description;

• Smaller window lengths serve as a linear smoothing filter;

• If there is a known periodic component in the processed data, then L should be

chosen to be proportional to its period.

In order to explain the influence of the window length on noise reduction, the follow-

ing examples are considered. The signal in Fig. 3.5(a), which is a smooth parabola, was

corrupted with white noise obtaining SNR =16.9625 dB. To extract the original simple

profile from its noisy observation, relatively large values of L are recommended [105].

However, because the parabolic trend that we wished to recover dominated the noisy

measurement, the choice of L did not strongly influence the smoothing (see Fig. 3.5(b)).

In Fig. 3.5, the plot of the signal of length M = 500 reconstructed with three different

values of L ∈ {25, 100, 250} are compared. For each case considered, the highest signal-

to-noise ratio was achieved by extracting the rank k = 2, as shown in Fig. 3.6. The

best de-noising was obtained with the window length equal to half of the length of the

signal; the reconstructed signal with L = 250 had SNR = 37.9592 dB. For this problem,
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Figure 3.5: Application of SSA to a signal of lengthM = 500 corrupted with white noise (SNR =
16.9625 dB). Three window lengths were considered: L ∈ {25, 100, 250}. The best reconstruction
of the parabolic trend was obtained with the largest window size, L = 250, resulting in SNR =
37.9592 dB.
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Figure 3.6: Comparison of SNR gained by SSA as a function of the rank k for different window
lengths. Highest values were achieved for k = 2. The analysed signal was of length M = 500 and
corrupted with additive noise (SNR = 16.9625 dB), see Fig. 3.5.

the signal reconstructed with L = M
5 also provided a good approximation with SNR =

35.5250 dB. This suggests that for smooth and simple trends the window size can be

taken from a relatively wide range of values without much loss of accuracy, provided

the value chosen is not too small. The smallest window size selected, L = 25
(
M
20

)
,

resulted in artifacts (SNR = 29.8848 dB). This is due to the fact that the spectrum

was too coarsely decomposed, weakening the separability of the trend from the noise.
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Similar results were also observed for longer data series. Using a signal with twice the

length, M = 1000, with L ∈ {50, 200, 500} gave SNR = {31.4632, 33.8126, 35.5614} dB,

respectively, when applied to noisy measurements with SNR = 16.9768 dB.

Smaller window sizes can produce better signal reconstruction in the case of more

complex shapes, such as MATLAB cuspamax pictured in Fig. 3.7. For this problem,
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Figure 3.7: Reconstruction of the MATLAB cuspamax function of length M = 1000 from noisy
measurements with SNR = 14.8258 dB. Three window lengths were considered: L ∈ {50, 200, 500}.
The best approximation was received for the smallest window size, L = 50, resulting in SNR =
28.7562 dB. Extraction of the signal from larger windows required a substantial number of small
singular values, that could easily be mistaken for noise.

the signal length was M = 1000 and 3 windows, L ∈ {50, 200, 500}, were applied to

the series with SNR = 14.8258 dB. The smallest L extracted the trend with SNR =

28.7562 dB. The windows L = 200 and L = 500 provided SNR == 28.0926 dB and

SNR = 27.3526 dB, respectively. Using SSA with L = M
2 in this case performed the

worst, as the decomposition was too fine, confusing small elements of signal with noise.

The examination of all possible ranks showed, that for L = 50, L = 200, and L = 500,

the highest SNR was obtained with k = 2, k = 6, and k = 9, respectively. Figure 3.8

shows the value of SNR for the first 50 ranks. It should be noted that the values of

SNRs for any other rank (higher than k = 2) were smaller for L = 50 in comparison

with the other window sizes.

In the real situation we do not know the true signal, but only noisy measurements,

and often we are not sure of its type. We have to rely solely on examination of the

eigenspectra in order to establish an adequate number of k for the approximation. For
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Figure 3.8: Comparison of SNR gained by SSA as a function of the rank k for window lengths
L ∈ {50, 200, 500}. Highest values were achieved for k = 2, k = 6, and k = 9, respectively. The
analysed signal was of length M = 1000 and corrupted with additive noise (SNR = 14.8258 dB),
see Fig. 3.7.

the L = 50 used on the last considered signal, two squared singular values (eigenvalues,

λk) separated from the floor in the LEV plot (see Fig. 3.9(a)), confirmed that they rep-

resented the true information. Studying of the semi-log distribution for L = 200 given

in Fig. 3.9(b) indicates that k = 6 should be retained. However, a smaller number of

significant eigenvalues was suggested from the scree diagrams of the eigenspectrum e.g.

as presented for L = 200 in Fig. 3.10; only k = 3 eigenvalues appeared to be significant.

If the original smooth signal is not known prior to de-noising, an analysis of the scree

diagram alone for large L might not be sufficient to provide good trend extraction. In

the case of the largest window, the estimation of the rank k was burdensome. The

semi-log plot and the scree-diagram failed to determine the right number of elements,

suggesting a smaller value of k (e.g. k = 6 in Fig. 3.9(c) instead of k = 9).

As discussed in Sec. 3.1.3, to gain confidence in separating noisy subspaces from

any signal, the results from SVD (or EVD) should be analysed by at least two tests.

Plotting singular values (or eigenvalues) in semi-logarithmic scale, in order to determine

which sk (or λk) are fast-decaying, should be utilised together with an investigation of

the corresponding eigenvectors. Goylandina et al. [113] stated that the visual inspec-

tion of eigenvectors can improve detection of SVD components related to the desired

information. The eigenvectors are believed to repeat the properties of the signal, e.g.
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(a) L = 50 (b) L = 200

(c) L = 500

Figure 3.9: Semi-log plot of eigenspectrum of synthetic signal corrupted with Gaussian noise
(SNR = 14.8258 dB) analysed with three window lengths, L.

Figure 3.10: Scree diagram of the eigenspectrum obtained with SSA with the window length set
to L = 200.
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slowly-varying eigenvectors correspond to slowly-varying elements of the signal. In Fig.

3.11(a), several EOFs obtained with L = 50 are plotted. It can be seen that the first

k = 2 of them represent information related to the signal; the plots of higher eigenvec-

tors contain noise. When the first eigenvector is plotted separately in Fig. 3.11(b), it is
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Figure 3.11: Eigenvectors of the corrupted synthetic signals produced with L = 50.

clear that it contains part of the signal. The same test was applied to the other window

lengths to verify the reconstruction. For L = M
2 , an inspection of the eigenvectors

confirms that the appropriate rank for the reconstruction is k = 9. This example shows

that, for the largest window, the decomposition was too fine and components of the

signal were represented by eigenvalues of a very small amplitude, making the extraction

of the trend more difficult. In general, we recommend using smaller window sizes for

more complex trends. Nevertheless, for many signals, the value of L = M
2 appears to

be adequate [105, 108, 115, 116].

3.2.3 Extensions of SSA

The separation of noise from the underlying true signal by inspecting the eigenvalues

yields good results as long as the unwanted disturbances are structureless, i.e. uncorre-

lated. When the noise is white, the high-ranked EOFs, which correspond to the largest

eigenvalues (or singular values) obtained from the corrupted data, provide a consistent

estimate of EOFs of the genuine signal [117]. When the system is affected by coloured

fluctuations, the dominant eigenvalues represent not only the variance of the genuine



CHAPTER 3 NOISE REDUCTION TECHNIQUES 50

data but also the noise. The truncation of the eigenspectrum at the high-ranked posi-

tion is unreliable, as EOF shapes depend as much on the properties of noise as on the

signal.

The difficulties that appear with correlated disturbances led to the development

of statistical significance tests, referred to as Monte Carlo SSA (MC-SSA) [107]. One

role of MC-SSA is to assess whether the SSA spectrum can reject the null hypothesis

that the time series is red noise, or any linear stochastic process in which the power

spectrum declines with frequency (1/fα fluctuations). A general description of one

of the original tests consists of the following stages [106, 107]: (1) estimation of red

noise parameters with the same variance and auto-covariance as the observed series, X,

using a maximum-likelihood criterion; (2) generation of an ensemble of simulated red-

noise, and for each realisation (called surrogate data), computation of the covariance

matrix CR; (3) obtaining the eigenspectra from the projection of CR onto the original

data EOFs, Ex: ΛR = E†xCREx; (4) validation of the red-noise null hypothesis. The

statistical distribution of the elements of ΛR gives confidence intervals, outside of which

the null hypothesis can be rejected. In other words, the modes of the signal that

do not appear within the limits determined from surrogate eigenspectra, with certain

confidence, can be considered as different from red-noise. Performing MC-SSA tests is

a time-consuming process, and not very suitable for analysing particle data during a

simulation run, especially if coupling across scales is of interest.

Singular spectrum analysis can be applied to more than one series at a time by

performing multivariate or multi-channel SSA (MSSA). If we consider two sets of data,

X1 and X2, we can create a joint trajectory matrix Z = (Y 1;Y 2) or Z = (Y 1;Y 2)†,

where Y 1 and Y 2 are the trajectory matrices of the individual series. The other steps

are the same as for univariate SSA. The difference is that the approximated matrix is

now a block-Hankel matrix. Moreover, the window length can be L > (M+1)
2 for trend

extraction, whereas for SSA it is not recommended [113]. Multivariate SSA can be useful

if there is a common pattern between analysed series. In this case, applying MSSA may

improve the quality of the results compared to performing individual univariate SSA.

However, for a large number of series, such a process becomes costly.

Another extension of SSA for decomposition of two-dimensional data, X2D, of size
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N ×M is 2D singular spectrum analysis (2D-SSA). This method was introduced by

Danilov and Zhigijavsky [118], and further developed by Golyandina and Usevich [119],

and consists of similar stages as the basic SSA. However, the trajectory matrix in 2D-

SSA is a Hankel block Hankel matrix, and processing is computationally intensive.

The algorithm of 2D-SSA is based on two-dimensional window of size Lx×Ly, where

1 ≤ Lx ≤ N , 1 ≤ Ly ≤M , 1 < LxLy < NM , and Kx = N −Lx + 1, Ky = M −Ly + 1

[119]. All possible Lx × Ly sub-matrices of the data matrix are considered. Each sub-

matrix obtained by sliding the window is vectorised in order to create a column of

the trajectory matrix, Y2D. It was shown by Golyandina and Usevich [119] that the

constructed matrix is of the form:

Y2D =



H1 H2 H3 . . . HKy

H2 H3 H4 . . . HKy+1

H3 H4
. . . . . .

...
...

...
. . . . . .

...

HLy HLy+1 . . . . . . HM


, (3.34)

where every Hj is an Lx × Kx Hankel matrix built from the j-th column of the 2D-

array, X2D. The following step is the SVD of Hankel block Hankel matrix, Y2D; after the

eigentriple grouping, the approximation X̃2D of the original matrix is obtained by first

averaging over diagonals within each Hankel block, and next performing hankelisation

to the whole matrix, i.e. averaging over blocks in the diagonals. The reverse operation

can also be performed.

The computational cost of performing 2D-SSA is severe. Using MSSA for a large

number of signals is also high. Although faster implementations of both methods by

means of the R-package has been proposed by Golyandina et al. [113], neither technique

seems suitable for analysing big sets of particle data. In this thesis, we propose another

approach to make the MSSA (or SSA) applicable not only to the mean ensemble, but

also to non-stationary simulation results which form large matrices. To improve the

efficiency of de-noising and avoid using complex 2D-SSA, we combined the MSSA (or

SSA) with POD, by applying the multivariate SSA to dominant spatial modes. Using

MSSA instead of SSA for de-noising singular vectors means we perform the truncation of



CHAPTER 3 NOISE REDUCTION TECHNIQUES 52

eigentriples only once. This is discussed in Sec. 3.6. In addition, an improvement in the

quality of the results for more complex problems can be obtained when MSSA is applied

twice to the same spatial modes, but with two different window lengths, L1 and L2,

and the average of the result is used for the reconstruction. Utilising different window

sizes enables seeing the signal at different resolution. This procedure is similar to the

sequential SSA described by Golyandina et al. [104] and Golyandina and Zhigljavsky

[105], where the trend is extracted from the series with a small window length and then

periodicity is analysed from the residual using a large L.

3.3 rQRd/urQRd as more efficient SSA for large data-sets

Production of big data is common in the field of nano-fluid mechanics. There is a

growing need for efficient de-noising algorithms designed specifically to handle large

sets of measurements. In the recent paper by Chiron et al. [111], a new method has

been described, which, similar to SSA, seeks a low-rank approximation of the Hankel

matrix in order to extract more signal than noise. It is claimed that the technique offers

a substantial improvement in the processing time of big data-sets by using random sub-

sampling of the matrix, and utilising fast QR decomposition, hence its name – random

QR de-noising. A further improvement of the algorithm, called uncoiled random QR

de-noising (in short, urQRd), has also been proposed by Chiron et al. [111], differing

from rQRd only in the implementation. We have studied these new methods in order

to compare them with the basic SSA procedure in terms of SNR and processing time.

In the case of SSA, the correlations from data are captured by truncating the singular

values, whereas rQRd uses random projections of the Hankel matrix to separate the

signal from the noise. Random sampling has recently received lots of attention as

an alternative dimensionality reduction tool which is significantly less expensive than

SVD or EVD [120–122]. In random QR de-noising, a matrix YΩ, containing most of the

significant information of the Hankel matrix Y (of size L×K), is obtained by calculating

the product of Y and a set of Pk random vectors stored in a matrix Ω:

YΩ(L×Pk) = Y(L×K) × Ω(K×Pk). (3.35)
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As Pk ≤ L, and L ≤ K, the matrix YΩ is smaller than the Hankel matrix; L can here be

referred to as the order of the analysis. The following step of the rQRd method is a QR

decomposition of the new matrix, YΩ = QR. The factorisation is performed in order to

construct a projection of the original Hankel matrix onto the reduced rank orthonormal

basis Q:

Ỹ = QQ†Y, (3.36)

where Ỹ has a rank equal to Pk. A de-noised time series X̃ is then obtained in the same

way as described in Sec. 3.2.1. Graphical representation of the method is shown in Fig.

3.12. According to Halko et al. [121], the approximation error for such a procedure

satisfies ∥∥∥Y − Ỹ ∥∥∥
2
≤ [1 + 9

√
Pk ·
√
L]sk+1, (3.37)

with the probability of at least 1 − 3 · p−pkk , having the oversampling parameter pk =

Pk − k, and sk+1 being the (k + 1) greatest singular value of Y .

3.3.1 Introduction to rQRd/urQRd

It is recommended to have a small pk, however, in real situations the number of com-

ponents k, contained in the signal, is unknown, making estimation of an adequate over-

sampling parameter more difficult. The solution given by rQRd might be less optimal

than the approximation constructed with SVD, as the latter gives the closest result in

the Frobenius or spectral (L2) norm. However, the rQRd is much faster when applied

to large data-sets. Singular value decomposition scales as O(LK2) operations, while

the processing cost of rQRd is only O(ML) [111].

Chiron [111] proposed a further improvement of rQRd in terms of processing time

by utilising fast Hankel matrix-vector multiplications. The alternative implementation,

called uncoiled rQRd (urQRd), performs the same analytical procedure, but offers a

reduction in cost of the product of Y and Ω from O(PkLK) to O(PkM log(M)). The

calculation of YΩ is a fundamental step in the rQRd algorithm, and it is important to

perform it efficiently. For Hankel (or Toeplitz) matrices the fast matrix-vector multipli-

cation is based on the fast Fourier transform (FFT). Hankel or Toeplitz matrices can

be embedded into a circulant matrix of double size, which can be then multiplied by a
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Figure 3.12: Schematic diagram of rQRd algorithm.

vector with the use of FFT and inverse FFT (IFFT). An n×n matrix is called circulant

if it has the following form [110]:

Ac =



a1 an · · · a3 a2

a2 a1 · · · a4 a3

...
...

. . .
...

...

an−1 an−2 · · · a1 an

an an−1 · · · a2 a1


. (3.38)

The Ac is defined by its first column a = (a1, · · · , an)†. If the circulant matrix is to be

multiplied by a vector g = (gj)
n
j=1, an efficient FFT-based calculation can be performed:

ŷ = IFFT(FFT(a) ∗ FFT(g)), (3.39)
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where ∗ is an element-wise multiplication. If a Hankel matrix, constructed from an

array of size M = 2n − 1, X = [X1, X2, · · · , X2n−1], is embedded in 2n × 2n circulant

matrix, the fast Hankel matrix-vector multiplication can be computed analogous to

Eq. (3.39), but with a being part of the Hankel array, X, and the vector, g, with n

elements extended by appending M − n zeros, gextended = (0, · · · , 0, gn, gn−1, · · · , g1)†.

The desired product is then given by the first n components.

3.3.2 rQRd/urQRd v SSA

One of the benefits of utilising the rQRd algorithm, instead of SSA, is the greater flex-

ibility in determining the rank of the Hankel matrix. In singular value decomposition,

if the number k is smaller or greater than the number of the components (frequencies)

contained in the signal, the reconstruction is disturbed by artifacts or missing elements.

The random QR de-noising can produce some defects even for the rank set to the exact

number of significant EOFs. However, it allows for a wider range of values, k, which

produce high SNR. Moreover, iterating rQRd can further broaden the set of k providing

SNR gain5. Noise reduction is improved by re-computing the product of Y and Ω, with

a new Hankel matrix at each iteration; the number of iterations performed is a bal-

ance between the quality of results and processing time. Performance of the basic SSA

is compared in Fig. 3.13 with rQRd performed only once, iterated twice, three times

and four times. The noisy signal was MATLAB cuspamax of size M = 1000, analysed

previously in Fig. 3.7.

Chiron et al. [111] explain that the most important feature of rQRd and urQRd is the

fact that they can process large matrices much faster than classical methods. To confirm

that assumption, we applied SSA, rQRd, and urQRd, to the Doppler signal presented

in Fig. 3.14, which is one of the benchmark functions used for wavelet thresholding by

Donoho and Johnstone [123]. A signal’s length,M = 1024, was systematically increased

by integer i = 1, 2, ..., 20. The window size (or order of the analysis) was also changing

proportionally to the length of the signal, L = 500 · i, and the number of of random

vectors was kept constant, Pk = 35. Figure 3.15 compares SSA, rQRd and urQRd in

terms of processing time against the length of the analysed signal with k = 25; the
5Gain in SNR = (SNRnoisy−SNRapproximated)/SNRnoisy; absolute value is taken if SNRnoisy < 0.
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Figure 3.14: Benchmark function first utilised in wavelet de-noising analysis.

oversampling parameter was set to pk = Pk − k = 10. It can be easily observed that

with the higher value of i, the time to process the data with SSA dramatically increases.

For the longest length, M = M ·20 = 202480, the cost of reconstructing the signal with

k EOFs was about 21 times greater than for rQRd, and 640 times higher than for urQRd

which employs the FFT for matrix-matrix computations.
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Figure 3.15: Comparison of processing time in signal reconstruction with SSA, rQRd, and
urQRd. Different lengths of the signal were considered, M = 1024 · i, where i = 1, 2, ..., 20.

3.4 Wavelet transform

Wavelets are an extension of Fourier analysis. The Fourier transform is a useful tool

to indicate the frequency components of a signal, but it lacks a time-localisation of the

events, i.e. the Fourier transform (or, if the original signal is periodic, Fourier series)

displays frequencies, but hides time (or space) information. The short-time Fourier

transform (STFT) utilises a moving window which analyses the function in both time

and frequency domain. Unfortunately, the constant window size limits the frequency

resolution; using small windows gives good time resolution, allows for better analysis

of sudden changes, but it is blind to low frequencies of the signal [124]. The wavelet

transform accommodates this shortcoming by automatically adapting to different com-

ponents of the analysed function, using a small window for recognising brief changes,

high-frequencies, and a large window to look at long-lasting, low-frequency components.

The main aim in using wavelets is to transform the information of a signal into coeffi-

cients that can be easily manipulated, stored, transmitted and later used for reconstruc-

tion of the original data. In an analogous manner, POD decomposes the matrix data

into orthogonal components that can be processed in order to create an approximation

of the original set (see Sec. 3.1).
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3.4.1 Theoretical background

The following mathematical introduction to wavelet theory is largely based on descrip-

tions presented in [124–127]. Wavelet analysis is best understood with the continuous

wavelet transform (CWT), in which a function, ψ, is used to create a family of little

wavelets:

ψa,b(t) =
1√
a
ψ∗
(
t− b
a

)
, (3.40)

by compressing or stretching the mother wavelet with a real number a, and displacing

(translating) it by a real number, b. The functions defined by Eq. (3.40) have a changing

time-frequency window because of scaling. For small a (a < 1), ψa,b(t) will be short

and of high frequency, while for large a (a > 1) the wavelet will be long and of low

frequency.

A wavelet is an oscillating function of zero mean

∫ +∞

−∞
ψ(t)dt = 0. (3.41)

It is also normalised, ‖ψ‖ = 1, and well localised (it exhibits a fast decay for |t| tending

to infinity). To meet this description, the mother wavelet needs to fulfil the admissibility

condition:

Cψ =

∫ +∞

0

∣∣∣ψ̂(w)
∣∣∣2

w
dw < +∞, (3.42)

where

ψ̂(w) =

∫ +∞

−∞
ψ(t)e−iwtdt, (3.43)

denotes the Fourier transform which measures how many oscillations at the frequency

w are in ψ(t). To ensure that the integral in Eq. (3.42) is finite the Fourier transform

of ψ at zero should be zero, ψ̂(0) =
∫ +∞
−∞ ψ(t)dt = 0, giving the zero-mean condition for

wavelets. It is also required that the wavelet ψ̂(w) is continuously differentiable, i.e. ψ

has sufficient time decay, which implies smoothness:

∫ +∞

−∞
(1 + |t|) |ψ(t)| dt < +∞. (3.44)
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Higher order moments of ψ should also vanish, i.e.

∫ +∞

−∞
tpψ(t)dt = 0, (3.45)

suggesting that polynomials up to a certain degree, p, are reproduced. This is equivalent

to the Fourier transform decaying smoothly at w = 0.

The continuous wavelet transform represents a signal f(t) as a function with two

variables – scale and time (or space), fw(a, b). To obtain the transform, the wavelet is

scaled, shifted, multiplied by the original signal, and integrated over time:

WT (f) = fw(a, b) = 〈f, ψa,b〉 =

∫
f(t)

1√
a
ψ

(
t− b
a

)
dt. (3.46)

A continuous wavelet transform is then a correlation between a wavelet at different

scales and the signal, i.e. it is a measure of similarity indicating which parts of the

signal look like the wavelet. The admissibility condition (Eq. (3.42)) of ψ indicates

the existence of a finite energy reproducing kernel which is a necessary condition for

reconstructing a function from its wavelet coefficients (inverse wavelet transform, IWT):

f(t) = IWT (fw) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
fw(a, b)

1√
a
ψ

(
t− b
a

)
db
da

a2
. (3.47)

When fw(a, b) is known only for certain small a < a0, in order to recover f , comple-

mentary information is needed. This is obtained by a scaling function, also referred to

as a father wavelet, φs, which is defined as an aggregation of wavelets at scales larger

than 1.

Since a one-dimensional function is mapped into a two-variable function, this contin-

uous representation is highly redundant. Applying a CWT is an endless task and gen-

erally not suitable for engineering applications. The discrete wavelet transform (DWT),

however, allows for more practical analysis by shifting and scaling the mother wavelet

by e.g. powers of 2 (dyadic grid) forming basis functions often referred to as children:

ψj,n(t) =
1√
2j
ψ

(
t− n2j

2j

)
, (3.48)

where 2j is a discrete dilation parameter, an integer j ∈ Z represents a scale resolution,
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and n2j is a discrete shift. This representation provides an orthonormal basis of L2(R).

The use of orthogonal wavelets implies the use of the discrete wavelet transform, while a

nonorthogonal wavelet function can be utilised with either CWT or DWT. Orthogonal

wavelets (the wavelet basis) are then a special case of discrete wavelets making the

reconstruction from transform coefficients possible. They eliminate the redundancies,

provide perfect recovery of the original signal, and lead to fast algorithms. Construction

of orthogonal wavelet transforms, however, had not been known until Mallat’s and

Meyer’s multiresolution theory [128, 129] from 1988/89 which resulted in development

of the fast wavelet transform (FWT).

Multiresolution introduces an orthogonal wavelet transform, where a signal is anal-

ysed at scales varying by a factor of 2. The mother wavelet is used together with a

dilated and translated scaling function φsj,n(t) = 1√
2j
φs

(
t−n2j

2j

)
to provide decomposi-

tion of the signal into coefficients representing its smoothed approximation and details

at different resolutions:

f(t) =
∑
n∈Z

cj0,nφsj0,n(t) +
∑
j,n∈Z

dj,nψj,n(t), (3.49)

where −J ≤ j ≤ 0, 0 ≤ n < 2−j , and j < j0 ≤ 0 with J denoting the maximum number

of resolutions. The coefficients in Eq. (3.49) are obtained by integrating the product of

the functions with the signal:

cj0,n =

∫
R
f(t)φsj0,ndt, (3.50)

dj,n =

∫
R
f(t)ψj,ndt. (3.51)

In other words, the details (dj,n) and approximation (cj0,n) are projections of the signal

onto certain subspaces. A multiresolution approximation of a function f ∈ L2(R)

at the scale 2j , which is entirely characterised by the scaling function, is defined as

an orthogonal projection on a space Vj ⊂ L2(R) [126]. Let Wj−1 be the orthogonal

complement of Vj relative to Vj−1:

Vj = Vj−1 ⊕Wj−1, (3.52)
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where the space Wj−1 is associated with the wavelet, and ⊕ denotes orthogonal de-

composition. In the case of finite data with information at resolution level j, a wavelet

transform decomposes the functional space into a direct sum of orthogonal subspaces:

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1. (3.53)

Orthogonal wavelets carry the details necessary to increase the resolution of a signal’s

approximation. The detail coefficients at given j are obtained by projecting the signal

f onto a complementary subspace W ⊂ L2(R).

Mallat and Daubechies [130] established a link between filter banks in signal pro-

cessing and wavelets, allowing for a fast decomposition. The fast wavelet transform

algorithm does not make use of the wavelet and scaling function, but of the quadra-

ture mirror filters (QMFs)6 that describe their interaction. In fast WT, the signal is

convolved with both a high-pass filter (Hfilter, determining the wavelet function), which

produces the details of the decomposition, and a low-pass filter, (Lfilter, associated with

the scaling function) which gives the approximation of the signal. The process is shown

in Fig. 3.16. Given a signal f of length M , the fast wavelet transform can consist of

Low-pass filter

High-pass filter

Downsample

2

2

cj

cj+1

dj+1H
filter

L
filter

Signal Coefficients

Approximation

Details

Figure 3.16: One step of DWT with filter banks (FWT).

6QMFs in digital signal processing are odd index alternated reversed versions of each other.
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maximum J = log2M levels (e.g. for M = 512 only J = 9 stages of decomposition

are possible). At each stage, two sets of coefficients, approximation and details, are

produced by convolving the signal with the low and high-pass filters followed by dyadic

decimation (downsampling, taking one sample out of two, often introduces distortions

called aliasing) of approximation. The signal has then half of the number of samples

which means that the scale is doubled7. Details are stored while the smoothed image

(approximation) of the signal is again convolved with the QMFs resulting in another

set of details at different scale and new approximation. The process is repeated until a

desired level of decomposition is reached. This algorithm progressively drains the signal

of its information. In the end, the original signal is represented by a vector containing

J sets of details (each of different length due to downsampling) and only one set of ap-

proximation coefficients (see Fig. 3.17). The fast wavelet transform works then from the

c
j c
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c
j
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d
j+2 d
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d

j
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L
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H
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H
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Figure 3.17: Schematic representation of FWT. Note that j is negative.

finest scale to the coarse. It is often perceived as a mathematical microscope allowing us

to see the signal at different dyadic magnifications, offering a powerful way to decompose

data into its elementary constituents across scales. Inverting the decomposition with
7This decomposition reduces the time resolution since only half of the number of points characterises

the signal. However, at the same time, it doubles the frequency resolution, reducing the uncertainty in
the frequency by half [131].
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an inverse wavelet transform consists of inserting zeros (upsampling) between samples

and convolving the results with the reconstruction filters which are flipped versions of

decomposition QMFs.

The algorithm can be naturally extended to encode two-dimensional signals (e.g. im-

ages), where the scaling function, φs, is associated with a one-dimensional multiresolu-

tion approximation, {Vj}j∈Z. A two-dimensional multiresolution is defined by
{
V 2
j

}
j∈Z

,

where V 2
j = Vj ⊕ Vj , and W 2

j denotes the detail space which is an orthogonal comple-

ment of the lower resolution approximation. In this case, three 2D wavelets are obtained

from the 1D scaling function, φs, and the corresponding wavelet, ψ, by tensorial product

[124]:

ψ1(x) = φs(x1)ψ(x2), (3.54)

ψ2(x) = ψ(x1)φs(x2), (3.55)

ψ3(x) = ψ(x1)ψ(x2), (3.56)

where for 1 ≤ l ≤ 3

ψlj,n(x) =
1

2j
ψl
(
x1 − n12j

2j
,
x2 − n22j

2j

)
. (3.57)

Each new wavelet from the family
{
ψ1
j,n(x), ψ2

j,n(x), ψ3
j,n(x)

}
n∈Z2

measures variations in

a different direction. This kind of two-dimensional transform leads to a decomposition

of the signal into four components: approximation, and the details in three orientations

(horizontal, vertical, and diagonal).

3.4.2 Signal de-noising with wavelets

To date, there exist many variants of wavelet-based thresholding, as reviewd by Mallat

[126]. Our goal is to reduce the computational effort of de-noising for particle-based

systems. For that reason, we focus only on the most basic estimators: soft and hard

thresholding.

Donoho and Johnstone [123] pioneered the work on recovering information from

noisy data using wavelet transforms. The procedure consists of decomposition of data
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into wavelet coefficients, thresholding detail coefficients and applying the inverse trans-

form to reconstruct the signal. Donoho and Johnstone proved that a nearly optimal

non-linear estimator is obtained with soft thresholding (wavelet shrinkage):

TS(dj,n) =

 sgn(dj,n)(|dj,n| − Tu) if |dj,n| ≥ Tu,

0 otherwise.
(3.58)

De-noising can also be performed with hard thresholding, defined as follows:

TH(dj,n) =

 dj,n if |dj,n| ≥ Tu,

0 otherwise.
(3.59)

Similar to hard thresholding, chosen singular values (or eigenvalues) in POD are set to

zero before data reconstruction.

In our study, for simplicity of analysis, the universal threshold (also called Vis-

uShrink) is applied:

Tu = σn
√

2ln(M), (3.60)

where the white noise level estimate is defined as

σn = MAD/0.6745, (3.61)

with MAD being the median absolute value of the finest scale wavelet coefficients [132].

Soft thresholding has the ability to efficiently smooth the signal but with loss of some

characteristics, e.g. peak heights, over-smoothing the edges. The hard threshold method

generally reproduces the sharpness and discontinuities of the signal better, but at some

cost in visual smoothness (can generate Gibbs-like oscillations) [132].

In the present work, filters associated with Daubechies family of wavelets and their

nearly symmetric modification (Symlet wavelets) were utilised [130], mainly db3-db6

and sym4-sym8. The numbers, e.g. 3, . . . , 8, define how many vanishing moments are

used. The p-th moment of a function f is the integral of the function multiplied by its

variable raised to the power p, as given in Eq. (3.45). The number of vanishing moments

determines what the wavelet cannot recognise, e.g. p = 2 makes a wavelet blind to linear

and quadratic functions (i.e. wavelet coefficients are zero) [124]. In other words, the
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choice of p controls how much information is concentrated in a relatively small number

of coefficients. In this study, for Daubechies filters, p = 3, . . . , 6 were applied as they

provided a good compromise in terms of signal-to-noise ratio and smoothness of data

reconstruction.

3.4.3 Empirical Wiener filter

In 1949, Norbert Wiener [133] formulated a continuous-time, optimal estimation anal-

ysis of time series. The extension of his theory to discrete time enabled its practical

use. Since then, the Wiener filter and its modifications have been utilised in a range

of applications, such as signal detection and noise reduction [21]. Assuming that an

underlying signal is smooth, a Wiener filter minimises the mean square error between

an estimated random process and a desired process. It strikes an optimal balance in

the bias-variance trade-off, i.e. inverse filtering and noise smoothing. However, in real

situations it is very challenging to choose a signal model for designing the filter because

it requires an exact knowledge of the true signal and the noise statistics.

As derived by Vaseghi [21], the Wiener filter can be expressed in the form:

Wfilter = R−1
ff rft, (3.62)

where Rff is the autocorrelation matrix of the input signal (noisy), and rft is an element

of the cross-correlation vector of the input and the desired signal. Given a degraded

signal

f(t) = ftrue(t) + fnoise(t), (3.63)

consisting of true data corrupted by some noise that is uncorrelated with the signal, the

filter can be defined by expressing the autocorrelation matrix, Rff , as the sum of the

autocorrelation matrix of the signal ftrue and noise fnoise:

Rff = Rtt +Rnn. (3.64)

In Eq. (3.64), Rtt and Rnn are the autocorrelation matrices of the noise-free signal and

the noise, respectively. The elements of the cross-correlation vector of the input and
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desired signal in Eq. (3.62) can be replaced by elements of Rtt, rtt, resulting in:

Wfilter =
rtt

Rtt +Rnn
. (3.65)

Wiener filters are often applied in the frequency domain as such studies provide useful

insight into data analysis. With Eq. (3.68) expressed in the form

f̂(w) = f̂true(w) + f̂noise(w), (3.66)

where f̂(w), f̂true(w), and f̂noise(w) are the input, true signal, and noise spectra, respec-

tively, the Wiener filter is then given as

Wfilter(w) =
Ptt(w)

Ptt(w) + Pnn(w)
, (3.67)

with Ptt and Pnn denoting the signal and noise power spectra.

The main practical problem in the implementation of a Wiener filter is that the

desired signal is not readily available. Ghael et al. [134] proposed a straightforward

estimate of the signal and noise by utilising wavelet transforms. The wavelet-based

empirical Wiener filtering, referred to as WienerShrink or WienerChop, performs two

wavelet transforms; the first transform (WT1) produces estimates of the desired data

and noise. The approximations are then used to design an empirical Wiener filter, which

de-noises the original signal in the WT2 domain. An inverse transform, IWT2, is then

applied to obtain the new data. Figure 3.18 illustrates the WienerChop procedure.

In the wavelet domain, Eq. (3.68) becomes

fw(i) = ftruew(i) + fnoisew(i), (3.68)

with fw = WT (f), ftruew = WT (ftrue), fnoisew = WT (fnoise), and WT denoting an

orthonormal wavelet transform. The goal is to estimate the true signal wavelet coeffi-

cients, ftruew , from the noisy observation, fw. An approximation, f̃truew1
, of the signal’s

coefficients, ftruew1
= WT1(ftrue), is obtained in the domain ofWT1 by thresholding the

wavelet coefficients. The noise level, σn, is calculated from the finest details according

to Eq. (3.60), and an inverse transform is applied to the data, f̃true = IWT1(f̃truew1
).
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Figure 3.18: Wavelet-based empirical Wiener filtering, WienerChop.

A second transform is then performed, and the estimation of the signal in WT2 with

the noise variance is used to construct the wavelet-based Wiener filter:

WChop =
f̃truew21

f̃truew21
+ σ2

n

. (3.69)

In Eq. (3.69), the subscript w21 indicates that WT2 was applied to the true signal

estimate obtained from WT1. The WT2 of the original signal, fw2 = WT2(f), allows

to filter the coefficients with WienerChop. After de-noising, the inverse transform is

applied to recover the final estimation of the true signal, ˜̃
ftrue.

Choi and Baraniuk[135] explained that the rationale behind applying Wiener filter-

ing to wavelet coefficients arises from the fact that the wavelet transform decorrelates

data. Assuming perfect decorrelation of noisy coefficients, the Wiener filter is optimal

in the sense of minimising the mean squared error (MSE). Ghael et al. [134] stated

that the WienerChop is fairly insensitive to the choice of WT1 and WT2 as long as

both transforms are adequate for classical wavelet thresholding procedures. While the

WienerChop requires the calculation of two wavelet transforms, the increase in perfor-

mance often outweighs the increase in computational cost, which is a constant factor.

Although originally the method has been used with hard thresholding, wavelet shrinkage

can also be utilised for obtaining the first estimate of signal coefficients. In this thesis,
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the application of WienerChop for both one-dimensional and two-dimensional data is

presented in Chapters 4 and 5. Additionally the coupling of POD with WienerChop is

discussed in Sec. 3.6.

3.5 Empirical mode decomposition

In 1998, Huang et al. pioneered a nonlinear technique, referred to as empirical mode

decomposition, for adaptively decomposing an unsteady signal into a finite sum of zero-

mean AM (or amplitude modulation) and FM (or frequency modulation) elements,

called intrinsic mode functions (IMFs), based on a direct extraction of the energy asso-

ciated with various intrinsic time scales [136]. The filtered out functions form a complete

and nearly orthogonal basis for the original signal, even though they are not necessarily

orthogonal. An explanation for this is given by Huang [136]: “(...) the real meaning

here applies only locally. For some special data, the neighbouring components could

certainly have sections of data carrying the same frequency at different time durations.

But locally, any two components should be orthogonal for all practical purposes.” Or-

thogonality is a requirement only for linear decomposition systems. As Huang explains,

it would not make physical sense for a nonlinear decomposition as in EMD.

3.5.1 Performing EMD

Although the method has been shown to be effective and quite versatile in many ap-

plications [31, 137, 138], the technique is essentially defined by an algorithm, and does

not have an analytical formulation. The decomposition is based on the assumption that

a signal has at least two extrema (minimum, t−, and maximum, t+). If the data does

not contain any, it can be differentiated once or more times to reveal them. Empirical

mode decomposition looks at the evolution of a signal, f(t), between two consecutive

extrema, and defines a local high-frequency part (called the detail), h(t), and a low-

frequency element (the trend), r(t):

f(t) = r(t) + h(t), t− ≤ t ≤ t+, (3.70)

The algorithm of EMD can be summarised in the following steps:
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• Step 1 : Identify the extrema of a given signal f(t).

• Step 2 : Obtain the envelopes, emin(t) and emax(t), by interpolating between min-

ima and maxima, respectively.

• Step 3 : Compute the mean of the two envelopes, m1
1(t) = emin(t)+emax(t)

2 .

• Step 4 : Extract the detail by subtracting the mean from the signal, h1
1(t) =

f(t)−m1
1(t).

• Step 5 : Examine whether the residual h1
1(t) satisfies the definition of intrinsic

mode function according to a stopping criterion.

– NO: Repeat n-times Step 2 to Step 5 until the conditions are met. Then:

IMF1 = hn1 (t) = hn−1
1 (t)−mn

1 (t). This refining procedure is referred to as a

sifting process.

– YES: The first IMF is found, IMF1 = h1
1(t), which contains the shortest

period component of the signal.

• Step 6 : Iterate on the residual, f(t)− IMF1 = r1.

The number of extrema contained in each IMF is decreased when going from one residual

to the next, as shown in Fig. 3.19. In other words, at first the finest local mode is

separated from the data, and with an increasing number of modes the scale becomes

more coarse. The necessary conditions for existence of intrinsic mode functions (in

Step 5 ), that define a meaningful instantaneous frequency, are that the functions are

symmetric with respect to the local zero mean, and have the same numbers (or differing

at most by one) of zero crossings and extrema. All extrema in IMF appear as an

alternation of local minima and maxima separated by only one zero-crossing. Flandrin

et al. [139] stated that determining the average number of zero-crossings in a mode is

a meaningful way of defining its mean frequency. The procedure is iteratively applied

on the residual consisting of all local trends until either the components are smaller

than a certain predetermined value, or the residue becomes a monotonic function from

which no more IMFs can be extracted. The original signal can be recovered by simply
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Figure 3.19: The successive empirical mode decomposition components of MATLAB cuspamax
signal corrupted with noise.

summing up all the p = 1, 2, 3, . . . , Pmax empirical modes and residue:

f(t) =

Pmax∑
p=1

IMFp + rPmax
, (3.71)

where rPmax
can be either the mean trend or a constant. Although EMD is constructed

solely from data and follows a simple algorithm, it cannot be considered as fully unique,

as it depends on a number of user-defined settings, e.g. choice of the stopping criterion

used in the sifting process, or the interpolation scheme for constructing the envelopes.

Due to a lack of sound mathematical analysis, tuning the parameters for EMD might

not be straightforward, but useful guidelines based on numerous experiments can be
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found in the literature [140, 141].

Empirical mode decomposition can introduce mode mixing when the local minimum

(or maximum) of two signals with different frequencies overlap. The IMFs consist then

of oscillations of dramatically disparate scales, resulting in a lack of stability. In other

words, a signal of a similar scale in a noisy data set could possibly be contained in the

same IMF component. As the real data often contains a certain amount of intermittency,

it is important to make sure that the decomposition is reliable and suitable for physical

interpretation. To overcome this drawback a modified approach, named ensemble EMD,

was introduced by Wu and Huang [140]. The ensemble empirical mode decomposition

(EEMD) is a noise-assisted data analysis method that generates multiple noise realisa-

tions to keep the physical uniqueness of the IMFs (IMFs can be separated from each

other). This new technique is based on the study presented in [137, 138], which showed

that EMD is effectively an adaptive dyadic filter bank 8, resembling those involved in

wavelet decomposition (see Sec. 3.4), when applied to white noise. The major steps of

the procedure are:

• Step 1 : Add white noise to the signal to obtain different measurements.

• Step 2 : Decompose the corrupted data into IMFs.

• Step 3 : Repeat steps 1 and 2 with different noise, and calculate the ensemble

mean of the corresponding IMFs.

Finite amplitude white noise has to be used to exhaust all possible solutions. Since

the noise in each trial is different, and it fills all the scale space uniformly, the added

disturbances are averaged out with a sufficient number of samples. According to Wu

and Huang [140], the only part that survives such a process is the component of the

original (true) signal. Wu and Huang [141] compared the role of added noise in the

EEMD to that of a catalyst in a chemical reaction, which only helps in the process

but is not a part of the final result. For efficient application of the method, it is

important to choose an adequate noise amplitude. It should not be too small, as it

may not have the ability to change the extrema of IMFs. On the other hand, having
8A dyadic filter bank is a set of band pass filters with a constant band pass shape, which decompose

a broadband signal into a collection of more band-limited components by repeatedly dividing the
frequency range [140].
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too strong fluctuations may require a larger ensemble in order to cancel them out,

resulting in increased computational cost. The difference between the true signal and

the result of the ensemble decreases as the inverse square-root of the number of samples.

Although ensemble EMD offers an improvement over the original approach, it has some

weaknesses. One important drawback of EEMD is that an ensemble solution does not

fully meet the requirements of IMF. This can be tackled by performing sifting of the

EEMD components.

3.5.2 EMD-based de-noising method

One of the useful applications of EMD is trend recovery by removing high frequency

fluctuations that does not require any a priori basis, unlike e.g. wavelet thresholding.

The most natural way to utilise this method for data filtering is to decide which IMFs

are degraded, and which represent elements of the true signal, and perform partial re-

construction. A significance test, developed by Flandrin et al. [139] and Wu and Huang

[137], provides IMF statistics in noise-only situations that can help identify important

modes to make a confident choice of the IMFs that should be discarded. The procedure

is based on comparison of the energy of IMFs from the decomposition of analysed data

against that obtained from pure noise; having a relatively large discrepancy suggests

that the particular IMF contains useful information. According to Flandrin et al., the

energy of IMFs obtained from a fractional Gaussian noise can be approximated as:

E
(p)
IMF =

E
(1)
IMF

βH
ρ
−2(1−Hin)p
H , p = 2, 3, 4, . . . , Pmax, (3.72)

where E(1)
IMF is the energy of the first IMF and βH , ρH are parameters that are depen-

dent on the number of sifting iterations and the Hurst index, Hin, which defines the

type of noise (with long or short correlations) used. The fractional Gaussian noise or

fractional Brownian motion (fGn/fBm) of index Hin, with 0 < Hin < 1 being physically

meaningful, is defined as a zero-mean Gaussian stationary process whose autocorrelation

sequence rH(∆t) = 〈x(t)x(t+ ∆t)〉 is

rH(∆t) =
σ2
n

2

(
|∆t− 1|2Hin − 2 |∆t|2Hin + |∆t+ 1|2Hin

)
. (3.73)
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Equation (3.73) defines three classes of correlation:

• 0 < Hin <
1
2 ⇒ rH(∆t) is negative,

• Hin = 1
2 ⇒ rH(∆t) is zero,

• 1
2 < Hin < 1⇒ rH(∆t) is positive long-range dependence,

where the arrow means implies. Therefore, the Hin = 1
2 indicates discrete white noise,

and for that special case Eq. (3.72) reduces to

E
(p)
IMF =

E
(1)
IMF

βH
ρ−pH . (3.74)

For such problems, Flandrin et al. [139] propose using βH = 0.719 and ρH = 2.01,

resulting in

E
(p)
IMF =

E
(1)
IMF

0.719
2.01−p. (3.75)

In practise, the energy of IMF1 can be estimated from the sum of its squared elements:

E
(1)
IMF =

tmax∑
t=1

(IMF1(t))2. (3.76)

Utilising all the above information, the significance IMF test can be summarised in the

following steps:

• Step 1 : Assuming that the first mode contains only noise, estimate the noise level

in the processed data by computing from Eq. (3.76).

• Step 2 : Establish the noise-only model with Eq. (3.72) and (3.76).

• Step 3 : Compute the EMD of the noisy signal, and compare the IMF’s energies

to the ones obtained from the model at a selected confidence level.

• Step 3 : Discard the IMFs having energies below the given threshold, and recon-

struct the signal with the residual and the remaining modes.

The success of the described procedure relies on the fact that the decomposition provides

noise or signal-only modes. However, in some cases noise can be distributed over all

IMFs, making the method less effective.
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Alternative EMD-based de-noising procedures inspired by level-dependent wavelet

thresholding were proposed by Kopsinis and McLaughlin [30]. The first method directly

thresholds the noisy IMFs in order to locally exclude low-energy parts that are expected

to be corrupted. The IMF-dependent threshold value is defined in a similar manner as

in Eq. (3.60):

T
(p)
IMF = Ct

√
E

(p)
IMF2ln(tmax), (3.77)

where Ct is a constant, and tmax denotes the length of a single IMF. The energy asso-

ciated with the first IMF is established similarly to the noise estimate in Eq. (3.61):

E
(1)
IMF =

(
median(|IMF1|)

0.6745

)2

. (3.78)

The IMF energies of the remaining modes are determined according to Eq. (3.75). A

direct EMD thresholding (EMD-DT) is described as

ĨMFp(t) =

 IMFp(t) if |IMFp(t)| > T
(p)
IMF,

0 otherwise,
(3.79)

for hard thresholding and

ĨMFp(t) =

 sgn(IMFp(t))
(
|IMFp(t)| − T (p)

IMF

)
if |IMFp(t)| > T

(p)
IMF,

0 otherwise,
(3.80)

in the case of soft thresholding. The reconstruction of the de-noised signal is given by

f̃(t) =

P2∑
p=P1

ĨMFp(t) +

Pmax∑
p=P2+1

IMFp(t), (3.81)

where the parameters P1 and P2 were introduced by Kopsinis and McLaughlin [30] to

provide some flexibility on the choice of modes to be discarded, or kept and thresholded.

Kopsinis and McLaughlin observed that such direct application of thresholding is

not correct due to the oscillatory nature of IMFs. As the authors pointed out, even in

a noiseless example, for any interval Z(p)
j =

[
z

(p)
j , z

(p)
j+1

]
, with j = 1, 2, 3, . . . , Pz, the

absolute amplitude of the p-th IMF will be smaller than any non-zero threshold close

to the zero-crossings, z(p)
j and z(p)

j+1. Thresholding based just on the absolute amplitude
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of IMF samples can result in some discontinuities. To overcome this difficulty, Kopsinis

[30] proposed to analyse the intervals Z(p)
j and decide whether they are noise- or signal-

dominant based on the single extrema IMFp

(
e

(p)
j

)
that correspond to this interval. The

improved procedure, referred to as EMD interval thresholding (EMD-IT), translates to

ĨMFp

(
Z

(p)
j

)
=

 IMFp

(
Z

(p)
j

)
if
∣∣∣IMFp

(
e

(p)
j

)∣∣∣ > T
(p)
IMF,

0 otherwise,
(3.82)

where IMFp

(
Z

(p)
j

)
denotes samples of the p-th IMF in the interval Z(p)

j , and e
(p)
j

indicates where extrema are reached between points z(p)
j and z(p)

j+1. It can be seen that

EMD-IT closely resembles wavelet thresholding, where the operation is performed to

the wavelet coefficients instead of data samples. Figure 3.20 visualises the difference

between EMD-DT and EMD-IT in the treatment of IMF intervals between zero-crossing.

Incorporating the idea of soft thresholding for EMD-IT yields

ĨMFp

(
Z

(p)
j

)
=


IMFp

(
Z

(p)
j

) ∣∣∣IMFp

(
e
(p)
j

)∣∣∣−T (p)
IMF∣∣∣IMFp

(
e
(p)
j

)∣∣∣ if
∣∣∣IMFp

(
e

(p)
j

)∣∣∣ > T
(p)
IMF,

0 otherwise.

(3.83)

Equation (3.83) reduces in a smooth way all the IMF samples that correspond to zero-

crossing intervals with extrema exceeding the threshold, in order for the extremum

amplitude to be decreased exactly by the threshold value.

Further improvement of the EMD-IT method inspired by invariant wavelet-based

thresholding was described by Kopsinis and McLaughlin [30]. In the neighbourhood

of discontinuities, wavelet de-noising can exhibit pseudo-Gibbs phenomena that can

be suppressed with so called cycle spinning introduced by Coifman and Donoho [142],

which averages over de-noised cyclically-shifted versions of the signal or image. Incor-

porating the same idea for EMD requires construction of different noisy versions of the

unknown true signal. Assuming that the first IMF represents mainly noise, this can be

obtained by altering in a random way the positions of IMF1 samples, and then adding

the resulting mode to the sum of the remaining IMFs. For clarity, the iterative EMD

interval-thresholding (EMD-IIT) is summarised as follows:

• Step 1 : Decompose the signal with EMD.
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(a) Section of 4th IMF of white noise to which thresh-
olding is applied.

(b) The result of applying EMD-DT.
Note that discontinuities are created.

(c) Outcome of hard thresholding
with EMD-IT. The sections between
zero-crossings, that contain extrema
of greater absolute value than the
threshold, are recovered. The thresh-
old limits are indicated by dashed
lines.

Figure 3.20: Comparison of EMD-DT treatment of IMF section against EMD-IT.

• Step 2 : Perform partial reconstruction with all IMFs apart from the first one.

• Step 3 : Randomly change the position of elements in IMF1.

• Step 4 : Construct a different noisy version of the signal by adding the altered

mode to the sum of Pmax − 1 intrinsic functions.

• Step 5 : Decompose the new noisy signal with EMD.

• Step 6 : Perform EMD-IT de-noising on new IMFs.

• Step 7 : Repeat from the Step 3 to Step 6 until there are no more IMFs.
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• Step 8 : Obtain the ensemble solution of all de-noised versions of the signal.

Kopsinis and McLaughlin [30] used two approaches for altering the data:

• Random circulation – the samples of IMF are circularly shifted.

• Random permutation – the positions of elements in the first IMF are randomly

changed.

The article also describes the clear iterative EMD interval thresholding method that

performs better than EMD-IIT in cases where the SNR is relatively high. However, in

this work, most of the signals are degraded by high noise level, therefore this technique is

not utilised. Both EMD-IT and EMD-IIT provide promising results for filtering particle

data, and their performance is further studied in the following chapters.

3.6 POD+

The goal of this research is to not only utilise de-noising techniques from different fields

of science for particle simulations, but also to improve available methods for this applica-

tion. Proper orthogonal decomposition with SVD provides the most optimal (i.e. with

the lowest rank) clean data reconstruction. However, it is not beneficial for de-noising

steady-state simulation results as it only recovers an approximation of the mean, which

could simply be obtained by cumulative averaging of all the observables. For that rea-

son, alternative methods, such as SSA or EMD-IIT, should be utilised for steady-state

simulations. Moreover, POD requires large data-sets in order to successfully separate

noise in unsteady measurements from significant structures.

The need to enhance POD’s efficiency has led to novel couplings of the classical

orthogonal approach with other methods described in this thesis. Filtering procedures,

including wavelet thresholding, EMD-IT and SSA/MSSA, are applied within SVD’s do-

main to reduce the number of observations required for clean data recovery. Additional

de-noising is performed, in the majority of problems, only on the dominant spatial

modes obtained after SVD analysis. Combinations such as POD+wavelet thresholding,

POD+EMD-IT, etc., result in improved filtering properties in comparison to applying

a single method. The algorithm for POD+ techniques is explained below by taking the
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example of coupling SVD with wavelet thresholding. The advantages and weaknesses

of utilising each POD+ method are summarised in the chapters that follow.

In order to achieve better efficiency of POD in processing unsteady fields, we com-

bined the method with wavelet-based filtering with fixed (universal) thresholding (see

Eq. (3.60)). In this new procedure, wavelet thresholding is applied within POD’s do-

main, hence the name WAVinPOD. The algorithm exhibits promising results when

applied to both synthetic signals and particle data. In the following sections, it is

shown that WAVinPOD outperforms the other estimators in de-noising synthetic data,

achieving higher signal-to-noise ratios for a smaller number of observations.

Combining the wavelet transform with SVD (or EVD) has already been proposed

in the literature. Most of the procedures involve using SVD (or EVD) for noise level

estimation, transforming a signal to the wavelet domain and performing SVD (or EVD)

on the chosen coefficients or the whole matrix (after IWT), as in Bakshi’s Multiscale

PCA [143] or its extension, multivariate wavelet de-noising developed by Aminghafari et

al. [144]. However, these methods appear to be computationally expensive, considering

the number of operations performed, making them unsuitable for de-noising particle-

based simulations.

In the proposed WAVinPOD, the wavelet thresholding is performed only on spatial

modes corresponding to the most energetic or/and fast decaying (dominant) singular

values, as shown in Fig. 3.21. Applying wavelet thresholding in the SVD domain pre-

serves the dimensionality reduction. Wavelet de-noising is used to eliminate spatial

fluctuations from the dominant modes, which would require larger amounts of data for

POD or WPOD alone.

More precisely, the general procedure for WAVinPOD de-noising is as follows:

• Step 1 : Perform SVD on matrix data A.

• Step 2 : Define adaptively the number k of dominant modes and set all the higher

singular values to zero.

• Step 3 : Perform a wavelet transform of the k spatial modes corresponding to the

most energetic singular values.

• Step 4 : Apply wavelet de-noising (soft or hard) with universal thresholding to the
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detail coefficients and reconstruct the modes with the inverse wavelet transform.

• Step 5 : Multiply the matrices according to Eq. (3.16) to obtain the data approx-

imation.

When the method is applied to data during a simulation run, the moving window is

used in the same manner as in WPOD (see Sec. 3.1.3).

Dominant temporal modes in WAVinPOD are left unchanged. Assuming that the

noise is uncorrelated, and a sufficient number of observations are provided, the first k

singular vectors, which define the behaviour of the signal over time, are less affected by

fluctuations than the corresponding spatial modes. Applying the same wavelet thresh-

olding to the uk and vk vectors does not result in enhanced de-noising, as shown by the

following analysis. A matrix containing 20 oscillating signals with a mixture of sines

and cosines, as described by Eq. (3.30) (see Fig. 3.22), each corrupted with different

white noise of the same variance, was subjected to POD, wavelet thresholding, and both
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Figure 3.21: Graphical representation of WAVinPOD algorithm.
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(b) Resulting data with σn=1.

Figure 3.22: Noisy signals on which the filtering methods were tested.

versions of WAVinPOD. This data artificially mimics a set of observations, or profiles,

that could be obtained from unsteady particle simulations. Figure 3.23(a) illustrates

the performance of each method, measured by the SNR of the approximation data,

for increasing noise level. The main observation is that WAVinPOD filters the signals

much better then POD or wavelet thresholding alone. In addition, wavelet thresholding

applied to dominant left and singular vectors (hereinafter referred to as WAV2inPOD)

does not provide higher SNR gain than the original procedure. It is therefore prefer-

able to use the less computationally expensive option, WAVinPOD. Moreover, when

fewer observations of the signal are available, WAV2inPOD performs noticeably worse

than WAVinPOD, as shown in Fig. 3.23(b). Similar conclusions were drawn for corre-

lated noise. A more comprehensive comparison of noise reduction techniques applied to

synthetic data is given in Chap. 4.

The reason why there is not much improvement in modifying both sets of modes

lies in the fact that each transformation affects the orthogonality of the vectors. When

wavelet thresholding is applied, the angle of the resulting modes is reasonably close

to 90◦ (actually, between 88◦ and 91◦). Therefore, using WAVinPOD preserves the

orthogonality of the system quite well. However, de-noising both temporal and spatial

modes may further weaken this property, resulting in unwanted aliases and eventually

a lower SNR of the approximated data-set.
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(a) Matrix containing N = 20 signals of length M = 250.

(b) Matrix containing N = 10 signals of length M = 250.

Figure 3.23: Performance of WAVinPOD and WAV2inPOD, compared with POD and wavelet
thresholding for increasing noise variance. Considered matrix is a set of oscillating signals of
length M = 250. For WAVinPOD and WAV2inPOD, 2 modes were subjected to soft wavelet
thresholding with db3 filter and 6 levels of decomposition.

3.7 Other methods: Dynamic mode decomposition

In the course of our study, we came across a development in low-rank modelling and

feature enhancement. However, due to certain properties of this technique, information

extraction from contaminated data appeared to be challenging. As a result, the method

has not been utilised for noise reduction in this thesis. A goal of future research would

be to modify the procedure for data filtering purposes, and for that reason it is briefly

discussed in this section.
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In turbulence, proper orthogonal decomposition is used to extract deterministic

functions associated with energetic structures in a flow and, together with the Galerkin

method, derive a system of ordinary differential equations [81, 145]. A new procedure,

referred to as dynamic mode decomposition (DMD), has been introduced by Schmid

[146] to improve the derivation of reduced-models by extracting more relevant flow

features. In contrast to POD, this method determines the energy of the fluctuations

at particular frequencies, i.e. each DMD mode contains only a single frequency while

POD modes contain several frequencies. It is therefore considered to be more suited for

describing fluid-dynamical behaviours and transport processes [146, 147].

The dynamic decomposition method is based solely on snapshots of the flow, given

by a matrix DN
1 defined as DN

1 = (d1, d2, . . . , dN ), where di stands for the i-th snapshot,

the subscript 1 denotes the first member of the sequence and the superscript N indicates

the last entry. One of the main assumptions in the procedure is that the sampling is

carried out at a fixed time interval tj+1 − tj = ∆t. However, very recent work by

Guéniat et al. [148] introduces a new algorithm for arbitrarily sampled systems. With

Ol denoting the linear mapping that moves the domain from one time-step to the next,

the following dependency holds

OlD
N−1
1 = DN

2 . (3.84)

Performing singular value decomposition according to Eq. (3.12) on DN
1

DN−1
1 = UΣV †, (3.85)

allows us to formulate Eq. (3.84) as

OlUΣV † = DN
2 , (3.86)

or, using the Moore-Penrose pseudo-inverse, an alternative way

U †OlU = U †DN
2 V Σ−1 ≡ S̃. (3.87)

The eigenpairs (µ, y) of the N − 1×N − 1 companion matrix S̃, on the right hand side
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of Eq. (3.87), are computed to further establish DMD dynamic modes, φiDMD = Uyi,

where yi is the i-th eigenvector of S̃, i.e. S̃yi = µiyi, and U is the set of right singular

vectors of the snapshot sequence DN−1
1 . The eigenvalues and modes of DMD, therefore,

represent approximate eigenvectors of the linear operator Ol projected onto the POD

basis. This decomposition is able to extract coherent structures from a sequence of data

fields, which indicates that it should work well on particle data.

In contrast to POD, which concentrates on a representation based on spatial or-

thogonality, DMD focuses on temporal orthogonality (frequency) [146]. In principle, it

can allow us a more accurate and complete description of the flow features. Our pre-

liminary analysis showed that indeed DMD produces a useful low-rank description of

the data. However, when noise is present in the field, the eigenvectors of a companion

matrix often lose their orthogonality, resulting in spurious artifacts. This observation

was also confirmed by Duke et al. [149]. Consequently, in its original form, DMD is not

a beneficial tool for noise reduction. However, there is potential to modify it in future

and to improve its noise response and filtering properties by ensuring orthogonality

preservation.



Chapter 4

Synthetic Data Analysis

This chapter presents the results of applying techniques described in Chapter 3 to de-

noise synthetically generated data. These studies allow a straightforward comparison

of the effectiveness of the various methods in signal processing. All data processing

was performed using the commercial software package MATLAB R2014b (the Math-

Works Inc., Natick, MA, 2014). Three objective measures, averaged signal-to-noise

ratio (SNR), relative error in the L2 matrix norm, δ2, and error in the matrix Frobenius

norm, δF , were applied to a range of accepted test problems. For each observation, SNR

was calculated as a ratio of the summed squared magnitude of the true signal to that

of the noise, and expressed in the logarithmic decibel scale. The relative errors in the

L2 and Frobenius norms are given as

δ2 =
‖Atrue −Ak‖2
‖Atrue‖2

, δF =
‖Atrue −Ak‖F
‖Atrue‖F

, (4.1)

where Ak is a de-noised matrix obtained with one of the methods described in Chapter

3. The L2 norm of matrix A is defined as the maximum singular value of A, ‖A‖2 = s1,

and the Frobenius norm is given by ‖A‖F =

√∑N
i=1

(∑M
j=1 ‖Ai,j‖

2
)
. The error in L2,

i.e. δ2, compares the energy content of Ak with the original matrix. The Frobenius

norm takes all entries of the difference, Atrue − Ak, as a single vector and measures

its length. It then indicates which output has the shortest length of errors [150]. The

approximation of one-dimensional signals was validated only with SNR.

Numerical modelling of fluid flow involves both steady-state, e.g. with constant

84
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forcing, and time-varying simulations. The steady-state problems produce an ensemble

prediction, e.g. mean velocity profile, while the latter focus on varying aspects of the

studied phenomena. In order to mimic real data, we generated either a matrix with

oscillating signals or a single array corrupted with white Gaussian noise (with zero mean

and unit variance). In section 4.1, we analyse how SSA, rQRd, 1D wavelet thresholding,

WienerChop filter, and EMD-based procedures perform when only one measurement is

available. This study enables us to assess how efficiently a smooth ensemble solution

can be extracted from a steady-state simulation. The section that follows is concerned

with removing high frequencies from a collection of oscillating signals. The generated

data are analysed with 2D extensions of the discussed methods, including the POD+

techniques. In Sec. 4.1 and 4.2, noise is considered to be white. However, particle

data often contains disturbances which are not purely random. To address the issue of

separating coloured noise from the true profiles, additional tests are performed in Sec.

4.3.

4.1 Signal processing

Donoho and Johnstone [123] analysed their de-noising procedure on four functions:

Bumps, Blocks, HeaviSine, and Doppler, which are displayed in Fig. 4.1(a)-4.1(d).

These signals are often used in signal processing because they imitate spatially-variable

functions that can appear in different scientific fields. We have therefore incorporated

these benchmark cases into our study. Using MATLAB’s pseudo-random number gen-

erator, randn(), we added white noise to the data, keeping STD(ftrue)/σn = 7, and

applied SSA, rQRd, 1D-wavelet thresholding (1D-WAV), EMD, and WienerChop to

examine how efficiently they can recover the original signal, ftrue. In other words, we

wanted to see if an ideal reconstruction can be performed, while relying solely on noisy

data, without any information about the true signal.

All the analysed signals were of length M = 2048. We did not apply urQRd be-

cause, according to the analysis in Sec. 3.3.2, the method is more efficient than the

rQRd only for much longer data-sets. The oversampling parameter for rQRd procedure

was kept constant, pk = 4. A window for all the singular spectrum analysis was set to

L = M
64 = 32, as in Sec. 3.2.2 small values of L were recommended for recovering more
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complex trends. The number of EOFs, k, for each case was determined prior to trun-

cation of singular values. De-noising with EMD was performed by utilising EMD-IT

and EMD-IIT, both discussed in Sec. 3.5.2, with a fixed number of sifting operations,

n = 7, and using the hard thresholding approach. The methods are very similar; EMD-

IT is the same as EMD-IIT when the number of iterations is set to one. Following

Donoho and Johnstone [123], wavelet thresholding was performed with the Symlets fil-

ter, sym8, and 5 levels of decomposition. For estimating the coefficients of WienerChop,

we utilised a wavelet transform with the same parameters. The second filter for WT2 in

the WienerChop operation was set to have half of the vanishing moments of the WT1,

i.e. sym4 was taken, and the resolution was one level higher.

Figure 4.2(a) depicts the results obtained with the five de-noising techniques ap-

plied to the four functions. All the parameters, including window length for SSA and

oversampling parameter for rQRd, were kept constant. The overall dimensionless gain

in signal-to-noise ratio, defined as

Gain =
SNRapproximation − SNRnoisy

SNRnoisy
, (4.2)

where SNRnoisy and SNRapproximation are the SNR values of the original corrupted signal

and de-noised data, respectively; the absolute value of the gain was considered when

SNRnoisy < 0. The average processing times are presented relative to the computational

cost of the rQRd method, which in most of the cases appeared to be the fastest. Results

show that WienerChop extracted signals closest to the original functions, ftrue, from

Fig. 4.1. Wavelet thresholding performed similarly to EMD-IT. For functions ftrue

with smooth transitions, e.g. Doppler, higher SNRs were obtained with EMD-IIT, in

this case with it = 20 iterations; the more repetitions, the better the noise removal.

However, the improvement in the reconstructed data quality was not good enough to

justify the substantially increased processing time. In general, for signals with sharp

edges or peaks, EMD-IT was preferred, as averaging over many realisations resulted in

the over-smoothing of peaks. In addition, EMD-IIT showed a tendency to recover small

oscillations for hard thresholding, caused by permutations, if an insufficient number of

iterations was performed. In contrast, Kopsinis and McLaughlin [30] showed that the

method can be beneficial for sharp functions when the noise level is very high.
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Figure 4.1: Four spatially variable test functions; M = 2048.

Random QR de-noising with SSA provided the poorest reconstruction, but its aver-

age processing time was the smallest (see Fig. 4.2(b)). It should be stressed that for SSA

the number of significant EOFs was pre-defined. In a real situation, eigentriple grouping

should be performed based on certain analysis, e.g. plotting an LEV diagram, which

would then contribute to the processing time. Empirical mode decomposition, even not

iterated, was the slowest. Utilising WienerChop also appeared to be computationally

more expensive. However, WienerChop offered a good trade-off between the quality of

data filtering and the time it took to perform the operation; the reconstructed functions

with WienerChop are plotted against noisy signals in Fig. 4.3. From all the considered

methods, SSA and rQRd appeared to be the weakest.

Figures 4.4(a) and 4.4(b) depict the performance of each method applied to the

HeaviSine function and Bumps, respectively, for increasing noise level. All the parame-
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Figure 4.2: Results of reconstructing corrupted signals with STD(ftrue)/σn = 7 using SSA,
rQRd, EMD-IT, wavelet (hard) thresholding, and WienerChop; window length for SSA was L = 32
and oversampling parameter for rQRd pk = 4; filter sym8 was used for 1D-WAV with 5 resolutions,
and additional sym4 with 6 levels of decomposition for WienerChop.

ters were kept the same as in the previous study, apart from the noise standard deviation

changing from σn = 0.05 to σn = 2. A main observation is that for a high noise vari-

ance, there is a small discrepancy in the SNR of the approximated signals between the

de-noising techniques, particularly for a smoother ftrue (i.e. HeaviSine). When applied

to HeaviSine, WienerChop provided slightly enhanced noise removal up to σn = 1. For

higher σn, all the methods obtained comparable results. Iterated interval EMD per-

formed the best for the more severely corrupted signals, but on average it was the most

computationally expensive, as presented in Fig. 4.4(c). Different conclusions were drawn

for the signal Bumps, which contained sharp transitions and peaks. Filtering it with

WienerChop was the most effective in terms of recovered SNR, while EMD-IIT with 20

iterations provided the poorest approximations partially due to over-smoothing. One-

dimensional wavelet thresholding and EMD-IT gave very similar results, but 1D-WAV

was the fastest.

In conclusion, the results showed that if data quality is of importance, then the

WienerChop filter or EMD-based de-noising should be applied; EMD-IT is recom-

mended for trends with sudden transitions, edges and peaks, while EMD-IIT performs

better for smooth, less complex trends. However, as will be shown in the following

sections, in the case of less complex shapes, for which it is easier to define the dominant

EOFs, the SSA algorithm is capable of outperforming the other procedures. If the com-
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Figure 4.3: Noisy functions and their reconstruction (purple solid line) obtained with the Wiener-
Chop filter.

putational cost of noise-reduction has to be the lowest, then one-dimensional wavelet

thresholding and rQRd are the preferred de-noising techniques.

4.2 De-noising of data ensemble

All the methods discussed in this thesis can be used to filter sets of data. They can be

applied directly, treating a row (or a column) of a matrix as a one-dimensional signal,

or their extensions to two-dimensional objects can be utilised. If only a small number

of long data arrays is available (N � M), it is more beneficial to de-noise each signal

separately, as there are not enough observations to look for correlations between them.

In the case of large matrices, applying two-dimensional modifications of the algorithms

is noticeably less expensive, and allows us to reduce the data’s dimensionality. The
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(a) Obtained SNRs for HeaviSine.

(b) Performance for Bumps.

(c) Average computational time.

Figure 4.4: Comparison of all the methods applied to the HeaviSine and Bumps functions with
increasing noise level; in SSA k = 2 for HeaviSine and k = 13 for Bumps.
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only exception is 2D-SSA, described in Sec. 3.2.3, because its computational cost is

severe [113]. Our study showed that 2D-SSA can take over 100 times longer than POD.

Consequently, only results obtained with SSA and POD+SSA were employed in this

analysis.

Two different oscillating signals have been investigated. The first initially smooth

N ×M data matrix, previously described in Sec. 3.1.3, was generated using Eq. (3.30).

The second set of signals, A(2)
true, was constructed with the following MATLAB code:

s =0 : 0 . 01 : (M∗0 .01 −0 .01) ;

y (1 , s /0.01)=3∗ sin ( s)+sin ( 0 . 5∗ s+40)+2∗sin (3∗ s−60);

for t=1:N

for x=1:M

A_true ( t , x)=y (1 , x )∗ cos (pi∗ t /N) +

sin ( 0 . 5∗ t+40)∗cos (pi∗x/M)+(0.01∗ t+2+sin ( t ) ) . ^ 2 ;

end

end

In both cases the signals were of lengthM = 1024 and initially onlyN = 20 observations

were used. The number of time-samples required to de-noise the signal is of significance

as it defines how long the simulation has to run to provide enough data. The ranks of

smooth matrices, equal to k1 = 2 and k2 = 3 for A(1)
true and A

(2)
true, respectively, were

increased by corrupting each signal with added white noise using MATLAB’s pseudo-

random number generator. The resulting noisy data-sets, A1 and A2, were full-rank

because of the partial de-correlation of the disturbed data points. In a real situation we

will not know the original signal, but only the corrupted measurements, and often we

are not sure of their nature. For the analysis with SVD-based methods (POD, SSA and

POD+) we have to rely solely on examination of the eigenspectra in order to establish

an adequate number of k for the approximation. The previously described criteria were

utilised here to find the number of significant modes.

At first the original matrix A
(1)
true was corrupted with noise of standard deviation

σn = 0.1, producing A1 with SNR ≈ 12.47 dB. After applying SVD to the whole matrix,

the criteria for determining k were utilised. The tests described in Sec. 3.1.3 managed

to recover an accurate number of significant modes. In the case of SSA analysis, SVD
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was applied to Hankel matrices built from each row of A1; the same number k = 2 was

retained for all the signals. The time required to determine which EOFs were significant

was not included in the final estimation of the computational cost of each SVD-based

method. In other words, the processing times presented here depict how long it took to

perform the whole algorithm with a pre-defined k.

The main drawback of using wavelet transforms and multiresolution analysis is the

number of parameters that need to be considered a priori, e.g. mother wavelet, number

of vanishing moments, and levels of decomposition. The choice of an appropriate model

is often problematic and may lead to data misinterpretation if any deviations from it

appear. In our study, we know that the signals to be recovered do not have sharp

transitions, so a higher number of vanishing moments is recommended, and wavelet

shrinkage should be used instead of hard thresholding. The filters associated with

Daubechies wavelet, db6, appeared here to give a good balance between the processing

time and the SNR. When applying wavelet thresholding to spectral modes obtained

with SVD, we do not have to be as careful with the choice of wavelet basis as when the

transform is directly applied to noisy data. This is because WAVinPOD filters only the

spectral components of the signal that have already been partially de-noised. For a clear

comparison, the same wavelet transforms were used for wavelet thresholding applied to

raw data (WAV), WAVinPOD and for determining WienerChop’s coefficients (WT1);

for the second transform in the WienerChop procedure we again utilised a filter with

half of the vanishing moments inWT1, db3, and one level higher resolution. Parameters

for the other methods were kept the same as described in Sec. 4.1.

Figures 4.5(a) and Fig. 4.5(b) compare gains in signal-to-noise ratio and errors in

the L2 and Frobenius norms for each reconstruction; the time it took to perform every

operation is summarised in Fig. 4.5(c) in relation to the computational cost of perform-

ing the fastest method, POD. As expected, POD did not recover the signals well for

such a small number of observations; the reconstructed matrix had SNR = 22.81 dB

(82.93% higher than the original), δ2 = 0.0443 and δF = 0.0610. In contrast to previous

results, the SSA method performed better than EMD-IT as the trend was less complex.

Clearly, the POD+ techniques were the most successful, with POD+WienerChop filter

providing the best approximation with over 187% higher SNR (≈ 35.80 dB) than the
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(a) Gain in SNR.

(b) Errors in the L2 and Frobenius norms.

(c) Computational time.

Figure 4.5: Comparison of de-noising A1 with N = 20, SNRnoisy = 12.47 dB, δ2 = 0.0508 and
δF = 0.1945.
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original noisy A1 (12.47 dB). Moreover, combinations of POD and other methods were

the least expensive to perform, with the exception of POD+EMD-IT due to the em-

pirical mode decomposition being the most computationally intensive. Figures 4.6(b)

and 4.6(c) depict the worst and the best approximations recovered from the same noisy

data-set, A1 (plotted in Fig. 4.6(a)), with POD and POD+WienerChop, respectively.

Utilising the two-dimensional wavelet thresholding (2D-WAV) would in this case be

4× faster than 1D-WAV. However, as mentioned before, for a small N the recovered

SNR would be low; only 19.16 db (53.63% gain), while one-dimensional thresholding

increased the SNR by 110.89%.

Another analysis was performed in order to determine how many time-samples of

the signal with the same noise level, SNR = 12.47 dB, would be required for POD to

achieve a comparable de-noising performance as POD+ methods did for N = 20. It was

found that, around 400 samples (20 times more than for POD+) allowed POD to reach

SNR = 34.38 dB, as illustrated in Fig. 4.7(a). De-noising with EMD-IT was confirmed

to be expensive; performing this method on 400 signals took about 17.5 s, 57× more

than for POD+EMD-IT. The computational cost of the other methods is depicted in

Fig. 4.7(b). The two-dimensional de-noising with wavelet shrinkage or WienerChop

recovered better results than their one-dimensional counterparts in terms of gain in

SNR and computational cost (see Fig. 4.7(a) and Fig. 4.7(b)). The extensions of POD

again outperformed the other methods, reaching a higher SNR in less time. It was also

shown that when a large number of observations is available, applying filtering with,

e.g., wavelet thresholding to dominant left and right singular vectors may be beneficial.

In such cases the additional transformation does not strongly affect the orthogonality of

modes. For N = 400, WAV2inPOD recovered the best approximation with an averaged

SNR = 42.45 dB. However, as our goal is to decrease the number of measurements

required for data extraction, POD+ methods applied only to spectral modes are still

the preferred de-noising approach.

It is important to mention that the two-dimensional wavelet thresholding andWiener-

Chop alone do not reduce the dimensionality of a matrix as well as POD and POD+.

Methods based on SVD produce approximations with rank equal to the number of dom-

inant modes. For the case of N = 400 observations, 2D-wavelet analysis produced a
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(a) Gain in SNR for signals recovered from A1.

(b) Computational time.

Figure 4.7: Comparison of de-noising A1 with N = 400, SNRnoisy = 12.47 dB, δ2 = 0.0160 and
δF = 0.1944.

matrix of rank = 27 (for 1D-WAV the rank was 122, and 2D-WienerChop rank = 343),

whereas POD and POD+ resulted in a matrix of rank = k = 2. Singular value decom-

position gives the best rank reduction for all norms that are invariant under rotation

[151]. The low rank of the matrix is important if compression of the data is of interest.

Transferring the original matrix with rank = 400 requires sending 400× 1024 = 409600

samples of information. When the rank is lowered to 27, the matrix can be represented

by 3 components that together contain 400 × 27 + 27 × 27 + 1024 × 27 = 39177 ele-

ments, which is over 10 times lower than the original set. Having an approximation of

rank = 2 further reduces the size of the matrices resulting in only 2852 samples of the

data (about 143 times less than the original!). It should be stressed that using POD+
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methods allows not only the successful extraction of information from disturbed data,

but also reduces the computational cost of further processing or storage.

Considering that the data in A1 is periodically oscillating, applying a statistical

mean to the original observables in this case would fail to provide good results. In order

to perform de-noising through averaging, copies of the matrix with its added noise need

to be generated, which is equivalent to re-running a particle simulation. For a similar

noise reduction as obtained with POD+ techniques, averaging over 150 of the corrupted

copies was required. In other words, to de-noise a given signal with the mean method,

a simulation would have to be re-run 150 times (or left to oscillate for 150 periods) in

order to average over 150 sets of data. This could be a major computational bottleneck.

Moreover, POD and POD+ are able to efficiently extract a smooth unsteady signal

without any prior knowledge of its nature. They can perform comparably well even

when a signal is oscillating in a non-periodic manner, with changing frequency.

Additional analysis was performed on matrix A(2)
k , also corrupted with white noise

to produce A2 with an SNR ≈ 12.47 dB. After applying SVD, the criteria for determin-

ing k were utilised. The tests described in Sec. 3.1.3 managed to recover an accurate

number of significant modes. The first, second and third eigenvalue, λk=1,...,3 = s2
k, were

the most energetic, containing together 97.22% of the total variance (E(1)
λ = 87.42%,

E
(2)
λ = 9.06% and E(3)

λ = 0.74%). In practice, it is common to select levels of energy

threshold between 70% to 95% [92]. It is evident that the first three modes retained

most of the significant information; the fourth eigenvalue corresponded to only 0.21% of

the total energy. When the LEV diagram of log10(λk) was plotted, the first three eigen-

values also appeared to be fast-decaying (see Fig. 4.8), while the other points formed

almost a straight line. Corresponding eigenvectors were smoother than other temporal

modes that clearly contained high-frequency oscillations. The choice of k was further

confirmed by applying SVHT, which suggested a threshold of th = 53.7104 for known

noise, and similarly a th = 55.1929 for unknown variance and β = N
M = 20

1024 ≈ 0.02;

the fourth singular value was smaller than the threshold, s4 = 41.7528 < th resulting

in only three modes being recovered. We also propose using the σn estimated from the

finest wavelet coefficients (see Eq. (3.61)) in cases where noise variance is not known a

priori. In this approach, a slightly higher threshold was obtained, th = 60.9337, but
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Figure 4.8: Investigating criteria for the choice of significant k; LEV diagram with the 1st, 2nd,
3rd and 15th eigenvectors shown and the relative energy of the first three eigenvalues.

sufficient to retain the same number k = 3 as s3 = 78.4646. As stressed in Chap-

ter 3, it is important to consider all the criteria because any single test on its own

may not provide enough information to capture the significant phenomena. To achieve

higher confidence in selecting an appropriate k it is best to analyse the results using

at least two tests. For SSA with L = 32, only the first eigenvalue was kept. Figure

4.9 summarises the values of gain in SNR and errors in the L2 and Frobenius norms

for each reconstruction, along with the time it took to perform each calculation. The

best results were again produced with POD+ methods, with POD+rQRd being the

fastest and POD+WienerChop, POD+EMD-IT and POD+SSA providing comparably

high averaged SNRs. Initial smooth and noisy functions are shown in Fig. 4.10(a).

The enhanced signals obtained with the POD technique are plotted every fifth obser-

vation in Fig. 4.10(b), and the best approximation constructed by POD+WienerChop

is illustrated in Fig. 4.10(c).

4.3 Removing spatially correlated noise

The main advantage of SVD-based methods is their ability to capture time-space corre-

lations in the signal, making them an effective tool for processing data corrupted with

uncorrelated random noise. However, particle-based simulations often produce results

disturbed by temporally or spatially dependent fluctuations. For example, thermostats
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(a) Gain in SNR.

(b) Errors in the L2 and Frobenius norms.

(c) Computational time.

Figure 4.9: Comparison of de-noising A2 with N = 20, SNRnoisy = 12.47 dB, δ2 = 0.0489 and
δF = 0.1840.
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Figure 4.10: Signals recovered from A2 with POD and POD+WienerChop for N = 20.
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used in canonical ensemble are a potential source of correlated (or coloured) additive

noise [25]. Proper orthogonal decomposition, based on the L2 vector norm, suffers in

the presence of such corruptions and can skew the features of the data by weighting

them too heavily.

To address the issue of efficiency in separating coloured noise from the true profile,

additional tests have been performed. The synthetic data, A(1)
k , described previously,

was corrupted with pink (flicker) noise, also referred to as 1/f noise as its power spectral

density (i.e. energy or power per Hz) is inversely proportional to the frequency (here

f) of the signal. The noisy matrix, A1, with the same dimensions (N = 20, M = 1024)

and SNR = 12.47 dB was treated with all the filtering techniques. For WienerChop

analysis, the level-dependent noise estimation, introduced by Johnstone and Silverman

[152] for signals corrupted with coloured noise, was used. Soft thresholding was applied

for both EMD-IT and the wavelet-based methods. All the parameters were kept the

same as in the previous study.

Most of the criteria for determining the significant modes retained an adequate num-

ber k = 2. However, a higher k = 3 was suggested by SVHT as the estimated thresholds

were too low even when the noise level was determined from wavelet coefficients. This

is due to the fact that the optimal threshold developed by Gavish and Donoho [94] was

designed only for white noise. It was observed that, for the case of coloured additive

noise, if the square root of the standard deviation calculated from Eq. (3.61) is inserted

into the formula for SVHT with known variance, the same number k is retained as the

value established with other tests. In addition, if the median of the singular values is re-

placed with the median of eigenvalues, more appropriate thresholds are also computed.

This observation is further confirmed with the studies performed on simulation data

in the next Chapter. Additional investigation and improvement of the optimal general

threshold for de-noising is part of future work discussed in Chapter 6.

The results showed that the de-noising efficiency for each method was lower than

in the case for white noise. This is due to the fact that statistically dependent varia-

tions have a pattern with relatively high energy which is difficult to separate from the

original smooth shape of the signal; in other words, the error in the spectral norm is

higher than in the case of white noise. Methods based on SVD do not perform well for
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a small number of measurements, N , as they retain all the energetic principal compo-

nents, including some unwanted structures. Applying additional de-noising in POD+

procedures lowers the errors in both norms, particularly δF as denoted in Fig. 4.11(b).

(a) Gain in SNR.

(b) Errors in the L2 and Frobenius norms. (c) Computational time.

Figure 4.11: Comparison of de-noising efficiency in processing A(1)
k corrupted with pink noise;

N = 20, SNRnoisy = 12.47 dB, δ2 = 0.0883 and δF = 0.1961.

Figure 4.11(a) shows that utilising wavelet thresholding, including WAVinPOD and

POD+WienerChop, and EMD-IT are the most successful. A wavelet transform does

not measure the energy content but the correlation between the wavelet and the signal,

making it a more flexible, adaptive technique. If the chosen wavelet basis is close to

the original smooth data, and adequate thresholds are established, the filtering per-

formance can be significantly improved. In contrast, the high versus low frequency

discrimination in EMD-IT applies only locally, which can potentially enhance detection
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of unwanted correlations, and does not correspond to any pre-determined basis. In the

case of coloured fluctuations, it is then expected that some information about the noise

might be necessary in order to improve the filtering performance. Further study on

reducing unwanted correlations from the data should be part of any future work.



Chapter 5

Removing Noise from Simulation

Results

Grinberg [25] showed how non-stationary MD and DPD data can be successfully de-

noised using only POD with time windows. In this chapter, we report the results of

applying the filtering methods previously discussed in this thesis to velocity measure-

ments and density profiles from stationary and time-dependent simulations performed

with either MD, DPD, or DSMC. The aim is to investigate the benefits of applying

de-noising techniques to simulation results, and compare the performance of POD+

methods with the other procedures in time-dependent modelling.

Application of SSA, rQRd, EMD-IT, 1D-WAV and WienerChop to an ensemble

mean of data obtained from steady fluid channel flows is presented in Sec. 5.1. The

results of utilising WPOD, POD+ methods, 2D extensions of wavelet thresholding, and

WienerChop to statistically non-stationary simulations are discussed in Sec. 5.2. In

all the problems considered, the spatial distribution of the observables was calculated

using the binning method (see Allen and Tildesley [34]). In this approach, the system’s

domain is partitioned into a number of cells, or bins, and the averaged velocity and

number of particles in each bin is computed based on their positions.

The molecular dynamics simulations were carried out using the open-source md-

FOAM solver, built in OpenFOAM. The model fluids were either liquid argon in a

krypton channel, or water flowing between two silicon walls. All of the parameters

from the MD simulations are presented in reduced units; the reference values are linked

104
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to the Lennard-Jones (L-J) potentials. For water, the quantities for length, energy

and mass, respectively, were: σr,H2O = 3.1589 · 10−10 m, εr,H2O = 1.2868 · 10−21 J,

mr,H2O = 2.987 · 10−26 kg, and for argon: σr,Ar = 3.405 · 10−10 m, εr,Ar = 1.6568 · 10−21

J, mr,Ar = 6.6904 · 10−26 kg. We used the rigid TIP4P/2005 water model as described

by Abascal and Vega [153]. This is a four-site model, consisting of a L-J interaction

potential at the oxygen atom site, positive Coulomb charges at the two hydrogen sites,

and a negative charge at a an additional massless site, located a small distance away

from the oxygen. For the DPD modelling, this was performed using DL MESO1 and

the dimensionless parameters were converted to physical units with the reference values

of the cut-off radius, rcutr = 6.46 · 10−10 m. This was calculated with one DPD particle

representing 3 water molecules, based on the relation described by Ghoufi et al. [45].

The DPD energy was kBTr = 4.114 · 10−21 J (where kB is Boltzmann’s constant and

Tr = 298 K), and the mass of one water molecule was mr = 2.987 · 10−26 kg. Parame-

ters for DPD that enforce proper water compressibility for the system were taken from

Groot and Warren [154]. In the case of the direct simulation Monte Carlo modelling,

the gas was considered to be a hard sphere or variable hard sphere argon flowing in a

periodic domain with a time varying gravitational acceleration. All simulations were

performed with the dsmcFOAM solver in OpenFOAM or, for simpler calculations, an

in-house DSMC code [155]. Results obtained with DSMC are presented in SI units.

5.1 Analysis of steady-state nanofluid flows

For stationary data, simple averaging is the most natural approach to obtain the desired

solution. This averaging can be a poor choice, however, when resolution is low or a

high level of statistical noise is present. To overcome this limitation, large samples

and long averaging periods are required, which can result in bottlenecks, particularly if

there is significant intra-scale communication or computationally expensive calculations.

Therefore, there is a need for a systematic approach which is able to provide smooth data

that can be analysed faster than basic averaging is able to achieve. Employing de-noising

techniques can result in a significant reduction of the computational load, particularly

in modelling non-stationary flows, as discussed in Sec. 5.2. However, improvements in
1www.ccp5.ac.uk/software

www.ccp5.ac.uk/software
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feature extraction have also been observed when more sophisticated filtering methods

are applied to the averaged stationary fields. Provided that the coherent structures

are present in the ensemble, i.e. the system is fully developed, applying additional

noise removal to the statistical mean of the observables can enhance the quality of the

numerical solutions.

In the following analysis we show how utilising the methods discussed in Chap. 3 can

be beneficial in steady-state modelling. The first simulation considered was Poiseuille

flow of liquid argon in a krypton nanochannel, which was modelled with MD. A periodic

domain was specified for the system with dimensions: 25× 50× 10 (x× y× z), with the

thickness of the wall set to 5 in reduced units. A simple reflective wall boundary model

was constructed by defining a solid structure with frozen molecules, not interacting

with each other, but having fluid-solid interactions. The L-J parameters describing the

argon-krypton interaction were: σAr−Kr = 1.02σr,Ar, and εAr−Kr = 1.18εr,Ar, taken

from Sofos et al. [156] and Gotoh [157]. For all the MD simulations presented in

this chapter, the motion of fluid particles was weakly coupled to a thermal reservoir,

set at the target temperature, via the Berendsen thermostat [34]. This thermostat

controls the temperature through molecular velocity scaling. So as to not affect the

calculations, the thermostat was applied only to the velocity component perpendicular

to the flow direction. Based on the equipartition theorem, such a configuration ensures

that each degree of freedom of the system is close to the right temperature [158]. A

desired target mass density was obtained with a density controller through molecular

insertions and deletions [37]. For convenience, the computational domain was divided

into M = 500 horizontal bins, including walls (10 bins per unit length), where the

sampling of observables took place. Consequently, each velocity profile consisted of

about 400 points. After the target values of steady-state had been reached (temperature

T = 1 and density ρ = 0.8187), the density controller was switched off and a constant

force, Fx = 0.6, was applied to every argon particle in the fill region; the time-step was

set to ∆t = 0.0025 in reduced units and data was output every tw = 0.25 in order to

ensure statistical independence (see Sec. 2.1.3).

The mean velocity profile, plotted against an instantaneous measurement in Fig.

5.1, was obtained from an ensemble of 100 noisy samples. It should be stated that an
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average distribution of comparable quality could have already been recovered from 30

observations (below that value the profile was more noisy). For simulations of simple

L-J fluids, the observables tend to be weakly corrupted with noise, and a smooth profile

can generally be extracted from a relatively small number of time-steps. We wanted

to investigate if the same structure could be obtained from a single measurement; we

used the ensemble of 100 instantaneous measurements as a reference true signal. To

Figure 5.1: Smooth velocity profile in the steady liquid argon flow simulation obtained through
averaging over 100 noisy observations.

the velocity data output at the first time-step we applied 1D wavelet thresholding with

sym8 and five levels of decomposition, and WienerChop with additional sym4 and

six resolutions for the second transform (note the same parameters were used in Sec.

4.1). Singular spectrum analysis was performed with a window of half the length of

the signal, L = 200, as recommended for simple dominating trends (see Sec. 3.2.2);

three EOFs were chosen because the profile was not an ideal parabola, for which only

two eigentriples would need to be recovered. Following the previous study on synthetic

data, the oversampling parameter for the rQRd method was set to pk = 4. Interval

empirical mode decomposition, EMD-IT, was performed with a constant number of

sifting operations, n = 7. According to the previous study, EMD-IIT could provide

better results as the desired trend was smooth. However, we do not recommend this

method as it is too expensive.

All the de-noising techniques were successful in extracting a smooth structure from
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only one instantaneous sample. Gains in SNRs obtained with each method and the

corresponding processing times are summarised in Fig. 5.2(a) and Fig. 5.2(b). The best

(a) Gain in SNR. (b) Processing time.

Figure 5.2: Performance summary for SNRnoisy = 27.77 dB; window length for SSA was L = 200
and oversampling parameter for rQRd pk = 4; filter sym8 was used for 1D-WAV with 5 resolutions,
and additional sym4 with 6 levels of decomposition for WienerChop.

approximation, i.e. the profile closest to the average of 100 velocity measurements, was

obtained with singular spectrum analysis (see Fig. 5.3(a)), which was also the fastest,

provided that the number, k, of significant modes was already established. Performing

(a) Profile extracted with SSA. (b) WienerChop de-noising.

Figure 5.3: Ensemble mean and reconstructions obtained from only one observation.

the eigentriple grouping can be done adaptively by, for example, applying the SVHT for

unknown noise to the Hankel matrix. Calculating the singular value threshold according

to the Eq. (3.29) gave a threshold of 4.442, which resulted in preserving k = 3 singular
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values. Applying the WienerChop filter also successfully managed to retain the mean

shape, as shown in Fig. 5.3(b). Although EMD-IT is the slowest, it is still a valuable

method to use; even though essentially no parameters had to be considered before

applying the EMD-based interval thresholding (throughout this work the number of

sifting operations is kept constant), the retained signal-to-noise ratio was high. In

general, all the methods performed well and produced good approximations from one

noisy measurement that closely resembled the velocity profile obtained with a minimum

of 30 observations. This directly translates to computational savings; after reaching the

steady state, the MD simulation was run on 12 processors for a total elapse time of 558

s to provide the ensemble solution of 30 time-steps which could be obtained with the

filtering techniques after only one time-step.

Molecular dynamics can be applied to many real-life problems, e.g. for studying

water flow in nanostructured membranes. However, such modelling is quite challeng-

ing; the system requires small time-steps and the simulations often contain substantial

noise which is computationally demanding to reduce. In order to assess how de-noising

techniques can improve the analysis of such data, we tested all of the methods for sim-

ulation of the Poiseuille flow of water between two rigid planar silicon walls. The size

of the computational domain was kept the same as in the previous MD simulations

but expressed in the reduced units for water. The water molecules were driven by a

constant force, Fx = 0.6, and a smaller time-step, ∆t = 0.0012, was used in order to

capture all the important dynamics with the write-interval, tw = 0.12 (data was output

every 100th ∆t). The system’s temperature was set to T = 3.816, and the water density

was ρ = 1.047. After reaching a steady-state, an ensemble of 1000 observations, each

consisting of 500 spatial points, was generated.

Initially, all the filtering methods were applied to the averaged velocity profile, plot-

ted in Fig. 5.4. This resulted in a smoother distribution than the original averaged

solution (see Fig. 5.5(a)). The parameters of each technique were kept the same as

for the previous MD simulation. To establish if a similar output would be produced

from a smaller ensemble, we applied all the methods to the average over 100 time-steps.

For this smaller collection of samples, the velocity profiles obtained with the filtering

methods, although smoother, were up to 12% closer to the mean of 1000 samples than
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the distribution obtained with simple averaging. Figures 5.5(b)-5.5(c) show the result

of applying rQRd to the mean velocity profiles of 1000 and 100 time-steps, respectively.

It can be seen that for an increasing number of samples the averaged solution and its

filtered approximations converge. However, applying de-noising techniques can provide

smoother results faster.

To further confirm this conclusion, we performed the following analysis. Noise re-

duction techniques were applied to the mean of an increasing ensemble, starting with

only 10 observations. We assumed that the average of 1000 profiles was the desired

solution, and we measured how much the filtered profiles resembled it in comparison to

the statistical mean. The dimensionless gain in SNR was calculated in a similar manner

to Eq. (4.2) but with the ensemble mean used instead of SNRnoisy, i.e.

Gain =
SNRapproximation − SNRaverage

SNRaverage
. (5.1)

Figure 5.6 shows the SNR gain obtained with each technique computed for different

ensemble sizes. In other words, the graph shows how much higher was the SNR of each

approximation with respect to the SNR of the statistical mean. All the methods, up

to 500 samples, extracted velocity distributions closer to the final profile than simple

averaging. For larger collections of samples the methods were producing smoother

results than the mean of 1000 profiles.

Figure 5.4: Velocity profile from water flow simulation with constant forcing obtained through
averaging over 1000 noisy observations.
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(a) All the approximations filtered from the mean velocity pro-
file.

(b) Profile extracted with rQRd from the mean
of N = 1000.

(c) Velocity recovered from N = 100.

Figure 5.5: Ensemble mean and its smoother approximations obtained with de-noising methods.

Figure 5.6: Gain in signal-to-noise ratio of each approximation with respect to the mean solution
for different ensemble sizes.
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The next example is a simulation of shear-driven flow, modelled with DPD. The

purpose of this analysis was to show the versatility of the filtering methods. The studied

system consisted of a periodic box of 10 × 10 × 10 (in DPD units) filled with 3000

unbonded particles of unit mass. The fluid interaction was defined as a purely repulsive,

soft potential with strength A(ij)
C = 25 (see Eq. 2.17) and cut-off radius rcut = 1. The

Stoyanov-Groot thermostat [159], which is a combination of the Lowe-Andersen and a

Galilean-invariant Nosé-Hoover thermostat, was used to control both the fluid viscosity

and the temperature. The flow domain was divided into 100 horizontal bins, each of

width equal to 0.1rcut. The fluid was driven by Lees-Edwards shearing boundaries

[160] orthogonal to the x-axis (the flow direction) moving with unit velocity. This way

of introducing a shear flow prevents the spatial inhomogeneities induced close to the

moving walls. More details on the simulation can be found in [47]. Assuming that the

mean of 10000 samples shown in Fig. 5.7 is the required solution, we measured the gain

in SNR (according to Eq. (4.2)) obtained with each de-noising method applied to a noisy

velocity profile from one time-step. The parameters for each technique were kept the

Figure 5.7: Smooth velocity profile and its approximations in a steady shear-driven flow DPD
simulation obtained through averaging over 10000 noisy observations.

same as in previous simulations. All the methods significantly improved the quality of

the signal, with velocity distributions with up to 234% higher SNR, resembling more the

desired solution (see Fig. 5.8). The highest enhancement was obtained with WienerChop

and SSA; the SSA and rQRd were the fastest for a pre-determined number of significant

eigentriples and oversampling parameter. Figure 5.9 depicts the velocity profile obtained

with WienerChop which, unlike the original noisy signal, allows the calculation of more
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(a) Gain in SNR. (b) Processing time.

Figure 5.8: Performance summary of employing filtering techniques to shear-driven flow sim-
ulation performed with DPD for SNRnoisy = 5.55 dB; window length for SSA was L = 50 and
oversampling parameter for rQRd pk = 4; filter sym8 was used for 1D-WAV with 5 resolutions,
and additional sym4 with 6 levels of decomposition for WienerChop.

accurate shear rate. Figure 5.10(a) summarises how much SNR gain, according to

Figure 5.9: Approximation obtained with WienerChop from one noisy observation.

Eq. (5.1), was obtained with each technique for a different number of observations;

below 6000 measurements, the approximations resembled the final solution better than

the averaged profile, as depicted in Fig. 5.10(b), where an SSA approximation of the

averaged velocity of 1000 measurements is plotted against the mean solution.

In conclusion, employing filtering techniques can significantly improve the analysis

of stationary flow results, especially in cases where there is only a small number of

observables available, insufficient to average out all the unwanted fluctuations, or when
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(a) Gain in signal-to-noise ratio of each approxima-
tion with respect to the ensemble solution.

(b) Approximation obtained with SSA.

Figure 5.10: Result of applying filtering techniques to 1000 observations of a shear-driven flow
simulation performed with DPD.

the computational cost of running a simulation for a long time is too high. Utilising SSA,

WienerChop and 1D wavelet thresholding seemed to be the most beneficial. However,

all the methods require some a priori analysis to be performed, either to determine the

number of significant modes, or to choose adequate filters for the wavelet transform.

Singular spectrum analysis extracted smooth profiles particularly well, even for very high

noise levels, and there is the potential to automate the eigentriple grouping through

SVHT. The other procedures, EMD-IT and rQRd, are the least conditioned by pre-

defined parameters, with the latter being also the fastest in data processing. Iterating

the EMD-based thresholding improves SNRs for smooth trends, but also increases the

time of performing an already computationally intensive method.



CHAPTER 5 REMOVING NOISE FROM SIMULATION RESULTS 115

5.2 De-noising of time-dependent particle-based simulation

data

In the case of modelling stationary phenomena, the averaged solution is estimated over

a certain number of independent samples taken sequentially in time. Computing the

ensemble mean for non-stationary simulations is more challenging as it is not obvious

how to define a time interval over which the data should be averaged [25]. For transient

flows the mean distribution can be obtained from an ensemble of realisations. It is also

possible to perform phase averaging, if the flow exhibits a limit cycle, and integrate over

a large number of repeating periods of oscillation. However, constructing the results

based on a number of realisations, Nr, improves the accuracy only by a factor of
√
Nr

[67, 161].

In this section we demonstrate how applying de-noising techniques to non-stationary

simulations can improve the information extraction relative to the standard processing

approach. To test the performance of POD with time windows, POD+ methods, 2D

wavelet thresholding, and 2D WienerChop, we carried out several simulations involv-

ing unsteadiness: oscillating shear- and force-driven flows, with and without roughness,

and density separation phenomena. Different modelling techniques were employed, in-

cluding MD, DPD and DSMC, to show how applicable the procedures are. First, we

present results from liquid argon and water flow simulations performed with MD in Sec.

5.2.1. We then show how DPD data can be processed in Sec. 5.2.2, followed by DSMC

simulation of gaseous argon driven by a time-periodic force.

5.2.1 Results from non-stationary MD simulations

Different types of non-stationary flow of liquid argon in a krypton nanochannel were

modelled with MD. For each set-up, the configuration was kept the same as in Sec. 5.1,

including the system size and target values for steady-state. For oscillating Poiseuille

flow, a periodic force given by Fx = ∆P sin(ωt), where ∆P = 0.6 and ω = 2π/80,

was applied to every argon particle in the fill region, and for time-dependent Couette

flow, the upper wall was set to move with the same period but with an amplitude of

∆Vx = 0.5. The time-step for each simulation was again set to ∆t = 0.0025 in reduced
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units, and data was output every tw = 0.25 in order to ensure statistical independence.

The moving window was utilised in the manner described by Grinberg [25]. While

the window moved throughout the simulation, the matrix was being updated every Nts

of tw samples. To allow a straightforward comparison of all the de-noising methods, in

most of the cases no averaging was applied prior to data filtering, i.e. Nts = 1. We stress

that POD and WPOD methods essentially differ only in the implementation. Therefore,

the results obtained from POD with a moving window are labelled in figures as POD

approximations. All the other procedures were applied to the same TPOD ensemble.

For all the simulations the wavelet thresholding was performed with the db8 filter and

7 decompositions to retain more smoothness, and for the WienerChop procedure addi-

tional db4 and 8 resolutions were employed; EMD-IT within POD was performed with a

constant number of sifting processes, n = 7; POD+SSA was utilised with a window size

of L = 50, unless indicated otherwise, and the oversampling parameter for POD+rQRd

was p = 4 as in the previous study.

If statistical averaging is to be employed in order to improve the quality of the

results, a simulation has to be either performed several times or, in the case of periodic

oscillations, left to run for long enough to gather a sufficient number of samples. In the

simulation of non-stationary force-driven flow in a smooth channel, a full period was

every t = 80, which translated to 320 velocity measurements as 80
tw

= 320. The initial

matrix contained N = NPOD = 4000 observations and M = 500 velocity measurements

at each time-step; therefore there were 12 complete oscillations in the ensemble, which

were used to obtain the mean solution.

Figure 5.11(a) shows how disturbed the original data was, and Fig. 5.11(b) compares

the quality of the cumulative mean (the average of 12 cycles) and our WPOD approxi-

mation. The latter clearly extracted a smoother velocity profile for the same number of

measurements (N = 12× 320 = 3840). To obtain a comparable level of de-noising with

statistical averaging, much more data would have to be collected, increasing the com-

putational cost. Moreover, WPOD does not require any a priori information regarding

the nature of oscillations, which is beneficial, e.g. when the frequency of fluctuations

changes over time. In this case, only two modes were used to extract the velocity field

with WPOD after performing the following analysis on the whole ensemble: examina-
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(b) De-noised velocity profiles with WPOD.

2

2.5

3

3.5

4

4.5

5

5.5

6

0 10 20 30 40 50

lo
g

1
0
(
k
)

Mode number, k

90.13% of total energy

1.32% 

Only 0.26%

Almost 

a straight line!

2 significant modes!

(c) LEV diagram of eigenspectrum; the first 50
values.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  250  500  750  1000

E
ig

en
v
ec

to
r(

t s
)

t
s

3rd
2nd
1st

(d) The eigenvectors for 1000 samples.

Figure 5.11: Result of applying POD with a moving window to the developed velocity field from
an MD simulation of a periodically-pulsating flow in a smooth channel; Nts = 1 and NPOD =
12× 320.

tion of energy level of eigenspectrum, the rate of decay of eigenvalues, and studying

the smoothness of eigenvectors. The first two eigenvalues were the most energetic.

The semi-log diagram is illustrated in Fig. 5.11(c); it can be seen that λk=1 = s2
1 and

λk=2 = s2
2 were decaying much faster than the eigenvalues, i.e. they corresponded to

dominant modes. Eigenvalues with k > 2 represented features with a short correla-

tion time (noise). As presented in Fig. 5.11(d), the first and second eigenvectors (or

left singular vectors) described the oscillating nature of the data; the remaining modes

contained high frequencies. In addition, it should be stressed that the first eigenvector

was smoother than the second one, which was slightly disturbed. This observation sug-

gests that noise was not entirely filtered out from the second mode. We also utilised
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the SVHT for singular values, but the estimated threshold was too low, even when the

noise level was determined from wavelet coefficients. This is due to the fact that sim-

ulation data often suffers from correlated noise for which, as discussed in Sec. 4.3, the

optimal threshold developed by Donoho and Gavish [94] was not designed. Therefore,

our modified procedure for estimating the threshold was employed; the square root of

the standard deviation calculated from Eq. (3.61) was inserted into Donoho’s formula

for SVHT with known noise, to confirm the same number, k, of orthogonal functions.

In addition, by replacing the median of singular values with the median of eigenvalues,

improved thresholds were computed and used to verify the previous result. For all the

simulations discussed in this section we utilised both approaches in WPOD calculations.

Only when a trajectory (Hankel) matrix in the SSA analysis was considered, the original

definition of SVHT was used.

Analysis of the temporal modes suggested that WPOD did not entirely remove

noise from the data. This was improved by utilising our POD+ methods which incor-

porate additional filtering to the SVD in order to separate spatial fluctuations from

the ensemble solution. Figure 5.12(a) depicts how the results were further improved

by combining WPOD with SSA, and in Fig. 5.12(b) the approximations obtained with

POD+WienerChop are plotted; all the POD+ techniques produced comparable output,

as shown in Fig. 5.12(c). The wavelet-based techniques, 2D-WAV and 2D-WienerChop,

applied directly to the noisy velocity profiles, produced the poorest results (see Fig.

5.13 as the wavelets seemed to follow the noise. In addition, when only N = 400 ob-

servations (10 times fewer) were used for de-noising, POD+ methods were still capable

of extracting similar profiles as for the larger number of measurements, while applying

the other techniques resulted in artifacts and unwanted frequencies. Figures 5.14(b)-

5.14(d) compare WPOD and POD+ methods for N = 400, showing that the latter are

more efficient in extracting information from the noisy data. Applying the criteria for

defining k to the matrix with N = 400 managed to successfully identify the number of

significant modes, i.e. k = 2.

Molecular dynamics simulations are often used to investigate the influence of atom-

istic scale surface roughness on the slip behaviour in liquid films [156, 162]. In order to

show how applying de-noising techniques can improve the study of slip phenomena, we
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(a) POD+SSA approximation. (b) POD+WienerChop approximation.

(c) De-noised velocity profiles obtained with POD+ methods
and WPOD; Nts = 1 and NPOD = 4000.

Figure 5.12: Comparison of WPOD, and POD+ methods in de-noising velocity data from the
simulation of oscillating Poiseuille flow performed with MD; db8 and 7 decompositions were used
for the WT1, and db4 and 8 resolutions for WT2; for L = 50 in SSA analysis k = 5 EOFs were
preserved.

introduced surface roughness to the system described previously. A periodic roughness

was applied by placing a cavity with dimensions 5 × 3 × 10 within the lower wall, as

presented in Fig. 5.15. All other simulation parameters were kept the same. During

one simulation run, N = NPOD = 10000 velocity profiles consisting of M = 500 points

were collected. Figures 5.16(a) and 5.16(a) illustrate how poor were the original in-

stantaneous measurements and the averaged results (over 10000/320 ≈ 31 full cycles)

in comparison to the velocity profiles obtained with WPOD; dashed vertical lines in

the plot indicate the position of the cavity. For such a large number of measurements,

proper orthogonal decomposition managed to extract smooth signals, which did not
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Figure 5.13: Result of applying 2D wavelet thresholding and WienerChop to noisy measure-
ments; db8 and 7 decompositions were used for the WT1, and db4 and 8 resolutions for WT2.
Note poor de-noising performance relative to POD+ methods.

require much improving with POD+ methods (see Fig. 5.17(a)). In order to observe

how well POD+ techniques would perform for a smaller number of measurements, we

applied all the methods to the ensemble of N = 1000, and to only one full cycle, i.e.

N = 320 snapshots; the results are depicted in Fig. 5.17(b) and Fig. 5.17(c). For a de-

creasing number of samples, WPOD was less successful in removing noise. Combining

it with the other techniques improved the signal-to-noise ratios even for the smallest

data-set over which no averaging could be carried out.

Assuming that the WPOD approximation of the largest ensemble shown in Fig.

5.16 is the desired solution, we analysed the gains in SNRs obtained with each tech-

nique for different data-sets, and summarise the results in Fig. 5.18(a) and Fig. 5.18(b)

for N = 1000 and N = 320, respectively. It can be seen that the noise reduction of 2D

wavelet thresholding and the WienerChop did not improve with different sizes of the

data-set. In contrast, for the smallest ensemble, POD+ methods enhanced WPOD’s

performance, achieving on average 55% greater gain2, or 1.2× higher SNR, whereas

for N = 1000 the average SNR was 1.1× higher than for WPOD. Note that the SNR

values were computed assuming that WPOD’s mean extracted from the large ensemble

is the true solution, even though it was not as smooth as the POD+ approximations.

Singular spectrum analysis performed on spatial modes, POD+rQRd and POD+EMD-
2The difference is simply established by subtracting the average gain achieved with POD+ methods

from WPOD’s gain in SNR.
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(a) Velocity measurements provided with
WPOD.
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(b) De-noised velocity profile obtained with
POD+ methods and WPOD approximations.
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(c) POD+SSA approximation.
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(d) POD+WienerChop approximation.

Figure 5.14: De-noising performance of WPOD and POD+ methods for a smaller ensemble of
N = 400 velocity measurements of oscillating argon flow modelled with MD.

Figure 5.15: Snapshot of the MD simulation with an introduced cavity in the lower wall.

IT provided particularly good results, producing smooth distributions even at the wall

with the cavity; some examples are depicted in Fig. 5.19 and Fig. 5.20. It should be
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(a) Instantaneous data and the ensemble average.
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(b) WPOD approximation.

Figure 5.16: Velocity profiles obtained with WPOD and statistical averaging over 31 full cycles
containing 320 measurements, N = 320× 31 = 9920.

stressed that both WAVinPOD and POD+WienerChop techniques managed to recover

high SNRs, and even better de-noising could have been achieved with a different basis.

However, for simplicity, the same filters were used in this study for all the simulations.

Employing POD+WienerChop or POD+EMD-IT was the most computationally ex-

pensive. Both 2D wavelet thresholding and the WienerChop filter applied directly to

noisy data did not perform well; the latter offered the poorest enhancement in the data

quality as the clean signal estimation and noise variance established in the first trans-

form, WT1, were not precise due to the high noise level. Additional analysis was carried

out to confirm that no benefit was gained from applying de-noising to both- temporal

and spatial modes, as in the WAV2inPOD method.
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(a) Low-rank approximations obtained with WPOD and POD+
methods; Nts = 1 and NPOD = 10000.
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(b) N = NPOD = 1000.
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(c) N = NPOD = 320.

Figure 5.17: Comparison of WPOD and POD+ methods for decreasing number of velocity
measurements. All the methods enabled a clearer view of the slip-phenomena. Again POD+
methods outperformed WPOD, extracting smooth profiles even for N = 320 (one full oscillation).

The last example with liquid argon was a non-equilibrium steady-state and time-

periodic molecular dynamics simulation of Couette flow. The influence of oscillatory

shear on the boundary slip is often studied with particle-based simulations, as ex-

perimental analysis is challenging [163]. We applied WPOD, POD+ and WAV tech-

niques to a collection of N = NPOD = 6000 noisy velocity profiles (consisting again of

M = 500 bins) obtained from the shear-driven flow induced by an oscillating upper wall

(Vx = 0.5 sin
(

2πt
80

)
in reduced units). The noise level in the data was very high, and

even though the velocity profiles recovered with WPOD contained fewer high frequen-
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(a) Gain in SNR for signals recovered from en-
semble of N = 1000 measurements.

(b) Gain in SNR for N = 320.

Figure 5.18: Comparison of de-noising efficiency in processing data-sets of different sizes;
SNRnoisy = 7.42 dB for N = 1000 and SNRnoisy = 7.30 dB for N = 320.

cies than the distributions averaged over 18 cycles shown in Fig. 5.21(a), they were not

smooth. The presence of additional disturbances was confirmed with the analysis of the

dominant temporal modes plotted in Fig. 5.21(b). Further smoothing of POD spatial

modes was carried out by applying POD+ methods; examples of the velocity profiles

extracted with POD+WienerChop and POD+EMD-IT are shown in Fig. 5.22(b) and

Fig. 5.22(c), respectively. The results were further compared with a smaller data-set

containing only one period of oscillation, N = 320 measurements, in order to establish

whether any of the methods has the ability to reduce the computational time required

to extract easier-to-analyse data. For such a small number of samples, no averaging

could be performed without loss of information. The signal-to-noise ratios were com-

puted for each approximation obtained from the small ensemble, assuming that the

mean distribution obtained with WPOD for NPOD = 6000 was the true result, even

though the profiles were not entirely smooth. Substantial noise reduction was observed

with values of SNRs being even 1560% (or 15.6×) higher than the original noisy signals

(see Fig. 5.23(b) and Fig. 5.23(a)); for example, WAVinPOD recovered SNR = 23.36

dB (while the actual MD data had SNR = -1.6 dB) and produced results closer to

the desired solution than WPOD, plotted in Fig. 5.24. On average, POD+ methods

achieved 200% more gain in SNR than WPOD (they recovered 1.19× higher SNRs),

i.e., they produced distributions more closely resembling the approximation extracted

from N = 6000 samples.
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(a) WPOD for N = 1000 measurements.
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(b) POD+EMD-IT de-noising for N = 1000.
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(c) WPOD for N = 320.
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(d) POD+EMD-IT results for N = 320.

Figure 5.19: Low-rank approximations recovered with POD+EMD-IT for data-sets of different
sizes; soft thresholding with constant number of sifting processes, n = 7.

In conclusion, employing a POD+ technique can significantly reduce computational

time even for very noisy non-stationary MD data, achieving much better results from

just one period of oscillation than statistical averaging from 18 × 320 samples. For

this example, all the parameters apart from the window length in the SSA analysis,

were kept the same as in our previous simulations. In the case of shear-driven flow, a

larger window size, L = 250, had to be applied due to strong contamination; employing

L = 50 resulted in a decomposition that was too coarse. As a consequence, POD+SSA

was not the fastest method to perform.

In order to compare the results obtained for simulations of liquid argon with more

complex (and noisy) water flow, the system considered in Sec. 5.1 was used with a peri-
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(a) Approximations for N = 1000 measurements.
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(b) Results for N = 320.

Figure 5.20: Low-rank approximations recevered with POD+SSA for data-sets of different sizes;
window length was set to L = 50 and k = 4.
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(a) De-noised velocity profiles with WPOD and the
statistical mean over 18 cycles.
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(b) The eigenvectors for the first 1000 samples.

Figure 5.21: Result of applying WPOD to the developed velocity field from an MD simulation
of an oscillating Couette; Nts = 1 and NPOD = 6000, k = 2 orthogonal modes were used.

odically oscillating force Fx = ∆P sin(ωt), where ∆P = 0.6 and ω = 2π/80 in reduced

units for water. The same time-step, ∆t = 0.0012, with a write-interval tw = 0.12

(data was output every 100th ∆t) was applied; i.e. one complete oscillation consisted

of 80/tw ≈ 666 observations. Figure 5.25(a) shows how WPOD with k = 1 performed

in comparison with statistical averaging over full cycles for the same data-set; it can

be easily observed that the ensemble mean was still very noisy and more measurements

would be required to extract the same velocity profiles as WPOD. Additional smoothing
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(a) WPOD.

(b) POD+WienerChop. (c) POD+EMD-IT.

Figure 5.22: De-noising of velocity profiles with Nts = 1, NPOD = 6000, and k = 2 using WPOD
and POD+ methods for oscillating Couette flow.

(a) SNRs of noisy signal and the approximations. (b) Gain in SNR.

Figure 5.23: Comparison of SNR values for velocity profiles recovered from ensemble of N = 320
measurements (one full oscillation) with SNRnoisy = −1.6 dB.
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(a) Approximation constructed with WPOD. (b) Reconstruction with WAVinPOD.

Figure 5.24: Comparison of results obtained with WPOD and WAVinPOD with k = 2 for only
one period of oscillation, for Nts = 1 and N = NPOD = 320.

(a) WPOD for NPOD = 4662 and the average of
4662
666

= 7 cycles.
(b) Low-rank approximation for NPOD = 4662.

Figure 5.25: Comparison of WPOD and WAVinPOD (with filter db8, 7 resolutions and k = 1
significant orthogonal mode) in de-noising velocity data from the simulation of unsteady water
flow. Both WAVinPOD and WPOD produced better quality profiles than statistical averaging,
for the same number of measurements.

was obtained again by employing the POD+ methods; an example of the WAVinPOD

approximation is plotted in Fig. 5.25(b). For a smaller system containing only one

complete oscillation, N = 666, all the filtering methods offered significant enhancement

of the data quality; comparison of gains in SNRs obtained with each technique was

summarised in Fig. 5.26(a) and Fig. 5.26(b). Only two-dimensional wavelet threshold-

ing and WienerChop directly applied to instantaneous measurements, as in previous

cases, did not achieve an efficiency similar to the WPOD and POD+ methods. The
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low-rank approximation recovered with WAVinPOD for a small ensemble, presented in

Fig. 5.26(c), was comparable to solutions extracted from a 7× larger data-set.

(a) Gains in SNR for each method. (b) Values of SNRs.

(c) WPOD and WAVinPOD low-rank approximations for a
small ensemble.

Figure 5.26: De-noising performance of WPOD and POD+ methods applied to only one full
cycle, N = 666 with SNRnoisy = −0.53 dB, over which no averaging can be applied without loss
of information.

5.2.2 Processing data from DPD modelling

Correlations in noise are expected in MD, e.g. due to temperature control, so we have

also tested WPOD and POD+ procedures on an oscillating Poiseuille flow and phase

separation phenomena simulated using the DPD mesoscale method. Coarse-graining

in DPD reduces the number of degrees of freedom for the particles, neglecting some

of the atomistic details that are captured in MD simulations. Modelling a number of
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MD particles as one DPD bead results in fewer statistically dependent measurements,

which should be easier to process for WPOD. Moreover, in DPD the temperature is

controlled locally with the use of random and dissipative forces, which introduce and

decrease the energy in the system, respectively. The variable that defines the strength

of the random force produces a Gaussian distribution. This stochastic local thermostat

plays a role in relaxing the correlations in the data and should enable a more efficient

de-noising than in the case of a globally thermostatted system. The following analysis

aimed to test this hypothesis. Parameters of POD+ estimators were kept the same

as in the MD analysis, unless otherwise specified. The decomposition level of wavelet

transforms was dependent on the length of the processed functions but, in general, high

resolutions were preferred for removing dominant fluctuations.

All the de-noising techniques were used to process velocity measurements from a

non-stationary flow simulated with the DPD mesoscale particle method. The system

consisted of 3000 unbounded particles in a box of 10 × 10 × 10 DPD units with walls

of frozen particles of unit thickness and a particle density of 3. The planar flow was

driven by a time-periodic force, Fx = ∆P sin(ω∆t), with ∆P = 0.1, ω = 2π/80 and

∆t = 0.01, i.e. one complete cycle consisted of 8000 ∆t. The result of applying WPOD

to the N = NPOD = 24000 andM = 240 matrix with streaming-velocity is compared to

the ensemble mean (over 24000/8000 = 3 full periods) in Fig. 5.27(a). Clearly, WPOD

produced much smoother velocity data, which statistical averaging could not obtain

for the same number of observables. In consequence, employing the POD+ methods

provided at least the same quality results as WPOD. Examples of velocity profiles

produced with POD+WienerChop and WAVinPOD are depicted in Fig. 5.27(b) and

Fig. 5.27(c), respectively.

The performance of all the techniques was further compared against the desired

output (produced with WPOD with NPOD = 24000) for a smaller size of the moving

window. For NPOD = 4000 observables (half of the complete cycle), the SNR gains

for POD+ reconstructions were higher than for WPOD, e.g. the biggest gain, 68%

more than WPOD (over 7× higher SNR than original noisy signal), was achieved with

POD+EMD-IT, and the lowest with POD+WienerChop, 23%. Less improvement was

offered with POD+WienerChop relative to WAVinPOD because the estimated noise
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(a) Comparison of WPOD with k = 2 and statistical averaging
over 3 full cycles.

(b) POD+WienerChop and 2D wavelet thresh-
olding; db8 and 6 resolutions for WT1, db4 and
7 decompositions for WT2.

(c) Output of WAVinPOD.

Figure 5.27: Results of applying WPOD, POD+, 2D wavelet thresholding and statistical averag-
ing to an ensemble of N = 24000 velocity measurements from oscillating Poiseuille flow simulated
with DPD.

from WT1 for the first (most energetic) mode was negligible, and due to the choice of

filters. Additional de-noising of temporal modes in this case appeared to be beneficial

as the eigenvectors were strongly contaminated but long enough to preserve their or-

thogonality after processing. Similar to previous problems, 2D wavelet thresholding and

WienerChop filter did not perform well due to the significant noise level. The results are

summarised in Fig. 5.28(a), and comparison of approximations recovered with WPOD

and WAVinPOD is given in Fig. 5.28(b).

It was mentioned above that DPD simulation results are expected to contain less
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(a) Gain in SNRs for all the methods.

(b) WAVinPOD approximation contructed with db8 and 6 res-
olutions.

Figure 5.28: De-noising performance in processing N = 4000 time-steps of M = 240 velocity
measurements with SNRnoisy = 3.45 dB from oscillating Poiseuille flow simulated with DPD; for
SSA L = 24 and k = 4, and for rQRd P = 8 random vectors were employed.

strongly correlated noise. However, when the periodogram of the noise was plotted,

obtained from subtracting WPOD’s approximation from the original data, it was ob-

served that the fluctuations were correlated. Figure 5.29(a) denotes the energy shift

towards lower frequencies. Moreover, the Hurst index, briefly described in Sec. 3.5.2,

was determined to be Hin ≈ 0.87 following the procedure discussed by Di Matteo et

al. [164]. This suggested that the noise added to each spatial bin was a time-series

with a long-term positive autocorrelation, making it more difficult to separate from

the desired trend for the smaller number of samples. In order to improve the analysis,

the statistical inefficiency (introduced in Sec. 2.1.3) can be calculated for the noise;
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as shown in Fig. 5.30(a), the memory of the time-series was 10∆t long, which means

that if data was sampled every 10 time-steps, the noise should be de-correlated. Figure

5.29(b) compares the frequency distribution for the fluctuations sampled at every ∆t

and in intervals of 10∆t. In the latter case, the noise appeared to be white, which was

further confirmed by calculating the Hurst index, Hin ≈ 0.49. Obviously, to be able to

establish this relation it is required to know the true signal a priori. However, it can

be determined by running a small test-case with the same parameters, before the larger

simulation is performed, and will result in some computational savings. The statistical

inefficiency can also be directly calculated from the transient simulation but only for

an ensemble with N much smaller than the period of oscillations. Figure 5.31 shows

the statistical inefficiency distribution computed from N = 400 noisy measurements;

with this analysis the correlation of sin = 10 was confirmed. Processing the data-set

with WPOD and POD+ methods consisting of e.g. N = 400 measurements taken every

10∆t, or simply setting Nts = 10 instead of Nts = 1, produced comparable de-noising

performance and was about 100× faster. In addition, for the system with less corre-

lated noise, 2D wavelet thresholding and WienerChop produced over 2× higher SNRs

than for the data-set consisting of all time-steps. Changing the sampling approach can

whiten the noise, but not necessarily remove its correlation with the signal which can

further disturb the filtering process.

In order to show that WPOD and POD+methods can be useful in analysing not only

(a) Periodogram for DPD noise sampled at ev-
ery ∆t.

(b) Comparison of distributions.

Figure 5.29: Periodograms of DPD noise for different sampling procuderes.
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(a) Noise sampled at every time-step. (b) Every 10th measurement.

Figure 5.30: The calculation of statistical inefficiency sin with approach to the plateau for noise
from DPD simulation of oscillating Poiseuille flow.

Figure 5.31: The calculation of statistical inefficiency sin for a noisy DPD data-set withN = 400.

velocity data, we applied them to density fields from a simulation of phase separation

phenomena performed with DPD. The studied system consisted of a periodic box filled

with 3000 particles of 2 species (i.e. 1500 each). The particles from both species had the

same sizes, and each bead had a mass = 1 in DPD units, but were set to repel each other

in order to form two layers as shown in Fig. 5.32. We applied POD+ methods together

with WPOD to density profiles obtained from 400 bins spanning the x -direction. The

simulation was run for 20000∆t, with Nts = 10 and NPOD = 2000, which means that

averaging (the rolling mean) over 10 time-steps was performed. All the POD+ methods

produced comparable results. For clarity, we discuss only wavelet-based approximations.

In Fig. 5.33(a), the noisy original profiles for each species are plotted against WPOD

and WAVinPOD approximations. The profiles were extracted by retaining only k = 2

modes and using the db8 filter with 7 decompositions. Both de-noising techniques



CHAPTER 5 REMOVING NOISE FROM SIMULATION RESULTS 135

Figure 5.32: Snapshots of the last time-step of a DPD simulation of a phase separation phenom-
ena.
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(b) Results obtained with WAVinPOD, 2D-
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-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  100  200  300

D
en

si
ty

, 
r.

u
.

Number of bins

POD approx.
POD+WienerChop approx.

(c) Density profiles extracted with POD+WienerChop.

Figure 5.33: Comparison of WAVinPOD, WPOD and 2D-WAV applied to the density distribu-
tion at different time-steps from a DPD simulation of a phase separation.
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seemed to produce similar output. However, when the density profiles were plotted

at different instances (see Fig. 5.33(b)), it was observed that WAVinPOD provided

smoother estimates. Again, applying 2D wavelet thresholding alone resulted in poor

filtering quality. Additional results obtained with POD+WienerChop with db4 and 8

resolutions for WT1 are plotted in Fig. 5.33(c). It should be stressed that no additional

averaging could have been performed without losing information on how the system was

evolving.

Figure 5.34: Periodogram power spectral density estimate of noise from the DPD simulation of
phase separation.

In the simulation of oscillating Poiseuille flow, we observed that the added noise was

temporally correlated due to the small time-steps, but sampling every 10∆t flattened the

power spectrum of the fluctuations. In the phase separation modelling, the correlations

were relaxed by setting Nts = 10. A periodogram of the system’s fluctuations from one

bin over time is presented in Fig. 5.34; the signal had a uniformly distributed power

spectral density indicating that the density profiles were contaminated with white noise.

Moreover, the Hurst index was computed to be Hin ≈ 0.5, as expected from the random

time-series. Both DPD simulations were thermostatted in the same manner, hence, as

expected, the difference in types of noise could not be caused by temperature control.

The unwanted noise correlation seemed to be present purely due to over-sampling.
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5.2.3 Challenges in filtering DSMC measurements

Direct simulation Monte Carlo is considered to be a very efficient algorithm for sim-

ulating rarefied gases. As with all particle-based schemes, DSMC requires statistical

averaging to measure hydrodynamic values. One of the main challenges associated with

DSMC is reducing the statistical scatter in the results. The statistical fluctuations in

DSMC increase the amount of sampling that has to be done in order to extract accurate

features. In addition, the number of simulator particles is a key parameter that affects

the accuracy of DSMC results. When a DSMC simulation particle represents a large

number of physical molecules, the variance of fluctuations is magnified relative to the

ratio of coarse-graining [165]. For that reason we decided to analyse how WPOD and

POD+ techniques would perform in processing data from simulations with different

numbers of DSMC particles.

The test problem was a two-dimensional simulation of a gas flowing in a periodic

domain with a time varying gravitational acceleration. It was performed with the

OpenFOAM software. The flow domain was 532 nm × 532 nm, with periodic boundaries

in the x-direction and specular walls at both y-direction extremities (which simply reflect

the incident particles with the perpendicular component of velocity reversed). The

working gas was hard sphere argon at a temperature of 292 K and a number density of

1.2564 × 1026 m−3. An acceleration with an amplitude of 2.28589 × 1010 ms−2 and a

period of 0.3183 ns was applied to the gas, and the instantaneous velocity profile was

measured and recorded at the end of each time-step. The time-step was ∆t = 2 ps

and an ensemble of N = 4000 profiles consisting of M = 50 velocity measurements

(collected in bins) was constructed. In order to recover results with different levels of

statistical uncertainty, the parameter that controls how many real argon atoms each

DSMC particle represented was varied to give different numbers of simulator particles

in the domain. The smallest simulation had only 2104 particles, the medium 189170,

and the largest (i.e. with a small statistical scatter) had 3783495 particles. For the

latter two cases, WPOD recovered very smooth profiles with only one dominant EOF,

k = 1; the approximations of the velocity varying with time in the middle bin for both

systems are presented in Fig. 5.35(a) and Fig. 5.35(b).

The spatial mode did not contain fluctuations that could be removed with POD+
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(a) Large system, 3783495 DSMC particles.
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(b) Medium-size simulation, 189170 particles.
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(c) Highly coarse-grained system, only 2104 par-
ticles.

Figure 5.35: Velocity measurements in a central bin, varying with time, recovered with WPOD
from an DSMC ensemble ofN = 4000 andM = 50; different coarse-graining levels were considered.

techniques, hence no enhancement was observed even when all the filtering procedures

were applied to only one full cycle. Assuming that the result obtained from the large

system was the desired solution, the SNR values were computed for the other, coarser

systems and are summarised in Fig. 5.36(a) and Fig. 5.36(b). Even for the extreme

case with a substantial noise level, WPOD managed to retain reasonably good velocity

profiles as seen in Fig. 5.35(c), but with a different amplitude of oscillations due to the

lack of information in the data-set. Additional filtering of spatial modes did not offer

much improvement, as SVD extracted mostly low-frequencies contained in the signals.

In such cases, applying additional de-noising to temporal modes can be beneficial.
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(a) Medium-size simulation, 189170 particles. (b) System with only 2104 DSMC particles.

Figure 5.36: Values of SNRs for noisy data and approximations obtained with each filtering
method; for larger number of particles, the data had SNRnoisy = −0.78 dB, and for the most
coarse system, SNRnoisy = −20.32 dB.

Figure 5.37: Periodogram power spectral density estimate of noise from DSMC oscillating gas
flow.

To further explore the reason why filtering methods did not remove more of the

unwanted fluctuations in the most coarse set-up, we decided to analyse the type of noise

which was affecting DSMC data. We took the velocity measurements from the middle

bin over time and subtracted them from the desired output obtained with WPOD for

the system with a large number of particles (see Fig. 5.35(a)); the difference is the noise

that we wanted to remove. Using MATLAB’s periodogram function, an estimate of the

power spectral density using a rectangular window was produced. Figure 5.37 indicates

how the variance of the data was distributed over the frequency components. It can be

seen that the power spectral density was inversely proportional to the frequency of the
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signal, following closely the function y = 1/x1.75. This observation showed that DSMC

data was corrupted with fluctuations of the type S(f) ∝ 1/fα where f is a frequency

and 0 < α ≤ 2, with exponent α = 2 describing the spectral density of Brownian noise

(see Sec. 4.3). This means that more energy was concentrated in lower frequencies,

making them very difficult to extract. Moreover, the Hurst index of the fluctuations

also indicated the long-term memory of the series, Hin ≈ 0.93 (Hin = 1 denotes a

perfect positive correlation).

The correlation of noise contained in DSMC data might be caused by the collisions

of particles. Although the system forces are considered as random, the exchange of the

momentum gives rise to long hydrodynamic memory due to a particle’s past motion.

This phenomena translates to thermal forces, which display a coloured noise spectrum

[166]. As discussed previously, removing coloured noise is still a challenging task; some

information on the buried signal and the nature of noise, with which it can also be

correlated, is needed to improve the filtering performance. In addition, with increasing

levels of coarse-graining, the energy was spread more evenly among all the eigenvalues;

for the coarsest system the first mode contained only 6% of the total variance. This

suggests that there was not enough statistics or information in the provided data to

extract the same structures as in the system with a large number of DSMC particles.

To further investigate the effect of using a different number of simulator particles

per cell, another DSMC case was analysed. An oscillating flow of argon particles was

simulated with a different DSMC code developed by John et al. [155, 167]. In this

case, the variable hard sphere model was used. In this problem we applied diffuse

reflection at the solid walls to produce a more parabolic velocity profile. The dimensions

of the domain were 625 nm × 625 nm, divided into 50 bins. Gaseous argon at 273

K and atmospheric pressure was set to move with an acceleration of amplitude 5 ×

109 ms−2 and an angular frequency of 1.5 × 1010 rads−1. An ensemble of N = 4000

instantaneous velocity profiles was built with ∆t = 7.4 ps. Two cases were considered:

with 10000 particles per cell, and only 1000 DSMC particles per cell. For the more dense

distribution, WPOD recovered a much improved signal with k = 2 as shown in Fig.

5.38(a). The number of dominant modes was suggested, among other criteria, through

examination of the LEV diagram in Fig. 5.38(b). Additional smoothing was obtained
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(a) Approximation obtained with WPOD, k = 2.
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Figure 5.38: Reconstruction of velocity profiles obtained with WPOD for simulation of argon
channel flow; 10000 DSMC simulator particles per cell were used.

by utilising POD+ methods; the example of POD+SSA with L = 25 and 3 EOFs is

compared with WPOD in Fig. 5.39(a), and POD+WienerChop output, obtained with

db8 and 7 decompositions for WT1, and db4 and 8 decompositions3 for WT2, is plotted

in Fig. 5.39(b). When the number of particles per cell was decreased by a factor of 10,

(a) Output of POD+SSA. (b) De-noising with POD+WienerChop.

Figure 5.39: Additional smoothing provided with POD+SSA and POD+WienerChop for the
measurements performed with DSMC (10000 simulator particles per cell); for SSA L = 25 and 3
EOFs were used, and for WienerChop, db8 and 7 decompositions forWT1 and db4 and 8 resolutions
for WT2.

the noise level increased substantially and the small profile changes, that were present
3Higher decomposition than expected from the signal’s length can be performed by extending the

input vector through some extrapolation [168].
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in the signal, were lost. Figure 5.40 compares LEV diagrams for both cases. The

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 10 20 30 40 50

lo
g
1
0
(λ

k
)

Mode number, k

10000
1000

97.31% of total energy

0.81% 

Only 0.19%

79.39% 

Difference

in variance

Figure 5.40: Comparison of LEV diagrams and energy distribution for two systems with 10000
(blue) and 1000 (purple) particles per bin.

first eigenvalue was not affected much, but the energy of the eigenspectrum was spread

over the higher modes. As a result the information represented by the second mode

was no longer distinguishable from the noise, which was either more energetic, or the

statistics were not even present in the data. If we assume that WPOD’s approximation

from the previous case was the true solution, higher SNR values were recovered with

WPOD and POD+ for k = 1 than for k = 2 modes (see Fig. 5.41). Matrices of rank

(a) Reconstruction with k = 1. (b) Approximations with k = 2.

Figure 5.41: Values of SNRs for noisy data and approximations obtained from DSMC simulation
of oscillating argon flow with 1000 particles per cell and SNRnoisy = 2.97 dB. Note that better
performance was achieved for reconstructions of rank k = 1; for wavelet thresholding different
filters were used: db6 with 3 decompositions for WT1 and db5 with 4 decompositions for WT2.

k = 2 provided with POD+ methods had higher SNRs than WPOD because additional

filtering separated some noise from the second mode. Different sets of filters were applied
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for wavelet transforms in order to retain fewer oscillations in the signals. In conclusion,

it is not possible to recover the same structures from coarse systems as from a densely

populated DSMC domain. Applying WPOD or POD+ improves the data quality but

cannot extract information that is not present, or is significantly less energetic than the

noise.

5.3 Summary

All the de-noising techniques presented in this thesis have the potential to alleviate

the problem of statistical noise in particle-based simulations, and consequently reduce

the computational cost of multi-scale modelling. In the study of stationary data, we

listed the wavelet-based methods as the most universal. In addition, we showed that

very good results can be obtained with SSA for less noisy, dominant trends. The

major challenge in processing data from particle-based simulations is ensuring that the

unwanted correlations in the ensemble are relaxed. Although the filtering methods are

capable of removing higher frequencies, the approximations obtained after only a few

time-steps might not exactly match the trends extracted from large data-sets simply

due to a lack of statistics.

A clear benefit was observed in the case of modelling non-stationary processes. Ex-

tracting useful information from the data required significantly smaller ensembles and

less computing time when usingWPOD and POD+ techniques than for standard averag-

ing. We recommend employing the POD+ methods as they can only improve the quality

of signals reconstructed with WPOD. Each POD+ procedure offers different benefits

and it is difficult to label any of them as the best solution. If the processed simulation

results consist of very long univariate signals, with low-rank underlying structure, the

POD+rQRD (or urQRd) method should be employed. In cases where we expect less

complex shapes to be recovered, such as parabolic profiles, POD+SSA can offer the

best quality after a relatively straightforward analysis. The combination of POD and

wavelet thresholding is the most flexible and can be very successful in capturing all

the information contained in the measurements, unless we are not clear about what we

want to see. Choosing a proper wavelet basis for the transform can be tricky as each

decomposition permits the analysis of the data at different resolutions and smoothness
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level. In contrast, wavelet thresholding is one of the fastest algorithms.

Applying the WienerChop filter in the SVD domain can offer additional improve-

ment in signal-to-noise ratio relative to WAVinPOD, at the cost of computational com-

plexity, but mostly for cases with random disturbances. It might be utilised when

wavelet thresholding is not capable of removing all the unwanted frequencies and the

noise level can be fairly well established from the wavelet coefficients. Noise reduction

based on empirical mode decomposition was shown to be the easiest to employ; we used

the method in an essentially parameter-free manner by fixing all the variables (including

the number of sifting processes). However, it is the most expensive technique, and so

not suitable for multi-scale modelling.

In addition to trend recovery, all the POD+ methods ensure low-dimensionality of

the results, which reduces the storage requirements and complexity of performing other

data-dependent tasks. Furthermore, the singular value decomposition (or EVD) can be

used to determine whether the simulation has reached a steady-state by observing the

energy shift towards lower modes. The general rule is that if there is a clear breaking

point in the eigenspectra and the first few modes contain together about 70%− 95% of

the total variance, there are enough statistics to extract the ensemble solution.



Chapter 6

Conclusions and Future Work

“One never notices what has been done; one can only see what remains to be done.”

Maria Skłodowska-Curie, (1867-1934).

The main goal of this thesis was to review, develop, and evaluate new methodologies

for solving statistical inverse problems in computational nanofluidics. The fluid flows

under consideration were modelled separately via particle-based simulations using MD,

its meso-scale counterpart DPD, and the DSMC method. The filtering tools were com-

prehensively studied and applied to a wide range of numerical results for both synthetic

test-cases and real simulation data. Furthermore, novel procedures were proposed and

shown to outperform the other techniques in extracting significant information from

raw particle data. This research has therefore provided additional insight into the chal-

lenge of improving the communication in multi-scale modelling that couples a molecular

domain to continuum fluid dynamics.

The thesis started with a brief introduction to particle-based simulation methods.

This was followed by an overview of the mathematical procedures with the main focus on

their ability to remove the errors from noisy numerical data. In the subsequent chapters,

the de-noising performance of the algorithms was initially analysed with synthetically

generated signals that were corrupted with Gaussian noise and then measurements ob-

tained from particle flow simulations. At first, proper orthogonal decomposition was

discussed, because it has been widely utilised in the fluid dynamics and turbulence

145
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community to extract coherent structures. Also known under different names, includ-

ing Karhunen-Loève decomposition or principal component analysis, POD provides an

orthonormal basis for representing given multidimensional data in a least squares sense.

This dimensionality reduction method has only recently been applied to molecular sim-

ulations; its extension employs time windows, enabling us to process sampled mea-

surements more efficiently and to directly link the outputs with continuum solvers. In

addition, even without any pre-averaging within the POD windows, the technique is

shown to require substantially less computing time and memory than the standard cal-

culation of an ensemble mean for sets (matrices) with time-dependent signals. However,

it was stressed that the choice of significant modes used for the low-rank approximation

of measurements is often quite challenging. Different criteria for selecting the number

of eigentriples have been introduced. Particularly interesting is determination of the

dominant modes through an optimal singular value hard threshold which, under cer-

tain conditions, can provide a strategy for automating the whole de-noising process.

To the best of the author’s knowledge, this is the first time that SVHT analysis has

been utilised in filtering raw molecular data. One significant disadvantage of POD is its

poor performance when applied to small data-sets or collections of stationary signals.

In the latter case, POD extracts an approximation which is comparable in quality to

the result of statistical averaging. This conclusion led to another technique, also based

on truncated SVD or EVD factorisation, known as singular spectrum analysis.

It was shown that SSA is an alternative to POD in cases where only one signal is to

be processed. To be able to apply SVD factorisation, a data array is transformed into

a trajectory (e.g. Hankel) matrix; after truncation of the singular values, which can

be done with the use of SVHT, the signal is reconstructed through diagonal averaging

of the low-rank approximation of the data-set. The only parameter that needs to be

considered a priori is the window length, L, determining the structure of the matrix,

which is basically a collection of lagged vectors. Unfortunately, an inadequate choice

of L can make the noise separation difficult to carry out, i.e. it can result in a data

decomposition that is too fine or too coarse. Certain guidelines for defining the dimen-

sions of the trajectory matrix were provided. However, the accurate selection of L is

still an open research subject. Variations of the method were also listed, including a
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two-dimensional extension. However, the application of 2D-SSA appeared to be com-

putationally intensive, making it not very useful for the large data-sets obtained from

real simulations.

A promising new method, referred to as random QR de-noising, has recently been

introduced to tackle the issue of processing very long data arrays. This procedure draws

from SSA the concept of building a matrix from one-dimensional data, but instead of

SVD it utilises random sub-sampling of the system. In our analysis with synthetically

generated signals, it was found that rQRd does not achieve as high signal-to-noise ratio

as SSA, it does however offer more flexibility: for a relatively wide range of oversampling

parameters, which define the size of the random space, comparably good approxima-

tions were obtained. In the case of SSA, an inadequate choice of EOFs generally resulted

in unwanted artifacts, either missing information or added noise. A further improve-

ment of the algorithm, called uncoiled random QR de-noising was also discussed, which

further reduces the processing time of long signals by performing a fast matrix-vector

multiplication based on FFT. However, it was shown that for short arrays, urQRd was

not more efficient than the original algorithm, rQRd.

The best basis of SVD might be difficult to determine and manipulate numerically.

Furthermore, in some practical applications, signals contain certain irregularities, and

its these local features that are of particular interest. In such cases, transforming

the signal to a different, pre-determined domain, e.g. the wavelet domain, can be

more effective. For this reason, the benefit of thresholding the wavelet coefficients for

noise cancellation was investigated. A wavelet transform is very fast, and is able to

precisely locate the high frequency components and estimate the trend of the multi-

dimensional data. The main difficulty comes from the selection of the appropriate

basis for a particular application from a very rich class of discrete wavelet transforms.

Depending on whether, for example, the regularity or frequency resolution is important,

a different set of quadrature mirror filters should be applied. On the other hand, this

can be regarded as an advantage, if the flexibility of the methodology is crucial. In

the problems that were considered in this thesis, the filters were limited to Daubechies

and, in the case of univariate data, Symlet wavelets, with a good trade-off between

smoothness and computing time. There is therefore the potential to use the same
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wavelet class for different simulation flow measurements with satisfactory results in

the final SNRs. If required, filters can be custom-made, constructed with the desired

properties for more complex and unique trends. The discussion on wavelet de-noising

was extended by describing the empirical Wiener filter, WienerChop, which incorporates

two wavelet transforms; the first transform, WT1, produces estimates of the desired

data and noise. The approximations are then used to design the filter, which de-noises

the signal in the second wavelet domain, WT2. It was shown that this method can

outperform wavelet thresholding carried out with the same QMFs. However, in contrast

to what was stated in the original published work, it was observed in this thesis that

WienerChop is quite sensitive to the choice of filters for particular transforms. In

addition, it is slower than wavelet thresholding as the entire signal is decomposed into

the approximation and detail coefficients twice.

The last method explored in this research was empirical mode decomposition. Un-

like the wavelet transform it is entirely data-adaptive, and decomposes the signal into a

set of intrinsic mode functions with a decreasing number of zero-crossings. The natural

oscillatory modes of the signal are represented by these IMFs, which serve as the basis

determined by the signal itself, rather than pre-defined kernels. One of the shortcom-

ings of the method lies in the fact that intrinsic functions are not strictly orthogonal.

Moreover, EMD often suffers from mode-mixing, which can be improved by performing

noise-assisted EMD but results in very intensive computations. In general, the algo-

rithm lacks a strong theoretical foundation. Direct noise separation through partial

reconstruction is troublesome, and there are currently no well-established criteria to

define which IMFs contain noise and should therefore be eliminated. In this thesis,

an interval thresholding EMD was utilised as an example of a noise reduction method

based on analysis of IMFs. This was proposed in the literature and inspired by the con-

cept of translation invariant wavelet de-noising with a universal threshold. Although

this methodology was found to be the most computationally expensive out of all the

techniques discussed in this thesis, EMD-IT is the least conditioned by user-defined

parameters; this is a major benefit in making the procedure simple to implement for an

application to data processing.
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All the noise-reduction methods offer a balance between different properties. It is

hard to say that one algorithm can always outperform others for any case. Rather

than choosing a universal approach, this work aimed to give a comparative overview

and guidelines on how to benefit from each procedure. Furthermore, to improve certain

common weaknesses, e.g. computational intensity, all the techniques have been com-

bined with POD. In our proposed POD+ methods, additional de-noising is performed

on the SVD’s dominant spectral modes to enable more efficient filtering of unwanted

frequencies, which would not be possible with POD alone for the same number of ob-

servations. Each coupling provides different benefits; the common feature is that the

POD+ approaches are fast, and more successful in recovering signals buried in noise,

particularly white random fluctuations, than when the techniques are applied separately.

For example, as mentioned before, SSA and EMD-IT are too computationally intensive

to process large data-sets. Applying them in the SVD domain tackles that issue, at

the same time resulting in higher SNRs than POD can achieve alone. For clarity, the

strengths and weaknesses of all the methods investigated in this thesis are summarised

in Table 6.1.

This thesis shown that applying sophisticated de-noising tools to particle-based sim-

ulations can reduce the computational time and memory required to obtain acceptable

ensemble solutions. The main challenge is coloured noise, which can be correlated with

itself or an underlying signal. Although the introduced techniques are not as efficient in

removing such coherent fluctuations, they still manage to improve the quality of the final

output, which is far more difficult to achieve using the standard averaging approach.

It is recommended to employ POD+ methods as they offer more efficient de-noising

than the other estimators we considered. If POD alone is capable of extracting smooth

trends without any high frequencies, the POD+ processing will always return the same

result; it will never produce lower SNRs.
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Techniques Strengths Weaknesses

POD

WPOD + Data-adaptive basis,

+ No parameters needed,

+ The most optimal approxima-

tion obtained for k.

- Large amount of data needed,

- Computationally intensive for

large cases,

- Difficult determination of sig-

nificant EOFs.

SSA

+ Data-adaptive basis,

+ Can be applied to 1D data,

+ Provides the most optimal so-

lution in L2 norm.

- Window size defined prior to

processing,

- Not applicable for large data-

sets,

- Difficulties in determination of

number k.

rQRd

urQRd + Very fast in processing large

matrices,

+ Higher flexibility in the choice

of EOFs.

- Less optimal solution than

SVD.

Wavelet

threshold-

ing

+ Can recover high SNRs,

+ Offers good resolution in fre-

quency,

+ Fast procedure,

+ Applicable to large matrices

and data arrays.

- A priori basis,

- Conditioned by many parame-

ters.
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EMD-IT

+ Solely data-dependent,

+ Simple algorithm,

+ No parameters needed.

- Can cause mode mixing and

costly iterative methods need

to be applied,

- Does not preserve sharp edges.

WienerChop

+ Retains higher SNR than WAV

for strongly disturbed data,

+ Can be applied to signals and

large matrices.

- Dependent on number of pa-

rameters,

- Pre-determined basis,

- Slower than 1D- or 2D-WAV.

POD+ methods

WAVinPOD

+ Less dependent on the choice

of basis,

+ Higher SNR than POD or

WAV alone for additive white

noise,

+ Preserves SVD’s dimensional-

ity reduction.

- Choice of the filter and number

k,

- Slower than WAV or POD.

POD+SSA

+ Allows for applying SSA (or

MSSA) to larger data-sets,

+ Higher SNR than POD alone,

+ No a priori basis needed.

- Computationally more inten-

sive than POD or wavelet

thresholding,

- Multiple determination of

EOFs.
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POD+

EMD-IT + Higher SNR than for WPOD

for the same number of obser-

vations,

+ Enables multivariate EMD-

based de-noising.

- The most expensive combina-

tion.

POD+

Wiener-

Chop

+ Slightly enhanced SNR com-

pared to WAVinPOD for ma-

trices,

+ Recovers the highest SNR for

studied problems.

- More expensive than WAVin-

POD,

- Basis is defined twice.

Table 6.1: Comparison of all the noise reduction techniques for improvement of the data quality.

Future work

This research has opened up a number of potential avenues for future investigation:

1. As mentioned before, the biggest challenge in processing simulation data is the

treatment of energetic coherent noise. Our study showed that there is potential in

utilising modified thresholding techniques, particularly within the wavelet domain.

As the wavelet basis functions are well localised in time or space (in contrast to

e.g. the Fourier transform), they are ideal candidates for analysing non-stationary

signals suffering from discrepancies with long-memory. There is a clear need for

more work to be focused on designing an orthogonal wavelet basis with useful

properties in treating simulation data, or using other existing transforms, e.g.

wavelet packet decomposition [169]. There is also scope for different thresholding

approaches to be applied, e.g. modified level-dependent estimators [152].

2. Employing singular value hard thresholding in any SVD-based processing is an im-
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portant step towards making the methodology fully adaptive and data-dependent.

It was shown, though, that more research needs to be conducted for improving

the determination of adequate thresholds in the presence of coloured noise. In

this thesis, certain suggestions were given on how to enhance the computation

of SVHT allowing it to adapt better to unknown rank in the case of correlated

fluctuations in particle data. However, a sound analytical analysis is required to

confirm that this solution is universally applicable for treatment of data affected

by low-frequency noise.

3. Various methods of calibration that can be used in practice to improve the accu-

racy of reduced models based on SVD should be explored, e.g. Tikhonov regular-

isation [170].

4. An application of univariate EMD as a noise reduction tool is quite a recent

concept and there is still a lot to learn about the method’s capabilities. In future,

it would be interesting to investigate whether the interval thresholding idea could

easily be extended to multivariate versions of EMD that are currently of great

interest to the signal processing community [171]. Different signal de-noising

schemes based on EMD could also be tested.

5. There is an emerging topic in multi-scale simulations in which the compounding

of information over disparate length and time scales is entirely performed with

the use of wavelet-based techniques. While the use of multiresolution analysis has

been mentioned in this context, there is still no rigorous methodology that would

allow for efficient application of wavelets in a hybrid model. Surprisingly, limited

attention has been given to the actual development of a wavelet-based tools for

bridging different domains (apart from the noise reduction discussed in this thesis),

and only a structure referred to as Compound Wavelet Matrix has been proposed

in the literature [172, 173]. The general procedure decomposes the data from

different modelling techniques into wavelet coefficients, establishes overlapping

scales, copies and thresholds fine- and coarse-scale features, and, depending on

the application, compares the statistics or performs an inverse transform. While

the concept and some preliminary results are encouraging, a substantial valida-
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tion needs to be carried out, and a number of shortcomings, some mentioned by

Mirchandani and Evans [174], require investigation.

6. There is potential in utilising dynamic mode decomposition to extract important

information from disturbed simulation data. Apart from ensuring orthogonality

of the eigenvectors, an additional step could be to perform partial de-noising in

the early stage of the singular value decomposition. Moreover, another method,

referred to as independent component analysis [175], can be applied for separating

a multivariate signal into additive components based on statistical independence.

It would be interesting to analyse this approach to see if it can perform better

than POD in removing noise from particle data.

We are currently living at a time when big data is everywhere, from smart cities

to crowd and security control, through to large data sets generated by modelling and

simulation. The common theme linking these disparate topics is how to remove un-

wanted information, i.e. noise. The methods introduced and compared in this thesis

have the potential to make a significant impact in a wide range of subjects, and could

prove critical for reconstructing key information within coupling techniques multi-scale

modelling.
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Appendix A

Example of Computing SVD

Singular value decomposition breaks down a rectangular N × M matrix A into the

product of three matrices: an orthogonal matrix U , a diagonal matrix Σ, and the

transpose of an orthogonal matrix V . For small data sets a manual computation can be

easily performed. The procedure for determining A = UΣV † is summarised as follows:

1. Depending on the matrix size, compute A†A if N > M , or AA† otherwise.

2. Determine the singular values, sj =
√
λj , j = 1, . . . ,M , and corresponding sin-

gular vectors vj by finding the eigenvalues and orthonormalised eigenvectors of

A†A.

3. Compute the first M columns of U via uj = s−1
j Avj , j = 1, . . . ,M .

4. The remaining columns of U are chosen such that U is unitary.

The example presented here explains how SVD of a small 3×2 matrix can be computed.

• Step 1 : In order to find the SVD for

A =


1 2

2 2

2 1

 , (A.1)
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we need to first establish

A†A =

1 2 2

2 2 1




1 2

2 2

2 1

 =

9 8

8 9

 . (A.2)

• Step 2 : To compute the eigenvalues, we begin with solving the eigenvalue problem

A†AV = ΛV, (A.3)

A†AV − ΛV = 0, (A.4)(
A†A− ΛI

)
V = 0, (A.5)

where I is an identity matrix. As the determinant
∣∣A†A− ΛI

∣∣ has to be zero, the

following is obtained

∣∣∣A†A− ΛI
∣∣∣ =

∣∣∣∣∣∣
9 8

8 9

−
λ 0

0 λ

∣∣∣∣∣∣ =

∣∣∣∣∣∣9− λ 8

8 9− λ

∣∣∣∣∣∣ = 0. (A.6)

Deriving the formula for the determinant∣∣∣∣∣∣9− λ 8

8 9− λ

∣∣∣∣∣∣ = (9− λ) (9− λ)− 8 · 8 = 81− 2 · 9 · λ+ λ2 − 64 = 0,(A.7)

λ2 − 18λ+ 17 = 0.(A.8)

Solving the quadratic equation leads to the eigenvalues (in decreasing order) λ1 =

17 and λ2 = 1, and singular values s1 =
√
λ1 =

√
17 and s2 =

√
λ2 =

√
1 = 1.

Thus,

Σ =


√

17 0

0 1

0 0

 . (A.9)

To find the eigenvectors we substitute a general vector v1 =

v1(1)

v1(2)

 and λ1 into
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the Eq. A.3: 9 8

8 9

v1(1)

v1(2)

 = 17

v1(1)

v1(2)

 . (A.10)

The calculation leads to unsolvable equations:−8v1(1) + 8v1(2) = 0,

8v1(1)− 8v1(2) = 0.
(A.11)

However, based on Eq. A.11, a relationship between two vectors can be established

8v1(1) = 8v1(2)⇒ v1(1) = v1(2), (A.12)

V =

v1(1)

v1(1)

 =

1

1

 . (A.13)

In general, it is common to set v1(1) = 1. Following the same procedure for the

second eigenvalue, λ2 = 1, the second vector can be constructed v2 =

 1

−1

. This
leads to

V =
[
v1 v2

]
=

v1(1) v2(1)

v1(2) v2(2)

 =

1 1

1 −1

 . (A.14)

After normalisation (dividing the vector by its length), the 2× 2 matrix, V , takes

the form

V =

 1√
2

1√
2

1√
2
− 1√

2

 . (A.15)

• Step 3 : The first two columns of U can be computed as

u1 = s−1
1 Av1 =

1√
17

1√
2


1 2

2 2

2 1


1

1

 , (A.16)

=
1√
34


3

4

3

 , (A.17)
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and

u2 = s−1
2 Av2 =

1√
1

1√
2


1 2

2 2

2 1


 1

−1

 , (A.18)

=
1√
2


−1

0

1

 . (A.19)

• Step 4 : In order to determine the 3rd vector we have

U =


3√
34

−1√
2

u3(1)

4√
34

0 u3(2)

3√
34

1√
2

u3(3)

 , (A.20)

the condition u†ju3 = δj3, j = 1, 2, 3 needs to be satisfied. The following choice

fulfils the requirement:

u3 =
1√
17


2

−3

2

 . (A.21)

The final result is given by

A = UΣV † =


3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17



√

17 0

0 1

0 0


 1√

2
1√
2

1√
2
−1√

2

 . (A.22)

It can be noticed that in Eq. A.22, due to the last row in the diagonal matrix

having only zeros, the last column of the U matrix, u3, is for this case redundant.

The reduced SVD is expressed as

A = UrΣrV
† =


3√
34

−1√
2

4√
34

0

3√
34

1√
2


√17 0

0 1

 1√
2

1√
2

1√
2
−1√

2

 . (A.23)



Appendix B

Calculation of SSA

Having a signal X = [0, 0.5, 1, 1.5, 2, 2, 2, 2, 2.5, 2.5, 3, 3] and window length L = 4, the

following steps are performed:

• Step 1 : Embedding - build a trajectory matrix with L rows and K = M−L+1 =

12− 4 + 1 = 9 columns

Y =


0.00 0.50 1.00 1.50 2.00 2.00 2.00 2.00 2.50

0.50 1.00 1.50 2.00 2.00 2.00 2.00 2.50 2.50

1.00 1.50 2.00 2.00 2.00 2.00 2.50 2.50 3.00

1.50 2.00 2.00 2.00 2.00 2.50 2.50 3.00 3.00

 (B.1)

• Step 2 : Decomposition - perform economical SVD

SVD(Y ) = U(L×K)Σ(K×K)V
†

(M×K), (B.2)

where

U(L×K) =


−0.4117 0.7572 −0.1342 −0.4890

−0.4682 0.2502 −0.1741 0.8294

−0.5290 −0.1861 0.8251 −0.0693

−0.5757 −0.5739 −0.5205 −0.2611

 , (B.3)
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Σ(K×K) =


12.0365 0 0 0

0 1.4181 0 0

0 0 0.4552 0

0 0 0 0.3942

 , (B.4)

V †(M×K) =



−0.1351 −0.6501 −0.0939 −0.1175

−0.2176 −0.5629 −0.0980 −0.1049

−0.2761 −0.2733 0.4696 0.2389

−0.3127 0.0819 0.1310 0.6707

−0.3298 0.3488 −0.0165 0.0503

−0.3537 0.1465 −0.5882 −0.2809

−0.3757 0.0808 0.3181 −0.3688

−0.4190 −0.0333 −0.4449 0.3520

−0.4581 0.1680 0.3139 −0.3562



. (B.5)

• Step 3 : Grouping - determine k-dimensional subspace for k = 1

Ỹ = U(L×k)Σ(k×k)V
†

(M×k) =

=

0.6697 1.0782 1.3683 1.5494 1.6341 1.7527 1.8615 2.0764 2.2701

0.7616 1.2263 1.5561 1.7621 1.8585 1.9933 2.1171 2.3615 2.5817

0.8605 1.3854 1.7580 1.9907 2.0996 2.2519 2.3918 2.6679 2.9167

0.9365 1.5078 1.9134 2.1667 2.2852 2.4509 2.6032 2.9037 3.1745

. (B.6)

• Step 4 : Reconstruction - average over the diagonals, e.g. (1.0782 + 0.7616)/2 =

0.9199. New signal is

X̃ = [0.6697, 0.9199, 1.1517, 1.3568, 1.6655, 1.8788, 2.0303, 2.1827, 2.3686, 2.6176, 2.9102, 3.1745].

(B.7)
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