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Abstract 

Tidal power is a promising source of renewable energy worldwide, more stable and predictable than 

alternatives such as offshore wind power. However, the harsh operating environment makes 

maintenance of tidal turbines difficult and costly to perform. Intelligent condition monitoring systems, 

utilised as part of a condition-based maintenance strategy, can provide operators with timely and 

accurate indications of faults before serious damage occurs. Nevertheless, tidal technology is a new 

application, where deployments are currently in its infancy. Therefore, there is limited practical 

experience of how faults will develop within tidal turbines in operation. This thesis aims to investigate 

the requirements of condition monitoring methods, from both theory and knowledge of similar fields 

(such as offshore wind), to develop an approach for applying condition monitoring in new applications. 

This work first investigates the response of a commercial-scale tidal turbine in operation through a data 

mining analysis of condition data from the Andritz Hydro Hammerfest HS1000 tidal turbine. Data 

mining was performed following the CRISP-DM methodology and was used to build models of the 

normal condition response of turbine components, from which anomalous behaviour indicative of the 

development of faults can be detected. This approach was then expanded to include both diagnostic and 

prognostic modelling, where faults can be automatically classified and the remaining useful life of 

equipment undergoing degradation can be estimated. This has resulted in a generalised framework, 

based on CRISP-DM, that can be applied to perform condition monitoring in new applications, learning 

from the response of machinery over time during its operation. 
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Chapter 1 

1 Introduction 

1.1 Introduction to Research 

The aim of this thesis is to present an approach for applying condition monitoring in new applications, 

where there is limited historical monitoring data or knowledge of the system. 

A key application of this work is tidal power, a newly developing form of renewable energy generation, 

capturing tidal forces to provide a reliable and predictable source of energy. This technology has great 

potential to become a major source of renewable energy, within the UK and worldwide [1]. 

Maintaining equipment within the marine environment is a major challenge. Firstly, access to tidal 

turbines in operation below the water’s surface is limited, and physical inspections or maintenance must 

be performed on shore. This requires turbines to be shut down and lifted to the surface [2], which can 

be extremely costly and results in long periods of down time.  

In addition, the high kinetic energy of tidal forces causes tidal turbines to experience high torques and 

thrust loading [3], inducing great mechanical stresses. In combination with marine corrosion and 

fouling, this can potentially cause accelerated wear and damage to occur to tidal turbine machinery. 

Faults should therefore be detected as soon as possible before damage propagates throughout 

machinery, resulting in costlier failures within the device. 

Condition-based maintenance strategies [4], utilising intelligent condition monitoring systems, can 

therefore be greatly beneficial to the tidal power industry, allowing operators to perform maintenance 

before costly damage occurs, yet only when necessary to avoid unnecessary costs due to periodic shut 

downs for inspection. 

Nevertheless, tidal turbines are a new application for condition monitoring. There is currently limited 

experience of the response of full scale turbines in operation, under both healthy and faulty conditions. 

This can be challenging for implementing condition monitoring systems, where many state of the art 

techniques require historical data for automatic detection, classification and prediction of faults. 

This thesis therefore investigates approaches to applying state of the art condition monitoring to new 

applications with limited operational histories and experience of faulty behaviour, specifically tidal 

power. This work has involved the analysis of condition data from the Andritz Hydro Hammerfest 

HS1000 tidal turbine, a commercial scale tidal turbine in operation at the European Marine Energy 

Centre (EMEC) in Orkney, Scotland. Through this analysis, approaches for fault detection, diagnostics 

and prognostics have been developed, leading to a framework for applying intelligent condition 

monitoring in new applications. 
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1.2 Thesis Outline 

Chapter 2 introduces tidal power, detailing tidal flow and the current state of tidal turbine design. The 

chapter then discusses the maintenance of tidal machinery, the need for condition-based maintenance 

strategies due to the difficulties introduced by their operating environment and the potential sources of 

damage within tidal turbines. The state of the art within condition monitoring as a whole, and then more 

specifically within tidal power, is then reviewed. The Andritz Hydro Hammerfest HS1000 tidal turbine 

is then introduced, discussing its design and operation, and the sources of data available for this work. 

Finally, an approach to condition monitoring for tidal turbine devices is detailed, following the Cross-

Industry Standard Process for Data Mining (CRISP-DM) to perform anomaly detection, and then 

diagnostics and prognostics. Here, a framework for performing condition monitoring in new 

applications based on CRISP-DM is first introduced. 

Chapter 3 details data mining through the CRISP-DM methodology, and how this can be utilised to 

construct models of normal behaviour for anomaly detection to detect faults within a condition 

monitoring system. This chapter describes how each stage of CRISP-DM was applied in this work to 

model responses from the HS1000 tidal turbine, discussing the use of data analysis techniques to reveal 

key relationships within datasets, the selection of appropriate modelling techniques given different 

forms of data, and how results can be interpreted by operators after models are deployed to assess the 

state of machine health. 

Chapter 4 then discusses diagnostic modelling, where the specific fault mode can be classified following 

fault detection. The chapter first introduces vibration as a key parameter in rotating machine diagnostics 

and details the expected vibration characteristics for different fault modes of gearboxes, bearings and 

generators. The chapter then discusses feature-based methods of fault classification, where signal 

processing methods are used to extract characteristics from vibration signals unique to specific fault 

modes before classification. A deep learning approach to rotating machine fault classification is then 

presented, where deep neural networks are used to automatically extract fault characteristics without 

the use of tailored signal processing methods. These two approaches to fault classification are then 

applied through two case studies: identification of a change in the HS1000 generator response and 

identification of multiple faults within a gearbox test rig. Finally, the role of diagnostics within condition 

monitoring for new systems is discussed, expanding the CRISP-DM framework to include diagnostic 

modelling. 

Chapter 5 details the use of prognostics within condition monitoring to predict the remaining useful life 

of components undergoing degradation. The requirements of different approaches to prognostics are 

then discussed, finding degradation-based methods, and in particular, model-based methods best suited 

to applying prognostics in new applications with limited operational histories. Degradation and model 

based methods are then examined in more detail, focussing on Bayesian filtering approaches (namely 

the Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter and Particle Filter). The 

application of model-based prognostics in new systems is then discussed, including the selection of 
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suitable degradation parameters and degradation models. An example of applying the Particle Filter for 

model-based prognostics is then given through a simulated gearbox degradation in the HS1000. The 

chapter concludes by further expanding the CRISP-DM framework to include prognostic modelling. 

Chapter 6 finally concludes this thesis, summarising the work, its main findings and contributions, and 

detailing potential areas of further work that can be undertaken as a result. 

1.3 Novel Contributions 

The following points describe the novelty of the research undertaken as part of this thesis: 

• Analysis of sensor data from a commercial scale operational tidal turbine data to identify key 

operating and condition parameters suitable for condition monitoring 

• Use of change point analysis to identify control modes directly from data, without turbine 

design details or specifications 

• Prototyping of anomaly detection models for detecting faults in tidal turbines from normal 

behaviour – suitable for condition monitoring within new applications with no prior experience 

of faults or fault data 

• Development of a deep learning approach for diagnosis of rotating machine faults from 

vibration data 

• An approach for implementing model-based prognostics in new systems with limited previous 

examples of failure 

• Expansion of the CRISP-DM methodology for data mining to implement condition monitoring 

systems in new applications with limited operational histories 

1.4 Related Publications 

The following publications are related to this work and have been published prior to the submission of 

this thesis: 

• G. S. Galloway, V. M. Catterson, C. Love and A. Robb, “Anomaly Detection Techniques for 

the Condition Monitoring of Tidal Turbines”, Annual Conference of the Prognostics and 

Health Management Society, Fort Worth, TX, 29 Sep. – 2 Oct. 2014. 

• G. S. Galloway, V. M. Catterson, T. Fay, A. Robb and C. Love, “Diagnosis of Tidal Turbine 

Vibration Data through Deep Neural Networks”, Third European Conference of the 

Prognostics and Health Management Society, Bilbao, Spain, 5-7 Jul. 2016. 

The following publications are related to this work and have been accepted for journal publication: 
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• G. S. Galloway, V. M. Catterson, C. Love, A. Robb and T. Fay, “Modeling and Interpretation 

of Tidal Turbine Vibration through Weighted Least Squares Regression”, IEEE Trans. 

Systems, Man, and Cybernetics: Systems, 2017. 

 

Chapter 2 

2 Tidal Power and Condition Based Maintenance 

Tidal power has great potential worldwide to be a major contributing source of renewable energy. In 

2009, the EU announced a Renewable Energy Directive [5], setting a target for 20% of energy 

generation to come from renewable resources by 2020. Within the UK, this target was adjusted to 15% 

[6]. Between 2005 and 2014, the UK has increased its renewable energy production from 1.5% to 7.0% 

[7], however there is some way to go to reach the 15% target. 

Within the UK alone, tidal resources have the potential to yield up to 94 TWh of energy per year, with 

predictions showing tidal arrays have the potential to provide 9.55 GW capacity in the UK by 2020, 

with currently available turbine technology [1]. This accounts for approximately 31.3% of the UK’s 

30.5 GW renewable energy capacity in 2015 [8].  It is therefore clear that tidal energy has the potential 

to provide a major contribution to renewable sources of energy. 

In addition, tidal power holds a number of advantages over alternative renewable energy technologies 

(such as wind power) [9]: 

• Predictability – tidal flow is highly predictable, as tidal cycles can be predicted months and 

years into the future 

• High density of seawater – allows tidal turbines to have smaller blade diameters, reducing 

overall size and cost of devices for the same power output as a wind turbine 

• High capacity factor – large amounts of energy can be extracted from tidal flows efficiently 

• Slow moving rotor – reduces impact on surrounding environment  

• Tide flows in (generally) only two directions – enables more efficient turbine design without 

need for rotating yaw of turbine nacelle. 

However, the operating environment introduces unique challenges. The marine environment can 

introduce wear to tidal turbines through fouling (due to a build-up of soft algae or barnacles) or corrosion 

(due to the salinity of ocean water). In addition, the high loads of tidal flow may cause accelerated aging 

to turbines’ mechanical components [3]. Access to tidal turbines located on the sea bed for inspection 

or maintenance is difficult, and cannot be performed when the turbine is in operation. This leads to 
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maintenance actions being extremely costly, where the turbine must be lifted from the sea bed and 

accessed on shore. 

Condition based maintenance strategies [10] can therefore be of great benefit to the tidal turbine 

industry, where maintenance is only planned when necessary, based on analysis through state of the art 

monitoring techniques. 

2.1 Tidal Flow 

Tidal turbines convert kinetic energy from tidal flow to electrical energy. Tidal flow is a result of the 

Moon’s and Sun’s gravitational forces acting on the Earth, causing sea levels to rise and fall periodically 

in tidal cycles [11]. Aspects of tidal flow are therefore easily predictable, as tide height is directly related 

to the position of the Moon relative to the Earth. 

The EMEC test site in Orkney experiences semidiurnal tidal flow [12], where two tidal cycles occur 

every lunar day. This leads to the HS1000 turbine experiencing approximately four tidal flows (two 

upstream and two downstream) each day. Figure 2.1 details a sample of modelled tide heights over time 

for the EMEC test site, showing the effect of semidiurnal tidal flow. 

 

Figure 2.1 - Semidiurnal tidal flow, from modelled EMEC tidal data 

Maximum and minimum tidal heights vary periodically over an approximate two-week cycle [13]. 

During new and full moons, the Sun, Moon and Earth are aligned. Additional gravitational forces due 

to the Sun are added to those of the Moon and cause variation in tide heights to be at their maximum. 

This is known as the spring tide, Figure 2.2 (a). Conversely, when the Moon and Sun are at 90 degrees 

in relation to the Earth, the Sun’s gravitational forces counteract the Moon’s gravitational forces and 

tide height variation is at a minimum. This is known as the neap tide, Figure 2.2 (b). Consequently, tidal 

flow rates are increased during spring tidal cycles, where the difference between high and low tide 

heights is greatest. Figure 2.3 shows the effect of spring and neap tides at the EMEC test site. 
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(a) Spring tides     (b) Neap tides 

Figure 2.2 - Phases of spring and neap tide 

 

 

Figure 2.3 - Spring and neap tidal cycles, from modelled EMEC tidal data 
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2.2 State of the Art Tidal Turbine Design 

Tidal power technology is in its infancy, and no clear turbine design has emerged as an industry standard 

for extracting energy from tidal flow.  The state of the art in turbine design includes many horizontal 

and vertical axis solutions, some with major structural and operational variations [9]. 

A number of different tidal turbine designs have been proposed: 

• Open rotor horizontal axis – Most similar to the traditional wind turbine design, with a 

horizontal rotor parallel to the direction of tidal flow  

• Ducted horizontal axis – Contains a duct over the rotor to accelerate tidal flow, leading to 

greater rotational speeds and output power 

• Multiple rotor horizontal axis – Contains multiple rotors on a single body, to capture 

additional tidal flow energy in a smaller form factor with reduced costs 

• Transverse/vertical axis – Rotation of the device is perpendicular to tidal flow, with blades 

aligned vertically, aiming to improve structural efficiency 

J. King and T. Tryfonas [14] and J. Zhang, et al., [15] have published reviews on the state of the art in 

tidal power systems currently in development from different manufacturers. This data has been updated 

for information currently available from each manufacturer and summarised in Table 2.1 (note this is 

not a comprehensive list of all tidal turbine manufacturers worldwide). This shows the majority of 

manufacturers have chosen variations of the horizontal axis design with power ratings commonly 

between 1 – 2.5 MW. Transverse axis turbines are in development, however these primarily consist of 

more conceptual designs with lower power ratings. 

Drive train configurations differ between design types. The drive trains of open rotor and ducted 

horizontal axis turbines typically consist of an induction generator driven by the blades through a 

gearbox. Gearbox designs differ between manufacturers, but configurations commonly contain multiple 

stages with one or more planetary stages (as with Andritz Hydro Hammerfest, Atlantis and Alstom 

turbines). 

Transverse/vertical axis devices are also typically driven by a gearbox-generator configuration [14], 

however generally generate energy at a lower power rating than horizontal axis devices (Table 2.1). 

Gearbox configurations therefore contain fewer stages. 
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Table 2.1 - Tidal turbine designs, manufacturers and proposed power ratings (updated from [14] and [15]) 

Turbine Type Manufacturer 
Generator Power 

Rating 

Open rotor horizontal axis 

Verdant Power LTD 35 kW 

Nautricity 500 kW 

Andritz Hydro Hammerfest 1 MW 

Atlantis 1.5 MW 

Free Flow Power 1 MW 

Swan Turbines 1 MW 

Alstom 1.4 MW 

Sabella 2 MW 

Aquamarine 2.5 MW 

Ducted horizontal axis 

Clean Current 65 kW 

UEKUS 300 kW 

Open-Hydro LTD 500 kW 

Lunar Energy 1 MW 

Atlantic Resources 

Corporation 
2 MW 

Multiple rotor horizontal 

axis 

Statkraft 1 MW 

Sustainable Marine Energy 

LTD 
1 MW 

Teamwork Technology BV 1 MW 

Voith Siemens 1 MW 

Marine Current Turbines 1.2 MW 

Scot Renewables 2 MW 

Aquamarine 2.4 MW 

Tidal Stream Energy 10 MW 

Bluewater Energy Services n/a 

Transverse/vertical axis 

Ocean Renewable Power 22 kW 

Ponte di Archimede 13 kW 

Blue Energy 200 kW 
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2.3 Tidal Turbine Maintenance 

The underwater marine environment poses a great challenge for the operation and maintenance of tidal 

power devices. Strong kinetic forces from turbulent tidal flow lead to tidal turbines experiencing 

extremely high loads [3]. This could potentially cause accelerated wear and damage to the turbine and 

its internal rotating components. Other factors such as marine fouling and corrosion may also lead to 

loss of performance and accelerated damage, primarily affecting the turbine’s external components such 

as blades, nacelle and support structure [3]. 

While components have been designed and manufactured to operate in such conditions (including the 

use of specialised coatings to resist marine fouling and corrosion, and materials to withstand high loads) 

potential fault causes of tidal turbines are not well understood in practice, with the degradation rates of 

such faults remaining uncertain [16]. 

Access to tidal turbines while in their operational environment for routine inspection and maintenance 

is extremely challenging. Assessing the external health of the machine may be possible through remote 

surveillance equipment. Divers may also be used to inspect the exterior of the machine and perform 

maintenance actions such as scouring to remove marine fouling, but this may be dangerous and can only 

be performed during favourable weather conditions [17]. 

Access to the internal components of the turbine for inspection or maintenance is not possible in a 

submerged environment. Turbines must therefore be designed to be retractable from the seabed, 

allowing internal component maintenance activities to be performed onshore. This requires costly 

specialist marine equipment, e.g. a ship fitted with a large winch or crane, and results in prolonged 

periods of machine downtime. This process is also highly dependent on weather conditions, as the lifting 

operation cannot be performed safely when waves and turbulence are above certain levels [18]. 

2.3.1 Condition Based Maintenance 

Maintenance strategies broadly fall into three main categories [19] [20]: 

1. Preventative maintenance 

2. Corrective maintenance 

3. Condition based maintenance 

Preventative maintenance strategies aim to prevent sustained damage to machinery by scheduling 

maintenance periodically in time [21]. In this strategy, faults can be identified at an early stage through 

inspection and damage to equipment is kept minimal. However, in order to increase the reliability of 

the machine and reduce costs due to failures occurring in operation, maintenance must be performed 

before the mean time to failure [19]. This category of maintenance therefore involves the highest 

maintenance costs, and will be particularly high within tidal power due to the difficulty in accessing 

machinery in the marine environment. 
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Corrective maintenance strategies involve only performing maintenance when failure occurs [21]. Such 

a strategy may reduce costs associated with unnecessary inspections and maintenance, but greatly 

increases the risk of more catastrophic failure occurring within the machine, leading to higher costs due 

to component repair and replacements [20]. This issue is particularly prevalent for tidal power, as faults 

occurring in a tidal turbine’s components during operation may go unnoticed without a sophisticated 

monitoring system.  

Condition based maintenance is an evolution of traditional preventative and corrective maintenance 

strategies, where maintenance is performed only when necessary, based on an estimation of the health 

of a machine’s components [22]. This is illustrated in Figure 2.4, adapted from [19], where condition 

based maintenance aims to minimise total costs due to both maintenance and repair actions. Modern 

advances in sensor technology and data analytics allow periodic inspections to be supplemented by 

condition monitoring systems, where the health state of components can be inferred remotely from 

sensor data and faults can be detected at an early stage. 

 

Figure 2.4 - Cost against number of failures for different maintenance strategies, adapted from [19] 

Condition based maintenance strategies can therefore be extremely beneficial within the field of tidal 

power, reducing maintenance and repair costs and improving the reliability and availability of 

machinery. However, an effective condition based maintenance strategy heavily relies upon an accurate 

condition monitoring system. While limited remote inspection of the external of the turbine is possible 

to assess a turbine’s health (performed by divers or surveillance equipment), detailed inspection of a 

turbine’s internal components is not possible during operation. Effective condition monitoring 

techniques can provide operators with an accurate remote assessment of the health of internal 

components, detecting faults before failure occurs. 
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2.3.2 Sources of Damage Within Tidal Turbines 

The design of horizontal axis tidal turbines is very similar to that of most wind turbines. It may therefore 

be expected that such tidal turbines will experience some similar fault modes. However, despite 

similarities in turbine design with wind power devices, the operating environment is vastly different.  

Water is over 800 times denser than air and, despite slower flow rates (around 3 m/s compared to around 

15 m/s for offshore wind), tidal flow has a much higher kinetic energy compared to wind flow [3].  This 

causes tidal turbines to operate with higher torque and thrust loading, inducing increased stress on the 

machine, particularly on the low speed stages of the drive train. Additionally, the marine environment 

provides other complications, such as corrosion and interaction with plant and animal life [3]. 

P. Beaujean, et al [23], discuss reliability concerns of tidal turbines in contrast to other power generation 

technologies.  It is stated that a main reliability concern is the fouling of mechanical components due to 

the corrosive environment of sea water, an issue unique to submerged tidal turbines.  Another stated 

concern is underwater turbulence.  Waves on the surface can create uneven loading between the top and 

bottom of the turbine, which may lead to additional wear on the blades, rotor and supporting components 

such as bearings and the gearbox. 

P. Prickett, et al [10], use failure modes and effects analysis (FMEA) to analyse potential failure modes 

within tidal turbines. Key fault modes identified include corrosion and impacts to the rotor blade 

assembly, wear and fatigue to the main drive shaft due to high loads, and imbalance and misalignment 

of the generator drive train. 

L. Chen and W. Lam [16] list various aspects of survivability and remedial actions for tidal turbines. 

Primary sources of damage include extreme weather, seabed scour, fatigue failure, corrosion/erosion 

and marine fouling. Maintenance actions include manual cleaning of fouling, reapplication of coatings 

and paint and nacelle re-sealing to deal with sources of damage unique to the marine environment. It is 

also stated that monitoring of internal components (such as the gearbox, generator, etc.) is essential to 

allow early detection of potential causes of failure and keep maintenance costs affordable. 

Despite the differences in the operating environment, a useful statistic to infer from wind power is the 

distribution of downtime for failures of similar mechanical components, where maintenance actions for 

such failures will be similar. Figure 2.5 shows the distribution of downtime for wind turbines as part of 

the Wind Measurement and Evaluation Program (WMEP), adapted from [24], a survey conducted to 

study the long-term reliability of wind turbines. This survey contained data from a number of different 

wind turbine designs and locations across Germany, with approximately 45% deployed offshore. This 

shows that faults within the turbines’ primary internal rotating components (the gearbox, generator and 

drive train) contribute the largest percentage of downtime. 
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Figure 2.5 - WMEP wind turbine downtime distribution, adapted from [24] 

Due to these factors, the main focus of this research has been the application of condition monitoring 

techniques to a tidal turbine’s internal rotating components: the gearbox, generator, shafts and 

supporting bearings. Effective monitoring of these components was viewed as critical to a condition 

based maintenance strategy, as no reliable method of internal inspection exists during periods of 

operation, and repair actions for these components can result in the longest periods of downtime. 

2.3.3 Current State of the Art in Condition Monitoring 

Effective condition monitoring techniques are an essential part of a condition based maintenance 

strategy. While the aim of such methods is to detect faults occurring within machinery at an early stage, 

state of the art condition monitoring techniques can provide operators with an increasingly detailed 

assessment of the health of a machine and its individual components.  

Within this research, condition monitoring techniques have been split into three categories: anomaly 

detection, diagnostics and prognostics. 

Anomaly detection techniques are used to distinguish changes in operational behaviour, indicative of a 

fault or failure within the system, without the need for prior knowledge of component failure [25]. Such 

techniques can be performed by identifying deviations from models of normal behaviour, and therefore 

require measured data from the healthy system over a full range of operating conditions. In addition to 

recognising changes in behaviour, anomaly detection may allow operators to localise a detected fault to 

an individual component of the machine, or infer the level of damage that has occurred. Still, such 

techniques do not provide specific information about the nature of a fault. 
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Diagnostic techniques, however, allow operators to detect and quantify specific fault modes for 

individual components of a machine [26]. This is commonly performed for rotating machines through 

high resolution data, as opposed to data acquired at a low sample rate, e.g. SCADA data, which can lack 

the detailed information content required to make accurate fault diagnoses [27]. Research in this area 

has shown a focus on the development of signal processing techniques applied to high resolution 

vibration data [28] to best isolate known characteristic signals associated with specific faults (this is 

known as feature-extraction [29]). This requires prior knowledge of the response of components under 

normal and faulty conditions, inferred from expert knowledge or the analysis of fault data. 

Finally, prognostics techniques provide an estimation of when a component will fail given a specific 

fault mode [26]. This is known as the ‘remaining useful life’ (RUL) of a component, and allows an 

operator to infer how long a machine can remain active before the component fails and a maintenance 

action is required. Prognostic techniques require prior knowledge of the response of the system under 

both normal and faulty conditions, as well as an understanding of the degradation process of components 

experiencing wear and faults. This degradation process can be modelled mathematically, or inferred 

through historical data [30]. 

2.3.4 State of the Art Condition Monitoring for Tidal Turbines 

As tidal power is still an emerging power generation technology, it is not yet an established application 

within condition monitoring.  Understanding of the failure modes of standard components of tidal 

turbines is known in theory, yet there is a limited understanding of the response of tidal turbines in 

operation [16]. Condition monitoring methods are recently becoming more established within the wind 

energy field [28] [31] [32], and due to the similarity in design between wind and tidal turbines, some 

developed techniques may be transferable.  However, due to a vastly different operating environment 

and a lack of historical fault data, different approaches should be examined. 

P. Caselitz and J. Giebhardt [33] discuss condition monitoring for tidal turbines, detailing the required 

hardware and potential fault prediction algorithms.  The following parameters were identified as useful 

indicators of faults: 

• Acceleration and vibration within bearings and gear wheels 

• Strain across blades 

• Displacement on slow rotating shafts and bearings 

• High frequency generator phase currents 

• Gearbox oil quality 

Vibration analysis is then identified as a technique that may be suitable within this environment, using 

the Fast Fourier Transform (FFT) to identify bearing and gearbox faults [33]. Monitoring of the overall 

performance of the turbine, examining parameters such as output power with reference curves generated 

from the first months of operation, was also identified as a useful indicator of health. 
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As well as vibration analysis, analysis of electrical was also identified as suitable for condition 

monitoring. Electrical signals, particularly high frequency phase and current data, can be used to detect 

faults within a turbine’s generator (e.g. rotor or stator winding faults) [34]. 

R. Wald, et al [35], review a number of techniques potentially suitable for condition monitoring and 

prognostics of tidal turbines.  The authors state that despite similarities in design with wind turbines, a 

different approach is required due to the differences in operating environment.  Feed forward multi-

layer neural networks, radial basis function neural networks and adaptive neuro-fuzzy inference 

techniques are reviewed. However, it is stated that these methods require data from healthy and failure 

states of the system, which is not readily available for tidal power. 

Practical implementations of condition monitoring techniques for tidal turbines have been published, 

namely research from Florida Atlantic University.  A 20 kW dynamometer has been constructed to 

simulate the drive train of a tidal turbine [36]. The test rig contains a motor to simulate rotating blades, 

two gearboxes and a generator. Condition monitoring techniques applied to this dynamometer have 

focussed on locating bearing faults through vibration analysis of accelerometer data.  A number of 

methods within vibration monitoring have been explored for fault detection and diagnosis: 

• Combination of Wavelet and Fourier Transform [37] 

• Short time Wavelet analysis [38] 

• Machine learning classification of Wavelet features [39], [40] 

Data fusion techniques have also been explored to combine multiple features extracted from wavelet 

analysis.  Fusion was applied at the data level [41], feature level [42] and decision level [43] to improve 

the accuracy of classification algorithms for bearing fault diagnosis. 

As a result, a ‘Smart Vibration Monitoring System’ was developed [44].  The system combines a 

number of vibration monitoring techniques, including FFT, Short Time Fourier Transform, Wavelet, 

Cepstrum and time-domain measures (Kurtosis, RMS, peak level), to detect bearing and gear mesh 

faults. 
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2.4 HS1000 Tidal Turbine 

Data for this project was sourced from the Andritz Hydro Hammerfest HS1000 tidal turbine, a full 

commercial scale prototype tidal turbine. This turbine was operational at the European Marine Energy 

Centre (EMEC) in Orkney, Scotland, a test site used by ocean energy developers to test state of the art 

technology fully connected to the grid in a typical marine location.  

The HS1000 turbine has an open rotor, horizontal axis design, shown in Figure 2.6. The turbine body is 

held stationary in depth and direction by a three-legged support structure attached to the sea bed. The 

turbine’s blades rotate bi-directionally (both clockwise and anti-clockwise) with variable speed in 

response to upstream and downstream tidal flows. 

 

Figure 2.6 - Andritz Hydro Hammerfest HS1000 tidal turbine (courtesy of Andritz Hydro Hammerfest) 

2.4.1 HS1000 Design 

Figure 2.7 shows the internal design of the HS1000 tidal turbine. The turbine’s structure is similar to 

many modern wind turbines, where three blades drive a shaft connected to a generator through a 

gearbox, converting tidal flow into electrical power. 

This turbine contains a three-stage gearbox manufactured by David Brown Gear Systems, increasing 

rotation speed from the blades to the generator by a factor of 98.43 up to speeds exceeding 1000 RPM. 

The first stage is a planetary gear stage, shown in Figure 2.8, where the ring gear is fixed in position, 

the planet carrier is connected to the input shaft (driven by the blades) and the sun gear is connected to 

the input of the next gear stage. This planetary gear configuration allows extremely high loads from 

tidal forces to be distributed between ring, planet and sun gears, where no single gear pairing takes a 

full load [45]. The second and final stages of the gearbox are both parallel axis gear stages, further 

increasing the rotation speed at each stage. 
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The HS1000’s generator is a water-cooled 6600 V doubly-fed induction generator (DFIG), 

manufactured by ATB Morley. A DFIG contains a frequency convertor connected between the 

generator’s rotor windings and the grid supply, allowing rotor frequency to vary from the frequency of 

the grid [45]. This allows the rotation speed of the generator to be varied through torque control. 

 

Figure 2.7 - Internal design of the HS1000 tidal turbine (courtesy of Andritz Hydro Hammerfest) 

 

 

Figure 2.8 - Planetary gear stage 
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2.4.2 Turbine Operation 

The HS1000 tidal turbine was active over two separate deployment periods at the EMEC, including 

operation between December 2011 to January 2013 and August 2013 to February 2014. During each 

deployment period, the HS1000 performed continuous automated operation and experienced a range of 

tidal flows, while providing electrical energy to the UK grid. Between operating periods, the turbine 

was shut down and components were inspected by supply chain partners, where no faults to internal 

rotating components were identified. 

In operation, the HS1000 turbine was regulated through a control scheme, utilising blade pitching and 

generator torque control to manage the rotation speed of the machine and output power in response to 

different levels of tidal flow. 

2.4.2.1 HS1000 Control Scheme 

The HS1000 tidal turbine’s control scheme controls the rotation speed of the machine in relation to 

different tidal flow rates. This allows the turbine to maintain efficient levels of output power while 

operating within specified limits. Control is performed through a combination of blade pitching and 

generator torque control. 

Blade pitch control involves rotating the turbine’s blades to catch more or less of the oncoming tidal 

flow, similar to pitch control within wind turbines [45]. Increasing the angle of the blades to catch more 

of the oncoming tidal flow (the angle of attack) increases the drag against the blades. This captures more 

of the tidal force and increases loading on the machine, causing blades to rotate at a faster rate. 

Conversely, loading and rotation speed can be reduced under high tidal flow rate by decreasing the 

blades’ angle of attack and reducing drag. 

Pitch control is primarily performed to reduce the speed of the machine at high tidal flow rates to 

maintain steady levels of rated power and stop the machine operating above its specified limits [45]. 

Pitching is also performed during shutdown periods, where the blades’ angle of attack is fully decreased 

(known as feathering) to minimise loading on the machine. A mechanical brake within the turbine is 

then applied to stop any rotation. The turbine is shut down manually during periods of adverse weather 

(e.g. high winds, where waves cause excessive tidal turbulence). 

Torque control also controls the rotation speed of the machine, and is performed within the turbine’s 

doubly-fed induction generator, again similar to generator torque control within a wind turbine [45]. 

Torque is varied within this configuration of generator using a variable frequency drive connected 

between the generator’s rotor and the grid supply. The electrical frequency of the rotor’s windings is 

varied independently from the constant frequency (50 Hz) of the stator windings allowing for variation 

in generator torque. Decreasing generator torque below the torque harnessed by the turbine’s blades 

causes the rotor to accelerate, and increasing the generator torque above torque harnessed by the blades 

causes the rotor to decelerate. This is performed when the tidal flow rate is below rated value, while 
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pitch control keeps blades at a constant and most optimal position, allowing generator rotation speed to 

increase as tidal flow rate increases, capturing more power. Above rated tidal flow rates, torque control 

is used with pitch control to limit the rotation speed and reduce loading on the machine. 

The HS1000’s control scheme differs slightly between upstream and downstream tidal flows. During 

upstream tidal flow, where the tide flows across the turbine from blades to the rear of the turbine, the 

machine operates up to its rated power of 1 MW, rotating at speeds exceeding 1000 RPM within the 

generator. During downstream tidal flow however, where the direction of flow starts from the rear of 

the turbine, blades are pitched more during high flow rates to reduce the tidal loading on the machine. 

This is enforced to ensure the turbine is not lifted from its support structure. Therefore, during 

downstream flow, the maximum rotation speed of the turbine is limited to around 800 RPM and the 

turbine does not reach maximum rated power. 

2.4.3 Data Sources 

The HS1000 was fitted with a wide variety of different sensors, measuring a range of different 

operational and condition parameters during the turbine’s operation. 

Data used in this work was mostly obtained through two different systems: low frequency 

programmable logic controller (PLC) data, and high resolution accelerometer data. 

2.4.3.1 Low Frequency PLC Data 

Low frequency PLC data were recorded from a variety of sensors within the turbine for monitoring and 

control purposes. This data included numerous vibration velocity, displacement and temperature 

readings from different components, and operational data detailing the rotation speed of the machine 

and output power values. 

This data was made available from the second deployment of the HS1000, for operation between 

September 2013 and February 2014. The data were recorded at an inconsistent sampling rate, varying 

up to a maximum of 10 Hz and were accessed for this project through the VantagePoint platform. This 

platform allowed multiple data parameters to be visualised over custom time intervals. The tool offered 

no form of data analysis beyond summarising data through maximum and minimum values. The data 

were therefore exported for further analysis using additional software tools, e.g. MATLAB. 

2.4.3.2 High Resolution Accelerometer Data 

High resolution accelerometer data was recoded from a CX1 accelerometer sensor, located on the 

nacelle of the turbine adjacent to the generator. 

This sensor gave measurements of X, Y and Z axis acceleration (g) at a 2 kHz sample rate, as well as 

temperature (°C) at 1 Hz, and X and Y tilt (degrees) at 20 Hz. 
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Samples of high resolution vibration data were available for both deployment periods of the HS1000. 

Data were recorded during manually triggered sampling periods. A number of samples had been 

recorded for analysis over both deployments, detailing the vibration response during different phases of 

turbine operation. 

The accelerometer data were accessed through the Sensview platform, allowing data from each 

sampling period to be examined, where both the time and frequency domain representations of vibration 

data could be displayed. Data was exported using this tool for further analysis in additional software 

tools, e.g. MATLAB. 

2.4.3.3 Approach to Condition Monitoring for Tidal Power 

Considering the current state of the art, the role of this research has been to study how such condition 

monitoring techniques can be applied in practice, to industrial scale tidal turbine devices operating 

within real marine environments and experiencing full tidal loading, but with limited operational 

history. As previously stated, this research has focussed on the monitoring of a turbine’s internal rotating 

components (such as the gearbox, generator, shafts and bearings) using vibration data. 

This first involved an in-depth analysis of recorded condition data from the HS1000 tidal turbine in 

operation through data mining and the CRISP-DM process model [46], detailing how the response of 

an industrial scale tidal turbine changes under different loading conditions, driven by phases of the 

turbine’s control scheme. These responses were then modelled to define the normal response of the 

turbine, from which anomaly detection can be performed. 

Secondly, state of the art diagnostic modelling techniques were investigated to identify a specific fault 

mode within the turbine’s generator during operation from high resolution accelerometer data. This 

involved a comparison between traditional feature-based classification approaches and deep learning 

methods. 

Finally, state of the art prognostics techniques were studied, focussing on model-based approaches and 

how these methods can be adapted for new systems like tidal power, with limited operational history 

and previous examples of failure. 

As a result, an adaptable framework is proposed for the design of intelligent condition systems within 

new application areas, Figure 2.9. This framework is based on CRISP-DM and integrates the processes 

of all three categories of condition monitoring techniques (anomaly detection, diagnostics and 

prognostics) into a single system as more fault data becomes available. The framework takes into 

consideration the limitations of working with newly commissioned machines, and is flexible to 

accommodate the introduction of new modes, and updating of current models, as new data is recorded. 

The first column in Figure 2.9 details an initial process to be performed on condition data, identifying 

key relationships within the data and performing modelling for anomaly detection. This work is detailed 

in Chapter 3. Secondly, following the identification of fault data through anomaly detection, diagnostic 
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modelling can be performed, as in the second column in Figure 2.9, and as detailed in Chapter 4. Finally, 

if data is showing a suitable degradation trend, prognostic modelling can be performed, as detailed in 

Chapter 5. 

 

 

Figure 2.9 - Process for designing intelligent condition monitoring systems in new application areas, based on 

CRISP-DM [46] 
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Chapter 3 

3 Anomaly Detection through Data Mining 

The development and application of condition monitoring methods to new systems, with limited 

operational history and experience of faults in the field, (e.g. tidal power) can be challenging. Data 

mining, however, is a good starting point for condition monitoring within such systems. 

Data mining is the process of knowledge and pattern discovery within datasets, turning low-level data 

into more usable forms, i.e. modelling [47]. In this case, data from periods of operation where a limited 

number of faults have occurred (or none at all) within a system can be analysed through data mining 

and used to construct models of normal behaviour. Anomaly detection can then be performed using 

such models, identifying changes in the response of components’ condition parameters (such as 

vibrations, temperatures, etc.) in relation to the operation of the system, allowing faults to be detected 

at an early stage without prior experience of faults occurring in practice. 

In this work, data mining was performed by following the CRISP-DM process model [46], utilising 

datasets of low resolution data from the HS1000 tidal turbine, containing multiple operational and 

condition parameters recorded from the turbine’s gearbox, generator and high speed bearings. 

This chapter first describes data mining, and the CRISP-DM methodology. The chapter then describes 

how each stage of the CRISP-DM methodology was used within this work, detailing how data mining 

was used to identify key trends and relationships within low resolution data to link measured condition 

parameters of components (e.g. vibration, temperature, etc.) to measured operational parameters (e.g. 

rotation speed, output power, etc.). 

From here, anomaly detection modelling techniques were examined and utilised to define the normal 

behaviour of the turbine. After training, these models were tested on data from a range of operating 

conditions and were capable of identifying various anomalous events over the course of the turbine’s 

operation: including a change in the control scheme, a pitch fault, a shutdown due to high ocean waves, 

and simulated gearbox faults. However, no actual damage to the turbine’s internal components was 

inferred through this analysis on the available data. 

 

  



22 

 

3.1 Data Mining 

Data mining is the analysis of large data sets for knowledge discovery, involving the use of processing 

techniques, statistical analysis, machine learning and visualisation methods to extract patterns and 

relationships hidden within data parameters [48].  Data mining has been commonly used by banking 

and marketing firms for knowledge discovery from financial data, and also within the medical field 

applied to vast amounts of patient records for improved diagnosis and prediction [49]. 

Within this study, data mining was used to discover trends and relationships between parameters within 

low resolution datasets from the HS1000 tidal turbine.  A modelling stage then defines the expected 

response of the turbine over its typical range of operating conditions.  By comparing live turbine data 

to these models, anomaly detection is used to indicate a change in the response of the system, indicating 

the possible onset of a fault. 

3.1.1 CRISP-DM 

The CRISP-DM (Cross-Industry Standard Process for Data Mining) process model was utilised for this 

study.  This model manages the data mining process as six key stages: business understanding, data 

understanding, data preparation, modelling, evaluation, and deployment [46].  These stages are shown 

in Figure 3.1. 

 

Figure 3.1 - The CRISP-DM process model for data mining adapted from [46] 
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Each phase of the CRISP-DM process model involves the following: 

• Business Understanding – define the objectives and determine the goals of data mining 

• Data Understanding – includes exploration of data through visualisation or data analysis 

techniques to identify key patterns or relationships 

• Data Preparation – clean and organise the data before modelling 

• Modelling – define the key patterns and relationships within the data using appropriate 

modelling techniques 

• Evaluation – test the performance of models 

• Deployment – use models and knowledge gained from the data to complete the defined 

objectives. 

Alternatives to CRISP-DM include SEMMA (Sample, Explore, Modify, Model, and Access) or KDD 

(Knowledge Discovery in Databases) [47]. However, although many stages of each framework are 

similar, CRISP-DM allows for focus on understanding the data from both a business and data 

perspective. 

Each subsequent section of this chapter discusses in detail how each phase of CRISP-DM was 

performed in this work, to understand the normal operation of the HS1000 tidal turbine to form and 

evaluate anomaly detection models from low resolution condition data. 
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3.2 Business Understanding 

The first stage of the CRISP-DM methodology is ‘Business Understanding’. This stage involves initially 

defining the objectives and requirements of the work from a business standpoint. This definition is then 

used to define the data mining problem, and to determine the goals of the data mining work [46]. 

Within this work, the business requirements were to use the available condition data from the HS1000 

to construct models that can be used within an intelligent condition monitoring system, capable of 

detecting faults within the turbine at an early stage before failure. 

As discussed in chapter 2, this process would first involve performing anomaly detection, where it can 

be assumed that data from newly commissioned machinery is initially representative of normal 

behaviour. 

As a data mining problem, this would involve identifying key trends and relationships within the 

available condition data, understanding the modes of turbine operation and relating this to measured 

condition parameters. These relationships would then be modelled to define the normal condition 

response of the turbine over its operation, selecting the most appropriate modelling technique for each 

condition parameter. Anomaly detection could then be performed, identifying changes in the normal 

response from each model indicative of a change in operation or the development of a fault within the 

turbine. 

The data mining goals, developed after discussion with engineers at Andritz Hydro Hammerfest, were 

therefore defined as follows: 

1. Explore the available data and identify key links and relationships between parameters that monitor 

the condition of components (such as vibration, displacement and temperature) and parameters that 

describe the turbine’s state of operation (such as tidal flow rate, machine rotation speed and output 

power) 

2. Use properties of the data to identify distinct modes of turbine operation in relation to both 

operational and condition parameters 

3. Model the normal response of turbine components using appropriate anomaly detection techniques 

4. Identify changes in machine response and detect faulty behaviour using models of normal 

behaviour 
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3.3 Data Understanding 

Following the definition of data mining goals in the business understanding stage, the data 

understanding stage of CRISP-DM involves an exploration of the available data, discovering the 

properties of the data before the modelling stage [46]. 

In this work, the data understanding stage involved examining the available data parameters, then the 

use of data analysis techniques to complete the first two data mining goals (defined in section 3.2). 

This data analysis initially involved the use of correlation and principal component analysis to find 

relationships within the data, identifying key driving and response parameters. These parameters were 

then explored further using change point analysis, exposing operating modes that formed clusters within 

the data. This was found to be a suitable data-driven technique for modelling the stages of the turbine’s 

control scheme without prior knowledge of the system or its design. 

3.3.1 Data Parameters 

Table 3.1 and Table 3.2 list the data parameters available for this study. Datasets contained low 

resolution data recorded over periods of turbine operation between September 2013 and February 2014. 

During this period, the turbine experienced a range of tidal conditions, including spring and neap tides 

during calm and adverse weather conditions. No faults to internal rotating components were reported 

during this period. The turbine has currently been decommissioned and is awaiting further inspections. 

Parameters relating to the condition of the main internal rotating components are listed in Table 3.1, 

including vibration velocity, displacement and temperature readings for the generator, gearbox and high 

speed shaft supporting bearings. 

Table 3.2 lists parameters describing the operation of the HS1000 tidal turbine including generator 

rotation speed, output power and tidal flow rate. The tidal flow rate parameter was generated from an 

interpolated EMEC model of expected tidal height, provided by Andritz Hydro Hammerfest. This 

parameter gives an approximation of the influence of periodic tidal flow on the turbine, however does 

not effectively model the influence of tidal turbulence caused by waves, wind and other adverse weather 

conditions. Measured rotation speed and output power parameters may therefore differ slightly in 

relation to the modelled tidal flow rate. 

Figure 3.2, Figure 3.3 and Figure 3.4 show the response of these condition parameters over a typical 

tidal cycle. Above tidal flow rates of approximately 1.4 m/s the turbine is accelerated up to a rotation 

speed of around 800 RPM. Above tidal flow rates of approximately 2 m/s the turbine increases its 

rotation speed up to around 1000 RPM. As tidal flow rate decreases, the turbine decelerates back to 800 

RPM, and finally deactivates as tidal flow falls to 1.4 m/s. The level of output power increases and 

decreases in relation to both tidal flow rate and generator rotation speed. 
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Figure 3.2 - Modelled EMEC tidal flow rate over time for one tidal cycle (16th Dec 2013) 

 

Figure 3.3 - Measured generator rotor speed over one tidal cycle (16th Dec 2013) 

 

Figure 3.4 - Measured output power over one tidal cycle (16th Dec 2013) 
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Table 3.1 - Available HS1000 low resolution condition parameters 

# Sensor location Parameter Units 

1 

Generator – Non-drive end 

Vibration velocity (x-axis) mm/s 

2 Vibration velocity (y-axis) mm/s 

3 Vibration velocity (z-axis) mm/s 

4 

Generator – Drive end 

Vibration velocity (x-axis) mm/s 

5 Vibration velocity (y-axis) mm/s 

6 Vibration velocity (z-axis) mm/s 

7 

Gearbox – Output side 

Vibration velocity (x-axis) mm/s 

8 Vibration velocity (y-axis) mm/s 

9 Vibration velocity (z-axis) mm/s 

10 

High speed shaft – Fixed 

bearing 

Displacement (x-axis) mm 

11 Displacement (y-axis) mm 

12 Displacement (z-axis) mm 

13 Vibration velocity (x-axis) mm/s 

14 Vibration velocity (y-axis) mm/s 

15 Vibration velocity (z-axis) mm/s 

16 Temperature °C 

17 

High speed shaft – 

Loose/float bearing 

Displacement (x-axis) mm 

18 Displacement (y-axis) mm 

19 Vibration velocity (x-axis) mm/s 

20 Vibration velocity (y-axis) mm/s 

21 Temperature °C 

 

Table 3.2 - Available HS1000 low resolution operational parameters 

# Parameter Units 

22 Generator rotation speed RPM 

23 Output power kW 

24 Tidal flow rate (from EMEC model) m/s 
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3.3.2 Data Analysis 

Three different data analysis techniques were utilised within this study to analyse the data and identify 

suitable relationships and properties: correlation, principal component analysis and change point 

analysis. 

The theory of each data analysis technique and results of each technique applied to the available data is 

explained in detail as follows. 

3.3.2.1 Correlation 

Correlation is a measure of dependency between separate data parameters. Within data mining, 

determining metrics of correlation in a dataset allows us to discover relationships between pairs of 

variables. 

The covariance is a metric which describes how two variables change in relation to one another [50]. 

This can be calculated for two data parameters 𝒙 and 𝒚 as in (3.1), where 𝑛 is the number of sampled 

data points, and 𝑥̅ and 𝑦̅ are the mean values of 𝒙 and 𝒚 respectively. Large positive values of covariance 

between two parameters indicate an increasing linear relationship, and conversely, large negative values 

of covariance indicate a decreasing linear relationship between parameters. 

 𝑐𝑜𝑣(𝒙, 𝒚) =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

 (3.1) 

However, the range of covariance values is dependent on the range of 𝒙 and 𝒚 values. Comparing 

covariance values for datasets containing many different types of measurement (from different sensors 

and components) is therefore of limited value. Covariance values can be standardized by dividing values 

by the standard deviations of 𝒙 and 𝒚. The resultant value is known as Pearson’s correlation coefficient 

[51], denoted 𝑟𝑥𝑦  and calculated as in (3.2). Values of this coefficient range between +1 (describing an 

ideal increasing linear relationship) and -1 (describing an ideal decreasing linear relationship), where 

correlation coefficient values of zero describe two parameters having no linear association to each other. 

 𝑟𝒙𝒚 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)
2∑ (𝑦𝑖 − 𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

 (3.2) 

A correlogram is a visualisation tool that displays the correlation coefficient between each individual 

parameter within a dataset [50]. This is a useful data mining tool to reveal dependencies when exploring 

large multivariate datasets. The correlogram is a 𝑝×𝑝 matrix, where 𝑝 is the number of parameters in 

the dataset. Each row/column of this matrix corresponds to an individual data parameter. Values within 

the matrix represent the correlation coefficient between the parameters of each row/column. As 𝑟𝑥𝑦 =

𝑟𝑦𝑥 the matrix is symmetric. Visualising the matrix as a two-dimensional grid, where correlation 

coefficient values are converted to a colour scale, allows the structure of a whole dataset to be visualised, 

clearly highlighting correlations and dependencies between individual parameters. 
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An example of a correlogram is shown in Figure 3.5 for a subset of HS1000 data parameters over a 

single downstream tidal cycle, including gearbox vibrations, generator rotor speed (RPM), output power 

and tidal flow rate.  On the correlogram strong dependencies between individual parameters can be 

observed as bright and dark areas on the grid (representing strong increasing and decreasing linear 

relationships respectively). Levels of mid-grey represent little dependency between parameters. In this 

example, large positive correlations can be observed between vibration parameters, output power and 

tidal flow rate. This indicates these parameters are strongly related, e.g. as levels of output power and 

tidal flow rate increase/decrease, gearbox vibration increase/decrease accordingly. However, large 

negative correlations can be observed between rotation speed (RPM) and all other parameters. This 

indicates a strong inverse relationship between these parameters, prevalent during downstream tidal 

flows, when the turbine rotates in the opposite direction. 

 

Figure 3.5 - Example of a correlogram for a subset of HS1000 data parameters over a single downstream tidal 

cycle 

It is important to note that both covariance and Pearson’s correlation coefficient measure the linear 

relationship between two variables. Certain non-linear relationships between variables that have clear 

dependency to one another therefore may not be revealed without further analysis. 

3.3.2.2 Correlation Results 

Pearson’s correlation coefficient was calculated for every pair of data parameters, and visualised 

through a correlogram. Figure 3.6 and Figure 3.7 show correlograms for upstream and downstream tidal 

flow respectively, where parameters are labelled as in Table 3.1 and Table 3.2, p. 27. 
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Figure 3.6 - Correlogram representing correlation between multiple condition parameters for upstream tidal flow 

 

Figure 3.7 - Correlogram representing correlation between multiple condition parameters for downstream tidal 

flow 
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During upstream tidal flow, high positive correlations were observed between output power, generator 

rotation speed and tidal flow rate (parameters 22, 23 and 24 respectively). This was to be expected as 

the turbine increases its rotation speed and consequently output power in response to increasing tidal 

flow rates. High positive correlations were also observed between generator and gearbox vibration 

parameters (parameters 1 to 6 and 7 to 9 respectively). These vibration parameters were accordingly 

highly correlated to operational parameters output power, generator rotation speed and tidal flow rate 

(parameters 22, 23 and 24 respectively). 

High speed shaft fixed bearing displacement (parameters 10 to 12, in particular x-axis parameter 10), 

and high speed shaft fixed bearing vibration x-axis (parameter 13), also have high positive correlations 

with gearbox and generator vibrations (parameters 1 to 9) and operational parameters (parameters 22, 

23 and 24). Conversely, high speed shaft loose bearing displacement (parameters 17 and 18, particularly 

y-axis parameter 18) have negative correlations with generator and gearbox vibration parameters 

(parameters 1 to 9) and operation parameters (22, 23 and 24).  

During downstream tidal flow the correlation between parameters are mostly similar, with high 

correlations between generator and gearbox vibrations, and operational parameters. However, some 

changes in correlation were observed. Firstly, generator rotation speed is highly negatively correlated 

with generator and gearbox vibrations (parameters 1 to 9) and operational parameters output power and 

tidal flow rate (parameters 23 and 24). This is to be expected as generator rotation speed is measured 

both positively and negatively, dependent on the direction of rotation. 

Secondly, high speed shaft fixed bearing displacement x-axis (parameter 10) becomes highly negatively 

correlated to generator and gearbox vibrations (parameters 1 to 9), and operational parameters 

(parameters 23 and 24) during downstream tidal flow. In addition, high speed shaft loose bearing 

displacement x-axis (parameter 17) becomes positively correlated from negatively correlated to 

generator and gearbox vibrations (parameters 1 to 9), and operational parameters (parameters 23 and 

24) during downstream tidal flow. These changes in bearing displacement correlations were due to axial 

forces on the high speed shaft acting in opposing directions as tidal flow changes direction from 

upstream to downstream. 

As a result of these findings, modelling was focussed on firstly defining the relationships between 

generator, gearbox and bearing vibrations in relation to operational parameters. Bearing displacements 

were not modelled at this time due to differing responses between upstream and downstream tidal flows. 

This remains as future work. 
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3.3.2.3 Principal Component Analysis 

Examining the relationships between pairs of variables allows us to find dependencies between sets of 

two parameters, however more complex relationships may be concealed further within the data. 

Principal component analysis (PCA) [52] is a technique used to reveal these complex relationships by 

transforming data into projections along different axes. This is defined by weighted linear combinations 

of parameters, e.g. 2𝒙1 + 3𝒙2 + 𝒙3 [50]. By performing this transformation, PCA removes linear 

correlations from data and generates a set of principal components. 

Components are a list of coefficients, representing a weight for each input parameter, and an eigenvalue. 

Parameters with high weightings are the highest contributors to relationships within the data, and 

parameters with low weighting contribute the least [53].  A component’s eigenvalue is representative 

of the how well a component describes the data as a whole. 

Let 𝑿 be an 𝑛×𝑝 matrix of 𝑝 different data parameters {𝒙1, … , 𝒙𝑝} each with 𝑛 number of examples. 

The first principal component is required to have the largest possible variance in 𝐗 [53]. Therefore, let 

𝒂 be a 𝑝×1 vector of the projection’s weights resulting in the largest variance in 𝐗, where 𝑝 is the 

number of parameters in the data. The variance of the projected data along 𝒂 can be defined as in (3.3), 

where 𝐕 is the covariance matrix of 𝐗. 

 𝜎𝐚
2 = 𝒂𝑇𝐕𝒂 (3.3) 

The covariance matrix 𝐕 of 𝐗, can be calculated as in (3.4), where 𝐗 is mean-centred. 

 𝐕 = 𝐗𝑇𝐗 (3.4) 

To get the first principal component, 𝜎𝒂
2 must be maximised. To do this, a normalisation constraint is 

set upon 𝒂 vectors so that 𝒂𝑻𝒂 = 1. With this constraint in place, the quantity to be maximised becomes 

the form as shown in (3.5), where 𝜆 is a Lagrange multiplier, a variable introduced to find the partial 

derivative. 

 𝑢 = 𝒂𝑇𝐕𝒂 − 𝜆(𝒂𝑇𝒂 − 1) (3.5) 

The maximum is found by differentiating 𝑢 with respect to 𝒂 as in (3.6). 

 
𝜕𝑢

𝜕𝒂
= 2𝐕𝒂 − 2𝜆𝒂 = 0 (3.6) 

This expression can be reduced to the eigenvalue form as in (3.7) where 𝐈 is the identity matrix. The 

first principal component is therefore the eigenvector associated with the largest eigenvalue in 𝐕. 

 (𝐕 − 𝜆𝐈)𝒂 = 0 (3.7) 
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The second principal component is the orthogonal axis to the first component that has next the largest 

variance. This is therefore the eigenvector which corresponds to the second largest eigenvalue in 𝐕 [50]. 

This is repeated for all subsequent principal components, where the 𝑘th principal component is the 

eigenvector corresponding to the 𝑘th largest eigenvalue in 𝐕. 

3.3.2.4 Principal Component Analysis Results 

Principal component analysis was performed on the data following correlation analysis, allowing more 

complex structure within the data to be understood (i.e. beyond relationships between pairs of variables). 

Table 3.3 and Table 3.4 show the results of principal component analysis for upstream and downstream 

tidal flows respectively, listing the weighting of each parameter in each principal component. Both 

upstream and downstream results are very similar. 

In both cases, the first and second principal components are dominant, with eigenvalues of 1.3x105 and 

8.87x103 respectively during upstream tidal flow, and 5.03x104 and 1.51x104 respectively during 

downstream tidal flow. These components are therefore most reflective of variance within the data. 

Within these components, generator rotor speed and output power (parameters 22 and 23) are weighted 

highly. This implies that generator rotor speed and output power are most reflective of the structure of 

the data as a whole, and drive the response of other parameters. Modelled tidal flow rate (parameter 24), 

however, is not identified as a leading operational parameter using PCA. This is primarily because flow 

rate is modelled and not directly measured. Therefore, the variance of this data parameter will not reflect 

the variance of other response parameters as well as measured output power or rotation speed.  

Subsequent principal components have much lower eigenvalues, and therefore reflect less of the 

variance within the data. However, these components give strongest weightings to vibration parameters, 

firstly fixed and loose bearing x-axis vibration (parameters 13 and 19 respectively) followed by 

generator and gearbox vibrations (parameters 1 to 9).  

These results mostly agree with the results from correlation analysis, where operational parameters were 

found to form relationships with vibration parameters from the generator, gearbox and bearings. 

However, PCA has excluded tidal flow rate as a leading operational parameter. As a result, modelling 

was focussed on defining vibration parameters in relation to the operational parameters of generator 

rotation speed and output power. 
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Table 3.3 - Parameter weights in each principal component for upstream data 

(Columns correspond to principal components and rows corresponds to each parameter as in Table 3.1 and Table 3.2, p. 27. The final row gives the eigenvalues for each component.) 

1 0.8 0.4 -1.7 -242.4 315.7 180.0 -262.4 -308.0 137.2 665.9 20.6 -157.1 0.2 -19.2 -342.9 -57.4 -112.6 127.3 -84.6 -20.1 -9.0 -16.9 -0.7 0.2 

2 0.2 0.8 -5.3 20.5 24.1 22.9 -102.5 53.5 -27.9 205.4 -23.2 625.6 43.0 -50.5 -151.6 -159.9 419.5 -165.3 533.4 -61.2 36.7 66.0 9.1 0.4 

3 -0.4 2.3 28.5 271.7 528.3 -247.1 152.3 55.7 -24.0 141.6 -26.2 488.5 41.6 29.0 228.4 51.0 -56.9 198.7 -445.2 11.2 7.7 16.1 16.6 -0.3 

4 -0.2 1.8 58.3 281.1 560.2 -211.1 371.0 12.4 -1.2 -78.5 18.7 -416.2 -40.3 -28.6 -219.7 -49.5 50.9 -177.5 392.6 3.3 -5.8 -5.2 -12.4 0.4 

5 0.8 0.3 -2.3 -271.7 362.5 219.5 -229.6 -88.5 29.5 -23.4 -8.5 -57.3 3.1 57.4 662.4 192.6 -17.0 -418.0 163.1 12.0 17.3 -9.3 -3.5 -0.4 

6 1.4 -0.1 1.9 -412.5 372.6 478.3 59.6 302.3 -111.5 -442.4 -6.9 118.9 -3.2 -27.2 -279.5 -95.3 30.8 221.5 -82.3 -10.0 -14.3 4.0 2.6 0.1 

7 1.1 0.3 -12.6 500.6 72.3 316.9 -384.1 -23.6 19.8 -94.4 23.5 -198.1 11.1 -23.5 -0.2 -117.7 512.1 -14.3 -246.7 326.2 -34.1 31.4 -0.6 -3.5 

8 0.9 0.4 -9.4 531.7 -2.2 443.3 -161.7 64.2 -10.2 -15.7 -13.0 82.0 -11.8 28.8 -18.5 106.2 -466.8 56.0 191.7 -458.8 45.4 -8.4 8.3 3.1 

9 2.2 -0.3 6.5 50.1 -170.3 521.1 697.8 39.0 -15.8 364.3 10.7 -3.0 18.4 8.9 147.6 7.1 109.6 -115.3 -86.6 142.4 -0.6 9.6 -4.0 -1.5 

10 0.5 0.7 -6.0 80.4 -5.0 30.2 -79.5 96.6 -24.8 -1.5 1.7 198.7 -28.8 -34.0 -159.5 58.4 -412.8 -194.3 115.8 656.0 -177.0 -462.0 96.0 8.5 

11 0.0 0.1 9.3 13.3 -3.6 5.2 -23.7 29.9 -7.2 9.5 -4.1 39.3 -6.2 0.8 -25.1 43.0 -165.5 -38.5 50.5 153.9 -664.0 660.4 -145.6 -201.8 

12 0.1 0.2 4.6 18.0 -0.5 8.8 -36.2 27.5 -8.6 -17.2 6.2 43.6 -20.2 -19.9 -88.4 28.4 -232.9 -82.9 18.2 354.4 700.4 509.9 -216.6 37.3 

13 1.3 4.2 909.8 -6.1 -40.3 48.5 16.7 -242.3 62.9 -128.4 -12.3 100.8 14.1 -14.5 -108.5 -30.1 -17.0 -209.9 -129.8 -63.9 -7.6 -4.6 4.0 3.7 

14 0.0 0.0 0.7 -5.9 -6.1 -1.5 24.6 275.1 919.4 -33.1 -20.8 40.5 -270.6 -7.0 16.4 -33.5 13.2 -9.3 -8.8 -10.1 0.4 3.0 -0.7 0.5 

15 0.0 0.0 0.1 -1.6 3.3 -2.5 5.0 -12.8 31.9 -20.2 852.2 28.1 71.0 -477.9 102.9 -148.2 -65.6 17.4 3.8 -27.6 -8.6 2.4 0.5 0.8 

16 0.0 0.0 0.2 -1.8 -1.2 4.6 9.2 0.4 25.6 -8.3 162.0 46.8 -31.9 -79.1 -238.4 924.9 225.3 13.7 -11.5 -9.5 8.2 -1.8 -0.5 0.9 

17 0.0 0.0 -1.7 2.0 -0.3 1.1 -2.6 3.2 -0.9 2.8 -1.5 5.2 1.0 2.7 1.9 5.7 -16.2 -0.6 7.5 13.5 -166.5 104.0 -83.5 976.7 

18 0.0 -0.2 -1.6 -7.1 -2.2 -0.5 2.5 -3.1 1.4 -4.9 1.5 -24.5 -5.2 -0.3 -9.4 8.0 -35.5 -11.9 7.5 44.5 59.8 270.5 956.6 62.0 

19 -0.6 2.3 396.2 -24.8 -23.5 -72.5 -159.3 663.7 -176.7 331.8 34.0 -211.4 -25.6 27.8 199.0 55.4 39.3 315.5 178.0 78.6 21.6 -11.5 2.9 1.1 

20 0.0 0.0 1.7 -0.2 -0.1 -5.5 5.2 88.5 256.6 -27.4 -83.8 -52.9 953.9 -9.5 -18.7 44.8 -29.3 17.1 36.3 26.9 6.0 -2.0 1.0 -0.8 

21 0.0 0.0 1.1 -0.9 2.1 -2.7 3.7 -8.8 30.9 -21.5 484.6 38.2 44.5 867.4 -71.3 -33.9 16.7 -11.3 22.2 26.4 3.0 -0.9 -0.6 -1.1 

22 359.6 933.1 -5.0 -1.3 -2.3 -0.6 -0.3 -0.1 0.0 -0.6 0.0 -0.9 0.0 0.0 0.0 0.0 0.1 0.2 -0.2 -0.6 0.1 0.2 0.1 0.0 

23 933.1 -359.6 0.8 0.4 0.5 -3.3 -0.6 1.2 -0.3 0.3 0.0 0.1 0.0 0.0 -0.1 0.0 -0.2 -0.1 0.0 -0.5 0.0 0.1 0.0 0.0 

24 1.2 0.2 102.8 22.6 9.6 86.0 90.9 -446.8 126.5 -142.2 -30.6 39.0 -28.3 17.3 248.0 54.7 18.9 674.0 388.0 252.7 3.3 -14.7 -0.9 -2.4 

Eig 
1.30E5 8.87E3 7.54 0.47 0.31 0.24 0.08 0.04 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2.7E-3 8.4E-4 1.2E-4 3.3E-5 
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Table 3.4 - Parameter weights in each principal component for downstream data 

(Columns correspond to principal components and rows corresponds to each parameter as in Table 3.1 and Table 3.2, p. 27. The final row gives the eigenvalues for each component.) 

1 0.6 -0.6 -6.7 -3.0 296.0 -400.3 -363.3 49.1 34.7 -19.1 26.4 4.1 -131.5 272.7 -84.0 584.2 -141.9 329.7 -169.1 -37.5 -12.7 127.3 3.8 -9.4 

2 0.6 -0.6 -12.5 3.3 46.9 -91.1 -281.8 105.9 -18.3 -327.9 -340.0 -1.3 615.4 -298.4 70.7 271.6 99.0 -293.6 83.9 -7.6 -3.3 -158.9 -4.2 18.7 

3 1.5 -1.6 657.3 -182.5 7.5 -11.4 24.8 -65.8 8.6 59.9 -16.0 16.7 177.3 -261.5 80.1 -102.6 -179.0 484.3 -176.7 113.7 101.3 -295.7 6.4 -6.3 

4 1.4 -2.0 713.9 -149.6 -12.9 8.9 -76.8 20.7 -8.5 -36.1 -8.3 -12.7 -146.9 239.3 -74.7 83.4 163.9 -447.3 173.6 -121.1 -98.3 294.7 -6.9 5.8 

5 0.6 -0.5 -4.6 -6.2 303.6 -412.6 -371.5 49.6 32.7 39.4 136.8 -11.8 -328.6 -126.7 61.4 -387.4 86.5 -253.6 109.4 14.0 102.3 -450.8 3.3 5.0 

6 0.6 -0.3 -26.4 -13.7 175.6 -233.1 -161.0 -18.1 15.6 21.7 19.0 19.2 109.1 -396.9 120.7 -369.3 -41.9 84.7 -103.2 26.1 -135.9 725.8 0.3 -21.1 

7 1.7 0.7 23.3 -13.8 220.5 -196.1 484.4 -89.9 -36.7 -6.7 -211.1 -19.9 -222.3 -199.5 35.1 200.5 -36.8 -337.3 -464.5 344.6 -195.8 -61.3 21.8 -15.4 

8 1.4 -0.3 -12.7 -41.2 296.2 -313.3 273.0 -164.6 -51.7 -4.0 -137.9 36.0 453.4 555.3 -186.2 -351.3 13.9 49.2 68.4 54.7 -63.1 -34.0 0.6 16.5 

9 1.9 0.5 4.0 -34.8 250.5 -224.7 479.2 -63.0 -31.9 22.2 -7.0 9.1 -74.0 -284.1 79.7 220.0 100.6 106.9 463.5 -383.9 347.7 64.3 -21.8 10.5 

10 -1.4 0.5 -10.8 -24.0 24.4 -60.5 19.4 -158.9 110.3 524.2 568.2 79.5 344.0 -124.0 4.3 212.6 77.5 -166.6 -12.8 -93.3 -334.9 -108.1 -55.5 69.5 

11 0.1 -0.1 0.5 -25.8 -10.7 -8.1 -30.0 29.2 41.3 158.2 215.8 -4.1 133.4 45.0 -25.3 109.8 3.5 -140.0 129.3 639.8 603.6 172.8 225.3 29.5 

12 0.0 0.1 0.4 -17.6 22.9 -14.4 23.3 77.4 24.0 -36.7 -82.4 -40.1 -127.9 -74.3 20.7 77.6 76.6 245.5 598.9 475.1 -541.9 -42.4 88.0 7.5 

13 -0.2 -0.6 89.5 361.7 41.2 -9.8 44.4 536.4 341.7 537.9 -386.6 -68.5 42.9 28.9 -9.7 -41.1 -0.1 2.9 -8.9 -64.1 27.3 4.5 8.1 -0.9 

14 0.0 0.0 0.6 8.1 529.0 465.3 -76.4 17.1 -7.2 15.1 -51.2 699.5 -39.8 -18.6 -47.2 4.0 2.9 -7.5 11.8 25.5 7.3 -3.5 2.0 -0.2 

15 0.0 0.0 2.7 -9.9 0.0 4.9 32.5 -112.9 585.9 -218.4 53.0 2.4 -25.4 -42.9 -193.0 -10.3 694.5 186.0 -179.1 41.2 40.8 4.7 -2.4 2.7 

16 0.0 0.0 1.8 1.9 8.2 -0.4 31.0 -66.4 217.0 -57.9 8.3 73.7 21.3 282.0 924.4 19.8 56.1 -1.1 -17.4 15.9 -4.3 5.0 3.8 -0.5 

17 0.1 0.1 0.1 -2.8 0.0 4.1 1.0 20.0 -8.1 -36.8 -35.7 -5.6 -42.9 -3.2 5.2 -19.2 -17.2 23.6 -29.1 -5.4 1.2 20.0 -7.3 996.2 

18 -0.1 0.0 0.0 10.0 -1.7 1.8 3.7 -35.7 -8.0 -7.7 -8.1 7.7 3.9 -13.5 0.6 -17.5 3.9 3.0 -60.5 -214.5 -99.2 -35.3 968.0 4.9 

19 0.0 -1.6 214.6 898.9 10.0 -35.3 4.3 -255.0 -124.1 -186.7 155.6 24.4 14.0 -23.6 -0.5 8.8 1.3 22.5 25.4 49.6 -0.1 -1.8 -7.9 6.8 

20 0.0 -0.1 -0.5 -1.3 542.9 443.4 -64.9 -77.8 -10.5 8.6 64.0 -699.3 47.9 10.8 45.3 3.3 7.1 3.6 -17.1 -15.5 -2.5 1.9 -1.2 -0.3 

21 0.0 0.0 -2.1 -6.7 8.1 13.8 52.9 -156.4 673.0 -228.7 62.6 0.6 -6.1 -32.7 -134.2 -21.3 -625.4 -166.4 151.0 -41.0 -19.1 -1.9 -1.0 -0.4 

22 -551.6 834.1 3.5 0.5 1.2 -1.3 -0.2 0.1 -0.2 -1.0 -0.9 -0.1 0.2 0.1 0.0 -0.2 0.0 0.0 0.2 0.1 0.6 0.3 0.1 -0.1 

23 834.1 551.6 -0.2 1.2 -1.5 1.3 -2.2 -0.7 0.4 1.2 0.3 0.0 0.2 0.4 -0.1 -0.1 0.1 0.1 0.1 -0.1 -0.4 -0.1 0.0 -0.1 

24 1.4 0.6 49.4 17.4 100.6 -30.2 246.1 710.8 -41.6 -392.7 485.7 7.1 96.3 33.0 11.1 -47.4 -37.2 17.4 -93.0 -7.0 -70.4 -13.0 10.1 -11.8 

Eig 5.03E4 1.51E4 0.95 0.32 0.07 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 4.2E-3 3.2E-3 1.9E-4 1.4E-4 
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3.3.2.5 Change Point Analysis 

To form effective behavioural models, the key operational parameters within the data must be linked to 

the response of the turbine across a range of operating conditions. To make this connection, change 

point analysis was used, identifying points where multiple parameters changed together in time. These 

points were then used to define control modes of the turbine and clusters within the data. Here it is 

shown that this technique can be used as a method for identifying the control models of machinery 

directly from data, without prior knowledge of the system. This can be particularly useful in applications 

where the design details are unknown. 

Change point analysis is a technique used to identify points in which data parameters change notably 

over time [54]. This can be used to define step changes in time series data or detect subtle changes in 

data missed by visual inspection. Analysing the change points of multiple different parameters allows 

different modes of operation to be found within the data. Separate parameters having similar change 

points are likely to be related to one another, linked to the same modes of operation within the turbine.  

Change point analysis can be performed through calculating the cumulative sum of differences 

(CUSUM) of a data parameter from its mean value [54]. This is shown in (3.8) where 𝐶𝑖 is the CUSUM 

at time step 𝑖, 𝐶𝑖−1 is the CUSUM at the previous time step, 𝑥𝑖 is the data value at time step 𝑖 and 𝑥̅ is 

the mean of the data. Changes in the gradient of 𝐶 can be used to identify and define change points. 

 𝐶𝑖 = 𝐶𝑖−1 + (𝑥𝑖 − 𝑥̅) (3.8) 

Figure 3.8 and Figure 3.9 give examples of using CUSUM plots for detecting change points in HS1000 

rotation speed data, indicative of changes in modes of the control scheme. Figure 3.8(a) shows the data 

for a short time window during turbine shutdown, with the corresponding CUSUM plot in Figure 3.8(b). 

A positive slope on a CUSUM plot indicates the parameter’s values are above the mean value. 

Conversely, a negative slope on the CUSUM plot indicates parameter values are below the mean value. 

Here a maximum turning point on the CUSUM plot, where the gradient changes from positive to 

negative, detects the point in time where the turbine’s mode of operation changes from generating to 

idle. 

Figure 3.9 gives an example of using the CUSUM plot for detecting multiple change points in HS1000 

rotation speed during a full tidal cycle, where generator rotation speed over time is shown in Figure 

3.9(a) and the corresponding CUSUM plot is shown in Figure 3.9(b). Two turning points of the CUSUM 

plot (one maximum and one minimum) indicate change points indicating a change in control mode 

where the turbine rotation increases above 800 RPM and approaches its maximum rated value. Two 

additional change points can also be observed on the CUSUM plot (at 0.2 hours and 8.9 hours on the x-

axis), where the gradient of 𝐶 sharply changes but does not form a turning point. These points indicate 

where the turbine’s operation changes from idle to operational, and vice versa. 
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(a) Time-domain plot 

 
(b) CUSUM plot 

Figure 3.8 - Change point analysis applied to short time window of generator rotation speed, where turbine 

operation changes from operational to idle 

 
(a) Time-domain plot 

 
(b) CUSUM plot 

Figure 3.9 - Change point analysis applied to generator rotation speed over a full tidal cycle, indicating multiple 

changes in control mode 
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3.3.2.6 Change Point Analysis Results 

Change point analysis was performed on the relationship between output power and generator rotor 

speed, in order to define the influence of the turbine’s control scheme on these operational parameters. 

Figure 3.10 shows how four control modes of operation are identified using CUSUM plots and change 

point analysis. Three change points are initially detected on the turbine’s speed-power plot, as seen on 

the CUSUM plot in Figure 3.10(b). A fourth mode of operation was defined by iterating the change 

point analysis procedure to further split control mode 3, as in Figure 3.10(c). 

These modes occurred due to the following phases of turbine operation (confirmed through discussion 

with engineers): 

1. Start up and shut down 

2. Constant rotation speed as tidal flow increases (torque control) 

3. Increase in rotation speed as tidal flow approaches peak velocity 

4. Turbine rotor speed and power limitation (pitch and torque control) 

Separating these modes allowed the effects of the turbine’s control scheme to be seen across other data 

parameters and was used to help partition data for use with anomaly detection techniques. 

Figure 3.11 demonstrates how each operating mode shapes the trend of gearbox vibration against output 

power.  Changes in operating state can be clearly seen as maximum and minimum turning points in 

vibration level. Maximum vibration occurs at the output side of the gearbox at ~700 kW, where torque 

control is most active in the generator, holding the turbine’s generator at 800 RPM as tidal flow 

increases. Beyond this point, vibration levels decrease as the effect of torque control decreases. 

Vibration then begins to increase as the turbine enters control mode 4, where the rotation speed of the 

machine is limited by pitch and torque control. 

Figure 3.12 and Figure 3.13 show how overlapping clusters of data are formed in the trend of generator 

vibration against generator rotor speed during different phases of the turbine’s control scheme. The 

general trend shows vibration increasing as generator rotation speed increases, however vibration levels 

are also shown to increase in control modes 2 and 4 (Figure 3.12), where pitch and torque control are 

most prevalent in controlling and limiting the turbine’s rotation speed. These groups of data can be 

separated using calculated change points (Figure 3.13). 
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(a) Generator rotor speed against output power 

 

(b) 1st iteration CUSUM plot 

 

(c) 2nd iteration CUSUM plot 

Figure 3.10 - Control modes defined on the turbine speed-power curve through point analysis 

 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 1 Mode 2 Mode 3 

Mode 3 Mode 4 
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Figure 3.11 - Control modes on gearbox vibration (x-axis, output side) and output power relationship 

  

Mode 1 Mode 2 Mode 3 Mode 4 
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Figure 3.12 - Generator vibration (x-axis, input side) and generator rotor speed relationships control mode 

 

 

 

Figure 3.13 - Clusters of data from generator vibration (x-axis, input side) and generator rotor speed, separated by 

control mode change points  

Mode 1 Mode 2 

Mode 3 Mode 4 
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3.4 Data Preparation 

The data preparation stage of the CRISP-DM methodology involves any processes to select, collate 

and/or organise data before the modelling stage [46]. 

The first step in the data preparation stage within this work was selecting and separating data parameters 

where relationships were revealed to be most indicative of the response of the turbine at the data 

understanding stage. This included vibration data parameters (measured from the turbine’s gearbox, 

generator and high speed bearings) and generator rotation speed and output power. In addition, change 

point analysis revealed how different modes of the turbine’s control scheme influenced these 

relationships, predominantly observable across generator and gearbox vibration. 

The following relationships were therefore selected for the modelling stage: 

• Gearbox vibration against output power 

• Generator vibration against rotation speed (where data is clustered based on control mode) 

• Bearing vibration against output power 

Preparation steps here involved collating this data during tidal cycles in which the turbine was active 

and generating electricity for the grid. Data during periods in which the turbine was inactive over full 

tidal cycles were not collated for modelling. Data during periods where the turbine was partially active 

over a tidal cycle, e.g. shutdown events, were included for modelling. 

In the case of generator vibration parameters, further preparation steps were included to label data 

clusters based on the control modes defined through change point analysis. 

Finally, data was split into training and test datasets before modelling. 70% of the data was randomly 

sampled for training models, with the remaining 30% of data used for testing model performance in the 

evaluation stage. This is also known as hold-out cross-validation [55] and gives some protection against 

overfitting, where models fit closely to noise within the data, resulting in high performance against 

training data but poor performance against unseen data. 
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3.5 Modelling 

The modelling stage of CRISP-DM involves selecting and applying various modelling techniques to 

best define the data based on the data mining goals [46]. 

In this work, the modelling stage was employed to find the modelling techniques that best describe the 

data within each relationship identified in the data understanding stage for anomaly detection.  

3.5.1 Anomaly Detection Techniques 

A number of different modelling methods can be used to perform anomaly detection. Pimentel, et al 

[56], have performed a comprehensive review of state of the art of anomaly detection (also known as 

novelty detection) techniques.  Four categories of anomaly detection techniques were described as 

suitable for industrial monitoring and damage detection applications: 

1. Probabilistic 

2. Distance-based 

3. Domain-based 

4. Reconstruction-based 

Techniques in each category are described as follows, identifying suitable techniques for modelling 

gearbox, generator and bearing vibration. 

3.5.2 Probabilistic Techniques 

Probabilistic techniques estimate the underlying probability density function (PDF) of data [56].  

Thresholds are then used to define boundaries of normality within the data space, detecting anomalies 

within regions of low probability within a trained model.  Parametric techniques describe a PDF through 

a set of variables, and include mixture modelling (predominantly Gaussian mixture modelling [57]) and 

state-space modelling (e.g. Hidden Markov Modelling [58]). Non-parametric techniques define a PDF 

through a model without set variables, such as kernel density estimation (KDE) [59].  Large datasets 

are required for reliable performance of these techniques, to ensure the underlying PDF is approximated 

accurately. 

Within this work, probabilistic techniques were used to define clusters of generator vibration and 

rotation speed separated by the turbine’s control mode, as in section 3.3.2.6, p. 38.  

Parametric probabilistic anomaly detection methods fit a parametric model to data to estimate the 

underlying PDF. Within this method, the Gaussian distribution is commonly used as a model, however, 

other distributions such as the gamma, Poisson or Weibull are also used [56]. Complex distributions, 

where data does not precisely follow a pre-defined distribution, can be modelled through a mixture of 

distributions [60]. This is the principle of Gaussian mixture modelling (GMM), where multiple Gaussian 

distributions are combined to model the PDF of data [57]. 
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D. P. Filev, et al. [61] show how GMMs can be used to define data clusters representing operating 

modes of a machine from vibration data for anomaly detection. This method was then used to 

automatically detect incipient and abrupt bearing faults where vibrations caused data to lie outside of 

operating mode clusters. 

Non-parametric techniques, e.g. KDE, can be used in a similar fashion to parametric techniques, 

however, these techniques estimate the probability of data without a pre-defined parametric model [56]. 

These techniques have the potential to provide a better fit to data that have a more complex distribution 

that cannot be approximated accurately by a set function. 

Q. Chen, et al [62], use kernel density estimation to identify anomalies in a glass melter machine and 

locate faults.  A kernel density model is trained using principal component data from electrical power 

and temperature measurements. This paper shows KDE to out-perform parametric methods, showing 

that KDE is capable of detecting faults 50 minutes earlier than a normal density distribution. 

Alternatively, state-space techniques, e.g. Hidden Markov Models, model the probabilities of transitions 

between different states [56] and not the probability of data points themselves. A. J. Brown, et al [63], 

use Hidden Markov Modelling to model the normal operating response of transformers, where 

anomalies are detected through deviations from this model.  The model is trained using ultra-high 

frequency data describing partial discharge activity. This method does not directly model the data, and 

instead involves several additional processes to obtain the states for the HMM, obtained by clustering 

features from the high resolution data. 

This technique, however, may not be suitable for modelling the transitions between clusters of data in 

this study, as data clusters separated by control mode have large overlapping regions (as seen in Figure 

3.12, p. 41). 

Instead, each cluster was modelled for anomaly detection independently using both parametric and non-

parametric probabilistic techniques, namely GMM and KDE. The implementation of each technique is 

described in detail as follows. The fit of both GMM and KDE models were compared at the evaluation 

stage. 

3.5.2.1 Gaussian Mixture Modelling (GMM) 

Gaussian mixture models (GMMs) are parametric estimations of the probability density of data, where 

a complex distribution is modelled by a combination of individual Gaussian distributions [57]. 

This is commonly performed through the expectation-maximisation (EM) algorithm [64]. The EM 

algorithm involves two steps. First, the expectation (E) step calculates the probability of each individual 

Gaussian model in forming the distribution of measurements 𝒙, given a current estimation of parameters 

𝜽. Secondly, the maximisation step (M) adjusts 𝜽 to maximise the likelihood of 𝒙 within the mixture 

model. This process is repeated iteratively until a convergence is reached. 
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A multivariate Gaussian distribution can be used to estimate the probability of 𝒙 as in (3.9) where 𝜇 is 

the mean and 𝚺 is the covariance matrix of the Gaussian model respectively. This can be expanded as 

in (3.10) to describe a mixture of 𝐾 Gaussian models estimating the distribution of the same 𝒙, where 

𝜋𝑘 is a weight for each Gaussian model. 

 𝑓(𝒙|𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒
−
(𝒙−𝜇)2

2𝜎2  (3.9) 

 𝑝(𝒙) = ∑𝜋𝑘𝑓(𝒙|𝜇𝑘, 𝚺𝑘)

𝐾

𝑘=1

 (3.10) 

The parameters to be estimated in this problem are 𝜽 = {𝜋1, … , 𝜋𝑘 , 𝜇1, … , 𝜇𝐾 , 𝜎1, … , 𝜎𝐾}. Before starting 

the EM algorithm, these parameters are initialised. This can be done randomly, however more complex 

methods of parameter initialisation exist to improve the algorithm’s performance [65].  

Once 𝜽 values are initialised, the probability that the 𝑘th Gaussian model is responsible for the 

distribution of 𝒙 can be calculated as in (3.11). This is the E step of the EM algorithm. 

 𝑃̂(𝑘|𝒙) =
𝜋𝑘𝑓𝑘(𝒙; 𝜇𝑘, 𝜎𝑘)

𝑓(𝒙)
 (3.11) 

From here, the M step is performed, aiming to choose parameters which maximise a likelihood function 

of 𝒙. The log likelihood of 𝒙 given parameters 𝜽 can be calculated as in (3.12). 

 𝑙(𝒙|𝜽) = ln 𝑝(𝒙|𝜽) =∑ln {∑𝜋𝑘𝑓(𝑥𝑖|𝜇𝑘 , 𝚺𝑘)

𝐾

𝑘=1

}

𝑛

𝑖=1

 (3.12) 

Parameters in 𝜽 that maximise the log likelihood of data can be estimated as in (3.13), (3.14) and (3.15) 

over 𝑛 data points in 𝒙 [50]. 

 𝜋̂𝑘 =
1

𝑛
∑𝑃̂(𝑘|𝑥𝑖)

𝑛

𝑖=1

 (3.13) 

 𝑢̂𝑘 =
1

𝑛𝜋̂𝑘
∑𝑃̂(𝑘|𝑥𝑖)𝑥𝑖

𝑛

𝑖=1

 (3.14) 

 𝜎̂𝑘 =
1

𝑛𝜋̂𝑘
∑𝑃̂(𝑘|𝑥𝑖)(𝑥𝑖 − 𝑢̂𝑘)

2

𝑛

𝑖=1

 (3.15) 

This is an iterative process, first using (3.11) to estimate 𝑃̂(𝑘|𝒙) from random 𝜽 values, then updating 

𝜽 values using (3.13), (3.14) and (3.15). The process is stopped when some level of convergence is 

reached, i.e. the model parameters no longer change after each iteration. 

Once an estimate of the data’s PDF is achieved through a Gaussian model, an anomaly threshold can 

be set. This threshold value 𝑇 is typically set as a value of probability, where if the probability of test 

point 𝑎 is below the threshold value, as in (3.16), it is classified as an anomaly.  

 𝑝(𝑎) ≤ 𝑇 (3.16) 
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Figure 3.14 shows a Gaussian mixture model defining the PDF of a data cluster of the HS1000’s 

generator vibration and rotor speed in control mode 3, for 𝑘 = 5. Here the mixture model has 

approximated the complex distribution of this data cluster through the combination of five individual 

Gaussians. Contour lines represent outwardly decreasing levels of probability, where data in the centre 

of the cluster is distributed more densely than data around the edge of the cluster. 

 

Figure 3.14 - Gaussian mixture model defining the PDF a data cluster between generator vibration and rotation 

speed, where contour lines indicate outwardly decreasing levels of probability 

3.5.2.2 Kernel Density Estimation (KDE) 

Kernel density estimation (KDE) [59] is a technique similar to Gaussian mixture modelling, where the 

PDF of data is estimated. However, this method is non-parametric and does not fit a pre-defined model 

(e.g. Gaussian) to define the PDF of the data as a whole. Instead, the underlying PDF of the data is 

estimated through the summation of kernel functions centred at each individual data point.  

This process is expressed as in (3.17), where 𝑛 is the size of data 𝒙, 𝐾 is a kernel function and ℎ is a 

smoothing parameter known as the bandwidth.  

 𝑃̂ℎ(𝒙) =
1

𝑛ℎ
∑𝐾 (

𝒙 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

 (3.17) 

The bandwidth parameter allows the kernel function to be scaled [66]. For example, when a Normal 

distribution is chosen as the kernel function, increasing the bandwidth parameter will decrease each 

kernel function’s amplitude, but increase its variance. Choosing small values of ℎ will provide a close 

fit to the data, however, choosing larger values of ℎ spreads each kernel function and smooths the 

density estimate. 

A common method of bandwidth selection is through the ‘rule of thumb’ method: a bandwidth that 

minimises the mean integrated squared error for Gaussian distributions [67]. This is expressed in (3.18) 

where 𝜎̂ is the standard deviation of the sampled data points. 
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 ℎ ≈ 1.06𝜎̂𝑛−
1
5 (3.18) 

As with GMMs, once a KDE model has been trained to estimate the data’s PDF an anomaly threshold 

𝑇 can be set as a low value of probability, as in (3.16). 

Figure 3.15 shows a KDE model defining the PDF of a data cluster between the HS1000’s generator 

vibration and rotor speed in control mode 3. The bandwidth parameter ℎ was automatically selected 

using the ‘rule of thumb’ method. In comparison with the GMM (Figure 3.14) the result is similar, 

however, the KDE model provides a tighter fit to data around lower density regions at the edges of the 

cluster. Where a probability threshold is set to define a boundary around the cluster, the KDE method 

may therefore allow for a more accurate anomaly detection model. 

 

Figure 3.15 - KDE defining the PDF a data cluster between generator vibration and rotation speed, where contour 

lines indicate outwardly decreasing levels of probability 

Both GMM and KDE models were tested in more detail at the evaluation stage, reported in section 3.6, 

comparing the GMM models with different 𝑘 values and KDE models through the log likelihood (3.12) 

of data points from each model. 

3.5.3 Distance-based Techniques 

Distance-based techniques are equivalent to probabilistic PDF estimation, but use a distance metric 

rather than probability thresholds to identify anomalies within trained models [56].  Within this 

category, methods include clustering (such as 𝑘-means clustering [68]) and nearest neighbour (such as 

𝑘-nearest neighbours [69]). 

As with probabilistic anomaly detection techniques, distance-based techniques were most suitable for 

modelling data clusters in generator vibration at each control mode. The implementation of 𝑘-means 

clustering and 𝑘-nearest neighbour methods for modelling this data in comparison to probabilistic 

techniques is explained in detail as follows. 
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3.5.3.1 𝒌-means Clustering 

𝑘-means clustering is a technique that assigns data points to one of a number of 𝑘 different clusters, 

where 𝑘 is pre-defined. Clusters are defined by their centroids, the clusters’ central positions. 

The k-means algorithm, also called Lloyd’s algorithm [68] is an iterative process. Centroid values are 

first randomly initialised (although other initialisation methods exist [70]). The distances between each 

data point and each centroid value are then calculated. This distance can be calculated for each cluster 

using the Euclidean distance (3.19), where 𝐗 is an 𝑁×𝑝 dimensional set of data points and 𝒄𝑘 is a 1×𝑝 

vector describing the centroids of each dimension 𝑝 in cluster 𝑘. Each data point in 𝐗 can then be 

assigned to the cluster with the closest centroid. 

 𝒅(𝐗, 𝒄𝑘) = √∑(𝒙𝑖 − c𝑘𝑖)
2

𝑝

𝑖=1

 (3.19) 

Once all data points have been assigned a cluster, the average of data points in each cluster in calculated. 

These averages are then assigned as the new centroid values for each 𝑘 cluster. This process is repeated 

until the centroid values no longer change. 

This technique can be used in unsupervised classification tasks, where 𝑘 clusters are learned from 

unlabelled datasets. However, this technique can also be adapted for anomaly detection, where 

anomalies may be detected if they lie beyond a certain distance from the cluster centroids. 

M. Lima, et al [71] use 𝑘-means clustering to detect anomalies within network traffic data.  A baseline 

was generated using network traffic normal behaviour profiles, and anomalies were detected using the 

Euclidean distance between a sample and the cluster centroid. 

Figure 3.16 shows 𝑘-means applied to a data cluster between the HS1000’s generator vibration and 

rotor speed in control mode 3, where the centroid value of this cluster has been calculated using the 

Euclidean distance (3.19) and setting 𝑘 = 1 for a single cluster. 

An anomaly threshold can be defined using this method as a distance value, yet, each dimension is 

measured in a different unit. A possible solution is to scale each different unit to a common range. This 

was achieved through Z-score standardisation [72], scaling each dimension to have zero mean and a 

standard deviation of 1. This is calculated for 𝐗 as in (3.20), where 𝒙𝑝 is an 𝑁×1 vector for each 𝑝 

dimension in 𝐗, 𝑥̅𝑝 is the mean of 𝒙𝑝 and 𝜎𝑝 is the standard deviation of 𝑥𝑝. 

 𝒁𝒑 =
𝒙𝑝 − 𝑥̅𝑝

𝜎𝑝
 (3.20) 

However, Figure 3.16 also shows data is not evenly distributed around the centroid in each dimension. 

Therefore, distance-based thresholds may not be as effective in comparison to probabilistic anomaly 

detection methods, where complex distributions can be modelled more accurately. In addition, this 
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technique can be computationally expensive for large datasets [56], prevalent in this application where 

several months of operational data are used for training and testing models. 

 

Figure 3.16 - k-means defining centroid of a data cluster between generator vibration and rotation speed, where 

anomalies are detected lying above certain distance from the centroid 

3.5.3.2 𝒌-nearest Neighbours 

𝑘-nearest neighbours (𝑘-NN) is a non-parametric distance-based technique, where data points can be 

assigned to different clusters by selecting the majority cluster of the 𝑘 training data points closest to the 

test data [69]. 

This technique can be used in anomaly detection, where an anomaly threshold can be applied to the 

mean distance between a data point and its 𝑘 closest data points. As with 𝑘-means clustering, the 

Euclidean distance can be used as a distance metric. First, this distance is calculated in 𝑘-NN between 

a test data point 𝒙test and all data points 𝐗 in the model as in (3.21), where 𝒙test is a 1×𝑝 dimensional 

vector and 𝐗 is an 𝑁×𝑝 matrix. This can be used to identify the 𝑘 data points closest to the test data 

point. From here, the mean distance of the 𝑘 nearest data points can be calculated. 

 𝒅(𝒙test, 𝐗) = √∑(𝒙test𝑖 − 𝐗𝑖)
2

𝑝

𝑖=1

 (3.21) 

Figure 3.17 shows an example of this process for detecting anomalies compared to a data cluster 

between the HS1000’s generator vibration and rotor speed in control mode 3. An anomaly is detected 

if the mean Euclidean distance from its nearest 𝑘 neighbouring data points (in this case 𝑘 = 4) exceeds 

a pre-defined threshold. As with 𝑘-means, dimensions were scaled using Z-score standardisation [72], 

scaling each dimension to have zero mean and a standard deviation of 1, as in (3.20). 

This technique is an improvement on 𝑘-means in this application, as data is not required to be evenly 

distributed. However, this technique also has its drawbacks. Firstly, as with 𝑘-means, it can be extremely 
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computationally expensive for large datasets [56]. In addition, all data points within the model must be 

stored to apply the model to test data points for anomaly detection, as opposed to simply storing the 

centroid values as in 𝑘-means. More crucially for this application however, is that this technique does 

not generalise as well as probabilistic techniques and does not perform well where data is diversely 

distributed and arbitrarily shaped [56]. 

 

Figure 3.17 - Detecting an anomalous data point from a cluster of data points through k nearest neighbours using 

Euclidean distance with 𝑘 = 4 

Overall, probabilistic anomaly detection techniques are more suitable than distance-based techniques 

within this application in defining generator vibration data clusters. Probabilistic techniques can define 

complex distributions of data more effectively than 𝑘-means, and are less vulnerable to noise in the 

training data than 𝑘-NN. In addition, both techniques can be very computationally expensive, important 

in this case as training data describes the operation of the HS1000 over a period of several months. 

Distance-based techniques were therefore not considered further in the evaluation stage. 

  



51 

 

3.5.4 Reconstruction-based Techniques 

Reconstruction-based techniques differ from probabilistic and distance-based approaches, detecting 

anomalies through models that aim to directly predict the values of data parameters [56]. This is also 

known as regression, where models estimate a function describing expected response of a system from 

a model trained on historical system data.  A reconstruction error is then used to detect anomalies, 

describing the difference between test data points and the modelled system response. Reconstruction-

based techniques include curve fitting [73] and neural networks (such as the multi-layer perceptron 

[74]). 

In curve fitting, a model or function with parameters 𝜽 is fitted to best approximate an output data 

parameter 𝒚 from input data parameters 𝒙 as 𝒚 = 𝑓(𝒙, 𝜽). This technique can be effective where data 

follows a clear function linked to the underlying response of the machine. 

For example, R. Bi, et al. [75], use curve fitting to define the speed-power curve of a wind turbine’s 

doubly-fed induction generator under normal conditions to detect faults from SCADA data. The results 

show a clearly interpretable model, where the curve function clearly expresses operating modes of the 

turbine. Faults causing anomalous behaviour can then be observed in comparison to this model and used 

to automatically trigger alarms.  

Neural networks, however, aim to approximate output data from input data without a predefined 

parametric function. Instead, functions are learned through architectures connecting many neurons 

together, each applying a non-linear function to weighted combinations of input parameters [74]. This 

technique can be useful for defining complex non-linear responses that do not clearly follow a 

parametric function. 

For example, M. Schlechtingen, et al [76], compare neural network approaches to simple linear curve 

fitting methods for anomaly detection of generator and gearbox faults within wind turbines. Linear curve 

fitting methods were found to be effective in defining the responses of data parameters that were clearly 

correlated (in this case generator coil temperatures), however, neural network approaches were found 

to be effective in defining more complex relationships where data weren’t clearly correlated (in this 

case bearing temperatures). 

Within this work, reconstruction-based anomaly detection techniques were most suitable in defining the 

response of gearbox vibration parameters again output power. Here, a clear relationship could be 

observed between data parameters, related to the underlying response of the turbine and its control 

scheme (identified in section 3.3.2.6, p. 38). Curve fitting approaches were therefore preferred in this 

case compared to neural network approaches, where the parameters of a function can be more easily 

interpreted and related to the dynamics of the system. The implementation of this technique through 

least squares regression to tune the parameters of a function to best fit data is described as follows. 
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3.5.4.1 Curve Fitting 

Curve fitting involves fitting a pre-defined parametric model (or curve) to input data to estimate or 

predict output responses. This is described in (3.22), where 𝑓 is a function of input data 𝑥𝑖 at point 𝑖 and 

model parameters 𝜽, and 𝑦̂𝑖 is the estimated response at point 𝑖. 

 𝑦̂𝑖 = 𝑓(𝑥𝑖 , 𝜽) (3.22) 

A technique used to solve this problem is least squares regression [77].  This technique is used to 

estimate the parameters 𝜽 of a model to best fit observed data points, reducing the sum of squared errors 

of residuals. The residuals 𝑟𝑖 (representing the prediction error) are the difference between observed 

responses 𝑦𝑖  and predicted responses 𝑦̂𝑖 for every 𝑖th data point (3.23). The summed square error of 

residuals 𝑆 is defined in (3.24) where 𝑛 is the total number of observed data points. 

 𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜽) (3.23) 

 𝑆 =∑𝑟𝑖
2

𝑛

𝑖=1

 (3.24) 

𝑆 is minimised by finding parameter values which set its gradient to zero. This is expressed as in (3.25) 

for models with sets of 𝑚 different parameters in . 

 
𝜕𝑆

𝜕𝜃𝑗
= 2∑𝑟𝑖

𝜕𝑟𝑖
𝜕𝜃𝑗 

𝑚

𝑗=1

= 2∑𝑟𝑖
𝜕𝑓(𝑥𝑖 , 𝜽)

𝜕𝜃𝑗  
=

𝑚

𝑗=1

0 (3.25) 

Linear models, consisting of a linear combination of parameters, can be expressed in matrix form (3.26), 

where 𝑿 is an 𝑛×𝑚 matrix for the model and 𝜺 is a 𝑛×1 vector of errors. 

 𝒚 = 𝑿𝜽 + 𝜺 (3.26) 

From this notation, the least squares problem can be solved as in (3.27) to give an estimate of the 

model’s parameters 𝜽̂ [78].  

 𝜽̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 (3.27) 

Conventional least squares regression methods assume errors are random and Normally distributed, 

with zero mean and a constant variance [77]. However, the method can be adapted to accommodate 

changes in variance across input parameters. This is known as weighted least squares regression and 

introduces scaling parameters (weights) 𝑤𝑖  to the error estimate 𝑆 as in (3.28). 

 𝑆 =∑𝑤𝑖(𝑟𝑖
2)

𝑛

𝑖=1

 (3.28) 
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Weight values control how much influence each observed data point 𝑦𝑖  has on the fitting process, 

transforming the variance of responses to a constant value. A higher quality data point (with less 

variance) will therefore have more influence on the fit than lower quality data points (with higher 

variance). Weights can be calculated as in (3.29) for 𝑛 data points where 𝑦̅ is the mean of the output 

data parameter. 

 𝑤𝑖 = (
1

𝑛
∑(𝑦𝑘 − 𝑦̅)

2

𝑛

𝑘=1

)

−1

 (3.29) 

Introducing weights to the error estimate changes the least squares solution in (3.27) to (3.30), where 𝒘 

is the diagonal elements of weight matrix 𝑾. 

 𝜽̂ = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒚 (3.30) 

The least squares method must be adapted for non-linear models, where such models can be given in 

the matrix form as in (3.31).  

 𝒚 = 𝑓(𝑿, 𝜽) + 𝜺 (3.31) 

There is no closed-form solution to estimate parameters 𝜽̂ to solve (3.25) for non-linear models. Non-

linear least square algorithms therefore tune each parameter 𝜃𝑗 iteratively to minimize 𝑆, as in (3.32) 

where 𝑘 is the current step and Δ𝜃𝑗 is the step size. Examples of such techniques include the trust-region 

[79] and Levenberg-Marquardt [80] algorithms. 

 𝜃𝑗
𝑘+1 = 𝜃𝑗

𝑘 + Δ𝜃𝑗 (3.32) 

3.5.5 Domain-based Techniques 

Domain-based techniques create an anomaly boundary from the structure of training data [56].  The 

location of this boundary is determined using only data closest to the boundary, and does not rely on 

the properties of the data distribution as a whole. 

This category of anomaly detection technique was used in this work to define the response of high speed 

bearing vibrations against output power. The relationships between these parameters could be observed 

to follow a trend only across maximum levels of vibration, where peaks occurred at different values of 

output power. Domain-based anomaly detection techniques were therefore most suitable in this case in 

comparison to probabilistic, distance-based or reconstruction based, as only the data across maximum 

levels of vibration form this trend.  

Techniques within this category include support vector machines (SVM), where anomaly boundaries 

are set to define the structure of data based on parametric functions [81]. However, an alternative 
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technique, referred to in this work as ‘envelope fitting’, was used to define the response of bearing 

vibrations against output power. These methods are described in more detail as follows. 

3.5.5.1 One Class Support Vector Machines (SVMs) 

Support vector machines (SVMs) are commonly used as a data classification method, where a 

hyperplane is defined to separate data classes in multidimensional space from a labelled dataset [82]. 

This hyperplane is defined to maximize the distance between the hyperplane and the nearest data point 

(the margin), giving optimum separation between classes, Figure 3.18. The support vectors are the data 

points closest to the hyperplane, and define the boundaries between classes. The hyperplane of SVMs 

is natively linear, but can be made non-linear through the ‘kernel trick’: representing input data in a 

higher dimensional space through a kernel function [83]. Classification SVMs are described in more 

detail in chapter 4. 

 

Figure 3.18 - A linear support vector machine for binary classification 

Classification SVMs can be adapted for anomaly detection through one-class SVMs [81]. This 

adaptation defines a novelty boundary corresponding to a kernel to separate data from the origin of the 

high dimensional kernel space. In this method, a fixed percentage of the data is required to be defined 

as anomalous before training the classifier. 

A. Purarjomandlangrudi, et al [84], use an SVM to detect anomalies within bearings of a wind turbine.  

Kurtosis and non-Gaussianity score parameters detailing statistical properties of vibration data were 

recorded from a bearing test rig and used to train a one-class SVM.  Anomalies from various bearing 

faults, including inner race, outer race and ball faults, were distinguished from normal behaviour using 

this technique. 

Figure 3.19 (a) and (b) shows a one-class SVM trained to fit an anomaly boundary on bearing vibration 

data against output power for polynomial and kernel functions respectively, with 0.1% of the data 

defined as anomalous. 

It can be seen that although this technique defines a region separating the majority of data points from 

a fraction of data points lying furthest from the centre, it does not fit closely to levels of vibration varying 
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over the range of output power, particularly the peak of vibration about 1000 kW. Changing the 

percentage of anomalous data points had little effect on changing the shape of each boundary for this 

data. 

 
(a) Polynomial kernel function 

 
(a) Gaussian kernel function 

Figure 3.19 - One-class SVM with different kernel functions defining anomaly boundary for fix bearing vibration 

(X-axis) against output power 

3.5.5.2 Envelope Fitting 

Due to the limitations of SVM domain-based anomaly detection, an alternative approach was taken to 

define an anomaly boundary for high speed bearing vibration. Within this work, this approach is referred 

to as ‘envelope fitting’, where an anomaly boundary was defined by fitting a parametric curve over the 

maximum values of bearing vibration against output power. 

Firstly, vibration parameters are sorted by increasing output power. The envelope of the vibration 

response is represented through (𝒙env, 𝒚env) by sampling maximum values of vibration at discrete steps 

of output power. The step size was set to the highest resolution of output power measurement, in this 
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case 1 kW. However, this step size could be increased (for example to 5, 10, 50 kW, etc.) resulting in a 

smoother, but less accurate, approximation of the maximum vibration envelope.  

Finally, curve fitting was then applied to the sampled envelope data points, fitting a parametric model 

𝑓(𝒙env, 𝜽) to define the maximum boundary of vibration across the profile. This is implemented using 

least squares regression (as in section 3.5.4.1, p. 52).  

Figure 3.20 describes this process for fix bearing vibration (X-axis) trended against output power. By 

concentrating on only defining the maximum levels of vibration, this method provides a much closer fit 

to data in contrast with one-class SVM models (Figure 3.19). 

Anomaly detection is then performed by using a trained envelope model for each vibration parameter, 

where points lying above the anomaly boundary, or beyond a threshold set at distances in relation to the 

anomaly boundary, are considered anomalous. 

 

  
 (a) Step 1: Vibration parameter sorted by increasing output power. 

 
(b) Step 2: Maximum vibration values sampled at each step of output power. 

 
(c) Step 3: 𝑛 order function fitted across maximum values 

Figure 3.20 - Example of the envelope fitting process for fix bearing vibration (x-axis) 

(𝒙𝒆𝒏𝒗, 𝒚𝒆𝒏𝒗) 

𝒚ෝ𝒆𝒏𝒗
= 𝑓(𝒙 , 𝜽) 
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3.6 Evaluation 

The evaluation stage of CRISP-DM involves reviewing how models achieved through the data mining 

process comply with the objectives set in the business understanding stage [46]. At a low level, this may 

involve evaluating the performance of each model in completing the business objectives. However, at 

a higher level, this may involve reviewing the full data mining process and redefining the business or 

data mining objectives should this process reveal important business issues that were not originally 

considered [46].  

In this work, the evaluation stage involved a low level assessment of the performance of each model in 

defining the normal response of the turbine over each relationship. This involved using metrics to 

measure the fit of each model to test data and changing parameters of each model where necessary to 

improve each model’s performance. Finally, anomaly thresholds were applied to each model before 

deployment. 

Firstly, curve fitting was used to model the relationship between gearbox vibration parameters and 

output power. Different functions were trained and tested to best define this relationship, with anomaly 

thresholds set based on the models’ reconstruction errors. 

Secondly, the clusters of data between generator vibrations and generator rotor speed (revealed through 

change point analysis) were modelled using probability-based anomaly detection techniques. Both 

Gaussian mixture modelling (GMM) and kernel density estimation (KDE) were compared, where KDE 

was found to best model the data. Anomaly thresholds were then set based on a level of probability 

describing normal operation. 

Finally, envelope fitting (a domain-based technique) was used to define the response of bearing 

vibration parameters to output power. A number of functions were evaluated to best fit these envelopes 

and define a boundary of normal behaviour. Anomaly thresholds were set based on these boundaries. 
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3.6.1 Gearbox Vibration 

Data analysis revealed a relationship between gearbox vibration and output power, where all data points 

followed an underlying function, with local maximum and minimum turning points reflective of 

different modes of the control scheme (section 3.3.2.6, Figure 3.11, p. 40). 

Maximum vibration occurs in control mode 2, where the difference between torque at the turbine’s input 

and generator is at its highest, as turbine rotation speed is held fixed at 800 RPM as tidal flow rate 

increases. Beyond this point, gearbox vibration decreases as the different in torque decreases, where the 

control scheme allows generator rotation speed to increase with tidal flow rate. Vibration then begins 

to increase once more when the turbine’s rotation speed is further limited at 1000 RPM at high tidal 

flow rates. 

Curve fitting was used as the modelling technique in this case. This is a reconstruction-based anomaly 

detection technique, where a parametric model was fitted to data (𝒙, 𝒚) to model a function 𝒚 = 𝑓(𝒙, 𝜽). 

This was performed through weighted least squares regression (section 3.5.4.1, p. 52), where parameters 

𝜽 of a model were tuned to best fit the data. 

A number of parametric functions were first trained and tested to best define the data, including 

Gaussian and polynomial functions of varying orders, and a piecewise linear model. Once functions that 

best fit the data were found for each vibration parameter, anomaly thresholds were applied to the 

prediction error from test data, where bounds of acceptable deviation from each model were set from 

estimations of the prediction errors’ probability density function (PDF). 

3.6.1.1 Model Selection 

Models were first trained to best fit the normal vibration response of the gearbox from historical data 

from the HS1000, from a period of operation between September 2013 and February 2014. 70% of the 

data were randomly sampled for training, with the remaining 30% used for testing. Separate models 

were used to define vibration over the X, Y and Z axes. 

A number of different types of functions were tested including Gaussian and polynomial functions of 

different orders, as well as a piecewise linear fit within each control scheme mode as defined in section 

3.3.2.6, p. 38. Some examples are shown in Figure 3.21. An 𝑛th order Gaussian function is shown in 

(3.33), where the parameters of the model are 𝜽 = {𝑎1, … , 𝑎𝑛 , 𝑏1, … 𝑏𝑛 , 𝑐1, … 𝑐𝑛}. An 𝑛th order 

polynomial function is shown in (3.34), where the parameters of the model are 𝜽 = {𝑎0, … , 𝑎𝑛}. A linear 

model is given by (3.34) where 𝑛 = 1. 

 𝑦 =∑(𝑎𝑖𝑒
−(𝑎−

𝑏𝑖
𝑐𝑖
)
2

)

𝑛

𝑖=1

 (3.33) 

 𝑦 =∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

 (3.34) 
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The fit of each function to test data was compared using the root mean squared error (RMSE) and R2 

values. The RMSE is calculated for 𝑛 data points as in (3.35), where 𝑦𝑖  is the measured response and 

𝑦̂𝑖 is the modelled response at point 𝑖. The R2 value is calculated as in (3.36), where 𝑦̅ is the mean 

measured response. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (3.35) 

 𝑅2 =
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛
𝑖=1

∑ (𝑦̂𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

 (3.36) 

Table 3.5 shows the values of these metrics calculated for the test data and each model. In each case 

Gaussian models were found to best fit the data, where a 3rd order Gaussian was best reflective of X-

axis vibration and 6th order Gaussians were best reflective of both Y-axis and Z-axis gearbox vibration. 

 

(a) 3rd order Gaussian               (b) 6th order polynomial                (c) Piecewise linear 

Figure 3.21 - Curve fitting using different functions 

Table 3.5 - Goodness of fit metrics for gearbox vibration model test errors 

Function Order 

X-axis Y-axis Z-axis 

RMSE R2 RMSE R2 RMSE R2 

Gaussian 3rd 0.242 0.878 0.263 0.849 0.241 0.908 

 4th 0.248 0.872 0.255 0.858 0.242 0.907 

 5th 0.243 0.878 0.263 0.849 0.242 0.907 

 6th 0.243 0.877 0.251 0.862 0.237 0.911 

Polynomial 3rd 0.262 0.857 0.277 0.832 0.287 0.869 

 4th 0.261 0.858 0.276 0.834 0.273 0.882 

 5th 0.260 0.859 0.276 0.834 0.271 0.883 

 6th 0.260 0.859 0.267 0.844 0.248 0.902 

Piecewise Linear ---- 0.250 0.870 0.265 0.845 0.260 0.892 
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3.6.1.2 Anomaly Thresholds 

The distribution of the prediction error under healthy turbine conditions was used to set fault thresholds. 

Prediction errors exceeding these thresholds would indicate a meaningful change in the vibration 

response of the turbine’s gearbox. 

Kernel density estimation was used to estimate the distribution of prediction errors, 𝑟𝑖 calculated as in 

(3.23), p. 52, generated from healthy turbine data. This process estimates the underlying PDF of data 

from limited observed points. An estimated PDF is calculated through the summation of kernel 

functions at each observed data point [59]. 

Thresholds were applied to each kernel density estimate based on the work described in [85]. A lower 

limit, 𝐿(𝑘), and upper limit, 𝑈(𝑘), are applied to each estimated distribution, 𝑘, as in (3.37) and (3.38), 

where 𝑚𝑜(𝑘) is the mode of the distribution, 𝜎(𝑘) is the standard deviation of the distribution and 𝐴 is 

a tunable domain-specific free parameter. 

 𝐿(𝑘) =  𝑚𝑜(𝑘) − 𝐴𝜎(𝑘) (3.37) 

 𝑈(𝑘) =  𝑚𝑜(𝑘) + 𝐴𝜎(𝑘) (3.38) 

Faults within the gearbox resulting in an increase in measured vibration will increase the prediction 

error from the model. The 𝐴 parameter is therefore chosen to set limits which describe acceptable 

deviation from each model, beyond which a fault is likely to have occurred. 

In order to reduce alarm responses due to single point vibration anomalies, prediction errors 𝑟𝑖 were 

averaged per minute using a moving average filter (3.39), where 𝑁 is the filter window size, before 

being compared to the thresholds. 

 𝑚𝑖 =
1

𝑁
∑ 𝑟𝑘

𝑖+(
𝑁+1
2
)

𝑘=𝑖−(
𝑁−1
2
)

 (3.39) 

Figure 3.22 shows the kernel density estimate for the prediction errors for the X-axis gearbox vibration 

model, where anomaly thresholds have been set as in (3.37) and (3.38). Similarly, threshold values were 

set for Y-axis and Z-axis models. Table 3.6 summarises these results. 
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Figure 3.22 - Thresholds of expected deviation applied to kernel density estimation of model prediction error 

Table 3.6 - Anomaly thresholds for gearbox vibration model prediction errors 

Model 𝑳(𝒌) (mm/s) 𝑼(𝒌) (mm/s) 

X-axis -0.75 0.75 

Y-axis -0.80 0.80 

Z-axis -0.78 0.78 
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3.6.2 Generator Vibration 

Data analysis revealed a relationship between generator vibration parameters and operational 

parameters generator rotor speed and output power. Through defining phases of the turbine’s control 

scheme, clusters of data were identified and separated in the relationship between generator vibration 

and generator rotor speed (section 3.3.2.6, Figure 3.12 and Figure 3.13, p. 41). 

Probabilistic-based anomaly detection techniques (section 3.5.2, p. 43) were used to model these 

clusters of data driven by the turbine’s control scheme, where boundaries around groups of data points 

can be defined through an estimation of the data’s underlying probability density function (PDF). 

Two probability-based anomaly detection techniques were compared at the evaluation stage: Gaussian 

mixture modelling (GMM) and kernel density estimation (KDE), finding KDE to be most suitable. 

Anomaly thresholds were then applied to KDE models using each density estimate’s 99% confidence 

interval. 

3.6.2.1 Gaussian Mixture Modelling and Kernel Density Estimation 

Two probability-based anomaly detection techniques were tested to define clusters of generator 

vibration and generator rotor speed data, formed at each mode of the turbine’s operating scheme. 

Firstly, Gaussian mixture modelling was tested. This technique approximates the PDF of data by fitting 

𝐾 multi-dimensional Gaussian functions to data. This was performed through the Expectation-

Maximisation algorithm, as described in section 3.5.2.1, p. 44. 

Secondly, kernel density estimation was tested. This technique aims to more accurately estimate the 

PDF of data through the summation of individual kernel functions at each data point, described in 

section 3.5.2.2, p. 46, adapting an implementation by Botev, et al. [86]. 

The effectiveness of both techniques were evaluated through measurement of the log likelihood for test 

data in each model, calculated as in (3.12), p. 45, where higher values of log likelihood indicated a 

closer fit to the data. Table 3.7 shows these results, for GMM models with differing 𝑘 values and for 

KDE models. 

These results show that KDE returns the highest log likelihood values for each parameter and control 

mode. This indicates that KDE models provide a closer fit to the data in each cluster as data points are 

modelled with higher probability. This can also be observed in Figure 3.23 and Figure 3.24, where the 

contours of KDE models fit closer around data clusters in comparison to GMM models. In addition, the 

outermost contours of probability are lower in GMM models compared to KDE models., showing data 

points have higher levels of probability in these models. 

As a result, KDE was chosen to model the response of generator vibration against generator rotor speed 

in each mode of the turbine’s control scheme. 
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Table 3.7 - Log likelihood for GMM and KDE generator vibration models 

Generator 

side 

Vibration 

axis 

Control 

mode 

GMM 

KDE 

𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓 

Input 

X-axis 

1 3.31 6.05 6.11 6.16 6.20 6.52 

2 10.8 11.2 11.2 11.3 11.3 11.5 

3 8.23 8.27 8.3 8.3 8.3 9.17 

4 7.1 7.3 7.36 7.37 7.37 7.42 

Y-axis 

1 2.93 4.18 5.46 5.48 5.77 5.82 

2 10.4 10.7 10.7 10.7 10.7 10.7 

3 8.47 8.59 8.59 8.6 8.6 8.93 

4 7.44 7.69 7.75 7.78 7.79 7.81 

Z-axis 

1 2.51 4.58 4.73 4.74 4.85 5.00 

2 9.37 9.71 9.73 9.73 9.75 9.80 

3 7.86 8.29 8.35 8.36 8.37 8.53 

4 8.02 8.45 8.52 8.55 8.60 8.64 

Rear 

X-axis 

1 2.36 4.4 4.56 4.56 4.81 4.85 

2 9.45 9.81 9.81 9.82 9.82 9.84 

3 7.93 8.19 8.21 8.22 8.22 8.22 

4 8.04 8.34 8.47 8.50 8.54 8.57 

Y-axis 

1 2.91 3.44 5.69 5.77 5.75 6.37 

2 10.7 11.0 11.0 11.0 11.0 11.4 

3 8.99 9.02 9.05 9.05 9.06 9.90 

4 8.45 8.69 8.76 8.81 8.82 9.22 

Z-axis 

1 2.71 4.37 5.36 5.40 5.42 5.74 

2 10.3 10.5 10.6 10.7 10.7 10.7 

3 8.5 8.62 8.62 8.63 8.63 9.01 

4 7.48 7.73 7.79 7.82 7.84 7.86 
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Figure 3.23 - Gaussian mixture modelling (where 𝐾 = 5) applied to control mode clusters of generator vibration 

(X-axis, input side) against generator rotor speed 

(Contour lines indicate outwardly decreasing levels of probability) 

 

 

Figure 3.24 - Kernel density estimation applied to control mode clusters of generator vibration (X-axis, input 

side) against generator rotor speed 

(Contour lines indicate outwardly decreasing levels of probability) 

 

  

Mode 1 Mode 2 

Mode 3 Mode 4 

Mode 1 Mode 2 

Mode 3 Mode 4 
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3.6.2.2 Anomaly Thresholds 

Anomaly thresholds were set using each KDE model, where an outer probability value of  𝑇 was selected 

to define a region of normality around each cluster of data, as in (3.16), p. 45. Data points with modelled 

probability values above this threshold would be defined as normal responses, and conversely, data 

points with modelled probability values below this threshold would be defined as anomalous. 

Threshold values 𝑇 were set as the 99% confidence interval (CI) of the KDE model’s estimated 

distribution. These values are detailed in Table 3.8 for vibration parameters in each control mode.  

Table 3.8 - 99% CI threshold values 𝑇 for each generator vibration parameter KDE model 

Generator side Vibration Axis Control mode 𝑻 

Input 

X-axis 

1 1.14x10-4 

2 5.52x10-4 

3 2.28x10-4 

4 1.60x10-4 

Y-axis 

1 6.16x10-5 

2 3.98x10-4 

3 6.03x10-4 

4 1.68x10-4 

Z-axis 

1 1.05x10-4 

2 1.76x10-4 

3 2.08x10-4 

4 1.33x10-4 

Rear 

X-axis 

1 7.37x10-5 

2 1.81x10-4 

3 2.36x10-4 

4 1.38x10-4 

Y-axis 

1 1.01x10-4 

2 5.77x10-4 

3 1.86x10-4 

4 2.39x10-4 

Z-axis 

1 8.16x10-5 

2 3.97x10-4 

3 6.31x10-4 

4 1.70x10-4 
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3.6.3 Bearing Vibration 

Data analysis revealed relationships between high speed bearing vibrations and the operational 

parameters generator rotor speed and output power. Closer examination of these relationships revealed 

that this data did not follow a relationship where 𝒚 = 𝑓(𝒙, 𝜽), but varied continuously between zero and 

maximum values dependent on the rotation speed or output power of the turbine. This demonstrated a 

trend across each relationship’s envelope, where peaks in the data’s variance occurred at different levels 

of generator rotor speed and particularly output power. 

Bearing vibration parameters were defined through a process referred to as envelope fitting (section 

3.5.5.2, p. 55), where a curve was fitted to the maximum values of vibration sampled across the range 

of output power to give a model 𝑓(𝑥, 𝜽) where 𝑓 is a parametric function with parameters 𝜽 𝑥 is output 

power. 

For these models, evaluation involved testing the accuracy of different parametric functions for each 

vibration parameter. Anomaly thresholds were then applied based on distances from the envelope 

model. 

3.6.3.1 Model Selection 

Models were trained using 70% of the available data, randomly sampled, and tested using the remaining 

30%.  A number of different functions were tested to find the best fit to the envelope of each vibration 

parameter against output power. These included Gaussian and polynomial functions of varying orders 

((3.33) and (3.34), p. 58), to find which is most suitable for defining a series of peaks observed across 

each envelope, Figure 3.25. 

RMSE and R2 metrics ((3.35) and (3.36), p. 59) were used to assess how well each trained function 

modelled the test data, where functions with the lowest RMSE value and R2 value closest to 1 are best 

fits. 

Table 3.9 and Table 3.10 detail these results for fix and loose bearing vibration parameters respectively. 

Higher order Gaussian and polynomial functions were found to best fit fix bearing vibration parameters, 

reflective of the number of peaks across the relationship. Conversely, lower order Gaussian functions 

were found to best fit loose bearing vibration parameters, where a lower number of peaks formed across 

each relationship. 

  



67 

 

 

(a) 6th order Gaussian function 

 

(b) 6th order polynomial function 

Figure 3.25 – Envelope fitting on fix bearing vibration (X-axis) using different functions 
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Table 3.9 - Goodness of fit metrics for fix bearing vibration model test errors 

Function Order 

Fix Bearing 

(X-axis) 

Fix Bearing 

(Y-axis) 

Fix Bearing 

(Z-axis) 

RMSE R2 RMSE R2 RMSE R2 

Gaussian 

3rd 0.2356 0.7965 0.2786 0.6797 0.1520 0.8057 

4th 0.2238 0.8212 0.2530 0.7428 0.1728 0.7553 

5th 0.2287 0.8181 0.2408 0.7443 0.1525 0.8156 

6th 0.2231 0.8316 0.2949 0.6689 0.1520 0.8195 

Polynomial 

3rd 0.2783 0.7038 0.3139 0.5759 0.2403 0.4931 

4th 0.2466 0.7694 0.2639 0.7026 0.2405 0.4964 

5th 0.2447 0.7747 0.2564 0.7218 0.2331 0.5310 

6th 0.2280 0.8061 0.2351 0.7679 0.1819 0.7169 

 

Table 3.10 - Goodness of fit metrics for loose bearing vibration model test errors 

Function Order 

Loose Bearing 

(X-axis) 

Loose Bearing 

(Y-axis) 

RMSE R2 RMSE R2 

Gaussian 

3rd 0.1835 0.8741 0.1816 0.7671 

4th 0.1759 0.8873 0.2056 0.7091 

5th 0.1925 0.8684 0.1937 0.7486 

6th 0.1765 0.8739 0.1990 0.7421 

Polynomial 

3rd 0.2777 0.6990 0.2950 0.3589 

4th 0.2758 0.7056 0.2883 0.3929 

5th 0.2601 0.7403 0.2751 0.4517 

6th 0.2120 0.8290 0.2207 0.6500 
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3.6.3.2 Anomaly Thresholds 

Thresholds were selected using a similar process to section 3.6.1.2, p, 60, based on the work in [85], 

where anomaly thresholds were applied based on the PDF of prediction errors 𝒓. In this case however, 

the prediction error was the difference between each model and sampled envelope values 69. In addition, 

only an upper threshold 𝑈(𝑘) was applied, identifying anomalies lying above a certain distance from 

the bound. This allowed for some deviation from each model, reducing false alarm rates due to model 

fitting errors, noise and single point anomalies not reflective of an actual change in response within the 

system. 

 𝒓 = 𝒚env − 𝑓(𝒙, 𝜽) (3.40) 

Figure 3.26 illustrates this process, where the PDF of prediction errors 𝒓 is estimated through kernel 

density estimation [59] and 𝑈(𝑘) is calculated as in (3.38), p. 60. 

Table 3.11 lists the calculated upper threshold values 𝑈(𝑘) for each vibration parameter. 

Table 3.11 - Upper threshold values 𝑈(𝑘) for each bearing vibration model 

Component Vibration Axis 𝑼(𝒌) (mm/s) 

Fix bearing 

X-axis 0.59 

Y-axis 0.68 

Z-axis 0.42 

Loose bearing 
X-axis 0.62 

Y-axis 0.50 

 

 

 

Figure 3.26 - Thresholds applied to kernel density estimation of model prediction error 
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3.7 Deployment 

The final stage of the CRISP-DM methodology is deployment, where models are used in operation. At 

this stage, the knowledge gained and models constructed from data mining must be presented in a way 

that is useful to the user [46]. 

In this case, models are used to detect changes in the response of the turbine from normal behaviour, 

indicating a fault within the turbine to be examined by the operator. 

This section details how each anomaly detection model constructed in this work can be used in 

operation. Each model was tested on the available operational data from the HS1000 to detect anomalies 

within this dataset. Anomalies detected by each model were examined in detail, indicating how an 

operator could determine the cause of anomalous behaviour from the data. 

3.7.1 Gearbox Vibration 

Gearbox vibration models were tested on their ability to identify anomalies under both healthy and 

simulated fault conditions. 

Under normal conditions, models were able to detect an anomaly representative of a change in the 

turbine’s control scheme. The models were also capable of identifying simulated faults representing a 

gear tooth crack and gear misalignment. Analysis of the prediction error in each case indicated how 

operators can use this modelling technique to interpret and distinguish between these different 

anomalous behaviours. 

3.7.1.1 Fault Simulation 

Data utilised for this study were recorded over a period of normal turbine operation, where no known 

examples of mechanical faults were present within the dataset. Therefore, to test the response of each 

model under fault conditions, data were altered to simulate the onset of a fault within the gearbox. 

The effect of gearbox faults on vibration signatures are well known, with different failure modes 

producing specific changes in measured dynamics of vibration (a detailed analysis of gearbox failure 

modes and their effect on vibration is provided by [87]). In this study, two categories of fault were 

simulated: a cracked or broken gear tooth and gear misalignment. Fault signals 𝑦fault(𝑡) were generated 

by adding simulated fault signatures 𝐹(𝑡) to measured vibration signals 𝑦(𝑡) as in (3.41), where 𝜖(𝑡) is 

Gaussian white noise. 

 𝑦fault(𝑡) = 𝑦(𝑡) + 𝐹(𝑡) + 𝜖(𝑡) (3.41) 

A cracked or broken gear tooth produces vibration impacts as the gear tooth comes into contact with 

the pinion. This produces a non-stationary vibration signature, as a series of periodic spikes or impulses 

occurring at the gear rotation frequency, 𝑓gear. Mohammed, et al., use simulated vibration signals to 
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show that as a gear tooth crack grows, the amplitude of vibration spikes increase [88]. This fault signal 

was simulated as in Figure 3.27, where vibration spikes are added to the vibration signal at periods of 

Δ =
1

𝑓gear
. 

Gear misalignment produces a stationary fault signature through an increase in vibration at harmonics 

of the gear mesh frequency, 𝑓mesh, containing sidebands of the gear rotation frequency, 𝑓gear, due to 

amplitude modulation [87]. This was simulated as in (3.42), giving 𝑁 harmonics of gear mesh frequency 

with sidebands at ±𝑓gear, where 𝐴𝑖 and 𝐵𝑖  are the amplitudes of gear mesh and sideband components 

respectively. Figure 3.28 shows the fault signature for the first 3 harmonics of gear mesh frequency. 

 
𝐹(𝑡) = ∑𝐴𝑖 sin 2𝜋𝑖𝑓mesh𝑡 + 𝐵𝑖 sin 2𝜋𝑖(𝑓mesh − 𝑓gear)𝑡

𝑁

𝑖=1

+ 𝐵𝑖 sin 2𝜋𝑖(𝑓mesh + 𝑓gear) 𝑡 

(3.42) 

 

 

Figure 3.27 - Simulated gear tooth crack fault vibration signature 

 

Figure 3.28 - Simulated gear misalignment fault vibration signature 
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3.7.1.2 Results 

Each gearbox vibration model was evaluated under both normal and faulty conditions. Normal 

conditions were reflected through data recorded from the HS1000 turbine operating over a period from 

between September 2013 to February 2014. Faulty conditions were reflected through simulated fault 

data, as described above. 

Firstly, Figure 3.29 shows the averaged prediction errors for X-axis gearbox vibration from the available 

operational data. Prediction errors were observed to cross the upper anomaly threshold during a single 

tidal cycle. This reveals a period of operation during which the pitch and torque control scheme was 

altered briefly and does not represent a fault within the machine. The previous control scheme was 

restored shortly after the introduction of the alternative, and the prediction error returned to its previous 

range of values. 

 

Figure 3.29 - Prediction error of healthy gearbox behaviour, with a change in control system identified 

The response of the gearbox vibration model from each machine condition over a single tidal cycle, 

including normal behaviour, alternative pitch/torque control scheme, simulated gear tooth crack and 

simulated gear misalignment, are shown in Figure 3.30 to Figure 3.33 respectively. Each figure shows 

the gearbox vibration model, the prediction error over time and the PDF of the prediction error. These 

plots can be inspected by operators to understand why the anomalous behaviour has been detected. 
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(a)       (b)          (c) 

Figure 3.30 - Normal response (a) measured vibration against model, (b) prediction error over time and (c) 

prediction error PDF 

 
(a)       (b)          (c) 

Figure 3.31 - Control scheme change (a) measured vibration against model, (b) prediction error over time and (c) 

prediction error PDF 

 
(a)       (b)          (c) 

Figure 3.32 - Simulated gear tooth crack (a) measured vibration against model, (b) prediction error over time and 

(c) prediction error PDF 

 
(a)       (b)          (c) 

Figure 3.33 - Simulated gear misalignment (a) measured vibration against model, (b) prediction error over time 

and (c) prediction error PDF 
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Figure 3.30 shows the vibration model and prediction errors during normal machine conditions. 

Vibration values follow the trained model closely, with prediction errors remaining within the 

thresholds of normal behaviour. The PDF of the prediction error is symmetrical around zero. 

Figure 3.31 shows the vibration model and prediction errors during the pitch/torque control scheme 

change identified in Figure 3.29. The effect of the control scheme on the response of gearbox vibration 

is discussed in section 3.3.2.6, p. 38, where changes in control mode cause maxima and minima across 

the relationship of gearbox vibration and output power. Here, a change in the control scheme has caused 

peak vibration to change from around 700 kW to 800 kW, and the subsequent minima to shift from 

around 900 kW closer to 1000 kW. This therefore causes levels of vibration to increase above expected 

levels as the turbine approaches rated power, causing anomalies during this period of the tidal cycle. 

However, the shape of the relationship remains the same, Figure 3.31(a), and the prediction error 

decreases to normal levels mid tidal cycle, Figure 3.31(b), as rotation speed and output power increase. 

This would indicate to an operator that the anomaly is related to an operational change and not due to a 

mechanical gearbox fault. 

Figure 3.32 shows the vibration and prediction errors during a simulated gear tooth fault, where periodic 

impacts were added to the vibration signal at the gear rotation frequency as in (3.40). In this case, 

maxima and minima of the relationship remain, however levels of vibration increase across the 

relationship, Figure 3.32(a). This causes prediction errors to increase above the upper threshold 

consistently in time over the tidal cycle, Figure 3.32(b). The maximum value in the PDF remains at 

zero, however the PDF becomes positively skewed as levels of vibration increase. These would indicate 

to the operator that anomalies are related to component wear or a mechanical fault within the gearbox.  

Finally, Figure 3.33 shows the vibration and prediction errors during simulated gear imbalance, 

simulated as in (3.42) by adding harmonics of gear mesh frequency components with sidebands of the 

gear rotation frequency to vibration signals. This fault causes increases in vibration and prediction errors 

similar to the gear tooth crack example, as the fault causes vibration to increase over a range of output 

power values, Figure 3.33(a) and (b). The PDF plot, Figure 3.33(c), also differs between faults, showing 

increased variance and a peak value shifted above zero for misalignment. These factors also indicate to 

an operator that anomalies are related to a mechanical fault within the gearbox and not an operational 

change. 
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3.7.2 Generator Vibration 

The deployment of models for each generator vibration parameter and each control mode was tested 

using data from normal operating conditions, measured during a period of HS1000 turbine operation 

from September 2013 to February 2014. 

In this case, generator vibration models detected an anomaly caused by a non-mechanical fault from the 

pitch controller. 

3.7.2.1 Results 

Figure 3.34 shows the predicted probability 𝑃̂(𝒙) for each data point in each control mode cluster for 

the X-axis of the input side generator vibration. An anomaly was detected as probability values crossing 

below the anomaly threshold during one tidal cycle, in control modes 3 and 4. Similar results were 

observed across all generator vibration parameters. 

This anomaly occurred during a tidal cycle where the turbine experienced a non-mechanical fault with 

the blade pitch controller system. Figure 3.35 and Figure 3.36 explore this anomaly in more detail, 

showing the generator rotor speed and generator vibration (X-axis input side) over time respectively.  

In Figure 3.35, the turbine changes from a non-braking idle state (of rotation speeds around 100 RPM) 

to an operational state at approximately 14:50, accelerating to rotation speeds around 800 RPM. 

However, after approximately 7 minutes in operation, the turbine does not accelerate to rated values and 

instead rapidly decelerates to rotation speeds of around 300 RPM. Consultation with engineers at 

Andritz Hydro Hammerfest revealed this behaviour occurred due to a fault in the pitch controller. 

The moment of the vibration anomaly can be seen in Figure 3.36 where a large spike in vibration can 

be observed before the deceleration, as the turbine begins to transition to control modes 3 and 4. 

Vibration levels around this spike indicate the moment the fault becomes active, as pitch control is 

activated during these control modes, to limit the rotation speed of the machine to rated values as tidal 

flow increases (pitch control is discussed in detail in chapter 2). Following the activation of the fault, 

the turbine rapidly decelerates to a new state and vibration levels decrease to levels reflective of the 

generator rotating at 300 RPM. 

This example shows the effectiveness of this modelling technique, as vibration models were able to 

correctly detect a faulty change in behaviour. In addition, by modelling data from each control mode 

separately, the source of this anomaly was able to be examined in more detail, as modes of operation 

are indicative of different control methods, e.g. torque or pitch control. 
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     (a) Mode 1     (b) Mode 2 

 

     (a) Mode 3     (b) Mode 4 

Figure 3.34 - Estimated 𝑝(𝑥) over time for generator vibration (X-axis, input side) in each control mode, where 

the dashed line indicates the probability threshold 𝑇 

 

 

Figure 3.35 - Generator rotor speed over time during anomaly 

 

Figure 3.36 - Generator vibration (X-axis, input side) over time during anomaly 
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3.7.3 Bearing Vibration 

The deployment of models for each bearing vibration parameter was also tested using data from normal 

operating conditions, measured during a period of HS1000 turbine operation from September 2013 to 

February 2014. 

In this case, models detected an anomaly during shutdown caused by turbulent weather conditions, but 

not representative of faulty behaviour. 

3.7.3.1 Results 

Figure 3.37(a) to (e) show the response of each model over the period of the dataset, detailing the 

prediction error of bearing vibration data points from each corresponding envelope model. In each case, 

anomalies are detected above thresholds, as calculated in section 3.6.3.2, p. 69, indicated by a dashed 

line on each plot. 

One anomalous response was detected within the dataset, from the loose bearing Y-axis vibration model 

during a single tidal cycle. Consultation with engineers at Andritz Hydro Hammerfest indicated this 

anomaly was triggered during a period of adverse weather, where high ocean waves triggered an 

unscheduled shutdown mid cycle. 

Figure 3.38, Figure 3.39 and Figure 3.40 examine this anomalous response in greater detail. Figure 3.38 

shows the measured data and model during the tidal cycle where the anomaly was detected, where a 

small number of anomalous data points can be observed at low output power of around 30 kW. This 

indicates the anomalies occurred during a turbine start-up or shutdown. 

Figure 3.39 and Figure 3.40 show the prediction error of data points from the model and generator rotor 

speed over time during the anomaly respectively. A spike in vibration can be observed in Figure 3.39, 

triggering the anomaly. This occurs during the shutdown itself, as the turbine rapidly decelerates from 

around 1000 RPM to an idle state. This high spike in vibration behaviour can be expected due to high 

loading from an emergency shutdown, particularly during turbulent conditions, and is not linked to a 

fault within the turbine. 
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(a) Fix bearing X-axis 

 
(b) Fix bearing Z-axis 

 
(c) Fix bearing Z-axis 

 
(d) Loose bearing X-axis 

 
(e) Loose bearing Y-axis 

Figure 3.37 – Prediction error between data and envelope mode, where dashed line indicates anomaly threshold 

 

Anomaly 
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Figure 3.38 - Bearing vibration model (loose bearing Y-axis) during anomaly 

 

 

 
Figure 3.39 - Vibration data prediction error from model boundary (loose bearing Y-axis) over time during 

anomaly 

 

 
Figure 3.40 -Generator rotor speed over time during anomaly 
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3.8 Discussion 

In this chapter, the CRISP-DM methodology was utilised to explore HS1000 tidal turbine condition 

data and construct models of normal behaviour for anomaly detection. 

Within this process, data analysis is used to reveal key trends and relationships within a dataset, 

indicative of the normal response of the turbine over different modes of operation. These results are 

then modelled using anomaly detection techniques, where faults can be identified as the response of the 

system changes away from the modelled normal behaviour. 

In this work, models of normal behaviour were defined for the HS1000 turbine’s gearbox, generator 

and high speed bearings. Here it was found that different types of modelling technique were found to 

be most effective for different forms of vibration relationship observed across the turbine. In general, 

reconstruction based techniques (such as curve fitting) are most suitable for modelling gearbox 

vibrations, where vibration varies directly in response to rotation speed and output power. Here, the 

choice of function should be dependent on how the amplitudes of vibration vary in the response to the 

turbine’s control scheme. Probabilistic techniques are best suited to modelling generator vibration, 

where data tends to cluster into areas dependent on the control mode of the turbine. Finally, envelope 

fitting techniques are most suitable in modelling bearing vibration, where data varies continuously 

between zero and a maximum amplitude dependent on the output power or rotation speed of the 

machine. 

Such models were then trained and applied to past operational data from the turbine. These models were 

able to detect anomalous events from a change in control scheme, a non-mechanical pitch controller 

fault and a mid-cycle shutdown due to bad weather. These events however were not linked to 

mechanical damage of the turbine’s components requiring additional inspections or maintenance. 

Although this framework is successful in detecting anomalous behaviour, data from each event requires 

further analysis by turbine operators to determine the cause of an anomaly. This is reflected Figure 3.41, 

where the CRISP-DM methodology has been adapted for newly commissioned machinery with no past 

fault cases. Here, the process can return to the data understanding stage if an anomaly is detected during 

deployment, in order to investigate the root cause of the anomaly. 

This process is best suited in new applications where there are few active assets with limited operational 

history, allowing operators to learn from the normal behaviour of machinery and automatically detect 

faults as they occur in operation. The remaining chapters in this thesis however examine how this 

methodology can be expanded for diagnostic and prognostic modelling as the time in operational of 

devices increase, allowing an intelligent condition monitoring system to learn from faults and failures 

of equipment after they are detected. 
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Figure 3.41 - CRISP-DM methodology for anomaly detection during initial deployment period 
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Chapter 4 

4 Diagnostic Modelling 

Following anomaly detection, diagnostics is the location and classification of a fault once it has been 

detected within the system. This provides more detailed information, allowing operators to more 

effectively plan maintenance. 

Diagnostics can be performed by experienced engineers with thorough knowledge of the system and its 

response to failure through manual inspection of sensor data. However, the aim of an intelligent 

condition monitoring system is to perform diagnoses at an early stage from sensor data automatically, 

before faults develop and propagate through machinery. 

In order to train diagnostic models, fault data from the system is required. Many current diagnostic 

techniques use feature-based methods [29], where multiple signal processing techniques are used to 

isolate and extract specific fault signals from data before a classification stage. However, deep learning, 

a recently advancing field of machine learning, offers an alternative to feature-based methods, where 

features are extracted from data automatically using multi-layered neural network architectures [89]. 

This chapter details the fault diagnostic process for rotating machines. First, common failure modes of 

drive train components (gearboxes, bearings and generators) are described. Secondly, different feature-

based diagnostic methods are detailed. Deep learning for rotating machine diagnostics is then described. 

Two case studies are presented, describing a feature-based method and deep learning method for 

diagnosing a generator fault on the HS1000 and multiple faults from a gearbox test rig. Finally, the 

integration of diagnostic models into intelligent condition monitoring systems for new applications is 

discussed. 
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4.1 Rotating Machine Fault Modes and Vibration Characteristics 

Vibration is one of the most effective diagnostic indicators for faults within rotating equipment [90]. 

One reason vibration is effective is because of the immediacy with which warnings of failure are 

provided. Vibration typically responds earlier than other fault indicators such as oil quality, acoustic 

emissions or temperature, up to several months before complete failure, as shown in Figure 4.1 [20]. 

In addition to giving an early indication of faults, vibration data also provides enough information for 

different rotating machine faults to be distinguished from one another [90], making it a suitable 

measurement for constructing diagnostic models.  

Vibration can be measured in three separate quantities: displacement, velocity and acceleration. The 

choice of vibration measurement usually relates to frequency range, with displacement most suitable 

for low frequency vibration (up to 10s of Hz range), velocity most suitable for mid frequency vibration 

(up to 100s of Hz) and acceleration for high frequency vibration (up to kHz range) [91]. High resolution 

accelerometer sensors are therefore most suitable for rotating machine diagnostics, giving the maximum 

range of frequencies to infer diagnostic information from (e.g. from low frequency rotations to high 

frequency natural frequencies). 

 

Figure 4.1 - Response of fault indicators as fault progresses over time, adapted from [20] 

This section describes how vibration data can be used to diagnose faults within gearboxes, bearings and 

generators, detailing the characteristic vibration responses specific to fault modes from each component. 
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4.1.1 Gearbox Fault Modes 

Gearboxes are used within turbines to translate slow rotational speeds of the rotor to fast rotational 

speeds within the generator and dissipate high loading from the driving input force (e.g. tidal flow) [45]. 

This is typically achieved through a number of stages to reduce the loading applied to individual gears. 

The HS1000 tidal turbine contains three gear stages: one planetary gear stage followed by two parallel 

axis gear stages. 

Gearbox faults can either occur due to damage to gears or misalignment between gear stages [92] [93]. 

This includes: 

• Gear tooth crack/breakage – spalling, cracks or breakages within single gear teeth caused by 

excessive loading or loss of lubrication 

• Gear tooth wear – gear teeth are worn more evenly across the surface of the teeth due to 

aging, excessive loading or lack of lubrication 

• Gear misalignment – gear stages are not aligned in parallel causing radial movement 

4.1.1.1 Characteristic Frequencies 

Gearbox faults can be identified from vibration data in the frequency spectrum through a series of 

characteristic frequency values, commonly gear rotation, mesh and hunting tooth frequencies, as well 

as accompanying harmonics and sidebands [92]. 

The gear mesh frequency [94] for parallel axis gear stages is shown in (4.1), where 𝑛gear and 𝑛pinion 

are the number of teeth in the gear and pinion respectively and 𝑓gear and 𝑓pinion are the rotation 

frequencies of the gear and pinion respectively. 

 𝑓mesh = 𝑛gear𝑓gear = 𝑛pinion𝑓pinion (4.1) 

Characteristic frequencies within planetary gearbox stages [94] are more complex, shown in equations 

(4.2) to (4.5), where 𝑁P, 𝑁R and 𝑁S are the number of teeth in the planet, ring and sun gears respectively, 

𝑀P is the number of planet gears and 𝑓s is the rotation frequency of the sun gear. 

 𝑓planet =
(𝑁P − 𝑁R)𝑁s
(𝑁R + 𝑁S)𝑁P

𝑓S (4.2) 

 𝑓carrier =
𝑁S

𝑁R + 𝑁S
𝑓S (4.3) 

 𝑓planet−pass =
𝑁S𝑀P

𝑁R +𝑁S
+ 𝑓S (4.4) 

 𝑓planet−mesh =
𝑁R𝑁S
𝑁R + 𝑁S

𝑓S (4.5) 

The hunting tooth frequency [92] occurs when two damaged teeth mesh together. This value is usually 

of a very low frequency for gear stages as meshing of two specific teeth happens only once in every few 
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cycles. This frequency is calculated for each gear stage as in (4.6), where 𝑛gear and 𝑛pinion are the 

number of teeth in the gear and pinion respectively, 𝑓gear is the rotation frequency of the gear and 𝐺 is 

the highest common factor between the number of gear teeth and pinion teeth. 

 𝑓hunting tooth =
𝑓gear𝐺

𝑛gear𝑛pinion
 (4.6) 

4.1.1.2 Amplitude Modulation and Sidebands 

Amplitude modulation is a clear indicator of faults within rotating equipment [92], particularly for gear 

damage. This occurs when the amplitude of a particular frequency component 𝑓c oscillates at a lower 

frequency 𝑓a, Figure 4.2. This effect introduces additional components within the frequency spectrum 

at either side of the frequency component occurring at ± the frequency of the amplitude oscillation, 

known as sidebands, Figure 4.3. 

 

Figure 4.2 - Amplitude modulation frequency components 

 

Figure 4.3 - Amplitude modulation in the frequency spectrum 

Amplitude modulation commonly causes the amplitude of frequency components to oscillate with the 

rotation speed, causing sidebands of ±𝑓R, the rotation frequency, around characteristic frequencies. The 

effect of amplitude modulation increases as damage/wear increases, increasing the amplitude of 

sidebands but not necessarily the amplitude at the characteristic frequency [92]. Monitoring the 

amplitude of sidebands as well as amplitudes of characteristic frequencies is therefore useful for 

identifying and diagnosing the severity of gear faults. 
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4.1.1.3 Normal Response 

A healthy gearbox, containing no damage or significant wear, will contain characteristic frequencies at 

a low amplitude, as shown in Figure 4.4. Vibration components can be observed at the gear and pinion 

rotation frequencies (𝑓gear and 𝑓pinion) which may also produce lower amplitude harmonics. Gear mesh 

frequencies (𝑓mesh) may also be observed, with sidebands at ±𝑓gear. 

 

Figure 4.4 - Frequency response of a healthy gearbox, adapted from [92] 

4.1.1.4 Gear Tooth Wear 

Gear tooth wear will increase the effect of amplitude modulation of the gear mesh, increasing sidebands 

around 𝑓mesh at ±𝑓gear [92]. However, the amplitude of 𝑓mesh may or may not increase significantly as 

sidebands increase. The natural frequency of the gear (𝑓natural), related to the structural resonance of 

the gear, may also appear on the frequency spectrum, also containing sidebands at ±𝑓gear. Here, a natural 

frequency is excited as the impact forces of individual gear teeth meshes increase. The exact value of 

the natural gear frequency may not be known before a fault occurs. These effects are shown in Figure 

4.5. 

 

Figure 4.5 - Frequency response of a gearbox with tooth wear, adapted from [92] 
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4.1.1.5 Cracked or Broken Tooth 

An individual cracked or broken tooth will cause an increase in amplitude at the gear rotation frequency, 

𝑓gear [92], Figure 4.6. This may also be observed in the raw time-based signal, where spikes in vibration 

occur at intervals of Δ =
1

𝑓gear
, Figure 4.7. 

 

 

Figure 4.6 - Frequency response of broken or cracked tooth, adapted from [92] 

 

Figure 4.7 - Time-based signal of broken or cracked tooth with periodic impacts at Δ 
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4.1.1.6 Gear Misalignment 

Misalignment within gear stages will cause harmonics of the gear mesh frequency to appear in the 

spectrum, with particular high amplitudes at 2x or 3x 𝑓mesh [92]. Harmonics may also be accompanied 

by sidebands at ±𝑓gear. This effect is shown in Figure 4.8. 

 

Figure 4.8 - Frequency response of gear misalignment, adapted from [92] 

4.1.1.7 Hunting Tooth 

Hunting tooth occurs when two damaged teeth (one from the gear and one from the pinion) come into 

contact during rotation [92]. This produces a low frequency vibration component, possibly accompanied 

by harmonics, Figure 4.9. 

 

Figure 4.9 - Frequency response of hunting tooth, adapted from [92] 
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4.1.2 Bearing Fault Modes 

Bearings are designed to support the rotation of shafts and constrict non-rotational movement [95]. 

Within tidal turbines, bearings are located to support shafts from within the rotor, gearbox and generator, 

constraining axial and radial displacement. 

Figure 4.10 shows the typical components within a rolling element bearing: outer raceway, inner 

raceway cage and rolling elements. Rolling elements can either be spherical balls, cylindrical rollers or 

tapered cylindrical rollers [96]. When supporting a rotating shaft within a turbine, the outer raceway is 

typically fixed to the supporting structure (e.g. gearbox, generator, etc.) with the inner raceway rotating 

with the shaft. 

 

Figure 4.10 - Rolling element bearing components, adapted from [96] 

Bearing faults can occur due to fatigue, wear, excessive loading, improper installation, lubrication 

problems or manufacturing defects [97] [98]. This can lead to damage to bearing components in the 

following ways: 

• Spalling – Damage to the inner or outer raceways in the form of cracking or flaking [97] 

[98]. 

• Brinelling – Indentation in raceways caused by pressure from rolling elements [97] [98]. 

• Deformation – Raceways or cage bending or changing geometry due to loading or excessive 

temperature [97]. 

• Smearing – Metal being removed from one component and collecting on another (e.g. metal 

gathering at the ends of cylindrical rollers due from raceways to excessive loading or loss of 

lubrication) [97]. 

• Corrosion – Bearing materials become discoloured and damaged due to the factors from the 

surrounding environment [97] [98]. 

• Contamination – Dirt, dust or debris finding its way inside bearings causing damage 

(indentation, scratches, etc.) to raceways and rolling elements [98]. 

• Misalignment – Alignment of raceways and rolling elements becomes non-parallel [98]. 
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4.1.2.1 Bearing Characteristic Fault Frequencies 

Bearing faults are traditionally identified through a series of fundamental fault frequencies: fundamental 

train frequency (FTF), ball spin frequency (BSF), ball pass frequency of the outer ring (BPFO) and ball 

pass frequency of the inner ring (BPFI). These frequencies are dependent on the dimensions of the 

bearing and its rotation speed, calculated as in (4.8) to (4.11) [99], where 𝑓R is the rotation frequency in 

Hz or rotations per second, 𝐵𝑑 is the ball diameter in mm, 𝑃𝑑 is the pitch diameter in mm, 𝜃contact is 

the contact angle in degrees and 𝑁𝑏 is the number of rolling elements (Figure 4.11). 

 

Figure 4.11 - Rolling element bearing specifications required to calculate fault frequencies 

 𝐹𝑇𝐹 =
𝑓R
2
(1 −

𝐵𝑑

𝑃𝑑
cos(𝜃contact)) (Hz) (4.8) 

 𝐵𝑆𝐹 =
𝑃𝑑

2𝐵𝑑
𝑓R (1 − (

𝐵𝑑

𝑃𝑑
)
2

cos(𝜃contact)
2) (Hz) (4.9) 

 𝐵𝑃𝐹𝑂 =
𝑁𝑏

2
𝑓R (1 −

𝐵𝑑

𝑃𝑑
cos(𝜃contact)) (Hz) (4.10) 

 𝐵𝑃𝐹𝐼 =
𝑁𝑏

2
𝑓R (1 +

𝐵𝑑

𝑃𝑑
cos(𝜃contact)) (Hz) (4.11) 

As well as exciting vibrations at these fundemental frequencies, bearing failure can also produce 

vibrations at natural resonant frequencies. These frequency often are of a high value, between 3 and 50 

kHz [99] and occur as rolling elements periodically pass over cracked or damaged areas of the bearing. 

Conventional approaches, such as the FFT, may not fully capture the frequency of these periodic 

impacts. The envelope of the vibration signature is therefore commonly used [92], providing a better 

representation of the frequency of bearing impacts. This is represented in Figure 4.12, Figure 4.13 and 

Figure 4.14, where the difference between the frequency spectrum of the raw vibration signal and 

envelope signal are compared. 

Defects in the outer and inner raceways are the most common type of bearing fault [99]. This will 

produce frequencies at 𝐵𝑃𝐹𝑂 and 𝐵𝑃𝐹𝐼 respectively, as well as multiple harmonics within the envelope 

signal. Sidebands of 𝑓R may also be present if the fault is severe. Defects within the rolling elements are 

less common, producing high amplitudes at the ball spin frequency 𝐵𝑆𝐹. 
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Figure 4.12 - Bearing fault envelope detection 

 

Figure 4.13 - Frequency spectrum of periodic impacts before envelope detection 

 

 

Figure 4.14 - Frequency spectrum of periodic impacts after envelope detection 
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4.1.3 Generator Fault Modes 

The HS1000 tidal turbine contains a doubly-fed induction generator (DFIG). This component generates 

power through the interaction of an electromagnetic field produced by rotor windings within an 

electromagnetic field produced by stator windings [100]. Power is generated at variable speed by a 

DFIG by varying the frequency of the electrical supply to stator windings independently of the rotor 

windings. The main components of a generator are the stator core and frame, rotor, and windings [100]. 

Faults within a generator can be electrical or mechanical [100] [92]. Electrical faults typically stem from 

the windings, and can include the breakdown of winding insulation due to contamination, cracking, 

stress or high temperatures [100]. This causes short circuits and electrical discharge within the windings 

which can lead to extreme high temperatures and unbalanced electromagnetic forces during rotation. 

Other electrical faults include currents induced within the stator core causing expansion and melting, or 

connection faults between brushes and the rotor [100]. Mechanical faults include misalignment, 

unbalance or looseness and can be caused by manufacturing imperfections, incorrect installation, high 

loading or unbalanced electromagnetic forces [92]. 

4.1.3.1 Generator Fault Characteristic Frequencies 

Both mechanical and electrical faults can be diagnosed from analysis of vibration data within the 

frequency domain [92]. 

Mechanical faults occur due to faults within the shaft or supporting bearings, usually causing vibration 

components at the rotation frequency of the rotor with different harmonics [92]. 

Electrical faults can be due to faults within the generator’s rotor or stator, introducing vibrations due to 

the interaction of unbalanced magnetic forces [92]. Such faults cause frequency components related to 

slip frequency (𝑓slip), pole-pass frequency (𝑓p) and rotor bar pass frequency (𝑅𝐵𝑃𝐹), calculated in 

equations (4.12) to (4.13) [92] where 𝑓L is the line frequency, 𝑛poles is the number of generator poles 

and 𝑛bars is the number of bars in the rotor. 

 𝑓slip =
2×𝑓L
𝑛poles

− 𝑓rotor (4.12) 

 𝑓p = 𝑓slip×𝑛poles (4.13) 

 𝑅𝐵𝑃𝐹 = 𝑛bars×𝑓rotor (4.14) 
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4.1.3.2 Unbalance 

Unbalance introduces a prominent spike at the rotation frequency of the rotor 𝑓rotor which is always 

present and dominates the spectrum [92], as in Figure 4.15. The amplitude of this component varies 

proportionally to the square of the rotation speed. 

 
Figure 4.15 - Frequency response of unbalance within the generator, adapted from [92] 

4.1.3.3 Bent Shaft 

A bent generator shaft produces frequency components at 1x and 2x 𝑓rotor [92]. The 1x component is 

dominant when the bend is near the centre of the shaft, as in Figure 4.16, and the 2x component is 

dominant when the bend is near the end of the shaft, as in Figure 4.17. This is more likely to produce 

vibrations across the axial direction as opposed to the radial direction. 

 
Figure 4.16 - Frequency response a bend near the centre of the generator shaft, adapted from [92] 

 
Figure 4.17 - Frequency response a bend near the centre of the generator shaft, adapted from [92] 
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4.1.3.4 Misalignment 

Misalignment can be either angular or parallel [92]. Angular misalignment produces high axial 

vibrations at 1x, 2x and 3x 𝑓rotor, Figure 4.18. Parallel misalignment also causes harmonics of 𝑓rotor 

where the 2x component is most likely to dominate, Figure 4.19. As the severity of parallel 

misalignment increases, harmonics may appear at up to 8x 𝑓rotor. Parallel misalignment, however, is 

unlikely to occur independently of angular misalignment. 

 
Figure 4.18 - Frequency response of angular generator misalignment, adapted from [92] 

 
Figure 4.19 - Frequency response of parallel generator misalignment, adapted from [92] 
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4.1.3.5 Mechanical Looseness 

Mechanical looseness can occur in three locations: 

1. Internal assembly looseness 

2. Looseness at machine to base plate interface 

3. Structure looseness 

Such looseness can produce many harmonics of 𝑓rotor in the radial direction and can also induce sub-

harmonic frequencies at 
1

2
 or 

1

3
 𝑓rotor [92], as seen in Figure 4.20. 

 

Figure 4.20 - Frequency response of generator mechanical looseness, adapted from [92] 

  

Frequency 

A
m

p
li

tu
d

e 

1×𝑓rotor 

2×𝑓rotor 

3×𝑓rotor 4×𝑓rotor 5×𝑓rotor 

0.5×𝑓rotor 1.5×𝑓rotor 2.5×𝑓rotor 



96 

 

4.1.3.6 Rotor Rubs 

Rotor rubs produce a spectrum similar to that observed during mechanical looseness. A series of 

harmonics of 𝑓rotor is generated, normally exciting integer fraction sub-harmonics (
1

2
,
1

3
,
1

4
…
1

𝑛
) 

depending on the location of rotor natural frequencies [92]. 

Frequencies may occur as below, where 𝑁 is the shaft speed and 𝑁c is the critical speed of the shaft, a 

speed at which shaft deflections occur causing resonant vibrations. 

 

1×𝑓rotor when 𝑁 < 𝑁c
1

2
 or 1×𝑓rotor when 𝑁 > 2𝑁c

1

3
×,
1

2
×or 1×𝑓rotor when 𝑁 > 3𝑁c

1

4
×,
1

3
×,
1

2
× or 1×𝑓rotor when 𝑁 > 4𝑁c

 (4.15) 

 

 

Figure 4.21 - Frequency response for rotor rubs in generator, adapted from [92] 
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4.1.3.7 Rotor Defects 

Rotor defects causing unbalance of magnetic force between the rotor and stator will cause vibration in 

the radial direction. Broken or cracked rotor bars or shorting rings, bad joints between rotor bars and 

shorting rings or shorted rotor laminations will produce frequency components at 𝑓rotor with sidebands 

of 2x 𝑓slip [92], Figure 4.22. 

 
Figure 4.22 - Frequency response for rotor defects in the generator (e.g. breaks/cracks or bad joints in rotor bars 

or shorting rings, or shorted rotor laminations), adapted from [92] 

In addition, cracked rotor bars often generate 𝑓p sidebands around 3rd, 4th and 5th 𝑓rotor harmonics [92], 

Figure 4.23. 

 
Figure 4.23 - Frequency response for cracked rotor bars in the generator, adapted from [92] 

Finally, loose rotor bars are indicated by RBPF and sidebands of 2x line frequency [92], Figure 4.24. 

 
Figure 4.24 - Frequency response for loose rotor bars in the generator, adapted from [92] 
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4.1.3.8 Eccentric Rotor 

Increasing eccentricity in the rotor can cause highly unbalanced magnetic forces. In the frequency 

spectrum, eccentric rotors will produce vibration components of 2x 𝑓L surrounded by pole pass 

frequency sidebands (as well as 𝑓p sidebands around 1x 𝑓rotor) [92]. The pole pass frequency 𝑓p may 

also appear at low frequency, Figure 4.25. 

 
Figure 4.25 - Frequency response of eccentric rotor in the generator, adapted from [92] 

4.1.3.9 Stator Defects 

Stator problems or defects produce high vibration at 2x line frequency 𝑓L [92], Figure 4.26. Eccentricity 

produces uneven stationary air gaps between the rotor and stator and can produce strong vibrations 

across single directions (i.e. across either the X, Y, or Z axis). 

 

 
Figure 4.26 - Frequency response of stator defects, adapted from [92] 

  

Frequency 

A
m

p
li

tu
d

e 

2×𝑓L 

𝑓p 
+𝑓p sidebands 

𝑓rotor 

−𝑓p sidebands 
𝑓rotor + 𝑓p 𝑓rotor − 𝑓p 

Frequency 

A
m

p
li

tu
d

e 

1×𝑓rotor 

2×𝑓rotor 

2×𝑓L 



99 

 

4.1.3.10 Phasing Problem 

Phasing problems due to loose or broken connectors can cause excessive vibration at 2x line 

frequency 𝑓L, which have sidebands at 1/3 of the line frequency [92], Figure 4.27. 

 

 

Figure 4.27 - Frequency response of phasing problems within the generator, adapted from [92] 
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4.2 Feature-Based Diagnostics 

Following anomaly detection, a fault diagnosis can be manually made by engineers inspecting vibration 

data to identify the characteristics detailed in section 4.1. However, the aim of intelligent condition 

monitoring systems is to provide automatic fault detection and diagnosis without manual inspection of 

sensor data. 

Methods of automatic fault diagnosis are commonly performed through feature-based approaches [29]. 

In this process, a number of signal processing stages are used to transform vibration signals into feature 

vectors, isolating and quantifying specific characteristics (known as features) from within vibration data 

representative of different fault modes. This is known as feature-extraction. The resultant feature data 

can then be automatically categorised using machine learning classification algorithms. This process is 

summarised in Figure 4.28. 

 

Figure 4.28 - High level feature-extraction process for rotating machine diagnostics from vibration data 
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4.2.1 Pre-processing 

A pre-processing stage may be required in some applications to modify raw vibration signals before 

feature-extraction. Two such techniques are presented here: order tracking (for normalising vibration 

signals recorded under varying rotation speeds) and enveloping (required in the detection of bearing 

faults). 

4.2.1.1 Order Tracking 

The frequency values of many fault characteristics discussed in section 4.1. are dependent on the 

rotation speed of the machinery. In practical applications, and in particular within tidal power, the 

rotation speed is not constant and can fluctuate rapidly over short periods of time. This can therefore 

obscure vibration signals in the frequency domain, as individual vibration components are spread over 

a range of frequency values as the rotation speed of the machine changes over time. 

A solution is to utilise order tracking techniques as a pre-processing stage before signals are analysed 

in the frequency domain. Order tracking involves the transformation of a signal from the time domain, 

into the order (or angular) domain, where vibrations are represented in terms of multiples of shaft 

rotation [101]. Two order tracking techniques are discussed in this work: computed resampling and the 

Vold-Kalman filter. 

4.2.1.1.1 Computed Resampling 

Computed order tracking involves resampling vibration data from being sampled at fixed intervals in 

time 𝑥(𝑡) to fixed intervals of the rotation of a shaft 𝑥(𝜃) [101]. This process is detailed in Figure 4.29. 

The resampled signal 𝑥(𝜃) can be calculated using interpolation, where signal 𝑥(𝑡), sampled at points 

𝑡(𝑖Δ𝑡) over time, is interpolated at sample points 𝑡(𝑖Δ𝜃) over time. Δ𝜃 is calculated as in (4.16) where 

𝑁 is an integer multiple of shaft rotation 𝜃 and 𝑓𝑟 is the rotation frequency of the shaft at point 𝑖. 

 Δ𝜃 =
1

𝑁𝑓𝑟(𝑖)
 (4.16) 

Performing a frequency domain transformation on 𝑥(𝜃), such as the FFT, will express the signal in the 

order domain, as opposed to the frequency domain, where the frequency axis is replaced by an order 

axis. Values on the order axis 𝜙(𝑖) represent multiples of shaft revolutions, described in (4.17), where 

𝑓(𝑖) are the frequency axis values in Hz and 𝑓𝑟 is the shaft rotation frequency.  

 𝜙(𝑖) =
𝑓(𝑖)

𝑓𝑟
 (4.17) 

This results in responses as illustrated in Figure 4.30. Vibration components whose frequency values 

are dependent on rotation speed are represented more distinctly on the order axis than the frequency 

axis. 
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(a) Varying frequency signal 𝑥(𝑡) sampled at regular time intervals 𝑡(𝑖) 

 

(b) Varying frequency signal resampled at regular angular rotation intervals of 𝜃(𝑖) where Δ𝜃 =
1

4
 

Figure 4.29 - Computed resampling applied to vibration signal during variable rotation speed 

 

 
(a) Vibration signal in the frequency domain during variation in rotation speed 

 
(b) Vibration signal in the order domain during variation in rotation speed 

Figure 4.30 - Spectrum of vibration signal before and after resampling 
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4.2.1.1.2 Vold-Kalman Filter 

An alternative order tracking technique is the Vold-Kalman filter. This technique acts as a moving 

bandpass filter, set to the frequency values of specific vibration components over varying rotation 

speeds. Given an RPM measurement and set of orders to be extracted, this technique consists of solving 

a set of linear least squares equations known as the structural and data equations to form a filtered signal 

[102]. 

The structural equation (4.18) details a second-order difference equation [102], where 𝑥(𝑛) is the 

desired frequency component to be filtered, a sine wave with frequency 𝜔 sampled with a period of Δ𝑡 

at points 𝑛. 

 𝑥(𝑛Δ𝑡) − 2 cos(2𝜋𝜔Δ𝑡) 𝑥((𝑛 − 1)Δ𝑡) + 𝑥((𝑛 − 2)Δ𝑡) = 0 (4.18) 

This can be rewritten as (4.19), where Δ𝑡 is dropped, 𝑐(𝑛) = cos(2𝜋𝛥𝜔) and term 𝜀(𝑛) is introduced, 

allowing 𝑥(𝑛) to change its amplitude, phase and frequency over time. 

 𝑥(𝑛) − 𝑐(𝑛)𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) = ε(𝑛) (4.19) 

Equation (4.20) details the data equation [102], where measured signal 𝑦(𝑛) is the composition of the 

desired vibration feature 𝑥(𝑛) that satisfies the structural equation and 𝜂(𝑛) representing noise and other 

periodic components. 

 𝑦(𝑛) = 𝑥(𝑛) + 𝜂(𝑛) (4.20) 

Equations (4.19) and (4.20) can be rearranged to give equation (4.21) to provide a set of linear equations 

for {𝑥(𝑛) 𝑥(𝑛 − 1) 𝑥(𝑛 − 2)}. 

 {1 −𝑐(𝑛) 1
  1

} [

𝑥(𝑛 − 2)
𝑥(𝑛 − 1)

𝑥(𝑛)
] = [

𝜀(𝑛)

𝑦(𝑛) − 𝜂(𝑛)
] (4.21) 

A weighting term 𝑟(𝑛), detailed in equation (4.22), of the ratio of standard deviations of 𝜀(𝑛) and 𝜂(𝑛) 

is then applied as in equation (4.23). 

 𝑟(𝑛) =
𝑠𝜀(𝑛)

𝑠𝜂(𝑛)
 (4.22) 

 {
1 −𝑐(𝑛) 1
  𝑟(𝑛)

} [

𝑥(𝑛 − 2)
𝑥(𝑛 − 1)

𝑥(𝑛)
] = [

𝜀(𝑛)

𝑟(𝑛)(𝑦(𝑛) − 𝜂(𝑛))
] (4.23) 

Equation (4.23) can then be solved for the desired filtered signal 𝑥(𝑛) using least-squares techniques 

[102]. 
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4.2.1.2 Enveloping 

Certain faults within rotation equipment (primarily within bearings) cause periodic impacts at natural 

frequencies which can be seen within vibration signals, as described in section 4.1.2.1, p. 90. The 

periodic component of these fault signals (required to make a diagnosis) may be difficult to observe 

within the time and frequency spectrum, where natural frequencies can be dominant. Enveloping can 

be used as a pre-processing technique to reveal the periodic component of vibration signatures caused 

by periodic impact faults before frequency analysis is performed. 

This enveloping process is detailed in Figure 4.31 for a simulated bearing fault. In this process, a 

bandpass filter is first applied at the natural frequency (commonly between 3 and 50 kHz for bearings 

[99]). The envelope of this filtered signal can then be found using the Hilbert transform. 

The Hilbert transform computes the analytic signal 𝑧(𝑡) from time-domain signals 𝑥(𝑡). The analytic 

signal represents the Fourier transform of a signal, but with no negative frequency components.  This 

can be calculated for discrete-time signals as follows [103]: 

1. Calculate 𝑁-point Discrete-Time Fourier Transform (DTFT) (4.24) of filtered time-domain 

vibration signal 𝑥filt(𝑡), where 𝑓 is a set of discrete frequency values and 𝑇 is the sampling period. 

 𝑋(𝑓) = 𝑇∑ 𝑥filt(𝑡)𝑒
(−𝑗2𝜋𝑓𝑡𝑇)

𝑁−1

𝑛=0

 (4.24) 

2. Compute an 𝑁-point analytic signal transform 𝑍(𝑓) as in (4.25). 

 𝑍(𝑓) =

{
  
 

  
 
𝑋(0),        for 𝑚 = 0

2𝑋(𝑓),     for 1 ≤ 𝑓 ≤
𝑁

2
− 1

𝑋 (
𝑁

2
) ,     for 𝑓 =

𝑁

2

0,               for
𝑁

2
+ 1 ≤ 𝑚 ≤ 𝑁 − 1

 (4.25) 

3. Use the inverse DTFT (4.26) to compute analytic signal 𝑧(𝑡). 

 𝑧(𝑡) =
1

𝑁𝑇
∑ 𝑍(𝑓)𝑒(

𝑗2𝜋𝑓𝑡
𝑁

)

𝑁−1

𝑚=0

 (4.26) 

4. The envelope 𝑒(𝑡) of the filtered vibration signal 𝑥filt(𝑡) can then be calculated using the analytic 

signal 𝑧(𝑡) as in (4.27). 

 𝑒(𝑡) = √𝑥filt(𝑡)
2 + 𝑧(𝑡)2 (4.27) 
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(a) Vibration signal 𝑥(𝑡) 

 

(b) Vibration signal bandpass filtered at natural frequency 𝑥𝑓𝑖𝑙𝑡(𝑡) 

 

(c) Envelope signals 𝑒(𝑡) 

Figure 4.31 - Envelope detection process for detecting periodic impacts in a simulated vibration signal for a 

bearing fault  
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4.2.2 Feature-extraction 

Feature-extraction is then performed following pre-processing (Figure 4.28, p. 100). Here, fault 

characteristics are isolated from processed vibration signals, transforming the original data into a vector 

of features representative of individual fault modes [29]. 

Effective signal processing techniques for isolating and quantifying rotating machine faults include 

time, frequency and time-frequency domain transformations [29].  

4.2.2.1 Time Domain 

A number of different metrics can be used to define characteristics of vibration sensor data in the time 

domain.  

Root mean square (RMS) is a time-domain metric used to measure the power content of a signal [104].  

This metric is useful in describing the overall noise level produced by a vibrating component, where 

faults will introduce excessive noise to the vibration signal.  RMS can be calculated for a time domain 

signal 𝑥 over a set window size 𝑁 as in (4.28). 

 𝑥RMS = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 (4.28) 

The crest factor, the ratio between peak and RMS values of vibration [104], is calculated as in (4.29).  

This parameter gives an indication of how ‘impulsive’ data is, i.e. contains large isolated peaks.  Certain 

faults within rotating equipment will introduce periodic impacts (e.g. a cracked gear tooth or bearing 

ring fault), increasing the impulsiveness of a vibration signal, consequently increasing the crest factor, 

allowing this metric to be used for fault identification and diagnosis. 

 𝐶 =
|𝑥|peak

𝑥RMS
 (4.29) 

Kurtosis is a measure of the spread of data from the mean value, describing if the distribution is peaked 

or flat [104].  Damage to rotating components will introduce additional vibration peaks, therefore 

increasing the kurtosis of the signal. Kurtosis is calculated as shown in equation (4.30), where 𝑥̅ and 𝜎2 

are the mean and variance of the signal respectively over window size 𝑁. 

 𝐾 =
∑ (𝑥𝑖 − 𝑥̅)

4𝑁
𝑖=1

(𝑁𝜎2)2
 (4.30) 

Skewness is a measure of the symmetry of a distribution [105]. This can be a useful metric in describing 

vibration where faults can cause the distribution of vibration data to tend towards more positive values. 

This can be calculated as in (4.31). 

 𝐾 =
∑ (𝑥𝑖 − 𝑥̅)

3𝑁
𝑖=1

𝑁𝜎3
 (4.31) 
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FM0 is a metric used to describe gear faults by detecting changes in gear mesh patterns [106]. It is 

calculated as in (4.32), where 𝑥p−p is the peak to peak amplitude of vibration signal 𝑥 and 𝐴(𝑓𝑖) is the 

amplitude of 𝑁 gear mesh frequencies and their harmonics. 

 𝐹𝑀0 =
𝑥p−p

∑ 𝐴(𝑓𝑖)
𝑁
𝑖=1

 (4.32) 

FM4 is a metric used to complement FM0 by describing gear faults limited to a set number of gear teeth 

[106]. This is calculated as in (4.33), equivalent to the normalised Kurtosis of 𝑑, a difference signal of 

length 𝑁 where first order sidebands have been removed from the raw vibration. 

 𝐹𝑀4 =
𝑁∑ (𝑑𝑖 − 𝑑̅)

4𝑁
𝑖=1

[∑ (𝑑𝑖 − 𝑑̅)
2𝑁

𝑖=1 ]
2 (4.33) 

NA4 is a metric developed to detect and measure gear damage in a vibration signal as it grows and 

increases in amplitude [107]. This is calculated as in (4.34) where 𝑟 is a residual signal of length 𝑁 

where fundamental shaft and mesh frequencies (and harmonics) have been removed from the raw 

vibration signal after 𝑚 points in time. 

 𝑁𝐴4 =
𝑁∑ (𝑟𝑖 − 𝑟̅)

4𝑁
𝑖=1

[
1
𝑚
∑ [∑ (𝑟𝑖𝑗 − 𝑟̅𝑗)

2𝑁
𝑖=1 ]𝑚

𝑗=1 ]
2 (4.34) 

NA4* is an enhanced version of NA4, more robust to changes in variance of the signal as damage grows 

[108].  This is calculated as in (4.35) where 𝑀̃ is the variance of residual signal 𝑟 for the gearbox in a 

healthy condition. 

 𝑁𝐴4∗ =

1
𝑁
∑ (𝑟𝑖 − 𝑟̅)

4𝑁
𝑖=1

(𝑀̃2)
2  (4.35) 

NB4 is similar to NA4, however uses the envelope signal 𝐸 (explained in section 4.2.1.2, p. 104) to 

measure damage in machinery [107] and is calculated as in (4.36). 

 𝑁𝐵4 =
𝑁∑ (𝐸𝑖 − 𝐸̅)

4𝑁
𝑖=1

[
1
𝑚
∑ [∑ (𝐸𝑖𝑗 − 𝐸̅𝑗)

2𝑁
𝑖=1 ]𝑚

𝑗=1 ]
2 (4.36) 

M6A is an indicator of surface damage on machinery [109]. This metric is based on FM4, however uses 

the 6th moment to be more sensitive to peaks within the difference signal 𝑑, calculated as in (4.37). 

 𝑀6𝐴 =
𝑁2∑ (𝑑𝑖 − 𝑑̅)

6𝑁
𝑖=1

[∑ (𝑑𝑖 − 𝑑̅)
2𝑁

𝑖=1 ]
3  (4.37) 

M8A is an extension of M6A to detect surface damage of machinery in the difference signal 𝑑, and is 

calculated as in (4.38), utilising the 8th moment normalised by variance to the 4th power [109]. 
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 𝑀8𝐴 =
𝑁3∑ (𝑑𝑖 − 𝑑̅)

8𝑁
𝑖=1

[∑ (𝑑𝑖 − 𝑑̅)
2𝑁

𝑖=1 ]
4  (4.38) 

4.2.2.2 Frequency Domain 

Although time domain analysis of vibration signals can give useful indicators of rotating machinery 

faults, features extracted in the frequency domain are more descriptive of characteristic vibration signals 

[110] (as described in section 4.1, p. 83) and can therefore differentiate between specific fault modes 

more effectively. 

Frequency domain vibration analysis is widely performed using the Fast Fourier Transform (FFT) [111].  

The FFT is an implementation of the Discrete Fourier Transform (DFT), where time domain signals 

𝑥(𝑡) are transformed and represented within the frequency domain 𝑋(𝑓) [112].  An 𝑁 point DFT is 

described in equation (4.24). For example, N. Baydar, et al. [113], use the power spectrum (the square 

of the amplitude spectrum obtained through the FFT) to detect characteristic frequencies and locate gear 

tooth wear under varying loading conditions. 

Frequency domain transformation can also be used with time-domain vibration metrics to further 

analyse and quantify characteristic frequency components. P. Tamilselvan, et al [114], identify bearing 

faults and planetary gear mesh faults through the FFT for a wind turbine gearbox.  A severity metric is 

then assigned to each frequency based on vibration kurtosis, a statistical measure of the peak of a 

probability distribution. 

However, frequency domain analysis is mostly only suitable for stationary vibration signals, where the 

distribution of vibration signals does not change over time [111], for example for fault signals such as 

misalignment and unbalance. 

4.2.2.3 Time-frequency domain 

While traditional frequency domain transforms, such as the FFT, assume signals are periodic and 

stationary [111], rotating machine faults can often be non-stationary, where the distribution of a 

vibration signal is not constant over periods of time. These signals can occur due to contact between 

cracked or broken gear teeth, or due to periodic impacts caused during bearing faults [115]. 

More modern feature-extraction methods therefore use time-frequency methods of feature-extraction 

can be useful for isolating such non-stationary fault signals, where the change in frequency response is 

analysed over time [110]. Methods include the Short Time Fourier Transform and the Wavelet 

Transform. 

4.2.2.3.1 Short-Time Fourier Transform 

The Short-Time Fourier Transform (STFT) is a Fourier transform performed on long periods of data 

repeatedly over short periods of time [116]. This gives a representation of the change in frequency 

response over time, allowing non-stationary effects within signals to be observed. 
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The STFT is typically performed by applying a sliding windowing function to data and applying the 

Fourier transform as the window is shifted along the time axis. The continuous STFT for signal 𝑥(𝑡) is 

given in (4.39) [116], where 𝑤(𝑡 − 𝜏) is a window function (e.g. Hamming window) shifted by 𝜏. 

 𝑋(𝑓, 𝑡) = ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝜏  𝑑𝜏
∞

−∞

 (4.39) 

The continuous STFT can be modified to the discrete STFT as in (4.40) [116], where 𝑥(𝑘) is the 

sampled signal, 𝑇 is the sampling period, 𝑤(𝑛𝐷 − 𝑘) is a shifted window function at sampling point 𝑛 

with period 𝐷. 

 𝑋(𝑛,𝑚) = ∑𝑥(𝑘)𝑤(𝑛𝐷 − 𝑘)𝑒
𝑗2𝜋𝑘𝑚
𝑇

𝑇−1

𝑘=0

 (4.40) 

A spectrogram, the visualisation of the frequency response over time, can be formed by taking the 

magnitude of the discrete STFT. Figure 4.32 shows an example of a spectrogram for simulated vibration 

signal for a bearing fault, highlighting non-stationary signals, where time is on the X-axis, frequency 

on the Y-axis and magnitude reflected through colour scale. 

 
Figure 4.32 - Spectrogram of simulated bearing fault generated through the STFT, highlighting non-stationary 

vibration produced through periodic impacts 

 

M-C. Pan, et al. [117] show how the STFT provided improved clarity in comparison to time and 

frequency domain analysis for non-stationary signals caused by gear transmission noise and brake 

systems. N. Sawalhi and R. B. Randall [118] show how the STFT, coupled with a computed resampling 

order tracking algorithm, can be used to detect gear mesh frequencies during periods of varying rotation 

speed. Finally, M. S. Safizadeh, et al. summarise the use of the STFT in machine diagnostics [119]. It 
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is stated that while the STFT gives a clear representation of the time-frequency domain that allows 

detection of faults, a major shortcoming of the technique is its inability to have high resolution in both 

the time and frequency axes simultaneously. As a result, some time may have to be spent tuning the size 

of the sliding window (as is (4.40)) to give clear results depending on the length of available data and 

the desired frequency range. 

4.2.2.3.2 Wavelet Transform 

The Wavelet Transform is an alternative time-frequency transformation technique, and is becoming 

commonly used to identify non-stationary fault signals within vibration data [91]. 

Within the continuous wavelet transform a mother wavelet function, scaled in frequency and shifted in 

time, is convolved with a time domain signal, producing a time-frequency representation of the signal 

[91].  Equation (4.41) details this process, where 𝑎 is a scaling factor, 𝑏 is a time-shift parameter and Ψ 

is the mother wavelet function. 

 𝑊(𝑎; 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)Ψ∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

 (4.41) 

Figure 4.33 shows a visualisation of the continuous wavelet transform for a simulated periodic impact 

bearing fault, where scaling factor 𝑎 and time-shift parameter 𝑏 have been converted to represent 

frequency and time values respectively. 

The wavelet transform can be applied to vibration signals to diagnose faults, most commonly within 

gearboxes and bearings to detect non-stationary fault signals [120] [121] [122] [123] [124].  For 

example, M. Amarnath, et al [121], use the continuous wavelet transform applied to vibration signals 

to identify and diagnose the extent of a gear tooth crack within a two-stage helical gearbox test rig. J. 

Rafiee, et al [123], compare a number of mother wavelet functions to extract features from vibration 

data to diagnose gear and bearing faults, such as ball faults, cage faults, inner race faults in bearings and 

broken teeth in gearboxes.   
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Figure 4.33 - Visualisation of the Continuous Wavelet Transform for a simulated bearing fault, highlighting non-

stationary vibration produced through periodic impacts 

4.2.2.4 Cepstrum Analysis 

Characteristic frequencies of rotating components often contain sidebands of harmonics in addition to 

core frequency values. This can make interpretation of vibration through the frequency spectrum 

(obtained through an FFT or otherwise) challenging, as multiple families of sidebands and harmonics 

obscure the spectrum. 

Cepstrum analysis provides a solution, where families of related frequency components from a single 

characteristic frequency are represented as single components.  This is obtained through the inverse 

Fourier transform of the logarithm of the power spectrum (4.42) [125], transforming the signal into the 

‘quefrency’ domain 𝜏 where 𝐹𝑥𝑥 is the power spectrum of signal 𝑓𝑥(𝑡) (4.43). 

 𝐶(𝜏) = ℱ−1{log 𝐹𝑥𝑥(𝑓)}  (4.42) 

 𝐹𝑥𝑥(𝑓) = |ℱ{𝑓𝑥(𝑡)}|
2 (4.43) 

The quefrency domain is measured in time, where amplitudes within this domain represent the spacing 

of sidebands within the spectrum at given periods.  Large amplitudes represent fast variations in the 

spectrum, relative to a large number of sidebands, and small amplitudes represent slow variations in the 

spectrum, relative to a low number of sidebands [125]. 

Within diagnosis, faults introducing additional sidebands to the vibration spectrum can be identified as 

peaks within the Cepstrum.  The period of these peaks can be used for diagnosis are they are relative to 

the fault’s characteristic frequency.  Figure 4.34 demonstrates the quefrency spectrum for gearbox 
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vibration data from a worn tooth. Peaks spaced at 𝑇𝑔𝑒𝑎𝑟  are observed on this spectrum, the period of the 

gear rotation speed. 

 

Figure 4.34 - Quefrency domain signal for a cracked gear tooth 

M. Satyam, et al [126] use Cepstrum analysis applied to vibration signals from a wind turbine gearbox 

test rig, identifying quefrency peaks relating to gear shaft misalignment.  They state this method is 

suitable for diagnosing other faults within gears, bearings and turbine blades, where families of 

harmonics and sidebands exist. 

L. Nacib, et al [127], use Cepstrum analysis to identify a tooth crack within a helicopter gearbox.  

Periodic peaks within the Cepstrum are identified and used to diagnose a cracked tooth within a 

particular gear pinion. 
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4.2.3 Classification 

The final stage of a feature-based diagnostics system is the classification stage (Figure 4.28, p. 100), 

where faults are automatically diagnosed from selected features. 

This can be performed through a machine learning classification algorithm trained through supervised 

learning, whose inputs are features and outputs are discrete fault states. Three different classification 

techniques were examined in this study: support vector machines, decision trees and k-nearest 

neighbours. 

4.2.3.1 Support vector machines 

Support vector machines (SVMs) have been discussed in chapter 3, section 3.5.5.1, p. 54, for one-class 

anomaly detection, however they are more commonly used as a classification technique. 

SVMs are used to define a hyperplane representing boundaries in multidimensional space between 

different classes of data [82]. In rotating machine diagnostics, each dimension in the data space may 

represent a different feature extracted from vibration signals, where each class represents a different 

health state or fault mode. 

In the simplest cases, hyperplanes are defined linearly. Linear hyperplanes can either be defined through 

a hard-margin or soft-margin, where the margin is defined by the hyperplane and the most adjacent data 

points on either side [128]. A hard-margin is used when classes can be separated linearly in the data 

space and a soft-margin is used when classes are not linearly separable. 

Given training data (𝒙1, 𝑦1), … , (𝒙𝑛 , 𝑦𝑛) where 𝑦𝑖  values are class labels of 1 or -1, data is linearly 

separable when (4.44) and (4.45) are satisfied for vector 𝒘 and scalar 𝑏 [82]. 

 𝒘 ∙ 𝒙𝑖 + 𝑏 ≥ 1     for 𝑦𝑖 = 1 (4.44) 

 𝒘 ∙ 𝒙𝑖 + 𝑏 ≤ −1     for 𝑦𝑖 = −1 (4.45) 

Expressions (4.44) and (4.45) can be rewritten as in (4.46). 

 𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) ≥  +1 (4.46) 

Therefore, in the hard-margin case, a linear hyperplane maximising the distance between data points 𝒙𝑖 

and the hyperplane in each class can be found by finding 𝒘 and 𝑏 that satisfy (4.47).  

 𝒘 ∙ 𝒙 + 𝑏 = 0 (4.47) 

However, in many cases data are not linearly separable. In such cases, a soft-margin hyperplane is 

defined, allowing some data points to lie on the wrong side of each margin, but with the least error. 

Variables 𝜉𝑖 can be introduced, storing the distance of each data point from the margin. If 𝜉𝑖 = 0, the 
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data lies on the correct side of the margin. If 0 < 𝜉𝑖 < 1, the data is correctly classified but lies within 

the margin. If 𝜉𝑖 > 0 the data point lies on the wrong side of the hyperplane and is misclassified [128]. 

These variables can therefore be added to (4.46) as in (4.48). 

 𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) ≥  1 − 𝜉𝑖 (4.48) 

An optimal solution is found by finding 𝒘 to minimise a cost function defined in (4.49), where 𝐶 is a 

regularisation penalty factor [128].  

 
1

𝑛
𝐶∑𝜉𝑖

𝑛

𝑖=1

+
1

2
‖𝒘‖2 (4.49) 

Support vector machines are linear in nature. However, they can be adapted to solve non-linear problems 

by applying the ‘kernel trick’ [129]. As opposed to fitting a non-linear model, the kernel trick involves 

mapping the data into a new dimensional space through a nonlinear transformation and applying a linear 

model in the new space [130]. 

This transformation is described as in (4.50), where 𝒙 is the original data space, 𝒛 is the new dimension 

space and 𝜙 is a nonlinear kernel function [128]. 

 𝒛 = 𝜙(𝒙) (4.50) 

The hyperplane is now altered from (4.48) to become (4.51), where the linear hyperplane is defined in 

the new dimensional space 𝒛 [128]. The hyperplane is then fitted in the new space by minimising the 

same cost function as in (4.49). This optimal linear hyperplane in the new space 𝒛 is nonlinear in the 

original data space 𝒙. 

 𝑦𝑖(𝒘 ∙ 𝜙(𝒙𝑖) + 𝑏) ≥  1 − 𝜉𝑖 (4.51) 

SVMs are widely used in feature-based fault diagnosis systems [131] [132] [133] [134] [135] [136] 

[137] [138]. For example, Elangovan, et al. [131] compare SVMs of different kernel functions to other 

classification techniques (including decision trees) in diagnosing faults from statistical vibration 

features, finding SVMs with polynomial functions to provide the best performance. However, linear 

SVMs were found to perform classification at a faster rate, but at the sacrifice of some classification 

accuracy. P Konar, et al. [132] use an SVM classifier to diagnose bearing faults from features generated 

through the continuous wavelet transform, finding the technique to provide fast and efficient results. V. 

Sugumaran, et al. [133] compare the accuracy of SVM classifiers trained with different numbers of 

statistical input features (e.g. RMS, kurtosis, skewness, etc.). Optimal performance was achieved where 

7 different features were used as inputs, however performance decreased using additional feature, 

showing SVMs are not robust to redundant features. 
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In general, SVMs give good classification performance when dealing with continuous features in 

multiple dimensions [139], and are therefore a good candidate for fault classification from vibration 

data features. Complex models can take some time to train, however, once models are trained data can 

be classified at high speeds [140], making SVMs suitable for use in online diagnostics systems. 

Nevertheless, the performance of SVMs is highly dependent on the selection of a suitable kernel 

function for non-linear models. In addition, complex models can be hard to interpret, and limited 

engineering knowledge can be inferred from a trained model [140]. Finally, SVMs are natively binary 

classifiers [139], so multiple models may have to be constructed to detect multiple fault modes. 

4.2.3.2 Decision tree 

A decision tree is a structure containing a number of nodes that define a set of decision rules, predicting 

a set of outcomes (or class values for classification) from input data [141]. Internal nodes have 

‘branches’ leading to subsequent nodes, performing decisions on the input data. ‘Leaves’ are nodes with 

no further decision branches and represent the most appropriate class for the input data leading to that 

point. 

Decisions at each node make comparisons on only one dimension in 𝒙 and can take two forms [128]. If 

𝒙𝑖 contains discrete values, i.e. describes categorical data of 𝑛 possible values, the decision makes 𝑛 

splits, comparing the data to each of its possible values. If 𝒙𝑖 contains numerical data, decisions take 

the form of (4.52), where 𝑐 is any real number. 

 𝑥𝑖 ≥ 𝑐 (4.52) 

Classification trees can be constructed from top to bottom, aiming to maximise decisions leading to 

only one class (known as pure nodes). The probability of class 𝑦 = 𝐶𝑗 at node 𝑚 can be estimated as in 

(4.53) [128], where 𝑁𝑚 is the number of training examples reaching node 𝑚. A pure node therefore has 

𝑝𝑚
𝑗

 for all 𝐽 classes is equal to 0 or 1. 

 𝑃̂(𝐶𝑗|𝒙,𝑚) ≡ 𝑝𝑚
𝑗
=
𝑁𝑚
𝑗

𝑁𝑚
 (4.53) 

Impurity functions are used to measure the effectiveness of splits at each node. One example of such a 

function is the Gini index [128], detailed in (4.54). Pure nodes have a Gini index of 0, otherwise the 

Gini index is a positive value. 

 𝐼𝐺(𝑝) = ∑𝑝𝑗(1 − 𝑝𝑗)

𝐽

𝑗=1

 (5.54) 

The Classification and Regression Tree (CART) algorithm [142] uses the Gini index to construct 

decision trees. In this algorithm, the Gini index is calculated for all possible splits at a node, choosing 
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the decision returning the lowest Gini index value. This is repeated for all subsequent nodes resultant 

from each split, until nodes become pure. 

Decisions trees have been applied to the diagnosis of rotating machinery from vibration data in a number 

of cases [143] [144] [145] [146] [147] [148]. For example, N. T. Nguyen, et al. [143] use decision trees 

with both continuous and discrete features generated from vibration data to identify looseness, a stator 

fault, a rub fault and unbalanced rotor faults. H-H. Lee, et al. [144] apply decision trees to time domain 

vibration features for the diagnosis of bearing faults with high classification accuracy. B. S. Yang, et al. 

[145] apply decision trees to frequency domain vibration features for the diagnosis of multiple rotating 

machine faults (e.g. unbalance, misalignment, cracks, bearing damage, and many more) finding the 

method to perform well in creating interpretable cause-failure trees. 

A primary advantage of decision trees over other classification techniques is their high interpretability 

[140], meaning the decision process can be easily understood by engineers and can be used to develop 

knowledge. As with SVMs, decision trees can classify data at high speeds and are therefore suitable for 

online monitoring systems [140]. Unlike SVMs however, decision trees are capable of classifying 

multiple classes through a single model [149] and can natively support both continuous and discrete 

inputs [140]. Decision trees can also have higher performance compared to other techniques when only 

small amounts of training data are available and are robust to irrelevant features [150]. However, 

decision trees can be prone to overfitting training data and can struggle with generalisation without the 

use of advanced ensemble methods [149].  

4.2.3.3 K-nearest neighbours 

K-nearest neighbours (K-NN) [151] is a non-parametric technique where classification is performed by 

measuring the distance between test data and training data. A class is assigned to test data by selecting 

the majority class of 𝑘 training data points closest to the test data. 

The Euclidean distance metric (4.55) is generally used where input data is numerical [151], where 𝑝 =

(𝑝1, 𝑝2, … , 𝑝𝑛) and 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛) are Cartesian coordinates of the test and training data points 

respectively in 𝑛-dimensional space. 

 𝑑(𝒑, 𝒒) = √∑(𝑞𝑖 − 𝑝𝑖)
2

𝑛

𝑖=1

 (4.55) 

K-NN methods have been employed successfully in a number of cases for classifying vibration features 

for diagnostics [152] [153] [154] [155] [156]. For example, Seshadrinath, et al. [153] successfully use 

a K-NN to classify vibration features extracted using the wavelet transform for the diagnosis of 

induction machine interturn faults with high accuracy. D. H. Pandya, et al. [154] find a weighted K-NN 

classifier to outperform other classification techniques in classifying features (including RMS, crest 

factor, kurtosis and others) for diagnosing bearing faults. J. Tian, et al. [155] use K-NN for diagnosis of 

bearing faults from kurtosis based vibration features.  
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The advantage of K-NN as a classifier is simplicity of the technique, as no complex training process is 

required, and there is only on parameter to alter. In addition, the algorithm is easily adaptable when new 

training data becomes available, and is easily implementable in incremental learning situations [140]. 

However, classifying data can be slow, especially when large training datasets are used [140]. This 

means that the algorithm is less suitable than SVMs and decision trees for use in online systems.  
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4.3 Deep Learning 

While feature-based diagnostic approaches have been proven to be an effective method of fault 

diagnosis in a number of different applications [29] they have a number of disadvantages. 

Firstly, developing a feature-based diagnostics model for a large and complex system, with many 

different interconnected components, can be a laborious challenge. Rotating components often have a 

number of different fault modes, each of which with unique fault characteristics (discussed in section 

4.1, p. 83) that need to be understood in order to select the most appropriate feature-extraction method 

(of which there are a number to choose from). 

In addition, detailed specifications of the machinery are commonly required to calculate known fault 

frequencies required in many feature-extraction methods. This may be problematic to source for all 

components in a large system, where components have been sourced from multiple different 

manufacturers. Also, some fault frequencies, such as natural resonances, may not be possible to 

determine without detailed analysis of vibration data after a fault has occurred. 

Deep learning provides an alternative solution to feature-based methods. The aim of deep learning 

approaches is to replace feature-extraction processes with large, multi-layered neural network 

architectures that automatically learn features from data, optimised to best separate different classes of 

data [157]. This can provide an advantage to rotating machine diagnostics where labelled training data 

is available, replacing the intensive manual analysis of data required to develop feature-based methods. 

Deep learning has recently been applied in various condition monitoring applications, showing positive 

results. Sparse coding techniques applied to raw vibration data for feature learning have been used for 

bearing fault detection by Liu, et al. [158] and Martin del Campo & Sandin [159]. Catterson & Sheng 

[160] used deep neural networks to diagnose partial discharge data in high voltage assets. Qiao & Xun 

[161] used deep autoencoder networks with support vector regression to estimate the health state in fuel 

cell systems.  

Deep autoencoder networks have also been proven to be an effective method for classifying rotating 

machine faults. Verma, et al. [162] trained a deep network to diagnose faults in air compressors from 

acoustic data. Junbo, et al, [163] used a deep autoencoder network to diagnose bearing faults using 

coefficients obtained through the wavelet transform, obtaining classification accuracies between 

91.25% and 99.62% in multiple loading scenarios. Jia, et al. [164] trained a deep autoencoder network 

with five feature layers to diagnose bearing and planetary gearbox faults using spectral data obtained 

through the Fourier Transform. This approach provided high classification accuracy of 99.61% and 

100% for bearing faults. 

  



119 

 

4.3.1 Artificial Neural Networks 

The foundations of deep learning come from Artificial Neural Networks (ANNs). ANNs are structures 

that mimic the learning functionality of the brain, connecting multiple individual processing units 

(known as neurons or perceptrons) together allowing the network to learn complex nonlinear functions 

[128]. 

Deep learning can be performed through a number of different configurations of ANN, including 

stacked autoencoder networks, convolutional neural networks, deep belief networks and recurrent 

neural networks [89]. This work has focussed on applying stacked autoencoder networks, based upon 

feed forward neural networks, to vibration data for rotating machine diagnostics. 

4.3.1.1 Feed Forward Neural Networks 

A feed forward neural network (FFNN) is an artificial neural network where data flows in one direction, 

connecting input data parameters to output data parameters through a number of hidden neurons (also 

known as perceptrons) [128]. By tuning the weights 𝑾  and biases 𝒃 associated with each of the neurons 

within a network, these structures are capable of learning complex nonlinear functions for both 

regression and classification. 

Each neuron in the network performs two functions on data, Figure 4.35. Firstly, all input parameters 

𝑥𝑖 are multiplied by a weight 𝑊𝑖 and summed together with a bias parameter 𝑏 (4.56). Secondly, a 

function is then applied as in (4.57) to calculate the activation 𝑎 of each neuron. 

 

Figure 4.35 - Neuron and synapse 

 𝑧 =∑𝑊𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 (4.56) 

 𝑎 = 𝑓(𝑧) = 𝑓 (∑𝑊𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (4.57) 
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This activation function 𝑓 is commonly chosen as a sigmoid (4.58), tanh (4.59) or rectified linear 

function (4.60) for deep learning applications [165]. 

 𝑓(𝑧) =
1

1 + 𝑒−𝑧
 (4.58) 

 𝑓(𝑧) =
sinh(𝑧)

cosh (𝑧)
=
𝑒2𝑧 − 1

𝑒2𝑧 + 1
 (4.59) 

 𝑓(𝑧) = max (0, 𝑧) (4.60) 

Figure 4.36 shows the structure of a simple FFNN, where input data variables 𝒙 are connected to output 

data 𝒚 through a layer of hidden neurons. The calculation of the activation of each neuron (as in (4.56) 

and (4.57)) can be performed for each layer of the network using matrix calculations in a process known 

as the feed forward pass [166], as in (4.61) to (4.64). The activations of the neurons in the output layer 

of the network are used to estimate output parameters 𝒚 (4.64). 

 

Figure 4.36 - An example of a simple Feed Forward Neural Network 

 𝒛(𝟐) = 𝑾(1)𝒙 + 𝒃(1) (4.61) 

 𝒂(2) = 𝑓(𝒛(2)) = 𝑓(𝑾(1)𝒙 + 𝒃(1)) (4.62) 

 𝒛(3) = 𝑾(2)𝒂(2) + 𝒃(2) (4.63) 

 𝒚ෝ = 𝒂(3) = 𝑓(𝒛(3)) = 𝑓(𝑾(2)𝒂(2) + 𝒃(2)) (4.64) 
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4.3.1.2 Training a Neural Network 

To learn a complex nonlinear function, neural network weight 𝑾 and bias 𝒃 parameters must be 

optimised through a training process to minimise the error between true outputs 𝒚 and the estimated 

outputs 𝒚ෝ. This error can be expressed through a cost function, e.g. a quadratic function [128] as in 

(4.65), where 𝐾 is the number of training examples. 

 𝐽 =
1

𝐾
∑

1

2
(𝑦𝑘 − 𝑦̂𝑘)

2

𝐾

𝑘=1

 (4.65) 

The network’s error can be minimised by finding parameters which cause the cost function to decrease, 

i.e. parameters 𝑾 and 𝒃 that have a negative gradient with respect to cost function 𝐽. This gradient can 

be represented through the partial derivatives 
𝜕𝐽

𝜕𝑾
 and 

𝜕𝐽

𝜕𝒃
, and are found using the back propagation 

algorithm [167]. 

The back propagation algorithm involves calculating the error between true outputs 𝒚 and estimated 

outputs 𝒚ෝ and propagating this backwards through each layer of the network to find the effect of this 

error on each neuron’s activation 𝑎. The back propagation algorithm can be summarised as below [166]: 

1. Perform feed forward pass (as in (4.61) to (4.64)) to find all neuron activations 𝒂 in all 

layers. 

2. Calculate error term 𝛿 at output layer (layer 𝐿) from true output values 𝒚 (4.66). 

 𝛿(𝐿) = −(𝑦 − 𝑦̂) ∘ 𝑓′(𝑧(𝐿)) (4.66) 

3. Working backwards, calculate 𝛿 in all remaining layers in the network (4.67). 

 𝛿(𝑙) = ((𝑾(𝑙))
𝑇
𝛿(𝑙+1)) ∘ 𝑓′(𝑧(𝑙)) (4.67) 

4. Compute partial derivatives from error terms (4.68) and (4.69). 

 
𝜕

𝜕𝑾(𝑙)
 𝐽(𝑾, 𝒃; 𝒙, 𝒚) = 𝛿(𝑙+1)(𝑎(𝑙))

𝑇
 (4.68) 

 
𝜕

𝜕𝒃(𝑙)
 𝐽(𝑾, 𝒃; 𝒙, 𝒚) = 𝛿(𝑙+1) (4.69) 

Once partial derivatives are calculated a number of different training algorithms can be employed to 

minimise the prediction error of the network. One of the simplest techniques is gradient descent, where 

𝑾 and 𝒃 are tuned iteratively as in (4.70) and (4.71), with 𝜂 as some scalar constant, until convergence 

is reached [168]. 

 𝑾(𝑡) = 𝑾(𝑡 − 1) − 𝜂
𝜕𝐽

𝜕𝑾
 (4.70) 

 𝒃(𝑡) = 𝒃(𝑡 − 1) − 𝜂
𝜕𝐽

𝜕𝒃
 (4.71) 
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In more advanced training algorithms, 𝜂 becomes an estimate of the inverse Hessian matrix containing 

second derivatives of the cost function [168], e.g. scaled conjugate gradient [169] or Quasi-Newton 

methods such as the Marquardt-Levenberg algorithm [80]. 

4.3.2 Deep Learning through Stacked Autoencoders 

In this work, deep learning is performed through stacked autoencoder networks. These networks 

automatically learn features from input data through multiple interconnected FFNN layers known as 

autoencoders [74]. A final connected layer on the network then performs classification. 

These networks are trained in two stages [170]. The first stage tunes the parameters of each autoencoder 

layer sequentially to learn features from the structure of input data. The second stage then optimises the 

features learned by the network to give the best separation between output classes and maximise 

classification performance. 

4.3.2.1 Stacked Autoencoder Networks 

Autoencoders are a form of neural network used for unsupervised learning [74], where networks are 

trained with only input data 𝒙 and no output data 𝒚. Their function is to replicate input data 𝒙 at their 

output through a layer of hidden neurons, Figure 4.37. The network therefore learns a function ℎ𝑾,𝒃 to 

best approximate the input, (4.72). 

 

Figure 4.37 - Autoencoder neural network 

 𝒙ෝ = ℎ𝑾,𝒃(𝒙) ≈ 𝒙 (4.72) 
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By limiting the number of hidden neurons, the network is forced to learn a compressed representation 

of the input data. Hidden neurons can therefore be seen as representing features, learned from structure 

within the input data [74]. 

Deep neural networks can be constructed by stacking many autoencoder layers on top of each other 

[171]. This is shown in Figure 4.38, where 𝐿 autoencoder layers are connected together before a final 

classification layer. Having multiple hidden layers allows the network to further decompose the 

structure of input data, with the complexity of features increasing in later layers of the network [172]. 

 

Figure 4.38 - Stacked autoencoder classification neural network 

4.3.2.2 Training a Deep Network 

Deep autoencoder networks can be trained in two stages: unsupervised pre-training and supervised fine-

tuning. 

Pre-training involves training each autoencoder layer by layer in a process known as greedy layer-wise 

training [170] [173]. The first autoencoder layer is trained on raw input data 𝒙, learning feature 

representations in the hidden layer represented by 𝑾(1) and 𝒃(1). The activations of each hidden neuron 

in the first layer 𝒂(1) are then used as the inputs to the second autoencoder layer. This layer is then 

trained to reconstruct its input, learning more complex features represented through 𝑾(2) and 𝒃(2). This 

process is repeated for 𝐿 autoencoder layers. 

Each training stage can use any training algorithm, however the cost function in (7.65) is altered as in 

(4.73) for all autoencoder layers, introducing a weight decay term Ωweights and a sparsity term Ωsparsity 

[174], where 𝐾 is the number of training examples. 
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The weight decay term Ω𝑤𝑒𝑖𝑔ℎ𝑡𝑠 limits the magnitude of weights to prevent overfitting [174] and is 

calculated as in (4.74), where 𝐿 is the number of autoencoder layers, 𝑁(𝑙) is the number of neurons in 

layer 𝑙, 𝐾 is the number of training examples and 𝜆 is a weight decay parameter controlling the influence 

of this term on the cost function. 
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The sparsity term Ω𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 encourages sparse activations of hidden neurons within the network, 

allowing more diverse features to be discovered even where autoencoders have a large number of hidden 

units. It does this by applying the constraint 𝜌̂𝑖 = 𝜌, where 𝜌̂𝑖 is the average activation of hidden neuron 

𝑖 and 𝜌 is a sparsity parameter set typically close to zero (e.g. 0.05). The average activation 𝜌̂ of hidden 

neuron 𝑖 in a network can be expressed as in (4.75). 
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This constraint is enforced through Kullback-Leibler divergence [175], shown in (4.76), where 𝛽 is a 

parameter controlling the influence of the sparsity term in the cost function. 

 Ω𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 𝛽∑KL(𝜌||𝜌̂𝑖) = 𝛽∑𝜌 log (
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 (4.76) 

Once each autoencoder layer is trained, the final set of neuron activations 𝒂(𝐿) are used as inputs for 

training a softmax classifier layer with target outputs 𝒚. This type of neural network classifier is trained 

using a cross-entropy cost function [173] as in (4.77). 

 𝐽 =
1

𝐾
∑𝒚𝑗 log (ℎ𝑾,𝒃(𝒙𝑗)) + (1 − 𝒚𝑗) log (1 − ℎ𝑾,𝒃(𝒙𝑗))

𝐾

𝑗=1

 (4.77) 

Once all weights 𝑾 and bias 𝒃 values are initialised in pre-training, the network is the fine-tuned [176]. 

This process involves training the fully connected network as a whole using supervised learning, where 

both input data 𝒙 and output data 𝒚 are used, altering 𝑾 and 𝒃 to improve the classification accuracy. 
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4.4 Case Studies 

Two case studies have been examined in this work, demonstrating both feature-based diagnostics and 

deep learning diagnostics applied in practice for the detection of rotating machine faults. 

The first case study compares a feature-based diagnostic method to a deep learning approach for the 

diagnosis of a generator fault identified within accelerometer data recorded from the HS1000. The 

feature-based method involved several stages, including a Vold-Kalman filter for order tracking, RMS 

for building a feature set, normalisation through the Z-score standardisation and finally a classification 

technique. Multiple classification methods were compared, including variations of SVMs, decision trees 

and K-NN. Deep learning was performed through a stacked autoencoder neural network. 

The second case study details the use of a stacked autoencoder neural network to detect multiple 

different faults from a gearbox test rig. This dataset was made available as part of the PHM 2009 data 

challenge [177] and included vibration data from faults in gear stages, bearings and shafts, recorded 

over multiple loading conditions. 

4.4.1 Methodology 

4.4.1.1 Feature-based Diagnostics 

Feature-based diagnostics was performed as in Figure 4.39.  

The Vold-Kalman filter (section 4.2.1.1.2, p. 103) was first used to extract characteristic fault 

frequencies at varying rotation speeds. A feature set was then generated by taking the RMS (section 

4.2.2.1, p. 106) of each frequency component over an 𝑁 second window. 

Before classification, features were scaled using Z-score standardisation [72], detailed in (4.78), where 

𝑥̅  and 𝜎 are the mean and standard deviation of feature 𝑥 respectively. This transformation gives the 

data zero mean with a standard deviation of one. 

 𝑍′ =
𝑥 − 𝑥̅

𝜎
 (4.78) 

Scaled features are then classified, comparing SVM, decision tree and k-nearest neighbour techniques 

(described in section 4.2.3, p. 113). The performance of each technique was measured through the 

classification accuracy as a percentage as calculated in (4.79), where 𝑁samples is the total number of test 

samples and 𝑁corect is the number of correctly classified test samples. 

 accuracy (%) = (
𝑁correct
𝑁samples

)×100 (4.79) 
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Figure 4.39 - Feature-based diagnostics process 

4.4.1.2 Deep Learning 

Stacked autoencoder networks (described in section 4.3.2, p. 122) were trained as fault classifiers using 

narrow spectrograms generated from raw vibration data as inputs. This gives a time-frequency 

representation of vibration data, allowing the network to learn from both stationary and non-stationary 

fault signals. 

These deep networks first learned features from vibration data using unsupervised learning through a 

number of autoencoder neural network layers. These layers were then connected to a softmax 

classification layer, trained using supervised learning to identify faults. The fully connected network 

was then retrained using the fine tuning process (section 4.3.2.2, p. 123) to further tune the learned 

features to improve classification accuracy. 

Input narrow spectrogram data, referred to as spectrogram ‘slices’, were generated using the Short Time 

Fourier Transform as in section 4.2.2.3.1, p. 108. This data represented the change in frequency response 

over short periods of time. The width of these slices was set to 𝑁 seconds, matching the size of the RMS 

window in the feature-based diagnostics mythology. Features learned by the deep networks would be 

representative of individual frequency components relating to component faults obtained from the 

spectrogram data. 

Network training data was randomly sampled from 70% of the spectrogram data. The remaining 30% 

of the data was used for testing. Networks of different configuration (altering the number of autoencoder 
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layers and hidden neurons) were evaluated using the percentage of samples correctly classified, 

calculated as in (4.79). 

Despite the neural network being primarily a ‘black-box’ technique, features learned by autoencoder 

layers at each hidden neuron can be visualised. The input 𝒙𝑗 which causes hidden neuron 𝑖 to have 

maximum activation can be used to represent the feature learned by the neuron. This is dependent on 

the weight matrix 𝑾 of each neuron, and is calculated as in (4.80) [166].  

 𝒙𝑗 =
𝑾𝑖𝑗

(1)

√∑ (𝑾𝑖𝑗
(1)
)
2

𝐾
𝑗=1

 (4.80) 

4.4.2 Case Study 1: HS1000 Generator 

In this case study, the feature-based methodology was compared to the deep learning methodology for 

the detection of a suspected induction generator fault observed within vibration data recorded from the 

HS1000 in operation. This data was captured during two periods of operation, where the turbine 

experienced turbulent loading and variable rotation speeds. 

4.4.2.1 Fault Case 

High resolution accelerometer data was available for the HS1000 tidal turbine (as discussed in chapter 

2), recorded through a tri-axial accelerometer sensor fixed to the nacelle of the turbine, adjacent to the 

generator, with a sample rate of 2 kHz. A number of vibration measurements were taken over short 

windows (approximately 5 minutes) during two separate deployments of the turbine with a total period 

of over 10 months. 

Measurements were taken during a range of different operating and weather conditions, where the 

turbine experienced constantly variable loading and rotation speed due to changing tidal flow rates and 

turbulence. 

During the turbine’s second deployment, the turbine displayed a change in response causing increased 

vibrations within the turbine’s generator. This can be observed in Figure 4.40, showing the average 

spectrum of vibration data for each deployment period. Computed resampling [101] has been used to 

normalize the frequency spectrum to represent rotational orders of the high speed shaft (HSS). 

A clear increase in vibration can be observed at the 6th order of the HSS, which may relate to the 

generator’s poles. High vibrations were also identified at 100 Hz (a harmonic of the line frequency) and 

at harmonics of the generator rotation frequency during different loading conditions. These frequencies 

were most consistent with an eccentric rotor fault (section 4.1.3.8, p. 98). However, strip-down 

information was not available to confirm this observation following decommissioning of the turbine.  

 



128 

 

 

(a) HS1000 operation between – baseline healthy response 

 

 (b) HS1000 operation between – generator fault 

Figure 4.40 - Averaged computer resampled order spectrum (high speed shaft) for two separate deployments of 

the HS1000 tidal turbine detailing a generator fault 

4.4.2.2 Results 

Feature-based classification was performed as in 4.4.1.1., where features representing the following 

fault frequencies characteristic of the observed generator fault were extracted under varying rotation 

speeds using the Vold-Kalman filter: 

• Generator shaft rotation frequency and 2nd harmonic 

• Generator poles vibration frequency and 2nd harmonic 

• Line frequency 2nd harmonic (100 Hz) 

The RMS of each component was calculated over a 1 second window, before applying the Z-score 

transformation. 

Table 4.1 details the results of the feature-based diagnosis method, where the classification accuracies 

of multiple different classification methods (including SVMs with different kernel functions, decision 

tree and K-NN) were calculated on test data as in (4.79). This feature-based method gives positive 
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results, with high classification accuracies of above 93% for all classification methods. A cubic SVM 

classifier gives the best classification accuracy of 96.86%. 

Deep learning was performed using the methodology described in 4.4.1.2. Spectrogram data was 

generated by performing 10 overlapping STFTs every second, with the frequency scale truncated to 500 

Hz, removing redundant frequency information and reducing the dimensionality of input data for more 

computationally efficient training.  

Table 4.2 details the classification accuracies of the deep learning diagnosis method for networks with 

varying numbers of autoencoder layers and hidden neurons after both pre-training and fine-tuning 

stages. These results show the effectiveness of deep learning, where classification accuracy exceeds the 

feature-based method, reaching 100% in many network configurations.  

For each network configuration, increasing the number of hidden units increases the accuracy in each 

training stage. However, increasing the number of autoencoder layers, allowing deep networks to further 

deconstruct input data into more complex features, actually decreases the classification accuracy in the 

pre-training stage. This indicates that the structure of the input data is of limited complexity and can be 

modelled more effectively with smaller networks. 

Table 4.1 - Feature-based classification accuracy for identification of a generator fault on the HS1000 

Classification Method Testing accuracy 

SVM 

Linear SVM 93.01 % 

Quadratic SVM 96.06 % 

Cubic SVM 96.86 % 

Decision Tree 

20 maximum nodes 95.96 % 

50 maximum nodes 96.85 % 

100 maximum nodes 96.39 % 

K-NN 

𝑘 = 1 96.42 % 

𝑘 = 10 96.76 % 

𝑘 = 100 95.59 % 
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Table 4.2 - Deep learning classification accuracy for identification of a generator fault on the HS1000 

Number of 

autoencoder layers 

Number of Hidden 

Units 

Pre-training 

accuracy 

Fine-tuning 

accuracy 

1 

5 89.73% 99.97% 

10 96.59% 99.97% 

50 99.56% 100% 

100 99.85% 100% 

2 

5 68.71% 99.97% 

10 72.32% 99.97% 

50 73.73% 100% 

100 73.86% 100% 

3 

5 43.81% 99.97% 

10 56.19% 99.97% 

50 73.13% 100% 

100 73.35% 100% 

4 

5 54.99% 99.97% 

10 54.99% 100% 

50 56.78% 100% 

100 65.23% 100% 

 

4.4.2.3 Feature Visualisation 

Figure 4.41 displays 𝒙𝑗, calculated as in (4.80), for selected hidden neurons in the first autoencoder layer 

with the highest activation for faulty conditions. Bright areas in each figure represent higher dependency 

on input data at that frequency (i.e. the neuron is looking for data at that frequency to make a 

classification) and darker areas represent negative dependency (i.e. the neuron is looking for the absence 

of data at that frequency). Areas of mid grey represent low dependency of data at that frequency (i.e. 

the neuron is not concerned with data at these frequencies). 

Analysis of the features learned by each neuron shows a series of bright areas at frequency components 

relating to vibration due to the generator’s poles at different rotation speeds. This indicates the network 

has decomposed input data to automatically identify fault signatures of the generator without prior 

engineering knowledge, using the activation of these features for classification. 
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Figure 4.41 - Features learned by stacked autoencoder network showing generator poles vibration deconstructed 

from vibration data at different rotation speeds 
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4.4.3 Case Study 2: Gearbox Test Rig 

This case study examines the use of stacked autoencoder networks for diagnosing multiple rotating 

machine failures from the same system under variable loading conditions. Data was sourced from a 

gearbox test rig, where faults were introduced in a number of different components, including gear 

stages, bearings and shafts [177]. 

Such faults can produce both stationary and non-stationary vibration signals. In addition, no single 

feature-based diagnostic technique best deals with these different types of vibration, as no single process 

is effective at isolating all types of signal associated with rotating machine fault modes [29]. This case 

study would therefore test the ability of stacked autoencoder networks to isolate and learn features from 

a combination of stationary and non-stationary signals simultaneously without the need for multiple 

different signal processing methods for separate faults. 

4.4.3.1 Gearbox Dataset 

The data used in this case study was released as part of the PHM Society’s 2009 PHM Challenge 

competition [177]. The aim of the dataset is to demonstrate the vibrations exhibited by a gearbox 

running under a number of different operational settings and under a number of different interacting 

fault modes. 

This dataset detailed a gearbox test rig, configured as in figure 4.42, consisting of three shafts, each with 

two supporting bearings, and two gear stages. This gearbox was designed to be reflective of a generic 

industrial gearbox. Each gear stage was run in two configurations. The first configuration used spur 

gears with 32 gear teeth and 96 pinion teeth in the first stage, and 48 gear teeth and 80 gear teeth in the 

second stage. The second configuration used helical gears with 16 gear teeth and 48 pinion teeth in the 

first stage, and 24 gear teeth and 40 pinion teeth in the second gear stage. The first gear stage reduced 

the speed of an input shaft to an idler shaft by a factor of 3. The second stage reduced the speed of the 

idler shaft by a factor of 1.667, giving a total rotation speed reduction ratio of 5. 

For each configuration, the gearbox run under several different fault modes, listed in Table 4.3. Fault 

modes were introduced manually, replacing healthy gear and bearing components with faulty 

components manufactured within the laboratory. The test rig was also run under a number of different 

operational settings for 4 second intervals. This included varying the speed between 30, 35, 40, 45 and 

50 Hz, under both high a low loading. The run time and load were chosen in order to not introduce any 

additional fault progression under each operating condition. 

Vibration data under each condition was recorded by two accelerometers located at the input and output 

sides of the gearbox respectively, sampling data at 66.667 kHz for 4 second intervals. A tachometer was 

also used to measure the rotation speed of the input shaft during these time intervals. 
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Figure 4.42 - Gearbox test rig apparatus, adapted from [177] 

Table 4.3 - Independent fault modes in gearbox test rig dataset 

Gear Type Component Fault 

Spur gear 

Gear 

Chipped gear tooth 

Eccentric gear 

Broken gear tooth 

Bearing 
Ball fault 

Inner raceway fault 

Shaft 
Imbalance 

Keyway sheared 

Helical gear 

Gear Chipped gear tooth 

Bearing Combination 

Shaft Bent shaft 
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4.4.3.2 Results 

Spectrogram data was generated by performing 10 overlapping STFTs every 0.01 seconds. This window 

length was reduced from the previous case study to best capture non-stationary effects in the vibration 

signal occurring at the maximum rotation speed of 50 Hz. The frequency scale of each spectrogram 

slice was truncated to 10 kHz to further reduce the dimensionality of data. 

A separate deep autoencoder network was constructed to detect each fault mode in Table 4.3, each 

trained as a binary classifier. The number of autoencoder layers and the number of hidden units in each 

layer were varied to see the effect on classification performance. 

Table 4.4 lists the maximum classification accuracy recorded for each fault. Figure 4.43 shows the 

classification accuracies for each fault under different network configurations. Results showed high 

classification accuracies for each fault type, ranging from 98.6935% accuracy for detection of a bearing 

inner raceway fault to 100% accuracy for the detection of shaft keyway shearing. As in the previous 

case study, the classification accuracy was observed to increase as the number of hidden units in each 

autoencoder layer was increased. 

Figure 4.43 shows classification accuracy was also improved by small amounts for most fault cases 

when the number of hidden layers was increased. This implies that there is some additional complexity 

within the input data, potentially due to the combination of both stationary and non-stationary vibration 

signals from gear stage and bearing faults. 

Table 4.4 - Maximum classification accuracies of deep learning for each independent fault mode 

Gear type Fault 
Maximum classification 

accuracy 

Spur gear 

Chipped gear tooth 99.06% 

Eccentric gear 98.80% 

Broken gear tooth 98.80% 

Ball fault 99.97% 

Inner raceway fault 98.69% 

Imbalance 98.85% 

Keyway sheared 100.00% 

Helical gear 

Chipped gear tooth 99.18% 

Combination 99.51% 

Bent shaft 99.09% 
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   (a) Chipped gear tooth (spur)           (b) Eccentric gear (spur) 

 
   (c) Broken gear tooth (spur)            (d) Bearing ball fault (spur)  

 
 (e) Bearing inner raceway fault (spur)            (f) Shaft imbalance (spur)  

 
(g) Shaft keyway sheared (spur)        (h) Chipped gear tooth (helical) 

 
(i) Combination bearing fault (helical)                (j) Bent shaft (helical) 

Figure 4.43 - Classification accuracies of each network configuration for each fault mode 
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4.4.3.3 Feature Visualisation 

Features learned by each network were visualised as in (4.79), where bright areas represent higher 

dependency on input data at that frequency, dark areas represent high negative dependency and mid 

grey areas represent low dependency at that frequency for classification. 

Examples of features with high activations during faulty conditions for a number of different networks 

are shown in Figure 4.44(a) to (f), where bright areas in each figure show that networks appear to have 

learned representations of both known fault frequencies and natural resonances. 

Figure 4.44(a) shows a feature representing the rotation speed of the input shaft at 50 Hz, where rotation 

frequency is a common feature of rotating component fault modes. 

Figure 4.44(b) shows a feature with high dependency for BPFI frequency, a frequency linked to a fault 

within a bearing’s inner raceway. Dark areas in the figure surrounding this frequency represent high 

negative dependency, where the network may be filtering out adjacent frequency components or noise 

present in the input data but not related to this particular fault mode. 

Figure 4.44(c) and (d) show features with high dependency for a gear mesh frequency and a gear mesh 

frequency with multiple harmonics, which are frequencies related to gear stage faults. 

Figure 4.44(e) and (f) show features with high dependency at high frequencies (above 5 kHz). These 

frequencies are believed to be from non-stationary natural resonances within components of the 

gearbox, invoked by gear and bearing faults respectively.  

These results show that deep networks trained with vibration spectrogram data can automatically learn 

vibration fault signatures purely from structure within the input data and with no prior engineering 

knowledge of the system or its response to failure. Each network also learns a combination of many 

other frequencies, not necessarily linked to known fault frequencies derived from engineering 

principles, but potentially representative of measured fault signals within the system. 
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(a) Input shaft rotation speed 

 
(b) Bearing BPFI 

 
(c) Gear mesh 

 
(d) Gear mesh and multiple harmonics 

 
(e) High frequency natural resonance 

 
(f) High frequency natural resonance 

Figure 4.44 - Examples of features learned by stacked autoencoder networks for different fault modes 
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4.5 Diagnostics in an Intelligent Condition Monitoring System 

In chapter 3, anomaly detection was discussed, where CRISP-DM was used to examine available 

monitoring data to model the normal response of machinery. This is an appropriate first stage in 

condition monitoring in new applications, where fault data is not readily available, allowing faults to be 

detected an early stage and allowing operators to act before faults propagate further throughout the 

machine. However, these methods do not give an implicit classification of the faults that have occurred 

within machinery.   

Figure 4.45 shows how this CRISP-DM approach for anomaly detection can be extended to introduce 

diagnostic models as fault data becomes available. 

The extended model includes feedback after the deployment stage, returning to the data understanding 

phase once a fault has been detected by an anomaly detection model. This allows diagnostic models to 

be introduced to the system as faults are detected. The data understanding phase should then be used to 

identify differences between healthy and faulty data. 

A decision stage has been introduced after the data understanding phase. If no fault data is available, 

anomaly detection models should be constructed, using CRISP-DM as discussed in chapter 3. However, 

if fault data is available, diagnostic models should also be constructed. 

A data preparation stage is introduced after this decision stage for fault data. If feature-based diagnostic 

methods are being used, this stage will involve signal processing techniques for feature-extraction. If 

deep learning methods are being used, this stage will involve converting raw sensor data into input data 

for deep neural networks (e.g. performing the STFT to generate spectrograms). This stage will also 

include building training and testing datasets, and separating healthy data from fault data. 

The diagnostic modelling stage involves training diagnostic models, either classification models for 

feature-based diagnostics (SVMs, decision trees, etc.) or deep neural networks. Diagnostic modelling 

is followed by an evaluation stage, where the classification accuracy of models should be determined. 

This includes feedback, allowing separate models to be compared or updated to improve evaluation 

results. 

Finally, once the performance of diagnostic models is satisfactory, they can be integrated into the 

intelligent condition monitoring system within the deployment stage. 
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Figure 4.45 - CRISP-DM anomaly detection approach extended for diagnostic modelling 
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4.6 Summary 

This chapter details diagnostic modelling for rotating machines that can be used by an intelligent 

condition monitoring system to provide operators with automatic monitoring decisions. 

First, section 4.1 discusses common fault modes of rotating components (gearboxes, bearings and 

generators), where high resolution accelerometer data was found to be the most effective parameter in 

diagnosing rotating machine faults. 

Secondly, section 4.2 discusses feature-based methods of automatic fault diagnosis from vibration data, 

where features are extracted from vibration data representative of fault signals and used as the input to 

classifiers, trained to make automatic diagnoses. These methods are effective in combining engineering 

knowledge of the response of rotating machine faults with signal processing and machine learning 

techniques. However, there is no one technique or process that is most effective at diagnosing all types 

of fault and developing feature-based diagnostic systems for large machines with many interconnected 

components, each with a number of unique fault modes, can therefore be labour intensive. 

Deep learning is a recently advancing field of machine learning and provides an alternative to feature-

based approaches where features are learning automatically through large neural networks. This is 

discussed in section 4.3, where the stacked autoencoder deep neural networks was identified as a 

suitable deep learning approach for rotating machine diagnostics. 

In section 4.4., two case studies examined both feature-based and deep learning diagnostic methods for 

detecting faults from accelerometer data. The first case study compared both methods in diagnosing a 

suspected generator fault within the HS1000. Feature-based diagnostics was performed using the Vold-

Kalman filter to isolate characteristic frequencies at varying rotation speed. SVM, decision tree and K-

NN classification methods were then compared. Each classification method gave comparable 

performance, with a cubic SVM providing the highest classification accuracy of 96.86%. Deep learning 

was then performed through stacked autoencoder networks, trained with spectrogram data obtained 

through the STFT. This approach was found to out-perform the feature-based method, reaching 100% 

classification accuracy even for networks with smaller numbers of hidden layers. 

The second case study demonstrated this deep learning approach applied to data from a gearbox test rig, 

identifying multiple different faults from gear stages, bearings and shafts. Deep networks again 

performed well in this application, giving a classification accuracy of above 98% for all fault modes. 

Increasing the number of autoencoder layers and hidden neurons in this case, allowing networks to 

model additional complexity, potentially due to the presence both stationary and non-stationary fault 

signals, in the input data. 

These results show that both feature-based and deep learning approaches are suitable for diagnostic 

modelling of rotating machines once fault data becomes available. Feature-based learning can be used 

if there is a good understanding of fault modes and signal processing techniques in order to extract the 
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best features. Once suitable features have been extracted, SVMs appear to give best classification 

performance, however models can be difficult to interpret and require the selection of an appropriate 

kernel function. If interpretability is required then decision trees can be used, however these may 

underperform in comparison to SVMs and over fit the training data. 

As an alternative, deep learning can be employed for diagnostics where there is a limited understanding 

of a system’s response to fault modes. Features are learned directly from the data and have been shown 

to out-perform manually selected features for classification. Additionally, multiple fault modes can be 

detected using the same method, provided separate models are trained for each type fault. However, 

adequate training data is required for feature learning and training can require large amounts of 

computational power. 

Finally, CRISP-DM used for anomaly detection, as in chapter 3, was extended for diagnostic modelling. 

This allows diagnostic models to be incorporated into intelligent condition monitoring systems designed 

for new applications once fault data becomes available. 
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Chapter 5 

5 Prognostics 

The final stage of condition monitoring, following anomaly detection and diagnostics, is prognostics. 

The aim of prognostics is to predict the time until failure will occur within a component undergoing 

degradation [30]. 

Applying prognostics not only requires knowledge of individual fault modes (as in diagnostics) but also 

requires knowledge of the progression of faults over time. In state of the art prognostic techniques, this 

knowledge is often inferred from historical data, or from previous examples of failure where past run-

to-failure data is available for the system [178]. 

Implementing prognostics in new systems can therefore be challenging, as historical run-to-failure data 

is sparsely available. Suitable prognostics methods to predict the remaining health of components must 

therefore not solely rely on past examples of failure in the current operating environment, and be flexible 

in incorporating knowledge of failure from other application areas. 

In this chapter, the requirements of different prognostic methods are discussed to find the most suitable 

techniques for making prognostic estimates in new applications with limited past examples of failure. 

Model-based degradation techniques are then examined in more detail, in particular Bayesian filtering 

methods (such as variations of the Kalman filter, and the particle filter), where prognostic estimates are 

formed from a probabilistic estimate of the current damage state and extrapolated towards a failure 

threshold using a degradation model. 

An approach for implementing model-based prognostics in new systems is then discussed, taking into 

account the selection of suitable degradation parameters and models. An example of an implementation 

of the particle filter is then given, following this methodology to estimate the RUL of the HS1000 

gearbox from low resolution vibration data under a simulated failure. 

Finally, the integration of prognostic modelling into the CRISP-DM framework for developing 

intelligent condition monitoring methods for new applications is discussed.  
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5.1 Prognostic Methods 

The aim of prognostic methods is to estimate the time until a component will fail after a fault has been 

detected. This requires knowledge of the fault itself but also knowledge of the rate at which the system 

will degrade due to the fault over time. This knowledge of the rate of failure can come from different 

sources, e.g. from historical trends or observations, run-to-failure sensor data from past examples of 

failure, or prior engineering or physics knowledge of the system used to form a degradation model [30]. 

Prognostic methods can be therefore split into three categories: time-to-failure analysis, stressor-based 

and degradation-based [179] where each method forms prognostic estimates based on different forms 

of input data representative of component degradation over time, as shown in Figure 5.1.  

 

Figure 5.1 - Types of prognostics methods, adapted from [179] 

The requirements and assumptions of each of these categories of prognostics is discussed in more detail 

as follows. 
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5.1.1 Type 1: Time to Failure Analysis 

Time to failure analysis is the most straightforward category of prognostic methods, stemming from 

traditional reliability analysis. Here, prognostic estimates are formed solely from the distribution of 

runtimes from past examples of failure in similar systems [179]. 

One example of a type 1 prognostic technique is Weibull analysis [180]. In this method, the total runtime 

at failure is recorded over multiple similar systems. A Weibull distribution is then fitted to this data to 

approximate the distribution of these historical failure times. The Weibull distribution is calculated as 

in (5.1), where 𝑡 is the failure time 𝛽 is a shape parameter and 𝜆 is a scale parameter. This distribution 

is often used due to its flexibility in modelling different shapes of distribution [179]. 

 𝑝(𝑡) =
𝛽

𝜆
(
𝑡

𝜆
)
𝛽−1

 (5.1) 

 

Figure 5.2 - Weibull distributions with varying shape parameter 𝛽 values 

These methods are clearly not suitable for new applications, where historical failure times of 

components will be sparsely available. In addition, time to failure analysis relies on the assumption that 

all systems have historically operated under similar conditions, and that failures will therefore progress 

at similar rates to those in the past [21]. This assumption is generally impractical in many industrial 

applications, as operating conditions can vary over time and vary between separate systems operating 

in the same environment (e.g. tidal arrays). 
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5.1.2 Type 2: Stressor-based 

Stressor-based prognostic methods expand upon type 1 methods by incorporating operating conditions 

(environmental stressors) of the system into the prognostic model [179]. These stressors give an 

indication of the usage of components and may include loading, temperatures, vibrations, etc., 

modelling the failure rate of an average component operating under these measured conditions [21]. 

Examples of stressor-based techniques can include regression analysis, Markov chain models, 

Proportional Hazards Models, physics-of-failure models, and Life Consumption models [21].  

The main assumption of type 2 techniques is that systems operating under the same conditions will fail 

at similar rates [21]. This allows for little variance between components operating in similar 

environments, but that may fail at different rates. 

As with type 1 methods, type 2 prognostics techniques are also mostly dependent on historical examples 

of failure to construct accurate predictive models. This makes this category of technique also unsuitable 

for applying prognostics in new systems with limited past examples of failure. 
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5.1.3 Type 3: Degradation-based Prognostics 

Finally, degradation-based prognostic methods predict the failure rates of specific components from 

their individual responses and operation [21]. This is performed through the measurement of a 

degradation parameter, which indicates the level of health of a component and is related to the 

probability of failure at that point in time [179]. This degradation parameter may be a parameter 

measured directly from the system or component, or may be a parameter generated through some 

operation that indirectly implies the level of damage. 

This category of prognostics also requires knowledge of the degradation path, i.e. the trend or growth 

of a degradation parameter over time. This allows degradation parameters to be extrapolated forward in 

time to a failure threshold. Methods of modelling the degradation path broadly splits type 3 prognostic 

techniques into two categories: data-driven and model-based [181], where degradation is inferred either 

from historical data or from a model representing the underlying mechanisms of failure respectively. 

This work finds type 3 prognostic techniques most suitable for new applications, in particular model-

based methods. Using these methods, predictions are not solely reliant on the availability of historical 

data and can be inferred in part from the current state of individual components, based on current 

operating conditions, through the measurement of a degradation parameter. Models may also be 

constructed from knowledge of similar components operating in different environments, where such 

models can vary their degradation predictions to the current application based on operational 

measurements from the system, or by tuning parameters to best fit the observed trend of degradation. 

The remainder of this chapter studies degradation-based prognostics in further detail, discussing how 

such methods can be implemented to give prognostic predictions within new applications where systems 

have limited operational histories. 

  



147 

 

5.2 Degradation-based Prognostics 

The goal of degradation-based prognostics techniques is to estimate the future point in time 𝑘E at which 

an estimated damage state of a component crosses some threshold 𝑇E representative of failure. From 

here, the remaining useful life (RUL) of a component can be estimated as in (5.2). This process can be 

visualised as in Figure 5.3. 

 𝑅𝑈𝐿 = 𝑘𝐸 − 𝑘 (5.2) 

 

Figure 5.3 - Process of model-based prognostics through the extrapolation of an estimated damage state towards 

failure threshold 

Degradation-based prognostic algorithms can be broadly separated into two categories: data driven and 

model-based [181]. A third category of hybrid methods can also be defined, where the results of both 

data driven and model-based methods are fused together, however this type of prognostics is not 

discussed in this work. 

Data driven algorithms make predictions of the damage stage of a component based on data from past 

examples of failure [178]. This often involves using statistical or machine learning methods to fit a 

predictive model to past sensor data recorded during failure. Examples of such algorithms include, but 

are not limited to, Hidden Markov Modelling and neural networks [181]. 

A requirement of data driven approaches is the availability of run-to-failure data, where the quality of 

the dataset determines the performance of the chosen technique [181]. These methods are therefore not 

suitable for newly commissioned systems, where fault data will be extremely sparse. 

Model-based prognostic algorithms combine knowledge of the physical degradation process with 

measured sensor data to make predictions [182]. In these techniques, knowledge of the physical 

degradation process is expressed through a parametric model, and is not solely dependent on the 

availability of run-to-failure data. This makes this category of degradation-based prognostics most 



148 

 

suitable to new applications, where historical failure is often not available. Here, models can be 

developed based on knowledge of the degradation process, which can be inferred from physics-based 

knowledge of the specific system or from knowledge of the failure of similar components in different 

systems. Parameters of the model can then be tuned in operation to best fit the observed degradation 

trend of individual components. 

5.2.1 Model Based Methods 

Figure 5.4 [182] details the architecture of a model-based prognostics system. Here, the system converts 

inputs 𝒖𝑘 (e.g. operational parameters) to observations or measurements 𝒚𝑘 (e.g. condition parameters). 

Then a fault detection isolation and identification stage (e.g. anomaly detection and diagnostics) can be 

performed to identify a specific fault mode. Finally, prognostics is performed in two stages: damage 

estimation and prediction. Firstly, damage estimation is performed, where the distribution of current 

damage state 𝒙𝑘 and degradation model parameters 𝜽𝑘 are estimated from measurements 𝒚. Secondly, 

prediction is performed, where the distribution of current damage state 𝒙𝑘 is extrapolated forward in 

time based on the current estimate of model parameters 𝜽𝑘, with hypothesised future inputs, to find the 

distribution of the RUL. 

 

Figure 5.4 - Architecture of a model-based prognostics system, adapted from [182] 

These distribution predictions can be achieved through Bayesian filtering approaches [181] where the 

uncertainty of the model and state estimates are modelled over time. In these approaches it is assumed 

that the current damage state 𝒙𝑘 is dependent on the previous state 𝒙𝑘−1 and operational conditions 

[181]. 

Bayesian filtering approaches include the Kalman filter, Extended Kalman filter, Unscented Kalman 

filter and particle filter. These methods are examined in more detail as follows.  
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5.2.1.1 Kalman Filter 

The Kalman filter [183] makes the assumption that the state 𝒙 at time step 𝑘 can be inferred from the 

previous state at step (𝑘 − 1) as in (5.3), where 𝐅𝑘 is a state transition model, 𝐁𝑘 is a control-input 

model applied to inputs 𝒖𝑘 (e.g. operational parameters) and 𝝎𝑘 is process noise. In the Kalman filter, 

process noise is assumed to be normally distributed with a mean of zero and covariance 𝐐𝑘. 

 𝒙𝑘 = 𝐅𝑘𝒙𝑘−1 + 𝐁𝑘𝒖𝑘 +𝝎𝑘  (5.3) 

Outputs or measurements of the true state 𝒚𝑘 can be expressed as in (5.4), where 𝐇𝑘 is an observation 

model and 𝒗𝑘 is observation noise, also assumed to be normally distributed with a mean of zero and 

having covariance 𝐑𝑘. 

 𝒚𝑘 = 𝐇𝑘𝒙𝑘 + 𝒗𝑘 (5.4) 

From here, the Kalman filter is performed in two stages, prediction and estimation [184]. The first stage 

is the prediction stage, where the state estimate from the previous step in time (𝑘 − 1) is used to predict 

the state at the current point in time 𝑘. This is expressed in (5.5) and (5.6), where 𝒙 donates state 

estimates and 𝐏 donates the estimates’ error covariance, a measure of the estimates’ accuracy. 

 𝒙𝑘|𝑘−1 = 𝐅𝑘𝒙𝑘−1|𝑘−1 + 𝐁𝑘−1𝒖𝑘−1 (5.5) 

 𝐏𝑘|𝑘−1 = 𝐅𝑘𝐏𝑘−1|𝑘−1𝐅𝑘
T + 𝐐𝑘 (5.6) 

The second stage is the update stage, where the current state estimate is combined with observations 

𝒚𝑘. This can be performed as in (5.7) to (5.11) [185], filtering 𝒙𝑘|𝑘−1 and 𝐏𝑘|𝑘−1 to give final predictions 

𝒙𝑘|𝑘 and 𝐏𝑘|𝑘, where 𝐊𝑘 is a weighting known as the Kalman gain. 

 𝒚̃𝑘 = 𝒚𝑘 −𝐇𝑘𝒙𝑘|𝑘−1 (5.7) 

 𝐒𝑘 = 𝐇𝑘𝐏𝑘|𝑘−1𝐇𝑘
T + 𝐑𝑘 (5.8) 

 𝐊𝑘 = 𝐏𝑘|𝑘−1𝐇𝑘
T𝐒𝑘

−1 (5.9) 

 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝐊𝑘𝒚̃𝑘 (5.10) 

 𝐏𝑘|𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘|𝑘−1 (5.11) 

Prognostics can then be performed by repeating the prediction stage in (5.5) and (5.6), iteratively 

estimating future damage states 𝒙𝑘:𝑘𝐸without measurement correction. This process can be stopped 

when the damage state exceeds a threshold 𝑇𝐸  representative of component failure. The RUL of the 

damaged component can then be estimated as in (5.2). 
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5.2.1.2 Extended Kalman Filter 

The original Kalman Filter is limited to linear systems. For nonlinear systems, or for non-Gaussian 

noise, there is no closed form solution to find the state space PDF [186]. However, the Kalman filter 

algorithm can be altered to solve such problems. One example is the Extended Kalman Filter (EKF), 

where nonlinear functions are linearized around the current estimate and the Kalman filter is then 

applied [187]. 

In this case, the state transition and observation models are allowed to be nonlinear, but must be 

differentiable [186]. These state transition and observation models can be expressed as in (5.12) and 

(5.13) respectively. 

 𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘) + 𝝎𝑘 (5.12) 

 𝒚𝑘 = ℎ(𝒙𝑘 , 𝒗𝑘) (5.13) 

Here, 𝑓 and ℎ cannot be directly applied to the covariance as in the Kalman filter. Instead, the Jacobian 

matrices (matrices of partial derivatives) 𝐅 and 𝐇 are calculated at each step 𝑘 for 𝑓 and ℎ respectively 

with the predicted state at (𝑘 − 1), as in (5.14) and (5.15) [186]. 

 𝐅𝑘 = (
𝜕𝑓

𝜕𝒙
) |𝒙𝑘−1|𝑘−1, 𝒖𝑘 (5.14) 

 𝐇𝑘 = (
𝜕ℎ

𝜕𝒙
) |𝒙𝑘|𝑘−1 (5.15) 

From here, the prediction and update steps of the Kalman filter are applied (as in (5.5) to (5.11)), where 

(5.5) becomes (5.16) to accommodate the nonlinear model. 

 𝒙𝑘|𝑘−1 = 𝑓(𝒙𝑘−1|𝑘−1, 𝒖𝑘) (5.16) 
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5.2.1.3 Unscented Kalman Filter 

Although the EKF provides a nonlinear solution for component damage prediction, it can give poor 

performance for systems where 𝑓 and ℎ are highly nonlinear, and in addition, requires the calculation 

of Jacobian matrices which can be computationally expensive for online applications [182]. 

The Unscented Kalman Filter (UKF) is an alternative approach and estimates the distribution of the 

state using a deterministic sampling technique called the unscented transform [188]. Weighted sample 

points (also known as sigma points) are sampled around the mean and propagated through the nonlinear 

functions to form an estimate of the new mean and covariance [182]. This can be expressed as in (5.17), 

where sigma points 𝝌𝑖 can be passed through nonlinear function 𝑔 to give new sigma points 𝜸𝑖. The 

new mean 𝑦̅ and covariance 𝐏𝒚𝒚 can then be calculated as in (5.18) and (5.19) respectively, where 𝑤𝑖  is 

the weights of each 𝑖th sigma point. 

 𝜸𝑖 = 𝑔(𝝌𝑖) (5.17) 

 𝑦̅ = ∑𝑤𝑖𝜸𝑖

𝑖

 (5.18) 

 𝐏𝒚𝒚 =∑𝑤𝑖(𝜸𝑖 − 𝑦̅)(𝜸𝑖 − 𝑦̅)𝑇

𝑖

 (5.19) 

The UKF then follows the same procedure as the Kalman filter and EKF, modifying the prediction and 

update stages to use sigma points. Including sigma points, the prediction stage becomes: 

 𝝌̃𝑘|𝑘−1
𝑖 = 𝑓(𝝌̃𝑘−1|𝑘−1

𝑖 , 𝒖𝑘−1) (5.20) 

 𝒙𝑘|𝑘−1 =∑𝑤𝑖

𝑖

𝝌̃𝑘|𝑘−1
𝑖  (5.21) 

 𝜸̃𝑘|𝑘−1
𝑖 = ℎ(𝝌̃𝑘|𝑘−1

𝑖 ) (5.22) 

 𝒚̃𝑘|𝑘−1 =∑𝑤𝑖

𝑖

𝜸̃𝑘|𝑘−1
𝑖  (5.23) 

 𝐏𝑘|𝑘−1 = 𝐐𝑘 +∑𝑤𝑖(𝝌𝑘|𝑘−1
𝑖 − 𝒙𝑘|𝑘−1)

𝑖

(𝜒𝑘|𝑘−1
𝑖 − 𝒙𝑘|𝑘−1)

𝑇
 (5.24) 

The update stage then becomes: 

 𝐏𝒚𝒚 = 𝐑 +∑𝑤𝑖(𝜸̃𝑘|𝑘−1
𝑖 − 𝒚̃𝑘|𝑘−1)(𝜸̃𝑘|𝑘−1

𝑖 − 𝒚̃𝑘|𝑘−1)
𝑇

𝑖

 (5.25) 

 𝐏𝒙𝒚 =∑𝑤𝑖(𝝌𝑘|𝑘−1
𝑖 − 𝒙𝑘|𝑘−1)(𝜸̃𝑘|𝑘−1

𝑖 − 𝒚̃𝑘|𝑘−1)
𝑇

𝑖

 (5.26) 

 𝐊𝑘 = 𝐏𝒙𝒚𝐏𝒚𝒚
−1 (5.27) 

 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝐊𝑘(𝒚𝑘 − 𝒚̃𝑘|𝑘−1) (5.28) 

 𝐏𝑘|𝑘 = 𝐏𝑘|𝑘−1 − 𝐊𝑘𝐏𝒚𝒚𝐊𝑘
𝑇 (5.29) 
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5.2.1.4 Particle Filter 

Finally, the particle filter provides an alternative to Kalman filter based approaches and can be applied 

directly to nonlinear systems with non-Gaussian noise [185]. 

Using this method, the damage state of machinery is estimated by a set of values sampled from the state 

space (known as particles) weighted to represent the probability distribution. These particles can be 

expressed as in (5.30), where 𝑥𝑘
(𝑖)

 and 𝑤𝑘
(𝑖)

 are the state vector estimate and weight respectively for 

particle 𝑖 at each time step 𝑘, for 𝑃 number of particles [182]. 

 {𝑥𝑘
(𝑖)
, 𝑤𝑘

(𝑖)
}
𝑖=1

𝑃

 (5.30) 

The posterior density of these samples can be estimated as in (5.31), where 𝛿
𝒙𝑘
(𝑖)(𝑑𝒙𝑘) is the Dirac delta 

function at each particle state estimate 𝒙𝑘
(𝑖)

. 

 𝑝(𝒙𝑘|𝒚0:𝑘) ≈∑𝑤𝑘
(𝑖)𝛿

𝒙𝑘
(𝑖)

𝑃

𝑖=1

(𝑑𝒙𝑘)  (5.31) 

Particle filtering can be performed through a number of different procedures. Sampling importance 

resampling (SIR) [189] is commonly used within prognostics [186]. In this procedure particles are 

resampled at each time step to stop degeneracy, a problem that causes single particles to dominate after 

very few iterations [185]. 

In this procedure, state estimates for each particle 𝒙𝑘
(𝑖)

 are calculated by applying the state transition 

model (5.32) to each of the previous particle state estimates 𝒙𝑘−1
(𝑖)

, giving (5.33), where 𝝎𝑘−1
(𝑖)

 are 

generated from a process noise PDF. 

 𝒙𝑘
(𝑖)
~𝑝(𝒙𝑘|𝒙𝑘−1

(𝑖)
, 𝒖𝑘−1)  (5.32) 

 𝒙𝑘
(𝑖)
= 𝑓(𝒙𝑘−1

(𝑖)
, 𝒖𝑘−1) + 𝝎𝑘−1

(𝑖)
 (5.33) 

Weights are then assigned to each particle based on 𝒚𝑘 (5.34), calculated using the observation model 

as in (5.35), where 𝒗𝑘
(𝑖)

 are generated from an observation noise PDF. 

 𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖)
𝑝(𝒚𝑘|𝒙𝑘

(𝑖)
)  (5.34) 

 𝒚𝑘 = ℎ(𝒙𝑘
(𝑖)
, 𝒗𝑘

(𝑖)
) (5.35) 

Weights are then normalised as in (5.36) to give (5.37). 

 𝒘ෝ𝑘 =
𝒘𝑘

∑ 𝑤𝑘
(𝑖)𝑃

𝑖=1

 (5.36) 
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 ∑𝑤ෝ𝑘
(𝑖)
= 1

𝑃

𝑖=1

 (5.37) 

Finally, particles {𝑥𝑘
(𝑖)
, 𝑤𝑘

(𝑖)
} are resampled. This resampling is performed if a measure of the effective 

number of particles 𝑃eff falls below some threshold 𝑃𝑇  [185]. 𝑃eff can be estimated based on the variance 

of particle weights as in (5.38). 𝑃 number of samples are then taken from the current set of particles, 

with probabilities proportional to their weights. 

 𝑃̂eff =
1

∑ (𝑤𝑘
(𝑖)
)
2

𝑃
𝑖=1

 (5.38) 

5.2.1.5 Random Walk Joint State-Parameter Estimation 

In the previous methods, only the estimation of the damage state is described. However, in model based 

prognostics, the parameters of the model also must be estimated at each time step. 

This can be achieved by augmenting the model parameters 𝜽 to the state vector 𝒙 [182]. Here, both the 

state estimate and model parameters will be filtered around observations 𝒚. However, some form of 

evolution must also be added to each parameter over time. 

One example of evolution is known as the random walk [182], where noise is added to each parameter 

after every time step. This is expressed as in (5.39), where 𝜉𝑘−1 is a noise parameter sampled from a 

PDF of some noise distribution. This can be applied directly in the particle filter, however in Kalman 

filter approaches it is applied by extending the process noise matrix 𝐐. 

 𝜽𝑘 = 𝜽𝑘−1 + 𝜉𝑘−1 (5.39) 

The variance of noise 𝜉 effects the rate of convergence of parameter estimates as well as the estimation 

performance once parameter estimates converge. E.g. a large variance can give faster convergence but 

results in wider state estimates, whereas a small variance will give slow parameter convergence but will 

give tighter state estimates [182]. A number of methods exist to tune the variance of 𝜉, including 

approaches by M. Daigle and K. Goebel [190], and J. Lui and M. West [191]. 
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5.3 Application of Model-based Prognostics in New Systems 

Model-based prognostics has been identified as most suitable for applying prognostics in new 

applications where limited run to failure data exist. However, these methods require the selection of a 

suitable measure of degradation as well as a degradation model. 

In this section, the process of identifying suitable degradation parameters and models is discussed. In 

this work, this has primarily focussed on model-based prognostics of gearboxes and bearings. From 

here a prognostics methodology is proposed, detailing how model-based prognostics can be performed 

with anomaly detection and diagnostics results. 

5.3.1 Degradation Parameter 

In model-based prognostics, a measure of degradation is used to estimate a damage state 𝒙. This 

measured parameter is linked to observations of the system, 𝒚. 

For rotating machines, the degradation parameter can be linked to measured vibration sensor readings. 

Vibration was identified in chapters 3 and 4 as strongly related to the condition of rotating machine 

components. Chapter 3 linked the response of low resolution vibration measurements to operational 

parameters (generator rotation speed and output power) for anomaly detection. Chapter 4 then detailed 

how features from high resolution vibration signals can be used to make a diagnosis from faulty signals. 

High resolution vibration features are commonly used as a degradation parameter for gearbox and 

bearing prognostics [192] [193] [194] [195] [196]. For example, degradation parameters may be taken 

from characteristic frequencies from the vibration signal. M. Gašperin, et al., [192] use the amplitude 

of the gear mesh frequency from a measured vibration signal to predict the RUL of a gear stage 

experiencing gear tooth wear through the particle filter. 

However, vibration features used for prognosis are generally more widespread than individual 

frequencies and can instead measure larger bands of frequencies filtered from the original vibration 

signal. Y-X. Jia, et al., [193] measure the amplitude of a frequency band (between 3 kHz and 4.5 kHz) 

over time as a measure of degradation of a gearbox experiencing gear tooth wear. C. K. R. Lim and D. 

Mba [194] also use the amplitude of a frequency band (between 250 Hz and 2.5 kHz) to measure the 

degradation of a bearing experiencing an inner raceway fault. 

In addition to the amplitude, other metrics can be used to measure degradation within specific frequency 

bands. For example, E. Sutrisno, et al., [195] measure degradation of a bearing using the kurtosis of a 

frequency band (between 5.5 and 6.0 kHz) over time. Y. Wang, et al., [196] show the kurtosis from 

select frequency bands is effective for prognostics of both bearing and gear tooth faults. 

However, degradation parameters are not limited to high resolution vibration measurement. Methods 

have also been proposed for measuring the degradation of rotating machinery from low resolution 
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SCADA data [197] [198]. Here, low resolution signals can be used to build a model of normal behaviour 

(i.e. anomaly detection), where the residual from the model is used as a degradation parameter. 

For example, S. Bulter, et al., [197] construct a model of low resolution temperature measurements from 

SCADA data, where the residual temperature between temperature readings and the model are used to 

measure the degradation of a wind turbine’s main bearing. Alternatively, X. Jia, et al., [198] use SCADA 

data to build a model of a wind turbine’s speed-power curve using principal component analysis and 

Gaussian mixture models, where decreasing levels of probability over time are used as a prognostic 

indicator. 

5.3.2 Model Selection 

A degradation model is used in model-based prognostics to estimate the progression of damage state 𝒙 

over time. These models are sometimes to referred to as physics-based models, as they approximate the 

physical mechanisms of failure over time [178]. 

Models used in different prognostic applications can vary from straightforward parametric functions, 

where parameters are tuned to best approximate degradation trends, to more complex models designed 

from first-principles of the system, where the underlying physical mechanics of failure are tracked over 

time using measurements from the system. 

In many studies [199] [200] [192] [201] [195] [202] [194], more straightforward parametric functions 

are used in place of complex first-principle models. These models can provide a sufficient estimation 

of damage progression without a deep understanding of the underlying physics of failure, where the 

parameters of a function replace physical measurements or material properties. This modelling approach 

may be suitable for new systems where detailed physical knowledge of each component is not known, 

but models have been proven to effectively model the degradation of similar components in different 

environments. 

The most straightforward degradation model is a linear model, where the damage state grows with a 

constant gradient over time. A function representing the linear growth of 𝒙𝑘 over 𝑘 steps in time is 

shown in (5.40) with parameters 𝜽 = {𝑚, 𝑐}. This function can be rewritten in terms of the previous 

state 𝒙𝑘−1 and adding process noise 𝜔𝑘 as in (5.41), where 𝑐 is dropped making the parameter set 

become 𝜃 = 𝑚 and where Δ𝑡 is the difference in time between time steps (𝑘 − 1) and 𝑘 as in (5.42). 

 𝒙𝑘 = 𝑚𝑘 + 𝑐 (5.40) 

 𝒙𝑘 = 𝒙𝑘−1 +𝑚Δ𝑡 + 𝜔𝑘 (5.41) 

 𝑡𝑘 = 𝑡𝑘−1 + Δ𝑡 (5.42) 
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A linear degradation model is used by M. Gašperin, et al., [192] to model the degradation of gear tooth 

wear over time. However, the linear model is found to be less accurate than a nonlinear population 

growth model. This population growth model is shown in (5.43) and (5.44), where the damage state is 

expressed as two vectors 𝒙𝑘 = {𝑥𝑘
1, 𝑥𝑘

2}, the parameter set is 𝜽 = {𝑎, 𝑏, 𝑐} and 𝝎𝒌 = {𝜔𝑘
1 , 𝜔𝑘

2} are 

process noise parameters. Here, this nonlinear model was able to converge to a more accurate RUL 

estimate sooner than a linear model. 

 𝑥𝑘
1 = 𝑥𝑘−1

1 + 𝑎(𝑏 + 𝑐𝑥𝑘−1
2 )2 + 𝜔𝑘

1  (5.43) 

 𝑥𝑘
2 = 𝑥𝑘−1

2 + 𝜔𝑘
2 (5.44) 

J. Sun, et al., [201] have proposed an alternative linear state model as in (5.45), where model parameters 

are 𝜽 = {𝛽0, 𝛽1} and 𝜔𝑘 is process noise. This is used to model engine wear, and is found to be more 

practical than a pure linear function in modelling faults that degrade suddenly or abruptly in operation. 

 𝒙𝑘 = 𝛽0 + 𝛽1𝒙𝑘−1 +𝜔𝑘 (5.45) 

Exponential functions have also been used in some studies to model abrupt failure, as in [195] [199] 

and [200]. An exponential growth of damage state 𝒙𝑘 over time steps 𝑘 is shown in (5.46), with 

parameters 𝜽 = {𝑎, 𝑏}. This can be rewritten in terms of the previous state 𝒙𝑘−1 and adding process 

noise 𝜔𝑘 as in (5.47), where the parameter set is reduced to 𝜃 = 𝑏 and Δ𝑡 is the difference in time 

between time steps (𝑘 − 1) and 𝑘 as in (5.42). 

 𝒙𝑘 = 𝑎𝑒
𝑏𝑘 (5.46) 

 𝒙𝑘 = 𝒙𝑘−1𝑒
𝑏Δ𝑡 + 𝜔𝑘 (5.47) 

Polynomial functions can also be used to model abrupt degradations [194] [202]. A polynomial growth 

of damage state 𝒙𝑘 over time steps 𝑘 is shown in (5.48), with parameter set 𝜽 = {𝑎, 𝑏, 𝑐}. This can be 

rewritten in terms of the previous state 𝒙𝑘−1 and adding process noise 𝜔𝑘 as in (5.49), where Δ𝑡 is the 

difference in time between time steps (𝑘 − 1) and 𝑘 as in (5.42) and the parameter set becomes 𝜽 =

{𝑚, 𝑚̇} where 𝑚 is the derivative of 𝒙𝑘 (the rate of change of the damage state) and 𝑚̇ is the derivative 

of 𝑚. Polynomial functions have the advantage of being linear, and can therefore be used in Kalman 

filter methods, however may not be as accurate as exponential functions [194]. 

 𝒙𝑘 = 𝑎𝑘
2 + 𝑏𝑘 + 𝑐 (5.48) 

 𝒙𝑘 = 𝒙𝑘−1 +𝑚Δ𝑡 + 𝑚̇
Δ𝑡2

2
+ 𝜔𝑘 (5.49) 
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Although more straightforward parametric functions have been shown to adequately model degradation 

in many cases, they do not directly consider the usage of a system over time. More complex models 

designed from the first-principles of the system however, are intended for specific failures based on 

analysis of the underlying physical principles of the system. Such models output a degradation measure 

linked to the root cause of failure. Models can contain some tunable parameters themselves, but also 

take inputs 𝒖 to describe the usage conditions (e.g. loading). 

One example of such a model is the Paris model of crack growth [203]. This model is shown in (5.50), 

where damage state 𝒙𝑘 is the crack size, loading inputs 𝒖 = {Δ𝜎, 𝑁} are stress range (measured in Pa) 

and number of cycles respectively, and model parameters are 𝜽 = {𝐶,𝑚}. This model is used by D. An, 

et al., [204] and F. Cadini, et al., [205] to model simulated crack growths in nuclear power applications. 

 𝒙𝑘 = 𝐶(Δ𝜎√𝜋𝒙𝑘−1)
𝑚
𝑑𝑁 + 𝒙𝑘−1 (5.50) 

A number of models have also been developed to model various types of gear tooth damage. F. Chaari, 

et al., [206] develop a model of gear tooth spalling based on meshing stiffness between two spur gears. 

This model is then used to identify the growth in amplitude of frequencies on a simulated vibration 

signal, which can be used as damage state estimate 𝒙𝑘. This work is further expanded by X. Liang and 

M. J. Zuo [207] [208] developing a vibration model of crack growth within planetary gear stages based 

on gear mesh stiffness. 

These models require detailed knowledge of the physical and material properties of components. This 

can often involve the use of techniques, such as finite element analysis [206], to simulate the response 

of these properties within a system over time. In addition, more complex models are also sensitive to 

inaccuracies or assumptions made during model development [21]. 
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5.3.3 Approach for New Applications 

Figure 5.5 expands upon the architecture of model-based prognostics given in Figure 5.4, p. 148, for 

new systems, integrating the process with previous anomaly detection and diagnostics condition 

monitoring stages. 

The anomaly detection stage first indicates if a fault has occurred within the system (Chapter 3). If a 

fault is detected at an early stage it can be assumed that the fault may progress is severity over time 

before the component finally fails. 

From here, degradation parameters can be examined. Suitable degradation parameters for rotating 

machine faults are discussed in section 5.3.1, p. 154. However, prognostics can only be accurately 

applied if parameters show a meaningful degradation trend. This can be assessed through the 

monotonicity metric, a measure of the underlying positive or negative trend of a degradation parameter 

[21]. This can be calculated as the difference between the fraction of positive and negative derivatives 

(5.51), where the derivative of a degradation parameter at time step 𝑘 can be calculated as in (5.52), 

where Δ𝑡 is the interval between each time step. Degradation parameters showing a suitable trend 

through the monotonicity measure can be taken to the next stage. 

 monotonicity = |
#pos 𝑑𝑘 − #neg 𝑑𝑘

𝑛 − 1
| (5.51) 

 𝑑𝑘 =
𝑦𝑘 − 𝑦𝑘−1

Δ𝑡
 (5.52) 

The model selection stage involves choosing a model to best describe the degradation path exhibited by 

the chosen degradation parameter. A list of candidate models should be available at this stage, consisting 

of parametric functions and/or physics-based models (as discussed in section 5.3.2, p. 155). At this 

stage, diagnostic information may help the selection of a suitable model, aided by engineering 

knowledge of the fault. For example, if a bearing fault is detected, an exponential model is more likely 

to describe the future degradation trend than a linear model [199]. 

If multiple models are suitable for the fault mode, the fit of candidate models can also be assessed 

through least squares fitting (discussed in detail in chapter 3, section 3.5.4.1, p. 52) where RMSE and/or 

R2 values can be calculated for each model based on the currently available degradation data. Models 

returning the lowest RMSE and highest R2 values indicate a best fit to the current data. 

Finally, following the selection of a suitable degradation parameter and model, model-based prognostics 

can be performed through state estimation and prediction (as described in section 5.2, p. 147). Here, the 

particle filter was found to be the most appropriate method in this application, as different non-linear 

models can be easily interchanged, with different noise distributions. 
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Figure 5.5 - Approach for model-based prognostics in new applications 
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5.3.4 Particle Filter Example 

The methodology for applying prognostics in new applications was tested using data simulated to show 

the progression of a fault within the HS1000 gearbox, using the residual signal from the gearbox 

vibration model developed in chapter 3, section 3.6.1, p. 58. In this model, the normal response of the 

gearbox is defined by fitting a 3rd order Gaussian function to the trend of gearbox vibration against 

output power. 

The particle filter was utilised in this case, due to its capability in using nonlinear degradation models 

and modelling non-Gaussian process noise. 

5.3.4.1 Simulated Gearbox Degradation 

A simulated fault was introduced as in (5.53), adapting (3.41) from chapter 3, section 3.7.1.1, p. 70, 

where 𝑣𝑘 is the raw measured vibration signal, and 𝐹𝑘 is a fault signal with amplitude increased over 

time steps 𝑘 through an exponential function with parameters 𝜽 = {𝑎, 𝑏}. Here, the 𝑏 parameter controls 

the rate of degradation. Gaussian noise is also added to this signal, with zero mean and variance of 𝜎𝜖. 

Figure 5.6 shows simulated degradation for a number of different 𝑏 and 𝜎𝜖 values. 

 𝑦𝑘 = 𝑣𝑘 + (𝑎𝑒
𝑏𝑘)𝐹𝑘 + ϵ (5.53) 

This exponential model of degradation does not take usage or operational parameters into account. This 

is somewhat accounted for by measuring 𝑘 (each time step) as cumulative time in operation, where 

degradation only increases as the turbine is operational and rotating. This circumvents time periods 

during which the turbine is inactive (e.g. variable periods of inactivity between tidal cycles, and periods 

of planned or unplanned shutdowns). However, this assumes constant loading on the machine when 

operational. Improved prognostic models for tidal power may therefore take into account additional 

operational parameters (such as rotation speed, cumulative number of rotations, output power, 

cumulative power generated, or tidal flow rate) to model the rate of degradation as a function of the 

turbines loading. 
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(a) 𝑎 = 0.2, 𝑏 = 0.0018, 𝜎𝜖 = 0.1 and 𝑇𝐸 = 1.2 

 

(b) 𝑎 = 0.2, 𝑏 = 0.0024, 𝜎𝜖 = 0.2  and 𝑇𝐸 = 2.2 

 

(c) 𝑎 = 0.2, 𝑏 = 0.0028, 𝜎𝜖 = 0.5  and 𝑇𝐸 = 3.2 

Figure 5.6 - Simulated exponential degradation for varying 𝑏, 𝜂 and 𝑇𝐸 
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5.3.4.2 Model Selection 

In this example, model selection was performed through least squares regression (discussed in detail in 

chapter 3), where the parameters of a selection of candidate models are tuned to best fit the observed 

degradation trend. 

In this study, no physics-based models of the tidal turbine component degradation were available. 

Therefore, candidate models included the parametric functions detailed in section 5.3.2, p. 155: linear 

function (5.41), population-growth function (5.43) and (5.44), alternative linear function (5.45), 

exponential function (5.47) and polynomial function (5.49). The RMSE between each fitted function 

and the observed degradation trend was calculated at each time step 𝑘, where the model returning the 

lowest RMSE was chosen for RUL prediction. 

Table 5.1 shows the RMSE results for each model in each simulation with variable 𝑏 and 𝜎𝜂 parameters 

at 𝑘 = 600 hours. Here an exponential model can be seen to best fit the data, as expected, matching the 

exponential degradation model introduced in (5.53). 

Table 5.1 - RMSE of different models at 𝑘 = 600 hours 

𝒃 𝝈𝜼 
Linear 

RMSE 

Pop. 

Growth 

RMSE 

Alt. Linear 

RMSE 

Exp. 

RMSE 

Poly. 

RMSE 

0.018 0.1 0.0808 0.0624 0.0811 0.0374 0.0390 

 0.2 0.0924 0.0748 0.0927 0.0635 0.0653 

 0.5 0.1536 0.1520 0.1542 0.1422 0.1425 

0.024 0.1 0.1741 0.0725 0.1748 0.0391 0.0530 

 0.2 0.1731 0.0910 0.1738 0.0673 0.0735 

 0.5 0.2354 0.1876 0.2363 0.1501 0.1587 

0.028 0.1 0.2936 0.1543 0.2947 0.0405 0.0811 

 0.2 0.3014 0.1890 0.3026 0.0611 0.0947 

 0.5 0.3351 0.2030 0.3364 0.1464 0.1666 
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5.3.4.3 RUL Prediction 

Following model selection, prognostics was performed through the particle filter. Predictions were 

made at each time step starting from 𝑘 = 600 hours to the time of failure 𝑘𝐸 = 998 hours. 

First, the damage state 𝒙𝑘 between the time of fault inception 𝑘0 and the current time step 𝑘 was 

estimated using Sampling Importance Resampling (SIR) (as in section 5.2.1.4, p. 152). An RUL 

prediction was then calculated by extrapolating the model from current time step 𝑘 to 𝑘𝐸 using the 

random walk (as in section 5.2.1.5, p. 153). This process is illustrated in Figure 5.7 for 𝑘 = 600 hours. 

This process was performed iteratively for 𝑘: 𝑘𝐸, calculating an RUL prediction PDF at each time step. 

The accuracy of each RUL prediction over time was measured through the cumulative relative accuracy 

(𝐶𝑅𝐴) [209]. This accuracy measure varies between 0 and 1, where a value of 1 indicates a series of 

perfect RUL predictions over time. First, the relative accuracy 𝑅𝐴 can be calculated as in (5.54), where 

𝑅𝐴𝑘 is the relative accuracy, a normalised measure of the difference between an RUL prediction (𝑅𝑈𝐿̂𝑘) 

and the true RUL (𝑅𝑈𝐿𝑘) at time point 𝑘. The 𝐶𝑅𝐴 can then be calculated as in (5.55), the normalised 

sum of 𝑅𝐴 values between the starting prediction time 𝑘 and the final time point at failure 𝑘𝐸. 

 𝑅𝐴𝑘 = 1 −
|𝑅𝑈𝐿k − 𝑅𝑈𝐿̂𝑘|

𝑅𝑈𝐿𝑘
 (5.54) 

 𝐶𝑅𝐴 =
1

𝑘𝐸 − 𝑘 − 1
∑𝑅𝐴𝑘

𝑘𝐸

𝑘

 (5.55) 

Figure 5.8 shows the RUL prediction over time for degradation simulation where 𝑏 = 0.018 and 𝜎𝜖 =

0.2. Here it can be seen that as 𝑘 increases, the estimated RUL becomes more accurate and tighter 

around the true RUL.  

The 𝐶𝑅𝐴 values for a number of different simulation with varying 𝑏 and 𝜂 values are shown in Table 

5.2. Increasing noise through 𝜎𝜖 decreases the performance in each simulation. Increasing 𝑏, therefore 

increasing the rate of degradation through the exponential model, appears to increase the performance. 

In each case, the particle filter achieved accuracies of above 0.8. This indicates the particle filter can 

provide sensible prognostic estimates even with varying levels of noise provided a suitable degradation 

model is available. However, it is important to note that this example uses a simplified fault model that 

assumes degradation is not directly linked to varying operating conditions. In practice, the varying usage 

of the turbine will have an effect the rate of degradation. Designing degradation models that incorporate 

usage parameters (such as tidal flow rate or generator rotation over time) is therefore suggested as future 

work. 
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Figure 5.7 - Prediction of RUL after 𝑘 = 600 hours for 𝑏 = 0.018 and 𝜎𝜖 = 0.2 

 

 

 

Figure 5.8 - RUL estimates over time for 𝑏 = 0.018 and 𝜎𝜖 = 0.2 
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Table 5.2 - Cumulative Relative Accuracy (𝐶𝑅𝐴) of RUL estimates for degradation simulations with varying 

growth 𝑏 and noise variance 𝜎𝜖 

𝒃 𝝈𝝐 𝑪𝑹𝑨 

0.018 

0.1 0.873 

0.2 0.834 

0.5 0.804 

0.024 

0.1 0.928 

0.2 0.881 

0.5 0.803 

0.028 

0.1 0.943 

0.2 0.883 

0.5 0.881 
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5.4 Discussion 

This chapter detailed prognostics methods for estimating the remaining useful life of equipment, 

focussing on techniques capable of making estimates for new systems with limited operating histories. 

Degradation-based prognostics techniques were found to be most suitable for new systems, where 

prognostic estimates are formed based on a measure of the degradation of specific components within 

a system. 

In particular, model-based prognostics methods within this category were found to be most appropriate 

in comparison to data driven methods, where the degradation of a component over time is modelled 

through a degradation parameter, and extrapolated towards a failure threshold through a model that 

approximates the underlying degradation mechanics to give an RUL estimation. This method is the least 

reliant on historical failure data, as models can be inferred from the physics of the system or from 

knowledge of how similar components fail in different systems. The most suitable model-based 

technique was found to be the particle filter, a method capable of being applied to non-linear models 

with non-Gaussian noise. 

An approach to applying model-based prognostics in new applications was then discussed, where 

considerations must be made in selecting an appropriate degradation parameter and degradation model 

for each component and fault mode. 

With a focus on rotating machinery, suitable degradation parameters were found to include features 

from high resolution accelerometer data (measures of specific characteristic frequencies used in 

diagnostics or larger frequency bands), or residual signals from low resolution data model (i.e. anomaly 

detection models). Selection of an appropriate degradation parameter can then be made by observing 

which measures exhibit a suitable degradation trend once a fault has been detected. 

Suitable degradation models included both physics-based models (where complex engineering 

knowledge of the system and its fault modes is used to design models of degradation) or more generic 

parametric functions (where the mechanics of degradation is approximated by tuning parameters). In 

each case, it is important to model both the estimated level of degradation and usage parameters to form 

accurate predictions. The predictability of periodic tidal flow rates (discussed in chapter 2, section 2.1, 

p. 5), may provide an advantage to the design of such prognostic models for tidal turbines, as future 

loading and operational parameters can be estimated more accurately than in other fields (e.g. wind 

power). 

The CRISP-DM framework adapted for both anomaly detection and diagnostics can be further expanded 

to incorporate the prognostics approach for new applications (Figure 5.5, p. 159) as in Figure 5.9. Here, 

the data preparation stage can include the formation of degradation parameters (based on high resolution 

vibration data used for diagnostics, or residuals from anomaly detection models). If degradation 

measures show a suitable degradation trend, prognostic modelling can be performed, where diagnostic 

models can assist model selection. Evaluation of prognostic models can then be performed recursively 
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as the fault progresses over time. Feedback to the prognostic modelling stage allows models or failure 

threshold values to be changed if measured degradation begins to differ from the chosen model or 

operators decide to alter acceptable degradation tolerances during operation respectively. 

Finally, deployment will involve the estimation of the RUL of the component given a fault has been 

detected. This allows the operator to determine both the severity of the fault and the expected time until 

the severity crosses a pre-defined threshold. In having this information, operators can plan operational 

or maintenance activities more cost effectively. For example, the detection of a rapidly degrading fault 

can alert the operator to shut down machinery and schedule maintenance before the fault propagates to 

other components within the machine and causes costlier damage. Alternatively, if a component is 

estimated to be degrading at a slow rate the operation of the machine can be curtailed but not ceased 

and maintenance can be scheduled for a future date, minimising the costs due to machine downtime. 

 

Figure 5.9 - CRISP-DM process expanded to include model-based prognostics 
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Chapter 6 

6 Conclusions and Further Work 

6.1 Summary and Conclusions 

This thesis has presented an approach for applying condition monitoring in new applications, with a 

particular focus on tidal power. 

In chapter 2, the need for a condition-based maintenance strategy in tidal power was discussed, 

reviewing the state of the art in turbine design and in condition monitoring. Condition monitoring was 

split into three categories, anomaly detection, diagnostics and prognostics, where each successive 

category requires more in depth knowledge of the system and its response to faults. 

Chapter 3 detailed a data mining approach for anomaly detection, utilising CRISP-DM, a data mining 

framework, to define the normal response of the HS1000 tidal turbine from low resolution monitoring 

data. Here, data analysis found vibration to be the key condition parameter in describing the response 

of internal rotating components (the gearbox, high speed bearings and generator) against varying 

operating conditions. Generator rotation speed and output power were found key operational parameters 

in describing the response of the turbine. Using a technique known as change point analysis it was then 

shown that this data could be used to identify modes of the turbine’s control scheme. This methodology 

can be used for defining the control modes of a system without prior knowledge of its design details or 

specifications. 

From here, anomaly detection models for fault detection were then constructed using past operational 

data without faults present. It was found that reconstruction based anomaly detection models (such as 

regression or curve fitting methods) were best suited for gearbox vibration models, where data is likely 

to follow trends against operational parameters. Probabilistic modelling techniques (such as clustering 

algorithms or density models) were found to be most effective in modelling generator vibrations, where 

data groups into clusters dependent on control scheme modes. Finally, envelope modelling techniques 

were found to be the best modelling technique for low resolution bearing vibrations, where data 

amplitudes vary in relation to operational parameters but also continuously varies to zero. 

The data mining process through CRISP-DM was proven to be an effective first stage for condition 

monitoring in new systems, allowing operators to construct models that learn from the normal response 

of machinery without past examples of faults and failure. However, while these models can detect 

changes in responses that may occur due to faults, the data still requires interpretation and analysis by 

operators to determine the cause of the anomaly. 

Chapter 4 built upon the CRISP-DM model to include diagnostic modelling, where models can be 

constructed given past examples of faulty behaviour to automatically classify fault modes without 
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further analysis by operators. Vibration data was again identified as a key indicator of faults for tidal 

turbines, where characteristic frequency responses of high resolution data can distinguish between fault 

types in rotating components. These characteristics for tidal turbine component failure modes were then 

detailed, before developing appropriate modelling techniques to perform automatic diagnoses in a 

condition monitoring system. Feature-based and deep learning classification approaches were then 

compared in this chapter, developing a deep learning approach through stacked autoencoder networks 

trained from spectrogram data that can perform fault diagnostics across many different failure modes 

from a single architecture. The use of this technique can provide accurate fault classifications without 

the need to develop tailored signal processing techniques to isolate each individual fault characteristic. 

Finally, chapter 5 investigated prognostic methods, where the remaining useful life of components 

undergoing faults, degradation or aging can be estimated. This allows operators to track the progression 

of faults over time and identify how long a machine can be operated for until a shut down and 

maintenance is required. Degradation and model based prognostic methods were found to be most 

suitable for new applications where limited understanding of degradation trends or past run to failure 

data is available. An generic approach for implementing model based methods in new applications (such 

as tidal power) was then developed, considering the selection of suitable degradation parameters and 

models. Here, the particle filter was identified as the most appropriate prognostic technique, suitable for 

use with nonlinear models with different noise distributions. The original CRISP-DM methodology was 

finally further expanded to include this form of prognostic modelling, allowing operators to implement 

prognostic models with limited past examples of failure, and incorporating diagnostic information if 

available. 

The final output of this thesis was a methodology for implementing anomaly detection, diagnostics and 

prognostics as part of a condition monitoring system for new applications where there is limited 

operational history, sparsely available historical data and a lack of knowledge or experience of how the 

machinery operates in practice. This methodology is based on an expansion of CRISP-DM, allowing 

operators to capture, learn from and model examples of faults or failure as they occur. The process was 

developed using experiences from data analysis of a newly commissioned tidal turbine in operation, 

however is generic and can be used across many different applications for condition monitoring or 

machine health management. 

6.2 Main Contributions 

The main contributions of this thesis were as follows: 

• The identification of generator rotation speed and output power as key operational parameters 

and generator, gearbox and bearing vibrations as key condition parameters for condition 

monitoring of tidal turbines through the analysis of real tidal turbine data 

• A data driven method for defining turbine control modes without prior knowledge of the 

system or its design details using change point analysis 
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• The development of anomaly detection models for fault detection in tidal turbine gearboxes, 

generators and bearings without using fault data 

• A deep learning approach for the diagnosis of faults within rotating machinery from non-

stationary vibration signals 

• A methodology for implementing model-based prognostics in new systems with limited past 

examples of failure 

• The expansion of CRISP-DM to provide a framework for implementing condition monitoring 

systems in new applications from limited data or knowledge of the machinery 

6.3 Further Work 

6.3.1 Additional Anomaly Detection Modelling 

Following the CRISP-DM methodology discussed in chapter 3, models could be developed to define 

the response of additional components of the HS1000 beyond the gearbox, high speed bearing and 

generator. 

For example, this could include: 

• Modelling the response of the main bearing supporting the rotor and low speed shaft through 

temperature or vibration sensor data 

• Modelling the response of external components, such as the blades, nacelle or support 

structure, through strain gauge measurements 

• Modelling the electrical response of the generator through current and voltage measurements 

• Modelling the response of additional turbine sub-systems such as lubricant or coolant 

pumps/motors through vibration, temperature or electrical sensor data. 

6.3.2 Fault Simulation 

In this work, gearbox vibration models were tested using data simulating a gear tooth fault and gear 

misalignment within the gearbox. 

Additional fault simulations could be designed to replicate additional faults within the gearbox or other 

components (based on vibration responses given in chapter 4, section 4.1, p. 83) to further test the 

response of anomaly detection models. 

In addition, fault simulations could be used to train fault diagnosis models, either through feature-based 

or deep learning classification approaches. Models trained on simulated faults could then be tested on 

real fault data as it becomes available. 
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6.3.3 Comparison of Data and Models between Separate Turbines 

The work completed in this thesis involves modelling the response of the Andritz Hydro Hammerfest 

HS1000 tidal turbine, in operation at the EMEC in Orkney, Scotland. While this gave an accurate 

representation of the response of a commercial scale tidal turbine in real operation, it is unknown 

whether models developed in this work can be applied directly to an array of tidal turbines, operating 

in different areas and with alterations to their design specifications. 

Future work could involve comparing data and models from the HS1000 turbine to different tidal 

turbines, detailing the effect of different operating environments and design specifications on the 

response of condition parameters. Here, the implications of transferring models developed on prototype 

devices to future tidal arrays can be better understood. 

6.3.4 Development of Tidal-based Prognostic Models 

In this work, model-based prognostics methods were identified as most suitable for new applications 

with limited past examples of component failure. 

In these approaches, a mathematical model is used to estimate the degradation path of a component over 

time. This work identified suitable models used in other applications primarily for modelling 

degradation of bearings and gearboxes. However, none of these models have been adapted for usage 

with parameters specific to tidal power. 

The predictability of tidal flow can offer a great advantage to the use of prognostics within this field, as 

future operating conditions can potentially be predicted accurately. Degradation models can therefore 

be developed to incorporate expected future loading conditions based on tidal predictions. 

This future work could involve adapting more straightforward parametric functions to include loading 

parameters, or developing more complex models to track the progression of specific faults based on 

first principles analysis of the physics of failure. 
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