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Abstract

The high degree of control that exists in experiments with cold atoms, and Bose-Einstein

condensates, in particular, allows us to design systems with chosen geometries. These

provide us with simple model systems that are well understood from first principles

microscopically, and with parameters controlled by external fields, as tools to explore

new frontiers in the context of non-equilibrium dynamics. These possibilities can be

used for a wide variety of applications, ranging from quantum simulations to quantum

metrology. In this thesis, we investigate designing the confinement of tightly trapped

impurities in a BEC reservoir to study their dissipative dynamics, and to study non-

equilibrium dynamics of BECs confined in a tilted ring trap (both with ultracold atoms

and polaritons).

In the first part we explore tightly confined impurities, immersed in a weakly trapped

BEC and initially excited in the strongly confined direction, to study cooling of the im-

purities to low-temperature states under realistic experimental conditions. This scheme,

combined with dissipative state engineering, sets the basis for adaption of laser cooling

techniques for the production of low-entropy states in quantum simulators. We can also

use this system to access non-Markovian dynamics by changing the ratios of relevant

timescales using control over the trapping of the impurities and the reservoir.

In the second part we study the dynamics of a BEC confined in a 1D tilted ring trap,

both with ultracold atoms and long-lifetime polaritons. We study the collective oscilla-

tions of a BEC in a tilted ring trap to characterise the e↵ects generated by the interplay

between non-linearities due to anharmonicity and non-linearities due to interactions.

In the case of polaritons, we make comparison with experimentally observed features,

and gain an understanding of the thermalisation process in such systems.
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Chapter 1

Introduction

The Bose-Einstein Condensate (BEC) phase, a macroscopic quantum state of matter,

was theorised by Bose and Einstein in 1924 [1, 2]. This consists of the prediction

that, when the thermal de Broglie wavelength of a gas of bosons is comparable to the

interparticle spacing, the gas undergoes a transition where a large fraction of bosons

occupy the lowest-energy single-particle state, forming a matter wave. This allows the

observation of microscopic quantum phenomena, such as wavefunction interference, on

a macroscopic scale.

The formation of Bose-Einstein Condensation of weakly interacting dilute gases of alkali

atoms was achieved in 1995 with 87Rb [3], 23Na [4] and 7Li [5, 6], obtaining densities of

⇠ 1013 � 1015 cm�3 and temperatures of the order of nK. This was possible thanks to

the progress in both theoretical studies and experimental techniques for trapping and

cooling of atoms [7], with methods such as laser cooling [8–10], evaporative cooling [11]

and later on sympathetic cooling for BEC mixtures [12–14]. Following experimental

realisations of BECs, besides alkali atoms, now include a wide variety of alkaline-earth

and lanthanide atoms.

In the last few decades we have witnessed remarkable progress in the field of ultracold

many-body quantum systems, strongly motivated by the fact that, because of the

exceptional control over their implementation, these experimental platforms can be

used as quantum simulators [15–17]. This means that a wide range of Hamiltonians

can be engineered using ultracold atoms, to simulate other more complex quantum
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Chapter 1. Introduction

and many-body models, such as systems related to strongly interacting electrons in

condensed matter physics [18].

This progress was made possible also thanks to the available experimental tools for

probing and manipulating cold atoms, which o↵er unique opportunities in the study

of the time dependent out-of-equilibrium dynamics. In fact, appropriate engineering of

optical and magnetic fields leads to the possibility to create a wide variety of configu-

rations and geometries for the motion and trapping potentials of the atoms, accessing

di↵erent dimensionalities, and it also makes it possible to tune and control relevant

parameters such as the interaction strength between the atoms, via either optical or

magnetic Feshbach resonances [19, 20].

This high tunability, both for the engineering of the trapping potentials and the in-

teraction strength, relies on the fact that we can build microscopic models from first

principles. The diluteness of cold atoms allows to model their interaction with scat-

tering theory, based on an e↵ective interaction that we can describe, in the low energy

limit, with s-wave scattering. This makes it possible to control the interaction strength,

either attractive or repulsive, by changing a single parameter, the scattering length. The

realisation of traps for neutral atoms, on the other side, is achieved with magnetic fields

and with laser beams that generate a spatial dependent intensity profile for the poten-

tial. The physical origin of the neutral atoms confinement by laser fields is determined

by the AC-Stark shift that the atoms experience in the o↵-resonant laser field having a

frequency larger than the recoil energy of the atoms. Changing the detuning between

the laser frequency and the atomic frequency (determined by the di↵erence in energy

between its ground and excited state), we can create potentials that are attractive (for

red detuning) or repulsive (for blue detuning) for atoms, so they sit respectively on the

maxima or minima of the intensity profile. With this possibility, combining lasers with

di↵erent orientations, allows to construct a rich variety of trapping potentials.

These experimental opportunities have made it possible to realise di↵erent trapping

potentials where the dynamics of cold atoms can be restricted to desired dimensions,

by engineering the trapping frequencies along the di↵erent directions. Disk shaped

trapping potentials can be obtained by tightening the confinement in one dimension,
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Chapter 1. Introduction

resulting in an e↵ective dynamics in 2D. Similarly, cigar shaped configurations, realised

with tight confinement along two directions, lead to the realisation of an e↵ective 1D

system. Other potentials inlcude toroidal traps [21–23] and optical lattices, which allow

to study many-body physics and can be used to probe the Mott insulator to superfluid

phase transition [24], but also to realise bosonic Josephson junctions with double-well

potentials [25, 26].

On top of that, recently, the development of quantum gas microscopes [27, 28] have

made it possible to achieve an improved single-atom resolution in cold atom exper-

iments. This provides further control of the trapping and addressing of individual

atoms in lattice sites.

Being able to control the dimensionality of the system, under appropriate conditions,

also makes it possible to explore di↵erent phases of the BEC. For instance, this allows

us to observe long-range order features in weakly interacting BEC in 3D geometrical

confinements, but also leads to the possibility to observe other exotic states beyond

the mean-field regime in lower dimensions, such as the Berezinskii-Kosterlitz-Thouless

(BKT) superfluid in 2D [29] and bosonic Luttinger Liquids in 1D with Tonks-Girardeau

gases [30], achieved with strong interactions between the atoms.

On the other side, tuning atom-atom interactions and engineering particular geometries

for trapping atoms is of interest in the context of “atomtronics” [31, 32] for the devel-

opment of quantum technologies and quantum devices for measurement and sensing,

as well as quantum computation. The idea behind this is to use the coherent flow of a

trapped Bose gas and its analogy to solid-state platforms to obtain cold atom analogues

of electronic devices, such as diodes and transistors, using the transport properties of

ultracold atoms instead of electrons. It has been shown for example, how atom tran-

sistors can be engineered using ultracold atoms in double-well [33, 34] and triple-well

potentials [35], or in few lattice sites coupled to multiple reservoirs, for which open

quantum system descriptions can be used to study the transport properties [33, 36]. In

this context, spin impurities have also been shown to be powerful tools in the control

of the transport between di↵erent subsystems [37, 38]. Other examples of atomtronics

systems consist in the realization of analogues of diodes [39, 40] and atomtronic cir-
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Chapter 1. Introduction

cuits using ring shaped trapping potentials [41–43]. Ring traps interrupted by weak

links o↵er also valid platforms for the realisation of atomtronics analogues of SQUIDs

(Superconducting Quantum Interference Devices) [42, 44–48].

Motivated by all these possibilities in the progress of quantum technologies, in this

thesis we dedicate particular attention to the study of impurities in superfluid reser-

voirs and the dynamics of BEC in ring potentials, both with cold atoms and with

exciton-polariton condensates, which o↵er another possible platform for the study of

superfluidity and condensation in solid state systems [49], complementing ultracold

gases.

Neutral impurities in Bose-Einstein Condensates

Since the first experimental realisation of a BEC mixture with two di↵erent spin states

of 87Rb [12], obtained through sympathetic cooling of one hyperfine state in contact

with another cooled state, there has been significant progress in the realisation of other

two-component BECs, including mixtures of dual atomic species. Examples of these

include Bose-Bose [13, 50], Fermi-Fermi [51, 52] and Bose-Fermi mixtures [53–56]. One

of the interesting features in the study of two-component BECs is given by the phase

separation determined by the inter-species interaction strength, with the possibility to

observe miscibility and immiscibility of the two species [57, 58], with spatial overlap or

separation.

Among the mixtures, the Bose-Fermi case is particularly interesting because it merges

systems with di↵erent statistics, giving rise to new physics that is not accessible in the

case of Bose-Bose and Fermi-Fermi gases, such as new phases for mixtures in optical

lattices [59]. In these systems, di↵erent interesting scenarios can be explored by tuning

the interaction strength of the fermionic part from the non-interacting limit, where

the Pauli exclusion principle dominates the behaviour of the dynamics, to the strongly

correlated regime, where the crossover to the BCS-like superfluid can be accessed, and

study the e↵ects that its statistics have on the dynamics.

The realisation of mixtures with Fermi atoms trapped in optical lattices [60, 61] o↵ered
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Chapter 1. Introduction

new possibilities also for the achievement of individually trapped impurities [62–65].

The study of single impurity dynamics mediated by the interaction with a many-body

reservoir is a central problem in condensed matter physics, therefore the study of this,

especially with fermionic species, in a superfluid reservoir, is interesting with both

coherent and dissipative dynamics. From the study of the dynamics of impurities in a

lattice in contact with a superfluid reservoir, it was shown how the phononic bath can

induce decoherence [66, 67] and mediate the interaction between two or more impurities

[68].

For strong interactions between the BEC and the impurity, studies of polarons (im-

purities strongly interacting with the superfluid reservoir and therefore dressed by the

phonon modes) have been conducted for both coherent and incoherent dynamics, in

the weakly interacting limit, using a Fröhlich’s polaron Hamiltonian [69, 70], and also

in the strong coupling limit, beyond the mean-field regime [71, 72].

On the other side, the study of dissipative dynamics for atoms in optical lattices has

led to developments in cooling techniques, providing possibilities to control unwanted

heating [73–78]. In the case of a single trapped impurity, dissipative dynamics can

be used to reach cooling to its motional ground state [79] with a sympathetic cooling

mechanism, without a↵ecting the internal degrees of freedom under appropriate con-

ditions. This mechanism is analogous to the spontaneous emission of a two-level atom

coupled to the vacuum mode of the light field, but relies instead on the coupling to the

quasi-particles of the BEC that leads to the relaxation of the motional states of the

impurity through the spontaneous emission of Bogoliubov excitations [64, 79, 80]. Be-

yond that, for atoms in a lattice, cooling within a Bloch band can be obtained through

the application of dark-state laser cooling, which can be achieved combining this dis-

sipative dynamics with dissipative state engineering of dark-states [81, 82]. In dual

species experiments with bialkali atoms, these cooling processes are contrasted by the

collisions between atoms in the higher Bloch band. However, the realisation of mix-

tures with Alkali atoms and Alkaline-Earth-Metal [54, 63, 83, 84], in particular with

spin-polarised fermions, allows the suppression of collisions within the lattice, leading

to a preservation of coherence and to dissipative processes induced by the coupling of
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Chapter 1. Introduction

the atoms between the Bloch bands. This o↵ers new perspectives in the development

of novel cooling methods, and motivated us to study the dissipative dynamics of im-

purities with trapping confinements in di↵erent dimensions, extending the single atom

cooling scheme considered for an impurity trapped in a 1D harmonic potential and

immersed in a reservoir [79]. In Chapter 4 we will discuss the case of harmonically

trapped impurities in a 3D configuration with tight confinement along one direction

and in a harmonic trap with anisotropic tight confinement along two directions, giving

an e↵ective 2D configuration with weak confinement in one direction, analogous to a

cigar shaped trap. We extend these studies also to the case of a cluster of impurities

in a harmonic trap. These calculations, especially for the 2D configuration with tight

trapping along one direction, are relevant in the perspective of achieving dark-state

cooling within a Bloch band, as the transitions between motional states in the tightly

confined directions can be mapped into the coupling to di↵erent Bloch bands.

Other possibilities for the study of this kind of system come from investigating im-

purities in a BEC reservoir, in the context of reservoir engineering [85]. It has been

shown, for instance, how a non-Markovian superfluid reservoir can be used to con-

trol the entanglement between two impurities [86]. This has applications in quantum

information protocols and quantum computing, involving preparation of qubits and en-

tanglement [87], but the study of impurities has also shown to be a potentially valuable

tool for probing the BEC [88, 89], for instance with non-demolition thermometry [90–

92]. Due to the high control that we have on the trapping geometry of the reservoir,

non-Markovian dynamics can be studied by tweaking the interaction strength of the

impurity with the BEC, going to the strong coupling limit, by changing the trapping

confinement of the impurity, as we show in Chapter 5, or changing the size of the

reservoir, which can have implications such as coupling to few modes and backflows of

information due to edge e↵ects.

Motivated by these possibilities, and by experimental success in creating two-component

Bose gases in particular structured geometries, such as in ring potentials [93], a study of

impurities immersed in BEC with particular confinements that go beyond the case of a

homogeneous gas, or harmonic trapping, can be a very powerful resource in the context
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of reservoir engineering, to explore new physics determined by the specific confinement

of the BEC. In fact, as the excitation spectrum of the Bogoliubov excitations depends

on the form of the trapping potential, the dynamics of impurity atoms, as well as the

memory e↵ects of the reservoir [94], are a↵ected by di↵erent confinements [95, 96]. From

this perspective, studying the collective excitations of a BEC in anharmonic traps and

tilted ring traps, to understand the features determined by the particular geometry, is

essential to understand how these can a↵ect the dynamics of impurities and lead to

observations of new physics.

Dynamics of trapped BEC

As discussed in the previous section, the study of BECs in di↵erent trapping poten-

tials o↵ers a plethora of possibilities for the study of many-body physics and out-of-

equilibrium dynamics with useful applications for quantum computing and the devel-

opment of quantum technologies. From this perspective, the study of the elementary

excitations of a trapped BEC is important to develop an understanding of the e↵ects

that both the interactions and the confinement in di↵erent configurations have on the

dynamics of the system.

Since the observation of BEC, the study of low-lying collective excitations, both theo-

retically [97–104] and experimentally [105–107] has been one of the most natural ways

to characterise the superfluidity and the e↵ects that the interaction between the atoms

have on the dynamics and on the thermodynamic properties of the BEC.

Experimentally, the observation of the dynamics of the system in real time is made

possible by the fact that the trapping frequencies are in the range of ⇠Hz-kHz, corre-

sponding to dynamical time scales below the typical lifetimes (of the order of seconds)

of the trapped atomic gases.

From a theoretical point of view, the static and dynamical proprerties of weakly-

interacting trapped BECs can be described with a mean-field description provided

by the Gross-Pitaevskii Equation [108].

The ability to change the confinement in di↵erent directions allowed these studies in

both spherically symmetric harmonic traps [97] and in axially symmetric harmonic po-
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tentials, In the latter case it was observed how the trap anisotropy, the symmetry of

the system and the interaction strength change the excitation modes of a perturbed

condensate [105, 107]. Probing the dynamics of the system in axially symmetric har-

monic trap is particularly interesting especially in the cigar-shaped configuration. Here

in fact, by changing parameters such as the anisotropy, the density and the interaction

strength, one can explore transitions between di↵erent phases, such as a 3D cigar shape

(with a wavepacket in the Thomas-Fermi approximation radially), 1D mean-field, and

a Tonks-Girardeau gas. One of the ways used to characterise the frequency of the

low-lying modes experimentally consists of driving the condensate out of equilibrium,

for instance shaking it via modulation of the trapping magnetic fields, then letting it

evolve for a variable time and finally switching the potential o↵ to obtain the image of

the condensate after a given time [105].

Among the most important features observed in the probing of the collective exci-

tations of trapped BECs is the shift of their frequency modes, determined by the

interaction that gives rise to non-linearity and by the geometry of the system [97–

99, 103, 105, 106, 109–112]. Theoretically, however, finding analytical solutions for

these is not an easy task and most of the approaches used consist in solving the hy-

drodynamic equations [97, 103, 109–111]. The limitation of this approach, however, is

that the hydrodynamic approximation considered in these works is valid in the local

density approximation and therefore for a large number of atoms. Other possibilities

are o↵ered by numerical methods, either for the solution of the equations obtained

from the Bogoliubov-Hartree theory [102], or for the simulation of the dynamics with

a time-dependent Gross-Pitaevskii Equation.

Previous studies of collective excitations were mainly conducted for harmonic trap-

ping potentials in both isotropic and anisotropic conditions, and less attention has

been given to the characterisation of collective oscillations in anharmonic trapping po-

tentials. However, the interest in these is now increasing, motivated for instance by

experiments that use tilted ring traps [22, 113], both with cold atoms and with exciton-

polariton BEC [114]. The attention directed to the study of BEC in toroidal geometric

potentials (both flat and tilted) increased drastically in the last two decades, leading to

8



Chapter 1. Introduction

the achievement of neutral atom storage in ring traps [21–23, 115, 116]. These consti-

tute promising platforms for applications in quantum metrology and sensing, because

of the possibility to use them for Sagnac atom interferometry [117–119], but also in

quantum computing. As previously mentioned, the achievement of stable persistent

flow in the rings [23, 45] makes these platforms good candidates for atomic circuits in

the context of atomtronics and for possible implementations of qubits [120].

For the study of the dynamics of BEC in tilted ring potentials, and more generally in

anharmonic traps, more fundamental questions on the investigation of the non-linear

dynamics arise, as a result of the mixing between two kind of non-linearities having

di↵erent origins: one is given by the anharmonic part of the potential, as in the case

of the quantum pendulum for a single particle, and the other one is determined by the

interaction between the particles. Furthermore, the presence of periodic boundary con-

ditions in the ring gives rise to other features, such as interference, when the rotational

motion around the ring leads to interaction between the tails of the condensate.

It is therefore important to gain a detailed understanding of the aforementioned contri-

bution to the non-linearity, studying the induced dynamics of BECs in this geometry,

and individuating features that do not appear for the harmonic potential trapped dy-

namics. These include, for instance, the frequency shift of the dipole mode (una↵ected

by the interaction within the BEC in the harmonic potential case, where the center of

mass motion is decoupled from the internal excitations), and changes in the collapse

and revivals of the density in time [121, 122]. All these features will be subject of

further discussions in Chapter 6.

These studies allow us also to have insights on the excitation spectrum in this kind

of geometry, which, as mentioned in the previous section, is needed for the possibility

to study impurity atoms in BECs confined in ring traps, as we have stressed how the

geometry and dimensionality of the system a↵ect these.
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Chapter 1. Introduction

1.1 Thesis Outline

In this section we present an overview of this thesis, which is divided into three parts.

In the first part, Chapters 2-3, we discuss some background concepts on cold atoms and

open quantum systems, which provide a basis for the research presented here. In the

second part (Chapter 4-5) we study a system of impurities in a BEC, for two di↵erent

purposes: to study the cooling rates induced by dissipative dynamics of the impurities

trapped in di↵erent geometries, and to investigate the e↵ects of a non-Markovian en-

vironment on it. In the third part (Chapter 6 and 7) we study the dynamics of BECs

in a tilted ring potential, motivated by current experiments in both exciton-polariton

and cold-atom platforms. Finally, in Chapter 8 we summarise the main conclusions of

the research presented in this thesis, as well as some final remarks on the outlook and

future possible work. In the following we give more specific details about the content

of each chapter.

In Chapter 2 we give an overview of the background in the field of weakly interact-

ing Bose-Einstein condensates, focusing on a mean-field description that we used for

the studies reported in this thesis. In particular, we derive the Bogoliubov excitation

spectrum, which we use in the context of trapped impurities to describe the super-

fluid reservoir. Depending on their momentum, Bogoliubov excitations can have the

character of phonon-like or particle-like excitations. The other topic we cover is the

Gross-Pitaevskii equation and its derivation, as we use it in the description of the dy-

namics of a BEC in the harmonic oscillator and ring potentials. Based on the mean-field

approximation, this can be thought of as a Schrödinger equation with a non-linear term

consisting of the interaction term generated by the scattering between the atoms in the

BEC.

In Chapter 3 we introduce some concepts in the theory of open quantum systems, such

as the master equation in the Lindblad form, giving an overview of its derivation in

order to explain the main approximations, used to describe the system of impurities

10



Chapter 1. Introduction

coupled to the superfluid reservoir in the following chapter. We also give a brief descrip-

tion of the Monte-Carlo wavefunction method, as this is used in Chapter 4 to describe

the induced dissipative dynamics of a cluster of impurities with stochastic methods

using trajectories.

In Chapter 4 we present results published in [123]. Here, motivated by the possibilities

provided by sympathetic cooling techniques discussed above, together with opportu-

nities to achieve dark-state cooling of impurities in an optical lattice, we study the

dissipative dynamics of neutral atoms in di↵erent trap geometries, and immersed in a

3D superfluid gas. We extend previous studies [79] that considered the sympathetic

cooling of a single impurity trapped in a 1D harmonic potential, and study the cool-

ing and reheating rates for the cases of impurities trapped in a 3D harmonic potential

tightly confined in one direction, and in a harmonic trap tightly confined in two di-

rections, with a quasi-one dimensional cigar shape geometry where we consider two

available modes in the radial direction. The latter case is of particular relevance in the

context of laser dark-state cooling for atoms in an optical lattice, as the coupling with

the tight confined direction can be mapped to the coupling between di↵erent Bloch

bands.

In Chapter 5 we consider the system of an impurity in a BEC and the ability to tune the

trapping parameters of both the impurity and the BEC potentials, in order to access

non-Markovian regimes by changing the trapping frequency of the impurity immersed

in a one-dimensional BEC. This produces di↵erent ratios between the timescales of

the system relaxation and of the bath correlations, which leads to the emergence of

non-Markovian e↵ects with backflow of information to the system. Preliminary results

shown in this chapter pave the way to a variety of studies where reservoir engineering

can be used to access non-Markovian dynamics.

In Chapter 6 we study the dynamics of a wavepacket in a one-dimensional anharmonic

tilted ring trap, characterising the frequencies of the low-lying modes by looking at the

11



Chapter 1. Introduction

oscillations of the BEC density for small angles around the bottom of the ring, and

comparing them with those obtained for the same kind of dynamics in harmonic po-

tentials, for di↵erent values of the interaction strength. We characterise the di↵erence

between the dynamics in the two kinds of potentials in di↵erent initial configurations

and compare, for each of them, results obtained from both numerical and analytical or

semi-analytical approaches for the frequency shifts generated by the non-linearities.

In Chapter 7 we describe the dynamics of exciton-polariton condensates in a tilted

microcavity ring, motivated by recent experiments in the group of David Snoke at the

University of Pittsburgh [124], where particularly long polariton lifetimes have been

achieved. Aiming to describe the features observed experimentally, we simulate the

out-of-equilibrium dynamics of the condensate with a modified GPE that includes a

generation and a dissipation term, accounting for the creation of polaritons and their

finite lifetime. Furthermore, we consider the e↵ect of interactions with an excitonic

reservoir on the dynamics of the polaritons, and account for the relaxation due to this

with the introduction of a phenomenological term in the GPE.

We conclude in Chapter 8 with an overview of the key findings discussed in this thesis,

together with some possible interesting future directions of these studies.
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Chapter 2

Weakly interacting Bose gas

2.1 Introduction

In this chapter we aim to introduce some of the main concepts that we use in the

following chapters, in the context of superfluid reservoirs with trapped impurities in

Chapter 4-5 and out-of-equilibrium dynamics of BECs in trapping potentials, in Chap-

ter 6-7. For a broader overview of BECs, see [108, 125].

This chapter is organised as follows. We start by giving some general background about

Bose-Einstein condensates, introducing their properties to give a brief overview on how

the scales of the physical quantities compare in these systems, treating the most simple

case of a 3D homogeneous weakly interacting dilute gas. We then derive the Bogoliubov

excitation spectrum of a homogeneous BEC in a box potential and the Gross-Pitaevskii

equation, which we use to describe the dynamics of weakly interacting trapped gases.

2.2 Bose-Einstein Condensation

Bose-Einstein Condensation is a macroscopic phase transition a system of bosons un-

dergoes when the interparticle distance d = n�1/3 (where n = N/V is the average

density of N atoms in a volume V ) is of the same order of magnitude as the de Broglie

wavelength

�dB =

s
2⇡~2

mkBT
, (2.1)
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Chapter 2. Weakly interacting Bose gas

where m is the mass of the atom, kB is the Boltzmann constant and T is the temperature

of the system. This condition, for a very weakly interacting gas of identical bosons in

a 3D box potential, is found for temperatures below

Tc ⇡ 2⇡~2
kBm

⇣ n

2.612

⌘2/3
, (2.2)

which is the critical temperature, below which the lowest single-particle energy state

is macroscopically occupied and Bose-Einstein Condensation occurs. The number of

particles in the condensate, for this, is given by

N0(T ) = N

"
1 �

✓
T

Tc

◆3/2
#

, (2.3)

with N the total number of particles. This result is valid for a 3D box potential but

varies for di↵erent trapping geometries and dimensions. For a 3D harmonic potential,

for example, this is N0(T ) = N


1 �

⇣
T
T
c

⌘3�
[126].

In this chapter we discuss weakly interacting BECs. By this we mean that the range

of atom-atom interaction force ra satisfies the relation

ra ⌧ n�1/3, (2.4)

which also implies that interactions of three or more particles can be neglected. Fur-

thermore, as the distance between the atoms is much larger than the e↵ective range

of the interparticle potential, the interactions of the atoms can be described by their

scattering amplitude. The condition of condensation is that the temperature of the

gas is below Tc. As this is achieved for �dB ⇠ n�1/3, from Eq. (2.4) we obtain the

inequality ra ⌧ �dB, which in terms of the momentum of the atoms p = 2⇡~/�dB can

be rewritten as
rap

2⇡~ ⌧ 1. (2.5)

The consequence of this relation is that the energy of the particles is so low that it

is su�cient to consider an s-wave scattering potential, with the advantage that the

interaction strength can be defined by the a single parameter, the scattering length a,
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Chapter 2. Weakly interacting Bose gas

which determines the interaction range ra defined here. Therefore Eq. (2.4) reduces to

the diluteness condition1

n|a|3 ⌧ 1, (2.6)

where n|a|3 is often referred to as the gas parameter.

2.3 Bogoliubov excitation spectrum

We use now the field operators  ̂ to describe the many-body Hamiltonian

Ĥ =

Z
d3r ̂†(r)


� ~2

2m
r2 + Vext(r)

�
 ̂(r)+

1

2

Z
d3r

Z
d3r0 ̂†(r) ̂†(r’)V (r�r’) ̂(r) ̂(r’),

(2.7)

where Vext is the external potential, which in the following of this section we can neglect

(but we use it in the next section for the Gross-Pitaevskii Equation), as we are con-

sidering the case of a box trap, where the condensate can be considered homogeneous,

and V (r � r’) is the interaction potential between the atoms. In order to be able to

use perturbation theory to describe the interaction with the s-wave, it is convenient

to substitute V (r � r’) with an e↵ective pseudopotential Ve↵ , due to the fact that the

form of the real potential at short distances does not allow it to be treated perturba-

tively. The idea to use a pseudopotential, introduced by Fermi [127], is that if we are

interested in the long-range behaviour of the wavefunction, we do not need to get the

correct details of the potential in the short-range. Therefore we can simplify the model

by considering a simple pseudopotential that has the same behaviour at long range and

the specific form of the potential does not really matter, as long as it gives rise to the

same scattering amplitude, described by the scattering length a.

Moving to momentum operators description by means of the Fourier transform, we can

write the field operator as

 ̂(r) =
1p
V

X

p

eip·r/~âp, (2.8)

where âp are the bosonic annihilation operators for a particle with momentum p. For

the Fourier transform of the e↵ective potential, considering only the p = 0 momentum

1

This is however not true near Feshbach resonances.
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justified by the fact that only small momenta are involved, we have

V0 =

Z
d3rVe↵(r). (2.9)

Eq. (2.7) then reduces to

Ĥ =
X

p

p2

2m
âp† âp +

V0

2V

X

p
1

,p
2

,q

â†p
1

+qâ†p
2

�qâp
1

âp
2

. (2.10)

We apply now the Bogoliubov approximation

â0 =
p

N0, (2.11)

which captures the assumption that the ground state is macroscopically occupied and

the occupation of other states can be treated perturbatively, describing it as fluctuations

to the mean-field. This approximation is valid under the condition that the average

range of the the real and e↵ective potentials is much smaller than the interparticle

average distance n�1/3 (i.e. for a dilute gas). In this case we can use the e↵ective

potential and remove the potential problems for the applicability of the perturbation

theory.

Starting from Eq. (2.10), we now calculate the ground state energy and then con-

sider corrections to this, determined by a perturbation theory to the first order in the

fluctuations. When considering only the contribution coming from the ground state

occupation (p = 0) in Eq. (2.10), using the Bogoliubov approximation Eq. (2.11), we

find the ground state energy

Ĥ =
g

2V
â†0â

†
0â0â0 =

V0N2
0

2V
(2.12)

E0 =
N2V0

2V
=

N2g

2V
=

4⇡~2a
2mV

N2 =
1

2
Nng, (2.13)

where n = N/V is the density, and where we defined the interaction as

V0 = g = 4⇡~2a/m, (2.14)
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as a result of the Born approximation on the e↵ective potential, which holds for weak

interactions and when we assume the macroscopic occupation of the ground state.

When considering occupation beyond the mean-field approximation, however, this term

has corrections that depend on p and takes the form

V0 = g

0

@1 +
g

V

X

p 6=0

m

p2

1

A . (2.15)

The divergence for large momentum of this term comes from the fact that in the Fourier

transform of the e↵ective potential (Eq. (2.9)) we considered only the contributions with

zero momentum. The correction of Eq. (2.15) is however important as it changes the

ground state energy and ensures this is a convergent quantity.

Including fluctuations in Eq. (2.10), and therefore the terms with p 6= 0, we obtain

Ĥ =
V0

2V
â†0â

†
0â0â0 +

X

p

p2

2m
â†pâp +

V0

2V

X

p 6=0

(4â†0â
†
pâ0â

†
p + â†pâ†�pâ0â0 + â†0â

†
0â

†
pâ†�p),

(2.16)

where the terms containing only one particle having non zero momentum have been

neglected as they do not guarantee the conservation of momentum.

Here we can still use the Bogoliubov approximation of Eq. (2.11), implying N ⇡ N0,

however, in the first term we have to take particular care as the this approximation

does not include the terms that are second order in â†p and âp, with p 6= 0. Therefore,

we have to renormalize the population by imposing the condition

N = â†0â0 +
X

p 6=0

â†pâp = N0 +
X

p 6=0

â†pâp. (2.17)

Neglecting higher order terms, this gives

â†0â
†
0â0â0 = N2 � 2N

X

p 6=0

â†pâp. (2.18)

Replacing this result, together with Eq. (2.15) in Eq. (2.16), we obtain the Hamiltonian
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in the form

Ĥ =
gN2

2V
+
X

p

p2

2m
â†pâp +

gn

2

X

p 6=0

✓
2â†pâp + â†pâ†�p + âpâ�p +

mgn

p2

◆
. (2.19)

This Hamiltonian can be diagonalised by using the Bogoliubov transformations

âp = upb̂p + vpb̂†�p (2.20)

â†p = upb̂†p + vpb̂�p, (2.21)

where the bosonic creation operator b̂†p describes the creation of a quasiparticle (Bogoli-

ubov excitation) with momentum p. The coe�cients up and vp are called Bogoliubov

coe�cients and, imposing the bosonic commutation relations for both the operators b̂p

and âp, it can be shown that they must satisfy the relation

u2
p � v2p = 1. (2.22)

It is useful at this point to introduce some functions that depend on one parameter and

satisfy this condition, so that we can reduce the number of variables. For instance, we

consider

up = cosh ✓p, vp = sinh ✓p. (2.23)

Using the Bogoliubov transformations in Eq. (2.19), we obtain a Hamiltonian containing

a term proportional to the non-diagonal elements b̂†pb̂†�p + b̂pb̂�p, so we need to impose

the condition for their coe�cient to be null in order to have a diagonal Hamiltonian.

Therefore we impose

✓
p2

2m
+ gn

◆
upvp +

gn

2
(u2

p + v2p) = 0, (2.24)

and by using Eq. (2.23), this can be turned into an equation for a single variable ✓p.

Using the relations cosh(2✓p) = cosh2 ✓p + sinh2 ✓p and sinh(2✓p) = 2 cosh ✓p sinh ✓p,
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we can rewrite Eq. (2.24) as

coth(2✓p) = �p2/2m + gn

gn
, (2.25)

and obtain the Bogoliubov coe�cients in the form

u2
p = 1 � v2p =

1

2


p2/2m + ng

✏(p)
+ 1

�
. (2.26)

Here,

✏(p) =

"✓
p2

2m

◆2

+ 2ng
p2

2m

#1/2
, (2.27)

is the Bogoliubov dispersion relation, corresponding to the eigenvalues of the Hamilto-

nian (2.16) obtained in the diagonal form

Ĥ = E0 +
X

p

✏(p)b̂†pb̂p, (2.28)

with

E0 =
gN2

2V
+

1

2

X

p 6=0


✏(p) � gn � p2

2m
+

mg2n2

p2

�
(2.29)

=
gN2

2V


1 +

128

15
p
⇡

(na3)1/2
�

, (2.30)

where in the last line we carried the integration over the momentum.

These results mean that the superfluid, initially described as a system of interacting

particles in Eq. (2.16), can be thought as an ensemble of non-interacting quasiparticles

(Eq. (2.28)), the Bogoliubov excitations, whose creation and annihilation operators are

given by b̂†p and b̂p, and with energy ✏(p), given by their dispersion relation Eq. (2.27).

For small momenta p ⌧ mc, where c =
p

gn/m is the velocity of sound in the super-

fluid, the dispersion relation is linear with p and takes the form

✏(p) ⇠ cp, (2.31)

20



Chapter 2. Weakly interacting Bose gas

and the quasi-particles have a phonon nature. In this case the Bogoliubov coe�cients

diverge, as up ! �vp !
p

mc/2p. In the opposite limit, for p � mc, the quasi-

particles are particle-like and have the dispersion relation

✏(p) ⇡ p2

2m
+ gn =

p2

2m
+ µ, (2.32)

where we defined the chemical potential µ = gn = mc2, and in this case vp ⌧ up ⇠ 1.

2.4 Gross-Pitaevskii equation

In this section we derive the Gross-Pitaevskii Equation (GPE), which is a mean-field

theory used to describe the dynamics of a weakly interacting gas. We use the Hamil-

tonian of Eq. (2.7) as a starting point and, as we are dealing with field operators, we

describe the evolution of the system using the Heisenberg equation

i~ @
@t
 ̂(r, t) = [ ̂(r, t), Ĥ]

=


�~2r2

2m
+ Vext(r) +

Z
dr0 ̂†(r’, t)V (r � r’) ̂(r’, t)

�
 ̂(r, t), (2.33)

where the last term was obtained using the commutation relations for the bosonic field

operators.

Under the considerations made in the previous section, we substitute V (r � r’) with

the pseudo potential Ve↵(r � r’). As discussed, the important thing is that both these

potentials define the same scattering amplitude in the dilute gas, where the condition

a ⌧ |r � r’| is satisfied. In the mean-field approximation, we can replace the field

operator  ̂(r) with a wavefunction  0(r), and the soft pseudo potential introduced

ensures that the wavefunction varies slowly on the range of the interparticle interaction,

therefore we can substitute r’ with r in  0(r’). The Born approximation is valid in

the weakly interacting limit (for ka ⌧ 1, where k is the relative wave vector of the

particles approaching each other) and, as seen in the previous section, the interaction

in this regime can be described by the interaction strength g, as defined in Eq. (2.14).

Under these assumptions, from Eq. (2.33) we derive the Gross-Pitaevskii Equation, of
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the form

i~ @
@t
 0(r, t) =


�~2r2

2m
+ Vext(r) + g| 0(r, t)|2

�
 0(r, t), (2.34)

where, for interactions in 3D, g = 4⇡~2a/m, as defined previously.

The GPE is therefore a Schrödinger equation with a non-linear term determined by the

scattering between two particles. It is important to stress that this derivation relies on

the macroscopic occupation of the ground state, which is described by a wavefunction,

while any perturbations populating higher moments are neglected. This is typically

valid for large, weakly interacting gases, and for T < Tc.

In Eq. (2.34) the only interaction process is the scattering between pairs of atoms, so

the number of particles is conserved and given by

N =

Z
n(r, t)dr =

Z
| 0(r, t)|2dr, (2.35)

where n = | 0|2 is the density of the gas.

In the previous section we discussed the conditions needed to have a dilute gas and a

weakly interacting condensate. It is important to remark that the diluteness condition

na3 ⌧ 1 does not necessarily imply weak interactions, when comparing the di↵erent

energy scales. In fact, in order to understand if a gas is weakly interacting, we would

need to compare the kinetic and the interaction energy.

The energy functional of the system, for the ground state  0, is given by the equation

E =

Z ✓ ~2
2m

|r 0|2 + Vext(r)| 0|2 +
g

2
| 0(r)|4

◆
(2.36)

=

Z ✓ ~2
2m

|r
p

n|2 + Vext(r)n
2 +

g

2
n4

◆
(2.37)

= Ekin + Epot + Eint, (2.38)

where the first term, which is zero in uniform gases, is the “quantum pressure” and is

a consequence of the Heisenberg ucertainty principle, the second term is the potential

energy and the last one is the interaction energy. Using this, from the definition of the
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chemical potential µ = @E
@N , we obtain the time-independent GPE


�~2r2

2m
+ Vext(r) + g| 0(r, t)|2

�
 0(r) = µ 0(r). (2.39)

In a 3D isotropic harmonic potential of frequency ~!ho, Ekin ⇡ N~!ho / N/a2ho,

and the interaction energy evaluated on the ground state is Eint = gNn / N2a/a3ho.

Comparing the two terms, we have

Eint

Ekin
/ Na

aho
. (2.40)

This term can be larger than one even in the case of a dilute gas, so the word “weakly

interacting” can be misleading. When the kinetic energy is much smaller than the

interaction energy, we are in the so called Thomas-Fermi limit. If we neglect the

kinetic term in Eq. (2.39), we obtain

µ = V (r) + g| (r)|2, (2.41)

which results in the form of the stationary wavefunction determined by

| (r)|2 =
µ � V (r)

g
. (2.42)

The Gross-Pitaevskii equation (2.34) derived here will be used to simulate the dynamics

of a BEC in Chapters 6-7, following the numerical method illustrated in Appendix 6.3.2.
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Open quantum system dynamics

Despite the advanced progress in experiments to create platforms with single atoms

or photons coherently prepared in a well defined state, quantum systems cannot be

considered completely isolated from an environment, as there are always sources of

decoherence and dissipation present. For a complete description of the system, inter-

actions with the environment must be considered.

Theories of open quantum systems (OQS) provide toolboxes for the study of a system

interacting with an environment, where the environment degrees of freedom are traced

out in order to retain only the information about the system dynamics after the inter-

action. These methods, broadly used in quantum optics and atomic physics [128–130]

to describe, for instance, the interaction of atoms with light, have found applications in

other di↵erent fields, such as molecular physics [131, 132], solid state physics, quantum

information [133], biophysics [134], quantum chemistry [135], and nuclear physics [136].

In the context of quantum optics and solid state physics systems, the coupling is com-

monly with bosonic (or fermionic) environments, such as photons in the description of

an atom interacting with the light field, or phonons, for instance for atoms in crystals,

while in the context of atomic physics some environments can be represented by spins.

A complete description of a system coupled to an environment is di�cult to give in

some cases, due to the fact that the size of the Hilbert space for an environment

with N degrees of freedom increases exponentially as 2N . Therefore describing the

dynamics of both system and reservoir with the Schrödinger equation, in such cases,
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becomes prohibitive. However, depending on the characteristics of both system and

environment, for appropriate separation of time or frequency scales, we can use some

approximations to facilitate the evaluation of the dynamics of the total system. The

idea is that, instead of studying the joint closed dynamics of system and environment,

we can study the non-unitary dynamics of the system alone, using a dynamical equation

that accounts for the influence of the reservoir on the system state, but where we do

not need to keep track of the evolution of the environment.

These dynamical methods describing the evolution of the density operator for the sys-

tem are called master equations. Under certain assumptions, we can have some sim-

plified versions of these, called Markovian master equations, where we neglect the cor-

relations between system and reservoir and, under the assumption that the correlation

time of the reservoir is much smaller than the typical timescales of the system, we can

treat the environment as being static. In the following we present the derivation of

the master equation in the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) [137, 138]

form (commonly known as the Lindblad equation), to describe the evolution of the

system under the aforementioned approximations, and describe the Monte Carlo meth-

ods, as these methods have been used in the results presented in Chapter 4, where we

consider a neutral atom immersed in a superfluid reservoir.

3.1 Master equation

There are di↵erent methods to derive the GKSL master equation, using various ap-

proaches and mathematical descriptions that lead to the same results [130, 139–141],

based on some assumptions that will be discussed in this section. Here we report the

derivation of the GKSL master equation using a microscopic approach. Although we

are aware that the word “reservoir” is used by some authors to describe environments

with an infinite number of degrees of freedom, and therefore with a continuum of fre-

quency modes, we interchange it with the term “environment” without any distinction.

The Hamiltonian of a system interacting with the environment is

H = HS + HR + HI, (3.1)
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defined by the sums of the Hamiltonians respectively for the system, the environment

and their interaction. We define, in the Hilbert space of system and reservoir HS ⌦HR,

the density operator ⇢ that describes both the system and the environment, which in

the Schrödinger picture, evolves according to the equation

⇢̇ = � i

~ [H, ⇢]. (3.2)

Moving to the interaction picture, an operator (generally described by the symbol O)

acquire a time dependence according to

O(I)(t) = U†(t)OU(t) = e
i

~ (HS

+H
R

)tOe�
i

~ (HS

+H
R

)t. (3.3)

This definition applies also to the density operator, therefore Eq. (3.2) takes the form

⇢̇(I) = � i

~ [H(I)
I (t), ⇢(I)(t)], (3.4)

which is the von Neumann equation. As in the following we keep working in the

interaction picture, to lighten the notation, we remove the superindex “(I)” in the

operators. Eq. (3.4) can be rewritten in the integro-di↵erential form

⇢(t) = ⇢(0) � i

~

Z t

0
dt0[HI(t

0), ⇢(t0)], (3.5)

and after inserting this into Eq. (3.4), we obtain

⇢̇(t) = � i

~ [HI(t), ⇢(0)] � 1

~2

Z t

0
dt0[HI(t), [HI(t

0), ⇢(t0)]]. (3.6)

It is important to remark that up to this point we did not make any assumptions.

The first approximation that we make now consists of considering the system and the

reservoir not entangled at the initial time t = 0, so that the total density operator can

be factorised into one part for the system and one for the environment, as

⇢(0) = ⇢S(0) ⌦ ⇢R(0). (3.7)
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However, this is not generally true at t > 0, after the system and environment start

interacting and correlations between them set in. This can be accounted for, in the

total density operator at later times

⇢(t) = ⇢S(t) ⌦ ⇢R(t) + �⇢(t), (3.8)

with the addition of a term �⇢(t) / O(HI) that defines the correlations between the

system and the reservoir, at the second order in HI. At this stage we use the first

approximation, namely the Born approximation, where we stop at the lowest order of

the perturbation neglecting the correlations term �⇢(t). This approximation is justified

by the condition of weak coupling between system and reservoir. Furthermore, under

the assumption that the reservoir contains a large number of degrees of freedom and

interacts weakly with the system, we can consider the density matrix of the reservoir

to be only slightly a↵ected by the interactions with the system. More precisely, the

correlation functions in the equation of motion that are relevant to the time evolution

of the system involve the same bath contribution at the time t as they do at time zero,

and we can consider, for simplicity ⇢R(t) = ⇢R(0) = ⇢R.

As we are interested in the dynamics of the system, Eq. (3.6) can be traced over the

environment to obtain an equation of motion for the density operator of the system

only, and based on the Born approximation, keeping only the lowest order terms, we

obtain

⇢̇S(t) = � i

~TrR{[HI(t), ⇢S(0)⌦⇢R]}� 1

~2

Z t

0
dt0TrR{[HI(t), [HI(t

0), ⇢S(t
0)⌦⇢R]]}. (3.9)

The other assumption that we make is � i
~TrR[HI(t), ⇢(0)] = 0 in Eq. (3.6). This is true

given TrR[HI(t), ⇢R] = 0, which can be satisfied by considering an e↵ective Hamiltonian

for the system that includes the term TrR{HI(t)⇢R}. Eq. (3.9) can then be written as

⇢̇S(t) = � 1

~2

Z t

0
dt0TrR{[HI(t), [HI(t

0), ⇢S(t
0) ⌦ ⇢R]]}. (3.10)

This form is clearly non-local in time, as the density operator of the system at the time
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t depends on its past history (denoted by the integration over the times t0 in an interval

t). We now make the third approximation, consisting in making this local in time by

replacing ⇢S(t0) with ⇢S(t), so that the system evolution ⇢̇S(t) does not depend on its

past dynamics anymore, but only on its state at the time t. This is called Markov

approximation and in order to justify it we need to introduce two distinct timescales

involved in our assumptions:

1. the correlation time of the reservoir ⌧C , defined as the interval of time needed

for the reservoir to restore its initial conditions. More formally, given a set of

operators b↵ of the reservoir, ⌧C is that time needed for the correlation function,

defined as hb†↵(t)b�(t � t0)i = TrR{b†↵(t)b�(t � t0)⇢R}, to go to zero. Assuming

that the environment covers an energy range ~�!, then the correlation time is of

the order ⌧C = ~/�!;

2. the typical relaxation timescales of the system ⌧R, which can be defined as the

timescale over which the density matrix of the system changes appreciably, e.g.

for an excited atom, this is the decay time ⌧R ⇠ 1/�.

The Markov approximation consists of the assumption that ⌧C ⌧ ⌧R, meaning that the

system can not resolve any changes in the environment as the correlations in this decay

in a time smaller than the timescale of the system. Under this condition, Eq. (3.10)

becomes

⇢̇S(t) = � 1

~2

Z t

0
dt0TrR[HI(t), [HI(t

0), ⇢S(t) ⌦ ⇢R]]. (3.11)

This equation is called the Redfield equation, and although it is now local in time, it

is still not Markovian, as the dynamics of the system still depend on the choice of the

initial condition at t = 0 [139]. A second step then consists of applying the substitution

t0 ! (t� t0) and extending the integral limit to infinity, under the assumption that cor-

relations in the environment decay rapidly on a timescale corresponding to the system

dynamics, which implies
R1
t dt0TrR{[HI(t), [HI(t0), ⇢S(t) ⌦ ⇢R]]} ⇡ 0. This corresponds

to the assumption that the system density matrix does not change significantly within

the environment correlation time ⌧C . From the Redfield equation we therefore obtain
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the master equation in the Markovian form

⇢̇S(t) = � 1

~2

Z 1

0
dt0TrR[HI(t), [HI(t � t0), ⇢S(t) ⌦ ⇢R]]. (3.12)

However, this equation does not guarantee the definition of a dynamical semigroup

[139]. For this purpose, we need to do the secular approximation, which is fulfilled by the

condition ⌧S ⌧ ⌧R, where ⌧S is the characteristic evolution time of the system and ⌧R is

the relaxation time, as previously discussed. In order to have a better understanding of

the motivation and implications of this approximation, we now proceed to the derivation

of the Lindblad master equation. Decomposing the interaction Hamiltonian in a part

given by operators of the system and one by operators of the reservoir, respectively s↵

and b↵, we can write

HI = ~
X

↵

s↵ ⌦ b↵. (3.13)

Under the assumption that the spectrum of the system is discrete with eigenvalues ✏

[139], we can define projectors ⇧(✏) in this eigenspace, so that the eigenoperators of

the system are given by

s↵(!) =
X

✏0�✏=!
⇧(✏)s↵⇧(✏0), (3.14)

therefore fulfilling the condition [HS, s↵(!)] = �!s↵(!), [HS, s
†
↵(!)] = !s†↵(!), and

having the properties

s↵(!) = s†↵(�!), (3.15)
X

!

s↵(!) =
X

!

s†↵(!) = s↵, (3.16)

where the last equation follows from the completeness relation. We transform the

operators of the system and the reservoir into the interaction picture, where according

to Eq. (3.3) we obtain b(I)↵ (t) = eiHR

tb↵e�iH
R

t and use the property of the eigenoperators

of the system s(I)↵ (!) = e�i!ts↵(!), s†(I)↵ (!) = ei!ts†↵(!). Removing, for convenience of

notation, the superindex (I) in the operators above, the interaction Hamiltonian can
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then be written in the form

HI(t) = ~2
X

↵,!

e�i!ts↵(!) ⌦ b↵(t) = ~2
X

↵,!

ei!ts†↵(!) ⌦ b†↵(t). (3.17)

Going back to Eq. (3.12), after expanding the commutators and using the cyclic prop-

erty of the trace, we can write

⇢̇S(t) =
1

~2

Z 1

0
dt0TrR{HI(t � t0)⇢S⇢RHI(t) � HI(t)HI(t � t0)⇢S(t)⇢R + h.c.}. (3.18)

where h.c. denotes the Hermitian conjugate, and after replacing in Eq. (3.18) the inter-

action Hamiltonian with the form derived in Eq. (3.17), we obtain the master equation

in the form

⇢̇S(t) =
X

↵,�

X

!,!0

ei(!
0�!)t

h
�↵�(!)(s�(!)⇢S(t)s

†
↵(!0) � s†↵(!0)s�(!)⇢S(t)) + h.c.

i
,

(3.19)

where we have defined

�↵�(!) =

Z 1

0
dt0ei!t

0 hb†↵(t)b�(t � t0)i , (3.20)

corresponding to the one-sided Fourier transform of the reservoir correlation functions

hb†↵(t)b�(t � t0)i = TrR{b†↵(t)b�(t � t0)⇢R}. (3.21)

Here we want to make some remarks about the properties of the reservoir and its

correlation function. If the environment is stationary, as we assumed so far, then

[HR, ⇢R] = 0, implying that hb†↵(t)b�(t � t0)i = hb†↵(t0)b�(0)i. This means that the

correlation functions are homogeneous, as they do not depend on the particular time

t, but only on the interval t0.

Going back to the motivation behind the secular approximation, Eq. (3.19) gives now

a more solid ground for further discussions. The typical evolution timescale of the

system, ⌧S , should be considered of the order 1/(|!0 � !|) with !0 6= !. However,
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under the assumption that ⌧R � ⌧S , where ⌧R is the relaxation time of the system, the

frequencies |!0 � !| with !0 6= ! will be highly oscillating and average out to zero in

the timescale ⌧R. We therefore keep only the energy conserving terms with !0 = !, so

that we can write the master equation as

⇢̇S(t) =
X

↵,�

X

!

h
�↵�(!)(s�(!)⇢S(t)s

†
↵(!) � s†↵(!)s�(!)⇢S(t)) + h.c.

i
, (3.22)

with �↵,�(!) defined as in Eq. (3.20). We do not report the next passages here, but

it can be shown [139] that this master equation can be rewritten in the GKSL form

[137, 138]

⇢̇S = L⇢S = � i

~ [HS, ⇢S] +
X

i

�i
2

(2Li⇢SL
†
i � {L†

iLi, ⇢S}), (3.23)

where Li are jump (or Lindblad) operators and �i � 0 are decay rates associated with

the dissipative part of the dynamics.

3.2 Monte-Carlo Wavefunction method

In the previous section we derived the GKSL master equation. This can be used to

describe the evolution of the system interacting with an environment in a wide variety

of problems, as mentioned at the beginning of this chapter. However, in the numerical

implementation of the Lindblad equation, a direct propagation of the density matrix

⇢S can be challenging due to the fact that its matrix representation has dimension

dim(HS)2 and the Hilbert space dimension HS grows exponentially with the size of the

system. Some other approaches alternative to the direct propagation of the reduced

density matrix have therefore been developed to circumvent this problem. One of

these is the quantum Monte-Carlo Wavefunction method (also known as the Quantum

Trajectories method) [142, 143] (see [144] for a review), where a pure state of the

system (that can be represented with dim(HS) variables), randomly sampled from the

initial density matrix of the system, is subject to a stochastic evolution that combines

quantum jumps and the evolution under an e↵ective Hamiltonian. The density matrix is

therefore reconstructed after averaging over many realisations (trajectories). From the
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Lindblad master equation Eq. (3.23) we have seen that the dissipation is determined by

the action of jump operators Li that occur at rates �i. We expand the anti-commutator

in the Lindblad equation and define the e↵ective Hamiltonian

He↵ = HS � i~
2

X

j

�jL
†
jLj , (3.24)

to write Eq. (3.23) in the more convenient form

⇢̇S = � i

~ [HS, ⇢S] +
X

i

�i
2

[2Li⇢SL
†
i � L†

iLi⇢S � ⇢SL
†
iLi] (3.25)

= � i

~ [He↵ , ⇢S] +
X

i

�iLi⇢SL
†
i . (3.26)

These two terms can be interpreted as follows: the first term determines the system

evolution under the non-Hermitian Hamiltonian He↵ , therefore removing amplitude

from a certain state, and the last term of Eq. (3.26) restores the population into other

states. We can imagine this as the e↵ect of an environment acting on the system with

measurements after time intervals �t, and instead of tracing over the environment,

the outcomes of the measurements are recorded, so the system at the time t + �t is

projected into a new state1, which becomes the initial condition for the next time

step. At this point the memory of the environment simulator is reset (reflecting the

Markovian approximation) and the system is in a new pure state. After repeating this

procedure for the entire evolution and for many trajectories, the density matrix of the

system can be restored by averaging the projector on the state of the system, over all

the number of trajectories.

In the following we describe more precisely how to implement the first-order Monte

Carlo wavefunction method, used in Chapter 4.

For each trajectory we start with the system initially in the pure state |�(t = 0)i,

sampled from the density matrix ⇢S(0). We can expand the master equation to the

1

in the numerical implementation, the state at t+�t is sampled from the distribution of the transition

probabilities
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first order in a time step �t, and this gives a time evolution determined by

|�(1)(t + �t)i =

✓
1 � i

~He↵�t

◆
|�(t)i , (3.27)

where t is the initial time at each time step. As the evolution of the system is non-

unitary, it does not preserve the norm and this decreases by a quantity �p:

h�(1)(t + �t)|�(1)(t + �t)i = 1 � �p, (3.28)

with �p = i
~�t h�(t)|(He↵ � H†

e↵)�(t)i + O(�t2) ' �t
P

j �j h�(t)|L†
jLj |�(t)i =

P
j �pj ,

determined by the total decay probability given by the sum over the probabilities to

decay to the other states determined by the channels allowed by the dissipator. Based

on this observation, for the next step we have to determine if the jump happens or not.

Numerically, this is done by randomly generating a number r1 2 [0, 1], and based on

this outcome we propagate the state as follows:

1. r1 > �p: no jump occurs. The probability that this happens is given by 1 � �p,

as we have just seen, and in this case we simply renormalise the state:

|�(t + �(t))i =
|�(1)(t + �t)ip

1 � �p
. (3.29)

2. r1 < �p: a jump occurs. With probability �p, the system jumps to another state

and the population is removed from the initial state

|�(t + �t)i =

p
�jLj |�(t)i
p
�pj/�t

. (3.30)

The new state occupied is sampled from the probability distribution of all the

possible states ⇧j = �pj/�p, by generating a random number r2 weighted over

this.

After iterating this method for the whole evolution, we can determine the stochastic

average over di↵erent trajectories and reconstruct the density matrix evolution, as

explained below.
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We follow the previous steps explained for the evolution of the pure state, mapping that

to a density matrix formulation. The pure state at each initial time step t corresponds

to a density operator given by

�(t) = |�(t)i h�(t)| . (3.31)

After propagating in a time �t, this can be written in the form

�(t + �t) = (1 � �p)
|�(1)(t + �t)ip

1 � �p

h�(1)(t + �t)|p
1 � �p

+ �p
X

j

�j⇧j
Lj |�(t)ip
�pj/�t

h�(t)| L†
jp

�pj/�t
, (3.32)

to be interpreted as the statistical average of �(t + �t) over all the trajectories. Substi-

tuting Eq. (3.27) here, at the first order in �t, the above equation is

�(t + �t) = �(t) � i

~�t(He↵�(t) � �(t)H†
e↵) + �t

X

j

�jLj�(t)L†
j + O(�t2), (3.33)

that can be rewritten, neglecting higher order terms, as

�(t + �t) � �(t)

�t
' � i

~(He↵�(t) � �(t)H†
e↵) +

X

j

�jLj�(t)L†
j (3.34)

which can be generalised to the case of a mixed operator �(t). Taking a statistical

average over the di↵erent trajectories is therefore equivalent to evaluating the evolution

by means of the master equation (Eq. (3.26)).

It is worthwhile noting that in general we sample the observables that interest us from

the trajectories, rather than directly reconstructing the density operator. Furthermore,

these are independent samples, so that the statistical error scales as �/
p

N , with � the

standard deviation of the observable across the trajectories, and N the number of

samples.
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Chapter 4

Cooling of neutral impurity

atoms immersed in a BEC

4.1 Introduction

The achievement of dual-species mixtures in the last years [53, 54, 145] has paved the

way to the study of individually trapped impurities in a BEC [62–64, 68] exploring both

coherent many-body dynamics and dissipative dynamics. In particular, the study of

dissipative dynamics [146, 147] has led to progress in the cooling of atoms, improving

the control over unwanted dissipation of trapped atoms in optical lattices [73–78], and

also applications in the context of many-body state engineering by means of dissipative

driving [148–151]. The study of dissipative dynamics of a single neutral impurity atom

immersed in a BEC, in particular, has been shown to be useful for its cooling to the

motional ground state, without a↵ecting its internal states under certain conditions

[79].

This process relies on the relaxation of the motional excitations when coupled to the

BEC, determined by the spontaneous emission of excitations in the reservoir, analo-

gously to the case of an atom in an excited electronic state that decays by emitting

a photon. In a lattice, this spontaneous emission process, combined with engineered

excitations of the motional state can find applications in dark-state laser cooling, aim-

ing to achieve cooling within a Bloch band [81, 82]. This is motivated in particular
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by recent dual-species experiments with alkaline-earth-metal atoms and alkali atoms

[54, 63, 152], especially with spin-polarised fermions, where the collisions within the

same band are suppressed, so that coherence is preserved and the dissipative dynamics

is related to the coupling between di↵erent bands.

Sympathetic cooling by a gas of neutral atoms has also been studied for single ion

impurities, motivated also by recent experiments with hybrid traps for ions and neutral

atoms [153, 154]. In contrast to the neutral impurity case, the radio-frequency field of

the ion trap induces micromotion, on top of the harmonic oscillations, as a consequence

of the oscillating electrical forces. The presence of this time-dependent trapping po-

tential leads to injection and loss of energy in the system over a single trapping cycle,

with limitations in cooling and heating that are still argument of discussion [155, 156].

Given the above motivations, we study the dissipative dynamics of neutral spin-polarised

fermionic impurities trapped in anisotropic traps in di↵erent geometrical configurations,

going beyond the 1D trapping potential models of previous studies [79, 82], and im-

mersed in a 3D bosonic reservoir gas.

Experimentally the confinements of the two species in di↵erent dimensions is obtained

using, for instance, the technique of species-selective dipole potential [64, 157]. The

dynamics of impurities, in this setup, can be observed experimentally using fermions

in an optical lattice in the Mott insulator regime where the tunneling is tuned to

zero, so that the harmonic oscillators are independent [64]. Besides that, experiments

that use trapping of a single impurity were realised, for example, preparing separately

the reservoir atoms and the impurity and then transferring the impurity in the bath

[158, 159].

Here, for the impurities, we consider a range of trapping conditions in the transverse

direction with respect to the direction along which an atom is initially excited. This

sets the basis for experimental applications in 1D or 2D optical lattices, and also o↵ers

a possible method for cooling distributions of fermions on single sites of a lattice.

This chapter contains results published in [123]1 and is organised as follows. In Sec. 4.2

1

The author of this thesis performed all of the calculations and produced all of the figures in Ref.

[123]
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we introduce the model, describing the Hamiltonian and the approximations made in

our study, where we use an open quantum system approach. In Sec. 4.3 we start by

considering the case of a single impurity in a pancake-shaped trapping potential, and

coupled to a BEC, which acts as a reservoir for the impurity atoms. We evaluate the

decay rates associated with the spontaneous emission process for excitations in the

reservoir, for the case of the impurity initially excited in the axial (tightly confined)

direction. We see how these rates depend on the geometry of the system and the

trapping frequencies, as well as the properties of the reservoir, such as the chemical

potential. Setting parameters used in current experiments, we estimate realistic decay

times. In Sec. 4.4 we estimate the decay rates for a di↵erent geometrical trapping

potential weakly confined in the radial direction, e↵ectively studying a 2D harmonic

trap. Furthermore, we consider finite temperature reservoir e↵ects and in Sec. 4.5 we

extend these results to study the dynamics of spin-polarised fermions in a cigar-shaped

trapping potential. In Sec. 4.6 we summarise this work and discuss future interesting

perspectives.

4.2 Introduction to the model and derivation of the mas-

ter equation

The system we study is an impurity neutral atom trapped in a harmonic potential,

immersed in a 3D superfluid gas of bosons. For simplicity, we consider the reservoir

to be confined in a square well potential of volume V (we assume that the size of

the reservoir is much larger than the oscillation length of the impurity in di↵erent

directions), and the fermionic impurity in a well-defined internal state during the whole

investigated dynamics. This choice is justified by the fact that the internal states are

not be a↵ected by the cooling process if there are no spin-changing collisions and if

the atoms are prepared in a single internal state, or in a superposition of states with

the same scattering lengths for collisions with the reservoir atoms [79]. This model is
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described by the total Hamiltonian

Ĥ = Ĥa + Ĥb + Ĥint, (4.1)

where

Ĥa = ~
✓
!xn̂x + !yn̂y + !zn̂z +

1

2
(!x + !y + !x)

◆
, (4.2)

is the Hamiltonian describing the vibrational motion of the impurity, approximated by

a 3D quantum harmonic oscillator of frequency !i along the i-direction (i = x, y, z).

The Hamiltonian describing the superfluid reservoir is

Ĥb = E0 +
X

k 6=0

✏(k)b̂†k b̂k, (4.3)

which is obtained from the Bogoliubov diagonalisation as described in Chapter 3, where

we introduced the creation and annihilation operators b̂†k and b̂k for Bogoliubov exci-

tations with energy ✏(k) = ✏k and momentum ~k. Here, E0 is the ground state energy

of the superfluid. The interaction between the reservoir and the system is described by

a contact interaction term, given by the Hamiltonian

Hint = gab

Z
�⇢̂(rb)�(r � rb)drb = gab�⇢̂(r), (4.4)

where r is the position operator of the atom, and rb and �⇢̂ are respectively the position

and the density fluctuation operator of the reservoir. The coupling constant between

the atom in the lattice (with mass ma) and the atoms of the BEC (with mass mb) is

given by the interaction strength gab = 4⇡~2aab/2m̃ , where aab is the scattering length

between the impurity and the superfluid, and m̃ = m
a

m
b

m
a

+m
b

is the reduced mass.

By using the mean field description, the field operator for the superfluid can be written

as

 ̂ =
p
⇢0 + � ̂, (4.5)

where ⇢0 is the mean condensate density and the density fluctuation operator is there-
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fore given by

�⇢̂ =  ̂† ̂ � ⇢0 =
p
⇢0(� ̂ + � ̂†) + � ̂†� ̂, (4.6)

determined by the fluctuations of the field operator, which can be rewritten in terms

of Bogoliubov operators as

� ̂ =
1p
V

X

k

(uk b̂keik·r + vk b̂
†
ke�ik·r), (4.7)

where V is the normalisation volume and uk and vk the coe�cients obtained moving

to the momentum space using Eq. (2.8) and using the Bogoliubov transformations of

Eq. (2.20)-(2.21). The Bogoliubov coe�cients of Eq. (2.26) can be rewritten in the

form

u2
k =

R2
k

1 � R2
k

, v2k =
1

1 � R2
k

, (4.8)

where we defined Rk = ✏
k

�(~k)2/2m
b

�m
b

u2

m
b

u2

. Here u =
p

gbb⇢0/mb is the speed of sound

in the condensate (with gbb = 4⇡~2abb/mb the interaction within the BEC) and ✏k the

energy of the Bogoliubov excitations, given by

✏k =

s

(~uk)2 +

✓
~2k2

2mb

◆2

. (4.9)

Using the definition of the chemical potential of the reservoir

µb = gbb⇢0 = mbu
2, (4.10)

we observe that, depending on the momentum of the excitations, the Bogoliubov exci-

tations can either have a particle-like spectrum in the supersonic regime (when ✏k � µb,

therefore k � mbu), or a phonon-like one in the subsonic regime (for ✏k ⌧ µb, implying

k ⌧ mbu). The energy spectra in the two cases are respectively given by

✏(sup)k =
~2k2

2mb
+ µb, (4.11)

✏(sub)k = ~uk, (4.12)
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and are shown in Fig. 4.1.

ϵ(k)/μb

ϵ(k)(sub)/μb

ϵ(k)(sup)/μb

0.5 1.0 1.5 2.0 2.5 3.0

k

mb u /ℏ

1

2

3

4

5

6
ϵ(k)/μb

Figure 4.1: Bogoliubov excitation spectrum, as given by Eq. (4.9) (solid black line).
The dashed grey line determines the value of the chemical potential µb, while the blue
and green dotted lines represent the excitation spectrum respectively in the supersonic
limit (Eq. (4.11)) and in the subsonic limit (Eq. (4.12)).

The di↵erent dispersion relations in the two regimes imply a change also in the structure

factor S(k) = (uk + vk)2, with S(k) ⇠ 1 in the supersonic limit and S(k) ' ~k
2mbu

in

the subsonic limit, as shown in Fig. 4.2. In the following we will see that this quantity

represents an important role in the evaluation of the transition rates, and therefore in

the dynamics of the system.

5 10 15
k l0

0.2

0.4

0.6

0.8

1.0

S(k)

Figure 4.2: Structure factor S(k) = (uk + vk)2.
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Under the assumption of low temperatures, the term � ̂†� ̂ of Eq. (4.6) can be ne-

glected [79], and using the definition in Eq. (4.7), the density fluctuation operator takes

the form

�⇢̂ =
p
⇢0(� ̂

† + � ̂) =

r
⇢0
V

X

k

[(uk + vk)(b̂keik·r + b̂†ke�ik·r)]. (4.13)

The interaction Hamiltonian of Eq. (4.4) therefore reduces to

Hint = gab
p
⇢0[� ̂

†(r̂) + � ̂(r̂)] = gab

r
⇢0
V

X

k

[(uk + vk)(b̂keik·r̂ + b̂†ke�ik·r̂)]. (4.14)

We consider the impurity atom initially in an excited state, and in order to consider

its dynamics we use an open quantum system description (see Chapter 3), where the

impurity is the system, interacting with the BEC reservoir. In the following we present

the derivation of the master equation describing the dynamics of the system. We move

to the interaction picture and use the Born-Markov approximation, motivated by the

fact that, in addition to weak coupling, we assume that the correlation time of the

reservoir is much smaller than the relaxation time of the system (further discussions

on this are presented in the next chapter). We start with the Redfield equation

⇢̇S = � 1

~2

Z t

0
dt0TrR[Ĥint(t), [Ĥint(t

0), ⇢̂S(t) ⌦ ⇢̂R]], (4.15)

where the density matrix of the system, factorised in the di↵erent directions, is

hat⇢S = ⇢̂(x)S ⌦ ⇢̂(y)S ⌦ ⇢̂(z)S , (4.16)

and where we assume that the coherences can be neglected, under the assumption

that the oscillation frequency !i is much larger than the frequency associated to the

characteristic interaction timescale, so that, along every direction we can project the

density operator on the diagonal and consider ⇢̂(i)S =
P

n
i

pn
i

|nii hni|, where i = x, y, z is

the index for the di↵erent spatial directions, which can be factorised. In the interaction

picture, the operators b̂k and r̂i of Eq. (4.14) are now b̂k(t) = e�
i

~ ✏ktb̂k and r̂i(t) =
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q
~

2m
a

!
i

[âi(t) + â†i (t)], with âi(t) = e�i!
i

tâi.

Defining gk = gab
q

⇢
0

V (uk + vk), �k,1(t) = bk(t), �k,2(t) = b†k(t), sk,1(t) = eik·r(t),

sk,2(t) = e�ik·r(t), the interaction Hamiltonian can be rewritten in the more compact

form

Hint =
X

k

gk(�k,1sk,1 + �k,2sk,2) =
X

k

gk
X

↵

�k,↵sk,↵. (4.17)

By expanding the commutator in the master equation and using the cyclic property of

the trace, TrR{ABC} = TrR{CAB} = TrR{BCA}, Eq. (4.15) can be written as

⇢̇S(t) = �
X

k

g2k
X

↵,�

Z t

0
dt0[(s↵(t)s�(t

0)⇢S(t) � s�(t
0)⇢S(t)s↵(t)) h�↵(t)��(t

0)iR

+ (⇢S(t)s�(t
0)s↵(t) � s↵(t)⇢S(t)s�(t

0)) h��(t)�↵(t0)iR], (4.18)

where we removed the index k in the operators, after using the property

h�k,↵(t)�k0,�(t
0)iR = �k,k0 h�↵(t)��(t

0)iR . (4.19)

Furthermore, using the relations

hbkbkiR = hb†kb
†
kiR = 0, (4.20)

bk(t)b
†
k(t

0) = e�
i

~ ✏kte
i

~ ✏kt
0
bkb

†
k = e�

i

~ ✏k(t�t0)bkb
†
k, (4.21)

and changing the integration variable from t0 to ⌧ = t � t0, after considering also the

secular approximation, the master equation takes the form

⇢̇S = �
X

k

Z t

0
d⌧

 Y

i=x,y,z

X

n
i

,m
i

✓
|mii hmi|e�ik

i

r
i |nii hni|eikiri |mii hmi| pm

i

ei!i

⌧(m
i

�n
i

)

◆

�
Y

i=x,y,z

X

n
i

,m
i

✓
|mii hmi|eikiri |nii hni|e�ik

i

r
i |mii hmi| pn

i

ei!i

⌧(n
i

�m
i

)

◆�

⇥
⇣
e�i✏

k

⌧/~ hb̂kb̂†kiR + ei✏k⌧/~ hb̂†kb̂kiR
⌘ 2g2ab⇢0

V ~2 (uk + vk)
2. (4.22)

Under the assumption that the correlation time of the reservoir is much smaller than
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the typical times of the system’s dynamics, the Markov approximation allows us to

extend the integration limit t ! 1, hence we obtain

Z 1

0
d⌧ei⌧ [

P
j

!
j

(n
j

�m
j

)�✏
k

/~] = ⇡~�

~
X

j

!j(nj � mj) � ✏k

�
+ i

p.v.

~
P

j !j(nj � mj) � ✏k
,

(4.23)

where, as before, j runs on the components in the di↵erent directions and where p.v. in

the second term indicates the Cauchy principal value [160] and it only gives an energy

shift (the counterpart to the Lamb shift in electrodynamics), so it can be discarded by

means of a renormalisation of the system frequencies !j . The occupation probability

pm
x

,m
y

,m
z

of the impurity in the state |mx, my, mzi is given by

ṗm =
2⇡g2ab⇢0
~V

X

k

(uk + vk)
2
X

n
x,y,z

✓Y

i

| hmi|e�ik
i

r
i |nii |2

◆
(4.24)

⇥
⇢
�

 
X

i

!i(ni � mi) � ✏k

!
pn � �

 
X

i

!i(mi � ni) � ✏k

!
pm

�
hb̂kb̂†kiR

+


�

 
X

i

!i(mi � ni) � ✏k

!
pn � �

 
X

i

!i(ni � mi) � ✏k

!
pm

�
hb̂†kb̂kiR

�
,

where we used the notation pm = pm
x,y,z

. The terms in the trace over the bath give

hb̂†kb̂kiR = N(k) and hb̂kb̂†kiR = N(k) + 1, describing respectively the processes of

absorption of Bogoliubov thermal excitations from the reservoir and stimulated and

spontaneous emission, where the distribution of excitations with momentum k is given

by the Bose distribution N(k) = 1
e�✏k�1

, which is taken into account when considering

a finite temperature reservoir.

Considering the matrix elements given by the term

Tn,m(k) = gab

r
⇢0
V

(uk + vk) hmx, my, mz|e�ik·r|nx, ny, nzi , (4.25)

we can define the decay rates, given by the Fermi’s golden rule, as

�n
x,y,z

!m
x,y,z

=
2⇡

~
X

k

��Tn,m(k)
��2�(✏̃� ✏k), (4.26)
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where ✏̃ = ~
P

j !j(nj � mj) is the di↵erence of energy between initial and final states

of the impurity. Analogously, for a finite temperature reservoir, the transition rates for

absorption and stimulated emission processes, are given by

Hn
x,y,z

;m
x,y,z

=
2⇡

~
X

k

N(k)
��Tn,m(k)

��2�(✏̃� ✏k). (4.27)

We can therefore rewrite the form of Eq. (4.24) for the evolution of the occupation

probabilities of an impurity in the state |mx, my, mzi as

ṗm
x,y,z

=
X

n
x,y,z

:P
i

!
i

(n
i

�m
i

)>0

�n
x,y,z

!m
x,y,z

pn
x,y,z

�
X

m0
x,y,z

:P
i

!
i

(m
i

�m0
i

)>0

�m
x,y,z

!m0
x,y,z

pm
x,y,z

+
X

n
x,y,z

Hn
x,y,z

;m
x,y,z

(pn
x,y,z

� pm
x,y,z

). (4.28)

As illustrated in Fig. 4.3, the first two terms in Eq. (4.28) define the decay with the

spontaneous emission of a Bogoliubov excitation, while the third term describes stimu-

lated emission and absorption of thermal excitations that can bring the atom to higher

motional states, as defined in Eq. (4.26) and Eq. (4.27).

Depending on the temperature of the environment compared to the separation of the

system energy levels, the absorption of thermal excitations can in principle be neglected

if kBTB ⌧ ~! for all relevant trapping frequencies !, so that the reservoir at this extent

could be considered as an e↵ective zero temperature gas. However, depending on the

geometry of the system, this condition may not be fulfilled. In Sec. 4.4 we study how

finite temperature e↵ects modify the dynamics of the system and what conditions must

be fulfilled in order to be able to minimise or neglect them.

Aiming to study the evolution of the state of the impurity in di↵erent geometrical

confinements, in the following we focus our attention on the derivation of the transition

rates, for the specific case of impurities initially excited in the first excited state along

a tightly confined direction.
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BEC

|0, 0, 1i

|m, n, 0i

Hm,n,0;m�,n�,0

|m�, n�, 0i

�0,0,1�m,n,0

Figure 4.3: Schematic representation of level transition mechanisms for an atom initially
excited along one direction in a 3D harmonic trap immersed in a superfluid. At T = 0
the only possible transitions are given by the decay from the state |0, 0, 1i to the state
|m, n, 0i with the creation of Bogoliubov excitations and are described by the coe�cients
�001!mn0 in the equations of motion. At finite temperature, an additional contribution
due to the interaction with thermal excitations can induce stimulated transitions and
excite the atoms to higher motional states either radially or axially. This contribution
is represented by the coe�cients Hm,n,↵;m0,n0,↵0 .

4.3 Single atom cooling in a 3D harmonic potential tightly

confined in one direction

In this section we study the case of an impurity trapped in a 3D harmonic potential

tightly confined in the axial direction z and weakly confined isotropically in the other

directions, so that !z � !r = !x = !y. Referring to the symmetry of a pancake shaped

potential, we will refer to the tightly confined direction as the axial direction, and to

the others as the radial directions. We consider the atom initially excited in the first

state along the axial direction, and we study the spontaneous emission of the atom

decaying towards the radial directions.

For this purpose, we confine our study to the case where the chemical potential of

the BEC is much smaller than the separation of the energy levels in the di↵erent

directions. This allows us to consider the dynamics of the system in the supersonic

regime (✏k � µb), where the Bogoliubov excitations, emitted after the decay of the

excited impurities, are particle-like having energy ✏k = ~2k2/(2mb) (neglecting the

shift given by the chemical potential). As seen in Fig. 4.2, this allows us to consider

the structure factor in the simplified form S(k) = |uk + vk|2 ' 1.
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The spontaneous decay rates are found from Eq. (4.26) after evaluating the matrix

elements in Eq. (4.25). For this purpose, we note that the term e�ik
j

r̂
j is the displace-

ment operator D̂(↵) = exp[↵â†j � ↵⇤âj ], with ↵ = � ikjrj
0p

2
and rj

0

=

s
~

ma!j
is the

oscillation length in the j direction. By using the identity [161]

hn0|D(↵)|ni =

s
n>!

n<!
e
�

|↵|2
2 ↵|n�n0|L|n�n0|

n
<

(|↵|2), (4.29)

we therefore obtain

hn0
j |e�ik

j

j
0 |nji =

s
n<!

n>!
e
�

r2j
0

k2
j

4
✓

� ij0kjp
2

◆|n
j

�n0
j

|
L
|n

j

�n0
j

|
n
<

✓
r2j

0

k2
j

2

◆
, (4.30)

with n< = min(nj , n0
j) and n> = max(nj , n0

j), and where L
(n

j

�n0
j

)
n (x) is the generalised

Laguerre polynomial, defined as

L↵n(x) =
nX

m=0

(�1)m
✓

n + ↵

n � m

◆
xm

m!
. (4.31)

After transforming the momentum components from cartesian to spherical coordinates,

and after using the delta distribution property to integrate over the momentum, we

obtain that the dimensionless decay rates of Eq. (4.26) for the transitions |0x, 0y, 1zi !

|mx, ny, 0zi are given by

�001!mn0p
!r!0

=
2g2ab⇢0

p
mamb

(2⇡)2~3u m! n! w

✓
mb

ma
(w � (m + n))

◆m+n+ 3

2

A�(m, n)

⇥
Z ⇡

0
d✓ cos2 ✓(sin2 ✓)m+n+1/2e�

m

b

m

a

(w�(m+n))(sin2 ✓+ 1

w

cos2 ✓), (4.32)

where A�(m, n) =
R 2⇡
0 d� cos2m � sin2n �. We write them in units of

p
!r!0, with

!0 = µb/2~, to give them an explicit dependence on the ratio w = !z/!r.

In Fig. 4.4 we show how these decay rates depend on the final radial states n and

m for realistic parameter values, and we observe that the main contributions come

from transitions towards low energy states, where the overlap between initial and final
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wavefunctions is larger. The transition coe�cients are symmetric for n and m, but not

radially symmetric in n � m space. This is due to the fact that, with the conservation

of the energy, conservation of momentum is also imposed. As a consequence, there is a

non-trivial dependence on n+m and n�m, since for a fixed value n+m, the di↵erent

projections of the momentum on the two possible directions change significantly the

matrix elements.

9
9

Figure 4.4: Transition coe�cients �001!mn0 in units of
p
!r!0, for !z/!r = 25. The

transitions contributing the most are the ones to low energy radial states.

The estimation of these transition coe�cients is necessary to determine the decay time

⌧ = 1/�Tot from the initial state |0, 0, 1i, as this depends on the sum of the transition
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rates for all the possible final states, which gives the total decay rate

�Tot = � =
X

n,m

�001!mn0. (4.33)

In Fig. 4.5 we observe the variation of the total decay rate with the ratio between

the two trapping frequencies w = !z/!r for di↵erent configurations, ranging from 1D

(w < 1), 3D isotropic (w = 1) and 3D anisotropic (w > 1). We observe that when

increasing the ratio w in the 1D limit, the total decay rate (that in this case is given the

only possible transition �1!0) increases, as a consequence of the fact that an increase

of the trapping frequency along z (keeping !r fixed) increases the number of collisions

with the reservoir in a given time interval.

In this limit (w < 1) the decay rate can be written in the simplified form [79]

�1!0p
!r!0

=
g2ab⇢0

p
mamb

⇡~3u

r
!z

!r

Z p
m

b

/m
a

�
p

m
b

/m
a

e�⇠
2

⇠2d⇠

=
g2ab⇢0

p
mamb

⇡~3u

r
!z

!r

p
⇡

2
Erf

✓r
mb

ma

◆
�
r

mb

ma
e�

m

b

m

a

�
. (4.34)

In the 3D isotropic case (w = 1), the analytical solution obtained from Eq. (4.32) (for

m = n = 0) takes the form

�iso
001!000p
!r!0

=
2e�m

b

/m
ag2abm

2
b⇢0

3⇡u~3ma
. (4.35)

In the 3D limit, going towards higher values of w > 1, although the single values of the

allowed transitions �001!mno decrease for increasing w, the total decay rate increases,

since the number of available final states contributing to that is given by w(w + 1)/2.

From Fig. 4.5 we see how the decay time ⌧ = 1/� varies in the di↵erent limits: the

1D asymptotic behaviour obtained from Eq. (4.34) is represented with the dotted line

and the value obtained with the 3D isotropic analytical case of Eq. (4.35) is shown for

w = 1 by the dashed horizontal line. From the decay time plot in Fig. 4.5 we see that,

analogously to the 1D case, for the 3D scenario the behaviour of �Tot/
p
!r!0 /

p
!z/!r

is preserved, but with a di↵erent coe�cient.
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Figure 4.5: (Top) Total decay rate from the initial state |001i (blue dots) and decay
rate for the transition |001i ! |000i (orange squares), versus the ratio between the
frequencies. (Bottom) Decay time versus the ratio between the frequencies (blue solid
line). In the 1D limit and 3D isotropic limit, respectively for w = !z/!r < 1 and w = 1,
the only transition available is the one given by the decay rate �001!000, for which we
have analytical solutions determined by Eq. (4.34) and Eq. (4.35). The corresponding
decay times are illustrated in the bottom figure respectively with a dotted and a dashed
line. In the 3D limit, for w > 1, the number of transitions contributing to the total
decay rate is w(w + 1)/2, giving an increasing total decay rate also in this limit. The
value of !z used here is always larger than the reference frequency !0 = µ/(2~), so that
we are in the supersonic regime even in the low frequency 1D limit.
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4.3.1 Experimental parameters

In this section we make use of the above results to give an estimation of the real

timescales of the dynamics by using numerical parameters realistically used in dual

species experiments. In particular, we consider the case of 171Yb impurities immersed

in a 87Rb superfluid (as realised in [84]) with a density ⇢0 ⇠ 1014 cm�3. Considering

a scattering length abb = 105 a0, with a0 being the Bohr radius, we obtain that the

chemical potential is µb = gbb⇢0 = 4⇡~2a
bb

m
b

⇢0 ⇠ 3 ⇥ 10�11eV . This value of the chemical

potential determines a speed of sound in the superfluid of u =
q

µ
b

m
b

⇠ 0.5 cm/s, and

we define the reference frequency as !0 =
µb

2~ ⇠ 2⇡ ⇥ 4 kHz. By considering values for

the trapping frequencies !z = 2⇡ ⇥ 60 kHz ⇡ 15!0 and !r = 2⇡ ⇥ 200 Hz ⇡ 0.05!0,

from the results obtained in the previous section, we estimate a decay time of ⌧ ⇠ 2

ms, shorter than the typical coherence times.

4.4 Single atom cooling in a 2D harmonic trap tightly

confined in one direction

In this section we adapt the results derived in the previous section to study the case

where one of the previous radial directions is tightly confined, so that the 3D harmonic

oscillator is tightly confined in two directions, and the trapping frequencies satisfy the

hierarchy !y � !z � !x. In this case we can neglect the dynamics along the tightest

direction y and we e↵ectively consider a 2D harmonic trap where in the z direction,

as in the previous case, we have only two available modes. Reflecting the geometry of

this potential, we now call the direction along z the radial one and we refer to the one

along x as the axial direction.

For our purposes, as we excite the atom to the first excited state along z, considering

only the two accessible states |0iz and |1iz in this direction, we can neglect for the

direction y the states at those energies will not be populated during the dynamics.

Therefore, we e↵ectively study a 2D harmonic trap with tight confinement in the di-

rection z. We now consider the case where the atom can initially be excited also along

the axial direction, therefore taking into account transitions |nx, 1zi ! |mx, 0zi. In the
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following we see how this complicates the estimation of the transition rates and discuss

some useful approximations. Furthermore, we study the case of a finite temperature

reservoir and see how this a↵ects the dynamics of the impurity, depending on the choice

of the parameters. From now on we remove the indices x and z to simplify the notation.

4.4.1 Estimation of the transition coe�cients

In this case the transitions contributing to the dynamics are:

1. a decay rate �n,1!m,0 due to the decay from the radially excited state;

2. transitions from and to axial states of the same radial one, given by �n,↵!m,↵,

with ↵ either 0 or 1, where transitions occur e↵ectively in 1D.

As we still focus on the case ~!z � µb, for the transitions from the excited radial

state we can still consider the system to be in the supersonic regime. However, for the

transitions between axial states, this assumption is not necessarily valid as the energy

spacing ~!x in this direction can now be of the same order of the chemical potential µb.

We therefore need to use the most general form of the structure factor in the estimation

of the transition rates, and we will see the e↵ect of this in the di↵erent regimes.

Decay rates �n,1!m,0 In Appendix A we present the derivation of the decay rates

�n,1!m,0 with a procedure analogous to the one presented in the previous section.

However, the numerical evaluation of the matrix elements obtained here turns out to

be non-trivial and to give convergence problems, due to rapidly oscillating integrands

for large values of m and n. Therefore, to evaluate them, we used a semi-classical

approximation [162], discussed in more detail in Appendix A, where we compare the

results to the full quantum expression.

The decay rates between the states |n, 1i ! |m, 0i obtained with this method, in the

supersonic regime, are given by the equation

�n,1!m,0 =
2g2ab⇢0

p
mamb

(2⇡)2~3u

r
mb

ma
(w + n � m)

p
!x!0

⇥
Z ⇡

0
d✓ sin ✓B�(n, m, ✓)J2

n�m

✓p
2
xmax

x0
⇠(✓)

◆
, (4.36)
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are plotted in Fig. 4.6. Here Jn�m(z) are the Bessel functions of the first kind, as

defined in Eq.(A.7),

xmax = x0

✓p
2n + 1 +

p
2m + 1

2

◆
, (4.37)

is the average between the initial and final maximum position of the impurity and we

have defined

⇠2(✓) =
x2
0k

2 cos2 ✓

2
=

mb

ma
(w + n � m) cos2 ✓, (4.38)

⇣2(✓) =
z20k

2 sin2 ✓

2
=

mb

maw
(w + n � m) sin2 ✓, (4.39)

and

B�(n, m, ✓) =

Z 2⇡

0
d�e�⇣

2(✓) cos2 �⇣2(✓) cos2 � (4.40)

= ⇡⇣2(✓)e�⇣
2(✓)/2


I0

✓
⇣2(✓)

2

◆
� I1

✓
⇣2(✓)

2

◆�
,

with I0 and I1 the modified Bessel functions of the first kind, as defined in Eq.(A.5).

Despite the small di↵erence, the matrix elements of Fig. 4.6 are not exactly symmetric

for n and m around the diagonal n = m, as a consequence of the energy and momentum

conservation.

Decay rates �n,↵!m,↵ The other contribution to the dynamics is e↵ectively in 1D

and it comes from the decay between axial states �n,0!m,0 = �n,1!m,1 = �n!m. As

going to high m, as mentioned already, makes the numerical estimation of the matrix

elements di�cult, like in the case of the transitions in 2D, we use the semiclassical

approximation, further discussed in Appendix A. The general form, without an as-

sumption that we are in the supersonic limit, as before, is given by the expression

�n!m =
g2ab⇢0
2⇡~2

r
mb

2

✏̃k2S(k)r
(✏̃2 + µ2

b)(
q
✏̃2 + µ2

b � µb)

Z ⇡

0
J2
n�m(k cos ✓xmax) sin ✓d✓,

(4.41)
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with ✏̃ = ~!x(n � m) and where from the integration over k of the delta distribution

we obtained k =

p
2mb

~

rq
✏2k + µ2

b � µb.

We plot in Fig. 4.7 the results obtained from this solution, in the semi-classical approx-

imation, for two di↵erent values of the frequency !x. In Appendix A we investigate

in more detail the validity of the semi-classical approximation used here by compar-

ing these results with the ones obtained in the fully quantum limit (Eq. (A.1) and

Eq. (A.11). We find that the approximation works reasonably well even beyond the

condition |n�m| ⌧ n, with a relative di↵erence between the values obtained via the two

methods below 18% for |n�m|/n  0.9 and lying in the range 0�38% for |n�m| ' n.

In the following we consider the case of a finite temperature reservoir, and in order to

determine the e↵ects that this has on the dynamics, we compare the spontaneous decay

rates obtained in this section with the absorption and stimulated emission coe�cients

Hn
x,z

,m
x,z

, introduced in Eq. (4.28).

�
�

�
�

� �

�
�

�
�

��

�����

�����
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�����

�n1�m0p
!x !0

Figure 4.6: Decay rates in 2D in units of
p
!x!0, for !z/!x = 100, obtained from

Eq. (4.36). The transition coe�cients have a maximum for n = m.
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0

a) b)

Figure 4.7: Transition coe�cients �n!m in units of
p
!x!0, with !x = 0.1!0 (a) and

!x = !0 (b), evaluated from the expression Eq. (4.41) in the semiclassical approxima-
tion. The dotted black lines define the zones where ✏k = µb, i.e. in the limit between
the supersonic and subsonic regimes, corresponding respectively to the areas far above
and below the line.

4.4.2 Finite temperature reservoir

Here we study the transitions associated to the interaction of the impurity with a BEC

at finite temperature, where stimulated emission takes place, and the absorption of

thermal excitations can lead to a di↵erence in the dynamics of the system exciting

the atoms radially or axially. In order to estimate these e↵ects, we consider di↵erent

parameters not only for the temperature of the reservoir, but also for its chemical

potential, aiming to find in which regimes the reheating e↵ects can be minimised. For

this purpose, we calculate the transition rates Hn
x,z

,m
x,z

of stimulated emission and

absorption (see Eq. (4.28)) and compare them with the spontaneous decay rates that

we already discussed.

We can neglect reheating in the radial direction as we consider the case kBTb ⌧ ~!z. We

therefore study the e↵ects of the finite temperature reservoir for two possible scenarios

in the regime ~!x  kBTb  µb ⌧ ~!z: kBTb = ~!x  µb ⌧ ~!z and ~!x  µb =

kBTb ⌧ ~!z. The thermal reservoir e↵ects depend on both the temperature and the

chemical potential. We therefore change these parameters to see in which of the above

regimes the reheating is minimised. As we used the frequency !0 = µb/(2~) related to

the chemical potential µb as a reference, we do not directly change this parameter, but
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we equivalently change it by tweaking both the axial frequency !x and the temperature

of the reservoir, while keeping fixed the values of !z/!x and the chemical potential µb.

Following the same approach used for the estimation of the axial decay rates in Eq. (4.41),

we use the semi-classical approximation to evaluate the transition rates for stimulated

emission and absorption of excitations. In the most general case, without any assump-

tions on the structure factor, these have the form

Hn,m =
g2ab⇢0
2⇡~2

r
mb

2

✏̃k2S(k)r
(✏̃2 + µ2

b)(
q
✏̃2 + µ2

b � µb)

1

e�✏̃ � 1

Z ⇡

0
J2
n�m(k cos ✓xmax) sin ✓d✓,

(4.42)

having defined ✏̃ = ~!x|n � m| and where by using the integration with the delta

distribution we obtained k =
p
2m

b

~ (
q
✏̃2 + µ2

b � µb)
1

2 .

We need to compare these transition rates, represented in Fig. 4.8 for di↵erent values

of chemical potential and temperature, with the ones obtained in the previous section

for the spontaneous decay (shown in Fig. 4.7) in order to determine to which extent

and in what regime reheating can be neglected and how stimulated processes would

influence the final distribution at the steady state.

For the case ~!x = kBTb  µb ⌧ ~!z [Fig. 4.8(a)], we see that, although the thermal

energy and the spacing between the axial energy are of the same order of magnitude,

the transition rates of the stimulated emission and absorption are at least two orders of

magnitude smaller than the decay rates of Fig. 4.7(a), so reheating e↵ects in this regime

can be neglected. We therefore study how increasing the temperature [Fig. 4.8(b)] and

decreasing the chemical potential [Fig. 4.8(c)] changes the transition coe�cients, in the

limit ~!x  µb = kBTb ⌧ ~!z.

From Fig. 4.8(b) we can observe that an increase in the temperature of the reservoir

increases the values of the stimulated transition rates. By comparing these transition

coe�cients with the decay rates of Fig. 4.7(a), we now notice that they are of the

same order of magnitude, and in particular absorption transitions from lower energy

states (n > 30 in this case) cannot be neglected. Furthermore, with the increase of

the temperature, we notice that the transition coe�cients for stimulated processes are
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Figure 4.8: Transition coe�cients Hn,m in units of
p
!x!0, for di↵erent values of the

trapping frequency in the axial direction !x and the reservoir temperature Tb, in the
di↵erent limits ~!x = kBTb  µb ⌧ ~!z (a), ~!x < µb = kBTb ⌧ ~!z (b) and
~!x = KBTb ' µb ⌧ ~!z (c). The parameters values are Tb = 0.1~!0/kB,!x = 0.1!0

(a), Tb = ~!0/kB,!x = 0.1!0 (b) and Tb = ~!0/kB,!x = !0 (c). The white dashed
lines set the limit between supersonic regime (far above it) and the subsonic one (below
it).

more spread towards farther states. This can be seen from the broadening around

the diagonal n = m of the transition coe�cients in Fig. 4.8(b). As a consequence,

considering transitions from a given initial state |ni, absorption will dominate over

stimulated emission. This is better shown in Fig. 4.9(a-b), where we compare the rates
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�n!m and Hn,m for some chosen transitions, both at low (n = 10) and higher (n = 50)

energy levels, for di↵erent values of the gas temperature. Here the transitions with

m < n represent both spontaneous and stimulated decay, while the absorption rates are

represented for m > n. We observe that for transitions involving higher energy states

(n = 50 in Fig. 4.9(a)), the absorption e↵ects are balanced by the stimulated emission,

with a symmetric distribution of the rates values around n = m, and moreover, they

are dominated by the spontaneous emission rates. We can therefore neglect reheating

e↵ects for higher states. In contrast, in the same regime of parameters, transitions

involving lower energy states (e.g. n = 10 in Fig. 4.9(b)) show a more asymmetric

distribution around the value n = m of the rates related to the stimulated processes,

with absorption e↵ects being larger than both the spontaneous and stimulated decay,

and therefore inducing reheating.

Conversely, in Fig. 4.8(c) we show the results obtained for the transition rates for a

smaller value of the chemical potential (this is equivalently obtained by increasing both

the temperature and frequency !x as we expressed them in units of !0 = µb/2~), and

see how these values increase respect to the case in Fig. 4.8(a). However, here it can be

seen that the transitions involve less states, determining a narrowing of the transition

rates values around the diagonal n = m.

A first comparison with the spontaneous emission coe�cients estimated for these pa-

rameters in Fig. 4.7(b) shows that the absorption can be neglected for states n & 5.

The increased decay rates can be explained as a consequence of the fact that decreas-

ing the chemical potential has moved the transitions towards the supersonic regime,

where a higher value of the structure factor enhances them. In addition to this, as can

be seen from Fig. 4.9(c), the fact that the transition coe�cients are more symmetric

around n = m means that the stimulated decay compensates the absorption, being a

symmetric counterpart at even lower energy states. In Fig. 4.9(c) the stimulated tran-

sition coe�cients already compensate the absorption rates until lower energies states

at n ⇡ 5 for the given values. The combination of these factors when comparing the

absorption rates to the two di↵erent decay rates, makes the reheating e↵ects much

smaller compared to the case of Fig. 4.8(a).
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Figure 4.9: Comparison between the decay rates along the axial direction �n!m (dashed
black lines) and axial stimulated transition rates Hn,m between the states having quan-
tum numbers n and m, with n as shown in legends, for di↵erent values of the axial
frequency !x and of the temperature kBTb/(~!0) = 0.5, 1, 2. The values of the fre-
quency used here are !x/!0 = 0.1 (a, b) and !x/!0 = 1 (c).

From the results reported in Fig. 4.8 and Fig. 4.9, as shown, we want to stress the fact

that, besides the temperature, the chemical potential plays an important role when

considering reheating e↵ects. As seen in Fig. 4.8(b), for instance, the radial reheating

terms can not be neglected, especially for transitions involving the lower states, and can

as a consequence a↵ect the final configuration. We therefore used the detailed balance

condition to study how finite temperature e↵ects change the steady state distribution

of the system, considering transitions over changes of one unit, obtaining

p̄n+1 =
Hn+1,n

�n+1!n + Hn+1,n
p̄n (4.43)

=
H1,0

�1!0 + H1,0
⇥ ... ⇥ Hn�1,n�2

�n�1!n�2 + Hn�1,n�2
p̄0,
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with p0 = 1 � e��~!r , which results in a Boltzmann distribution.

4.5 Induced dynamics of fermions in a 2D anisotropic trap

In this section we now consider the impurity system to consist of an ensemble of spin-

polarised non-interacting fermions in an anisotropic harmonic trap, again in the cigar-

shaped configuration in 2D, for z and x, with !y � !z � !x, still immersed in a

3D reservoir. This is motivated by experiments with fermionic atoms in an optical

lattice produced by a single standing wave along one direction [64]. We start with

a Fermi distribution of particles in the ground state of the harmonic oscillator along

the tightly confined radial direction z (i.e. single particles in the states |nx, 0zi), we

then appropriately excite them to the first excited state along z (to the states |nx, 1zi)

and study the decay back to the ground state of z and towards other states along x

(|mx, 0zi). Since only the dynamics in two directions is involved in these processes, we

treat the system in an e↵ective 2D harmonic trap.

We determine the initial distribution of N atoms at temperature Ta in the axial direction

given by the Fermi distribution [163]

n̄(✏n) =
1

exp[�a(✏n � µa)] + 1
, (4.44)

where �a = (kBTa)�1, ✏n = ~!xnx is the energy of the n-th excited state of the quantum

harmonic oscillator (having set the zero of the energy at ~!x/2) along the axial direction

and in the radial ground state, and

µa =
log[e�a✏F � 1]

�a
, (4.45)

is the chemical potential, derived by imposing the identity

N =

Z ✏
F

0
g(✏)d✏ =

Z 1

0
n̄(✏)g(✏)d✏, (4.46)

where ✏F = N~!x is the Fermi energy and g(✏) = (~!x)�1 is the density of states.

Considering some typical experimental values, such as N = 104, !x = 2⇡⇥ 200 Hz and
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Ta ⇠ 10�8 K, used for optical lattices in one dimension, we obtain TF = N~!x/kB ⇠

2 ⇥ 10�6 K� Ta. This means that we can still limit our analysis to the case where, for

N particles, all the lower N states are initially occupied, so where µa ! ✏F . Under the

assumption that we can excite the particles only along the radial direction resonantly

with energy ~!z, the distribution of the particles in the axial states will be left invariant.

The equations of motion for the occupation probabilities derived in Eq. (4.28) can again

be used in this case, after readapting them for the 2D scenario, so that

ṗm
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with ↵ = mx � !
z

!
x

(nz � mz), ↵0 = mx + !
z

!
x

(mz � m0
z). Since we are dealing with non-

interacting fermions, we used a stochastic description given by the Quantum Boltzmann

Master Equation (QBME) [164], derived by neglecting the coherences in the density

matrix, which leads to the following forms of the transition rates:

�n
x

,n
z

!m
x

,m
z

=
2⇡

~
X

k

|Tn
x

,n
z

;m
x

,m
z

(k)|2�(✏f � ✏i � ✏k)ñ(✏i)(1 � ñ(✏f )) (4.48)

Hn
x

,n
z
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x

,m
z
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~
X

k

N(k)|Tn
x

,n
z

;m
x

,m
z

(k)|2�(|✏i � ✏f | � ✏k)ñ(✏i)(1 � ñ(✏f )), (4.49)

where Tn;m are the matrix elements, as defined in Eq. (4.25). Here the statistics of

the particles (fermions in our case) is explicitly accounted for in the terms (1 � n̄(✏f )),

with ñ(✏i) and ñ(✏f ) the occupation numbers of initial and final state respectively. We

simulated the dynamics of the particles using Monte Carlo wavefunction methods with

jump operators [144] to reconstruct the final distribution, where the advantage given by

the QBME is to automatically forbid the transitions from single-particle non-occupied

states and towards already occupied ones.

Given an initial distribution with a defined number of particles in the first excited

state along z, we averaged over di↵erent repetitions the number of jumps towards the

ground radial state in time. This allowed us to evaluate the decay rates in time, for
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the dynamics in the two di↵erent directions.

The decay rates for the transitions from the particles excited along z were obtained by

summing over all the initially occupied and possible final states as

�(2D) =
X

n,m

�n,1!m,0, (4.50)

while the one for axial transitions is given by

�(1D) =
X

n0,m0

�n0!m0 . (4.51)

Even though the total decay rate is given by the sum of these two contributions, so

that the decay time is ⌧ = (�(2D) + �(1D))�1, we observed them separately to see the

contribution given by each of them in the dynamics. As shown in Fig. 4.10, the decay

rate �(2D) given by the spontaneous emission of particles initially in the excited states

|n, 1i is maximum at t = 0 when all the particles are excited (while �(1D) = 0) and

decreases in time whilst the particles decay to |m, 0i. During this time, on the other

side, because states |m, 0i start being occupied, �(1D) starts increasing as a result of

the fact that more transitions between axial states become available. It then starts

decreasing when the atoms are mostly in the radial ground state, and less lower energy

states in the axial direction become available.

We observe that while the radial dynamics is fast, with �(2D) going to zero in the scale

of ⌧
p
!x!0 ' 80 for !z/!x = 100 and N = 8 particles, the axial dynamics is much

slower, so the steady state is approached in a much longer time. This is due to the fact

that while the radial decay happens in the supersonic regime where the structure factor

has its maximum value (S(k) = 1), the decay rates for the axial transitions are smaller

even as a consequence of the lower structure factor that tends to suppress them. From

Fig. 4.10 it can be observed that the time for all the particles to decay from the excited

axial state increases when going to lower ratios !z/!x, as a consequence of the fact

that the total decay rate in 2D decreases with the ratio between the axial and radial

frequencies. While the decay rate in 2D, �(2D) [Eq. (4.50)] in these units does not

depend on the choice of !x but only on the ratio w, the whole dynamics does depend
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Figure 4.10: Total decay rates from the excited radial state �(2D) (solid lines) for di↵er-
ent values of the frequency ratio !z/!x and total decay rate between axial states from
the ground radial direction �(2D) (dashed line) and for N = 8 atoms. The emergence
of a fast and a slow decay in the two di↵erent dimensions can be seen clearly.

on the choice of the axial frequency because this will be determined at longer times

by the transitions to other axial states in 1D. For the values of the parameters used

here, the 1D dynamics in the axial direction becomes dominant from ⌧
p
!x!0 ' 20,

where the transition coe�cients of the decays in the two di↵erent dimensions become

comparable.

As a consequence of this, for the same parameters used in Fig. 4.10, in Fig. 4.11 we

show the e↵ect that the two kinds of dynamics have on the distribution of the atoms

along the axial states |m, 0i. In particular, it is possible to see that for earlier times

(e.g. ⌧
p
!x!0, when the slow dynamics along the axial direction is not dominant yet,

as compared to Fig. 4.10), there is no significant e↵ect of Pauli blocking given by the

statistics of the impurities, as this starts appearing only at later times when the slower

axial dynamics brings the system to the lowest energy state.

4.6 Summary and outlook

We studied the dynamics of spin-polarised fermions harmonically trapped in di↵erent

configurations of tight confinement along one and two directions, and immersed in
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Figure 4.11: Occupation number of the axial modes m, averaged over Ntrials = 1000
runs of 8 atoms, at di↵erent times as shown in the legend, having set w = 100 and
!x = !0. No Pauli blockade is observed initially while the dynamics in 1D is still not
dominant (see Fig. 4.10), but it starts appearing when the decay between axial modes
become more significant. The stationary state is reached for longer times than the one
shown in the plot, as the decay rate in 1D approaches the zero more slowly.

a BEC, evaluating the decay rates of their motional states. We observed how the

geometry of the trapping potential and the chemical potential strongly a↵ect the decay

rates and we estimated the decay rates for the anisotropic 3D trapping. Using the

typical experimental parameters reported in Section 4.3.1, we found that the decay

times are of the order of ms in the 3D limit, much shorter than typical coherence

timescales in experiments and comparable to other dynamical timescales in optical

lattices.

Furthermore, we considered a finite temperature reservoir to study reheating e↵ects

in di↵erent limits given by certain parameters for the temperature and the chemical

potential with respect to the energy scales of the system. We showed how conveniently

choosing the chemical potential can minimise the absorption of the thermal excitations

and how this is not due only to the temperature. We observed that in the limit of

trapping frequencies smaller than the chemical potential, reheating e↵ects are relevant

and change the steady state distribution, even though the dynamics is much slower
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compared to the decay from the axial excited state.

In order to be able to estimate decay and absorption rates of transitions to and from

higher levels, we resorted to a semi-classical approach, where the matrix elements were

evaluated considering classical trajectories for the motion of the atoms. This provided

numerical advantages as, in addition to making possible the evaluation of matrix ele-

ments that in their fully quantum form could not be estimated e�ciently due to highly

oscillating terms, it decreased the time needed for their estimation.

Additionally, we studied the decay of a cluster of non-interacting impurities in a cigar-

shaped potential, immersed in the BEC, aiming to export this study to experiments

in a one-dimensional lattice of pancakes. In order to derive the dynamics, we used the

QBME and the Monte Carlo methods. We observed that this is determined by a fast

and a slow decay, respectively in the radial and the axial directions, as a consequence

of the change in the structure factor given by the di↵erence in the energy scales along

the two directions.

This study o↵ers some useful tools for both numerical and analytical solutions of spon-

taneous emission of a trapped impurity in a BEC, but also for the implementation of

sympathetic cooling of impurity atoms in the context of dual species experiments.

This systems opens interesting possibilities in the context of reservoir engineering and

dissipative state preparation [148–151], where by changing the properties of the reser-

voir and its interaction with the system, we can control the dynamics of the system

such that the stationary state is a desired target state (i.e. cooling an atom to the

ground state with sympathetic cooling through a reservoir).

Furthermore, because of the high control of the parameters of the reservoir, we can

have access to other regimes that go beyond the one treated so far, such as the non-

Markovian regime, which we briefly discuss in the next chapter.
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Impurities in a non-Markovian

bath

5.1 Introduction

In Chapter 3 we gave an overview of the derivation of a master equation under the Born-

Markov approximation, which we then used in Chapter 4 to describe the spontaneous

emission of excited impurities immersed in a superfluid gas. There we assumed (within

the Markov approximation) that the correlation time of the reservoir was much smaller

than the relaxation time of the system, so that we could consider the state of the

reservoir to be una↵ected by the excitations emitted by the system at any time, with a

flow of information going exclusively from the system to the environment and not vice

versa. However, this is not generally the case for open quantum systems, and even in

systems like our impurity immersed in a reservoir gas, where the Markov approximation

is valid in realisable parameter regimes, under certain conditions that we will discuss

in the following, the Markov approximation is no longer valid, and the environment

can induce backflow of information. The emergence of non-Markovian e↵ects can be

found in a plethora of contexts, ranging from AMO (Atomic, Molecular and Optical

physics) [130, 165, 166], to solid state physics [167, 168] and quantum biology [169]. The

interest in the study of systems coupled to non-Markovian environments is motivated

not only by fundamental questions on how to describe the dynamics of open quantum
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system in more general terms, without relying on specific approximations, but also on

the fact that non-Markovian reservoirs can be used as a powerful resource to combat

the detrimental e↵ect of decoherence induced by the interaction of the system with the

reservoir, in both pure dephasing and dissipative dynamics regimes. In this context, it

was observed that two qubits interacting with a bipartite Markovian reservoir present

a phenomen termed “entanglement sudden death” [170, 171] where the entanglement

between the qubits disappears after some time, due to the decoherence induced by the

coupling to the reservoir. However, the study of the dynamics of systems coupled to

non-Markovian reservoirs showed how backflow of information to the system can be

used to protect and restore entanglement, via entanglement revivals and oscillations

induced by long-memory reservoirs and the quantum Zeno e↵ect [172, 173].

The system of an impurity immersed in a BEC studied in the previous chapter o↵ers an

invaluable toolbox for the study of non-Markovian dynamics. In fact, the high degree

of control over the parameters of the reservoir allows us to access both Markovian

and Non-Markovian regimes in di↵erent ways. Non-Markovianity can be accessed,

by instance, changing the size of the reservoir, so that boundary e↵ects can lead to

backflow of information. Besides that, a non-Markovian dynamics can be accessed

also changing the interaction strength between the impurities and the reservoir via

Feshbach resonance, where possible, in order to access strong interactions where the

Born-Markov approximation is no longer valid, or by changing the confinement of the

impurity, as we show in the following. Hence, this system is a promising candidate for

the freedom that it gives on the possible parameters that can be changed in order to

study non-Markovian environments.

In this chapter, we show preliminary results on the non-Markovian dynamics of an

impurity immersed in a bosonic BEC that pave the way for future studies.

5.2 Model

We start by considering, in analogy to the system discussed in Chapter 4, a neutral

impurity trapped in a harmonic potential with tight confinement along two directions,

so that we can e↵ectively describe the system using the states along one direction
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only, and we assume that the bosonic reservoir does not have any excitations at the

initial time. This latter approximation is valid under the assumption that thermal

excitations can be neglected, satisfied by the condition kBTB ⌧ ~!, where ! is the

radial frequency of the impurity trap and TB is the temperature of the bath, so we are

e↵ectively considering a zero temperature reservoir. Here we consider the most simple

case where the superfluid gas is trapped in a box trap of volume V . Due to the fact

that the potential inside the box is flat, the Bogoliubov parameters uk and vk can be

considered to be the same as those of a homogeneous gas already considered for the

studies in Chapter 4, where in Eq. (4.8) we defined u2
k =

R2
k

1 � R2
k

and v2k =
1

1 � R2
k

.

Here Rk = (✏k � (~k)2/2mb � mbu2)/mbu2, where we recall that mb is the mass of the

atoms in the reservoir and u is the speed of sound in the superfluid.

The Hamiltonian describing the neutral impurity immersed in a superfluid gas is anal-

ogous to the one of Eqs. (4.1)-(4.4) and is given by

Ĥ = Ĥa + Ĥb + ĤI , (5.1)

where

Ĥa = ~!
✓

â†â +
1

2

◆
(5.2)

Ĥb = E0 +
X

k 6=0

✏(k)b̂†kb̂k (5.3)

ĤI = gab

r
⇢0
V

X

k

(uk + vk)(b̂keik·r̂ + b̂†ke�ik·r̂) =
X

k

gk(b̂keik·r̂ + b̂†ke�ik·r̂), (5.4)

are the Hamiltonians of the impurity, the superfluid bath and the contact interaction

between the impurity and the bath, respectively. Here â and b̂k are the bosonic an-

nihilation operators for the impurity harmonic oscillator states and the Bogoliubov

excitations of the bath, gab is the interaction between the impurity and the BEC, ⇢0 is

the density of reservoir and r̂ is the position operator of the impurity. As we consider

the dynamics of the impurity only along one direction, here we consider the harmonic

oscillator Hamiltonian Ĥa in 1D, di↵erent to the one used in Eq. (4.2) in Chapter 4.

We start by considering the impurity initially in the first excited state, while no exci-
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tations are in the reservoir, so that the total state at the initial time is | (0)i = |1, 0ki.

Moving to the interaction picture, the operators take the time dependent forms

â†(t) = ei!tâ†, â(t) = e�i!tâ, (5.5)

b̂†k(t) = e
i

~ ✏ktb̂†k, b̂k(t) = e�
i

~ ✏ktb̂k, (5.6)

r̂(t) =

r
~

2ma!
(ei!tâ† + e�i!tâ), (5.7)

so that the interaction Hamiltonian is now given by

HI(t) =
X

k

gk(b̂k(t)eik·r̂(t) + b̂†k(t)e�ik·r̂(t)), (5.8)

where gk = gab
q

⇢
0

V (uk+vk) and we limit our analysis to the case where the excitations

are in the supersonic regime, so that the structure factor is S(k) = |uk + vk| ⇠ 1. We

consider the impurity in a 1D trap where the non-tightly confined direction is along z

(! = !z ⌧ !x,!y), so that we can restrict the study of the motion of the atom to that

along the direction z and k · r̂ = kz r̂ = k cos(✓)r̂. Making use of the Baker-Campbell-

Hausdor↵ relation eÂ+B̂ = eÂeB̂e�[Â,B̂]/2, the term eik·r̂(t) = eikz r̂(t) can be rewritten

as

eikz r̂(t) = e
ik

z

r

0p
2

(ei!tâ†+e�i!tâ)
= e�

k

2

z

r

2

0

4 e
ik

z

r

0p
2

ei!tâ†
e
ik

z

r

0p
2

e�i!tâ
, (5.9)

where we defined the oscillation length r0 =
q

~
m

a

! and used the commutator relation
h
ikz

r
0p
2
ei!tâ†, ikz

r
0p
2
e�i!tâ

i
=

k2
z

r2
0

2 . So far, the description of the system is analogous

to the one considered in Chapter 4 for an impurity tightly confined in two directions.

However, we will consider here situations where the correlation time of the reservoir

can be comparable to the relaxation time of the impurity. Under this condition the

system can no longer be considered in the weak coupling regime, hampering the use of a

Born-Markov master equation. We therefore use a di↵erent approach that allows us to

keep track of the state of the environment into the global state | i. This is done using

the Wigner-Weisskopf approach. With this representation, in the interaction picture,
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the state of the system at the time t can be written in the form

| (t)i = c10(t)e
i!t |1, 0ki +

X

k

c0k(t)e
i

~ ✏kt |0, 1ki , (5.10)

where cij(t) describe the probability amplitudes of the system to be in the configuration

|i, jki, with i excitations for the impurity and j in the mode k of the superfluid. In

order to use this we used the secular approximation and therefore assumed that the

number of excitations in the system is conserved. By using the Schrödinger equation

d

dt
| (t)i = � i

~HI(t) | (t)i , (5.11)

and inserting into it the definition from Eq. (5.10), the left side gives

d

dt
| (t)i = (ċ10(t)+i!c10(t))e

i!t |1, 0ki+
X

k

✓
ċ0k(t) +

i

~✏kc0k(t)

◆
e

i

~ ✏kt |0, 1ki , (5.12)

while from the right side we obtain

� i

~HI(t) | (t)i = � i

~

 
c10(t)e

i!tHI(t) |1, 0ki +
X

k

c0k(t)e
i

~ ✏ktHI(t) |0, 1ki
!

(5.13)

= � i

~

 
c10(t)e

i!t
X

k

gke
i

~ ✏kte�ik
z

r̂(t) |1, 1ki +
X

k

gkc0k(t)e
ik

z

r̂(t) |0, 0ki
!

.

(5.14)

Projecting these onto the states |0, 1ki and |1, 0ki and using the Schrödinger equation,

we obtain

ċ0k(t) = �i!kc0k(t) � i

~c10(t)e
i!tgk h0, 1k| e�ik

z

r̂(t) |1, 1ki (5.15)

ċ10(t) = �i!c10(t) � i

~
X

k

gkc0k(t)e
�i!t h1, 0k| e�ik

z

r̂(t) |0, 0ki , (5.16)

where we defined !k = ✏k/~.
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We solve the first di↵erential equation

c0k(t) = e�i!ktc0k(0) � i

~gk

Z t

0
c10(s)e

i!se�i!k(t�s) h0| e�ik
z

r̂(s) |1i ds (5.17)

= � i

~gk

Z t

0
c10(s)e

i!se�i!k(t�s) h0| e�ik
z

r̂(s) |1i ds, (5.18)

where we used the initial condition c0k(0) = 0, and we insert this into the second

di↵erential equation (5.16), obtaining

ċ10(t) = �i!c10(t) �
X

k

g2k
~2

Z t

0
c10(s)e

�i(!k+!)(t�s) h0| e�ik
z

r̂(s) |1i h1| e�ik
z

r̂(t) |0i ds.

(5.19)

It is convenient to define c10(t) = e�i!tc̃10(t), so that ˙̃c10(t)e�i!t = ċ10(t) + i!c10(t),

and by using the result derived from Eq. (5.9), and the relation

e
�i

k

z

r

0p
2

e�i!tâ |ni =
nX

m=0

1

m!

✓
�i

kzr0p
2

e�i!tâ

◆m

|ni

=
nX

m=0

1

m!

✓
�i

kzr0p
2

e�i!t

◆m
s

n!

(n � m)!
|n � mi , (5.20)

we obtain

h0| e�ik
z

r̂(s) |1i h1| e�ik
z

r̂(t) |0i =
k2
zr

2
0

2
e�k2

z

r2
0

/2ei!(t�s). (5.21)

Therefore Eq. (5.19) reduces to

˙̃c10(t) = �
X

k

g2k
~2

Z t

0
c̃10(s)e

�i(!k�!)(t�s)k
2
zr

2
0

2
e�k2

z

r2
0

/2ds. (5.22)

After changing the notation c̃10 to c10 and defining the correlation function

↵(t � s) =
X

k

g2k
~2 e�i(!k�!)(t�s)k

2
zr

2
0

2
e�k2

z

r2
0

/2, (5.23)

we have the equation of motion for the amplitude probability c10(t) in the more compact
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form

ċ10(t) = �
Z t

0
c10(s)↵(t � s)ds. (5.24)

This can be computed numerically using di↵erent methods, including the finite di↵er-

ence method and the inverse Laplace transform evaluated with the Stehfest algorithm

[174].

5.2.1 Finite di↵erence method

In the finite di↵erence method, we have two time steps: �s and �t (with �s < �t), where

the first time step �s = �t/Ns is used for the integration sampling (with Ns the number

of subintervals) over a time interval [t, t + �t], and �t is the time that we consider for

the increments of the probability amplitude c10(t). Using the finite di↵erence method

(Euler forward to the first order in �t), starting with an initial time t = 0, the evolution

of Eq. (5.24) after the first time step at t1 = �t, can be written as

c10(�t) � c10(0)

�t
⇡ �c10(0)

N
sX

i=0

↵(�t � si)�s, (5.25)

where si = i�s, and in the sum over i we approximated c10(si) ⇡ c10(s0) = c10(0). We

can rewrite this in the form

c10(�t) ⇡ c10(0) � c10(0)
�tX

i=0

↵(�t � si)�s �t. (5.26)

Following the same rule, at the next time t2 = 2�t we have

c10(2�t) � c10(�t)

�t
= �

2N
sX

i=0

c10(si)↵(2�t � si)�s

= �c10(0)
N

sX

i=0

↵(�t � si)�s � c10(�t)
2N

sX

i=N
s

↵(2�t � si)�s, (5.27)

which returns

c10(2�t) ⇡ c10(�t) � c10(0)
N

sX

i=0

↵(�t � si)�s �t � c10(�t)
2N

sX

i=N
s

↵(2�t � si)�s �t. (5.28)
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By iterating this process for all the successive time steps, we can see that the occupation

probability of the system at a time t does not depend only on the previous time step,

but also all the previous ones. This is the signature of a memory process that was

not considered in the previous chapter, due to the fact that we do not use a Markov

approximation.

5.2.2 Laplace transform

The approach used in the following uses the Laplace transform to obtain, from the

integro-di↵erential equation (5.19), an algebraic equation that can be solved analyti-

cally. We can rewrite Eq. (5.24) as the convolution product

ċ10(t) = �
Z t

0
c10(s)↵(t � s)ds = �

Z t

0
c10(s)↵(t � s)ds = �(c10 ⇤ ↵)(t). (5.29)

The Laplace transform of a function f(t) is defined as

f̃(s) = L{f(t)} =

Z 1

0
e�stf(t)dt, (5.30)

and using the convolution property L{c10 ⇤↵} = L{c10}L{↵}, Eq. (5.29) can be rewrit-

ten as an algebraic equation in the Laplace space, of the form

sc̃10(s) � c10(0) = �↵̃(s)c̃10(s). (5.31)

Using the fact that c10(0) = 1, from Eq. (5.31) we obtain the solution

c̃10(s) =
1

s + ↵̃(s)
. (5.32)

By calculating the inverse Laplace transform of Eq. (5.32), defined as

f(t) = L�1{f(s)} =
1

2⇡i

Z �+i1

��i1
f̃(s)estds, (5.33)

where, in the complex plane, the integration is done along the vertical line Re(s) = �,

so that � > <(s0), with s0 the singularities of F (s), one can thus obtain the time-
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evolution of c10(t). In general, however, the inverse Laplace transform cannot be done

analytically, and one has to use numerical methods. In this thesis we used the Stehfest

algorithm [174], which approximates the inverse Laplace transform with the expansion

f(t) ⇡ fN (t) =
ln(2)

t

NX

n=1

Knf̃

✓
n ln(2)

t

◆
, (5.34)

where

Kn = (�1)n+N/2
min(n,N/2)X

k=(n+1)/2

kN/2(2k)!

(N/2 � k)!k!(k � 1)!(n � k)!(2k � n)!
(5.35)

with N even.

The Stehfest method is significantly faster than the finite di↵erence method, however

it is more unstable and one must be careful to the choice of N , which gives inaccurate

results beyond certain values. We computed and compared both the methods intro-

duced here, finding an excellent agreement between the two for the range of parameters

that we use in the next section. Therefore, in the following we report the results ob-

tained with the Laplace method, which is computationally less expensive than the finite

di↵erence method.

5.3 1D reservoir

We consider the results of Eq. (5.23) and Eq. (5.24) as a starting point and study the

case of the impurity trapped in a 1D reservoir with lz � lr, so that µb = ~2
2m

b

⇠2 =

gbb⇢0 ⌧ ~!r, where we introduced the healing length ⇠ = 1p
8⇡⇢

0

a
� l

rp
2
. We assume

the system to be in the limit lr > a, where a is the scattering length of the atoms in

the reservoir, so that the interaction strength in 1D is given by

g(1D)
ab =

g(3D)
ab

(
p

2⇡lr)2
=

4⇡~2aab
2m̃

1

2⇡l2r
=

~2aab
m̃l2r

, (5.36)

where m̃ = m
a

m
b

m
a

+m
b

is the reduced mass. Converting the density to one direction from

⇢(3D)
0 = N/lzl2r = ⇢(1D)

0 /l2r , we obtain that g2k/~2 in the 1D limit can be rewritten
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(omitting the superindex “(1D)”) as

g2k
~2 =

(2⇡)2g2ab⇢0
~2lz

. (5.37)

Extending the sum over k to the continuum, we obtain the 1D correlation function

↵(t � s) =
X

k

g2k
~2 e�i(!

k

�!)(t�s)k
2r20
2

e�k2r2
0

/2

=
(2⇡)2g2ab⇢0

lz~2
lz
2⇡

Z 1

0

k2r20
2

e�k2r2
0

/2e�i(!
k

�!)(t�s)dk

=
2⇡g2ab⇢0

~2

Z 1

0

k2r20
2

e�k2r2
0

/2e�i(!
k

�!)(t�s)dk. (5.38)

Considering the supersonic limit (which is typical for optically trapped impurities in a

BEC), i.e., coupling to the particle branch of the dispersion relation, where ✏k =
~2k2

2mb
,

the integration over k of the equation above leads to

↵(t � s) =
g2ab⇢0
2⇡~2

r
⇡

2

~m3/2
b ei!(t�s)

2ma!
⇣

~m
b

m
a

! + i~(t � s)
⌘3/2 . (5.39)

The power law in the time dependence is typical of non-Markovian systems. In order to

understand in what regime the environment is non-Markovian, we need to compare the

timescales of the system with the correlation time of the reservoir, that we can obtain

from the correlation function.

As discussed in Chapter 3, the Born-Markov approximation relies on the assumption

that the correlation time of the bath is much smaller than the relaxation time of the

system, so that the contributions of the environment to the dynamics of the system at

all times would be the same. However, the the power law dependence in the correlation

function obtained in Eq. (5.39) suggests that the correlation times can be large com-

pared to the system timescale, and as the correlation function acts as a the kernel of

the bath, the environment can have memory and induce a non-Markovian dynamics.

Aiming to explore the non-Markovian dynamics, in the following we estimate the rel-

evant timescales (correlation time of the bath and relaxation time of the system) to
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characterise the regime of the dynamics.

We estimate the correlation time of the reservoir as the time ⌧B at which ↵(⌧B) =

↵(0)/e, as shown in Fig. 5.1 obtaining

⌧B! =
mb

ma

p
e4/3 � 1 = 1.67

mb

ma
. (5.40)

In the units used, this result depends only on the ratio between the masses, since the

other parameters are included in the maximum value of the correlation function

↵(0) =
g2ab⇢0

4
p

2⇡~5/2
p

ma!. (5.41)

For the case ma = mb, we obtain the correlation time of the reservoir ⌧B! ⇡ 1.67.

α(0)/e

2 4 6 8 10
τω0

0.0005

0.0010

0.0015

α(τ)

Figure 5.1: Correlation function (solid line) obtained from Eq. (5.39) as a func-
tion of ⌧ (in units of the trapping frequency of the impurity !), obtained for a
value of ! = 0.5. The constant value ↵(0)/e defined by the dashed line was used
to estimate the correlation time of the bath, defined from ↵(⌧B) = ↵(0)/e, giving

⌧B! = mb/ma

p
e4/3 � 1 ⇡ 1.67 with the parameters used here (mb = ma).

In order to estimate the relaxation time of the system, we consider the dynamics in the

Markovian regime, as in this limit the correlation function is delta-correlated and gives

rise to an exponential decay with a rate that determines the relaxation time.

In the Markovian limit, the probability amplitude c10(t) can be estimated from the
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relation

ċ10(t) = �c10(t)

Z 1

0
↵(t� s)ds = �c10(t)

2

Z 1

�1
↵(t� s)ds = �g2ab⇢0m

3/2
b e�m

b

/m
a

(2⇡)2
p

2!~5ma

c10(t),

(5.42)

which gives an exponential decay of the form

c10(t) = c10(0)e��t, (5.43)

with the decay rate

� =
g2ab⇢0m

3/2
b e�m

b

/m
a

2(2⇡)2
p

2!~5ma

, (5.44)

from which we can define the relaxation time of the impurity as ⌧R = 1/�.

From Eq. (5.39) we can see that the information on the spatial confinement given by the

width lz disappeared as a result of the integration over the continuum in the k space.

We could look at the e↵ect that changing di↵erent parameters has on the dynamics

of the system, but here we limit our study to the changes of the impurity trapping

frequency !. This allows us to explore, within the secular approximation, di↵erent

regimes depending on the ratio ⌧B/⌧R between the correlation time of the reservoir and

the relaxation time of the system. As previously discussed in Chapter 3, the Markov

approximation is valid in the limit ⌧B/⌧R ⌧ 1, therefore we expect that going beyond

this condition, to the limit ⌧B/⌧R & 1, we would observe features of non-Markovian

dynamics.

From the decay rate in Eq. (5.44), obtained with the Markov approximation, we see

that this decreases for increasing trapping frequency !, so the exponential decay of the

occupation probability of the excited state is determined by longer relaxation times.

It is convenient to write this in units of the oscillation period for a better comparison

with the correlation time of the reservoir in Eq. (5.40). We expect that when the

relaxation time ⌧R and the correlation time ⌧B become comparable, non-Markovian

features arise, therefore in the following we compare the dynamics obtained within the

Markov approximation with the dynamics generated by Eq. (5.24), for di↵erent values

of the impurity trapping frequency !.
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From Fig. 5.2 we observe that an increase of the frequency implies a longer decay time

⌧R, consistently with the prediction given by the decay rate of Eq. (5.44).

Comparing this to the value of the correlation time of the bath ⌧B! ⇡ 1.67 obtained

in Eq. (5.40), we can explain the non-Markovian features observed in Fig. 5.2. The

dynamics is Markovian for higher values of the frequency ! = 0.5, corresponding to a

relaxation time ⌧R! ⇡ 54, implying ⌧B/⌧R ⇡ 0.03. In the intermediate case ! = 0.1,

the relaxation time ⌧R! ⇡ 5 starts becoming comparable to the correlation time of

the bath (⌧B/⌧R ⇡ 0.33) and we can see that at earlier times the decay is not exactly

exponential and presents some deviations from the Markovian limit. Finally, when

! = 0.01, corresponding to a relaxation time ⌧R! ⇡ 0.15 (⌧B/⌧R ⇡ 11), we clearly

see a non-Markovian dynamics with oscillations of the probability amplitude. These

oscillations characterise the backflow of information induced by the environment, which

can happen only if memory e↵ects are taken into account.

Figure 5.2: Occupation probability obtained with the Markov approximation (solid
lines) and non-Markovian case (dotted lines) for di↵erent values of !, as a function of
time in units of !. Increasing the oscillation length gives rise to non-Markovianity as a
consequence of the fact that the relaxation and the bath correlation time respectively
decreases and increases, yielding an overall increase of ⌧B/⌧R. Non-Markovian e↵ects
appear when ⌧B/⌧R > 1. The non-Markovian case was computed by using the inverse
Laplace transform method with Stehfest algorithm from Eq. (5.34), with N = 16.
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5.4 Conclusions

We presented some preliminary calculations identifying non-Markovian e↵ects induced

by a superfluid reservoir on an impurity, modeled as a two-level atom initially excited.

In particular we observed how changing the trapping of the impurity can lead to changes

in the dynamics from Markovian to non-Markovian, as a result of the ratio between the

correlation time of the bath and the relaxation time of the system. These calculations

are a good starting point to study non-Markovian dynamics induced by changes in

other physical parameters, such as the coupling strength between the impurity and the

superfluid. Another possibility to study non-Markovian behaviours is given by changes

in the size of the reservoir, where considering coupling to a finite number of modes

allows us to reach the limit of a system analogous to an atom in a multimode cavity,

but with the possibility to observe regimes where the environment can have either a

linear or quadratic dispersion relation. Other future perspectives include the study of

the impurity trapped in 2D and 3D reservoirs, as well as the study of more impurities

in the reservoir.

Non-Markovian dynamics has been experimentally observed, in the context of dual

species experiments and in particular polaron physics [157, 175], showing that di↵erent

dimensional confinements and strong interactions can induce features of non-Markovian

dynamics, such as Rabi oscillations.

Overall, this system provides an incredibly useful platform, even with experimental

perspectives, to conduct a plethora of studies on non-Markovian dynamics. This is due

to the fine control that we have, even experimentally, over di↵erent parameters, which

allows us to explore di↵erent regimes relevant to reservoirs with memory e↵ects.
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Chapter 6

Collective oscillations of a

trapped BEC in tilted ring

potentials

6.1 Introduction

Since the realisation of BEC in cold atoms, lots of attention has been oriented towards

the study of the collective amplitude oscillations of trapped condensates, both theoreti-

cally [97–104] and experimentally [105–107] in order to explore di↵erent novel collective

properties of this system. In particular, the interaction between the atoms generating

nonlinear dynamics has been observed to give rise to phenomena such as frequency

shifts of the oscillations [97–101, 103, 176], collapse and revivals of the density oscil-

lations [103, 176] and mode coupling inducing harmonic generation due to transfer of

population to higher modes[109, 177].

The study of collective oscillations gives us tools to understand how the dynamics and

the thermodynamics of a BEC are a↵ected by the interactions, for di↵erent geometrical

configurations and di↵erent regimes determined by the interaction strength. Most of

the studies of collective excitations, both experimentally and theoretically, were done

for dynamics of BECs trapped in harmonic potentials in di↵erent configurations, from

spherically symmetric isotropic traps [97] to anisotropic axially symmetric potentials
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[98, 99, 103, 109, 110].

Di↵erent approaches were used for these theoretical studies, which include numerical

solutions of the Bogoliubov-Hartree theory [102], solving the wave equation obtained

from the hydrodynamic equations [97], or using a variational method to study the

lowest modes of the system’s dynamics through minimisation of the action, given the

Lagrangian of the system and an ansatz [98]. In all of these cases the main feature

observed is that the frequencies of oscillations are shifted due to the interaction between

the particles of the condensate, and these shifts vary depending on the interaction

strength, the geometry of the potential and the symmetry of the system.

Finite temperature models have also been studied, both theoretically, and explicitly in

experiments as a function of temperature [106, 178–180], to understand how thermal

excitations a↵ect damping and frequency shifts of the collective excitations. Di↵erent

theories were provided, using a mean-field collisionless description in the Popov ap-

proximation [181] where the thermal cloud is considered static [182–184], as well as

considering the coupled dynamics of both the BEC and the thermal cloud [185, 186],

showing how the symmetry of the trapping potential has a strong influence on the

damping of the collective excitations [187].

Collective oscillations of trapped BEC were mainly studied for harmonic trapping po-

tentials, in both isotropic and anisotropic configurations, but not as much attention

has been devoted towards the case of anharmonic trapping potentials. In the latter

case however, the interplay between two non-linear terms with di↵erent origins (one

related to the anharmonicity of the potential, and one due to the interaction within the

BEC) gives rise to a di↵erent kind of dynamics compared to the harmonic potential

case, a↵ecting frequency shifts, coupling between the modes and collapse and revivals

of the wavepackets [121, 122]. These e↵ects will be subject of the investigations in this

chapter.

The study of Bose-Einstein Condensates dynamics in anharmonic traps is gaining more

attention, in particular after the achievement of neutral atom storage in tilted ring traps

[21–23, 115, 116], as well as the realisation of exciton-polariton condensates in microcav-

ity rings [114], which we discuss in Chapter 7 and played a large part in the motivation
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of this study. Ring potentials have been shown to be a powerful platform for devel-

opments in the field of atomtronics, with the realisation of atom “circuits” [45] due to

the achievement of stable persistent flow [23] and in the context of atom interferometry

[118, 119], in particular for the study of Sagnac interferometry [117]. Motivated by

these opportunities, a detailed understanding of the Bose-Einstein Condensate induced

dynamics in this geometry is therefore particularly important. In this chapter we ex-

tend the study of collective oscillations to the case of a tilted ring potential of the form

Vring(✓) = V
0

2 (1�cos(✓)), for oscillations at small angles around the bottom of the ring.

Using the Gross-Pitaevskii Equation (GPE) to simulate the dynamics of the out-of-

equilibrium BEC in the ring, we study the collective oscillations analysing the Fourier

frequency spectra of the density in time, at di↵erent points in the ring. This allows us

to study the oscillation frequency of the center of mass and the width of the wavepacket,

related respectively to the dipole and monopole mode. We observe how the non-linearity

intrinsically included in the anharmonic potential, combined with the one given by the

repulsive interaction within the BEC, a↵ects the dynamics of the dipole mode, which

in the harmonic trapping configuration is left invariant, and of the monopole mode.

For the latter, we find an empirical relation between the frequency shift of the width

oscillation and its revival frequency.

This chapter is organised as follows. In Section 6.2 we introduce the model for the trap

geometry examined, and considering a quartic anharmonic potential as perturbation

of the harmonic oscillator for a single particle system, we use a perturbation theory

approach to the first order in the anharmonic parameter, seeing how this gives rise to

a revival of the density oscillations in the dynamics of a single particle wavefunction.

We use this approach to define the revival frequencies of the center of mass and width

of the wavepacket determined exclusively by the anharmonicity of the potential.

In Section 6.3 we introduce the methods used to study the lower-frequency modes,

which include analytical, semi-analytical and numerical approaches. In particular, we

simulate numerically the dynamics of a wavepacket in the harmonic oscillator and ring

potential using the Gross-Pitaevskii Equation, and introduce an analytical method that

relies on the use of a variational approach for the Lagrangian of the system, based on
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a Gaussian ansatz [98]. We discuss the calculations for the 1D harmonic potential

and extend these to the case of the quartic anharmonic potential. We furthermore

present the Fourier transform scheme used to study the frequency modes of the density

oscillations.

In Section 6.4 we introduce the central and non-central configurations that we use in

our study, and simulate the dynamics in the two cases for both the ring and the HO

potentials, observing, from the GPE simulations, how the kind of potential changes the

dynamics and has e↵ect on phenomena such as collapse and revivals in the oscillations.

In Section 6.5 and Section 6.6 we discuss, separately, some features identified by

the analysis of the frequency spectra obtained from the density oscillations of the

wavepacket in the di↵erent potentials and configurations. These include the obser-

vation of sidebands, frequency shifts of the modes and changes in the revival frequency

with increasing interaction strength. For this analysis, we compare the numerical re-

sults obtained with the GPE and the analytical results provided by an approach that

uses perturbation theory and the variational method.

6.2 Model

The ring potential that we consider is given by

Vring(✓) =
V0

2
(1 � cos(✓)), (6.1)

where V0 is fixed and it is the potential energy at the top of the ring (✓ = ⇡).

If the motion is confined to small angles around the bottom of the ring (✓ = 0), then

the above potential can be expanded in a Taylor series as

Vring(✓) ' V0

2

✓
1 �

✓
1 � ✓2

2!
+
✓4

4!
� ✓6

6!
+ ...

◆◆
. (6.2)

Retaining the terms up to the second order, we obtain the potential of a harmonic

oscillator

VHO =
1

4
V0✓

2 =
1

2
m!2

hoR
2✓2, (6.3)
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where

V0 = 2m!2
hoR

2, (6.4)

with m being the mass of the BEC atoms, R the radius of the ring and

!ho =

r
V0

2mR2
, (6.5)

the trapping frequency of the harmonic oscillator potential.

Going to the next order in the Taylor expansion, we obtain the Quartic Anharmonic

Oscillator (QAO) potential of the form

VQAO =
V0

2

✓
✓2

2
� ✓4

4!

◆
=

1

2
m!2

ho

✓
R2✓2 � R4✓4

12R2

◆
=

1

2
m!2

ho

✓
z2 � 1

12R2
z4
◆

. (6.6)

The form of the ring potential and its approximations to the HO and QAO are rep-

resented in Figure 6.1. For the numerical simulations we use the full form of the ring

potential, but as presented in the next sections, we use the quartic approximation to

find the correction to the energy of the harmonic oscillator. This is a good approxi-

mation for the case analysed, as we do not consider rotational dynamics of the BEC

around the whole ring and we only study cases where the BEC expands in the region

✓ < 2 and ✓ > 4, where the quartic potential is still a good approximation of the ring.

6.2.1 First order perturbation theory for the quartic potential

We make use of time-independent perturbation theory to the first order to study the

energy spectrum of the quartic anharmonic oscillator for a single particle and we show

how this implies a shift of the unperturbed harmonic oscillation energy spectrum, and

also how from this we can obtain the emergence of phenomena such as revivals (and

similarly super-revivals going to higher orders of the expansion in Eq. (6.2)). Noticing

that Eq. (6.6) has the form

VQAO = Vho + V4 =
1

2
m!2

✓
R2✓2 � R4✓4

12R2

◆
=

1

2
m!2

�
z2 + ⇣z4

�
, (6.7)
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Figure 6.1: Comparison between ring potential, harmonic and quartic approximations
for small values of the angle around the center. The values used are V0 = 0.1 eV and R =
2 µm. Although these parameters are not typical of experiments (for experiments on
polaritons, as discussed in the next chapter, experimental parameters for potential and
radius are V0 = 1 eV and R = 40 � 60 µm), we used them to access a regime where we
could observe revivals at convenient timescales. To be consistent with the applications
to polariton BECs covered in Chapter 7, we consider the mass m = 8.3 ⇥ 10�5me,
where mec2 = 0.51 MeV is the electron rest-mass energy.

with ⇣ = � 1

12R2
, we can consider the quartic term V4 as a perturbation to the harmonic

oscillator Hamiltonian (we neglect the interaction between the atoms of the BEC for

the moment and consider the case of a single particle in the harmonic potential),

HQAO =
p2

2m
+

1

2
m!2

hoz
2 +

1

2
m!2

ho⇣z
4. (6.8)

Using the definition of the position operator ẑ in terms of the construction and anni-

hilation operators â, â† on number states,

ẑ =

s
~

2m!ho
(â + â†), (6.9)
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the correction to the first order of the energy is given by

E(1)
n = hn|V4|ni = � V0

48R4
hn|ẑ4|ni = � V0

48R4

~2
4m2!2

ho

hn|(â + â†)4|ni . (6.10)

The only non-zero terms in the matrix element are the ones that conserve the number

of excitations, giving hn|(â + â†)4|ni = 3(2n2 + 2n + 1), hence

E(1)
n = � V0

48R4

~2
4m2!2

ho

3(2n2 + 2n + 1) = � ~2
32mR2

(2n2 + 2n + 1), (6.11)

where in the last equality the definition of V0 from Eq. (6.4) was used.

The energy spectrum of Eq. (6.8) corrected to the first order is then

En = E(0)
n + E(1)

n = ~!ho

✓
n +

1

2

◆
� ~2

16mR2

✓
n2 + n +

1

2

◆
. (6.12)

In Figure 6.2 we show the eigenvalues of the Hamiltonians with the di↵erent potentials

discussed so far.

As previously mentioned, the particularity of the ring potential that we analyse here is

that, even in absence of a non-linear term given by the interactions, it exhibits revivals

and super revivals due to the higher order terms in Eq. (6.2). The timescales associated

with these can be estimated by expanding the eigenvalues of the harmonic oscillator

corrected with higher order terms around a quantum number n0 � 1 (defining the

average occupied state), so that

E(n) ⇡ E(n0) + E0(n0)(n � n0) +
E00(n0)

2
(n � n0)

2 +
E000(n0)

6
(n � n0)

3 + ..., (6.13)

where Ep(n0) = (dpEn/dnp)n=n
0

. The classical, revival and super-revival periods are

respectively defined as

Tcl =
2⇡~

|E0(n0)|
; Trev =

2⇡~
|E00(n0)|/2

; Tsup =
2⇡~

|E000(n0)|/6
. (6.14)

For the unperturbed harmonic oscillator, since the energy spectrum has the form En =

~!ho(n + 1/2), we recover, from the term E0(n0) = ~!ho in Eq. (6.13), the classical
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Figure 6.2: Eigenenergies in units of the harmonic oscillator energy spacing for har-
monic oscillator, ring, and quartic anharmonic oscillator, the latter being estimated
both numerically and from the first order perturbation theory as in Eq. (6.12). The
parameters used here are V0 = 0.1 and R = 2, and the number of bound states with
these is V0/~!ho ⇠ 29 (black solid line) if we consider equally separated energy levels.
The steps in the eigenvalues of the QAO potential are due to the fact that the peak
of the potential, as seen in Fig. 6.1 is lower, so the number of bound states in these
cases is 3V0/4~!ho ⇠ 22. In the following we will limit our study to the case where the
system does not reach such excited states, staying in the regime n < 18, where we can
see that the eigenvalues of the QAO, evaluated with both methods, are very close to
the ones of the ring.

oscillation period T (ho)
cl =

2⇡

!ho
. If we consider the energy spectrum of the quartic

anharmonic oscillator as in Eq. (6.12), we find, however, that

E0(n0) = ~!ho � ~2
16mR2

(2n0 + 1). (6.15)

From Eq. (6.13) we obtain the corrected classical frequency of the quartic harmonic
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oscillator

!(QAO)
cl = !ho � ~

16mR2
(2n0 + 1), (6.16)

which is then shifted compared to the harmonic potential case, with a shift that depends

on the average occupied state n0.

From Eq. (6.13) the term at the second order then corresponds to

E00(n0)

2
=

d2En

2dn2

����
n=n

0

= � ~2
16mR2

, (6.17)

giving the revival frequency

!rev =
~

16mR2
, (6.18)

and the revival period

Trev =
32⇡mR2

~ . (6.19)

By substituting (6.18) in (6.12), this can be rewritten as

En = ~!ho

✓
n +

1

2

◆
� ~!rev

✓
n2 + n +

1

2

◆
, (6.20)

and we observe that the classical frequency (6.16) can then be rewritten as

!(QAO)
cl = !ho � !rev(2n0 + 1), (6.21)

depending on the average occupied state n0. The revival period, in units of the classical

oscillation period, is then given by

Trev

Tcl
=

2|E0|
|E00| =

!(QAO)
cl

!rev
=
!ho

!rev
� (2n0 + 1). (6.22)

Analogously, if we had to consider the next order in Eq. (6.2) for the sixth power, we

would obtain another shift in the harmonic oscillator frequency, giving a classical and

a revival frequency dependent on n2
0 and n0 respectively, and a super-revival frequency

not dependent on n0.

87



Chapter 6. Collective oscillations of a trapped BEC in tilted ring potentials

6.3 Methods

6.3.1 Variational method for the evaluation of the lowest mode fre-

quencies

The problem of finding analytical forms for the collective excitations of a BEC in

di↵erent potentials and geometries has been of vast interest since the achievement of

Bose-Einstein Condensation of alkali atoms. Some analytical solutions have been found

in certain limits and have shown good agreement with the experimental observations.

Di↵erent approaches have been used to study collective modes theoretically, mostly us-

ing the hydrodynamic equations [97, 101, 103, 110, 188] to derive analytical expressions

for spherical and anisotropic harmonic traps, or using the linear-response theory for a

condensate with an oscillatory perturbation and solving the equations numerically [99],

or by using a variational approach [98]. We use the latter method to find the lowest

modes in the case of quartic (anharmonic) trapping potential, so that we can compare

these results with the ones obtained from the full dynamics in the ring. The variational

approach method consists minimizing the action, given the Lagrangian and an ansatz

that takes the form of a Gaussian,

 (z, t) =

s
Np
⇡�(t)

e�(z�z
0

(t)2)/2�2(t)+i↵(t)z+i�(t)z2 , (6.23)

where the imaginary components of the slope (↵) and of the curvature (��1/2) have

been shown to be necessary for more precise predictions [189]. After inserting this into

the Lagrangian of the form

L =

Z
dz


i

~

✓
 ⇤@ 

@t
�  

@ ⇤

@t

◆
� ~2

2m
|r |2 + V (z)| |2 +

g

2
| |4

�
, (6.24)

we use the Euler-Lagrange equation

@L(t, qi(t), q̇i(t))

@qi
� d

dt

@L(t, qi(t), q̇i(t))

@q̇i
= 0, (6.25)
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for all the variables of the Gaussian in order to obtain the equations of motion for those.

The di↵erential equations obtained for the width � and the center of the Gaussian z0

(corresponding to the center of mass), will then give respectively the breathing and

the dipole frequencies. We summarise the results obtained with this procedure for the

QHO and compare them to the ones obtained for the anharmonic oscillator with a

quartic term.

Variational method for the 1D mean-field case in a harmonic potential

Since we extend the the approach used for the anisotropic harmonic oscillator [98] to

the anharmonic potential, we start by summarising the results obtained for the case of

an anisotropic harmonic potential in the 1D limit � = !z/!? < 1, where !? = !x = !y

is the radial frequency and !z = !ho. We assume that the system is in the 1D mean

field approximation, determined by the condition

N�a/l? ⌧ 1, (6.26)

where l? =
p
~/m!? is the radial oscillation length and a is the scattering length. In

the 1D mean field approximation we assume that only one mode (the ground state) in

the radial direction is populated, so that we can describe the wavefunction in the radial

direction as a Gaussian whose widths and centers are always at equilibrium radially,

assuming that the radial potential is harmonic. Conversely, for the axial direction z, we

will use the ansatz of Eq. (6.23). We therefore consider the Lagrangian as in Eq. (6.24)

for the dynamics in one direction only, using the value of the interaction strength in

1D, defined as g1D =
g3D
2⇡l2?

, and the potential has the form

V (z) =
1

2
m!2

zz
2. (6.27)

By using the Euler-Lagrange equations for the variables ↵(t) and �(t) of Eq. (6.23), we
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obtain

↵(t) = �mz00(t)

~ � 2�(t), (6.28)

�(t) = �m�(t)�0(t) + 2mz0(t)z00(t) + 2~↵(t)z0(t)

2~�(t)2 + 4~z0(t)2
, (6.29)

which can be rearranged in the form

↵(t) =
mz0(t)�0(t) � m�(t)z00(t)

~�(t)
, (6.30)

�(t) = �m�0(t)

2~�(t)
. (6.31)

For the Euler-Lagrange equations of the two remaining variables � and z0, we insert in

these the forms of ↵(t) and �(t) and obtain the two di↵erential equations

�00(t) = �!2
z�(t) +

g1DNp
2⇡m�(t)2

+
~2

m2�(t)3
, (6.32)

z000 (t) = �!2
zz0(t), (6.33)

consistent with the 1D limit of the results reported in [98]. It can be immediately seen

that the center of mass z0 will still oscillate with the same frequency !z and therefore

the dipole mode has a frequency

!D = !z, (6.34)

which is una↵ected by interactions in this limit. Conversely, the oscillations of the width

of the Gaussian, which describe monopole oscillations, are a↵ected by the interaction

strength and by the number of particles. The correct dynamics of these two quanti-

ties can be computed using numerical methods for the solution of di↵erential equations

(e.g. Runge-Kutta), which we will use in the next sections for the anharmonic potential.

More approximate analytical solutions can also be found by linearising the equations

around the stationary points. In particular, after seeing that the dipole frequency is not

a↵ected by finite interactions, in order to find an analytical form of the monopole fre-

quency, from Eq. (6.32), imposing �00(t) = 0, we find the stationary points �e (including
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both stable and unstable solutions)

!2
z�e � g1DNp

2⇡m�2e
� ~2

m2�3e
= 0. (6.35)

From the expansion around these points we can proceed with the linearisation of the

di↵erential equations of the kind

d2�

dt2
=

d2(� � �e)

dt2
= f(�) ' f(�e) + f 0(�e)(� � �e), (6.36)

where, since f(�e) = 0 by definition, we obtain

�00(t) = �!2
z

✓
1 +

2g1DNp
2⇡m!2

z�
3
e

+
3~2

m2!2
z�

4
e

◆
�(t). (6.37)

It is then straightforward to see that solving this gives a monopole frequency of the

form

!M = !z

s✓
1 +

2g1DNp
2⇡m!2

z�
3
e

+
3~2

m2!2
z�

4
e

◆
, (6.38)

where we see that in the zero interaction limit, as the equilibrium width of the Gaussian

is the harmonic oscillator length lz =
q

~
m!

z

defining the ground state, we obtain

!M = 2!z
1.

Variational method for the 1D mean field anharmonic (quartic) potential

Let us add now a quartic term to the harmonic potential, consistent with the expansion

of the ring potential for small angles, where we neglect higher orders. We define this

potential as

Vq(z) =
m!z

2

�
z2 + ⇣z4

�
, (6.39)

where ⇣ = � 1

12R2
and R is the radius of the ring. We use the same approach we used

in the previous section, again considering a Gaussian ansatz of the form Eq. (6.23).

Adding the extra quartic term in the Lagrangian Eq. (6.24) and using again the Euler-

Lagrange equations to find the equations of motion for the variables, we find that,

1

In the opposite limit, when the interaction strength dominates over the kinetic energy, we should

get !
M

=

p
3!

z

.

91



Chapter 6. Collective oscillations of a trapped BEC in tilted ring potentials

while the expressions for ↵(t) and �(t) are still given by Eq. (6.30) and Eq. (6.31), the

equations of motion for the width and the center of the Gaussian are now given by

�00(t) = �!2
z�(t)

�
1 + 6⇣z0(t)

2 + 3⇣�2(t)
�

+
g1DNp

2⇡m�2(t)
+

~2
m2�3(t)

(6.40)

z000 (t) = �!2
zz0(t)

�
1 + 3⇣�2(t) + 2⇣z20(t)

�
. (6.41)

By comparing these equations with Eq. (6.32) and Eq. (6.33) we notice the appearance

of additional terms with respect to the previous case. In particular we observe that,

while in the harmonic oscillator case the dipole mode is not a↵ected by the interactions,

now the anharmonicity of the potential a↵ects the dynamics of the center of mass and

couples the two di↵erential equations for the width and center of the Gaussian.

As in the harmonic case, we followed the same linearisation approach, based on the

expansion in Eq. (6.36), to expand the above di↵erential equations around the equilib-

rium solutions. This derivation and the results obtained with this approach are shown

in Appendix C (Fig. C.1). By comparing these analytical solutions with numerical so-

lutions, we found significant disagreement between the results, which suggests that the

order at which we consider the approximation of these solutions, with simple linearisa-

tion (as in Eq. (6.36)), is not su�cient. The coupling between the di↵erential equations

in this case makes them more sensitive to higher orders in (� � �e) and (z0 � z0
e

) (see

Eq. (6.36)).

We can improve the analytical results obtained with a linearisation of both the dif-

ferential equations for �(t) and z0(t) around the equilibrium points, presented in Ap-

pendix C, by using the linearisation around the equilibrium point to solve only the

di↵erential equation �00(t), while we use a more precise solution for z000 (t), with a dif-

ferent method that we discuss in the following. We refer to this approach as the

semi-linearised variational method.

In order to solve Eq. (6.41), instead of expanding this around the equilibrium point

z0
eq

= 0, we consider a di↵erential equation of the same form:

x00(t) + !2
0x(t) = ��x(t)3. (6.42)
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It can be shown [190], using perturbation theory or the method of averaging [191], that

this has solutions with a leading term of the form x = a cos(!t), with

! = !0 + �! = !0 +
3�a2

8!0
, (6.43)

and a = x(0). In our case, following the mappings x(t) ! z0(t), � ! 2⇣!2
z and

!2
0 ! !2

z(1 + 3⇣�2), we obtain solutions of the form z0(t) = z0(0) cos(!Dt), with the

initial condition z0
i

= z0(0) and a dipole frequency given by

!D = !z

p
1 + 3⇣�2e

 
1 +

3⇣z20
i

4(1 + 3⇣�2e)

!
. (6.44)

Comparing this result to the harmonic oscillator case !D = !z, it can be seen that,

because of the anharmonicity given by ⇣ that couples this to �, the dipole frequency

is now a↵ected by changes of the interaction strength. Di↵erent to the linearised case

of Eq. (C.5), the dipole mode here shows a dependence on the initial position z0
i

, and

the existence condition of the solutions is discussed in Appendix C. The monopole

frequency, on the other side, is the same as the linearised case:

!M = !z

s

1 + 6⇣z20
e

+ 9⇣�2e +
3~2

m2�4e!
2
z

+

p
2g1DNp
⇡m�3e!

2
z
. (6.45)

After deriving these analytical results for the dipole and monopole frequencies, we

can have better comparisons with the ones obtained for the dynamics in the harmonic

potential, and see how the anharmonicity a↵ects them. However, as these analytical

methods for the solutions of the di↵erential methods rely on approximations, in the

following we use numerical methods to solve the coupled di↵erential equations Eq. (6.40)

and Eq. (6.41).
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6.3.2 GPE dynamics of a BEC in the 1D HO and ring potentials

We simulate the dynamics of a Bose-Einstein Condensate in the two trapping potentials

discussed, by means of the Gross-Pitaevskii equation in one dimension

i~@ (✓, t)

@t
=

✓
�~2r2

2m
+ Vext(✓) + g1D| (✓, t)|2

◆
 (✓, t), (6.46)

where we will use the potentials Vext = Vring as in Eq. (6.1) and Vext = VHO (Eq. (6.3))

respectively for the case of the tilted ring and the harmonic oscillator. The one di-

mensional description is motivated by the fact that the oscillation length in the radial

direction l? =
p
~/m!? is much smaller than the healing length ⇠ = 1p

8⇡n
0

a
, or equiv-

alently, that µ = ~
2m⇠2 ⌧ ~!?. Furthermore, as previously mentioned, we limit our

study to the 1D mean field case, given by the the condition

N�a/a? =
Ng1D�

2~!?l?
⌧ 1, (6.47)

where we used the definition of the one dimensional interaction strength g1D = g3D/(2⇡l2?).

In the following we will use � = !z/!? = 0.1, so that the condition Eq. (6.47) is sat-

isfied for g = g1D/(2~!?l?) ⌧ 10. For the numerical simulation of the GPE we used

the split-step Fourier transform method, which is discussed in Appendix B.

As discussed at the beginning of this chapter, we aim to characterise the collective oscil-

lations by means of the frequency spectra obtained by Fourier transforming the density

in time. We therefore simulate the dynamics for di↵erent initial configurations in both

the ring and harmonic oscillator potential and compare the characteristic features.

Di↵erent to previous studies of collective excitations where the wavepacket was sub-

jected to a driving at a determined frequency, here we simply start with a wavepacket

out of equilibrium by using an initial Gaussian wavefunction normalised to the number

of atoms N ,

 (✓) =

s
Np
⇡�

e�R2(✓�✓
0

)2/(2�2), (6.48)

centered at ✓0 and having a width � = wlho, where lho =
q

~
m!

ho

is the oscillation

length associated with the harmonic potential and w is a factor. In the following we
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set w = 2, so that we do not start with the ground state of the system (in absence of

interaction).

Because of the normalisation of the wavefunction, the interaction term depends on

the product Ng, so for simplicity we set N = 1 and vary only the values of g. As

already mentioned, in order to find a regime where we can more easily observe revival

frequencies for the values of g used here with convenient computational times, we

consider the 1D dynamics in a ring potential with parameters V0 = 0.1 and R = 2.

6.3.3 Evaluation of frequency spectra of the density evaluated at par-

ticular points around the ring

In our study we characterise the frequencies at which the condensate oscillates in the

trap by analysing the frequency spectra obtained from the evolution of the density

at particular points around the ring. Here we describe how the frequency spectra

n(✓, ⌫) are obtained from the density n(✓, t) = | (✓, t)|2. We use a Suzuki-Trotter

decomposition with time steps �t for the numerical evolution of a wavepacket (see

Appendix B) in a time Tfin = nt�t. In the frequency space the frequency interval is

�⌫ = 1/Tfin and the final frequency for the sampling is given by ⌫fin = 1/�t = n⌫�⌫.

The frequency spectrum of the density n(✓, t) is given by the discrete Fourier Transform,

defined as

n(✓, ⌫) =
n
t

�1X

j
t

=0

n(✓, jt)e
�i 2⇡

n

t

j
t

⌫
. (6.49)

The frequency spectrum obtained is symmetric around the Nyquist frequency defined

as ⌫Nyq = ⌫fin/2, and in order to avoid “aliasing” phenomena in the data, we make

sure that the time samples are small enough to satisfy the relation �t < 1/(2⌫max),

where ⌫max is the highest occupied frequency, so that ⌫max < ⌫Nyq.
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6.4 Density oscillations in central and non-central config-

urations

We simulate the dynamics of the wavefunction in two di↵erent configurations, depend-

ing on the position of the initial Gaussian wavepacket  ✓
0

(✓), as pictured in Fig. 6.3,

in order to capture the main features of the oscillations and study di↵erent modes.

V0

�=0
(a)

V0

�=�/4
(b)

Figure 6.3: Di↵erent configurations of the initial wavepackets  0(✓) (a) and  ⇡/4(✓) (b)
used to study central and non-central dynamics in the ring, respectively.

In particular, at first we study the dynamics of a BEC at the bottom of the trap

(✓0 = 0), which we indicate with the notation  ✓
0

(✓) =  0(✓), aiming to characterise

the e↵ect of the interaction on the modes with an odd number of nodes (breathing

mode and its harmonics) that do not involve the motion of the center of mass (see

Fig. 6.3(a)).

Secondly, we study the out of equilibrium dynamics of a wavepacket initially placed at

✓0 = ⇡/4, indicated with the notation  ⇡/4(✓), for di↵erent values of the interaction

strength, in both the harmonic oscillator case and the tilted ring potential (Fig. 6.3(b)).

The density of the condensate in time and space, obtained with simulation of the

dynamics via the GPE, for di↵erent values of the interaction strength, is shown in

Fig.6.4 and Fig.6.5 for the two initial conditions  0(✓) and  ⇡/4(✓), respectively.

The results presented in both figures have been averaged in space over a grid having

a size of ⇠ 1% the length of the ring, making the round profile obtained from the

sinusoidal oscillations more sharp and triangular. This is however only an e↵ect of
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averaging in both position and momentum space.

Figure 6.4: Density in position (a-c) and momentum space (d-f) obtained simulating
the dynamics with the GPE, for an initial wavepacket  0(✓) and for di↵erent values of
the interaction strength g1D/(2~!?l?) = 0, 0.54, 4.5 (from left to right).

In the case shown in Figure 6.4, where the initial Gaussian is at the bottom of the

ring, only the central moments are involved in the dynamics, and we can see how,

while at g = 0 the Gaussian wavepacket presents breathing but mantains its shape, for

increasing values of the interaction strength, interference e↵ects can be observed and

the wavepacket form is no longer Gaussian. Although the dynamics here are simulated
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using the ring potential in the GPE evolution, we remark that, as the motion is confined

at the bottom of the ring for su�ciently small oscillations, we can still treat the system

in the harmonic oscillator approximation. Because of the central symmetry, in the

following we will refer to this configuration where the wavepacket is initially at ✓ = 0

as the central harmonic oscillator case.

Conversely, for the case of a wavepacket initially placed at ✓ = ⇡/4, where the anhar-

monicity becomes relevant in the ring potential, we observe, by comparing the dynamics

in the HO and in the ring potentials (Figure 6.5) that this is a↵ected by non-linearity

due to the potential itself, in addition to the interaction. More specifically, we see

that the dynamics between the two cases is visibly di↵erent for lower (panels b-e) and

zero (panels a-d) values of the interaction strength, where the wavepacket in the ring

potential presents dephasing and loses the Gaussian shape, in contrast to the harmonic

potential, where it is preserved. For higher values of the interaction strength however

(panel f), the wavepacket starts becoming more stable due to the repulsive interaction

energy becoming more relevant, bringing to a dynamics significantly closer to the one

observed for the harmonic oscillator. This will be further discussed in the next sections,

investigating the first four moments of the distribution in time.

More insights on these e↵ects in the configurations presented here can be obtained by

looking at the frequency spectra of the density in the two cases, and we will see how

this can be helpful to provide deeper understanding of e↵ects such as frequency shifts

of collective modes.

6.4.1 Observation and definition of the revival frequencies in the ring

potential

In Section 6.2.1 we discussed the e↵ect of anharmonic corrections to the harmonic

potential and showed how the dynamics of a single particle in the quartic potential

leads to revivals of the wavefunction at timescales larger than the classical oscillation

period, Trev > Tcl. The revival frequency in Eq. (6.18) was estimated with perturbation

theory to the first order in the anharmonicity parameter ⇣. With the values used in

this chapter, reported in the caption of Fig. 6.1, Eq. (6.18) gives a prediction of the
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(a) HO, g = 0 (b) HO, g = 0.1 (c) HO, g = 0.45

(d) Ring, g = 0 (e) Ring, g = 0.1 (f) Ring, g = 0.45

Figure 6.5: Density in position space obtained simulating the dynamics with the GPE,
for an initial wavepacket  ⇡/4(✓), for di↵erent values of the interaction strength g =
g1D/(2~!?l?) in the harmonic and ring potential, as captioned.

revival frequency !rev = 0.0042!ho, corresponding to a revival period Trev = 236Tho.

As we will frequently talk about the revival frequency in the rest of the chapter, it is

important to clarify here some definitions related to revivals.
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Here we compare the revival period of the center of mass obtained from the numerical

simulation of a wavepacket in the ring with the revival time predicted in Section 6.2.1

using a perturbation theory approach. After simulating the dynamics of a Gaussian

wavepacket  ⇡/4(✓), as was seen in the previous section (Fig. 6.5(b)), we evaluate the

motion of the center of mass from the expectation value

h✓(t)i =
hz0(t)i

R
=

Z ⇡

�⇡
| (✓, t)|2✓Rd✓. (6.50)

The dynamics of the center of mass is shown in Fig. 6.6. The revival period obtained

numerically is TR�D ' 107 Tho, which has a 10% discrepancy from Trev/2 = 118 Tho

predicted from perturbation theory2. The reason why we compare this to Trev/2 and not

Trev is that the revival observed from the center of mass dynamics is a “mirror revival”

[192], determined by the fact that the wavepacket, after that time TR�D ' Trev/2 has

reassembled on the other side of the potential, mirroring its initial condition.

As we will not limit our studies to the dipole mode, related to the oscillations of the

center of mass, we also introduce the revival frequency relative to the monopole mode,

determined by the oscillations of the amplitude of the wavepacket. In order to determine

it, we estimate the variance from the equation

�2(t) = R2(h✓2(t)i � h✓(t)i2), (6.51)

where h✓(t)i was defined in Eq. (6.50) and analogously

h✓2(t)i =
hz20(t)i

R2
=

Z ⇡

�⇡
| (✓, t)|2✓2R2d✓. (6.52)

The width � of the wavepacket in time, describing the breathing oscillations during the

dynamics, is shown in Fig. 6.7(a). In contrast to the center of mass oscillations, here

the first revival is observed at TR�M ⇠ 52Tho. It can be shown [121] that for terms of

the form hzp0(t)i, revivals occur at times t ⇡ mT
R�D

j , where m � 1 is an integer and

2

Going to the second order in the perturbation, the revival frequency would take the form !(2)

rev

=

~
16mR

2

+

3~2
216m

2

!

ho

R

4

(2n
0

+ 1). With the numerical values used, this would be !(2)

rev

= 0.0049!
ho

,

corresponding to T (2)

rev

= 202T
ho

, having a 5% discrepancy with 2T
R�D

observed numerically.
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Figure 6.6: Oscillations of the center of mass of the initial Gaussian wavepacket  ⇡/4(✓),
centered in ✓0 = ⇡/4 and with width � = 2lho, obtained from Eq. (6.50) after simulating
the evolution with the GPE. The revivals appear after a time TR�D ' 107Tho.

j = 2, 4, ..., p for even p and j = 1, 3, ..., p for odd p. As a consequence, the oscillations

of the width of the wavepacket, according to the definition of Eq. (6.51), will present

revivals at the times TR�M = T
R�D

2 = T
rev

4 and integer multiples of this. It is therefore

important to stress the fact that we refer to di↵erent revival frequencies TR�D and TR�M

when talking respectively about dipole and monopole mode oscillations. The revivals

in the oscillations of � are captured by the frequency spectrum of its dynamics, as

shown in Fig. 6.7(b), with the emergence of a peak at frequencies close to 0. In the

following, the frequency spectra of the moments of the wavefunction will be analysed

to determine, from the position of the peaks, the frequencies associated with the dipole

and monopole modes, as well as the revival frequencies.

In addition to evaluating the dynamics from the GPE, we simulated the oscillations

of the center of mass and the width of a Gaussian wavepacket by solving numerically3

3

We used the library “ode5” on Matlab, which is the fifth order Dormand-Prince method (similar
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(a) (b)

Figure 6.7: (a) Oscillations of the width of an initial Gaussian wavepacket  ⇡/4(✓),
centered in ✓0 = ⇡/4 and with width � = 2lho, obtained from Eq. (6.51) after simulating
the evolution with the GPE without interaction. The revival time observed is TR�M ⇠
52Tho. (b) Frequency spectrum of �(t), obtained from Eq. (6.49), with a final time
Tfin/Tho ' 82, and a sampling frequency �⌫/⌫HO ' 0.012.

the di↵erential equations of Eq. (6.41) and Eq. (6.40). The results are shown in Ap-

pendix C.2.

6.5 Characterization of the frequency spectra and obser-

vation of sidebands

6.5.1 Dynamics of a central wavepacket at the bottom of the ring

Using the GPE (Eq. (6.46)), we simulate the dynamics of a Gaussian wavepacket

(Eq. (6.48)) initially centered at ✓0 = 0, as shown in Fig. 6.3(a), and we numerically

evaluate the Fourier transform of the density observed (as a function of time) at the bot-

tom of the ring, n(0, t) = | (0, t)|2, to obtain its frequency spectrum n(0, ⌫) = | (0, ⌫)|2.

We show this in Fig. 6.8, for di↵erent values of the interaction strength.

As stressed in Section 6.3.3, for the evaluation of the frequency spectra it is important

to Runge-Kutta).
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to pay attention to use long enough time for the dynamics in order to reduce the grid

size in frequency space.

Figure 6.8: Frequency spectra of the density at ✓ = 0 for di↵erent interaction strengths
g = g1D/(2~!?l?) as in legend, obtained from the Fourier transform (Eq. (6.49)) of
the density n(0, t), simulated with a GPE from an initial Gaussian wavepacket  0(✓)
centered at ✓0 = 0. The final time for the simulation Tfin = 82Tho gives a frequency
interval �⌫ ⇡ 0.012⌫ho.

The frequency spectra present harmonics (at multiples of the breathing frequency) al-

ready for zero interaction, consistently with the occupation distribution | h�n(✓)| 0(✓, 0)i |2

of the initial wavefunction  0(✓, 0), evaluated projecting this on the eigenstates �n of

the harmonic oscillator Hamiltonian, and shown in Fig. 6.9.

As pointed out in the previous section from Fig. 6.4, in the absence of interaction

(for g = 0) the wavepacket starts shrinking and expanding and in this compressional

oscillations we observe the fundamental frequency, given by the breathing mode at

⌫M = 2⌫ = 2!
ho

2⇡ = 2
2⇡

q
V
0

2mR2

, followed by smaller peaks at multiples of this frequency,

corresponding to the harmonics. From the definition of !ho we see that, in the absence

103



Chapter 6. Collective oscillations of a trapped BEC in tilted ring potentials

Figure 6.9: Distribution of the occupation number of the initial wavefunction  0(✓),
centered at ✓ = 0 having a width � = 2lho. �n are the eigenstates of the harmonic
oscillator, evaluated numerically from the harmonic oscillator Hamiltonian.

of interaction, the frequencies of the modes here do not depend on the choice of the

width � (as long as the dynamics is still within the harmonic oscillator limit). In fact,

this would a↵ect only the amplitude of the oscillations, which would be 0 in the case

of � = lho.

As already mentioned, increasing the interaction strength, and consequently the in-

teraction energy, leads to a change in the form of the wavepacket that becomes less

Gaussian, hence losing its coherence. This can be observed in the frequency spectrum of

Fig. 6.11 from the redistribution of the occupied modes to higher frequency components

at higher interactions.

Other interesting features can be observed from the frequency spectrum, such as the

broadening of the peaks for finite interactions due to collisions within the BEC, and

their progressive shift to lower frequencies, already discussed in Chapter 2 for the case

of harmonic oscillator potentials. The study of the latter e↵ect, with comparison to the

case of the tilted ring potential, will be further discussed in the next section.
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As the wavepacket is centered at zero potential here, and therefore h✓(t)i = 0, the

dynamics is given only by the even moments, e.g. the variance �2(t) = R2(h✓2(t)i �

h✓(t)i2). We therefore evaluate the width of the wavepacket �(t) for di↵erent values of

g and its Fourier transform in the frequency space.

We observe that, due to dephasing, for finite values of the interaction strength, the

modulation of the oscillations results in collapse and (fractional) revivals, as evident

from the evolution of the variance in Fig. 6.10c. This is a purely quantum feature that

can be explained if we consider the wavepacket as a superposition of stationary states

of di↵erent quantum numbers n [122, 176, 193]. Let us consider the evolution of the

wavefunction, given by

 (✓, t) =
X

n

cn�n(✓)e�i!
n

t, (6.53)

where �n are the eigenstates of the harmonic oscillator Hamiltonian, !n = En/~ are

the frequencies of the energy spectrum and

|cn|2 =
e�n

0nn
0

n!
⇡ 1p

2⇡n0
e�(n�n

0

)2/2n
0 , (6.54)

with n0 � 1 the average occupied state. The average value of the center of mass

position is given by

hz(t)i =R h✓(t)i =
X

n

cncn+1 cos[(!n+1 � !n)t]R

Z
d✓�⇤n(✓)�n+1(✓)✓,

=

s
~

2m!ho

X

n

p
n + 1cncn+1 cos[(!n+1 � !n)t]

=

s
~

2m!ho

p
n0

X

n

|cn|2 cos[(!n+1 � !n)t] (6.55)

where we used the fact that the only contributions come from transitions to state that

di↵er of one excitation (m = n ± 1) and the relation cncn+1
p

n + 1 =
p
n
0

nn

0

e�n

0

n! =
p

n0|cn|2 derived from Eq. (6.54). For small enough times we can replace the sum over

n with an integral. If the energy spectrum is equally spaced, as in the case of the

harmonic oscillator, then !n+1 � !n = !ho does not depend on n. In this case the
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(a) g = 0 (b) g = 0 (c) g = 0.54

(d) g = 0.54

Figure 6.10: Width of the wavepacket (a,c) initially centered at ✓ = 0 and relative
frequency spectra (b,d), computed as in Eq. (6.49) with Tfin = 82Tho giving a frequency
step �⌫ ' 0.012⌫ho, for g = g1D/(2~!?l?) = 0 and g = 0.54 as in the legend. Here,
and in the following, we set !? = 10!ho.
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wavepacket presents reversible dynamics and regains its original shape after a classical

period Tcl = 2⇡/!cl. Conversely, when the energy spectrum is not equally spaced (in

this case due to the interaction term, or in the ring potential due to the anharmonicity),

the classical period will be a↵ected by an energy shift �!, as it has been shown for

the corrections in Eq.(6.21) from the first order perturbation theory in the case of the

anharmonic potential, as

!cl = !ho + �! = !ho

✓
1 +

�!

!ho

◆
= !ho(1 + En) = !ho(1 + ~!2

hon), (6.56)

where  is a coe�cient that determines the anharmonicity. We can write the frequen-

cies related to the energy spectrum as !n = En/~ = !ho

�
n + �⌦

2 n2
�
, and using the

definition of the classical frequency

!cl =
@En

~@n
=
@!n

@n
, (6.57)

we can integrate Eq. (6.56), obtaining

!n = !hon +
1

2
~!2

hon

= !hon +
1

2
�⌦n2, (6.58)

where we defined �⌦ = ~!2
hon. This implies that the argument of the cosine in

Eq. (6.55) gains a dependence on n, as !n+1 � !n = !ho + �⌦/2 + �⌦n. When inte-

grating this over n in Eq. (6.55), we obtain a Gaussian collapse [176] of the oscillations

hz(t)i ⇠ e�
1

2

n
0

�⌦2t2 = e�(t/T
C

)2 , (6.59)

where TC is the collapse time, defined as

TC =

p
2p

n0�⌦
, (6.60)

that shows a dependence on the average occupied state n0, which is influenced by factors

such as the displacement of the wavepacket, the change of its width from the oscillation
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length, and the interaction strength. The shift �! of the frequency induces a change in

the periodicity of the oscillations, therefore introducing dephasing, which leads to the

observation of collapse and revival periods, as previously discussed. We want to stress

the fact that this result of the collapse period was obtained for a general shift of the

frequency, without specifying its origin. This is generated by non-linear terms. On one

side a non-linearity can be determined by the anharmonic potential even for the single

particle dynamics, as previously discussed in Section 6.2.1 and shown in Section 6.4.1.

On the other side, the non-linear term can be generated by the interaction strength,

as shown in Fig. 6.10d, where the dynamics is still well described within the harmonic

approximation in the parameters regime investigated (for a wavepacket initially at ✓ = 0

and with a su�ciently small width). We will see in the following section how the revival

frequencies observed play an important role in the dynamics of the BEC and in the

shift of the overall oscillation frequencies.

Aiming to study and compare the e↵ects of these two kinds of non-linearity (given by the

interaction and anharmonicity of the potential), for the di↵erent trapping potentials,

in the following we study the frequency spectra of the density oscillations for the case

of a wavepacket initially placed at ✓ = ⇡/4. As can already be seen from the density

in Fig. 6.5, this ensures that we have access to the anharmonic part of the potential,

but are still in the limit where we can approximate the potential with a quartic term.

At the same time, this allows us to study non-central moments, characterised by the

change in center of mass position, and therefore allows to study the dipole mode, as

well as other modes with an even number of nodes.

6.5.2 Non-central dynamics in HO and ring potentials

In this section we consider the dynamics obtained with the initial wavepacket  ⇡/4(✓, 0),

as represented in Fig. 6.3(b). Here we study how the di↵erence in the dynamics of

Fig. 6.5 for the two di↵erent potentials is reflected in the frequency spectra of the

density. In particular, we first look at the occupied modes in di↵erent points of the

potentials by observing the frequency spectra of the density at di↵erent coordinates,

n(✓ = 0, ⌫) and n(✓ = ⇡/4, ⌫), for the harmonic oscillator and tilted ring potentials.
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Dynamics in the Harmonic Oscillator potential

We start by studying the spectrum n(0, ⌫) for the dynamics in the harmonic oscillator

potential, where, in contrast to the previous case where we had oscillations determined

by the breathing mode and their harmonics, here the dynamics comprises a combination

of sloshing and breathing of the condensate, together with higher modes.

Figure 6.11: Frequency spectrum of the density at the bottom of the harmonic oscillator
potential (✓ = 0) and zoom in at lower frequencies (right), for di↵erent values of the
interaction strength, as in legend, and for a wavepacket initially placed at ✓ = ⇡/4
and having a width � = 2lho. The final times used for the simulated dynamics with
the parameters g = 0, 0.41, 0.82 are respectively Tfin = 164Tho, Tfin = 123Tho and
Tfin = 82Tho corresponding to the sampling frequencies �⌫/⌫ho ' 0.006, 0.008, 0.012.

For axially symmetric harmonic traps it has been shown [103] that applying a driving

to the system leads to harmonic generations and modes coupling. Starting from the

hydrodynamic equations and writing them in terms of the condensate widths in the

di↵erent directions, it was shown that modulating the trap frequency couples the equa-

tions of motion for the widths, therefore inducing coupling between the modes, which

depends on the choice of the driving amplitude. [103] Although we do not drive the sys-

tem out of equilibrium by means of a periodic driving potential, the dynamics depends

on the initial condition of the position of the wavepacket in the potential. This defines

the out of equilibrium state of the system, and a↵ects the non-linear contribution to

the dynamics due to the anharmonic part of the potential, even in the non-interacting

case. This can be seen by looking at the occupied state distribution in Figure 6.12,
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Figure 6.12: Occupation number distribution of the initial state centered at ✓ = ⇡/4
and having width � = 2lho, in the basis of the eigenstates of both the harmonic oscillator
and tilted ring potentials.

where we project the initial state  ⇡/4(✓, 0) in the eigenstates basis of the harmonic

oscillator and ring potential, through the equation | h�n| ⇡/4i |2.

From Fig. 6.11 it can also be seen that in the case of non-zero interaction the spectrum

presents sidebands, similar to the previous case in Fig. 6.8, but here they seem to

have a more defined structure being equally spaced. In particular, we note that their

distance from the main peaks is equal to multiple integers of the revival frequency TR

observed in the same dynamics. As discussed in Section 6.4.1, the periodicity of the

oscillations envelopes defining the revival frequency depend on the modes we consider

(we had previously defined TR�D and TR�M for the dipole and monopole modes).

The oscillations of the density at a point of the ring is given by a combination of

di↵erent modes, and as a consequence we observe a main peak close to zero frequency,

determining the revival frequency !R (having the value shown in the plot of Fig. 6.13 for

di↵erent interaction strengths), and its multiples TFR = TR/p, determined by fractional

revivals associated with the moments involving the terms hzp0i [122], as explained in
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Section 6.4.1. As in the previous case, we notice a shift of the frequencies towards

lower values, which progressively a↵ects lower modes for increasing interaction strength.

These frequency shifts will be further discussed in the next section.

Dynamics in the ring potential

The frequency spectra n(0, ⌫) and n(⇡/4, ⌫) of the density at di↵erent points of the tilted

ring present some di↵erences, compared to the harmonic oscillator case just discussed.

As can be seen from Fig. 6.13, sidebands appear already in the non-interacting case.

Figure 6.13: Frequency spectrum n(✓ = 0, ⌫) and n(✓ = ⇡/4, ⌫) of the density at the
di↵erent points in the tilted ring potential, obtained from the dynamics of the Gaussian
wavepacket  ⇡/4.

In contrast to the sidebands observed in Fig. 6.11, however, the sidebands associated

with every harmonic frequency are not at the same distance from the main peaks. In

fact, we observe that this separation progressively increases going to higher frequencies.

These features can be related to the dephasing of the condensate at small values of the

interaction strength, where di↵erent parts of the wavepacket assume di↵erent velocities

and will therefore have a slightly di↵erent periodicity.

Furthermore, we can see that, in contrast to the previous case of central symmetry

in Fig. 6.8, higher frequencies become less occupied at higher interaction strengths.

This is in agreement with the features of the dynamics shown in Fig. 6.5, where it was

seen that increasing the interaction stabilises the condensate, therefore the spectrum

is characterised by lower frequency components, which show, as a consequence, more
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narrow spectral lines because of the decrease in the dephasing.

In Fig. 6.13 we showed, in addition to n(0, ⌫), the frequency spectrum of the density

n(⇡/4, ⌫) obtained at the point where the wavepacket is originally placed (✓ = ⇡/4),

aiming to gain a better understanding of the e↵ects that the interactions have on the

modes with peaks at odd multiples of the oscillation frequency (e.g. the dipole mode).

We remark the fact that, in contrast to the previous case of the initial wavepacket

 0(✓, t) initially centered at ✓ = 0, in this case the frequency observed in proximity of

2!ho would not be given by the bare breathing mode, but would also contain contribu-

tions coming from the sloshing of the center of mass (passing from that point twice in a

classical period) and higher modes components. It is therefore clear that the frequency

spectra of the density at di↵erent spatial points would have a di↵erent distribution (see

Fig. 6.13), as the contribution to these comes from the excitation of di↵erent modes.

In order to study how the lowest modes are a↵ected by the anharmonicity of the

potential and by the interaction within the wavepacket, we need to integrate over the

whole ring and look at the evolution of the moments in time and their Fourier transforms

in the frequency space. We saw that for the central dynamics studied with the initial

Gaussian  0(✓, 0), the position of the center of mass is fixed and the only moments

contributing to the dynamics are the even moments E[✓2p] / �2p, with p integer and

positive. Conversely, for a wavepacket initially displaced, the moments to be considered

are non-central moments.

We study, for the dynamics of the wavepacket in the ring potential, the moments up to

the fourth order, as they generate the peaks observed at lower frequencies. They are

defined as follows:

E[z] = hz0i , (6.61)

E[z2] = hz0i2 + �2, (6.62)

E[z3] = hz0i3 + 3 hz0i�2, (6.63)

E[z4] = hz0i4 + 6 hz0i2 �2 + 3�4, (6.64)

where hz0i = R h✓0i is the mean of the center of the distribution. The third and fourth
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moment, related to skewness and kurtosis, respectively describe how the position of

the peak of the wavefunction and the tails di↵er from the ones of a normal distribu-

tion, therefore providing some information about how the wavepacket loses its initial

Gaussian shape and coherence.

(a) g = 0 (b) g = 0.08 (c) g = 0.33

Figure 6.14: Evolution of the center of mass and width of a wavepacket initially placed
at ✓0 = ⇡/4 in the ring potential for di↵erent values of g = g1D/(2~!?l?).

(a) g = 0 (b) g = 0.08 (c) g = 0.33

Figure 6.15: Evolution of the third and fourth moments of a wavepacket initially placed
at ✓0 = ⇡/4 in the ring potential for di↵erent values of g = g1D/(2~!?l?).

From Fig. 6.14 we show the behaviour of the width and the center of mass in time,
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(a) Frequency spectrum of c.o.m. R h✓0(t)i.
(b) Frequency spectrum of the dynamics of
the width �(t).

(c) Frequency spectrum of the dynamics of
the third moment E[z3(t)].

(d) Frequency spectrum of the dynamics of
the fourth moment E[z4(t)].

Figure 6.16: Frequency spectra of the first four moments of Fig. 6.14 and Fig. 6.15 for
di↵erent values of g. For the evaluation of all the frequency spectra we used a final time
Tfin = 246Tho, corresponding to a sample frequency �⌫ = 0.004. We used � instead
of the second moment E[z2(t)] for an easier comparison with the variational method
results ((to be) shown in Appendix C).

for di↵erent values of the interaction strength, as already shown in the single particle

(non-interacting) case in Section 6.4.1. From these, we evaluate the higher moments of

Fig. 6.15. The dynamics at g = 0 of the oscillations for the center of mass and the width

was already discussed in Section 6.4.1, where we defined the revival periods TR�D and
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TR�M associated with these. The distortions observed in the revivals at higher times

are due to the fact that, as previously discussed, the wavepacket loses its Gaussian

shape with increasing time. As a consequence, di↵erent parts of the wavepacket move

at di↵erent speeds, determining the broadening of the envelopes at every cycle and the

appearance of higher frequencies.

It can be observed that, for increasing interaction strength, the revival period of all

the moments decreases, and more fractional revivals [193] are present. This is consis-

tent with the fact that the collapse time of the wavepacket, as shown in Eq. (6.60),

is inversely proportional to the average occupied state n0, which increases with the

interaction strength, as further discussed in Section 6.6.2. Furthermore, we note that

the oscillations of the width become smaller when increasing the value of g, and this is

consistent with the fact that, as shown in Fig. 6.5, higher interactions in the ring trap

stabilise the shape of the wavepacket.

In Fig. 6.16 we compare the frequency spectra of the dynamics of the first four moments

shown in Fig. 6.14 and Fig. 6.15, for di↵erent interactions. The dipole mode frequency

spectrum becomes sharper with increasing interaction, as a consequence of the fact

that the wavepacket is less fragmented for higher g, as already discussed. For the even

moments, we observe a distribution of sidebands around the peaks of the main frequency

modes. The broadening of the peak corresponding to the revival frequency, with the

appearance of sidebands, is determined by the appearance of fractional revivals, as well

as the fact that the interaction increases the non-linearity, making the revivals more

irregular and not identical. We will discuss in the next section their shift towards higher

frequencies that can be observed in the frequency spectrum of the width.

6.6 Observation of frequency shifts and relation with the

revival frequency

In this part we characterise the frequency shift observed in the previous section by

looking at the frequency spectra of the moments, aiming to gain a deeper understanding

of this e↵ect. As previously discussed at the beginning of this chapter, frequency
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shifts have extensively been studied for collective oscillations of a condensate in the

harmonic oscillator potential, in di↵erent geometrical configurations and interaction

regimes. Here we start by considering the known case of frequency shifts in a 1D mean-

field harmonic oscillator [98, 111] to benchmark the results obtained numerically by

solving the GPE and extracting the frequency oscillations of the lowest modes from the

peaks of the frequency spectra determined from the density. We therefore conduct the

same kind of analysis to study the frequency shifts that we observe for the dynamics in

the tilted ring potential, and compare these results with the variational method derived

at the beginning of this chapter. At the same time, we analyse the e↵ects induced by the

non-linearity on the revival frequencies, as already anticipated in the previous section,

and find that these a↵ect the shifts of the monopole mode frequency.

6.6.1 Frequency shifts in the 1D harmonic oscillator potential

Central dynamics

We start considering the central dynamics of a wavepacket  0(✓, 0) in the harmonic

oscillator potential. As we noticed from Fig. 6.8, for increasing interaction strengths

there is a progressive redshift of the frequencies. In Fig. 6.17 we study, in particular,

the shift of the lowest (monopole) mode, as we can compare it with known results from

literature, in particular with the variational method results of Eq. (6.38) [98] and with

the hydrodynamic limit result !M =
p

3!ho [111].

The frequencies plotted for the GPE numerical method were obtained from the positions

of the most populated peaks close to ! = 2!ho of the frequency spectrum n(0, ⌫) shown

in Fig. 6.8. As the center of mass remains at ✓ = 0 during the evolution of the

wavepacket, only central moments contribute to the dynamics here. We observe that

the agreement between the results from the numerical GPE frequency spectra analysis

and the analytical predictions is good, and we reach the asymptotic frequency for high

values of the interaction strength.

We observe an increase of the monopole frequency for g1D/2~!?l? > 10. However,

as we set � = !z/!? = 0.1, for those values of the interaction strength we can not

consider the system in the mean field anymore, granted by the condition N�a/l? ⌧ 1.
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Figure 6.17: Monopole mode as a function of the interaction strength, determined from
the frequency spectra of the density n(0, ⌫) of a central wavepacket in the harmonic
potential, simulated with the GPE (dots), compared with the values calculated from the
equation for the monopole mode (Eq. (6.38)), obtained from the linearised variational
method (solid line). The dashed-dotted line shows the asymptotic hydrodynamic limit
!M =

p
3!ho.

In fact, in the opposite limit, for N�a/l? � 1, we should change our approach going

to the Thomas-Fermi regime, which is beyond the aim of this study.

Non-central dynamics

We now conduct the same kind of analysis on the lowest modes through by characteris-

ing the frequency spectra obtained for non central dynamics of a wavepacket (initially

placed at ✓ = ⇡/4) in both the harmonic oscillator and tilted ring potential.

In the first instance, we study more in detail the frequency shifts observed from the

frequency spectra n(0, ⌫) shown in Fig. 6.11, for the harmonic oscillator potential. As

we pointed out in the previous section, we observe that the distance between the side-

bands is equal to the revival frequency, which increases with the interaction strength.

Furthermore, we notice that the shifts to lower frequencies, observed for the di↵erent
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modes, occur in a quantised way. In fact, the dominant frequencies move to lower side-

bands for increasing values of g. In order to visualise this more clearly, in Fig. 6.18a

we show the frequencies of the even modes observed from the frequency spectrum of

n(0, ⌫), together with the bare frequencies !n observed in the non-interacting case. We

also show the frequencies obtained from the equation obtained phenomenologically

!n/!ho = n � p!R/!ho, (6.65)

where !R is the revival frequency observed in the frequency spectrum n(0, ⌫) and p

are (positive) integer numbers. We observe that the higher modes frequencies start

being redshifted at lower values of the interaction, and progressively, for increasing g,

the frequency of lower modes decreases. For all the modes, the shift of the frequencies

coincides with multiples of the revival frequencies, which increases with the interaction,

as we show in Fig. 6.18b(b). Here we show the revival frequency as a function of the

interaction strength, determined from the frequency spectra of the density n(0, ⌫) and

compare it with the solutions of the revival frequency observed in the frequency spectra

of the moments dynamics obtained by solving numerically the di↵erential equation

Eq. (6.32), as shown in Appendix C.2.

The above observations suggest that the revival frequency determined from the dynam-

ics of the wavepacket is related to the shift of the frequency modes. Since the frequency

spectrum of the density is determined by the contribution from di↵erent modes4, we

need to study the frequency spectra of the moments. As seen at the beginning of this

chapter, the dipole mode in the harmonic oscillator potential is not a↵ected by finite

interactions, therefore we study the Fourier spectrum of the variance for di↵erent values

of the interaction strength, in order to determine the shift of the monopole frequency

!2 = !M . We compare this with both the linearised analytical Eq. (6.38) and nu-

merical results coming from the variational method, as well as the hydrodynamic limit

!M =
p

3!ho and with !M = 2!ho � !R.

It can be seen that all the methods used are in agreement and consistent with the

4

i.e., the frequency at n = 2 in Fig. 6.18a is not simply a monopole mode, but here is mixed with

contributions that arise from the dipole mode
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(a) (b)

Figure 6.18: (a) Even frequency modes observed from the frequency spectrum of the
density n(✓ = 0, ⌫) (dots), obtained from the non-central dynamics of the initial Gaus-
sian  ⇡/4(✓, 0) for di↵erent values of the interaction strength g1D. The solid lines are
the frequencies at g = 0, given simply by the harmonics. With the lines from dashed
to dotted we represented the frequencies !n/!ho = n � p!R/!ho, with p = 1, 2, 3.
(b) Revival frequency observed from the frequency spectrum of the density at ✓ = 0
(with a dynamics simulated by means of the GPE) and revival frequency obtained from
the frequency spectrum of the fourth moment after solving numerically the di↵erential
equations obtained from the variational method (see Fig. C.3). Here we determined
the revival frequency from the fourth moment since, as discussed in Appendix C.2.1,
the dynamics of the amplitude evaluated with the variational method does not present
collapse and revival.

results shown for the previous central configuration in Fig. 6.17. While the variational

method and the hydrodynamic limit solutions were observed before [98, 111] and shown

to be in good agreement with experimental results, the connection with the revival

frequency obtained from the frequency spectrum for di↵erent interaction strength, to

our knowledge, has not been observed before.

As the mechanism is not entirely clear (it is not easy to obtain an analytical form for

that) and it is a phenomenological result, in the following we use this to reinforce the

concept seeing that we have the same kind of agreement with the data obtained from

the GPE, for the tilted ring potential.
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Figure 6.19: Monopole mode as a function of the interaction strength, determined
from the frequency spectra of the width of a wavepacket initially placed at ⇡/4 in
the harmonic potential. The same quantity is compared with the numerical and the
linearised variational method solutions, with the asymptotic hydrodynamic limit resultp

3!ho, and with 2!ho � !R.

6.6.2 Frequency shifts in the tilted ring potential

Under the previous considerations, as we are interested in studying the frequencies

of the uncoupled modes (e.g. dipole mode and breathing mode), from the dynamics

of the wavefunction derived through the GPE, we obtained the frequency spectra for

the center of mass and for the width of the wavepacket, for di↵erent values of the

interaction strength. This allows us to compare the results obtained from the GPE

with the numerical ones derived from the variational method.

As seen in Fig. 6.14, in contrast to the harmonic oscillator case, the motion of the center

of mass is a↵ected by the anharmonic potential and the interaction strength. In fact,

from Eq. (6.41) we can see that its oscillation frequency is a↵ected by the anharmonicity,
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but the center of mass is also coupled to the wavepacket width, which depends explicitly

on g. We therefore expect a shift of the dipole frequency. Determining this shift

corresponds to finding the correction to the classical oscillation. A contribution to

this correction comes from the anharmonicity itself, and as previously discussed at the

beginning of this chapter, we can use the result from first order perturbation theory

Eq. (6.21). Since this depends on the average occupied state n0, we determine this

after evaluating the energy of the system, found deriving the energy functional

E =

Z 2⇡

0

✓
~2

2mR2
|r (✓)|2 + Vring(✓)| (✓)|2 +

g

2
| (✓)|4

◆
Rd✓. (6.66)

In Fig. 6.20 we show the energy for two di↵erent values of the interaction strength

and the average occupation number varying with g, obtained from mapping the total

energy of the system to a harmonic oscillator, so that

n0 = (Etot � 1/2)/~!ho. (6.67)

In Fig. 6.21 we compare this result with the dipole frequency obtained from the analysis

of the center of mass frequency spectra, derived both with the numerical GPE, and

with the numerical solution of the variational method. The errors associated with the

frequencies recorded for the GPE numerical simulations are considered as half of the

frequency division in the frequency Fourier space, which is determined by the final time

used for the simulations5. We also report the percent relative di↵erences between the

frequencies used with the two aforementioned approaches and the ones obtained from

the GPE simulation.

From a comparison between the perturbation theory and the variational method, with

reference to the true values considered as the ones given by the GPE simulation, we can

see the limits of both of these methods. For small values of the interaction strength, we

have seen that the wavepacket decoheres and does not preserve its Gaussianity, hence

the variational method, based on a Gaussian ansatz, is not accurate, while it gets closer

5

The error increasing with the interaction strength is due to the fact that for higher interaction

strength we need to decrease the time steps, hence simulating the dynamics for longer times is compu-

tationally more demanding in terms of memory.
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(a) g1D/2~!?l? = 0 (b) g1D/2~!?l? = 8.7

(c)

Figure 6.20: (a-b) Energy components and total energy of the system for di↵erent
values of the interaction strength as in caption. (c) Average occupation number as
a function of g, obtained from mapping the total energy to the harmonic oscillator
quantum numbers as in Eq. (6.67).

to the GPE results for higher interactions, when the Gaussian shape is more preserved.

For the perturbation theory approach, however, the interaction strength plays a non

trivial role. For the frequencies estimated from the GPE simulation, we can see that at

g ⇠ 10�1 the value of the dipole mode starts increasing to then drop again, drifting from

the expected trend predicted with the perturbation theory. This increase in the dipole

mode frequency is therefore consistent with the fact that in Eq. (6.66), the last term

corresponding to the interaction energy acts as a perturbation that induces a blue shift

122



Chapter 6. Collective oscillations of a trapped BEC in tilted ring potentials

Figure 6.21: (Left) Dipole mode frequency derived from the frequency spectra of the
center of mass using GPE and from the variational method numerical solutions, com-
pared with the corrected classical oscillations frequency !QAO

cl determined with pertur-
bation theory from Eq. (6.20). The errors were determined by using half division of
the frequency scale. (Right) Percentage relative di↵erence of perturbation theory and
variational method compared to the frequencies observed from the GPE simulation.

of the harmonic oscillator eigenvalues, which depends on the state of the system. In

fact, the perturbation theory correction keeps into account the correction to the energy

coming from the anharmonic part of the potential treated as a perturbation and not the

interaction term. The e↵ect of the interaction, in this model, is kept into account for

the e↵ect that it has on the average occupation number. In Fig. 6.22 we show how the

interaction energy, defined in Eq. (6.68), changes as a function of the states quantum

number n, for eigenstates of both the harmonic and tilted ring potentials, evaluated

numerically. Using the definition of the interaction energy

Eint
n =

g1D
2

Z
| n(r)|4dr, (6.68)

we express this in dimensionless units considering the relation

2Eint
n

g1D
=

2Eint
n

~!ho

�~!?
g1D

=
Eint

~!holhog
, (6.69)
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where in the last passage we used the definition of the dimensionless interaction strength

already largely used here, g = g1D/2~!?l?, and � = !ho/!?.

The following drop in the dipole frequency is then determined by the interplay between

the shifts given by the interaction strength and the anharmonicity. In fact, if on one

side the interaction strength determines a blue shift of the energy, on the other side the

interaction energy assumes lower values for states with higher n, as shown in Fig. 6.22,

while the anharmonicity determines a red shift of the energy.

As the shift for the dipole frequency is below 10%, the percent relative di↵erence for

the two methods analysed here, as shown in Fig. 6.21(b), lies in the range 0 � 2.6%

with the variational method and 0.2 � 2% with the perturbation theory approach.

The increasing deviation between the numerical GPE results and the perturbation

theory approach, for higher interaction strength, is due to the fact that the unperturbed

Hamiltonian considered even in the interacting case is the harmonic oscillator one, and

the interaction term enters the perturbation theory correction only in the energy of

the system determined to estimate the corresponding average occupied state. This can

therefore lead to a lack in accuracy, as we would need to treat also the interaction term

as a perturbation in order to give a further correction.

We now study the shift of the monopole mode, comparing the solutions of the aforemen-

tioned methods. While in the non-interacting harmonic oscillator case the monopole

mode is given by !M = 2!ho, in the previous section we have seen that, for the har-

monic oscillator case, the shift due to the interaction can be reproduced both with

a variational method and with a phenomenological result that takes into account the

revival frequency !R observed, with the relation

!M = 2!ho � !R. (6.70)

Di↵erently from the harmonic oscillator case, however, we see that the dipole frequency,

describing the classical oscillations of the center of mass, is shifted in the tilted ring

potential even in the non-interacting case, as a result of the anharmonic perturbation

to the potential. Here then we have to consider the correction to the center of mass

oscillations, which we determined using perturbation theory from Eq. (6.20), obtaining
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Figure 6.22: Interaction energy of Eq.(6.66) in dimensionless form, evaluated from
Eq. (6.68) with the eigenstates of the harmonic oscillator and the ring, estimated nu-
merically from the xHamiltonian in the non-interacting case.

the results shown in Fig. 6.21.

Eq. (6.70) then reduces to

!M = 2!(QAO)
cl � !R�M , (6.71)

where !R�M is the revival frequency observed in the frequency spectra of the wavepacket

width oscillations.

In Fig. 6.23, in analogy to the previous study of the dipole frequency shift, we show

the frequencies obtained from the frequency spectrum of the width of the wavepacket,

obtained from the numerical simulation of the GPE. We compare these with the varia-

tional method solutions, obtained from the numerical solution of Eq. (6.40), and with

the phenomenological result of Eq. (6.71), obtained after considering the perturbation

theory correction to the classical oscillation of the wavefunction (Eq. (6.21)).

The revival frequency, determined from the frequency spectra of �, and used to predict

the shift from Eq. (6.71), is shown, as a function of the interaction strength, in Fig. 6.24.
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Figure 6.23: (Left) Monopole mode frequency derived from the frequency spectra of the
wavepacket width � using the GPE and from the variational method numerical solu-
tions, compared with the monopole oscillations determined using perturbation theory
and the phenomenological formula in Eq. (6.71). The errors were determined by using
half division of the frequency scale. (Right) Percentage relative di↵erence of pertur-
bation theory and variational method compared to the monopole frequencies observed
from the GPE simulation.

Comparing the two results with the frequencies determined from the GPE simulations,

we can see that the variational method fails to give an accurate prediction for the

monopole frequency shift, with percent relative errors in the range 3%�8.5%. From the

frequency spectra of the width obtained with the variational method approach, shown in

Fig. C.5), it can be seen that the shift in the monopole frequency is consistent with the

value of the revival frequency, according to the phenomenological result of Eq. (6.71).

However, the discrepancy in the value of the revival frequency !R�M obtained with the

variational method and with the GPE, a↵ects the accuracy in determining the shifts

of the monopole mode. In fact, from Fig. 6.24, we can see that the revival frequency

obtained with the variational method is ⇠ 5 times larger than the one obtained with

the GPE simulation at low interactions.

This deviation is related to the fact that the wavepacket loses its Gaussian form for

lower values of the interaction strength. On the other side, we want to stress the fact

that the phenomenological result that we verified in the previous case for the harmonic
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Figure 6.24: Revival frequency computed from the frequency spectra of � obtained both
with the numerical solutions of the GPE (dots) and with the numerical solution of the
di↵erential equations Eq. (6.40) and Eq. (6.41) obtained from the variational method.
The frequency spectra used to determine the revival frequency with the variational
method, obtained from the evolution of the lower moments for some values of the
interaction strength, are shown in Fig. C.5.

oscillator, seems to be working quite well, especially for lower values of the interaction

strength. In fact, we observe that the percentage relative errors lie in the interval

0 � 2.5%, with a higher uncertainty for higher values of g as a consequence of the fact

that the prediction of the dipole oscillations obtained from the perturbation theory, in

this limit, contains deviations close to this values. This can be seen from the relative

di↵erence in Fig. 6.21. The major source of deviation from the numerical solutions

given by the GPE is therefore the lack of accuracy in determining the dipole frequency

shift, whilst the e↵ect of the revival frequency seems to be playing the major role.

6.7 Conclusion

We have studied the out-of-equilibrium dynamics of a BEC in a tilted ring potential,

focusing on collective oscillations that have been investigated in the harmonic oscillator
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limit before, with di↵erent approaches. Here in particular, we discussed the variational

method with the Gaussian ansatz, and the hydrodynamic limit for strong interactions,

achieved when the quantum pressure is negligible.

Being able to simulate the full dynamics of the BEC through the Gross-Pitaevskii

Equation and to determine the frequency spectrum from its Fourier transform, gives us

some advantages compared to aforementioned methods that aim to give an analytical

description. One of these is the advantage of not being restrained by a particular

form of the ansatz, like in the case of the variational method, where depending on the

geometry of the system the same ansatz can lead to inaccurate results (as seen in the

latest results of the previous section). On the other side, we do not need to neglect

the kinetic term like in the Thomas Fermi approximation in the hydrodynamic limit.

The main approximation in this model is therefore given by the fact that we do not

consider the non-condensed cloud, as the GPE is a mean field approach.

Taking the results of the 1D harmonic oscillator in mean field as a starting point, we

studied the frequency spectra obtained from the GPE simulation to characterise the

collective oscillations and the frequency shifts in the tilted ring potential. Comparing

the results for the two di↵erent potentials allowed us to determine how the di↵erent

non linear e↵ects, coming from the interaction within the BEC and the anharmonic

potential, a↵ect the dynamics. The observation of the spectra turned out to be an

invaluable tool to extract the main features of the system dynamics.

We summarise here briefly the main results obtained in this chapter. For the har-

monic oscillator we noticed that interactions within the BEC give rise to a damping of

the oscillations and a broadening of the peaks, which is determined by the collisions

within the BEC. In the tilted ring, the damping is observed even in the non interacting

case, due to the anharmonicity that leads to dephasing and decoherence of the initial

wavepacket. In both cases the damping is followed by revivals, which give rise to peaks

at lower frequencies in the frequency spectra.

We observed, for both potentials, the appearance of sidebands in the frequency spectra

of both the density and the moments, whose distance from the main peaks is given by

multiples of the revival frequency, but with a di↵erent structure in the two potentials.
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The frequency shift was also determined, for both cases, from the frequency spectra.

While for the harmonic oscillator potential the dipole mode is decoupled from the other

modes and the motion of the center of mass does not depend on the interactions, in the

tilted ring we saw that the anharmonicity induces a coupling between the even and the

odd modes (e.g. dipole and monopole). This was seen also by extending the variational

method approach to the case of a harmonic potential perturbed with a quartic term.

We therefore observed the shift of the dipole mode due to the collisions within the BEC

and predicted the shift with first order perturbation theory, which gives a reasonably

good agreement. For the study of the monopole frequency shift, we observed that there

is a relation between this and the revival frequency observed. More precisely, we found

that the shift of the monopole mode can be derived, both in the harmonic oscillator

and in tilted ring traps, by subtracting the revival frequency to the “bare” breathing

frequency estimated from twice the classical oscillation frequency, which is dependent

on the form of the potential. These phenomenological results are in excellent agreement

with the numerical data obtained from the GPE, and in the case of the ring potential

we showed that they give a better prediction than the variational method.

Although we do not have yet a deeper understanding of this phenomenological result,

the revival frequencies observed close to the zero seem to be the key feature, connecting

the structure of the sidebands, which appear at multiples of the revival frequency, and

the shift of the frequency modes from the main peaks to the successive lower frequency

sidebands, for increasing interaction strengths. In the future it would be interesting

to study these e↵ects in more detail, to gain a better understanding of the connection

between them.

This study would be interesting considering also the dynamics obtained using di↵erent

parameters of the ring potential and radius, as well as di↵erent initial positions that

can allow us to explore regimes that go beyond the quartic approximation of the po-

tential, where the dynamics presents super-revivals. This would allow to see how the

interaction a↵ects the dynamics in this limit and whether the frequency shift of the

monopole mode could be predicted also by the super-revival frequency, in analogy to

the phenomenological relation that includes the revival frequency.
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However, going beyond the approximation of small oscillation, to the extreme limit of

oscillations of a BEC launched from the top of the trap, would not be ideal for our

study, as the splitting and recombination of the cloud at the top of the ring creates

interference that generates the so called ”quantum carpets” [194, 195]. Analysing the

frequency spectra of the density obtained from the dynamics would result in too many

frequency components in the frequency spectra (determined by quantum fractional

revivals) that would be hard to analyse.

Here we have considered the case of a quasi-one-dimensional ring, where the radial

direction is much smaller than the healing length, so that the dynamics in this direction

is frozen and the wavefunction along it can be described as the ground state of a

harmonic oscillator. However, including the dynamics in the radial direction, either by

considering more available states in this dimension or by using a full 2D description,

would be interesting to study, for varying interactions, the interplay of the dynamics in

the two directions in the tilted ring potential, and see how this changes the frequency

of the lowest modes and eventually e↵ects of coupling between the di↵erent modes.

The study of this kind of system, because of the anharmonicity, o↵ers a di↵erent setup

in the investigation of collective oscillations generated by the non linear dynamics,

compared with previously studied systems. In particular, the frequency spectra derived

from the dynamics in the mean field approximation give a large amount of information

on the dynamics of the system and on the physics behind it. Although it was not

discussed here, this system presents chaotic behaviour [101], and the appearance of

broad band components can be interpreted as a signature of this [196]. Furthermore,

we aim to understand if the characterization of collective oscillations can be used to

determine the structure factor from the evaluation of the moments.
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Chapter 7

Dynamics of an exciton-polariton

condensate in a microcavity ring

7.1 Introduction

In this chapter we present the results of a collaboration with the experimental group of

David Snoke at the University of Pittsburgh on the study of the dynamics of exciton-

polariton condensates in a microcavity ring, which led to the publication in [124].

Although in this thesis we do not aim to focus on the study of polaritons, we give

a brief overview to describe these systems, and report the theoretical model used to

explain some experimentally observed features. This study played a large part in the

motivation for the research reported in Chapter 6.

Alongside ultracold atoms, solid state systems have been proposed as alternative can-

didates to observe the onset of Bose-Einstein condensation, both with excitons [197]

and with exciton-polaritons (polaritons) [198]. Polaritons have low mass, in current

semiconductor microcavities, around 109 times lighter than rubidium atoms due to the

fact that they are hybrid excitations of matter and photons, and because of the bosonic

statistics that these quasiparticles have, condensation can be obtained through a ther-

malization process. Coherent population [199–203] of the lowest single-particle state

in polariton systems, in analogy to the case of atomic gases, has been shown, and the

emergence of quantum e↵ects such as superfluidity [204] and quantized vortices [205]
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were observed.

Polaritons [206] are quasiparticles obtained from strong coupling between photons and

excitons (electron-hole pairs), therefore they can be considered as photons dressed with

matter fields. The interest in the study of exciton-polariton BEC over exciton BEC

has been motivated by the fact that the mass of polaritons (mpol ⇠ 10�5me) is around

4 orders of magnitudes lighter than the mass of excitons, and as a consequence the

condensation can be achieved even at room temperature [201–203], with temperatures

in the range of 1 � 300 K.

The achievement of condensation in polaritons, under incoherent pumping, relies on

a thermalization process assisted by the interaction between the polaritons. This was

successfully obtained for the first time in 2006 [199], where a macroscopic occupation of

polaritons in lower energy states was observed in the momentum space, together with

long range order in real space.

One of the challenges in the achievement of full thermalization, in these systems, is

due to the fact that their lifetime, determined by the photon leakage rate from the

cavity, is short compared to the thermalization time. These timescales, for typical

experiments, have been reported to be respectively ⌧ ⇠ 1 � 10 ps and Tth ⇠ 1 � 10

ps, with a ratio in the range Tth/⌧ ⇠ 0.1 � 10, in contrast to atomic gas BEC, where

this is Tth/⌧ ⇠ 1 ms/1 s ⇠ 10�3 [207]. This led to controversies in the definition of

Bose-Einstein Condensates when discussing the physics of these systems, since they are

inherently out-of-equilibrium [208, 209].

However, recently significant progress has been made in limiting the leakage of photons

from the cavities, leading to ultralong lifetimes on the order of ⇠ 100 � 200 ps, which,

compared to thermalization times Tth ⇠ 5 � 10 ps, allowed the observation of Bose-

Einstein condensation of polaritons at equilibrium [210].

Another challenge in the study of these systems is the presence of an incoherent reser-

voir of excitons interacting with the coherent part of the many-body system, which

makes it di�cult to measure key physical quantities such as the polariton-polariton

interaction strength. For this reason, increasing interest has been tailored towards the

creation of particular geometries and techniques that make it possible to separate the
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two components. Recent experiments, using di↵erent methods, such as the propaga-

tion of polaritons far from the reservoir [211] and depletion of the incoherent population

[212], allowed direct measurements of the polariton-polariton interaction strength.

Motivated by these challenges, the group of David Snoke recently set up a tilted mi-

crocavity ring platform, with an e↵ective one-dimensional geometry achieved through

etching processes in its structure, to study the dynamics of polaritons with ultralong

lifetime of ⇡ 200 ps [124]. The dynamics of polaritons in this configuration, which will

be the subject of investigation in the rest of the chapter, has many potential inter-

esting aspects. The gradient of the ring potential, combined with the long lifetime of

polaritons, allows them to travel distances of the order of hundreds of microns, and to

observe their dynamics far from the laser injection spot, where an excitonic hill builds

up. Doing so, the condensation can be observed without being attributed to non-linear

e↵ects of the laser light, and the polaritons can in principle be separated from the inco-

herent reservoir of excitons. Studying the physical processes involved in this dynamics

is therefore important to understand what novel contributions and advantages we can

obtain from this configuration.

Because of their finite lifetime and their creation process, polariton BECs are out-of-

equilibrium systems usually described by means of driven-dissipative models. In the

following we model the dynamics of polaritons in tilted microcavity rings of di↵erent

sizes, using a modified Gross-Pitaevskii Equation that accounts for the generation and

decay of polaritons, as well as relaxation processes that we describe with a phenomeno-

logical term, due to interaction with an excitonic reservoir.

The remainder of this chapter is structured as follows. In Section 7.2 we give a brief

background on the exciton-polariton systems. In Section 7.3 we present the model

analysed and the theoretical methods used to describe the dynamics of the polaritons

in the regime of interest. In Section 7.4 we present the results obtained from the

theoretical model, alongside the experimental data obtained by the group of David

Snoke, and comment them. Finally, in Section 7.5 we summarise the key results and

discuss some future directions.
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7.2 Exciton-polaritons

The experimental setup used in the experiments which we study here is constituted

by a microcavity, where photons are pumped, and quantum wells of semiconductors

placed between the Bragg reflectors, where excitons are generated. In the following we

show how the coupling between exciton and cavity photon modes gives rise, through

a linear supersposition of these, to polariton modes. Therefore we first obtain the

energy dispersion for the cavity photon and the excitons, and then derive the dispersion

relations for the polaritons.

Let us consider a photon in a cavity, trapped between two Bragg mirrors separated by

a distance D, with refractive index n0. The energy of the photon in the cavity is

EC = ~!C = ~ c

n0
k = ~ c

n0

q
k2
? + k2

k, (7.1)

where k? and kk are the components of the photon momentum in the directions respec-

tively perpendicular and parallel to the mirror surface. The boundary condition along

the perpendicular direction fixes the momentum k? = M⇡/D, where M is a positive in-

teger. For kk ⌧ k? we can write
q

k2
? + k2

k ' k?+
k2k
2k?

, leading to EC = ~ck?
n
0

+
~2k2k

2n
0

k?~ ,

therefore obtaining a dispersion relation that depends quadratically on kk, which we

can write in the form

EC = E0
C +

~2k2
k

2mC
, (7.2)

where we have introduced a cuto↵ energy E0
C = ~ck?

n
0

and the e↵ective mass of the

cavity field

mC = n0k?~ =
n0⇡M~

cD
. (7.3)

This is typically of the order of 10�4me, where me is the electron mass in the vacuum.

Polaritons can form when the light trapped in the cavity strongly interacts with an

active medium, such as semiconductors layers, exciting the electrons from the valance

to the conduction band and leading to the formation of an electron-hole bound state,
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an exciton. The exciton energy is given by

Ex(k) = Ex(0) +
~2k2

k
2mex

, (7.4)

where mex = memh/(me + mh) is the reduced mass obtained from the electron and

hole masses, and Ex(0) = Egap � EB. Here Egap is the energy gap between the two

bands and EB = ~2k2
2m

ex

a2
ex

is the binding energy, with aex the exciton Bohr radius. Since

mex ⇡ 103mC , the exciton energy can be approximated as constant (Ex(0)) with kk.

The Hamiltonian for the polaritons can be written as

ĤP = ĤC + Ĥx + ĤI

=
X

kk

EC(kk)ĉ
†
kk

ĉkk +
X

kk

Ex(kk)â
†
kk

âkk + ⌦0

X

kk

(ĉ†kk âkk + â†kk ĉkk), (7.5)

where we introduced the bosonic annihilation operators for the excitons and the cavity,

respectively indicated with âkk and ĉkk , and the coupling ⌦0 between cavity photons

and excitons.

This Hamiltonian can be diagonalised by introducing new operators P̂kk and Q̂kk , as a

linear combination of the modes of the cavity photons and the excitons [206]

P̂kk = X(kk)âkk + C(kk)ĉkk , (7.6)

Q̂kk = �C(kk)âkk + X(kk)ĉkk , (7.7)

leading to eigenvalues of the form

ELP/UP (kk) =
1

2

h
EX(kk) + EC(kk) ⌥

q
⌦2 + �2(kk)

i
, (7.8)

where �(kk) is the detuning energy, given by

�(kk) = EC(kk) � EX(kk). (7.9)
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Therefore the Hamiltonian of Eq. (7.5) reduces to the diagonal form

ĤP =
X

kk

ELP (kk)P̂
†
kk

P̂kk + EUP (kk)Q̂
†
kk

Q̂kk , (7.10)

from which we can clearly see that two kinds of quasiparticles are obtained, after using

the above transformation. These quasiparticles are the lower and upper polaritons,

whose modes are indicated respectively with the bosonic annihilation operators P̂kk

and Q̂kk .

We can then see more clearly how polaritons can be considered as hybrid quasiparticles

having both light and matter components, with proportions determined by the factors

X(kk) and C(kk), called Hopfield coe�cients [206] and satisfying the relation |X(kk)|2+

|C(kk)|2 = 1. These are defined according to the relations

fX(kk) = |X(kk)|2 =
1

2

0

@1 +
�(kk)q

�2(kk) + ⌦2

1

A , (7.11)

fC(kk) = |C(kk)|2 =
1

2

0

@1 �
�(kk)q

�2(kk) + ⌦2

1

A , (7.12)

which describe respectively the excitonic and the photonic fractions of the lower po-

laritons. In these equations for convenience we defined ⌦ = 2⌦0. It is therefore evident

that changing the detuning � a↵ects the excitonic and photonic components of the po-

laritons (for � = 0 the LP and UP are half exciton and half photon), as well as their

e↵ective mass, and therefore the way they interact with each other.

The dispersion curves for the polariton modes, together with the ones of the cavity

field and the exciton, are represented qualitatively in Fig. 7.1 for di↵erent values of the

detuning �, having fixed the coupling ⌦.

7.3 Model

As discussed in Section 7.1, motivated by current experimental realisations with these

platforms [124], we study the dynamics of polaritons in an e↵ective one-dimensional
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(a) �(0) = 0.3 ⌦. (b) �(0) = �0.3 ⌦.

(c) �(0) = 0.

Figure 7.1: Dispersion curves obtained for the polariton modes Eq. (7.8), the cavity
field Eq. (7.2) and the exciton energy Eq. (7.4), in units of the coupling ⌦, shown
qualitatively for a fixed value of this and di↵erent detunings �, and EC(0) = 1.3 ⌦.

tilted microcavity. The experimental geometry here inspired the choice of geometry for

the research in Chapter 6. Therefore, the choice of potential is analogous to the one

introduced in Chapter 6, of the form

V (✓) =
V0

2
[1 � cos(✓)]. (7.13)

In contrast with the case studied in Chapter 6, where the number of atoms was con-

served, here we have to adopt a slightly di↵erent model to account for the generation

of polaritons, as well as the decay due to the fact that polaritons have a finite lifetime,

given by

⌧pol ⇡ ⌧C
fC

, (7.14)

where ⌧C is the lifetime of the photons in the cavity. As we show in the schematic

representation of Fig. 7.2, the polaritons are created at the top of the ring by means of
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a laser directed on the active layer, where excitons are formed. The polaritons travel

around the ring and their density is measured at the bottom (at ✓ = 0), together with

their energy �ELP .

In this experimental setup the one-dimensional geometry allows polaritons to have

a considerably long lifetime of ⌧pol ⇠ 200 ps, and to travel distances of the order

of tens of microns (we study the dynamics of the polaritons in microcavity rings of

di↵erent dimensions, having radii of 40, 50 and 60 µm). In this chapter we estimate

the interaction strength between both polaritons and excitons, and we study how the

interaction a↵ects the frequency of the oscillations in the polaritons’ density.

Pump 
spotV = 1 meV

✓ = 0

Figure 7.2: Schematic representation of the trapping potential used to study the dy-
namics of polaritons. The polaritons are generated at the top of the ring and move
towards the bottom, where their density is measured by detecting the emitted photons.

In order to describe the dynamics of the polaritons at the ✓ = 0, we adapt the Gross-

Pitaevskii Equation (GPE) introduced in Chapter 2 and used in Chapter 6 to include

the pumping and the dissipative terms, together with a phenomenological damping term

of the kinetic energy, to account for relaxation due to the presence of a population of

an exciton reservoir around the bottom of the ring ✓ = 0. We therefore use the open-

dissipative GPE (ODGPE), having the form

i~@ (✓, t)

@t
=


�(1 � i↵)

~r2

2m
+ V (✓) + g1D| (✓, t)|2 + iG(t) � i�(t)

�
 (✓, t), (7.15)
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where

G(t) = G0[1 � e�t/⌧
1 ]e�t/⌧

2 , (7.16)

�(t) = �0[1 � e�t/⌧
3 ], (7.17)

are respectively the time-dependent feeding and decay terms, and ↵ is a phenomeno-

logical factor, first introduced by Pitaevskii [213], and now widely used in the exciton-

polariton literature to account for the relaxation, due for example to scattering with

phonons and excitons [214–216]. This simplified phenomenological model is aimed to

describe the oscillations at the bottom of the ring at ✓ = 0, where the photon emission is

detected experimentally, therefore the generation term here keeps into account the time

needed for the polaritons to move from the top to the bottom of the ring. We rewrite

the ODGPE of Eq. (7.15) in the dimensionless form, after defining x = ✓R and rescal-

ing time, energy and length with the units T = 2⇡/!, E = ~! and l0 =
p
~/mpol!,

where ! =
p

V0/(2mpolR2) is the oscillation frequency defined by the potential V0 of

the tilted ring and the radius R. For convenience, we consider the initial wavefunction

to be normalised to one, so that the dimensionless initial wavefunction is rescaled as

 l0/
p

N , and we can transfer the dependence of the dynamics on the initial number of

polaritons N in the interaction term, as g1DN . Furthermore, Therefore, in dimension-

less form (where the dimensionless physical quantities are indicated with the subscript

‘d’), the ODGPE of Eq. (7.15) reduces to the form

i
@ d

@td
=


�(1 � i↵)⇡

@2

@x2
d

+
⇡V0

~! [1 � cos(l0xd/R)] +
2⇡g1DN

~!l0
| d|2 + iGd(td) � i�d(td)

�
 d,

(7.18)

where we have used an initial Gaussian wavefunction of the form

 d(xd, 0) =
1pp

⇡�d erf(⇡R/�dl0)
e�x2

d

/2�2

d . (7.19)

For the simulation of the ODGPE we use the split-step Fourier transform method

discussed in Appendix B, being careful to renormalise the wavefunction after the action

of the non-Hermitian evolution given by the damping term proportional to ↵.
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7.4 Results

We use the model described above to simulate the polariton dynamics and caluculate the

density at the bottom of the ring. From this we derive the exciton density determined

by their excitonic fraction from the relation

nex(✓, t) = |X(kk)|2npol(✓, t), (7.20)

which we will use in the following to compare the numerical simulation with the ex-

perimental data. In order to study the e↵ects that the interaction strength and the

phenomenological parameter ↵ in Eq. (7.18) have on the dynamics of the polaritons,

we first consider the dynamics in a microcavity ring of radius R = 50µm, for di↵erent

values of these parameters, and show the oscillations of the exciton density nexc(0, t)

at the bottom of the ring in Fig. 7.3, for the di↵erent values considered.

Figure 7.3: Density of excitons (7.20) estimated from the polariton density simulated
from Eq. (7.18), for di↵erent values of the damping coe�cient ↵ and the interaction
strength g1DN in eVµm, as in legend, and for the ring with radius R = 50µm. The
other parameters used are the ones reported in Table 7.1.
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We observe that, as is consistent with the results discussed in Chapter 6, increasing the

interaction generates a red shift of the oscillation frequency and broadens the density

peaks. The relaxation term ↵ however is fundamental to match the experimental

results and to observe smoother oscillations, as a result of damping higher momentum

oscillations due to the interaction with the exciton reservoir, for which we also see

evidence in the experiment. The e↵ect that the damping term has on the polariton

density in momentum space, for the same parameters used in Fig. 7.3, is shown in

Fig. 7.4, where we observe that, while for ↵ = 0 the polaritons reach higher values of

momentum, which results in sharper oscillations of the density, for finite values of ↵

the momentum is confined to lower values. As a result, we see that the oscillations are

almost completely smoothed out for the non-interacting case, but are recovered for a

finite value of the interaction.

As mentioned in the previous section, we aim to observe how the interaction a↵ects the

dynamics of the polaritons in microcavity rings of di↵erent dimensions, and to discuss

the interaction strengths observed in this regime, through the estimated value of the

exciton-exciton interaction gxx.

7.4.1 Oscillations of polaritons in microcavity rings of di↵erent radii

In this part we study the dynamics of low density polaritons and the corresponding

density of excitons, obtained from Eq.(7.20). Having experimental data of the exciton

density in rings with radii of 40, 50 and 60µm, we find the best fits for these datasets,

using the model of Eq. (7.18) to simulate the dynamics of polaritons, and from npol(0, t)

we extract the exciton density using Eq. (7.11). We therefore determine, by changing

the value of the interaction strength g1D, how the frequency of the oscillations changes

for every configuration, compared to the non-interacting case. We show the best fits

and the experimental data in Fig. 7.5.

The parameters used for the numerical simulations of Eq. (7.18) to obtain the results

shown in Fig. 7.5 are reported in Table 7.1. In Table 7.2 we report the values of the

periods observed with the values of the interaction strength given by the best fits and

compare them with the ones expected in the non-interacting case. The configurations

141



Chapter 7. Dynamics of an exciton-polariton condensate in a microcavity ring

(a) ↵ = 0, g1DN = 0 eV µm (b) ↵ = 1.1, g1DN = 0 eV µm

(c) ↵ = 0, g1DN = 0.25 ⇥ 10�2 eV µm (d) ↵ = 1.1, g1DN = 0.25 ⇥ 10�2 eV µm

Figure 7.4: Density of polaritons in momentum space, computed using Eq. (7.18) for
di↵erent values of the interaction strength g1DN and the relaxation coe�cient ↵.

R(µm) !⌧1/2⇡ !⌧2/2⇡ !⌧3/2⇡ 2⇡G0/! 2⇡�0/! ↵ �d g1DN (eV µm)

40 0.15 0.6 0.5 1.0 0.9 1.1 5 0.50⇥10�2

50 0.20 0.6 1.5 1.0 1.0 1.1 6 0.25⇥10�2

60 0.20 0.6 0.5 1.0 1.0 0.8 5 0.25⇥10�2

Table 7.1: Parameters used to reproduce the dynamics of the polaritons densities rep-
resented in Fig. 7.5.

with di↵erent radii correspond to non equal values of the energy gradient V0 and will

correspond to di↵erent masses of the polaritons mpol. These were determined by esti-

mating the lower polariton dispersion relation from Eq. (7.8) and fitting that with a

parabola centered at k = 0.
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R(µm) V0 (meV) mpol (⇥10�5me) T (ps) Tg (ps) g1DN (eV µm)

40 0.66 6.7 270 272±5 0.50⇥10�2

50 0.83 6.4 302 306±5 0.25⇥10�2

60 0.88 6.0 331 343±5 0.25⇥10�2

Table 7.2: Comparison between the oscillation period T = 2⇡/! = 2⇡
p

2mpolR2/V0

expected in the non-interacting case and the period Tg observed experimentally by
evaluating the time between the first and the third peak in the oscillations of the
experimental densities represented in Fig. 7.5, for di↵erent values of the radii. The
di↵erent sizes of the ring determine di↵erent values of the energy gradient V0 and of
the polariton mass mpol, which are also reported.
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(a) R = 40, g1DN = 0.5 ⇥ 10�2 eV µm (b) R = 40, g1DN = 0.5 ⇥ 10�2 eV µm

(c) R = 50, g1DN = 0.25 ⇥ 10�2 eV µm (d) R = 50, g1DN = 0.25 ⇥ 10�2 eV µm

(e) R = 60, g1DN = 0.25 ⇥ 10�2 eV µm (f) R = 60, g1DN = 0.25 ⇥ 10�2 eV µm

Figure 7.5: Polariton densities at the bottom of the ring npol(✓ = 0, t) and corresponding
exciton densities nex(0, t) estimated using Eq. (7.20) (left), and comparison between
the exciton densities obtained numerically and experimentally (right) for rings with
di↵erent radii and with the interaction strengths reported in captions. The parameters
used for the simulations are reported in Table 7.1.
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7.4.2 Estimation of the interaction strength from the energy shift

In the previous section we have determined the value g1DN from the best fit to the

exciton density nex(✓ = 0, t). However, the inability to determine the initial number

of polaritons N does not allow us to estimate the e↵ective value g1D of the polariton-

polariton interaction strength.

We now consider a di↵erent set of experimental data, that in contrast to the previous

case have a higher density of polaritons, which are in the regime useful to achieve

condensation. For this case, we refer to the experimental datasets of the energy shift

caused by the interaction and of the measured densities of polaritons, and discuss the

important features in their relation and in the determination of the interaction strength.

From the time-independent GPE, the blue shift of the energy, in the Thomas-Fermi

regime, is mainly determined by the interaction strength and should be directly pro-

portional to the density of polaritons, according to the equation

�ELP (✓, t) = gp�pnpol(✓, t), (7.21)

therefore we expect the measured blue shift to follow the same trend in the oscillations,

compared to the density of polaritons measured. However, from Fig. 7.6 we observe

that there is a discrepancy between the experimental measured value of the blue shift

and the one trend given by the bare interaction between the polaritons from Eq. (7.21).

As we have pointed out in the previous section, however, for a correct description of the

dynamics we have to include a phenomenological term that accounts for the interactions

with an exciton reservoir. Based on the evidence of the presence of these excitons, we

therefore have to include this contribution in the equation for the blueshift, so that

�ELP = gp�pnpol(t) + gpol�exnres(t), (7.22)

where nres(t) is the density of excitons in the reservoir. In order to obtain this in

a convenient form, where we need to estimate only the interaction strength between
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Figure 7.6: Energy shift measured experimentally (blue line) and energy shift obtained
from Eq. (7.21), using an indicative guess value gp�p = 0.25⇥10�2 eV µm. We see that
in the measured energy shift the oscillation are smoothed out, resulting in a deviation
between the predicted and the measured values, which can not simply be accounted for
from Eq. (7.21).

the excitons, we transform the polariton population in its excitonic part and convert

the interactions gp�p and gpol�ex to exciton-exciton interactions. As the interaction

between the polaritons is mainly given by their excitonic fraction, the blueshift in the

exciton energy is given by

�EX = gxx(nex(t) + nres(t)), (7.23)

where the exciton component nex(t) of the polaritons is determined from Eq. (7.20).

Defining �ELP (0) = E0
LP (0)�ELP (0) and � = Ec�Ex, from the definition in Eq. (7.8),

we obtain

�ELP =
�Ex

2
+

1

2
[
p
�2 + ⌦2 �

p
(� � �Ex)2 + ⌦2]. (7.24)

Using the definitions of the exciton blueshift in Eq. (7.23) and the excitonic frac-
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tion fx(kk) = |X(kk)|2 of Eq. (7.11), the lower polaritons blueshift of Eq. (7.22) and

Eq. (7.24) can be cast in the form

�ELP = gp�pnpol(t) + gpol�exnres(t) ⇠ fx(0)�Ex(t) = fx(0)gxx[nex(t) + nres(t)].

(7.25)

By defining gfit = fx(0)gxx it is therefore possible to obtain the interaction between the

excitons gxx. More information about how to extract the population of the reservoir

can be found in [124]. The exciton-exciton interaction strengths gxx obtained in this

set of experiments, for di↵erent pump powers beyond the threshold, give values of the

order of 10 µeV µm2, which are consistent with other values observed in the same

regime at high densities [211, 212].

7.5 Conclusions

The system considered here presents some novelty due to the e↵ective dynamics in one

dimension and the ultralong lifetimes of the polaritons (⇠ 200 ps), allowing motion at

distances of the order of hundreds of microns, far from the injection spot where the

excitonic hill is created. The longer lifetime of the polaritons, compared to the ther-

malization time, allowed condensation close to equilibrium conditions to be observed

in this experimental setup for the first time [210].

To gain a better understanding of the dynamics and the interactions between the com-

ponents of the system, we have modeled the dynamics of low density polaritons for ring

traps of di↵erent sizes, using a modified Gross-Pitaevskii Equation that accounts for

pumping and dissipation, and we used this to explain some features of the experimental

data obtained by D.Snoke’s group [124].

We showed how the oscillations are a↵ected by the interaction strength, observing

how the period of the oscillations is di↵erent from bare classical pendulum oscillations,

for di↵erent values of the ring radii. Furthermore, we inferred that the shape of the

oscillations of the polaritons is strongly a↵ected by relaxation phenomena given by

the interaction with an excitonic reservoir. In order to account for this, we added a

phenomenological term in the modified GPE.
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From the study of the data obtained experimentally for polariton oscillations at higher

densities, we observed that the presence of an excitonic reservoir manifests also here,

in the measured energy shift. In order to have a match between the blue shift observed

and predicted from the density of excitons, the presence of dark excitons was accounted

for. From this, a value of the exciton-exciton interaction strength of the order of 10 µeV

µm2 was obtained, showing consistency with other experimental values in literature for

polaritons at high densities.

The study of BEC in these platforms is very promising for the impact they can have

in quantum devices, due to their compact size and to the fact that condensation with

polaritons can in principle be achieved at room temperatures. Furthermore, these 1D

geometries o↵er intriguing opportunities for the realisation of polariton circuits and

networks of these, with connected 1D rings.

148



Chapter 8

Conclusions

The ability to engineer the dimensionality and the geometry of the trapping potentials

for cold atoms, together with the control that we have over the interactions, allows us

to design highly-controlled systems where we can access desired regimes. In this thesis

we have used these possibilities in the context of both open and quantum systems by

studying particular geometries and confinements of cold atoms and BEC. In particular,

we studied the dissipative dynamics of impurities tightly confired in di↵erent dimen-

sions, induced by their interaction with a weakly confined BEC, as well as the dynamics

of interacting BECs trapped in one-dimensional tilted ring potentials. These models

o↵er applications for experimental platforms of relevance in the context of quantum

simulations and quantum technologies. In this chapter we review the key results of

each project and discuss some possible future directions.

In Chapter 4 we studied the induced dissipative dynamics of neutral impurities trapped

in di↵erent configurations, immersed in a BEC. In particular, motivated by the exper-

imental possibility to control and address the dynamics of individually trapped atoms,

we have studied the cooling induced by the coupling to a reservoir gas, which causes

initially excited motional states to relax to lower temperature states. Changing the

confinement of the trapped neutral impurities we investigated the induced dynamics

of the atoms with tight confinement di↵erent dimensions, in configurations that are

of experimental relevance and currently in place in di↵erent experimental groups. We
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estimated the cooling rates of the impurities for realistic experimental parameters, and

studied the heating e↵ects of a finite temperature reservoir on the cooling process, show-

ing that the timescales obtained for the cooling process can be accessed experimentally.

Experimental applications of these cooling schemes then naturally follow.

The long coherence time of these systems allows us to use the induced dissipative

dynamics to achieve cooling to lower temperature states, under desired conditions.

In particular, the study of a configuration where the dynamics is reduced along two

directions, where one is tightly confined, o↵ers the possibility to extend this study to

the case of impurities trapped in a lattice, with the aim to implement dark state cooling

[81, 82].

In Chapter 5 we used the same platform of an impurity in a BEC, but with a study

tailored towards reservoir engineering and non-Markovian dynamics. Once again, the

ability to control the confinement of both the trapped impurity and the reservoir, allows

us to access di↵erent regimes where some approximations commonly used do not hold.

This is the case for the non-Markovian dynamics explored in this chapter, where we have

seen how changing the confinement of the impurity immersed in a cigar-shaped BEC,

a↵ects the ratio between the relaxation time of the system and the correlation time of

the reservoir, leading to a backflow of information. The study conducted o↵ers several

possibilities for future directions, including the non-Markovian dynamics of impurities

trapped in BEC having higher dimensions or having a finite number of modes to which

the motion of the impurity is coupled, as well as the study of non-Markovian dynamics

with two or more impurities.

The study of this system o↵ers a promising toolbox for possibilities to explore new

elements of non-Markovian dynamics that are not accessible in other platforms, such

as atoms in cavities, because of the di↵erent nature of the reservoir.

In Chapter 6, motivated by ongoing experiments with BECs in tilted ring traps, we

characterised the e↵ect that this geometry has on the collective oscillations of the sys-

tem. We studied the interplay between the non-linearity coming from the form of the
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potential and the interaction between the atoms, and comparing analytical and nu-

merical methods we have characterised the frequencies of the low-lying modes. We

have seen how this geometry induces di↵erent behaviour compared to the case of har-

monic potentials commonly studied, such as the coupling of the center of mass with

the internal dynamics of the system.

This study was conducted for a one-dimensional trap and in the regime of small oscilla-

tions around the minimum of the potential, where the anharmonic e↵ects are however

visible. In future studies it would be interesting to consider more radial modes and

study how the coupling to these a↵ects the excitation spectra, but also to study the

dynamics of solitons and BEC in tilted ring traps with barriers, with potentially useful

applications in the context of atomtronics.

In Chapter 7 we studied the out-of-equilibrium dynamics of polaritons in a tilted ring

trap, as a result of a collaboration with an experimental group on the subject. Current

progress in these platforms has produced polaritons with long lifetime, making it possi-

ble to achieve condensation through thermalization of the polaritons. This possibility,

together with the ability to design desired geometries, leads to possible applications in

quantum technologies. It is therefore important to understand the physical processes

observed for these systems in new geometries, to understand possible limitations in the

models and future improvements both in experiments and for theoretical descriptions.

In this case, in particular, we observed that the presence of a reservoir of excitons in-

teracting with the polaritons requires the inclusion of thermalisation processes in the

description of the out-of-equilibrium driven and dissipative dynamics.

Further directions in the theoretical model include the observation of coupling between

the radial modes to see how this would eventually a↵ect the dynamics of the polaritons

even in relation to experimental observations. Furthermore, these platforms can be

used for building networks of connected rings, which can find application for quantum

memories in the context of quantum technologies and quantum computing.

Overall, the high degree of control that we have on these systems allows us to design
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desired configurations for the study of the dynamics of ultracold atoms and BEC, in

both open and closed quantum systems, o↵ering a plethora of possibilities for advances

in quantum technologies.

The system of impurities immersed in a BEC o↵ers many possibilities in the context of

quantum simulators, where the development of cooling techniques for producing lower

temperature states gives us access to the study of interesting problems in many-body

physics. Furthermore, we have seen how this system can be used to explore non-

Markovian regimes and investigate novel elements of coherent and dissipative quantum

dynamics, with potential applications in the context of state engineering. On the other

side, the study of the dynamics in tilted trapped BECs, with both ultracold atoms and

polaritons, o↵ers di↵erent applications for atomtronics platforms, quantum metrology

and sensing, and it provides new opportunities for the study of new aspects in the

context of non-equilibrium dynamics.
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Appendix A

Evaluation of the decay rates and

semi-classical approximation

In Eq. (4.36) we provided the equation for the decay rates �n1!m0 in the 2D cigar-

shaped trap, after using a semi-classical approximation. We discuss this more in detail

in the following, and we also derive the decay rates in the fully quantum approach,

with an analogous procedure used in the estimation of the transition coe�cients in 3D

(Eq. (4.32)).

Following previous considerations, in the cigar-shaped potential, based on the assump-

tion that the energy spacing in the radial direction is much larger than the chemical

potential, the excitations emitted in the decay from the first excited state in the radial

direction can still be considered in the supersonic regime, where the structure factor

is S(k) = (uk + vk)2 = 1. With calculations similar to the 3D case, for the estimation

of the matrix elements, we used the relation in Eq. (4.29). After writing the com-

ponents of the momentum in the two directions in polar coordinates, as kx = k cos ✓

and kz = k sin ✓ cos�, and integrating over k using the properties of the delta function

involving the energies, we obtain the decay rates

�n,1!m,0 =
2g2ab⇢0

p
mamb

(2⇡)2~3u
m<!

m>!

r
mb

ma

�
w + n � m

�p
!x!0

⇥
Z ⇡

0
d✓B�(n, m, ✓)e�⇠

2(✓)⇠2|n�m|(✓) sin ✓
��L|n�m|

m
<

(⇠2(✓))
��2, (A.1)
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where w =
!z

!x
, m< = min(n, m), m> = max(n, m),

⇠2(✓) =
x2
0k

2 cos2 ✓

2
=

mb

ma
(w + n � m) cos2 ✓, (A.2)

and

B�(n, m, ✓) =

Z 2⇡

0
d�e�⇣

2(✓) cos2 �⇣2(✓) cos2 � (A.3)

= ⇡⇣2(✓)e�⇣
2(✓)/2


I0

✓
⇣2(✓)

2

◆
� I1

✓
⇣2(✓)

2

◆�
.

Here

⇣2(✓) =
z20k

2 sin2 ✓

2
=

mb

maw
(w + n � m) sin2 ✓, (A.4)

and I0 and I1 are the modified Bessel functions of the first kind, defined as

I↵(x) = i�↵J↵(ix) =
1X

m=0

1

m! �(m + ↵+ 1)

⇣x

2

⌘2m+↵
. (A.5)

From Eq. (A.1) we notice that, di↵erently from the previous 3D case of Eq. (4.32), the

decay rates now contain Laguerre polynomials L|n�m|
m

<

(x) that do not depend only on

the di↵erence between the quantum numbers of initial and final states in the radial

direction, but also on the particular value of m<. As a consequence, for high values

of m<, these terms will oscillate rapidly and make their numerical evaluation compli-

cated. We therefore make use of the semi-classical approximation [79, 162] in order

to circumvent this problem, having also the advantage of speeding up the time needed

for the numerical evaluation of the matrix elements. The semi-classical approximation

consists of describing the motion of the impurity in the trap with a classical trajectory,

so that kxx = kxxmax cos(!xt). The matrix elements of the axial transitions therefore
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are
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where Jn�m(z) are the Bessel functions of the first kind, defined as

J↵(x) =
1X

m=0

(�1)m

m!�(m + ↵+ 1)

⇣x

2

⌘2m+↵
, (A.7)

with �(z) =
R1
0 xz�1e�xdx the Gamma function. In Eq.(A.6),

xmax = x0

✓p
2n + 1 +

p
2m + 1

2

◆
, (A.8)

is the average between the initial and final maximum position of the impurity, and

T = 2⇡/!x is the period of the oscillations [162]. Inserting this solution of the matrix

elements in the decay rates (Eq. (4.26)), we obtain the decay rates of Eq. (4.36).

This approximation was also used for the estimation of the transition coe�cients in 1D

(for the slower dynamics along the axial direction), with an expression for the decay

rates given by

�n!m =
g2ab⇢0
2⇡~

Z 1

0
dkS(k)k2�(~!x(n � m) � ✏k)

Z ⇡

0
J2
n�m(k cos ✓xmax) sin ✓d✓

=
g2ab⇢0
2⇡~2

r
mb

2

✏̃k2S(k)r
(✏̃2 + µ2

b)(
q
✏̃2 + µ2

b � µb)

Z ⇡

0
J2
n�m(k cos ✓xmax) sin ✓d✓, (A.9)

where in the last line

k =

p
2mb

~

rq
✏2k + µ2

b � µb. (A.10)

We compare the decay rates obtained in both the fully quantum and semi-classical

approximation in order to test the goodness of the latter. We do this for the 1D case,

where we can evaluate them both numerically. The quantum expression for the decay
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rates, in the most general form reads
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2

◆����
2

, (A.11)

with k defined as in Eq. (A.10).

In Fig. A.1 and Fig. A.2 we compare the values of the decay rates obtained with both

the approaches, for two specific transitions from a higher and from a lower excited

state, respectively �60!m and �10!m. As expected from the theory, the semi-classical

approximation works very well in the case |n � m| ⌧ n, whilst it is less accurate for

|n � m| ⇡ n. More precisely, from Fig. A.1 and Fig. A.2, we can see that the relative

di↵erence between quantum and semi-classical results are smaller than 15% in the range

|n�m|/n  0.9. Fig. A.1(b) shows that the relative di↵erence increases above 40% for

m  4. However, in this case, the decay rates obtained for these transitions with both

methods are respectively of the orders of 10�10 and 10�8 and can be approximated to 0

being much smaller than the other rates at higher m, as it can be seen from Fig. A.1(a).

In general, we notice that, for transitions n ! m in the limit |n�m|/n  0.9, the relative

di↵erence is below 18%, and transitions to lower energy states m with |n � m|/n >

0.9 start becoming more significative for n . 12. We therefore compare in Fig. A.2

the decay rates obtained with the two approaches and their relative di↵erence, for

transitions from the initial state n = 10.

We see that, while the decay rates are of the order of magnitudes of 10�4 � 10�3,

and the relative di↵erence between the two methods results is below 10% for m > 0

(corresponding to |n � m|/m = 0.9), this increases to 37% only when |n � m| = n.

Going to even lower initial states n, we observed that the maximum relative di↵erence

(at m = 0) keeps decreasing with n and lies in the range 0 � 38%, while for m > 0 we

still have a relative di↵erence below 10%. Following this, we can therefore state that the

semi-classical approximation has a high accuracy for |n�m|/n  0.9, going beyond the

condition |n � m| ⌧ n predicted by the WKB approximation, and the values obtained
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Figure A.1: Comparison (a) and relative di↵erence (b) between decay rates estimated
with the fully quantum expression and the semi-classical approximation, for transitions
from the state n = 60 and for a value of the trapping frequency !x = !0.

Figure A.2: Comparison (a) and relative di↵erence (b) between decay rates estimated
with the fully quantum expression and the semi-classical approximation, for transitions
from the state n = 10 and for a value of the trapping frequency !x = !0.

for non negligible transitions with |n � m| = n have a relative discrepancy varying in

the range 0 � 38%, getting smaller with n, as the contributions from this transitions

increase.

A.1 Evaluation of the 1D decay rates in supersonic and

subsonic limits

We can find some simplified expressions for the decay rates in 1D when considering the

two limits ✏k � µb and ✏k ⌧ µb for the supersonic and subsonic regimes. Under these
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conditions, they are respectively given by [79]
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and
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where l0 =

r
~

mb!0
. For transitions |1i ! |0i, Eq. (A.12) reduces to Eq. (4.34).

In the semi-classical approximation, under the considerations discussed in the previous

section, they respectively reduce to the two forms
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(A.15)

In Chapter 4 we use Eq. A.12 to study the 1D limit of the transitions �001!000 (see

Fig. 4.5) in the disk shaped configuration, having imposed the condition that the sys-

tem, even in that limit, is in the supersonic regime.

For the dynamics in the cigar-shaped configuration we estimated the 1D transition rates

�n!m for the decays in the axial direction, but we used the full form of the structure

factor without any particular assumptions on the regime.
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Split-step Fourier transform

method for GPE numerics

In order to compute the dynamics described by the GPE we used a numerical method

called split-step Fourier transform, consisting in splitting the evolution in two terms: the

kinetic term and the one containing the potential and interaction. The two evolutions

are then applied separately in momentum and position space. In this Appendix we

show the procedure to implement this algorithm.

We start from the GPE of the form

i~@ (✓, t)

@t
=

✓
�~2r2

2m
+ Vext(✓) + g1D| (✓, t)|2

◆
 (✓, t) = (B.1)

=

✓
� ~2@2

2mR2@✓2
+ Vext(✓) + g1D| (✓, t)|2

◆
 (✓, t). (B.2)

Since the interaction term determines a contribution to the e↵ective potential, we divide

the Hamiltonian in the two terms

T = � ~2
2mR2

@2

@✓2
=

~2k2

2m
, V = Vext(✓) + g1D| (✓, t)|2. (B.3)

Using the Suzuki-Trotter expansion [217], the evolution operator can be factorised as

U (t) = e�iHt/~ ⇠
nY

j

e�iH
j

�, (B.4)
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where � = t/n, so the state at each time increment is determined by

 (✓, t + �) ' e�iH(t)�/~ = e�i(T+V (t))�/~ (✓, t), (B.5)

where the time dependence in V (t) = Vext + g1D| (✓, t)|2 is given by the interaction

term, which we consider at the initial time. This gives an error O(�2). The exponential

of the sum of the two operators however, is not easy to calculate, and since the operators

V and T do not commute, ei(V+T ) 6= eiV eiT . The split-step method then aims to go

around this obstacle, finding a way to factorise the exponentials containing separately

the kinetic and potential operators, with the approximation

e�(A+B) ' e��nBe�↵n

A...e��1Be�↵1

A. (B.6)

Retaining only three exponentials, with an error O(�3), it can be found [218] that

the condition to be verified for the coe�cients must be ↵1 = ↵2 = 1/2,�1 = 1 (or,

equivalently, as the choice of which operator associate to A and B is arbitrary, �1 =

�2 = 1/2,↵1 = 1). Therefore, imposing A = T and B = V , Equation B.5 takes the

form

 (✓, t + �) ' e�iT �/2~e�iV �/~e�iT �/2~ (✓, t) (B.7)

= e�i~k2�/4me�iV (t)�/~e�i~k2�/4m (✓, t). (B.8)

Using the kinetic operator in the momentum representation, it is convenient to Fourier

transform the wavefunction from position to momentum space  (k, t) to evolve it with

the kinetic operator evolution and we transform it back to the position representation

for the evolution with the potential operator, so the steps for the implementation of
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this method are the following:

 0(✓, t) =  (✓, t) !  0(k, t) (B.9)

 1(k) = e�i~k2�/4m 0(k, t) !  1(✓) (B.10)

 2(✓) = e�i(V
ext

(✓)+g
1D

| 
1

(✓)|2)/~ 1(✓) !  2(k) (B.11)

 3(k, t + �) = e�i~k2�/4m 2(k) !  3(✓, t + �) =  (✓, t + �). (B.12)

This method was used for the results presented in Chapter 6 and Chapter 7, to simulate

the dynamics of a BEC in a tilted ring trap. For the polaritons dynamics in Chapter 7,

the terms with G(t) and �(t) in Eq. (7.16) and Eq. (7.17) are contained in the term

V (t) of Eq. (B.8), while the relaxation term ↵ of Eq. (7.15) can be included in the term

T of Eq. (B.8).
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Variational method and

comparison with the GPE results

C.1 Linearised solution of the variational method equa-

tions

As shown in Chapter 7, analytical solutions of the lowest mode frequencies were ob-

tained for the harmonic oscillator potential after using a variational method approach

with a Gaussian ansatz to obtain the di↵erential equations for the width � and for the

center of mass z0. These were then solved by a linearisation around the equilibrium

solutions. Here we use the same proedure for the case of the dynamics in a quartic

harmonic oscillator potential. We refer to this approach as the linearised variational

method.

We find, even in this case, the stationary solutions needed for the expansion of the

di↵erential equations Eq. (6.40) and Eq. (6.41). From Eq. (6.41) we obtain

z0
e

(t)
�
1 + 3⇣�2(t) + 2⇣z20

e

(t)
�

= 0 (C.1)
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that admits solutions of the form

z0
e1

= 0 (C.2)

z20
e2,3

= �1 + 3⇣�2(t)

2⇣
. (C.3)

The first is a stable stationary point, while the equation for the two other equilibrium

points requires the condition 1 + 3⇣�2(t) � 0 in order to have real solutions, which

leads to �(t)  �
p

�1/(3⇣) and �(t) �
p

�1/(3⇣). Remembering that in our case ⇣ =

� 1
12R2

, the aforementioned condition would imply �(t)  �2R and �(t) � 2R, which

are both unphysical conditions. We will therefore consider only the stable stationary

point z0
e

= 0. The other di↵erential equation Eq. (6.40) has both stable and unstable

solutions given by

!2
z�e

�
1 + 6⇣z0(t)

2 + 3⇣�2e
�

� g1DNp
2⇡m�2e

� ~2
m2�3e

= 0. (C.4)

By expanding the di↵erential equations Eq. (6.41) and Eq. (6.40) around the equilib-

rium points, we obtain

!D = !z

p
1 + 3⇣�2e (C.5)

!M = !z

s

1 + 6⇣z20
e

+ 9⇣�2e +
3~2

m2�4e!
2
z

+

p
2g1DNp
⇡m�3e!

2
z

(C.6)

where it can be easily noticed that these frequencies are now coupled. In the harmonic

oscillator limit ⇣ = 0 we obtain the same results of Eq. (6.34) and Eq. (6.38). The

above solution obtained for the dipole frequency with this method does not depend on

the initial position of the wavepacket z0(0), in contrast to the more accurate result of

Eq. (C.5) used in Chapter 6, which predicts a correction given by this term. see that

this linearised solution is a correction that depends on the initial position z0(0).

In Fig. C.1 we compare the shift of the dipole frequency obtained from the linearised

solution Eq. (C.5) and from the semi-linearised and numerical solutions of Eq. (6.44)

obtained from the variational method, together with the data acquired from the analysis
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of the frequency spectra after simulating the dynamics via the GPE.

Figure C.1: Dipole frequency as a function of the interaction strength, evaluated from
the frequency spectra of the GPE dynamics (black dots), from the perturbation the-
ory correction of Eq. (6.21) (blue line) and compared with the results obtained from
the variational method through a linearised solution of Eq. (C.5) and from the semi-
linearised and numerical solutions of Eq. (6.44). The relative di↵erences of linear,
semi-linear and numerical solutions of the variational method, compared to the GPE
data, lie in the range 28 � 47%, 18 � 36%, 0 � 25% respectively.

C.2 Dynamics and frequency spectra of the moments ob-

tained from the variational method

In this section we present the dynamics of the lowest moments obtained with the numer-

ical solution of the di↵erential equations for the center of mass z0 and � obtained with

the variational method, applied to the cases of the wavefunction for the harmonic oscil-

lator potential in non-central configurations, and for the quartic anharmonic oscillator

potential.
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C.2.1 Non-central dynamics in the harmonic oscillator potential

Using the di↵erential equations of Eq. (6.32) and Eq. (6.33), we used a Runge-Kutta

algorithm to evaluate numerically the moments evolution, for di↵erent values of the

interaction strength, as shown in Fig. C.2. The corresponding frequency spectra are

shown in Fig. C.3. The amplitude in the oscillations of the width of the wavepacket

decreases for increasing interaction strength, but do not present collapse and revivals, in

opposition to the dynamics obtained with the GPE. On the other side, the oscillations

for the third and fourth moment present collapse and revivals periods that decrease

with increasing interaction. The frequency spectrum of the fourth moment shows a

peak at low frequencies corresponding to the revival frequency, whose value is equal to

the distance between the sidebands and the frequency peaks at ⌫ = p⌫ho. The shift of

the monopole frequency ⌫2 (determined by �) coincides with the frequency value of the

sideband appearing for the moment E[|✓|4].

C.2.2 Non-central dynamics in the quartic anharmonic oscillator po-

tential

In this section we show the non-central dynamics of the moments obtained by solving

numerically, using a Runge-Kutta method, the di↵erential equations Eq. (6.41) and

Eq. (6.40), obtained from a variational method with a Gaussian ansatz, as discussed

in Chapter 6.3.1. In contrast to the previous case of a wavefunction oscillating in the

harmonic oscillator potential, here we see that revivals of the oscillations appear also

for the center of mass and variance, and not only for the third and fourth moments.

These are shown in Fig. C.4.

From the corresponding frequency spectra, plotted in Fig. C.5, we can observe that

there is a shift of the frequency modes already in the non-interacting case, as predicted

also from the perturbation theory results in Chapter 6.2.1. Increasing the interaction

strength comports an additional redshift of the frequencies, but an increase of the

revival frequencies associated with both the variance and the fourth moment. Even in

this case sidebands appear at a spacing equal to the revival frequency from the main

peaks.
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(a) g = 0 (b) g = 0.45 (c) g = 0.9

(d) g = 0 (e) g = 0.45 (f) g = 0.9

Figure C.2: Evolution of the center of mass and width (a-b-c) and of the next non-
central moments (d-e-f) defined in Eq. (6.63) and Eq. (6.64), for g = g1D/2~!?l? =
0, 0.45, 0.9.
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(a) g = 0 (b) g = 0.45

(c) g = 0.9

Figure C.3: Frequency spectra of the moments evolution of Fig. C.2, for g =
g1D/2~!?l? = 0, 0.45, 0.9. The sampling frequency used for the Fourier transform
is �⌫ = 0.012. The revivals of the fourth moment give rise to the appearance of a
revival frequency peak in the frequency spectra, which increases with the interaction
strength. Sidebands at a distance from the modes frequencies n⌫ho equal to the revival
frequency appear for finite interaction strength.

167



Appendix C. Variational method and comparison with the GPE results

(a) g = 0 (b) g = 0.45 (c) g = 0.9

(d) g = 0 (e) g = 0.45 (f) g = 0.9

Figure C.4: Dynamics of the center of mass h✓i = ✓0 and width � (a-b-c) and of the third
and fourth moment (d-e-f) of the wavefunction in the quartic anharmonic potential,
obtained from solving Eq. (6.41) and Eq. (6.40) numerically, with initial conditions
✓0 = ⇡/4, � = 2lho and for di↵erent values of g = g1D/2~!?l? = 0, 0.45, 0.9.
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(a) g = 0 (b) g = 0.45 (c) g = 0.9

(d) g = 0 (e) g = 0.45 (f) g = 0.9

Figure C.5: Frequency spectra of the moments evolution of Fig. C.4, for g =
g1D/2~!?l? = 0, 0.45, 0.9. The sampling frequency used for the Fourier transform
is �⌫ = 0.006. Here collapse and revivals appear for all the moments, and the peaks
associated with these revival can be observed for �(⌫) and E[|✓|4](⌫).
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[25] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler,

“Direct observation of tunneling and nonlinear self-trapping in a single bosonic

Josephson junction,” Phys. Rev. Lett. 95, 010402 (2005).

[26] R. Gati and M. Oberthaler, “A bosonic Josephson junction,” J. Phys. B 40, R61

(2007).

[27] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum
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and M. Lewenstein, “Using polarons for sub-nk quantum nondemolition ther-

mometry in a Bose-Einstein condensate,” Phys. Rev. Lett. 122, 030403 (2019).

178

http://dx.doi.org/10.1103/PhysRevA.92.043604


Bibliography

[93] S. Beattie, S. Moulder, R. J. Fletcher, and Z. Hadzibabic, “Persistent currents

in spinor condensates,” Phys. Rev. Lett. 110, 025301 (2013).
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188

http://dx.doi.org/10.1016/j.physrep.2003.11.002


Bibliography

“Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev.

Lett. 98, 126405 (2007).
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