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Abstract

Unconventional gas resources like shale are poised to enter a golden age thanks to the

worldwide increased exploitation potential. Yet, the future of these resources is far

from assured since it is still subject to many uncertainties, mainly with regard to gas

recoverability. The macroscopic flow properties that allow the prediction of production

are directly linked to the microscopic flow where underlying rarefaction effects play a

major role. This is due to the pore size which is as small as a few nanometers and

comparable to the mean free path. Thus, an in-depth understanding of gas transport

in ultra-tight porous media is crucial for the accurate determination of flow properties

in shale rocks. This thesis is a fundamental research aiming to aid and benefit shale

gas exploration and development.

The objective of this work is to provide useful insights for such non-equilibrium

porous media flows, where the conventional fluid mechanics theory fails. Even though

there are multiple heuristic permeability models in the literature, I find them unsuitable

to provide reliable apparent permeability estimates since they often include simplifica-

tions of the flow mechanisms and matrix complexity. Notably, I hereby establish/prove

the limitations of the accuracy of the Navier-Stokes equations to the first order of

Knudsen number. We also thoroughly analyse Klinkenberg’s slip factor behaviour for a

wide range of gas rarefaction, utilising gas kinetic theory, for both simple and complex

porous media.

Moreover, using controllably random porous media, I systematically quantify the

impact of numerous structural characteristics, i.e. porosity, tortuosity, specific surface

area, heterogeneity and degree of anisotropy, on both intrinsic and apparent perme-

ability. One of the key contributions of this work is a new semi-analytical permeability

formulation derived using the produced simulation results. This expression, suitable for

both isotropic and anisotropic two-dimensional porous media, accounts for the afore-

mentioned properties as well as for continuum and slip flow. The main advantage of the

proposed formulation is the fact that it does not entail any experimental or numerical

data as input, unlike other established models.

Shale is intrinsically multiscale, thus the direct simulation of transport in all scales
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is not feasible. Upscaling from the pore-scale is indispensable in order to eventually

obtain the essential macroscopic properties in the field-scale. For this reason, I examine

well-known analytical and numerical upscaling techniques, verifying the sensitivity and

accuracy of the latter ones. Studying microscale sample images, we need to consider

the appearance of microfractures. The difference of the characteristic length scales

between the nanopores and the microfractures requires a hybrid upscaling method

such as the Brinkman approach. The suitability of this model is extensively validated

on fractured porous media of interest, especially on the grounds that the exact form

of the effective viscosity is still a matter of discussion. We perform this validation

comparing numerous direct simulation results with the corresponding ones from the

Brinkman solution. Different values of the effective viscosity are investigated, along

with a variable permeability model applied at the vicinity of the fluid-porous interface.

Due to lack of an appropriate universal treatment of the transition zone of random

porous media, we consider effective viscosity equal to fluid viscosity.

The accuracy of the Brinkman approach is further examined using several two and

three-dimensional random porous media containing fractures, as well as considering

rarefied conditions. Although I find that heterogeneity and anisotropy increase the

error of the effective permeability derived from the Brinkman approach, generally, the

effective permeability extracted from this coarse-scale model compares favourably to

its fine-scale counterpart obtained from the Stokes and Boltzmann model equations for

porous media flows. Finally, I conclude that neglecting the rarefaction effects leads to a

significant underestimation of the effective permeability of fractured ultra-tight porous

media.
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Chapter 1

Introduction

This chapter serves as an introduction for this thesis. The motivation be-

hind this work related to shale gas is analysed in Section 1.1. Some impor-

tant information regarding shale gas production estimates and extraction

process is given in Section 1.2. Later, in Section 1.3, key characteristics of

shale gas flows are mentioned and some well-known permeability estimation

models are discussed. The multi-scale nature of shale requires the use of

upscaling for the calculation of the effective properties macroscopically, as

analysed in Section 1.4. The shale rock contains multiple fractures which

facilitate the flow of gas and make the production through this ultra-tight

porous medium feasible. The problem of momentum transport between a

porous medium and a pure fluid region, such as a fracture, is presented in

Section 1.5. Then, in Section 1.6 the objectives of this research are briefly

outlined and finally in Section 1.7, an overview of the rest of this thesis is

given.

1.1 Motivation

Shale gas has attracted significant global interest due to its successful production in

the United States, favoured by the recent development of economic extraction tech-

nologies, i.e. hydraulic fracturing. However, the “shale gas revolution” is not equally

advanced in other regions of the world, where geological conditions might be more

complex and hence, the extraction cost is high. Therefore, to make global exploitation

of shale gas reserves feasible and thus meet world’s demand in natural gas, accurate

monitoring, prediction and optimisation of the production is indispensable. Typically,

this is achieved through reservoir-scale fluid flow simulations in the order of kilometres,

requiring input parameters, such as porosity and permeability, which are properties

1



CHAPTER 1. INTRODUCTION 2

that characterise the rock formation. Porosity is defined as the ratio of volume of pores

to the total volume of the rock, while permeability, in this context, is a measure of the

ability of a porous medium to allow fluid to flow through it.

Shale is considered a fine-grained sedimentary rock of ultra-low permeability (in the

order of nanoDarcies [1, 2, 3, 4]) owing to its nano-pores [5]. Macroscopic behaviour is

thus directly linked to the internal micro-structure, which in the case of shale is quite

complex and presents heterogeneous features [6]. Under these circumstances, under-

standing the multi-scale transport of shale gas requires firstly the thorough examination

of the reservoir’s micro-structure. This is not a trivial task due to the fact that the

conventional fluid dynamics theory fails to capture the rarefaction effects involved in

ultra-tight porous media gas flow. In shale gas flow, the molecules collide more fre-

quently with the pore surface in comparison with the collisions among themselves,

influencing gas transport in the porous media. Further complexities are added to the

gas flow simulation due to the presence of organic matter (kerogen) which instigates

other flow processes.

My motivation to investigate shale gas flows stems from the insufficient understand-

ing we have on the momentum transport processes and from the fact that, according to

my judgement, permeability is often erroneously calculated using oversimplifications of

the geometry and/or the flow mechanisms. To this end, a plethora of numerical studies

has been performed in this work in order to get useful insights for shale gas flows in

the pore-scale and beyond.

1.2 Background

Unconventional gas estimates represent 40% of the total recoverable resources of natural

gas; however this percentage is filled with uncertainty [5]. Recent publications, as

reviewed in [5], indicate that shale gas is in abundance in North America, which is

by far the best studied region. The regions that follow, with significant estimates, are

Europe and China where the exploitation is still in its infancy. Estimates predict that

the incremental share of unconventional gas production will rise to 21% in 2020 and

to 32% in 2035 since more countries are expected to achieve commercial production in

time [8].

Hydrocarbon extraction from mudrocks (alternative name for shale) requires hy-

draulic fracturing technology to be applied to achieve commercial production (see

Fig. 1.1). Wells are drilled vertically from the surface until the depth of the deposits is

reached. Then, the wellbore is extended horizontally within the shale formations and

hydraulic fracturing takes place. Shale gas becomes accessible only after the following
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Figure 1.1: Schematic of the shale gas extraction process. Adapted from [7].

elaborate process is performed. The rock matrix is fractured with pressurised fracking

fluid and the induced fractures or fissures are kept open by the injection of sand and

chemicals which act as proppants. The overall permeability of the rock is then boosted

since gas can flow rapidly through the highly permeable fractures. Finally, the well

pressure is decreased so that shale gas can flow from the rock to the wellbore driven by

the pressure difference [9].

1.3 Shale gas flows and heuristic permeability models

1.3.1 Gas transport in shale

Recent development of imaging techniques provides 2D and 3D high resolution images

where the nano-structure of the shale strata is revealed. For instance, Focused Ion

Beam (FIB)/Scanning Electron Microscope (SEM) imaging can provide digital images
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Free molecular flow
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Navier-Stokes equations

Boltzmann equation

Figure 1.2: Flow regimes with respect to Knudsen number based on experiments on
straight pipe flows. BC stands for boundary condition.

with a resolution as high as 6.5nm whereas the state-of-the-art Helium Ion Microscope

(HIM) can even approach 0.5nm resolution [13]. Numerical simulation can be directly

applied on the above imaging models to uncover the gas transport mechanisms. The

reader is referred to Fig. 1 of [13] for the resolutions and sample dimensions of the

available imaging methods.

However, this is not a trivial task since the computational fluid dynamics (CFD)

based on continuum approach fail in the area of non-equilibrium gas dynamics. The

primary reason is that the molecular nature of the gas can no longer be ignored when

its mean free path becomes comparable to the characteristic length of the flow. For ex-

ample, it is proven that the Navier-Stokes equations (NSEs) under-predict the gas flow

rate through carbon nanotubes by several orders of magnitude [14]. At the micro/nano-

scale, collisions between gas molecules are too infrequent to fully thermodynamically

equilibrate gas, causing velocity slip and temperature jump at solid surfaces, and Knud-

sen layer of non-linear stress/strain-rate behaviour [15, 16].

The Knudsen number, Kn, is a main indicator of the degree of thermodynamic equi-

librium of a flow and thus it is the characteristic parameter for gas flow in micro/nano-

scale porous media. It is usually defined as the ratio of the mean free path of gas

molecules λ (an average distance travelled by molecules between collisions [17]) to the

characteristic flow length L:

Kn =
λ

L
, and λ =

µ(T0)

p̄

√
πRT0

2
, (1.1)

where µ(T0) is the shear viscosity of the gas at a reference temperature T0, p̄ is the
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Figure 1.3: Schematic of pore cross-sections illustrating diffusion processes occurring
during shale gas flow. The movement of the gas molecules corresponds to (a) viscous
flow (b) Knudsen diffusion (c) surface diffusion. The above mechanisms often also
coexist under certain circumstances. Adapted from Fig. 1 in [10].

mean gas pressure, and R is the specific gas constant [18, 19, 20, 21].

Based on Kn, gas flows can be classified into four regimes (see Fig. 1.2) [22]:

• continuum (or Darcy) flow regime: for (Kn ≤ 0.001) the continuum hypothe-

sis is applicable, hence the Navier-Stokes equations are valid; the viscous flow

dominates [23]

• slip flow regime: for (0.001 < Kn ≤ 0.1) the slippage phenomenon appears at

the walls and the Navier-Stokes equations are still applicable when coupled with

appropriate velocity-slip boundary conditions [12, 24]; gas transport is dominated

by both viscous and slip flow

• transition flow regime: for (0.1 < Kn ≤ 10) the continuum assumption breaks

down and gas kinetic equations are used instead [12, 19]; both slip and Knudsen

diffusion phenomena are encountered while viscous flow is reduced

• free molecular flow regime: for (Kn > 10) there is minimal interaction between

the gas molecules; Knudsen diffusion is predominant
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Figure 1.4: (Top) Schematic of the pore velocity profile contributions from different
transport mechanisms. (Bottom) Schematics of the velocity profiles considering: (left)
only the rock properties, i.e. intrinsic, (middle) rarefaction effects (inorganic pores)
and (right) rarefaction effects and surface diffusion (organic pores). I remark that the
first two cases are studied in this work. Adapted from Figs. 7 and 7 in [11] and [12]
respectively.

It is important to keep in mind that the limits of Kn for each regime may change

according to the problem geometry, as emphasised in [24].

For methane and carbon dioxide in an unconventional reservoir, with pressures up

to several hundred bars, the gas flow through nano-pores is in the slip and transition

regimes [25, 26]. Due to the high pressures, the fluid is closer to its liquid state and

rarefaction effects are related to high confinement.

A few flow transport mechanisms, which often coexist, occur during shale gas trans-

port. Explanatory schematics are given in Figs. 1.3 and 1.4, while for velocity profiles

produced by molecular dynamics (MD) simulations the reader is referred to [27] (see

Fig. 3). For macroscale pores the viscous flow dominates the gas transport where

the intermolecular interactions prevail. For smaller pores, non-Darcy effects start to

appear. The velocity of the gas molecules near the pore surface cannot be neglected,

leading to gas slippage. When the flow characteristic length (pore size) is comparable

to or smaller than the mean free path of gas molecules, the intermolecular collisions
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are much less frequent than the collisions between gas molecules and the solid walls,

leading to Knudsen diffusion. In other words, it is as if the gas molecules move in-

dependently from one another. The authors of [28, 29] claim that the contribution of

Knudsen diffusion to the total mass flux is significant in mudrock systems.

I herein remark on some additional processes and effects that I do not include

in my study. Adsorption/desorption is a transport process common in organic-rich

shales, often ignored by several researchers. In pores with small diameters, a large

number of gas molecules are absorbed on the organic wall surface creating thus an

adsorption layer. When the flow starts (due to pressure difference) then the process

of surface diffusion occurs, meaning that absorbed methane migrates along the pore

surface driven by the density gradient between the bulk region and the adsorption layer

[30]. In [12, 26] the authors claim that the effect of adsorption is mainly for pores with

r < 2nm, producing additional contributions to the mass flow. On the other hand, the

authors of [28] state that surface diffusion is negligible in reservoir conditions. Surface

diffusion becomes important when the adsorbed layer size is appreciable, which can

be achieved only if the temperature is not significantly greater that the gas boiling

point [30]. The researchers claimed that this is not the case for shale reservoirs, thus

they ignore adsorption effects. Moreover, [9] reported that in their analysis, using

data from Barnett Shale wells, desorption effect was found to be negligible. For further

information regarding adsorption and the surface diffusion process the reader is referred

to the following works [10, 12, 30, 31]. The effect of adsorption in the mass flux is shown

in Fig. 1.4.

Generally, as pointed out by [26, 29, 32], at equilibrium there is the free gas that

occupies the pores, the adsorbed gas that covers the organic pore surfaces and the

dissolved gas within the organic materials (kerogen). Most of the gas is stored in the

organic matter of the shale matrix, which is embedded within the inorganic substance

[27]. The processes of drilling a well or even fracturing disturbs the equilibrium, firstly

resulting to the flow of the free gas towards the low pressure zone. Later, the methane

molecules concentrated near the surface of the organic material desorb, increasing pore

pressure. This process changes the concentration equilibrium between the bulk of the

kerogen and its surface, initiating gas diffusion towards the surface.

I highlight that in this work, adsorption phenomena are not accounted for, thus I

consider all pores to be inorganic (lying between inorganic minerals [33]). Furthermore,

linearised assume that the gas is ideal and that is all stored in the pore spaces, ignoring

gas diffusion in the permeable organic materials. Finally, linearised consider the single-

phase flow to be chemically inert, isothermal and incompressible with Re < 1 (Reynolds

number is the ratio between the inertial forces and the viscous forces).
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Overall, in response to lower well pressure, gas flows in the fractures, with the flow

being initially (at the early stages of production) in the continuum regime. Then, after

the pressure is further decreased flow enters the slip, transition or even Knudsen flow

regimes, depending on the pore size and gas state [27].

1.3.2 Heuristic permeability models

A direct consequence of gas rarefaction is that the measured permeability is larger than

the intrinsic (Darcy) permeability, often symbolised as k∞ or simply k, and rises as the

mean gas pressure decreases as found experimentally by Klinkenberg [34]. Due to this,

Darcy’s law is no longer suitable to describe gas transport in shale. The Darcy equation

yields

ūD = −k∞
µ

dp

dx
, (1.2)

where ūD is the Darcy velocity (the volume averaged velocity at the bulk of the porous

medium) and µ is fluid viscosity. The validity of this equation is extensively proven

for low-Re porous media flows, however, it is not capable of describing flow trans-

port in ultra-tight porous media like shale in its initial form. To circumvent this, the

so-called apparent gas permeability, ka, is introduced which is compatible with the

Darcy equation. The intrinsic permeability depends on the void space and solid surface

characteristics, while the apparent gas permeability additionally takes into account gas

pressure, type and more generally the flow conditions [35]. Therefore, k∞ is obtained

for Kn = 0. The apparent permeability is introduced by Klinkenberg as follows [34]:

ka = k∞

(
1 +

b

p̄

)
= k∞fc, (1.3)

where b is the slip factor which is usually considered not to be a constant [21]. Gen-

erally, researchers also refer to the correction factor of permeability, fc, which is often

mentioned here as permeability enhancement.

The calibration of the slip factor for tight porous media has been the subject of

several studies. Numerous first-order correlations can be found in [10]. A list of some

well-known permeability models to be analysed, and their main characteristics is given

in Table 1.1. In the simple case of an idealised porous medium composed of uniform

tubes of radius r the permeability expression takes the following form according to

Klinkenberg [34]

ka = k∞

(
1 +

4cλ

r

)
= k∞ (1 + 4cKn) , (1.4)

where the coefficient c is often taken as unity. This expression is derived by coupling
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Table 1.1: Comparison of established apparent permeability models for ultra-tight
porous media.

Model Description

Klinkenberg (1941) Eq. (1.4) empirical slip flow model

Javadpour (2009) Eq. (1.15) accounts for slip flow (derived based on Maxwell model)

and Knudsen diffusion, modelled for straight capillaries

BKC (2010) Eq. (1.7) accounts for slip flow, simplified second-order slip model

with several empirical parameters

Darabi et al. (2012) Eq. (1.17) accounts for slip flow (derived based on Maxwell model)

Knudsen diffusion and surface roughness

requires experimental estimation of parameters

Maxwell’s first-order slip boundary condition for velocity [36] with the Navier-Stokes

equations [18, 37, 38]. The intrinsic permeability for a straight tube is

k∞ =
r2

8
. (1.5)

Nevertheless, Klinkenberg’s linear (first-order) correction of permeability is not suf-

ficient, especially as the effective Knudsen number, i.e. the ratio of the mean free

path to the average pore size, Kn∗, increases. The generalised form of a second-order

correction in terms of Kn is given by [20] as

ka = k∞

(
1 +

A

p̄
+
B

p̄2

)
(1.6)

where A and B are unknown fitting parameters. Trying to capture the non-linear

relationship between intrinsic and apparent gas permeability, Beskok & Karniadakis

[24] developed the following unified BK model, i.e. an empirical second-order correction

in terms of Kn for flow in a single pipe/tube/channel, valid across the whole range of

rarefaction.

ka = k∞(1 + α(Kn)Kn)

(
1 +

4Kn

1− bKn

)
, (1.7)

where the constant b denotes a slip coefficient and the dimensionless rarefaction coeffi-

cient α is provided by the following expression

α(Kn) = α0
2

π
tan−1 (α1Kn

α2) , (1.8)
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where α1 = 4 and α2 = 0.4. Also a0 is given by

α0 ≡ αKn→∞ =
64

3π
(
1− 4

b

) . (1.9)

For slip flow, the reported values are α = 0 and b = −1 and thus α0 = 64
15π . The au-

thors validated this model against numerical results produced using the DSMC (direct

simulation Monte Carlo) method, linearised Boltzmann solutions, and experimental

data. The BK correlation was later simplified by Civan [18] which claims to correct the

approach of [38] for tight porous media as

ka = k∞(1 + α(Kn∗)Kn∗)

(
1 +

4Kn∗

1 +Kn∗

)
, (1.10)

where the dimensionless rarefaction coefficient α is provided by the following empirical

expression

α(Kn) =
1.358

1 + 0.170Kn∗−0.4348
. (1.11)

This simplified second-order correlation which accounts for slip flow is here referred

to as the Beskok–Karniadakis–Civan (BKC) model. The effective Knudsen number,

Kn∗ is, in fact, an average local Knudsen number of the system defined using the

characteristic length of the flow L∗, or most commonly the average pore size r, as

Kn∗ =
λ

L∗
. (1.12)

In this model, the average pore size is determined using

L∗BKC =

√
8τk∞
ε

(1.13)

where ε is the porosity of the porous medium and τ is the hydraulic tortuosity of the

preferential flow paths describing the average elongation of the fluid streamlines as

compared to free flow.

Numerous other studies have been devoted to the derivation of analytical formula-

tions to describe the apparent permeability of porous media, most of them either based

on the straight tube (or bundle of capillary tubes) simplification [29, 39] or using the

NSEs beyond their validity leading to questionable results [40]. Particularly, Javad-

pour [29] proposed a now well-known model considering two major flow mechanisms,

slip flow and Knudsen diffusion, for a single straight nanotube. The derived apparent
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permeability reads

ka =
2rµ

3RTρ

(
8RT

π

)0.5

+
r2

8

(
1 + (8πRT )0.5

µ

rp̄

(
2− σ
σ

))
, (1.14)

where σ is the tangential momentum accommodation coefficient (TMAC). TMAC

represents the portion of the molecules that are reflected diffusely; σ = 1 corre-

sponds to fully diffuse reflection, while σ = 0 corresponds to purely specular reflec-

tion [29, 32, 41, 42]. The value of TMAC (0 ≤ σ ≤ 1) varies depending on surface

morphology, gas properties, temperature and pressure. It is usually determined using

experimental measurements [43, 44] or MD simulations [45] for specific systems. Util-

ising the ideal gas law p̄ = ρRT and Eqs. (1.1) and (1.5) Javadpour’s formula can be

reformulated as follows

ka = k∞

(
1 +

(
2− σ
σ

)
4Kn+

64

3π
Kn

)
. (1.15)

Another modelling approach uses the fractal dimension and tortuosity to account

for the roughness of pore surfaces and sinuous flow paths respectively, building upon

previous simpler models [28, 46]. Specifically, Darabi et al. [28] derived a permeabil-

ity model that accounts for some of the complexities involved in gas flows through

ultra-tight porous media, namely, slip flow, Knudsen diffusion and surface roughness.

The model is derived adding a proportionality factor to the first term of Javadpour’s

expression (1.14) as follows

ka =
ε

τ
(δ′)Df−2 2rµ

3RTρ

(
8RT

π

)0.5

+
r2

8

(
1 + (8πRT )0.5

µ

rmeanp̄

(
2− σ
σ

))
, (1.16)

where δ′ is the ratio of the molecular radius to average pore radius and Df is the fractal

dimension of the pore surface. Similarly, this expression can be also written as

ka = k∞

(
1 +

(
2− σ
σ

)
4Kn∗ +

ε

τ
(δ′)Df−2 64

3π
Kn∗

)
. (1.17)

The effective characteristic length used for the transformation in terms ofKn∗ is derived

using Eq. (1.5), i.e.

L∗t =
√

8k∞, (1.18)

which is mentioned in [28] to provide the average pore radius, rmean for their model.The

above two models of Javadpour (1.15) and Darabi et al. (1.17) are herein reformulated

with respect to Knudsen number, in order to highlight the linear correction in terms of

Kn, similar to Klinkenberg’s formulation (1.4) but with the addition of an extra linear
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term (third term), leading to a greater proportionality factor.

Note that the main parameters of the model proposed by Darabi et al. are deter-

mined by laboratory measurements, including the well-known pulse-decay experiment

[47]. Generally, the above heuristic models estimate some of their parameters, such

as slip coefficients, Darcy permeability, tortuosity, and fractal dimension of surface,

through experiments or using other existing simplified correlations. Consequently, the

literature provides a large amount of apparent gas permeability models which focus on

the transport phenomena neglecting the full extend of rock matrix complexity. The

several assumptions and empirical parameters they entail, requiring calibration accord-

ing to the porous media properties, usually make them suitable only for idealised media

and slip flows.

On the other hand, it is well-documented by several researchers that pore size

and geometry have a notable effect on the proportion of diffusion in total flow rate

[29, 31, 48]. Additionally, many models incorporating the simplification of the porous

medium as a bundle of straight cylindrical tubes are proven to produce contradictory

results compared to experimental observations of ultra-tight porous media. For in-

stance, in [49] the authors used first and second-order slip models (the former being

Klinkenberg’s (1.4) and the latter being the Beskok & Karniadakis model (1.7)), to

fit their experimental measurements of shale permeability. The fitting provided the

slip coefficients of both models and TMAC. The use of the models in the slip region

is in good agreement with the experimental data, however both models overestimate

the permeability enhancement in the transition regime. It should be noted that the

Maxwell first-order slip boundary condition is valid for small Knudsen number flows

(typically Kn < 0.1) while the BK model is validated for channel, pipe and duct flows

for the entire flow regime. Thus, the inadequacy of these models to capture apparent

permeability in high Kn, is an indication that it is inappropriate to extend the use of

simplified models beyond their Kn range of validity and in complex porous media like

shale.

In other studies [37, 50], the Kozeny-Carman (KC) relationship [51, 52] is used to

calculate the intrinsic permeability of the porous medium, while the BKC correlation

(Eqs. (1.10) and (1.11)) is used to calculate apparent permeability of shale assuming

that the pores are a bundle of tortuous capillary tubes with uniform pore size. Fol-

lowing the work of [10], the characteristic pore radius of the porous medium used for

the calculation of the effective Knudsen number, is approximated with the expression

proposed by [53]

L∗ =

√
8k∞
ε
. (1.19)
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Hence, in many studies, oversimplified permeability models are misused for shale per-

meability estimation, neglecting important matrix properties that play a significant role

in the overall production performance. Furthermore, it is also common for most of the

existing permeability models to include several empirical parameters, which make their

use impractical and introduce more uncertainties. Since the existing formulations can-

not predict accurately shale gas apparent permeability, linearised believe that rarefied

flow in complex porous media requires thorough investigation of the pore-scale.

1.4 Multi-scale nature of the shale rock

Shale formations are characterised by heterogeneity across multiple scales (nanometre

to kilometre), which makes the accurate determination of their effective properties, in

particular permeability, a challenging task. In the presence of this structural hetero-

geneity permeability depends on scale [54]. It is advisable thus to define different scales

in an appropriate hierarchical manner to facilitate permeability estimation.

In such extremely tight porous media with low permeability, it is sensible to start

their study from the pore-scale, where the transport phenomena are better understood,

and afterwards upscale the obtained macroscopic quantities using a Darcy-like model.

Considering domains larger than the nano-scale means eventually including fine and

discrete fractures in the simulations, which significantly increase permeability.

Even in the case of laboratory measurements, the determined gas-transport prop-

erties represent only the intact rock matrix, therefore, these properties are required

to be scaled-up using field tests to provide useful information and describe the whole

reservoir [47]. However, since nanoscale experiments are associated with many difficul-

ties, e.g. limited precision, irreversibility of the process, extreme time requirements,

the numerical approach is often preferred [13, 55].

1.4.1 Pore-scale modelling

The current high-resolution images provide a pore space which connects across the sam-

ple, making the direct numerical simulation feasible. An example of such simulations

performed on shale sample, which has porosity ε = 0.17 and size L = 4.6µm can be

found in [56]. The utilised 3D pore-structure model, shown in Fig. 1.5, is reconstructed

from 200 slices of 2D SEM images which were converted into a binary model (solid and

fluid) by [57].

As an alternative to the direct simulation on the shale samples, many researchers

utilise the pore-network model (PNM) approach, generally used to model porous media

flow. Through this approach, the porous medium is approximated using pore bodies
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Figure 1.5: (Top) 2D shale model: (a) SEM/FIB image in grayscale (b) the converted
binary image where pores are indicated with black and matrix with blue. (Bottom) 3D
shale model: (a) pore-structure model in grayscale reconstructed from 200 SEM/FIB
images (b) the converted binary model where pores are indicated with black and matrix
with blue. Adapted from Figs. 8 and 10 in [57].

(nodes) and pore throats (bonds/connections) with different sizes, which are connected

to each other appropriately. Thus, a simplified representation of both the geometry

and topology of the permeable material is created. An indicative example can be found

in the work of Ma et al. [32] where a pore network is extracted from a shale sample

with size L = 2.4µm, which is reconstructed using numerous high resolution 2D SEM

images (see Fig. 1.6).

Pore-network simulations are extensively used in the field, since they are much

less computationally demanding compared to the direct methods. However, a main

disadvantage inherent to PNM, is the simplification of the real pore space which could
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Figure 1.6: (a) The reconstructed 3D shale model, generated using several 2D SEM
images and (b) the extracted pore network. Adapted from Fig. 5 in [32].

affect the credibility of the calculated transport properties. The accuracy is highly

depending on the pore-network extraction process and on the transport equations that

govern the nodes and bonds [32, 58, 59]. Therefore, in my work, since the accuracy

of the results is crucial in gaining a better understanding of the transport processes in

shale, I chose to proceed with direct methods instead.

The high-resolution sample size (L) is limited to a few microns. Moving to larger

samples and lower resolutions (L > 100µm) the connectivity of the pores is not de-

tectable while microfractures are visible [33]. This is due to the fact that the char-

acteristic length scales of the pores and the fractures differ by orders of magnitude.

Therefore, upscaling is the key to communicating data between different scales since

direct numerical simulation is no longer possible.

1.4.2 Upscaling from the pore-scale

The multi-scale nature of shale rock and of the imaging techniques imposes the necessity

of employing upscaling strategies for the calculation of permeability. An established

hybrid model that allows the solution of the flow in a computational domain containing

both porous and free flow regions is the so-called Brinkman approach [60]. When

only porous regions are considered, upscaling can be performed numerically employing

Darcy’s law. Note that traditionally in reservoir engineering the fractures are modelled

using surface elements, whereas in the selected model the fractures are discretised using

control volumes where the flow is governed by the NSEs [58, 61, 62, 63].
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Shale pores are usually categorised based on their size into three types [64]:

• micropores (< 2nm),

• mesopores (2− 50nm),

• macropores (> 50nm).

Predominantly, the majority of the pores measured are micro- and mesopores and the

average pore size is less than 20nm [13, 28, 33]. Microfracture apertures are mainly

between 30µm and 1mm for shale, while sandstones contain microfractures of sizes

down to 1µm [65, 66]. This suggests that the ratio of the microfracture aperture H to

the mean pore size L∗, referred to as H/L∗, most of the times ranges from 150 to 5×105.

It is widely known that shale matrix is characterised by low-speed rarefied gas flow,

mainly in the slip and transition regimes [25, 26]. Given that the microfractures are at

least two orders of magnitude greater than the average pore size, their flow is always

governed by the Navier-Stokes equations (with or without slippage). Thus, the use of

the Brinkman model for upscaling domains containing both matrix and microfractures

(taking into account multiple length scales) is in theory suitable [67]. However, its level

of accuracy needs to be verified.

To the best of my knowledge, a detailed study comparing the fine-scale effective

permeability of ultra-tight porous media with fractures against permeability estimation

derived through the Brinkman model (coarse-scale) has not been performed yet. Most

of the works published so far assume a priori that the use of this approach is associated

with little or no error. In a recent publication [68], the authors upscaled permeability

from the pore-scale using multi-scale imaging data. The Brinkman equations were

applied to predict the mesoscale permeability of two samples, which was compared to

the corresponding experimental values. The numerical results were considered to be

in good agreement with the measurements even though the discrepancy between the

two values is deemed high. Other researchers [2, 58] use the Brinkman approach to

resolve the flow for shale images that include some voxels with pores that lie below the

instrument resolution. The focus of their research is on the impact of this sub-resolution

porosity on permeability. The Brinkman framework has also been extensively used in

other publications such as [69, 70].

The authors of [37, 50, 71] utilised the so-called “generalised Navier–Stokes equa-

tions” proposed by [72], which include non-linear and fluid inertial terms unlike the

simpler Brinkman model. However, in effect, due to the low Reynolds flows they study,

both the quadratic (Forchheimer) [73] and the convection terms are negligible. In their

work, the apparent permeability value required as input for the model is provided by
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the BKC expression, while the intrinsic permeability is obtained using the KC relation-

ship. Specifically, a rather interesting study is performed in [37] where the flow in a

porous medium with treelike fractures is examined. The permeable organic matter and

the less permeable inorganic matter are represented through their respective permeabil-

ities, while the fractures are considered “open”. Simulations are carried out for various

pressures (thus Knudsen numbers) indicating not only that the fractures are the pre-

ferred pathways, but also the qualitative change of the velocity distribution depending

on the level of rarefaction. Even though the accuracy of these results is herein doubted

due to the use of empirical permeability models, this study illustrates the potential of

the Brinkman framework. This potential is also showcased in the study of [74] where

the model under consideration is a fracture with obstacles (proppant grains). In that

case, the Brinkman and the Stokes equations produced largely similar results.

Overall, in my view the aforementioned publications could not be considered indica-

tive of the effectiveness of the Brinkman equation in permeability upscaling for shale.

For this reason, linearised further investigate this issue in detail in the forthcoming

chapters.

1.5 Momentum transfer between porous and plain media

The problem of momentum transport along the boundary between a fluid layer and a

porous medium has been extensively studied over the past decades. The motivation

behind this lies in the variety of applications where this configuration can be found,

such as ground water pollution, catalytic and nuclear reactors, oil and gas recovery,

filtration processes and thermal insulation among many others.

Beavers & Joseph [75] conducted experiments of a two-dimensional Poiseuille flow

(effectively one-dimensional) through a rectangular channel bounded by an imperme-

able upper wall and a permeable lower wall. Their experimental and analytical work

was focused on the boundary condition at the fluid-porous interface. From a micro-

scopic point of view, the Navier-Stokes equations are satisfied in the so-called free region

∇ · u = 0, (1.20a)

ρ (u · ∇) u− µ∇2u = −∇p, (1.20b)

where u = (ux, uy, uz) is the flow velocity, ρ is density, µ is the dynamic viscosity and

p is pressure. Typically, for gas flows with low Reynolds number the inertial term of

the Navier-Stokes equations can be neglected, thus the momentum equation is reduced
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giving the Stokes equations

∇ · u = 0, (1.21a)

µ∇2u = ∇p. (1.21b)

Additionally, the macroscopic fluid flow through the bulk of the porous region, herein

isotropic and homogeneous, is described by Darcy’s law (1.2). In that study, the two

sets of governing equations are coupled using a semi-empirical slip boundary condition,

named after the authors, applied at the interface (dividing surface) between the two

distinct regions, which reads

dū

dy

∣∣∣∣
y=0−

=
β√
k

(ū|y=0 − ūD) , (1.22)

where β is the slip coefficient and ū is the volume averaged velocity. This type of

description of the problem, coupling the two sets of equations that govern the homo-

geneous regions with an appropriate boundary condition, is commonly known as the

two-domain approach.

The Beavers & Joseph boundary condition, Eq. (1.22), was derived to account for

the fact that, according to the experimental results, the interfacial tangential (or slip)

velocity ū|y=0 is significantly greater than the Darcy velocity ūD. This indicates the

presence of a thin transition zone formed at the porous region just below the interface,

where a gradual enhancement of the viscous shear is taking place, compared to the

bulk of the permeable material. The slip coefficient β is an adjustable parameter that

depends on the local structure of the transition zone and the flow properties.

The use of Eq. (1.22) that leads to a discontinuity of the velocity at the interface can

be circumvented by the implementation of other formulations such as the widely spread

model of Brinkman [60]. In this formulation, the continuity of both velocity and stress

is ensured, coupling the momentum equations that govern the free fluid and porous

regions (Stokes and Darcy respectively) [76]. This is a one-domain approach since

the Brinkman expression describes the entire flow domain. A comparison of the two

velocity profiles is shown in Fig. 1.7. This hybrid model can be regarded as an extension

to Darcy’s law which includes a macroscopic shear term that accounts for the velocity

gradient present at the transition zone (also known as inter-region or boundary layer)

and the free region. Namely, in the free flow region, the pressure gradient is balanced

only by the fluid–fluid interactions, while deep in the porous medium, the pressure

gradient is balanced only by the viscous dissipation against the solid matrix. However,

in the transition zone both physical interactions coexist. The Brinkman momentum



CHAPTER 1. INTRODUCTION 19

x

y

y=-H

y=0

porous region

free region

Beavers & Joseph

ūD
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Figure 1.7: Poiseuille flow in a domain consisting of fluid region over a homogeneous
and isotropic porous medium. The fluid region is bounded by an impermeable upper
wall (y = −H) and a permeable lower wall (y = 0). The velocity profiles are depicted
for the two-domain (left) and one-domain (right) approaches, utilising the Beavers &
Joseph [75] and Brinkman [60] proposals respectively. ūD is the Darcy velocity inside
the porous medium, whereas ū|y=0 is the slip velocity at the interface between the two
regions.

equation which holds for the whole domain reads

−∇p+ µeff∇2ū− µ

k
ū = 0, (1.23)

where ū = (ūx, ūy, ūz) is the vector of the volume averaged velocity, k is the perme-

ability tensor and µeff is the so-called effective viscosity which is presumed constant in

Brinkman’s original model. The last term of the right-hand side of Eq.(1.23) is a drag

term which is meaningful and dominant only if the control volume is a porous medium;

otherwise, this term approaches zero (k → ∞). In the former case, the momentum

equation can be approximated by the Darcy law (with the exception of the transition

zone) while in the latter, it reduces to the Stokes equation; in that case ū = u. It

should be emphasised, that if µeff 6= µ, the effective viscosity should not be considered

as the real viscosity of the fluid in the porous medium. Nevertheless, in the homoge-

neous fluid region the flow field should be consistent with the Stokes equation, thus the

original fluid viscosity, µ, must be applied there. Here linearised must remark that the

assumption µeff/µ = 1 is retained in this study, unless stated otherwise, owing to lack

of a definitive conclusion for this ratio from the research community.

Even though the widely known Brinkman equation has been the focus of many
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researchers over the last decades, general agreement has not been reached yet regarding

the definition of effective viscosity. Effective viscosity was found, to be either smaller,

equal or greater than the fluid viscosity, often following heuristic approaches [77, 78].

Specifically, according to the Stokes simulations performed in [79] and their comparison

with the respective Brinkman simulations, it was found that µeff/µ exceeds unity. In

order for the two simulation results to match, effective viscosity should increase as the

porosity of the medium decreases. Volume averaging performed by [80] resulted in

µeff = µ/ε. A more complex form of the effective viscosity is proposed by [81]. The

authors of [82] use a periodic porous medium made of in-line or staggered arrangements

of cylinders to study the flow effects at the vicinity of the free flow region. In their study,

it was concluded that the effective viscosity should vary within the porous medium in

order for the Brinkman model to provide satisfactory prediction of the velocity near

the interface. Although this is a controversial subject, it seems to be generally accepted

that effective viscosity depends on the nature of porous medium and the flow. However,

the conditions of applicability of the model are also questioned in the literature [77],

thus its validation for the cases of interest is essential.

The Brinkman formulation is used herein to simulate the flow in fractured porous

media. The matrix is described through its effective properties (permeability tensor),

therefore the explicit representation of its structure is avoided and the flow is governed

by Darcy’s law. Conversely, the fractures are considered “open” channels (having

infinite permeability) and thus are governed by the Stokes equations. As previously

mentioned, shale is known to have very low permeability, thus the inertial effects can

be safely ignored.

1.6 Project objectives

In my research linearised aim at revealing the details of shale gas flows, focusing on the

accurate determination of permeability in the pore-scale, and its efficient upscaling to

larger scales. A comprehensive workflow is addressed using time-efficient open-source or

in-house software for the required simulations across the whole spectrum of continuum

to highly rarefied conditions.

As stated earlier in this chapter, it is common that the NSEs are used beyond their

validity and that shale matrix complexity is erroneously ignored in multiple widely

used permeability models. This work tries to clarify this issue, demonstrating and

discussing various pore-scale rarefied flow results, obtained using gas kinetic theory. The

impact of several porous media morphological properties on the intrinsic and apparent

gas permeability is not yet rigorously studied. Hence, linearised aim to analyse and
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correlate the behaviour of effective macroscopic properties with important structural

characteristics of random ultra-tight porous media. Furthermore, proposing a new

permeability formulation accounting for the structural complexity of shale is one of my

main objectives.

Having deepened the understanding of pore-scale shale gas flows and obtained rep-

resentative values of gas permeability, the need for appropriate upscaling of the effective

properties, towards the field scale, arises. Upscaling serves as a bridge between the dif-

ferent scales appearing in a shale reservoir. Specifically, the demand for communication

of information between the high-resolution shale images, where the pores are connected,

and those of larger samples, where the low resolution leads to lack of pore connectivity,

is evident. One of the vital objectives of this endeavour is to investigate effective ways

to bridge the different scales appearing in such imaging data. My interest towards

upscaling stems from the confidence of this research group regarding the accuracy of

our pore-scale and rarefied flow simulating capabilities, as proven in recent publica-

tions [21, 56, 83, 84, 85], which lay solid foundations for the accurate approximation of

macroscopic properties in shale gas flows.

To sum up, the objectives of this thesis, briefly, are as follows:

• Clarify the extend of validity of the NSEs in rarefied porous media flows;

• Quantify the impact of porous media structural complexity parameters on intrin-

sic and apparent gas permeability;

• Propose new permeability formulation not entailing empirical parameters;

• Investigate upscaling techniques appropriate to communicate key flow properties

across scales;

• Examine permeability upscaling from the pore-scale considering microfractures.

1.7 Thesis outline

Chapter 2 presents the computational methods employed in this thesis, including the

porous media geometry generation process followed by the governing equations and the

numerical methods. A description of the permeability determination process and other

important quantities computed in this work, is also included.

Chapter 3 discusses the limitations of the Navier-Stokes equations in describing

rarefaction effects and slip factor behaviour in simplified porous media. Systematic nu-

merical simulations are performed to investigate the accuracy of equations and expres-

sions commonly used in rarefied porous media flows. Some further numerical examples
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modifying important parameters lead to a possible explanation of the behaviour of the

slip factor in Klinkenberg’s famous experiments, which examine apparent permeability

of ultra-tight porous media. This research has been published in the Journal of Fluid

Mechanics under the title “On the apparent permeability of porous media in rarefied

gas flows” [21].

A detailed parametric study investigating the effect of shale matrix complexity fac-

tors on the intrinsic and apparent permeability of ultra-tight porous media is performed

in Chapter 4. Furthermore, a new permeability formulation, accounting for the effect of

structural parameters and considering the continuum and slip flow regimes is proposed

at the end of the chapter. The results and observations of this research are published

in the Journal of Natural Gas Science and Engineering under the title “Intrinsic and

apparent gas permeability of heterogeneous and anisotropic ultra-tight porous media”

[86].

In Chapter 5, various upscaling techniques for shale gas flows are investigated. First,

a comparative study between some well-known analytical upscaling methods and the

numerical solution of Darcy’s law is performed. The latter method is then utilised

for the hierarchical upscaling of a random porous media structure with and without

the inclusion of a throughout fracture. For the appropriate consideration of fractured

porous media, the Brinkman approach is later implemented and investigated, focusing

on the accuracy of the transition zone.

The effectiveness and suitability of the Brinkman formulation in the effective per-

meability calculation of fractured ultra-tight porous media is thoroughly examined in

Chapter 6. Direct numerical simulations on two and three-dimensional random porous

samples with fractures are performed to assess the accuracy of the Brinkman model.

The 3D structures are constructed to mimic the properties of real shale samples. Fi-

nally, special focus is given to the performance of the model when rarefaction effects are

considered. This work is under consideration for publication in the journal of Transport

in Porous Media, under the title “Shale gas permeability upscaling from the pore-scale”.

This thesis ends with Chapter 7 where the key findings of my research are presented

and relevant future work is suggested.



Chapter 2

Computational methods

This chapter discusses the computational methods employed in this thesis.

First, in Section 2.1, the algorithm used for the generation of the porous

media geometries is analysed. Furthermore, in Section 2.2, the governing

equations of the flows studied and the numerical methods utilised for their

solution are presented. In Section 2.3, the process followed for the calcula-

tion of the full permeability tensor of the 2D and 3D porous media studied

is explained. Finally, in Section 2.4, important properties of the flows and

porous media under consideration are introduced.

2.1 Geometry generation

The random 2D and 3D porous media structures used in this study are generated

adopting the Quartet Structure Generation Set (QSGS) method [87]. This process

reconstructs the binary matrix using three controlling parameters: the volume fraction

P , the core distribution probability cd, and the directional growth probability Di, all

within [0, 1]. The volume fraction is more commonly expressed as porosity ε, where

ε = 1 − P . The core distribution probability indicates the density of the cores from

which the solid particles are formed: when the porosity is fixed, the smaller the value of

cd, the fewer the solid islands. Finally, the directional growth probability indicates the

way a core cell expands and forms a solid particle in order to reach the desired volume

fraction. The cell expands along the i-direction according to the value of Di. Adjusting

the ratio of Di in all directions appropriately, controls the degree of anisotropy. The

algorithm is described as follows.

1. Randomly distribute the cores in the grid based on a core distribution probability

cd, whose value is far smaller that the desired volume fraction P . Each cell is

23
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assigned a random number based on a uniform distribution function within [0, 1];

the cells whose random number is no greater than cd are selected as cores.

2. Enlarge the growing phase according to the given directional growth probability

Di. The neighbouring cells of the existing solid elements are assigned new random

numbers. The neighbouring cell in i-direction will belong to the solid phase if

its random number is no greater than Di. For 2D structures 1 ≤ i ≤ 8 (see

Fig. 2.1) while for 3D 1 ≤ i ≤ 26. The main directional growth probabilities,

Dmain, are the ones in alignment with the major axis, i.e. four and six in the two-

and three-dimensional cases respectively. For simplicity, we abbreviate them as

D1 = D2 = Dx, D3 = D4 = Dy, D9 = D10 = Dz.

3. The previous step is repeated until the volume fraction reaches the desired value

P .

Heterogeneity cannot be directly controlled using the initial form of the algorithm,

however, [88] recently proposed a two-scale method to accomplish it which yields

1. Generate a refined structure with distinct values of core distribution probability

cFd , directional growth probabilities DF
i and volume fraction PF .

2. Create a coarse structure using a new core distribution probability cCd < cFd to

construct the cores, and then expand them using DC
i .

3. The coarse structure grows until the combined result of the two structures reaches

the desired volume fraction P .

It is noted that heterogeneity is an increasing function of the ratio cFd /c
C
d . Some

schematics of 2D porous media generated by the QSGS method, without explicitly

imposing heterogeneity, with a Nx ×Ny = 1000 × 1000 grid are shown in Fig. 2.2. In

each figure, one parameter varies and the rest two are kept fixed.

Due to the random fluctuations occurring during the generation procedure, the ge-

ometries produced utilising the same set of controlling parameters do not have identical

morphological features. Consequently, the calculated permeability for these geometries

is not the same, but it fluctuates around a mean value. The accuracy of the generation

process can be enhanced increasing the grid size or the number of particles, however

the computational cost increases as well. For this reason, for the 2D geometries I select

a large grid, however, for the 3D cases where the computational cost is already high, I

use a small grid to balance the simulation time.

I highlight that the resulting geometries using the QSGS method often include

occluded pores inside the solid impermeable particles which are not connected to the
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Figure 2.1: The eight (i) growth directions for 2D random porous media generation
using the QSGS method.

main void space. In order to eliminate these unrealistic fluid cells a pre-processing

treatment of the binary matrix was applied using the software MATLAB [89]. This

treatment allows the connected pixels (in 2D) or voxels (in 3D) of binary images to be

found and manipulated, following the principles of the Connected-Component Labelling

(CCL) algorithm [90].

As a result, the final structure has a porosity smaller than the nominal one depend-

ing on the amount of the occluded pores. Most of the times, to compensate for these

differences in the produced geometries and thus the resulting permeability values, for

every set of parameters (configuration) multiple porous structures are generated and

simulated. Both the mean values and the deviation of the computed quantities are

taken into account.

It is worthy to stress that for the generation of the 2D QSGS structures, as in the

publications of [6, 37, 50], solid is selected to be the growing phase while for the 3D

structures fluid is the growing phase. This choice is based on the numerous examples

of real shale sample images such as the ones in [6, 33, 88]. Even though any value

of porosity can be assigned for geometry generation, the resulting structures where

fluid is allowed to flow have considerably high porosities in 2D cases. This is due

to the overlapping particles creating dead-end pores and obstructing the flow. For

smaller particle size, this phenomenon is more pronounced. On the other hand, in 3D

cases where we control pore generation, connectivity is better, permitting considerably

smaller porosities closer to those of real shale samples.

Finally, I note that in the remaining part of this thesis the resolution of the pro-

duced QSGS binary matrix is mentioned in pixels for 2D images and in voxels for 3D

volume-images. Hereinafter, the terms grid and mesh both refer to the corresponding

computational mesh used in the numerical simulations.
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(a) ε = 0.5 (b) ε = 0.6 (c) ε = 0.7

(d) cd = 0.0001 (e) cd = 0.001 (f) cd = 0.01

(g) Dx : Dy = 1 (h) Dx : Dy = 100 (i) Dx : Dy = 1000

Figure 2.2: Typical geometries generated by the QSGS algorithm. White represents the
solid particles while black represents the fluid region. First row: the core distribution
probability is cd = 0.001, the ratio of the directional growth probability is Dx : Dy = 1,
while porosity ε varies. Second row: ε = 0.7 and Dx : Dy = 1. Third row: ε = 0.7 and
cd = 0.001.
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Figure 2.3: Schematic representation of the computational domains involved in this
study. First, the permeability tensor k of the porous medium is calculated in (a).
Then, the fine-scale model (b) is simulated leading to the kF

eff
. It consists of the porous

medium (porous region) of size L and a straight channel (free region) of thickness H
as shown. The porous structure and the channel share a common interface, indicated
here with a dashed line at y = 0. Finally, the coarse-scale model (c), where the porous
medium is represented implicitly using k, is simulated using the Brinkman equation
leading to kC

eff
. Each region is usually meshed using individual blocks as explained in

detail in Table 2.1.

2.2 Governing equations and numerical methods

The numerical simulations performed in this work can be distinguished in three main

classes: (i) the Stokes or Boltzmann model equations are solved on the exact topology of

the porous matrix in order to extract the intrinsic and/or apparent permeability tensor

respectively, (ii) the Stokes or Boltzmann model equations are solved on the exact

topology of the porous matrix and fracture in order to obtain the effective permeability

of the fine-scale model keff
F , (iii) the Darcy or Brinkman equations are solved on

the coarse-scale model where the porous medium is represented through its effective

properties in order to acquire the effective permeability approximation keff
C . The

two-dimensional computational domains of the above simulation categories are shown

in Fig. 2.3.

2.2.1 Stokes, Brinkman and Darcy equations

The low Kn pore-scale flows of the QSGS structures and their respective macroscopic

Darcy-like representations for the whole range of gas rarefaction are evaluated using

the finite volume method implemented in the open-source toolbox OpenFOAM [91]. This

software is an efficient parallel, three-dimensional code that is also capable of handling
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Figure 2.4: Qualitative schematics of the background spatial mesh employed for the
mesh generation of two-dimensional cases using snappyHexMesh. The simulation do-
mains are explained in Fig. 2.3 and indicative mesh resolutions are given in Table 2.1.

2D and axisymmetric simulations on any mesh composed of arbitrary polyhedral cells

that have an arbitrary number of polygonal faces. The Stokes (1.21) and Brinkman

(1.23) equations are solved in the framework of the Semi-Implicit Method for Pressure

Linked Equations (SIMPLE) algorithm [92]. All discretisation schemes are second order

and the required precision on the pressure and velocity fields is of the order of 10−6.

Specifically, the Navier-Stokes equations coupled with the no-slip boundary con-

dition for the pore walls are solved using the simpleFoam solver. The first-order slip

boundary condition for velocity (already implemented in OpenFOAM by [41, 93]) is herein

implemented in a variation of the above solver. For the solution of the Brinkman equa-

tion, porousSimpleFoam is employed [58].

The numerical solution of the Darcy equation is achieved using a solver derived

from the Laplace solver in OpenFOAM, i.e. laplacianFoam, having as input the perme-

ability field (scalar or tensor) of the coarse-scale grid. The diffusion equation of the

pressure field (pressure equation) which is obtained combining Darcy’s law (1.2) with

the continuity equation (1.21)

∇ · k
µ
∇p = 0. (2.1)

Once the pressure field is computed, the velocity field is deduced using Darcy’s law.

Then, the effective permeability representing the whole domain is obtained. For sim-

plicity or due to availability, most often the scalar or the diagonal of the permeability

tensor is used as input. In this work, for non isotropic porous media, the full tensor is

employed to increase the accuracy of the results. The main modifications of the lapla-

cianFoam solver that led to the Darcy solver, herein called darcyFoam, can be found
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Table 2.1: Mesh resolution for 2D and 3D cases studied for an indicative fracture of
H = 0.05L placed on top of the porous domain, along the y direction. Columns 3, 4
and 5 correspond to the mesh size of the domains illustrated in Fig. 2.3(a), (b) and (c)
respectively. For the 2D case, the QSGS porous medium consists of 1000× 1000 pixels
while for the 3D case it consists of 100× 100× 100 voxels.

Stokes Brinkman

Fig. 2.3(a) Fig. 2.3(b) Fig. 2.3(c)

2D
porous block 1000× 1000 1000× 1000 200× 200

channel block - 1000× 20 200× 20

3D
porous block 200× 200× 200 200× 200× 200 50× 50× 50

channel block - 200× 20× 200 50× 20× 50

in Appendix A.

Computational mesh

The numerical solution of the Stokes equations requires the binary matrix resulting

from the QSGS method to be transformed into a computational mesh, of at least

the same resolution (or multiples), consisting of the pore space only. The native

OpenFOAM mesher, snappyHexMesh, is utilised to produce a hexahedral mesh for each

geometry. Even though other meshing strategies, e.g. for unstructured grids, are avail-

able using this meshing tool, structured hexahedral meshes are a natural choice when

simulating rock images (artificial or from real samples) since the available datasets are

often in binary format [83]. For the 3D cases, the mesh resolution is doubled in order

to increase accuracy. It should be highlighted that the resolution of the computational

mesh representing the porous medium refers to the background mesh utilised as a basis

for the meshing process of the fluid regions.

The majority of the cases studied in this work follow the configuration shown in

Fig. 2.3. When the channel is added on top of the domain then the mesh is manipulated

using two blocks . The mesh corresponding to the channel can be coarser in the direction

parallel to its thickness by applying multi-grading on the respective axis, achieving thus

mesh refinement towards the interface between the free and porous region, and the top

boundary.

On the other hand, the numerical solution of the Darcy or Brinkman equation does

not necessarily require the same mesh resolution. To reduce the computational cost

while maintaining accuracy, a coarser hexahedral mesh is constructed for the whole

domain, where the mesh is graded linearly to achieve mesh refinement in the areas of
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(a) (b)

Figure 2.5: Visualisation of the pore-space mesh produced from a 3D QSGS binary
image. (a) The full sample of 1003 voxels (2003 cells) and (b) a sub-volume of 253

voxels (503 cells) are shown.

interest, i.e. towards the top and bottom boundaries and most importantly, in the

vicinity of the interface between the free and the porous regions. This is again achieved

using two blocks corresponding to the porous and the free region respectively (one block

is only needed when the Darcy equation is solved). Generally, refinements around

the fractures are necessary to properly solve the steep gradients in the region. The

mesh information for both the 2D and 3D cases where a straight channel of thickness

H = 0.05L is added along the y axis, on top of the porous domain, is displayed in

Table 2.1. Qualitative schematics of the mesh resolution and grading for each of the

2D simulation categories depicted in Fig. 2.3, are shown in Fig. 2.4. The 3D mesh

produced from a sample QSGS geometry is depicted in Fig. 2.5.

2.2.2 Gas kinetic theory

Since the variation of apparent permeability is linked to rarefaction effects, gas kinetic

theory is adopted to describe rarefied flow in ultra-tight porous media. The Boltzmann

equation, the cornerstone of rarefied gas dynamics describes the state of the system

utilising the velocity distribution function f(x,v, t), which is a pivotal notion of kinetic
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theory, as follows
∂f

∂t
+ v · ∂f

∂x
= C(f), (2.2)

where v = (vx, vy, vz) is the three-dimensional molecular velocity normalised by the

most probable molecular speed vm =
√

2RT0 and x = (x, y, z) is the spatial coordinate

normalised by the length L = AB of the computational domain, shown in Fig. 2.6.

Time t is normalised by L/vm and finally f is normalised by p̄/v3mmRT0 with m being

the molecular mass.

The full Boltzmann solvers can be classified into the stochastic/probabilistic meth-

ods and the deterministic ones. In the former category, a popular method is the DSMC

[17], while in the latter, commonly used methods are the discrete velocity method

(DVM) [56, 83, 94, 95, 96, 97] and the fast spectral method (FSM) [98]. The particle-

based DSMC has been widely used to simulate high-speed rarefied gas flows in space

applications however, it is computationally prohibitive for low-speed flows in porous

media [99, 100]. There are some studies employing DSMC for porous media flows,

however, they focus on high Knudsen numbers [100]. We note that in lieu of the above

mesoscopic methods, a microscopic method such as molecular dynamics (MD) can also

accurately describe the intermolecular interactions, nevertheless, it is not employed due

to its huge computational cost [12].

The Boltzmann collision operator C represents the intermolecular collisions and is

a complicated integral. The operator increases the computational cost and memory

requirements of the numerical solution of this non-linear integro-differential equation

making its use impractical for many realistic applications. Therefore, the collision inte-

gral is often simplified by a relaxation-time approach [97], e.g. Bhatnagar–Gross–Krook

(BGK) [101], ellipsoidal-statistical BGK (ES-BGK) [102] or Shakhov model [103]. The

above models have been extensively used for a wide range of applications, across the

whole spectrum of rarefaction and their accuracy has been assessed [83].

Among the available numerical strategies for the solution of the Boltzmann model

equations, the versatile lattice Boltzmann method (LBM) [104] is well accepted by the

scientific community, highly developed and successfully applied for simulating porous

media flows. This is mainly thanks to the ease of the boundary condition implemen-

tation on the complex pore structures [105]. Nonetheless, conventional LBM fails to

capture phenomena related to gas rarefaction, even in simple geometries, due to limited

number of discrete velocities [106, 107, 108, 109]. Instead, it is demonstrated that high-

order LBMs are required when the flow is no longer at the continuum regime in order

to obtain accurate solutions [105]. The so-called high-order LBMs are, in fact, a special

form of the discrete velocity method (DVM) [95, 97]. DVM has successfully predicted

all flow regimes in capillaries with several cross-sectional shapes [110, 111, 112, 113].
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Figure 2.6: Schematic representation of a two-dimensional porous medium. A porous
medium consisting of a periodic array of discs can be generated using the concept of the
unit rectangular cell ABCD; applying periodic boundary condition at sides AD and
BC and symmetrical boundary condition along sides AB and CD, respectively. The
rectangle ABCD is the computational domain where the length AB is L and AD is L/2.
Other porous media can be generated by adding more solid particles in this rectangle
and maintaining the same porosity. After normalisation, the coordinates of the four
corners A, B, C, and D are (−0.5, 0), (0.5, 0), (0.5, 0.5), and (−0.5, 0.5), respectively.

Kinetic model

In the numerical simulations of low-speed rarefied gas flows, it is well documented that

the linearised BGK equation is often used as a simplified kinetic model equation [85,

97, 113], Herein BGK is solved by DVM, which approximates the continuous molecular

velocity space v with discrete velocities. The linearised BGK model equation, which

can be viewed as the relaxation-time approximation of the Boltzmann equation [101],

reads

v · ∂h
∂x

=

√
π

2Kn

[
%+ 2u · v + T

(
|v|2 − 3

2

)
− h
]
, (2.3)

where h(x,v) is the (dimensionless) distribution function deviated from the Maxwellian

equilibrium distribution function feq. The distribution function is linearised as f =
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feq(1 + h) where feq is defined as

feq =
exp(−|v|2)

π3/2
. (2.4)

Macroscopic quantities appearing in the right-hand side of Eq. (2.3) are the perturbed

number density of gas molecules %, velocity u and temperature T which are calculated

as the moments of the perturbed distribution function h over the velocity space, as

follows

% =

∫
feqhdv, u =

∫
vfeqhdv, T =

2

3

∫
|v|2feqdv − % (2.5)

Note that Eq. (2.3) is valid when the porous medium is so long that the pressure

gradient is small, namely, |Ldp/pdx| � 1 with p being the local gas pressure and x the

flow direction.

The kinetic equation Eq. (2.3) has to be supplied with appropriate boundary con-

ditions. Suppose the pressure gradient is applied along the x (horizontal) direction,

on the inlet and outlet of the computational domain ABCD in Fig. 2.6 and periodic

condition for the flow velocity is used [112]:

h (−0.5, y, vx, vy, vz) = 1 + h (0.5, y, vx, vy, vz) when vx > 0,

h (0.5, y, vx, vy, vz) = −1 + h (−0.5, y, vx, vy, vz) when vx < 0.
(2.6)

At lines AB and CD the specular reflection boundary condition is used to account for

spatial symmetry:

h (x, 0, vx, vy, vz) = h (x, 0, vx,−vy, vz) when vy > 0,

h (x, 0.5, vx, vy, vz) = h (x, 0.5, vx,−vy, vz) when vy < 0.
(2.7)

Finally, at the solid surface, the diffuse-specular boundary condition is used [36]:

h(v |v · n > 0) = σ%s(n) + (1− σ)h(v − 2n(v · n)), (2.8)

where n is the normal unit vector of the solid surface and %s is the perturbed gas number

density on the solid surface which is computed from the non-penetration condition, i.e.

zero-mass flux through the solid surface, as

%s(n) = −
∫
v·n<0 v · n exp(−|v|2)hdv∫
v·n>0 v · n exp(−|v|2)dv

. (2.9)
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The apparent gas permeability, which is normalised by L2, is calculated by

ka = 2

√
1

π
KnGP , (2.10)

where Gp = 2
∫ 1/2
0 ux(y)dy is the dimensionless mass flow rate. Based on its calculation

method, ka refers to the diagonal permeability element in the streamwise direction. In

a similar fashion, the other elements of the tensor can be obtained.

Numerical Procedures

A hexahedral mesh of double resolution (compared to the one required for the NSEs

solution) is utilised to enhance accuracy, particularly when Kn is small. It is straight-

forward to construct uniform grids from digital images, since the void and matrix pixels

(or voxels) are interpreted as fluid and solid points respectively. Apart from the spatial

discretisation, the molecular velocity space v is also discretised into Nv-discrete veloc-

ities. Consequently, the BGK model equation (2.3) (where the only unknown is h) is

replaced by a system of Nv-independent equations which require numerical solution.

Since the non-equilibrium effects are related to the high-order moments of the velocity

distribution function, a higher-order quadrature must be used to capture the rarefac-

tion effect accurately. In general, the larger the Kn number, the larger the variations

and discontinuities of the velocity distribution function h. Thus, the number of discrete

velocities, Nv, should rise accordingly [83, 84, 114]. Using DVM, in this study vx and

vy in the BGK equation are approximated by the 8 × 8 Gauss–Hermite quadrature

when Kn < 0.01 and the Newton-Cotes quadrature with 22× 22 non-uniform discrete

velocity points for higher Knudsen numbers [21]. The vz variable can be safely ignored

in 2D linearised flows.

In this work, the solution of the BGK model equation (2.3) by the discrete ve-

locity method is realised using an in-house high-performance solver with multi-level

parallelization [83]. This gas kinetic solver, developed in Fortran, efficiently utilises the

computational resources, allowing the direct simulation of rarefied gas flows in porous

media based on digital rock images. The finite difference method is used to approxi-

mate the convection terms on the uniform grids produced from these sample images.

The discretisation is realised using a second-order upwind scheme, while the set of

equations is solved using an iterative scheme. The value of apparent permeability is

calculated every n iteration steps and the gas kinetic solver is terminated when the
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following convergence criterion

ka(i)− ka(i− n)

ka(i)
< 10−10, (2.11)

is reached, where i is the iteration step. For the cases considered in this thesis, in order

to reach convergence usually a few thousand iterations are required. Additionally,

apparent permeability evaluation is a time consuming step of the process, thus, herein

based on my experience I choose n = 1000. For further details regarding the utilised

solver and numerical procedure, the reader can refer to [83].

2.2.3 Boundary conditions

In what follows, the boundary conditions used in the various numerical simulations of

this thesis, are presented. Where the numerical results of two or more methods are

compared, same boundary conditions are applied to ensure consistency.

In continuum flows (no-slip at the solid surfaces) where the NSEs are solved, the

direct numerical simulations are performed having the following different flow configu-

rations:

1. Periodic boundary conditions are imposed at the inlet/outlet, symmetry (no-flux

condition) at the lateral walls and no-slip at the solid surfaces [21]. The fluid

is forced to move in the desired direction by adding a pressure gradient source

term in the momentum equation while assuring Re < 1. This setup, due to the

periodicity imposed, is a priori anticipated to result in a good approximation of

the real permeability since it imitates the encapsulation of the considered pore-

scale structure within a larger porous medium [115].

2. The alternative setup of fixed pressure at the inlet and outlet to drive the flow is

also tested, while the rest remain as above. The pressure difference is maintained

low to assure that Re < 1.

3. Fixed pressure is applied at the inlet/outlet without periodicity imposed. Sym-

metry is applied on the lateral faces as above.

4. Finally, the setup which mimics the classical experiment for the measurement

of permeability, the permeameter method [116], is tested, i.e. fixed pressure

is imposed at the inlet/outlet while the lateral sides are treated as stationary

walls. This and the previous simulation setup 3 are considered to provide correct

diagonal and off-diagonal permeability terms without excessive computational

requirements or special mesh treatment [117], hence they are often preferred in
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the present study. This configuration is particularly useful when the aim is a

direct comparison of the numerical and experimental data.

Note that my results for the random porous media considered indicate that the

resulting permeabilities from all the above configurations are almost identical, present-

ing a small deviation in the order of 1%. Furthermore, for configurations 1 and 2 the

original geometry is extended by a few fluid layers at the inlet and outlet so that the

periodic boundary conditions are applicable [58].

When local Kn increases, as previously mentioned in Section 1.3, the intermolecular

collision events become insufficient near the walls and slip boundary conditions should

then be imposed instead of zero Neumann for velocity. Traditionally, the first order

velocity slip boundary condition (FVBC) [36] is coupled with the Stokes equations for

gas flows in the slip regime. The employed Maxwell’s boundary condition reads

us = A1λ
∂ux
∂y

+
3

4

µ

ρT

∂T

∂x
, (2.12)

where x represents the coordinate tangential to the wall and us is the slip velocity

component aligned with x. The slip coefficient A1 is considered to be (2 − σ)/σ in

the original formulation of Maxwell and is often omitted in the literature since many

researchers consider the case of TMAC equal to one (hence A1 = 1). For curved walls,

the full form of the expression should be used instead [118]:

us = A1λ

(
∂ux
∂y

+
∂uy
∂x

)
+

3

4

µ

ρT

∂T

∂x
. (2.13)

Note that the flows studied in this work are isothermal, thus the last term of the slip

boundary condition was safely ignored. For isothermal flows and planar solid walls the

second-order velocity slip boundary condition reads [20, 22, 49, 119]

us = A1λ
∂ux
∂y
−A2λ

2∂
2ux
∂y2

, (2.14)

where A1 and A2 are the slip coefficients. Typical values of these coefficients are

proposed by different researchers such as [119, 120, 121]. I adopt the viscous slip

coefficient values of the aforementioned publications to my work, (such as A1 = 1.15

for σ = 1) as to be analysed in the forthcoming chapters.

For all the numerical simulations solved by the DVM method the boundary con-

ditions were analogous to configuration 2 as stated in detail in Section 2.2.2. On the

solid walls the diffuse-specular boundary condition, Eq. (2.8), is applied as explained in

detail in Section 2.2.2. For short, when TMAC is set to unity, we refer to this boundary
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condition as the diffuse boundary condition.

Moreover, for the Brinkman simulations performed in this thesis the flow configura-

tions 2 or 4 are employed. Even though at the original experiments of Beavers & Joseph

[75] the homogeneous and isotropic permeable block was considered to be semi-infinite,

herein, at the finite bottom of the porous medium, zero Neumann or zero Dirichlet

boundary conditions are applied respectively.

Finally, for the numerical solution of the Darcy equation, the permeameter con-

figuration 4 is herein employed. Since only the pressure and permeability boundary

conditions can be determined, while the velocity field results from the simulation, a

no-slip boundary condition cannot be explicitly applied at the walls. To circumvent

this, the concept of “immersed” boundary conditions can be utilised. Forcing the per-

meability on the lateral sides to have a sufficiently small value, the velocity there is

reduced to orders of magnitude lower than the velocity in the rest of the domain, giving

practically the same result as the no-slip boundary condition [67].

2.3 Permeability tensor determination

The permeability tensor is a second order tensor with nine components in the three-

dimensional space. The calculation of the full permeability tensor k of a three-dimensional

porous medium requires three flow simulations, imposing pressure gradients in the x, y

and z directions respectively. Each simulation for each spatial direction gives one col-

umn of the tensor. For example, using Darcy’s law (1.2) and imposing ∇px the first

column of the permeability tensor is obtained by

kix = − ūiµ
∇px

for i = x, y, z, (2.15)

where ūi is the i-th component of the Darcy velocity ū which reads

ū =
1

V

∫
Vf

udV, (2.16)

with Vf being the volume occupied by the fluid and V the total volume. We note that

when the porous medium is two-dimensional, the order of the system is reduced to

2 × 2. I should further remark that the nature of the permeability tensor depends on

the characteristics of the porous medium and the flow configuration (boundary condi-

tions) [117]. For example in the permeameter case, even though the fluxes across the

lateral sides are imposed to be zero, the averaged velocity field has non-zero transversal

components leading to a non-diagonal permeability tensor. Generally, the computed
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tensor is not necessarily symmetrical for pressure-imposed configurations while when

periodicity is imposed the derived tensor is symmetrical.

In isotropic porous media the diagonal elements of the permeability tensor are equal

(kxx = kyy = kzz = k) while the off-diagonal elements are zero (kij for i 6= j). In the

case of anisotropic porous media the diagonal elements of the permeability tensor differ.

In this study, the random porous media tested, even when instructed to be statis-

tically isotropic, result in small deviations between kxx, kyy and kzz. The discrepancy

between these elements increases with increasing the degree of anisotropy. Due to the

boundary conditions applied in the lateral faces, either wall or symmetry, the fluxes

across them are equal to zero. However, the averaged velocity field ū has non-zero

transversal components, leading to a non-diagonal permeability tensor. Additionally,

k is non-symmetric, which is attributed to the non-uniform distribution of the pores.

It should be stressed that usually the off-diagonal components of the tensor are at least

one order smaller than their diagonal counterparts [115, 117]. For practical reasons,

the permeabilities (k, ka and keff ) mentioned in the forthcoming sections and chapters

are normalised by L2 and refer to the diagonal permeability element of the streamwise

direction, unless otherwise stated.

2.4 Computed quantities

To evaluate the influence of several morphological aspects on the permeability of micro-

porous media, some relevant quantities are taken into consideration. First, streamlines

in porous media are usually not parallel to each other and most importantly far from

being straight. To quantify this effect a dimensionless parameter called hydraulic tortu-

osity of preferential flow paths τ is introduced. Tortuosity is defined as the ratio of the

average length of microscopic flow paths to the length of the medium in the direction

of macroscopic flux L [122, 123]. It is computed herein as a volume integral based on

the simplified method [122] for low-Reynolds number flows:

τ =
ū

ūi
, (2.17)

in which i denotes the direction parallel to the macroscopic flow.

Second, gas permeability is significantly affected by the surface area. Thus, the

specific surface area [124], S, which is defined as the ratio of the total interstitial

surface area to the total volume of the fluid phase (ratio of the perimeter to the total

area in 2D), is also computed. Generally, the boost of both tortuosity and specific

surface area obstructs the flow, resulting in lower permeability.

Third, shale formations are anisotropic due to the orientation of mineral foliations
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and laminated bedding planes. This leads to the description of their macroscopic

physical properties, e.g. tortuosity and permeability as tensors rather than scalars. For

this reason, both statistically isotropic [124] and anisotropic geometries are produced

to evaluate the directional dependency of their properties; for the former geometries

tortuosity is herein regarded as scalar while for the latter, as a vector. As far as

permeability is concerned, in some occasions, only the diagonal elements are mentioned

instead of the full tensor since off-diagonal permeability elements are often reported to

have relatively low magnitude [115, 125]. This is confirmed in this work.

The parameter Di is responsible for the degree of anisotropy in the geometries

generated using the QSGS method. In order to obtain isotropic 2D structures, uniform

main, Dmain (D1−4), and diagonal, Ddiag (D5−8), growth probabilities must be set, with

Dmain : Ddiag = 4. By changing the ratio between the main probabilities, hereinafter

referred to as the aspect ratio, AR, anisotropy can be adjusted accordingly. The above

also extend to 3D structures.

The anisotropy factor for the intrinsic permeability is reported [115] to have a large

range of possible values in various sandstones and thus it is also studied in the present

work. The anisotropy factor, Af , is defined as

Af =
kmin
kmax

for 2D, Af =
kmin√
kintkmax

for 3D, (2.18)

where kmin, kint and kmax correspond to the minimal, intermediate and maximal value

of the diagonal permeability tensor respectively (kint being valid only for 3D cases).

Values close to unity indicate a statistically isotropic medium, while values close to zero

refer to high anisotropy. The diagonal permeability tensor can be derived computing

the eigenvalues of the full permeability tensor k [74].

The size of the pores in the simulated structures can be significantly smaller than

the size of the computational domain in the direction of the flow (L). Therefore, the

effective characteristic flow length to be used in the calculation of the effective Knudsen

number in Eq. (1.12) should not be (L), but an effective pore size (L∗) determined by

the expression [40, 53, 56] as follows

L∗ = L

√
12k∞
ε

for 2D, L∗ = L

√
8k∞
ε

for 3D. (2.19)

The above expressions are chosen in this work, instead of others mentioned in Sec-

tion 1.3.2 (see Eqs. (1.13) and (1.18)). Note that the dimensional quantities present in

this thesis, are in SI units, which are not mentioned for simplicity. I also remind that

unless otherwise stated, permeability is hereinafter given in its dimensionless form.



Chapter 3

Slip factor behaviour in

simplified porous media

The Navier-Stokes equations with the first-order velocity-slip boundary con-

dition are only accurate to the first order of Kn. However, many researchers

erroneously use permeability models derived based on this assumption, to

obtain shale gas permeability for the whole rarefaction regime. This chap-

ter discusses the limitations of the Navier-Stokes equations coupled with the

first-order velocity slip boundary condition to describe rarefied flow in sim-

plified porous media. In Section 3.1, numerical simulations are performed to

analyse the variation of apparent permeability with Knudsen number and

to assess the validity and applicability of the slip-corrected permeability.

In Section 3.2, the influence of gas-surface interaction on apparent perme-

ability and the slip factor is also studied. Possible factors that lead to the

observation of Klinkenberg related to the slip factor are identified. The

chapter concludes with some final comments and remarks.

3.1 Limitations of the Navier-Stokes equations in simpli-

fied porous media

The so-called slip-corrected permeability can be obtained either by expanding analytical

solutions to the first-order of Kn, either by fitting the numerical solution at small Kn

numbers and keeping this linear dependence of ka with Kn. In some cases, the slip-

corrected permeability agrees well with the numerical results of porous media flows,

however the simulations performed in this work prove that this is a coincidence and

that it can lead to misleading predictions as well.

40
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Figure 3.1: The apparent gas permeability versus the Knudsen number for a gas flow in
a straight cylindrical tube, obtained from the numerical simulation of the BGK equa-
tion, where σ is the tangential momentum accommodation coefficient in the kinetic
boundary condition for the gas-surface interaction (see Eq. (2.8)). Analytical solutions
of the NSEs with first-order (2.12) and second-order (2.14) velocity slip boundary condi-
tions are also shown, where the viscous velocity slip coefficients are obtained from [120]
and [121].

Klinkenberg found that the slip factor b decreases as Kn increases [34]. As previously

mentioned in Section 1.3, it is common in the literature to circumvent the complexity

and high cost involved in the numerical simulations of porous media by treating them

as a single cylindrical tube or as a bundle of identical ones. However, this simplification

cannot yield the observation made through Klinkenberg’s experiment.

The numerical solutions of the BGK model equation as well as the analytical ex-

pressions derived from the NSEs coupled with velocity-slip boundary conditions for gas

flows in a straight cylindrical tube are shown in Fig. 3.1. The BGK results indicate

that the slip factor b increases with Kn while the NSEs give a constant b. The NSEs

with the second order slip boundary condition (2.14) produce the same trend as in the

famous experiment [34] for very small Kn, nevertheless, as Kn increases the apparent

permeability drops, soon reaching negative values which is not physical. In addition to

this, the maximum of this curve is reached for permeability enhanced only by 1.5 times

which is in sharp contrast to the numerical experiment where ka/k∞ ≈ 30.

Using the NSEs coupled with the FVBC, apparent permeability for rarefied flow

through a periodic array of discs has been derived analytically by [126]. Considering
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that the porosity is large ka is given by

ka =
1

8π
(
1 + 2A1Kn

√
π
P

) [− lnP − 3

2
+ 2P − P 2

2
+

+2A1Kn

√
π

P
(− lnP − 1

2
+
P 2

2
)

]
,

(3.1)

where P = 1 − ε stands for the solid fraction, ε = 1 − πr2/L2 and A1 is the velocity

slip coefficient. When Maxwell’s diffuse boundary condition (2.8) is used [119], we have

A1 = 1.016
√

4/π = 1.15. The viscous velocity slip coefficient for other values of TMAC

can be found in [120] and [121].

The above analytical formula for apparent gas permeability is a non-linear function

of Kn [126]. Nevertheless, since the formula is based on the NSEs coupled with FVBC,

its applicability is limited to the first-order of Kn. Therefore, expanding the formula

into a Taylor series around Kn = 0 and retaining up to the first-order terms, the

accuracy is maintained for the slip regime. This simplified expression, which is called

the slip corrected apparent permeability, reads

ka =
1

8π

[
− lnP − 3

2
+ 2P − P 2

2
+ 2A1Kn

√
π

P
(1− 2P + P 2)

]
. (3.2)

The accuracy of the analytical formulation (3.2) is assessed by comparing it with

the numerical solution of the BGK equations and DSMC results obtained from [127] for

a periodic porous medium; a circular cylinder with ε = 0.8. The boundary conditions

imposed for the following numerical simulations are periodic at the inlet/outlet and

symmetry at the lateral sides of the computational domain (unit computational cell,

as seen on Fig. 2.6). On the solid walls, the diffuse specular boundary condition is

imposed for the gas kinetic theory simulations. When the NSEs are solved, the no-slip

or the first-order slip boundary condition is applied.

Note that in the DSMC simulation, the Knudsen number and ka are normalised by

the radius and radius square of the disc, so the data should be renormalised. Also, the

mean free path defined in Eq. (1.1) is 15π/2(7 − 2ω)(5 − 2ω) times larger than that

used in DSMC based on the variable hard sphere model, where ω = 0.81 for argon [98];

so the Knudsen number should be rescaled.

For the linearised BGK equation (2.3), two reduced distribution functions were in-

troduced to cast the three-dimensional molecular velocity space into a two-dimensional

one, and the obtained two equations are solved numerically by the discrete velocity

method [112]. In the discrete velocity method, a Cartesian grid with 801×401 equally-

spaced points is used and the solid surface is approximated by a “stair-case” mesh.
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The molecular velocity space in the BGK equation is also discretised: vx and vy are

approximated by the 8×8 Gauss-Hermite quadrature when Kn is small (Kn < 0.01 in

this case), and the Newton-Cotes quadrature with 22×22 non-uniform discrete velocity

points when Kn is large [128].

The aforementioned results are depicted in Fig. 3.2. Although I use the linearised

BGK model, my numerical results are quite close to those from the DSMC simula-

tion [127]. For Kn . 0.15, ka is a linear function of Kn. The analytical permeability,

Eq. (3.1), increases linearly with Kn only when Kn . 0.02, and then quickly reaches

to a maximum value when Kn & 0.2. This comparison clearly demonstrates that, the

NSEs with FVBC are only accurate to the first-order of Kn. The slip-corrected appar-

ent permeability is also plotted according to the Taylor expansion, Eq. (3.2). Albeit

this expression is expected to be valid at small Kn, it is in good agreement with the

BGK numerical results when Kn . 0.35. The error of this slip-corrected formulation

is acceptable even in the transition regime, where the permeability is underestimated

by only 15% for Kn = 1. It should be highlighted that this is but a coincidence, as to

be proved in the analysis below.

The assertion regarding the limitation of the accuracy of the NSEs with FVBC to

the first-order of Kn applies also to more complicated porous media such as the one

shown in Fig. 3.3. This porous medium has porosity 0.6 and consists of non-overlapping

circular discs of different radius. The linearised BGK equation in solved, using the

DVM method, with a Cartesian mesh of 3000 × 1500 cells to discretise the spatial

domain. For the numerical solution of the NSEs with FVBC an unstructured grid is

used. Specifically, a body-fitted computational grid is generated using snappyHexMesh,

resulting in a mesh of about 600,000 cells of which the majority are hexahedra and the

rest few close to the walls are prisms.

In Fig. 3.3 it can be observed that ka obtained from the solution of the NSEs

with FVBC increases linearly when Kn . 0.002 (or Kn∗ . 0.146) and then reaches a

plateau. The inset figure points out that this solution is accurate when ka is a linear

function of Kn through the comparison with the BGK results. The maximum ka where

the NSEs with FVBC are valid is only about 1.5 times larger than k∞. Surprisingly,

like in the simple porous medium of Fig. 3.2 the slip-corrected permeability estimates

ka to be slightly smaller than the BGK solution even when the flow is greatly rarefied.

Particularly, for Kn = 1, (Kn∗ = 73Kn), when the permeability is enhanced already by

hundreds of times, the error of the “filtered” solution of the NSEs with FVBC (keeping

only the zeroth and first-order terms of Kn) is roughly 15%.
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Figure 3.2: Simulation results for flow around a square array of cylinders with porosity
ε = 0.8. The apparent permeability as a function of the Knudsen number, when the
diffuse boundary condition is used, i.e. σ = 1 in (2.8). The dashed line are numerical
results of the linearised BGK solved by the discrete velocity method. The dash-dotted
and solid lines are analytical solutions of NSEs (3.1), with the no-slip and first-order
velocity-slip boundary conditions, respectively, while the dotted line is the slip-corrected
permeability obtained by expanding the analytical solution (3.1) to the first-order of
Kn, see (3.2). The DSMC results are obtained from the recent simulation by [127].

3.1.1 Computational time

It will be helpful to mention the computational time for the two examples in Section 3.1.

For the discrete velocity method, numerical simulations are performed on Dell worksta-

tion (Precision Tower 7910) with dual processors Intel Xeon CPU E5-2630 v3 2.40GHz

where 8 threads are used. For simplicity, the 8 × 8 Gauss-Hermite quadrature is used

here for all the Knudsen numbers shown in Table 3.1. For the non-uniform velocity

grids, the iteration numbers are roughly the same as the Gauss-Hermite quadrature,

but the computational time is about 10 times higher due to the large number of discrete

velocity points.

Generally speaking, for the implicit scheme used to solve the gas kinetic equations,

the iteration steps increase when the Knudsen number decreases. From Table 3.1 we

find that this is true except for the complex geometry where the iteration steps at

Kn = 0.1 are smaller than that of Kn = 1. This is because the sequence of the

numerical simulations start from Kn = 1; when the solution is converged, it is used

as the initial guess in the calculation of Kn = 0.1, and so on. Thus, due to this it is
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Figure 3.3: (a) The geometry in a unit computational cell, when the porosity is ε = 0.6.
Solids of random size and position are shown in black. The periodic porous medium is
generated by placing the whole computational domain inside the unit rectangular cell
ABCD in Fig. 2.6. (b) The ratio of apparent to intrinsic permeability k∞ = 9.37×10−6

as a function of Knudsen number. The solid and dashed lines are numerical results of
the linearised BGK equation and NSEs with FVBC, respectively. The dotted lines are
the slip-corrected permeability, obtained from the numerical solution of the NSEs with
FVBC, but only keep up to the zeroth- and first-order contributions of Kn. Note that
the effective Knudsen number Kn∗ (see Eq. (1.12)) is 73 times of Kn.
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Table 3.1: Iteration steps and elapsed time for the numerical solution of the linearised
BGK equation using the implicit discrete velocity method. The time is measured by
wall clock time. The spatial grid size of the circular cylinder is 801× 401 points, while
for the complex porous medium it is 3000× 1500.

Circular cylinder in Fig. 3.2

Kn Kn∗ Iterations Time (s)

100 1.85 2000 68

10−1 0.185 2000 68

10−2 0.0185 7000 238

10−3 0.00185 366000 12381

Complex geometry in Fig. 3.3

Kn Kn∗ Iterations Time (s)

100 7.3× 101 4000 2076

10−1 7.3× 100 3000 1558

10−2 7.3× 10−1 5000 2584

10−3 7.3× 10−2 9000 4943

possible that smaller Kn needs more iteration steps, especially in complicated porous

media. Note that for the circular cylinder case at Kn = 0.001, the number of iteration

steps is large; this is because the flow is in the continuum regime (see Kn∗) where the

collision dominates so that the exchange of information due to streaming is extremely

slow, and consequently, convergence is slow. In practical calculations, however, we do

not have to calculate ka at such a small Kn, because it is only about 2% larger than

intrinsic permeability; we only have to calculate intrinsic permeability using Navier-

Stokes solvers, such as the one available in OpenFOAM, and the multiple relaxation time

lattice Boltzmann method for simulating flows in complex porous media [129].

On the other hand, the OpenFOAM solver is running on a Dell workstation with a

processor Intel Core CPU i7-6700 3.4GHz that has 8 threads in total. It takes less than

half an hour using only one thread to obtain the converged solution for the complex

porous medium case in Fig. 3.3, at each Knudsen number. Convergence is considered

to be reached when the residuals go below 10−6.

3.2 Possible explanation of Klinkenberg’s experiment

For the cases studied in the previous section, Klinkenberg’s finding that b decreases with

Kn is not observed. Conversely, the numerical simulations performed on a straight tube

and on simple porous media indicate the opposite trend. In this section the impact of

non-unitary TMAC on the slip factor is investigated.

From the analytical Taylor expression (3.2), by replacing the non-unitary TMAC

(say, σ = 0.5), then A1 ≈ 3.23 [121], making the slip factor about three times larger

than in the case of σ = 1 for small Kn. If at large Knudsen numbers the apparent

permeability of σ = 0.5 is only slightly larger than that of σ = 1 (this is not the case for
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rarefied gas flows between two parallel plates or through a straight cylindrical tube),

a decrease of the slip factor when Kn increases may be observed in the numerical

simulation of the linearised BGK equation in porous media.

To study the influence of the non-unitary TMAC on the apparent permeability,

the rarefied gas flow passing through a square array of square cylinders is investigated.

Square instead of circular cylinders, previously used in Fig. 3.2, are chosen so that the

specular reflection in the boundary condition (2.8) can be accurately implemented.

Since I use non-dimensional variables, I rewrite Klinkenberg’s famous equation (1.3)

in the following form
ka
k∞

= 1 +
b

p̄
≡ 1 + b′Kn∗, (3.3)

and investigate the variation of the “equivalent slip factor” b′, with respect to the

Knudsen number and TMAC. Note that b′ is proportional to the slip factor b and the

proportionality constant is independent of the Knudsen number (reciprocal of mean

gas pressure) and TMAC.

The numerical solutions of the linearised BGK equation, solved by the DVM method,

are shown in Fig. 3.4, along with the slip-corrected permeability for comparison. The

porous media considered have porosity ε = 0.4 and ε = 0.8 and the TMAC values

tested are σ = 1, 0.5 and 0.1. From Fig. 3.4(c,d) we see that in line with my previous

results, for σ = 1, the slip-corrected permeability agrees well with the numerical results

of the linearised BGK equation for both porosities. Interestingly, when Kn∗ → 0, the

slip factor b′ is about 6 and 6.1 when the porosity is ε = 0.4 and 0.8, respectively. In

parallel, for Poiseuille between two parallel plates, the slip-corrected permeability is

exactly
ka
k∞

= 1 + 6A1Kn
∗, (3.4)

where A1 = 1.15 for the diffuse boundary condition. This means that the slip factor is

b′ = 6.9, which is close to the two values I obtained for the square cylinders, when the

gas-surface interaction is diffuse.

However, when the TMAC is small, the accuracy of the slip-corrected permeability is

significantly reduced. Since at σ = 0.5 and 0.1, A1 is respectively 3.23 and 19.3, the slip

factor b′ from the NSEs with FVBC is about 17 and 100, respectively. From Fig. 3.4(c,d)

we see that the slip-corrected permeability is only accurate when Kn∗ < 0.1. At relative

large Knudsen numbers (i.e. Kn∗ > 0.5), the accuracy of the slip-corrected permeability

is greatly reduced. For instance, for the largest Kn∗ shown, when the porosity is 0.8,

the slip-corrected permeability overpredicts ka by 160% and 670%, when σ = 0.5 and

0.1, respectively; when the porosity is 0.4, the slip-corrected permeability overpredicts

ka by 360% when σ = 0.1. These two examples clearly show that, when the TMAC



CHAPTER 3. SLIP FACTOR BEHAVIOUR IN SIMPLIFIED POROUS MEDIA 48

x1

-0.5 -0.3 -0.1 0.1 0.3 0.5

x
2

0

0.1

0.2

0.3

0.4

0.5

Kn = 0.01

(a)
x1

-0.5 -0.3 -0.1 0.1 0.3 0.5

x
2

0

0.1

0.2

0.3

0.4

0.5

Kn = 0.01

(b)

Kn∗
0 1 2 3 4 5

k a
/k

∞

100

101

102

(c)

Kn∗
0 0.5 1 1.5 2

k a
/k

∞

100

101

(d)

Kn∗
0 1 2 3 4 5

C
or
re
ct
io
n
fa
ct
or

b′

6

10

17

30

40

(e)

Kn∗
0 0.5 1 1.5 2

C
or
re
ct
io
n
fa
ct
or

b′

6

10

17

30

(f)

Figure 3.4: (First row) Streamlines in unit computational cells. (Second row) The ra-
tio of the apparent to the intrinsic permeability and (Third row) the slip factor, as a
function of Kn∗. Note that the vertical axis in (e) and (f) is in the logarithmic scale.
Triangles, squares, and circles are numerical results of the linearised BGK equation
(solved by the discrete velocity method), with the TMAC σ = 1.0, 0.5, and 0.1, respec-
tively. The black lines are the numerical solutions from the NSEs with FVBC, where
only up to the first-order terms of Kn are retained. The solid, dashed and dashed-
dotted lines correspond to σ = 1.0, 0.5, and 0.1, respectively. In the left column, the
porosity is ε = 0.4, k∞ = 0.001, and Kn∗ = 5.69Kn, while in the right column, ε = 0.8,
k∞ = 0.018, and Kn∗ = 1.94Kn.
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Figure 3.5: (a) The geometry in a unit computational cell, when the porosity is ε = 0.84.
Solids of random size and position are shown in black. The periodic porous medium is
generated by placing the whole computational domain inside the unit rectangular cell
ABCD in Fig. 2.6. 2000× 1000 cells are used to discretise the spatial domain. (b) The
ratio of ka to the intrinsic permeability k∞ = 4.77× 10−5 and (c) The slip factor b′, as
a function of Kn∗. Triangles, squares, and circles are numerical results of the linearised
BGK equation, with the TMAC σ = 1.0, 0.5, and 0.1, respectively. In the inset in (b),
the solid, dashed, dotted lines are the slip-corrected permeability for σ = 1.0, 0.5, and
0.1, respectively, where the slopes (slip factor b′) are 6.45, 18.2, and 108.5, respectively.
Note that Kn∗ = 38.3Kn.



CHAPTER 3. SLIP FACTOR BEHAVIOUR IN SIMPLIFIED POROUS MEDIA 50

deviates largely from one, the NSEs with FVBC should not be used to predict the

apparent permeability in porous media flows beyond the slip regime.

Focusing on the influence of the non-unitary TMAC on the slip factor, when Kn is

fixed, ka increases when TMAC decreases as expected (see Fig. 3.4(c,d)). However, at

different Kn the amount of increase is different, so the variation of b′ with respect to Kn

is quite different among the three TMACs considered. When σ = 1, it is seen that the

slip factor b′ increases with Kn, which clearly contradicts Klinkenberg’s experimental

results. However, when σ = 0.5 and 0.1, it is found that, when Kn increases, b′

first decreases and then increases. The reason that the slip factor increases with the

Knudsen number can be easily understood. It is well-known that, when Kn → ∞,

the dimensionless mass flow rate Gp in (2.10) increases with Kn logarithmically for

Poiseuille flow between two parallel plates [130] and approaches a constant for Poiseuille

flow through the cylindrical tube. Similar behaviours for Gp are observed for all the

cases considered in this study. According to Eq. (3.3), the equivalent slip factor b′ at

Kn∗ →∞ can be calculated as follows:

b′ =
ka/k∞ − 1

Kn∗
=

2KnGp/
√
πk∞

Kn∗
− 1

Kn∗
≡ C − 1

Kn∗
, (3.5)

where C is proportional to Gp. Depending on the structure of the porous medium, C

is either a constant or increases with Kn when Kn → ∞. Therefore, the slip factor

approaches a constant or increases with Kn. Also, since Gp always increases when

TMAC decreases, at large Kn, the slip factor increases when TMAC decreases, see

Fig. 3.4(e,f).

These findings also apply to less simple porous media such as the one depicted

in Fig. 3.5(a). A similar trend in the variation of the slip factor with respect to the

Knudsen number is observed for non-unitary TMACs, see Fig. 3.5(c). Also, from the

inset of Fig. 3.5(b) we see that even the slip-corrected permeability, obtained from the

NSEs with FVBC, is only accurate when ka/k∞ . 1.5 when σ = 0.5 and 0.1.

So far, two key factors that could lead to the observation that the slip factor b

in (1.3) decreases when Kn increases have been identified. The first factor is that

the TMAC should be less than 1, and the second one is that flow streamlines should

be tortuous. The two factors should be combined together to explain Klinkenberg’s

observations for the simplified porous media that preceded. However, this assertion

should be investigated for complex porous media.
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3.3 Conclusions

The above theoretical and numerical analysis proves that the Navier-Stokes equations

with the first-order velocity-slip boundary condition can only predict apparent gas per-

meability of porous media to the first-order accuracy of the Knudsen number. Although

the slip-corrected expression, which only retains the linear dependence of permeability

and Knudsen number, gives a good approximation of apparent permeability for the dif-

fuse gas-surface boundary condition in a wide range of gas rarefaction, its accuracy is

significantly reduced when the tangential momentum accommodation coefficient σ, in

the diffuse-specular boundary condition, deviates from one. Even the acceptable agree-

ment of the expression for σ = 1 could be a coincidence and should be investigated for

complex porous media which resemble the porous media of interest.

Therefore, the slip-corrected expression is of no practical use. This issue must

be properly taken into account since the Navier-Stokes equations are widely misused

in rarefied gas flows to predict apparent gas permeability. This work also implies

that all currently widely used empirical solutions, such as (1.10) derived from the

straight cylindrical tube with the diffuse boundary condition, should be reformulated

to incorporate tortuosity and/or diffuse-specular scattering, to predict unconventional

gas production by feeding apparent gas permeability into upscaling models.



Chapter 4

Pore-scale shale permeability

It is known that porosity, specific surface area, tortuosity and anisotropy

are some of the matrix properties that play a significant role in the overall

production performance. This chapter aims to investigate the impact of the

aforementioned parameters on both intrinsic and apparent permeability and

propose new appropriate permeability formulations which take them into

account. On top of this, the behaviour of the slip factor is carefully anal-

ysed to examine whether the conclusions of the previous chapter hold for

the complex porous media under consideration. In Section 4.1, the simula-

tion results are discussed, analysing the role of porosity, specific surface area,

tortuosity and anisotropy on intrinsic permeability. Additionally, a new for-

mulation for intrinsic permeability, based on an existing analytical formula

along with the simulation results of this work, is presented. Later, in Sec-

tion 4.2, the simulation results for apparent permeability are presented and

the impact of structural parameters, reflected on the enhancement ratio and

the slip factor, is discussed in detail. Moreover, the proposed formulation

is extended to account for slip flow, thus providing apparent permeability.

Finally, this chapter closes with some conclusions.

4.1 Intrinsic permeability of ultra-tight porous media

4.1.1 Intrinsic permeability results

Many micro-porous media structures (400 to be exact) are generated to investigate

the impact of the variation of morphological features on intrinsic permeability. The

2D QSGS structures in this chapter consist of Nx × Ny = 1000 × 1000 pixels. In

all the produced geometries the final porosity is slightly smaller than the nominal.

Ten geometries are produced for every set of parameters (to reduce the error caused

52
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by the random growth process) and simulations are performed for flow in both the

horizontal (x) and vertical (y) directions to account for the possible anisotropy. The

boundary conditions imposed on the sides of the computational domain are periodic

at the inlet/outlet, symmetry at the lateral walls and no-slip at the solid walls. Due

to the periodicity imposed, the computational mesh is extended by a few fluid layers

as required, resulting to a 1010× 1000 grid. The fluid is forced to move in the desired

direction by adding a pressure gradient source term in the momentum equation while

assuring Re < 1. The alternative setup of fixed pressure in the inlet and outlet to drive

the flow is also tested and the calculated permeabilities have a small deviation in the

order of 1%. Therefore, in this context, the method of imposing the pressure gradient

seems to have a weak impact on the evaluation of the permeability tensor.

In some of the following graphs, for each configuration, the mean value of the com-

puted quantity is shown, while in others all the values are displayed in scatter plots for

better visualisation of their deviation. The permeability (both intrinsic and apparent)

appearing in the graphs and the equations below is given in its non-dimensional form,

by dividing its value with the square of the length of the computational domain in the

streamwise direction (L2).

To begin with, Fig. 4.1 shows the effect of porosity change on physical properties.

The results are based on flow simulations on porous media with nominal porosities

varying from 0.5 to 0.9 and fixed core distribution probability cd = 0.001 and AR = 1

(sample structures are shown in the first row of Fig. 2.2). It should be noted that for this

set of parameters, porosity ε = 0.45 is the percolation threshold, i.e. the lowest porosity

where the fluid is allowed to flow. For lower porosities permeability vanishes. It can

be observed that the final porosity is smaller than the nominal up to almost 6% with

decreasing porosity. Furthermore, when the value of the core distribution probability

is fixed, specific surface area and tortuosity decrease with porosity, leading to higher

permeability. Tortuosity and permeability in both flow directions seem to have close,

almost overlapping mean values notably for high porosities. This is reasonable, since

the geometries are generated to be statistically isotropic and at high porosities nearly

each obstacle constitutes a separate island. However, near the percolation threshold

isotropy is disrupted due to the many overlapping particles which change their aspect

ratio. It can be also observed that the slope of permeability for low porosities is different

compared to higher ones.

The scatter plots in Fig. 4.1 reveal the heteroscedasticity of the data, meaning that

the variation of τ or k∞ differs depending on the value of porosity. Nevertheless, a

general trend can be observed; small values of porosity yield a large scatter in tortu-

osity τ and thus permeability k∞, while the opposite happens for large porosities. An
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Figure 4.1: Numerical results for geometries with core distribution probability cd =
0.001 and aspect ratio AR = 1. Variation of the relative error η of final porosity εf
with nominal porosity ε and variation of the specific surface area S with εf in the first
row. Variation of tortuosity τ and permeability k∞ in the second row; the data points
refer to kx and τx, respectively and the points with the same colour correspond to the
ten QSGS geometries constructed using the same set of parameters. The trend of the
properties in the x direction is indicated with a solid line, while in the y direction a
dashed line is used.

explanation for the large scatter could be that for porosities close to the percolation

threshold, particles overlap in random ways for each geometry and this creates different

tortuous flow paths. Consequently, tortuosity can vary significantly even for the same

value of porosity, leading to great discrepancies in permeability.

In addition to porosity, the impact of the core distribution probability cd variation

(sample structures are shown in the second row of Fig. 2.2) while the other two parame-

ters are fixed (ε = 0.7 and AR = 1) is also studied. The results are presented in Fig. 4.2.
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Figure 4.2: Numerical results for geometries with porosity ε = 0.7 and aspect ratio
AR = 1. Variation of the mean diameter dmean and specific surface area S with the core
distribution probability cd in the first row. Variation of tortuosity τ and permeability
k∞ with cd in the second row. The trend of the properties in the x direction is indicated
with a solid line, while in the y direction a dashed line is used.

Increasing cd the number of particles rises, their size is reduced and therefore these ge-

ometries tend to become homogeneous. This fact is reflected on both tortuosity and

permeability curves, whose components happen to almost coincide in both directions.

Through these graphs, it is apparent that the drop of grain size (roughly described by

the mean diameter dmean) leads to significant permeability decline, mostly due to the

increment of the specific surface area, since porosity is the same and tortuosity changes

only a little in this case.

Finally, the third factor taken into consideration is the degree of anisotropy (sample

structures are shown in the third row of Fig. 2.2). The generated micro-porous media
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Figure 4.3: Numerical results for geometries with porosity ε = 0.7 and core distribution
probability cd = 0.001. Variation of tortuosity τ and permeability k∞ with aspect ratio
AR in the first row. Variation of specific surface area S and anisotropy factor Af with
AR in the second row. The trend of the properties in x direction is indicated with a
solid line, while in y, a dashed line is used.

are produced by maintaining ε = 0.7 and cd = 0.001. Flow simulations are performed

both in x direction, where the directional growth probability is larger, and in y direction.

Based on the graphs shown in Fig. 4.3 the enlargement of the specific surface area and

more importantly of tortuosity leads to a serious decline of permeability ky. This is

due to the obstacles having a large height to width ratio, exerting more resistance to

the flow and obstructing many flow paths.

In the x direction where the particles are more stretched, by decreasing the height to

width ratio, (increasing AR) flow paths tend to become less sinuous, nearly horizontal,

and as a consequence, tortuosity approaches unity. However, as increasing S reduces
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permeability, from Fig. 4.3b it is found that kx does not grow monotonically as expected,

but roughly remains in the same order of magnitude. This is due to the competition

between the favourable τ and the unfavourable S. Initially, the beneficial impact of

tortuosity dominates, however as the particles become more stretched and S increases

radically, again they exert more resistance to the flow blocking passages and leading

to a small drop of permeability. The peak of kx curve for these simulated anisotropic

QSGS structures is observed to be at AR = 50. Finally, the anisotropy factor Af varies

from 0.95 for the statistically isotropic geometry (less anisotropic porous medium) to

0.03 for the most anisotropic samples for the AR region considered.

4.1.2 Intrinsic permeability formulation

In this section I consider how to fit intrinsic permeability of the 2D geometries generated

by the QSGS algorithm, utilising analytical expressions. Dimensional analysis suggests

that Darcy permeability is a function of the porosity ε, tortuosity τ , and specific surface

area S. One of the most well-known permeability correlations, initially developed by

Kozeny [52] and later revisited by Carman [51], is the following semi-empirical formula

k∞ =
ε3

cτ2(1− ε)2S2
, (4.1)

where c is the Kozeny-Carman (KC) coefficient or otherwise stated as shape factor.

The above formulation was derived under the assumption that the porous medium is

consisted of a bundle of capillaries of fixed cross-sectional shape. The KC expression is

widely used for various 2D and 3D porous media [37, 131].

A vast number of researchers, inspired by the work of Kozeny, have established cor-

relations of permeability for different types of porous media. However, these expressions

require numerical or experimental data to derive the values of the fitting parameters.

The essential derivation of a permeability-porosity relationship of mudrocks is a chal-

lenging task due to the complexity of the morphological features of these ultra-tight

porous media [37]. In this study, this problem is addressed by fitting tortuosity and

permeability using the aforementioned independent variables (controlling parameters)

i.e. porosity ε, core distribution probability cd, and aspect ratio AR.

Isotropic geometries

In order to derive an accurate model for intrinsic permeability of isotropic geometries

(AR = 1), several QSGS structures are generated; specifically for cd = 0.001, 0.005, 0.01

and porosities ranging from the vicinity of the percolation threshold, to ε = 0.9. At
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Figure 4.4: Visualisation of intrinsic permeability formulation results for isotropic
geometries. Fitting tortuosity with equation (4.2) and the permeability with equa-
tion (4.4).

this point, it should be noted that increasing cd and consequently the number of solid

islands, leads to the percolation threshold being at a higher porosity. Simultaneously,

since the solid islands are smaller and thus less likely to overlap, the permeability k∞

and tortuosity τ are less heteroscedastic. This assertion is aligned with the conclusion

of [87] that the scope of the fluctuations highly depends on the sample size (number of

particles).

The first step to derive a formulation similar to KC is the generalisation of tortuosity

as a function of the independent parameters that determine the structure, i.e. ε and

cd. Based on numerical simulations on 2D porous matrices of freely overlapping square

particles, where several established expressions for tortuosity were tested, the tortuosity

correlation providing the best fit was τ = 1 − a1 ln(ε), where a1 is a fitting parameter

[123, 132]. This expression is thus used in the present study as a starting point for

the correlation of τ = f(ε, cd). The relevant tortuosity data and appropriate fitting (as

seen in Fig. 4.4a) result in a formulation of the following form

τ = 1− a1cda2 ln(ε), (4.2)

where a1 = 2 and a2 = 0.11.

Considering the two-dimensional porous medium as a periodic array of circular discs

with radius r, as in the first schematic diagram of Fig. 2.6, the analytical formula for
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permeability, which is accurate for high porosities, reads [126]

k∞,c =
1

8π

[
− lnP − 3

2
+ 2P − P 2

2

]
, (4.3)

where P = 1− ε stands for the solid fraction and ε = 1− πr2/L2.

More complex porous media can be generated by replacing the cylinder with numer-

ous solid particles as shown in the last two schematics of Fig. 2.6 [21]. While keeping

the same porosity, the analytical formula could be used, although certain modifications

would be imperative. To begin with, in order to use the analytical model which is

based on a regularly ordered medium of high porosity to evaluate the tested structures

of randomly placed and often overlapping particles, the effect of the tortuous flow paths

should be considered utilising the factor τ−2. This factor influences the slope of the

permeability curve. Apart from this, the number of solid islands, which affects the

permeability as discussed previously, should also be taken into account. This reasoning

yields the following fitting formula

k∞,random,is =
k∞,c
a3gτ2

, (4.4)

where the factor g = NxNycd refers to the nominal number of solid islands and a3 is

an adjustable parameter. I remind here that Nx × Ny is the resolution of the QSGS

binary matrix. The physical meaning of a3 reflects the impact of the particles’ shape.

Suitable fitting yields a3 = 0.7 and the related curves are shown in Fig. 4.4b.

The fitting of the tortuosity is less accurate for high porosities. On the other hand,

as expected, the fitting of the permeability is satisfactory for high porosities but the

permeability is overestimated close to the percolation threshold, notably for geometries

with small cd which are more heterogeneous.

Anisotropic geometries

It is of central importance to extend and revise the permeability expression to include

anisotropic structures, since the shale matrix can be highly anisotropic. To this end,

further anisotropic geometries are generated for several porosities ranging from the

vicinity of the percolation threshold, to ε = 0.9, while the core distribution probability

is fixed at cd = 0.001 and the aspect ratio AR = 100 or 1000. In Fig. 4.5 their

simulation results are compared with those of the corresponding (for the same cd)

isotropic geometries and appropriate fitting is applied. It is obvious that the effect

of the elongation of the solid islands is more pronounced for lower porosities, where

tortuosity is highly increased and permeability is severely attenuated.
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Figure 4.5: Visualisation of intrinsic permeability formulation results for both isotropic
and anisotropic geometries with core distribution probability cd = 0.001. Fitting of
tortuosity with equation (4.5) and permeability with equation (4.6).

Tortuosity is fitted with the same equation as in the isotropic cases but adding the

contribution of AR as follows

τ = 1− a1cda2ARa5 ln(ε), (4.5)

where a2 = 0.11 as previously fitted. In the direction of the elongation of the islands

(x) the flow is facilitated, tortuosity approaches unity and a1 = 8.8 while a5 = −0.48.

In the perpendicular direction (y), we obtain a1 = 0.5 and a5 = 0.48.

The correct approximation of tortuosity allows the estimation of permeability util-

ising the same expression as in isotropic geometries, with the exception that the ad-

justable parameter a3 changes significantly. This modification is necessary since the

analytical expression in Eq. (4.3) is derived for cylindrical discs, while in the anisotropic

structures solid islands are far from being so. The degree of anisotropy AR is also taken

into account and the resulting formula reads

k∞,random,an =
k∞,c

a3gARa4τ2
. (4.6)

In anisotropic structures, the particles’ shape is more ellipsoidal and hence, the particles

are less likely to overlap. Thus fitting yields a3 = 0.3. The exponent a4 is adjusted

according to the direction of the flow. For the computation of permeability in the x

direction a4 = 0.17 while in the y direction, a4 = 0.31. The fitted formulation is shown

in Fig. 4.5, where we can observe that even though the fitting of tortuosity is not ideal,

the permeability formulation yields a good approximation of the actual permeability,
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especially for high porosities, as expected.

To conclude, Eq. (4.6) models intrinsic permeability for both isotropic (AR = 1)

and anisotropic QSGS structures, requiring the calculation of tortuosity using Eq. (4.5).

The above equations depend only on the independent variables ε, cd and AR and their

coefficients are fixed according to the above cases. As a result, this permeability for-

mulation includes five fitting parameters, which unlike others in the literature are the

same regardless of particle shape and size. Table 4.1 summarises the aforementioned

coefficients for each case. Consequently, the proposed intrinsic permeability estimation

for random two-dimensional porous media generated by the QSGS method is straight-

forward since it does not entail any numerical simulations.

Table 4.1: Fitting coefficients for intrinsic permeability formulation Eq. (4.6).

Structure Flow direction a1 a2 a3 a4 a5

Isotropic any 2

0.11

0.7 - -

Anisotropic
x 8.8

0.3
0.17 −0.48

y 0.5 0.31 0.48

4.2 Apparent permeability of ultra-tight porous media

4.2.1 Apparent permeability results

The various morphological features of the aforementioned two-dimensional complex

porous media, unambiguously affect apparent gas permeability. Numerical results of

the linearised BGK solved by the DVM reveal the relationships between the control-

ling parameters of the QSGS structures and apparent permeability. Due to the high

computational cost [83], numerical results of only four porous structures are compared

across a wide range of Kn numbers. Nevertheless, these simulations are adequate to

demonstrate the impact of the variation of each parameter on the apparent perme-

ability, compared to a reference case. Simulations are performed for part of the slip

and transition flow regimes which are of main interest as far as shale production is

concerned. The same boundary conditions as in Section 4.1.1 are imposed, except for

the solid walls where the diffuse boundary condition is used, i.e. Eq. (2.8) for σ = 1.

In Fig. 4.6 the data points represent the raw data and not mean values, since

only one geometry is simulated for every set of QSGS parameters. The slip-corrected

permeability, obtained by fitting the numerical solution of the NSEs imposing the first-

order velocity-slip boundary condition (2.12) at small Knudsen numbers to the first-
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order of Kn, is also shown for comparison [21]. For low Kn numbers, the NSEs with

FVBC are solved instead of the BGK equations to reduce the computational cost. The

DVM method requires further refinement of the spatial grids in the early slip regime

and thus, the NSEs are preferred.

Specifically, the reference Case 1 is a porous medium with ε = 0.7, cd = 0.001

and AR = 1 (see structure in Fig. 2.2c). The other three structures are generated by

changing one of these parameters at a time. Firstly, for Case 2, the core distribution

probability cd is augmented (cd = 10cdref ), then for Case 3 the porosity is decreased

(ε = 0.7pref ), and finally a highly anisotropic structure (AR = 1000ARref ) is generated

for Case 4 (see structures in Figs. 2.2a, 2.2f and 2.2i respectively). Cases 4 and 5 share

the same structure, however, for the former, pressure gradient is applied along the y

direction (where τ � 1), while for the latter, it is applied on the x direction (where

τ u 1).

As previously mentioned in Section 2.4, it is preferable to use the effective char-

acteristic flow length, i.e. the average pore size, for the calculation of the effective

Knudsen number. Thus utilising Eq. (2.19) the Kn∗ used in the forthcoming analysis

is calculated from Eq. (1.12). Furthermore, the equivalent slip factor (see Eq. (3.3)) is

herein used.

The velocity distribution contour plots of the reference Case 1 in Fig. 4.7 give useful

insight of the rarefaction effects. A first observation for large Kn∗ numbers is that the

flow is more uniformly distributed along more paths. Moreover, the dimensionless

velocity in large pores is attenuated. At the same time, in many of the smaller pores,

the dimensionless velocity is significantly enhanced due to the large velocity slip at the

solid surfaces and Knudsen diffusion. Therefore, the difference of flow resistances for

pores of different sizes tends to be eliminated and thus the flow becomes more uniform.

The graph in Fig. 4.6a indicates that, generally speaking, apparent permeability

follows a similar trend as the intrinsic one, i.e. increase of cd, decrease of porosity and

increase of height to width ratio of the particles all lead to a drop of permeability. At the

same time, k∞1 > k∞5 > k∞2 > k∞3 > k∞4 and likewise ka1 > ka5 > ka2 > ka3 > ka4 .

However, for Cases 1 and 5, although k∞1 > k∞5 , ka1 > ka5 is valid for low Kn∗

numbers (Kn ≤ 0.1), then the inequality changes.

On the other hand, Fig. 4.6b demonstrates a different tendency of the permeability

enhancement (ka/k∞) in the regimes shown. In particular, for Case 2 the opposite

trend is observed between permeability enhancement and apparent permeability, i.e.

ka2/k∞2 > ka1/k∞1 even though ka1 > ka2 . However, for Cases 3 and 4 the same

trend is observed, i.e. ka1/k∞1 > ka3/k∞3 > ka4/k∞4 while ka1 > ka3 > ka4 . Finally,

ka5/k∞5 > ka2/k∞2 > ka1/k∞1 in the whole range of Kn numbers shown.
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Figure 4.6: Numerical results of the DVM for (a) the apparent gas permeability, (b)
the ratio of the apparent permeability to the intrinsic, and (c) the slip factor, as a
function of the effective Knudsen number Kn∗. Case 1, taken as reference shown in red
squares, corresponds to a structure with porosity ε = 0.7, core distribution probability
cd = 0.001, and aspect ratio AR = 1. For Case 2 shown in blue circles, cd = 10cdref ,
while for Case 3, in yellow diamonds, ε = 0.7εref . Finally, Cases 4 (in green upward-
pointing triangle) and 5 (in black downward-pointing triangle) are the same structure
having AR = 1000ARref where the flow is in the y and x direction respectively. The
dashed lines indicated with the same color as the corresponding cases are the slip-
corrected permeability, derived from the numerical solution of the NSEs coupled with
the FVBC. Note that the effective Kn number Kn∗ is 69, 166, 162, 316, 78 times of Kn
for the Cases 1, 2, 3, 4, 5, respectively.
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(a) Kn∗ = 0.007 (b) Kn∗ = 0.7

(c)

Figure 4.7: (a,b) Contour plots of the velocity magnitude normalised by its maximum
value for Case 1. The flow on the right plot has a Kn∗ number 100 times larger than
the flow on the left. For larger Kn∗ number, the flow in the biggest pores is attenuated
while it is enhanced in the smaller ones. It can be observed, hence, that the increment
of rarefaction leads to a more homogeneous distribution of velocity. In other words,
the effect of the high resistance of small pores tends to be eliminated resulting in a
more uniform flow behaviour. This can be confirmed in (c) where we realise that most
of the flow contribution comes from the smaller pores due to high rarefaction, whereas
the large pores contribute much less.
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The slip-corrected permeability generally underestimates apparent permeability,

with the exception of the low-tortuosity geometry (Case 5). Consequently it should

only be considered as accurate for very low Kn∗ numbers (in the early slip regime).

In addition to that, the effect of permeability enhancement being higher when increas-

ing cd (i.e. the number of particles) for high Kn∗ numbers is not captured under the

continuum assumption.

Therefore, increasing the core distribution probability cd leads to a boost of apparent

permeability with a rate higher than of the rest three Cases (1, 3, 4). This means that

the smaller the particles’ size for the same porosity (thus smaller pores), the more

apparent permeability is favoured. Moreover, introduction of anisotropy, where the

flow is in the direction of the particles’ elongation and tortuosity is low, leads to greater

permeability enhancement than all the other cases for all Kn∗ numbers. This means

that anisotropy not only favours apparent permeability compared to isotropic structures

with the same nominal number of particles, but also compared to isotropic structures

with smaller particles (Cases 1, 2) respectively.

On the contrary, drop of porosity and introduction of anisotropy where the flow is

in the direction perpendicular to the particles’ elongation, generally reduce the slope of

ka. As far as porosity is concerned, based on the analytical solution Eq. (3.1) of [126],

which is valid for high porosity porous media in the slip regime, ka/k∞ is expected to

be higher for reduced porosities. The numerical results of DVM are in agreement with

this tendency for Kn∗ ≤ 0.07. However, the numerical results of the NSEs coupled with

FVBC do not confirm this. Additionally, for higher Kn∗ DVM results drop of porosity

has a negative effect on permeability enhancement. Therefore, this trend indicated

by the analytical formula is generally not verified by the numerical simulations on the

various QSGS geometries.

The variation of the equivalent slip factor b′ with respect to Kn∗, as presented in

Fig. 4.6(c), is quite different among the cases considered. The slip factor of geometries

with high tortuosity, i.e. Cases 1−4, tends to attenuate whenKn∗ is high, while for Case

5 where tortuosity approaches unity b′ initially drops, reaches a minimum and then rises

in the free molecular flow regime. Again, slip-corrected permeability underestimates

the slip factor for the tortuous cases, while it gives a good approximation for the least

tortuous Case 5. It should be noted that the error of b′ is more pronounced for low

Kn∗, due to its derivation (see Eq. (3.5)), so possible shortcomings can affect severely

the result of this specific variable in the slip regime.

In agreement with the relevant comments of the previous chapter in Section 3.2,

again we observe that as Kn→∞ the slip factor either increases or reaches a plateau.

However, for the complex porous media simulated in this chapter, the general behaviour
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of b′ varies significantly depending on the porous media properties. Even though the

diffuse gas-surface boundary condition is applied for all these simulations, the slip-

corrected expression which seemed to provide a good permeability approximation for

the simplified porous media, here is close to the apparent permeability BGK results

of only the low tortuosity Case 5. In addition to this, Klinkenberg’s observation, that

the slip factor decreases with Kn, is present in the simulation results of the porous

media corresponding to Cases 2-5. Specifically, for Cases 2-4 b′ is a decreasing function

of Kn while Case 1 demonstrates a behaviour of the slip factor that resembles the

one of the simple porous media of Section 3.2 for non-unitary TMAC. Consequently,

Klinkenberg’s findings can be observed in complex porous media without necessarily

having diffuse-specular scattering. Nevertheless, it is concluded here that the agreement

of the slip-corrected formulation with the simulation results is a coincidence and cannot

be generalised even for unitary TMAC.

Finally, the classification of flow regimes, mentioned in Section 1.3 (see also Fig. 1.2),

is based on pipe flow experiments and thus may vary for more complex geometries

as emphasised by Beskok and Karniadakis [24]. For this reason, as expected, the

behaviour related to each flow regime is observed at different Kn∗ for each porous

medium. Specifically, the range of Kn∗ with linear dependence between Kn∗ and ka

indicates that slip behaviour can be observed roughly for Kn∗ ≤ 0.06, Kn∗ ≤ 0.02,

Kn∗ ≤ 0.02, Kn∗ ≤ 0.03, Kn∗ ≤ 0.06 for the Cases 1, 2, 3, 4, 5 respectively.

4.2.2 Computational time

For the numerical computations performed in this chapter, the same workstations men-

tioned in Section 3.1.1 are used. The computational resources are, however, increased

as follows. For the solution of the Boltzmann model equations 24 threads of the first

workstation are utilised, whereas for the solution of the NSEs 4 threads are used on

the second workstation.

The number of iterations and the simulation time for each of the cases mentioned in

Section 4.2.1, for some of the Knudsen numbers tested, are reported in Table 4.2. Most

of the observations of Section 3.1.1 for the rarefied flow simulations apply also here.

To start with, the number of iterations required for the high-performance gas kinetic

solver to converge are inversely proportional to the Knudsen number. The first and

highest Kn simulated are exempted for the reasons explained before. I remind here

that the molecular velocities are approximated by the 8×8 Gauss–Hermite quadrature

when Kn < 0.01 and the Newton-Cotes quadrature with 22× 22 non-uniform discrete

velocity points for higher Kn. Therefore, the increased velocity space leads to an

increase of the time required for each iteration to be performed. For example, for Case
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1, an iteration takes approximately 3s when Kn = 0.1, while when Kn = 0.01 an

iteration is performed in less than 0.5s. It is extremely difficult to correlate the number

of required iterations or time depending on the porous medium properties due to the

various factors influencing those parameters, such as Kn∗, porous medium complexity,

number of fluid points, tortuosity etc.

For the continuum regime calculations, the computational mesh used is coarser,

having half resolution. The convergence is achieved significantly faster, even though

this is not a fair comparison considering the difference in resolution and computational

resources utilised. Another observation is that, generally, the iterations and time re-

quired for the solution of both the NSEs and the Boltzmann model equations appear

to be similarly affected by the change in porous media properties (Case 1 compared to

Case 2 are exceptions).

4.2.3 Apparent permeability formulation

Similar to intrinsic permeability, apparent permeability could also be expressed as a

function of the independent variables. Additionally, it is a function of Kn. It is well-

documented that ka is a linear function of Kn in the slip regime for the diffuse gas-solid

interaction [21]. Considering a periodic array of circular discs, as in Section 4.1.2, the

analytical formula (3.1) for the apparent gas permeability is a non-linear function of

Kn [126]. Nevertheless, since the formula is based on the NSEs coupled with FVBC, its

applicability is limited to the first-order of Kn. Therefore, by expanding the formula

into a Taylor series around Kn = 0 and retaining up to the first-order terms, the

accuracy is maintained for the slip regime [21]. This simplified expression, same as

Eq. (3.2), is repeated here for the sake of completeness and reads

ka,c,slip = k∞,c + 2A1Kn
1

8π

√
π

P
(1− 2P + P 2), (4.7)

where A1 = 1.15 when the diffuse boundary condition is used, as in this study.

Dividing the above analytical formula by the factor a3gAR
a4τ2, the first term turns

into the general form of the intrinsic permeability k∞,random,an (4.6). The term pro-

portional to Kn needs to be adjusted accordingly, to incorporate the behaviour of the

various QSGS structures in rarefied conditions, as explained in Section 4.2.1. For this

reason, the factor a6cd
a7ARa8 is added. This yields

ka,random,an,slip = k∞,random,an + 2A1Kn
1

8π

√
π

P
(1− 2P + P 2)

a6
′cd

a′7ARa8
′

a3gARa4τ2
, (4.8)
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Table 4.2: Iteration steps and elapsed time for the numerical solution of the linearised
BGK equation using the implicit discrete velocity method when Kn > 0 and for the
numerical solution of the NSEs when Kn = 0. The time is measured by wall clock
time. The porous media correspond to Cases 1-5 mentioned in Section 4.2.1. The
mesh resolution is 1010 × 1000 for Kn = 0 and then double for Kn > 0. Note that
the computational resources used for the BGK simulations are different than for the
remaining runs.

Case 1: ε = 0.7, cd = 0.001, AR = 1

Kn Kn∗ Iterations Time (s)

100 69 6000 18.6× 103

10−1 6.9 3000 9.20× 103

10−2 0.69 9000 3.91× 103

10−3 0.069 11000 5.25× 103

10−4 0.0069 76000 37.0× 103

0 0 6843 3.97× 103

Case 2: ε = 0.7, cd = 0.01, AR = 1

Kn Kn∗ Iterations Time (s)

100 166 11000 31.1× 103

10−1 16.6 6000 21.9× 103

10−2 1.66 15000 6.60× 103

10−3 0.166 18000 7.71× 103

10−4 0.0166 53000 58.4× 103

0 0 1089 0.73× 103

Case 3: ε = 0.5, cd = 0.001, AR = 1

Kn Kn∗ Iterations Time (s)

100 162 49000 124× 103

10−1 16.2 24000 61.4× 103

10−2 1.62 81000 34.0× 103

10−3 0.162 101000 50.8× 103

10−4 0.0162 147000 73× 103

0 0 5121 1.77× 103

Case 4: ε = 0.7, cd = 0.001, AR = 1000

Kn Kn∗ Iterations Time (s)

100 316 47000 160× 103

10−1 31.6 16000 50.8× 103

10−2 3.16 84000 37.5× 103

10−3 0.316 88000 46.6× 103

10−4 0.0316 128000 57.2× 103

0 0 373 0.24× 103

Case 5: ε = 0.7, cd = 0.001, AR = 1000, τ u 1

Kn Kn∗ Iterations Time (s)

100 78 31000 102× 103

10−1 7.8 19000 62.7× 103

10−2 0.78 44000 20.6× 103

10−3 0.078 82000 45× 103

10−4 0.0078 154000 86× 103

0 0 321 0.20× 103



CHAPTER 4. PORE-SCALE SHALE PERMEABILITY 69

ka,random,an,slip
k∞,random,an

= 1 + 2A1Kn
∗ 1

8π

√
π

P
(1− 2P + P 2)

a6cd
a7ARa8

k∞,c
, (4.9)

where AR = 1 for isotropic geometries. The fitting is performed considering that the

above semi-analytical expression is expected to be most accurate for high porosities.

The numerical data utilised are derived from the NSEs coupled with the FVBC. The

fitted curves are identical to the ones resulting from the corresponding numerical results

(dashed lines) in Fig. 4.6b except for the Case 3 which was not considered due to its

low porosity.

It should be noted that intrinsic permeability given by the semi-analytical model

is a sufficient approximation of the intrinsic permeability of the simulated structures,

mainly due to the large amount of geometries tested. The fitting for the apparent

permeability is thus performed based on this approximation, but not accurate value.

Unlike the fitting for the intrinsic permeability in Section 4.1.2, the simulated structures

are here fewer due to the high computational cost. It can be concluded then, that the

coefficients of the formulae for estimation of apparent permeability can be considered

less reliable in this context. Nevertheless, using the resulted coefficients, we acquire a

good indication of the dependency of the slip factor on ε, cd and AR in the slip regime.

The values of the coefficients that gave a satisfactory fit are shown in Table 4.3.

Table 4.3: List of fitting coefficients for apparent permeability formulation Eq. (4.9).

Structure Flow direction a1 a2 a3 a4 a5 a6 a7 a8

Isotropic any 2

0.11

0.7 - -

0.26 −0.0091

-

Anisotropic
x 8.8

0.3
0.17 −0.48 0.113

y 0.5 0.31 0.48 −0.113

4.3 Conclusions

In summary, the structural properties of porous media significantly affect not only

intrinsic permeability, but also the slip factor appearing in apparent permeability, in

different ways as analysed. This assertion is based on the numerical dataset produced

from flow simulations of 400 geometries, generated using the QSGS method. These

numerical results indicate that the slip factor can follow similar behaviour to the one

observed by Klinkenberg in his experiments even for unitary TMAC. Additionally, the

slip-corrected expression underestimates apparent permeability in the majority of the

cases reported. These trends are not observed in the previous chapter where only

simplified porous media are considered.
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The above conclusions suggest that the use of permeability models based on over-

simplifications of the complex porous media geometry, such as the consideration of the

pores as straight tubes, gives misleading results. To address this issue, I presented a

simple semi-analytical formulation to calculate intrinsic permeability (Eq. (4.6)). This

formulation was also extended and revised to capture apparent permeability in the slip

regime (Eq. (4.9)).

The proposed approach of permeability estimation is fast and efficient, since it does

not entail numerical simulations or experimental measurements for the approximation

of intrinsic and apparent gas permeability (in the slip regime). For the moment, this

approximation is limited to 2D QSGS geometries. The physical features of real 3D

porous media cannot be fully represented in such structures. Therefore, the validity of

the current results and their extension in real porous media requires further investiga-

tion.

This study also highlights the uncertainties and challenges with regards to esti-

mating the permeability of complex porous media through simplified formulae. Since

random structures with the same nominal properties can have distinct permeabilities,

the concept of a unified formulation is itself contradictory. However, the proposed mod-

els successfully capture the impact of the variation of morphological characteristics on

permeability, giving indicative estimates and trends. Last but not least, these numer-

ical results could also serve as benchmarking cases to assist modelling of rarefied gas

flows in complex geometries.



Chapter 5

Upscaling techniques for shale

gas flows

Due to the absence of visible pore connectivity and the substantial compu-

tational cost of large scale flow simulations, direct numerical simulation of

shale gas flow is only feasible on high resolution images of small samples.

Upscaling techniques are employed to extract the effective permeability of

large samples up to the reservoir scale. In this chapter, some analytical

upscaling methods are compared with the numerical solution of Darcy’s

law in Section 5.1. Later, in Section 5.2, the effective permeability of ran-

dom porous media with and without fracture is computed numerically and

the results are discussed. Finally, in Section 5.3, the use of the Brinkman

equation for upscaling fractured porous media is studied, with a special fo-

cus on the concept of effective viscosity. The chapter concludes with final

comments.

5.1 Analytical versus numerical upscaling methods

In this section, only two-dimensional isotropic porous media will be treated so flow

needs to be considered only in one direction, the horizontal in this case. The boundary

conditions applied for the numerical solution of the Darcy equation are fixed pressure

at the inlet and outlet and no-flow at the lateral walls (imposing zero permeability).

The arithmetic, geometric and harmonic means provide simple estimates of the

effective permeability values of heterogeneous systems. In general, the arithmetic and

harmonic average give the upper and lower bound to keff respectively [133, 134]. Out

of the three, the geometric average usually provides the closest keff approximation for a

random isotropic permeability field. However, for large permeability variance/contrast

71



CHAPTER 5. UPSCALING TECHNIQUES FOR SHALE GAS FLOWS 72

k1

k2

k3

k4

pin pout k1 k2 k3 k4pin pout

Figure 5.1: Schematic illustration of (left) parallel flow and (right) series flow for n =
4 cells. The effective permeability is the arithmetic mean and the harmonic mean
respectively.

the use of more sophisticated methods is essential [135].

For flow in the horizontal direction, referred to as parallel flow (to the strata), the

upscaled permeability is provided by the arithmetic mean of the permeability values ki

as follows (see Fig. 5.1)

kAeff =
1

n

n∑
i=1

ki, (5.1)

considering that the n cells are of equal size as studied here. Flow in the vertical

direction is referred to as series flow (perpendicular to the strata) and keff results from

the harmonic mean (see Fig. 5.1)

kHeff = n

(
n∑
i=1

1

ki

)−1
. (5.2)

Finally, the most commonly used geometric mean which estimates the upscaled perme-

ability of a spatially random permeability field is given by

kGeff =

(
n∏
i=1

ki

)1/n

. (5.3)

King [135] introduced an elegant analytical upscaling method to account for large

(but not excessive) permeability fluctuations in heterogeneous porous media. The

renormalization technique is a stepwise averaging procedure extensively used for up-

scaling petroleum reservoirs. In this technique, a block of permeabilities is replaced

by an equivalent resistor network, following the analogy between a fluid flow through

a porous medium and a current through an electric circuit. The process is developed

upon a 2×2 block so for finer permeability fields it is repeatedly applied as many times

as needed, leading to a coarser grid, until a single equivalent permeability is calculated
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Figure 5.2: Schematic illustration of upscaling using the renormalization method of a
two-dimensional 2× 2 grid block.

[136].

For a 2× 2 block of isotropic 2D cells with individual permeabilities k1, k2, k3 and

k4 the effective permeability k2Deff using the renormalization method is given by the

following analytical expression (see schematic in Fig. 5.2):

k2Deff (k1, k2, k3, k4) =4(k1 + k3)(k2 + k4)[k1k3(k2 + k4) + k2k4(k1 + k3)]

× {(k1 + k2 + k3 + k4)[k1k3(k2 + k4) + k2k4(k1 + k3)]

+ 3(k1 + k2)(k3 + k4)(k1 + k3)(k2 + k4)}−1,

(5.4)

which is derived assuming that the inlet and outlet boundaries are at uniform pressure

and the top and bottom ones are solid walls (permeameter configuration) [135]. It

should be noted that this analytical expression is only valid for isotropic cells and

that the presence of anisotropy does not lead to a closed form formula, but requires

numerical implementation of the method. For 3D isotropic cases, a simple analytical

expression based on the renormalization method was later proposed by [137] as follows

k3Deff (k1, k2, k3, k4, k5, k6, k7, k8) =
1

4

[
k2Deff (k1, k2, k3, k4)

+ k2Deff (k5, k6, k7, k8)

+ k2Deff (k5, k6, k1, k2)

+k2Deff (k7, k8, k3, k4)
]
,

(5.5)

where the 8 block permeabilities and the 3D process are visualised in the schematic of

Fig. 5.3.

The author of [135] claims that renormalization is accurate for most of cases, tak-

ing the Darcy solution as a reference, unless permeabilities are arranged in particular

configurations. The sensitivity of the method according to the range of adjacent per-

meability values and their configuration is demonstrated in the examples of Table 5.1
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Figure 5.3: Schematic illustration of upscaling using the renormalization method of a
three-dimensional 2× 2× 2 grid block. The hidden block has permeability k8.

and Fig. 5.4. The effective permeabilities derived using the analytical upscaling meth-

ods of the geometric mean and renormalization are compared with the numerical result

of the Darcy solver, which is taken as reference, for numerous 2 × 2 and 4 × 4 perme-

ability blocks. In each case, four different permeability values ki are used where the

following colours indicate increasing value: blue, cyan, orange and red. This illustration

facilitates the identification of the permeability contrasts and patterns.

To start with, in Table 5.1, seven different 2 × 2 permeability fields are examined.

In Cases 1 and 2, the sequence of the permeabilities (pattern) is the same, however, the

permeability variance is smaller for the former, leading to smaller deviations between

the different upscaling methods as expected. The rest of the cases studied use the

permeability values of Case 2 in various spatial arrangements. For the Cases 2 and 3 the

two largest permeabilities are placed diagonally, so the deviation of the renormalization

method is as high as 30% due to the singularity point (most of the flow is forced to

go through the intersection of the four blocks, i.e. the center of the domain). For

Cases 4 and 5, the two largest values are placed in the two upper and two left blocks

respectively. This arrangement leads to closer keff values between the Darcy and the

renormalization methods (10% difference) although the placement of the other two

blocks is not advantageous for the flow since the lowest permeability is adjacent to the

highest one. For instance, in Case 4 the flow meets less resistance from left to right

on the upper part of the domain while the opposite happens for the lower part. Both

configurations force part of the flow to move diagonally to avoid the block with the

smallest permeability. Finally, Cases 6 and 7 demonstrate the best agreement between

the numerically derived keff and the one obtained from Eq. (5.4). Despite the fact

that the location of the highest permeability values is the same as in Cases 4 and 5, i.e.

k1, k2 and k1, k3 respectively, the difference here is 0%. This is due to the arrangement

of the other two permeability values which secure less severe permeability contrasts

compared to the two previous cases. The preferential flow path for Case 6 is the two
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Table 5.1: Upscaling permeability of a 2× 2 block of isotropic cells (4! possible combi-
nations without repetition). The permeabilities of the blocks in Case 1 have standard
deviation equal to 1.11 × 10−10 while for the rest of the Cases the standard deviation
is equal to 1.96 × 10−9. For both sets of permeabilities the values are illustrated with
blue, cyan, orange and red to show qualitative increase.

Case Method keff Difference

1
4× 10−10

2× 10−10

1× 10−10

3× 10−10 Darcy 2.26× 10−10 -

Geometric 2.21× 10−10 −2%

Renormalization 2.09× 10−10 −8%

2
5× 10−9

5× 10−10

1× 10−10

1× 10−9 Darcy 7.12× 10−10 -

Geometric 7.07× 10−10 −1%

Renormalization 4.97× 10−10 −30%

3
5× 10−9 5× 10−10

1× 10−10 1× 10−9 Darcy 9.01× 10−10 -

Geometric 7.07× 10−10 −21%

Renormalization 6.29× 10−10 −30%

4
5× 10−91× 10−9

1× 10−105× 10−10

Darcy 10.7× 10−10 -

Geometric 7.07× 10−10 −34%

Renormalization 9.67× 10−10 −10%

5
5× 10−9

5× 10−10

1× 10−10

1× 10−9

Darcy 5.05× 10−10 -

Geometric 7.07× 10−10 40%

Renormalization 4.55× 10−10 −10%

6
5× 10−9

5× 10−101× 10−10

1× 10−9 Darcy 9.17× 10−10 -

Geometric 7.07× 10−10 −23%

Renormalization 9.17× 10−10 0%

7
5× 10−9 5× 10−10

1× 10−101× 10−9 Darcy 5.45× 10−10 -

Geometric 7.07× 10−10 30%

Renormalization 5.45× 10−10 0%

upper blocks while for Case 7 it is the two lower ones.

The sensitivity of the renormalization method is further investigated in more com-

plex configurations like the two 4×4 permeability fields depicted in Fig. 5.4. Each 4×4

fine-mesh grid is converted to a 2×2 coarse-mesh grid before a single permeability is ac-

quired. This intermediate step is necessary when applying the renormalization method

using Eq. (5.4) but not for the numerical solution of the Darcy equation. Cases 8 and
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Figure 5.4: Upscaling permeability of a 4× 4 block of isotropic cells using renormaliza-
tion (two successive aggregations are needed). The resulting keff = 7.49× 10−10 is the
same for both Case 8 and 9. However, the numerical solution of the Darcy equation
gives keff = 1.08× 10−9 for the former Case and 8.41× 10−10 for the latter.

9 are carefully constructed to demonstrate a weakness of the renormalization method.

Observing the four blocks indicated by the green rectangles in Fig. 5.4(d) and (f), k1

and k2 of Fig. 5.4(d) become k3 and k4 of Fig. 5.4(f) and vice versa. In other words,

the two upper blocks of the former coarse-scale grid become the two lower ones of

the latter, see Fig. 5.4(b) and (d). This is expected to result in the same keff using

the renormalization method due to the averaging process performed in a segregated

manner. Nevertheless, carefully comparing the fine-scale grids of Cases 8 and 9, we

see that at the boundaries of each coarse-scale cell, different permeability contrasts are

encountered which affect the preferential paths of the flow. The spatial arrangement of

permeabilities at the edges of each of the four blocks of the coarse-scale grid plays no
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role for the renormalization method which provides equal values of keff = 7.49×10−10.

Furthermore, the geometric mean gives keff = 7.07 × 10−10. On the other hand, the

numerical solution of Darcy’s law leads to effective permeabilities of 10.8 × 10−10 and

8.41× 10−10 for Cases 8 and 9 respectively.

Since the aforementioned popular analytical upscaling techniques are problematic

for several convoluted permeability configurations, it is worth investigating further

numerical alternatives. Especially in permeability fields with high contrasts between

neighbouring cells, such as in shales, it is suggested to upscale permeability employing

Darcy’s law [135] which is considered the most accurate upscaling technique [54, 134].

5.2 Hierarchical upscaling using the Darcy solver

Permeability upscaling from the pore-scale is herein performed numerically solving

Darcy’s law as explained in Section 2.2. For this section, the boundary conditions at

the edges of the computational domain mimic the ones of the experimental permeameter

(see Section 2.2.3). To demonstrate and investigate the potential of this method for

permeability upscaling for some of the cases of interest, the permeability computed

from the direct numerical simulation of the full sample is compared with the effective

permeability computed using the following two-step technique.

• First, the full sample is divided in four sub-domains of equal size and the per-

meability tensor of each one, ki, is computed solving the Stokes equations twice

(once per each of the main directions), as seen in Fig. 5.5.

• The 2×2 permeability field derived is utilised as input for the Darcy solver which

gives keff .

Then, the accuracy of the calculated effective permeability, keff is evaluated comparing

with the permeability of the initial full sample, k. The relative error of the permeability

estimation is computed as follows

η =
|keff − k|

k
100%. (5.6)

An automated process is developed to provide the permeability of each sub-domain.

This entails the following steps: meshing, decomposition of the domain, setup of each

simulation, solution of each flow direction, return of the sub-domain properties such as

dimensions, porosity and full permeability tensor. Later, the effective permeability is

obtained by solving the macro-scale problem, i.e. Darcy’s equation. The permeabilities
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(a) (b)

Figure 5.5: Pressure contours of the sub-domain simulations performed applying dp/dx
and dp/dy (the arrows indicate the flow direction). The intrinsic permeability tensor
ki of each sub-domain i = 1, 2, 3, 4 is obtained. The small grey area in the intersection
of the sub-domains indicates the lost volume compared to the initial sample.

computed from the automated process constitute the permeability field of the macro-

scale problem.

At this point, it is important to analyse the decomposition process applied. The

native mesh decomposition tool of OpenFOAM is used, decomposePar , initially developed

for parallel computation. The tool is set here to provide blocks of equal size. The

different strategies that can be implemented are the following:

• Mesh the whole sample and then decompose it to the desired number of sub-

domains.

• Decompose the sample to the desired number of sub-domains and then mesh them

individually.

The first strategy is chosen since it is more straightforward and efficient. Both

approaches result in the creation of unconnected pores at the boundaries of the sub-

divisions which lead to lower total porosity of the porous material. In the approach

used here the disconnected pore space is meshed and thus should be removed for the

numerical solution to be performed. An automatic process is applied to detect and
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remove these problematic areas, but on the same time evaluate their size. Note that

when using the latter approach, the volume loss cannot be evaluated directly, since

the unconnected pore-space is not meshed, but can be calculated from the comparison

between the initial porosity and the sum of the porosities of the sub-domains.

A statistically isotropic 2D porous medium generated with ε = 0.7 and cd = 0.001

is decomposed in four equal sub-domains. The intrinsic permeability tensor ki of each

sub-domain i = 1, 2, 3, 4 is calculated by solving the Stokes equations for pressure

driven flow as explained in Section 2.3. The pressure contour plots of each of the

necessary simulations in the two main directions are shown in Fig. 5.5. The sub-

domains are numbered as in the renormalization method, see Fig. 5.2. Note that the

applied pressure gradient should be the same in the full and sub-domain simulations

in order to maintain the mass flow, hence the pressure difference is reduced by half

compared to the full domain simulation. The computed ki of each sub-domain is

then used as input for the Darcy simulation. The resulting effective permeability keff

(diagonal element in the streamwise direction) is compared to the true permeability of

the undivided original QSGS geometry k.

The same process is repeated for the same structure having a fracture that runs

along its whole length. The fracture is extracted and adapted accordingly from an

online database of images of porous micro-structures [138]. It is placed in two different

positions, which lead to its allocation to separate sub-domains. In this way, it enhances

the permeability ki of the sub-domain it lays on (potentially, as explained in what

follows). The velocity contours and permeability distributions of the aforementioned

three configurations are shown in Fig. 5.6. The decomposition method results in a small

loss of volume in the order of 0.1% (see grey area in the middle column of Fig. 5.6).

The hierarchical upscaling of the initial QSGS structure leads to a relative error,

of 5.43%. The volume loss is negligible (0.1%) and cannot impact the effective perme-

ability calculation significantly. On the other hand, comparing the velocity contours

of Fig. 5.6(a) and (b) we observe that some of the main flow paths are eliminated due

to the domain division, while some new ones are created. Inevitably, this fact affects

the permeability tensor of each sub-domain, ki (see Fig. 5.6(c)). The distribution of

sub-domain permeabilities, reported in Fig. 5.7, indicates that they differ significantly.

For example, the kxx permeabilities are approximately between 6×10−6 and 15×10−6

with a standard deviation equal to 3.3 × 10−6. This highlights that the sub-domain

size is smaller than the Representative Elementary Volume (REV), i.e. the smallest

volume of a porous medium for which the observed properties (such as porosity and

permeability) are representative of the whole [139].

Nevertheless, the method does not seem to be sensitive to the sub-domain size, as
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Figure 5.6: Hierarchical upscaling of the isotropic QSGS structure (ε = 0.7 and cd =
0.001) with (second and third row) and without a fracture (first row) for pressure
driven flow from left to right. Visualisation of the velocity contours of the initial
domain (first column), and of the four sub-domains (second column). The small grey
area in the intersection of the sub-domains indicates the lost volume compared to the
initial sample. Finally, the permeability field is shown, i.e. the magnitude of ki for
each sub-domain (third column).
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Figure 5.7: Permeability tensor components of the sub-domains which are illustrated
in Fig. 5.5. The corresponding components of the full sample and of the effective
permeability tensor are also depicted for comparison. The diagonal components are
presented in (a) and the off-diagonal ones in (b).When the abscissa is 1 the components
belong to the first row of the permeability tensor, while when the abscissa is 2, they
belong to the second row.

emphasized by [140], since the resulting keff components are a close approximation

of their k counterparts. Therefore, apart from the good accuracy, this method is

advantageous since it enables the numerical evaluation of large digital rock images

even using a desktop computer, due to the low memory requirements of the sub-domain

simulations compared to the one of the initial sample. It should be noted that keff is

reported here for the purpose of this comparison. In other parts of this thesis, only

keff , which indicates the diagonal element in the horizontal direction, is reported.

The addition of a fracture and most importantly its position with respect to the

domain decomposition can significantly affect the calculation of the effective permeabil-

ity using the hierarchical upscaling method. It is widely known that fractures enhance

the overall permeability and constitute the main flow paths in low permeability porous

media. As seen in Fig. 5.6(d) and (e) the fracture is assigned to the two upper sub-

domains and the velocity contours of the initial porous medium and its blocks are

very similar. Thus, as expected, the predicted permeability has a very small relative

error, i.e. η = 0.6% owing to the advantageous fracture decomposition. Conversely,

in Fig. 5.6(g) and (h) the detrimental effect of a disadvantageous fracture division is

shown. The left half of the fracture is assigned to two neighbouring blocks, in a way that

its corresponding parts do not run along the streamwise direction; becoming dead-end

pores. As a consequence, the computed permeability of these sub-domains is severely
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underestimated, as seen in Fig. 5.6(i), leading to η = 56.19%.

This analysis provides an understanding into the challenges of incorporating frac-

tures in the upscaling process starting from the pore-scale. First, the sub-domain

boundaries should be carefully selected taking into account the morphology of the frac-

tures. Additionally, instead of using a Darcy solver, a hybrid upscaling method is more

appropriate in treating porous media with fractures, especially when their size is fairly

greater than the average pore size. For smaller factors of heterogeneity and anisotropy

the method of upscaling presented in this section provides an accurate prediction of the

effective permeability as marked in [140]. Even though increasing heterogeneity and

anisotropy increases the error of the method, the approximation of keff is adequately

accurate.

5.3 On the effective viscosity of the Brinkman model

As previously mentioned in Section 1.5, the momentum transport between porous and

free flow regions in low-Reynolds number flows can be expressed by the Brinkman

equation. The controversial matter of the effective viscosity µeff , which is present

in this equation, has been extensively investigated, however, consensus has not been

reached yet regarding its form or value.

In this section, a few basic alternatives regarding the value of effective viscosity are

investigated and the option of a variable permeability model across the transition zone

is examined. For this study, the experimental setup of Beavers & Joseph [75] (fully-

developed, steady, quasi-one-dimensional flow process) is replicated, herein employing

random two-dimensional porous media generated with the QSGS method. The domain

consists of a rectangular channel of variable width H which is placed over a porous block

of fixed size L, as demonstrated in Fig. 2.3b. The boundary conditions employed in this

section mimic the ones of the experimental permeameter as explained in Section 2.2.3.

In various papers focusing on the interfacial boundary condition and/or the Brinkman

model, the issue of the choice of the interfacial location between the porous and the

plain regions is highlighted [82, 141]. In this thesis, the nominal interface is chosen to

be the surface tangent to the outermost pore perimeter [75, 82], see Fig. 2.3b.

Firstly, I carry out independent calculations to obtain the permeability tensor k

of the selected porous medium as explained in detail in Section 2.3. I later use this

k as input for the Brinkman model (which is modified appropriately), obtaining the

effective permeability (coarse-scale) kCeff . In parallel, I perform simulations of the

same configuration using the exact geometry of the matrix. In this way, the fine-

scale permeability kFeff is obtained through direct simulations and the accuracy of the
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Brinkman model is then evaluated. The relative error of the effective permeability

estimation is defined as

η =
|kFeff − kCeff |
|kFeff |

100%. (5.7)

The quasi-one-dimensional (even though the full permeability tensor is used as in-

put) Brinkman results are compared to the ones of the direct simulation in an attempt

to evaluate various model variations. To achieve this, the volume-averaged streamwise

velocity profiles are employed to visualise the differences of the microscopic and macro-

scopic solutions. In most of the following figures, the depicted profiles are zoomed in

to cover mainly the transition zone and the free flow region, since the deviation of the

different approaches is mostly observed there. The thickness of the transition zone

is typically expected to be equivalent to the size of a few pores, in the order of
√
k

[76, 82, 141].

To begin with, the flow through a statistically isotropic porous medium with ε = 0.7

and cd = 0.001 (see Fig. 2.2e), having a fracture of H = 0.05L on top is studied. The

results are illustrated in Fig. 5.8. The common values of effective viscosity µeff = µ

[60] and µeff = µ/ε [80] are employed, as well as the heuristic value of µeff = 3µ/ε

which was found to provide the most accurate interfacial tangential/slip velocity (see

Section 1.5). It is worthwhile to note that when using effective viscosity of the form:

µeff = cµ/ε (where c is an adjustable parameter), since the porosity of the fracture

is unity, the original fluid viscosity is automatically applied in the free flow region,

as required. Observing the volume-averaged velocity profile derived from the direct

simulation, we confirm that at y ≈ 20 velocity starts to increase significantly, indicating

thus the size of the viscous transition zone, see inset figure of Fig. 5.8a. This point where

the viscous term starts to become negligible (as we approach the bulk of the porous

medium) is herein referred as yl, indicating the lower boundary of the transition zone.

Employing the original Brinkman model with µeff = µ and comparing it with the

Stokes solution, the relative difference between the effective permeabilities is about

14%. The µeff = µ/ε performs slightly better resulting in a discrepancy of 12%.

Using this visualisation for better understanding, we realise that the main source of

error is the underestimation of velocity in the transition zone which affects slip velocity

(at the interface) and thus the flow through the fracture. Through a trial and error

process, the use of the effective viscosity µeff = 3µ/ε in the Brinkman model is found to

provide an interfacial tangential (slip) velocity close to the one of the direct simulation.

As expected, the error of the Brinkman model is now reduced to 5%. Nevertheless, it

is not eliminated due to the remaining discrepancy in the porous region. The results

also highlight that increasing µeff the viscous shear effects penetrate further into the
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porous medium, eventually creating an inter-region of size similar to the one derived

from the direct simulation, for µeff = 3µ/ε.

Increasing the fracture size to H = 0.1L leads to a decrease of all three errors

reported previously. This is due to the fact that increasing the gap size, the contribution

of the porous medium to the total flow tends to become negligible. The velocity at

the interface is enhanced and the viscous effects become more important above the

transition zone. Generally speaking, the viscous term of the Brinkman equation (1.23)

plays no major role at the main porous region/bulk (except the transition zone). In

fact, it is almost zero, thus the use of different values of effective viscosity has an impact

only in the transition zone (see Fig. 5.8b, all dashed lines merging at the bottom of the

transition zone).

5.3.1 Variable permeability model

The different values of effective viscosity practically allow for the variation of velocity

near the interface. However, taking µeff as an adjustable coefficient conveniently cho-

sen to match the direct simulation results is not of practical interest. Observing the

behaviour of a constant µeff we conclude that although the right interfacial velocity

might be predicted, generally, the velocity profile in the inter-region is less accurate. To

overcome this shortcoming, the concept of variable effective properties, e.g. permeabil-

ity, viscosity and porosity, has been suggested in the literature [82, 142, 143]. In this

thesis, my study is limited to the position-dependent permeability model. Intuitively,

we expect permeability to be higher at the transition zone, since the permeable material

exhibits lower resistance to the flow there, compared to its bulk region. It is empha-

sized that for simplicity, due to the nature of the flow (quasi-one-dimensional), only the

horizontal (streamwise) diagonal permeability component kxx is position-dependent in

the vertical direction (i.e. the y-direction).

To begin with, kxx(ytr) where ytr is in the transition zone, is obtained using the

direct simulation data (computed velocity field). For the same porous medium and for

channel of thickness H = 0.05L the permeability in the transition zone, 0 ≤ ytr ≤ 20,

can be fitted into an exponential function, i.e. a exp(bytr) + c. The three constraints

that need to be satisfied in order to provide the three constants are:

1. kxx at the interface (y = 0) should be equal to the one from the direct simulation,

2. kxx at the lower end of the transition zone, yl, (where the inertial effects are

almost eliminated) should be equal to the one of the bulk of the porous medium,

3. the other constant can be obtained using the permeability of any intermediate

location of the transition zone, e.g. its middle point.
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Figure 5.8: Profiles of the normalised streamwise-averaged velocity for the isotropic
porous structure of Fig. 2.2e. A fracture of thickness H = 0.05L is placed on top of the
porous medium and their common interface is at y = 0. (top) The Stokes and Brinkman
results are compared across the whole height of the domain, while the transition zone
(0 . ytr . 20) is better depicted in the zoomed inset figure. (bottom) The impact of
the different µeff values is visualised, along with the results of the Brinkman simulation
where a variable permeability (obtained from the corresponding Stokes data) is used
along the transition zone.
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Figure 5.9: Flow chart of the iterative process/algorithm of permeability correction at
the vicinity of the fluid-porous interface. The number of iterations is i.

The effective viscosity is taken equal to fluid viscosity, while permeability at the bulk

of the porous medium remains unchanged; it is enhanced only at the boundary layer.

The results for this reference case indicate a good agreement between the macroscopic

and microscopic solutions, giving a negligible (0.4%) error as shown in Fig. 5.8b. Even

though the use of this method and the use of the constant µeff = 3µ/ε lead to almost

identical values of slip velocity (see (ū/ūmax)|y=0), the Brinkman solution with µeff = µ

and kxx(ytr) results in higher velocities at the transition zone, leading to increased

accuracy. However, a drawback to using this approach is that it requires a priori

knowledge of the direct simulation solution in order to correct permeability at the

inter-region.

Iterative correction of the variable permeability

To circumvent this shortcoming, permeability is herein corrected using an iterative

process fed with the solution of the previous Brinkman simulation. The algorithm

introduced here can be described as follows (see also flowchart in Fig. 5.9):

1. The numerical solution of the Brinkman equation with µeff = µ is performed.

2. The kxx(ytr) of the transition zone is computed, where the transition zone is

defined by the nominal interface y = 0 and yl,where kxx|yl = 1.01kxx|porous bulk.

3. kxx of the transition zone is replaced by the result of Step 2.
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(a) kxx = 5.5 × 10−6, kFeff = 19.8 × 10−6 (b) kxx = 0.2 × 10−6, kFeff = 11.2 × 10−6
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Figure 5.10: Velocity contour plots from the Stokes simulations (first row) and nor-
malised velocity profiles from the Stokes and Brinkman simulations (second row). The
normalised velocity profiles focus on upper part of the domain as indicated by the
brackets in the first row. The fracture size on top of the porous medium is H = 0.05L
(interface is at y = 0). The isotropic porous media have ε = 0.7, cd = 0.001 (first
column) and ε = 0.7, cd = 0.01 (second column). The iterative scheme is applied
to correct the streamwise diagonal permeability value of the transition zone, kxx(ytr),
using data from the previous Brinkman run.
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(a) kxx = 1.8 × 10−6, kFeff = 15.7 × 10−6
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Figure 5.11: Velocity contour plots from the Stokes simulations (left) and normalised
velocity profiles from the Stokes and Brinkman simulations (right). The normalised
velocity profiles focus on upper part of the domain as indicated by the brackets in the
first row. The fracture size on top of the porous medium is H = 0.05L (interface is at
y = 0). The isotropic porous medium has ε = 0.6 and cd = 0.001. The iterative scheme
is applied to correct the streamwise diagonal permeability value of the transition zone,
kxx(ytr), using data from the previous Brinkman run.

4. The Brinkman simulation is again performed having all other parameters un-

changed.

5. Steps 2-4 are repeated until the termination criterion is met; in this case, when

the mass flow at the channel changes by less than 1% compared to the previous

iteration.

This iterative process is herein applied in a few porous media with a fracture size of

H = 0.05L as before. To begin with, I focus on two isotropic porous media with ε = 0.7,

cd = 0.001 and 0.01 respectively; the corresponding results can be found in Fig. 5.10.

For the former porous medium, the error for the first Brinkman run is 14.4%. The error

for each consecutive iteration is reduced to 8.4%, 6.1% and 5.3%. As in the case of the

variable permeability, kxx(ytr), that resulted from the direct solution, each Brinkman

numerical simulation that has kxx(ytr) as input, results in having a larger transition zone

than the previous iteration. Thus, the local permeability also grows until convergence
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(a) kxx = 10.7 × 10−6, kFeff = 25.8 × 10−6 (b) kxx = 2.2 × 10−6, kFeff = 16 × 10−6
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Figure 5.12: Velocity contour plots from the Stokes simulations (first row) and nor-
malised velocity profiles from the Stokes and Brinkman simulations (second row). The
normalised velocity profiles focus on upper part of the domain as indicated by the
brackets in the first row. The fracture size on top of the porous medium is H = 0.05L
(interface is at y = 0). The anisotropic porous medium has ε = 0.7, cd = 0.001 and
AR = 100. The same porous medium is used in both columns, however for the second
one it is rotated by 90o. The iterative scheme is applied to correct the streamwise di-
agonal permeability value of the transition zone, kxx(ytr), using data from the previous
Brinkman run.
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is achieved. For the latter porous medium, of a smaller particle size, the initial error

of the Brinkman simulation is 7.4%. The next runs with corrected permeability at the

transition zone lead to an error of 4.5% and 3.8%. A porous medium with a smaller

porosity, ε = 0.6 and cd = 0.001 is then tested (see Fig. 5.11). In this case, the iterative

process is unfruitful since the error of the effective permeability (23%) changes by less

that 0.1%. For the above isotropic cases, the iterative process often converges after less

than 3 iterations (solutions of the Brinkman equation).

Finally, an anisotropic porous medium with ε = 0.7, cd = 0.001 and AR = 100 is

studied. The porous medium is first simulated applying pressure gradient in the same

direction as the largest diagonal permeability, i.e. flow along the bedding plane, where

τ ≈ 1 (η = 14%). Afterwards, it is rotated by 90o, where the diagonal permeability is

the smallest, i.e flow perpendicular to the bedding plane, and τ � 1 (η = 18%). In

both cases, the algorithm unfortunately diverges as shown in Fig. 5.12.

5.4 Conclusions

Some analytical upscaling techniques that are commonly used in reservoir engineering,

are herein compared with the numerical solution of the Darcy equation. The analytical

methods exhibit inferior sensitivity to changes in the permeability field and to high

permeability contrasts, as those encountered in shales. Therefore, numerical upscaling

methods are employed in the rest of this study.

Specifically, the accuracy of the effective permeability derived from the Darcy solver

is successfully evaluated for some porous media of interest, taking the corresponding

direct simulation solution as a reference. However, when fractures are added in the

porous medium, the need for a hybrid model that can handle the separation of scales

is evident. For this reason, the Brinkman model is particularly investigated.

Regarding the Brinkman equation, I focus on the impact of the transition zone flow

velocity on the calculated effective permeability, and thus the accuracy of the model.

Choosing alternative values of effective viscosity to conveniently match the expected

results can lead to more accurate keff estimation. However, this method is of no

practical interest since the direct simulation results are not always available.

The concept of µeff can be replaced by the notion that the permeability of the

porous medium near the fluid-porous interface is enhanced. This computed local per-

meability when used as input for the next Brinkman simulation gives promising results.

Undoubtedly, this iterative correction of the transition zone permeability offers better

agreement of the Brinkman model with the Stokes results, when statistically isotropic

porous media are considered. However, one disadvantage of this method is that it
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does not always lead to significant improvement of the accuracy, depending on the

porous medium properties. Additionally, for the tested anisotropic porous medium,

the algorithm diverges, giving larger error than the initial estimation of the Brinkman

model.

In the absence of a suitable universal effective viscosity or velocity correction process

in the transition zone, for the random porous media of interest, the relationship µeff =

µ is retained in the rest of this thesis (as suggested by [70] for complex porous media).



Chapter 6

Upscaling pore-scale shale

permeability

The effective permeability of large shale samples provides useful insights for

shale gas production. Although the Brinkman formulation is widely used in

permeability upscaling of conventional rocks, its application in shale rocks

is rare and its accuracy has not been assessed. I remind here that in shale

gas flows rarefaction effects are important and that the conventional Navier-

Stokes equations are inadequate. This chapter aims to address the above

problem, by comparing the Brinkman solutions of several two- and three-

dimensional random porous media containing fractures with the solutions of

the Stokes and Boltzmann equations (for continuum and rarefied gas flows

respectively). In Section 6.1, the impact of various morphological charac-

teristics such as porosity, pore size, anisotropy and fracture aperture, on

the accuracy of Brinkman model for gas flows in the continuum regime is

assessed in 2D structures. Moreover, various 3D porous media generated to

mimic the characteristics of real pore-scale shale samples are tested, pro-

viding useful insights pertaining to the application of Brinkman approach

for permeability upscaling. In Section 6.2, the deviation of the macroscopic

model for permeability upscaling in multiscale porous structures (i.e. gas

flow is rarefied at the smaller scales) is examined across a wide range of

rarefaction. Finally, this chapter concludes with some important remarks.

6.1 Upscaling continuum flows

In my numerical computations, I mimic the experimental setup of Beavers & Joseph [75]

using 2D and 3D porous media generated with the QSGS algorithm. Several random

92
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porous media are utilised in order to showcase the level of accuracy of the Brinkman

approach depending on the properties of permeable materials. A series of simulations

are performed, varying the width of the channel, the boundary conditions, and the

orientation of the porous medium. I follow the same process as in Section 5.3, never-

theless, in the Brinkman simulations of this chapter the effective viscosity is maintained

equal to the fluid viscosity. Furthermore, if not specified differently, I remark that the

permeameter configuration is employed for all the continuum flow simulations.

6.1.1 Two-dimensional QSGS

Isotropic porous media

To begin with, I investigate statistically isotropic QSGS geometries (AR = 1). In

this context, I maintain the same channel width in all simulations (H = 0.05L). The

impact of porosity ε, with cd = 0.001, and effective particle size cd, with ε = 0.7,

on the accuracy of the Brinkman equation is shown in Table 6.1. We observe that

the relative error monotonically decreases while ε and cd increase, even though these

two parameters have an opposite effect on the permeability as analysed in [86] and in

Section 4.1.1. Nevertheless, the common attribute for both aforementioned parameters

is that their enhancement leads to smaller values of the dmean, i.e. the mean diameter

of the particles if those are considered to be circular discs.

Recently, Zhang and Prosperetti [144] remarked that a small ratio of the free region

width to the radius of the solids could conceal the physical picture. Therefore, noticing

the importance of the ratio H to dmean I further examine its influence on the cases of

interest. I test the isotropic porous structures of ε = 0.7 and cd = 0.001, 0.01, varying

the channel thickness. Here I must remark that the permeability of these two random

porous media used in this comparison differs by 30 times. In agreement with the

previous results, Fig. 6.1 shows that the deviation between the permeability calculated

from the solution of Stokes and the Brinkman equations drops when H/dmean increases.

The relative error decays to zero in a monotonic fashion and is mostly depending on

the value of H/dmean, irrespective of the properties of porous media.

Increasing channel thickness for the same porous medium, practically decreases the

amount (proportion) of fluid passing through the pores of the porous block. In other

words, only the channel flow is significant and thus the drag term becomes negligible.

Therefore, the Brinkman formulation approaches the Stokes equation, which justifies

the small relative error in Fig. 6.1. Moreover, as H grows, the effective permeabili-

ties computed using the two porous structures differ less and less and approach the

permeability of the flow in the channel only.
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Table 6.1: Accuracy assessment of the Brinkman model in isotropic QSGS structures
with H = 0.05L. First three columns: variation of porosity ε while cd = 0.001. Last
three columns: variation of cd while ε = 0.7. Note that cd controls the size of solid
islands, where the larger values corresponds to smaller islands.

cd = 0.001 ε = 0.7

ε H/dmean η cd H/dmean η

0.6 0.94 23.08% 0.001 1.39 14.16%

0.7 1.39 14.16% 0.005 2.68 9.92%

0.8 2.13 9.12% 0.01 3.44 7.46%

When dmean decreases this leads to a more homogeneous porous medium as stated

in our previous publication [86]. It appears that homogeneity favours the Brinkman

equation which gives more accurate results increasing the H/dmean ratio, as seen in

Fig. 6.1. As H/dmean becomes smaller the relative error reaches its maximum value,

which is up to ∼ 23% for the isotropic cases considered. The simulation results of the

two aforementioned isotropic porous media with different particle sizes (cd), thus degree

of heterogeneity, for the case of H = 0.025L are illustrated in Fig. 6.2. Streamwise-

averaged velocity profiles are presented here, see Fig. 6.2 (c-d), since the flow simulations

in this work can be considered quasi-one-dimensional. This is due to the dominance

of fractures and due to the small values of the off-diagonal permeability components,

compared to the diagonal ones. The velocity contours for the same runs indicate a

potential source of error of the Brinkman estimation. We observe from Fig. 6.2 that

in the fine-scale models the shape of the channel is not in fact straight, but due to the

existence of some pores adjacent to it, its local thickness is often larger. An additional

source of uncertainty is the input permeability tensor, whose value is slightly depending

on the flow configuration setup [117].

Anisotropic porous media

Moreover, flow simulations using anisotropic QSGS structures are conducted to ex-

amine the divergence of permeability from the direct computation. The porous me-

dia used herein are generated using the following fixed parameters ε = 0.7, cd =

0.001, H = 0.05L, and for varying values of AR = 100, 500, 1000. The deviation shown

in Fig. 6.3 from the Stokes solution ranges from approximately 0 to 24% for all the

tested anisotropic structures.

To reduce the uncertainty caused by the randomness of the generation algorithm

(stochastic) described in Section 2.1, five anisotropic porous structures are created for
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Figure 6.1: Accuracy assessment of the Brinkman model in isotropic QSGS structures
when the channel height H varies. The porosity is ε = 0.7, and cd = 0.001 and 0.01.

the same set of generating parameters. Despite the fact that the results are quite

scattered, the tendency for the relative error of the Brinkman solution is to increase

with anisotropy when the flow is parallel to the bedding plane (k = kxx) and decrease

if otherwise (k = kyy). In the former case, due to the orientation of the solid particles

(elongated in the horizontal direction), tortuosity τ is close to unity while in the latter,

where the same porous medium is rotated by 90◦, τ � 1. Since the shape of the particles

is ellipsoidal in these anisotropic structures, I use the ratio H/L∗ (see Eq. (2.19)) in

the rest of this study.

Generally speaking, as AR increases, H/L∗ is almost fixed when the flow is simu-

lated parallel to bed, in the direction of the elongation of the solid particles (τ ≈ 1),

since kxx remains in the same order of magnitude [86] (see Section 4.1.1). However,

when the flow is in the perpendicular direction (τ � 1), H/L∗ increases with AR as

kyy drops significantly. A clear correlation for the relative error of permeability with

respect to the H/L∗ cannot be observed for the geometries considered, although it is

obvious that it tends to drop for increasing H/L∗. Consequently, both Fig. 6.3(a) and

(b) yield the conclusion that when the flow is perpendicular to bed, the error associ-

ated with the Brinkman model is reduced with increasing anisotropy. Lastly, the plot

of fine-scale effective permeability is an increasing function of the permeability of the

porous medium for both isotropic and anisotropic geometries, see Fig. 6.3(c).

The use of an alternative boundary condition at the upper wall is also investigated.

Symmetry boundary condition is applied on the reference configuration of H = 0.05L

to simulate the case where the fracture is embedded in the middle of the isotropic
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Figure 6.2: Contour plots of the velocity magnitude for the isotropic cases of the same
porosity ε = 0.7 with cd = 0.001 (a) and 0.01 (b), when H = 0.025L. (c) and (d)
Profiles of the normalised streamwise-averaged velocity for the porous structures in (a)
and (b), respectively. The transition zone (interface is at y = 0) is smaller for porous
media with smaller cd since the zone size is related to the effective pore size (as analysed
in Section 5.3).

porous medium (ε = 0.7, cd = 0.001). The relative error is then 17% which is slightly

higher than the 14% error, which corresponds to the case where the solid wall boundary
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Figure 6.3: (a) and (b) Accuracy assessment of the Brinkman model in anisotropic
QSGS structures with ε = 0.7, cd = 0.001, H = 0.05L. (c) The effective permeability of
the porous media with an open channel on the top vs. the permeability of the porous
media only. Note that k = kxx if the flow is parallel to the bed and k = kyy if otherwise.

condition is employed.

Fragmented fractures in isotropic porous media

Finally, a fragmented fracture is placed in the isotropic structure illustrated in Fig. 6.4.

This simulation is performed applying symmetry boundary condition on the lateral

walls. For this porous medium of resolution 3000 × 3000 pixels, ε = 0.7, cd = 0.001

and fracture size H = 0.4L, we have H/L∗ = 173, which is a value often found in

shale samples as explained in Section 1.4. The relative error of the effective permeabil-

ity computed with the Brinkman model is 1%. The significance of this configuration
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(a) (b)

Figure 6.4: Fine and coarse-scale results of the isotropic case generated using ε =
0.7, cd = 0.001, coupled with a fragmented fracture (H = 0.4L,H = 173L∗) along the
x-axis. Pressure contour plots with velocity streamlines are illustrated for the Stokes
(left) and Brinkman solution (right). The Brinkman model underestimates the effective
permeability by 1%.

is that the channel does not go through the whole computational domain, thus the

porous medium inevitably determines effective permeability. On the other hand, in the

previous examples that contained throughout fractures (with lengths as large as the

domain size) the preferential path is clearly the channel, therefore, for large fractures

the porous medium contribution to the flow and overall permeability of the porous

media becomes negligible.

6.1.2 Three-dimensional QSGS

Recently, Wang et al. [88] quantified pore-scale heterogeneity and anisotropy of several

shale samples using a geometry-based method, and generated 3D QSGS structures hav-

ing statistical and morphological characteristics close to real samples. The advantage

of using this type of reconstruction instead of high-resolution images lies in the fact

that we can study the impact of each factor of interest individually, by keeping the

rest constant. In this work, I use similar generating parameters as in [88] in order to
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Table 6.2: Generation parameters of 3D QSGS structures and simulation results where
dp/dx is applied and fracture with H = 0.02L is in y axis. τ here refers to the highest
component of tortuosity which in the case of anisotropic structures is τz.

Case cFd /c
C
d εF ε εf AR H/L∗ k Af τ η

1 - - 0.3 0.26 1 5.59 4.16× 10−7 0.98 1.71 21%

2 - - 0.3 0.26 100 5.53 4.25× 10−7 0.73 1.68 14%

3 100 0.2 0.3 0.14 1 14.73 3.27× 10−8 0.94 2.52 21%

4 100 0.2 0.3 0.13 100 16.18 2.50× 10−8 0.74 2.45 21%

5 500 0.2 0.3 0.13 1 14.44 3.18× 10−8 0.77 2.36 21%

6 500 0.2 0.3 0.13 100 14.30 3.22× 10−8 0.66 2.38 21%

7 100 0.2 0.25 0.2 1 9.36 1.12× 10−7 0.85 2.00 27%

8 100 0.15 0.22 0.12 1 15.83 2.50× 10−8 0.17 2.09 32%

construct random porous media to be realistic representations of the shale matrix, and

thus acquire more comprehensive conclusions regarding the accuracy of the Brinkman

model for upscaling from the pore-scale. The full list of parameters of the 3D geometries

considered and the corresponding simulation results are summarised in Table 6.2.

Influence of anisotropy

To start with, I investigate the accuracy of the Brinkman formulation using artificial

anisotropic samples with a fracture on top. To this end, I reconstruct two 3D QSGS

structures; the first structure is statistically isotropic, while the second is isotropic in

the directions parallel to the bed (x, y) and anisotropy appears in the perpendicular

direction (z). This type of anisotropy, i.e. transverse isotropy, is common in shale, due

to the compaction of the rock in the vertical direction [88, 125, 145].

These random porous media are generated using AR = 1 and 100 (see Cases 1 and

2 respectively in Table 6.2 and Fig. 6.5 for views of Case 2 geometry). The aspect

ratio (AR) herein signifies the ratio of the main directional growth parameters where

in the case of transversely isotropic structures this yields (Dx = Dy)/Dz. The flow

configuration for the 3D random porous media is identical to the one described in

Section 6.1.1. Fixed pressure is applied on the inlet and outlet boundaries, while the

rest are treated as stationary walls. The straight fracture (H = 0.02L) is located on top

of the porous domain with its height placed on either of the two transverse directions

with respect to the pressure gradient.

As previously mentioned, the structures under consideration are either isotropic, or
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(a) (b)

Figure 6.5: Anisotropic 3D QSGS structure (Case 2) where the bedding plane (z) is
shown on the left and a perpendicular plane (x) is on the right. The structure is
isotropic in plane z and anisotropic in the other two planes where the pores (shown in
black) are elongated.

transversely isotropic. Thus, we expect that for the former case the effective permeabil-

ity results will be practically identical for pressure gradient applied in any of the three

directions. Thereby, the same applies for the placement of the fracture. Indeed, my

numerical solutions of the Stokes equation show that for AR = 1 the difference between

various pressure gradients and fracture positions is below 0.7%. For the latter case,

dp/dx and dp/dy should give similar keff while dp/dz is expected to result in inferior

values since kzz < kxx ≈ kyy for these type of porous media. The fracture position could

herein influence effective permeability. In my simulations, the transversely anisotropic

structure AR = 100 exhibits a difference in effective permeability in the order of 1%

for the two different fracture positions while dp/dx is imposed. When the flow direc-

tion is driven by pressure gradient in the z direction (dp/dz), the resulting keff differs

by 2%, even though kzz ≈ 0.7kxx. This confirms the importance of the fracture flow

contribution to effective permeability. Comparing the two structures, having the same

flow configurations, the maximum difference observed in keff is in the order of 5% for

dp/dz, which is expected since the anisotropic structure results in smaller permeability

kzz. It is worth mentioning that all the aforementioned percentages tend to decrease

with increasing H.

In the rest of this chapter, it may be more meaningful to consider only the setup
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where a dp/dx is applied and the fracture is in the y axis (choosing dp/dy and fracture

in the x axis would have the same effect). This is due to the fact that is it desirable to

choose the fracturing direction parallel to the bedding plane, where the flow is facilitated

[33] and which is the most common flow direction in shale [88]. The relative error of the

Brinkman model for the aforementioned structures is 21% and 14% for the isotropic

and the transversely isotropic cases respectively (see Case 1 and 2 in Table 6.2).

Influence of heterogeneity

To study the effect of heterogeneity, several QSGS structures are created as analysed in

Section 2.1 with cFd /c
C
d = 100 and cFd /c

C
d = 500, introducing non-uniformity in the pore

size distribution. It is found that heterogeneity tends to increase with cFd /c
C
d [88]. At

the same time, transverse isotropy is superimposed to imitate the real porous structure.

Regarding the anisotropy factor Af used in Table 6.2 and defined in Eq. (2.18),

values close to unity indicate a statistically isotropic medium, while values close to zero

refer to high anisotropy. Particular attention must be paid to the heterogeneous cases,

where the matrix proves to be anisotropic even though this is not explicitly determined

in the generation process (AR = 1). This can be (partly) attributed to the low porosity

of the medium in combination with the fact that only a few flow paths are available due

to the dominance of the larger pores. When anisotropy is induced by heterogeneity it is

not necessary that kzz has the lowest value compared to the rest diagonal permeability

terms. On the contrary, this is assured for the anisotropic structures where AR > 1.

Moreover, it is confirmed that for the same porosity (Cases 4 − 6), intrinsic per-

meability is higher for more heterogeneous structures (Cases 5, 6 have larger cFd /c
C
d ) as

the pores have better connectivity [88]. This can also be justified by the corresponding

reduction of tortuosity for the more heterogeneous structures. The porous media of

Cases 4 and 8 have the same intrinsic permeability and similar porosities, however they

exhibit different relative error of keff (21% and 32% respectively). Although they are

both constructed based on cFd /c
C
d = 100, the porosity value assigned to each pore size is

different, resulting in Case 8 being more heterogeneous than Case 4. Additionally, Case

8 is more anisotropic as reflected from the decreased anisotropy factor Af . In agreement

with my outcomes for the 2D porous media presented in Section 6.1.1, the Brinkman

estimation for the more heterogeneous and anisotropic structure leads to larger error

when the flow is parallel to the bedding plane. On the other hand, comparing Cases 3

and 7 we observe that the significant decrease of H/L∗ and Af for the porous medium

flow of Case 7 leads to increase of the Brinkman error as previously detected for 2D

structures. Despite the fact that the porous medium of Case 7 is less heterogeneous

the effect of the other two factors here prevails.
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(a) (b)

(c)

Figure 6.6: The mesh (pore space) of 3D Case 1 (isotropic), Case 7 and Case 8 (hetero-
geneous) along with velocity streamlines for dp/dx shown in (a), (b) and (c) respectively.
In the last two subfigures, there are many large pores illustrated with blue colour (due
to smaller velocity of the flow there). This is due to the generation process allowing a
small portion of the pores to be of greater size (cCd = 0.0001). The grey areas indicate
dead end pores, or pore areas with very small flow velocities.
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(a) (b)

(c)

Figure 6.7: Velocity contour plots (x plane) for the isotropic Case 1 and the hetero-
geneous Cases 7 and 8 illustrated in (a), (b) and (c) respectively. The fracture size is
H = 0.02L. The flow is driven by a pressure gradient in the x direction.

The mesh along with velocity streamlines of a few of the aforementioned porous

structures (Cases 1, 7 and 8) is depicted in Fig. 6.6. The focus is on the porous blocks

only, thus H = 0. The heterogeneous cases compared to the isotropic ones have a large
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(a) (b)

Figure 6.8: Velocity streamlines of the 3D Case 1 (left) and 6 (right), with a fragmented
fracture (H = 0.4L) added along the x-axis, where H = 91L∗ for Case 1 and H = 233L∗

for Case 6. The Brinkman model underestimates the effective permeability by 2% and
21% respectively.

proportion of significantly large pores where the flow has low velocity. This can be

further observed in Fig. 6.7 where the velocity contours of same geometries are shown

(x plane). Herein, the porous block is connected to a straight fracture of thickness

H = 0.02L.

As seen in Fig. 6.8, a fragmented fracture (H = 0.2L) is placed in the QSGS

structures of Case 1 and Case 6, similarly to the 2D configuration illustrated in Fig. 6.4.

The fracture aperture to pore size ratio is about H/L∗ = 91 and H/L∗ = 233 for the

respective geometries, while the corresponding relative error of the Brinkman estimation

of effective permeability is 2% and 21%. Even though the straight fracture configuration

gives same error for both structures (see Table 6.2), in this configuration the error

differs significantly. This is due to the fact that the permeability tensor is obtained

using the initial porous medium, which is now partly covered by the fracture. Since the

geometry of Case 1 is more homogeneous, its k is still representative when we introduce

the fracture. However, in the more heterogeneous and less permeable geometry of Case

6, the addition of the fracture has a more pronounced impact on the connectivity of
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the pores, altering the permeability tensor.

If we consider the structures of Table 6.2 to have a cell size of 20nm, then the whole

sample size is L = 2µm. Thus, the dimensional intrinsic permeabilities of the simulated

3D porous media are in the range of 9.98×10−20 to 1.70×10−18m2, i.e. approximately

101 to 1722nD. This permeability range, between nano and micro-Darcies, is typical for

shale rock [1]. Additionally, the relevant effective pore size is only a few nanometres (3

- 9nm) and their porosities are low enough for the above structures to be regarded, to

some extend, as close approximations of real shale samples. Consequently, we anticipate

that the relative error of the Brinkman model using shale images will be close to the

values reported in Table 6.2, i.e. around 20%− 30%.

6.2 Upscaling rarefied flows

Shale gas flow is mostly in the slip and transition regimes, therefore, I examine the

performance of the Brinkman model, where intrinsic permeability of porous media is

replaced by apparent permeability due to gas rarefaction effects, on the basic con-

figuration illustrated in Fig. 2.3, for increasing Kn. When Kn > 0, the fine-scale

results are obtained by solving the linearised BGK equation using the discrete velocity

method [21, 56, 83, 86], see Section 2.2.2. Due to this, in this section, the boundary

conditions employed are periodic in the inlet/outlet and symmetry on the lateral walls.

On the solid walls, the solution is subject to the no-slip boundary condition when

Kn = 0, while for larger Knudsen number, the diffuse boundary condition is imposed.

The 2D porous medium used herein is isotropic with ε = 0.7 and cd = 0.001. The

QSGS resolution is 3000× 3000 pixels and for the numerical mesh ten fluid layers are

added so that periodicity can be imposed (see Section 2.2.3). The height of the fracture

on top is H ≈ 0.02L and H ≈ 3.5L∗, where L∗ is defined in Eq. (2.19). The fracture size

is chosen to be small in order to facilitate the visualisation in Fig. 6.10, since increas-

ing the fracture size the contribution of the porous medium to effective permeability

becomes negligible. Additionally, an important factor for this choice is the computa-

tional cost of DVM which is already demanding for this domain size. Simulations are

performed for global Kn = 0, 0.0001, 0.001 and 0.01, and the velocity contours are

shown in Fig. 6.9. In order to appropriately understand the rarefied flow behaviour I

however use the effective Knudsen number of the average pore and the Knudsen num-

ber of the fracture, i.e. Kn∗ = λ/L∗ and Knf = λ/H respectively. I highlight that

for Kn = 0.0001 the direct simulation was also performed solving the Stokes equations

coupled with FVBC. The computed fine-scale permeability deviates by less than 1%

compared to the one computed solving the Boltzmann model equations.
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(a) Kn = 0.0001 (b) Kn = 0.001

(c) Kn = 0.01

Figure 6.9: Contour plots of v for three BGK solutions calculated at Kn = 0.0001, 0.001
and 0.01. The streamwise flow velocity u is normalised by uref = 2p̄L/µ

√
π resulting

to v. The isotropic porous medium used has ε = 0.7 and cd = 0.001 and the straight
fracture has an aperture H = 0.02L and H = 3.5L∗. The flow rate for the largest Kn
is dramatically increased, indicating significant rarefaction effects.
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Figure 6.10: Streamwise-averaged profiles of v, which equals u normalised by uref =
2p̄L/µ

√
π. The interface is at y = 0. The relative error of the Brinkman estimation is

4% for Kn = 0.0001, 5% for Kn = 0.001 and 7% for Kn = 0.01. Based on the average
pore size, Kn∗ = 209×Kn while the effective Kn at the fracture is Knf = 60×Kn.

It is worthwhile to note that for Kn = 0 the Stokes equations are solved and the

respective relative error and graphs are very similar to the ones resulting for Kn =

0.0001; hence they are omitted in Figs. 6.9 and 6.10. The full list of results can be

found in Table 6.3. Visually inspecting Fig. 6.9 and the comparative Fig. 6.10a we can

observe a dramatic increase in v for the case of Kn = 0.01 compared to Kn = 0.001

and Kn = 0.0001. This indicates that the computed effective Kn of the flow (Kn∗ = 2)

truly lies in the transition regime.

The coarse-scale results in Fig. 6.10(b-d) indicate that the flow in the porous

medium is adequately represented for all three Knudsen numbers tested. I should
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Table 6.3: The apparent permeability and error of the Brinkman model for rarefied
gas flows in 2D QSGS porous medium with a fracture on top with H = 0.02L. The
column titled ηKn=0 refers to the relative error of the Brinkman estimation when kCeff
in Eq. (5.7) is calculated based on the intrinsic permeability of the porous media.

Kn Kn∗ Knf ka η ηKn=0

0.01 2 0.6 1.52× 10−5 7% 90%

0.001 0.2 0.06 2.84× 10−6 5% 50%

0.0001 0.02 0.006 1.45× 10−6 4% 9%

0 0 0 1.35× 10−6 4% 4%

emphasise here that the permeability tensor used as input for each Brinkman simula-

tion is derived using the BGK results for each corresponding Kn number, following the

methodology described in Section 2.3.

As far as the area of the straight fracture is concerned, increasing Kn the deviation

between the BGK and Brinkman results increases. This is due to the fact that in the

Brinkman model, practically the NSEs are solved at the fracture, which are proven to

break down in the transition and free flow regimes as mentioned in Section 2.2. Namely,

for Kn = 0.01 the flow in the fracture is significantly underestimated, therefore, the

relative error of effective permeability increases to 7%. Nevertheless, this error is still

small thanks to the precise k used, which lays a firm foundation for upscaling. This is

of central importance, since using k obtained from the NSEs instead of the BGK model

has a notable effect on the coarse-scale effective permeability. For example, it results

in underestimation of permeability up to ηKn=0 = 90% at Kn = 0.01.

Due to the small fracture size, its contribution to the total mass flow is limited

hence the error involved in the value of kCeff is not so significant. On the other hand,

in the case of a larger fracture for the same global Kn, Knf decreases, resulting to the

Brinkman model being accurate for a larger range of global Kn. Consequently, in this

case the relative error is expected to be even smaller.

6.2.1 Computational time

The solution of the NS and Brinkman equations for the cases analysed in Sections 6.1.2

and 6.2 was performed using ARCHIE-WeSt. Each node of the HPC facility has a

dual Intel Xeon Gold CPU 6138 2.0GHz and 80 threads in total, 40 of which are

herein occupied. The solution of the Boltzmann model equation is performed on a

machine with dual Intel Xeon CPU E5-2680 v4 2.40 GHz. 32 out of the 56 threads were

utilised. The number of iterations together with the elapsed time for the aforementioned
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Table 6.4: Iteration steps and elapsed time for the numerical solution of the NSEs
(Fine-scale model). The same information is reported for the solution of the Brinkman
equation (Coarse-scale). The corresponding computational mesh is 200×208×200 and
50×104×50. The time is measured by wall clock time. The properties of the fractured
porous media corresponding to each case are listed in Table 6.2.

Fine-scale Coarse-scale

Case Iterations Time (s) Iterations Time (s)

1 243 152 50 2

2 248 143 50 2

3 333 117 50 2

4 134 78 50 2

5 137 41 50 2

6 135 37 50 2

7 136 45 50 2

8 138 45 50 2

simulations of the corresponding fractured porous media are listed in Tables 6.4 and 6.5.

The relevant comments of Sections 3.1.1 and 4.2.2 also apply on the fine-scale results

of this chapter.

Regarding the 3D pore-scale simulations performed in Section 6.1.2, we see in Ta-

ble 6.4 that the convergence is achieved in a few minutes due to the small number of

cells utilised, i.e. 200× 208× 200. The time required is roughly related to the porosity

(number of fluid cells) of the porous medium. The coarse-scale solution was fast to

achieve, in about 2s since the corresponding mesh is even coarser, about 24 times, i.e.

50× 104× 50.

Now attention is turned to the 2D rarefied flow simulation of Section 6.2. For

Kn = 0, where the same computational resources are used for both the fine and coarse-

scale models, we see in Table 6.5 that the computational cost is reduced by more

than ten times thanks to the coarser mesh requirements (3010 × 3025 vs 1000 × 1020

respectively). In particular, as fas as the coarse-scale results are concerned, we can

also observe that the computational cost rises with Kn, when the input k of the model

increases. For more information regarding the meshing details the reader is directed to

Section 2.2.
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Table 6.5: Iteration steps and elapsed time for the numerical solution of the linearised
BGK equation using the implicit discrete velocity method when Kn > 0 and for the
numerical solution of the NSEs when Kn = 0 (Fine-scale model). The same information
is reported for the solution of the Brinkman equation (Coarse-scale). The time is
measured by wall clock time. The fractured porous medium is depicted in Fig. 6.9.
The spatial mesh resolution is 3010× 3025 for the fine-scale model and 1000× 1020 for
the coarse-scale. The molecular velocity space (for Kn > 0) is discretised with a polar
velocity grid of 4 (discrete radius) × 100 (discrete angles). Note that the computational
resources used for the BGK simulations are different than for the remaining runs.

Fine-scale Coarse-scale

Kn Kn∗ Knf Iterations Time (s) Iterations Time (s)

0.01 2 0.6 16000 75600 22705 1837

0.001 0.2 0.06 1000 45890 18654 1526

0.0001 0.02 0.006 17000 81849 14101 1109

0 0 0 20204 13785 13925 1088

6.3 Conclusions

In this chapter, I have thoroughly investigated the error of the effective permeability

estimation when the Brinkman model is used to upscale shale permeability from the

pore-scale. I performed 2D and 3D flow simulations using random porous media gener-

ated with the QSGS method where several morphological properties can be controlled.

Extensive analysis has been performed on both continuum and rarefied gas flows which

are often encountered in shale. To the best of my knowledge, this is the first time that

the accuracy of the Brinkman model using realistic porous media and flow conditions

is examined.

For continuum flows, a parametric study of isotropic 2D structures revealed that

homogeneity favours the estimation of the Brinkman model, no matter if homogeneity

is resulted from high porosity or small particle size. Additionally, anisotropy in 2D

geometries, when the flow is perpendicular to bed, leads to reduced error. In other

words, for highly tortuous porous media, the increase of the H/L∗ factor is associated

with more accurate prediction of the effective permeability. However, when the flow

is parallel to the bedding plane, this error tends to increase. My simulations using

artificial 3D random porous media demonstrated that a reasonable relative error in

the estimation of effective permeability occurs when the Brinkman formulation is used.

These 3D porous media are carefully constructed to approach the properties of real

shale sample images of high resolution. Even though the cases studied are quite complex
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and the effect of each parameter cannot be easily uncoupled, the same conclusions as

in 2D structures apply. The Brinkman model is less reliable when used for porous

media that exhibit high heterogeneity and anisotropy. Most of the flow configurations

performed have a straight fracture on top of the porous region as it is common in the

literature. However, a fragmented channel is also placed in two different porous media

to demonstrate a more realistic example of a shale sample with a microfracture. The

Brinkman-derived coarse-scale permeability of both configurations is in good agreement

with the fine-scale model.

The suitability of the Brinkman model is also verified on rarefied gas flows, where

the permeability of porous media is actually the apparent permeability which is a func-

tion of gas pressure. Microscopic 2D simulations spanning a wide range of Knudsen

numbers are performed by solving the linearised BGK equation. The apparent perme-

ability tensor is then utilised as input for the macroscopic representation of Brinkman

leading to well predicted effective permeability for rarefied gas flows. Neglecting the

rarefaction effects is here proven to result in significant underestimation of the macro-

scopic property.

I must remark that in this work, I adopt µeff = µ when using the Brinkman

equation and the accuracy of the results is adequate for the realistic cases simulated.

Thus, I recommend to avoid using one of the complex and controversial alternatives

suggested in the literature when the aim is to predict flow properties of shale.

In conclusion, according to my numerous 2D and 3D simulation results the effective

permeability extracted from the Brinkman formulation compares favourably to its fine-

scale counterpart computed solving the Stokes and the Boltzmann model equations. I

thus have confidence that the use of Brinkman model is suitable for shale permeability

upscaling from the pore-scale.
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Conclusions

7.1 Summary

The work developed in this thesis contributes to a better understanding of shale gas

flows at the pore-scale and beyond. Established theoretical and computational studies

relevant with pore-scale rarefied flows of ultra-tight porous media and upscaling tech-

niques are thoroughly analysed. These studies constitute the background and basis

of the present research. My research has computationally addressed the direct sim-

ulation of random porous media flows across a wide range of rarefaction, decoding

the behaviour of apparent permeability pertinent to the geometrical complexity and

the Knudsen number, and explaining the slip factor trend observed by Klinkenberg.

Moreover, a new appropriate permeability formulation was proposed, independent of

empirical parameters. Then, the upscaling of pore-scale permeability was meticulously

investigated, indicating the suitability of numerical methods. Particularly, I found that

the use of the Brinkman model performs well in providing the effective permeability of

fractured ultra-tight porous media. Overall, throughout this research, the whole work-

flow that leads to a good approximation of the effective permeability of shale samples

with microfractures was investigated.

Rigorous theoretical and numerical analysis was carried out using gas kinetic theory,

mainly solving the BGK and the Navier-Stokes equations. My research proves that

the Navier-Stokes equations with the first-order velocity-slip boundary condition can

only predict apparent gas permeability of porous media to the first-order accuracy

of the Knudsen number. Consequently, the commonly used slip-corrected expression

provides a good estimation of the apparent permeability only for near equilibrium gas

flows. This is more evident in the case of complex porous media flows and/or when

the tangential momentum accommodation coefficient in the diffuse-specular boundary

condition is non-unitary, since then the slip factor exhibits a behaviour close to the one

112
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found by Klinkenberg. This conclusion implies that many widely used semi-analytical

permeability models taking into account only slip flow and/or based on the straight tube

simplification of the porous medium are unsuitable to predict apparent gas permeability

of shale gas flows.

To further analyse the dependence of intrinsic and apparent gas permeability (thus

slip factor) on structural porous media properties, an extended parametric study was

performed using controllably random two-dimensional geometries. These results, im-

posing the diffuse boundary condition, confirmed the slip factor tendency observed by

Klinkenberg on his experimental measurements, where real core samples were used. In

these complex porous media, the slip-corrected apparent permeability failed to provide

an accurate apparent permeability estimation, often leading to its underestimation. An

important contribution of this work is a new semi-analytical permeability formulation,

based on the above numerical results, which takes into account the structural char-

acteristics of the permeable material and is valid up to the slip regime. It should be

stressed that the proposed expression does not require any input parameters derived

from numerical or experimental data. Furthermore, this formulation can serve as a

starting point for further modelling of rarefied flows in complex geometries.

Having established the accurate determination of pore-scale apparent permeability,

it is of central importance to upscale the computed properties to larger scales, where

the direct simulation is no longer possible, and a separation of scales appears. To this

end, widely used analytical upscaling techniques were compared with the numerical so-

lution of the Darcy equation and the numerical method was deemed more sensitive and

appropriate. Afterwards, the evaluation of numerical upscaling methods was conducted

performing direct flow simulations on the explicit geometries of numerous porous media

and comparing the computed fine-scale permeability with its coarse-scale counterpart,

derived using upscaling. This evaluation includes the numerical solution of not only

Darcy, but also Brinkman equation which solves the Stokes equations in the regions

identified as void space and Darcy’s law in the porous domain. This hybrid model is

a promising tool for the effective permeability estimation of shale with microfractures.

Aiming to study this model further for the cases of interest, I focus on the controversial

issue of the effective viscosity and the capability of the equation to capture the velocity

profile near the fluid-porous interface. A few alternative values of effective viscosity

are examined, as well as the concept of a variable permeability near the interface.

The conclusion of this study was that lacking a suitable universal effective viscosity

model or local treatment of the transition zone, the Brinkman approach should be used

considering the effective viscosity equal to fluid viscosity.

Taking this outcome into account, I examine the accuracy of the Brinkman model
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using numerous fractured random two and three-dimensional porous media. For sim-

plicity, I mimic the experimental configuration of Beavers & Joseph, adding a straight

channel on top of the porous domain. A parametric study of isotropic 2D structures re-

vealed that homogeneity, whether its due to high porosity or small particle size, favours

the accuracy of the Brinkman model. Additionally, I found that anisotropy in 2D ge-

ometries, when the flow is perpendicular to bed, leads to reduction of the error, which

is increased if the flow is parallel to bed. To verify the suitability of this model for

this application, likewise, I use it on artificial 3D porous media which have properties

similar to real shale samples. Similar conclusions are drawn here, indicating that gen-

erally the Brinkman-derived coarse-scale permeability is in good agreement with the

fine-scale model. Since shale permeability is actually a function of gas pressure, the

Brinkman model was also verified for rarefied conditions using apparent permeability as

input. Comparison with the fine-scale results, obtained solving the model Boltzmann

equations, not only proves that the resulting error is small, but also that neglecting the

rarefaction effect would lead to a serious underestimation of the effective permeability

of the fractured sample. Overall, the suggested workflow provides accurate estimates

of multiscale intrinsic and apparent shale gas permeability.

7.2 Future work

The work developed in this thesis may be extended as follows:

• The extensive parametric study and analysis performed in Chapter 4 could be

performed for 3D QSGS porous media too, with or without the explicit enforce-

ment of heterogeneity.

• The semi-analytical permeability formulation proposed in Chapter 4 may be ex-

tended to deal with 3D QSGS porous media and/or modified to cover a wider

range of Knudsen numbers. Inspiration can be drawn from [146] for the former

case.

• The suitability of the Brinkman formulation could be examined accordingly for

realistic fracture shapes. One main challenge lies in the fact that the porous

domain adjacent to the fracture is no longer rectangular, as in the simulations of

Chapters 5 and 6, thus an appropriate treatment is needed so that the accuracy

of the permeability used as input is ensured.

• The workflows applied in Chapters 5 and 6 may also be applied in imaged shale

samples starting from high-resolution (pore-scale) to low-resolution images, such
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as those corresponding to plugs and whole cores. The effective permeability com-

puted solving the Darcy or Brinkman equations can be compared to experimental

measurements following the work of [54].
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Appendix A

The darcyFoam solver utilised in this thesis is based on the existing OpenFOAM solver laplacian-

Foam. The two files of the solver are darcyFoam.C and createFields.H and their contents are

given in the following Figs. A.1 and A.2.

Figure A.1: Contents of file darcyFoam.C
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Figure A.2: Contents of file createFields.H
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