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Preface

In May 2019, I started working on the project that is the focus of chapter 4.

Towards the final stages of the project in 2020, we became aware of a paper

[1], which investigated a very similar model, which led to the decision not to

publish our manuscript. Regardless of this decision, I have contributed to new

insight into the physics of measurement-induced phase transitions in continuous-

time systems. I explored and analyzed different models and presented transitions

manifesting in the entanglement entropy in individual trajectories, presented in

chapter 4.

Moreover, I have expanded our understanding of why these transitions are so

difficult to measure directly in experiments. Although some quantities, like the

entanglement entropy, visualize the transition quite clearly, the exact location of

the transition is quite difficult to pinpoint. This difficulty is also discussed in

chapter 4, and the presented analysis provides new insight into the difficulties

that were not discussed in the existing literature. Furthermore, I proved why,

in a homodyne detection scheme, you cannot use the measurement outcomes to

reconstruct nonlinear functions that witness the transition. The reason why this

is the case is subtle, and it is the focus of chapter 5.

Lastly, I have explored the consequences of competition between dissipative and

coherent processes for many-body dynamics at short to medium times. I have

investigated the signatures of the transitions we can observe at short times in

models that undergo phase transitions in the long time limit of non-linear func-

tions of the density operator. In addition, I have explored how this short-time

competition might be investigated. This topic is the focus of chapter 6.
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Overall, I have generated both new theoretical understanding, of interest to the-

orists in this particularly topical area, and also experimental proposes, especially

for exploring competition between coherent and dissipative processes in short-

time dynamics.

Publications during the Ph.D.

1. T. Bintener, J. Yago Malo, P. Kirton, and A. J. Daley, “Short-time com-

petition between scrambling and dissipative dynamics with cold atoms”, In

preparation.

This paper is the topic of chapter 6. To be submitted to Physical Review

A, 2024.



Acknowledgements

After spending almost a third of my life in Glasgow, pursuing both my undergrad-

uate and postgraduate studies at Strathclyde, I am deeply grateful to everyone

who has made this journey unforgettable and supported me every step of the way.

First and foremost, I would like to express my heartfelt thanks to my supervisor,

Andrew Daley, for granting me the opportunity to undertake this PhD under

his exceptional guidance and unwavering support. Under his mentorship, I have

acquired a wealth of knowledge in physics and honed numerous skills that have

prepared me for my professional career.

I am also profoundly grateful to my fellow PhD students and post-docs in our

group: Callum, François, Gerard, Johannes, Liam, Rosaria, and Sridevi. Special

thanks go to Jorge for being a true friend and providing immense help throughout

my PhD. I would also like to acknowledge Jacopo, Stuart, and Tomohiro, who

were always ready to offer their assistance whenever needed.

Next, I extend my gratitude to my friends: Ahmed, Amine, and Athina, for

their companionship since our first days in Glasgow; Eduardo, for sharing count-

less dark beverages and making music together; Iro, for her friendship and for

showing me the beauty of Athens; the Shuttlecock Destroyers—Jack, Johan, and

Jorge—for the fun and camaraderie on the badminton court; and finally Nicole,

for being an incredible flatmate and the greatest prankster I’ve had the pleasure

to meet.

vi



I am especially thankful to my girlfriend, Maria, for her unwavering support,

particularly during the challenging process of writing this thesis. Her motivation

and encouragement have been invaluable.

Finally, I would like to thank my family for their support throughout this journey.

Their encouragement has always driven me to strive for better. Merci.

Bintener Tom, 01.09.2023



Abstract

Measurement-induced phase transitions arise from the interplay of coherent quan-

tum dynamics and local measurements. For example, coherent dynamics can

generate entanglement and long-ranged correlations, while local measurements

destroy them. By tuning the strength of the measurements, the system undergoes

a phase transition at the level of individual stochastic measurement trajectories.

It is only witnessed by non-linear functions in the density operator, and due to

the stochastic nature of the measurement outcomes, the average density operator

masks the transition.

In this thesis, we explore how this type of transition arises in bosonic and fermionic

models that are subject to dephasing or measurement and consider ways to de-

tect the transition in experiments. We first give an overview of the transition

and describe the difficulties in identifying the exact location of the transition

and finding experimental protocols to detect them. We then show that in a ho-

modyne detection setup, it is impossible to reconstruct the nonlinear correlation

function that witnesses the transition, using only the linear information from ho-

modyne currents, and we discuss the difficulties that arise when considering the

experimental detection of this transition. We finally show that features of the

competition between coherent and dissipative dynamics are already present at

short times during the system evolution. We also present a protocol that displays

the characteristic behavior of the transition, starting from an infinite temperature

state.

In all projects, we employ a range of numerical techniques, such as Monte-Carlo

wavefunction methods, which allow us to simulate the open quantum systems

dynamics and enable us to explore the presented models.
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Chapter 1

Introduction

In recent years, the competition between coherent and dissipative dynamics in

many-body quantum systems has been studied, which has led to the emergence of

novel types of dynamical phase transitions known as measurement-induced phase

transitions (MIPTs) [3–12]. In chapter 4-6, we study this competition between

coherent and dissipative dynamics in continuous time models and analyze some

scenarios in which MIPTs arise. We begin by providing a brief overview and

introducing this novel transition type.

1.1 Overview

The field of quantum many-body physics explores emergent properties of ensem-

bles of many quantum particles, such as atoms, electrons, or photons, interacting

with each other according to the laws of quantum mechanics. These systems can

give rise to new exciting physics, such as the behavior of ultra-cold atomic gases

in optical lattices [13] or the emergence of novel phases of matter in condensed

matter systems [14].

The interplay of quantum mechanics of how particles interact in quantum many-
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body systems leads to novel and often unexpected phenomena, such as quantum

phase-transitions, high-temperature superconductivity [15], thermalization [16]

and novel states of matter such as superfluidity [17] or Bose-Einstein condensa-

tion [18], which have both fundamental significance and potential technological

applications.

Furthermore, quantum many-body physics plays a vital role in investigating fun-

damental problems in fields such as quantum information theory. For example,

exploring the entanglement structure of quantum many-body states gives valu-

able insight into the potential use in quantum information processing tasks [19–

21]. Quantum entanglement is an interesting property of quantum many-body

states, as it characterizes the non-classical correlations in the system. When

two or more quantum systems are entangled, their properties, such as spin or

polarization, become correlated so that the state of one system instantaneously

affects the state of the others, regardless of the distance between them. Such

non-local correlations challenge classical intuition and form the basis of various

quantum technologies, including quantum cryptography, quantum teleportation,

and quantum computing. A quantum many-body system is said to be entangled

when the quantum states of individual particles that make up the system cannot

be described independently of the state as a whole [22]. In other words, if the

wave function of the system cannot be written as the product of the wave func-

tion of two subsystems that make up the whole system, then these subsystems

are entangled.

Mathematically, we formulate this as |ψAB⟩ ̸= |ψA⟩ |ψB⟩, where |ψAB⟩ denotes

the wave function of the whole system, and |ψA⟩ , |ψB⟩ denote the wave func-

tions of the subsystems A and B, respectively. In contrast, if a quantum sys-

tem is not entangled, it is possible to express it as the product of subsystems,

|ψ⟩AB = |ψ⟩A |ψ⟩B, and we can fully describe either subsystem independently of

2
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Figure 1.1: Schematic representation of a quantum many-body system consisting
of particles on a lattice in a) 1D and b) 2D. The blue boundary denotes the
total quantum system, and the red boundary denotes a subsystem of the total
quantum system.

the system as a whole. For this reason, such states are also known as separa-

ble states. Quantum entanglement has a range of useful applications, such as in

quantum cryptography [23], where entangled states can be used for quantum key

distribution protocols (see, e.g., [24]) that ensure that nobody intercepted the

communication. Entanglement provides a sensitive probe, such as for quantum

thermalization [25–27], information scrambling [16, 28, 29], or the characteriza-

tion of quantum phases [30].

In quantum information processing, entanglement is connected to quantum re-

source theories, defined by some operations classes. Choosing, for instance, local

operations and classical communication as the set of operations that can be used,

only separable (non-entangled) states can be created under this class [31]. Since

entangled states cannot be created under this class of operations, they become

a resource as they cannot be created for ’free’. Given entangled states, however,

performing tasks that would otherwise not be possible via the allowed operations

becomes possible [31–33]. Entanglement measures provide useful ways to quan-

tify how much entanglement (or, in other words, quantum correlations) there is

(are) in a system [34], and one important measure is the von Neumann entropy

(SV N), which we will use throughout this thesis. The von Neumann entropy is

an entanglement measure that quantifies the amount of entanglement present in

3
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a pure system. Let us consider again a quantum state ρ̂AB = |ψAB⟩ ⟨ψAB|, where

A and B denote two subsystems that make up the whole system. To quantify the

amount of entanglement present between the two subsystems, A and B, we can

use the von Neumann entropy of the reduced system SV N(ρ̂A) = SV N(TrB(ρ̂AB)),

where TrB denotes the partial trace over the subsystem B.

Computational simulation of quantum many-body systems dynamics is challeng-

ing as the Hilbert space in which quantum states live grows exponentially with the

number of particles in the system. In a system that consists of n 2-level systems,

2n complex coefficients are needed to describe the state fully. Consequently, for

simulations, 2n complex numbers must be stored in a computer, which quickly

becomes impossible for many particles. In quantum computing [35, 36]; however,

a superposition of 2n states can be represented using n 2-level systems, which can

lead to exponential speed-ups for certain problems and is also known as quantum

parallelism. Moreover, entanglement plays a vital role in quantum computing,

as it has been shown that to achieve exponential speed-up over classical com-

putation, multipartite entanglement (i.e., entanglement between more than just

two subsystems) is needed in the system [37]. One of the most well-known algo-

rithms benefitting from this exponential speed-up is Shor’s algorithm for factoring

numbers into their prime factors[38].

The closed system behavior of a many-body quantum system is prescribed by the

Schrödinger equation, leading to the description of the unitary time evolution of

the density operator. Moreover, in isolated systems that thermalize, the entan-

glement entropy of a subsystem is extensive [39], corresponding to linear growth

of entanglement entropy with subsystem size in 1D, also known as volume-law

scaling of the entanglement entropy.

In reality, however, no quantum system is ever truly isolated, leading to dissipative

processes that prevent the system from evolving unitarily. Such dissipative pro-

4
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system

Figure 1.2: Schematic representations of a) a closed and b) an open quantum
system. The closed quantum system does not interact with the environment nor
exchange matter or energy, as indicated by the arrows blocked by the solid black
lines. In contrast, an open quantum system does interact with its environment.
It is a more realistic representation, as it is essentially impossible to guarantee
that no energy or particles leave the system of interest.

cesses can occur either as a result of measurements being voluntarily performed

by an observer or simply due to the coupling to the environment, resulting in loss

of information. More specifically, local measurements (such as projective mea-

surements) tend to decrease the amount of entanglement present in the system

by projecting the wave function on a given site to be in a definite state, effec-

tively disentangling it from the rest of the system. One question that arises is

whether or not the volume-law scaling of the entropy in thermalizing systems sur-

vives when local measurements are performed, as they reduce the total amount

of entanglement present in the system.

As we have discussed, having access to quantum states that withstand disen-

tangling dynamics is particularly useful for quantum computers and simulators,

where entangled states serve as an important resource. Therefore, it is important

to understand the effect of measurements on unitary dynamics, as it allows us to

characterize the entanglement properties of states in novel dynamical quantum

phases that may be employed in quantum computers.

The competition between coherent and local dissipative dynamics has led to the

notion of measurement-induced phase transitions (MIPTs), which were first dis-

covered in random circuits. The competition arises because coherent dynamics
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d)

Figure 1.3: Schematic representation of the area of the boundary in a) 1D and
b) 2D, and the volume of the boundary in c) 1D and d) 2D. In 1D, the area
will remain constant, no matter how much the subsystem grows, as only one (or
two if one considers periodic boundary conditions) cut(s) are needed to divide the
system into two subsystems. Therefore, if the entropy is constant with subsystem
size, we call this area-law, as we will see in later chapters. On the other hand, the
volume consists of all the particles contained within the subsystem, which grows
linearly as the subsystem grows. We, therefore, speak of volume-law entanglement
when the entropy grows linearly with the subsystem size. Similarly, in 2D, the
area grows linearly with subsystem size while the volume grows quadratically,
and analogous to the 1D case, one speaks of area and volume-law scaling of the
entropy when the entropy of the subsystem scales either linearly or quadratically
with the boundary.

can build up the total amount of entanglement in the system, while local dis-

sipative dynamics tend to decrease it. We will now provide a brief overview of

MIPTs in the context of random circuits before we discuss them in continuous

time models.

1.1.1 MIPTs in Random Circuits

MIPTs have been explored in recent years in random circuit models [3, 4, 6–10,

40–42] where it has been shown that continuous phase transitions arise as a result
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of the competition between entangling unitary dynamics and disentangling local

measurements. These transitions are characterized by the qualitative change in

the wave function undergoing a measurement trajectory, making it crucial to

track measurement outcomes.
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projective measurement

Figure 1.4: Schematic representations of hybrid circuit model. The unitary gates
(gray) are applied pairwise on neighboring qubits. The projective measurements
(blue) are applied randomly in time (t) and space (x) before applying the unitary
gates.

Refs. [3, 4, 6] present a phase transition in a hybrid circuit model (Fig. 1.4),

where an initial non-entangled product state is time-evolved by applying random

unitary gates drawn from various distributions. The unitary evolution is inter-

rupted by performing projective measurements randomly in time and space with

a probability p per unitary gate. No projective measurements occur for p → 0,

while for p → 1, projective measurements are applied before each unitary gate.

The entanglement grows over time with this model, and the steady-state exhibits

volume-law scaling of the entanglement entropy for small measurement probabili-

ties, indicated by linear growth of the entropy with the subsystem size. Then, at a

critical measurement probability, it undergoes a phase transition into a “quantum
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Zeno” regime [43]. In this regime, measurements occur frequently, suppressing

the entanglement growth, resulting in the area-law scaling of the entropy, where

the entropy is constant and independent of the subsystem size.

As mentioned before, these transitions are characterized by qualitative changes in

the measurement trajectories, and it is important to note that at the level of the

density operator, this transition is masked. As the measurement outcomes are

random, after a long time evolution, each local measurement outcome is obtained

roughly equally. This has the consequence that upon averaging over all measure-

ment outcomes, any state in the Hilbert space is equally likely corresponding to

an infinite temperature state. For any nonzero measurement probability, given

enough time, the infinite temperature state is reached, and therefore, the transi-

tion is not accessible.

Other types of transitions have also been explored in random circuits, such as

purification transitions [11, 12] where an initially mixed state is time evolved while

subjected to continuous measurement. As the measurements destroy quantum

correlations between subsystems, the entropy also decreases. Above a critical

measurement strength, the average entropy decays to zero independent of the

system size, implying that as a result of the measurements, we know what the

state of the system is. Below the critical measurement strength, the entanglement

is not entirely destroyed, and the time to purify the system grows exponentially

with the system size.

Not only are these transitions of fundamental interest, but they can also be

related to the generation of error correction codes in quantum channels [44–47],

where they arise during the unitary time evolution and protect the volume-law

phase against disentangling projective measurements. Furthermore, there has

been progress in probing these entanglement transitions [48, 49]. In Ref. [48],

the authors propose the entropy of a reference qubit entangled with a system
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of interest as an order parameter for a MIPT. Below the critical measurement

strength, the entropy of the reference qubit can stay nonzero while it decays to

zero above the critical measurement strength. In Ref. [49], the authors probe the

transition using the probe proposed in [48] on a trapped-ion quantum computer

and find experimental evidence of the two phases by measuring the entropy of

the reference qubit.

1.1.2 MIPTs in Continuous Time Models
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Figure 1.5: a) Schematic representation of a phase diagram in a non-integrable
model that exhibits a measurement-induced phase transition at a critical mea-
surement strength γc from volume law scaling of the entropy to area-law scaling.
b) Schematic representation of the characteristic behavior of the entropy; close
to criticality, the entropy scales logarithmically with the subsystem size M , the
volume-law phase is characterized by linear growth of the entropy, and in the
area-law phase, the entropy grows minimally and remains constant.

As we have just discussed, random circuits have been explored in depth in recent

years [50], and a natural question is whether the same entanglement transition

can be seen in continuous time models. This type of transition has also been

investigated in spin chains and bosonic systems [1, 51–55]. Refs. [1, 51, 53]

investigate a bosonic system, where they break the integrability of the model to

witness a stable volume-law scaling phase. They find an entanglement transition

where a qualitative change from volume-law scaling to area-law scaling of the

entropy occurs. The characteristic behavior of this transition is schematically
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represented in Fig. 1.5. Integrable models tend to possess many symmetries [56],

which means they are exactly solvable. Non-integrable models, on the other

hand, are not exactly solvable, and it has been shown that they exhibit volume-

law scaling of the entanglement entropy [57]. Interestingly, as we will see, MIPTs

can arise in both integrable and non-integrable models.

A chain of non-interacting free fermions has been shown to have no volume-law

phase for arbitrarily small measurement strengths [58] and an area-law phase

that is present for any nonzero measurement rates. It was later shown [59] that

the model exhibits a phase transition where the entanglement entropy scales

logarithmically with the subsystem size for small but nonzero measurement rates.

At a critical rate of the measurements, the system undergoes a phase transition

beyond which the entropy exhibits area-law scaling. In later chapters, we will

also analyze these transitions and discuss the difficulties of accurately identifying

them. Some schemes have been proposed to observe these transitions, using pre-

selection [60], where the stationary state of the model can be altered by steering

the system towards a specific state that does not destroy the underlying properties

that result in the transition.

In Ref. [53], a transition was predicted in the Ising model, where the trans-

verse magnetization is monitored. Similar to other systems, a transition in the

quantitative behavior of the wave function occurs; however, instead of using the

entanglement entropy, they consider the overlap between the trajectory steady-

state and the localized quantum Zeno product state, which characterizes at which

point the dissipative dynamics take over.

1.1.3 Challenges

As previously mentioned, the MIPTs are masked at the density operator level

for random circuits. In continuous models, where dissipation in the form of de-
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phasing occurs, the steady-state obtained through averaging over all possible

measurement outcomes is the trivial infinite temperature state, independent of

measurement strength. Similarly, by considering the master equation, which de-

scribes such a system, it also always reaches the infinite temperature state, so

we cannot directly use the master equation to find the signatures of MIPTs in

steady-states of continuous time models. Instead, we need to consider non-linear

quantities, such as the entanglement entropy at the quantum trajectory level,

to access these transitions. These quantities need to be evaluated at the trajec-

tory level before computing the average over all trajectories as linear quantities,

which would again correspond to the expectation value in the infinite tempera-

ture state. Another challenge to overcome is to extract these non-linear quantities

from individual trajectories, as generally, multiple measurements on a single tra-

jectory are required to access these quantities. Suppose measurements are made

deterministically in time and repeatable for specific measurement outcomes in

these systems. In that case, it is theoretically possible to extract quantities like

the entanglement entropy of subsystems by repeating trajectories and performing

measurements with the interference of copies [61, 62] or random unitaries [63, 64].

However, the measurement results are typically not reproducible - and more com-

monly, they are not even known when the dissipation comes from natural coupling

to the environment or random noise. In this case, performing more than one mea-

surement on a single trajectory is impossible, and techniques for extracting the

entanglement entropy cannot be used. Here, we consider what can be realized in

such realistic and also small, finite-sized systems corresponding, e.g., to current

1D experiments in quantum gas microscopes [65–67]. The random entangling

gates are replaced by unitary dynamics of interacting dipolar bosons on a 1D

lattice [68]. In contrast, the random measurements are replaced by local de-

phasing, which can be readily realized for ultracold gases through noise or light
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scattering [69–72]. By looking at the trajectories corresponding physically to de-

phasing events at particular positions and locations, we can find a similar change

in behavior moving between area- and volume-law entanglement growth as we

change the dephasing rate. Investigating the steady-state properties of quantum

trajectories will be the main focus of chapters 4 and 5.

These difficulties are somewhat reduced when we relax the focus on steady-state

dynamics and also consider short- or intermediate-time dynamics. In this case,

at long times, the steady-state remains the infinite temperature state, and the

master equation cannot be used to detect signatures of the MIPTs. Interestingly,

however, by investigating how the system in question reaches the infinite temper-

ature state, signatures of the transitions are present in both non-linear and linear

quantities in the density operator. Obviously, for non-linear quantities, the order

in which we compute the average and quantity still matters. However, this is not

the case for linear quantities (such as the local densities), and here, in principle,

the master equation approach can also be employed to investigate the system

and gain information on the transition signatures. However, it is essential to note

that the transition itself cannot be detected this way, as this is only possible in

the steady-state where the master equation approach does not work. The signa-

tures that are present at early and intermediate times are the focus of chapter

6. Although it is, in principle, possible to use the master equation approach in

some cases that we just discussed, we continue to use the trajectory approach, as

we are not only interested in the evolution of the average values but also in the

statistics when many trajectories are simulated as we gain additional information

from the statistics and how the quantities are distributed.

12



Thesis Outline

1.2 Thesis Outline

In chapter 1, we have introduced the main background ideas that have inspired

the work presented in this thesis. We introduced measurement-induced phase

transitions in the context of random circuits where they were first studied and in

continuous time models.

In chapter 2, we will discuss classical and quantum phase transitions to provide

a brief overview of this topic. We will consider a simple example to introduce

the main concepts that we need to study the phase transitions presented in the

following chapters.

Chapter 3 focuses on the main tools and methods used to simulate open quantum

systems numerically. We outline the derivation of the Lindblad master equation,

which describes the time evolution of an open quantum system subject to dis-

sipative processes. We then introduce the Monte Carlo wave function method

to simulate the master equation more efficiently. Finally, we discuss homodyne

detection and quantum state diffusion, which provide another unraveling of the

master equation, also allowing us to simulate the master equation numerically.

In chapter 4, we study a chain of interacting hardcore bosons subject to dephas-

ing. We present a measurement-induced phase transition that arises from the

competition between coherent and dissipative processes manifesting in the entan-

glement entropy. We use the main ideas introduced in chapter 1-2 to characterize

the phase transition and highlight the limitations we encounter in the model. We

also provide a detailed discussion on the scaling collapses for the system sizes

we can simulate and turn to free fermions to allow for the simulation of larger

systems. Finally, we explicitly break the U(1) symmetry conserved in the model
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and investigate whether we still see this phase transition.

In chapter 5, we attempt to find a way to witness the quantum phase transition

experimentally, which is no easy task as the quantities witnessing the transition

need to be non-linear in the density operator. We show for a class of correlation

functions how this rules out the possibility of measuring them experimentally.

In chapter 6, we relax the constraints of focusing exclusively on steady-state prop-

erties by considering non-linear as well as linear quantities at early times. We

show that signatures of the competition between coherent and dissipative dynam-

ics can be resolved even at early times. This allows us to propose an experimental

protocol that can probe the competition between coherent and dissipative dynam-

ics in the model.

In chapter7, we conclude the thesis and summarize what we have learned by

undertaking the projects discussed in chapter 4-6.
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Chapter 2

Phase Transitions

We have already introduced the ideas of measurement-induced phase transitions,

and in this chapter, we provide a general overview of phase transitions. We briefly

discuss classical phase transitions, and then, with the help of a simple model, we

introduce the main tools, such as correlation functions, that we use in the coming

chapters to analyze the MIPTs in a few different models.

2.1 Classical Phase Transitions

Classical phase transitions (CPTs) surround us in our everyday lives, and every-

one has, at some point, experienced them firsthand. As we enjoy a drink on a hot

summer day, we see the ice cubes melting and cooling down the glass. At atmo-

spheric pressure, water freezes at 0◦C and boils at 100◦C, and at these points, it

undergoes a phase transition. Although everyone is familiar with these processes

happening in everyday life, the physics behind them is quite interesting. Phase

transitions are defined via discontinuities in the free energy derivatives with re-

spect to thermal variables such as pressure or temperature. If we consider water,

the quantity that shows drastic changes is the density. The density is propor-
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tional to the inverse of the volume, which in turn is related to the first derivative

of the free energy with respect to pressure. An ice cube will float in a glass of

water, so we know its density is lower than liquid water. If we heat ice, it will

absorb heat, and its temperature will continuously rise until it has reached 0◦C.

At this point, the energy put into the system will not further heat the ice but

will melt it. The energy needed to convert ice to liquid water at the critical tem-

perature entirely is also known as latent heat. Once all the ice has melted, it will

continue to increase in temperature as more heat is added to the system until it

reaches 100◦C, where it will stop rising in temperature until the latent heat has

wholly converted the liquid water into water vapor. At each of these points, while

the temperature remains constant, the density changes, such that at atmospheric

pressure and at 0◦C (100◦C), ice and liquid water (liquid water and vapor) have

two densities. This discontinuity in the density defines these transition points,

and as the discontinuity occurs in the first derivative of the free energy, these

phase transitions involving latent heat are known as first-order phase transitions.

However, there are many more phases than just the ones we are familiar with in

our everyday life. An iron magnet is ferromagnetic and produces a stable mag-

netic field; however, if heated to high enough temperatures, it undergoes a phase

transition and becomes paramagnetic. To witness the transition, we typically

choose an order parameter that exhibits distinct behavior in the two phases. For

this example, magnetization is a useful order parameter. In the ferromagnetic

phase, the spins are all aligned in the same direction, giving rise to non-zero to-

tal net magnetization. As the temperature increases, thermal fluctuations will

start to destroy the ferromagnetic ordering, leading to a decrease in net magne-

tization. The magnetization will be zero at a critical temperature, and we enter

the paramagnetic phase. Now, the spins randomly fluctuate around and have no

preferred direction, and therefore, the net magnetization is zero at temperatures
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greater than the critical temperature. This is an example of a second-order phase

transition, or alternatively known as a continuous phase transition due to the

magnetization continuously decreasing to zero as the temperature increases and

crosses the critical temperature. Another way of looking at this is by considering

the symmetry present in the system. If we think about the direction rather than

the magnitude of the magnetization vector, we see that this also allows us to

characterize the phase transition as well. As mentioned before, the spins have

no preferred direction at high temperatures, which is why the magnetization is

zero. As no particular direction is preferred, we can describe this system as be-

ing rotationally invariant. Below the critical temperature, however, all spins are

aligned in some direction, which means this rotational invariance of the system

is no longer present, which is also known as spontaneous symmetry breaking.

More generally, symmetries are defined in symmetry groups, such as rotations or

translations. For example, a two-dimensional rotation around an angle θ = 2π/n

generates the Zn group. This describes the various symmetries that one encoun-

ters in nature, and the spontaneous breaking of symmetries is associated with

phase transitions [73]. Furthermore, close to the critical point, the behavior of

the order parameter can be investigated, and a critical exponent can be extracted.

This exponent describes how the order parameter or a correlation function de-

cays at criticality. Such critical exponents have been used to define universality

classes, where the idea is that one can classify different types of transitions by

their critical exponents [74]. Models belonging to a universality class do not nec-

essarily exhibit the same behavior away from criticality; however, their behavior

becomes increasingly similar close to it.
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2.2 Quantum Phase Transitions

After introducing some examples and features of phase transitions in general,

let us now consider quantum phase transitions (QPTs) [73, 75–77]. QPTs are

phase transitions that occur in a quantum system at zero temperature. Hence,

they do not occur as the result of tuning a thermal parameter but rather some

other system parameter, such as a coupling term in the Hamiltonian. Therefore,

thermal fluctuations cannot be the reason for quantum phase transitions to occur;

instead, they are caused by quantum fluctuations.

An example of a quantum phase transition can be seen in the transverse Ising

model, where the Hamiltonian is defined by,

Ĥ = −J
∑

i

σ̂z
i σ̂

z
i+1 − h

∑
i

σ̂x
i , (2.1)

where J is the interaction strength, h the coupling strength of an external mag-

netic field in the x-direction, and σ̂z
i , σ̂

x
i are the Pauli matrices on site i. The

transverse Ising model is the quantum equivalent of the classical Ising model. It

is one of the simplest models exhibiting a quantum phase transition, allowing us

to highlight the main concepts we use in later chapters to present measurement-

induced phase transitions. In this section, we will focus on the quantum phase

transition in 1D. However, dynamical quantum phase transitions in this model

in 2D have also been explored in recent years [78, 79]. Dynamical quantum phase

transitions can occur when an initial state is prepared under a Hamiltonian with

some initial control parameter, such as h in Eq. 2.1 and then exploring the dy-

namics resulting from quenching the control parameter. Let us now explore some

common tools used to highlight and explore quantum phase transitions in the 1D

transverse Ising model.

The Transverse Ising Hamiltonian is invariant under flipping all spins in the z-
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direction. It is easy to verify that
[
Ĥ, P̂

]
= 0, where P̂ is the spin-flip operator

P̂ = ∏
i σ̂

x
i . A spin flip corresponds to a rotation about an angle θ = π, which

we mentioned earlier generates the Z2 group. As the Hamiltonian is invariant

under this transformation, we say that it possesses a Z2 symmetry group. For

the following analysis, we will consider J = 1 to define units of energy.

A quantum system at absolute zero will be in its ground state, and without an

external magnetic field (h = 0), the Hamiltonian exhibits two degenerate ground

states, the two ferromagnetic states with all spins pointing either up (|↑⟩) or

down (|↓⟩) in the z-direction. In reality, however, there is always a small external

magnetic field that breaks this degeneracy, and the system favors one of these

two states. Neither of these two states is invariant under the spin-flip operator,

P̂ |↑⟩ = |↓⟩

P̂ |↓⟩ = |↑⟩ ,
(2.2)

where |↑⟩ , |↓⟩ are the two eigenstates of σz,

σ̂z |↑⟩ = |↑⟩

σ̂z |↓⟩ = − |↓⟩ .
(2.3)

Then, as the coupling to the magnetic field h is increased, there is a competition

for the spins to all align (or anti-align) along the z or the x direction, which

results in the order of the ferromagnetic ground state being destroyed. There are

two degenerate ground states in the two limits h = 0 and h → ∞. When choosing

one ground state in a numerical simulation, one needs to select an eigenvector

with the smallest eigenvalue. Due to the degeneracy, the chosen ground state will

depend on the programming language or algorithm that is used in the simulation,

leading to inconsistent results if we use the magnetization. For consistency, we

therefore define an order parameter PF M given by the probability of finding the
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ground state in either one of the two ferromagnetic states,

PF M = | ⟨↑|ψ⟩ |2 + | ⟨↓|ψ⟩ |2, (2.4)

where |ψ⟩ is the ground state that is found by the simulation.

In Fig. 2.1a), we see that for small h, the order parameter is 1, indicating the

ferromagnetic ordering of the ground state. As h is increased, the ferromagnetic

ordering of the ground state is destroyed, and the system undergoes a quantum

phase transition at h = 1. In the limit h → ∞ the ground state will point along

the x-direction, where each spin will be in the superposition |−→⟩ = 1√
2(|↑⟩ + |↓⟩).

This state clearly is invariant under the spin-flip operator, P̂ |−→⟩ = |−→⟩. This

phenomenon is known as spontaneous symmetry breaking. This phase transi-

tion is an example of a continuous phase transition, where the order parameter

continuously changes with h, but the Z2-symmetry is broken.
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Figure 2.1: a) The ferromagnetic order parameter PF M as a function of the
coupling strength h of the external magnetic field for a range of system sizes. b)
The correlation function C(l) = ⟨σ̂z

1σ̂
z
1+l⟩ for M = 20. c) The parameters of the

fitting function f(h) = al−be−cl used to fit the correlation function C(l).
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Correlation functions are another useful tool for investigating phase transitions;

they are expectation values of products of operators that measure either temporal

or spatial correlations. In the model we are considering, we define the correlation

function C(l) = ⟨σ̂z
1σ̂

z
1+l⟩. For h = 0, it is easy to see that C(l) = 1 as the

ferromagnetic ground state has long-range order [80]. In the limit where h → ∞,

the correlation function will decay exponentially to 0, i.e., C(l) ∝ exp(−l/ξ),

where ξ is the length scale over which correlations decay. Typically, correlation

functions near criticality exhibit algebraic decay with distance, and a correlation

length ξ that diverges [81]. To verify this, we consider the fitting function f(h) =

al−b exp(−cl), and show the fitting parameters b, c as a function of h in Fig. 2.1 c).

The parameter a is simply a scaling factor and does not offer additional insight in

our analysis. For h < 1, the fit is not accurate (R2 ≈ 0.5), and the fitting function

does not accurately describe the behavior of the correlation function. For h ≥ 1,

however, we have good agreement with the fitting function (R2 ≈ 1). At h = 1,

we see that c = 0, i.e., the correlation function is purely characterized by the

algebraically decaying term l−b. As the correlation length ξ is the inverse of the

fitting parameter c, we see that if c → 0, then ξ → ∞. At the critical point, the

correlation length diverges, and correlations are non-zero at all possible length

scales; for infinite systems, the state and correlations at the transition point are

said to be scale-invariant [73, 81]. For h > 1, we see the value for b saturates

while c continuously increases with h, indicative of the exponential decay taking

over the behavior of the correlation function. It is important to note that, while

c = 0 also for h < 0, and this is due to the bad fit for h < 1. If we subtract the

square of the magnetization ⟨σ̂z⟩, we would see that the correlation length ξ only

diverges at the critical point.

Everything we have seen here serves as an introduction to phase transitions and

what we look for to determine their existence and behavior. The phase tran-
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sitions we analyze in chapters 4-6 have a different flavor; however, they result

from local measurements in open quantum systems. Regardless, all the tools and

characteristics we have seen here will be important as they allow us to charac-

terize quantum phases similarly. Now, we continue with the introduction of open

quantum systems and the numerical tools that will enable us to simulate them.
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Chapter 3

Numerical Simulations of Open

Quantum Systems

This chapter gives a brief introduction to the field of open quantum systems

and the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation, an

equation at the heart of simulating Markovian open quantum systems. We intro-

duce numerical algorithms that can be employed to simulate the GKSL master

equation more efficiently via stochastic methods. As we will see in the follow-

ing chapters, the study of open quantum systems does not only lead to a more

complete description of quantum systems, but it also leads to the emergence of

new phenomena, such as dephasing [70, 71] and dissipative phase transitions [82–

85]. Furthermore, the loss of information to the environment usually describes

an undesirable process; however, it can also be used as a tool to control, in a

programable way, the state of a system, giving rise to dissipative state engineer-

ing [86–88]. These effects are not accessible in closed systems, rendering open

quantum systems an interesting scenario for exploring new phenomena.



Introduction

3.1 Introduction

When studying a quantum system, we consider its time evolution governed by

some Hamiltonian Ĥ that describes the dynamics of the system. The most general

description of a quantum state is given by its density matrix ρ̂ whose evolution

can be studied to infer how a system behaves in a given model. Considering a

closed quantum system, the von Neumann equation prescribes its time evolution,

dρ̂

dt
= −iℏ[Ĥ, ρ̂]. (3.1)

In the case of a time-independent Hamiltonian (and setting ℏ = 1), the evolution

of the density operator is then given by the equation,

ρ̂(t) = e−iĤtρ̂(0)eiĤt. (3.2)

In practice, however, one is usually only interested in a small part of the global

system, which can interact with the rest of the system. In order to obtain a

description of this smaller subsystem in terms of a Schrödinger equation, one

would need to neglect the effects of its interactions with its environment and

assume it to be a closed system. This, however, is not a realistic description

since, often, one cannot simply ignore these interactions.

system

ĤS

Environment

ĤE

γ

ĤI

Figure 3.1: Schematic representation of an open quantum system. The system
of interest is coupled to an environment, and the three components describing
the overall system are the system Hamiltonian ĤS, the environment Hamiltonian
ĤE, and the interaction Hamiltonian ĤI with coupling rate γ between system
and environment.
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We cannot simply consider the closed system dynamics of the global system,

consisting of a system of interest and its environment, due to the exponential

scaling of the Hilbert space, which is a difficult problem to solve. This has led

to the development of quantum master equations [89–91] to derive equations of

motion only for the reduced system (i.e., the system of interest) that account for

interactions between the system and its environment but where the environment

degrees of freedom have been traced out. Under a set of approximations, which

we will discuss later, this leads to a simplified description of only the system

of interest, where the effects of the environment on the system are taken into

account.

Without going through the full derivation, we will now introduce the GKSL

master equation, perhaps the most well-known master equation, and outline the

most important concepts that are at the core of its derivation.

3.2 GKSL Master Equation

As mentioned in the previous section, we will now introduce the GKSL master

equation and explain the main ideas behind its derivation. Fig. 3.1 shows the

schematic representation of the global system ρ̂SE that we are considering; we

have the system of interest ρ̂S with Hamiltonian ĤS, the environment ρ̂E with

Hamiltonian ĤE, and the interaction between system and environment is de-

scribed by the Hamiltonian ĤI . We combine these components and obtain the

global Hamiltonian:

Ĥ = ĤS + ĤE + ĤI . (3.3)

Now, we can write down the time evolution of this global system using the von
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Neumann equation for density operators,

d

dt
ρ̂SE = −i[ĤS + ĤE + ĤI , ρ̂SE]. (3.4)

We then move to the interaction picture by defining the unitary transformations,

ĤI(t) = ei(ĤS+ĤE)tĤIe
−i(ĤS+ĤE)t,

ρ̂SE(t) = ei(ĤS+ĤE)tρ̂SEe
−i(ĤS+ĤE)t,

(3.5)

which allows us to rewrite Eq. 3.4 as:

d

dt
ρ̂SE(t) = −i[ĤI(t), ρ̂SE(t)], (3.6)

where we have now introduced the explicit time dependence. As we are inter-

ested in the density operator time evolution, we integrate the right-hand side to

transform this equation further and obtain,

ρ̂SE(t) = ρ̂SE(t0) − i
∫ t

t0
dt′[ĤI(t′), ρ̂SE(t′)]. (3.7)

Substituting this expression back into Eq. 3.6 we arrive at the following equation,

d

dt
ρ̂SE(t) = −i[ĤI(t), ρ̂SE(t0)] −

∫ t

t0
dt′

[
ĤI(t), [ĤI(t′), ρ̂SE(t′)]

]
(3.8)

As we wish to describe the time evolution of our physical system ρ̂S = TrE[ρ̂SE],

we compute the partial trace over the environment degrees of freedom. Further-

more, we can set the first term to 0 by choosing an interaction Hamiltonian of the

form ĤI = ∑
j
Ŝj ⊗ Êj, where Ŝ, Ê act on system and environment respectively,

and making two assumptions; firstly, that the initial states of the environment

and system are not correlated, ρ̂SE(t0) = ρ̂S ⊗ ρ̂E, and secondly that the initial
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state of the environment is thermal, ρ̂E(t0) = exp(−HE/T )/Tr[exp(−HE/T )]

with temperature T and setting the Boltzmann constant kB = 1. As a result, we

can write,
d

dt
ρ̂S(t) = −

∫ t

t0
dt′ TrE

([
ĤI(t), [ĤI(t′), ρ̂SE(t′)]

])
. (3.9)

However, having applied the partial trace operator to Eq. 3.8 has not removed

the explicit dependence on the global density operator ρ̂SE. Furthermore, as it

stands now, this expression is exact but very complicated and too difficult to

solve analytically or numerically in most cases. For this reason, we will make

three approximations, known jointly as the Born-Markov approximation, which

will allow us to reduce the complexity of this equation heavily.

Born approximation

The Born approximation assumes that the coupling between the system and

environment is weak, which is a valid approximation in many quantum optical

systems. The condition is met by simply including all degrees of freedom in the

system that strongly interact with each other. Weakly interacting degrees of

freedom are kept as the environment. Physically, this means the environment

is only minimally affected by interactions with the system, and the system and

environment are not entangled. We, therefore, can approximate the total density

operator as the tensor product,

ρ̂SE(t) = ρ̂S(t) ⊗ ρ̂E. (3.10)

Markov approximation

The Markov approximation assumes that the time evolution of the system only

depends on its current state and has no memory of its past evolution. This means

we assume the effects of the interactions between the system and the environment

dissipate quickly, and the environment returns back to its equilibrium state to
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remain approximately static as assumed by the Born approximation. Given the

relaxation timescales of the system τR and environment τE for the Markov ap-

proximation to hold, we need τE ≪ τR.

As we have assumed the rapid decay of the environment correlation functions, we

can choose t0 = 0 for further simplification and extend the integral from t to ∞,

which we may do without changing the result.

Applying this together with the Born-Markov approximation to Eq. 3.9 we obtain

a Markovian master equation,

d

dt
ρ̂S(t) = −

∫ ∞

0
dt′ TrE

([
ĤI(t), [ĤI(t′), ρ̂S(t) ⊗ ρ̂E]

])
. (3.11)

This equation, also known as the Redfield equation, is trace-preserving but does

not guarantee positivity. In order to obtain the GKSL form of the master equa-

tion, we need to apply one more approximation, namely the rotating-wave ap-

proximation.

Rotating-wave approximation Let us introduce a general interaction Hamil-

tonian which can be written in the so-called linear coupling form,

ĤI(t) =
∑
i,j

∑
k

(
ĉi(t) + ĉ†

i (t)
)(
b̂j,k(t) + b̂j,k(t)

)
(3.12)

=
∑
i,j

∑
k

(ĉi(t)b̂j,k(t) + ĉ†
i (t)b̂j,k(t) + h.c.), (3.13)

where ĉi, ĉ
†
i denote the system operators, b̂j,k, b̂

†
j,k denote bosonic environment

operators, and h.c. stands for Hermitian conjugate. The index k indicates the

sum over the energy modes of the environment, and the Hamiltonian of the

environment [92] in terms of the bosonic environment operators reads,

ĤE =
∑
j,k

ωj,kb̂
†
j,kb̂j,k, (3.14)
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where b̂†
j,k, b̂j,k satisfiy the bosonic canonical commutation relations. If we rewrite

the operators in the interaction picture, ĉ(t), b̂(t) in terms of the Schrödinger

picture operators ĉ(0), b̂(0), we obtain,

ĤI(t) =
∑
i,j

∑
k

(ĉi(0)b̂j,k(0)e−i(ωi+ωj,k)t + ĉ†
i (0)b̂j,k(0)e−i(ωi−ωj,k)t + h.c.), (3.15)

where ωi, ωj,k are some energy scales of the system and the environment respec-

tively. The rotating wave approximation assumes that these energy scales are ap-

proximately equal and we, therefore, obtain two slow-rotating terms e−i(ωi−ωj,k)t

and two fast-rotating terms, e−i(ωi+ωj,k)t, and their respective Hermitian conju-

gates. As the fast-rotating terms oscillate quickly over the typical system re-

laxation timescale τR, they average to zero in this time interval [93], and as a

consequence, we can omit these terms, which is known as the rotating-wave ap-

proximation. Having described the main approximations used in the derivation

of the Markovian master equation, we now present the GKSL form of the master

equation, which can be obtained by substituting Eq. 3.15 into Eq. 3.11. For the

full derivation needed to obtain this form of the master equation, see references

[91].

GKSL master equation

˙̂ρ = −i[Ĥ, ρ̂] −
∑

i

γi

2 ({ĉ†
i ĉi, ρ̂} − 2ĉiρ̂ĉ

†
i ), (3.16)

where H describes the system Hamiltonian, ρ̂ is the system density operator

(The subscript S has been omitted as we have traced out all environment degrees

of freedom, so all operators are now referring to the system.). The operators

ĉi are known as the Lindblad, or jump operators acting on the i-th dissipation

channel in a many-body system and describe the type of dissipation that is being

simulated in some model of interest. The parameter γi describes the strength of
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the dissipation and at what rate energy is being exchanged with the environment.

We can see from this equation that the first term describes the coherent closed-

system time evolution, and the second term describes the resulting dynamics in

the system stemming from interactions with the environment, without the need

to also simulate the environment and its interactions with the system in a larger

Hilbert space. This equation can be solved in many cases for limited system sizes;

however, we will now proceed and describe other methods that simulate the GKSL

master equation stochastically, at the level of the pure vector state instead of the

density operator, reducing the dimension of the objects to be simulated, leading

to the powerful tool of quantum trajectories.

One interesting aspect is that the GKSL Master Equation provides flexibility in

choosing jump operators, allowing different sets of related operators to produce

the same overall behavior. In contrast, for MIPTs, the choice of operator sets has

a clear physical meaning and could lead to different phase transitions. However,

even with these differences, the equilibrium state, when averaged over all paths,

remains the same.

3.3 Quantum Trajectories

As previously mentioned, we can compute the dynamics of a system coupled to

an environment via the GKSL master equation. Numerically, this entails that

we need to manipulate and store density operators ρ̂, which live in an exponen-

tially large Hilbert space H, represented numerically by matrices consisting of

dim(H)2 elements. A pure vector state, however, is numerically represented by

a vector consisting of dim(H) elements, which is the motivation behind the so-

called Monte-Carlo wavefunction method [89, 94–97], which is a possible choice

for the stochastic unraveling of the master equation. This method allows us to

simulate the dynamics of the density operator under the GKSL master equation,
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as in Eq. 3.16, by time-evolving pure states {|ψi(t)⟩}i (with dim(H) = 2M), sam-

pled from an initial state ρ̂(t = 0) and using them to compute individual random

trajectories whose statistical averages recover the master equation. Given enough

trajectories we can then write ρ̂(t) = |ψ(t)⟩ ⟨ψ(t)|, where · · · denotes the stochas-

tic average over trajectories. This method can be more efficient than the direct

simulation of the master equation involving the density operator, as only dim(H)

coefficients are required to store a single pure vector state instead of dim(H)2.

Still, we must bear in mind that this comes at the cost of having to sample many

trajectories to minimize statistical errors, but this is a less restrictive problem as

many trajectories can be run in parallel. In the following two sections, we will dis-

cuss first-order and higher-order methods, how they are implemented concretely,

and how they can be interpreted physically.

3.3.1 First-Order Method

To obtain a first-order trajectory method, we begin by defining the non-Hermitian

effective Hamiltonian,

Ĥeff = Ĥ − i
γ

2
∑

i

ĉ†
i ĉi, (3.17)

with which we rewrite the GKSL master equation 3.16,

˙̂ρ = −i[Ĥeff, ρ̂] + γ
∑

i

ĉiρ̂ĉ
†
i . (3.18)

To simulate an individual trajectory, we sample a pure state |ψ(t = 0)⟩ from the

initial state ρ̂(t = 0). With this, we are able to set up an iterative algorithm

that computes the dynamics under the effective Hamiltonian undergoing random
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jumps. The state at time t+ dt in first-order reads,

|ψ(t+ dt)⟩ = (1 − iĤeffdt) |ψ(t)⟩ . (3.19)

As we time evolve under a non-Hermitian effective Hamiltonian, the norm de-

creases,

⟨ψ(t+ dt)|ψ(t+ dt)⟩ = ⟨ψ(t)| (1 + iĤ†
effdt)(1 − iĤeffdt) |ψ(t)⟩ (3.20)

= 1 − γdt
∑

i

⟨ψ(t)| ĉ†
i ĉi |ψ(t)⟩ ≡ 1 −

∑
i

δpi = 1 − δp,

(3.21)

where the δpi can be seen as the probabilities with which a jump, described by the

operator ĉi will occur in the time interval between t and t+dt. After propagating

the state under the effective Hamiltonian, we make a stochastic selection,

• with probability 1 − δp, we renormalize the state:

|ψ(t+ dt)⟩ = |ψ(t+ dt)⟩√
δp

, (3.22)

• and with probability δp a jump occurs:

|ψ(t+ dt)⟩ = ĉi |ψ(t)⟩√
δpi/dt

, (3.23)

where we choose ĉi randomly according to to the probabilities Πi = δpi/δp.

This procedure is then repeated to compute the time evolution for a single tra-

jectory until we reach some desired final time T .
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function trajectory(psi0, c, dt, time, Heff)

psi_t = psi0; % Initialize \psi(t)

for t = 1:length(time)-1

psi_t = (id-1i*dt*Heff)* psi_t; % compute \psi(t+dt)

dp = 1-norm(psi_t)^2; % compute jump probability

if rand < dp

% determine where to apply the jump operator

l = randomJump(psi_t);

psi_t = c{l}*psi_t; % apply jump operator

end

psi_t = psi_t/norm(psi_t); % renormalize

% calculate and save observables here

end

end

This pseudocode outlines the described procedure, we have the initial state psi0,

the array c containing the jump operators ĉi in position i, the numerical time

step dt, time vector time, and the effective Hamiltonian Heff. We first initialize

a temporary variable containing the initial state and use it in the first time step

to compute the state at time t+ dt according to Eq. 3.19. We then compute the

jump probability and generate a random number that is uniformly distributed

between 0 and 1. If it is less than the jump probability we apply a jump operator

at a random site l. To determine l using randomJump, we compute Πi = δpi/δp

as mentioned above and we define intervals between 0 and 1 whose size is pro-

portional to δpi. We then draw again a random uniformly distributed number

between 0 and 1 and pick the index l of the interval in which the random number

lies. After this step, we simply renormalize and compute observables or save the

state at time t+ dt before repeating it until the final simulation time is reached.
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This has to be then repeated for a large number of trajectories, and upon aver-

aging over many trajectories, we are able to recover the time evolution under the

GKSL master equation 3.16, which we will prove in the next paragraph.

Recovery of the master equation:

To demonstrate that this stochastic method is equivalent to the master equation

3.18 let us consider the density operator of a pure state at a time t,

ρ̂(t) = |ψ(t)⟩ ⟨ψ(t)| . (3.24)

As described in the algorithm, with probability 1−δp, we choose the renormalized

state, and with probability δp, we choose the state where a jump occurred. Then,

the averaged density matrix at time t+ δt will be given by the following average,

ρ̂(t+ dt) = (1 − δp) |ψ(t+ dt)⟩ ⟨ψ(t+ dt)|
1 − δp

+ δp
∑

i

δpi

δp

ĉi |ψ(t)⟩ ⟨ψ(t)| ĉ†
i

δpi/dt
, (3.25)

where ρ̂ denotes a statistical trajectory average for a given ρ̂. With the above

definition in equation 3.19 the first term yields:

|ψ(t+ dt)⟩ ⟨ψ(t+ dt)| = (1 − idtĤeff) |ψ(t)⟩ ⟨ψ(t)| (1 + idtĤ†
eff) (3.26)

= (|ψ(t)⟩ − idtĤeff |ψ(t)⟩)(⟨ψ(t)| − idt ⟨ψ(t)| Ĥeff) (3.27)

= ρ̂(t) − idt(Ĥeffρ̂(t) − ρ̂(t)Ĥ†
eff), (3.28)

where in the last line, we omit terms that are not linear in dt. We obtain:

ρ̂(t+ dt) = ρ̂(t) − idt(Ĥeffρ̂(t) − ρ̂(t)Ĥ†
eff) + dt

∑
i

ĉiρ̂(t)ĉ†
i , (3.29)

which is equivalent to the Markovian master equation 3.18 in a single time step

dt. Hence we have shown that the algorithm described in this section recovers
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the evolution under the master equation upon trajectory averaging.

3.3.2 Higher-Order Method

In the previous section, we have seen a first-order quantum trajectory method,

which time evolves the state using a first-order Taylor expansion of the application

of the evolution operator. We can improve the accuracy of this, at the cost of

computing a matrix exponential of the effective Hamiltonian, by time evolving

via,

|ψ(t+ dt)⟩ = e−iĤeffdt |ψ(t)⟩ , (3.30)

and then applying the jumps as previously discussed. Computationally, in com-

parison to before, this step is more costly to perform, as here, the matrix expo-

nential needs to be evaluated. This, however, can be circumvented by using the

sparsity of the Hamiltonian or by using functions that compute the action of the

exponential operator on the state, see, e.g., Ref. [98]. This does not circumvent

the fact that jumps require a full time step, leading to an underestimation of the

rate at which jumps occur. This can be improved by considering a method that

allows the computation of the jump times with arbitrary precision. We start the

routine as described in the previous section by sampling a pure state from the

initial state ρ̂(t = 0).

We then solve the following equation numerically or analytically for ti+1,

||e−iĤeffti+1 |ψ(ti)⟩ ||2 = r, (3.31)

where r is a uniformly distributed random number between 0 and 1 and ti+1 is

the time at which the next jump will occur. We then compute the time evolution
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of the state for the time interval t ∈ [ti, ti+1] via

|ψ(t)⟩ = 1
N
e−iĤeff(t−ti) |ψ(ti)⟩ , (3.32)

with normalization factor: N = ||e−iĤeff(t−ti) |ψ(ti)⟩ ||.

At the time t = ti+1, we then apply the quantum jump in the same fashion as

described in Eq. 3.23,

|ψ(ti+1)⟩ = ĉi |ψ(ti+1)⟩√
δpi/dt

. (3.33)

As for the first-order method, we repeat these steps to compute the time evolu-

tion over the desired time-interval and compute many trajectories over which we

compute statistical averages to recover the evolution of the density operator ρ̂

under the GKSL master equation 3.16.

Computationally, this method only differs minimally from the previously outlined

pseudocode here rather than time evolving with a constant time step throughout

the whole simulation, we can numerically solve the exact time at which the jump

occurs with arbitrary precision and use any time step we wish, so long as we can

accurately compute the state at some time t. If, for example, we time evolve a

system in the time interval t ∈ [0, 1] using a numerical time step of dt = 0.1, we

have a total of 10 iterations to reach the final simulation time. If at t = 0.35 a

jump occurs, using the first-order method, we will not apply the jump until we

reach the time dt = 0.4. To apply the jump at the exact time it is supposed to

occur, we would need to consider a time step of dt = 0.01, which would require

100 iterations to reach the final simulation time. Using the higher-order method

to compute the jump time exactly and use the numerical time step dt = 0.1 until

we reach the step before the jump, then decrease our time step to the difference

between the time when the jump happens and the current time, dt = 0.35−0.3 =

0.05. We then apply the jump at this time and continue time-evolving until we
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reach the final simulation time. This way, we achieve the same accuracy as

the first-order method but using only 11 iterations. When the dissipation rate

is low, and jumps only rarely occur, the error tends to remain low, rendering

the first-order method a good choice for simulations. When the dissipation rate

increases, however, the number of jumps will be underestimated, decreasing the

accuracy cumulatively as one time evolves. If, for example, the number of jumps

happening in this time interval passes 10, the average time between jumps will

be smaller than the numerical time step, as only 10 time steps are needed to

reach the final simulation time. This simple example demonstrates that as the

number of jumps increases with the dissipation rate and the average time between

jumps decreases, the first-order becomes increasingly inaccurate due to the over-

estimation of when the next jump will occur unless one is willing to reduce the

time step significantly. Especially in this regime where the dissipation rate is

larger, the higher-order method can prove very useful for both efficiency and

accuracy. Note that this has completely ignored the fact that the computation

of solving when the jump occurs exactly can also be numerically expensive, so

one needs to take into account all these considerations when choosing a method.

As we will later show, this computation can also be straightforward to perform,

providing both immense improvements in accuracy and computation times.

3.3.3 Physical Interpretation

As we have seen, the quantum trajectory method consists of two parts: the time

evolution under an effective Hamiltonian and the random application of jump

operators, which simulate the dissipative dynamics of the model. To give some

physical context to this method, let us consider a simple two-level system that

experiences spontaneous emission [99]. If we drive the system, we will see coherent

Rabi oscillations where the population is transferred back and forth between the
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ground and the excited state. The Hamiltonian describing this system is given

by,

Ĥ = −Ω
2 (σ̂+ + σ̂−) − ∆σ̂+σ̂−, (3.34)

where Ω is the Rabi frequency, characterizing the interaction strength between

the system and an external oscillating electromagnetic field, ∆ is the detuning

from the resonant frequency, and σ̂+, σ̂− are the raising and lowering operators

respectively. The master equation describing the dynamics of the system is given

by,
˙̂ρ = −i[Ĥ, ρ̂] − γ

2
(
{σ̂+σ̂−, ρ̂} − 2σ̂−ρ̂σ̂+

)
. (3.35)

In Fig. 3.2 a), c) the population of the excited state in a single trajectory is

visualized for two spontaneous decay rates γ = 0.1, 0.5, where the jump operator

is the lowering operator σ̂−. Starting from the ground state, the system undergoes

Rabi oscillations, and we observe the population oscillating between the ground

and excited state. Due to spontaneous emission, the atom gets projected into

the ground state at random times, and the coherent oscillations are interrupted.

With an increasing spontaneous emission rate, we observe the projection into the

ground state more frequently.

In Fig. 3.2 b), d) we display the trajectory-averaged population of the excited

state and observe that the quantum trajectory method (blue) recovers the ex-

pected dynamics from the master equation (red). An increase in the spontaneous

emission rate leads to a stronger damping of the population of the excited state.

This example illustrates how individual trajectories can be physically interpreted.

The jumps that are randomly applied during the evolution correspond to a se-

quence of spontaneous emission events that interrupt the coherent dynamics,

and if we were to measure the environment, we would gain knowledge that the

system was projected into the ground state whenever a photon is detected. In
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Figure 3.2: a), c) Excited state population ⟨σ̂+σ̂−⟩ of a two-level system as a
function of time in an individual trajectory for two spontaneous decay rates
γ = 0.1, 0.5. Starting from the ground state, the excited state population os-
cillates coherently at the Rabi frequency Ω = 2 while being interrupted randomly
by spontaneous emissions. b), d) Trajectory-averaged excited state population
⟨σ̂+σ̂−⟩ as a function of time for two spontaneous decay rates γ = 0.1, 0.5. We
compare the quantum trajectory result (blue) to the direct simulation of the
master equation (red), where the jump operator is the lowering operator σ̂−.
We observe good agreement between both methods, using a numerical timestep
dt = 10−2, averaging over Nt = 500 trajectories. The statistical errors are com-
puted by dividing the standard deviation of the excited state population by the
square root of the number of trajectories [100].

contrast, the time evolution under the effective Hamiltonian corresponds to the

coherent dynamics, during which the system undergoes Rabi oscillations. Aver-

aging over many trajectories, we recover the evolution prescribed by the GKSL

master equation, where we see the damping effect of the Rabi oscillations caused

by spontaneous emissions.

From Fig. 3.2 a), c) we observe at the trajectory level that the number of spon-

taneous emissions increases with the decay rate. Therefore, the probability of
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finding the state in the excited state decreases due to an increasing number of

projections to the ground state. After some time, δt, the probability of finding

the atom in the excited state is Pe = Ω2δt2

4 . If the decay rate is increased, the

number of jumps increases, and the average time δt between jumps decreases,

and as a consequence, the probability of finding the state in the excited state

decreases. This phenomenon, referred to as the quantum Zeno effect was first

discovered by Itano et al. [43] and is characterized by its tendency to suppress

coherent processes, illustrated explicitly in this context by the inhibition of Rabi

oscillations. One important point to note is that the equivalence between the

Lindblad master equation and the quantum trajectory method is valid for ar-

bitrary decay rates. When increasing the decay rate in numerical simulations,

one has to ensure that the numerical parameters are chosen appropriately and

that the trajectory-averaged dynamics still coincide with the dynamics resulting

from the master equation. Physically, however, the Markov approximation as-

sumes that the environment returns rapidly back to its equilibrium state after

being excited, and, therefore, the spontaneous decay rate cannot be increased

arbitrarily. At some point, the necessary separation between energy scales is no

longer present, and the Markov approximation no longer holds. This means that

although the equations themselves do not break, there comes a point where they

no longer accurately describe the model that is initially considered.

The unraveling of the master equation we have discussed here is not unique,

and in the next section, we will introduce another method, known as quantum

state diffusion relating to quantum measurement theory. These methods were

developed around the same time [101] as the quantum jump approaches and entail

a different physical interpretation, which we will discuss as well. Rather than

jump processes that model the dissipative dynamics, a stochastic Schrödinger

equation approach is used with random noise to model the incoherent dynamics.
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3.4 Homodyne Detection and Quantum State

Diffusion

As mentioned, the previous quantum jump approach is not a unique unraveling of

the master equation, and we can write down other quantum trajectory methods.

One such method, known as quantum state diffusion, is the result of the analysis

of stochastic differential equations and was first derived by [101, 102]. We will

discuss this further in chapter 5 as this method lies at the heart of our work in

that chapter. Instead, we will focus on the mathematical background and present

the algorithm. We will also put it in the context of homodyne detection to have

a physical interpretation of this method.

3.4.1 Quantum State Diffusion

The GKSL master equation, Eq. 3.16, can be rewritten as a stochastic differen-

tial equation for a pure state |ψ⟩, which is known as quantum state diffusion.

The following stochastic Schrödinger equation (SSE) simulates the dynamics of

a single trajectory,

|ψ(t+ dt)⟩ =
[
1 − iĤ − γ

2
∑

i

ĉ†
i ĉi

]
|ψ(t)⟩ dt

+
[ ∑

i

γ

2
〈
ĉi + ĉ†

i

〉
ĉi + √

γĉi
dWi(t)
dt

]
|ψ(t)⟩ dt,

(3.36)

where ĉi, ĉ
†
i are the jump operators, dWi(t) is a Wiener increment in Itô form

[103] and leads to a noisy output signal, which we further discuss in the next

sections. Furthermore, the Wiener increment is not correlated in time or with
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other sites in the system, which we formally express as,

E[dWi(t)] = 0

E[dWi(t)dWj(t′)] = dtδi,jδt,t′ .
(3.37)

Note that Eq. 3.36 yields an unnormalized state, so in numerical simulations, one

must explicitly normalize in each time step. Furthermore, this equation shows

how the time evolution of the state at time t+dt is conditioned on the expectation

value of the observable
〈
ĉi + ĉ†

i

〉
at time t. This measurement corresponds to

measuring the x quadrature of the system, with the x quadrature operator defined

as x̂ = ĉ + ĉ†. This naturally emerges when considering a homodyne detection

scheme, which is the topic of the next section.

3.4.2 Homodyne Detection

Homodyne detection is a scheme where an output signal of a system of interest and

a local strong oscillator field are mixed in a low-reflectivity beamsplitter (LRBS),

as can be seen in Fig. 3.3. The output signal gets recorded by a photodetector

and is proportional to the homodyne current Jhom, in which the x quadrature of

the system output field is encoded. To see why this is the case, we will provide

a brief derivation for the case of balanced homodyne detection at the end of this

section.

Intuitively, we can think of this setup as mixing an unknown signal with a ref-

erence signal, allowing us to learn about the unknown system signal, but only

weakly probing it and not fully collapsing the system wavefunction. As atoms

have the ability to relax through fluorescence, they can emit photons into their

electromagnetic environment. In experiments through detecting and counting the

emitted photons, discrete quantum jumps of the state can be observed, collaps-

ing the system wavefunction as we saw in the previous section. If, instead, the
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Figure 3.3: A schematic representation of the homodyne detection scheme. The
system output signal is mixed in a low reflectivity (R → 0) beamsplitter with a
strong local oscillator. The state of the local oscillator is given by |β⟩ = βeiϕ,
where β is the amplitude and ϕ the phase of the oscillator.

amplitude of the fluorescence field is mixed coherently with a local oscillator by

a beamsplitter, then each realization of a measurement record can be used to

construct a quantum trajectory whose evolution obeys quantum state diffusion,

and a homodyne current can be measured. This is related to chapter 5 where we

consider a system of free fermions and use the homodyne current that arises in

such a setup to investigate the measurement-induced phase transition that arises

in this model. As we will discuss later, the local oscillator also amplifies the sys-

tem output signal, so this setup is also useful when the output from the system

is weak.

In this setup, only the transmitted signal is recorded in a photodetector, and

although a low-reflectivity beamsplitter is used, some of the system signal will

be reflected and lost. To counteract this, the local oscillator β amplitude must

be large. To completely avoid the loss of signal, we need the reflectivity R of the

beamsplitter to go to zero (R → 0), which in turn means the amplitude β of the

local oscillator needs to be infinite (β → ∞). In this limit, the photodetection

rate goes to infinity, but as the local oscillator dominates the recorded signal,

the effect on the system goes to zero. This means the collapses that the sys-
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tem experiences due to the measurement process become infinitesimally small;

however, they happen at an infinite rate, leading to a continuous evolution in

time of the conditioned state of the system. As individual collapses only affect

the state of the system infinitesimally, the photocurrent at the detector needs to

be integrated over a time interval ∆T , chosen such that ∆T is small compared

to times over which the system changes significantly, but large enough to have

witnessed a large number of collapses. This treatment leads us to the approach

of describing this setup using a stochastic Schrödinger equation (SSE) (Eq. 3.36),

and full derivations of this can be found in Refs. [89].

Balanced Homodyne Detection Homodyne detection has proven to be a use-

ful setup for measuring the dynamics of a system state that is conditioned on

its measurements. Balanced homodyne detection (BHD) works similarly, and its

setup is shown schematically in Fig. 3.4.
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Figure 3.4: The homodyne detection setup consists of a 50/50 beamsplitter,
which mixes the system output equally with a strong local oscillator. The two
output beams are then subtracted, and the resulting signal is proportional to the
homodyne current Jhom.

Instead of using an LRBS, a 50/50 beamsplitter is used instead. The two equally
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mixed output signals are recorded in photodetectors and subtracted from one

another, yielding the output signal. Due to the subtraction of the two signals,

noise and fluctuations arising in this setup are canceled out as they often originate

from the same source, resulting in BHD being the preferred setup.

In order to find an expression for the current, let us consider some pure system

state |ψ⟩1, and the local oscillator to be simply a coherent state |β⟩2 = βeiϕ. The

joint input state then is |ψ⟩in = |ψ⟩1 |β⟩2. The photocurrents that are measured

on detectors D3, D4 will be proportional to the expectation value of the respective

number operators n̂i = ĉ†
i ĉi (i = 3, 4), where ĉ†

i , ĉi are the respective raising and

lowering operators. We consider a 50/50 beamsplitter so we have transmittivity

T = 1√
2 and reflectivity R = 1√

2i and with this we can rewrite the operators as

ĉ3 = T ĉ1 + Rĉ2 and ĉ4 = Rĉ1 + T ĉ2. With some algebra, we can express the

difference n̂3 − n̂4 as,

n̂3 − n̂4 = ĉ†
3ĉ3 − ĉ†

4ĉ4

= 1
2

[
(ĉ†

1 − iĉ†
2)(ĉ1 + iĉ2) − (ĉ†

2 − iĉ†
1)(ĉ2 + iĉ1)

]
= 2

[ 1
2i(ĉ1ĉ

†
2 − ĉ†

1ĉ2)
]
.

The photocurrent i34 = i3 − i4 is proportional to the expectation value of this

operator,

i3 − i4 ∝ ⟨n̂3 − n̂4⟩

∝ 2 ⟨ψ|
[ 1
2i(ĉ1ĉ

†
2 − ĉ†

1ĉ2)
]

|ψ⟩

∝ 2 ⟨ψ1|
[ 1
2i(ĉ1 ⟨β2| ĉ†

2 |β2⟩ − ĉ†
1 ⟨β2| ĉ2 |β2⟩)

]
|ψ1⟩

∝ 2|β| ⟨ψ1|
[ 1
2i(ĉ1e

−iϕ − ĉ†
1e

iϕ)
]

|ψ1⟩

∝ 2|β| ⟨x̂ϕ⟩1 ,
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where x̂ϕ is the generalized quadrature operator. Choosing ϕ = π
2 , for example,

leads to measuring the x̂ quadrature of the system. This simple calculation shows

that the subtraction of the two photocurrents leads to a signal that is proportional

to the oscillator field amplitude and the measurement of the x̂ quadrature of the

system for some phase angle ϕ of the local oscillator field. BHD leads to the same

SSE as in the case of simple homodyne detection, as can be seen in Ref. [89]. To

see where the stochastic nature arises from, we can consider a time interval during

which the system experiences some number of collapses. These collapses occur

randomly in time and can be modelled with a stochastic process. This is why

the white noise term appears in the conditioned time evolution of the state. As

we consider the limit where the amplitude of the local oscillator goes to infinity

(β → ∞), the homodyne current becomes a continuous function in time rather

than a jump process. The homodyne current is not simply the amplitude of the

output signal that we mix with the local oscillator, and it also consists of a white

noise term. We define the homodyne current as,

Jhom = ⟨x̂⟩
2 + dW

√
γdt

. (3.38)

With this definition we can rewrite the SSE 3.36 as,

|ψ(t+ dt)⟩ =
[
1 − iĤ − γ

2
∑

i

ĉ†
i ĉi + γ

∑
i

Jhomĉi

]
|ψ(t)⟩ dt, (3.39)

where Jhom is the current associated to the x̂ quadrature operator x̂i. The signal

that is picked up by the photodetector is proportional to this homodyne current,

and as the white noise term has zero mean, upon averaging over many trajectories,

the x̂ quadrature of the system output field can be measured. This algorithm

is easily implementable and has allowed us to obtain the results presented in

chapter 5.
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3.5 Fermionic Gaussian States

To conclude our introduction to the numerical tools used in this thesis, we now

discuss Fermionic Gaussian States (FGS). These states are fully characterized by

their correlation matrix, which we introduce below, substantially simplifying cal-

culations. As mentioned earlier, the density operator that numerically represents

a quantum state lives in an exponentially large Hilbert space H. Therefore, it

follows that the number of elements needed to store the state numerically also

scales exponentially with the number of lattice sites. In contrast, as FGS are com-

pletely characterized by their correlation matrix, the number of elements needed

for its representation scales with the square of the lattice size. For the simula-

tion of dynamics, FGS have the useful property that they remain Gaussian under

time evolution with a quadratic Hamiltonian. This means that the Hamiltonian

can only contain quadratic terms in the fermionic raising and lowering operators,

which restricts the models we can simulate with them. This section mainly intro-

duces two trajectory algorithms we use to generate the data for chapters 4 and 5.

The algorithms and methods below are adapted from the following References [58,

59, 104].

3.5.1 Time evolution with FGS

For a general Fermionic Quadratic Hamiltonian we write,

Ĥ =
∑
i,j

(
Aij ĉ

†
i ĉj +Bij ĉiĉj

)
+ h.c., (3.40)

where ĉ†
i , ĉi are the fermionic raising and lowering operators acting on site i.

In this thesis, we only consider number-conserving quadratic Hamiltonians, i.e.,

Bij = 0 ∀i, j. A is the hopping matrix and encodes the connections between
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lattice sites. We parameterize the normalized FGS as follows,

|ψt⟩ =
N∏

n=1

( M∑
i=1

Ûi,n(t)ĉ†
i

)
|0⟩ , (3.41)

where M is the number of lattice sites, N is the particle number, and Û satisfies

Û †Û = I. From this parameterization, we compute the correlation matrix, which

fully characterizes the FGS,

Dij(t) = ⟨ĉ†
i ĉj⟩ = [Û(t)Û †(t)]j,i, (3.42)

where ĉ†
i , ĉi are the fermionic raising and lowering operators acting on site i. Then,

the closed system time evolution follows the equation,

Û(t+ dt) = e−iAdtÛ(t), (3.43)

where D(t) = [Û(t)Û †(t)]T is the correlation matrix at time t, A is the hopping

matrix, and dt is the numerical time step.

Finally, for a subsystem M = [mi,mj] we can compute the reduced correlation

matrix DM(t) = Dmi,mj∈M(t). The von Neumann entropy can be computed [104]

using,

S(DM) = −
∑

i

λi ln λi + (1 − λi) ln(1 − λi), (3.44)

where {λi} is the spectrum of DM .

Because FGS are fully characterized by their correlation matrix, we only require

M2 to describe a system consisting of M sites fully. Furthermore, as we are

also able to calculate the entropy from the correlation matrix, we have efficient

methods that we use throughout chapters 4 and 5.
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3.5.2 Quantum Jump Algorithm

To implement the quantum jump algorithm outlined in section 3.3.2, we use the

fact that we are dealing with a number-conserving Hamiltonian, which allows us

to compute the times at which quantum jumps occur explicitly. Normally, we

would need to solve Eq. 3.31 numerically; however, given the total particle num-

ber, we can solve this equation explicitly, and the jump times can be computed

using,

ti = ti−1 − ln r
γN

, (3.45)

where ti−1 is the time when the last jump occurred (t0 = 0), and r is a random

number between 0 and 1 drawn from a uniform distribution.

We then compute the time evolution of the correlation matrix using Eq. 3.43 until

the first jump occurs. Then, the jump is applied via,

Dij =



1, i = j = k

0, i ̸= j and (i = k or j = k)

Dij − DkjDik

⟨nk⟩t
, otherwise,

(3.46)

where ⟨nk⟩t is the jump operator at site k that has been selected considering the

probabilities pi in Eq. 3.20. Then, we perform a singular value decomposition,

D = USU †, to obtain a new U matrix, continue time evolving until the next

jump, and repeat this process until the end of the simulation.

3.5.3 Quantum State Diffusion

We previously introduced QSD in section 3.4.1, which we can also simulate effi-

ciently using FGS. This algorithm is generally more efficient as the whole time

evolution can be simulated using only the U matrix. We aim to simulate the
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following stochastic Schrödinger equation,

|ψ(t+ dt⟩ =
(

1−iHdt+
M∑

i=1

[√
γ(ni−⟨ni⟩t)dWi,t−

γ

2 (ni−⟨ni⟩t)2dt
])

|ψt⟩ , (3.47)

which explicitly depends on the expectation value of ni(t). Note that this ex-

pression is equivalent to Eq. 3.36; however, this equation contains additional

normalization terms. Furthermore, the monitored quadrature operator is the

local number operator ĉi = n̂i.

The time evolution for FGS is implemented using,

U(t+ dt) = We−iAdtU(t), (3.48)

where W is the stochastic matrix W = diag(edWi,t+γ(2⟨ni⟩−1)dt), and A is the

hopping matrix of the Hamiltonian, Ĥ = ∑
i,j
hij ĉ

†
i ĉj + h.c.. Here, the factor √

γ

has been absorbed in the white noise term, which now satisfies E[dWi,t] = 0 and

E[dWi,tdWj,t′ ] = δi,jδ(t− t′)γdt. Finally, the normalization of U is enforced via a

QR decomposition, U = QR, and then redefining U = Q, which ensures that U

is orthonormal. Then, as with other trajectory algorithms we have discussed, we

repeat this process until the final simulation time is reached.

3.6 Summary

In this chapter, we have introduced the GKSL master equation, which can be used

to simulate Markovian open quantum systems. We provided an overview of the

derivation and the approximations used to obtain the final form of the equation.

We then introduced stochastic unraveling methods of the master equation, namely

quantum trajectories, where in individual trajectories, coherent dynamics are

interrupted by so-called quantum jumps and quantum state diffusion, where the
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dynamics of a pure state are governed by a stochastic Schrödinger equation.

Lastly, we introduce Fermionic Gaussian States (FGS) as a numerical tool to

simulate specific models. Specifically, in chapter 4, we use both quantum jump

trajectories and quantum state diffusion in combination with FGS to access larger

system sizes; in chapter 5, we use quantum state diffusion and FGS, and lastly, in

chapter 6 we consider only quantum jump trajectories for limited system sizes.
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Chapter 4

Detection of a

Measurement-Induced Phase

Transition in Interacting Systems

4.1 Introduction

In chapter 1, we introduced the measurement-induced phase transition (MIPT)

that was discovered in random circuits [3, 4, 6], resulting from the competi-

tion between entangling unitary dynamics and disentangling local measurements.

Qualitative changes in the system wave function characterize these phase tran-

sitions as the system undergoes a phase transition from volume-law to area-law

scaling of the entropy at a critical measurement strength.

The content of this chapter consists of work done for a project which started in May 2019.
Towards the final stages of finishing this project, we became aware of a preprint by Fuji et
al., who independently were working on a very similar project [1]. For this reason, we decided
not to publish our work at the time. Furthermore, we concluded that with our limited system
size data, we could not provide any strong claims regarding the precise location of the phase
transition, which we will discuss in section 4.4.



Introduction

In this section, we study such MIPTs in continuous time systems at long times,

which emerge from the competition between coherent time evolution and projec-

tive measurements that result from interactions with an environment. We explore

a 1D chain of hard-core bosons that can tunnel between neighboring sites, and to

break integrability, we include interactions between first and second neighbors.

The system experiences on-site dephasing, which can be regarded as the result

of an external observer performing projective measurements on the system and

losing information to the environment. This could arise physically, for example,

due to inelastic light scattering [69–72]. The model is discussed in more detail

in the following section. The steady state of this model, at the density operator

level, is the trivial infinite temperature state that is reached independent of the

measurement strength, therefore masking the transition. To access the transi-

tion, we need to consider an unraveling of the master equation where we can

study the entanglement properties. To achieve this, we use quantum trajectories

and consider non-linear functions of the density operator, which are then aver-

aged over individual measurement outcomes, which are no longer independent of

measurement strength, thus revealing the transition.

We find that when the measurement strength is small, quantum correlations

spanning the whole system are able to build up, and the volume-law scaling is

preserved in the interacting model. For large measurement strengths, however,

the system favors a product state where information becomes localized, and the

entanglement does not build up. This provides an example of a system where the

interplay between unitary and dissipative processes can fundamentally change

the nature of the coherent dynamics, giving insights into how the entanglement

properties of a system are affected by the coupling to an external reservoir. In the

following sections, we will provide an analysis of the entropy scaling forms that

emerge from this competition, perform finite size-scaling analysis, and provide
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conclusions that can be drawn from this analysis.

4.2 Interacting Hard-Core Bosons and Free

Fermions on a 1D Chain

In this chapter, we study a chain of hard-core bosons that hop between neigh-

boring sites, and we include first and second-neighbor interactions to break the

integrability of the model. We simulate this model using exact diagonalization

(ED) techniques, which heavily limits the system sizes we can access. We use

the fact that in 1D, there is a one-to-one correspondence between a system con-

sisting of hard-core bosons and spin-1/2 particles [105]. Furthermore, spin-1/2

particles can be mapped to non-interacting free fermions via the Jordan-Wigner

transformation [32],

σ̂+
j = ĉ†

jK
+
j ,

σ̂−
j = ĉjK

−
j ,

σ̂z
j = ĉ†

j ĉj − 1
2 ,

(4.1)

where K̂±
j = e±iπ

∑
k<j

n̂k is the string operator, with nk = ĉ†
j ĉi the fermionic

number operator in site j, and ĉ†
j, ĉj the creation and annihilation operators

respectively in site j. This transformation allows us to compare our results in a

bosonic system with those in a fermionic system. Free fermions enable efficient

simulation of much larger system sizes at the cost of being restricted to only being

able to consider the non-interacting case. Nevertheless, this still is a powerful tool

that allows us to draw valuable conclusions in this chapter.
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Figure 4.1: Schematic representation of a periodic 1D system consisting of hard-
core bosons, subject to dissipation. J describes the hopping strength, Ui describes
the interaction strength between sites at a distance i and γ describes the dissi-
pation strength. We assume periodic boundary conditions, M + 1 ≡ 1, where M
is the number of lattice sites.

4.2.1 Model I

We consider a periodic 1D chain (Fig. 4.1) that consists of hard-core bosons

(particles that cannot occupy the same state, i.e., we have at most one particle

per site) with nearest-neighbor hopping and interactions between first and second

neighbors to break integrability, described by the system Hamiltonian,

Ĥ = Ĥb
hop + Ĥint. (4.2)

The term Ĥb
hop describes the hopping Hamiltonian,

Ĥb
hop = −J

M∑
i=1

(â†
i âi+1 + h.c.), (4.3)

with hopping parameter J . â†
i , âi are the respective bosonic creation and annihi-

lation operators in sites i, satisfying the commutation relations, [ai, a
†
j] = δij and

[ai, aj] = [a†
i , a

†
j] = 0.

The second term denotes the interaction Hamiltonian,

Ĥint = U1

M∑
i=1

n̂in̂i+1 + U2

M∑
i=1

n̂in̂i+2, (4.4)
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where U1, and U2 are the interaction strengths between first and second neighbors

respectively and n̂i = â†
i âi.

For simulating the dynamics of the fermionic system, we replace the bosonic

operators in the Hamiltonian described in Eq. 4.3, with the fermionic raising and

lowering operators, ĉ†
i , ĉi,

Ĥf
hop = −J

M∑
i=1

(ĉ†
i ĉi+1 + h.c.). (4.5)

The fermionic operators satisfy the anticommutation relations, {ci, c
†
j} = δij and

{ci, cj} = {c†
i , c

†
j} = 0, where {a, b} ≡ ab+ ba defines the anticommutator.

For both hard-core bosons and FGS, we consider this system subject to dephas-

ing of the local particle numbers, with the number operator n̂i being the jump

operator that models the dissipation. The system dynamics are described by the

GKSL master equation (Eq. 3.16). We consider a photon counting unraveling of

the master equation to simulate the dynamics and access the phase transition.

Due to the conservation of the U(1) symmetry in the model, we can explicitly

compute the jump times from Eq. 3.31 using ti+1 = − ln r
γN

, where γ is the mea-

surement strength, N is the total particle number, and r is a random number

drawn uniformly from the interval (0, 1).

4.2.2 Model II

To explore in more detail what can be deduced from Model I, we turn to the

secondary model, which consists of the same Hamiltonian, but we substitute the

dephasing process with a single particle pump and loss term. We do this to explic-

itly break the U(1) symmetry associated with excitation number conservation.
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The resulting GKSL master equation reads,

˙̂ρ = −i[Ĥ, ρ̂] + γ+ ∑
i

[
â†

i ρ̂âi − 1
2{âiâ

†
i , ρ̂}

]
+ γ− ∑

i

[
âiρ̂â

†
i − 1

2{â†
i âi, ρ̂}

]
, (4.6)

where γ+, γ− are the new dissipation strengths that describe the pump and loss

processes. The jump operators associated with the pump and loss terms are

the creation â†
i and annihilation operators âi, respectively. As we would like to

ensure the stationary state remains the infinite temperature state I/d, where d

is the system dimension. Noting that in the stationary state ˙̂ρ = 0, substituting

ρ = I/d in Eq. 4.6 and multiplying by d we obtain,

−i[Ĥ, I] + γ+ ∑
i

[
â†

iIâi − 1
2{âiâ

†
i , I}

]
+ γ− ∑

i

[
âiIâ†

i − 1
2{â†

i âi, I}
]

= 0

γ+ ∑
i

[
â†

i âi − âiâ
†
i

]
+ γ− ∑

i

[
âiâ

†
i − â†

i âi

]
= 0

(γ+ − γ−)
∑

i

(â†
i âi − âiâ

†
i ) = 0

(γ+ − γ−)
∑

i

[âi, â
†
i ] = 0

(4.7)

As [âi, â
†
i ] = 1, we deduce that in order to ensure that the stationary state remains

the infinite temperature state, we must choose γ+ = γ−.

4.3 Non-interacting vs. interacting systems

We will begin by analyzing the long-time entanglement properties for both the

interacting and non-interacting models to find evidence of a dynamical phase

transition between volume-law and area-law scaling of the entanglement entropy

as a function of the dissipation strength. We explore whether: i) there are distin-

guishable phases in which the entanglement properties are qualitatively different,

ii) there is a quantum critical point γc at which the system undergoes a dynam-
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ical phase transition. We will shortly show that although the behavior in the

interacting model clearly allows us to see different entanglement properties, espe-

cially in the regimes far from the transition point, pinpointing the critical point

is a difficult task. Due to the finite-size systems explored here, the critical point

cannot be extracted with certainty from this data, which is the topic of discussion

in subsection 4.4.

To obtain the data presented in this chapter, we make use of higher-order quan-

tum trajectories and follow the procedure discussed in chapter 3.3.2. To ensure

that we have reached the stationary regime, we time-evolve until the trajectory

averaged local densities stop oscillating and reach an approximately steady value.

When the stationary regime is reached, we compute the trajectory average of the

von Neumann entropy [22] as a function of the subsystem size. The von Neumann

entropy is defined as,

S(MA) = − Tr[ρ̂A ln ρ̂A], (4.8)

where ρ̂A = TrB(ρ̂) is the reduced density operator of a subset MA ∈ [1,M−1] of

the full system consisting of M sites and B denotes the remainder of the system.

In Fig. 4.2 b), we can see that the entropy displays significantly qualitatively

different behavior for small and large γ in the interacting model. For small γ,

we see volume-law scaling, characterized by linear growth of the entropy with

subsystem size. In contrast, for large γ, we see that the entanglement entropy

remains invariant under the increase of the subsystem size, suggesting area-law

scaling. In the volume-law phase, we see that as MA → M/2, the linear growth

starts to curve, showing some logarithmic corrections to the linear growth, as

seen in Ref. [1]. Even in these relatively small systems, there appears to be a

clear transition between volume-law scaling and area-law scaling of the entropy.

In contrast, in Fig. 4.2 a), in the non-interacting model for small γ, the entropy

only grows logarithmically, is then fully suppressed in the area-law regime and
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Figure 4.2: The von Neumann entropy S(MA) of the approximate stationary
state as a function of subsystem size MA (M = 22) for a) the non-interacting
model U1 = U2 = 0, and b) the interacting model with U1 = 1, U2 = 0.5. A
range of dissipation strengths is presented, γ ∈ [0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2.5, 5],
visualized in dark to light blue. We time-evolve until TJ = 60 and compute
trajectory averages using Nt = 300 trajectories. The statistical error bars are
computed using σ = σS/

√
Nt, where σS is the standard deviation of the data.

As both plots highlight, the statistical error bars are small, and we observe good
convergence. The legend presented in a) also applies to b).

remains constant as a function of subsystem size. The transition between loga-

rithmic scaling and area-law scaling is present in both models and seems to occur

around similar dissipation strengths. To characterize the change between these

three distinct behavioral patterns, we can fit a function consisting of a linear, a

logarithmic, and a constant term,

f(x) = ax+ b ln x+ c, (4.9)

and investigate how the fitting parameters vary with the dissipation strengths.

From Fig. 4.3, we can guess where the transition points might lie by analyzing

where the different coefficients dominate the scaling behavior. Firstly we can
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Figure 4.3: We plot the coefficients of the fitting function f(x) = ax+b ln x+c as
a function of the dissipation strength γ ∈ [0.1, 3] to analyze which terms dominate
in which regimes, for a) the non-interacting model and b) the interacting model.
The dotted line shows the coefficient of determination R2 close to 1, indicating
a good fit for the data. The function f(x) was fitted to the data with M = 22
sites to limit the finite-size effects as much as possible. The legend presented in
a) also applies to b). Due to the low statistical error bars in Fig. 4.2, we can be
confident that the fits we have obtained are accurate. All system parameters are
identical to the ones presented in Fig. 4.2

see a clear difference in the linear coefficient a. It only plays a small role in

the non-interacting case, whereas in the interacting model, we can see a larger

contribution matching the behavior we have seen for small γ in Fig. 4.3. Sec-

ondly, the logarithmic coefficient b dominates the scaling of the entropy in the

non-interacting model for small γ. It continuously decreases with increasing dissi-

pation strength, while in the interacting model, it first grows until a ≈ 0. Then it

also decreases continuously with a similar trend as in the non-interacting model.

The constant term c fluctuates around 0.5 in the non-interacting model while it

increases until γ = 1, and then the qualitative behavior of c appears to be the

same in both models. We learn from this figure that there seem to be two regimes

for the two models, one in which the fitting coefficients behave differently and one

where they appear to exhibit the same trends. While γ < 1, we see significant
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differences in the fitting parameters between the two models, which is what we

would expect as the non-interacting model does not have a volume-law phase

while the interacting model does. Then as we have already seen in Fig. 4.2, the

transition point between logarithmic and area-law scaling seems to occur around

the same dissipation strength, which seems to be in the range γ ∈ [1, 2], as this is

the regime in which c remains approximately constant, while b continuously ap-

proaches 0. Our data suggests that in the interacting model, a transition between

volume-law and logarithmic scaling occurs near γ = 1, while in both models, a

transition appears from logarithmic scaling to area-law scaling on the interval

γ ∈ [1, 2]. Furthermore, the scaling forms of the entropy in the interacting case

seem to follow a linear trend with logarithmic corrections and a constant term,

and as we approach γ = 1 the linear term vanishes. After that, logarithmic scal-

ing of the entropy with a constant term describes the behavior of the entropy in

the interacting and non-interacting cases.

This analysis provides estimates of which regimes of the parameter space to look

for a scaling collapse of the data, also referred to as data collapse. This means

rather than considering one single system size to find the transition point; we

simulate a range of system sizes and collapse all of our data onto a single curve to

gain insight into the critical parameters of the transition using a standard scaling

form which we introduce below. To further investigate this, we plot the von

Neumann entropy in Fig. 4.4 between two equally sized subsystems MA = M/2

for a variety of system sizes as a function of the dissipation strength γ.

This plot clearly shows the data begins to collapse in the regime γ ∈ [1, 2] for the

non-interacting and interacting cases. This is the regime we associate with the

transition to area-law scaling; however, this figure reveals no indication regarding

a transition from volume-law scaling to logarithmic scaling. Moreover, this figure

demonstrates the difficulty of highlighting an exact transition point where the
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Figure 4.4: We plot the trajectory-averaged approximate steady-state von Neu-
mann entropy in the middle bipartition as a function of dissipation strength γ for
various system sizes. Numerical parameters remain as described in Fig. 4.2. As
before, we plot the a) non-interacting case, U1 = U2 = 0, and b) interacting case
U1 = 1, U2 = 0.5. The legend presented in a) also applies to b).

volume-law phase ends, which is most likely due to the limited system sizes we

have been able to access in our calculations. We dedicate the next section to the

closer examination of this problem by looking at finite size scalings proposed in the

literature [6] and explain the conclusions we draw from our data and calculations.

4.4 Discussion of scaling collapses

In this section, we attempt to pinpoint the critical points at which the transitions

between the different regimes occur. As mentioned in the introduction, near

criticality, quantum systems are said to be scale-invariant. We, therefore, expect

that some continuous function describes the behavior of the entropy at criticality,

independent of the total system size. In general, we cannot simulate infinitely

large systems, which is why we consider a range of accessible system sizes and

perform finite size scaling to extract the critical point and exponents.

From our analysis, we expect the entropy in the vicinity of the critical point to

behave as S(γ,MA) ∼ c ln(MA), where c is a constant. We introduce a scaling
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function G(M/ξ), where M is the system size and ξ ∼ |γ − γc|−ν describes the

correlation length for the critical exponent ν. With this scaling function, we can

write,

S(γ,MA) = c ln(MA) +G(M |γ − γc|−ν). (4.10)

By subtracting the entropy at the critical point S(γc,MA), we can rewrite Eq. 4.10

as,

S(γ,M/2) − S(γc,M/2) = F ((γ − γc)M1/ν), (4.11)

where F is a different scaling function than before, S(γ,M/2) is the von Neumann

entropy in the steady state between two equal subsystems (MA = M/2) for a

dissipation strength γ and ν is the critical exponent associated to the correlation

length ξ ∼ |γ − γc|−ν .

When γc and ν are known, this form can then easily be verified by plotting

S(γ,M/2) −S(γc,M/2) as a function of (γ−γc)M1/ν for a range of system sizes,

and all simulated data points should collapse onto a single curve. As in our case,

we do not know ν and have only estimates for γc we can use this Ansatz to search

for the optimal collapse parameters which should pinpoint the transition point.

This Ansatz also has been used in related works [1, 4, 6] in random circuit models

and continuous-time systems.

We now provide a brief overview of the algorithm used to search for the optimal

collapse parameters; the full outline is provided in Ref.[6]. First we define the

parameters, x = (γ − γc)M1/ν and y(x) = S(γ,M/2) − S(γc,M/2). Using spline

interpolation for all simulated system sizes, we estimate S(γc,M/2) for a given

estimate γc. We then compute x and y(x) for all simulated parameters γ and

M in the dataset. This results in a family of curves, and we obtain the optimal

scaling parameters by minimizing the mean-square deviation from their mains for

any given point xi. All points xi that lie outside the range of simulated values
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for x are discarded.

The application of this algorithm to our data has shown scaling collapses for

multiple parameter combinations. We expect to see a data collapse at the critical

point where we change from one regime into the other. Only the interacting

model exhibits a volume-law phase, and from Fig. 4.3 b), we expect that the

transition occurs close to where the linear term of the fitting function vanishes,

which is the case around γc ≈ 1.
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Figure 4.5: Scaling collapse of the data from Fig. 4.4, for a) the non-interacting in-
tegrable model, and b) the interacting non-integrable model. The scaling param-
eters depicted here are a) γc = 1.3, ν = 1, b) γc = 1.1, ν = 1, c) γc = 2.1, ν = 1.7,
and d) γc = 1.9, ν = 2. The legend presented in a) also applies to b)-d).

In Fig. 4.5 a)-b) we plot the data collapse in a) the non-interacting model with

critical dissipation rate γc = 1.3, and b) in the interacting model with critical

dissipation rate γc = 1.1 and ν = 1 in both models. These parameters are
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obtained by minimizing a cost function, and the resulting scaling collapses are

presented here. The critical dissipation rates we have obtained here match our

estimates γ ≈ 1, for the volume-law transition. In the non-interacting model,

we also see a data collapse for a similar dissipation rate. This is surprising

as we do not expect this to happen as this model does not exhibit a volume-

law phase. Other parameter values for which the cost function of the search

algorithm is minimal could be found, which we have displayed in Fig. 4.5 c)-

d). These parameter values match our estimates, where we expect the transition

from logarithmic to area-law scaling for γ ≈ 2. As this behavior is present in

both models here, we would expect to see a data collapse in both models.

Furthermore, we found that it was possible to obtain collapses for other parameter

values in the non-interacting model. This means that although we observe the

transition in the entanglement entropy, we are not able to pinpoint the critical

dissipation rates exactly, as we are able to collapse the data for a variety of

parameter values, suggesting that the system sizes that we have explored here

are not large enough.

To test whether the system size is the issue, we use Fermionic Gaussian States

(FGS) and consider a 1D-chain of free fermions. The non-interacting model we

have considered is described by a quadratic Hamiltonian, which allows us to

efficiently simulate larger systems consisting of free fermions using the methods

introduced in chapter 3.5. We simulate the same system sizes that we explored

for the hard-core bosons, perform a data collapse, and then add larger system

sizes to see whether the data collapse remains unchanged.

Fig. 4.6 a) shows the data collapse when we only include system sizes M ≤ 32 in

the data set. We find that γc = 1.9, ν = 1.5 leads to the optimal data collapse.

This plot clearly shows, however, that the scaling collapse does not work for

larger system sizes, which means the system sizes in the data set are simply too
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Figure 4.6: Scaling collapse of the von Neumann entropy in the fermionic system.
In a), we use system sizes M ≤ 32 to search for optimal collapse parameters; in
b), we use the system sizes M ≥ 64. We then plot the resulting data collapse for
all the parameters. The depicted scaling parameters are a) γc = 1.9, ν = 1.5, and
b) γc = 1.1, ν = 4. The legend presented in a) also applies to b).

small. Furthermore, if we use the large system sizes and perform a data collapse,

depicted in Fig. 4.6 b), we see a much better data collapse, where the smaller

system sizes follow the trend of the larger ones.

In this section, we have demonstrated that we can clearly distinguish the different

regimes by plotting the entropy as a function of system size; however, we cannot

make definitive claims about where the transition points lie when we can only

access relatively small system sizes. We have observed large deviations in the

scaling collapses when including and excluding certain system sizes for the free

fermion model. Moreover, for the hard-core boson data, we expect a data collapse

for the interacting model at small measurement strengths but do not expect one

in the non-interacting model. Fig. 4.5 a), b), however, shows data collapses for

similar collapse parameters in the interacting and non-interacting model, irre-

spective of whether or not we expect a data collapse to occur. We conclude that

we cannot trust the data collapses and critical parameters we extract from a data
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set if it only contains data for small system sizes.

4.5 Breaking the U(1) symmetry: single pump

and loss

In this section, we will focus on Model II as described in section 4.2.2. Instead of

considering a local dephasing process, we introduce single-particle pump and loss

in the system. In Model I, we conserve the U(1) symmetry associated with the to-

tal particle number conservation. By considering single pump and loss processes,

with respective strengths, γ+, and γ−, we explicitly break the particle number

conservation to explore whether we can witness and pinpoint the transition. For

the remainder of this section, we will only consider the case γ± = γ+ = γ− to en-

sure the steady state remains the infinite temperature state with average particle

number M/2.

In Fig. 4.7 a)-b), we plot the von Neumann entropy for the non-interacting and

interacting models, respectively. As before, we witness volume-law scaling of the

entropy in the interacting model for small dissipation strengths γ±, characterized

by linear growth of the entropy with subsystem size. Moreover, as for Model I, we

witness a logarithmic regime, which then transitions into an area-law phase where

the entropy is constant. We see that there are no qualitative differences in the

behavior of the entropy when compared to the case of dephasing despite explicitly

breaking the U(1) symmetry. Although we clearly see different signatures in the

behavior of the entropy, it is difficult to pinpoint the exact transition point. In

Fig 4.7 c)-d), we plot the scaling collapses of the von Neumann entropy of the

bipartition, MA = [1,M/2], for the optimal scaling parameters. Again, we see

a similar situation as before: similar critical dissipation strength and exponents

collapse the data. In addition, we found other parameters that also collapsed the
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Figure 4.7: a)-b) The von Neumann entropy of the approximate stationary state
as a function of subsystem size MA (M = 20) for a) the non-interacting model
U1 = U2 = 0, and b) the interacting model with U1 = 1, U2 = 0.5. We time-evolve
until TJ = 60 and compute trajectory averages using Nt = 300 trajectories. The
legend presented in a) also applies to b). c)-d) Scaling collapse of the data from
a)-b) for the non-interacting and interacting models, respectively. The statistical
error bars for a) and b) were calculated in the same fashion as in Fig. 4.2 and are
sufficiently small, indicating good convergence. The scaling parameters depicted
here are c) γ±

c = 1, ν = 1.25, and d) γ±
c = 0.9, ν = 1.45.

data, further proving that the accessible system sizes were not sufficiently large

to pinpoint the critical point exactly.
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4.6 Conclusion

In this chapter, we have explored the dynamical phase transition that arises due

to the competition between coherent time evolution and disentangling dissipative

processes such as dephasing and single particle pump and loss. We have seen

that we can clearly distinguish between different regimes characterized by the

behavior of the entanglement entropy. When using standard methods to extract

critical parameters to reveal the transition points, we find that scaling collapses

can appear regardless of whether a transition occurs. We have seen that for

similar critical parameters, we see data collapses in the bosonic system in both

the interacting and non-interacting models, which is concerning since we do not

see a transition from volume-law to logarithmic scaling of the entropy in the non-

interacting model. We are limited to moderate system sizes (M ∼ 20) that we

can simulate using exact diagonalization, and we do not have the same tools as

in random circuits where efficient algorithms exist for system sizes that are an

order of magnitude larger (M ∼ 102).

For the non-interacting model, we also considered a system of free fermions, where

we simulated the same system sizes as for the bosonic system but also included

larger system sizes, up to M = 256. This allowed us to assess the quality of

the data collapse we witnessed in the bosonic system by considering different

subsets of the system sizes. We first only used small system sizes to obtain a

data collapse, which drastically changed upon including the large system sizes

to extract the collapse parameters. Furthermore, the collapse parameters we

extracted using only the small system sizes do not collapse the larger ones. We,

therefore, conclude from this analysis that it is difficult to pinpoint the transition

point precisely when we only have access to small system sizes, and we cannot

necessarily trust the collapse results when only considering small system sizes, as

we did in the bosonic case.
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We further explored a system consisting of hard-core bosons, described by the

same Hamiltonian but with a single particle pump and loss term, and found

qualitatively the same behavior in the entanglement entropy and distinct regimes.

Similarly, as for the first model, we see again that scaling collapses appear whether

or not a transition occurs, resulting in the conclusion that the accessible system

sizes we have been able to explore are too small to make exact claims regarding

the precise location of the critical points at which the transitions occur.

A natural approach to simulate larger system sizes would be to write the sys-

tem wave function as a matrix product state, which could efficiently represent

the state in the area-law regime. In the volume-law regime, however, we could

not efficiently represent the system wave function as the truncation to low bond

dimensions in the matrix product state relies on working with states that only

have moderate or small amounts of entanglement. This clearly is not the case in

the volume-law regime, making this not a suitable solution for this problem.

In the following chapters, we will continue to explore the competition between

unitary and dissipative dynamics that give rise to MIPTs. We explore questions

regarding the experimental detection of such dynamical phase transitions in chap-

ter 5 and our efforts to find observables that witness the transition that would be

experimentally feasible. In chapter 6, we explore whether we can find evidence

of different regimes when considering the short-time dynamics as we have only

explored the behavior of the stationary states. We further explore whether we

can find a feasible method of revealing the transition in an experiment.

70



Chapter 5

Nonlinear Correlations and

Measurement-Induced Phase

Transitions

In this chapter, we present a project which evolved from the work presented in

the previous chapter. We saw that we can model free fermions for larger sys-

tem sizes, and this makes it natural to explore ways to experimentally detect

the measurement-induced phase transition discovered by Alberton et al. [59]. We

show that a correlation function, which we introduce below, is able to distinguish

between the two phases that emerge when changing the measurement strength.

Moreover, we are able to reconstruct this correlation function from linear infor-

mation extracted from many measurement trajectories. This initially suggests

that it might be possible to extract the behavior of the correlation function from

the noisy measurement record, which emerges naturally from our measurement

scheme. However, what can be measured is very subtle, and we found that this

cannot be directly measured in experiments. In this chapter, we present the work

we did in this project and also show why it is not possible to extract any nonlinear



Introduction

information from different measurement outcomes.

5.1 Introduction

In chapter 4, we explored a system consisting of hardcore bosons where coher-

ent dynamics compete with projective measurements, leading to measurement-

induced phase transitions. We simulated the non-interacting case for free fermions

as it allowed us to access larger system sizes and helped in our analysis of

the bosonic system. In this chapter, however, we will exclusively consider free

fermions and explore whether we can detect the transition resulting from the

competition between coherent Hamiltonian dynamics and continuous local weak

measurement [106, 107], illustrated in Fig. 5.1a). In this model, the system un-

dergoes a MIPT from a critical to an area-law regime [59], with a schematic

representation of the phase diagram in Fig. 5.1b).
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Figure 5.1: a) Schematic representation of free fermions on a 1D chain with
nearest-neighbor hoping and subject to continuous measurement of the local par-
ticle number. b) Schematic representation of the phase diagram as a function of
the measurement strength γ.

As we saw in chapter 4, these phases are characterized by a logarithmic scaling

of the entanglement entropy in the critical regime and constant entanglement

entropy with subsystem size in the area-law regime. Furthermore, we will show

that we can distinguish between the two phases using a nonlinear correlation func-

tion, which decays algebraically in the critical regime and exponentially in the

area-law regime. Although both quantities are extremely useful in characterizing
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and distinguishing different phases, they cannot be measured efficiently in exper-

iments, as this would require reproducing individual stochastic trajectories more

than once. As in previous sections, the MIPT is not present at the level of the

density operator as the trajectory-averaged density matrix is the trivial infinite

temperature state for any non-zero measurement rate [3, 4, 7, 59], from which

we cannot extract any useful information. Nonlinear functions of the state, how-

ever, capture information on the competition between the coherent Hamiltonian

dynamics and the continuous weak measurements.

Suitable nonlinear functions include the von Neumann entropy (Eq. 3.44), which

we already used to distinguish different phases in chapter 4. Furthermore, the

second moment of the two-point correlation function C2(l,m) = |⟨â†
l âm⟩|2, (where

â†
i , âi are fermionic creation and annihilation operators respectively in site i and

. . . denotes trajectory averaging), displays a non-trivial trajectory average, which

we present in the next section. Note that ⟨â†
l âm⟩ is non-hermitian. However, we

consider the second moment of the correlation function and we will see that this

quantity can also be expressed as the connected-correlation function between the

local fermion densities n̂l and n̂m (with n̂i = â†
i âi). We continue by introducing the

model we consider in this chapter, exploring whether it is possible to reconstruct

the correlation function using only linear information in the density operator and

the difficulties we have encountered when extending this idea to experimental

setups.

5.2 Free Fermion Chain with Continuous Weak

Measurement

In this chapter, we consider free fermions on a periodic, one-dimensional chain

with nearest-neighbor hopping that are subject to continuous measurement of
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the local particle number, as illustrated in Fig. 5.1a). The quadratic hopping

Hamiltonian for a chain consisting of M sites is,

H = −J
M∑

i=1
(â†

i âi+1 + âiâ
†
i+1), (5.1)

where J is the tunneling amplitude, â†
i ,âi are the respective fermionic creation and

annihilation operators on site i. We also assume periodic boundary conditions to

limit finite-size effects seen in our analysis. Coherent dynamics lead to a build-up

of entanglement as particles hop between neighboring sites while the continuous

measurement of the local fermion densities n̂i = â†
i âi reduces entanglement. This

competition leads to a MIPT from a critical phase to an area-law phase [59], as

noted above.

We consider a specific type of continuous weak measurement [103, 108], namely

homodyne detection [101, 102, 109], which we introduced in section 3.4.2 and

may be realized via dispersive coupling of the fermions to cavity photons [110] or

fluorescence measurements of superconducting qubits [111]. Yang et al. propose

a scheme where a scanning microscope monitors the quantum dynamics of a sys-

tem in a cavity QED setup. In this scheme, atoms manifest their presence via

resonance shifts in the output field of the cavity, which is mixed with a local oscil-

lator, resulting in a homodyne current containing information about the atomic

densities. Campagne-Ibarcq et al. propose a scheme where the fluorescence field

of qubits is measured using heterodyne detection, which allows the authors to

gain information about the state of the qubits.

The time evolution of the fermion wavefunction follows the stochastic Schrödinger

equation (SSE), which we defined in section 3.4.1,

|ψ(t+ dt⟩ =
(

1 − iHdt+
M∑

i=1

[√
γñi,tdWi,t − γ

2 ñ
2
i,tdt

])
|ψt⟩ , (5.2)
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where ñi,t = n̂i − ⟨n̂i⟩t which includes a state dependence, γ is the measurement

rate, and dWi,t is Wiener increment with mean 0 and variance dt, satisfying the

conditions described in Eq. 3.37.

As we discussed in section 3.5, the SSE 5.2 is quadratic in fermion operators,

and the dynamics of the wave function can be simulated efficiently in terms

of Fermionic Gaussian States (FGS). In this case, the fermion wave function is

completely characterized by the correlation matrix, Dij = ⟨â†
i âj⟩. The detailed

numerical procedure is outlined in section 3.5.

5.3 Reconstruction of the correlation function

C2(l,m) using linear information

As we have already seen, nonlinear functions allow us to gain insight into the

different phases. The critical phase is characterized by logarithmic scaling of

the entanglement entropy for small measurement rates and algebraic decay of

the correlation function C2(l,m). However, in the strong measurement regime,

measurements prevent entanglement and long-range correlations from building

up, resulting in area-law entanglement and exponentially decaying correlations.

In Fig. 5.2 a), we plot the von Neumann entropy in the approximate steady state

as a function of the subsystem size for a range of measurement strengths. We

observe logarithmic scaling of the entropy with the subsystem size for the small

measurement strengths. In contrast, in the large measurement regime, the entan-

glement only grows minimally and afterward remains constant. In Fig. 5.2 b), we

plot the correlation function C2(1, 1+ l) as a function of the distance l, which also

witnesses the transition. For small measurement strengths, we observe the corre-

lation function follows the same qualitative behavior as that of the curve (1+l)−2,

indicating algebraic decay. We also observe the characteristic exponential decay of
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Figure 5.2: a) The von Neumann entropy of the approximate stationary state
as a function of subsystem MA (M = 40) for measurement strengths, γ =
0.1, 0.5, 5, 10. b) The correlation function C2(1, 1 + l) = |⟨a†

1a1+l⟩|2 as a function
of distance l. We time-evolve until TJ = 60 and compute trajectory averages
using Nt = 106 trajectories. The legend presented in a) applies also to b).

the correlation function with the distance l for the large measurement strengths,

which is indicated here by the linear downward trend on the logarithmic scale.

As noted before, we cannot measure these quantities in an experiment as this

would require accessing individual trajectories multiple times. We can, however,

express the connected correlation function in terms of number operators [59],

C2(l,m) = |⟨â†
l âm⟩|2 = ⟨n̂l⟩⟨n̂m⟩ − ⟨n̂ln̂m⟩, (5.3)

where ⟨ni⟩ are the expectation values of the local number operators in site i. The

second term in this expression ⟨n̂ln̂m⟩ corresponds to the linear average in the

infinite temperature state and is determined by the initial state. We consider

an initial product state at half filling, and as we time-evolve under a number-

conserving Hamiltonian, the total particle number does not change. Therefore, if

we measure nm the probability of detecting a particle at site m to not detecting

it is N/M on average, and then as we have N−1 particles left, spread over M−1
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sites, the probability of detecting a particle at site l to not detecting it, is N − 1
M − 1

on average after measuring nm. Hence we have,

⟨n̂ln̂m⟩ = N

M

N − 1
M − 1 , (5.4)

where N = M/2 as we only consider initial states at half-filling. Note that in the

thermodynamic limit, as M → ∞, ⟨n̂ln̂m⟩ → 1
4 . Using this we can reconstruct

the correlation function C2(l,m),

C̃2(l,m) = ⟨n̂l⟩⟨n̂m⟩ − N

M

N − 1
M − 1 , (5.5)

where C̃2(l,m) is the correlation function computed directly from the local fermion

densities.

In Fig. 5.3, we plot C̃2(i, i + l) as a function of the distance l, where we have

averaged over all sites, as well as over the time interval TJ ∈ [55, 60], to reduce

the statistical errors as much as possible. We also plot C2(i, i+ l) to compare it

to the reconstructed correlation function.

In Fig. 5.3 a), b) we plot the correlation functions for γ = 0.1, 0.5 respectively, and

we observe near perfect overlap between the two correlation functions, indicating

that this method in the small measurement regime works very well. In the large

measurement regime, however, the correlations decay faster than the statistical

errors, which we observe in Fig. 5.3 c), d) where we plot the correlation functions

for γ = 5, 10 respectively. We initially see a good agreement to roughly a distance

l ∼ 4, 5 between the two correlation functions. At distances l > 5, the correlation

function computed directly from the state continues to decrease fast, while the

reconstructed correlation function remains approximately constant at an order of

magnitude ∼ 10−4. Furthermore, the error bars are roughly of the same order of

magnitude, which implies we have reached the maximal accuracy we can achieve
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Figure 5.3: The second moment of the correlation function C2(i, i+l) = |⟨a†
iai+l⟩|2

as a function of distance l. We compare C2(i, i + l) to C̃2(i, i + l), which is the
correlation function computed from the local fermion densities. We time-evolve
until TJ = 60, with a numerical time step dt = 0.01, and compute trajectory
averages using Nt = 106 trajectories. We further average C̃2(i, i + l) over the
interval TJ ∈ [55, 60] and spatially average over all sites, i ∈ [1, 40]. The legend
presented in d) applies also to a)-c).

with the number of trajectories we have simulated. As the statistical errors scale

with
√
Nt, we would need to compute 100 times as many trajectories, which is

not feasible as we already simulate 106 trajectories.

Although we only have an agreement for short distances in the large measurement

regime, this shows that it is possible to reconstruct the correlation function using

only the local fermion densities, which are linear in the density operator, although

it requires a lot of sampling. This is, in principle, an interesting starting point, but

(perhaps surprisingly) this correlation function is not accessible in experiments.
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5.4 Correlations of homodyne currents at dif-

ferent sites

Given that C2(l,m) is related to ⟨n̂l⟩⟨n̂m⟩ it is natural to ask if this might be

extracted from ⟨Jl(t)Jm(t)⟩ and we will show here what is obtained. The type of

continuous weak measurement we consider results in homodyne currents,

Ji(t) = ⟨ni(t)⟩ + ξi(t) (5.6)

which are continuous random variables, with ξi(t) = dWi(t)√
γdt

as we have dis-

cussed. ξi(t) is a Wiener process, which by definition has zero mean, and hence

by averaging homodyne currents, we can measure the local fermion densities,

Ji(t) = ⟨ni(t)⟩. Since this quantity is linear in the density operator, it is useless

to us, as the average corresponds to the expectation value in the trivial infinite

temperature.

On the other hand, averaging the product of homodyne currents is nonlinear in

the density operator, and we gain access to information about the competition

between coherent and dissipative dynamics. Let us consider the average over

different noise realizations of the product of two instantaneous homodyne currents

(in Itô calculus) at time t,

Jl(t)Jm(t) =
(

⟨nl(t)⟩ + ξl(t)
)(

⟨nm(t)⟩ + ξm(t)
)

= ⟨nl(t)⟩⟨nm(t)⟩ + ⟨nm(t)⟩ξl(t) + ⟨nl(t)⟩ξm(t) + ξl(t)ξm(t)

= ⟨nl(t)⟩⟨nm(t)⟩,

(5.7)

since for ⟨nm,l(t)⟩ξl,m(t) = 0 as they are independent of each other, and by defi-

nition, ⟨ξl(t)⟩⟨ξm(t)⟩ = 0 (Eq. 3.37) for m ̸= l.

With this naive approach, limited to a single Itô step [102, 112, 113], we obtain
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the desired nonlinear correlations, which allows us to reconstruct the correlation

function that witnesses the phase transition. This approach, however, does not

reflect an experiment, as the measured homodyne currents are not instantaneous

values as we have assumed here but are time-integrated signals. The correct

approach is to consider the product of homodyne currents that have been averaged

in time before being trajectory-averaged to reflect a realistic measurement signal

(or work in a Stratonovich form from the outset). Due to time-averaging, the

homodyne signals are now correlated as continuous measurements condition the

system, and the wavefunction describing the state at later times depends on the

expectation values and noise realizations at earlier times. This means that the

products of the type ⟨ni(t + dt)⟩ξj(t) do not automatically average to zero but

instead result in a rather spectacular cancellation of the nonlinear terms that we

are interested in measuring. We will now prove why this is the case.

Proof For the simplest case, let us consider a homodyne current that is averaged

over two time steps,

Javg
i = 1

2
[
Ji(t) + Ji(t+ δt)

]
= 1

2
[
⟨ni(t)⟩ + ξi(t) + ⟨ni(t+ δt)⟩ + ξi(t+ δt)

]
= 1

2
[
⟨n0

i ⟩ + ξ0
i + ⟨n1

i ⟩ + ξ1
i

]
,

(5.8)

where we have introduced the superscripts 0, 1 for more concise notation. The

superscripts denote the time-dependence, A0 ≡ A(t) and A1 ≡ A(t+ δt).

Note that at this point, we still obtain the correct linear expectation values upon

averaging, Javg
i = 1

2(⟨n0
i ⟩ + ⟨n0

i ⟩) as the noise terms have zero mean. Time-

averaging the homodyne currents results in the time-averaged expectation values

of the fermion densities. The problem leading to the cancellation arises due to

the product we compute before trajectory averaging.
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Let us consider the product of two homodyne currents that have been averaged

over two time steps,

Javg
l Javg

m = 1
2

[
⟨n0

l ⟩ + ξ0
l + ⟨n1

l ⟩ + ξ1
l

]1
2

[
⟨n0

m⟩ + ξ0
m + ⟨n1

m⟩ + ξ1
m

]
= 1

4
[
⟨n0

l ⟩ + ⟨n1
l ⟩

][
⟨n0

m⟩ + ⟨n1
m⟩

]
+ 1

4
[
ξ0

l + ξ1
l

][
ξ0

m + ξ1
m

]
+ 1

4
[
⟨n0

l ⟩ξ0
m + ⟨n0

l ⟩ξ1
m + ⟨n1

l ⟩ξ0
m + ⟨n1

l ⟩ξ1
m

]
+ 1

4
[
⟨n0

m⟩ξ0
l + ⟨n0

m⟩ξ1
l + ⟨n1

m⟩ξ0
l + ⟨n1

m⟩ξ1
l

]
.

(5.9)

This expression looks quite tedious to evaluate; however, if we consider the linear

trajectory average of this product, most of these terms will vanish.

First, we have,

1
4

[
⟨n0

l ⟩ + ⟨n1
l ⟩

][
⟨n0

m⟩ + ⟨n1
m⟩

]
= ⟨n0

l ⟩⟨n0
m⟩, (5.10)

assuming that in the steady state, the expectation value of the local density does

not change considerably, (⟨n0
l,m⟩ + ⟨n1

l,m⟩)/2 ≈ ⟨n0
l,m⟩.

Secondly,

1
4

[
ξ0

l + ξ1
l

][
ξ0

m + ξ1
m

]
= 1

4
[
ξ0

l ξ
0
m + ξ0

l ξ
1
m + ξ1

l ξ
0
m + ξ1

l ξ
0
m

]
= 0, (5.11)

since all noise terms are uncorrelated in time and space and satisfy Eq. 3.37.

Finally, if we consider the remaining terms in Eq. 5.9, ⟨n0
l ⟩ξ0

m = 0, ⟨n1
l ⟩ξ1

m = 0

since these products are uncorrelated at equal times and ⟨n0
l ⟩ξ1

m = 0 as the

expectation value is not correlated with the noise term at a later time. Similarly,

⟨n0
m⟩ξ0

l = 0, ⟨n1
m⟩ξ1

l = 0, and ⟨n0
m⟩ξ1

l = 0 using the same arguments. The only

non-zero terms are ⟨n1
l ⟩ξ0

m and ⟨n1
m⟩ξ0

l , as the conditioned state (and therefore

the expectation value) at time t + δt depends on the noise at time t. Removing
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all the vanishing terms yields,

Javg
l Javg

m = ⟨n0
l ⟩⟨n0

m⟩ + 1
4

[
⟨n1

l ⟩ξ0
m + ⟨n1

m⟩ξ0
l

]
. (5.12)

To evaluate Eq. 5.12, we need to compute the two non-vanishing terms, and we

can do this by using Eq. 4.97 from Wiseman and Milburn [103], which provides

an expression of the conditioned state ρ̂1 at time t+ δt, which reads,

ρ̂1 = ρ̂0 + √
γ

∑
i

dW 0
i

(
{ni, ρ̂

0} − 2⟨n0
i ⟩ρ̂0

)
, (5.13)

where {ni, ρ̂
0} = niρ̂

0 + ρ̂0ni is the anti-commutator.

Then by rewriting ⟨n1
l ⟩ = Tr(ρ̂1nl), we can now substitute ρ̂1 from Eq. 5.13,

⟨n1
l ⟩ξ0

m = Tr(ρ̂1nl)ξ0
m

= Tr
([
ρ̂0 + √

γ
∑

i

dW 0
i

(
{ni, ρ̂0} − 2⟨n0

i ⟩ρ̂0
)]
nl

)
ξ0

m

= Tr
(
ρ̂0nlξ0

m

)
+ Tr

( ∑
i

dW 0
i

dW 0
m

dt

[
{ni, ρ̂0} − 2⟨n0

i ⟩ρ̂0
]
nl

)
,

(5.14)

where Tr
(
ρ̂0nlξ0

m

)
= ⟨n0

l ⟩ξ0
m = 0 as these are uncorrelated, and using dW 0

i dW
0
m =

δi,mdt we can write,

⟨n1
l ⟩ξ0

m = Tr
([

{nm, ρ̂0} − 2⟨n0
m⟩ρ̂0

]
nl

)
= Tr

([
nmρ̂0 + ρ̂0nm

]
nl

)
− Tr

(
2⟨n0

m⟩ρ̂0nl

)
= 2⟨n0

l n
0
m⟩ − 2⟨n0

l ⟩⟨n0
m⟩

(5.15)

Following the same steps, we further obtain,

⟨n1
m⟩ξ0

l = 2⟨n0
l n

0
m⟩ − 2⟨n0

l ⟩⟨n0
m⟩. (5.16)

82



Discussion

Finally substituting Eq. 5.15-5.16 in 5.12 we obtain,

Javg
l Javg

m = ⟨n0
l ⟩⟨n0

m⟩ + 1
4

[
4⟨n0

l n
0
m⟩ − 4⟨n0

l ⟩⟨n0
m⟩

]
= ⟨n0

l n
0
m⟩.

(5.17)

■

With this, we have proven that we cannot use the product of two time-integrated

currents to gain access to nonlinear information of the density operator as this

information cancels, and we are only left with the trivial linear average that

coincides with the expectation value in the infinite temperature state.

5.5 Discussion

In this section, we have attempted to find an approach that allows us to access

nonlinear information in the density operator, with which one would be able to

experimentally witness the measurement-induced phase transition that arises in

this model through competition between coherent time evolution and continuous

weak measurement of the fermion densities. Due to the weak measurement, a

homodyne current arises in which the monitored fermion densities are encoded.

This linear information is equivalent to the expectation value in the trivial infi-

nite temperature state, which does not depend on the measurement strength and

is, therefore, useless. The second moment of the correlation function witnesses

the phase transition, as it exhibits long-ranged algebraically decaying correla-

tions for small measurement strengths and exponentially decaying correlations

for large measurement strengths. By rewriting this correlation function in terms

of the product of local densities and a linear term, we are, in principle, able to

reconstruct the correlation function. As we have seen, this approach requires a

large number of trajectories in order to obtain statistical error bars that are small
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enough, but given access to the local fermion densities, it is possible. The second

step of our approach was to consider the product between homodyne currents,

hoping to recover the product of fermion densities and, therefore, the correlation

function. We realized, however, that this approach was not possible as the homo-

dyne currents are time-integrated correlated signals, which lead to– cancellations,

and we are left with only linear information about the state. This is the reason

why this project did not lead to a publication, as we did not manage to find

another way in which we would be able to measure the fermion densities.
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Chapter 6

Probing Competition between

Coherent and Dissipative

Dynamics At Short Times

In this final chapter, we will present a different approach to characterize the com-

petition between coherent dissipative dynamics in the models that we considered

in chapter 4 and 5. The content of this chapter is the result of the author’s final

project, which is presented in Ref. [2].

6.1 Introduction

In the previous two chapters, we have explored the measurement-induced phase

transitions that result from the competition between coherent dynamics, which

build up entanglement, and quantum correlations and measurements, which lead

to the localization of information and a decrease of entanglement. The MIPTs

resulting from this competition have been studied in several contexts in recent

years [3, 4, 6] and are characterized by nonlinear functions in the density oper-
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ator at long times. The time evolution of the system wavefunction follows in-

dependent measurement trajectories, where nonlinear functions, upon averaging,

display qualitatively different behavior with varying measurement strength. The

steady state of the models we have considered is the trivial infinite temperature

state, which is reached independently of the measurement strength. Therefore,

linear quantities computed from individual trajectories coincide with their ex-

pectation values in the infinite temperature state, while nonlinear functions, in

general, do not. So far, we have only analyzed the steady-state properties of our

models, and two interesting questions arise: Can we relax this requirement, and

are we able to distinguish features of the different phases during the short-time

dynamics of the system evolution? The transition only clearly is a transition in

the steady state as a balance in the competition between coherent and dissipative

dynamics has been reached. At short times, we expect that for very small mea-

surement strengths, the behavior of the system is dictated by coherent dynamics.

In contrast, at short times, for large measurement strengths, measurements occur

so frequently that the system will tend to remain in its initial state. In between,

we expect a crossover region rather than the phase transition at a critical mea-

surement strength, as the competition between coherent and dissipative dynamics

results in damped oscillations of both linear and non-linear quantities, as we will

show in the following sections. Still, relaxing the requirement of only consider-

ing steady-state properties allows us to investigate linear functions of the density

operator, which, as we will see, can be used to characterize not the phase transi-

tion itself but rather the competition between coherent and dissipative dynamics

differently than we have seen so far. The goal remains to devise an approach

that allows us to find signatures to detect the underlying many-body phenomena

experimentally. We conclude this chapter with a reproducible method that allows

us to characterize the different behaviors in our model using a cross-trajectory
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correlator, which we adapt from the protocol from Ref. [114]. We compute the

correlator by sampling directly from the infinite temperature state, and we show

that although the infinite temperature state itself is featureless, we can discrim-

inate between the area-law and intermediate regime, which is characterized by

logarithmic scaling of the von Neumann entropy in the steady state. We now

briefly recap the model we have encountered in chapter 4 and present the re-

sults for early-time dynamics of our model as well as experimental probing of the

competition between coherent and dissipative dynamics.

6.2 Model

As mentioned in this chapter, we consider the model we investigated in chapter 4.

We consider a periodic 1D chain that consists of hardcore bosons with nearest-

neighbor hopping and first- and second-neighbor interactions, described by the

Hamiltonian,

Ĥhop = −J
M∑

i=1
(â†

i âi+1 + h.c.) + U1

M∑
i=1

n̂in̂i+1 + U2

M∑
i=1

n̂in̂i+2, (6.1)

with hopping parameter J , interaction strengths U1, U2 between first and sec-

ond neighbors respectively, and the respective bosonic creation and annihilation

operators â†
i , âi.

Furthermore, the system is subject to dephasing of the local particle numbers,

with jump operators n̂i = â†
i âi. As before, the MIPT in the steady state is not

accessible through linear functions in the density operator, which is the reason

why we consider a photon counting unraveling of the master equation to simulate

the dynamics and access the transition.
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6.3 Short-time behavior of nonlinear and linear

functions

As we have seen in chapter 4, the MIPT in this model is best characterized by the

von Neumann entropy in the steady state, computed in individual measurement

trajectories and then averaged. In this model, the entropy at small measurement

strengths scales linearly with subsystem size, exhibiting volume-law scaling. At

large measurement strengths, information becomes localized due to frequent mea-

surements, and the system is in the area-law phase, where entropy is independent

of subsystem size. In the intermediate regime, the entropy grows logarithmically

with subsystem size.

As mentioned in the previous section, an interesting question that arises is how

the entropy behaves at short times, which we now explore. In Fig. 6.1 a), d), we

plot the entropy at TJ = 1 for the non-interacting and interacting cases, respec-

tively. For large measurement strengths γ, the entanglement entropy exhibits

area-law scaling with the subsystem size. Comparing this to the steady-state be-

havior in Fig. 6.1 c),f) and intermediate times 6.1 b), e), we note that the area-law

behavior manifests at very short times and does not change considerably as we

time-evolve. This is expected, as frequent measurements result in a Zeno-type

effect, which means at the trajectory level, the system remains close to a product

state with low entanglement. Therefore, there appears only a small entanglement

build-up, which then remains constant. On the other hand, however, for small

measurement rates and at short times, for TJ = 1, we see for both the interact-

ing and non-interacting cases in Fig. 6.1a),d) that the entanglement grows with

subsystem size to around a subsystem size around MA ∼ 4. As only a little time

has passed, correlations have not spread further through the system, and hence,

at larger subsystem sizes, the entanglement entropy remains constant. At long
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Figure 6.1: Snapshots of the von Neumann entropy at three different points in
time, TJ = [1, 5, 60], as a function of subsystem size MA (M = 16) for a)-c) the
non-interacting model U1 = U2 = 0, and d)-f) the interacting model with U1 =
1, U2 = 0.5. We display the entropies for dissipation strengths, γ ∈ [0.1, 0.5, 5, 10],
increasing in the direction of the arrow in a). For each snapshot, we time-evolve
until TJ = [1, 5, 60], and compute trajectory averages using Nt = 300 trajectories.

times for this system size, TJ = 5, we now see the entropy behavior in Fig. 6.1

b),e) coincides with the steady-state behavior. However, the important conclu-

sion we draw from this analysis is that the qualitative behavior already manifests

in the entropy at short times. The quantitative differences arise due to coherent

oscillations of the entropy at short times and small measurement strengths. Still,

once correlations have been able to travel through the whole system, the quali-

tative entropy behavior becomes apparent, and we can distinguish the different

phases effectively by studying the scaling with time and subsystem size. Note

that since we only consider specific snapshots in time, the quantitative entropy

behavior changes at intermediate times as a function of the choice of time, which

is also a reason why we do not expect to detect the transition itself but rather a
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crossover region, where features of the transition are already present.

As we have seen, it is possible to clearly distinguish the two regimes, even at early

times, where coherent dynamics are still competing with the measurements. Be-

ing able to focus on early time dynamics also gives us the advantage of analyzing

linear quantities. Starting from a state with all particles initially in odd sites,

coherent time evolution allows the particles to hop to neighboring sites and oc-

cupy even sites. The coherent time evolution is interrupted by random projective

measurements. For small measurement strengths, the unitary time evolution

leads to tunneling of the particle to neighboring sites, and projective measure-

ments only rarely occur. In the large measurement regime, measurements occur

frequently and project the particles often in odd sites, as they are not able to

tunnel to neighboring sites. We further comment on this later in the chapter. To

characterize the competition between the coherent dynamics and local projective

measurements, we consider the imbalance, defined as the difference between the

sum of local densities in event and odd sites,

I = (Ne −No)/N =
∑

i(−1)i⟨n̂i⟩∑
i⟨n̂i⟩

, (6.2)

where Ne, No are the total particle numbers in even and odd sites, respectively,

and N = Ne + No is the total particle number. For our analysis, we consider

an initially imbalanced product state, with all particles in odd sites, and explore

how the imbalance relaxes in the presence of measurements. With all particles

initially in odd sites, Ne(t = 0) = 0, and No(t = 0) = N , we have I(t = 0) = −1.

In our model for non-zero measurement rates, at long times, the system loses all

information about the initial state, and the average particle number for site i is

⟨n̂i⟩ = 1/2, hence I(t → ∞) = 0 for all γ ̸= 0. We will now explore the early-time

dynamics of the population imbalance and analyze how it relaxes from −1 to 0.

In Fig. 6.2 a),d), we consider the evolution of the imbalance for the measurement
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Figure 6.2: The population imbalance for a)-c) the non-interacting model U1 =
U2 = 0, and d)-f) the interacting model with U1 = 1, U2 = 0.5. We display three
measurement strengths: a),d) γ = 0.1, b),e) γ = 2, and c),f) γ = 5. For each
curve, we also compute a fit of the form f(t) = J0(at)e−Γt, where J0 is the zeroth-
order Bessel function of the first kind and fitting parameters a,Γ. We compute
trajectory averages using Nt = 300 trajectories.

strength γ = 0.1 for the non-interacting and interacting models. In the non-

interacting model, finite-size effects are relatively prominent; however, in the

interacting model, we can observe dampened coherent oscillations resulting from

the competition between the coherent and dissipative dynamics. In the strong

measurement regime, depicted in Fig. 6.2 c),f), for γ = 5, the oscillations are fully

suppressed as the measurements dominate the dynamics in the system. From our

analysis in Chap.4 we expect a transition from logarithmic to area-law scaling of

the entropy around γ = 2 and we, therefore, display the imbalance in Fig. 6.2

b),e) for this measurement strength. There are no clear visible oscillations for

this measurement strength; however, we observe a small increase in the value

before the imbalance remains constant around 0. This analysis clearly shows
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the competition between the measurements and coherent time evolution, with

indications of a transition in the qualitative behavior at around γ = 2.

To better understand and analyze the behavior of the imbalance, we also include

a fit to the data in Fig. 6.2. In the absence of measurements, the population

imbalance in this model follows a zeroth-order Bessel function of the first kind

[115]. As the coherent oscillations are increasingly stronger damped with grow-

ing measurement rate, we characterize the nature of the damping by fitting an

exponentially decaying Bessel function to our data of the form,

f(t) = J0(at)e−Γt, (6.3)

where J0 is the zeroth-order Bessel function of the first kind with fitting param-

eters a,Γ. In Fig. 6.2, we generally observe good agreement between the fit and

the simulated data. In the non-interacting model for small measurement rates, we

observe some significant deviations from the fit, which are the result of finite-size

effects in the simulation. These deviations, however, are only present for γ < 0.5

in the non-interacting model, and we otherwise have good agreement with our

data and a coefficient of determination R2 ≈ 1.
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Figure 6.3: The fitted damping parameter Γ as a function of the measurement
strength γ ∈ [0.1, 50] for a) the non-interacting model U1 = U2 = 0, and b) the
interacting model with U1 = 1, U2 = 0.5. The solid lines are fitting functions of
the form f(γ) = a/γ as indicated in the respective legends.
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In Fig. 6.3, we analyze the behavior of the damping rate Γ, and we observe

an initial increase of the damping rate Γ with increasing measurement strength,

indicated by the downward trend of 1/Γ. As the measurements occur more fre-

quently, the coherent oscillations become increasingly suppressed, matching our

expectations from the analysis in Fig. 6.2. Once we reach the strong measure-

ment regime, the quantum Zeno effect takes over as particles remain trapped in

the initial state for long times and only rarely hop to neighboring sites. Due to

this effect, the origin of the suppression of coherent oscillation changes as now

the damping rate Γ decreases with the measurement strength γ.

To better understand the behavior of the damping rate Γ, let us consider a simple

system where only one particle is present in the system at site j. The average

time between measurements is 1/γ, and after this time, the state has evolved

according to

|ψ(t = 1/γ)⟩ = e−iH/γ |ψ(t = 0)⟩ . (6.4)

When γ ≫ J , the system will not have had a lot of time to evolve, and after time

1/γ, the particle will be at site j with amplitude ∼ 1 or at one of its neighboring

sites with amplitude iJ/γ. Then, the measurement projects the particle onto

its initial site with probability ∼ 1 or onto one of its neighboring sites with

probability J2/γ2. Therefore, we expect that this process occurs at a rate J2/γ

in the large measurement regime. We confirm that this expectation matches

the data as we can observe the linear scaling of the inverse of the damping rate

Gamma in Fig. 6.3 for large measurement strengths, γ ≥ 10. The scatter points

correspond to the simulated data points of the damping parameter Γ. We then

consider a fitting function of the form f(γ) = a/γ, which we fit in the interval

γ ∈ [10, 30]. We plot the inverse of the fitting function, f(γ)−1 as a solid line,

extending it to the range [10, 50] and see that data points γ > 30 also follow the

trend of the fitted solid line, indicating we have a good fit to the simulated data.
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This analysis suggests that although we are considering a linear function at short

times, we can differentiate the area-law regime from the critical regime. Moreover,

this analysis seems to fail to find evidence of a volume-law phase in the interacting

model for small measurement strengths, which is consistent with the analysis from

our previous chapters, where the detection of a volume-law phase has proven to

be much more difficult than the transition from the intermediate to the area-law

regime.

6.4 Experimental probing of the competition be-

tween coherent and dissipative dynamics

So far, we have seen that non-linear quantities, such as the von Neumann entropy,

exhibit signatures in the steady state that allow us to distinguish between the

area-law and logarithmic regimes in our model as a function of the measurement

strength. Furthermore, experimental detection of the transition using non-linear

functions in the density operator is impractical as measurement outcomes are

often not reproducible, and techniques for measuring the entropy cannot be used.

In the previous section, we have shown that the population imbalance at early

times may also be used to detect some features of the transition. In the model we

are considering, the population imbalance oscillates due to the competition be-

tween coherent time evolution and projective measurements that localize system

information. With increasing measurement rates, the oscillations become increas-

ingly suppressed. This allows us to highlight a regime where oscillations become

fully suppressed, and the projective measurements dominate the dynamics of the

system. Although we cannot study the transition itself using linear quantities at

short times, we are able to detect some features that we used to characterize the

transition in Chap. 4.
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With this in mind, we will consider a protocol that allows us to probe non-linear

correlations at short times in a way that avoids having to access trajectories mul-

tiple times. The protocol is based on ideas proposed in Refs. [63, 114, 116], which

allows us to sample the infinite temperature state and extract non-linear informa-

tion in an experimentally feasible way. We will show that with this protocol, we

are able to witness features of the transition by considering the cross-correlations

between different measurement trajectories at short times, using random initial

states.

6.4.1 Protocol

We begin by preparing an initial product state, |ψ0⟩, to which we apply local

random rotations,

|ψ0⟩u = R1 ⊗R2 ⊗ ...⊗RM |ψ0⟩ = Ru |ψ0⟩ , (6.5)

where M are the lattice sites, and Ri are local random rotations drawn from the

circular unitary ensemble (CUE). It can be shown that by averaging over random

rotations, we approach the infinite temperature state with increasing precision as

we increase the number of random rotations Nu over which we average,

E
[

|ψ0⟩ ⟨ψ0|u
]

= I/2M , (6.6)

where E[·] denotes the average over many random rotations. This allows us

to reliably sample the infinite temperature state and investigate the early-time

dynamics using randomly rotated states.

In Ref. [114], the authors develop a protocol to measure out-of-time-ordered cor-

relation (OTOC) functions. OTOCs have been found to be particularly inter-

esting for studying quantum chaos [117] and quantifying how information travels
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through many-body quantum systems [118–122]. The experimental scheme they

propose relies on measuring correlations between local operators, and they prove

that it corresponds to the OTOC. In order to measure the cross-correlations be-

tween measurement trajectories in our model, we adapt the scheme proposed

in Ref. [114], and we will show that we can use it to highlight features of the

transition.

In particular, the quantity we propose to investigate is the cross-trajectory two-

point correlator between local densities,

O(n̂i,n̂j)(t) =
E

[
⟨n̂j(t)⟩⟨n̂i(0)n̂j(t)n̂i(0)⟩

]
E

[
⟨n̂j(t)⟩2

] . (6.7)

where n̂i is the local number operator acting at site i. We now outline the steps

in Protocol 1 required to measure the correlator defined in Eq. 6.7.

Protocol 1 Measurement of O(n̂i,n̂j)

1: Prepare a product initial state |ψ0⟩ and apply the local random rotation to
obtain |ψ0⟩u = Ru |ψ0⟩, following Eq. 6.5.

2: Apply the operator n̂i to the randomly rotated state |ψ0⟩u.
3: Time-evolve it using standard quantum trajectory methods to the chosen time
T and measure the operator n̂j.

4: Repeat steps 1. and 3. with the same random rotation Ru and measure n̂j

without first applying the local operator in step 2.
5: Repeat steps 1. - 4. for Nu random rotations and estimate O(n̂i,n̂j) using

Eq. 6.7.

With this protocol, we sample the states from the infinite temperature state,

and we can measure O(n̂i,n̂j) to investigate the short-time behavior of the system.

Another critical factor is that we need to verify that our protocol also works in an

experimental setting. To simulate an experimentally detected correlator Õ(n̂i,n̂j),

we follow the same steps as in Protocol 1, and instead of using the quantum
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mechanical expectation values, we simulate the experimental expectation values

by randomly drawing a 1 with probability ⟨n̂j(t)⟩ and with the default being a

0. In this way, we can test whether or not our proposed correlator is able to

withstand additional noise.

6.4.2 Analysis of the correlator

Now that we have discussed the protocol, we will look at the short-time dynamics

of the correlator in our system. In Fig. 6.4, we plot the correlator O(n̂i,n̂j)(t) as a

function of time and space, where we chose n̂i = n̂M/2 as local operator to apply

at t = 0. As in our previous analysis, there is almost no qualitative difference

between the non-interacting and interacting models, but we observe different

behavior based on the measurement strength.

In Fig. 6.4, at t = 0, the two terms in the numerator differ only at the central

site where the operator was applied, highlighting the localized particle. For a

small measurement rate γ = 0.1, we can observe ballistic operator spreading

and coherent oscillations traveling through the system. In the interacting model,

we additionally see that the oscillations stop after the operator spreading has

reached the boundary of the system and the correlator reaches approximately

steady behavior around 1. For a large measurement rate γ = 5, there appear to

be no qualitative differences, and the spreading appears reminiscent of a single

particle diffusing in an empty lattice under continuous monitoring. Furthermore,

the correlations decay to a value around 0.5, and the coherent oscillations we

saw for the small measurement rate case are fully suppressed by the dissipative

dynamics.

We now more closely analyze the behavior of the correlator at the central site,

where we compare O(n̂i,n̂j) and Õ(n̂i,n̂j), choosing operators n̂i = n̂j = n̂M/2. In

Fig. 6.5a), c) we plot the correlator in the small and large measurement regimes.
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Figure 6.4: We plot the correlator O(n̂M/2,n̂j)(t) a), c) for the measurement rates
γ = 0.1 and b), d) γ = 5 and compare the non-interacting and interacting cases
in a), b) U1 = U2 = 0 and c), d) U1 = 1, U2 = 0.5. The system consists of
M = 14 sites and time evolve over a range TJ ∈ [0, 10] using a numerical time
step dt = 10−3 and average over Nu = 104 trajectories.

The initial behavior for small measurement rates is similar to what we observed for

the imbalance; there is an initial drop, and then oscillations appear as we evolve

the system in time. In the non-interacting model, in Fig. 6.4 a), we witnessed

that once correlations reach the boundary, they travel back towards the center

and interact. We also observe this in Fig. 6.4 a), where correlations are damped

but around TJ = 5 increase again and oscillate. In contrast, in the interacting

model, this effect is much less prominent, and we observe that around TJ = 5, the

correlator approaches a value ∼ 1. In the strong measurement regime, however,

oscillations due to coherent dynamics are completely washed out, allowing us to

distinguish between these two regimes clearly. When we consider the correlator

computed from simulated experimental expectation values, in Fig. 6.5b), d), the
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dynamics

Figure 6.5: We plot a), c) the correlators O(n̂M/2,n̂M/2)(t) ≡ O(t) and b), d)
Õ(n̂M/2,n̂M/2)(t) ≡ Õ(t) with n̂i = n̂j = n̂M/2 as a function of time for varying
measurement rates. We compare a), b) the non-interacting, and c), d) the inter-
acting cases. We consider a system of M = 14 sites and time evolve over a range
t ∈ [0, 10] using a numerical time step dt = 10−3 and Nu = 104 trajectories.

same qualitative behavior in the two regimes appears. The oscillations in the

small measurement regime are weaker due to the additional noise; however, we can

still clearly distinguish the dominant coherent behavior in the small measurement

regime from the strongly damped behavior in the large measurement regime.

This analysis shows that we are able to distinguish between the two measurement

regimes in both the interacting and non-interacting case, characterized by clear

oscillations in the small measurement regime, which are fully damped in the large

measurement regime. Since we chose n̂i = n̂j = n̂M/2, the measurement projects

the particle in site M/2 at time t = 0, which means we have, ⟨n̂i(0)n̂j(0)n̂i(0)⟩ = 1

and we obtain,

O(t = 0) =
E

[
⟨n̂j(0)⟩

]
E

[
⟨n̂j(0)⟩2

] . (6.8)
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The random rotation of the state leads to a uniform distribution of the expectation

values ⟨n̂j(0)⟩ ∼ U(0, 1), with mean E
[
⟨n̂j(0)⟩

]
= 1/2. Given this, we can also

find the mean of the distribution of the square E
[
⟨n̂j(0)⟩2

]
. For simplicity, let us

define ⟨n̂j(0)⟩ ≡ N . First, we need to find the cumulative probability function,

FN2(x) = P (N2 ≤ x) = P (0 ≤ N ≤
√
x) =

∫ √
x

0
dx =

√
x, (6.9)

for x ∈ [0, 1] and using the fact that N ∼ U(0, 1), where U(0, 1) is a uniform

distribution on the interval (0, 1). To find the cumulative density function fN2(x),

we simply need to compute the derivative of F 2
N ,

fN2(x) = d

dx
FN2(x) = d

dx

√
x = 1

2
√
x
, (6.10)

for x ∈ [0, 1]. Finally, we can compute the mean of the distribution of the squared

expectation values,

E
[
⟨n̂j(0)⟩2

]
=

∫ 1

0
x fN2(x) dx = 1

3 . (6.11)

Substituting both values into Eq. 6.8, we obtain,

O(t = 0) = 1/2
1/3 = 3

2 , (6.12)

which matches the numerical data in Fig. 6.5.

To compute the expected value at t = 0 for the experimentally simulated correla-

tor, Eq. 6.8 still holds, however, we need to replace ⟨n̂j⟩(0) with ⟨ñj⟩(0), where ·̃

denotes that we replace the quantum mechanical expectation value with a 1 with

probability ⟨n̂j⟩(0) and a 0 otherwise. Given a large enough sample size, when

we compute the mean, it remains 1/2. Since all values are either 0 or 1, however,

this implies that the distribution of the squares remains unchanged and the mean
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of ⟨ñj⟩(0) = 1/2.

Hence, we obtain,

Õ(t = 0) = 1/2
1/2 = 1, (6.13)

which also matches our numerical data. Interestingly, the dynamics of the cor-

relator O(t) are still captured by the simulated correlator Õ(t), giving us an ex-

perimentally feasible protocol to show the behavioral difference of this quantity

in the two regimes.

This protocol, however, does have some drawbacks; namely, firstly, for the numer-

ical simulation, we need a very small numerical time step, making it slower and,

secondly, a large number of trajectories is needed to reduce the statistical noise

enough to distinguish the signals in the two regimes. Since we are sampling the

infinite temperature state, we need approximately Nu ∝ 2M trajectories in order

to get an accurate experimental signal. Due to these limitations, it becomes dif-

ficult to simulate larger systems as well as detect these quantities experimentally

when the number of trajectories grows exponentially with the system size.

6.5 Conclusion

In this chapter, we further analyzed the competition between coherent and dissi-

pative dynamics in a bosonic system, with and without interactions, by probing

the small and large measurement regimes using linear and nonlinear functions in

the density operator at short times. In chapter 4, we showed the MIPT can be

visualized using non-linear quantities, such as the von Neumann entropy at long

times, and we can clearly distinguish between volume-law and area-law entangle-

ment phases. The experimental detection of the MIPT proved to be a difficult

obstacle, as measuring non-linear quantities requires accessing individual trajec-

tories multiple times. Quantities that are linear in the density operator are not
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able to distinguish between the phases as the steady state is the featureless infinite

temperature state. The main idea of this chapter was to relax these constraints

of needing non-linear quantities at long times and instead analyze linear quanti-

ties at short times to find out whether or not this still allows us to distinguish

features associated with the two phases, even if we cannot access the transition

itself at short times. We first considered the von Neumann entropy to investigate

whether the phase transition would still be present at short times, and we saw

that for large measurement strengths, the entropy barely increases and already at

very short times (TJ ∼ 1) has reached its steady-state value. For small measure-

ment strengths, however, the entropy still changes considerably at short times.

However, its qualitative behavior is already clearly visible in small subsets of the

whole system. This is due to the fact that correlations have not yet traveled

through the system, but as the measurements occur infrequently in this regime,

coherent dynamics dominate the behavior of the system. We next analyzed what

happens to the population imbalance, which is defined as the difference between

the population at odd and even sites normalized to the total particle number.

This quantity is linear in the density operator and will approach 0 as the local

densities approach 1/2 at long times for any non-zero measurement strength. In

a system not subjected to measurements, the imbalance is described by a zeroth-

order Bessel function. By introducing measurements, we saw that the coherent

oscillations are increasingly suppressed with increasing measurement strengths.

By fitting an exponentially decaying Bessel function, we were able to show that

first, the strength of the damping increases with increasing measurement strength.

After some point, due to the quantum Zeno effect, the damping rate decreases

again, but oscillations continue to be increasingly suppressed as the particles re-

main trapped in the initial state for long times. It is interesting that this change

occurs in the same regime where we expect the phase transition, and this anal-
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ysis allows us to highlight this behavioral change. Finally, in this chapter, we

analyzed a correlator that is non-linear in the density operator and proposed a

protocol that allows us to measure it without needing to access individual trajec-

tories multiple times. We achieve this by sampling from the infinite temperature

by sampling random rotations of the initial state and analyzing the short-time

behavior of the correlator. Although the protocol is numerically expensive to

simulate, it has allowed us to demonstrate that we are able to distinguish be-

tween the two phases by showing that in an experimental setting, we can observe

coherent oscillations for small measurement strengths, which are fully suppressed

in the large measurement regime, leading to results closely related to what we saw

from the analysis of the population imbalance. Experimentally, to implement this

protocol, single-site control is required to prepare the initial states and apply the

random rotations. Moreover, single-site resolution of the local particle number

is required to evaluate the correlator we have proposed. Current experiments in

quantum gas microscopes [65, 67, 123, 124] are promising examples where the

local dissipation can be realized through noise or light scattering [69–72].
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Chapter 7

Conclusion

In this thesis, we have explored measurement-induced phase transitions in con-

tinuous time models that result from the competition between coherent and dissi-

pative dynamics. These transitions manifest in non-linear steady-state properties

in many-particle quantum systems accessible only at the trajectory level since the

system approaches the structureless infinite temperature state at long times, inde-

pendent of the measurement or dissipation strength. To experimentally measure

non-linear quantities, one would require accessing individual trajectories multi-

ple times, making it challenging to find suitable quantities that reveal the phase

transition in an experiment. We now summarize the ways in which we explored

ways to understand these transitions better and find a way to detect them exper-

imentally.

In chapter 4, we presented the measurement-induced phase transition that arises

from the interplay between coherent time evolution and dissipative dynamics in

a bosonic 1D chain. The von Neumann entropy best characterizes the transition;

for small dissipation strengths, we observed a volume-law phase where the en-

tropy increases linearly with subsystem size, while for large dissipation strengths,

we observed an area-law phase, where the entropy is approximately constant. At



intermediate dissipation strengths, the entropy scales approximately logarithmi-

cally. To pinpoint the exact location of the transition, we performed a scaling

collapse analysis of our numerically simulated data and concluded that we could

not pinpoint the transition accurately. This was largely due to the fact that we

were not able to simulate large enough system sizes, which in random circuit mod-

els, where such transitions were studied first, is not a problem as the numerical

tools allow simulation of much larger system sizes. We considered two dissipative

processes: dephasing and single-particle gain or loss. We showed that the exact

type of dissipation did not make a difference. The U(1) symmetry is broken for

single particle loss or gain; however, the outcome of the scaling collapse analysis

did not change.

Then, in chapter 5 we shifted our focus to experimentally detecting the phase

transition we studied in chapter 4. We considered free fermions in a 1D chain

subject to weak measurements, which can be simulated for larger system sizes

under the evolution of a quadratic Hamiltonian. The method for experimental de-

tection we proposed was based on first rewriting a non-linear correlation function

in the density operator as a function of local number operators. The transition is

characterized by this correlation function, which decays algebraically in the small

measurement regime and exponentially in the large measurement regime. Sec-

ondly, in the context of weak measurements, the natural choice was to consider

a homodyne detection setup, where the measured output signals are homodyne

currents, which contain only linear information in the density operator. In our

case, this means that by averaging many homodyne currents, we can measure the

local densities and use this to reconstruct the correlation function that character-

izes the transition. However, we proved that extracting the correlation function

using only homodyne currents is impossible, as the non-linear cross-product terms

cancel out when computing the averages, rendering the protocol not feasible for
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experimental detection.

Finally, in chapter 6, we asked whether detecting the competition between coher-

ent and dissipative dynamics at early times during the system evolution is pos-

sible, considering the same model as in chapter4. First, we showed that the von

Neumann entropy at short times displays characteristic behavior associated with

the phase transition. Secondly, coherent and dissipative dynamics are competing

at short times, and we used a linear function, namely the population imbalance,

to analyze the early time dynamics. We fitted an exponentially decaying Bessel

function to the simulated data and analyzed the fitting parameters. We observed

that the damping rate increases to approximately the dissipation strength at

which we expect the transition to occur and then decreases algebraically. Lastly,

we proposed a protocol in which randomly rotated states are sampled from the

infinite temperature state, as they provide a way to reproduce initial states re-

liably. By measuring the number operator in a specific way, we showed that we

could construct a correlation function that is able to display similar characteristic

behavior we saw in the analysis of the population imbalance, therefore providing

an experimentally feasible method to visualize features of the transition even if

we cannot probe the transition itself.

To summarize, we have analyzed a range of continuous time models in which

measurement-induced phase transitions appear and explored some ways in which

the competition between coherent and dissipative dynamics can be observed ex-

perimentally. Although these transitions can be studied using standard numerical

methods to simulate the models, finding an experimentally feasible protocol is dif-

ficult, as we showed in this thesis. The main difficulty comes from the fact that

the transition is masked at the level of the density operator and the restriction

of being unable to access individual trajectories multiple times.
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