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Abstract 

This thesis presents a Virtual Reality (VR) system specifically designed to 

assist architects in the early stages of the design process. Modern CAD packages are 
designed for the detail design and construction stages and are not suitable for the 

creative work typical of the early conceptual process. The use of Virtual Reality 

systems promotes efficient real-time exploration of design proposals and modern 
Virtual Reality Aided Design (VRAD) systems allow users to create and manipulate 
3D-shapes within the virtual environment and to experiment rapidly with different 

design solutions. Further, the development of desktop-based VR systems contributes 
towards the potential use of this technology in everyday practice 

The goal of this thesis is the development of a framework for a VR-based 

collaborative environment. This thesis, together with its companion research (Ucelli, 

2002), describes the details of the working prototype called JCAD-VR (JavaTM 

Collaborative Architectural Design tool in Virtual Reality). 

JCAD-VR has been designed to provide the user with an effective tool to 

create basic geometries in a quick and simple way by using mouse commands 

without the need to type in values. This provides a significant level of abstraction 

over the rigid mathematical representation that is typical of traditional CAD systems. 

This work presents a description of the technical solutions tested during the 

development of JCAD-VR and in particular it focuses on the interaction techniques 

used for the implementation of its user-friendly Human-Computer Interface. 

Finally, the last part of this work gives the results of an experiment carried 

out to test the capabilities of the system in a possible scenario. This shows that 

JCAD-VR, even at prototype level, could be used as an effective tool to create and 

share design ideas among members of a design team. 
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1 Introduction 

1.1 Introduction 

This chapter introduces the general aim of the thesis, its general framework 

and the most important concepts at the foundation of the project. 

The research outlined in this thesis addresses the issues concerning to the 
support of the architectural design process by computer applications. In particular 
this project investigates the use of software that supports architects at the early stages 
of the design process, at the so-called conceptual modelling phase. Regarding 

conceptual design, Shukur (2000) stated, that designing a building or other artefact 
involves really great effort to produce an original concept. In fact due to its nature, 

concept modelling is to a certain extent more complex than the later design stages 

since it has less reference to reality. This can potentially cause many aspects and 
features of its design to be lost or inadequately handled depending on the subjects' 

capabilities (Shukur, 2000). 

Traditionally many architects have addressed the problem of abstraction that 

is typical of conceptual modeling by proving their design proposals using physical 

models. Unfortunately the most accurate 2D paper representations are not usually 

suitable to explain and transmit the complexity of some architectonic ideas. 

Nowadays advances in computer hardware and software have significantly 

contributed to this issue allowing 3D virtual modelling and animations to be used 
daily in the architectural practice. Similarly the relatively recent introduction of 

Virtual Reality (VR) has represented another step towards a fully comprehensive 

simulation technology. The next section will discuss the introduction and application 

of VR to the architectural design process. 

1.1.1 Virtual Reality as a new Means for Designing Architecture 

Although today the use of the third dimension has become a daily practice, 

the CAAD community is only now experiencing the move from static representation, 

1 
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based on 2D renderings or pre-recorded animations, to dynamically generated 3D 

representations. Real-time navigation and interaction, typical of Virtual Reality 

environments, provide the fluent interface and that facilitates the exploration of the 
design proposal, that is the main omission of all the CAD packages commonly in 

use. 

Furthermore the access to desktop VR applications makes them a feasible 

approach in everyday practice thanks to the increasing growth of computational 

resources and hardware power. Moreover, the recent growth of network-based virtual 

communities and the use of avatars have brought a new level of complexity to the 

meaning of virtuality, providing the technology for remote presence and 

collaborative experiences. 

The use of VR in design broadens the boundaries of traditional perception by 

providing experiences of worlds not necessarily real or material. Therefore it gives 

the user the freedom to simulate and eventually to build up knowledge and skills 

dangerous or too expensive for human beings to acquire. In an architectural context 

the use of Virtual Reality provides the designer with an appropriate, quick and 

practical feedback that facilitates the search for design solutions. In fact, due to its 

visualisation power, it enables the capturing of more information than would be 

possible with the use of the traditional media and it makes the checking of the design 

solutions more efficient by enhancing simulation capabilities. Furthermore VR 

provides a natural and user-friendly interface between practitioners and clients 

enabling them to check the functionality of the design and ensuring that the design 

meets the clients' expectations. Consequently VR could become the ideal simulation 

medium for architects investigating design solutions and it could contribute to the 

production of a better-built environment by addressing sustainability through 

environmental simulations and appraisal, and engaging design creativity through 

immersive design. 

Thanks to all these advantages it is highly predictable that in the near future 

VR will become the interface for the next generation of Computer Aided Design 

(CAD) applications, the so called VRAD (Virtual Reality Aided Design) systems 

thus promoting VR from a mere presentation medium to a more powerful and 

2 



effective design tool. Moreover current research interest is in multidisciplinary 
working activities and collaborative networks which broaden the concept of VR itself 
through the development of multi-user applications that allow several remote 
participants to interact within the virtual environment and to accomplish, 
collaboratively, complex design tasks. 

1.2 The Aim of the Project 

The importance of VR technology with its revolutionary shift in visualization 
and the effect that VR-based applications could have for the architectural design 

process is stressed by Dagit (1993, p. 514) who states that "architects, as a group, are 

more aware than most of the profound impact that Brunelleschi's invention of 

perspective had on society following the fifteenth century. Perspective initiated a 
fundamental change in the way humans perceive themselves and their environment. 
Some are looking to virtual worlds as a similar key to opening up new levels of 
human perception. " 

In particular, the identification of the role of VR and its place within the 

practice of architecture has been the subject of a previous experience of the author 

published at the UK VR-SIG conference in Glasgow (Ucelli et al., 2000). During the 

first year of the PhD course the author had the chance to work part-time at the 

Glasgow office of the internationally renowned engineering consultants company 

Ove Arup & Partners. This office was particularly interested in coming closer to the 

new visualization and simulation capabilities allowed by Virtual Reality technology. 

The time spent working at Arup provided the opportunity to investigate problems 

and issues about the use of 3D modeling and VR in ongoing projects. This 

experience gave the chance to work closely with both architects and engineers who 

were for the first time experiencing VR technology. During a6 months time a 

number of 3D models were created and architects and engineers were invited 

repeatedly to evaluate and discuss the progress of the projects at the Virtual 

Environment Laboratory (VEL) in the ABACUS unit of the University of 

Strathclyde, in Glasgow (University of Strathclyde, 2002). 
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This experience confirmed what other authors had stated (Dorta et al., 1998, 

p. 144): "the design process is made up of two activities which are graphic ideation 

or conceptual design and communication [... ] the first is a formative process dealing 

with creating and evolving ideas [active phase]; the second is a descriptive process 

aiming at presenting to others fully-formed ideas [passive phase] ". 

Unfortunately the results of the experience were such that, while proving the 

huge potential of VR for reducing designs "flaws", they highlighted that the present 

use of VR is limited only to the last phase of the design process, which Dorta et al. 
(1998) call the passive phase, when the visualization takes place and the result of the 

design process is eventually shown to the client. Figure 1.1 resumes the most 

important phases regarding the development of CAAD and VR models. The schema 

is the result of direct observation of project dynamics in the real working 

environment experienced by the author. 
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Figure 1.1: The architectural design process from a 3D modelling/VR point of 

view 
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It is evident from the graph in Figure 1.1 that the use of VR-based 

visualization techniques is confined to the end of the conceptual design phase after 
all the design choices have been taken. This is due mainly to the fact that the models 
to be visualized in VR have been created using traditional CAD/CAAD packages and 
not directly within the virtual environment, making the use of VR more time 

consuming and therefore less effective. 

The knowledge gained through this valuable research experience was the 
base of the concept of the framework reported in this thesis. 

The concept upon which the Java Collaborative Architectural Design tool in 

Virtual Reality (JCAD-VR) framework is founded is to try to anticipate the use of 
VR within the active phase of the design process thus taking full advantage of VR 

technology and exploiting its creative potential. The aim is to provide the designer 

with a tool for creating 3D-shapes in a shared VR environment, thus allowing the 
design to be shared as it evolves. VR then becomes a new design tool and multi- 

participants can interact with the environment and each other while discussing, 

creating and modifying the 3D design solutions. 

1.3 The Approach Proposed: the Framework and the 

Working Prototype 

Observations of current architectural design dynamics showed clearly that the 

use of external packages to create and modify models for VR applications is a key 

problem for an effective use of the technology. A preliminary research study was 

necessary to identify the type of software application that could better exploit the 

potential of VR technology in the design process, and to follow the most suitable 

approach for its implementation. Figure 1.2 shows the most important steps that led 

to the development of the software framework and to its implementation. 
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1.3.1 Preliminary Research Study 

The previously mentioned research study provided the foundations of the 

whole JCAD-VR project and was the opportunity to clarify the role that VR 

technology occupies in the design process. 

During this phase a study was also carried out on: 

9 Software programming approaches for VR 

" The characteristics of VR software packages 

" The computer platforms used 

" Related technical issues 

This preliminary study provided the base for the development of the 

methodology for the implementation of the first part of the framework. This supports 

the creation of a virtual design environment for conceptual modelling in architecture. 

Furthermore an overview on collaborative applications and their use in the 

architecture practice was necessary, thus the following topics were investigated: 

9 Collaboration in the architectural practice and its impact on the organization 

of work 

" Collaborative software architectures 

" Software packages and their characteristics 

0 Communication tools and their implementation 

" Related technical issues 

These topics address issues relevant to the implementation of the second part 

of the framework. This part supports the development of a collaborative architecture 

and communication platform for the virtual design environment. 

1.3.2 The Development and Implementation of the Framework 

As anticipated in the preliminary research study it was possible to identify 

two independent, but related, research themes within the JCAD-VR project: 
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1. The creation of a Virtual Design Environment 

2. The implementation of its collaborative architecture 

Each theme required addressing with respect to a multitude of theoretical and 
technical issues and a great deal of attention was paid to the creation of a coherent 

unique application using independent compatible software modules. Figure 1.3 

shows the five main sectors that form the framework of the project: 3D Interface, 3D 

Geometry Core, Computer Supported Cooperative Work (CSCW) tools, 

Collaborative Architecture and Database Management. Those sectors marked in red 

refer to the development of the Virtual Design Environment, those in yellow to the 

implementation of Collaborative Architecture, including the necessary 

communication tools and a module for the management of shared databases. 
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Collaborative 
Architecture 

Figure 1.3: Overview of the whole software framework with the two parts 

marked in yellow and red 

Once the general framework of the project was established, each area of 

interest was independently developed, although every sector was checked against the 

general framework to ensure compatibility. 
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The implementation of the two sectors proceeded in parallel as shown in 
Figure 1.2 until the completion of the first fully working prototype. T hen after further 

software optimisations, the final prototype was developed. 

1.3.3 Tests and Experiments 

Many unreported tests were carried out during the implementation of the 

prototype in order to check for software mistakes and bugs in the code. Since the 

entire project focuses on the early stages of the architectural design process the final 

prototype was tested in a real working situation involving the creation of an initial 

conceptual model for a design project. 

The experiment that involved students of architecture will be discussed in 

detail in Chapter 8. It gave the opportunity to test the stability, ease of use and 

efficacy of the application. 

1.4 How to Read this Thesis 

The research described in this thesis is part of a broader project outlined in 

Section 1.3 that covers the following two project themes: 

1. The implementation of the stand-alone VR application for conceptual modelling 

in architecture. 

2. The development of its collaborative architecture. 

These themes are described in detail in two separate but coupled theses, this 

and its companion thesis (Ucelli, 2002). 

More specifically this thesis highlights theory on user-interfaces in VR 

environments and it describes the methodology followed to implement the stand- 

alone Virtual Reality application, called JCAD-VR, specifically designed for the 

early stages of architectural design. The companion thesis (Ucelli, 2002) addresses 

issues related to communication and collaboration activities in architectural practice 

and it outlines the most important phases of the development of the collaborative 

architecture of JCAD-VR. 
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Each thesis can be read separately, since each one covers different aspects of 
Virtual Reality applications, or read together as part of a broader project. It is 

nevertheless highly recommendable to read them together in order to gain a 

comprehensive view of the whole project. 

Both theses are structured symmetrically (See Figure 1.4), with four shared 

chapters. 

Vý7li c le project 

J Introduction 

CI LAPTER 2 
CHAPTER 3 
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CHAPTER 7 
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CHAPTER 6 
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Figure 1.4: The symmetrical structure of the two theses with the shared 

chapters placed at the centre of the structure 

The Chapters number one, five and eight, nine are common and therefore they 

are included in both theses, since they refer to the general topics that were shared by 

the two theses. Specifically: 

" Chapter One provides the overall introduction to the project 

" Chapter Five describes the general structure of the framework and of the JCAD- 

VR prototype 

10 



" Chapter Eight highlights the exercises set up for the testing phase of the 
prototype 

" Chapter Nine draws the conclusions and proposes further developments 

However, Chapters number two, three, four, six and seven are specific to this 
thesis and they describe in detail issues and methodologies relevant to their 
individual work. 

1.5 Outline of the thesis 

Section 1.4 clarified the symmetrical structure of the two theses covering the 

whole project. This section will provide a more detailed overview of the content of 
this particular thesis describing its chapters individually. 

The first part of this work outlines the body of knowledge upon which the 

research was carried out. The second part presents the theory proposed and from a 
technical side it will show the framework and a working prototype tackling the issue 

of the use of VR in the early stages of the design process. After the first chapter, 

where an introduction to the whole project and individual research is provided, 
Chapter 2 will present an historical overview of Virtual Reality and propose a 

classification of the systems available. 

Chapter 3 proposes the idea of VR as a new means of designing rather than as 

a mere visualisation tool. This chapter proposes a taxonomy of VR applications for 

design and offers an overview of the systems available in the scientific literature. 

In Chapter 4 the metaphor of the interface is studied: this provides an 
introduction to the field of Human-Computer Interfaces (HCI) and reports on issues 

related to the development of a 3D HCI. This chapter gave the opportunity to study 

in detail issues such as space, way finding, navigation, control, manipulation and 

feedback. 

Chapter 5 is an introduction to the second and more technical section of the 

thesis: it outlines the idea on which the proposed framework is based, it also justifies 

the methodology used and the techniques chosen. This chapter introduces the JCAD- 

VR software prototype as a tool for designing within the Virtual Environment (VE). 
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Its many advantages, such as its two main units, its modular structure and its Object 
Oriented nature, are presented and justified. This chapter introduces the two 
following ones, which describe in detail the technical implementation of the stand- 
alone JCAD-VR prototype and its 3D-Unit. 

Chapter 6 presents the 3D-Unit, the part of the client application that deals 

with all the issues related to the creation and visualisation of the virtual world. This 

chapter presents the proposed metaphor of the 3D-GUI, where the interface becomes 

part of the virtual world and so can be manipulated like any other object in the virtual 
scene. The second part of Chapter 6 outlines an overview of the HCI unit, it gives the 

approach followed to implement the chosen metaphor, and describes the results 

obtained. 

Chapter 7 presents in detail the implementation of the section of JCAD-VR 

designed to provide the user with a tool to create simple geometries in a rapid and 
intuitive way. This chapter describes how this section works, outlining an overview 

of the package together with the design patterns followed. 

Chapter 8 is a common chapter and describes the working scenario that has 

been set as the benchmark for evaluating the efficacy, ease of use and stability of the 

software. The experiment involved multiple-users interacting concurrently on a 

proposed design task. Reports on the outcome of the experiment will be presented. 

Finally Chapter 9 draws the conclusions reached during the implementation 

of the JCAD-VR prototype and it proposes further developments inside and outside 

the context of the proposed framework. 

1.6 Conclusions 

This first chapter gave a general introduction to the aspects to be covered in 

the rest of the thesis. It highlighted the structure of the JCAD-VR project especially, 

showing how this was developed by the combined effort of our research. 

As shown the coupled theses have some common chapters in order to make 

them easier to read. The introductory and concluding chapters are common ones, 

while the other chapters will address only the research literature relevant to their 
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aspects of the project, specific issues and different parts of the implementation of the 

JCAD-VR system. 

Chapter 2 will introduce more specific issues relative to Virtual Reality. It 

will present an historical overview of Virtual Reality and it will propose a 

classification of the systems available. 
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2 An Historical Overview of the Role of Virtual 

Reality within the Design Process 

2.1 Introduction 

In recent years the term Virtual Reality (VR) has become an extremely 

popular idiom to describe sophisticated computer-based simulation set-ups, probably 
due to the success of a number of science fiction titles. Today VR is a complete and 

mature technology which is used across many fields ranging from entertainment to 

engineering. In particular, VR is appreciated as a safe and relatively inexpensive 

technique which can be used to train people in situations which are hard to reproduce 

or are potentially dangerous. 

This chapter will present an overview of the technologies used in most VR 

systems. The chapter will first outline a number of definitions to be found in 

scientific literature then in the second part will present an historical overview of 

Virtual Reality. This second part will first introduce two of the mechanical 

simulation set-ups which are considered the precursors of VR: the architectural 

endoscope and the pioneering immersive cinema which first used stereoscopic 

images and localised sound. 

The remaining part of the chapter will focus on computer-based systems. 

Starting from Sutherland's seminal work the chapter will show the development of 

the hardware and software over four decades, from the mid-sixties to the present day. 

Particular emphasis will be given to the research at NASA which inspired 

generations of researchers over the following years. This final part will highlight the 

development of the first PC-based VR set-ups and their role in the spread of the 

technology. 

Finally, the last part of the chapter will present a classification of modern VR 

systems. The taxonomy will be done according to the level of "immersion" of the VR 

system and three main categories will be presented: non-immersive, semi-immersive 
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and fully immersive. The classification will highlight the advantages and weaknesses 
of each type of technology. 

2.2 What is Virtual Reality? 

Myron W. Krueger who is generally considered one of the fathers of Virtual 
Reality (VR) points out (1994, p. xi) that in recent years, mainly due to the heavy 
impact of science-fiction titles, the term Virtual Reality has become the most popular 
way to describe the ultimate simulation experience. Other synonyms like Artificial 
Reality, Simulator Technology or Synthetic Environments have not caught the 

attention of the media to the extent of the idiom coined by Jaron Lainer (Pimentel et 
al., 1995). 

In fact the media industry, as Burdea et al. observe (1994, p. 1), has shown a 
great deal of interest in VR: magazines such as Business Week (Hamilton, 1992), 

Time (Elmer-Dewitt, 1993), Newsweek (Kaplan, 1993) and TV channels like CNN, 

NBC, CBS have all given "prime-time coverage to Virtual Reality reflecting a surge 
in interest by the general public" (Burdea et al., 1994, p. 1). 

The success of the expression virtual reality is to be found, according to 

Negroponte (1993) within the semantic nature of its idiom: "if prizes were awarded 
for the best oxymoron, virtual reality would be a winner". Negroponte notes that 

paradoxically the term, is being turned from an oxymoron into a kind of pleonasm. In 

fact, if the term "virtual reality" is read not as a noun and an adjective but as "equal 

halves" its meaning suddenly becomes, according to the author, something that 

"makes the artificial as realistic as the real" showing its undoubted pleonastic nature. 

Several other authors have attempted to provide a convincing definition of 

VR (Burdea et al., 1994; Loeffler et al., 1994; Aukstakalnis et al., 1992). Although it 

can be certainly stated that what VR is actually about is far from what Gibson's main 

character in Neuromancer experiences (Gibson, 1984), it is still complicated to 

explain what VR has become today. Unquestionably the term cyberspace, coined by 

Gibson in the science fiction novel has something of the visionary, the "alternative 

computer universe in which data exists like a city of light" (Pimentel et al., 1995, p. 

xix) but it obviously does not represent a comprehensive scientific definition. 
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A more scientific approach is proposed by Sherman et al. (1992, p. 17) who 
write, "Virtual Reality allows you to explore a computer-generated world by actually 
being in it". 

Some people consider VR an assortment of technologies: as Burdea et al. 
(1994, p. 2) observe, "the general public now tends to associate Virtual Reality 

simulations with head-mounted displays and sensing gloves". But as Sherman et al. 
(1992, p. 24) point out, VR is neither a standardised industry nor a mere collection of 
technologies. Of the same point of view is Krueger (1994, p. xi) who states: "Virtual 

Reality is more than a sum of its components, it is fundamentally a system 
technology". In fact, as Burdea et al. (1994, p. 2) remark "Virtual Reality can be 

done without head-mounted displays by using large projection screens or even desk- 

top workstations [... ]. Similarly, gloves can be replaced with much simpler trackballs 

or joysticks [ ... ]. Therefore describing Virtual Reality in terms of the tools it uses is 

also not an adequate definition". 

Burdea et al. (1994) expands the notion of VR including the possibility of 
involving all the senses, "Virtual Reality is a high-end interface that involves real- 

time simulation and interactions through multiple sensorial channels. These sensorial 

modalities are visual, auditory, tactile, smell, etc. " (Burdea et al., 1994, p. 4). 

Likewise Chan et al. (1999a, p. 44) state that VR "provides diversified media for 

visually, aurally and interactively experiencing activities and behaviours conducted 

in the cyberspace". In this regard, Loeffler et al. (1994, p. xx) point out how 

cognitive sciences have proved how the learning experience benefits from the 

implementation of multi-sensorial, or multimodal (Reeves et al., 2000) input such as 

that coming from an immersive VE. Finally, the approach followed by Burdea et al. 

(1994) also represents an important shift in the VR paradigm from previously 

considering it as an interface, a new way of interacting with computers, rather than 

simply as an environment or a mere collection of technologies. 

Other authors shift the focus onto the experiencing of a simulated 

environment like Pimentel et al. (1995, p. xix) who suggest that VR is "an immersive 

experience in which participants wear visually-coupled displays, view stereoscopic 

or biocular images, listen to 3-D sounds, and are free to explore and interact within a 
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3-D world". Of similar opinion are Loeffler et al. (1994, p. xiv) who write that VR 
"is a three-dimensional, computer-generated, simulated environment that is rendered 
in real time according to the behavior of the user". 

This last definition in particular, stresses two major features: the three- 
dimensionality of the simulation and its real-time nature. Regarding the former it is 

certainly true that VR has brought the user far beyond the one-dimension command 
line of the early Operatiing Systems (OS) or the two-dimension Graphic User 
Interfaces (GUI) of modem OS. As the authors note (Loeffler et al., 1994, p. xiv) 
"while a graphical user interface is like a window on a computer application, virtual 

reality interfaces are like portals that allow the user to step into the application". 

But the definitions mentioned so far have not described one of the major 
features of modern VR systems, the interactivity, that is emphasised by one of the 

most frequently occurring definitions in the literature: "Virtual Reality is a way for 

humans to visualize, manipulate and interact with computers and extremely complex 
data" (Aukstakalnis et al., 1992, p. 7). This definition, which transcends technical 

solutions and gives a more comprehensive description of the idiom, will be used 

throughout this thesis. 

Aukstakalnis and Blatner focus attention on the three activities that take place 

in modern VR systems: visualisation, manipulation and interaction. 

The first takes place when an environment, either similar to the real world or 

abstract, like a representation of a database or a scientific simulation, is shown by 

visual devices of several types. The capacity to visualise seriously affects the level of 

immersion of the system and an overview of the different levels of immersion 

achieved by different visualisation devices will be presented in one of the following 

paragraphs (See Section 2.4). As Pimentel et al. (1995, p. 19) note, "immersion 

means to block out distractions and focus selectively on just the information with 

which you want to work". 

The second activity, the manipulation, takes place when the user controls the 

state of the environment by means of some input device and changes the state of the 

system according to their wish. This feature, which marks a fundamental difference 

between VR and other visualisation media, gives the user the power to manipulate 
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the data in real time without necessarily following a pre-recorded path or animation 
script. 

The last and probably most important activity that differentiates modern VR 

systems from those of the first generation, is the interaction. As Aukstakalnis et al. 
(1992) state, the virtual world can be static or interactive. Furthermore interaction 

can be generated either in real time, as an effect of some user's action, or it can be 

the result of a scripted command. 

Pimentel et al. (1995) describe two types of interaction: navigation, the 

ability to freely move within the environment and the dynamics of the environment. 
The latter, according to the authors (Pimentel et al., 1995, p. 21), are "the rules for 

how its contents [ 
... 

] interact in order to exchange energy or information". This set 

of rules might change according to the environment being simulated and it could be 

made of a set of physical forces, for instance in a flight simulator, or the rules could 
be based on the physiology of the human body, in the case of a training application 
for medical purposes. 

2.2.1 A Real-Time Visualisation Tool 

The prime factor on which the majority of the authors agree that they 

consider the key element for the success of any VR system, is the real-time 

capability: the capacity of a system to show images at a speed sufficient to provide 

the user with a convincing engagement with the scene being shown. As Sherman et 

al. (1992, p. 17) state, "you become part of that world, you change it, and the 

changes occur as you make them". 

The absence of a delay between the command given by the user and the 

consequent response of the system is the crucial element in making the simulation 

appear a natural experience. 

Although the physiological implications behind perception will not be the 

subject of research in this thesis, understanding its effect is essential in order to 

properly understand the suitability of some visualisation systems we shall be 

referring to, to remember that several authors (Gibson, 1950; Hart et al., 1973; 
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Hubona et al., 1999; Hinckley et al., 1997; Ware et al., 1996) have comprehensively 
investigated the topic in the last fifty years. 

More recently, a field of research has emerged to address the specific topic of 
interaction between machine and users: Computer-Human Interaction (CHI). Several 

studies in the field of CHI have shown that the user's perception is related to the cues 
that a simulation system can provide. Although some authors (Hubona et al., 1999, p. 
215) think that "the use of these cues, and particularly, the combinations of these 

cues, to effectively convey depth information in computer-generated scenes remains 
an ongoing topic of research" it is acknowledged that "if the cues available to our 

perceptual systems are close enough to those we are evolved to notice, then all of the 

same evaluations that we make in real life will be true with media as well" (Reeves 

et al., 2000, p. 68). 

More precisely, it is widely accepted (Weber, 1995) that our perception of 

reality is deeply affected by the close coupling between the making of a change to 

the point of view and the corresponding image that is therefore perceived by the 

human eye. As Weber (1995, p. 77) states perception itself can be considered "a 

sensory-motor process by which an array of environmental stimuli is transformed 

into a perceptual image". 

Likewise Ware et al. (1996) state that the most important factor affecting the 

perception of a three-dimensional scene is the relative movements between objects: 

the so-called motion parallax. The authors also state that motion parallax "seems to 

be considerably more important that stereopsis in helping us interpret spatial layout 

[... ] This movement allows the brain to integrate spatial information over time, and 

whereas a stereo display only gives two views to help understand a scene, a scene in 

which there is relative movement of the head and objects provides a whole 

continuum" (Ware et al., 1996, p. 124). 

Therefore, the speed at which the visualisation takes place and in particular 

the immediateness of the response by the system to the user's commands, are the key 

factors to convey the cues necessary for the consequent illusion of reality. 

Myers et al. (1996, p. 805) state that the real-time capability, "the ability for 

the system to respond quickly enough to the effect of direct manipulation", is a major 
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factor when creating 3D interactive applications. Also Negroponte (1993) affirms 
that the speed at which a VR system is capable of reacting to the user's commands is 

crucial: "the real issue and challenge in VR today is not the display, but how to 

reconcile a person's expectations of reality with what current systems deliver in 
terms of response time". Krueger (1994, p. xii) pursues the same idea when he says 
that "if a Virtual Reality system does not respond to the participant's movements 
instantaneously, it does not work". 

In fact, the real-time requirement implies that if the user decides to turn or to 
look in a particular direction the system must render the new scene at a frequency 

close to or higher than 25 fps, the threshold commonly accepted to result in a 

convincing illusion of movement. 

Although the feeling of being real can be enhanced involving other senses, 

vision and hearing remain the two most important ones. Regarding this, Negroponte 

(1993) notes that the experience can be enhanced using other means like spatial 

sound and haptic devices, but since "we grow up in a world that fosters immediacy in 

action and reaction [... ] in VR, the frequency response of the system will be almost 

all that counts". What he calls spatial and temporal aliasing are vital for a natural 

experience of a simulated environment. In other words "aliased VR is the oxymoron 

while VR itself will be the pleonasm" (Negroponte, 1993). 

The importance of vision to perception, and the consequent importance that 

the real-time behaviour acquires, is evidenced by Reeves et al. (2000, p. 67). They 

state that however sophisticated computer simulated systems may become they "will 

still be primarily about the senses of sight and sound, not because other senses won't 

be added to machines, but because sight and sound dominate human perception". 

At this point it is perhaps worth noting that the concept of real-time 

technology is, strictly speaking, technically not achievable: there is simply no system 

capable of responding without delay to the user's commands. This latency, which is 

the time needed by the system to respond to the user's command, will always have a 

value greater than zero. More realistically then, the ideal system should have a 

latency shorter than the time necessary to the system to render the following frame. 

But since the latency is a function of the amount of data that has to be calculated by 
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the system every second, its value is not a constant and therefore every system has a 
certain threshold representing the amount of information that it can handle giving a 
satisfactorily prompt response. This is why some authors like Myers et al. (1996, p. 
805) prefer to refer to this feature as the "near-real-time" capability. 

Nevertheless, it is commonly accepted within the research community 
working in the broad field of computer graphics that, if a system is capable of 
responding to the user's command within an interval that is short enough to provide a 
feeling of natural, smooth movement, that system is working in real-time and this 

necessarily rather flexible definition will be adopted throughout this thesis. 

In other words, as Krueger clearly says, "if the responses follow your action 
instantaneously, you feel a real sense of cause and effect. The experience is real. That 

speed requirement is a cognitive imperative. If you have to wait for the response, 

you're distanced from the experience. Either you make it, or you are not doing it. 

Period. You don't show slides and say you are showing a movie" (Morgan, 1994, p. 
174). 

2.3 A 40 Years Long History 

The desire to re-create an experience through some kind of artificial 

environment has always been part of the human wish to simulate the world around 

us. All the figurative arts for instance, could be considered as attempts to re-create 

reality through artificial means. 

As Pimentel et al. write (Pimentel et al., 1995, p. 25) the Greeks theatre of the 

4th and 5th centuries B. C. was a simulation that "gave spectators new points of view 

by putting them in the shoes of people not unlike themselves". A relevant example of 

surrounding experience was Robert Barker's 360-degree painting of the city of 

Edinburgh (Pimentel et al., 1995). This 18th century first example of a panorama, as 

the Scottish painter named it, was a successful effort to heighten the feeling of 

realism. One century later Wheatstone invented the stereoscopic display: two images, 

which were slightly shifted, were mounted in a viewer to give the user true sense of 

depth (Pimentel et al., 1995). 
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2.3.1 Precursors of VR 

If we restrict our analysis of the precursors of VR to modern times and to 
electro-mechanic devices, two prime examples emerge. The first is in the field of 
architecture and is the endoscope, a visualisation tool used to navigate models of 
urban environments. The second is immersive cinema, which was first developed in 
1946 in the US. 

Both devices aim to create a system that can enhance the experience of an 
environment and to re-create the illusion of that environment which is as close as 
possible to the natural way we perceive it. 

2.3.2 Architectural Endoscopy 

The need for simulation of urban spaces has always been present among 

people working within the built environment. Before the arrival of computer 
technology visual simulations were often achieved with complex opto-mechanical 
devices called architectural endoscopes. 

Although a comprehensive insight into architectural endoscopy is outside the 

scope of this thesis, it is worth presenting a short overview of its origins and the 
influence it had on modern visualisation systems for architecture. 

Architectural endoscopy is considered a "unique medium for exploration and 

representation of architecture and space [... ] a platform for experimentation, 

research, communication development, user participation" (EAEA, 1995). This 

definition, that might well suit modern VR systems that are being used in 

architecture, shows how the two approaches share the same ultimate goal: the 

visualisation and experience of architectural spaces. 

One of the first prototype endoscopes was the Urbanoscope installed in 1976 

at the Landbouwhogeschool in Wageningen, Holland (Smardon et al., 1986). To give 

the observer the illusion of walking through the environment a servo-controlled 

periscope transmitted the image of a physical model onto a TV screen. The 

visualisation system was simply based on a black and white micro camera mounted 

on a mechanic arm. The control system was set in a second room where the user, 
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with the help of pedals and a steering wheel, could drive the micro camera through 
the model. The feeling of immersion in, and the simulation of the environment was 
ensured by a screen placed in front of the user where the images captured by the 
camera were projected. 

After that first experimental device other universities, like Berkley, Vienna 

and Lund, started to analyse the advantages of such simulations in providing the 
feeling of a built environment. 

The results of the research proved (Smardon et al., 1986) that these first 

examples of simulators were more effective in terms of the level of comprehension 

of the environment achieved if compared with the use of traditional visualisation 
techniques such as plans, sections, perspective views and physical models. 

The study revealed that the naturalistic model (Smardon et al., 1986) was the 

most effective approach with the best results achieved when filming from eye what 

would be level. Moreover the system proved how familiarity with the user interface, 

which followed the metaphor of a car, made the relationship with the simulator 

extremely easy. 

Some authors even compare the use of this technology to modern VR 

systems, like Stellingwerff (1999, p. 491) who states: "by means of an endoscope 

you can get an eye-level image of an architectural scale model. New medical optic 

endoscope tubes and small video cameras, good scale-models and direct interaction 

of movements can make architectural endoscopy comparable to an advanced Virtual 

Reality (VR) system". This point of view can be easily questioned if we do not limit 

our scope to simulations of urban landscapes, and we take into account all the 

physical restrictions endoscopy has to deal with. In fact, it is impossible to get the 

same interaction and ability to manipulate the environment as can be achieved by 

computer-based simulations. 

Nevertheless, today architectural endoscopy is quite a mature research area 

and researchers have started speculating on the convergence of optical endoscopy 

and computer-based simulation or, in Stellingwerff et al. 's words (1995), digital 

endoscopy. 
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2.3.3 Immersive Cinema 

During the 1950s the American cinema industry started to explore the 

possibility of improving the traditional way films were experienced. 
Cinematographers who were aware that our perception could be greatly enhanced if 

the a wider part of the viewer's visual field was engaged, tried to developed new 
forms of immersive cinema. In fact, as Gibson writes (1950, p. 27) the visual field 

"extends about 180 degrees laterally and 150 degrees up and down" and traditional 

cinema or TV sets only cover a small part of it. 

During the early 1950s, Fred Waller tried to address this issue by developing 

a system called Cinerama, a precursor of today's IMAX systems and other modern 

semi immersive visualisation environments. The system used three synchronised 

35mm cameras to record the scene, and then it had to be projected in special theatres 

with a 180-degree horizontal view. Unfortunately, the high cost of filming and 

synchronised playback together with the cost of such specially outfitted theatres 

doomed the spread of this system. 

At the end of 1960 a cinematographer called Morton Heilig patented the idea 

of a device for simulating 3D environments, a predecessor of the modem Head- 

Mounted Display. The system would use 3D-slides, stereo sound and a capability to 

include smell but the revolutionary idea did not meet the enthusiasm of investors and 

the project was left undeveloped. 

Two years later, 1962, Heilig patented another device that could exploit the 

full field of view of the spectators. Heilig himself stated "why stop at a picture that 

fills only 18 percent of the spectator's visual field and a two-dimensional picture at 

that? Why not make it a three-dimensional image that fills 100 percent of the 

spectator's visual field accompanied by stereophonic sound? " (Heilig, 1992. In 

Burdea et al., 1994, p. 6). The idea, which was certainly visionary for that time, did 

not attract any financial help and the only prototype he realised was the "Sensorama 

Simulator" (See Figure 2.1). 

In this early 60s device, the *user could experience a ride on a motorbike 

through a 3D video created by three 35mm video-cameras, stereo sound, a wind 

24 



effect simulated by a fan and potholes in the road felt through a moving seat. As 
Burdea et al. (1994, p. 7) recall, the user "could even smell food when passing by a 
store". Certainly the machine was rather primitive if compared with modern devices 
but it opened the door to a brand new field of research. 

Figure 2.1: The "Sensorama" machine (Burdea et al, 1994, p. 8) 

2.3.4 The Advent of Computer Technology 

The history of VR, if we restrict the analysis to computer-based media, is 

about 40 years long, which is quite a long time when compared to the history of 

computer technology itself. 

The arrival of computer technology, as Loeffler et al. noted (1994, p. xv), has 

facilitated a "necessary leap of imagination" and it has eventually provided society 

with a more effective tool. 

A few years after Heilig's revolutionary system, Ivan Sutherland, commonly 

considered one of the fathers of computer graphics, published a paper called "The 

Ultimate Display" (Sutherland, 1965), a milestone in VR system technology. In his 

famous paper, Sutherland outlined a visionary future for computer visualisation 

where the user could look at a screen connected to a computer to see a visual 

representation of a mathematical model. Sutherland wrote: "the ultimate display 
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would, of course, be a room within which the computer can control the existence of 
matter. A chair displayed in such a room would be good enough to sit in. Handcuffs 

displayed in such a room would be confining, and a bullet displayed in such a room 

would be fatal. With appropriate programming such a display could literally be the 
Wonderland into which Alice walked" (Sutherland, 1965, p. 508). 

2.3.4.1 Sutherland's Sword of Damocles 

During the following years Sutherland, while at Harvard and then at the 

University of Utah, designed the first Head-Mounted Computer Display (HMD). 

Two Cathode Ray Tube (CRT) screens projected a simple wireframe representation 

of a cube onto half-silvered mirrors placed in front of the user's eyes. That allowed 

the user to see the computer-generated images overlaying the real world. The system 

was not truly wearable due to the absence of any degree of miniaturisation in the 

CRT technology. In fact the entire HMD had to be supported by a mechanical arm 

(See Figure 2.2) and for this reason it quickly earned the nickname the Sword of 

Damocles (Pimentel et al., 1995). The mechanical arm "had potentiometers that 

measured the user's view direction" (Burdea et al., 1994, p. 7) and the user could 

move their head to see different sides of the cube. 

Figure 2.2: Ivan Sutherland's Sword of Damocles (Zampi et al., 1995, p. 20) 
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Sutherland's Sword of Damocles was the first example of a three-dimensional 
experience without analogue cameras and as Pimentel et al. (1995) wrote "in general 
terms, there's no difference between this system and the system that was to emerge 
from NASA Ames almost 20 years later. The long search for a synthesized reality 
had finally led to a system capable of generating virtual objects. [... ] The barrier 
between the computer and the user had finally been eliminated; the user was now 
inside the computer" (Pimentel et al., 1995, p. 44). 

2.3.4.2 Krueger's Metaplay 

A few years later Myron Krueger coined the term Artificial Reality. He was a 
scientist interested in the field of human-machine interaction who happened to 
become the first computer artist. Krueger wanted to create a system to let people 
interact with a computer without needing to be programmers. He wanted "people to 

walk into a room, have a brief pleasant experience, and leave knowing that 

computers could be playful, creative, vested with the humanity of human 

programmers" (Morgan, 1994, p. 172). 

After finishing his PhD thesis with the title "Computer-generated responsive 

environment" he prepared an installation called Metaplay. When the user entered the 

room where Metaplay was installed they had the feeling of being in a computer- 

generated environment. The effect was faked by having a camera filming a computer 

screen and projecting the image onto a wall together with, the silhouette of the person 

participating. 

As Krueger reported in an interview to Morgan (1994, p. 173) "when people 

entered the gallery, they saw their images projected life-size in front of them. They 

saw computer-graphic graffiti appearing on their images: I was drawing on their 

images with a data tablet a mile away. When they got the idea, they would duck 

when they saw the cursor coming toward them. Or bat it away. When I put a graphic 

ball at the top of the screen, they would reach and hit it, and I would move it across 

the screen. Sometimes I would put my own image on the screen to interact with 

them". 
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As Pimentel et al. (1995) noted, in Metaplay the users could watch 
themselves projected into the virtual environment as opposed to traditional VR 

systems where the user sees the environment through the "eyes of a computer". For 

this reason they called the environment created by Krueger "mirrorworld" (Pimentel 

et al., 1995, p. 12). 

But Metaplay and a few other examples of projected reality like the Mandala 

Machine developed by the Vivid Group (Pimentel et al., 1995) were, as Sherman et 

al. (1992) noted, quite ahead of their time and Krueger had to spend a few years in 

academic research before a commercial application of VR would become available. 

2.3.4.3 The Role of NASA 

The following years were characterised by intense research activity. People at 

the Media Lab at the Massachusetts Institute of Technology investigated possible 

new interfaces, feedback and graphics. The Aspen project (Negroponte, 1996) was 

the result of this effort. The system, initially developed for military purposes, was 

based on a complex set of videodiscs that allowed interactive navigation of the town 

of Aspen. Military institutions and the flight simulator industry understood the 

potential of these first attempts and they became the two major sponsors of the first 

research into VR. 

In 1982 Thomas Furness III developed a control system for the US army 

called Visually Coupled Airborne System Simulator (VCASS), which was used to 

train the pilots of jet fighters. Through a helmet the pilot would see a high-resolution 

wireframe environment (Pimentel et al., 1995). 

At the same time Frederick Brooks at the University of North Carolina 

(UNC) started exploring the field of haptic interaction. He wanted to create a system 

that would allow chemists to handle and manipulate molecules. The first control 

device called GROPE-II was ready by 1971 but, due to the limits of computer 

technology available, it was only in 1986 that very basic computer generated images 

could be used to visualise the result of the interaction. 

This system called GROPE-III could be used to feel the docking forces 

between molecules. As Pimentel et al. (1995, p. 59) recall, "chemists weren't the 
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only ones to have their minds amplified at UNC. Architects were also among the 

chosen few. For centuries, they had struggled with communicating their vision to 
those around them [... ] Architects and their clients would benefit tremendously from 

a tool that allowed them to visit the design and walk around it before it was even 
constructed". 

Understanding the potential of this new technology, people at UNC modelled 

a VR environment of the new premises of Brook's lab. The experiment, which was 

probably the first example of the application of VR to architecture, led architects to 

change some of their original design choices (Pimentel et al., 1995). 

During these years NASA, (Burdea et al., 1994), showed its interest in using 

this technology for space flight simulation. These projects played a decisive factor in 

the development of the first low cost VR system. In 1981, Michael McGreevy and 
Dr. Stephen Ellis respectively a cognitive science PhD and researcher at the 

Aerospace Human Factor Research Division of NASA, were engaged in research 

into the interpretation of 3D displays. 

Aware of previous work carried on first by Sutherland and later by Furness 

they wanted to create a cheaper device that could replace the one-million dollar 

VCASS system. They successfully assembled the first Liquid Crystal Display (LCD) 

- based HMD, called Virtual Visual Environment Display (VIVED), using off-the 

shelf commercial LCD portable Sony TV sets, mounted onto a scuba diving mask 

fitted with special optics (Fisher et al., 1987). As Burdea et al. report (1994, p. 10) 

the NASA researchers were later joined by Amy Wu, a programmer, who coupled 

the VIVED system to a "DEC PDP 11/40 host computer, a Picture System 2 graphics 

computer (from Evans and Sutherland) with a Polhemus non-contact tracker". To 

convert the video signals from the computer to the LCD screens the research team 

used two cameras pointing at two 19 inch CRT screens, which were connected to the 

Evans and Sutherland system. 

The set-up, although quite technically crude, was an incredible achievement. 

Pimentel et al. (1995, p. 62) noted, "It was the only $ 2,000 head-mounted display on 

the planet" connected to a computer that could render real-time graphics. The most 

important issue at that point was the quality of the system. Regarding this Pimentel et 

29 



al. (1995, p. 66) noted: "as Myron Krueger has so aptly pointed out, the image 

quality was so poor that you would be declared legally blind in most states if you had 

similar vision". But the VIVED system was to become a milestone in VR history. In 
fact unlike its predecessors, due to its limited cost it captured the attention of the 

public, triggered the interest of several non-military research institutions and 
established the basis for the research of the following years. 

Meanwhile Thomas Zimmerman had developed a glove that could measure 
the bend of each finger. Zimmerman had originally developed the glove for musical 

applications, to allow a user to play music through a computer synthesiser. 
Meanwhile Scott Fisher, who had joined the VIVED group, suddenly realised the 

potential of Zimmerman's glove as an input device. He therefore interfaced the glove 

with the VIVED system using a computer representation of the hand within the 

virtual world (See Figure 2.3). As Pimentel et al. (1995, p. 65) noted, "for the first 

time, a representation of a person's physical body could became part of the 

simulation". 

Figure 2.3: The DataGlove used by Zimmerman to interface the VIVED system 

(Fisher et al., 1987, p. 82) 

Two years later Jaron Lanier, the father of the term "Virtual Reality" 

(Pimentel et al., 1995), joined Zimmerman and they founded a company called VPL 

Research (Burdea et al., 1994). In 1986 VPL developed the first VR system that 

could interface both with the user's movements through a glove and with their voice 

using a commercial voice-recognition system. The system could also reply by means 
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of a commercial voice synthesiser package. "No longer was the computer this 
separate thing you sat in front of and stared at; you were now completely inside. You 
communicated with it by talking and gesturing instead of typing and swearing. " 
(Pimentel et al., 1995, p. 65). 

The evolution of the hardware led, in 1988, to the Virtual Interface 
Environment Workstation (VIEW) system, the successor of VIVED. An HP 9000 

system could render, for the first time, shaded images instead of simple wireframe 
ones (Burdea et al., 1994). At the same time Wenzer and Foster developed 
Convolvotron, a system that was able to calculate binaural sound from up to four 

sources at the same time. The characteristic of binaural sound is that it can be 

considered truly 3D sound. In fact, as Pimentel et al. (1995, p. 69) noted, "listening 

to a 3D recording allows the musical sources to appear anywhere in a sphere 
surrounding your head" instead of the effect obtained with traditional stereo systems 

where the sound seems to be coming from a flat plane in front of the user. 

In 1988, three years after its foundation, VPL Inc. sold the first commercial 
VR products. The company started a successful business selling DataGloves and 
EyePhones and it released the first system to create a 3D world called Swivel 3-D. A 

few years later the company went out of business due to debts in the form of loans. 

By this time they were contracted to the French company Thomson CSF who 

eventually bought most of their patents (Pimentel et al., 1995). 

2.3.4.4 The Development of PC-Based VR systems 

The last major player in the short history of VR was Autodesk. John Walker, 

one of its founders, aware of the potential of the research being carried out at NASA, 

started to create the Cyberia project. As Pimentel et al. (1995) reported, the research 

team who were inspired by William Gibson's novel Neuromancer (1984), aimed to 

create a Gibsonian "deck " that could be used with normal PCs. 

Generation Description Barrier 

First Plugboards, dedicated set-up Front panel 

Second Punched card batch, RJE Countertop 

Third Teletype timesharing Terminal 
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Fourth Menu system Menu hierarchy 
Fifth Graphical controls, windows Screen 
Sixth Cyberspace ? 

Table 2.1: User Interface generation classification according to John Walker as 

quoted by Pimentel et al. (1995, p. 78) 

Walker, in a visionary description of computer interface evolution, identified 

six phases of that evolution (See Table 2.1). Each phase would be characterised by a 
different metaphor and would make computers easier to understand. According to 
Walker (Pimentel et al., 1995) we are now at the start of the sixth generation and the 
Cyberia project intended to exploit its potential. 

In 1989 the first PC-based prototype of a VR system was ready for 

demonstration, but a few months later Autodesk abandoned the project and two of 
the researchers involved in the project left to found another company, Sense8. 

Although the role of Autodesk might seem limited it had been of crucial importance 

to show that it was possible to develop a VR system that could run on a common PC. 

Four years later Sense8 would release the first Cyberspace Development 

Toolkit (CDK) and in 1990 the company, together with Intel, developed the first 

texture-based PC system where photography could be imported into the 3D world to 

make the environment look more realistic. One year later they released the 

WorldKitTool the first C-based Application Programming Interface (API) that 

allowed the creation of customised 3D based applications (Pimentel et al., 1995). 

Since then IMB, Sun, HP and especially Sgi have started to sell dedicated 

graphic engines for VR and a number of vendors are now selling VR interfaces or 

displays. The last few years in particular, have seen VR entering the home- 

entertainment market with products being sold as cheaply as a few hundred dollars 

each. The major player in the present development of VR applications is, as Knight 

et al. (1999) pointed out, the video games industry. "Manufacturers spend large 

amounts on developing both hardware and software to satisfy this burgeoning market 

for first person view 3D games that run (in current terms) on a standard PC" (Knight 

et al., 1999, p. 432). 
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2.4 Classification by Level of Immersion 

Several authors have proposed taxonomies for the number of systems 
available nowadays. Pimentel et al. (1995) for example, suggest that VR systems fall 
into six categories: 

Cab simulators. Such as those used as a flight simulator, where the user is 

controlling the computer through an interface that is a replica of the actual 
device that the system is simulating. The windows of the cab are replaced by 

screens and the cab can be placed over a moving platform to simulate the 

effects of motion. The level of realism achievable is so high that pilots are 

now fully trained on this type of flight simulator. 

" Projected reality. The first system in history falling to this category is 

Krueger's Metaplay (See Section 2.3.4.2) where two people in two separate 

rooms see each other's silhouette projected onto wall-sized screens and 
interact with them. 

" Augmented Reality. This system uses a special transparent Head-Mounted 

Display where computer images are superimposed onto the image of the real 

world to augment it. These displays are also called Heads-Up-Displays 

(HUDs) "because the outside world is visible along with the computer- 

generated graphics" (Pimentel et al., 1995, p. 14). 

" Telepresence. Pimentel et al. (1995, p. 14) suggest the following definition: a 

system that "uses video cameras and remote microphones to immerse users so 
deeply as to project them into a different place". One of the most important 

applications is for medical purposes where the doctor can operate on the 

patient's body from a remote location through a mechanical arm. Loeffler et 

al. (1994, p. xxi) consider telepresence as a "networked extension" of VR. 

The synthetic world is created in relation to the real one, and at the same time 

it affects the real world through an interface at the end of the network line. 

The entire system acts as a real-virtual-real converter. 

" Desktop VR. This system uses a normal screen as the visualisation device. It 

is considered the simplest VR setting but nevertheless it can be very effective 
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in particular circumstances as will be discussed in the following pages (See 
Section 2.4.1.1). 

" Visually Coupled Display. This is what Pimentel et al. (1995, p. 14) refer to 
as the "immersive system most often associated with virtual reality". The user 
wears a tracked HMD whose position affects the images projected on the 
screens (See Section 2.4.2.1). 

However, in most of the literature the classification of VR systems is done on 
the basis of the level of immersion provided by the visualisation sub-system. The 
definition of level of immersion is rather vague: Pausch et al. (1997, p. 266) state that 
immersion is the sense of "being there" while Loeffler et al. (1994, p. xiv) consider it 

as a sense of presence, in other words, "the degree to which the user's senses are 
limited to the simulation and screened from the real world". 

The sense of presence is used as a parameter to assess the effectiveness of the 
device in terms of simulation of the experience within an environment. Unfortunately 

though, there is no measurement directly describing the sense of presence. This could 
be calculated as a result of several factors such as the level of interactivity, the 

resolution of the system, the accuracy of the modelled world and the latency of the 

system. 

Some authors like Pausch et al. (1997) and Arthur et al. (1993) have proposed 

some forms of experiment to measure the parameters associated with the level of 
immersion. Unfortunately though the results are often vague or are the consequence 

of highly constrained conditions or very specific hardware settings. Reeves et al. 
(2000, p. 70) state, "Unfortunately, all these studies do not allow a conclusion that 

increases in perceptual bandwidth will be universally good or bad. The most import 

conclusion is that more and different perceptual experiences turn up the volume on 

perceptual responses, an outcome that increases the importance of successes and 

failures in interface design". 

The issue of the immersiveness of a VR system has led the research 

community towards two antithetical approaches, divided between those who back the 

advantages of the so-called immersive systems and those who support non-immersive 

ones. The first approach is typically characterised by the user wearing a helmet that 
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completely occludes their vision. The second approach is based on some kind of 2D 

projection display. The latter can support both monoscopic and stereoscopic images 

through the use of special glasses. 

Between these two approaches there are several hybrid ones. Therefore 

within the scientific community it is generally acknowledged (Bowman et al., 2001) 

that most of the systems available fall into three main categories: non-immersive, 
fully immersive and semi-immersive projection systems. 

2.4.1 Non-Immersive Systems 

Non-immersive systems, as the name suggests, are based on traditional 

screens or projection surfaces. In these systems the feeling of being immersed merely 

relies on the user looking at the screen and therefore it immediately vanishes as soon 

as the user looks somewhere else. 

There are several advantages to their use such as high resolution and low 

cost. One of the other main advantages of this technology is that it can also be used 

without special hardware and therefore it can be implemented on PC clones. Typical 

examples of desktop-VR systems, which are now part of our daily lives, are 3D 

computer games. Some authors like Knight et al. (Knight et al., 1999) have shown 

the effectiveness of PC-based game engines to navigate through virtual worlds. 

2.4.1.1 Desktop-VR 

The basic non-immersive or desktop-VR systems, as the name suggests, are 

based on traditional screens or projection surfaces. Typically, in a desktop-VR 

environment, the user can see the virtual world through a browser and interact with it 

by means of a traditional keyboard and mouse as well as more sophisticated 3D- 

interaction devices. Sherman et al. (1992, p. 24) comment on desktop-VR stating that 

"it is however proper Virtual Reality in that the images are generated in response to 

commands in real time (they are not just pulled from the memory)". 

This simple visualisation device makes it possible to implement such systems 

with PC clones. One of the first examples of a non-immersive system based on low- 

cost PC clones was the Rend386 project started in 1991 at the University of 
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Waterloo. As Stampe et al. reported (1994, p. 56) the idea behind the project was to 
create a non-immersive low-cost VR system that could be used with the normal PCs 

available at that time, mostly 386 and 486-based PC clones, hence the name. The 
interface was developed starting from a Nintendo PowerGloveTM while the 

visualisation core was based on a standard VGA card. Support for stereoscopic views 
and for HMD and Sega LCD shutters was provided. Optimising the code for high 

speed but without any trade-off in functionality or usability operations, the system 

was capable of rendering 50,000 polygons per second. After several releases by 1993 

the design team decided to launch a new package of VR-386 written on the basis of 
the experience gained from Rend386, but with an open architecture so that every 

programmer could improve the core. One year later Roehl (Stampe et al., 1994, p. 
56) released AVRIL, a rendering library designed to be portable by the elimination 

of part of the assembly code present in Rend386. 

The popularity of PC-based desktop-VR systems was partially encouraged by 

the use of panoramas which some authors (Gatermann et al., 2000; Gatermann et al., 
2001) considered a basic form of VR, and partially by the advent of the Virtual 

Reality Modelling Language (VRML). VRML, which was introduced in 1995 by 

Silicon Graphics Inc. at the Third International Word Wide Web Conference in 

Darmstadt, had gradually become the standard for 3D virtual environments. In 1997 

it was accredited with ISO Status (Web3D Consortium, 1997). Although VRML is 

now being replaced by other technologies such as Java3DTM (Sun Microsystems, 

Inc., 1999) or X3D (Web3D Consortium, 2002), it has still retained a relevant role in 

the success of many VR applications. 

Several projects have tried to interface desktop-VR systems with different 

input devices. One of the most interesting cases was Moloney's Bike-R (1999), an 

example of a low cost VR environment where a low-tech exercise bicycle was 

connected to the computer. The computer, instead of rendering real-time animation, 

rendered pre-recorded sequences of videos. The user could interact with the system 

by pedalling and choosing different paths at the crossroads. To a certain extent, the 

system proposed the same approach demonstrated a few years earlier by Negroponte 

(1996) at Media Lab with the Aspen project (See Section 2.3.4.3), but Bike-R proved 

that a PC connected to a simple interface could be used successfully. Knight et al., 
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(1999) proposed a similar approach where a bicycle was connected to a desktop-VR 

system. This, as the authors noted, was also inspired by Jeffrey Shaw's work at 
Autodesk a few years before (See Section 2.3.4.4). 

The desktop-VR paradigm, taken to an extreme stage, saw the development 
by the present day of the first commercially successful attempts to port desktop-VR 

systems into so-called embedded devices, such as mobile phones, Personal Digital 
Assistants (PDAs) and PocketPCs. Commercial examples of this idea are available 

on the market, for example Paralle1Graphics' Cortona (ParallelGraphics, 2002) or 
Swerve by Superscape, a technology that allows "3D games, innovative user 
interfaces and 3D Interactive messaging" (Superscape plc, 2001). 

2.4.1.2 FishTank-VR 

An improved version of basic desktop-VR is the so-called Fish Tank- VR. The 

technology, which has been adopted by several authors (Deering, 1995; Arthur et al., 
1993), is based on a rendering engine attached to a monitor where stereoscopic 
images are rendered. The user wears a pair of tracked LCD shutter-glasses that 

transmit the position of the user to the computer, which then creates the relevant 
images according to the user's point of view. 

As Pimentel et al. (1995) note, although a basic desktop-VR system can be 

implemented without a fully stereoscopic visual device the author recommends "a 

stereoscopic system because it provides important depth cues when manipulating 

objects in the virtual world. Though there's much debate over the value of 

stereoscopic visualisation, in certain situations it's an important feature" (Pimentel et 

al., 1995, p. 131). 

In his work titled "High-resolution virtual reality", Deering (1992) has proved 

the precision of his FishTank-VR system. According to him it could achieve sub- 

millimetre accuracy. Some authors (Wesche et al., 2000) also proposed the combined 

use of haptic feedback devices like the PHANTOMTM from SensAble Technologies 

(SensAble Technologies, 2002). 
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All these elements combined with the rising increased amount of visual 
information provided by the motion parallax make this system extremely popular in 
industrial design applications. 

2.4.1.3 Virtual Workbench 

One evolution of simple FishTank-VR systems is the Virtual Workbench or 
Virtual Table (Schmalstieg et al., 1999). In a typical system a projection table 

replaces the screen. Commercial products like ImmersaDesk®R2 (Fakespace 

Systems, 2002) and Baron (Barco, 2002) have been successfully marketed. Here the 

metaphor is a table or a wall showing stereoscopic images and the user interacts 

through 3D-input devices. 

As Wesche et al. (2001, p. 170) noted "When dealing with curves and 

surfaces in a workbench environment, the working situation is completely different 

from that on a desktop system. Curves and surfaces appear perspectively correct, 

shown as stereo objects in reach of the user's hand and represented on a scale 

corresponding to the work area". Several authors have achieved very interesting 

results using this technology (De Amicis et al., 2002; Fiorentino et al., 2002; Igarashi 

et al., 2000; Wesche et al., 2001; Schmalstieg et al., 1999). 

An interesting precursor of the Virtual Workbench was Park's Electronic 

Drawing Board (EDB) (Park, 1996). EDB and the later EDB2 were implemented 

using a desk, a video-projector, a video camera and a computer. In this system mixed 

analogue-digital tool images filmed by a camera were projected onto a real desktop 

that became a real place for work: the user would use the desk as a real desk and as a 

computer desktop at the same time. 

2.4.2 Fully Immersive Systems 

The second category of VR system is the fully immersive type, which is, 

thanks to the media industry, the most famous type of VR system. This class includes 

two different categories: the Head-Mounted Display (HMD) and the Cave Automatic 
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Virtual Environment (CAVE). Both systems are characterised by providing the user 
with a 360-degree view of the environment. 

It is obvious, from what has already been said about non-immersive systems, 
that the main advantage of this system is the great lever of presence. As Green et al. 
(1996, p. 48) note, "the issue of immersion versus non-immersion is hotly debated 

within the VR community. The supporters of the immersive side claim that HMDs 

will improve over time and will eventually have the same resolution as regular 

workstation screens. [... ] The supporters of the non-immersive side claim that HMDs 

prevent easy access to standard design tools, such as paper documents, telephones, 

coffee and other people in the room". As Singh et al. (1996, p. 35) note, "there are 

significant usability and functional trade-offs between the two approaches. While the 

HMD-based systems are appealing for walkthrough and entertainment applications, 

they do not lend themselves well to precision work and extended use". Green et al. 
(1996, p. 48) also note that "immersive systems suffer from the navigation problem, 

since the user must continually move through the environment, or scale the object, to 

reach different parts of it. For example, in building design, if the designer is the same 

scale as the building, it can take a considerable amount of time to get from one place 

in the building to another". 

2.4.2.1 The Head-Mounted Display (HMD) 

These systems, typically based on a tracked Head-Mounted Display (HMD), 

are the evolution of Sutherland's first Sword of Damocles (See Section 2.3.4.1) and 

the later NASA's VIVED system (See Section 2.3.4.3. ). 

The HMD is typically composed of two screens where stereoscopic images 

are projected. A helmet is fitted with special optics that move the focus point from 50 

to 70 mm, which is the average distance between the user's eyes and the screens in 

order for them to be able to see the objects in the virtual world. Often the screens 

used are based on LCD technology although some systems have adopted Cathode 

Ray Tubes (CRT). The latter can produce higher resolution images but are usually 

more expensive. The HMD is usually coupled with headphones to provide 3D-sound 

and the pointer device is normally a glove-based tool or a wand. 
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Several authors report on their use giving interesting results (Butterworth, 
1992; Bolas, 1994; Chan et al., 1999a). According to these authors the user perceives 
a great sense of being immersed into the virtual world, as their head's position is 
tracked and the images shown are calculated according to their point of view, giving 
a 360-degree view of the environment. Butterworth et al. (1992, p. 135) wrote that 
"an HMD system gives the ability to understand the complex spatial relationship of 
models by placing the user in the model's world [... ] as a result, the user can build 

the virtual world from within the virtual world". 

However these systems tended to be very expensive, although the cost is 

rapidly dropping due to the necessary dedicated hardware coming down in price. 
Moreover, as several authors pointed, if compared with other types of VR systems, 
HMD's had the twin drawbacks of lower resolution and poor ergonomics due to the 

size and the weight of the helmet. However, regarding this, Negroponte (1993) 

wrote: "the argument will be made that head-mounted displays are not acceptable 
because people feel silly wearing them. The same was once said about stereo 
headphones". 

2.4.2.2 Cave Automatic Virtual Environment (CAVE) 

An interesting immersive alternative to traditional HMDs is the Cave 

Automatic Virtual Environment. The CAVE, as researchers referred to it, was 
developed a decade ago at the Electronic Visualisation Lab (EVL), University of 

Illinois, by Carolina Cruz-Neira, Dan Sandin, and Tom DeFanti and it was presented 

at the SIGGRAPH'92 conference. 

As the authors declared (Cruz-Neira et al., 1993, p. 135) the name "is both a 

recursive acronym (CAVE Automatic Virtual Environment) and a reference to `The 

Simile of the Cave' found in Plato's Republic, in which the philosopher discusses 

inferring reality (ideal forms) from projections (shadows) on the cave wall". 

The system is based on a variable number of projection walls, from four to 

six, that limit the physical space where the user can stand. Computer-rendered 

stereoscopic images are projected on the walls giving the impression on the user that 

they are fully immersed into the virtual environment. The space, usually a 3x3x3 
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meter cube, is big enough to allow more than one user to experience the same virtual 

world. 

2.4.3 Semi-Immersive Systems 

As already mentioned between the two previously mentioned systems a third 

one has emerged: the semi-immersive type. This type borrows most of its technology 

from either the CAVE systems or from the simulation industry. 

In these systems the rendering engine is typically made by multiple graphic 

subsystems that project synchronised images on different configurations of screens. 

For this reason they are also called by some authors (Wesche et al., 2000) Projection- 

Based Virtual Environments (PBVE). The visualisation device can be either a 

tessellated screen or the windows of what Pimentel et al. (1995) call a "cab- 

simulator" (See Section 2.4). 

The tessellated screen type can be set up with different arrangements, 

depending on the requirements, from a semi-cylindrical, to hemispherical to 

spherical configuration (See Figure 2.4). 
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Figure 2.4: Two sections of semi-spherical VR room (From Fukuda et al., 2000, 

p. 491) 

The cab type is typically a simulator where the inside of a cockpit of an 

airplane, a tank or the like, is replicated to create a training environment for pilots, 
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and whose windows have been replaced by screens. These applications were 

originally developed for military or training support but have also been recently 
borrowed by the video-game industry. 

Several authors use these systems (Fukuda et al., 2000) and as most authors 

explain their advantages are to be found in the possibility of allowing a greater 

number of people to be involved in the simulation experience. For this reason they 

can be particularly appreciated where collaboration between several users is required 

or in a teaching context. Regarding this, Knight et al. (1999, p. 432) recommend that 

the ideal VR system used in an architecture studio environment should make use "of 

a large-scale projection system rather than other alternatives such as a head-mounted 

display or conventional monitor". 

Stereoscopic effect can then be obtained with the use of additional shutter 

glasses although the implementation of simultaneous multiple tracked points of view 

is only feasible for a very limited number of users. The resolution achieved with 

these multiple projection systems can consequently be very high especially when 

compared to HMDs. 

Additionally the sense of scale can be felt in a more dramatic way than with 

simple Desktop-VR systems. In fact, as Reeves et al. (2000, p. 69) show, the larger 

size of this display produces a greater immersion: "Large displays are preferred and 

they create a greater sense of presence". 

Unfortunately, the drawback of these systems is often the very delicate 

calibration and maintenance necessary to prevent distortion or overlapping between 

areas of the screen. 

2.5 Conclusions 

This chapter presented an overview of VR. A number of definitions of the 

idiom Virtual Reality which recur in the scientific literature were given. The central 

part of the chapter presented the evolution of the hardware and software that over the 

last forty years has led to modern VR systems. 
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The last part of the chapter presented a classification of existing VR systems 

and highlighted their advantages and weaknesses. A classification of VR systems 

according to their level of "immersiveness" was given. 

This chapter presented VR as the ultimate visualisation and simulation tool. 

The following chapter however will present VR as an innovative design tool. It will 
demonstrate how the superior visualisation capabilities and the interactivity of 

modem VR systems can be exploited to make the design process much more 

efficient. 

The following chapter will particularly focus on the use of VR technologies 

in the early stages of the design process and examples of research, past and present 

will be reported. 
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3 VR as a design tool 

3.1 Introduction 

The previous chapter has shown the use of Virtual Reality as a visualisation 
tool. However, if limited to being a mere visualisation tool VR loses its power and 
becomes nothing more than an effective presentation technology. Such virtual 
environments are static worlds which the user can navigate freely, but as Green et al. 
(1996, p. 46) points out, "an environment where the user can merely move amongst 
the objects, like a ghost, and not interact with them in any form is not very 
interesting". To address this issue, this chapter will introduce the concept of using 
VR as a design tool as opposed to a simple visualisation vehicle and it will show the 

potential of this technology for the use in the early stages of the design process. 

In the following section an overview of the issues related to the use of 
Computer Aided Conceptual Design (CACD) tools (Sener et al., 2002) will be 

presented. In particular the focus will be on the tools which are usually called 

sketching tools. 

The relevant scientific literature tends to refer to sketching or 3D sketching 

tools (Achten et al., 2000; De Vries et al., 2000; Deering, 1995; Deering, 1996; Do, 

2001; Igarashi et al., 1999) although often only a few of these tools are actually 

based on traditional sketching. Most of them are closer to modelling packages but in 

these cases their modelling capability is usually just limited to a few basic tools and 

the focus is on providing a quick and easy interface to create shapes and to support 

the creative requirements of the initial design stage. This broader definition of 

sketching will be used here in the analysis of the problems relating to the early stages 

of the design process. 

A number of previously developed or ongoing projects into the use of VR- 

based tools in the early stages of the design process will be presented at the end of 

the chapter. The focus of this thesis will be on the sub-set of VR systems made by 

Virtual Reality Aided Design tools (VRAD) (Turner et al., 1999) and a metaphor- 

based taxonomy of their use across different areas of design will be presented. 
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In particular the focus of this chapter will be on real-time 3D-modelling tools 
that require a "creative" role of the user. Therefore the proposed taxonomy will not 
include other studies that have proposed automated systems to create shapes, for 
instance Liu et al. 's (2000), where the computer generated 3D-shapes from 2D- 
images in real-time. 

3.2 A Design Tool rather than a Mere Representation 

Medium 

As noted in previous research (Ucelli et al., 2000) VR is quite often left to the 
last stages of the design process, as a powerful tool to show the clients to impress 

them with the design. Also Achten et al. (2000) point out that VR has been used 

mainly in the last stages of the design project as a potent visualisation tool but this is 

not exploiting a great deal of power early in the design stage. Similarly Alvarado et 

al. (2001, p. 423) observe that "computers have reached mainly an utilitarian role in 

architectural work, focused on quantitative production of plans and images, and not 

related to the quality of design [... ] They are used more at the end of the process, 

than at the beginning, when the design is conceived". 

Kurmann (1995 and 1998) is of the same point of view and notes that 

"architects face a significant lack of computer tools that truly support them in the 

early, conceptual stages of design" (Kurmann, 1998, p. 317). He also outlines that 

the majority of CAD packages are not designed specifically for architects but they 

are adapted versions of engineering programs. Moreover CAD systems are designed 

to fulfil the widest range of engineering needs and they mainly focus on the 

construction part of the design process. The designing phase will require different 

tools since the architect has to face more intuition based problems and less 

mathematical ones. Kurmann (1998) states that there are three questions regarding 

designing with computers: how, what and when to design, and also that "different 

interfaces are needed in the construction and the design phase of a project" 

(Kurmann, 1998, p. 318). He continues saying that "an architectural design tool has 

to both offer the ability to build space and to experience it" (Kurmann, 1998, p. 318). 
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An attempt to use VR earlier in the design stage has made in the research 
carried out by Shih et al. (1999). Here a VR system was used to study the behaviour 

of people during the emergency of being in a building on fire. Through the study of 
the routes followed by people escaping a fire the research, aimed to find the 

occupants' choice of exit. The results of the simulation revealed to the research team 

new safety issues not previously taken into account and also suggested some new 
design solutions. 

But although this approach affected the design choices, it used VR as an 

enhanced investigation tool, and did not allow the user to manipulate the result of the 

design directly within the virtual environment. In applications like this it appears that 

the present use of VR "seems limited to presenting relatively static models of more 

or less finished designs without much support to change elements of the design" 

(Achten et al., 2000, p. 459). 

Apart from simple browser-functioning applications, interactive VR 

technology has existed for some time in the form of programming libraries or 

toolkits. Traditionally it has required technical and programming skills that made it 

the sole domain of computer scientists. As Singh et al. (1996, p. 36) wrote in 1996, 

"given today's technology, it is almost impossible for a non-programmer to develop 

a good virtual environment". Also Green et al. (1996) pointed out that VR as a 

design tool should not only be available to computer scientists but should be 

accessible to designers, engineers and teachers. 

In addition, according to Wang (1999, p. 71), "what the designer sees and 

understands is limited by the design world constructed through the design medium he 

has chosen to adopt". Similarly Ataman (2000) studied the effects of different media 

upon architectural design. To assess how the media used can affect the design 

process he developed an empirical study where two groups of students were asked to 

use digital media and manual media respectively. The study revealed that "unclear 

conceptualisations were more likely to appear in the manual media group" (Ataman, 

2000, p. 94) and that the group using manual media "seemed to produce some easy- 

to-build concepts and created fewer categories". The experiment proved that 

"students who used digital media developed designs that suggested more 
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understanding of architectonic space and clear distinctions between the conceptual 
and perceptual spaces" (Ataman, 2000, p. 94). The author thought that the limited 
manipulation capability of manual media was the main reason for the lower quality 
and he pointed out (Ataman, 2000, p. 94) that "exploration and efficient conceptual 
representation of content is essential for effective concept development". 

Similarly Chan et al. (1999a, p. 43) stated that "if a medium provides 
designers with an opportunity to see a design interactively, a sense of projection into 
the design will be generated". This kind of projection could lead to a different 

outcome in the design and will be likely to affect the design process and ultimately to 
improve the design quality. This process should also allow enhanced creativity and 
multidirectional thinking. 

Stating that the medium chosen by the designer can be of primary importance 

when generating ideas Ataman (2000, p. 93) concludes that "it would be appropriate 
to assert that the nature and power of the available media facilitates what is 

conceived and accomplished. Conversely, limitations in the design can result from 

the limitations of the media". 

According to these results the use of Virtual Reality as a creation tool allows 
designers to have much greater control over design choices earlier in the process 

giving a more comprehensive view of the design. 

Research in recent years has explored the implementation of VR-based tools 

to support the early stages of the design process. The goal of these studies is to 

develop new tools that allow the designer to manipulate the environment 
interactively, and to simultaneously create shapes in a simple and intuitive way. 

These systems are now called Virtual Reality Aided Design tools (VRAD) 

(Turner et al., 1999) and they have originated from different areas of design. They 

are the results of research carried out in the fields of industrial design, car 

manufacturing (Fiorentino et al., 2002; De Amicis et al., 2002), architecture 

(Camarata et al., 2002; Do et al., 2000; Jung et al, 2002) and also in the figurative 

arts (Keefe et al., 2001). 
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3.3 Sketching with Computers: a Tool for the Early Stages 

in Design 

Since the development of Ivan Sutherland's milestone application in 

computer graphics called Sketchpad (Sutherland, 1963), sketching with a computer 
has been considered as a "highly effective means of constructing geometric shapes" 
(Arvo et al., 2000, p. 73). 

As Stellingwerff (1999, p. 492) noted "Sketching is interaction in optima 

forma. The medium is filled with represented knowledge and key information for a 

specific problem. While the sketch is produced, the information on the medium is re- 

read and interpreted, the designer can take creative steps and re-draw, reflect and 

refine the `sketchy' ideas. Through a series of iterative loops the sketching designer 

might be able to create an innovative design from scratch". Sener et al. (2002, p. 

539), quoting Temple (1994), stated that "the activity of `sketching' in its widest 

sense is an essential tool employed [... ] in any creative enterprise as part of the 

conceptualising process involved in `working up' ideas to a final and formal 

condition". 

Several authors agreed on the unsuitability of current CAD packages when it 

came to using them in the early stages of design. Turner et al. (1999, p. 155) stated 

that "current CAD technology is far too restrictive to use as a tool for thinking with". 

Knight et al. (1999, p. 432) noted that "there is a need for better computer based 

conceptual sketchers and modelers". Finally, Roberts (1999, p. 445) points out that 

"CAD packages are designed to allow one to draw accurately, and therefore for 

every operation [... ] the computer will ask for a certain number of parameters. [... ] 

In a Virtual Reality environment, one could simply pick up an object and rotate it 

around as would happen with a real life model". 

Regarding the use of VR in the early design stages, Chan et al. (1999a) noted 

that most VR systems rely on external modelling packages used before the model is 

exported to the VR system to create or manipulate geometries. This approach 

certainly "limits the flexibility and plasticity of VR's application [... ] and allows VR 

technology to be used only as a production tool instead of a design tool" (Chan et al., 
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1999a, p. 44). The inadequacy of using a simple VR-based visualisation system is 
evident when a change in the model is required: the designer has to return to the 
modeller and eventually back to the VR system. "The lack of immediate interaction 

and feedback may cause visual perception errors while modifying the design" (Chan 

et al., 1999a, p. 45). 

Nevertheless, as Sener et al. (2002) noted there are three main reasons 
promote the use of digital media in the early phase of the design process: 

" Every method or tool that can enhance the power of the conceptualisation 

phase should be used. 

Since the design process will ultimately require a digital support for 

engineering or planning purposes the ideas presented in the sketch will have 

to be converted to digital format. 

" The computer data can also be used from the design phase to quickly produce 

physical models through rapid manufacturing processes and thus further 

enhances the power of creativity at this stage (Ucelli et al., 2000). 

Moreover, as Achten et al. (2000, p. 459) wrote, VR is "inherently spatial by 

nature, it involves the architect in immersive environment, and it enables interactive 

manipulation of the design". As Kurmann (1998, p. 319) stated "what has to be 

offered to a designer is the possibility of interacting with a computer model in a 

convincing way". 

For these reasons several authors have focused their attention on new tools 

that allow the creation of shapes with ease and with few constraints and they have 

used the terms sketching or 3D Sketching tools to describe them (Achten et al., 2000; 

De Vries et al., 2000; Deering, 1995; Deering, 1996; Do, 2001; Igarashi et al., 1999). 

Most of these systems are not strictly based on proper sketching but they are 

often very interactive basic modellers providing the user with a basic set of functions 

and a very flexible interface. This broader definition of sketching tool will be 

adopted in the future and consequently we will refer to the act of sketching with 

computers as the act of quickly creating, manipulating and editing shapes during the 
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early stages of design. Deisinger et al. (2000) have identified some key features for 

the success of such tools: 

" Absence of reference to the mathematical representation behind the system. 

9 Real-time interaction. 

" Full scale modelling. 

" Intuitive interface. 

The general principle behind these systems is therefore to provide the user 

with the few essential commands which are required to create basic shapes rather 

than providing them with a comprehensive set of modelling tools that would clutter 

the interface. In fact as Szeliski et al. (1992, p. 185) noted, "for shape design and 

rapid prototyping application, we require a highly interactive system which does not 

force the designer to think about the underlying representation or to be limited by its 

choice". By using this new family of systems, as Chan et al. (1999a, p. 43) observed, 

designing with VR becomes "a new and unconventional mode that will heavily 

influence design thinking". 

3.4 A taxonomy of Virtual Reality Aided Design systems 

The next sections propose an overview of the previous and ongoing research 

into VRAD systems. The following sections will present a metaphor-based taxonomy 

of the existing VRAD systems. For each system, the interface and the approach 

followed will be described. No mention will be made on the topic of the 

mathematical implications of each system. Nevertheless references to the authors' 

research will be provided to give further details on each system's algorithms. 

3.4.1 Non-Photorealistic Systems 

Non-photorealistic rendering is a technique developed to preserve or 

sometimes even simulate, the imprecision and natural feeling of a hand made 

drawing. As Durand (2002, p. 112) wrote "non-photorealistic is a loosely-defined 

term. It should be used only to qualify a pictorial style. The only meaning of non- 
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photorealistic is that the picture does not attempt to imitate photography and reach 
optical accuracy". According to Cohen et al. (Cohen et al., 2000, p. 84) the drawing 

maintains "the distinct stylistic appearance and subtleties imparted by the user". As 
Markosian et al. (1997, p. 415) noted "Nonphotorealistic rendering (NPR) can help 

make comprehensible but simple pictures of complicated objects by employing an 

economy of line. Graphic designers have long understood that photographs are not 

always the best choice for presenting visual information". Durand (2002, p. 111) at 
the Laboratory for Computer Science at MIT, pointed out that "Non-photorealistic 

pictures can be more effective at conveying information, more expressive and more 
beautiful". Durand (2002) also noted that the division between photorealism and 

non-photorealism is not sharp but it is rather fuzzy. Both approaches also have to 

tackle the same pictorial issues like lighting etc. 

Several authors have studied the use of Non-PhotoRealistic (NPR) 

algorithms to create images with qualities resembling the human drawing style. Until 

a few years ago the NPR technique was only possible for batch processes. Recently, 

the increased efficiency of the hardware and the optimisation of the rendering 

algorithm have made it possible to perform real-time non-photorealistic rendering 

(Northrup et al., 2000; Markosian et al., 1997; Raskar et al., 1999). 

In their work Cohen et al. (2000) catalogued the non-photorealistic systems 

into two main types: geometric and image-based systems. The geometric group 

"attempts to create a geometric description of the 3D scene from the user's 2D input" 

(Cohen et al., 2000, p. 83) and the user can render the object from any point of view. 

Systems like Sketch VRML (See Section 3.4.1.3) follow this approach. However, the 

limitation of this system is that the geometry is often incorrect. 

By contrast the image-based approach does not create a geometrical 

representation of the scene "but instead redisplays the original input image, modified 

to reflect the new camera parameters" (Cohen et al., 2000, p. 83). The approach 

followed by Cohen et al. (2000) in Harold (See Section 3.4.1.1) is an example of this 

second group. 
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3.4.1.1 Harold 

The metaphor followed by Cohen et al. (2000) to create Harold is drawing, 
i. e.: the user draws 2D shapes through a 2D input device and then these shapes are 
rendered over a billboard in the virtual space. A billboard is a view dependent object 
that is always rendered facing the user's point of view: "a billboard is typically a 
plane with a image texture-mapped onto it that rotates about some point or axis to 
face the viewer as much as possible" (Cohen et al., 2000, p. 83). In this way the 

virtual world, as the authors have said (Cohen et al., 2000, p. 83), "is populated by 

drawings, not 3D objects". 

This approach makes the entire system very simple since there is no need for 

interpretation of the strokes that are simply being rendered every frame. Moreover 

the shapes created in this way "maintain a hand-drawn appearance" (Cohen et al., 
2000, p. 83). 

The main drawback of using billboards becomes visible when the user moves 

through the scene and finds that the relative orientation between objects changes 

accordingly. For instance, if the user creates a simple house out of four walls and a 

roof, the entire object becomes inconsistent once the user starts to move. 

To solve this problem the authors developed what they call bridge billboard, 

a "collection of planar strokes anchored to points on two billboards" (Cohen et al., 

2000, p. 84). 

The use of Harold is therefore limited to objects with approximately 

cylindrical symmetry, for instance trees, posts or even people, because the billboard 

effect becomes disturbing in the other cases. 

3.4.1.2 SketchBoX 

As Stellingwerff (1999) reported the SketchBoX system has been developed 

to exploit two powerful features that computers can offer when the metaphor of the 

pen and paper is being followed. In this system the user can place semi-transparent 

planes onto the faces of 3D models and use them as canvases to draw on. The user 

can then make annotation on top of the model in a similar way to using Redliner (See 

Section 3.4.2.5), the system proposed by Jung et al. (2002). 
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3.4.1.3 Sketch VRML 

Sketch VRML is a tool to allow designers to transform sketches into 3D- 

entities. As Jozen et al. (1999, p. 561) noted that "nothing is easier than sketch on 
paper" but it is then difficult to implement these sketches into the design. Simply 

scanned drawings would not be useful to create 3D objects because they could only 
be used to texture a surface. 

The approach followed by Sketch VRML to take sketches into the 3D world 
is similar to that developed by other authors (Cohen et al., 2000; Stellingwerff, 

1999). However, unlike other systems, Sketch VRML does not automatically 

transform the sketched drawing into a texture and import it into the virtual world. 
Instead the authors have proposed a more original solution. 

The software, makes a model of the drawing from the scanned paper-based 

sketch through an algorithm that turns black pixels into points in space. To solve the 

inevitable ambiguity of the third dimension, an algorithm written in JavaTM, takes 

into account the strength of the strokes in the drawing and it calculates a plausible 

value for their depth. Finally, all the relevant information is sent to the VRML 

browser through the VRML External Authoring Interface (EAI) and then it is shown 

in the virtual world. 

The result is a plausible interpretation of the drawing in 3D space that can 

eventually be imported into a CAD package for further changes. 

3.4.2 The semantic approach 

During the process of designing a person "makes a drawing, which stimulates 

recall of similar forms, visual analogs [... ] and the designer reacts in turn by making 

another drawing" (Gross et al., 1996a, p. 183). The more the drawing is ambiguous 

the wider the stimulation will be. Unfortunately CAD packages do not support 

ambiguity and therefore "the suggestive power of the sketch" (Gross et al., 1996a, p. 

183) cannot be interpreted as an additional level of information carried within the 

semantic of the sketch. The result of this limitation is that the transfer to CAD 
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systems normally only happens when the idea is at its final conceptualisation and 
requires to be resolved. 

The work of the research presented in the following sections focused on the 
retrieval of the semantic information stored inside a drawing. This is accomplished 
by interpreting the sketches through a new computer based system which was 
developed to assist the user in the early stages of the design process. 

The outcome of research was to be systems that aimed to create shapes 
through the recognition of the semantic behind the hand-made strokes rather than 
focusing on the creation of complex surfaces. The result of these efforts is a number 

of intelligent computer aided systems, which through a knowledge based system 

supports users in the early stages of designing by providing flexibility of free hand 

sketching with computer editing and calculating power. 

In the following paragraphs several systems will be presented. The first two 

systems introduced, the Cocktail Napkin and Flatland, are non exclusively related 

with 3D graphics. Nevertheless they are included in this taxonomy because they 

provided the basis for the 3D-based systems which are described later. Therefore 

these first two systems descriptions are to be read as the fundamental introduction to 

the ones following. 

3.4.2.1 The Electronic Cocktail Napkin 

Several research projects have tried to show how traditional sketches can 

convey design ideas. Gross et al. (1996a, p. 183) conjected "that designers prefer to 

use paper and pencil because it supports ambiguity, imprecision, and incremental 

formalization of ideas as well as rapid exploration of ideas". As Gross et al. (1996a) 

summarised there are three key features in characterising sketches: 

" Abstraction. A symbol replaces more complex configurations "enabling a 

designer to work with components without specifying their internal structure" 

(Gross et al., 1996a, p. 184). 

" Ambiguity and Vagueness. "Another way to postpone commitment yet retain a 

marker for a later decision" (Gross et al., 1996a, p. 184). Ambiguity and 
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Vagueness can be caused by the variety of forms of the design solution or simply 
by the simplicity of the idea. 

" Imprecision. "Designers need only rough dimensions to decide on a basic layout" 
(Gross et al., 1996a, p. 184), more detailed drawings and exact calculations will 
follow once the design idea is established. 

Traditionally computer based applications "force designers into premature 

commitment, demand inappropriate precision, and are tedious to use compared with 
pencil and paper" (Gross et al., 1996a, p. 183). 

Nevertheless Gross et al. (1996a) also observed that computer based media 
indeed can offer many advantages over traditional paper-based techniques for 

example 3D modelling, distance collaboration, fast editing and easy storage and 

retrieval. The ideal system should therefore have the best aspects of both methods 

and the system proposed tries to address these issues. 

The idea for the Electronic Cocktail Napkin or simply Napkin was inspired 

by the commercialisation of the Apple Newton Message Pad. The system, is a 
freehand drawing tool written in Macintosh Common Lisp on an Apple PDA. The 

system's aim "is to support the kind of informal drawing that designers do on the 

back of an envelope or a cocktail napkin during conceptual design" (Gross et al., 
1996a, p. 185). 

The user draws through a digitiser onto an area called the Drawing Board or 
Sketchbook window. Napkin supports three levels of recognition: "(1) the low level 

recognition of hand drawn glyphs (2) the higher level recognition of configurations, 

and (3) the maintenance of constraints and spatial relations among diagram 

elements" (Gross et al., 1996a, pp. 188). 

On the first level the system tries to recognise and store the glyphs drawn by 

the users as shapes (boxes, circles, lines). If ambiguities are found the system treats 

the entity as unknown until further information is provided. Once recognised the 

shapes can be recalled for editing. 

On the second level, the difficulty to interpret diagrams, the symbols 

sketched using strokes (Gross et al., 1996a), is not only related to the recognition of 
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the shape but also to the interpretation of the semantic behind it. For the semantic to 
be understood the program has to know about the context of the drawing, and so the 

system interprets the configuration according to this. 

As the Gross et al. (1996a) report, Napkin has some re-configuration support 

embedded in it. This means, for instance that if there are four chairs sketched around 

a table this might be successfully recognised by the system as a dining table and be 

replaced by the appropriate symbol. Later the user can make a query and retrieve the 

old configuration if required. 

The description of constraints among diagram elements requires the creation 

of "rules" or what the authors call a "configuration recogniser" (Gross et al., 1996a). 

The designer draws a sample where all the graphical relationships are present and 

then states the relevant conditions to create a rule, including the context of the 

drawing. This way the system can, for instance, interpret four boxes around another 

bigger one as four chairs around a table rather then four houses around a lake (Gross 

et al., 1996a). 

3.4.2.2 Flatland 

Similarly to Napkin, the research developed by Igarashi et al. (2000) and 

Mynatt et al. (1999) tried to create a system whose interface could answer the needs 

of the user. The outcome is a system called Flatland "an augmented whiteboard 

interface designed for informal office work" (Mynatt et al., 1999, p. 346). 

Although the scope of this research was not only constrained to the design 

task, the project faced the problem of bringing an integrated interface to the work 

place and it tried to address it by proposing a computer-based assistant. The research 

team decided to focus on using a whiteboard tool for four reasons (Mynatt et al., 

1999): 

1. Because it deals with pre production tasks. It acts as a working area and a 

"repository to support thinking tasks such as sketching out a paper as well as 

quick capture tasks such as jotting down a reminder" (Mynatt et al., 1999, p. 

346). 
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2. For its everyday content. Information on whiteboards is upgraded daily. Its 
typical content is reminders, to-do lists, sketches and notes and it has quite an 
informal, incomplete and often transient format. 

3. Its content is often organised into clusters where information is grouped together. 
Some critical data, like important telephone numbers, can remain on a 

whiteboard for a long time. Other pieces of data can be there for a very short 
time. 

4. For its semi-public and/or personal use. Due to the size and nature of the tool it 

can be used as a way of communicating things to others as well as being a 

personal tool. 

The goal of the research team was to provide the user with an intelligent 

assistant with a very natural look and feel. For this reason Flatland follows the 

metaphor of the whiteboard through a computer connected to a LCD projector which 

projects images over a large SmartBoardTM (Smart Technologies, Inc, 2002) board 

hung on a wall. Although this configuration can take advantage of its large scale, as 

the authors note, it can also be implemented with PCs or PDAs since it is coded in 

JavaTM and it is therefore hardware independent. 

The user writes on the board with a stylus or a marker and the captured 

strokes are projected back onto the surface of the board. The input is based on the 

strokes drawn by the user and the output is always given in an analogous form 

through hand-written style content. 

As a result, Flatland works like a normal whiteboard with some intelligence 

embedded in it, and widgets if any are limited to minimum. For example, when a 

user taps on the board a very informal pie menu appears (See Figure 3.1). 
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Figure 3.1: Gesture choices and menus in Flatland (Mynatt et al., 1999, p. 348) 

The entire system is based on two important concepts: dynamic segmenting 

and pluggable behaviors (Igarashi et al., 2000). The former are the equivalent of 

windows in traditional GUI, they are regions that the system automatically identifies 

when the user draws a stroke. If the user starts writing on the board the system will 

group the strokes as needed, the user can then modify these areas by merging or 

splitting them. 
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Figure 3.2: Behaviours in Flatland (Mynatt et al., 1999, p. 350) 

Six different behaviours (See Figure 3.2) can then be dynamically attached to 

or removed from these regions: 

1. To-do list: the system automatically prints hand-written sketchy checkboxes and 

it maintains the text aligned vertically. 
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2. Map drawing: the strokes are converted into a double line to represent a street 
and the intersections between streets are handled appropriately. 

3.2D Geometric Drawing: the drawing is interpreted or beautified and it is replaced 
by its rigorous geometrical representation. This system also predicts the next line 
based on the geometrical properties of the shape being drawn. 

4.3D Drawing: mainly based on the Teddy system (See Section 3.4.6.2) that allows 
3D sketching based on 2D drawing. The user can also rotate and edit the 

geometry using the stylus. 

5. Calculation: it recognises hand-written figures and it calculates the formula once 

a line is drawn below the formula. 

6. A search engine: it allows retrieval of previous data, searching by size, time and 
then proposes a choice of thumbnails from which it is possible to retrieve 

previous configurations. 

The difference between these behaviours and traditional applications is 

evident when considering the example proposed by the authors (Mynatt et al., 1999). 

Unlike traditional application, in this example the user can start with map behaviour 

and draw a few streets and then remove the behaviour and replace it with 2D 

drawing, where they can draw buildings and so on. 

It was concluded that traditional saving and retrieving operations would cause 

"too much overhead" (Igarashi et al., 2000, p. 69) so an automatic saving system has 

been developed which keeps track of all the action done, providing the user with a 

timeline and an infinite level of undo-redo steps. 

3.4.2.3 Stilton 

Stilton is a VRAD system developed by Turner, Chapman and Penn. As the 

authors reported (Turner et al., 1999) the idea behind Stilton was to provide 

architects with a much more user-friendly tool that could be used during design. 

Architects spend "much time sketching concepts on paper, and then construct 

models of their thinking in 3D using a multitude of materials" (Turner et al., 1999, p. 

155). The authors believed that this should become part of the digital process and 
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proposed a system where architects could sketch 2D drawings, create 3D models and 
then maybe sketch some more on top of the model. 

The research was inspired by the approach taken by Cohen et al. (1999 and 
2000) where the user can draw freehand sketches that are automatically converted 
into textures and placed in the 3D world. This did not provide an interpretation of the 

underlying semantics however whilst the research team with Stilton proved the 
feasibility of such an approach. 

The Stilton system is close to the one proposed by Jung et al. (2002) (See 

Section 3.4.2.5) but it allows further manipulation of the geometric features present 
in the 3D environment. 

The system is based on a VRML browser modified to allow the user to draw 

on a virtual (and invisible) canvas placed close to the near clipping plane. For the 

drawing to be interpreted the user has to sketch over an existing environment that can 
be either a VRML model or a picture. This has to be done for two reasons: 

1. To give the user some clues about the vanishing point used and therefore to make 

the recognition process much easier. 

2. To ground the interpreted sketch within the model space. The interpreted model 

is placed over the surface on which the user has drawn the sketch. 

The drawback of this system is however that the interpretation is not done in 

real time, but after the sketch has been completed and the user has asked for 

interpretation. According to the authors in fact, the routine would take approximately 

10 seconds on an Sgi 02 R10000-based workstation. 

After the interpretation has been done the system creates the relevant line of 

VRML code and the scene is upgraded. 

3.4.2.4 Sketchpad 

Ellen Do (2000 and 2001) describes the Sketchpad system as a tool to create 

three-dimensional models from 2D sketches. 

The metaphor chosen is a sheet of paper where the user draws plans of the 

design proposal. Exploiting the author's previous experience in drawing 
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interpretation (Gross et al., 1996a; Gross et al., 1996b) the work proposed "an 
interface that allows direct interpretation of the drawing marks" (Do, 2000, p. 265). 

The system was in fact based on the concept of the Napkin (See Section 
3.4.2.1) where the user draws on a sketchpad area and the result is visualised into a 
VRML browser. Therefore the interface is very natural, since the only thing the user 
has to do is to sketch a floor plan with walls, columns and furniture to be interpreted 

by the system and eventually it is shown in the 3D world (See Figure 3.3). The user 

can also draw arrows to indicate the points of view, which are converted into 

corresponding cameras in the VRML files once they are interpreted. 

Figure 3.3: A screenshot of Sketchpad (Do, 2001) 

The implementation is based on a JavaTM applet that ensures the 

communication between Napkin and the browser. On one side, it monitors the 

browser's point of view to report to Napkin the position of the user. On the other, it 

listens to the messages sent to Napkin by touch sensors in the virtual world 

containing the information that the user has touched an object. A Perl script then 

changes the VRML file and therefore provides the necessary consistency across the 

system. 

3.4.2.5 Redliner and Space Pen 

The Space Pen system, developed by Jung et al. (2002), proposed a method 

to draw shapes onto existing 3D environments. The system, coded in Java 3D TM, is 

an evolution of Redliner (Jung et al., 2002). This is a system used to annotate text in 

a VRML environment which benefits from the experience the research team had in 

developing Napkin (Gross et al., 1996a, 1996b) (See Section 3.4.2.1) and Sketchpad 

(See Section 3.4.2.4). 
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There was difficulty in navigation in Redliner, due to the Cosmo Player plug- 
in and the fact that "Text annotation was considered limited" (Jung et al., 2002, p. 
100) and this encouraged the research team to develop another system called Space 
Pen. 

The graphical user interface is reduced to minimum, there are colour 
selection buttons, a "save" icon and a text area that echoes the shape that has been 

recognised. In Space Pen the shape is actually drawn directly into the 3D 

environment and if it is recognised it is converted into the equivalent topological 

element according to the context (See Figure 3.4). 

1 

Figure 3.4: The Space Pen interface and the shape annotated after being 

recognised (Jung et al., 2002, p. 100) 

Although the system does not support modelling, it provides a very powerful 

interface and it could be used to support the manipulation of existing geometries. 

Current research is trying to link the objects created to a database that would allow 

further data processing. 

3.4.2.6 Sculptor 

Sculptor, the software developed by Kurmann (1995 and 1998) at UTH in 

Zurich, proposed a different approach to the traditional sketchpad so far described. 

Different traditional media like pencil drawings and cardboard models share what 

Kurmann (1998) calls the "transformation of ideas". They provide the means to 

shape the idea which is then transformed every time it is re-presented. Therefore 
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"the more hurdles there are between the model and the designer the less intuitive the 
interaction process is" (Kurmann, 1998, p. 319) and since architects think graphically 
(Kurmann, 1998) a design tool has to support this attitude by promoting immediate 

graphical representation. 

From the interface point of view Sculptor is much closer to a modeller in 

traditional terminology. But rather than developing a solid modelling tool the system 
is based on what the author calls void modelling. In fact Kurmann has taken 
inspiration from the concept of positive and negative objects to model space which 

was proposed by Yessios (1987). 

Standard Boolean operations can be done between positive and negative 

objects but the result is different if compared with traditional 3D modelling. For 

instance, as the author noted, a negative volume always carves a space out of a 

positive one or if two negative spaces are intersected no result is shown. This 

approach obviously requires a different data structure and a different implementation 

than traditional CAD packages. It has the advantage however in that it allows the 

system to specify different entities such as rooms as spaces to be carved out of solids. 

These entities are then recognised by Sculptor and stored in the data structure 

embedded in the system. Sculptor then can use the dataset to provide support to the 

designer through a number of agents. 

The Navigator Agent for instance, helps the user to go to a specific room or 

place. It can understand simple commands like "go", "jump to" etc. and it is aware of 

the configuration of the space from the data structure of the model. For instance it 

can be used to drive the user to a certain destination without colliding with objects 

and via the shortest route. 

The Sound Agent adds an auditory dimension to the visual experience. This is 

implemented outside Sculptor and communicates with it through NCSA Data 

Transfer Mechanism (DTM) (Terstriep et al., 1993). The Sound Agent can play what 

Kurmann et al. (1997) called sound labels, which are pre-recorded sounds associated 

with actions such as the sound of footsteps while walking. By being aware of the 

configuration of the space, the Sound Agent can also play a sound compatible with 

the purpose of different rooms. 
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The last agent, the Cost Agent, estimates the cost of the project. The 

visualisation is provided through bars which turn from green to red if the cost is too 
high. Like the previous agent the Cost Agent is made by software connected to 
Sculptor via DTM. 

To help the user experience the design, the system uses a collision detection 

functionality which gives them "a very intuitive way to have the experience of the 

scene" (Kurmann, 1999). If an action upon an object will result in a collision it will 

not be allowed. According to Kurmann another constraint function, which helps the 

user feel a sense of presence, is gravity. This is implemented as a force pulling the 

objects to the ground. 

By turning these two constrains on and off the design state changes and the 

scene might evolve automatically towards a new configuration. For instance some 

objects might move downwards once gravity is activated. 

The prototype has integrated an architectural floor planning software. This 

allows constraints such as minimum and maximum size of spaces to be set. The 

results are visualised into sculptor and the user can proceed to further refinements. 

Figure 3.5: A view of Sculptor's interface (From Kurmann, 1999) 
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3.4.3 Primitive-Based Systems 

These systems are characterised by providing the user with some basic shapes 
that can be edited. The main difference to the free-form approach (illustrated later in 
Section 3.4.6) is that the surfaces are either already defined or are created through 
extrusion, without either involving complex algorithms or handling of profiles or 
control points. 

3.4.3.1 3DM 

One of the first primitive-based systems was developed by Butterworth et al. 
(1992) at the University of North Carolina. Called 3DM it used an Eyephone HMD 

manufactured by VPL and a6 DOF mouse. 

The user interface involved a floating toolbox that contained 3D-icons to 

create geometry or to command other functions. Navigation is ensured through the 

use of a "magic carpet", an area that marks the boundaries of the tracking system. As 

the authors noted "remaining within tracker range is important because the virtual 

world will begin to tilt as the user moves farther out of range" (Butterworth et al., 
1992, p. 136). 

The toolbox remains attached to the user when they move and has icons to 

represent different actions. 

Through the toolbox, the user can create simple shapes like cylinders, cubes, 

triangles or triangle strips. More complex geometrical shapes could be obtained by 

extrusion, twisting or translating the surface. 

The user can scale, move and rotate the object or they can move, fly or grab 

the whole world. To analyse the world at different scales the user can "shrink down 

to bird size in order to add eyelashes to a model of an elephant and then grow to the 

size of a house to alter the same model's leg" (Butterworth et al., 1992, p. 136). 
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3.4.3.2 HoloSketch 

According to the author (Deering, 1996, p. 59) HoloSketch is a "virtual 

reality-based 3D geometry creation and manipulation tool" to be used by non- 
computer scientists. 

It supports several visualisation devices but in particular Deering focused his 

work on the FishTank-VR interface. A6 DOF wand device made from a 3D mouse 
and a tracker couples the stereoscopic visualisation system. 

The choice of FishTank-VR and the consequent use of a high-resolution CRT 

screen has brought several optimisations, great precision to the system. This, 

according to the author, can reach 0.5 mm. This is a result of several parameters from 

the size and the curvature of the screen to the intraocular distance of the user 
(Deering, 1992). As the author stated "HoloSketch is so accurate that one can hold 

up a physical ruler to a virtual object and make accurate measurements" (Deering, 

1996, p. 56). 

To create the 3D-interface Deering referred to traditional 2D CAD packages 

where a set of icons and menus gives access to commands. But as the author noted 
(Deering, 1996, p. 56) "there are several problems with duplicating this set-up in 

3D": first of all the issue of "screen real estate" occupied by the interface, secondly 

the rendering resources to use it and last but not least the ergonomics of these 

interfaces. According to the author it actually takes more time to hit a widget located 

in a 3D-world then a traditional menu on a 2D-window. 

In answer to these problems a new approach was followed. Here a single 

complex menu pops-up when a certain button on the wand is pressed. The menu, 

which fades from the background, is a "3D pie-menu" centred on the wand. When 

the user presses one of the 3D-buttons the menu flashes before it fades away. Sub 

menus appear on top of the main one. 

Although this lets the user access a large number of tools in a small space it 

unfortunately requires "users to practice in order to accustom themselves to the 

process" (Deering, 1996, p. 57). 
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Figure 3.6: The 3D menu and a sub-menu developed in HoloSketch (Deering, 

1996, p. 56) 

HoloSketch was designed to create a number of geometric primitives 
including cubes, cylinders, spheres, 3D text and a free-form "toothpaste" shape. 
These shapes can be edited using the wand. For an object to be selected, the side 
buttons of the wand must be pressed while the wand is placed inside the object. As 

the authors reported "this action is very similar to physically grasping an object" 
(Deering, 1996, p. 57). 

Further finer editing is possible by accessing the parametric data of the 

shapes. This can be done by invoking a 3D-property sheet where the user after 

selecting the desired field in the space with the wand, types the new value using 3D- 

text. In this way, for the first time the user can access the code from the virtual 

world. 

3.4.3.3 VADeT 

The VADeT system was developed as the answer to the question of whether 

it was possible to design at full scale. Chan et al. (1999a) noted that the design 

process usually starts with a 2D-based thinking operation and after that the designer 

moves on to 3D sketching. The designer would usually sketch in miniature, very 

rarely at actual size. The authors wrote (Chan et al., 1999a, p. 43) the consequence of 

this would be that "designers cannot project themselves into the space in the same 
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way as they are physically existing, the experience of seeing-as and reflection in- 

action is limited, and the scope of design is narrowed". 

Nevertheless, the authors noted that the main problem of working at actual 
size is the limit to perceive "the entire site and its adjacent context [... ] for 
immediately comprehending relationship among objects macro-wide" (Chan et al., 
1999a, p. 50). This limitation is similar to the problem experienced by people who 
have difficulties perceiving the city pattern from a street level point of view. 

This limitation however, is resolved by controlling the use of the scale. The 

user can work at a small scale to create large objects and later at full scale after the 

overall form is decided. 

This system, like its precursor (Deering, 1995) uses a toolbox where a 

number of commands are placed including creation, editing, texture and save\load. 
The submenus are arranged in a tree structure and they are shown only when the 

main icon is triggered (See Figure 3.7). 

Figure 3.7: VEDeT initial view and the tool palette (From Chan et al., 1999a, p. 

46) 

The system provides 11 predefined geometric primitives. After the objects are 

created, the designer can modify their status by scaling, moving or rotating them. In 

addition colour and texture palettes allow the alteration of the visual surface 

appearance of objects (See Figure 3.8). 
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Figure 3.8: VADeT colour and texture palette (From Chan et al., 1999a, p. 48) 

Due to the problems of the accurate placing of objects in 3D space, three 

types of translation, rotation and scale mode have been provided. The free mode, as 

the authors (Chan et al., 1999a, p. 47) reported "is useful for translating in a large 

distance, and designers can quickly place their entity at an approximate location". In 

the second mode a set of constraints can be applied to the action so that for instance a 

translation can be constrained to an axis. The third and last mode uses a snapping 

process to define the granularity of the space. 

The system is coded in C++ using the C2 software library. It runs on a fully 

immersive 4-wall CAVE powered by two multiprocessor Sgi Onyx mainframes. A 

3D sound device also provides also localised sound. 

3.4.4 Particle-based design tools 

Unlike the systems presented so far, particle-based systems do not create 

definite shapes. Instead, these applications spray polygons, or particles, into the 

space which are dynamically adjusted by the system. Since the system "welds" the 

particles into shapes in real-time, the user can progressively build new surfaces by 

spraying layers of particles over existing shapes. 

Due to this simple approach this type of application usually does not require 

special hardware to be used. The computer is only required to render a number of 

polygons. 
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This approach is effective for approximate or organic shapes while it is not 
suitable for 3D-shapes that require a high level of precision. This technique also does 

not give the user any control over the mathematical representation of the shape. To 

overcome this problem some authors (Szeliski et al., 1992) have proposed hybrid 

spline/particle based approaches, as shown in the following examples. 

3.4.4.1 Szeliski and Tonnensen's System 

One of the first particle-based systems was developed by Szeliski et al. 
(1992). As the authors pointed out, until that moment particles were only used to 

model natural phenomena as a representation of finite elements, but they proposed 

the use of particle systems to create surfaces. The idea behind the system was to find 

a way to generate surfaces "by creating a number of particles in a plane and allowing 

the system dynamic to adjust the particles into a smooth surface" (Szeliski et al., 
1992, p. 189). 

The system was designed to be a surface modelling tool where the user could 

spray particles in space to create objects. The system also had a dynamic/automatic 

feature to create new surfaces as a result of a manipulation. In the example shown, 

starting from a sphere, the user can push into it at two points to create a torus and the 

system will automatically create the new particles required (See Figure 3.9). 
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Figure 3.9: The example of a torus created from a sphere being pushed by two 

spheres (Szeliski et al., 1992, p. 191) 

The user used a mouse to create and manipulate these particles and their 

depth also had to be interpreted. The research team tackled the problem by 

calculating the z-coordinate according to the nearby particles. 

As the authors point out, a drawback is that with this system "it is hard to 

achieve exact analytic (mathematical) control over the shape of the surface" (Szeliski 
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et al., 1992, p. 191). For instance, in the case of the torus just mentioned, the torus 
would not be perfectly symmetrical. To solve this problem the authors suggest a 
hybrid spline/particle based system. 

Although this did not take place in a VR environment it represents the first 

example of its kind and it inspired some of the applications discussed in the 
following chapter. The authors declared that "adding 3-D input devices for direct 3-D 

manipulation would be of obvious benefit" (Szeliski et al., 1992, p. 189). 

3.4.4.2 Skin 

As Markosian et al. (1999, p. 393) described it, Skin is a "particle based 

surface representation with which a user can interactively sculpt free-form surfaces. 
[... ] A user interactively guides the particles, which we call skin, to grow over a 

certain collection of polyhedral elements (or skeletons), yielding a smooth surface 
(through subdivision) that approximates the underlying skeletal shapes". 

The system allows the creation of complex shapes by initially constructing a 

representation of the underlying structure. Then the user can oversketch the pre- 

existing geometry with a surface, in a process that resembles placing the skin over a 

skeleton. The over-imposed structure is created according to an algorithm which 

produces a shape that roughly fits by offsetting the original skeleton by a certain 

distance. This approach is fast, efficient and can be done with basic graphics 

hardware (See Figure 3.10). 

Figure 3.10: The model of a torso made with Skin starting from the skeleton at 

the left (Markosian et al., 1999, p. 400) 

The authors have said that this method is good for the quick creation of 

approximate shapes but it is not suitable for objects that are required to have a high 
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level of precision. The user can also include constraints to the surface they create. 
For instance to simulate the space between toes in a foot, a curve drawn onto a 
surface can be used to create first indentation. Triangles intersected by the curve are 
split and the new structure re-triangulated. The new edge can then be moved to 

simulate the space between toes. 

3.4.5 Voxel-based design tools 

Similar to particle-based systems, voxel-based applications allow users to 

create shapes through the clustering of more elementary shapes. In this case the 

polygon, or particle, is replaced by a three dimensional entity called a voxel. 

As shown in the application developed by Achten et al. (2000) voxel-based 

systems can be used to create precise geometries through the adoption of an 

algorithm to rigorously generate the voxels. As illustrated by Donath et al., (1998) 

this technique can however also be used to achieve an effect similar to particle-based 

systems, by spraying voxels in the space. 

3.4.5.1 DDDoolz by Design System Group, Eindhoven 

DDDoolz is a PC-based Desktop-VR "three dimensional voxel sketchtool" 

(Achten et al., 2000, p. 460) developed by the Design System Group at the Technical 

University of Eindhoven in The Netherlands. Voxels are 100-cm rib cubes that are 

used as building blocks. 

As Achten et al. (2000) report DDDoolz was designed to fulfil a number of 

requirements: 

9 The achievement of a natural interface: the approach adopted followed the point 

and gesture paradigm without the use of 3D-buttons in space. 

9 Easy creation of objects in the virtual world. 

9 Easy manipulation of the object present in the world. 

0 Easy navigation that should add to the "spatial understanding of the design" 

(Achten et al., 2000, p. 460). 
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In addition the architecture of the system is such that no special hardware is 

required and the system can be used by normal PC clones. The system is based on a 
GUI where the main window shows a view of the virtual world using menus and 
icons (See Figure 3.11). 
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Figure 3.11: A screenshot of DDDoolz (Achten et al., 2000, p. 461) 

DDDoolz uses building blocks to create shapes. When the software is in 

drawing mode the user can select a face of a cube and from it create a new adjacent 

cube. 

As Achten et al. (2000, p. 461) state, "drawing in this way seems very natural 

as an interface: the side of the voxel you start with implicitly defines the drawing 

plane in which you are working". This approach was called the Face Orientation 

Method (FOM) by the authors. 

The advantage of the FOM is that "sketching direction is inferred in a very 

intuitive way from the actions of the user and the starting point of the pointing 

device" (Achten et al., 2000, p. 461). Due to this simple approach the learning curve 

it was very fast. The system has been used by professional architects on actual 

projects and the feedback showed that this system could have a "strong benefit over 

traditional 3D CAAD representations" (Achten et al., 2000, p. 468). 

The major disadvantage is that only certain shapes can be created unless the 

shape is approximated to a sum of cubes. In answer to this problem, to avoid the 
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limitation of what Achten et al. (2000, p. 262) called "orthogonal architecture" 
another drawing mode was introduced to allow drawing along curves. In this case the 
drawing cubes are rotated to follow the user's drawing direction. A set of editing 
tools such as move, delete etc. is provided. In addition holes can be created by 
deleting one or more cubes. 

The use of 100-cm rib cubes helps the user to have a sense of scale. The size 

of the voxel was chosen to "force the user to keep any model limited to a rather sober 

outline, thus enforcing the character of the application" (Achten et al., 2000, p. 461). 

Navigation in walk and fly mode is controlled through a standard click and 
drag sequence. 

DDDoolz can import files from commercial packages and an AutoCAD 

macro was developed to allow the importing of DDDoolz files. 

DDDoolz was developed using WorldUP by Sense8 and geometries were 

coded instantiating a box primitive in BasicScript, WorldUP's scripting language. As 

soon as a voxel is created the scripting properties of the previous object are 

transferred to it so that the object remains consistent (e. g. has the same colour). The 

authors have also tested the system with other devices such as 6D mouse, flock of 

bird and voice control. The group also plan to introduce a shape recognition 

algorithm in order to pass from voxel-based shapes to parametric ones. 

3.4.5.2 VoxDesign 

According to the authors DDDoolz was inspired by another tool called 

VoxDesign. This was developed in 1995 at the University at Bauhaus of Weimar 

(Donath et al., 1998). In this system 2.5x2.5x2.5 cm voxels could be "sprayed" inside 

the 3D space. 

"A crucial difference of DDDoolz lies in the 1 m3 voxel size which truly 

restrict the user to a sketch-like approach. The FOM of DDDoolz also provides 

additional implicit structuring so that actions yield structures and spaces that can 

have a ready architectural interpretation" (Achten et al., 2000, p. 463) while in 

VoxDesign the shapes created retain an artistic feeling rather than a geometrical feel. 
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3.4.6 Free-form applications 

The idea of sketching free-form shapes directly into a 3D space rather than on 
a 2D surface has been presented in the previous paragraph on voxel-based systems. 
A different approach is taken by those systems which the literature refers to as free- 
form (Wesche et al., 2000; Markosian et al., 1999) or spline-based (Wesche et al., 
2001) applications. These systems often use 2D curves to create and control 3D- 

surfaces. 

As Wesche et al. (2001, p. 168) noted the spline-based approach has five 

important advantages over the other systems such as voxel-based ones: 

1. "closed-form parametric representation" 

2. "easy transfer into standard CAD packages" 

3. "fast triangulation and evaluation algorithms" 

4. "infinitesimal smoothness of curves and surfaces" 

5. "efficient deformation algorithms based on variational modeling" 

The following sections will introduce a number of free-form systems, starting 

from the groundbreaking application which was developed at the University of Utah 

by James H. Clark (1976) on the very same hardware engineered by Sutherland (See 

Section 2.3.4.1) up to today's modern systems based on CAVEs or Virtual Tables. 

3.4.6.1 Clark's Experimental CAD in 3D 

Clark's system, originating in 1976, was the first example of free-form 

VRAD (Virtual Reality Aided Design) system. The author described it as "an 

experimental system for computer-aided design of free-form surfaces in three 

dimensions" (Clark, 1976, p. 454). 

Using this visionary system, the user could create surfaces using an HMD and 

a mechanical wand. The system used Sutherland's Sword of Damocles, the first 

HMD using a mechanical wand, which had been designed a few years before at the 

University of Utah (See Section 2.3.4.1). 
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As the author explained, the system was created with 3 goals in mind (Clark, 
1976): 

" Creation of objects directly in a 3D-environment. The user should be able to 

see the environment though a 3D-visualisation device and manipulate it with 

a 3D-input device. 

" Real-time response, "as the designer moves his head about in the 

environment and makes changes to objects' shapes, all changes should 
instantaneously appear on the display" (Clark, 1976, p. 454). 

" The user friendliness of the system. As the author stated (Clark, 1976, p. 455) 

"the third goal of the system was to provide an effective mathematical 
formulation for the designer that required him to have little or no 

mathematical knowledge of the formulation". 

This system already included most of the important features of modern free- 

form VRAD systems although it was constrained by the limits of the technology of 

that time. The system could achieve real-time behaviour by using a special processor 

which refreshed the display and calculated the matrixes necessary for the display of 

the correct point of view. The main processor was used to access and manipulate the 

data structure. 

The wand used a mechanical system to track the position of the pointer. As 

the author wrote (Clark, 1976, p. 457) "the wand's position is sensed mechanically 

by recording the lengths of three monofilament lines that extend from the wand 

handle to three housing mounted on the ceiling" (See Figure 3.12). 
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Figure 3.12: Clark's mechanical wand (Clark, 1976, p. 458). Note the three 

filament lines 

At that time the two mechanical devices, the HMD and the wand, severely 
limited the usability of the system. As Clark (1976, p. 459) wrote "the most annoying 

problem is caused by the position sensing mechanism. Because of their physical 

proximity, the mechanical sensing mechanism of the HMD and wand interfere with 

each other, making it difficult to maneuver about in the room". 

3.4.6.2 Teddy 

In 1999 at SIGGRAPH Takeo Igarashi et al. (1999, p. 409) presented Teddy, 

a "sketching interface for quickly and easily designing freeform models". 

The new idea behind Teddy was to automatically create plausible 3D surfaces 

from 2D freeform strokes sketched interactively on the screen. This placed Teddy 

half way between non-photorealistic, free-form and semantic-based systems. 

The resulting models have the handcrafted appearance usually achieved with 

non-photorealistic systems. In addition it created 3D surfaces using 2D curves as in 

free-form applications. The interface is limited since commands are handled through 

different strokes rather than by using menus and windows. Commands are inferred 
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through the interpretation of strokes as gestures, as in semantic-based systems (See 
Figure 3.13). 

1 

J yr' 

Figure 3.13: An image of Teddy's interface (Igarashi et al., 1999, p. 409) 

The authors emphasised that this approach had the advantage of being very 
intuitive and "even first-time users can create simple, yet expressive 3D models 

within minutes" (Igarashi et al., 1999, p. 409). In addition the system is designed to 

allow incremental learning: the user can start by using simple tools and then move 

on to using more complex techniques. 

Like other VRAD systems, this technique "is designed for the rapid 

construction of approximate models, not for the careful editing of precise models" 
(Igarashi et al., 1999, p. 409). 

Rather than starting with a primitive shape and then applying several 

transformations to it as in the case of traditional CAD programs, in Teddy the user 

just starts by sketching. 

The user takes a pen to draw 2D shapes on the screen or on a digital table. 

The use of widgets is limited to operations like save and load and Teddy's modelling 

functions are activated through interactive strokes on the screen (See Figure 3.14). 
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Figure 3.14: A sequence of screenshots showing Teddy's interactive modelling 

technique (Igarashi et al., 1999, p. 410) 

When the user draws a stroke on the canvas, the system automatically 

connects its starting and ending points. It then constructs a plausible 3D model based 

on what the authors call the "inflation" process: "the system inflates the closed 

region in both directions with the amount depending on the width of the region: that 

is, wide areas become fat, and narrow areas become thin" (Igarashi et al., 1999, p. 

412). Due to the nature of the method, the object must have a "spherical topology; 

e. g., the user cannot create a torus" (Igarashi et al, 1999, p. 411). 

Once the object is created the user can the edit it in various ways. They can 

draw on the surface, extrude profiles from the model, cut the model and smooth the 

surface. These operations are done in real time and interactively according to the 

nature of the strokes which are interpreted and then the corresponding action is 

performed on the model. The result is a very simple and effective interface than can 

be easily used by non-computer scientists. 

The prototype is written in JavaTM and can run on a normal PC without any 

dedicated hardware. 
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3.4.6.3 Digital Tape drawing 

Another relevant example of a free-form application is digital tape drawing 

where the metaphor of using tape was borrowed from the automotive industry. Hand 

made real size drawings of vehicles are usually not done by using pencils but by 

using black photographic tape laid onto paper. The designer would unroll the tape 

with one hand sliding the other hand to fasten it to the work surface. This method has 

a fundamental advantage in allowing the creation of smooth curves without the need 
for French curves. 

Figure 3.15: Traditional (a) and digital (b) tape drawing (Balakrishnan, R. et 

al., 1999a, p. 161) 

The idea was borrowed by VR technologists and the result is now commonly 

called the Digital Tape Drawing approach. Balakrishnan et al. (1999a) have 

developed a system that would retain "much of the fluidity and affordances of the 

physical technique, while providing the advantages inherent in using electronic 

media such as storage, retrieval, lossless transfer" (Grossman et al., 2002, p. 121). 

After the development of a first prototype only capable of drawing 2D curves 

the research group investigated the possibility of a more complex system that would 

support 3D curves (Balakrishnan et al. 1999a). The new system follows the method 

of creating 3D surfaces which was proposed by Cohen et al. (1999). This method is 

based on a two-step approach: first the user draws a "shadow" curve that "defines the 

shape of the curve in the third dimension" (Grossman et al., 2002, p. 122) and then 

they draw the final curve on top. 
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The shadow curve, as Cohen et al. (1999, p. 18) explained, is "a 3D curve 
obtained by projecting another 3D curve along a fixed vector, which we call the 
projection vector, onto some surface". The projection vector used by Cohen was 
always the Y-axis, orthogonal to the world plane, but the same principle could be 

applied in any other direction. The advantage of this approach is the ability to specify 
"3D curves with 2D input from a single point of view" (Cohen et al, 1999, p. 17). 

Following this approach and with the use of the Digital Tape Drawing paradigm the 

user can create 3D curves. 

The user, who can use both hands to interact with the systems, can use the 

two trackers in the same way that they would lay the tape onto the paper and 

afterwards the computer creates the relevant curve. The operation is repeated twice, 

first to create the shadow and then to generate the proper surface. 

The main problem of using this approach is the fact that "tape drawing is 

inherently a 2D technique, and all curves are initially drawn on 2D drawing planes. 
[... ] Hence there is the need to switch back and forth between orthographic view and 

2D drawing plane(s) and the perspective view that is necessary for inspecting the 3D 

model" (Grossman et al., 2002, p. 123). The authors solve this problem in two ways. 

First they interpolated the viewing matrix over 50 frames from the 

orthographic view to the perspective one. In this way the transition is progressive 

from orthographic to perspective view and vice versa. 

Secondly, to control the transition phase, they propose a method called 

OrthoTumble. As the authors explained most CAD systems have a Tumble camera 

that "gives the user the sense of controlling a two degree-of-freedom turntable on 

which the model sits" (Grossman et al., 2002, p. 123). With the OrthoTumble 

mechanism, the user follows the same paradigm: the non-dominant hand is employed 

to control the point of view whilst the dominant one handles the creation. Previous 

researchers (Balakrishnan et al. 1999b) have proved that this was successful and it 

gives a 20% increase in speed according to the author. 

Whenever the user wants to change the point of view therefore they use their 

non-dominant hand to click and drag to control the Tumble camera. The system 

immediately fades into perspective mode and lets the user choose the point of view. 
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Once the drag is completed the system fades again to the closest orthographic view. 
This system "allows for the user to quickly inspect the model in a 3D perspective 

view and then automatically return to appropriate orthographic view to continue 
drawing curves" (Grossman et al., 2002, p. 124). 

The two handed interaction is also used for pan-zoom operations. In this case 
the authors implemented a method initially developed by Kurtenbach et al. (1997) 

where the user could pan and zoom following the metaphor of a picture printed on a 

rubber sheet. 

According to this principle when the users moved their hands together or 

apart the system would zoom out or in. If the user moved their hands apart at a 

constant distance the system would pan the image. To allow independent panning 

and zooming operations, which were difficult to obtain following Kurtenbach et al. 's 

(1997), approach Cohen's research team introduced a threshold that filters the 

distance after which the command is triggered (Grossman et al., 2002). 

Although this system proved to be very powerful it had a major drawback in 

its complexity of control. As the authors admitted, "our system is by no means walk 

and use and therefore the researcher who constructed the system spent time training 

the user on the basic capabilities of the system" (Grossman et al., 2002, p. 127). 

3.4.6.4 The Responsive Workbench (RWBTM). 

Another system based on two handed interaction is the Responsive 

Workbench (RWBTM). As the authors (Wesche et al., 2000; Wesche et al., 2001) 

wrote, this is a "two-handed 3D system for free-form surfaces in a table-like Virtual 

Environment" (Wesche et al., 2000, p. 83). 

The developers' goal was to allow the users to draw shapes using their two 

hands to control a Virtual Workbench environment (See Section 2.4.1.3). As the 

authors noted in addition they wanted to create a system that could easily create 

closed curves in space (Wesche et al., 2000). 

As in the case of the Digital Tape Drawing (See Section 3.4.6.3) the creation 

process is divided into two steps. In RWBTM surfaces are created "indirectly by 

drawing the primal curves of the objects" (Wesche et al., 2000, p. 84). As the authors 
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(Wesche et al., 2001, p. 168) stated "we do not support direct surface drawing. We 

believe that a surface has too many degrees of freedom for defining all of them just 

with a single drawing sweep". 

Therefore the design is made using traditional drawing planes with the 
difference that in RWBTM those planes are in space and can be interactively moved. 
The user first draws the skeleton of the curve and then it creates the surface. Once 

defined the surface can be interactively deformed. The system can draw 3D curves as 

well as 2D ones since "2D drawing is a very fundamental technique" (Wesche et al., 
2001, p. 169). 

The user draws the surfaces using a tracked stylus as the input device while 

the "non-dominant" hand is used to control the environment. The designer can also, 

by using the non-dominant hand, control the position of the object, define symmetry 

planes or choose the drawing plane onto which curves are projected. 

I. I Ii! 

Figure 3.16: Some views of a designer using the RWBTM (Wesche et al., 2001, p. 

172) 

The menus are integrated into the modelling spaces to allow support in a "non 

disturbing way" (Wesche et al., 2000, p. 88). Pressing a button on the pointer 

activates the set of tools relative to the chosen object. Since the position of each hand 

is tracked the toolbar follows the movements of the user's wrist. In this way, the user 
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can simply select a tool by rotating their hand and pointing to the desired command 
icon (See Figure 3.17). 

Figure 3.17: A view of the toolbar used in RWBTM (Wesche et al., 2001, p. 171) 

To minimise the size of the toolbar the authors have exploited "the three- 
dimensionality" of the system. Pointing to objects with different inclinations 

activates different types of selection (See Figure 3.18). 
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Figure 3.18: Different operations according to different pointer positions in 

RWBTM (Wesche et al., 2000, p. 89) 

3.4.6.5 Spacedesign and the Eraser Pen 

Two other Virtual Workbench-based systems developed at the IGD in 

Darmstadt, Germany, are Spacedesign developed by Fiorentino et al. (2002) and the 

Eraser Pen described by De Amicis et al. (2002). The two systems use the same 

hardware: a Barco Baron (Barco, 2002) and three Polhemus Fastrak magnetic 

trackers (Polhemus, 2002) connected to a pair of stereoscopic shutter glasses and two 

pointers. 
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Although the Spacedesign and Eraser Pen share the same hardware they 
focus on different issues related to the interface. 

The first, as Fiorentino et al. (2002) wrote, aims to address the difficult 

exchange of information between the user and the system. "In virtual reality it is 

difficult to communicate information to the user: floating messages or external 

objects can be unfriendly and confusing" (Fiorentino, 2002, p. 481). As an answer, 

they proposed a "Windows-like" interface integrated within the 3D world (See 

Figure 3.19). In this way accessing information about the object becomes "simple, 

and not intrusive in the virtual workspace" (Fiorentino et al, 2002, p. 481). As the 

authors report this interface has proved to be very useful. It is an excellent feedback 

tool for novice users because it provides them with all the status of the system and all 

the information required. 
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Figure 3.19: Spacedesign's interface (Fiorentino et al., 2002, p. 481) 

The second system, the Eraser Pen, tries to address the difficult task of 

creating and then editing 3D-shapes in the space. As the authors (De Amicis et at., 

2002, p. 465) noted, most free-form applications "use the control points for creating 

and modifying the curves, thus requiring a certain mathematical knowledge and 

experience to know how to modify these points in order to obtain the desired 

surfaces". 

Alternatively this system, suggested a new approach where the metaphor of a 

pencil and an eraser is used to create 3D-surfaces. Deleting and editing a shape is a 

fundamental feature of a modelling tool according to De Amicis et al. (2002). In 
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practice the system constantly checks the position of the pen against the previous 
points and when the angle between the vector drawn and the sum of a number of 
previous ones is below a certain value the system interprets it as an inversion of 
direction and therefore it starts a deleting action. 

Following the metaphor of the pencil and the eraser the user can create and 
delete shapes, entirely or partially, just by retracing back along the path of the curve. 
"By means of this technique if the resulting polyline, curve or surface is not exactly 
what the designer wants, he/she can delete part of the sketch just going back and do it 

again until he/she reaches the final shape" (De Amicis et al., 2002, p. 465). 

3.4.6.6 CavePainting 

CavePainting was conceived the answer to a different issue: the creation of 
3D artistic works. The system as presented by Keefe et al. (2001) is a four wall 
CAVE-based environment especially designed for artists, and the metaphor adopted 
is the act of painting. 

Through this device the user can draw in 3D as a painter would with a 

canvas, using strokes of colour. The artist has control over the space and with preset 

tools can create an artistic 3D painting in the space. "The artwork is created entirely 
from these basic strokes elements, the artist must be provided with a great deal of 

control over the type of strokes used" (Keefe et al., 2001, p. 85). 

The aim of the system is neither to interpret the strokes which are made nor to 

interpolate the resulting path into a surface. "CavePainting does not attempt to be a 

modelling system [... ] CavePainting aspires to be an extension of painting to three 

dimensions" (Keefe et al., 2001, p. 90). The strokes are layered to create a scene. The 

artist can decide from a choice of different kinds of strokes resembling different 

brushes, sponges or even a virtual bucket (See Figure 3.20 and Figure 3.21). 
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Figure 3.20: A 3D painting made with CavePainting (Keefe et at., 2001, p. 90) 

Consequently, the system interface is intended to create the feeling of using 

traditional painting tools. The artist can select the virtual painting tool by dipping a 

real brush into a real cup placed on a table close to the edge of the real sidewall. 

When the user dips the brush into the cup the conductive cloth at the end of the brush 

closes a circuit with the cup, and the action is consequently interpreted as a change of 

brush. The same augmented approach can be followed with a tracked bucket that can 

be used to splash virtual paint rendered according to the speed and position of the 

bucket (See Figure 3.21). 
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Figure 3.21: An artist using the bucket in the CavePainting environment (Keefe 

et al., 2001, p. 89) 
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The main difference between the real world and CavePainting is that there the 
artist is not constrained to the rules of physics. As the authors wrote "The Jackson 
Pollok stroke drips a line of virtual paint, reminiscent of the drip paintings done by 
the great expressionist artist. In virtual reality, we are free from some of the 
limitations imposed on Jackson Pollock. For example, our paint does not need to drip 
according to gravity. We take advantage of this, and are able to drip on all six sides 
of the cube defined by the Cave" (Keefe et al., 2001, p. 86). 

Due to the artistic nature of the system it must have very effective colour 
selection. The interface follows an approach close to Deering's (1995 and 1996) (See 
Section 3.4.3.2) colour selection tool: a 3D colour picker where the RGB values, 
lightness and hue can be selected by dipping the brush into it. A sphere attached to 
the end of the brush provides the necessary feedback showing the colour selected. 
The colour picker is called up through gesture recognition when the user draws a 
circle upwards with the brush. 

For advanced users another a two-handed option was provided. Using a glove 
in the non-dominant hand the artist can have control over position. Working artists 
tend to move a lot, they paint, step back, look and then paint again. The user can 

change the work of art at any time during the creation process and edit it through a 
timeline. 

3.4.7 Virtual Clay Modellers 

Virtual clay modellers are a relatively recent evolution in free-form systems. 

From these they have inherited an approach towards the creation of the geometry, but 

the interface and the consequent creation processes are based on the metaphor of 

working with clay. 

As Kameyama (1997, p. 197) wrote, "the key component of its hardware is a 

special input device with a 3-D position tracker and a tactile sensor". Another author 

however reported the development of similar systems using a simpler 3D-mouse 

(Pratini, 2001). The advantage of virtual clay modellers is the possibility to create 

relatively complex shapes in a very intuitive fashion. 
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On this regard Matsumiya et al. (2000, p. 67) noted: "to apply geometrical 

and topological operations to free-form objects, users must have enough 
mathematical knowledge and flexibility of special recognition. So, the user's 
attention then focuses on the model decomposition into patches and the continuity 
relationship between them, rather then on the shape itself'. 

Systems developed so far usually fall into two categories: simple shape 

modellers and more complex physically based modellers. In the former "shape 

deformation is expressed by simple formulas without complex calculation" 
(Matsumiya et al., 2000, p. 67). The latter augment "geometric objects with physical 

attributes such as mass, damping and stiffness distribution. Geometric parameters 

can be hidden from the user by providing natural, force-based interfaces that 

facilitate direct manipulation of solid objects through virtual sculpting tools" 

(McDonnell et al., 2001). 

Several authors have stressed the tremendous acceleration of benefits being 

brought to the design process with the use of Virtual Clay Modellers (Matsumiya et 

al., 2000; Kameyama, 1997). Kameyama (1997) has proven in practice the efficacy 

of a virtual clay modelling system connected to a rapid manufacturing machine. The 

author reports on the outcome of an experiment where a number of users were asked 

to design a set of plastic lenses. According to the author, the entire process of 

designing and manufacturing of the plastic model took on average less than one hour. 

3.5 Conclusions 

This chapter illustrated several systems that make use of Virtual Reality as a 

design tool. Specifically this chapter gave a taxonomy of VRAD systems used in the 

early stages of the design process. A number of applications using different 

techniques were presented. 

The following chapter will outline the role of Human-Computer Interfaces 

(HCI) in Virtual Reality systems. Further, it will introduce a number of theoretical 

concepts and give a rigorous classification of several geometrical aspects related to 

the development of HCIs. This will include the classification of a number of 

reference systems used to describe mathematically aspects of the interaction using 
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computers. This chapter will also illustrate the parameters used to develop a 

computer representation of the user's point of view inside the Virtual Environment. 

The next chapter will finally analyse a number of techniques commonly 

adopted to interact with VR systems. The last sections of the chapter will specifically 

focus on issues related to navigation, manipulation and system control. 
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4 Interface as a Metaphor to Interact with Virtual 
Environments 

4.1 Introduction 

The previous chapter has shown the growing interest within the design 

community in highly interactive tools that do not force the user to think of the 

underlying system architecture. This chapter will focus on the interface that is the 
foundation of these systems and it will provide a theoretical background to the 
discussion of the following chapters. 

The last decade has been characterised by a constantly increasing interest in 

the emerging field of Human-Computer Interfaces (HCI). As Mountford (1990, p. 
439) noticed, user-computer interfaces "are becoming the most distinguishing feature 

of computer products". 

Bowman et al. (2001, p. 98) note that, although the development of haptic, 

tactile, or auditory devices is broadening the concept of a human-computer interface, 

"a distinction must be made between input devices and interaction techniques [... ] In 

general, many different interaction techniques can be mapped onto a given input 

device". Following from this, the focus of this chapter will be on interaction 

techniques rather than on technical devices and therefore it will not consider either 

the myriad of devices available on the market or their direct applications in Virtual 

Environments. 

This chapter, instead, will present an overview of the theories behind the 

study of user interfaces for Virtual Reality systems and provide examples of past and 

current developments. Specifically, the focus will be on the interface as metaphor in 

interaction with the environment. As a consequence, fields like tangible interactions 

(Anderson et al., 2000) or multimodal interfaces (Oviatt et al., 2000; Wu et al., 1999; 

Johnston et al., 1997; Cohen et al., 1998) will not be discussed. 

The first paragraphs will introduce the general issues related to human- 

computer interaction, the following ones will give an overview of the spatial 
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implications that influence the development of 3D-interfaces, and finally a 
classification of the interaction techniques will be provided. 

4.2 Human-Computer Interfaces 

As Pimentel et al. (1995) report, in 1968, almost concurrently with the 
development of Ivan Sutherland's Sketchpad system (Sutherland, 1963), Douglas C. 
Engelbart (Bootstrap Alliance, 2002), at the Fall Joint Computer Conference in San 
Francisco showed how to interact with a computer using a pointing device. This 
breakthrough achievement was to radically change the way users interface with 
computers and it paved the way for the field of Human-Computer Interaction. 

In the scientific literature there are a number of definitions for the idiom user 
interface. One of the most comprehensive is proposed by Barrilleaux (2001, p. 6) 

who writes that "the user interface is everything having to do with the computer that 
the user can touch, see, and hear (and someday taste and smell)". From the 

programmer's point of view, Barrilleaux (2001, p. 8) considers instead the user 
interface as the "spirit" of the developer: "the designer is in the system, not in body 

but in spirit, to give the user guidance and feedback about how to use the application 

and its data". 

Interestingly Barrilleaux chooses the idiom user interface although, as Grudin 

(1990a) notes, the term originates from the more comprehensive user-computer 
interface. According to Grudin (1990a), the misuse of the term has generated a great 
level of confusion and it is often the source of misinterpretation. The author (Grudin, 

1990a), sarcastically emphasising the consequence of such a shift, wonders whether 

we should refer to the user interface of a computer or the computer interface of a 

user. In fact, as the author notes, the idiom user interface has ironically become a 

technology-centred term "where the computer is assumed, the user must be 

specified" (Grudin, 1990b, p. 261). 

Consequently, as the author suggests, the more comprehensive idiom Human- 

Computer Interface (HCI) should be adopted while the general term interface should 

only be used to refer to the technical implementation of a human-computer interface. 
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According to Grudin (1990a, p. 271) the term interface is in fact only "the segment 
of the software program that handled dialogue with users". 

This thesis will adopt Grudin's rigorous classification and in addition, due to 
the focus on three-dimensional systems, it will adopt the term 3D Human-Computer 

Interface (3D-HCI) and its implementation known in computer literature as 3D- 

interface. 

4.3 3D-Interfaces 

In the case of 3D-HCIs the dialogue between user and machine, according to 

Barrilleaux (2001, p. 6), happens over three layers: the primal, the virtual and the 

analytical. 

The primal level resides at a "subconscious level" where stimuli are 
interpreted and commands are sent by the human brain to the computer. As the 

author points out (Barrilleaux, 2001, p. 6) this level "deals with matters such as hand- 

eye coordination, stimulus-response, and reflexes". The user exploits his/her senses 

to perceive what the computer is communicating through its devices and he reacts 

accordingly without the need to consciously think about the action. It is this primal 

level, for instance, that is responsible, for the user's reaction to steer right on auto 

racing game when a right hand curve is approached. 

The virtual level instead deals with the communication between machine and 

user about information regarding the virtual world. This communication is based on 

some form of abstraction where the machine shows the state of the system through 

some parameters. The user, in turn, commands the computer over which parameter 

needs to be changed and how. This level is of crucial importance for the success of 

the application since the computer system is "working hard to maintain the illusion 

that the data is real and the user can really change it" (Barrilleaux, 2001, p. 7). In the 

previous example of the auto racing game, the user is able to see the state of the 

system through a dashboard and he/she can modify its state by changing gear, 

slowing down, etc. 
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The analytical level is logically placed between the first two. It deals with the 

specific details of the communication between the user and the machine. The 

programmer is entirely responsible for this level since he/she has to decide how those 

modifications ordered by the user have to be interpreted by the computer and 
consequently how the system has to respond. 

The development of effective 3D-interfaces for Virtual Reality systems is a 

crucial factor for the success of a VR application and it represents a challenging and 

controversial issue widely debated in research literature. In fact, although its 

development should positively benefit from the three-dimensional nature of VR 

systems being able to reflect real life experiences at the same time it has to consider 

the fundamental differences between the virtual and the real world. 

As a consequence, the designer of the system has to choose whether to leave 

the user complete freedom in their interactions with the virtual world or to constrain 

the user's power according to certain rules. The adoption of constraints can deeply 

influence the behaviour of the system. For instance, on the one hand it would not be 

necessarily positive to leave the user completely free to create a chair that is a 

kilometre tall, but on the other hand, forcing the user to respect too many physical 

laws could minimise the advantages of using VR. 

Consequently Barrilleaux (2001) proposes a classification of VR systems by 

the number of constraints they implement: the simulation, the arbitrary and the 

mixed approach. In the simulation metaphor the virtual world tries to be a close 

replica of the real world with all its rules. Contrary to this, the arbitrary approach 

leaves the user free to interact with the system. Practically, excluding military and 

flight simulators, most VR applications follow a mixed approach where the 

boundaries and constraints are placed according to the type of user and the task to be 

accomplished. 

4.4 The Geometrical Nature of 3D-Interfaces 

From the previous paragraph it is evident that the complexity of the issues 

involved in the development of 3D-interfaces requires a comprehensive outline of the 

specific theories and techniques developed until now. The following paragraphs will 
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first introduce the geometrical implications behind 3D-interfaces and then provide an 
overview of present techniques. 

4.4.1 The "Spaces" of 3D-Interfaces 

Although a VR simulation can be n-dimensional, for its visualisation it 

eventually requires a cast to a three-dimensional reference. Furthermore, since any 
rendered data must be shown on a device that is two dimensional, most likely a 
screen or a set of screens, a further cast is required. 

These casts introduce several layers of abstraction and therefore a number of 
definitions are necessary to unequivocally interpret the issues related to virtual 

spaces. More precisely, the complexity behind the visualisation of spatial 
information requires a number of definitions that univocally describe the different 

coordinate systems that are used to represent different aspects of three-dimensional 

computer representations. Regarding these Barrilleaux (2001) provided a 

comprehensive analysis of the geometrical transformations that are necessary for this 

shift from the real to the virtual world. 

According to the author the real world space is where the user lives and it is 

the three-dimensional container of a two-dimensional sub-space: the 2D screen 

space. 

The 2D screen space, also called by Sowizral et al. (2000) Image Plate 

Coordinate System, is a portal to the virtual world that presents the view of that 

environment to the user. It can be considered the local coordinate system of the 

screen, a sub-space of the real world space. The 2D screen space can be fixed in 

position in relation to the real world as in the case of a computer monitor, CAVE or 

Reality CenterTM or it can be physically moved within it, as in the case of the HMD. 

The 2D Screen Space is not a separate space from the real world space: it is 

only a different reference system where every rendered pixel is conveniently 

localised through a couple of x-y coordinates. More precisely the relationship 

between the real world space and 2D screen space is always described through a 

matrix containing the information necessary to re-map one system onto the other. 

The fields of this matrix are normally constant with the exception of HMD systems 
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where they are provided by the tracking mechanism. Obviously in the case of 
multiple screen systems there will be as many 2D screen spaces as the number of 
physical screens installed. 

As well as 2D screen space it is possible to define 2D display space as the 
place in the virtual world where the virtual world is rendered. In fact if the screen is 
thought of as the plane where the virtual world is projected "the display can be 
though of as living in the [virtual] world at the position of the view and facing in the 
direction of the view" (Barrilleaux, 2001. p. 26). In other words the 2D screen space 
and the 2D display space are placed in the same position but are relative to two 
different references: the real world and the virtual world coordinate systems. Any 

object rendered in the 2D display space will be anchored to the point of view of the 

user and therefore its position will continuously change in relation to the 3D virtual 
world space, as the user moves. 

Ultimately the 3D virtual world space represents the space where the 

computer representation exists and where the objects visualised through the screen 

are located. 

4.4.2 The User's Point of View 

The classification of the different spaces provides a general framework to 

help understand the different techniques that are used to interact with VR systems. 
However, to fully analyse the geometrical features involved in the development of 

3D-interfaces, an overview of the user's point of view must be implemented. In fact 

the analytical representation of the user's view plays a major role within the overall 

3D human-computer interface since, as Barrilleaux (2001, p. 24) notes, it ultimately 

"defines how the user sees the world". 

Barrilleaux (2001) proposes an analysis of the viewing architecture based on 

two different aspects: the internal and the external features. 

The external geometry of the view, according to Barrilleaux (2001, p. 31), 

"involves geometrical relationships outside the view space itself, specifically the 

position and orientation of the space as it exists in the world space". A number of 

parameters influence its state (See Figure 4.1) such as: 
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The LAP (look-at point): the point observed by the user. 

The LFP (look-from point): the user's position in the virtual world. 

The LFO (look-from offset): "offset of the LFP from the LAP relative to the 

view space" (Barrilleaux, 2001, p. 32). 

" The LAD (look-at direction): the direction the user is looking at, which 

consists of two components, the LAD-DV (LAD direction vector) and LAD- 

UV (LAD up vector). The first component represents the direction the user is 

looking at while the second defines the direction in the virtual world 

representing the "up" for the user. 

I 
ti 

LAD-UV 
LFP 

LAD-DV 

-LAP 

Figure 4.1: Details of the external geometry view according to Barrilleaux 

(2001) 
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The internal geometry of the view instead, deals with the projection of the 

space. The parameters describing its state are (See Figure 4.2): 

" The DVO (display-view offset): the translation necessary to move the centre 

of a display area from the centre of the screen. This value becomes zero if the 

application is running at full screen. 

" DS (display size) 

" The FOV (field of view) 

" The VSF (view scale factor) and DSF (display scale factor) are the two scale 
factors used to project the content of the virtual world respectively onto the 

2D display space and 2D screen space. 
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Figure 4.2: Details of the internal geometry view according to Barrilleaux (2001) 

Through this rigorous analysis the different visualisation approaches plus the 

user's movements can be analytically expressed by the manipulation of these 

variables. For instance a movement where the user walks around an object can be 

implemented by maintaining a constant value of the LAP and moving the LFP. 
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4.5 Three Dimensional Interactions and Techniques 

On the basis of the theoretical background set out in the previous paragraphs 
it is possible to understand how different interaction metaphors can be implemented. 

The implementation of a 3D-interface is of crucial importance to the entire VR 

system. As Bowman et al. (2001, p. 96) note, "great care must go into the design of 

user interfaces and interaction techniques for 3-D applications" since they determine 

its overall behaviour and ultimately contribute to its success. 

The implementation must be targeted to the specific application since, as 

Barrilleaux (2001, p. 39) states, "there are no right or wrong answers in choosing one 

technique or variation over another. [... ] Application design must be based on an 

understanding of what the user needs to accomplish, both within a given task and in 

the context of the application as a whole". 

3D-interface implementations are based on the exchange of information 

between machine and user. From a high level point of view the role of the interface is 

twofold: from one side it has to decode one or more streams of information coming 

from the user and, on the other side, it has to respond to the user's commands by 

visualising data or providing feedback. f 

The flow of information from the machine via feedback and rendered data 

may make use of the same media, but it substantially differs in the type of 

information the two components carry. In fact the feedback has to provide the 

information necessary to confirm or support an action and it is consequently required 

to transmit a restricted amount of information usually limited to some iconic or 

idiomatic form. Visualisation instead "is the process by which an application 

presents its data to the user" (Barrilleaux, 2000, p. 100) and it can be an articulated 

combination of several data with different meanings and it can potentially provide a 

much broader range of information. 

The flow of information from the user to the machine is more articulated 

since it requires the machine to interpret the wish of the user according to the state of 

the system. There is often insufficient rigour shown in trying to describe this 
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(Hinckley et al., 1994) and in the definition of the various actions happening and the 

consequent computer-user interfaces techniques adopted. 

Barrilleaux (2001, p. 47) proposes an approach that classifies the interaction 

in terms of the function of the "control personae, which mirrors those used for 

participants in everyday speech: first person, second person, and third person". In a 
first person system the user directly controls the content of the virtual world. In the 

second person approach the user acts on the system through the control and 

manipulation of objects in the environment. Finally in the third person example the 

user interacts with the environment through the use of buttons or interfaces external 
to the environment. 

Furthermore Barrilleaux (2001) and Bowman et al. (2001) present two similar 

classifications of the function of the actions made by the user. According to both 

authors interaction happens through navigation, manipulation and access or, as 

Bowman et al. (2001) refers to it, system control. The first "moves the view", the 

second "moves the data" and the third "gets the data into and out of the virtual 

world" (Barrilleaux, 2001, p. 8). 

4.5.1 Navigation 

In most VR applications navigation is the most prevalent interaction with the 

system. It "presents challenges such as supporting spatial awareness, providing 

efficient and comfortable movement between distant locations, and making 

navigation lightweight so that users can focus on more important tasks" (Bowman et 

al., 2001, p. 98). 

As Bowman et al. (2001, p. 98) note, navigation in the real world is often an 

intuitive action, "conceptually a simple task" where the user does not think of how to 

go in one direction but rather focuses on where to go. 

Navigation takes place, according to the authors, on two different levels: 

travel and wayfinding. The first is the motor act while the second is its cognitive 

complementary "process of defining a path through an environment, thereby using 

and acquiring spatial knowledge to build up a cognitive map of an environment" 

(Bowman et al., 2001, p. 100). 
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The study of the cognitive and perceptive issues of real or virtual spaces has 

already been studied by a number of authors (Reeves et al., 2000; Weber, 1995; 
Hubona et al., 1999; Durand, 2002) and as has already been mentioned, it is outside 
the scope of this thesis. Nevertheless it is acknowledged that although we live in a 
3D-world, the human experience is fundamentally two-dimensional since most of the 

movements take place on a plane. In fact quite often the real-world navigation 

experience mainly relies on forward movement and rotation about the vertical axis. 

This leaves the designer of the interface, as Bolas (1994, p. 51) notices, with 
the serious question of "how to allow the user to control such motion effectively". 
This issue becomes crucial when using two degree-of-freedom devices. In these 

circumstances, as stressed by Hanson et al. (1997, p. 175), it is important to restrain 

the users to "a constrained subspace" rather than allowing them full control over the 

movements. 

But the issue of constraining motion has important consequences in any VR 

system. Subsequently several general techniques, which have been developed to 

tackle this issue in different contexts will be stressed in the classification of the 

navigation techniques provided in the following pages. 

4.5.1.1 Classification by Personae 

Barrilleaux (2001) proposes a categorisation of navigation according to the 

personae or what Bowman et al. (2001) calls the frame of reference. 

In first person (Barrilleaux, 2001) or egocentric (Bowman et al., 2001) 

navigation the user controls the view directly by pointing to a certain direction and 

moving towards it. As Barrilleaux (2001) stresses, a special case of first person 

navigation takes place when the user is in first person navigation mode using third 

person controls "such as a virtual steering wheel and throttle control in a display 

dashboard. The difference [... ] is that the controls are part of your vehicle's 

metaphor. They are an integral part of your first-person experience, the same as 

would be a real steering wheel in a real car" (Barrilleaux, 2001, p. 128). 

Despite the apparently close relationship with the natural experience, 

researches have shown how the first person or "point to fly" metaphor (Bolas, 1994) 
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presents severe pitfalls. Krueger also agrees that this approach is counter-intuitive 
because "you point and fly, instead of walking around" as in real life (Krueger in 
Morgan, 1994, p. 173). 

In experiments reported on by Bolas (1994) a number of users, wearing an 
HMD and using a Virtual Glove to point towards a direction, were asked to fly 

around a track as fast as possible. The experience highlighted two critical issues, 

which arose when approaching corners on the track. 

First of all the daily experience of driving a car suggested to the users that as 
the turn was made the entire reference system, i. e. the car, would rotate. 
Unfortunately in the point-to-fly metaphor the user himself is the reference system 
and therefore he/she must actually turn his/her body according to the trajectory 
he/she wants to follow. Secondly, some users were physically leaning into turns as if 

riding a motorbike, but keeping on pointing the system onwards and "the farther off 

course they became, the farther they would lean while continuing to point straight 

ahead" (Bolas, 1994, p. 52). 

The author eventually proved that placing an object, i. e. a small airplane, in 

front of the users would suggest them how far to rotate his body when going around 

a corner. Moreover this approach proved successful when it was decided to support 
the person leaning. In fact the airplane helped the user understand that the more 
he/she would lean the more the airplane would bank and therefore the faster the 

rotation would be. 

In the second person (Barrilleaux, 2001) navigation mode the user is not 
directly present in the world but they interact with it through controls present within 

the scene. This approach might at first seem less natural since our experience in the 

real world is mainly first-person navigation, but it can be useful in certain 

circumstances, for instance in the case of a camera used to navigate around an object 

or systems that take one towards an object (Igarashi et al., 1998). Another approach 

is to follow a representation of the user in the world and use that to navigate. For 

instance in the case of a simulated car it might be possible to drive through the world 

by acting on the model of the car. The difference with the example of first person 

navigation is that in this case the user would not have the feeling of being inside the 

102 



space manoeuvring certain mechanisms to drive (steering wheel, gearbox etc. ) but 
they will be outside the space manipulating a model of a car to drive around. 

In the third person (Barrilleaux, 2001) or exocentric (Bowman et al., 2001) 

case, navigation is achieved through a control that is completely separated from the 

virtual space, outside the scene. "A good example of third-person navigation is 

moving a cursor on a map, which correspondingly moves the user's view through the 

virtual world" (Barrilleaux, 2001, p. 129). 

This approach, which could seem to be the least close to the real experience, 
has actually proved to be particularly powerful under certain circumstances. Haik et 

al. (2002) have carried out a comparative test to evaluate the effectiveness of the 

three different navigation modes, first, second and third person modes respectively, 

when using two degree-of-freedom devices with desktop-VR systems. This test, 

which replicates the common conditions of a browser being used to navigate 3D- 

spaces, represents a challenging example where "the user's concentration could be 

distracted by problems experienced with the mouse" (Haik et al., 2002, p. 59). 

The outcome of the experiment surprisingly showed that the use of a 

navigation map to browse the space was the easiest tool since it "enabled navigation 
by single mouse clicks it made the mouse-usage very simple and prevented the users 
from experiencing difficulties" (Haik et al., 2002, p. 63). 

4.5.1.2 Classification by Action and Metaphor 

Bowman et al. (2001) also propose making a shift in the focus of the analysis 

of the navigation techniques from the user to the action or to the metaphor adopted. 

According to the authors navigation techniques can be divided into three action 

categories: exploration, search and manoeuvring. 

Exploration is for the authors (Bowman et al., 2001, p. 98) "navigation with 

no explicit target" where the user is free to study the space in which he/she is 

immersed. Search is where navigation aimed to approach one specific place in the 

environment. Finally manoeuvring is the set of actions "characterized by short-range, 

high precision movements that are used to place the viewpoint at a more 

advantageous location for performing a particular task" (Bowman et al., 2001, p. 98). 
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In terms of metaphor, the authors propose categorisation into five different 

groups. 

1. Physical movement: where the user directly controls the motion of his/her 

body, which may correspond to Barrilleaux's (2001) first person navigation. 

2. Manual viewpoint manipulation: where the user can manipulate their point of 

view through controls, which corresponds to Barrilleaux's (2001) second and 
third person mode. 

3. Steering: where the user is continuously specifying the direction of 

movement not necessarily through the use of a steering wheel, but perhaps 

through an HMD gazing at a point. 

4. Target-based travel: where the user specifies the final location and the system 

moves the user through incremental or instantaneous movement. For instance 

this can be achieved through selection from several viewpoints in a case 

where the user wishes to move to a specific location of the world. Other 

implementations include for example in Mackinlay et al. 's (1990, p. 171) 

Point Of Interest (POI) technique, where the user "indicates a point of interest 

(target) on a 3D-object and uses the distance to this target to move the 

viewpoint logarithmically, by moving the same relative percentage of 

distance to the target on every animation cycle. The result is rapid motion 

over distance that slows as the viewpoint approaches the target object". 

5. Route planning: where the user decides the path to be taken throughout the 

environment and the system in turn handles the movement. This can be 

achieved through a traditional 2D-map or through more sophisticated 

techniques like the "Path Drawing" approach (Igarashi et al., 1998) illustrated 

in Figure 4.3, where the user can draw a walkthrough path in a virtual space 

and the point of view follows the path automatically. As the authors note 

"using this technique, the user can specify not only the goal position, but also 

the route to take and the camera direction" (Igarashi et al., 1998, p. 173). 
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Figure 4.3: The "Path Drawing" technique (Igarashi et al., 1998, p. 173) 

4.5.1.3 Classification by Camera Technique 

When the user's actions require an object to be studied, moving them around 
the space can be quite ineffective. In this circumstance better control can be achieved 

through the manipulation of a camera, the latter being the metaphor for the user's 

point of view. 

In the orbit camera technique the LAP (look-at point) is fixed but the user 

can change the LFP (look-from point) and the LAD (look-at direction) (See Section 

4.4.2) and as a result the user is free to orbit the object at a fixed distance. It is 

possible to introduce a further constraint by restricting the user's inclination to a 

fixed value. This way the user remains free to rotate and tilt the camera making their 

interaction even simpler. If a greater degree of freedom is required the user could 

also be allowed to zoom. 

The orbit camera technique is now implemented by most desktop-VR 

systems but experience has proven that other hardware configurations can benefit 

from this approach, as in the example shown by Koller et al. (1996) where HMD was 

used. 

The main drawbacks of this approach are firstly that "in a densely populated 

virtual world, orbital viewing is vulnerable to occlusion of the point of interest" 

(Koller et al., 1996, p. 82) and secondly, experience shows that it is cause of more 

frequent symptoms of simulator sickness occurring (Koller et al., 1996). 
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A second-person approach using the orbit camera is improved by the to the 

so-called puck camera (Barrilleaux, 2001), named after the widget used to control its 

motion. This technique was first proposed by Chen et al. (1988), under the title 

virtual sphere, with the intention of simulating "the mechanics of a physical 3-D 

trackball that can freely rotate about any arbitrary axis in 3D-space" (Chen et al., 
1998, p. 123). The same interface, but with a more elegant mathematical 
implementation, was also proposed by Shoemake's (Shoemake, 1992) ARCBALL. 

Experiments (Hinckley et al., 1997) have shown no statistical evidence of any 
improvement over the original technique introduced by Chen et al. (1998). 

Zeleznik et al. (1999) proposed an innovative implementation, called 
UniCam, where the user can accomplish different camera tasks through single-button 

actions, including translation, orbiting, animated navigation, zooming, saving and 

restoring. This is achieved through a complex procedure that interprets the position 

of the pointer and the direction of the gesture into effective combined actions. 

As Barrilleaux (2001) notes the presence of the control in the space makes it 

easy to switch between manipulation and navigation. At the same time however, the 

constant presence of the control puck in the scene may represent a major drawback. 

Finally Barrilleaux (2001, p. 137) calls Pinocchio Camera a "third-person 

camera that offers puck-like navigation control" where the user can move the camera 

through a controller placed outside the virtual world. 

4.5.2 Manipulation 

In the real world the difference between navigation and manipulation can 

sometimes be very subtle whilst with computers it can become extremely clear: "in 

navigation, the user or system moves a view object, making a new portion of the 

virtual world visible. In manipulation, the user or system moves a data object, 

modifying the contents of the world that the user sees" (Barrilleaux, 2000, p. 125). 

Direct manipulation is an integral part of our common physical experience 

where all our senses are involved: "people rely on sight and touch to help them 

manipulate objects" (Barrilleaux, 2001, p. 148). Therefore the role of the 
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manipulation interface becomes crucial for the overall quality of the entire VR 
system. 

It requires a successful integration between the control system, feedback 

mechanism and visualisation flow and the development of smart strategies to supply 
the necessary clues to our brain that are required to recreate the experience of having 

something real to manipulate. 

4.5.2.1 Classification by Personae 

As in the case of navigation Barrilleaux proposes a division of manipulation 
techniques into personae. 

In a first person case "the user is essentially controlling himself/herself, the 
first person" (Barrilleaux, 2001, p. 150) and he/she can notice the effects of their 

manipulation on his/her representation. This approach is suitable if the object is a 

vehicle and the user has the feeling of being inside it. In some circumstances though, 

as Barrilleaux (2001) noted, this approach may lead to the awkward feeling of being 

an object, which is being dragged throughout the environment. 

In the second person mode, which is also called by Hinckley et al. (1994) the 

scene-in-hand metaphor, the user manipulates an object in the world, rather than 

manipulating his representation. Therefore this approach is perfectly suited for 

intuitive manipulation of objects in the scene. As Barrilleaux (2001, p. 152) observes 
"the advantages of second-person control are that the interaction is quite familiar to 

users - reach out and move objects - and that the target can be seen in the context of 
its surroundings, something that is missing in the first-person control". 

In the case of the third person technique the user manipulates a control 

device rather than the object itself. This device can be a knob or a slider that is 

placed inside or outside the virtual world. Although at first this approach might not 

seem intuitive it has the advantage that the action is made explicit and consequently 

it can be unequivocally performed, for example using a slider to lift objects. At the 

same time though, it must be made clear which action each controller performs and 

this can contribute to the entire application feeling less intuitive. 
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4.5.2.2 Selection 

Every form of manipulation starts with the act of selecting. In VR the 

simplest form of selection is obtained through the ray-casting (Bowman et al., 2001). 

The object selected is the closest one encountered by a ray cast into the scene passing 
from the point of view of the user and from the pointer on the screen. The technique, 

also called the laser pointer metaphor (Forsberg et al., 1996), has a number of 

variations including the spotlight or cone-based technique, the cylinder-based 

selection or the more complex aperture-based-selection technique proposed by 

Forsberg et al. (1996). All differ in the selecting volumes used to pick the object. 

Where a 3D-tracked device is used the physical set-up is often represented 

through a virtual hand or a virtual pen that can be used to select objects. The main 
limit of this approach is that the user cannot select objects outside his/her arm's 

length. To overcome this issue and to provide the user with a more powerful 

selection capability than they have in real life several authors (Poupyrev et al., 1996; 

Song et al., 2000) have proposed also applying a non-linear mapping technique of the 

user's hand movements to enable them to grasp objects far from their reach. 

4.5.2.3 Mapping 

The problem of mapping the user's movements into 3D computer actions is 

not only relative to the act of selection and this issue becomes crucial when the user 

needs to interact with objects. More specifically the transformation of spatial 

commands into a coordinate system, called by Barrilleaux (2001) mapping, is 

fundamental to link the source space, that is the reference used by the control input 

device, to the target space, that is the reference relative to which the movements of 

the object to be manipulated has to be interpreted (Barrilleaux, 2001). For instance 

when the user wants to move an object over a certain distance it is essential to know 

whether the object will move according to an absolute or to a local coordinate 

system. 

As Barrilleaux (2001, p. 59) notes direct mapping, the direct wiring between 

the user input device and the object, is "the simplest form of coordinate mapping". 

Unfortunately this technique is of limited use in most Virtual Reality applications. 
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Through direct mapping in fact, a user's movement along the x-axis for instance, 

would cause a movement of the object according to the wiring mechanism, causing 
the object to move along the x-axis too, independently from the point of view of the 

user. 

But in VR, in most cases users want to move an object relative to their 

position or to the local reference of the object itself. For instance a user may want to 

move a chair towards his/her left or right or slide it along one of its sides. To do so 
other forms of mapping must be taken into account according to the specific needs of 
the user and the task to be accomplished. 

4.5.3 System Control 

According to Bowman et al. (2001, p. 102) system control "refers to a task in 

which a command is applied to change either the state of the system or the mode of 
interaction". This action, which is also called access by Barrilleaux (2001), takes 

place when the user needs to deal with the data in the scene rather than with only 

geometries. 

The information to be accessed can be of two kinds: data regarding the 

configuration of objects in the scene and data external to the virtual world. The first, 

for instance could include an object hierarchy structure or some other form of 

configuration of the environment whist the second is usually more abstract and does 

not take advantage of the visualisation capability of the 3D-environment. Usually the 

user can access this data through palettes, graphs or tables. 

Access can take place through traditional WIMP-based (Window, Icon, 

Menu, Pointer) interfaces or through 3D-Human Computer Interfaces. However, 

there has been an animated discussion within the research community on whether the 

use of 3D-HCIs would bring any benefit to VR at all. 

Some authors stress the "innately intuitive" (Barrilleaux, 2001, p. 5) nature of 

3D-HCIs, others argue that its usability remains uncertain. According to the latter 

group the use of 3D-widgets, "an encapsulation of geometry and behaviour used to 

control or display information about application objects" (Conner et al., 1992, p. 

183), presents a number of serious issues in terms of usability. As Tromp et al. 

109 



(1997, p. 41) note "an immersed user with a tracked hand may find it relatively easy 
to manipulate 3D-widgets, whereas a desktop user might find it difficult since a lot of 
navigational effort would have to be expended in order to reach the correct position 
and orientation to manipulate the menus". 

As several authors note (Bowman et al., 2001) in some circumstances 2D 
Human-Computer Interfaces can be more effective than 3D-HCIs. The studies 
carried out by Cockburn et al. (2002) have demonstrated that access time might be 

significantly slower using 3D-HCIs compared to more conventional 2D-HCIs as the 

portal to the virtual world. In fact 3D-HCIs can create difficulties since an object can 
be more difficult to reach in a three-dimensional space. 

Therefore as Bowman et al. (2001) report, the majority of the authors have 

developed hybrid approaches where the interface is placed on a 2D-surface in the 

space. In fact the metaphor followed by most interfaces for modern 3D-applications 

extends the approach followed by traditional GUIs, where menus, windows and 
buttons have been turned into their three-dimensional counterparts. As Gentner et al. 
(1990, p. 281) noted "within a few years after the beginning of a new technology, we 

often see attempts to broaden the market by building interfaces that simulate the 

previous technology. The goal is to reduce or eliminate the required learning, making 

the technology widely available to people who are unwilling to adapt to a new 

system". 

This is what has happened in recent years to 3D-HCIs where, as Conner et al. 

(1992, p. 183) note "the significant difficulties of 3D input and display have led 

research in virtual worlds to concentrate far more on the development of new devices 

and device-handling techniques than on higher-level techniques for 3D-interaction". 

4.6 Conclusions 

This chapter concluded the overview of current research in the field of 

Human Computer Interfaces and Virtual Reality. It presented the theory behind 

HCIs, illustrating the most important geometrical issues and providing a number of 

definitions. 
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More precisely the chapter presented a description of the coordinate systems 
used to represent the different aspects of three-dimensional computer generated 

worlds. 

The chapter also presented a taxonomy of the interaction techniques used in 

navigation, manipulation and access. The interaction techniques were presented from 

different points of view. The classification considered the type of control personae, 

as suggested by Barrilleaux (2001), as well as the type of metaphor being 

implemented. 

The next chapter will introduce the research framework, showing the general 

structure of the research through an overview of the features of each module. The 

chapter will also justify technical solutions and will give the basis for a detailed 

description of the prototype called JCAD-VR (Java Collaborative Architectural 

Design tool in Virtual Reality), which will be fully reported in the following 

chapters. 
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5 Development of a Framework: JCAD-VR (JavaTM 
Collaborative Architectural Design tool in Virtual 

Reality) 

5.1 Introduction 

The previous chapters have provided an overview of current research in the 
field and have supplied the theoretical background to the following chapters. This 

chapter will introduce the proposed research framework and show the development 

of the working prototype called JCAD-VR: Java Collaborative Architectural Design 

tool in Virtual Reality. 

The aim of this chapter is to show the overall structure of the research 
framework and to provide a broad picture of the entire system. Technical details 

along with theoretical and practical choices will then be discussed in depth in the 

following two chapters. 

The first part of this chapter provides reasoned justification for the way the 

framework was developed, it introduces the system and it outlines the technical 

choices. The second part provides a general introduction to the framework, to its 

features and to its architecture as well as a description of the number of modules that 

comprise JCAD-VR. The end of the chapter summarises the scope of the research 

and gives consideration to the technical choices arising from the project. 

5.2 VR as a Collaborative Design Tool for Conceptual 

Design 

Conceptual design at the initial creative phase of the design process is a 

complex activity characterised by the use of intuition rather than mathematical 

formulae. During this stage designers try to give concrete form to their abstracted 

models through mental simulation. Designers traditionally make sketches as a way of 

doing this, exploiting their abstract and ambiguous nature to explore new design 
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solutions. As Shukur (2000) notes, sketches on paper are a natural and intimate 

medium that allows the down/uploading of complex information to and from the 
designer's brain, they are also easy to correct or change, portable, extremely flexible 

and they can store information conveniently and keep track of ideas and solutions. 

During this complex undefined phase computer-based systems are not usually 
employed due to the discrepancy between the designers' conceptual models and the 
limits of present-day Computer Aided Design (CAD) interfaces. These bind the 
designers' freedom through their imposition of a formal and constrained graphic 
language rather than them supporting uncertainty, flexibility and dynamic 

manipulation. Consequently, as Turner et al. (1999) note, this means designers have 

a large conceptual gap to bridge between their abstract and possibly vague mental 

representations in sketches and the formally defined shapes created by current CAD 

systems. 

In addition, the CAD industry often trades the qualities of having advanced 

geometrical control for the qualities of interactivity and usability, therefore 

delivering complex interfaces that often lack in flexibility and user-friendliness. The 

effect of this is that although CAD systems can feature a great number of functions 

allowing the modelling of complicate shapes, they cannot be used at the very early 

stage of product design where pencil and paper are still the most effective. 

Commercial CAD systems are designed to fulfil the needs of a wide range of 

engineering fields and to support the construction process, they have not been 

designed to promote the creative acts typical of the initial stages of design. 

As a consequence, the early design phase is disassociated from the product 

definition stage that uses CAD/CAAD because the designers are forced to adopt 

traditional tools like paper and pencils. This creates an amount of inefficiency within 

the design cycle and consequently higher production costs. There is an evident need 

for innovative computer-based tools specifically tailored to support creativity within 

the design community. 

In the last few years, the growing awareness of more natural, user centred 

form of interaction, has promoted interest in expanding the field of Human- 

Computer Interface (HCI). As a result, a new generation of computer-based 
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applications has embraced innovative technologies whose adoption in turn, has 
fostered original interfaces aimed at promoting user-friendliness and more interactive 
behaviour. 

The speed at which technology is evolving is bringing the application of VR 

technologies within the sphere of the design professions. The increasing growth of 

computational resources and hardware power is facilitating a transition to the use of 
desktop VR applications as truly feasible tools for everyday use. 

As a consequence, some design and manufacturing companies have already 

started to investigate how VR could be used effectively within the design process. 
Although VR is now a mature technology, it is seldom used in architecture during the 

design process it is more often merely used as a powerful presentation technique. 

Virtual worlds are often created using CAAD/CAD packages and deriving world 

representations by conversion, in this way, becomes a time consuming and therefore 

expensive task. 

Figure 5.1: The traditional scenario showing the relationship between the 3D- 

modelling phase and VR 

A virtual model, if it is employed, is usually only created at the end of the 

design stage when most key decisions have been evaluated, and mainly to impress 

contractors and clients (See Figure 5.1). It is therefore evident that under these 

circumstances the use of VR is inefficient and consequently leads to growing costs 

rather than fostering creativity and ultimately improving design quality. 

With the benefits brought by its highly dynamic nature, the early use of VR 

could allow the designer to study design solutions directly through the manipulation 

of simple shapes in a virtual space, and hence successfully combine the creative and 

modelling stages (See Figure 5.2). 
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f 

DESIGN CHANGE 

Figure 5.2: The proposed scenario 

It is also highly predictable that in the near future VR will become the 
interface for the next generation of Computer Aided Design (CAD) applications 
described in research literature as Virtual Reality Aided Design (VRAD) systems. 
VR-based systems have the potential to become highly effective tools letting the user 

explore design solutions in a more intuitive and natural way. The use of VRAD tools 
has a number of potential advantages over traditional CAAD systems: 

0 It provides real-time interactivity 

0 It involves the designer's imagination to a greater degree 

0 It provides quick visualisation of mathematical entities 

0 It enhances creativity in the conceptualisation phase (Sener et al., 2002) 

" It promotes a more natural approach to computers 

0 It helps designers make the transition to digital format earlier 

" It has the potential to shorten the time taken to manufacture physical models 

through rapid prototyping processes (Ucelli et al., 2000) 

" Ultimately it improves design quality by increasing the level of control on the 

design of the product. 

Another crucial problem of current CAAD systems is their complete absence 

of any form of synchronous collaboration between architects within design teams. 

With the present CAAD technology there is little room for multi-user interaction 

during the creation of a 3D-model since most systems allow only asynchronous 

collaboration. The recent growth of network-based virtual communities however has 

brought a new level of complexity to the notion of virtual spaces by providing the 

technology for remote presence and collaborative experiences. 
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The research described in the ensuing chapters takes advantage of these new 
emerging technologies through the development of a system specifically designed to 
help architects in the initial stages of the design process. The JCAD-VR framework 

pursues the articulated vision of VR as an instrument developed to assist the 

participants in the design process - the professional or client body - during these 

early stages. It is a collaborative design tool developed to ease the initial stage of the 
design process providing the capability to create 3D-shapes and to share them among 
the users in the virtual world. 

5.3 Justification of the Project 

As noted by Lawson (1990), design methodologists in the past agreed on the 

need for iterative cycles between several phases of the design process. From studies 

of designers' behaviour many authors observed that there were an indefinite number 

of return loops from the moments when the gathering of information and structuring 

of the design problem took place, known as analysis, to the time when design 

solutions were generated, known as synthesis (See Figure 5.3). 

Decision Making Process 

i 
t. YSlS SYNi1'IESt$" i 

--------------------------------------- 

4 CAAD VIRTUAL 
SOLUTION PACKAGE ENVIRONMENT 

Detailed Model Final Scene 

Figure 5.3: The use of CARD and VR in the traditional decision making process 

The development of JCAD-VR provides the designer with an appropriate, 

quick and practical response to their need for iteration in their search for design 

solutions. Therefore JCAD-VR provides the means for a more effective use of VR at 

the very beginning of the decision making process thus helping architects bridge the 

gap between the analysis and synthesis phases (See Figure 5.4). 
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Figure 5.4: The role of JCAD-VR in the decision making process 

The development of the JCAD-VR framework proposes an innovative 

approach to deal with some important issues: 

" The use of VR in the early stages of the design process 

" The traditional complexity of creating a VR environment 

9 The lack of a VRAD tool specifically tailored for architects' needs 

" Lack of true, synchronous collaboration in commercial CAAD packages. 

JCAD-VR was designed to tackle these issues through a number of characteristics 

and features: 

" It is a system that proposes the use of VR technology at the early stages of the 

design process 

" It is a user-friendly interactive environment that promotes a visual approach 

to design 

" It is an application that combines the advantages of both VR and Computer 

Supported Cooperative Work (CSCW) systems. 

9 It supports communication through multimedia features 

" It has an overall architecture that encourage synchronous collaboration 

9 It is intrinsically cross platform and hardware independent promoting 

platform portability. 
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5.3.1 The Choice of JavaTM as the Programming language 

Due to the amount of flexibility required by the project the entire framework 
has been implemented in the multi-platform Object-Oriented Programming (OOP) 
language JavaTM (Sun Microsystems Inc., 2002a). As stated by Eckel (2000, p. 30) 
"all programming languages provide abstraction [... ] Assembly language is a small 
abstraction of the underlying machine. Many so-called `imperative' languages that 
followed (such as Fortran, BASIC, and C) were abstractions of assembly language". 

Object-Oriented Programming (OOP) languages, such as JavaTM or C++, 

have introduced a new level of generalization. In contrast with traditional procedural 
languages where the level of abstraction provided still forces the programmer "to 

think in terms of the structure of the computer rather than the structure of the 

problem" (Eckel, 2000, p. 30) OOP languages help the user develop code in a 

manner that is closer to the mental process that the programmer would normally 
follow. 

As Eckel (2000, p. 31) notes, "the idea is that the program is allowed to adapt 
itself to the lingo of the problem by adding new types of objects, so when you read 

the code describing the solution, you're reading words that also express the problem. 
This is a more flexible and powerful language abstraction than what we've had 

before. Thus, OOP allows you to describe the problem in terms of the problem, 

rather than in terms of the computer where the solution will run". These objects are 

self-enclosing elements of the software that can be used to accomplish a certain task 

and whose mutually logical relationships with other objects significantly facilitates 

code development and efficiency through code reuse. 

More specifically, JavaTM is a last generation mature and complete Object- 

Oriented programming language that is extremely flexible and relatively easy to 

implement, deploy and maintain. It is intrinsically multi-platform and it supports 

multithreading and multiprocessing making it possible to develop programs that run 

on simple PCs as well as supercomputers (Sun Microsystems Inc., 2002a). 
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A number of features made JavaTM the perfect choice for the development of 
a VR-based multimedia collaborative environment such as JCAD-VR, these include 
its: 

a) Multi-platform nature 

b) Network-oriented architecture 

c) Easy database management 

d) Availability of existing APIs dealing with: 

" 3D Graphics through Java 3DTM (Sun Microsystems, 2002b) 

" Audio and video support and real-time network streaming through 

Java Media Framework (JMF) (Sun Microsystems, 2002d) 

" Networking within standard JavaTM 2 Software Development Kit (Sun 

Microsystems, 2002c). 

Although it is sometimes less efficient in terms of performance if compared 

with other languages, the adoption of JavaTM as the programming language offered 

great flexibility, true scalability and last but not least, complete multi-platform 

support. The system demonstrated JavaTM platform's independence successfully 

when tested in different configurations where PCs and Sgi workstations were 

concurrently used. The network-centric nature of JavaTM, and its multimedia 

integration and multi-processor support make it the obvious choice for the 

development of a real-time multimedia collaborative system. 

5.4 JCAD-VR: the Framework 

As described the overall JCAD-VR framework has been developed to allow 

dynamic interaction with the virtual environment during the early stages of the 

design process. The following paragraphs will provide an overview of the functions 

and of the architecture of both the overall framework and the working prototype. The 

description in this chapter provides a general picture of the system while specific 

details of the technical implementation will be provided in the following two 

chapters. 
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5.4.1 The Idea Behind it 

JCAD-VR has been developed based on two main ideas: 

1. All the users present in the virtual world have to be able to share the very same 
virtual environment in a "transparent fashion" 

2. Instead of being based on traditional WIMP (Window, Icon, Menu, Pointer), the 
Human-Computer Interface is part of the virtual world itself where each element 

of the HCI becomes an object belonging to the 3D world and so can be 

manipulated like any other entity within the environment: the HCl becomes a 
3D-HCI perceived as part of the virtual world itself. 

The first point results in the development of a collaborative architecture for 

the system. Every user that logs in can seamlessly interact with the environment, 

communicate with other users and manipulate objects while the system ensures that 

the environment in the background is fully consistent across all the users. 

The second point has totally influenced the way the Human-Computer 

Interface has been developed. The implications of an interface that is a part of the 

virtual world are twofold: 

1. From the technical point of view, once the interface has been designed, it 

becomes independent from the visualisation device used. The system can 

therefore be easily adapted for different devices by just rewriting the code 

that is handling the device. No matter whether the application is running on a 

simple screen, on a Reality CenterTM or linked to an HMD, the interface will 

always be consistent and placed in the virtual world where specified by the 

programmer. 

2. From a more theoretical point of view, the interface also becomes one of the 

elements of the virtual world and can therefore be treated like any other 

object in the virtual scene. Elements of the HCI such as panels, icons and 

rulers, are treated just like any other 3D entities within the VE. Each element 

can be moved or scaled according to the user's needs. The user interacts with 

the objects through elements of this interface such as arrows which are placed 
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to help them edit the object, and feedback is provided through the visual 
modification of the same object in the scene. 

The result of this approach is that any object in the virtual environment can 
be replaced, dragged or re-scaled at the convenience of the user, regardless of 

whether it is something they created or whether it was created by someone else 

present in the virtual world. In addition the same direct approach is followed for the 

interface which becomes just another part of the environment contributing towards 

an increase in the feeling of presence. 

The 3D engine renders all the changes possible in the VE: movement of 

avatars, video conferencing streams rendered on 3D panels, textual communication 

through 3D chat, changing of the interface and most importantly, the creation and 

modification of objects created within JCAD-VR. 

5.4.2 System Features 

When JCAD-VR is initiated, the user is asked for a login name to be used to 

communicate within the virtual world, and through an options panel they decide 

which server to connect to and choose the server port (See Figure 5.5). In case no 

value is given the application can run in stand-alone mode. 
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Figure 5.5: The initial panel and the option panel of JCAD-VR 

The user can also decide whether to initiate the system in single or multiple 

screen modes. The former is provided for standard computer screens whilst the latter 

has been customised for the multi-projector Reality CenterTM used throughout the 

research. Finally from the initial panel it is also possible to activate or de-activate 

the video conferencing facilities and if video conferencing is activated then support 

for video capturing device recognition and checking is provided. 

Once the system is initialised every window disappears freeing the space for 

the 3D graphic user interface of the system and to the environment loaded during the 

start-up. A set of 3D menus and icons appears on the screen and through them each 

user can interact with the system and with the other participants (See Figure 5.6). 
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Figure 5.6: The interface of JCAD-VR after the system is started 

Through these menus it is possible to access a number of functions such as 

navigation and creation of objects. In the latter case a number of 3D shapes such as 

cones, boxes, spheres etc., and architectural objects such as walls, doors, windows 

etc., can be created and shared with other participants. An automatic procedure 

routinely checks for constraints and allows only the modifications that are possible. 

For instance, it will prevent a door being moved onto or too close to another door. A 

3D-ruler and a 3D-panel close to the object constantly provide the user with feedback 

on the parameters that can be edited such as size, materials and cost. 

The user can translate, rotate and scale the objects in the environment in 

every direction through the visually simple dragging of the arrow representing the x, 

y or z axis. 

Users are represented in the environment through avatars labelled with their 

names and they can communicate through traditional chat as well as via voice and 

video conferencing or they can sketch freehand drawings on a shared electronic 

whiteboard. Moreover, due to its collaborative nature, any user can contribute to the 

creation and manipulation of the environment. Every time a user changes an object 

the system automatically upgrades this object's geometry and/or position throughout 

the network and the new configuration is made available to all the users in the world. 

This raises the issue of the possible concurrent action on the same object by more 

than one user. An object locking mechanism, implemented in JCAD-VR, tackles this 

problem by ensuring that every time an object has been selected it becomes 

inaccessible for any other user until it has been released. 
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Finally the system supports communication and interaction between users, it 

allows real synchronous collaborative design and it makes the design process a true 

multi-user collaborative experience. 

5.4.3 The Modular Approach 

The overall structure of the JCAD-VR system is shown in Figure 5.7. The 

system is divided into two different packages: a server and a client. 

Following the Object-Oriented paradigm the architecture of JCAD-VR has 

been developed in a modular fashion. This has allowed scheduling of the 

implementation of independent self-functioning modules, concurrent software 

development and ultimately the delivery of a working prototype as a functioning 

core. Simultaneously this ensures the future expandability of the system through the 

implementation of new modules. 

Each package is made of different units each containing one or more cores. 

Each core can be accessed through a number of modules that have a specific function 

within the main framework. 
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Figure 5.7: The JCAD-VR framework schema 

The adoption of this approach gives a very high level of flexibility to the 

overall architecture since specific functions can be included at different times 

without interfering with the general structure of the framework. Rather than 

developing a monolithic closed design system, the modular approach provides ready- 

to-use sub-systems dealing with different functions. This way of working is therefore 

less error-prone, since it allows the control of independent sub-sections, it 

strengthens the general structure of the system and it brings extreme flexibility and 

expandability to the entire system. 

In the following paragraphs an overview of Figure 5.7 will be provided and 

the meaning of the different elements will be given. The set of hatched modules in 

the diagram represent modules not developed and of lower priority. They will be 

subject of the last chapter which discusses the conclusions and possible further 

developments of the system. 
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5.5 The Client-Server Architecture 

The system has been entirely developed around a client-server architecture 
where every user logs into a virtual world and starts sharing design tasks with other 
users in a concurrent and synchronous fashion. 

Each user can start a client application from a remote location and can log 
into the server software. Once the connection is established, if some other users are 

already present in the virtual world and have already created objects, they receive the 
data content describing the environment and they can start interacting with it. To do 

so, the user is provided with a set of tools to create and edit objects and to 

communicate with other users present in the virtual world. 

5.5.1 The Server 

The server application is the backbone of the collaborative features of JCAD- 

VR. It is the data-delivering unit that looks after the information to be broadcast 

between several client applications performing actions and queries through a TCP/IP 

network and relying on the server for receiving data updates. 

The server application is made of two cores (See Figure 5.7): the JCAD-VR 

Data Server which looks after the VE information to be broadcast, and the JCAD- VR 

Multimedia Server which streams audio and video for the video-conferencing tool. 

Both parts are closely linked to each other and they are seamlessly integrated to 

comprise the general server package. 

As an independent part of the framework the server has an autonomous and 

simpler interface that provides primarily information about the network status. 

The intrinsic multi-platform nature of JCAD-VR, inherited from the language 

used to code it, allows the server to transmit data to a broad range of platforms, from 

normal PCs to a supercomputer running a Reality CenterTM. 
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5.5.2 The Client 

The client is the application used to run the virtual environment. To do so two 
closely connected units have been developed (See Figure 5.7): a 3D unit and a 
services unit, each made of three different modules. Using the analogy of the human 
body the former could represent the heart while the latter could be considered the 

nervous system. 

The 3D unit is the broad part of the framework that handles all the 
information regarding the "visible" aspects of the virtual world. It is the logical 

container of three cores: geometry, interface and visual core. The first includes the 

code necessary to create and modify geometric entities, the second to interact with 
the human computer interface and the third to deal with several different display 

devices. 

The services unit instead is the section of the framework that handles all the 
information regarding the management of the virtual world. It is the centre for the 
interconnection between users: it manages network connections and the exchange of 
data between users through a network core, it handles the sharing of the virtual 

environment through the sharing core and finally, through the database core, it 

keeps track of the state of the virtual world and it makes the retrieval of information 

possible about objects present in the scene. 

5.5.2.1 The Geometry Core 

The geometry core handles the creation of 2D and 3D objects. It permits the 

retrieval of 3D-objects present in the library and it allows the creation of three- 

dimensional geometrical primitives such as cones, boxes and spheres. Il also allows 

the creation of more complex and specific architectural entities, referred to in the 

following chapters as AEC (Architecture Engineering Construction) objects, for 

example walls, slabs, windows, and doors. 

Even though further details will be provided in the following chapters it is 

worth mentioning the great difference between "simple" shapes and specific AEC 

objects. For instance, although a wall is essentially a box from the visualisation point 

of view the system treats it in a completely different way. In fact, while a box is just 
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regarded as a simple shape without any extra qualities apart from low-level attributes 
like material or cost, the wall is considered as an entity with "topological" properties. 
First of all it is made of two different surfaces - the internal and external face - and of 
an internal core. Furthermore it can be the parent of another object - such as a 
window or a door - and therefore it can hold information of a different type such as 
the number of windows or doors attached to it and their relative position. 

The geometry module also provides the means for attaching materials to 

objects. These materials are stored, together with a number of 3D objects, in a library 

available to the user. 

5.5.2.2 Interface Core 

The interface core, as its name suggests, handles the Human-Computer 

Interface. As previously mentioned one of the main goals of the JCAD-VR 

framework was to achieve a transparent interface. The concept of transparency 

refers to the idea of an interface that is not detached from the 3D world but on the 

contrary is an integral part of it. As mentioned, instead of using traditional menus 

and toolbars, this 3D interface allows the user when immersed in an environment to 

find the means for the interaction within the VE itself. Therefore the user can interact 

through 3D widgets present in the virtual world which can be manipulated at their 

convenience just like any other object in the environment. 

Likewise visual feedback is also provided within the environment, for 

instance in the form of 3D-rulers showing the size of objects or 3D-icons showing 

the operation being performed on an object. 

Due to the limited need for advanced settings, such as front or clipping 

distance, field of view etc., a traditional window-based control panel was provided to 

complete the interface for advanced visualization options. 

5.5.2.3 Visual Core 

The visual core is the part of the framework that allows the interface with the 

visualization devices through display modules. The obvious computational 

constraints imposed by the use of different hardware is solved by creating a structure 

that is flexibly scalable which can also deliver images for a range of viewing devices, 
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from the simple desktop monitor to the more complex tessellated screen for 
immersive environments. When JCAD-VR is loaded the user is asked to choose 
whether to work on a single screen or in a multiple screen mode and they can switch 
between these two modes according to the machine the application is running on. 

The adoption of a modular approach to the framework shows clearly its 

advantages in the development of these modules. In fact in response to the obvious 
hardware limits imposed by the use of different platforms, the system had to be 

written to be easily customised to run on PCs as well as on the Sgi supercomputer. In 

the former the system runs on PCs whose video-card displays the virtual world on a 
traditional window or at full screen while in the latter JCAD-VR can take advantage 

of the 12-processors Sgi Onyx2 system which power the Reality CenterTM, 

ABACUS, in the University of Strathclyde, Glasgow (University of Strathclyde, 

2002). 

The modular architecture of JCAD-VR allowed the development of 
independent modules that can be easily customised to respond to the needs of each 

specific hardware configuration. Therefore when JCAD-VR is launched on the Sgi 

the display module customised to handle the Reality CenterTM can take advantage of 

the supercomputer's graphics power to run on a 5-metre wide 2-metre high, 

tessellated screen where 3 Barco projectors create a 160-degree panoramic image. In 

addition to this approach, other display modules might be easily adapted to allow use 

of different VR devices such as CAVEs or Head-Mounted Displays without 

interfering with the general structure of the system. 

5.5.2.4 Network Core 

The network core connects the independently coded client and server 

packages of the framework providing the means for the transmission of information 

through a communication channel based on a TCP/IP network. 

To ensure communication between users, represented in the 3D world by 

avatars, different means are provided, from basic chat to voice and video 

conferencing. Freehand sketching in 2D is also possible through a shared electronic 
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whiteboard. Every user can take advantage of the synchronous multimode 

communication media while working collaboratively on a design task. 

5.5.2.5 Sharing Core 

Like the network core the sharing core bonds clients and server through the 

exchange of numerical information. This part of the system broadcasts information 

about the objects present in the virtual environment and transmits actions and 

modifications performed on them thus providing much of the foundation for the 

collaborative features of the system. 

This core ensures network consistency through a distributed network-locking 

mechanism that attributes a unique number, consistent for all the users in the system, 

to any object created across the network and sets the user priority on selected objects. 

When a user selects an object, this becomes locked and an event is sent through the 

network to other users to prevent them accessing the object. Locked objects can no 

longer be chosen by other participants until they are unlocked. This mechanism does 

not allow more than one user to edit an object at the same time and it is designed in 

order to ensure consistency throughout the system. 

5.5.2.6 Database Core 

Finally the database core handles the internal database that keeps track of the 

creation or manipulation of objects in the virtual scene by all the users present in the 

environment. Through it the system can retrieve information on geometric primitives 

and materials, etc. The internal database is closely coupled with the network core. It 

does not only keep track of what is happening within the user's virtual world but 

most importantly, upgrades through the network, the information broadcast by other 

users' internal databases. If for instance a new object is created or its status is 

changed, the system will upgrade the internal database of each user in real-time no 

matter who is performing the action on the object. 

Finally, for the convenience of the user, an 110 module allows storing and 

retrieval of the database content for the save/load operation. 
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5.6 Delimitation of Scope 

The framework proposed in the previous pages tries to address the major 
issues of a collaborative VR-based design tool for architecture. Nevertheless a 
number of limitations narrow the scope of this framework, specifically: 

" The implementation of the application is only at the prototype stage and it has 

to be considered as a proof of concept rather than a finished commercial 

package. 

" In general the implementation of new tools was preferred and has been 

considered of greater scientific interest than the optimisation of already 
developed modules. 

" The application has been specifically designed for architects and not for 

Virtual Reality experts therefore particular attention was paid to having a 
familiar graphical user interface and its ease of use. 

" The research focuses on the early stages of the architectural design process 

thus the software application has been developed to be used during the 

conceptual modelling phase and not as an advanced modeller. 

" JCAD-VR is a tool to promote flexibility in design not a CAD/CAAD 

package and therefore it lacks the routines and algorithms that can handle 

complex geometries and solid modelling tools usually provided in 

commercial applications. The abstraction required at the first stage of the 

design process justifies the support for elementary shapes. 

" Although it has been shown to provide support for immersive and semi- 

immersive VR configurations, the implementation of the system as mainly a 

Desktop-VR application is justified by the collaborative nature of the system. 

The need to run several clients concurrently makes the Desktop-VR choice 

the only realistic approach for a feasible multi-user VR experience. 

As already mentioned, due to the evident complexity of the framework 

proposed, the developed prototype represents a limited, yet fully functioning, part of 
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the main schema represented in Figure 5.7. Therefore the result should be considered 
as proof of the feasibility of such an application for architecture. 

The previously mentioned shaded modules of Figure 5.7 represent modules 
with a lower priority which have not been developed and their further development 

will be subject of the last chapter of the thesis. An order of priority was imposed on 
the modules in order to deliver the most important or innovative features of the 
framework. In this way the overall system was provided with a substantial set of 
functions addressing all the main issues mentioned in the research and making the 
final prototype a fully functioning application. 

5.6.1 General Technical Issues 

From the technical point of view, the approach followed when programming 
JCAD-VR has mostly favoured functionality or user-friendliness over efficiency, 
both in the code and in the overall performance of the system. The choice could be 

summarised by stating that programming paradigms, as well as coding solutions, 
have been chosen to privilege the user's point of view rather than the absolutely 

perfect performance of the system. The choice has been justified by the ever- 
increasing power of the hardware that has brought the overall system to a satisfactory 
level of performance on most systems, well above the threshold of 30 frames per 

second. 

Further, the multi-platform nature of the JavaTM programming language has 

raised the issue of performance across different platforms and operative systems. The 

wide range of hardware configuration available across the number of platforms 

virtually supported by the system has lead to a choice in the optimisation of the code. 

Due to its wider availability, and its achievement of excellent rendering performance 

the Windows platform was considered of greater importance to the scope of the 

project. In contrast a lower priority was given to the optimisation of the code for the 

Sgi Irix platform, due to its range of hardware configurations, graphics subsystems 

and visualisation devices which would make it too limiting to use this particular 

configuration as the sole benchmark to evaluate the application. 
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The different ways the JavaTM Virtual Machine (JVMTM) handles threads in 
Unix-based systems, together with the thread-related issues typical of multi- 
processor systems and the inefficiency of the Irix port of the JVMTM, specifically 
produced a lower, yet satisfactory, performance on the Sgi system used. In addition 
the system has not been fully tested using Linux and it has not been tested at all with 
the other supported operative systems such as Solaris, MacOs X, etc. 

The fact of the always-increasing number of new releases of JVMTM and of 
the APIs used by JCAD-VR might contribute to incompatibility issues. Therefore 

Appendix D has been reserved to specify the hardware and software used to fully test 

the application. 

5.7 Conclusions 

The multidisciplinary nature of this research was the opportunity to 

investigate collaborative design issues, the role of interfaces inside CAAD packages, 

the design process in the first stage of its conception, the use of Virtual Reality in 

architecture as a design tool, the issue of collaborative systems and finally a number 

of technical issues. 

As previously shown JCAD-VR proposes a user-centred prototype of a 

collaborative VR application where intuitiveness and control over the environment 

results in an innovative and more involving design experience. 

The following chapters will detail the development of the system, and they 

will focus on the part of the framework depicted in Figure 5.8 and will provide an in- 

depth view of its features and the technical solutions. 
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6 The JCAD-VR's 3D Human-Computer Interface 

6.1 Introduction 

The previous chapter provided an overview of the JCAD-VR system. This 

chapter will describe the implementation of the system, and in particular, it will 
illustrate the first set of functions of the 3D-Unit. This is the section of the client 

application (illustrated in Figure 6.1) dealing with all the issues related to the 

creation, manipulation and visualisation of the virtual world. This chapter will 

specifically analyse the two cores responsible for the Human-Computer Interface 

(HCI) of JCAD-VR. The last core, dealing with the mechanisms related to the 

creation of the geometries, will be discussed in Chapter 7. 
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Figure 6.1: The architecture of the 3D Unit 

The first part of this chapter provides a description of the methodology 

adopted to develop the HCI of JCAD-VR. The following sections describe in detail 
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the architecture of the Visualisation core which forms the part of the HCI dealing 

with the visualisation of the virtual world. Finally, the Interface core will be the 
subject of the last section which will provide details of the 3D-GUI, the interaction 

techniques adopted and their implementation. 

6.2 Justification of the Methodology 

This and the following chapter, as mentioned, will describe the 
implementation of the JCAD-VR system. Both chapters are characterised by a 

number of diagrams, due to their technical nature. 

The diagrams are provided to illustrate the mechanism behind the system 

without the need to quote the code. In this way the different solutions adopted can be 

described visually, focusing on the general mechanism behind the technical solutions 

rather than on language specific implementations. 

A tree-structure approach was chosen for the diagrams illustrating the 

structure of the Java 3DTM related code. The graphic convention of these diagrams 

does not comply with the Unified Modelling Language prescriptions for Object 

analysis (Object Management Group, 2002). Instead they are represented according 

to a widely acknowledged graphical convention which is adopted throughout the 

technical literature specifically referring to Java 3DTM 

Further, due to the particular nature of this and the next chapter, a number of 

technical concepts are introduced which specifically relate to the programming 

language which was adopted. These concepts are presented throughout the text 

where it is necessary to clarify the technical details of the approach followed. 

For the sake of consistency with existing technical literature, the logically 

independent units of code will be referred to as classes or objects. The names of the 

classes outlined throughout the text will be given according the convention adopted 

by JavaTM programming language. Therefore the names of classes are logically 

constructed through joining of nouns and capitalising their first letter, e. g. 

SwivelWindow. The same composition rule is applied to the routines, or methods, 
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mentioned throughout the text; in this case the first name is left in lower case, e. g. 
openWindow. 

Finally, to avoid misunderstandings between the class name and type, the 
name of a specific object will be written in italics whilst the type of a class will be 
left in plain text. Therefore, the ViewGraph BranchGroup is an object of the type 
BranchGroup named ViewGraph. 

6.2.1 The Java 3DTM API 

The previous chapter discussed the advantages introduced by the choice of 
JavaTM as the programming language of JCAD-VR. 

In particular, the use of Java TM for the development of the 3D-Unit was 

possible because of the availability of the Java 3DTM Application Programming 

Interface (API), a library specifically developed to handle 3D-graphics. Java 3DTM 

makes use of native hardware acceleration through the use of lower level APIs such 

as OpenGL® (OpenGL, 2002) or DirectX® (Microsoft Corp., 2002) and it can 

consequently support real-time 3D-graphics. 

As Sowizral et al. (1999, p. 12) stated, "writing a VR program requires a 

substantial programming effort. A developer must either write code to handle the 

various inputs and display devices that the application might encounter or, 

alternatively, the developer will need to rely on a programming API designed to 

support VR applications. [... ] The Java 3D API includes specific features for 

automatically incorporating head tracker inputs into the image generation process 

and for accessing other tracker information to control other features". Through Java 

3DTM "developers can easily incorporate high-quality, scalable, platform- 

independent 3D graphics into JavaTM technology-based applications. [... ] This 

enables developers to build, render, and control the behavior of 3D objects and visual 

environments" (Sun Microsystems, 2000, p. 1). 

Java 3DTM can be considered as belonging to the fourth generation of 

programming languages for 3D graphics (Sun Microsystems, 1998) (See Figure 6.2). 
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Figure 6.2: The evolution of 3D graphics (Sun Microsystems, 1998) 

In CAD/graphics programs developed in the 1980's simple shapes were 
drawn on mainframes or minicomputers in Fortran using the CORE standard. 
Towards the end of the eighties, the arrival of workstations together with the 

adoption of C language and the development of libraries like PHIGS resulted in the 

first 3D graphics applications. In the nineties the fast development of specific 
hardware, fostered by the development of the C++ language and the OpenGL® API, 

led to the introduction of texture mapping. 

Today, the need for more efficient software architecture has led to the 

development of fourth generation languages for 3D graphics like Java 3DTM. As 

stated, Java 3DTM still relies on lower level APIs like DirectX® or OpenGL®, 

however a new higher programming layer has been introduced providing features 

such as multi-platform support, simplified handling of behaviours and geometries 

and better overall control of the system. 

6.2.2 The Desktop-VR Choice 

JCAD-VR is primarily a monoscopic Desktop-VR system whose flexible 

architecture has been expanded to support a semi-immersive visualisation 

configuration. 

The Desktop-VR approach has been chosen to suit the scope of the 

application. JCAD-VR is a collaborative VR system and therefore the access to a 
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number of workstations was a fundamental requisite for the system. Desktop-VR 

systems can be easily deployed, although providing a lower level of immersion. The 

adoption of other solutions, such as those based on high-end immersive technologies 

would have heavily limited the scope of the research. 

Nevertheless, as will be shown in the following sections, the modular nature 

of JCAD-VR encourages the potential expansion of the system into other 

visualisation set-ups. 

In terms of the control devices, the choice of a Desktop-VR system forced the 

development of an interface relying on traditional devices such as the mouse and 
keyboard. However, the hardware independent logic mechanism behind the interface 

(described in Section 7.4) together with the modular architecture of the system 

allows expansion to more complex pointing devices such as 6-DOF mice and Virtual 

Gloves etc. The logic behind the interface is in fact independent of the devices used. 

6.3 The Scene Graph Hierarchy Approach 

In computer graphics the term scene graph is used to describe the abstraction 

of the structure used to support the elements necessary for the creation of a virtual 

world. "The scene graph contains a complete description of the entire scene, or 

virtual universe. This includes the geometric data, the attribute information, and the 

viewing information needed to render the scene from a particular point of view" (Sun 

Microsystems, 1999). 

The idiom scene graph is a more familiar synonym of the term Directed 

Acyclic Graph (DAG), also known in discrete mathematics as tree. A tree is a 

specific type of discrete graph, a graph based on nodes and edges, since it is 

characterised by two specific features: it is acyclic and directed. The structure of a 

tree has a logical, parent-to-child arrangement, hence the attribute directed, and it 

cannot contain cycles, hence the adjective acyclic. 

As a consequence the paths that connect each node to the root of the DAG are 

unique and this feature gives the characteristic layout resembling an upside-down 

tree (See Figure 6.3), which explains the adoption of the idiom tree. 
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The developers of Java 3DTM have stressed its tree structure by adopting a 
formal convention that divides the nodes of the DAG between groups and leaves. 
The former can have one or more children nodes while the latter cannot, thus they 

are usually the terminal nodes of the graph, like the leaves on a tree. Finally, the state 
of each node is influenced by the combination of its parent nodes up to the root of the 

graph. 

Figure 6.3: An overview of the DAG (Directed Acyclic Graph) of the 3D Unit 

However, the rigid spatial convention implied by the use of a DAG is mainly 

adopted for the advantage of the programmer. In fact the mathematical representation 

within the computer memory usually differs substantially from the layout of the 

DAG. Nevertheless, the adoption of a scene graph encourages a logical organisation 

of the elements used for the construction of the virtual world. This logical 

arrangement can ultimately be exploited by the system to automatically reconfigure 

the DAG structure into an optimised layout through the compilation process. 
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As a consequence, from the implementation point of view, the organisation of 
the 3D-Unit (illustrated in Figure 6.1) can be shown through the overview of the 
DAG (shown in Figure 6.3). From this perspective it is possible to outline the three 

cores (described in Figure 6.1) through the content of the main branches. 

The rest of this chapter describes the contents of the branches for the 
implementation of both the Visualisation and the Interface Cores. Due to its 

complexity, the remaining core will be described independently in the following 

chapter. 

6.4 How the Scene is Shown on the Screen: the 

Visualisation Core 

The visualisation subsystem is one of the most important parts of a VR 

application since it provides the means for the renderer to be able to display the 

content of the virtual world. 

JCAD-VR's Visualisation Core administers the visualisation process through 

a set of classes that represent in a mathematical form the different physical features 

of the VR set-up. These objects are placed on a specific branch of JCAD-VR's DAG, 

called the visualisation sub-tree. 

The data contained within the visualisation sub-tree is necessary to fill in the 

fields of a number of matrixes, the combination of which gives the projection matrix 

used by the renderer to visualise the content of the virtual world. In short, the 

projection matrix contains the information necessary for the renderer to calculate the 

correct point of view according to the user's position and orientation, the internal 

geometry of the view (See Section 4.4.2) and the physical configuration of the 

devices used by the VR system. 

6.4.1 The Visualisation Sub-Tree 

Figure 6.4 shows (in greater detail than Figure 6.3) the layout of the 

visualisation sub-tree, which is the section of the DAG hosting the implementation 

of the Visualisation Core. 

141 



From analysis of Figure 6.4, it is possible to see that the visualisation sub-tree 
contains the objects necessary to render both the point of view (POV) of the user and 
the objects used for the three dimensional GUI. In fact the 3D-GUI of JCAD-VR 

consists of a number of objects placed close to the user's point of view and therefore 
it actually belongs in the virtual world rather than being relegated to another area of 
the screen as in most WIMP (Window-Icon-Menu-Pointer) applications. Instead the 
logical mechanism behind the 3D-GUI, is handled by the Interface Core, an 
independent part of the system which is explained in Section 6.5, later in this chapter. 
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THE DAG G 

ViewGraph BG 

INTERFACE Navigation logical link CORE code 

VISUALISATION ControlView TG 
SUB-TREE 

TG 3DObjects 

INTERFACE 
logical link CORE 

User's POV Objects belonging 
to the 3D-GUI 
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Figure 6.4: A simple overview of the visualisation sub-tree 

The first node of the visualisation sub-tree (See Figure 6.4) is the ViewGraph 

BranchGroup (BG), a special type of group node in that it can be the root of another 

sub-branch, unlike a leaf node. The BranchGroup node has a number of unique 

features: first of all the sub-branch attached to it can be removed or added at run-time 

and secondly this sub-branch can be compiled independently from the rest of the 

DAG. The compilation, as mentioned before, is the process of optimisation that turns 

the logic oriented architecture of a DAG into a more efficient performance oriented 

organisation. 
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Moving further down the hierarchy of Figure 6.4 it is noticeable that all the 

objects necessary to both the POV and the 3D-GUI are under the same parent node: 
the Control View TransformGroup (BG). The TransformGroup is a special node 

which handles the spatial information necessary to determine position, rotation and 

scale of all its children according to a relative reference system. This is done through 

the information supplied by a 4x4 double-precision floating-point matrix. 

In short, each object of the 3D-GUI and of the POV is located in the virtual 

space according to the same relative coordinate system since it is placed under the 

same TG called Control View. This means that when the user manipulates the 

Control View through the navigation mechanism, he/she moves the origin of the 

relative coordinate system of both the POV and the 3D-GUI synchronously. This is 

why the visualisation sub-tree is the ideal container for all the elements of the 3D- 

GUI which have to follow the movements of the user during the navigation through 

the virtual world along with the representation of the visualisation device. 

In addition, since TransformGroups can be cascaded it is also possible to 

move the interface relative to the user's point of view through the 3DObjects TG 

(shown in Figure 6.4). However this diagram portrays a simplified overview of the 

real architecture. In reality, each object used for the 3D-GUI needs to be placed 

independently. Consequently each object requires an autonomous TransformGroup 

and this produces a structure that is far more complex than the one illustrated in 

Figure 6.4. 

6.4.2 The Abstraction of the System's Set-Up 

The adoption of a DAG gives the basis for a new low-level abstraction of the 

visualisation process. The developer can calibrate and manipulate the virtual 

environment through a number of objects that represent the abstraction of the 

physical VR set-up. In the case of JCAD-VR, the low-level abstraction can take 

advantage of the instruments offered by the Java 3DTM API, the most important of 

which are: 

" The ViewPlatform: this represents the point of view of the user in the virtual 

world. 
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" The View: this handles the parameters necessary to define the internal 

geometry of the view (See Section 4.4.2) such as Field Of View (FOV), the 
type of view - if monoscopic or stereoscopic - etc. 

" The Canvas3D: this represents the panel of the 2D screen space (See Section 

4.4.1) onto which the images will be rendered. 

" The Screen3D: this contains the information relative to the physical 

properties of the display. 

" The PhysicalBody: this contains the information regarding the user's body, 

necessary to calibrate the system when a tracking system is employed. 

9 The PhysicalEnvironment: this contains information regarding the physical 

environment where the VR system operates, necessary to calibrate the system 

when 6-DOF devices are used. 

Therefore, through the management of these objects the programmer can 
implement the most convenient visualisation techniques. From this point of view all 

the visualisation techniques (such those based on the camera metaphor described in 

Section 4.5.1.3) are higher-level abstractions of the visualisation process provided by 

the developer for the convenience of the user. Through this adoption of a metaphor 

closely resembling real-life knowledge, the user can experience an immediate and 

natural interaction with the system. 

In JCAD-VR these particular objects are all relegated to the visualisation sub- 

tree. In this way the classes containing information regarding devices placed in the 

physical world are clearly isolated from the rest of the VR environment within the 

DAG. 

The advantage of such an approach for the developer is that they can be 

treated as a group, from the logical point of view, whose global function is to 

represent the POV within the virtual environment (as was shown in Figure 6.4). This 

feature gives the Visualisation Core a deal of flexibility since various visualisation 

configurations can be easily implemented through limited alteration of the original 

code. 
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6.4.3 A Flexible Architecture 

The encapsulation of the visualisation functions within a specific portion of 
the DAG, provides a powerful mechanism to dynamically change the configuration 

of the visualisation sub-system of JCAD-VR. Indeed, one of the main requirements 

of the sys tem was to be able to support both traditional monitors and much more 

complex configurations such as tessellated screens for semi-immersive 

environments. 
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Figure 6.5: The plug-in approach used in the visualisation module 

The isolation of the classes within the DAG handling the POV, has allowed 

the development of plug-in like architecture. This mechanism limits the alterations 

required for each different configuration to the portion of code necessary to handle 

the specific visualisation device (See Figure 6.5). 

This approach, has proved flexible yet efficient and has delivered a system 

that can visualise images through very different viewing devices, ranging from 

traditional monitors to the Reality CenterTM installed at the ABACUS unit of the 

University of Strathclyde. 
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6.4.3.1 The Single-Screen Mode 

Figure 6.6, which gives a more detailed view of the DAG (illustrated in 
Figure 6.5), shows the implementation of the most simple example of a traditional 

monitor. For the sake of comprehensibility, the illustration does not include the code 
necessary for the 3D-GUI. The objects below the Control View TG are used to 

acquire the information regarding the environment and, at the same time, to visualise 
the image relative to the point of view of the user on the screen. 

Virtual Universe 

Visualisation sub-tree 
Locale 

Geometry 
--------- ----- 

BGýýýtll BG 
ViewGraph 

Code for 
B navigation 
Behavior 

SINGLE 
PROJECTION Control View TG 

SYSTEM 
pesranc 

View Platform 
º 

ýt PC or Sgi 
View Canvas3D Screen30 Tý i workstation ti 

View Platform 

Physical Body Physical Environment 

Device-specific ------ý--- 
code 

Figure 6.6: The single-screen mode DAG 

When the user navigates through the world, the system manipulates the 

Control View through the Interface Core (See Section 6.5) and as a result the objects 

below the TG are moved according to the wish of the user. In terms of camera 

metaphor, the result of this action corresponds to the user moving the virtual camera 

around the space. The result is due to the fact that the user moves the ViewPlatform 

and this is the object representing the user's location within the virtual environment. 

Once the correct point of view is calculated, the renderer can update the content of a 

virtual canvas placed on the user's monitor by generating the image corresponding to 

the new point of view. 

Through a panel (See Section 6.5.3.4) the user can also manipulate at run- 

time some of the parameters of the View object representing the internal architecture 
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of the virtual camera, for example aspects such as the Field Of View (FOV) or the 
back and front clipping distance. 

6.4.3.2 The Multiple Screen Mode 

JCAD-VR is configured to be launched on the Sgi supercomputer which runs 

the Virtual Environment Laboratory (VEL) (University of Strathclyde, 2002) 

installed at the ABACUS unit, University of Strathclyde (See Figure 6.7). 

When the system starts in multiple-screen mode it can take advantage of the 

12-processors Sgi Onyx2's graphics power to visualise the virtual environment on a 

five metre wide by two metre high tessellated screen where three projectors create a 

160 degree semi cylindrical panoramic image that entirely fills the field of view of 

the user. 

Figure 6.7: Cross section and plan view of the Reality CenterTM at ABACUS, 

University of Strathclyde, Glasgow 

From Figure 6.8 it can be seen that the architecture of the new DAG 

(compared to the single-screen structure of Figure 6.6) required only a limited 

number of adjustments to be able to handle the new configuration. 

The difference between the two graphs is limited to the section of the DAG 

that contains the objects defining the set-up of the VR system. The previous example 

was characterised by one ViewPlatform-View-Canvas3D-Screen3D set while the 

new Reality CenterTM configuration requires three sets, one for each projector. 
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In addition, since the two lateral projectors are translated and rotated from the 

central one, the DAG includes two additional TransformGroups placed above the 

two ViewPlatforms used by the side screens to provide the renderer with the correct 
information. 

A different and simpler approach could have been adopted however. The 

configuration described above uses three ViewPlatform-View groups for only one 

point of view. Ideally only one ViewPlatform-View set per point of view should be 

used (as described in Figure 6.9). In order to match the physical properties of the VR 

set-up, the calibration of the virtual environment could be achieved through the 

configuration of the relevant parameters of the three Screen3D classes, each 

representing a display. Each Screen3D object could be used to define the position 

and the orientation of the physical screen through a 4x4 matrix that replicates the 

internal structure of a TransformGroup. 

Due to a bug in the release of the Java 3DTM API available for Sgi at the time 

of the development (See APPENDIX D), use of this approach caused a persistent 

flickering effect across two of the three screens of the Reality CenterTM and therefore 

the previous solution, although less efficient, had to be used. 

MULTIPLE 
PROJECTION 

SYSTEM 
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The advantage of a modular approach is also reflected in the way the 3D-GUI 
is handled every time a new device is implemented. The 3D-GUI is rendered by 
JCAD-VR in the same way as other objects belonging to the virtual world and 
therefore it does not need to be re-coded. The developer is only required to specify 
the coordinates of the initial location of the 3D-GUI since this might change 

according to the visual configuration adopted. For instance, for the convenience of 
the user when the Reality CenterTM configuration is chosen, the interface is moved to 

the edges of the two lateral screens rather than being left cluttering the central one. 
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Figure 6.9: The ideal DAG for a multiple-screen mode 

6.4.3.3 Flexible Extension to Other Devices 

REALITY 
CENTER 

The modular approach shown in the previous paragraphs gives a great deal of 

flexibility to the Visualisation Core. The system can be easily adapted to the 

requirements of other specific set-ups through the manipulation of a limited part of 

the DAG. 

Consequently, devices such as CAVEs, Head-Mounted Displays or Virtual 

Tables could be supported without interfering with the general structure of the 

system. Each new device would only require the re-writing of the specific section of 

the DAG containing the device-specific code to allow the renderer to generate the 

correct image, (as shown in Figure 6.10). 

149 



Virtual Universe 

Visualisation sub-tree 
locale 

Geometry 

BG BG vrewGraph 
Code for 

B navigation 
Behavior 

VIRTUAL TABLE ConvolVrow TG - 

ý 

aifMlC /\ 

CAVE 
??? CODE ??? 

HMD 
1ý 

Device-specific -------- ??? 
code 

Figure 6.10: The possible DAG of a customised visualisation configuration 

As mentioned, ultimately the programmer needs to provide only the initial 

position that the interface will take once the system is loaded, since the 3D-GUI itself 

will already be rendered just like every other object in the environment and therefore 
it does not need to be rewritten. 

6.5 How the System is Controlled: the Interface Core 

The previous sections have illustrated how the visualisation sub-tree contains 

the nodes representing the visualisation devices as well as the objects necessary to 

create the 3D-GUI. The next sections will describe the logic behind the interaction 

with the 3D-GUI which is implemented through an independent part of JCAD-VR 

called the Interface Core. 

The Interface Core is the section of the system that is responsible for the 

interaction between the user and the system. Its role is to transform the user's input 

activity into a sequence of meaningful actions or commands. This is accomplished 

through a set of complex mechanisms that interact with the other sub-systems 

dealing with the visualisation, the geometry of the world and the connection with the 

network. Therefore, the Interface Core represents the bond between the modules of 
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the 3D-Unit that acts to transform a collection of independent modules into a single 
interactive application. 

6.5.1 The HCI's Logical Abstraction Layers 

The Human-Computer Interface (HCI) implemented in JCAD-VR is 

developed on a structure based, from the logical point of view, on several abstraction 
layers (shown in Figure 6.11). 

....................... . 
ApplkaVort level 

iC, 

Figure 6.11: The levels of interaction in JCAD-VR 

The structure is a development of the classification in three levels proposed 

by Barrilleaux (2001) (See Section 4.3). In Figure 6.11, Barrilleaux's organization 

into primal, analytical and virtual levels is replaced by a five level architecture 

logically stacked on top of the device adopted. 

Starting from the hardware level, moving over several software 

generalizations, the abstraction increases until the uppermost level is reached, which 

contains the JCAD-VR application. 

The previous sections have already illustrated JCAD-VR's HCI's lower level 

abstraction, based on a number of classes representing the devices adopted in the VR 

settings. Through the use of the tools available from the API, the Visualisation Core 

abstracts JCAD-VR's set-up and gives a flexible DAG. 

However, at this level the system is not aware of the interaction techniques or 

metaphors adopted by the HCI. However, at this level, JCAD-VR does have control 
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upon the interaction techniques used for the navigation, interaction and access (See 
Section 4.5). 

Through its knowledge of the state of the virtual world, the Interface Core 

implements the higher layer abstractions of the interface (illustrated in Figure 6.11). 

This provides the proper tools to interpret the user's commands into meaningful 

actions, based on the metaphor adopted by the system. 

6.5.2 The HCI Interaction Techniques 

The interaction techniques adopted in JCAD-VR can be divided according to 

classification into three categories: navigation, manipulation and system control (See 

Section 4.5). They have been chosen to deliver an interaction close to a real 

experience (despite the adoption of a Desktop-VR solution) that at the same time 

frees the user from the strict rules of the physical world. 

In practice, JCAD-VR follows what Barrilleaux (2001) calls the mixed 

approach (See Section 4.3). The constraints to the user's freedom are chosen 

according to the nature of the application, which has been designed to deliver an 

environment tailored to architects working in the early stages of the design process. 

6.5.2.1 Navigation 

JCAD-VR, according to Barrilleaux's (2001) classification in terms of 

personae, is characterised by a first person navigation approach (See Section 4.5.1.1) 

where the user directly controls the point of view. 

This approach provides a higher level of presence compared to second and 

third person navigation. Due to the choice of a Desktop-VR or semi-immersive 

environment set-up it does not have the drawbacks typical of first person immersive 

environments previously reported by Bolas (1994) (See Section 4.5.1.1). 

In terms of the user's degree of freedom, JCAD-VR encourages a great deal 

of free expression when interacting with the environment. The system has not been 

developed as a simulator (See Section 4.3) but nevertheless it promotes quick 

navigation through the virtual world, regardless of walls, slabs or other objects. This 

is the intention of the application as is this way it leaves the architect free to reach an 
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advantageous point of view regardless of the law of physics, since neither gravity nor 
collision detection is implemented. 

Nevertheless, to avoid causing the user any potential confusion by unrealistic 
degrees of freedom, navigation has been constrained slightly by a few specific rules, 

as suggested by several authors (Bolas, 1994; Hanson et al., 1997). 

Therefore the user, although free to navigate the virtual world, in JCAD-VR 

is provided with a limited subset of movements. The approach followed tries to 

replicate a real life experience where the user's movements are mainly limited to 

translations in a two-dimensional horizontal plane and to rotation around the vertical 

axis. In JCAD-VR the user is also able to move on a vertical plane but this action has 

been totally dissociated from the act of walking by the user having to explicitly select 
the proper command. 

For the convenience of the user, it is also possible for them to tilt their virtual 
head on a horizontal axis. However, rotation of the virtual head does not affect the 

direction of their movement since the user will always move over a horizontal plane. 
In practice when using JCAD-VR the vector representing the user's movements 

always lies on a horizontal plane regardless of the direction of the LAD-DV (See 

Section 4.4.2). 

From the implementation point of view the navigation effect is achieved 

through the manipulation of the two TransformGroups (illustrated in Figure 6.12, 

which is a detailed view of the graph in Figure 6.5). For the system to be able to 

move the user's point of view in a first person mode it first retrieves the direction of 

sight of the virtual head through the LAD (look-at direction) vector (See Section 

4.4.2) with its position, and then it adds the relative movement necessary to go to the 

new position. 

As illustrated JCAD-VR adopts a constrained navigation mode to replicate a 

real-life experience and although it lets the user tilt the virtual head, it always 

constrains translations to a horizontal plane. To ensure that the user always moves on 

a horizontal plane, JCAD-VR uses two cascaded TransformGroups. The lower one is 

used to tilt the user's virtual head while the upper one is independently used to 

translate the POV onto a horizontal plane and to rotate it around a vertical axis. 

153 



REST OF 
THE DAG 

Walk and Pan 

Controlview TG --'" 
Tilt 

Control View Tilt TG 

AMA& 

User's POV 

Figure 6.12: Details of the navigation process 

This approaches has an advantage in that it is easier to deploy. It also avoids 
having number of conversions for every frame from the local to the absolute 

coordinate system (and vice versa) that would be necessary if a single 
TransformGroup were used. 

6.5.2.2 Manipulation 

In terms of control personae, JCAD-VR adopts a third person approach (See 

Section 4.5.2.1). A set of 3D-widgets which are shown near the objects once they are 

selected, gives access to the manipulation functions. 

This approach combines the advantages of the second person approach which 

promotes a natural experience, with the user naturally manipulating objects in the 

virtual world but at the same time it forces the user to explicit about the action of 

manipulation. To emphasise the action, and at the same time to assist the user during 

manipulation, JCAD-VR makes use of three arrows to define the local coordinate 

system of the object (See Figure 6.13). The arrows appear beside the object once it is 

selected together with the nearby icon used to choose the type of action. 

The adoption of a third person manipulation technique has two main 

advantages. First it constrains the manipulation to one direction at a time, therefore 

making manipulation easier when a traditional mouse is used, and at the same time it 

provides the relevant feedback on the type of manipulation being done. Therefore, 
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3D-widgets are simultaneously the means to manipulate an object and the feedback 

mechanism that informs the user on the action. 
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Figure 6.13: A detail of the 3D-widgets used for the manipulation of objects 

The user selects the type of modification they want by clicking on the 

relevant icon. In this way the user activates the translation, rotation or scaling modes 

in turn. Finally the user selects the arrow defining the direction and drags the pointer 

until the desired effect is reached. 

Concurrently the system displays the most important information about the 

object in a panel beside the object. The information in the panel is updated in real 

time, as is the general dimensions of the x, y and z directions, through three 3D- 

labels placed at the extremities of the objects. For the convenience of the user, both 

the panel and the labels are always facing their point of view. 

This approach is very visual, it does not require any typing therefore it does 

not force the architect to think in terms of mathematical entities. In addition it does 

not require any specific hardware, since commands are interpreted through mouse 

movements and clicks, and therefore it can be used with standard workstations. The 

adoption of more complex hardware, such as 6-DOF mice, could be implemented on 

top of the existing interaction technique, since the latter is hardware-independent. 

From the implementation point of view the manipulation of objects is 

achieved by accessing the section of the DAG where the object is placed. Figure 6.14 

illustrates the relevant portion of the DAG where the geometry of the object is 

placed. Once the object is selected, the relevant 3D-widget appears through the 
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Figure 6.14: A schematic view of the DAG of a 3D object in JCAD-VR 

Once the user has decided on the type of modification they want to apply to 

the object, for example translation, rotation or scale then he/she selects one of the 

arrows and makes the change. The system interprets the action and executes the 

command, altering the values of the matrixes contained inside the two 

TransformGroups (shown in Figure 6.14). 

For each object, the implementation of rotation or translation is separated 
from the scaling process since two TransformGroups are used. Specifically the Scale 

TransformGroup is placed on the section of the tree that contains the geometry of the 

object so that the modification of its values does not affect the 3D-widgets. This 

choice causes the 3D-widgets to rotate or translate every time the object is modified, 

and at the same time it ensures that the 3D-widgets always remain at the same size. 

Particularly, it prevents them from being altered every time the object is scaled, thus 

avoiding an aesthetically unpleasant distortion of the 3D-widgets after a non-uniform 

scaling operation. 
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6.5.2.3 System control 

One of the main goals of the system was the development of an interface as 

part of the virtual world. In answer to this requirement a 3D-GUI has been developed 

to support the JCAD-VR system control (See Figure 6.15). The 3D-GUI does not live 

within the boundaries of the 2D screen space (See Section 4.4) or its counterpart, the 

2D display space. Instead it is made of objects that live in the 3D virtual world, 

placed within the DAG under the visualisation sub-tree (See Section 6.4.1). 

.ýi 

4 

Figure 6.15: A detail of a 3D-menu being moved 

3D-GUIs, as already pointed out in Section 4.5.3, can be more difficult for 

people to use if compared to traditional WIMP applications. For this reason JCAD- 

VR follows a hybrid approach, considered by several authors as the most effective 

choice (Bowman et al., 2001), as it can improve the three dimensional nature of the 

virtual environment yet retain the usability of two dimensional GUIs. 

Therefore in JCAD-VR traditional WIMP elements are turned into their 

three-dimensional counterparts. Users can then access functions and at the same time 

handle menus and icons, in the same way that they did with other objects in the 

environment. For the convenience of the user 3D-Menus can also be scaled, rotated 

or moved (shown in Figure 6.15). 
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6.5.3 The functions of the HCI 

As soon as the user starts JCAD-VR four different 3D-menus appear on the 

screen placed at the corners of the rendered area. Each menu is opened or closed by 

clicking on the first icon which illustrates, in an iconographic way, the functions of 

the menu. Through the main menus the user can control four groups of features: 

creation of geometries, navigation, communication and utility functions. 

º 
Utilities 

" Load 

" Save 

" Screenshot 

" Help 

n 

1 
Videoconf. 

Chat 

Figure 6.16: The 3D-menus 

6.5.3.1 The Creation Menu 

The creation menu gives access to a number of geometries, from simple 

geometrical primitives, to AEC-specific objects like slabs, walls, windows, doors, 

stairs and an expandable library of objects. 

In the case of windows, doors, stairs, primitive shapes and the object library, 

the creation menu gives access to further 3D-panels (shown in Figure 6.17). 
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Figure 6.17: The 3D-panels activated through the creation menu 

Like any other object, each panel can be placed in the virtual world according 
to the need of the user, and when closed its position will be stored, to be replaced 

once reactivated. 

6.5.3.2 The Navigation Menu 

The navigation menu allows the user to select between walk, pan and tilt 

movements. For their convenience there is an icon to bring the user back to the origin 

of the virtual world. This function would be useful if the user got lost in the virtual 

environment. 

6.5.3.3 The Communication Menu 

The communication menu holds the panels where the chat text is rendered as 

well as images from the videoconference module (See Figure 6.16). For the sake of 

visibility, the chat panel shows only the last messages sent or received by the user 

while the full content of the chat is accessible through the utility menu. 

In the communication menu special attention has been given to the 

videoconference panel. Its development has required close integration between 

objects belonging to two different APIs: the Java 3DTM and the Java Media 

Framework (JMF) (Sun Microsystems, Inc., 2002d). 
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The capturing process (as illustrated in Figure 6.18), is done through an 
articulated integration of Processors developed in the JCAD-VR's Capturer class. A 
Processor is an object, available through the JMF API, which provides the 

programmer with a set of tools to manipulate an input stream. 
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Figure 6.18: The videoconference capturing process 

As illustrated in Figure 6.18, the data stream coming from the video camera 

and the microphone is sent to the first processor that converts it into a DataStream 

object. The system creates a copy of each DataStream and sends it to two JMF 

Players, to playback audio and video respectively from the user's set-up. This is done 

for the convenience of the user who is able to monitor the content being streamed to 

the network. 

The two original DataStreams are then used as a data source for the other two 

Processors, which compress the video and audio respectively into more efficient 

forms. This operation is done to reduce the load of data broadcast throughout the 

network. 

Before sending the two streams to the network the system merges the 

compressed audio and video into a single multiplexed data stream. This is finally 

sent through the server in the form of RTP (Real Transform Protocol) streams. 
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Figure 6.19: The videoconference playback process 

At the same time the system listens to the RTP streams broadcasted by other 

users present in the virtual environment through the JCAD-VR's Receiver class (See 

Figure 6.19). The first time an RTP stream belonging to a new user is identified, the 

Receiver class sends a message to the 3D-GUI. This in turn activates a new 3D-panel 

next to the existing ones, onto which the content of the videoconference will be 

rendered. In addition a new label is created, and it is displayed on top of the video 

panel, illustrating the login name of the transmitter. 

As soon as the new 3D-panel is created the content of the new RTP stream is 

passed to a Processor. This first Processor which acts as a de-multiplexer, analyses 

the content of the streams and also separates the video from the audio channel thus 

generating two new data streams. 

The audio data stream is directly used as the input of a Processor that 

decompresses the content and then plays it through the loudspeakers of the system. 

The video meanwhile is sent to another Processor that converts the data stream into a 

texture. 
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This task is achieved through JCAD-VR's VideoStreamRender class, which 
operates as a plug-in of the video Processor previously mentioned. In a cyclic 
process, the VideoStreamRender receives the video data stream and converts it into 

an array of bytes. The content of the array is then utilized to create a new Image 

object that in turn is used to create a new Texture object. Finally the new Texture is 

used to map the panel created at the beginning of the process. 

The result of this process, which is cyclically repeated every time a new 
frame has to be rendered, is a 3D-panel, integrated into the virtual world which 

shows live video from another user. The panel, being truly three-dimensional can be 

moved, rotated or scaled as desired by the user similarly to any other object of the 

environment. 

6.5.3.4 The Utility Menu 

The utility menu gives access to various sets of commands. Through it the 

user can: save or retrieve the content of the virtual world, activate the communication 

panel including the whiteboard and the full text of the chat, delete the content of the 

virtual world, take single screen shots or make continuous recordings of the virtual 

world, access advanced settings and finally they can quit the application. 

Some of the functions, such as the load/save facility and the visual settings 

panel (See Figure 6.20), due to their special and limited use, are provided through 

standard WIMP elements. 

Figure 6.20: The visual settings panel 
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6.5.3.5 The Material Chooser 

The material chooser is a simple tool which is included in JCAD-VR to allow 
the quick choice of textures. The user can activate the material chooser by selecting 
the relevant icon that appears beside the selected objects. 

The idea behind the development of the material chooser is to provide the 
user with a quick way to make a choice of material through the simple use of textures 

rather than using other iconic forms. Therefore the material chooser should not be 

considered as an advanced material editor helping the user by defining the final 

texture map of an object, but it should be seen as a simple and quick tool that 

supports the user's ideas in a visual way. 

In an ideal scenario the architect would be able to apply a concrete looking 

texture to a surface to illustrate that the final material will be concrete and not red 
bricks for example. The map adopted is not the final texture however but it is rather a 
visual aid to show that a certain object should be made of a certain type of material. 

As noted, JCAD-VR is neither a CAAD application nor a modelling package 

and for this reason functions involved in setting texture are kept to a minimum. 
Therefore texture maps are applied automatically at a default size and no means is 

provided for scaling or arranging them. 

From the implementation point of view, the material chooser is essentially 
based on another tree-like structure. The user starts from a root level, where a set of 
3D-folders appears, generically labelled wood, metal, etc. As shown in Figure 6.21, 

once the user has selected the proper folder its content is shown through cubes 

textured with the relevant material. If the other sub folders are available the user can 

continue browsing the library until the lowest level is reached. At any time the user 

can precede up the tree structure clicking on the top-right folder. 
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Figure 6.21: A view of the material chooser 

The user can also customise the content of the texture library simply. The tree 

structure of the material library is created through the analysis of the content of the 

"materialsLibrary" a sub-directory of the folder where JCAD-VR is installed. The 

labels used to name the cubes and the 3D-folders are automatically derived from 

their filename counterparts. The system loads all the images in JPEG format and uses 

their filenames to create the elements of the material library. The naming convention 

has been implemented so that the system reads the filenames, removes the ". jpg" 

extension and turns underscore symbols into spaces. The changes to content or sub- 

folders structure of the "materialsLibrary" directory, take effect the next time the 

system is loaded. 

The texture included in the current release of the system are simple and 

photo-derived maps. It is possible through the mechanism described however, to 

substitute the content of this library with a more abstract set of images. This would 

prevent users from considering the textures selected from the library as final choices, 

rather than just as suggestions. 

The ability to customise the library currently has a major limitation. During a 

collaborative session as soon as material was selected an event was dispatched 

throughout the network to every other user. The network message carries an ID 

number created during the loading of the library. If two or more users have different 
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libraries the IDs generated by the respective systems might not coincide and this can 
lead to misinterpretation during transmission and ultimately cause the different 

systems to show different textures on the same object. Therefore, to ensure 
consistency across the network, every user must have the same material library. 
Precisely, the content and the structure of the "materialsLibrary" folder and its sub- 
folders must be identical for every user in the environment. 

This limitation could be overcome through the development of a different 

algorithm that generates the material IDs in a more effective manner and, at the same 
time, provides the means for the transmission of missing textures to other users. 
However so far this function has not been developed. 

6.5.4 Implementation of the HCI 

As illustrated throughout this chapter JCAD-VR's 3D-GUI is based on the 
fundamental assumption that the interface becomes part of the virtual world. As 

illustrated this approach has two different advantages. 

From the theoretical point of view the entire system is "placed" within the 

virtual world. Objects, menus and icons are treated in the same way. The 3D-GUI 

becomes part of the world. 

From the practical point of view this gives a high degree of flexibility to the 

configuration of the system. In the case of a new visualisation device being used, the 

HCI does not need to be re-programmed since it is automatically rendered together 

with the rest of the virtual world. For the convenience of the user, the developer has 

to configure the relevant classes (as described in Section 6.4.3) and decide where the 

3D-GUI will be initially placed inside the environment once the system is loaded. 

New pointing devices can be implemented taking advantage of the pre- 

existing structure of the 3D-GUI as a means for interaction with the system, since the 

pointing device is independent from the metaphors used. 

The features described above are achieved through the adoption of a complex 

design pattern illustrated in the following sections. 
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6.5.4.1 Everything is a "Pickable" Node 

JCAD-VR can treat the 3D-GUI like one of the objects of the virtual world 
thanks to an articulated mechanism based on one of the major features of Object 
Oriented (00) programming languages: the inheritance mechanism. 

In the inheritance process a class extends its base or super object, thus 
automatically importing its features. The inheriting class can also implement further 

routines, or methods, thus extending the function of its super class. 

In the specific case of JavaTM this approach is further emphasised since every 
objects extends another class. The inheritance process can be made explicit through 

extension of a specific object or, more often, it is implicit since in JavaTM every 
object that does not extend a class automatically extends the primal Object class. 

The process of inheritance contributes towards the separation, within the 

programming code, of the functions of an application from the details of the 
implementation. This is achieved through an approach that promotes the reuse of 

existing code. 

In a real world analogy (See Figure 6.22) the programmer, could for instance 

develop a class called Vehicle, with two routines or methods, named switch On and 

switch Off. Through the extension process a new class called Car could inherit the 

features of a Vehicle. This way every Car object would automatically be provided 

with the two methods switch On and switchOff; however, at the same time, Car could 

also include other methods such as turnOnLights and turnOffLights. Likewise, a new 

class called Convertible could extend the Car class thus inheriting all its methods, 

including those inherited from Vehicle and those specifically developed inside Car. 

Additionally Convertible could include more specific methods. This analogy could 

be extended to include objects like Truck or Motorbike, which would inherit their 

properties directly from Vehicle, or objects like Saloon or Hatchback, which would 

inherit properties from Car. 
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Figure 6.22: The inheritance mechanism 

It is noticeable from this analogy that the inheritance mechanism promotes 
the reuse of existing code through the automatic extension of functions developed in 

previously developed classes. 

However, developing a code that makes clever use of inheritance has another, 

perhaps even more important, advantage. Referring to the previous analogy once 

more, it could be possible for the programmer to go back to the Vehicle class, after 

all the aforementioned classes were developed, and change one of its properties by 

for instance including a new method: brake. 

As a consequence of the inheritance structure all the objects extending the 

Vehicle class could access the new function without the need for the programmer to 

rewrite the brake feature for each object. More importantly, it would be possible to 

manipulate the mechanisms of the Vehicle class by replacing for instance, the 

internal combustion engine with an electric motor. The change would be 

automatically applied to all the other objects. Finally, if specific circumstances 

required it, the programmer could replace the electric motor of the Convertible with a 

petrol engine, through the casting mechanism, independently from the type of engine 

being used by all the other vehicles. 

It is evident that through inheritance, casting and polymorphism, which is the 

mechanism that permits further level of customisation of methods extended from a 

base or super class, the developer can achieve an extremely high level of flexibility 

within the code. 
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Figure 6.23: The inheritance architecture in JCAD-VR 

Adoption of this powerful structure is shown in the structure illustrated in 

Figure 6.23, which illustrates the inheritance architecture of JCAD-VR. At the top of 

the diagram there is the previously mentioned Object class, the ultimate super class 

of every object created in JavaTM. Proceeding down the structure the next four levels 

of inheritance are characterised by the Java 3DTM API layer. At the top of the JCAD- 

VR level, there is the Pickable class, the super class of every other graphic object 

developed in JCAD-VR. This class is the super class of every "pickable" object in 

the virtual world, every object that can be selected and manipulated inside the 

system. 

The inheritance from the Pickable class allows JCAD-VR to treat the 

elements of the 3D-GUI as the same as the objects in the virtual world since they all 

share the same features: they can be "picked". To do so the Pickable class provides 

all the methods necessary for the handling of objects through the picking mechanism 

(described later in Section 6.5.4.2). 
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The methods defined at the Pickable class level are of the most general type, 
defining for instance whether the object is being edited or if the system has finished 

editing, without providing specific details of how the object has to be handled by the 

system. Due to its high-level architecture, the Pickable class is defined as abstract, 

meaning that the programmer cannot use it directly but it has to use one of the 

classes inheriting from it. 

Looking at the Figure 6.23 and moving one level down the hierarchy, the 
PickableNode class is encountered. This is the super class of every object, and 
includes the set of 3D-widgets used to manipulate its geometry. The details of the 

PickableNode's DAG have already been illustrated in Figure 6.14, where the 

mechanism behind the 3D-widgets was shown. This class defines the geometry 

necessary for the management of the 3D-widgets and through its methods the 

programmer has access to the TransformGroups used to modify the configuration 

and appearance of each object in the environment. 

From the illustration of these first two classes it is evident how JCAD-VR can 

manipulate elements of the 3D-GUI in the same way as every other object belonging 

to the virtual world. In fact, through the inheritance mechanism every 3D-menu, 3D- 

panel, wall or cone etc. can be ultimately treated by the system as a PickableNode 

and therefore manipulated through its 3D-widgets. 

Referring again to Figure 6.23 and moving down another level, it is possible 

to see how the inheritance structure eventually separates the objects belonging to the 

3D-GUI from those used to create the geometries, whose detailed implementation 

will be discussed in the following chapter. 

Regarding the implementation of the 3D-GUI, the Pickablelnterface is the 

super class of every 3D-menu, 3D-panel or 3D-icon present in the world. This class 

features only one method that is used by the system to activate the object. The main 

difference between the elements of the 3D-GUI and the other objects is that the 

former have some form of functionality or command embedded in them that can be 

invoked by selecting the object with the pointer. In order to take advantage of the 

flexibility supplied by the inheritance mechanism, the method of the 

Pickablelnterface class that expresses the command is declared abstract. 

169 



As with to the case of the abstract class, the programmer can declare the 

existence of a method, without defining its implementation, through an abstract 

method. This mechanism ensures that every element of the 3D-GUI is embedded 

with a command used to accomplish a certain function, but it leaves the 

implementation details of a specific function to each class extending 
Pickablelnterface. 

The flexibility and abstraction brought by having several levels of 
inheritance permits JCAD-VR to treat the same object in different ways according to 

the context. In this is way an object of the 3D-GUI can be treated as an element of a 
3D-menu if the user is selecting it to command an action, or as a simple 3D-object if 

the user wants to move it for instance. 

At the base of every interaction there is the fundamental process of selecting 

the objects, known in technical literature as the picking process. The next section 

describes the details of the picking process implemented in JCAD-VR. 

6.5.4.2 The "Picking" Process 

The "picking" process in computer graphics is the mechanism necessary to 

select objects in the virtual space. 

In JCAD-VR a selection process based on simple ray-casting or laser pointer 

techniques (Bowman et al., 2001; Forsberg et al., 1996) has been implemented. The 

technique was chosen in preference to the ones described in Section 4.5.2.2, since it 

is very effective, and yet more simple to develop as a systems dealing only with solid 

geometries rather then lines or points. 

In the ray-casting technique, a ray passing from both the user's virtual eye 

and the mouse pointer, is then projected into the environment and the object closest 

to the user which is intersected by the ray is chosen as the "picked" one. 

This method is normally supported at the Java 3DTM API level and does not 

require further implementations. Unfortunately a bug in the release of JavaTM used to 

implement JCAD-VR (See Appendix D) prevented the standard picking mechanism 

being used when JCAD-VR was running in multiple-screen mode. When more than 

one screen was attached to the system the mechanism did not correctly return 
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information on which canvas the pointer was located at the time the picking action 
was requested. This information is fundamental to create the ray cast into the scene. 

As a consequence the relevant routines were rewritten in JCAD-VR's 

PickingEngine class. The PickingEngine adopts a two-stage algorithm. During the 
first stage the system checks for intersections between the correct ray, generated 

compatibly with the multi-screen configuration, and the bounding shape, an invisible 

volume defining the rough dimension of every object in the virtual world. The 

information on the objects whose bounding shape has been intersected by the ray is 

stored in an ordered array where the element n. 0 is the closest to the user's virtual 

eye. 

In order to increase the efficiency of the searching algorithm JCAD-VR's 

entire DAG has been structured so that all the objects inheriting from Pickable 

belong to a specific branch. In this way the search for the pickable node is 

constrained to a limited section of the DAG (illustrated in Figure 6.24). 

During the second stage, the system scans the objects present in the array 

mentioned above, and checks for any intersections between the geometry of the 

object and the ray. The first object whose geometry intersects the ray is chosen as the 

one to be picked. 

The approach described is relatively fast but not always precise. The picking 

process is imperfect in the unlikely circumstance of two objects being in the 

trajectory of the picking ray and the bounding box of the farther one intersecting the 

picking ray before the bounds of the closest object. 

Ideally, during the second stage, the system should check for intersections 

between the picking ray and the geometries selected in the first step. It should then 

calculate each intersection point and eventually choose the geometry whose 

intersection point is the closest to the user's virtual eye. Nevertheless, due to the 

infrequency of the unlucky circumstances described, the simpler approach has been 

taken because it performs much better in terms of efficiency and speed. 
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Figure 6.24: The BranchGroup where all the Pickable objects are located 

The ray casting mechanism is not only used when selection of objects is 

required. It is also fundamental for when the user needs to create objects in the space. 

In JCAD-VR the user creates objects in a very visual way, first by selecting the type 

of geometry to be created from the creation 3D-menu and then through drags and 

clicks of the mouse (See Section 7.3.2). Since a two dimensional device such as a 

mouse is used to localise the exact point in the space the system forces the user to 

define points as the intersection of a planar surface and a ray passing from their 

virtual eye and the pointer. 
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6.6 Conclusions 

This chapter described the implementation of the two cores of the 3D-Unit 

that relate specifically to the Human-Computer Interface of JCAD-VR: the 
Visualisation and the Interface core. This has been illustrated through description of 
the DAG used for the development of JCAD-VR. 

The chapter illustrated how the flexible architecture of JCAD-VR would 

allow the system to be expanded over a range of devices with minimal impact on the 

code. In addition the different parts of the 3D-GUI have been described together with 
the technical issues tackled during their development. 

This chapter also outlined the special inheritance structure followed in the 

development of the system leading to a mechanism that can manipulate elements of 

the 3D-GUI in the same way as normal objects. Details of the picking process, which 
is ultimately at the root of every form of interaction with the system, was provided. 

The following chapter describes the third an last core of the 3D-Unit, the 

Geometry core, which is responsible for the creation and editing of geometries. It 

will outline the inheritance architecture responsible for the different features of the 

geometries and the details of the internal mechanism developed to create and edit the 

geometry. 
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7 The Content of the World: the Geometry Core 

7.1 Introduction 

The previous chapter described the implementation of the two cores 
responsible for the Human-Computer Interface (HCI) of JCAD-VR: the Visualisation 
Core and the Interface Core. This chapter illustrates the details of the third and last 

part of the 3D-Unit: the Geometry Core, the section of the client application that 
deals with the content of the virtual world. 

As already mentioned in the previous chapters, JCAD-VR is a design tool 

especially designed to assist architects in the early stages of the design process. 
During this stage traditional Computer Aided Design (CAD) systems do not provide 
the user with the proper tools. They are often specifically for the engineering stage 

and consequently their use is inappropriate in earlier stages of the design process. In 

fact CAD applications usually bind the designer's freedom through the imposition of 

a formal and constrained syntax. This forces the user to think in terms of 

mathematical values rather than letting them experiment quickly with a variety of 
different solutions. 

In contrast, the Geometry Core of JCAD-VR has been designed to provide 

the user with a tool to create simple geometries in a rapid and intuitive way. It 

therefore provides a tool which creates shapes in a very straightforward and visually 

sympathetic way using simple mouse commands, through the abstraction of the rigid 

mathematical representation of traditional CAD systems. 

The following sections will describe the details of the Geometry Core. They 

will illustrate the processes of creation and editing of geometries and explain the 

internal architecture of the 3D-shapes supported by JCAD-VR. 
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7.2 Issues Related to Java 3DTM 

7.2.1 The Relevant Section of the DAG 

Figure 7.1 illustrates an overview of the Directed Acyclic Graph (DAG) used 
in JCAD-VR. Through this it is possible to show the function performed by the 
Geometry Core. 
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Figure 7.1: The section of the DAG implementing the Geometry Core 

From Figure 7.1 it is possible to see that the Geometry Core handles the 

geometry of every object visible in the virtual world. This includes: 

" The environment used as the context of the design, loaded from a 3D- 

model built using CAD software. 

" Geometries of avatars whose position is upgraded every time the sever 

notifies the movement of a user in the virtual world. 

" The behavioural components of the system, responsible for decoding the 

user's commands. 
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0 The objects created by the user. 

This chapter will show the details of each sub-branch of the DAG and later 

sections will outline the advantages of this layout. Moreover special attention will be 

paid to the illustration of the behavioural features of the system. This is achieved 
through a set of nodes whose task is to interpret the user's mouse movements and 
clicks into meaningful actions according to the state of the system. 

7.2.2 The Object Inheritance Structure 

The previous chapter outlined the advantages of the multiple level of 

abstraction given by the use of inheritance in the general management of the 

programming code. Specifically, within the Geometry Core, every class used to 

create 3D-shapes extends a single super object called SuperAECObject (See Figure 

7.2). 

Figure 7.2: The inheritance structure of the objects created by JCAD-VR 

The SuperAECObject class outlines the general features shared by every 3D- 

shape created in the virtual world. This is done through a number of routines, or 

methods that deal with the technical details of each specific geometry. 
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In particular this class defines the details of how an object manages its 

geometry during the construction process. Most of the methods used for the 

manipulation of each shape's geometry are defined at the SuperAECObject class 
level. However, this class does specify their implementation and consequently every 

class extending from it has to specify their content. 

This approach provides a shared framework and a sequence of operation 

which is common to every object and which can be used to handle the creation of the 

shape at a more general level. Each particular object then implements the routines 

extended from SuperAECObj ect according to the requirements of their geometry. 

As illustrated in Figure 7.2 the SuperAECObject class is extended by every 
3D-shape created with JCAD-VR. These include both geometric primitives, e. g. 

cones, boxes and spheres and architectural entities, e. g. walls, doors, windows and 

slabs. From Figure 7.2 it is possible to see that SuperAECObject is actually the super 

class of another important class called Frame, which is the super class of every door 

and window in JCAD-VR. This class contains all the routines necessary for 

interaction with Wall objects and in particular it accesses the database used to 

manage windows and doors (this will be illustrated in Sections 7.5.1 to 7.5.3). 

The Frame class is also the parent of SuperDoor and SuperWindow, the two 

classes extended by every door or window created in JCAD-VR. These classes 

handle the general details of how the geometry of a door or window is placed within 

the existing structure of the wall. 

Finally Figure 7.2 illustrates the LibraryObject class, which is the parent class 

of every element present in the library. This class does not specify any special feature 

however it is used by the system to keep track of all the shapes belonging to the 

objects library. 

7.3 How the User Creates 3D-Shapes 

In JCAD-VR the mechanism which controls the creation of objects within the 

virtual world is without any doubt the most important part of the Geometry Core. 
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In JCAD-VR the user can create both geometric primitives, e. g. cones, boxes 

and spheres, and architectural entities e. g. walls and slabs. The difference between 

the former and the latter is fundamental. Although from the visualisation point of 

view a wall is identical to a box in fact, its implementation is substantially different. 

While a box is just regarded as a simple shape without any further qualities, the wall 

owns specific properties. First of all it can be the parent of other sub-objects like 

windows and doors. Its geometry is also made of three different surfaces: the internal 

and external faces and a core. These geometries are independently reconfigured 

when doors and windows are attached to it (as illustrated in the later Section 7.5.1). 

As already mentioned the creation and editing of objects in JCAD-VR is a 

very dynamic and visual process since users do not just type in values but use the 

pointer to instruct the system on the object's type and size. In addition, since the 

object is being built and adjusted interactively while users move the mouse, this 

immediate feedback encourages users to experiment with different design 

configurations. 

In JCAD-VR (as illustrated by Figure 7.3) the creation process is a three-step 

procedure. First the geometry is created with default values, then it is dynamically 

adjusted by the user, and then it is finalised and made accessible to the other 

participants of the collaborative session. 

Start 

Creation of geometry 

Setting of parameters 

Finishing step 

End 

Figure 7.3: The three phases of the process in creating 3D-shapes 

While the first and the last stages are instantaneous the second (the setting of 

the geometry) relies on the users interaction to take place. The user moves the pointer 

178 



and the system adjusts the object accordingly until the desired dimension is achieved 

and the user confirms their choice through a click on the mouse. The user can quit 
the second stage at any time. If this happens the system assigns standard values to the 

remaining undefined dimensions. 

7.3.1 An Example of the Creation of a Geometric Primitive 

In practice users create 3D-shapes by selecting the type of geometry required 
from the relevant 3D-menu. They then use the pointer to create the geometry through 

a sequence of drag-and-click operations. 

Figure 7.4 shows an example of the interactive creation of an object (a cone). 
The circles in the image show the location of the pointer on the screen every time the 

left button of the mouse was pressed. 

e) 

Figure 7.4: The creation of a cone 

In Figure 7.4-a the user has clicked (1) on the creation menu to activate the 

geometric primitive sub-menu that appears floating in the space. The user has then 

selected (2) the cone shape by another click. Once the type of geometry has been 

selected the user can create the object. To do so, they select with a mouse click (3) 
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the point on the "ground plane" where the cone is to be placed and the object was 

automatically placed in the space with its default values (Y=1.00, X=0.50, Z=0.50) 

(Figure 7.4-b). 

Once the object is placed in the space the user can decide the dimensions of 
the object being created through a sequence of mouse commands. First they moved 
the cursor to define the first dimension of the cone, the base radius. This was 
interactively adjusted according to the position of the pointer until a mouse click (4) 

confirmed its final value (Figure 7.4-c). 

Then the user moved the cursor to define the second dimension, the height of 

the cone. As in the previous case this can be interactively adjusted at the user's wish, 

until the mouse button was pressed (5) to confirm its value (Figure 7.4-d). 

The system, is aware then that the object had been fully defined, and it 

instantly finalised the object. At this stage (as shown in Figure 7.4-e) the 3D-widgets 

disappeared, the object's information was stored in the internal database and a 

message was sent to the server. Once the message was received with the information 

about the cone the server broadcasted the information to the other users whose 

systems then upgraded the content of their virtual worlds to reflect the new state of 

the object. 

Once the object is finalised it can be accessed again and edited in a similar 

way (as shown in Figure 7.4-f) any user can select the object and move, rotate, or 

scale it by using the 3D-widgets (as described in Section 6.5.2.2). 

7.3.2 A Mouse-Driven Process 

The simple example illustrated in Section 7.3.1 shows that the user creates 

shapes in JCAD-VR through the interpretation of their mouse actions, without the 

need for them to type in values. 

Shape creation in practice is achieved through the picking process (described 

in Section 6.5.4.2). The picking algorithm identifies a point in the virtual space as 

being at the intersection of a plane with the ray (which has passed from the user's 

virtual head position and the mouse pointer). 
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During creation the picking process extracts a set of points from the position 
of the mouse on the screen. In the example shown in Section 7.3.1, the system placed 
the cone in the space through the point identified by the user's mouse click (See 

Figure 7.4-b). This point is calculated as the intersection of the picking ray with the 
horizontal plane and the cone is placed so that the centre of its base coincides with 
this point. 

Once the geometry has been created at a default size, the user can customise a 

number of settings, in the example of the cone the base radius and height was 

changed. To do so The picking algorithm calculates the intersection between the ray 

and the horizontal plane for every frame while the user is moving the pointer. This 

point is used by the system to set the base radius as the first parameter for every 
frame. In particular its value is set in relation to the distance between the point just 

calculated and the centre of the base. 

The result is that as the users move their pointer they have the impression that 

the base of the cone changes size according to their pointer's position. Once the user 
has decided on the final value he/she confirms it by clicking on the left button of the 

mouse. In the previous example the system set the final value of the radius of the 

cone and passed on to the following step where the user set the height. 

As in that case the height of the cone is calculated through the intersection of 

a ray with a surface. This time the surface used is a vertical plane passing from the 

centre of the base of the cone. As a result when the user moves the pointer the height 

of the cone is interactively changed and appears to follow the pointer's movement. 

7.3.3 The Event/Listener Pattern 

In the case of the programming code involved every time the user moves the 

mouse or clicks on one of its button an event is generated. 

An event is a special type of object used to automatically transmit some data 

between different parts of the code. More precisely, in JavaTM a class can "fire" an 

event to a number of listener classes that receive it automatically. The event/listener 

pattern is the JavaTM specific implementation of a more general Observer/Observable 

programming pattern. This is also known as the Model/View/Controller architecture 
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which was introduced by the Smalltalk programming language. This programming 

technique provides support for asynchronous one-way wiring through event 

notification. The event/listener pattern allows precisely the dynamic binding of 

separate elements of the code through the use of special objects, called events, which 
deliver some types of data between parts of the code. The advantage of this pattern is 

that the data transfer is not achieved through a direct hard wiring of routines, but is 

done automatically by the system at run time whenever a new event is generated. 

For instance if two classes (A and B) are registered as listeners to a third class 
(C) every time class C "fires" an event, A and B will be automatically notified. The 

notification mechanism automatically triggers a routine in both classes. As a result 

class C does not need to directly invoke the routines within A and B. Instead it 

simply "fires" an event and every class registered with it as a "listener" will 

automatically respond by triggering the relevant method. 

In JCAD-VR, every time a mouse movement or the pressing of one of its 

buttons is detected, the system "fires" a special event called MouseEvent. This 

contains all the relevant information about the action such as the position of the 

pointer on the screen, the time and the type of action. 

This information can then be used by the system to interpret the user's 

commands into meaningful actions. In JCAD-VR the precise interpretation of the 

user's commands takes place using a four level interpretation mechanism, which will 

be described in the following section. 

7.4 The Four Level Interpretation Process 

The previous sections showed that the process of creation or editing of 3D- 

shapes depends completely on the interpretation of the mouse commands. The user 

can similarly access other functions, like navigation or interaction with menus by 

moving the mouse or clicking its buttons. 

JCAD-VR requires the use of a three button mouse or alternatively a mouse 

with two buttons and a roller configured to work as the central button. The left button 

is used to start an action, for example selecting a menu, opening a door, selecting one 
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of the 3D-widgets or confirming a point in the space. The right button is used to 

select an object and to edit it. Finally, the central button or roller is used to start the 

navigation. 

Every time the user interacts with the mouse a specific type of event (See 

Section 7.3.3) called MouseEvent is generated by the system. Unfortunately the 

version of JavaTM for Windows platform used during the development of this system 
(See Appendix D) did not properly support the signals coming from the central 
button of the mouse. This version of JavaTM specifically did not generate the correct 
MouseEvents when the central button of the mouse was pressed. However events 

were correctly generated every time a drag or move action was requested. 

As a consequence, when JCAD-VR is run on the Windows platform the user 

cannot press the central button of the mouse to start the navigation. Instead, the user 
is obliged to select the relevant icon from the navigation menu and then begin 

navigating while keeping the central button pressed. This problem does not occur on 

the Sgi version where the system fires the correct MouseEvent every time a click 

from the central button of the mouse is detected. 

Every time a MouseEvent is received the system has to decode it to transform 

it into a meaningful command. In JCAD-VR the interpretation of the user's 

commands is based on the four level process shown in Figure 7.5. 
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Figure 7.5: An overview of the algorithm responsible for the management of 

MouseEvents 

Every time a class belonging to a level receives a new MouseEvent, it uses 

the information contained in the event to change its state accordingly and then it 

passes the event to the following level for further interpretation. The effect of the 

event on the system is distributed in this way. The classes that handle the general 

logic of the interaction use the event to set the state of the system. The classes used 

to create shapes use the event to change the state of objects. 

More specifically the first level has to evaluate whether an event has to be 

processed or ignored. The second level then operates as a router that identifies the 

nature of the event and it passes it to the relevant process on the third level. There the 

event is handled by different sub-routines depending whether it carries information 

on the creation or editing of objects or on the navigation of the environment. 
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The interpretation process continues until the fourth and last level is reached. 
At this stage the event reaches the object and it is fully decoded. According to this 

mechanism the object itself is responsible for the interpretation of the information 

contained in the event. At the fourth level the object itself ultimately receives the 

event and it acts upon its routines and variables to change its state. 

This is how, for instance, through the pressing of the same button of the 

mouse the user can minimise or maximise a menu, open or close a door, rotate or 

scale an object. Once the object receives the event it performs the fourth level action 
it is programmed to do: a fixture opening or closing its panel, a menu disappearing or 

showing its icons etc. 

The following sections will illustrate the logic structure of the interpretation 

process and provide details of each level. 

7.4.1 First Level Interpretation 

The first and second levels of interpretation are implemented within the class 

called Picking. This class is primarily responsible for the interactive nature of the 

creation and manipulation of geometries. As illustrated in the following pages this 

class identifies the type of interaction intended by the mouse action through an 

articulated algorithm that uses the picking mechanism described in Section 6.5.4.2. 

The interaction is provided by extending the Java 3DTM class responsible for 

the behavioural features of an environment. This will be referred to as the Behavior 

class, rather than the Behaviour class to conform with the existing technical 

literature. 

The Behavior class provides the means for the automatic execution of 

commands in response to a triggering condition. This could be as a result of the state 

of the virtual world, like the rendering of a certain number of frames or the elapse of 

a specific number of milliseconds. A triggering condition can also be generated, as in 

the case of the Picking class, by a user's action in a command inferred through a 

mouse or keyboard. More complex triggering conditions can be the results of many 

conditions linked together. 
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As soon as a triggering condition is met the Java 3DTM scheduler invokes the 

relevant Behavior class. This in turn automatically executes the command contained 
in a specific routine. The command can cause a change in the structure of the DAG, 
(for example changing attributes or the position of a node) as well as modification of 
part of the code that is independent from the content of the virtual world (the 

dispatching of a message through the network for example). 

In this way, a single class can elegantly and efficiently decode different types 

of triggering conditions rather than using several event/listener mechanisms. The 

interpretation process becomes closely attached to the structure of the 3D-world itself 

since a Behavior node can be placed within the DAG of the system. In the case of the 

Picking class, every time the user interacts with the mouse a new MouseEvent is 

generated and when this is notified it automatically triggers the interpretation 

process. 

As shown in Figure 7.5, at the first level the algorithm receives the 

MouseEvent and it decides through the information it has on the state of the system 

whether the event just detected is relevant to the process being performed. At this 

stage repeated or irrelevant commands are filtered out. If the user has already 

selected an object for instance, every further event requesting the selection of the 

same object is ignored. If the MouseEvent is considered relevant instead, the system 

has to decode its content and therefore it passes the event to the second stage of the 

algorithm: the control mode level. 

7.4.2 Second Level Interpretation 

The Picking class is also responsible for the second level. At this stage 

(which takes place in a method called processMouseEvent) the class acts like a router 

sending the relevant information to the correct third level routine. This is done 

according to the state of the system specified in the controlMode variable which is 

used to monitor if the system is already engaged in a creation, navigation or editing 

process. 

The system checks whether the MouseEvent is coherent with the present 

controlMode and if this condition is met it sends the event on to the third level to the 
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relevant process that will provide the means for further decoding of the action. If 
instead the action is found to be incompatible with the present state, the system 
interprets the event as a command from the user to change mode. The algorithm then 

changes the value of the controlMode variable and passes the MouseEvent on to the 

relevant process as shown in Figure 7.5. 

If for instance the user presses the central button of the mouse during the 

creation of a shape, which is done with the left button of the mouse, then this is 

interpreted as a command to switch from creation to navigation mode. The system 

then interrupts the creation of the object and assigns the default parameters to it. It 

then changes the controlMode variable and routes the event to the third level for the 

navigation sub-routine and further decoding. 

7.4.3 Third Level Interpretation 

At this level (as shown in Figure 7.5) three different routines are implemented 

for the navigation, creation or editing of objects. Navigation has already been 

illustrated in the previous chapter although from a different perspective. Therefore 

the next sections will only give the details of the two algorithms that are relevant to 

the Geometry Core: the processes dealing with the creation and editing of objects. 

7.4.3.1 The Interpretation of Creation Commands 

As already shown in from Figure 7.4 in JCAD-VR the user can create shapes 

through clicks of the left button and movements of the mouse. However, the left 

button has several other functions for instance it can be used to create geometries, 

activate a command through a menu or to open or close a door. 

As a consequence, every time a MouseEvent is generated after the left button 

of the mouse is pressed the system needs to retrieve more information in order to be 

able to decode the event correctly (See Figure 7.6). 
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Figure 7.6: The algorithm responsible for the creation process 

This system invokes a picking process (See Section 6.5.4.2). This allows it to 

retrieve information regarding the type of object being selected. If the user has 

selected a menu the system has to execute the relevant command. If they have 

selected a door or window it has to pass the event to the object so that the panel can 

be opened or closed. If neither of these two conditions is met the action is considered 

to be part of a new or an existing creation process. In this case the MouseEvent, 

which had generated the picking process, is passed to the class that manages the 

creation of objects: the AECObjectsCreator class. 

The AECObjectsCreator is the backbone of the creation process. It is 

triggered once the system has recognised that the MouseEvent deals with the creation 

of an object. Its currentObjectType variable defines the type of object being created. 

The value of this variable is set every time the user selects a 3D-menu to create an 

object. 
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As soon as the 3D-menu is selected, the information on the type of object to 
be created is retrieved by the picking mechanism and it is passed to the 
AECObjectsCreator (See Figure 7.7). Then the AECObjectsCreator class sets the 

currentObject Type variable to the correct value identifying the type of object being 

created (See Section 6.2.2.1 of the companion thesis Ucelli, 2002). 

r- aA 
currentObjectType = 10.0`, 

AECObjectsCreator 

NEW OBJECT 

Figure 7.7: The AECObjectsCreator and the currentObject Type variable 

When AECObjectsCreator is invoked it retrieves the state of the object being 

created to decide what action is to be taken. If an object is currently being created the 

information received is used to set its state accordingly. If the AECObjectsCreator 

finds instead that there is no object being created then it will start to create a new 

one. 

However, although AECObjectsCreator manages the overall creation process 

the new object is not generated within this class. Instead the AECObjectsCreator 

class makes use of a different class called AECObjectFactory. The UML diagram in 

Figure 7.8 illustrates this mechanism and highlights the relationships between the 

classes involved in the creation process. 
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Figure 7.8: UML diagram of the classes involved in the creation of objects 

When the AECObjectsCreator (in yellow in Figure 7.8) needs to create a new 

object it invokes the AECObjectFactory. To do so it passes the specific object type 

specified by the currentObjectType variable to the AECObjectFactory. The 

AECObjectFactory (in orange in Figure 7.8) creates the object (in green in Figure 

7.8) and returns it to the AECObjectsCreator to continue the creation process. 

The AECObjectFactory creates the specific object requested by the 

AECObjectsCreator (e. g. a Cone) however it returns this in the form of a generic 

SuperAECObject (in cyan in Figure 7.8). This is possible thanks to the inheritance 

structure (illustrated in Section 7.2.2) according to which every object created in 

JCAD-VR is ultimately a SuperAECObject. 

This programming technique returns an object in the form of one of its super 

classes. This is then called upcasting since the object is "cast" (from the logical point 

of view) into one of the elements further up the inheritance structure. 

The use of the upcasting technique permits the AECObjectsCreator to 

manage the creation process generally, regardless of the specific type of object 

handled. In fact, independently from being a Door, Window or Cone every class is 
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ultimately a SuperAECObject and as such they can be handled by the 

AECObjectsCreator (See Section 7.2.2). 

Since AECObjectsCreator receives a generic SuperAECObject it can handle 

any object in the same way i. e. independently of its specific nature. In the cone 

example in Section 7.3.1, when the user changes the base radius, the 

AECObjectsCreator operating the action is not aware of the object type. The 

AECObjectsCreator uses the information received to generically command the object 

to set, for instance, its first parameter to a specific value. The system becomes 

"aware" of the first parameter being the base radius only at the fourth level of the 

interpretation process (described in the following section). When the MouseEvent 

arrives at the fourth level, the object (the Cone class in the previous example) finally 

sets its first parameter (the base radius) to the specific value passed by the 

AECObjectsCreator. 

In short, this abstraction allows the AECObjectsCreator to handle the process 

of setting the length of a wall or the base radius of a cone in the same way. For the 

AECObjectsCreator both variables are in fact just the first parameter specified by 

their super class. 

A further advantage of using the upcasting technique is the system's 

"awareness" of the specific nature of each object. Every object, if required, can be 

turned into its specific type through a downcasting process. This term means to cast 

an object down the hierarchy structure. 

As soon as the AECObjectsCreator receives the object in the form of a 

SuperAECObject, it places it inside the virtual world. As shown in Section 7.3 the 

creation itself is a three stage process. The object is first placed in the virtual world 

with its default dimensions, the user sets its parameters and then the object is 

finalised. 

After the 3D-shape has been placed inside the environment, every further 

MouseEvent received is used to set the parameters of the object until it is finalised. 

To do so the AECObjectsCreator retrieves from the object a variable called 

numberOfParameters that specifies the number of parameters for each object that the 

user can set. Then the AECObj ectsCreator class continues to route the MouseEvent 
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to the object until the final number of parameters of the specific object is reached. 
The specific action of setting a parameter is done at the fourth level since the details 

of it are specified within the code of the objects. This will be illustrated in Section 

7.4.4. 

When AECObjectsCreator has set all the parameters specified by the 

numberOfParameters variable it finalises the object. The user can quit the process of 

creation at any time. In fact, if an action incompatible with the current process is 

decoded at the second level (See Section 7.4.2) the Picking class orders the 

AECObjectsCreator to finish the creation. In this case, independently of the number 

of undefined parameters, the AECObjectsCreator goes directly to the finishing stage. 
The object's remaining parameters are assigned default values and it is finalised 

through the call of its finish method as illustrated in Section 7.4.4. 

When the AECObj ectsCreator finalises an object it fires an AECObjectEvent 

(in pink in Figure 7.8). This event contains the numerical representation of the object 

(See Section 6.2.2.1 of the companion thesis Ucelli, 2002). Through the network this 

information is also used to inform the other users in the session of the creation of the 

new object (as illustrated in Section 7.4.3.3). Furthermore the AECObjectEvent 

contains a unique ID number, called key, which is univocally created from the 

memory location of the object to identify that object. 

The AECObjectEvent fired by the AECObjectsCreator is then received 

automatically through the listener/event mechanism (described in Section 7.3.3) by 

the NetworkAECObj ectslO and DataAECCollector class (in light and dark blue in 

Figure 7.8). These classes handle the transmission of data from/to the server (See 

7.4.3.3) and the storing of information inside the internal database respectively (See 

Section 6.2.5 of the companion thesis Ucelli, 2002). 

7.4.3.2 The Interpretation of Editing Commands 

The process of editing objects (as shown in the previous chapter) is based on 

their interaction with a set of 3D-widgets (See Section 6.5.2.2). With a right click on 

the mouse the user selects the object and starts manipulating it by dragging one of the 
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arrows representing the axis of its local coordinate system. The user can decide to 

translate, rotate or scale the object through the 3D-icon shown beside the object. 

At the third level, from the logical point of view, the interpretation of the 

MouseEvent when editing objects is a simpler process than the creation equivalent. 
Once the user has selected the object, the system does not in fact need to retrieve any 
further information about it and the system starts editing the object regardless of its 

type. 

As shown in the previous chapters (See Section 6.5.4.1), JCAD-VR's 

inheritance structure makes it possible to deal with elements of the 3D-GUI in the 

same way as the other objects populating the virtual world. Since every object in the 

environment ultimately extends the PickableNode super class, they can be edited in 

the same way regardless of their type. This class (as illustrated in Section 6.5.4.1) 

provides the means for an object to be recognised by the picking mechanism and to 

be consequently manipulated. Therefore the algorithm does not need to enquire if the 

object is for instance a 3D-menu or a Door. 

At this level the MouseEvent generated by the pressing of the right hand 

button of the mouse (as shown in Figure 7.9), triggers a picking process which is 

used to acquire a reference of the object that the user wants to edit. 
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Figure 7.9: The algorithm responsible for the editing process 

The picking algorithm is configured in order to constraint the search of the 

possible objects to the part of the DAG containing the relevant objects. This is done 

to increase the speed of the algorithm (as explained in Section 6.5.4.2). 

Once the picking process has returned the object, the process of editing starts 
immediately. No special routine needs to be written in the case of the object being a 

menu, since this is treated in the same way as any other object by the system. 

As shown in Figure 7.9 the system then checks if the object selected is the 

same as the previously edited one. This is done to understand whether the editing 

command refers to an object already selected or if the user wants to select a different 

object. 

If a new object is selected and if this is also an instance of a 

SuperAECObject, then the system fires an AECObjectEvent to network-lock the 
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object. This system (See Section 6.2.2.2 of the companion thesis Ucelli, 2002) 

ensures consistency across the network and avoids that more than one user editing 
the same object at the same time. The AECObjectEvent is received by the 
NetworkAECObjectsIO class, which sends a message to the server to lock the object. 
The object locked then becomes "unpickable", and as a consequence it is ignored by 

the picking process. Furthermore the object's locked status is made evident through 

the changing of its colour to bright red. 

Once the object is network-locked the editing mechanism can start. The 

message is passed to the fourth level and to the object itself which then performs the 

editing inside its own class. 

As in the case of creation, once the object has been selected manipulation is 

left to its sub-routines. This mechanism makes the general structure simpler since the 

entire editing process can be abstracted and the functions can be relegated to each 
independent object. 

Finally Figure 7.9 shows that if the system receives a MouseEvent not 

generated by a right-click or regarding an object already being edited, then the 

editing process continues and the event is passed to the object itself. Finally the 

system checks if the process has finished. 

If the editing of the object is completed and if the object is an instance of a 

SuperAECObject, then the system fires an AECObj ectEvent to the 

NetworkAECObjectslO class to release the network lock. The server then broadcasts 

a message to release the network lock from that object and it again becomes 

"selectable" by every user in the session. 

Although not illustrated in Figure 7.9 an analogous, yet simpler, process takes 

place when the user selects the object and hits the "delete" key to remove it from the 

virtual world. If the object is part of the 3D-GUI the command is ignored. If the 

object is instead an instance of a SuperAECObject then it is removed from the virtual 

world. An event is then fired and the NetworkAECObjectslO sends a message to the 

server. This broadcasts the information to all the other users' systems to upgrade the 

status of the virtual world. 
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7.4.3.3 NetworkAECObjectslO: how Other Users Create Shapes 

The previous sections have illustrated the mechanism behind the creation and 

editing of objects with JCAD-VR. It has also highlighted how this action can affect 
the other participants in the session through the client/server network. If a user 

creates, edits or deletes any of the shapes in the virtual world the AECObjectsCreator 

fires an AECObjectEvent. This is automatically received by the 

NetworkAECObjectslO class, which converts it into a message and sends it to the 

server (See Figure 7.10 a-b). This eventually distributes the message to the other 

users. 

Object 
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Figure 7.10: Communication from NetworkAECObjectslO to the server during 

the creation (A) and editing stage (B) 

Symmetrically, whenever a message is notified by the server the 

NetworkAECObjectslO class decodes the content and acts on the environment. In 

the case of a new object being notified (See Figure 7.11-a) the class invokes the 

AECObjectFactory to create the new object, similarly to the routine described in 

Section 7.4.3.1 and illustrated in Figure 7.10-a. 

196 



Object 

Figure 7.11: Communication from the server to the NetworkAECObjectslO 

class during the creation (A) and editing stage (B) 

As in Section 7.4.3.1 the object is created with default values. Then by using 
the information contained in the message, NetworkAECObjectslO automatically 
invokes the relevant methods of the object to set up its specific values. 

Therefore, the three stages of the creation process (illustrated in Figure 7.3 

and detailed in Section 7.4.3.1) are automatically executed by the system. The 

NetworkAECObjectslO replicates the algorithm executed by AECObjectsCreator. 

Therefore, from the implementation point of view, the process followed by the 

system in this case is identical to when the user creates an object (illustrated in 

Section 7.4.3.1). The sole difference is that in this case the user's interaction is 

bypassed. The information on the final state of the object, as well as the key used to 

uniquely identify the object, are already known by the system. 

In the case of the message received from the server containing information 

regarding an object being edited, deleted or locked then the process becomes much 

simpler than the one described in Section 7.4.3.2. The NetworkAECObjectslO class 

directly accesses the relevant object (See Figure 7.11-b) without any need for the 

picking process. This is done through a routine which checks all the objects present 

in the world and retrieves the one whose key is equal to the one contained in the 

message. 

197 



This process is made more efficient by the structure of JCAD-VR's DAG. 
Every object created by the system is placed in a specific part of the DAG (See 
Figure 7.1). This increases the efficiency of the algorithm which therefore only needs 
to analyse the limited part of the DAG where the objects are located. 

In short, it is evident that the process described in this section is much simpler 
than the ones detailed in the two previous sections. This is due to the fact that the 

system does not need to interpret any actions from the user. The 

NetworkAECObjectslO class can therefore pass the information strait to the object 
level where the data is used to change the state of the object. 

This is done at the fourth level of the interpretation mechanism which will be 

illustrated in the following section. 

7.4.4 Fourth Level Interpretation 

As mentioned in the previous sections the interpretation of the user's mouse 

commands into meaningful actions is a four stage process. Each level uses the 

information contained in the MouseEvent to change the state of the system and then 

it passes the event to the following level for further decoding. The first three levels 

manage the process at a high-level: the system commands the setting of a property 

without being "aware" of the operations being done at the fourth level. At the fourth 

or object level each object interprets the data within the MouseEvent in order to act 

directly on its structure. 

The next section describes the general mechanism used for the geometry of 

most shapes. The following ones will highlight the more specific approaches which 

are followed for the implementation of a specific object: the Wall class. 

As noted the creation process is a three stage routine: the creation of the 

geometry, the setting of the parameters and the finishing process. This is illustrated 

in Figure 7.12 which also shows the most important methods involved in this 

process. 
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Figure 7.12: The methods involved in the creation of 3D-shapes 

Section 7.4.3.1 illustrated the general process of creation of 3D-shapes in 

JCAD-VR. Every time the AECObjectsCreator receives an event regarding the 

creation of an object, it retrieves a new copy of a SuperAECObject from the 

AECObjectFactory class. The internal structure of a SuperAECObject is illustrated in 

Figure 7.13. 
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Figure 7.13: The sub-graph representing the nodes used to create a 3D-shape in 

JCAD-VR 

From this image it is possible to see that the object is made of several nodes, 
including the TransformGroups (TG) used for manipulation, the 3D-widgets used for 

editing and most importantly the node geometry. When the AECObjectFactory 

creates a new object, this is returned without the geometry which is specified later. In 

practice, the AECObjectFactory prepares and creates the general structure that is 

common to every object, while the geometry instead is created and configured 
through interaction with the user. 

Once the new object has been created the AECObjectsCreator passes the 

event to it for final decoding. This is when the fourth and final level of interpretation 

of the event takes place. 

The interpretation is implemented within the methods inherited from the 

SuperAECObject class, the super class of every object created with JCAD-VR. As 

already outlined in Section 7.2.2, most of the methods of the SuperAECObject class 

are not detailed. They are defined to provide a general framework, a common set of 

routines that every shape in the world uses to handle its geometry. In fact, by having 

a common structure every object can be handled in the same way regardless of the 

specific nature of their shape. Each object then specifies the content of the methods 

according to the requirements of its geometry. 
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When creation starts the algorithm performs a number of operations. This is 
illustrated in Figure 7.14, which gives a more detailed view of the first group of 
methods shown in Figure 7.12. 

(requirePreprocessingGeometry: true] 

[requirePreprocessingGeometry: false] 

createGeometry () 

(requirePostprocessingGeometry: true] 

[requirePostprocessingGeometry: false] 

placeGeometry () 

makeLive () 

preprocessGeometry C) 

postprocessGeometry ( 

Figure 7.14: UML diagram of the SuperAECObject's methods involved in the 

creation of the geometry 

If the object requires a particular pre-processing step before the geometry is 

created a special routine is called (See Figure 7.14). After this the geometry is 

created in the createGeometry method, which is implemented according to the object 

type. JCAD-VR's library objects will retrieve their geometrical information from 

pre-modelled VRML97 files through an external importer (See Section 7.6). 

Geometric primitives alternatively will use Java 3DTM classes to create their 

geometrical representations. In the case of the Wall class the details of the geometry 

will be specified within the code (this will be illustrated in the following section). 

After the geometry is created, if the object requires specific post-processing 

operations, the relevant method is called (See Figure 7.14). The geometry is then 

placed in the space through the placeGeometry routine (See Figure 7.14). As 
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described in Section 7.3.2 (in the example of the creation of a cone), when the user 
creates a shape the system extracts a number of points resulting from the location of 
the pointer. The placeGeometry method then takes the first point defined by the user 
to place the object in the space (See Figure 7.4-b) and to set the fields of the 

moveAndRotate TransformGroup (TG). This moveAndRotate TG (illustrated in 
Figure 7.13) moves the object to the position in the virtual world chosen by the user 
through a click of the mouse. 

Finally the system calls the makeLive method (See Figure 7.14) which is used 
to attach the diagram representing the object (illustrated in Figure 7.13) to the main 
DAG. In this way the object is attached to the virtual world becoming visible to the 

user. The first stage shown in Figure 7.12 is completed by this method. 

The object with its default values is now placed in the virtual world (See 

Figure 7.4-b) and the user can set a number of parameters. As described previously, 
the number of parameters editable by the user is specified by the 

numberOfParameters variable. This variable is used by the system to keep track of 
the number of operations to be done on the geometry of an object to fully define it 

and therefore it is specified in the implementation of each object. 

For instance every object in the library has a numberOfParameters equal to 

zero. This is due to the different nature of all the objects present in the library which 

makes it impossible to generalise on the number of parameters to be used. The object 

is placed "as it is" in the space, however the user can modify it later. Likewise doors 

and windows also have a numberOfParameters equal to zero. This causes the object 

to be placed into a wall with their default size. 

Other objects have a numberOfParameters equal to one. This is the case if 

the object is a sphere: during its creation the radius is the only parameter that can be 

set. Some objects can have two parameters available, e. g. a cone where the base 

radius and the height can be set. Other objects can have three parameters, e. g. a wall, 

where the user can specify the length, width and height. 

After the object is placed in the virtual world, if the numberOJParameters is 

greater than zero, the system starts setting the relevant parameters. This is done 

through a number of methods cycles that set a variable and perform the required 
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post-processing algorithm. This iterative mechanism is illustrated in Figure 7.15, 

which is a more detailed view of the second stage of Figure 7.12. 

Figure 7.15: UML diagram of the SuperAECObject's methods involved in 

setting the properties of the geometry 

In this image the "XXX" idiom is used for the method names to represent the 
first, second or third parameter, which is iteratively set. From Figure 7.15 it is 

evident that after setting the first parameter the system iteratively checks if the 

setting phase is finished. If it is not, it goes on to the following setXXXParameter 

method. This is repeated the number of times defined by the numberOfParameters 

variables. 

Each time the setXXXParameter is called the point in the space passed from 

the picking algorithm is used to calculate the parameter. This value is immediately 

applied so that the user can see the effect in the following frame. These points (as 

explained in Section 7.3.2) are calculated by the system according to the position of 

the pointer. Therefore the user has the impression that the geometry's modifications 

are directly related to the position of the pointer directed by their mouse. This 

behaviour provides the user with valuable real-time feedback by being very 

responsive and that encourages the user to try different solutions during the design. 

Each setXXXParameter is used to set one of the parameters of the object. In 

the general case the point which is calculated from the pointer's position is used to 

calculate the fields of the scale TransformGroup (See Figure 7.13). Most of the 
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effects on the various objects can be achieved through a uniform or non-uniform 

scaling process. Using the example of the cone and assuming the XY plane as the 
horizontal one, the base radius can be changed through a non-uniform X-Y scaling 
(Figure 7.4-c) of the cone which was created with the default dimension (Figure 7.4- 

b). The height of the cone can be changed through a non-uniform scaling process on 
the Z-axis (Figure 7.4-d). Likewise the radius of a sphere can be changed through a 

uniform XYZ scaling process. Once the modification on the TransformGroup is done 

the new dimension is stored in the internal database for further retrieval. Once the 

parameter is confirmed by a click of the left mouse button the system performs the 

postProcessXXXParameter method. This routine confirms the value and prepares the 

system for the next cycle. 

As mentioned, the user can interrupt the process at any time by clicking a 
different mouse button. The system then skips the remaining setXXXParameter 

methods assigns default values to the remaining variables and performs the finishing 

stage. 

Once all the setXXXParameter and postProcessXXXParameter methods are 

called the system moves to the final stage where the finish method is called. This 

method turns off all the 3D-widgets previously used for the creation process. 

Once the object is finalised the user can still change its state by selecting it 

with a right click of the. mouse. This triggers the mechanism just described where the 

user modifies the object through the two TransformGroups (TG in Figure 7.13). The 

user can then move, rotate and scale the geometry uniformly or non-uniformly. The 

system then upgrades the values of the internal database to reflect the new status of 

the object. 

This simple approach allows the changing of the dimensions of most 

geometrical primitives. Likewise the user can manipulate any other objects in the 

virtual world. In addition elements of the library (a staircase for instance) can also be 

manipulated using this mechanism. However, it must be noted that this approach 

does not modify the "topological" parameters of the objects. For instance, if the 

dimension of a staircase was scaled the number of steps would not be altered. This is 
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because this approach simply acts on the TransformGroups above the geometry and 
does not access the internal features of the geometry. 

The only exception to this mechanism is found in the Wall object. This object 
is in fact the only real fully parametric object in JCAD-VR. Its geometry is not 

reconfigured through the simple alteration of its proportions but by directly 

manipulating each vertex of the geometry. This will be described in detail in the next 

section. 

7.5 The Implementation of a Fully Parametric Object 

The previous section described the common case of the creation of a generic 
SuperAECObject. Most of the research effort involved in the development of this 

prototype was focused on the interaction mechanism described in the previous 

sections. Consequently most of the geometries supported in JCAD-VR are created 

through a mechanism that simply modifies the proportion of the geometry. 

However, to demonstrate the potential of JCAD-VR architecture and to prove 

that the framework illustrated so far could be developed far beyond the present level 

of its development in this prototype, a fully parametric shape (a wall) has been 

developed. This section shows how the general approach illustrated in the previous 

paragraphs could be extended offering support to real parametrical geometry. 

It was decided to use the example of a wall to create a fully parametric object 

due to its unique features. A parametric wall requires not only the handling of its 

geometry but also the management of the sub-objects within its structure (doors and 

windows). Furthermore, the mechanism illustrated in the following pages includes 

the intelligent handling of the geometrical constraints generated by the insertion of 

those fixtures. The system proposed uses an algorithm that provides the means for 

the automatic creation of doors and windows compatible with the dimensions of the 

wall or with the number and location of various other fixtures. 
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7.5.1 The Geometry of a Wall Object 

The implementation of the geometry of a wall had to take into account the 
fact that the insertion of doors and windows will change the geometry, which has to 

be pierced to house these fixtures. This makes it impossible to use any pre- 
determined or external file for its geometry. This required the development of a 

routine that can adjust the shape of the object at run-time. 

Through a mechanism similar to the one described in the previous section the 

methods that handle the creation and setting of the geometry use the information on 

the position of the pointer to create and upgrade the geometry at run-time. Unlike the 

method described in the previous section, this is not done through the manipulation 

of the scale TG (See Figure 7.13) but by accessing the coordinates of each vertex of 

the wall and then upgrading the geometry for every frame. 

The complexity of the algorithm being used is evident when a fixture is 

created. To do so the system abstracts the geometry of the wall by using points in the 

space. As illustrated in Figure 7.16 a wall is defined through four points 

Y 

X 

Z 

Figure 7.16: The abstraction of the wall's geometry through points in the space 

The four points define the position of the wall in the space unequivocally, by 

its length and height. The remaining dimension, width, is provided independently 

through a number stored within the object. This is done because width, as will be 

shown later, plays a minor role in the dynamic reconfiguration of the geometry. 

These four points are then loaded into an array. 
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Whenever a new fixture is added, the geometry of the wall has to be 

recreated. To take into account the new layout, the window and door openings are 
represented through sets of four points each (as shown in Figure 7.17). As in the 

previous case these points are also loaded into an array, as a set of four, one for each 
fixture added to the wall. 
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Figure 7.17: The abstraction of fixture openings through points in the space 

The points, both those used for the openings and those used for the wall, are 

calculated relative to the same coordinate system which is the Wall local coordinate 

system (as shown in Figure 7.18). The user defines the origin of this reference 

system when he/she presses the left hand button of the mouse to place the new 

geometry in the space. 
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Figure 7.18: The relative coordinate system of the wall 
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Two lists (for doors and for windows) are used to store all the information 

regarding the wall and its fixtures in the arrays which contain the sets of points. 

Precisely, the zero position of both lists is used to store the array containing 
the four points necessary to draw a wall. Every time a door or a window is created 
the points representing its opening are calculated and inserted in the relevant list as 
shown in Figure 7.19. 

The LinkedList used for Doors or Windows 

oirrt3d 0 oirrt3d 1 oint3d 2 oint3d 3 

Frame n. 3 
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_ __ýj 

Point3d 0 oir t3d 1 oint3d 2 Poird3d 3 

Point 3d 0 oit3d I oirtt3d 2 JPoint3d 3 

IPoirrt3d 0 oint3d 1 3oint3d 2 Poirrt3d 3 

Figure 7.19: The insertion of a new set of points in the list 

The arrays containing the sets of points are placed in the list in an ordered 

manner. Since both lists contain the array with the information on the wall at position 

zero, the new arrays are placed in ascending order from position one onwards so that 

the array at position one represents the closest fixture to the origin of the coordinate 

system. If a new door or window is created a routine places its array in the correct 

position inside the relevant list and shifts if necessary, the other arrays down one 

position. Likewise, if a door or window is removed, a routine rearranges the 

remaining arrays in the list. 

As soon as the system needs to build the current geometry of the wall it 

cyclically retrieves the data from the two lists. This data, together with the width of 

the wall, is processed through an algorithm which calculates the number of vertexes 

and faces necessary to create the geometry given the number of doors and windows 

present in the wall. The position of each vertex is then extracted from the array in the 

relevant list and placed into a further array. This way the last array contains the 

ordered sequence of the x, y and z coordinates of every point necessary to create the 
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geometry. Through this array a number of strips of polygons are created which are 
placed in the correct part of the sub-graph of the object (as shown in Figure 7.13). 

7.5.2 The Scaling Mechanism of the Wall object 

Besides the different processes used to create its geometry, the Wall class 
differs from the other standard objects in the way the geometry is manipulated. 
While traditional objects are scaled or rotated using the two TransformGroups (TG) 

(shown in Figure 7.13), the Wall class manipulates the geometry directly. 

Translations and rotation are still achieved by operating on the 

moveAndRotate TG above the geometry (shown in Figure 7.13). The scaling effect 
however is achieved by manipulating the geometry directly. This is done by 

calculating the new coordinates of the points representing the wall and by upgrading 

the values of the two lists. The newly calculated geometry then replaces the old one. 

Further (as shown in Figure 7.13) the sub-objects are placed under a 

BranchGroup (BG) placed below the moveAndRotate TG. This means that every 

time the user moves the wall, the windows and doors are moved accordingly. 

However (as shown in Figure 7.13) the sub-object BG is not placed under the scale 

TransformGroup. This prevents the fixtures' size from being changed when the wall 

is scaled as would happen if the sub-object BG had been placed under the scale TG 

as shown in Figure 7.20. 

jji 

Figure 7.20: The result of the sub-objects being scaled with the wall 

Since the geometries of the wall and fixtures are placed under separate nodes 

they can be scaled independently. However, if the scaling process of the geometry of 

the wall was done by using the scale TG (See Figure 7.13), every vertex of its 

geometry would be affected by the transformation. As noted, since the sub-objects 
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are not placed under the scale TransformGroup they are not changed in size. As a 
result, the wall together with the opening would be scaled, while the fixture would 

remain of the same size. This (as shown in Figure 7.21) would eventually result in a 

mismatch between the size of the opening and the fixture. 

F operating on a TransformGroup 

T 
TG Scale 

Geometry 

Figure 7.21: The scaling process through manipulation of the scale 
TransformGroup 

The list-based mechanism developed in JCAD-VR allows instead the 

independent manipulation of each vertex of the geometry of the wall, including the 

vertexes used to define the openings. As a result, whenever the user changes the 

scale of the wall, the system changes only the coordinates of the vertexes used for the 

edge of the wall. In this way the openings size and position are not changed and as a 

result the user can scale the wall without affecting the size of the fixtures (as shown 

in Figure 7.22). 
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Figure 7.22: The scaling process through direct manipulation of the geometry 

Likewise, every time the user modifies the dimension of a door or window 

the wall upgrades its geometry, changing the size of its opening to remain consistent 

with the new size of the fixture. 
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The drawback of this method is that every time the user changes the size of 
the wall or one of its sub-objects, the system has to calculate a new geometry. 
Further, in order for the action to be interactive the calculation has to be repeated for 

each frame and this creates an increased amount of information to be processed. 
However it must be noted that this does not adversely affect the performance of the 

system which, even on standard PCs, never demonstrates any visible reduction in the 

rendering frame rate. 

7.5.3 The Constraint Handling System of the Wall 

As illustrated in the previous section when a door or window is added to a 

wall its data is inserted in a list which is used as an internal database. Every time the 

geometry of a window is changed, this database is upgraded and then accessed by a 

routine that generates the new geometry according to its new values. 

This approach allowed the development of a constraint check algorithm 

which ensures that every time a new sub-object is inserted or an existing one is 

modified, this does not conflict with the existing geometry. This is done through a 

two cycle algorithm that first checks if the proposed value is acceptable and then if 

compatible, upgrades the geometry. 

Every time the user wants to change the dimension of a wall for instance, 

he/she selects it with a click on the right hand button of the mouse (as shown in the 

previous sections). The user chooses the "scale" command from the icon floating 

beside the object and then he/she starts dragging one of the 3D-widgets. The system 

calculates the new dimension and checks it against the database for every frame. This 

is done through a routine that extracts the coordinates of the existing vertex from the 

lists that are used to store the data of the geometry and checks that the proposed 

vertex fit with them. 

If the new dimension is incompatible with the state of the object, e. g. the 

wall's proposed edge collides with an existing door or window then the choice is 

rejected. If the system finds instead that the proposed size is compatible with the 

state of the object then it inserts the new values in the database and upgrades the 

geometry. 
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The same process takes place when a new door or window is added to the 
wall. The system first checks if the dimensions proposed are compatible with the 

wall and with the existing openings. If the system finds that there is enough space for 

the fixture to be inserted then it upgrades the database and refreshes the geometry. 

If instead the proposed fixture collides with the existing geometry its size is 

automatically reduced in order to fit the space available with an additional 30 cm 
around the opening. This process is illustrated in Figure 7.23 where the user creates a 
wall (Figure 7.23-a) and then he/she selects with a click the positions of a door and a 
window (marked with red circles in the figure). Each time the algorithm accepts the 
default dimensions (Figure 7.23-b) and places the fixtures in the wall after accessing 
the database. 

Through another click, the user might try to create a second window between 

the first one and the door. The system finds the standard dimensions are incompatible 

with the state of the object and automatically adjusts the width of the window. This is 

done in order to leave a minimum distance of 30 cm between the window and the 

other two fixtures. The data is added to the database and the geometry is upgraded 
(Figure 7.23-c). The user then wishes to create a third window. The system finds that 

both the default height and width are not compatible and so it changes them in order 

to leave the 30 cm gap between the openings. The database is upgraded and the new 

geometry shown (Figure 7.23-d). 

Likewise, if the user wants to move an existing fixture its new position will 

be checked first against the database. If the position is compatible with the state of 

the object it is accepted and the geometry is refreshed otherwise it is rejected and the 

old value is left. The advantage of this algorithm is that the user has immediate 

feedback on the action proposed. Therefore if the user starts moving a door and this 

gets too close to a window then the user visually perceives the door "colliding" into 

the existing fixture. 
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a) 

Figure 7.23: Constraint handling the creation of windows and doors 

7.6 The Context Area of the Design 

As described in the previous sections JCAD-VR can create a number of 

shapes. The user accesses the 3D-menu, selects the desired shape and then creates it 

by a sequence of click-and-drag actions with the mouse. 

JCAD-VR also provides the means to retrieve information from an external 

file. This could define the context area which can be used as the base on top of which 

the geometries are created. 

Therefore JCAD-VR allows the user to conveniently and rapidly provide a 

context area for their designs by importing 3D-models previously built through 

standard CAD packages. 
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When JCAD-VR is started, the user is asked to select a file to be used as the 
context of the virtual environment, if they do not then the system will start with an 
empty world. At present, the system can read VRML97 as well as "*. jcad" files, a 
file format specifically written to support JCAD-VR worlds (See Section 6.2.5.3 of 
the companion thesis Ucelli, 2002). 

In JCAD-VR the GeometrWorld class provides the loading mechanism that is 

responsible for the creation and the handling of the objects imported from external 
sources. The GeometrWorld class, in turn, makes use of the VRML97Loader class, a 
loader developed by the Web3D Consortium as part of the Xj3D Open Source 
VRML/X3D Toolkit (Web3D Consortium, 2002). This is a library licensed under the 
GNU LGPL v2.1 (Free Software Foundation, 1999) and therefore it is freely 
distributable. 

The loader reads VRML97 files and returns a Java 3DTM SceneGraph object 

and also converts VRML97 sensors into Java 3DTM Behavior class. This feature 

allows JCAD-VR to import environments that include animations, (for instance 

moving car or walking people) thus providing a more dynamic and realistic 

experience. 

Figure 7.1 illustrates how the 3D-models necessary to render the context area 

are placed under the Environment BranchGroup, which is directly attached to the 

Locale node. This justifies the main difference between the nodes responsible for the 

geometry of the environment and the other objects created with JCAD-VR. The 

former are placed in a part of the DAG that does not belong to the pickableBG 
BranchGroup and therefore they are not included in the picking process (See Section 

6.5.4.2). 

As a consequence the user is not able to select the environment or to modify 

it. In this way the environment is clearly separate from the object being designed and 

this allows a simpler interaction with the system. In fact if the user were able to 

select the environment the overall interaction would become too complex since most 

of the picking action would return the object responsible for the environment. The 

user would consequently be forced to frequently cancel the environment accidentally 
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selected. Moreover the picking process would also process the geometry of the 

environment and this would ultimately yield poorer performances. 

7.7 AvatarsBehavior 

As visible in Figure 7.1 the layout of the DAG of JCAD-VR's Geometry 

Core includes the avatars BranchGroup. This is the node that contains the geometries 

used for the avatars. These are traditionally used in network based applications to 

represent the user's presence within the virtual world. In JCAD-VR avatars are 

rendered as human like figures made distinguishable from each other by having a 3D 

text of the users' login name beside them (as shown in Figure 7.24). 

Figure 7.24: An avatar in JCAD-VR 

The management of avatars is a process that greatly depends on efficient 

communication between clients and server. Every time a new user registers or leaves 

the system, or simply moves around the virtual world, a message containing the 

relevant information has to be broadcast to all the other users so that their client 

applications can upgrade the state of the world. At the same time the system has to 

retrieve information on the user's position and send it through the network to the 

server that eventually broadcasts it to every user. 
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In JCAD-VR the class responsible for this mechanism is 
AvatarsBehavior and its internal functioning is illustrated in Figure 7.25. 
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Figure 7.25: The AvatarsBehavior class 

Every time a new user registers with the server or disconnects from it, a 

message is dispatched to every other user present in the virtual world. When each 

user's system receives the message it activates the AvatarsBehavior class. 

Precisely, every time a new user registers to the system a new UserEvent is 

dispatched by the Network Core (See Section 6.2.1 of the companion thesis Ucelli, 

2002). The event/listener mechanism (See Section 7.3.3) automatically invokes a 

routine that starts the creation or the deletion of an avatar, depending on the content 

of the UserEvent. Due to the event/listener pattern, at the same time in a different 

section of JCAD-VR, the same event triggers another class that starts the streams 
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necessary to upgrade the content of a new videoconference panel (See Section 
6.5.3.3). 

As shown in Figure 7.25, every time a UserEvent is fired the 
AvatarsBehavior creates a new Avatar object if the information contained in it 
indicates that a new user has been registered. The Avatar class contains the elements 
necessary to move the avatar within the environment as well as the geometry. 
However, the geometry of the avatar, similarly to the analogous process described in 
Section 7.4.3.1, is created through another class called AvatarsFactory. 

During the start-up of JCAD-VR this loads the geometry from a 3D-model 

through the VRML97 importer (See Section 7.6) and stores it in the memory of the 

system. Every time a new Avatar object is created this requests a copy of the 

geometry from the AvatarsFactory, which returns a clone of the portion of the DAG 

containing the relevant nodes, including the geometry. 

Once the geometry is retrieved the Avatar class uses the information in the 
UserEvent to create a 3D-text with the new user's login name, and this is placed 

above the avatar's head. Finally AvatarsFactory places a reference to the Avatar 

object into a Map. This is a logical container that is used to retrieve the reference to a 

specific avatar at a later time when for instance its position has to be moved. 

As shown in Figure 7.25, if the UserEvent instead notifies that an existing 

user has disconnected from the server, thanks to the information contained in the 

event, the AvatarsBehavior class is able to retrieve from the Map the reference to the 

relevant avatar, which can be finally removed from the virtual world. 

Figure 7.25 also shows that every time the class is notified of the new 

position of an existing avatar, the AvatarsBehavior class places the information in a 

queue. This technique avoids the overloading of the system since it allows the 

upgrade of the avatars' positions at a fixed frequency rather than every time a new 

position is received. Both the mechanisms dealing with creation/removal of avatars 

and the one managing the positions of the existing ones, access the Map using two 

independent and virtually parallel processes, or threads. For this reason the 

mechanism that controls the access to the Map is made thread-safe through 

217 



synchronization. This ensures that only one process at a time can access the 
information contained in the map and avoids potential conflicts. 

Every 30 milliseconds the system reads the last set of information received 
from the queue, deletes the content of the queue, and uses the data to retrieve the 
relevant avatar from the Map and upgrade its position. At the same time 
AvatarsBehavior reads the position of the point of view of the user by accessing the 
Control View TransformGroup (described in Section 6.4.1) and sends it to the 

network module for broadcasting. In this way every user is notified about the new 
position of the user and can upgrade the location of the relevant avatar. 

7.8 Conclusions 

This chapter completed the description of the 3D-Unit by illustrating the 
Geometry Core. It has shown the articulated process that leads to the creation of 

objects in JCAD-VR. The user creates shapes through mouse commands that are 
interpreted in a four stage mechanism whose details were provided throughout the 

chapter. 

It has been illustrated how only the first stage in the process of recognition of 

mouse commands is directly connected to the pointing device from which it receives 
the events. The second and third stage process the information is used to change the 

state of the system. Finally the data is passed to the last stage where the action is 

fully decoded at the object level. 

The result of this multi-level architecture is that other pointing devices can be 

easily supported through re-coding the first three levels. The last level is in fact 

independent from the interaction device used and it is used to directly manipulate the 

object. More pointing devices could be supported through the creation of a 

mechanism which could switch between different sections of code according to the 

device used in a similar to the visualisation sub-system described in Section 6.4.3. 

The chapter also introduced the development of a fully parametric object, the 

wall, and illustrated how a JCAD-VR structure can be extended to include it 
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seamlessly. This proved that although JCAD-VR is a prototype it could be expanded 

and become a fully parametric collaborative VRAD system. 

The chapter also illustrated how the system is able to import geometries from 

external files to be used as the context area of the design. The last section showed 
how the system handles the geometries of the avatars which are used to represent all 

the other users participating in a collaborative session. 

The following chapter will introduce the experiment performed at the 

University of Strathclyde to test the capabilities and usability of JCAD-VR, and it 

will highlight a number of issues emerging from it. 
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8 Testing JCAD-VR: a Collaborative Session 

8.1 Introduction 

The three previous chapters highlighted the most important aspects of the 

JCAD-VR framework and described its internal architecture in detail. This chapter 

will report on the testing of the functionality of the software. An actual collaborative 

scenario was established to evaluate the effectiveness and ease of use of JCAD-VR 

in practise and the following sections will describe the experiment in detail. 

The following section will also outline the JCAD-VR TU/e Edition of the 

software. This is the version of the prototype specifically customised for use in this 

experiment. This version features a number of mechanisms for monitoring and 

recording the progress of the design and communication processes. 

8.2 The JCAD-VR TU/e Version 

The JCAD-VR TU/e Version of the software was originally designed for a 

collaborative experiment between the Technische Universiteit Eindhoven (TU/e) in 

the Netherlands and the University of Strathclyde in Glasgow (See Chapter 9). 

This version of the client application is enhanced with several features that 

help to monitor both the progress of the design and the information flow among the 

participants. In addition to the tools available in the standard JCAD-VR system, 

which have been outlined in the previous chapters, this version also features a 

number of routines specifically developed for the testing of the software, providing 

in particular: 

0 Automatic loading of a 3D-model of the context area chosen for the design 

task 

9 Automatic saving of the content of the VE 

" Automatic capturing of screenshots during the session 

" Automatic recording of the content of the communication by chat 
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The first feature makes the setting up of the environment for the collaborative 
session easier. As soon as the system is started a routine automatically loads the 
VRML97 file that was specifically chosen as the context for the design task rather 
than the user being asked to choose a file. This routine performs the loading 

procedure (described in Section 7.6) automatically. The participants are however free 

to load further 3D-models of virtual contexts by clicking the "load" 3D-icon and 
selecting the preferred VRML97 files. 

The remaining three routines were developed to track the evolution of the 
design process throughout the experiment. The second routine specifically performs 
an automatic saving of the content of the VE injcad files (See Section 6.2.5.3 of the 

companion thesis Ucelli, 2002) every 10 minutes. The files are then automatically 

stored in the "JCAD-VR\automatic_save\" folder with sequential numbers assigned 
(e. g. file 1, file 2, file n). In case of application failures this helps to prevent the loss 

of data and gives the ability to keep track of the progress of the design. 

The third routine provides the means to progressively visualise the stages of 
the VE over certain intervals of time. Every 10 minutes this routine saves a 

screenshot of the scene in a jpeg file that is stored in the "JCAD- 

VR\automatic_save\" folder with a sequential number (e. g. screenshot 1, screenshot 
2, screenshot n). 

The fourth routine records the content of the communication through the chat 

and saves it automatically in a text file placed in the same directory as before. This 

allows the recording of the flow of information among the participants and it is a 

useful tool for checking the dynamics of the communication. 

8.3 The In-House Collaborative Session 

The JCAD- VR TU/e Edition system was tested in an experiment located at the 

faculty of Architecture of the University of Strathclyde in Glasgow. Three fourth 

year architecture students were selected for the experiment. They were all familiar 

and skilled in the use of CAAD packages but none of them had previous experience 

of Virtual Reality Aided Design (VRAD) systems. The students were first introduced 
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to the functions of JCAD-VR and then they were asked to participate in a 
collaborative session. 

8.3.1 The Choice of the Configuration 

It was decided to give the experiment a set of very precise and constrained 
conditions for a sample collaborative session. This required: 

" The use of several different operative systems to test the multi-platform 

nature of JCAD-VR 

" The simulation of a limited bandwidth 

" The use of standard computer monitors as visualisation devices 

Consequently two standard PCs, two Sgi computers, one Onyx2 and one 02 

were used for the experiment. Their detailed hardware and software specifications 

are included in Appendix D. Specifically the two PCs and the Sgi Onyx2 were used 
for the client applications and the Sgi 02 was used to run the server. To ensure the 

network consistency in the unlikely event of all the three clients accidentally quitting 

at the same time (See Section 6.2.4 of the companion thesis Ucelli, 2002) the Sgi 02 

was used to run a further client application remotely on the Onyx2. 

In addition, in order to simulate having only a limited bandwidth available, 

the communication was restricted to the use of the chat and whiteboard tools. 

Furthermore, as illustrated in Section 6.5.3.3, due to the limited functionality of the 

Java Virtual Machine which was available for the Irix OS, JCAD-VR's 

videoconferencing module was not available on the Sgi computers. Therefore the 

decision not to use the videoconferencing module made it possible to use Sgi 

machines and at the same time provide all the students with the same tools. However, 

the video conferencing module had been informally tested during the introductory 

session, as shown in the video provided with this thesis (See Appendix Q. 

Finally it was decided that none of the students should use the Reality 

CenterTM at the ABACUS Unit. As explained this was justified, by the purpose of the 

test which aimed to reproduce a realistic daily working scenario where architects 
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would be interacting from several different locations by using standard monitors as 
visualisation devices. 

It is predictable however that the efficacy of JCAD-VR would improve if 

either the videoconferencing module or the Reality CenterTM were used, although this 
has not yet been rigorously proven by further formal experiments. 

8.3.2 The Training Session 

An introductory session of only twenty minutes duration was held to show 
the students the features of JCAD-VR and to illustrate the tools accessible to them 

from its 3D-GUI. 

The students were already aware of the basic concepts of VR and had some 

experience with Desktop-VR. As mentioned earlier all of them were skillful in 3D 

modelling. However, none had previous experience in using either VRAD systems or 

collaborative applications and none had used the JCAD-VR software before. 

During the introductory session students showed immediate interest and 

quickly demonstrated that they comprehended the simple logic behind the 3D-GUI. 

After the short introduction they all proved to be quite confident with the system. 

8.3.3 The Design Task and the Outcome of the Experiment 

The three students were located with their own workstation (See Appendix C) 

in three different rooms within the Department of Architecture. Fixed and hand-held 

video cameras constantly filmed their behaviour (See Figure 8.1). 
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Sgi Onyx2 

None of the students were previously aware of the design task being set 
before they were informed at the beginning of the experiment. In this way the 

students did not have the chance to previously agree on design choices. Instead they 

were forced to only use the communication tools available within JCAD-VR to 

discuss their possible design solutions. 

The three students were invited to design an information centre over the two- 

hour design session. The context area was already provided and it was loaded 

automatically by the system when it started. It consisted of a public square adjacent 

to a park. 

Observing the video made during the session (See Appendix C) and studying 

the content of their communication through chat (See Appendix A) revealed several 

noteworthy aspects of the experiment. 

First of all the system proved to be quite easy to use. Students did not have 

any particular difficulty in working with JCAD-VR and were able to use the system 

immediately after the 20-minute long training session. As mentioned in Section 7.4 

due to a fault in the Java Virtual Machine for Windows OS, navigation with the PCs 

resulted in a slightly more complicated arrangement than originally planned. This 

resulted in the two students who were using PCs having to click on the relevant icon 

to switch to navigation mode rather than pressing the central button of the mouse. 

However, both students got accustomed to this after a few minutes. 
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The experiment was characterised by intense interaction amongst the three 
design participants. The students could communicate efficiently through the chat 
(See Appendix A) although they all stressed the potentially positive effects of having 

a more direct means of communication, such as through voice or by a video 
conferencing tool. 

The students also felt it was important to be able to draw sketches during the 
design session on the digital whiteboard provided. This helped them to express their 
design ideas quickly, clearly and efficiently. 

The students also remarked on how the collaborative approach led to a real 

sense of teamworking. Several design scenarios were in fact discussed, modified and 

agreed on within the common design environment. Interestingly the shared design 

system was a cause of satisfaction as well as frustration among the participants. It 

was noted that students frequently changed or modified their own design solutions as 

well as everyone else's. This raised an interesting issue: the students suggested the 

development of some form of priority routine through which each user could decide 

whether the object being created could or could not be modified by other users. 

Finally from the technical point of view the experiment highlighted the lower 

stability of the system on the Sgi platform if compared to PCs. The Sgi version 

suddenly stopped running three times while the PC versions were stable for the entire 

duration of the experiment. This was the result of the lower efficiency of the Java 

Virtual Machine for Sgi and the higher level of optimisation reached on the PC 

platform. As already mentioned (in Section 5.6.1) a higher priority was given to 

achieving efficiency of the system for the PC platform. This choice was justified by 

the more widespread use of PCs compared to Sgi set-ups. 

In addition to the sequence of screenshots taken during the experiment (See 

Figure 8.2 and Appendix B), a video camera was running in each of the rooms 

filming the students. The collaborative session was then fully documented by a video 

that was later edited in order to show the most significant moments of the 

experiment. 
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Figure 8.2: Screenshots of three different stages of the design during the 

experiment 

The video is included in the thesis in Appendix C. It shows firstly the 

introductory session when the authors introduced JCAD-VR to the students and then 

the most relevant moments during the collaborative part of the experiment. The video 

also illustrates the final outcome of the design task (See Figure 8.3) and shows the 

students comments on both the JCAD-VR software and the collaborative session that 

Figure 8.3: The final design of the collaborative session 
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From the students' interviews at the end of the experiment some suggestions 

emerged for further enhancements of the prototype. In particular they recommended 
the implementation of two other tools that would ease the dynamic of the 

collaboration: in their view a tool to help with the orientation in the VE, and a 2D 

map that would show from above the positions of all the participants in real time. 

8.4 Conclusions 

This chapter outlined the most important elements of the practical testing of 
the JCAD-VR system. The outcome of this limited experiment entirely proved that 

JCAD-VR, even at this prototype stage, is a fairly stable application that efficiently 

allows multiple participants to take active parts in a collaborative design session 

while communicating across the network. 

Thanks to the specific features, which were implemented in the JCAD-VR 

TU/e Edition, the experiment could be recorded in a number of ways: 

" The sequence of screenshots (See Appendix B) 

" The sequence of jcad files 

" The text of the chat (See Appendix A) 

" The video of the experiment (See Appendix C) 

The positive outcome of this experiment will certainly stimulate further trials 

and tests, such as the setting up of a collaborative session between different 

institutions possibly between different countries, building on the in-house experience 

reported. 

Chapter 9 will outline the contributions that this thesis, together with its 

companion thesis, has brought to the field of research into design in VR and 

Collaborative Virtual Environments. It will also provide the conclusions and suggest 

the future for the JCAD-VR framework. 
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9 Summary, Contributions and Further Work 

9.1 Introduction 

The previous chapter highlighted the methodology followed to test the 

JCAD-VR system, which provided useful feedback on the application. 

This last chapter will provide a summary of the JCAD-VR project and will 

also outline the positive contributions that the development of the software prototype 
brought to the field of architectural design. This was achieved due to the 

development of the features typical of Virtual Reality Aided Design (VRAD) and 

Collaborative Virtual Environments (CVE) systems. 

Conclusions to this work will be proposed along with plans for further work 

and developments to improve the system. 

The section describing further works will in addition describe the 

methodology and preparation of an experiment at a much larger scale which will 

involve students from the University of Strathclyde in Glasgow, and the Technische 

Universiteit Eindhoven in the Netherlands. 

9.2 Summary 

This research project fulfilled four main tasks (See Figure 1.2). The first task 

was the research study that allowed the identification of the users requirements and 

also provided an overview of the basic characteristics of VRAD (See Chapter 3) and 

CVE (See Chapter 3 of the companion thesis Ucelli, 2002) systems, along with an 

attempt to categorise them into taxonomies. 

The second task was the development of the JCAD-VR framework. This 

phase contained the following four sub-tasks: 

" Object Oriented Approach. The choice of the 00 approach is explained with 

separated modules to address different functions of the system and to allow 
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concurrent development of the system prototype. This led to the choice of JavaTM 

as the programming language for the project. 

" Systems specifications and requirements. The definition of the characteristics 
necessary for a collaborative VR system to allow synchronous collaboration and 

communication while designing in the VE. 

0 Identification of the systems components. The definition of the most important 

functions of the system and of its two main components, the VR design 

environment and the collaborative platform. 

9 Separation of the competency in the two main themes. The definition of the 

sub modules belonging to the VE and to the collaborative platform and the 

consequent separation of the competency. During this phase the final framework 

for the JCAD-VR prototype was defined. 

The accomplishment of the third task was the implementation of the JCAD- 

VR system, and this was achieved through the combined efforts of the two authors. 
This was first done by choosing software packages and libraries which were 

compatible and by completing their integration into one application. Secondly, by the 

concurrent development by each of the authors of relevant modules of the framework 

and by checking their successful integration at the most crucial stages of the 

development. 

The fourth task was the testing of the final prototype. An actual collaborative 

design session was conducted and documented using several different media. The 

results of the test were collected and reported in Chapter 8. 

9.3 Contributions 

JCAD-VR is an original application specifically designed to improve the 

architectural design process. The project embraces different aspects of the 

development of VR systems for collaborative design environments tailored for the 

conceptual design. 

JCAD-VR brings several original contributions to the design process by 

allowing the earlier use of VR technology and by providing practitioners with an 

229 



effective and easy to use collaborative tool. Section 9.3.1 lists the advances in design 

methodology which were achieved by the implementation of JCAD-VR and its 
Human-Computer Interface. Section 9.3.2 illustrates the contributions offered by the 
development of both the system's collaborative platform and communication tools. 
Finally Section 9.3.3 outlines the original contribution that the implementation of 
JCAD-VR brought to the development of the first example of a new generation of 
Computer Supported Cooperative Work (CSCW) system (See Section 2.4 of the 

companion thesis Ucelli, 2002) called the Collaborative Virtual Design Environment 

(CVDE) (See Section 3.4.5 of the companion thesis Ucelli, 2002). 

9.3.1 Effective Design in VR 

As mentioned in Section 3.2 traditional CAD systems are not suitable for 

using in the early stages of design. They are specifically made for the engineering 

stage and therefore do not encourage experimentation. For this reason architects 

usually tend to use traditional media and make the shift to digital tools at a later 

stage. VR is traditionally used as a visualisation tool rather than a design instrument. 

JCAD-VR promotes instead, the earlier use of VR thus exploiting its superior 

visualisation capabilities to convey a new design experience. Through JCAD-VR the 

user is encouraged to experiment with several design solutions done quickly. This 

system makes VR available to architects and at the same time it promotes their 

creativity. 

9.3.1.1 VR-Based Conceptual Design for Architecture 

JCAD-VR, albeit at a prototype level, is a tool specifically designed to 

support conceptual design. The interactivity of the system helps the user experiment 

with the design. Specifically the system has been tailored to the needs of an architect. 

The architect can create a number of simple shapes, such as geometric primitives, as 

well as architecture-related objects. In addition a library provides a number of ready- 

to-use 3D-objects. 

Objects are created in a very simple way. The user does not need to type in 

values but they use mouse commands to create and change geometries. 
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The user can conveniently import a 3D-model of the context area and can 
then start designing on top of it. In this way, the user can rapidly create several 
design prototypes and evaluate their qualities within the real context of the design. 

JCAD-VR can be considered a true VRAD system for architecture since: 

9 It provides real time interaction 

" It hides the mathematical description of the geometries 

9 It encourages experimentation and creativity through a responsive visual 
feedback 

0 It helps the architect to adopt digital tools early in the design process 

9 It helps architects by using new technologies that can enhance the efficiency 

of the design process 

" It promotes a user-friendly environment that does not require special 

expertise 

9.3.1.2 User-friendly Human-Computer Interface 

As shown in Chapter 6 JCAD-VR features a user-friendly Human-Computer 

Interface (HCI). As shown in Chapter 8 an experiment proved that typical users can 
become familiar with the software within a few minutes. 

Users can navigate easily within the virtual world in a way that resembles a 

real-life experience. As shown in Section 6.5.2.1 navigation has been constrained to 

avoid the confusion of most VR systems. This has been done by emphasising the 

separation of horizontal and vertical translations and limiting rotations to those 

around the vertical axis. 

However, interaction with the system is not only limited to navigation. As 

shown in Chapter 7 the user can create a number of different types of shapes through 

a 3D-GUI. 

The adoption of the 3D-GUI brings the intuitiveness of traditional 2D-GUIs 

to JCAD-VR's HCI. In this way the user can control the system through an HCI that 

is part of the virtual world. This is done through a number of 3D-menus and a set of 
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tools used to communicate with other users: two 3D-panels which show images from 

the videoconference and the text of the chat. 

For the convenience of the user, any element of the 3D-GUI can be moved, 
scaled or rotated just like any other object in the virtual world. 

JCAD-VR proved to be easy to use even with a conventional 2D mouse. The 

entire system has been engineered in order to be intuitive yet effective. The user can 
move, rotate or scale objects in a very simple way. The user selects the object, 

without need for typing in values and manipulates it using a choice of 3D-widgets. 

This makes the interaction less error-prone, user-friendlier and very visual. 

9.3.2 The Flow of Information between the Participants 

As mentioned in Chapter 2 of the companion thesis (Ucelli, 2002) the 

conventional design process often limits the collaboration between groups of 

practitioners to an inefficient and fragmented exchange of information. 

JCAD-VR instead allows a simple and reliable flow of information between 

the participants in the design process and provides the means for fast communication 

of design ideas through a number of different communication methods. In traditional 

offices the collaboration among the practitioners is very often still accomplished 

orally and through the exchange of paper based documents such as sketches and 

plans. In contrast JCAD-VR offers an integrated, synchronous and fully digital 

means for collaboration and exchange of design choices. 

9.3.2.1 Design Information Exchange 

JCAD-VR provides the means for establishing an effective design 

information exchange among remote participants and offers a major contribution 

towards the creation of a distributed virtual architectural office. It supports 

synchronous collaboration and communication of design ideas by allowing several 

participants to interact with virtual objects. It provides the users with a virtual design 

arena that encourages the collaboration of remote design teams through the 

possibility of direct interaction with all the virtual elements present in the shared VE. 
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It also enhances the communication by offering a choice of several different tools 
that enable the flow of design ideas among the participants. 

9.3.2.2 Communication Methods 

JCAD-VR provides the user with various communication methods. Its 

modular and flexible architecture allows the implementation of a number of 
communication tools that can be easily combined or used separately according to 
either the network bandwidth, the power of the computers or the users needs. The 

users can choose between the three following configurations at their convenience: 

" Video, audio, chat and whiteboard 

" Audio, chat and whiteboard 

" Chat and whiteboard 

JCAD-VR also provides the means for fully collaborative experience by the 

use of avatars as virtual embodiments of the participants. These communication 
features, along with support for the synchronous exchange of design information 

through a shared VE, are the most significant contributions brought by the JCAD-VR 

prototype to the field of architectural design. 

9.3.3 Integration into a Collaborative Virtual Design Environment 

(CVDE) System 

JCAD-VR combines features typical of both CSCW systems and VR 

environments. From this point of view it is an original software prototype that can be 

considered a successful attempt towards the integration of the VR application and the 

CSCW means of communication, into a comprehensive collaborative tool. In 

addition JCAD-VR owns all the characteristics of the new CVDEs (See Section 3.4.5 

of the companion thesis Ucelli, 2002) and it can be considered one of the first 

examples of this category of system. It supports: 

" The establishment of a distributed virtual office for remote participants 

9 Synchronous communication and interaction 
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Three-dimensional imaging and simulation 

9 Interactive collaboration based on virtual presence 

" Ease of creative conceptualisation 

" Flow of information and the sharing of knowledge 

" The sharing of knowledge and expertise for virtual enterprises. 

Lastly, as mentioned in Section 4.6 of the companion thesis (Ucelli, 2002), 

JCAD-VR is not a complete and fully optimised software package rather it has to be 

currently considered as the unpretentious proof of a concept. Its contribution then is 

in offering a valuable starting point towards the development of a finished 

commercial package. 

9.3.4 Extendable Architecture and Portability 

As mentioned in Section 4.4.3 of the companion thesis (Ucelli, 2002) JCAD- 

VR was developed in a modular fashion enabling the scheduling of the 

implementation of independent self-functioning modules and allowing concurrent 

software development. This open architecture gives developers the freedom to 

improve the system by implementing further tools or routines at any time according 

their needs. From this point of view JCAD-VR inherits the qualities of the object- 

oriented approach that JavaTM offered by providing easy extendibility, 

maintainability and portability to several different platforms. 

9.4 Further Work 

As mentioned earlier in this chapter, JCAD-VR is based on a flexible and 

expandable architecture that can be easily improved with newly developed tools and 

routines. During its development a priority list was established to set the order for the 

implementation of the modules of the framework. 

This procedure led inevitably to the selection and implementation of some 

modules while others with less priority were left for further development. These 

lower priority modules, (marked in black in Figure 9.1), will be given in this section 
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as examples for further development of the JCAD-VR system. Valuable suggestions 
for the implementation of new tools were provided by the previous experiment 
described in Chapter 8. This provided a valuable occasion to collect significant 
feedback about the software prototype. 

The following sections will outline further development of the system and it 

will finally describe the methodology and preparation of a cross university test that 

would require the involvement of a number of students from two schools of 
Architecture. 

Already developed module 

0 Possible development module 
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Figure 9.1: The JCAD-VR framework with the unimplemented modules 

marked in black 

9.4.1 Enhancements to the Visual Core 

Currently JCAD-VR supports only monoscopic visualisation using traditional 

monitors or a Reality CenterTM 
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However, (as demonstrated in Section 6.4.3.3) the display core was 
developed in order to be easily expandable. The successful development of the code 
necessary to support stereoscopic views and tracking devices would lead to the 

support of more visualisation devices including CAVEs, Virtual Tables or HMD. 

Additionally, support for multiple screen desktop based configurations could 
also be supported. In this case, the development of a "wizard" that would allow users 
to configure the system at start-up, could also be included. Users could configure a 
simple semi-immersive environment quickly, according to the number and position 

of screens available. 

9.4.2 Improvements in the Interface Core 

At the present stage the interface module (illustrated in Section 6.5) uses a 

standard mouse. Further development would include support for more sophisticated 

pointing devices such as SpaceMouse® (3DConnexion, 2002) or other tracked 
devices like virtual gloves (Immersion Corporation, 2002). 

To provide the user with a more user-friendly system a Voice Control 

Module could be developed and interfaced to the system through the use of JavaTM 

Speech API (Sun Microsystems, Inc., 2002e). This is an API whose implementation 

is provided by a number of vendors, (such as Speech for Java (IBM, 2002) from 

IBM), that can be used to develop voice driven HCI for JavaTM based applications. 

Likewise a speech synthesis system could be used to provide the user with useful 

feedback. 

The entire Interface Core could also be re-developed to support a multimodal 

HCI that, based on the use of immersive visualisation technologies, would effectively 

combine different modalities such as sketches, gestures, speech and gaze to help the 

designer accomplish tasks in a natural user-centred way. In fact, as cognitive 

scientists have proved, the design experience strongly benefits from the support of 

multi-sensorial, or multimodal, interactions. 

Different modalities can be considered as complementary conceptual 

channels that can transmit information not easily acquired spatially. One of the main 

advantages of the integration of different modalities lies in the widened perceptual 
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and conceptual bandwidth available to the user to convey information regarding the 
object he is creating. Such integrated approach is founded upon the effective support 
of human communication patterns that can provide, if combined, spatial description 

and mutual interrelation hardly achievable through other means. 

This way JCAD-VR could be thought of as a design tool that would allow the 
designer to freely sketch and manipulate 3D-shapes in a transparent fashion within 
an immersive Virtual Environment (VE) augmented through natural interactions such 
as speech, gesture or gaze interpretation. 

Students involved in the experiment (described in Chapter 8), proposed 
further improvements by the development of a panel showing a plan view of the 

virtual world. This would be used to provide an overview of the environment as well 
as to indicate to other users where a specific object is. 

9.4.3 Further Developments of the Geometry Core 

As illustrated in Chapter 7 the JCAD-VR Geometry Core provides the means 
for the creation of a number of shapes. It has been also proven how the development 

of fully parametric shapes can be integrated into the existing framework. Therefore, 

further improvements should include the development of more parametric objects. A 

number of existing objects, such as stairs or furniture, could also be made fully 

parametric. 

The library of objects could be extended to include more objects and more 

materials. This could also include lights and pre-recorded sounds such as people 

chatting and street noise etc. In this way users could quickly create specific 

environmental conditions in the VE. 

The system could also be extended by implementing Boolean functions. This 

could be done in Java3DTM or simply interfacing the Geometry Core with an external 

modelling kernel. 

Another module could also provide support for semantic recognition of 

sketches. Similar to the Space Pen system (Jung et al., 2002, described in Section 

3.4.2.5) users could sketch shapes directly into the virtual environment. However in 
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JCAD-VR, the shape once recognised could be replaced by the relevant 3D-model, 

which could be sent to the other users through the network. 

9.4.4 Enhancements to the Data Core 

As described in Section 7.6 currently JCAD-VR loads files created with 
external CAD packages through a VRML97 loader (See Appendix D. 5). In addition 
the system can also save and retrieve the content of the virtual world in j cad format. 
Further development would include support for more file formats. This would 
facilitate the integration of JCAD-VR with the existing workflow. 

9.4.5 Enhancements to the Sharing Core 

Enhancement to the Sharing Core would include the development of an 
Applet version of JCAD-VR. This would allow the system to be run inside an 
Internet browser. This would facilitate the use of the system since it would not 
require the user to install the system. This would be automatically launched once the 

relevant web page was loaded. 

However, due to the actual size of the software (approx 50 Mb) further 

optimisations and a modular download system should be developed. The applet 

would start the download of a central core and then access the relevant sections as 

required. To partially solve this problem the jar archives could be cached inside the 

user's hard drive the first time the system is loaded. 

9.4.6 Enhancements to the Collaboration Tools and Network 

Architecture 

The network architecture of JCAD-VR could be improved by adding new 

collaborative tools and by optimising its transmission routines. The video 

conferencing system is not optimised and can result in being too demanding in terms 

of bandwidth usage when more than two clients are connected to the system. Under 

these circumstances communication could be allowed by the transmission of only the 

audio channel and by replacing the video stream with a 3D representation of the 
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participants simulating the oral communication through the movement of the mouth 
and facial expressions. 

In the standard version, the JCAD-VR Server offers support to only one VE 

at a time. However, it could be modified to handle multiple worlds concurrently. At 

the moment this can only be achieved by launching several JCAD-VR Server 

applications on different computers. 

The information flow about the virtual objects would be improved by 

optimising some of the routines for the transmission of data. For instance, at present 

every time the user deletes an object in the VE, the network again transmits all its 

parameters to the remote participants. Instead, the same information (the object being 

deleted) could be broadcast transmitting only the Deleted Status and the object's ID 

number. The same simplification could be applied in the case of the user wishing to 

modify of only a few of the objects parameters. This would partially reduce the 

amount of information that has to be transmitted across the network. 

Section 6.2.2.1 of the companion thesis (Ucelli, 2002) described in detail the 

array used to transmit the parameters of virtual objects. This array contains some 

empty positions that could be filled with extra information about the existing objects 

or with parameters of newly implemented objects. The same array could be 

elongated to accommodate other relevant information if required. 

In JCAD-VR the embodiment of a user is allowed through only one 3D 

model resembling a human. This is used together with 3D text showing the login 

names, to differentiate the participants of the session. The virtual scene could be 

enriched by providing the possibility of using several different 3D-models for the 

avatars. This would allow the possibility of choosing among embodiments 

resembling women or men, children, wheelchair users or simply using abstract 

models. For this purpose the ClientlnFrame panel (described in Section 6.2.1.6 of the 

companion thesis Ucelli, 2002) contains an empty area for the avatar tool, which 

could be filled with a list of models from which users could select their preferred 

virtual appearance. 

During the test (described in Chapter 8) students suggested the 

implementation of a tool that would allow users to point at directions and areas in the 
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VE while discussing design solutions. According to the students this would provide a 

clearer reference for the discussion. In this way users would point at an object, 

stating for instance that it was "North" from the square, or "East" from the red house. 

This issue would be solved by simply including in the virtual scene an object acting 

as an absolute reference for directions, e. g. a virtual compass, indicating North, 

South, East and West. As an alternative the system could include a routine that 

would allow users to point at virtual objects visually and use appropriate visual 

marks to annotate the object in the VE. 

Students also suggested the implementation of a more sophisticated Locking 

Mechanism than the one included in JCAD-VR, which would still allow the 

possibility of choosing whether an object can be edited or not by other participants. 

This routine should extend the one already implemented by adding the possibility of 

temporarily locking objects which should not be modified by other users. 

As mentioned in the introduction the methodology to run a cross-university 

test was developed, and therefore this is included as part of further work proposals. 

The following section will describe in detail the guidelines for this future experiment. 

9.4.7 Preparation of the Collaborative Session between the two 

Universities 

This section illustrates the general methodology that was developed to set up 

a more ambitious experiment than the in-house test described in Chapter 8. This test 

will involve architecture students from the University of Strathclyde in Glasgow, and 

from the Technische Universiteit Eindhoven (TU/e) in the Netherlands. This 

collaborative session has not yet been carried out due to the complexity of matching 

timetables and classes between the two institutions. However, the preparation work 

described in the following sections was included in this thesis because it offers a 

structured guideline for further experiments in the future. 
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9.4.7.1 The Methodology 

The experiment would be divided into two sessions of 2 hours each, and 
would involve a minimum of 6 students in Glasgow and 6 students in Eindhoven (3 

students at each session in both institutions). 

The two sessions would be programmed as follows: 

" 15 minutes to explain the exercise to the students and to distribute the 

material 

01 hour and 45 minutes to fulfil the design task. 

During each session 3 students in Glasgow would be working with 3 students 
in Eindhoven. One student at the University of Strathclyde and one at the TU/e 

would be matched and treated as a group. For each session there would therefore be 

3 groups of 2 people. 

Each group would work on the assigned task, to design an information kiosk 

by collaborating over the net. Different groups would use either JCAD- VR TU/e 

Version packages or emails with files as attachments. Specifically, as illustrated in 

Figure 9.2: 

9 Group 1 would be asked to accomplish the design task during a collaborative 

session using JCAD-VR TU/e Version. 

" Group 2 would be using JCAD-VR TU/e Version which was not connected to 

the network plus emails, as their means of collaboration and for sending and 

receiving files with the upgraded version of their design. 

" Group 3 would be asked to use traditional sketches and emails to allow the 

flow of information. 
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GROUPI 

1 student Strathclyde 

1 student TU/e 

r 

GROUP2 

1 student Strathclyde 

1 student TU/e 

GROUPS 

1 student Strathclyde 

1 student TU/e 

OCý JCAD- VR 
Collaborative Mode 

IO JCAD- VR 
Stand-alone+e-mails 

Iý Traditional 
Sketching+e-mails 

Figure 9.2: Schema for the cross-university experiment 

Activity for Group 1 

The couple would be asked to fulfil the design task using JCAD-VR TU/e 

Version running in collaborative mode. They could use JCAD-VR's tools to 

participate and thus they would test the capabilities of the software to let users 

collaborate in a synchronous manner. Both students would work concurrently on the 

design task as described in Appendix F. 

The material to be produced at the end of the 2 hours would include 2 

screenshots per student. The points of view chosen have to clearly visualize the final 

stage of their design. Possibly one of the two views (illustrated in Figure 9.3) should 

be chosen: 

AREA 
AVAILABLE FOR 

STUDENTS 

Screenshotl 
Screenshot2 

Figure 9.3: Two screenshots per student will show the final design achieved 

through the JCAD-VR collaborative session 
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These screenshots would be saved manually by clicking on the screenshot 
icon. JCAD-VR would then automatically assign a sequential name to each of them. 
These files would be eventually stored in the directory JCAD- VR l capture. Potentially 

students could take several snapshots and then choose the two most representative 
ones. The final two images (in jpg format) for each student would be named 
StudentName_01 and StudentName_02 and saved in the directory JCAD-VR l capture. 

A record track for the collaborative session of Group 1 would be kept using 
the automatic routines implemented in JCAD-VR TU/e Version (See Section 8.2). 
The system saves screenshots of the VE in jcad format automatically every 10 

minutes. The entire environment would be stored with a sequential number (i. e. 
screenshot 1, screenshot 2, screenshot n... File 1, File 2, File n) in the JCAD- 
VR l automatic_save folder. In addition the content of the chat board would be 

recorded. These routines would help keep a sequential track of the most relevant 
design achievements during the experiment and would highlight any problem during 

the collaborative session. 

Activity for Group 2 

The pair would be asked to fulfil the design task described, by using JCAD- 

VR TU/e Version as a stand-alone application. As a consequence of not being 

connected to the server, the system would not activate any collaborative tools. 

Students would communicate through emails and exchange files saved in 

JCAD-VR format (jcad) as email attachments. Students of both universities would be 

free to communicate as much and as frequently as they wish (See Appendix F). 

Similar to the first group two screenshots per student (2 screenshots from 

Strathclyde +2 from TU/e =4 screenshots per pair) would be asked for at the end of 

the 2 hours. The points of view chosen for the screenshots would have to clearly 

visualize the final stage of their design (See suggested points of view in Figure 9.3 

and see Activity for Group 1 to learn about how to save screenshots manually in 

JCAD-VR). 

Students would be also asked to keep all the information, which flowed 

within their group, by keeping all the emails received and the jcad files exchanged. 

This would keep track of the frequency of the exchange of information and would 
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record the evolution of the design. The emails received during the experiment would 
have to be saved in a separated folder whose path in the hard-drive would have to be 

agreed with a tutor before the beginning of the session. In addition, JCAD-VR TU/e 

Version (See Section 8.2) would automatically save screenshots in its internal folder 

(JCAD- VR l automatic save) every 10 minutes, and every 5 minutes it would perform 

a back-up saving of j cad files in JCAD-VR l automatic_save. 

Activity for Group 3 

The pair would be asked to fulfil the design task using traditional free hand 

sketching. Students would exchange scanned files of sketches etc. as email 

attachments and use emails to communicate. Students from both universities would 
be free to exchange information and files over the net as frequently as they wish. 

They would also require a scanner and printer in order to produce the final design. 

The paper format for the experiment would be A4 size. 

The material to be produced at the end of the 2 hours would be, 1 perspective 

drawing per student (1 from Strathclyde +1 from TU/e =2 perspectives per group) 

where the point of view chosen would have to clearly visualize the final stage of their 

design (Figure 9.3 shows the suggested points of view). 

Students would be asked to keep all the evidence of the flow of information 

within the group by keeping all the received emails and the exchanged files. In this 

way it would be possible to keep track of the frequency of the exchange of 

information and to record the evolution of the design. Similar to Group 2, the emails 

received would have to be saved in a local folder. The location of this folder in the 

hard-drive would have to be agreed with the tutor before the beginning of the 

session. 

Material to be Provided to the Students to fulfill the Design Task 

Once launched, the system would be ready for the experiment and supplied 

with the appropriate background for Group 1 and Group 2 (See Section 8.2). 

For Group 3, a tutor would provide the students with several plans of the site 

including: 

"A general plan 
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" An elevation of the site, showing where to locate the kiosk 

02 sections 

92 perspectives. 

Additional Introductory Session for those Students using Software 

An introductory session of one hour would be necessary to introduce the 

students to the software package and to allow some practice before the experiment. 

This session could be arranged separately by the students in each university. 

Evaluation 

This experiment would help in evaluating the collaborative capabilities that 

JCAD-VR offers to users and it would make a comparison of it possible, against 

other collaborative methods. This test would allow the monitoring of the information 

exchange, the working conditions and the design solutions through the sequences of 

snapshots (for those students working with JCAD-VR TU/e Version) and the 

exchange of files. The consistency of all the students' final products would give the 

opportunity to qualitatively evaluate the efficiency of JCAD-VR against the more 

traditional methods. In this experiment the snapshots recorded at a fixed time 

interval, and the data, such as the time recorded on the emails, would provide the 

means for reconstructing the students' design processes. Moreover, through each 

group's final perspectives it would be possible to evaluate if the communication 

between the two members of each group was precise enough to allow them 

accomplish a common design task. 

In addition, the tutors would be provided with a questionnaire for each of the 

three groups involved in the experiment (See Appendix E). Through the students 

answers to these questionnaires it would be possible to obtain further feedback on the 

effectiveness of each of the collaborative methods and about the JCAD-VR system. 

9.4.7.2 The Informal Testing 

The cross-university test has not taken place. However a short and informal 

session to check for problems in the connection between the two institutions was 

carried out. The main concern was on the delay in the flow of information due to the 
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distance between the universities and on potential network problems arising from the 

presence of firewalls. However, this informal session was successful and proved the 
feasibility of a long distance experiment. 

9.5 Conclusions 

The JCAD-VR prototype promotes the change of usage of VR from being a 
mere presentation medium to being a more powerful and effective design tool. It 

proved the feasibility of using VR systems as the future interface for the next 

generation of computer aided design applications for architecture and it provided the 

user with multimedia tools and a network platform for enhancing communication and 

allowing collaboration among remote participants. 

JCAD-VR is an original software package specifically developed for 

architects and even if not yet complete or optimised as a commercial application, it 

has allowed collaborative sessions and the effective exchange of design information. 

This chapter summarised the contribution towards enhancement of the 

architectural design process brought by the JCAD-VR project, and it illustrated 

further developments and improvements for the prototype. 

The development of JCAD-VR gave the authors the possibility to investigate 

and solve many theoretical and technical issues. In several occasions the authors 

experienced both excitement and frustration caused by the nature of the research and 

the fast progress of the technology involved. In particular the implementation of the 

Visual Core of the system took months of intense work in order to allow the use of 

the Virtual Environment Laboratory (VEL) (University of Strathclyde, 2002), and to 

achieve flexibility in the use of visual devices for the framework. Today the same 

issue would be solved in less time and more efficiently thanks to the newly released 

Java3DTM API 1.3, which supports multiple screen configurations by default through 

a much simpler mechanism. 

This highlights the issue of working with cutting edge technology where 

advances in hardware and software can in some cases vanish efforts or make research 

results soon obsolete. However, to conclude with a personal comment the most 
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exciting moment of the entire project was the testing of the software. During the 

experiment, in fact, people other than the authors were involved in using JCAD-VR 

and their quick understanding of the system along with their enthusiasm has been a 

source of great excitement and encouragement for the authors. 
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Appendix A: The Content of the Chat during the 

Experiment 

A. 1 Overview of the Content of the Chat 
The following pages report the text of the chat recorded during the 

experiment described in Chapter 8. The first part of the text was recorded during the 
introductory session (lines 1- 20), the second during the experiment (lines 21 - 171). 

Four users are registered in the session, three students named Ross, Eddie and 
Christoph, and one of the authors, Giuseppe, was included to supervise the outcome 

of the experiment. He intervenes at points to announce the beginning of the 

experiment (line 21), to communicate the crash of the application run on the Sgi 

machine (lines 37,39,154), to warn students of the imminent end of the experiment 
(lines 149,151,153 and 157,158) and to announce the end of the test (lines 167, 

168). 

From the analysis of the text it is possible to appreciate some interesting 

features of the system, for example line 39 stresses the network persistence 

mechanism described in Section 6.2.4 of the companion thesis (Ucelli, 2002). 

The text also contains suggestions for improvements highlighted by the 

students. Specifically need to use a virtual compass or a grid to help localise the 

object is reported at lines 72 and 83. The development of a mechanism to place 

objects perpendicularly is suggested at line 73. The further development of the 

navigation mode is suggested at line 83. 

Finally the text shows the relative unreliability of JCAD-VR on the Sgi Irix 

platform. While the two PCs used in the experiment proved to be reliable throughout 

the Sgi Onyx2 crashed three times (lines 37,150,154). 

A. 2 The Text of the Chat 
1. Nothing received 
2. Eddie - hi we are here ... giuseppe ????????????? & ed... 
3. Ross - hello 
4. Christoph - open chat window for sketching, please 
5. Eddie - are you asleep Christoph ? 

6. Christoph -i am not sleeping, just busy 
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7. Christoph - who is sketching? \\ 
8. Eddie - not me 
9. Christoph - was me, Christoph 
10. Christoph - was this somebody's design????? 
11. Christoph - eddie are you Edward ?? 
12. Christoph - eddie is that you?? sketching with red?? 
13. Christoph -i am white, Christoph 
14. Christoph - who created stair?? \anybody answere me\ 
15. Ross - it wasnt me 
16. Christoph - cleaned up the mess ?: ) 
17. Ross - who is cleaning up the mess?? 
18. Eddie - you didnt like it?? 
19. Eddie - um probably 
20. Christoph -i am talking about the geometry mistake?? 
21. Giuseppe - hi guys , shall we start?? go... 
22. Ross - ? ok 
23. Edward - ok 
24. Christoph - ok 
25. Ross - ok 
26. Eddie - ? how about a big wall?? 
27. Ross - thats ok with me 
28. Ross - ok 
29. Christoph - hi, i', m there ?: ) 
30. Ross -i put a cylinder on the coner 
31. Eddie - what is it made of?? 
32. Eddie - this is a kiosk ...... how big?? 
33. Eddie - is it selling hot dogs?? 
34. Ross - Qis that too big???????????????????? 
35. Eddie - anybody?? 
36. Eddie - probably 
37. Giuseppe - guys Christoph crashed he's re-booting 
38. Ross - ok so what will do do then?? 
39. Giuseppe - guys if someone crashes keep on working it's no 

problem. Once on-line again the system loads the content of 
the world automatically 

40. Christoph - hi, guys, guess who's back??! 
41. Ross - its looking very abstract 
42. Christoph -i would put a roof on it, like this, check 

sketchpad 
43. Ross - ?????????????????????? where will the entrance be?? 
44. Christoph - na, the whole thing is the kiosk, like a pavillion 
45. Christoph - have to check the roof it does look a little bit 

nasty 
46. Eddie - what's going on?? 
47. Ross - ? are theyre any windows?? 
48. Christoph - well, that's the trouble with prefab components 
49. Christoph - where's glas? 
50. Christoph - ross, are you ross? \ 
51. Ross - yes i tink so 
52. Ross - opps i del the wall 
53. Christoph - sometimes is tricky, where are u? 
54. Eddie - is this still a small kiosk?? 
55. Ross - not any more ?:? ) 
56. Christoph - na, not really, small elements are tricky, though 

57. Christoph - can u copy elements????? 
58. Christoph - barcelona pavillion i guess ;) 
59. Ross - do we want steps up to the platform??????????????? 
60. Eddie - yes why not.. big ones 
61. Christoph - why not, give it a shot 
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62. Eddie - steps?? 
63. Ross - ? stpes or st\irs?????????? 
64. Eddie - ones like this 
65. Christoph - can we reduce the height of the cylinder, please 
66. Ross - ok 
67. Eddie - what should the stairs be made from?? 
68. Christoph - you can't change materials of symbols 
69. Eddie - no 
70. Christoph - na, can't apply material to stairs 
71. Eddie -i think we need to do some site analysis 
72. Christoph - where; s south, would really like a grid or 

something 
73. Christoph - hard to get objects perpenticular 
74. Christoph - what's that ? 
75. Ross - what?? 
76. Christoph - that grey misobject, 
77. Christoph - the design is a mess, gonna be a labyrint 
78. Eddie - where is the entrance?? 
79. Christoph - guess? i don't know it's on the lifeft side, from 

my point of view, i will highlight it 
80. Christoph - that??!!!! 
81. Christoph - you see? 
82. Eddie - that roof is floating 
83. Christoph - navigation mode would be really nice, like in 

airplanes, like 2 o'clock high, and a definite no9rthpoint 
84. Ross - do we need the large wall on the left?? 
85. Christoph - where? 
86. Ross - there 
87. Eddie - minimalists 
88. Christoph - who's creatring these massive walls 
89. Christoph - all the time? 
90. Eddie -i made one of them. 
91. Ross -i made 1 
92. Christoph - skyhigh, lets go 3d 
93. Christoph - anybody, please answere, what's that on the left? 
94. Christoph - must be a wall with negatyive thickness including 

windows? 
95. Ross - the wall that i just deleted?? 
96. Ross - ? the roof is floating now 
97. Eddie -i think it should be lower 
98. Ross - should it sit on the cylinder?? 
99. Eddie - is the roof a creche then?? 
100. Christoph - youyoulook at it, kiosk?? 
101. Eddie - there is no entrance to the park??!? 
102. Ross - did we decide on an entrance yet?? 
103. Eddie - no , but it needs one i think 
104. Ross - where?? 
105. Eddie - 
106. Eddie - nice door sould be wider though 

107. Ross - Q??????? is that ok?? 

108. Eddie - like it ys 
109. Christoph - other side towards the buildings 

110. Ross - what do we have happening on the street?? 
111. Ross - ??? 
112. Eddie - what have i missed?? 
113. Ross - what is happening?? 
114. Eddie -i thi9nk christoph is going mad 

115. Ross - is it going to be open to the street?? 

116. Eddie - is it ?? 
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117. Ross - ? what do u think?? 
118. Eddie - what happened to the wall with the windows?? 119. Eddie - timber?! 
120. Ross - for the wall on left?? 
121. Eddie - yeah 
122. Ross - pannels??? 
123. Eddie - yes thats good 
124. Eddie - did anyone really ant the slide?? 
125. Ross - not me 
126. Ross - should the back wall be higher?? 
127. Eddie - just a bit 
128. Eddie - maybe make a balustrade to the roof 
129. Eddie - or maybe not 
130. Christoph - single storey for a kiosk, please 
131. Eddie - lighten up Christoph 
132. Eddie - it's falling water now 
133. Ross - ?:? ) 
134. Eddie - how about it doubles as a beer garden?? 
135. Ross - in a kiosk?? 
136. Eddie - why not?? 
137. Ross - should there be something on the leftside?? 
138. Eddie - hmmm just a small intervention 
139. Eddie - whoose is the cylinder?? 
140. Ross - which 1???? 
141. Eddie - the big un 
142. Ross - me 
143. Ross - should it go?? 
144. Eddie -i think we should buy up some of the park for a new 

site then 
145. Eddie - put it on stilts 
146. Eddie - where is Christoph?? 
147. Eddie -i was just getting used to that 
148. Eddie - not really 
149. Giuseppe - guys 10 min to go from now 
150. Christoph: ?i crashed again 
151. Giuseppe - got it ??? 
152. Eddie - are we keeping this monstrosity?? 
153. Giuseppe -I repeat 10 mins to go from now ok ? 
154. Giuseppe - chris is crashed again ... sgi is bit unstable 
155. Ross - guys hang on 4a min 
156. Christoph - hi guys, finally back 
157. Giuseppe - ok now everything is fine u have 5 min 
158. Giuseppe - repeat again 5 mins to go, ok ?? 
159. Eddie - ok 
160. Christoph - ok 
161. Ross - ? what is in the middle of the park now??? 
162. Christoph - back again 
163. Ross - ? ok 
164. Christoph - are we not takiung that alittle bit far? 
165. Eddie - is that the motorway?? 
166. Ross - thats what i thought 
167. Giuseppe - I'm deleting all objects now... 
168. Giuseppe - that's you guys ... thankx very much 4 your time 
169. Ross - ok 
170. Christoph - Ok 
171. Eddie - ok! 
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Appendix B: Screenshots from the Experiment 
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Appendix C: The CD-ROM with the Video of the 

Experiment 
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Appendix D: Specification of Hardware and 
Software used for the Experiment 

D. 1 Specification Computer n. 1 (client) 
Hardware 

" Model: Dell Precision 530 

9 Processor(s): 2x Intel® XeonTM 1.4 GHz 

" Memory: 512 MB Ram 

9 Graphic Card: nVidia Quadro2 EX with 32Mb Video Memory 

Software 

9 Operative System: Windows 2000 SP2 

" JavaTM 2 SDK Environment, Standard Edition 1.3.1 01 

" Java 3DTM 1.2.1_03 SDK (OpenGL Version) 

D. 2 Specification Computer n. 2 (client) 
Hardware 

9 Model: Viglen Genie 

" Processor(s): Intel® PentiumTM 111933 MHz 

0 Memory: 256 MB Ram 

9 Graphic Card: nVidia RIVA TNT2-Mode164 with 32Mb Video Memory 

Software 

" Operative System: Windows 2000 SP2 

" JavaTM 2 SDK Environment, Standard Edition 1.3.1_01 

0 Java 3DTM 1.2.103 SDK (OpenGL Version) 
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D. 3 Specification Computer n. 3 (client) 
Hardware 

" Model: Sgi Onyx2 

e Processor(s): 12 x MIPS R12000 400MHz 

9 Memory: 6GB 

9 Graphic Card: 2x InfiniteReality 

Software 

" Operative System: 

9 JavaTM 2 SDK 1.3.1 for Sgi Irix: MR Release 

9 Java 3DTM 1.2.1 SDK for Sgi Irix: MR Release 

D. 4 Specification Computer n. 4 (server) 
Hardware 

9 Model: ® 02 

9 Processor(s): MIPS R5000 300MHz 

9 Memory: 128 MB 

9 Graphic Card: CRM graphics 

Software 

" Operative System: 

0 JavaTM 2 SDK 1.3.1 for Sgi Irix: MR Release 

9 Java 3DTM 1.2.1 SDK for Sgi Irix: MR Release 

D. 5 External Libraries used in JCAD-VR 

" Prominence library (Hughes et al., 1997) 

" Xj3D loader release 3 (Web3D Consortium, 2002) 
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Appendix E: Questionnaires Proposed for the Cross- 

University Experiment 

QUESTIONNAIRE - Group 1- (JCAD-VR Collaborative) 

Part 1: 

" Session: Q Morning 

Q Afternoon 

" Year of study ............... 

" What kind of software do you normally use? Q Microsoft Office 

Q CAD/CAAD packages 
If selected please specify: 

........................................................................................................................... 

........................................................................................................................... 

El Other 
If selected please specify: 

......................................................................................................................... 

......................................................................................................................... 

" Have you had any experience with Virtual Reality before? 

Q Yes, many times 
Q Yes, few times 
Q Yes, once 

Q No 

Part 2: 

1. How do you find navigating within the virtual environment using this 

software? 
Q Very easy 
Q Easy 

Q Fairly easy 
Q Difficult - specify why ............................................................ 

................................................................................ 

.................................................................................. 
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Q Very difficult - specify why ...................................................... 

2. How did you find creating objects using this software? 
Q Very easy 
Q Easy 
Q Fairly easy) 
Q Difficult - specify why ............................................................ 

..................................................................................................... 
Q Very difficult- specify why ...................................................... 

3. How did you find modifying objects using this software? 
Q Very easy 
Q Easy 

Q Fairly easy 
Q Difficult - specify why ............................................................ 

4. How did you find working with your partner simultaneously? 

O Very easy 
Q Easy 

Q Fairly easy 
Q Difficult - specify why ............................................................ 

................................................................................................... 

............................................................................................. 
Q Very difficult- specify why ...................................................... 
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5. Did you find it interesting to work with a partner over the net? 
Q Yes, a lot 

Q Yes 
Q Not so much - specify why ..................................................... 

........................................................................................................ 
Q NO - specify why .................................................................. 

....................................................................................................... 
Q No, absolutely - specify why ................................................... 

6. In your view did you and your partner have enough exchange of 
information in order to accomplish the design task? 

Q Yes, a lot 

Q Yes 
Q Not so much - specify why ..................................................... 

........................................................................................................ 
Q No - specify why .................................................................. 

........................................................................................................ 

........................................................................................................ 
Q No, absolutely - specify why ................................................... 

...................................................................................................... 

...................................................................................................... 

7. Do you think that your partner could have misinterpreted your design ideas 

during the collaboration? 
Q Yes, many times we had problems and we could not explain our 

ideas 
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Thanks for your kind help. The information that you have provided will be very 

useful for us. 
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QUESTIONNAIRE - Group 2- (JCAD-VR Stand-alone) 

Part 1: 

" Session: Q Morning 

Q Afternoon 

" Year of study* ............ . 
" What kind of software do you normally use? Q Microsoft Office 

Q CADICAAD packages 
If selected please specify: 

........................................................................................................................... 

Q Other 
If selected please specify: 

................................................................................................................ 

" How frequently do you use e-mails 
Q Very often 
Q Often 

Q Sometimes 

Q Seldom 
Q Never 

" Have you had any experience with Virtual Reality before? 

Q Yes, many times 
Q Yes, few times 
Q Yes, once 
Q No 
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Part 2: 

1. How do you find navigating within the virtual environment using this 

software? 
Q Very easy 
Q Easy 

Q Fairly easy 
Q Difficult - specify why ............................................................ 

...................................................................................................... 
Q Very difficult - specify why ...................................................... 

2. How did you find creating objects using this software? 
Q Very easy 

Q Easy 
Q Fairly easy 
Q Difficult - specify why ............................................................ 

3. How did you find modifying objects using this software? 
Q Very easy 
Q Easy 

Q Fairly easy 
Q Difficult - specify why ............................................................ 

........................................................................................................ 

.................................................................................................... 
Q Very difficult- specify why ................................................... 
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4. How did you find the collaboration with your partner? 
Q Very easy 
Q Easy 
Q Fairly easy 
Q Difficult - specify why ............................................................ 

...................................................................................................... 
Q Very difficult - specify why ...................................................... 

........................................................................................................ 

5. Did you find it interesting to work with a partner over the net? 

Q Yes, a lot 

Q Yes 
Q Not so much - specify why ..................................................... 

........................................................................................................ 

........................................................................................................ 
Q No - specify why .................................................................. 

........................................................................................................ 

........................................................................................................ 
Q No, absolutely - specify why ................................................... 

........................................................................................................ 

........................................................................................................ 

6. In your view did you and your partner have enough exchange of 

information in order to accomplish the design task? 

Q Yes, a lot 

Q Yes 
Q Not so much - specify why ..................................................... 
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Q No - specify why .................................................................. 

........................................................................................................ 
Q No, absolutely - specify why ................................................... 

7. In your view is the collaborative method you have used in this experiment 
(software+e-mails) a feasible approach for collaborative design? 

Q Yes, I found it effective 
0 Yes, but 

........................................................ . 

...................................................................................................... 
Q No, but 

.................................................................. 

........................................................................................................ 
Q No, I found it unpractical 

8. Do you think that your partner could have misinterpreted your design ideas 

during the collaboration? 
Q Yes, many times we had problems and we could not explain our 

ideas 

Q Yes, but eventually we succeeded in explaining our ideas 

Q No, but the communication media available were just enough to 

show our ideas 

Q No, the communication media available allowed us to show our 

ideas 

9. Do you think that this software could help in proposing design solutions at 

an initial, conceptual, stage in relation with the urban context? 

O Yes, a lot 
Q Yes 
Q Not so m uc h- specify why ..................................................... 
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Q No - specify why .................................................................. 

...................................................................................................... 

........................................................................................................ 
Q No, absolutely - specify why ................................................... 

...................................................................................................... 

10. We warmly encourage any kind of comment on the software and on the 
experiment itself: 

...................................................................................................... 

Thanks for your kind help. The information that you have provided will be very 

useful for us. 
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QUESTIONNAIRE - Group 3- (Sketching) 

Part 1: 

" Session: Q Morning 

Q Afternoon 

" Year of study.............. . 

9 Are you confident in using: 

a printer. Q Yes 

Q Fairly 

Q No 

a scanner: Q Yes 

Q Fairly 

Q No 

" How frequently do you use e-mails 
Q Very often 
Q Often 

Q Sometimes 

Q Seldom 

Q Neve r 

Part 2: 

1. How did you find expressing your design ideas and solutions sketching? 

Q Very easy 
Q Easy 

Q Fairly easy 
Q Difficult - specify why ............................................................ 

....................................................................................................... 
Q Very difficult- specify why ...................................................... 
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2. How did you find the collaboration with your partner? 
Q Very easy 
Q Easy 
Q Fairly easy 
Q Difficult - specify why ............................................................ 

3. Did you find it interesting to work with a partner over the net? 

4. In your view did you and your partner have enough exchange of 

information in order to accomplish the design task? 

Q Yes, a lot 

Q Yes 
Q Not so much - specify why ..................................................... 

........................................................................................................ 

..................................................................................................... 
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5. Do you think that your partner could have misinterpreted your design ideas 
during the collaboration? 

Q Yes, many times we had problems and we could not explain our 
ideas 

Q Yes, but eventually we succeeded in explaining our ideas 
Q No, but sketches were just enough to show our ideas 

Q No, sketches allowed us to show our ideas 

6. In your view is the collaborative method you have used in this experiment 
(sketches+e-mails) a feasible approach for collaborative design? 

Q Yes, I found it effective 
Q Yes, but 

........................................................................... 

........................................................................................................ 

........................................................................................................ 
Q No, but 

.......................................................................... 

........................................................................................................ 

........................................................................................................ 
Q No, I found it unpractical 
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Appendix F: Notes for Tutors and Troubleshooting 

F. 1 Notes for tutors 

A General Record 

In both universities it would be appropriate to record the experiment with a 
video camera (preferably a digital one) and to take some pictures with a digital 

camera. 

Other Notes 

" It would be useful to set up a communication line between the tutors via ICQ 

or similar chat-lines during the experiment (addresses would be required). 

" Both universities have to provide email access for groups 2 and 3, and also a 

printer, a scanner at A4, A4 paper and sketching materials for group 3. 

" At the end of each session tutors should copy the content of the following 

folders where all the screenshots, back-up files, final images and emails are 

located: 

1. JCAD-VRlautomatic save, 

2. JCAD-VRlscene 

3. JCAD- VR I capture 

4. Folder with the emails of group 2 

5. Folder with the emails of group 3 

Before deleting the files contained in these directories their content has to be saved in 

another directory in order to start the second session with empty folders. This will 

avoid mixing up the files produced by the different students in the two sessions. 
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F. 2 Notes and Troubleshooting for group 1 

Loading jcad Files when Starting JCAD-VR 

JCAD-VR will automatically load the environment to be shared by the 

students working synchronously. This means that new objects created within JCAD- 
VR will be visualized in every computer joining the concurrent design session. These 

are the instructions to follow to load the scene at the beginning of the exercise: 

1. Start JCAD-VR 

2. During the loading of JCAD-VR a window will appear to allow the selection 

of a VRML file, click on CANCEL 

3. After few seconds the scene will be loaded, and when all the partners joining 

the session are ready, every object created will be visualized and shared with 

the others. 

IMPORTANT NOTE: Before starting to create objects in the collaborative 

mode all the users have to be connected with the application running and connected 

to the server. Make sure that all your partners in the collaborative session are 

already connected properly before starting to create objects. The best way to do 

thsi is simply by monitoring the text of the chat; if you are able to chat with your 

partners you will be also able to share objects. If geometries were already created 

before your partners were connected we suggest you to delete all the objects by 

1 wish to continue b sharing 

objects with your partners. 

Loading Files without Restarting JCAD-VR 

!r 

rýý 

1. Load your new file by clicking on the load® icon 

299 



2. If the system is in collaborative mode, once you load the file the other 
user connected will receive the scene. Therefore this operation has to 
be done by only one person involved in the collaborative session. 
Double check with your partner by chat to see if they have the scene 

upgraded before starting to work. 

In case of the Crashing or Interruption of JCAD-VR while a 
Student is Working with a Partner: 

1. Close JCAD-VR by clicking on the exit faý0,0 icon or using the 

CTRL+C button sequence on the MS-DOS console. 

2. Restart JCAD-VR 

3. During the loading of JCAD-VR a window will appear to allow selection of a 

file, click on CANCEL 

4. Wait for some seconds and the software will automatically upgrade the scene. 

Saving with JCAD-VR 

In order to make back-up files, JCAD-VR will automatically save students' 

work every 5 minutes and the files will be placed (with a name and sequential 

number) in the directory JCAD-VR\automatic_save. Nevertheless students can also 
air 

45p 
M 

save their design by clicking on the save icon ® and by giving these names 

to their files: group1_01, groupl_02, ... groupl_20 etc... in the JCAD-VR\scene 

directory. 
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IMPORTANT LAST NOTE: For normal reasons JCAD-VR can also crash 
or halt if some unexpected operations have been done. We would therefore 

recommend saving your work frequently. 

F. 3 Notes and Troubleshooting for group 1 

Loading jcad Files when Starting JCAD-VR 

JCAD-VR automatically loads the environment where you have to place your 
design. You need only to start JCAD-VR, and the environment will appear. 

Loading Files without Restarting JCAD-VR 

The loading routine of JCAD-VR is such that more than one jcad file cannot 
be loaded together. You can load your new file by clicking on the 

loader icon and by selecting the file to open (jcad and wrl formats are 

supported). 

In case of the Crashing or Interruption of JCAD-VR 

J 

1. Close JCAD-VR by clicking on the exit -awo icon or using the CTRL+C 

button sequence on the MS-DOS console. 

2. Restart JCAD-VR 

3. During the loading of JCAD-VR a window will appear to allow the selection 

of a file, click on CANCEL 

4. Load the jcad file you were working on again (for instructions on how to load 

a file in JCAD-VR see Loading jcad files when starting JCAD-VR on the 

previous page). 
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Saving with JCAD-VR 

di Students can save their design by clicking on the save icons and by 

giving these names to their files: group2_01, group2_02, ... group2_20 etc... in the 

JCAD-VR\scene directory. 

IMPORTANT LAST NOTE: For normal reasons JCAD- VR can also crash 

or halt if some unexpected operations have been done. We would therefore 

recommend saving your work requently. 
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Appendix G: The JCAD-VR Project's Publications 

The following pages include conference papers reporting on the JCAD-VR 

project: 

1. Conti, G, Ucelli, G. and Maver, T. (2001). JCAD-VR: Java Collaborative 

Architectural Design Tool in VR. In H. Penttilä (Ed. ), Proceedings of 
Architecture Information Management, 19th Conference of eCAADe, Helsinki, 

2001 (pp. 454-459). Espoo, Finland: Otamedia Oy. 

2. Ucelli, G., Conti, G., Petric, J. and Maver, T. (2002). Real Experiences of Virtual 

Worlds. In D. Marjanovic (Ed. ), Proceedings of the Design 2002,7rh 

International Design Conference, 2002, Cavtat (pp. 561-566). Zagreb, Croatia: 

Faculty of Mechanical Engineering and Naval Architecture, Zagreb and The 

Design Society, Glasgow, UK. 

3. Petric, J., Maver, T., Conti, G. and Ucelli, G. (2002). Virtual Reality in the 

Service of User Participation in Architecture. In K. Agger, P. Christiansson and 

R. Howard (Eds. ), Distributing Knowledge in Building. Proceedings of CIB W78 

Conference, Aarhus (pp. 217-224). Aarhus, Denmark: Aarhus School of 

Architecture and Centre for Integrated Design. 

4. Petric, J., Ucelli, G. and Conti, G (2002). Real Teaching and Learning through 

Virtual Reality. In K. Koszewski and S. Wrona (Eds. ), Design e-ducation. 

Proceedings of the 20`h Conference of eCAADe, Warsaw, 2002 (pp. 72-79). 

Warsaw, Poland: Drukarnia Braci Ostrowskich. 

5. Conti, G., Ucelli, G. and Petric, J. (2002). JCAD-VR: a collaborative design tool 

for architects. In Proceedings of the 4th international conference on 

Collaborative virtual environments, Bonn, Germany, 2002 (pp. 153-154). New 

York: ACM Press. 

6. Petric, J., Ucelli, G. and Conti, G. (2002). Participatory Design in Collaborative 

Virtual Environments. Accepted paper at the 6th SIGRADI Conference, Caracas. 

7. Petric, J. Conti, G. and Ucelli, G. (2003). Designing Within Virtual Worlds. 

Accepted paper at the CAAD Futures 2003 Conference, Tainan, Taiwan 
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JCAD-VR: Java Collaborative Architectural Design 
Tool in Virtual Reality 
A Java3D based scalable framework for real-time, multi- 
platform VR environments 

CONTI, Giuseppe; UCELLI, Giuliana; MAVER, Tom 
ABACUS, University of Strathclyde, Glasgow, UK 
http: //www strath. ac. ukIDepartments/Architecture/ 

This paper proposes a framework that provides the architect with a tool that uses Virtual 
Reality (VR) as part of the design path. It offers the possibility to deploy a system capable 
of assisting the design profession during the early stages of the design process. This way 
VR becomes the means for a new experience where the architect can, free from constraints 
of the 2D world, create and manipulate the space she/he is designing. 
The idea upon which JCAD- VR is being built is that all the users present in the virtual 
world have to be able to share the same virtual environment in a "transparent fashion " 

where the user interface, instead of the traditional menu/windows based layout, it is part 
of the virtual world itself 
The aim is to provide the designer with a tool for creating 3D-shapes in a shared VR 

environment, thus allowing the design to be shared as it evolves. 
Keywords: Collaborative Design, Virtual Reality, Java 3D, Distributed Environment. 

Introduction 
Traditionally many architects have experienced the 

need to prove their design proposals using physical 
models: even the most accurate 2D paper 
representations are usually not suitable enough to 

explain and transmit the complexity of some 
architectonic ideas. 

If the use of a third dimension is nowadays part 
of the daily practice, the "CAAD community" is only 
now experiencing the move from static representation, 
based on 2D renderings or pre-recorded animations 
(considered as a sequence of 2D images), to 
dynamically generated 3D representations. Real-time 

navigation and interaction, typical of VR environments, 
provide just that fluent interface and that entirety in 

the exploration of the design proposal that is the main 
lack in all CAD packages commonly in use. 

Furthermore, the increasing growth of 
computational resources and hardware power eases 
the access to desktop VR applications making it a 
truly feasible approach in everyday practice. 

Although VR is a quite mature technology, it is 

seldom utilised throughout the design process: often 
in fact it is just used as a more powerful presentation 
technique. Moreover, the recent growth of network- 
based virtual communities and the use of avatars have 
brought a new level of complexity to the meaning of 
virtuality, providing the technology for remote presence 

and collaborative experiences. 

Background 

In two case studies part of a previous research project 

of the authors (Ucelli, Conti, Lindsay and Ryder, 2000), 

the research team worked closely with both architects 

and engineers experimenting the use of VR in a real 

ongoing project. 
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During the creation of 3D models continuous 
access to all the information regarding the design 

progress and changing priorities were provided. 
Architects and engineers were invited to evaluate and 
discuss the project in a Virtual Reality lab. 

The outcome of the research confirmed what other 
authors had stated (Dorta and LaLande, 1998): "the 
design process is made up of two activities which are 
graphic ideation or conceptual design and 
communication [... ] the first is a formative process 
dealing with creating and evolving ideas [active 

phase]; the second is a descriptive process aiming at 
presenting to others fully-formed ideas [passive 

phase] "[1]. 
Unfortunately the result of the experience, if on 

the one side it has proved the huge potential of VR 
for reducing designs "flaws", on the other side it has 
highlighted that the present use of VR is limited only 
to the last phase of the design process, what we call 
the passive phase, when the visualization takes place 
and the result of the design process is eventually 
shown to the client (fig 1). 

It is evident from the Figure 1 that the use of 
modeling and Rapid Prototyping (RP) is confined, with 

Figure 1. The role of 
visualisation inside the design 

process where the graphic 
ideation (active phase) is 

Go to contents 16 
only a few exceptions (such in the innovative 

architectural practice of Frank 0. Gehry) at the end 
of the creation process after which all the design 

choices have been taken. 
The idea upon which the JCAD-VR framework is 

founded is to anticipate the use of VR within the active 
phase thus taking full advantage of the technology. 
The aim is to provide the designer with a tool for 

creating 3D-shapes in a shared VR environment, thus 

allowing the design to be shared as it evolves. This 

paper will report the present state of the JCAD-VR 
framework and will highlight its future development. 

JCAD-VR: a framework 
The idea upon which JCAD-VR is being built is that 

all the users present in the virtual world have to be 

able to share the same virtual environment in a 
"transparent fashion" where the user interface (UI), 
instead of the traditional menu/windows based layout, 
it is part of the virtual world itself. 

The entire project is based on client-server 
architecture where every user logs into a virtual world 
and starts sharing designing tasks with other users. 
The entire structure is organised in an object-oriented 

represented with the 

architectonic and engineering 
planning and the 

communication (passive 

phase) is represented iw the 
('4.4D/RP. section. 
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fashion, where each module is able to fulfill to a certain 
task and it is independently coded. This approach has 

allowed the delivery of an initial functioning core of 
the JCAD-VR system whose capabilities will be 

expanded in the near future with several modules 

currently under development (fig 2). 
The entire framework is handling the virtual 

environment through two closely connected parts: a 
3D engine and a services unit each made of different 

modules. In a human body analogy the former might 

represent the heart while the latter might be 

considered as a nervous system. 

The 3D engine unit 
The 3D engine is the broad part of the framework 

that handles all the information regarding the "visible" 

aspects of the virtual world. It includes the code 

necessary to create and modify geometric entities 
(geometry core), to show the interface (interface 

core) and to deal with several different display devices 

(visual core). 

........... * ................... 

. ........................... . ............... 

The first module of the geometry core handles 
the creation of 2D and 3D objects: the last ones being 
both geometric primitives (cones, boxes, spheres etc. ) 

and architectural entities (walls, slabs etc. ). Although 
from the visualisation point of view a wall might be 

seen as a box, the system treats it in a completely 
different way. In fact while a box is just regarded as a 
simple shape without any further quality, the wall 
instead is handled as an entity owning "topological" 

properties: it is first of all made of two different surfaces 
(internal and external faces) and a core. It can be the 

parent of another object (such as a window or a door) 

and it can hold other types of information such as 
number of windows attached to it. 

Quite obviously the geometry module will also 
provide the means for attaching materials to objects 
and add lights and objects from a library to the virtual 
world through the database module. Further 
development will implement real-time shape 
recognition routines. This would allow the user the 
freedom of drawing shapes in the virtual world that 

Figure 2. The general 
overview of the dif%ereni 

modules 
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Figure 3. An image of. /CAD- 
VR as i( appears when 
Inning in the Reality Centre 

(multi-screen mode) 

would be converted in 3D objects by the system. The 

complexity of such a process requires some Artificial 
Intelligence (AI) routines and it has convinced the 
authors to code the Al module only in a second stage 
of development. 

The interface core, as the name itself says 
obviously takes care of the graphic user interface 
(GUI). As previously mentioned the system aims to 
achieve an interface as "transparent" as possible. 
Here the term "transparency" is to be considered as 
the interface which is not a separate part of the 3D 

world but as an integral part of the virtual world itself. 
The idea behind it is that instead of the traditional 

menus and toolbars the user is immersed in an 
environment providing the means for the interaction 
itself. 3D menus pop up showing 3D icons and the 
3D menus themselves can be moved for the 

convenience of the user. Visual feedback is provided, 
for example, in the form of rulers showing the size of 
objects or 3D icons showing the operation to be done 

on the object. A voice driven interface is due to be 

coded to help push further the level of "transparency" 

and enhance user friendliness of the interface. For 

the sake of completeness a traditional window based 

control panel is provided for advanced settings. On 

the first functioning core traditional pointing devices 

are used but support for 6-degree of freedom/virtual 

glove will be coded in the next future. 

Go to contents 16 
The visual core is the part of the framework that 

allows interfacing with the visualization devices. For 
the sake of flexibility the entire framework has been 

coded in a multi-platform language (Java). The 

obvious computational constrains imposed by the use 
of different hardware is solved by creating a structure 
that is flexibly scalable and can deliver images for a 
range of viewing devices, from the simple desktop 

monitor to the more complex tessellated screen [2] 
for immersive environments. The user can switch 
between two different modes according to the machine 
it is running on. When the software is loaded the user 
is asked to choose whether to work on a single screen 
or in multiple screen mode. At the present stage, on 
common PCs the video card displays the virtual world 
on a traditional window or on full screen. The system 
also runs on a Sgi supercomputer whose display is a 
Reality Centre. The internal architecture of this module 
is entirely flexible such that it might be easily adapted 
to allow use of other VR devices (C. A. V. E, H. M. D. 

etc. ) (fig 3). 

The services unit 
The services unit is the part of the framework that 
handles all the information regarding the 
"management" of the virtual world. It is the backbone 

of the interconnection between users: it manages 
network connections and exchange of data between 

users (network core), it keeps tracks of the state of 
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the virtual world in a database from which it also 
retrieves information from libraries of objects 
(database core). 

As already mentioned the entire framework is 
based on a client/server architecture. 

The services unit is indeed developed across two 
independently coded packages of the framework - 
client and server- and the network core is allowing 
the transmission of data between the two (fig 4). 

The network core is thus based on a server, 
several clients and the network allowing the 

communication. The server is the data-delivering unit 
that looks after the information to be broadcast. The 

clients are the users themselves who perform actions 
and queries, when active, and when passive, rely on 
the server for receiving data update. The intrinsic 

multiplatform nature of JCAD-VR, inherited from the 
language used to code it, allows the server to transmit 
data to a broad range of machines, from normal PCs 

to the supercomputer running the Reality Centre, and 
leaves the research team the freedom to test the 

software with several operating systems. The 

communication channel ensures the link between 

server and clients through a TCP/IP network. As an 
independent part of the framework the server has an 
autonomous and simpler interface that provides 
primarily information about the network system. A 

number of components are envisaged such as the 

communication status, the users on line and VR 

shared environments. Since the clients are 
communicating through independent processes in the 
future a further enhancement will allow the server to 
be capable of dealing with several VR environments 
simultaneously. At the present stage the network 
module is supporting use of avatars representing the 

users inside the virtual world, and it gives also the 

possibility to interact between the users through a chat 

system and a whiteboard for sketching. Support for 

voice communication is being considered for further 

development as well as a web based applet version 

of the client side of the software. 
The database core includes an internal database, 

that keeps track of the creation or manipulation of the 
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objects in the virtual scene, and an external database 
through which users will be able to retrieve geometric 
primitives, materials, lights etc. The internal database 
is closely coupled with the network core. It is not 
only keeping track of what is happening in the user's 
virtual world but, most importantly, it receives, through 
the network, information sent by other users' internal 
databases. If a new object is created or its status is 

changed the system will upgrade the internal database 

of each user no matter who is doing the action. For 
the convenience of the user an I/O module will allow 
import/export of objects from/to other packages. 

Technical overview 
The entire system is coded in Java'. The choice, even 
if less efficient in term of performances if compared 
with some other languages, offered indeed great 
flexibility, true scalability and last but not least fully 

multi-platform support. Moreover the use of Java' 

programming language became a natural choice when 
its 3D suite was released (Java3D'). Its network- 
centric nature, its multimedia integration together with 
the use of native hardware acceleration (OpenGL) and 
multi-processors support (in the case of Sgi 

workstation) makes it the perfect choice for the 
development of a real-time multimedia collaborative 

system. Furthermore thanks to Java"s performance 

scalability and hardware independence the concept 

of CAAD has been pushed even further creating a 
VR environment that can co-exist between high-end 

supercomputers and common PCs. 
The client application, in response to the obvious 

hardware limits imposed by the use of different 

Figure 4. The client/server- 
architecture ofJCAD-VR 
where the . server hroadca. crc 
to several clients including 
the Realitj' Cenire. 
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hardware, has been written to be easily customised 
to run on PCs as well as on a Sgi supercomputer. 
The former are normal PCs whose video-card is 
displaying the virtual world only on a traditional window 
or at full screen. The latter is a 12-processors 6Gb 
Ram Sgi Onyx2 system running the Reality Centre at 
ABACUS, University of Strathclyde, Glasgow. When 
the JCAD-VR is launched on the Sgi it can take 
advantage of its computational power to stretch itself 
on a5 metre wide 2 metre high tassellated screen 
where 3 Barco projectors create a 160 degree 

panoramic image. 

Conclusions and further 
developments 

The multidisciplinarity of this research is giving the 

opportunity to investigate collaborative design issues, 
the role of interfaces inside CAAD packages, the 
design process in the first stage of its conception, the 

use of Virtual Reality in architecture and last but non 
least, a number of technical issues. 

As already pointed out, JCAD-VR is an ongoing 
project and several enhancements are planned for 
the next releases aiming to get that feeling of 
intuitiveness and that control over the design that 

should be the goal of every application using Virtual 
Reality. 

Footnotes 
Go to contents 16 

[1] Dorta, T. and LaLande, P., 1998, p. 144-148. 
[2] A tessellated screen is a composite screen 

consisting of several projectors creating an unique 
high resolution image. 
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REAL EXPERIENCES OF VIRTUAL WORLDS 

G. Ucelli, G. Conti, J. Petric and T. W. Maven 

I; eyt'ºvrds: Virtual Reality, Collaborative Dasign, E stributed 
Fzvironmnt 

1. Introduction 
The present use of 3D simulations or more effective virtual worlds has provided the designer with new 
media capable of storing several levels of information traditionally obtained only with the help of 
multiple media, usually more time and resource-consuming. 
Virtual models in particular can store information about planning issues, geometric design, material 
choices or even furniture and lighting conditions. This level of representation provides the designer 
with all the necessary tools to represent an architectural environment and facilitate the research of 
potentially good design solutions. 
The use of Virtual Reality (VR) within the design process has not only enabled the designer to store 
more information than with the use of the traditional media and to check the design solutions more 
efficiently but furthermore it has enhanced the level of simulation providing: 

" Immersion: Users are completely surrounded by the environment. 
" Presence: Being surrounded the participant has actually the sensation of being in the 

environment. The Virtual Environment becomes then a place on its own and its perception is 
similar to real environments. 

" Interactivity: This is surely the most important feature provided by VR: the environment 
allows the participant to be involved and the result of the actions done by the participant is 
visualized in the VE. 

" Autonomy: Participants are neither constrained in paths nor in views preset by others but have 
the freedom and autonomy to explore any single part of the environment. 

" Collaboration: Multiple users are able to take part and to interact in the same VE. 
The use of VR can also broaden the boundaries of traditional perception to give the experience of 
worlds not necessarily real or material and to give the freedom to safely simulate dangerous or 
expensive condition for training purposes. In fact some applications can simulate something 
completely different from anything we have ever directly experienced such as the visualisation of the 
ebb and flow of the world's financial markets or the information of a large corporate database. Other 
applications provide ways of viewing from an advantageous perspective not possible or too expensive 
in the real world, like scientific simulators, tele-presense systems and air traffic control systems. 
The speed at which technology is evolving is making the application of VR within the design 
professions a feasible approach. AEC companies have already started to evaluate how time consuming 
the traditional presentation path can be where animations or walkthroughs are used to show designs 
solutions to their clients. In fact traditional CAD/CAAD systems are used as rendering tools more than 
design tools. Any change on design solutions is subject to the inevitable delay of having to step back 
to the CAD/CAAD systems and then the result must be rendered again to be eventually visualized. 
This approach is obviously not only unconvenient but time consuming and therefore costly. The 

consequence of these issues is that some design and manufacturing companies have already started to 
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investigate how VR can be used within the design process. 

2. Background 
Since the presentation of The CAVE at the SIGGRAPH conference in 1992 all the media have been 
presenting VR technologies as the new tools that designers were waiting for and in particular they 
have been erroneously assumed that it would have triggered the architects' interest for its power to 
communicate design ideas. 
Unfortunately VR is far from being used on a large scale during the architectural design activities 
although it would provide a natural and easy-to-understand interface between practitioners and clients. 
Moreover VR would enable architects to test the design functionality and to see whether the design 
solutions reach the clients expectations; it would increase the possibilities to design a better-built 
environment by: 

" addressing sustainability through environmental simulations and appraisal 
" engaging design creativity through immersive design 

We have identified two important reasons why VR has not been widely used in the architectural 
context: the lack of interfaces designed for architects and the wrong positioning of the VR phase inside 
the design process. 
If we observe the software available on the market from a user-centric point of view it is clear that 
none of the current packages used by architects provides an easy interface to generate virtual 
environments during the creation phase of the design process. CAAD packages are often complex 
rendering tools more than design tools and the funtionalities related to VR they provide are 
subordinated to the creation of 3D models and exportation. Consequently any change on design 
solutions is subject to the inevitable delay of going back to the CAAD system to refine the 3D model. 
Thus the recreation of 3D models is so impractical and time-consuming that becomes worth doing 
only when every design decision has been already taken. In these circumstances the use of VR would 
just increase costs. 
Furthermore the lack of interfaces suitable for architects has as a consequence the wrong positioning 
of VR technologies in the design process. In fact if the virtual environments created using CAAD 

packages are generated as refinements, adjustments and exportation from traditional 3D scenes, it is 

clear that practitioners will consider their use only as presentation tools. Keeping up to date 3D models 
is an expensive task and obviously even more expensive is to upgrade VEs generated from them. 
Therefore we could say that VR is relegated to the end of the design process rather then being used to 
engage design creativity through immersive design. 

Figure 1. Traditional Schema 

Having identified these problems behind the difficulty of using VR from the very beginning of the 
design phase, the research group has thought to engage itself in the development of a VR system that 

provides a flexible user-friendly immersive environment to support collaborative design on a 
synchronous co-editing base, being called JCAD-VR. 
This paper will report the present state of the JCAD-VR system and will highlight its future 

development. 

3. The JCAD-VR schema 
The idea upon which the JCAD-VR framework is founded is to anticipate the use of VR within the 

creation phase thus taking full advantage of VR technology. The system in fact allows the creation of 

simple virtual environments through a user-friendly interface without forcing the user to model it with 

SUPPORTIVE TECHNOLOGIES 
562 



traditional CAAD packages. The use of CAAD packages is therefore left to the final stage of the 
project, where further refinements are needed. 
It creates simple parametric 3D-shapes directly in a co-edit VR environment, thus allowing the design 
to be shared as it evolves. 

RL 

DESIGN CHANGE 

Figure 2. JCAD-VR Schema 

To allow constant collaboration between several users the entire project is based on client-server 
architecture where every user accesses the virtual world, interacts with the VE and shares design tasks. 
The whole framework is organised in an object-oriented fashion, where each module fulfils a certain 
task and it is independently coded. This approach has allowed the delivery of an initial functioning 
core of the system, whose capabilities will be expanded in the near future. 

Figure 3. The JCAD-VR framework schema 

From the implementation point of view JCAD-VR handles the VE through two closely connected 
sections: a 3D engine and a services unit each made of several modules. 

3.1 3D engine unit 
The 3D engine handles all the information regarding the visual aspects of the VE. It includes the code 
necessary to create and modify geometric entities (geometry core), to run the 3D-interface (interface 

core) and to deal with several different output devices (visual core). 
The first module of the geometry core handles the creation of 3D objects: both geometric primitives 
(cones, boxes, spheres etc. ) and architectural entities (walls, slabs etc. ). To the architectural entities 

some extra properties were provided such as: information on internal and external faces or windows 

and doors attached to them. 
The geometry module will also provide the means for attaching materials to objects and add lights and 
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objects from a library to the virtual world through the database module. 
The interface core does not implement a traditional graphic user interface (GUI): JCAD-VR has been 
provided with a 3D interface that is an integral part of the virtual world itself. The idea behind it is that 
instead of the traditional menus and toolbars the U1 is immersed in VE providing the means for the 
interaction: 3D menus pop up showing 3D icons and the 3D menus themselves can be moved for the 
convenience of the user. Visual feedback is provided in the form of rulers showing the size of objects 
or 3D icons helping the user in the operations to be done on the objects. 
The visual core is the part of the framework that allows the interfacing with the visualization devices. 
The client application has been implemented in order to be used on PCs as well as on Sgi 
supercomputers. The former are normal PCs whose video-card is displaying the virtual world only on 
a traditional window at full screen, the latter is a 12-processors 6Gb Ram Sgi Onyx2 system running a 
Reality Centre. When JCAD-VR is launched on the system running the Reality Centre it can take 
advantage of the increased computational power stretching its visual output on a5 metre wide 2 metre 
high tassellated screen where 3 projectors create a 160 degree panoramic image. 
For the sake of flexibility the entire system is coded in JavaT"'. The choice, even if less efficient in 
terms of performances if compared with some other languages, offered indeed great flexibility, true 
scalability and last but not least fully multi-platform support. Moreover the use of JavaTM 

programming language became a natural choice when its 3D suite was released (Java3DT"'). 
This choice has provided the flexibility neceessary to deliver images for a range of viewing devices 

and the internal architecture of the visual core is such that modules might be easily adapted to allow 
use of different VR devices such as CAVEs or Headmounted Displays. 

3.2 Services unit 
The services unit handles all the circulation of data within the system. 
lt is the backbone of the interconnection between users: it manages network connections, it exchanges 
data between users (network core) and it keeps track of the state of the virtual world through a 
database from which it also retrieves objects information (database core). 
The services unit is based on a client/server architecture therefore it is implemented across two 
independent packages of the framework the client and the server and the network core allows the 
transmission of data between them. 
The network core is thus based on a multi-client server, several clients and the network allowing the 

communication. The server is the data-delivering unit that looks after the information to be broadcast. 

The clients are the users themselves who perform actions and queries, when active, and when passive, 

rely on the server for receiving data update. The intrinsic multiplatform nature of JCAD-VR, inherited 

from the language used, allows the server to transmit data to a broad range of machines across several 

operating systems. The communication channel ensures the link between server and clients through a 
TCP/1P network. 
As an independent part of the framework the server has a simple and autonomous interface that 

provides primarily information about the network system. 
At the present stage the network module supports: 

" Broadcasting of new geometries in the VE 

" Notification of creation of new geometries in every user's internal database and broadcasting 

of their numerical information 

" Broadcasting of modifications applied on geometries in the VR scene 

" Notification of changes on geometries in every user internal database 

" Checking for user priority on the objects through a distributed locking mechanism 

" Avatars representing multiple clients in the VE 

" Interaction between users through a chat system and a whiteboard for freehand sketching in 

2D. 
It will be soon expanded to include new functionalities such as the transfer of voice and video accross 

users. 
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As already pointed out, JCAD-VR is an ongoing project and several enhancements are planned for the 
next releases aiming to get that feeling of intuitiveness and that control over the design that should be 
the goal of every application using Virtual Reality. 
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Abstract: The issue of user participation in the processes of building and urban design is 
enjoying renewed attention following its relative neglect over the last 20 years due, 
in large measure, to significant advances in emerging information technologies, 
particularly multimedia, virtual reality and internet technologies. 

This paper re-established the theoretical frames rk for participatory design 
evolved in the late sixties and early seventies as part of the movement towards a 
more explicit design methodology and attempts an explanation of why the concept 
failed to gain commitment from the architectural and urban design professionals. 

The paper then gives an account of two significant developments in the evolution of 
the application of information technologies with which the authors have been 
engaged. These are: 

i. a responsive and interactive interface to wholly immersive and realistic 
virtual reality representations of proposed buildings and urban 
neighbourhoods. 

ii. an intuitive and platform-independent VR modelling environment allowing 
collaborative evolution of the scheme fr om within the virtual world. 

The impact of these IT developments is demonstrated in the context of the design of 
a leisure facility for a community of users with physical impairment. 

Keywords: user, design, participation, VR, CAAD 

Design Decision Making 

Architectural design is a multi-faceted occupation which requires, for its successful performance, a 
mixture of intuition, craft skills and detailed knowledge of a wide range of practical and theoretical 
matters. It is a cyclical process in which groups of people work towards a somewhat ill-defined goal in a 
series of successive approximations. There is no 'correct' method of designing and, although it is 
recognised that the process can be divided into separate phases, there is no generally accepted sequence of 
work that might guide design teams in the direction of achieving a satisfactory solution. Indeed, there are 
no solutions to design problems in the way that there are solutions to mathematical problems: the best 
that can be hoped for is an outcome which satisfies the maximum number of constraints which bound the 
area of concern. Furthermore, design is not an algorithmic process in which the desired conclusion can be 
reached by the application of step-by-step procedures - first finalising this aspect, then that. It is a fluid, 
holistic process wherein at any stage all the major parts have to be manipulated at once. In this sense, it is 
less like solving a logical puzzle and more like riding a bicycle, blindfold, whilst juggling. 
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Despite the complexity of the design decision-making process the emerging new generation of computer- 
based models is already having an impact on how design is performed and, hence, on the quality of 
design. The impact stems from the fact that the new models, as opposed to paper-based plans and 
elevations or other conventional forms, are predictive rather than descriptive; dynamic rather than static; 
explicit rather than implicit and, above all, permit a more-or-less continuous and interactive assessment of 
the effects of a developing design on cost and performance. 

Evidence is growing of the advantages offered by the application of computers in design, and these can be 
summarised as follows: 

Widening the Search for Solutions 

Access to programs which dynamically predict the cost and performances characteristics of optional 
design proposals can increase the scope of search for good solutions by as much as ten-fold. Not only is 
the search coverage extended, it is also more purposefully directed because designers are able to compare 
the quality of any one tentative solution against the quality of all previous solutions. 

Greater Integration in Decision-Making 

In conventional working, a great deal of design time is lost as proposals are passed to and fro between the 
architect (who tends to be the originator) and the other specialist members of the design team (who tend 
to the "checkers"). Quite frequently the scheme on which the architect has lavished time and effort is 
found by one or other of the specialists to be infeasible. With access to appropriate appraisal techniques 
embodied in computer programs, it is possible to check a proposal against a wide range of criteria from 
the outset of the design activity. Moreover, it is entirely practical (though not yet a widespread working 
method) for all members of the design team to have access to, and operate on, the common design model 
whether or not they share a design office. The models, then, can provide a strong integrating force in 
design team working. 

Improving Design Insights 

Apart from the use of appraisal programs to search for better designs, the programs can be used in a 
research and development context to provide insights into the way in which particular design decisions 

affect cost and performance. Typically, a designer working in this mode would select an existing 
building for study, then, keeping all other design variables constant (insofar as this is possible), 
systematically vary one factor while recording the cost/performance output from the program. In this 

manner, the architect can establish sets of causal relationships which provide powerful insights into 

structure of design decision-making. 

Differentiation of Objective and Subjective Judgements 

Contrary to the early fears of many architectural practitioners, the use of CAAD techniques focuses 

increased attention on subjective value judgements rather than less. As measurable attributes of optional 
designs are made more explicit, the necessary value judgements are forced to the surface of design 

activity and thereby, themselves become more explicit. The effect of this is to make it clear to designers 

and their clients, which judgements are based on quantifiable criteria and which on subjective and 
intuitive concepts. 

Evidence of the degree to which computer-generated cost/performance information promotes effective 

value judgement, throws into sharp focus the crucial question: whose value judgement? This question 

was, for the first time, seriously addressed in the Design Participation Conference in Manchester in 1971 

(1). At that time, however, the human-machine interface was too primitive for the concept of useful 

participation by the users of buildings to be achieved. The new technologies of VR and Multimedia give 

real prospects for participation. 
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Virtual Reality 

The present use of 3D simulations or more effective virtual worlds has provided the designer and user participants with new media capable of storing several levels of information traditionally obtained only with the help of multiple media, usually more time and resource-consuming. 
Virtual models in particular can store information about planning issues, geometric design, material choices or even furniture and lighting conditions. This level of representation provides the designer with all the necessary tools to represent an architectural environment and-facilitate the research of potentially good design solutions. 
The use of Virtual Reality (VR) within the design process has not only enabled the designer to store more information than with the use of the traditional media and to check the design solutions more efficiently but furthermore it has enhanced the level of simulation providing: 

?? Immersion: Users are completely surrounded by the environment. 
?? Presence: Being surrounded the participant has actually the sensation of being in the 

environment. The Virtual Environment becomes then a place on its own and its perception is 
similar to real environments. 

?? Interactivity: This is surely the most important feature provided by VR: the environment allows 
the participant to be involved and the result of the actions done by the participant is visualized 
in the VE. 

?? Autonomy: Participants are neither constrained in paths nor in views preset by others but have 
the freedom and autonomy to explore any single part of the environment. 

?? Collaboration: Multiple users are able to take part and to interact in the same VE. 

The use of VR can also broaden the boundaries of traditional perception to give the experience of worlds 
not necessarily real or material and to give the freedom to safely simulate dangerous or expensive 
condition for training purposes. In fact some applications can simulate something completely different 
from anything we have ever directly experienced such as the visualisation of the ebb and flow of the 
world's financial markets or the information of a large corporate database. Other applications provide 
ways of viewing from an advantageous perspective not possible or too expensive in the real world, like 
scientific simulators, tele-presence systems and air traffic control systems. 

The speed at which technology is evolving is making the application of VR within the design professions 
a feasible approach. AEC companies have already started to evaluate how time consuming the traditional 
presentation path can be where animations or walkthroughs are used to show designs solutions to their 
clients. In fact traditional CAD/CARD systems are used as rendering tools more than design tools. Any 
change on design solutions is subject to the inevitable delay of having to step back to the CAD/CAAD 
systems and then the result must be rendered again to be eventually visualized. This approach is 
obviously not only inconvenient but time consuming and therefore costly. The consequence of these 
issues is that some design and manufacturing companies have already started to investigate how VR can 
be used within the design process. 

The JCAD-VR Prototype 

In the Department of Architecture and Building Science at the University of Strathclyde, the ABACUS 

group has been building a prototype design decision support system known as JCAD-VR (2). 

The idea upon which the JCAD-VR framework is founded is to anticipate the use of VR within the 
creation phase thus taking full advantage of VR technology. The system in fact allows the creation of 
simple virtual environments through a user-friendly interface without forcing the user to model it with 
traditional CAAD packages. The use of CAAD packages is therefore left to the final stage of the project, 
where further refinements are needed. 
It creates simple parametric 3D-shapes directly in a co-edit VR environment, thus allowing the design to 
be shared as it evolves. 
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Figure 1. Traditional Schema. 

DESIGN CHANGE 

Figure 2. JCAD- VR Schema. 

To allow constant collaboration between several users the entire project is based on client-server 
architecture where every user accesses the virtual world, interacts with the VE and shares design tasks. 
The whole framework is organised in an object-oriented fashion, where each module fulfils a certain task 
and it is independently coded. This approach has allowed the delivery of an initial functioning core of the 
system, whose capabilities will be expanded in the near future. 
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From the implementation point of view JCAD-VR handles the VE through two closely connected 
sections: a 3D engine and a services unit each made of several modules. 

3D engine unit 
The 3D engine handles all the information regarding the visual aspects of the VE. It includes the code 
necessary to create and modify geometric entities (geometry core), to run the 3D-interface (interface 
core) and to deal with several different output devices (visual core). 

The first module of the geometry core handles the creation of 3D objects: both geometric primitives 
(cones, boxes, spheres etc. ) and architectural entities (walls, slabs etc. ). To the architectural entities some 
extra properties were provided such as: information on internal and external faces or windows and doors 
attached to them. 
The geometry module will also provide the means for attaching materials to objects and add lights and 
objects from a library to the virtual world through the database module. 

The interface core does not implement a traditional graphic user interface (GUI): JCAD-VR has been 
provided with a 3D interface that is an integral part of the virtual world itself. The idea behind it is that 
instead of the traditional menus and toolbars the UI is immersed in VE providing the means for the 
interaction: 3D menus pop up showing 3D icons and the 3D menus themselves can be moved for the 
convenience of the user. Visual feedback is provided in the form of rulers showing the size of objects or 
3D icons helping the user in the operations to be done on the objects. 

The visual core is the part of the framework that allows the interfacing with the visualization devices. 
The client application has been implemented in order to be used on PCs as well as on SGI 
supercomputers. The former are normal PCs whose video-card is displaying the virtual world only on a 
traditional window at full screen, the latter is a 12-processors 6Gb Ram SGI Onyx2 system running a 
Reality Centre. When JCAD-VR is launched on the system running the Reality Centre it can take 
advantage of the increased computational power stretching its visual output on a5 metre wide 2 metre 
high tassellated screen where 3 projectors create a 160 degree panoramic image. 
For the sake of flexibility the entire system is coded in Java? 

. The choice, even if less efficient in terms 
of performances if compared with some other languages, offered indeed great flexibility, true scalability 
and last but not least fully multi-platform support. Moreover the use of Java? programming language 
became a natural choice when its 3D suite was released (Java3D? ). 
This choice has provided the flexibility necessary to deliver images for a range of viewing devices and the 
internal architecture of the visual core is such that modules might be easily adapted to allow use of 
different VR devices such as CAVEs or Headmounted Displays. 

Services unit 
The services unit handles all the circulation of data within the system. 
It is the backbone of the interconnection between users: it manages network connections, it exchanges 
data between users (network core) and it keeps track of the state of the virtual world through a database 
from which it also retrieves objects information (database core). 
The services unit is based on a client/server architecture therefore it is implemented across two 
independent packages of the framework the client and the server and the network core allows the 
transmission of data between them. 

The network core is thus based on a multi-client server, several clients and the network allowing the 

communication. The server is the data-delivering unit that looks after the information to be broadcast. The 

clients are the users themselves who perform actions and queries, when active, and when passive, rely on 

the server for receiving data update. The intrinsic multiplatform nature of JCAD-VR, inherited from the 

language used, allows the server to transmit data to a broad range of machines across several operating 

systems. The communication channel ensures the link between server and clients through a TCP/IP 

network. 
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As an independent part of the framework the server has a simple and autonomous interface that provides 
primarily information about the network system. 
At the present stage the network module supports: 

?? Broadcasting of new geometries in the VE 
?? Notification of creation of new geometries in every user's internal database and broadcasting of their numerical information 
?? Broadcasting of modifications applied on geometries in the VR scene 
?? Notification of changes on geometries in every user internal database 
?? Checking for user priority on the objects through a distributed locking mechanism 
?? Avatars representing multiple clients in the VE 
?? Interaction between users through a chat system and a whiteboard for freehand sketching in 2D. 

It will be soon expanded to include new functionalities such as the transfer of voice and video across 
users. 
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Figure 4. The client/server architecture ofJCAD-VR where the server broadcasts to several clients 
including the Reality Centre 

The database core includes an internal database, that keeps track of the numerical parameters of the 
geometries created or modified within the virtual scene, and an external database through which users 
will be able to retrieve more complex 3D shapes, AEC objects, materials, lights etc. 
The internal database is closely coupled with the network core. Not only it keeps track of what it is 
happening in the user's virtual world but also, most importantly, it receives, through the network, 
information sent by other users' internal databases. If a new object is created or its geometric parameters 
are changed the system will upgrade the internal database of each user no matter who is doing the action. 
For the convenience of the user an I/O module supports loading of external files thus allowing import 
from traditional CARD packages. 

Initial Trials 

The current prototype version of JCAD-VR is starting trials of its simultaneous use at the Technical 
University of Eindhoven and the University of Strathclyde. However, an earlier version was piloted with 
a group of students in the BSc (Architectural Studies) at the University of Strathclyde. 

The brief for the design project associated with the workshop was quite demanding: A Sailing Club for 
the Disabled located on a canal site in Glasgow City Centre. A real client community agreed to be 
involved in the project and in the assessment of its outcomes (3). 

Within the overall JCAD-VR system, students were encouraged to use initially a standard CAAD 

package for initial creation of the geometry and then to refine the design using VRML. Event 

management in their virtual worlds was done through the user of sensors and connectivity. These include 

touch sensors, proximity sensors, time sensors and anchors. 
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Figure 5. Sailing Club for the Disabled at Spier's Wharf, Glasgow. 

The design outcomes 
The outcome of the experiment - although not statistically measurable - was nonetheless considered to be 

remarkable by both the tutors and the client community. One second year student in particular made the 

most effective use of the full range of functionality of the system. 
In relation to the site and exterior of the building these were: 

?? Good balance between modelling of 3D geometry and texture mapping to provide a thoroughly 

convincing, large scale model of the site, which includes existing buildings of importance to the 
intervention as well as the wider urban issues such as the adjacent motorway. 

?? Ability to approach the site, as would a user, by sailing along the canal or, as a wheel chair user, to 

open gates and wheel along foot-paths to the building entrance. 

?? Understanding of the urban site by "flying" nearer or further from the adjacent motorway (along 

which cars are speeding) to check the attenuation of noise pollution. 
In relation to the building itself, the contribution of the student's ability to "visit" his design, during the 

evolution, as would a wheelchair user, was clearly evident in the quality of the design solution and was 

manifested in a number of subtle but important ways, for example: 
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?? The approach from the canal footpath and the carpark to the front door was carefully considered in 
terms of slopes and angles. 

?? The door access and view lines of wheel chair users, on entering the facility (including signage) were 
completely thought through. 

?? The elegance of articulation of the building into two zones - wet and dry - was the evident result of 
- the Boolean operations performed by the student on the volumes; 
- the immediate testing of these in the virtual envirorunent. 

?? The unparalleled level of detail presented by the student in response to user requirements, was 
exemplified by : 

the transparency of the balustrades on the ramps and the sophisticated louvre 
system on the external glazing -a direct result of the designer's perception, from 
the user viewpoint - of what is important to someone in a wheelchair. Through 
every window in the building the student was able to show the appropriate view 
from the building. 

- concern and commitment to the real experience for a wheelchair user. The 
sliding door towards the canal could be opened and the user wheeled out into a 
mesh deck in order to get a first-hand experience of being "on" the water before 
perhaps, two ramps down, actually getting into a canoe, the mechanism 
illustrated by an elegant animation. 

The client community group were presented with the work of the students, and were impressed by the 
sensitivity with which the brief was addressed. They are featuring the outcome on their website 

Conclusions and future aspirations 
As in the earliest days of the introduction of computers into architectural design, the quantum jump is 

made by students. The work reported here, and which will be shown during the conference is, we believe, 
the epitome - in the current state of the art - of excellent practice. It makes a breakthrough, we believe, in 
the evolution of good design ideas, modelled offline but appraised interactively and offers a real prospect 
for user participation. 
There is some way to go, of course, to design interactively in a virtual environment. The next step which 
we envisage is to link to the 3D model the emerging and sophisticated software for the thermal, lighting 

and acoustics properties of the building. This would allow the user to visualise, dynamically, airflow, 
temperature gradients, lighting levels and to experience the actual acoustic characteristics of the space as 

she/he moves through it. 
The other exciting development is for representatives of the client/user group to "join" the designer within 
the virtual environment and to participate directly in the evolution of the design concept. The recent 
development of a wheel-chair motion platform for immersive virtual environments (4) will allow the 
future users of buildings like the Sailing Club for the Disabled to navigate themselves, in their own 
wheelchair, through the virtual building. 
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Real Teaching and Learning through Virtual Reality 
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Abstract. This paper addresses an articulated vision of Virtual Reality which lends itself to design 
collaboration in teaching and learning and communication of architectural design ideas among 
students, design professionals and client body during the early stages of the design process. 

Virtual Reality (VR) has already acquired a new degree of complexity through development of 
network-based virtual communities and the use of avatars. The intrinsic quality of VR technology 
is to support collaborative design experience. 

The design tools developed for this experiment are capable of creating 3D objects in a shared 
VR environment, thus allowing the design and its evolution to be shared. The choice of 
programming language (Java "") reflects the desire to achieve scalability and hardware 
independence, which in turn allows for creation of a VR environment that can co-exist between 
high-end supercomputers and standard PCs. The prototype design environment was tested 
using PC workstations and an SGI system running a Reality Centre. 

The research and teaching/learning experience in the collaborative design environment 
reported in this paper describe the development and application of software that aims to increase 
the opportunity for architects to collaborate within virtual worlds which enable effective and 
transparent information exchange. 

Keywords 
VR, Collaborative Design, Virtual Environment, Interface, Architecture, Experiment, Design 
Process. 

Introduction 

In the recent decades the design profession has been deeply affected by the digital revolution 
and the use of Computer Aided Architectural Design (CAAD) tools is nowadays part of the daily 
practice in most architectural firms. But in the last few years the 'CHAD community' is 
experiencing a new revolution that is leading the move from static representation, based on 2D 
renderings or pre-recorded animations (considered as a sequence of 2D images), to dynamically 
generated 3D representations. Real-time navigation and interaction, typical of VR environments, 
provide just that fluent interface enabling the exploration of the design proposals that architects 
have not been able to get with any other media. 

The increasing growth of computational resources and hardware power is probably preparing 
the anticipated transition to desktop VR applications, making them truly feasible tools for 
everyday practice. Furthermore, the recent growth of network-based virtual communities has 
brought a new level of complexity to the notion of virtual spaces, turning the profession of 
architect into something that might now resembles the one of the virtual architect. 

Although VR is nowadays a quite mature technology, it is seldom used in architecture 
throughout the design process, but more often it is merely used as a powerful presentation 
technique. Design methodologists in the past agreed on the need for iterative cycles between 

several phases of the design process. From studies concerning designers' behaviour [6] many 
authors observed an indefinite number of return loops from the moment when gathering of 
information and structuring of the design problem take place (known as analysis) to the one when 
design solutions are generated (known as synthesis). 

The use of Virtual Reality within the design process provides the designer with an appropriate, 
quick and practical feedback which facilitates search for design solutions. Moreover, it enables 
the capture of more information than would be possible to capture with the use of the traditional 

media and makes the checking of the design solutions more efficient by enhancing simulation 

capabilities. The use of VR in design broadens the boundaries of traditional perception by 



providing experiences of worlds not necessarily real or material. In short VR is the perfect 
simulation medium for architects investigating design solutions. 

It is then highly predictable that in the near future VR will become the interface for the next 
generation of computer aided design (CAD) applications and we can anticipate the change of its 
use from a mere presentation medium to a more powerful and effective design tool. 

At present Virtual Environments (VE) are often created using CAAD packages for refinements, 
adjustments and exportation based on traditional 3D scenes. Documenting the evolution and 
development of design by constant updating of 3D models is an expensive business, and 
obviously even more expensive is the upgrading of the VEs generated from these models. In 
most existing design scenarios the decision making process does not take advantage of the 
technology, but relegates the use of VR to the end of the process as a more convincing tool to 
impress contractors and clients. In such a scenario, only once the final solution has been 
achieved is it worth investing time into more powerful visualisation media. 

With this background knowledge the research task we set ourselves was to develop the VR 
system which would help designers in the initial stages of the design process to take advantage 
of the VR as a new design tool. 

Derision Making Process 
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Figure 1. The current position of VR within the design 

Decision Making Process 

Figure 2. Proposed scenario 

The system named JCAD-VR provides a flexible user-friendly immersive environment to 
support collaborative design on a synchronous base. It can be thought of as an investigation tool 
that allows the designer to sketch freely 3D objects within the virtual context. Moreover design 

solutions are shared in a synchronous fashion with other participants through the system's 
network-based architecture. Figure 2 shows the proposed scenario using JCAD-VR within the 
decision making process. 
Here JCAD-VR provides the means for a more effective use of VR bridging between the phases 
of analysis and synthesis. VR is now employed at the very beginning of the decision making 

process when it is most likely to help in finding better design solutions. Once a desired solution is 

achieved the task of the creation of a very detailed 3D model and the final VR scene is given to 

appropriate CAAD packages. Moreover the participants are able to investigate design solution 
through concurrent design and synchronous collaboration. 
JCAD-VR: The System Architecture 
The two ideas upon which JCAD-VR is being built are: 



?? that all the users present in the virtual world have to be able to share the same virtual 
environment in a "transparent fashion" 

?? user interface (UI), instead of the traditional menu/windows based layout, is part of the virtual 
world itself. Any element of the interface becomes an object belonging to the 3D world and therefore it is treated as any other object. Each element of the interface can then be moved 
or scaled according to the user's needs. 

The entire project is based on client-server architecture where every user logs into a virtual world 
and starts sharing design tasks with other users. 

Figure 3. Client/Server Architecture of JCAD-VR 

JCAD-VR is organised in an object-oriented fashion, where each module is able to fulfil certain 
task and it is independently coded. This approach has allowed the delivery of an initial functioning 

core of the JCAD-VR system, which will be expanded in the near future by adding several 
modules currently under development. 

The system has been entirely developed around a client-server architecture to allow constant 

synchronous collaboration between several users. Every user accesses the virtual world, 
interacts with the VE and shares design tasks. 



The Collaborative Approach 
When JCAD-VR is initiated, the user is asked for a login name for the session and through an 
options panel he/she can decide which server to connect to and through which server port. This 
name will be used to identify participants and to communicate within the virtual world. 

The system can be initiated in single mode or multiple screen mode. Single mode is set for the 
display device which consists of a standard computer screen; the multiple screen option has been 
included to allow devices such as the multi-projector display system processing the visual output 
of a Reality Centre which was used for the experiments. 

In this phase it is also possible to activate or de-activate video conferencing facilities for the 
session. In instances when video conferencing is activated, support for video capturing device 
recognition and checking is provided. JCAD-VR provides also a stand-alone option in case 
collaboration is not required. 

Once the system is initialised every window disappears freeing the space for the 3D graphic 
user interface (GUI) of the system. A set of 3D menus and icons appear on the screen and 
through them each user can interact with the system and with the other participants. A number of 
functions can be accessed through these menus, such as navigation and creation of objects. A 
number of 3D shapes and 3D AEC objects can be created and shared with other participants. 
The objects created can be following: geometric primitives (cones, boxes, spheres etc. ) and 
architectural entities (walls, doors, windows etc. ). The system routinely checks for constrains and 
allows only the possible modifications; for example a door cannot be moved onto or too close to 
another door. A "3D ruler" and a 3D panel close to the object are constantly providing the user 
with feedback related to the parameters which can be edited such as size, materials and cost. 

The architecture of the system has been developed to allow every object created in the 
system to be assigned with a unique id-number. The ID is a combination of local ID and a user ID 
assigned by the server. In this way each object is attributed a unique number consistent for all the 
users in the system. When any object is selected by the user, this object is locked and such event 
is sent through the network to other users. Every time the user is about to modify an object this is 
checked against a network lock mechanism. This mechanism controls that several participants 
are not editing the same object at the same time and is designed in order to ensure consistency 
throughout the system. The system notifies every user internal database of any creation or 
modification of geometric objects within the virtual scene and broadcasts their numerical 
information. 

To ensure communication between users, represented in the 3D world by avatars, different 
means are provided, from basic chat to voice and video conferencing. Freehand sketching in 2D 
is also possible through a shared electronic whiteboard. This architecture allows a real 
synchronous collaborative design making designing a true multi-user collaborative experience. 

The Interface 
Besides the functions provided by the system a great deal of attention has been put into the 

visual interface. The GUI or perhaps 3DGUI is in fact thought of as part of the virtual world itself. 
This choice was made for two main reasons. From the technical point of view once the 

interface has been designed, it becomes independent from the visualisation device used. The 

system can therefore easily be adapted to different devices by just rewriting the code that is 

handling the device; no matter whether the system is running on a simple screen, on a Reality 

Center or linked to an HMD - the interface will always be in place. 
Furthermore, from a more theoretical point of view, the interface becomes one of the elements 

of the virtual world and therefore it can be treated as any other object. Elements of the GUI such 

as panels, icons, rulers, are treated just like any other 3D entities within the VE. For instance, in 

the case of the video conferencing panel, the video coming from the other users is continuously 

rendered as a texture on a 3D panel. 
All these elements can be replaced, dragged, re-scaled for the convenience of the user and 

perhaps they even provide a higher degree of feeling of immersion. The user interacts with the 

objects through elements of this interface, such as arrows placed to help the user editing the 

object. Feedback is provided through the visual modification of the object itself in the scene. 



The 3D engine just renders all the possible changes of the VE: movements of avatars, video 
conferencing streams rendered on 3D panels and, most importantly, creation and modification of 
objects created within JCAD-VR. 

Server Package 
The server is made of two parts: a module which looks after the VE information to be broadcast, 
and another module which takes care of media streams and video conferencing tools. Both parts 
constitute the server system and they are closely linked to each other. 

As an independent part of the framework the server has an autonomous and simpler interface 
that provides primarily information about the network status and transfer rate. A number of 
components are envisaged such as the communication status, the users on line, VR shared 
environments and the quality of the broadcast video for conferencing. Since the clients are 
communicating through independent processes, a future enhancement will allow the server to 
deal with several VR environments simultaneously. 

The intrinsic multi-platform nature of JCAD-VR, inherited from the language used for coding, 
allows the server to transmit data to a broad range of platforms, from normal PCs to the 
supercomputer running a Reality Centre, and leaves the research team the freedom to test the 
software with several operating systems. The communication channel ensures the link between 
server and clients through a TCP/IP network. 

Figure 4. A screenshot from JCAD-VR 

System Implementation and Hardware used 
The whole framework of JCAD-VR was organised to allow concurrent software development, in a 
modular fashion, by individual members of the R+D team [3]. To facilitate this, an object oriented 

approach was identified as the most suitable one and the entire system was coded in Java? . 
The choice, even if less efficient in term of performances if compared with other choices, indeed 

offered great flexibility, true scalability and, last but not least, fully multi-platform support. Its 

network-centric nature, its multimedia integration together with the use of native graphic hardware 

and multi-processor support made it the obvious choice for the development of such real-time 

multimedia collaborative system. 
The client application, in response to the obvious hardware limits imposed by the use of 

different hardware, has been written so that it can be easily customised to run on PCs as well as 



on a Sgi supercomputers. The former are normal PCs whose video-card displays the virtual world 
only on a traditional window or at full screen. The latter is a 12-processors Sgi Onyx2 system 
running the Reality Centre at ABACUS, University of Strathclyde, Glasgow. When JCAD-VR is 
launched on the Sgi it can take advantage of its computational power to stretch itself on a5 metre 
wide 2 metre tall tassellated screen where 3 Barco projectors create a 160 degree panoramic image. 

The internal architecture of JCAD-VR is such that modules might be easily adapted to allow 
use of different VR devices such as CAVEs or Head-Mounted Displays, as well as several 
pointing devices such as a joystick, 3D mouse and VR Gloves. Further developments will include 
support for some of these devices. 

From the collaborative point of view JCAD-VR is highly scalable and several communication 
media options are provided depending on the hardware limitations of the computer on which it is 
running. 

The video conferencing facility has been coded using the JavaTM Media Framework (JMF) 
which enables cross-platform capture, playback and streaming of audio and video at different 
transfer rates and resolutions. A great deal of effort has been expended by the research group to 
integrate the 3D module with the multimedia one. 

Figure 5. An image of JCAD-VR during an experiment of collaborative design 

Collaborative Experiment 
The obvious first line of inquiry regarding the usability and usefulness of the emerging system 
was in the academic environment within which it had been created. For the past three years, the 

academic with overall responsibility for CAAD teaching had offered an optional class, to fourth 

year students (and to students from less senior years with exceptional commitment and skills in 
CAAD) in the design application of innovative VR technologies. In Session 2001/2 three of 
thebstudents taking the class were introduced to JCAD-VR and invited to put the system to its 
first serious test. 

Students Christoph Ackermann, Ross Marshall and Edward Wright were located, each with an 

appropriate workstation, in three different areas within the Department of Architecture, with fixed 

and hand-held video cameras covering the actions and observations of the students. Over the 

two-hour design session, the three students were invited to design an information centre in a 

public square and in a given urban context of Glasgow. The introduction to the project and to the 

specifics of the interface to JCAD-VR lasted a mere 30 minutes. This meagre introduction was 

purposeful and intended to test how intuitive (or not) the system was. 



The in-house experiment was a revelation to the authors of this paper. Over the two-hour 
design period there was: 

?? Fast and furious interaction amongst the three design participants within the common design environment; some 60/70 design scenarios were commonly generated, 
modified and agreed. 

?? Both satisfaction and frustration amongst the participants was noted regarding the high 
degree of mutuality in the interactive process. 

?? A real sense of having experienced a wholly immersive and shared design experience 
which heralds a future way of exploring and determining the configuration of the built 
environment. 

The entire outcome of this limited experiment - with all its local and 'non-scientific' constraints - in 
common with the experiments in the late 1960' - is, thankfully, to stimulate further trials, tests and 
transformations. 

The notion of a distributed design environment within which all can contribute, has, the 
authors claim, been significantly advanced. 

Figure 5. Screenshots from experiment 

Figure 6. Pictures from the experiment 

Conclusions and Further Developments 
The prototype JCAD-VR system makes some steps toward the change of VR usage from mere 

presentation medium to a more powerful and effective design tool, and establishes the feasibility 

of VR becoming the interface for the next generation of computer aided design (CAAD) 

applications for architecture. Several enhancements are being considered for further 

development if the system including: 

?? A voice driven interface enhancing friendliness of the user interface 

?? Support for driving devices such as 6-degrees of freedom virtual glove 



?? Implementation of a multi-environments server capable of dealing with several VR 
environments simultaneously. 
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ABSTRACT 
Today the development of network-based virtual communities and 
the use of avatars have brought a new level of complexity to the 
meaning of virtuality, providing the technology for remote 
presence and collaborative experiences. In this project the 
intention was to pursue this articulated vision of Virtual Reality 
(VR) in order to assist all the participants - professional and client 
body - during the early stages of the design process. The objective 
was to provide a tool that is capable of creating 3D shapes in a 
shared VR environment, thus allowing the design and its 
evolution to be shared. The use of the Java' programming 
language was a natural choice for this project. Because of 
Java 'M's performance scalability and hardware independence the 
concept of CAAD has been extended, making it possible to create 
a VR environment that can co-exist between high-end 
supercomputers and standard PCs. The project is currently being 
tested using PCs workstations and an SGI system running a 
Reality Centre. 
The research reported in this paper describes the development and 
application of software that aims to increase the opportunity for 
architects to collaborate within virtual worlds and enable effective 
and transparent information exchange. 

Categories and Subject Descriptors 
D. 2.2 [User Interface]: 3D User Interface, H. 5.3. [Computer- 
supported cooperative work] Collaborative Design, 1.3.7 
[Virtual Reality] Design system for Virtual Reality, J. 6 
[Computer-aided design (CAD)] 

General Terms 
Management, Design, Human Factors. 

Keywords 
Synchronous Collaborative Design, Virtual Environment, 
Interface, Architecture, Design Process. 
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1. INTRODUCTION 
Historically architects have experienced the need to prove their 
design proposals using physical models. Due to the intrinsic 
spatial nature of the act of designing, even the most accurate 2D 
paper representation is usually not suitable to deliver the 
complexity of some architectonic ideas. 

In the last decades the profession of the architect has been deeply 
affected by the digital revolution and the use of Computer Aided 
Architectural Design (CAAD) tools is nowadays part of the daily 
practice in most architecture firms. But in the last few years the 
"CAAD community" is experiencing a new revolution that is 
leading the move from static representation, based on 2D 
renderings or pre-recorded animations (considered as a sequence 
of 2D images), to dynamically generated 3D representations. 
Real-time navigation and interaction, typical of VR environments, 
provide just that fluent interface enabling the exploration of the 
design proposals that architects have not been able to get with any 
other media. 
The increasing growth of computational resources and hardware 
power is probably preparing the anticipated transition to desktop 
VR applications, making them truly feasible tools for everyday 
practice. Furthermore, the recent growth of network-based virtual 
communities has brought a new level of complexity to the notion 
of virtual spaces, turning the profession of architect into 
something that might now resembles the one of the virtual 
architect. 
Although VR is nowadays a quite mature technology, it is seldom 
used in architecture throughout the design process, but more often 
it is merely used as a powerful presentation technique. 

Design methodologists in the past agreed on the need for iterative 
cycles between several phases of the design process. From studies 
concerning designers' behaviour [6] many authors observed an 
indefinite number of return loops from the moment when 
gathering of information and structuring of the design problem 
take place (known as analysis) to the one when design solutions 
are generated (known as synthesis). 
The use of Virtual Reality within the design process could give to 
the designer an appropriate quick and practical response to his/her 
need of iteration and search for design solutions. Moreover it 
enables the capture of more information than would be possible to 
capture with the use of the traditional media and makes the 
checking of the design solutions more efficient by enhancing 
simulation capabilities. Furthermore VR broadens the boundaries 

of traditional perception by providing experiences of worlds not 
necessarily real or material. In short it is the perfect simulation 
medium for architects investigating design solutions. 



it is then highly predictable that in the near future VR will 
become the interface for the next generation of computer aided 
drawing (CAD) applications and we can anticipate the change of 
its use from a mere presentation medium to a more powerful and 
effective design tool. 

CAD/CARD packages are very powerful but often complex 
rendering tools, which were not meant to be investigation tools, 
and therefore generating 3D models is often impractical and time- 
consuming. Therefore such models are usually employed when 
every design decision has been already taken. 

Virtual environments (VE) are often created using CAAD 
packages for refinements, adjustments and exportation based on 
traditional 3D scenes. Documenting the evolution and 
development of design by constant updating of 3D models is an 
expensive business, and obviously even more expensive is the 
upgrading of the VEs generated from these models. 

now employed at the very beginning of the decision making 
process when it is most likely to help in finding better design 
solutions. Once a desired solution is achieved the task of the 
creation of a very detailed 3D model and the final VR scene is 
given to appropriate CAAD packages. 

! Decision Making Process 
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Figure 2. Proposed scenario 

In these circumstances the use of VR would just increase costs. As 
result VR is relegated to the end of the design process rather then 
being used to engage design creativity through immersive design. 

In the traditional scenario the decision making process does not 
take advantage of the technology but relegates the use of VR to 
the end of the process as a more convincing tool to impress 

contractors and clients. Only once the final solution has been 

achieved it is worth investing time into more powerful 
visualisation media. 
Being aware of this background the research group engaged itself 
in the development of a VR system, named JCAD-VR, to help 
designers in the initial stages of the design process to take 
advantage of the VR as a new design tool. 
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Figure 1. The current position of VR within the design 

process. 

JCAD-VR provides a flexible user-friendly immersive 

environment to support collaborative design on a synchronous 
base. 

It can be thought of as an investigation tool that allows the 
designer to sketch freely 3D shapes within the virtual context. 
Moreover design solutions are shared in a synchronous fashion 

with other participants through the system's network-based 

architecture. Figure 2 shows the proposed scenario using JCAD- 

VR within the decision making process. 

Here JCAD-VR provides the means for a more effective use of 
VR bridging between the phases of analysis and synthesis. VR is 

Moreover the participants are able to investigate design solutions 
through concurrent design and synchronous collaboration. 
This paper reports the present state of the JCAD-VR system 
(Java based Collaborative Architectural Design tool in VR) and 
will highlight its future development and testing. 

2. THE SYSTEM 
The two ideas upon which JCAD-VR is being built are: 

" that all the users present in the virtual world have to be able 
to share the same virtual environment in a "transparent 
fashion" 

" user interface (UI), instead of the traditional menu/windows 
based layout, is part of the virtual world itself. Any element 
of the interface becomes an object belonging to the 3D 
world and therefore it is treated as any other object. Each 
element of the interface can then be moved or scaled 
according to the user's needs. 

The entire project is based on client-server architecture where 
every user logs into a virtual world and starts sharing design tasks 
with other users. 
JCAD-VR is organised in an object-oriented fashion, where each 
module is able to fulfil certain task and it is independently coded. 
This approach has allowed the delivery of an initial functioning 

core of the JCAD-VR system which will be expanded in the near 
future by adding several modules currently under development. 

3. SYSTEM ARCHITECTURE 
The system has been entirely developed around a client-server 
architecture to allow constant synchronous collaboration between 

several users. Every user accesses the virtual world, interacts with 
the VE and shares design tasks. 

3.1 Client Side 
3.1.1 The Collaborative approach 
When JCAD-VR is initiated, the user is asked for a login name for 

the session and through an options panel he/she can decide which 

server to connect to and through which server port. This name 

will be used to communicate within the virtual world. 



The system can be initiated in single mode or multiple screen 
mode. Single mode is set for the display device which consists of 
a standard computer screen; the multiple screen option has been 
included to allow devices such as the multi-projector display 

system processing the visual output of a Reality Centre used for 
the experiments. 

in this phase it is also possible to activate or de-activate video 
conferencing facilities for the session. In instances when video 
conferencing is activated, support for video capturing device 
recognition and checking is provided. 

Figure 3. Client/Server Architecture of JCAD-VR 

JCAD-VR provides also a stand-alone option in case 
collaboration is not required. 

Once the system is initialised every window disappears freeing the 

space for the 3D graphic user interface (GUI) of the system. A set 

of 3D menus and icons appear on the screen and through them 

each user can interact with the system and with the other 
participants. A number of functions can be accessed through these 
menus, such as navigation and creation of objects. A number of 3D shapes and 3D AEC objects can be created and shared with 
other participants. The objects created can be the following: 
geometric primitives (cones, boxes, spheres etc. ) and architectural 
entities (walls, doors, windows etc. ). The system routinely checks 
for constrains and allows only the possible modifications - for 
example a door cannot be moved onto or too close to another 
door. A "3D ruler" and a 3D panel close to the object are 
constantly providing the user with feedback related to the 
parameters which can be edited such as size, materials and cost. 
The architecture of the system has been developed to allow every 
object created in the system to be assigned with a unique id- 
number. The ID is a combination of local ID and a user ID 
assigned by the server. In this way each object is attributed a 
unique number consistent for all the users in the system. When 
any object is selected by the user, this object is locked and such 
event is sent through the network to other users. Every time the 
user is about to modify an object this is checked against a network 
lock mechanism. This mechanism controls that several 
participants are not editing the same object at the same time and is 
designed in order to ensure consistency throughout the system. 

Figure 4. A screenshot from JCAD-VR 

The system notifies every user internal database of any creation or 
modification of geometric objects within the virtual scene and 
broadcasts their numerical information. 

To ensure communication between users, represented in the 3D 

world by avatars, different means are provided, from basic chat to 
voice and video conferencing. Freehand sketching in 2D is also 
possible through a shared electronic whiteboard. This 

architecture allows a real synchronous collaborative design 

making designing a true multi-user collaborative experience. 

3.1.2 The interface 
Besides the functions provided by the system a great deal of 
attention has been put into the visual interface. The GUI or 
perhaps 3DGUI is in fact thought of as part of the virtual world 
itself. 



This choice was made for two main reasons. From the technical 

point of view once the interface has been designed, it becomes 
independent from the visualisation device used. The system can 
therefore easily be adapted to different devices by just rewriting 
the code that is handling the device; no matter whether the system 
is running on a simple screen, on a Reality Center or linked to an 
i-IMD - the interface will always be in place. 

Furthermore, from a more theoretical point of view, the interface 
becomes one of the elements of the virtual world and therefore it 

can be treated as any other object. Elements of the GUI such as 
panels, icons, rulers, are treated just like any other 3D entities 
within the VE. For instance, in the case of the video conferencing 
panel, the video coming from the other users is continuously 
rendered as a texture on a 3D panel. 

All these elements can be replaced, dragged, re-scaled for the 
convenience of the user and perhaps they even provide a higher 
degree of feeling of immersion. The user interacts with the objects 
through elements of this interface, such as arrows placed to help 
the user editing the object. Feedback is provided through the 
visual modification of the object itself in the scene. 

The 3D engine just renders all the possible changes of the VE: 

movements of avatars, video conferencing streams rendered on 
3D panels and, most importantly, creation and modification of 
objects created within JCAD-VR. 

3.2 Server Package 
The server is made of two parts: a module which looks after the 
VE information to be broadcast, and another module which takes 
care of media streams and video conferencing tools. Both parts 
constitute the server system and they are closely linked to each 
other. 
As an independent part of the framework the server has an 
autonomous and simpler interface that provides primarily 
information about the network status and transfer rate. A number 
of components are envisaged such as the communication status, 
the users on line, VR shared environments and the quality of the 
broadcast video for conferencing. Since the clients are 
communicating through independent processes, a future 

enhancement will allow the server to deal with several VR 

environments simultaneously. 
The intrinsic multiplatform nature of JCAD-VR, inherited from 
the language used for coding, allows the server to transmit data to 

a broad range of platforms, from normal PCs to the 

supercomputer running a Reality Centre, and leaves the research 
team the freedom to test the software with several operating 
systems. The communication channel ensures the link between 

server and clients through a TCP/IP network. 

4. SYSTEM IMPLEMENTATION AND 
HARDWARE USED 
The whole framework of JCAD-VR was organised to allow 

concurrent software development, in a modular fashion, by 

individual members of the R+D team [3]. To facilitate this, an 

object oriented approach was identified as the most suitable one 

and the entire system was coded in JavaT"'. 

The choice, even if less efficient in term of performances if 
compared with other choices, indeed offered great flexibility, true 
scalability and, last but not least, fully multi-platform support. Its 
network-centric nature, its multimedia integration together with 
the use of native graphic hardware and multi-processor support 
made it the obvious choice for the development of such real-time 
multimedia collaborative system. 
The client application, in response to the obvious hardware limits 
imposed by the use of different hardware, has been written so that 
it can be easily customised to run on PCs as well as on a Sgi 
supercomputers. The former are normal PCs whose video-card 
displays the virtual world only on a traditional window or at full 
screen. The latter is a 12-processors Sgi Onyx2 system running 
the Reality Centre at ABACUS, University of Strathclyde, 
Glasgow. When JCAD-VR is launched on the Sgi it can take 
advantage of its computational power to stretch itself on a5 metre 
wide 2 metre high tassellated screen where 3 Barco projectors 
create a 160 degree panoramic image. 

The internal architecture of JCAD-VR is such that modules might 
be easily adapted to allow use of different VR devices such as 
CAVES or Head-Mounted Displays, as well as several pointing 
devices such as a joystick, 3D mouse and VR Gloves. Further 
developments will include support for some of these devices. 

From the collaborative point of view JCAD-VR is highly scalable 
and several communication media options are provided depending 
on the hardware limitations of the computer on which it is 
running. 
The video conferencing facility has been coded using the Java TM 
Media Framework (JMF) which enables cross-platform capture, 
playback and streaming of audio and video at different transfer 
rates and resolutions. A great deal of effort has been expended by 
the research group to integrate the 3D module with the 
multimedia one. 

5. COLLABORATIVE EXPERIMENTS 
A major test of the potential of JCAD-VR to contribute to 

collaborative design is currently underway. Under the auspices of 
ECAADE, an association of some 150 schools of Architecture 

within Europe, a bilateral experiment is taking place, between the 
Technical University of Eindhoven and University of Strathclyde 

Figure 5. An image of JCAD-VR during an experiment of 
collaborative design 



which seeks to establish, subjectively, if not statistically, the 

power of synchronous design support systems such as JCAD-VR. 

The inter-institutional collaborative experiment will be informed 
by more local, simulated, distributed design decision exercises 
featuring committed students within the University of Strathclyde. 

6. CONCLUSIONS AND FURTHER 
DEVELOPMENTS 
The prototype JCAD-VR system makes some steps toward the 

change of VR usage from mere presentation medium to a more 
powerful and effective design tool, and establishes the feasibility 

of VR becoming the interface for the next generation of computer 
aided drawing (CARD) applications for architecture. Several 

enhancement are being considered for further development of the 

system including: 

.A voice driven interface enhancing friendliness of the user 
interface 

" Support for driving devices such as 6-degree of 
freedom/virtual glove 

" Implementation of a multi-environments server capable of 
dealing with several VR environments simultaneously. 
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Participatory Design in Collaborative Virtual Environments 

Abstract 
This paper re-establishes the theoretical framework for participatory design evolved in the late sixties and early 
seventies as part of the movement towards a more explicit design methodology and attempts an explanation of why the 
concept failed to gain commitment from the architectural and urban design professionals. The issue of user 
participation in the processes of building and urban design is enjoying renewed attention following its relative neglect 
over the last 20 years due, in large measure, to significant advances in emerging information technologies, particularly 
multimedia, virtual reality and internet technologies. 

This paper then gives an account of two significant and relevant developments in the evolution of the application of 
information technologies with which the authors have been engaged. These are: 

"a responsive and interactive interface to wholly immersive and realistic virtual reality representations of 
proposed buildings and urban neighbourhoods. 

" an intuitive and platform-independent VR modelling environment allowing collaborative evolution of the 
scheme from within the virtual world. 

The efficacy of these IT developments is tested in the context of a design exercise in which three designers, from 
distributed locations and using different computer platforms, collaboratively design an Information Centre from within 
the virtual world. 

Resumo 
Este trabalho restabelece uma estrutura teörica de projeto participativo originado no final dos anos 60 e inicio dos anos 
70, como parte de um movimento direcionado a uma metodologia mais explicita de projeto e busca uma resposta para 
as razöes do seu fracasso para a obtengdo de um envolvimento maior dos profissionais das areas de arquitetura e 
desenho urbano. A questdo da participagdo do usuärio nos processos projetuais arquitetönicos e urbanisticos estä tendo 
uma renovada atengdo apös a relativa rejeigdo dos ültimos 20 anos. Este fato deve-se, em grande parte, a avancos 
significativos em tecnologias da informagdo emergentes, particularmente multimidia, realidade virtual e tecnologias 
ligadas ä Internet. 

Assim, este trabalho pretende demonstrar dois desenvolvimentos significativos na aplicacäo da tecnologia da 
informacäo nos quais os autores estäo envolvidos: 

" uma interface sensivel e interativa, completamente imersiva e representacöes realisticas de realidade virtual de 
edificios e areas urbanas. 

" um ambiente de modelagem de Realidade Virtual, intuitivo e para mültiplas plataformas, permitindo a evolucäo 
colaborativa de um projeto a partir de um mundo virtual. 

0 impacto destes desenvolvimentos de TI e demonstrado a partir da realizacäo de um projeto de uma estrutura de lazer 

para uma comunidade de usuärios com deficiencias fisicas. 

Design Decision Making 
Architectural design is a multi-faceted occupation which requires, for its successful performance, a mixture of 
intuition, craft skills and detailed knowledge of a wide range of practical and theoretical matters. It is a cyclical 

process in which groups of people work towards a somewhat ill-defined goal in a series of successive approximations. 
There is no 'correct' method of designing and, although it is recognised that the process can be divided into separate 

phases, there is no generally accepted sequence of work that might guide design teams in the direction of achieving a 

satisfactory solution. Indeed, there are no solutions to design problems in the way that there are solutions to 

mathematical problems: the best that can be hoped for is an outcome which satisfies the maximum number of 

constraints which bound the area of concern. Furthermore, design is not an algorithmic process in which the desired 



conclusion can be reached by the application of step-by-step procedures - first finalising this aspect, then that. It is a fluid, holistic process wherein at any stage all the major parts have to be manipulated at once. In this sense, it is less 
like solving a logical puzzle and more like riding a bicycle, blindfold, whilst juggling. 

Despite the complexity of the design decision-making process the emerging new generation of computer-based models is already having an impact on how design is performed and, hence, on the quality of design. The impact stems from 
the fact that the new models, as opposed to paper-based plans and elevations or other conventional forms, are 
predictive rather than descriptive; dynamic rather than static; explicit rather than implicit and, above all, permit a 
more-or-less continuous and interactive assessment of a developing design on cost and performance. 

Evidence is growing of the advantages offered by the application of computers in design, and these can be summarised 
as follows: 

Widening the Search for Solutions 
Access to programs which dynamically predict the cost and performances characteristics of optional design proposals 
can increase the scope of search for good solutions by as much as ten-fold. Not only is the search coverage extended, 
it is also more purposefully directed because designers are able to compare the quality of any one tentative solution 
against the quality of all previous solutions. 

Greater Integration in Decision-Making 
In conventional working, a great deal of design time is lost as proposals are passed to and fro between the architect 
(who tends to be the originator) and the other specialist members of the design team (who tend to the "checkers"). 
Quite frequently the scheme on which the architect has lavished time and effort is found by one or other of the 
specialists to be infeasible. With access to appropriate appraisal techniques embodied in computer programs, it is 
possible to check a proposal against a wide range of criteria from the outset of the design activity. Moreover, it is 
entirely practical (though not yet a widespread working method) for all members of the design team to have access to, 
and operate on, the common design model whether or not they share a design office. The models, then, can provide a 
strong integrating force in design team working. 

Improving Design Insights 
Apart from the use of appraisal programs to search for better designs, the programs can be used in a research and 
development context to provide insights into the way in which particular design decisions affect cost and performance. 
Typically, a designer working in this mode would select an existing building for study, then, keeping all other design 
variables constant (insofar as this is possible), systematically vary one factor while recording the cost/performance 
output from the program. In this manner, the architect can establish sets of causal relationships which provide 
powerful insights into structure of design decision-making. 

Differentiation of Objective and Subjective Judgements 
Contrary to the early fears of many architectural practitioners, the use of CAAD techniques focuses increased attention 
on subjective value judgements rather than less. As measurable attributes of optional designs are made more explicit, 
the necessary value judgements are forced to the surface of design activity and thereby, themselves become more 
explicit. The effect of this is to make it clear to designers and their clients, which judgements are based on 
quantifiable criteria and which on subjective and intuitive concepts. 

Evidence of the degree to which computer-generated cost/performance information promotes effective value 
judgement, throws into sharp focus the crucial question: whose value judgement? This question was, for the first 

time, seriously addressed in the Design Participation Conference in Manchester in 1971. At that time, however, the 
human-machine interface was too primitive for the concept of useful participation by the users of buildings to be 

achieved. The new technologies of VR and Multimedia give real prospects for participation. 

Virtual Reality 
The essence of Virtual Reality (VR) is that the user, instead of looking through the window of his/her computer screen 

at a virtual world, can in effect, step through the window and enter the virtual world itself. This enhances: 

" Immersion: Users are completely surrounded by the environment. 
Presence: Being surrounded the participant has actually the sensation of being in the environment. The 

Virtual Environment becomes then a place on its own and its perception is similar to real environments. 

Interactivity: This is surely the most important feature provided by VR: the environment allows the 

participant to be involved and the result of the actions done by the participant is visualized in the VE. 



" Autonomy: Participants are neither constrained in paths nor in views preset by others but have the freedom 
and autonomy to explore any single part of the environment. 

" Collaboration: Multiple users are able to take part and to interact in the same VE. 

The effectiveness of VR for the presentation of design proposals is well established but its potential in the process of 
design has yet to be realized. However the speed at which technology is evolving is making the application of VR 
within the design professions a feasible approach. AEC companies have already started to evaluate how time 
consuming the traditional presentation path can be where animations or walkthroughs are used to show designs 
solutions to their clients. In fact traditional CAD/CAAD systems are used as rendering tools more than design tools. 
Any change on design solutions is subject to the inevitable delay of having to step back to the CAD/CARD systems 
and then the result must be rendered again to be eventually visualized. This approach is obviously not only 
inconvenient but time consuming and therefore costly. The consequence of these issues is that some design and 
manufacturing companies have already started to investigate how VR can be used within the design process. The 
research and development reported in this paper hopefully makes a signal contribution to this investigation. 

The JCAD-VR Concept 
In the Department of Architecture and Building Science at the University of Strathclyde, the ABACUS group has been 
building a prototype design decision support system known as JCAD-VR. 

The system can be initiated in single mode or multiple screen mode. Single mode is set for the display device which 
consists of a standard computer screen; the multiple screen option has been included to allow devices such as the 
multi-projector display system processing the visual output of a Reality Centre which was used for the experiments. 

In this phase it is also possible to activate. or de-activate video conferencing facilities for the session. In instances when 
video conferencing is activated, support for video capturing device recognition and checking is provided. JCAD-VR 

provides also a stand-alone option in case collaboration is not required. 

Once the system is initialised every window disappears freeing the space for the 3D graphic user interface (GUI) of the 
system. A set of 3D menus and icons appear on the screen and through them each user can interact with the system 
and with the other participants. A number of functions can be accessed through these menus, such as navigation and 
creation of objects. A number of 3D shapes and 3D AEC objects can be created and shared with other participants. 
The objects created can be following: geometric primitives (cones, boxes, spheres etc. ) and architectural entities 
(walls, doors, windows etc. ). The system routinely checks for constrains and allows only the possible modifications; 
for example a door cannot be moved onto or too close to another door. A "3D ruler" and a 3D panel close to the object 
are constantly providing the user with feedback related to the parameters which can be edited such as size, materials 

and cost. 

The architecture of the system (Figure 1) has been developed to allow every object created in the system to be assigned 

with a unique id-number. The ID is a combination of local ID and a user ID assigned by the server. In this way each 

object is attributed a unique number consistent for all the users in the system. When any object is selected by the user, 
this object is locked and such event is sent through the network to other users. Every time the user is about to modify, 

an object this is checked against a network lock mechanism. This mechanism controls that several participants are not 

editing the same object at the same time and is designed in order to ensure consistency throughout the system. The 

system notifies every user internal database of any creation or modification of geometric objects within the virtual 

scene and broadcasts their numerical information. 



Figure 1- Client/Server Architecture of JCAD-VR 

To ensure communication between users, represented in the 3D world by avatars, different means are provided, from 
basic chat to voice and video conferencing. Freehand sketching in 2D is also possible through a shared electronic 
whiteboard. This architecture allows a real synchronous collaborative design making designing a true multi-user 
collaborative experience (Figure 2). 

Collaborative Experiment 
The obvious first line of inquiry regarding the usability and usefulness of the emerging system was in the academic 

environment within which it had been created. For the past three years, the academic with overall responsibility for 

CAAD teaching had offered an optional class, to fourth year students (and to students from less senior years with 

exceptional conunitnient and skills in CAAD) in the design application of innovative VR technologies. In Session 

2001/2 three of thebstudents taking the class were introduced to JCAD-VR and invited to put the system to its first 

serious test. 

Figure 2- An Image of JCAD-VR 



Students Christoph Ackermann, Ross Marshall and Edward Wright were located, each with an appropriate 
workstation, in three different areas within the Department of Architecture, with fixed and hand-held video cameras 
covering the actions and observations of the students. Over the two-hour design session, the three students were 
invited to design an information centre in a public square and in a given urban context of Glasgow. The introduction 
to the project and to the specifics of the interface to JCAD-VR lasted a mere 30 minutes. This meagre introduction «was 
purposeful and intended to test how intuitive (or not) the system was. 

The in-house experiment was a revelation to the authors of this paper. Over the two-hour design period there was: 
" Fast and furious interaction amongst the three design participants within the common design environment: 

some 60/70 design scenarios were commonly generated, modified and agreed. 
" Both satisfaction and frustration amongst the participants was noted regarding the high degree of mutuality, in the interactive process. 
"A real sense of having experienced a wholly immersive and shared design experience which heralds a fliture 

way of exploring and determining the configuration of the built environment. 
Screen shots from the experiment are shown in Figure 3 and a frame from the video is shown in Figure 4. 

Conclusions and Further Developments 
The prototype JCAD-VR system makes some steps toward the change of VR usage from mere presentation medium to 

a more powerful and effective design tool, and establishes the feasibility of VR becoming the interface for the next 
generation of computer aided design (CAAD) applications for architecture. Several enhancements are being 

considered for further development if the system including: 

"A voice driven interface enhancing friendliness of the user interface 

" Support for driving devices such as 6-degrees of freedom virtual glove 
" Implementation of a multi-environments server capable of dealing with multiple VR environments 

simultaneously. 
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Abstract: This paper celebrates the successful outcome of a trial of an innovative multi-platform 
distributed design decision support system in which the shared design environment exists 
within the virtual world. The outcome is the result of a sustained three-year research and 
development effort, within an internationally recognised research group. The project set 
itself a number of ambitious targets within the broad spectrum of distributed design 
decision support, viz: 

"A multi-platform environment: the trial demonstrates inter-operability of different 
machine platforms - from a home PC to an international standard Virtual Reality 
Centre. 

"A distributed environment: the trial demonstrates the high level of understanding 
amongst the design team separated by time and space. 

" An ability to propose, discuss and agree upon, design decision from within the 

virtual world. Hitherto, virtual environments were viewing galleries; designers had 

to leave them to effect design changes in a conventional CAD package. The trial 
described in the paper amply demonstrates the potential to design, collaboratively 

and, in distributed mode, from within the virtual world. 

The two ideas upon which the system (known as JCAD-VR) is built are: 

" that all the users present in the virtual world have to be able to share the same 
virtual environment in a "transparent fashion"; 

" the user interface, instead of the traditional menu/windows based layout, is part of 
the virtual world itself. Any element of the interface becomes an object belonging 

to the 3D world and therefore it is treated as any other object. Each element of the 
interface can then be moved or scaled according to the user's needs. 

The entire project is based on client-server architecture where every user logs into a 

virtual world and starts sharing design tasks with other users. 

The authors propose to present a video which demonstrates the positive outcome of the 

trials to date. More importantly, perhaps, the authors will put the achievements of the 

R+D into the context of past aspirations and developments in the subject area and, most 
importantly of all, suggest how these modest achievements will impact on the next 

decade of increasingly rapid R+D. 



1 CONCEPT 

Historically, architects have experienced the need to prove their design proposals 
using physical models. Due to the intrinsic spatial nature of the act of designing, 
even the most accurate 2D paper representation is usually not suitable to deliver the 
complexity of some architectonic ideas. 

In the last decades the profession of the architect has been deeply affected by the 
digital revolution and the use of Computer Aided Architectural Design (CARD) 
tools is nowadays part of the daily practice in most architecture firms. But in the last 
few years the "CAAD community" is experiencing a new revolution that is leading 
the move from static representation, based on 2D renderings or pre-recorded 
animations (considered as a sequence of 2D images), to dynamically generated 3D 
representations. Real-time navigation and interaction, typical of VR environments, 
provide just that fluent interface enabling the exploration of the design proposals 
that architects have not been able to get with any other media. 
The increasing growth of computational resources and hardware power is probably 
preparing the anticipated transition to desktop VR applications, making them truly 
feasible tools for everyday practice. Furthermore, the recent growth of network- 
based virtual communities has brought a new level of complexity to the notion of 
virtual spaces, turning the profession of architect into something that might now 
resembles the one of the virtual architect. 

Although VR is nowadays a quite mature technology, it is seldom used in 
architecture throughout the design process, but more often it is merely used as a 
powerful presentation technique. 

Design methodologists in the past agreed on the need for iterative cycles between 
several phases of the design process. From studies concerning designers' behaviour 
many authors observed an indefinite number of return loops from the moment when 
gathering of information and structuring of the design problem take place (known as 
analysis) to the one when design solutions are generated (known as synthesis). 
The use of Virtual Reality within the design process could give to the designer an 
appropriate quick and practical response to his/her need of iteration and search for 
design solutions. Moreover it enables the capture of more information than would be 
possible to capture with the use of the traditional media and makes the checking of 
the design solutions more efficient by enhancing simulation capabilities. 
Furthermore VR broadens the boundaries of traditional perception by providing 
experiences of worlds not necessarily real or material. In short it is the perfect 
simulation medium for architects investigating design solutions. 

It is then highly predictable that in the near future VR will become the interface for 
the next generation of computer aided drawing (CAD) applications and we can 
anticipate the change of its use from a mere presentation medium to a more powerful 
and effective design tool. 

CAD/CAAD packages are very powerful but often complex rendering tools, which 
were not meant to be investigation tools, and therefore generating 3D models is 
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often impractical and time-consuming. Therefore such models are usually employed 
when every design decision has been already taken. 

Virtual environments (VE) are often created using CAAD packages for refinements, 
adjustments and exportation based on traditional 3D scenes. Documenting the 
evolution and development of design by constant updating of 3D models is an 
expensive business, and obviously even more expensive is the upgrading of the VEs 
generated from these models. 

In these circumstances the use of VR would just increase costs. As result VR is 
relegated to the end of the design process rather then being used to engage design 
creativity through immersive design. 

In the traditional scenario the decision making process does not take advantage of 
the technology but relegates the use of VR to the end of the process as a more 
convincing tool to impress contractors and clients. Only once the final solution has 
been achieved it is worth investing time into more powerful visualisation media. 
Being aware of this background the research group engaged itself in the 
development of a VR system, named JCAD-VR, to help designers in the initial 
stages of the design process to take advantage of the VR as a new design tool. 
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Figure 1 The current position of VR within the design process 

JCAD-VR provides a flexible user-friendly immersive environment to support 
collaborative design on a synchronous base. 

It can be thought of as an investigation tool that allows the designer to sketch freely 
3D shapes within the virtual context. Moreover design solutions are shared in a 
synchronous fashion with other participants through the system's network-based 
architecture. Figure 2 shows the proposed scenario using JCAD-VR within the 
decision making process. 

Here JCAD-VR provides the means for a more effective use of VR bridging 
between the phases of analysis and synthesis. VR is now employed at the very 
beginning of the decision making process when it is most likely to help in fmding 
better design solutions. Once a desired solution is achieved the task of the creation 
of a very detailed 3D model and the final VR scene is given to appropriate CAAD 

packages. 

Moreover the participants are able to investigate design solutions through concurrent 
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design and synchronous collaboration. 

Figure 2 Proposed scenario 

This paper reports the present state of the JCAD-VR system (Java based 
Collaborative Architectural Design tool in VR) and will highlight its future 
development and testing. 

2 IMPLEMENTATION 

The system has been entirely developed around a client-server architecture to allow 
constant synchronous collaboration between several users. Every user accesses the 
virtual world, interacts with the VE and shares design tasks. 

To better communicate the capabilities of JCAD-VR, the explanation of the client 
side is presented separately from the explanation of the server. As if in a software 
demo, all the possible actions/options allowed by the system will be identified. 

2.1 Client Package 

1) On initiating JCAD-VR, the user is asked for a login name for the session 
and through an options panel he/she can: 

Decide which server to connect to and through which server port (in case 
the software is running on a local server). 

" Decide if running in single or multiple screen mode. Single mode is set in 

case the display device is a normal screen; the multiple screen option has 
been included to allow devices such as the multi-projector display system 
processing the visual output of a Reality Centre. 

" Load a VRML 97 file as a VR scene, if any. 

" Activate or de-activate video conferencing facilities for the session (in case 
video conferencing facilities have been activated, support for video 
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capturing device recognition and checking are provided). 

Providing the information required for this initial window is quite straight forward. 
Ease of use has been taken seriously in consideration of those not accustomed to the 
system. JCAD-VR provides also a single user option in case collaboration is not 
required. 

2) Every window disappears freeing the space to the 3D graphic user interface 
(GUI) of the system. 3D icons appear on the screen showing, as intuitively 
as possible, the functions that they allow; the chosen VRML 97 file is 
rendered and is shown on the screen as in a traditional VRML browser. 
Each user can now: 

" Navigate through the VE: walking, tilting and panning movements are 
allowed. 

" Observe other participants' movements through their 3D avatars in the VE. 
Avatars are made distinguishable from each other by having, nearby, a 3D 
text of the users' login name. 

" Listen to the other participants' voices through the loudspeakers. 

" Watch, in the virtual scene, the 3D panels showing the video captured and 
sent by other participants. Every 3D panel shows the participants' login 
name to make them clearly distinguishable. These 3D panels are intrinsic 
parts of the GUI of JCAD-VR. Instead of being conventional windows they 
are 3D entities within the VE. These panels, as well as all the elements of 
the 3D GUI, are moveable for the convenience of the user. 

" Check in a monitor the local user's captured video that is streamed out to 
the server. 

" Check the list of users. 

" Chat with other participants. This option is provided to assure a certain 
degree of communication between the participants in case the video 
conferencing facility is de-activated; this is available even when the video 
conferencing has been set as active. 

" Freehand sketch in 2D on a shared electronic whiteboard, the possibility to 

set colours is provided in order to ease distinction between participants' 
contributions. 

" Create 3D shapes and 3D AEC objects: both geometric primitives (cones, 
boxes, spheres etc. ) and architectural entities (walls, doors, windows etc. ) 

are available. A "3D ruler" is provided to help the user in constructing 
objects. 

The choice of a 3D GUI was made in response to the possibility that modules 

supporting several display devices such as CAVEs and head-mounted displays 

would be included. Not having a traditional windows/menus user interface JCAD- 

VR can be used freely in every display situation minimising the effort to customise 
it for each device. 
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3) The 3D engine of the system renders all the possible changes of the VE: 
movements of avatars, video conferencing streams on the 3D panels and, 
most importantly, creation and modification of objects created within 
JCAD-VR. Each user, concerning 3D objects, can: 

" Observe every object created in the VE both those created locally and by 
other participants. The system upgrades the VE with the objects created by 
all the participants in a synchronous fashion. An identification routine is 
provided in order to give each object a unique ID number to avoid 
interference in each users' local database of objects. 

" Pick every active object in the virtual scene. Active objects here are all the 
objects created within JCAD-VR and not geometry imported with the 
VRML 97 file. Objects originally part of the VRML 97 file are considered 
to be passive and are not pickable. Once an object is selected: 

a) User priority on selected objects is set by a distributed locking 

mechanism. Locked objects will be no longer pickable for other 
participants until unlocked and their locked status becomes 

apparent through change into a red colour. 
b) 3D icons, 3D panels with general dimensions and x, yz arrows are 

set visible to help the user operate on the object. 

c) Translation, rotation and scaling in every direction are allowed. 
These modifications are operated on the object by simple dragging 

of the arrow representing the x, y or z axis. A 3D ruler and a 3D 

panel provide simple visual feedback to check the modified 
dimensions. Some routines to constrain modifications allowed on 
AEC objects are included, for example a door cannot be moved 
onto or too close to a second door and vice versa. 

d) Change of material is supported. In the first instance objects are 
created with a default grey colour but a library of textures is 

provided. 

e) Deletion of the object is allowed. 

" Observe the visual feedback of the locking engine mechanism in case one 
of the participants has selected an object. 

" Observe upgrading of the VE in case any modification on one or more 

objects has been carried out by any participant. 

" Check for information on all active objects in the VE through a local 

database of objects. Objects are divided by type and general geometrical 
information is provided such as length, width, height, volume, radius, 

material etc. The system notifies to every users' internal database any 

creation or modification of geometric objects within the virtual scene and 
broadcasts their numerical information. 

Figure 3 shows, that for every action performed by the user, the consequential visual 
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feedback and data as sent/received to/from the server through the network. 

Figure 3 Client/Server Architecture of JCAD-VR 

2.2 Server Package 

The server is made of two parts: JCAD-VR Server which looks after the VE 
information to be broadcast, and JCAD- VR Media server which takes care of media 
streams and video conferencing tools. Both parts constitute the server system and 
they are closely linked to each other. 

As an independent part of the framework the server has an autonomous and simpler 
interface that provides primarily information about the network status and transfer 

rate. A number of components are envisaged such as the communication status, the 

users on line, VR shared environments and settings and size of video conferencing 
windows. Since the clients are communicating through independent processes, a 
future enhancement will allow the server to deal with several VR environments 
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simultaneously. 

The intrinsic multiplatform nature of JCAD-VR, inherited from the language used to 
code it, allows the server to transmit data to a broad range of platforms, from normal 
PCs to the supercomputer running a Reality Centre, and leaves the research team the 
freedom to test the software with several operating systems. The communication 
channel ensures the link between server and clients through a TCP/IP network. 
The whole framework of JCAD-VR was organised to allow concurrent software 
development, in a modular fashion, by individual members of the R+D team (Conti 
et al. 2001). To facilitate this, an object oriented approach was identified as the most 
suitable one and the entire system was coded in Java TM 

The choice, even if less efficient in term of performances if compared with some 
other languages, indeed offered great flexibility, true scalability and, last but not 
least, fully multi-platform support. Java3DTM was used to code the GUI and 
everything concerning the VE. Its network-centric nature, its multimedia integration 
together with the use of native hardware acceleration (OpenGL) and multi-processor 
support (in the case of Sgi workstation) make it the obvious choice for the 
development of a real-time multimedia collaborative system. 

The client application, in response to the obvious hardware limits imposed by the 
use of different hardware, has been written to be easily customised to run on PCs as 
well as on a Sgi supercomputer. The former are normal PCs whose video-card 
displays the virtual world only on a traditional window or at full screen. The latter is 

a 12-processors Sgi Onyx2 system running the Reality Centre at ABACUS, 
University of Strathclyde, Glasgow. When JCAD-VR is launched on the Sgi it can 
take advantage of its computational power to stretch itself on a5 metre wide 2 metre 
high tassellated screen where 3 Barco projectors create a 160 degree panoramic 
image. 

The internal architecture of JCAD-VR is such that modules might be easily adapted 
to allow use of different VR devices such as CAVEs or Headmounted Displays as 
well as several pointing devices such as a joystick, 3D mouse and VR Gloves. 

From the collaborative point of view JCAD-VR is highly scalable and several 
communication media options are provided depending on the hardware limitations 

of the computer on which it is running. 

The video conferencing facility has been coded using the JavaTm Media Framework 
(JMF) which enables cross-platform capture, playback and streaming of audio and 

video at different transfer rate and resolutions. A great deal of effort has been 

expended by the research group to integrate closely the two sections of JCAD-VR: 

the 3D module with the multimedia module. 
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3 TRIALS OF THE SYSTEM 

The obvious first line of inquiry regarding the usability and usefulness of the 
emerging system was in the academic environment within which it had been created. 
For the past three years, the academic with overall responsibility for CAAD teaching 
had offered an optional class to fourth year students (and to students from less senior 
years with exceptional commitment and skills in CAAD) in the design application of 
innovative VR technologies. In Session 2001/2 three of the students taking the class 
were introduced to JCAD-VR and invited to put the system to its first serious test. 

Students Christoph Ackermann, Ross Marshall and Edward Wright were located, 

each with an appropriate workstation, in three different areas within the Department 

of Architecture, with fixed and hand-held video cameras covering the actions and 
observations of the students. Over the two-hour design session, the three students 
were invited to design an information centre in a public square and in a given urban 
context of Glasgow. The introduction to the project and to the specifics of the 
interface to JCAD-VR lasted a mere 30 minutes. This meagre introduction was 
purposeful and intended to test how intuitive (or not) the system was. The in-house 

experiment was rewarding to the authors of this paper. Over the two-hour design 

period there was: 
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Figure 4 An Image of JCAD-VR 



" Fast and furious interaction amongst the three design participants within the 
common design environment; some 60/70 design scenarios were commonly 
generated, modified and agreed. 

" Both satisfaction and frustration amongst the participants was noted 
regarding the high degree of mutuality in the interactive process. 

"A real sense of having experienced a wholly immersive and shared design 
experience which heralds a future way of exploring and determining the 
configuration of the built environment. 

4 CONCLUSIONS AND FUTURE DEVELOPMENTS 

Assuming the availability of resources, it is intended to conduct further trials and 
development of the system. 

Further trials will be trans-institutional and trans-national and the version of the 

system will include the recently implemented video-conferencing facility. 

Further developments will include: 

"A voice driven interface enhancing friendliness of the user interface; 

" Support for driving devices such as 6-degrees of freedom virtual glove; 
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Figure 5 Screenshots from the Experiment 

Figure 6 Pictures from the Experiment 



" Implementation of a multi-environments server capable of dealing with 
several VR environments simultaneously. 

As in the earliest days of the introduction of computers into architectural design, the 
quantum jump is made by students. The work reported here, and which will be 
shown during the conference is, we believe, the epitome - in the current state of the 
art - of excellent practice. It makes a breakthrough, we believe, in the evolution of 
good design ideas and offers a real prospect for user participation. 

There is some way to go, of course, to design interactively in a virtual environment. 
The next step which we envisage is to link to the 3D model the emerging and 
sophisticated software for the thermal, lighting and acoustics properties of the 
building. This would allow the user to visualise, dynamically, airflow, temperature 
gradients, lighting levels and to experience the actual acoustic characteristics of the 
space as she/he moves through it. 

The other exciting development is for representatives of the client/user group to 
"join" the designer within the virtual environment and to participate directly in the 
evolution of the design concept. 
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