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Abstract

This thesis presents a scalable computational homogenisation framework based on or-
dinary state-based peridynamics for the effective characterisation of cracked composite
materials with periodic microstructures. Conventional continuum methods face chal-
lenges in modelling discontinuities such as matrix cracking and fibre-matrix debonding,
whereas peridynamics naturally accommodates such damage through its integral for-
mulation. However, integration with computational homogenisation in the ordinary
state-based form remains limited.

To bridge this gap, a first-order homogenisation scheme is developed within a paral-
lel C++/MPI environment. A key novelty is a raytracing-based bond-breaking algorithm
that converts arbitrary cracks into triangle-mesh surfaces, enabling accurate interaction
removal and damage tracking. Volumetric periodic boundary conditions are formulated
for peridynamic RVEs to ensure displacement periodicity and force anti-periodicity,
consistent with classical homogenisation. The framework supports fully 3D scalable
simulations and employs harmonic mean sampling for interfacial bond properties to
enhance physical fidelity.

Numerical studies on fibre-reinforced composite RVEs demonstrate accurate pre-
diction of effective stiffness and local stress fields, validated against analytical and
micromechanical models. The results show robust capture of complex crack morpholo-
gies and interactions while maintaining parallel efficiency. The proposed framework
thus provides a general-purpose and scalable tool for peridynamic homogenisation of
damaged composites, forming a foundation for future multiscale and inelastic material

modelling.
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Chapter 1

Introduction

The effective behaviour of composite materials, particularly those with periodic mi-
crostructures, plays a critical role in the design and analysis of modern engineering
systems. Accurate prediction of their macroscopic response requires computational
models that capture heterogeneity, anisotropy, and damage mechanisms such as ma-
trix cracking, fibre-matrix debonding, and crack interactions. Conventional continuum
mechanics approaches, while well established, require special enrichment or remeshing
techniques to represent such discontinuities. Extended finite element methods (XFEM),
cohesive elements, and remeshing schemes have achieved notable success in this regard,
yet they often involve complex algorithmic handling and mesh dependence when sim-
ulating cracks.

Peridynamics [1], a nonlocal reformulation of continuum mechanics expressed
through integral equations, provides a more natural treatment of discontinuities. Frac-
ture and debonding emerge directly from the governing equations without additional
criteria, allowing seamless transition from intact to damaged states. While bond-based
peridynamics has been extensively applied to fracture studies, its restrictive consti-
tutive form, particularly the limitation on Poisson’s ratio, reduces its suitability for
general material modelling. The more general ordinary state-based peridynamic (OSB-
PD) formulation [2] removes these restrictions, enabling anisotropy and complex stress
states, and is therefore better suited for multiscale and homogenisation studies.

Despite its promise, the use of OSB-PD in computational homogenisation remains
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limited. Previous studies have largely relied on simplified bond-based models, of-
ten restricted to two-dimensional RVEs and lacking realistic damage representation.
Consequently, there are few demonstrations of scalable three-dimensional peridynamic
homogenisation or quantitative performance benchmarks for large RVEs under crack-
induced damage. Addressing these limitations requires both algorithmic innovation
and computational efficiency.

This thesis presents a scalable computational homogenisation framework based on
ordinary state-based peridynamics, explicitly designed to capture crack-induced dam-
age within periodic composite microstructures. The work addresses two major chal-
lenges in the field. First, to overcome the modelling difficulty of complex discontinu-
ities, a raytracing-based bond-breaking algorithm is introduced. This method converts
arbitrary crack surfaces into triangle-mesh geometries for robust and geometrically con-
sistent detection of broken bonds, enabling stable and physically meaningful tracking
of interacting cracks and debonding interfaces. Second, to alleviate the heavy com-
putational cost of 3D homogenisation, the framework is implemented in parallel using
C++ and MPI, supporting scalable domain decomposition and efficient large-scale sim-
ulation.

In addition, volumetric periodic boundary conditions [3,4] are formulated for the
peridynamic setting to ensure displacement periodicity and force anti-periodicity across
opposing RVE faces. This ensures consistency with classical homogenisation theory
while preserving the nonlocal character of peridynamics. The framework also employs
harmonic mean sampling for interfacial bond properties to enhance the physical accu-
racy of composite modelling.

A series of numerical benchmarks on fibre-reinforced composite RVEs are conducted
to validate the proposed method. Results demonstrate accurate prediction of effective
stiffness and local stress distributions, consistent with analytical and micromechan-
ical references. The framework efficiently captures complex crack morphologies and
interactions while maintaining high scalability on parallel computing systems.

This document is organised as follows:

e Chapter 2 introduces the fundamentals of peridynamic theory, including kine-
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matics, state definitions, and governing equations.

e Chapter 3 presents the theoretical formulation of the computational homogenisa-
tion procedure, including volume averaging and boundary condition implementa-

tion.

e Chapter 4 details the numerical implementation, solver configuration, and MPI-

based parallelisation strategies.

e Chapter 5 reports benchmark results in two-dimensional settings, focusing on

convergence, accuracy, and damage simulation.

e Chapter 6 extends the study to three-dimensional RVEs, demonstrating the

framework’s scalability and predictive capability.

e Chapter 7 concludes the thesis with a summary of findings and future research

directions.

Through the integration of state-based peridynamics, periodic boundary enforce-
ment, raytracing-based crack modelling, and distributed parallel computation, this
work bridges composite microstructural damage with effective macroscopic behaviour.
It provides a unified and scalable tool for peridynamic computational homogenisation,
forming a foundation for future multiscale modelling of inelastic and damaged compos-

ites.



Chapter 2

Peridynamic Theory

In this chapter, we summarize the essential formulations of peridynamics, focusing on
the bond-based and ordinary state-based models. The mathematical definitions and
material parameters for these models are discussed in detail, based primarily on the

foundational works by Silling and collaborators [1,2,5,6] (see also [7]).

2.1 Introduction

Peridynamics is a nonlocal theory of solid mechanics introduced by Silling [1]. Unlike
classical continuum mechanics, which relies on spatial derivatives of the displacement
field, peridynamics formulates the equations of motion using integral expressions over
a finite neighbourhood. This fundamental shift allows the theory to naturally ac-
commodate discontinuities such as crack initiation and propagation, without requiring
additional fracture criteria or enrichment techniques.

The region of influence around a material point is defined by a finite-length param-
eter called the horizon. Within this horizon, material points interact through pairwise
or state-based force functions. As the horizon length tends to zero, classical elasticity
can be recovered as a limiting case [8]. Conversely, at nanoscale regimes, peridynam-
ics can incorporate interatomic interactions such as van der Waals forces by tailoring
the response functions appropriately [9]. These properties position peridynamics as a

multiscale-capable framework that bridges continuum and atomistic modelling.
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The bond-based peridynamic model (BBPD), introduced in [5], assumes that ma-
terial behaviour arises from pairwise forces between points within the horizon. While
simple and computationally efficient, this formulation imposes limitations on Poisson’s
ratio, specifically, it is restricted to 1/4 for 3D and 2D plane strain models, and 1/3 for
2D plane stress models.

To overcome these restrictions, a more general framework known as state-based
peridynamics was later developed [2,6]. This formulation introduces the concept of
vector and scalar states, enabling forces to depend on the collective deformation of a
material point’s neighbourhood. In particular, the ordinary state-based peridynamic
(OSBPD) model allows a broader range of constitutive behaviours and material re-

sponses, including those with arbitrary Poisson’s ratios.

2.2 Kinematics and State Definitions

Consider a solid body occupying a region Q(t) € R? at time ¢ in a d-dimensional
Euclidean space, where d € {1,2,3}. Each point x € Q(¢) represents a peridynamic
particle associated with a differential volume dV'’ and a mass density p(x). The unde-
formed, stress-free reference configuration at ¢t = 0 is denoted by Qg C R,

For a particle x € €, interaction occurs with all particles x’ such that the reference
distance |x’ — x| lies within a finite range §, referred to as the horizon. The vector
connecting a pair of such interacting particles is termed a bond, and the collection of
all such x’ within the horizon of x is known as its family. This interaction domain is
defined as

Hy ={x'"€Qo:|x' —x| <é}. (2.1)

The horizon Hy is commonly taken to be circular in 2D and spherical in 3D, although
other horizon shapes may be adopted depending on the formulation or application.
2.2.1 Deformation Kinematics

Let x,x’ € Qg denote two particles in the reference configuration. At a later time ¢ > 0,

the body undergoes a deformation, and each particle experiences a displacement: u(x)
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and u(x’), respectively. The updated positions in the deformed configuration are given

by

y =x+u(x), (2.2a)

y =x'+ux). (2.2b)
The relative position vector in the deformed state becomes
/ / /
Yy -y = -x)+ [ux)—ux)]. (2.3)

The peridynamic bond stretch, a scalar quantity characterising elongation, is defined as

! _ !

X — x|
2.2.2 State-Based Representation

To facilitate generalisation and improve mathematical clarity, the concept of state-
based peridynamics was introduced in [2]. In this formulation, physical quantities are
represented by operators known as vector states, which act on bonds to yield kinematic
or force responses.

The deformation state, denoted Y, maps the reference bond vector to the de-

formed bond vector as follows
y —y =Y(x,t)(x' —x). (2.5)

Similarly, the force state, T, returns the force density vector t exerted by a particle

at x’ on a particle at x as
t(y -y, x' —x,t) = T(x,t)(x" - x). (2.6)

These operator-based definitions facilitate the modelling of complex material behaviour,

including anisotropy and microstructural heterogeneity.
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2.3 Governing Equations and Constitutive Models

2.3.1 Equation of Motion

The peridynamic equation of motion, following the formulations by [1,2,5], can be

expressed in the following two equivalent forms.

p(x)u(x,t) = / ty -y, X —x,t) —t'(y -y, x—x,t))dV' + b(x,t) (2.7a)

X

p(x)ii(x, £) = / (T(x, £)(x — x) — T(x,)(x — %)) AV’ + b(x, 1) (2.7b)

X

Here, x and x’ denote the positions of material points in the reference configuration,
while y and y’ are their respective positions in the deformed configuration. The variable
t represents time. p(x) denotes the mass density, Ui(x,t) the acceleration, dV’ the
differential volume element, and b(x,t) the body force density. The peridynamic force
densities t and t’' have physical units of F//L??, where F and L are the units of force
and length, respectively.

For static analysis, typical in the context of homogenisation, the governing equation

simplifies to an equilibrium condition

/ Gy —y, X' —x,t) —t'(y —y,x —x',t))dV' + b(x,t) = 0. (2.8)

x

This condition states that the total internal and external force acting on a particle at

position x must sum to zero.

2.3.2 Bond-Based Formulation

In the bond-based peridynamic model, the force density vectors t and t" are assumed to
be equal in magnitude and opposite in direction. This assumption inherently satisfies
the balance of angular momentum. As illustrated in Figure 2.1, the force density can

be written as follows

/

— 1
Y ¥ —f(y' —y,x' —x,t), (2.9a)

1
ty/_y7xl_x7t :IX,t X/—X :7C —
( ) = T(x,t)( ) =3 vy~ 2
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————— Family Hy with radius ¢

Figure 2.1: Bond-based peridynamic force state. The force density vectors are shown
in purple and are opposite in direction and equal in magnitude. The horizons in the
undeformed and deformed configurations are indicated by red dashed lines.

1 g 1
¥y =y x =X, 0) = T 0k —x) = =505 = =y =y = x,1). (2.90)
y =Yy

Here, C is an auxiliary scalar parameter determined by material constants, the dis-
placement field, and the peridynamic horizon. Given that [t| = |t/|, the equation of

motion (2.7a) reduces to
p(x)i(x,t) = / fly —y,x' —x,t)dV’ + b(x,t). (2.10)

2.3.3 State-Based Formulation

In the ordinary state-based peridynamic model, the force density vectors t and t’ are
assumed to be opposite in direction but not necessarily equal in magnitude, as illus-
trated in Figure 2.2. This assumption also satisfies the balance of angular momentum.

The force densities are expressed as follows

6y — y.x —x.1) = T(x,£)(x —x) = 24 Y =Y (2.11a)
T 2y =yl
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————— Family Hy with radius ¢
Family H,s with radius ¢

Figure 2.2: Ordinary state-based peridynamic force state. The force density vectors
are shown in purple and are opposite in direction but not equal in magnitude. The
horizons in the undeformed and deformed configurations are indicated by red dashed
lines.

1 F—
By Yy

ty—y,x—xt) =T, t){x—x') = —= .
( )= T 0 X) = B

(2.11D)

As in the bond-based case, the auxiliary parameters A and B are determined by the

material properties, displacement field, and horizon size.

2.4 Material Parameter Derivation

2.4.1 Strain Energy and Force Densities

The pairwise auxiliary parameters A and B in force density vectors t and t’' can be

expressed in terms of the strain energy densities W and W' as follows

2 oW
A= 9" 2.12a
Vi a(y =) (2.122)

2 ow’
B=———n« — . 2.12b
Valy =yl (2.12b)
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In this work, we consider only isotropic elastic materials, which leads to the following

strain energy density function at particle position x:

W:a92+b/ w(‘y’—y‘—‘x/—x‘)2 av’. (2.13)
H

X

Here, the dilatation 6 is given explicitly by

esz;wqy—yyﬁx—xD<yu“’ X/_X>czv’. (2.14)

ly —yl [¥ —x|

The constants a, b, and d are peridynamic material parameters derived from con-
ventional elastic constants, namely Young’s modulus E and Poisson’s ratio v. The
scalar-valued influence function w scales the interaction between material points x and
x’ as a function of their reference separation |x’ — x| and the horizon size §. As detailed

in [7], the explicit form of w for state-based peridynamics is given as

J

~ W

(2.15)

In this study, the peridynamic horizon ¢ is assumed to be proportional to the
particle spacing Az, typically 6 = 3Ax. This choice ensures sufficient overlap between
neighbouring particles for stable force transmission while maintaining computational
efficiency. As Ax — 0 with §/Az held constant, the nonlocal formulation converges
to the corresponding local elasticity model. Conversely, larger values of § lead to
smoother but effectively stiffer responses due to increased nonlocal interactions. The
selected ratio §/Az = 3 provides a good balance between accuracy and computational
cost, as demonstrated in prior studies (e.g., [1]; [7]).

By substituting (2.14) into (2.13) and evaluating the derivatives in (2.12), we obtain

the explicit expression for the state-based peridynamic force density as follows

! _ !
tly —y,x' —x,t) = 2w [d(y/ Y. X/ X)a&
y' =yl X —x|

, (2.16a)
y -y

ly' — |

)

+0 ([y' = y| =[x —x])]

10
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R o
t'(y—y,x—x,t)=-2J"|d Y7V XTX )y
ly =y x—x|

Sy (2.16b)
tb(ly—y'| =[x =% —y
(v =¥ = e =xD] 5=
The auxiliary parameters A and B from (2.11) can thus be written as
_ y -y ) x' —x A
A= 4w [d<\y’—y| ‘x/_x‘>a9+b(‘y y‘ ‘x x|)] , (2.17a)
P, y-y X x' / A .
B = 4w [d<y—y’| ‘X_X/Oaﬁ +b(ly—y'|-|x x‘)} . (2.17b)

In bond-based peridynamics, consistency requires that A = B. This condition

eliminates the dilatation terms 6 and €', which implies:
ad = 0. (2.18)

The explicit bond-based peridynamic force density function from (2.9) can be written

as

/ /

1
ty —y,x —x,8) = —t'(y — ¥, x — x,t) = £(y' —y,x — x,1)

Qy_y (2.19)
ZQWb(‘yl_y‘ - ‘X/_XD y —vy|
The corresponding auxiliary parameter C' is
C=4wb(ly —y|- ¥ —x|). (2.20)

To complete the formulation, we derive explicit expressions for the parameters a, b,
and d in terms of elastic constants by comparing the peridynamic strain energy density

in (2.13) with the classical continuum mechanics counterpart.

2.4.2 Parameter Calibration for Three-Dimensional Isotropic Mate-

rials

The constitutive law for a linear isotropic elastic material is given by 0;; = Cjjrieg, or

in Voigt notation:

11
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Oos A2 A A 00 0
Oyy A A+ 2p A 0 0 0
o | | A A A+22 0 0 0
o | |0 0 0 0 0
oo 0 0 0 0O p O
o | | O 0 0 0 0 u|

833:13

Eyy
822
2ey,

2,

2e4y

(2.21)

The Lamé parameters A and u relate to Young’s modulus £ and Poisson’s ratio v via

Ev )

A= A+v(1-20) "“20+0)

Simple Shear Analysis

To determine the peridynamic parameter b, consider a simple shear strain state

T
52000800]7

this corresponds to the deformation gradient

1 00
F=|01 s
0 0 1

The resulting stress vector is

T
c=De=10 0 0 us 0 O

The strain energy density from classical continuum mechanics is

ccm IEUTE::L(SQ: ESQ )
shear 2 9 4(1 —I-V)

Since simple shear produces no volumetric change, dilatation is

ccem
shear — 0
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Ts

s

X

Figure 2.3: Representation of the bond (x’ — x) in the spherical coordinate system,
with x as the origin.

We now evaluate the same deformation under the peridynamic formulation using

spherical coordinates (s, 05, ¢s) as shown in Figure 2.3, with

‘X/ — x‘ =7, (2.28a)

rs cOS O, sin ¢y
x' —x = |r,sinf,sin g, | - (2.28b)

T's COS Qg

The deformed bond under simple shear becomes

75 COS 05 sin ¢

y —y=F-(x' —x) = |r,sinf,sin ¢, + srscos ¢s | » (2.29a)
75 COS P
in(2 in(60
v —y|~ (1 1 asin ¢;) sin S)> Ts. (2.29b)

The bond length is linearised for small shear strains s < 1 using a first-order Taylor

expansion, with higher-order terms O(s?) neglected. The volume element in spherical

13
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coordinates is

dV' = r2sin ¢, dos db drs. (2.30)

The corresponding peridynamic strain energy density in (2.13) for simple shear is
wh = Iy -y - ¥ —x|)*av’
shear — i w Y y

§ 2w pm . : 2
= b/ / / é { {1 =+ 551n(2¢s) sm(&s)] T — rs} 7“3 sin ¢ dos dfs drs.
o Jo Jo Ts 2

(2.31)

Exploiting isotropy of the spherical horizon, all odd angular terms vanish upon integra-

tion, and the angular integrals reduce to a constant factor. The strain energy therefore

becomes
Wt i [Py 9.32
shear — ES rsars, ( . )
0
integrating yields:
d w8 s?
fhear = 15 b. (233)

Equating (2.33) with the classical strain energy density (2.26) gives

15 15E
b= = . 2.34
278°  Amwdd (14 v) (2:34)

Isotropic Expansion Analysis

To derive parameters a and d, consider the isotropic expansion

T
82[555000 ) (2-35)

this corresponds to the deformation gradient

14 s 0 0
F = 0 14+ s 0o |. (2.36)
0 0 1+s

14
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The resulting stress vector is

[ (BX\+2u)s ] [ s ]
(BN +2u)s E;V
o= BA+2w)s | _ = : (2.37)
0 0
0 0
L 0 _ U

The classical strain energy density and dilatation become

cem _ 3BA+2u)s*  3Es?

= = 2.38
normal 92 2(1 — 21/) ’ ( )
ZConal = 3s. (239)

The deformed bond under isotropic expansion becomes

5 oS Ogsin gs(1 + s)
y—y=F - (x' —x)= | r sinf,sinps(1+s) | , (2.40a)
s cos ¢s(1 + s)
Y —y| =1 +s)rs (2.40Db)
The volume element in spherical coordinates is

dV' = r2sin ¢ dos db drs. (2.41)

The corresponding peridynamic strain energy density in (2.13) for isotropic expansion
is
Wpd _ ccm 2 b o e 2 av’
normal — a( normal) + . w (‘y y‘ |X XD

5 27: "5 (2.42)
=a(3s)* + b/ / / - (1 + 5)rg — 75?12 sin ¢ dps db drs.
o Jo Jo Ts

Since the integrand is independent of angular variables, the integration over the spher-

15
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ical horizon reduces to a radial integral, with the angular contribution yielding a factor
of 4. Integrating yields
wre

normal

= 9as® + w6°bs>. (2.43)

The corresponding peridynamic dilatation in (2.14) for isotropic expansion is

y -y x —x
eftirmal :d/wa(‘y/—y‘ - ’X/_X‘) <|y/_y‘ ) |x’—x|> av’

) 2 T
:d/ / / é[(1+s)rs—rs] ("“r> r2 sin s dps dO drs.
0 Jo 0o Ts s Ts

Since y’ — y is collinear with x’ — x under isotropic expansion, the unit vectors are

(2.44)

identical and (rs/rs) - (rs/rs) = 1. The integrand is therefore independent of angular

variables. Integrating yields

pd Amdtds

normal 3 : (245)
By equating (2.45) with (2.39), the expression for d is obtained as
9
d= . 2.4
4t (246)

Similarly, equating (2.43) with (2.38) yields the relationship between a and b. Solving

these equations gives

CA—p  EM4r-1)
T T T Ay —2) (247)

Summary of Peridynamic Parameters in 3D

A— L E(4v —1)

T T T i) (2.482)
_1u 15E
b= 2m6°  4ns5(1 +v)’ (2.48b)
9
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2.4.3 Parameter Calibration for Plane Stress

In two-dimensional plane stress conditions, the stress and strain vectors in Voigt nota-

tion reduce to the following expressions
T
o = |:0'acz Oyy O-xy} y (249&)

T
€ = [511 Eyy gxy] . (2.49b)

The corresponding stiffness matrix, obtained by inverting the compliance matrix, is

1 v 0
E
Dzos:m v 1 0 |. (2.50)
1—
00 %~

To determine the peridynamic material parameters under plane stress, we follow the
same calibration procedure as in subsection 2.4.2 by considering two deformation modes:
simple shear and isotropic expansion. In each case, we compute the classical strain en-

ergy density and match it to the corresponding peridynamic expression.

Simple Shear Analysis

To determine the peridynamic parameter b, consider a simple shear strain state
T
e = [0 0 S} , (2.51)

this corresponds to the deformation gradient
F = . (2.52)

The resulting stress vector is

T

oc=D"e=10 0 2(1Ef,,) : (2.53)

17
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The strain energy density from classical continuum mechanics is

1 Es?
=5 = Taay (2:54)

Since simple shear produces no volumetric change

cem ), (2.55)

shear

We now evaluate the same deformation under the peridynamic formulation using polar

coordinate (rp,6p), with

|x' — x| =7, (2.56a)
rp COS 0

xX—x=|""""]. (2.56b)
rpsin b,

The deformed bond under simple shear becomes

7, €08 0, + sr,sin @
y—y=F - (x-x)=|" P P "1, (2.57a)
rpsin b,

ly' —y| = [1 + (sin 6, cos b,)s] . (2.57b)

The bond length is linearised for small shear strains s < 1 using a first-order Taylor
expansion, with higher-order terms O(s?) neglected. The volume element in polar
coordinate (7, 8)p) is

dV' =, db,dr,. (2.58)

The corresponding peridynamic strain energy density in (2.13), expressed in integral

form for simple shear with h denoting the thickness is

Wit = [ o (ly = y] =[x =x])? av"
hx (2.59)

0 2
)
= bh/ / — {[1 + (sin 8, cos 0,)s] rp — 1} 1 B, drp.
o Jo Tp

18
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Exploiting isotropy of the circular horizon, the angular integration yields a constant

factor, independent of radius. The strain energy therefore becomes

d T 2 ° 2
Wsphear:bzs h/O (57’5 dr&

integrating yields

pd 7Th(5482

shear — 12 b.

Equating (2.61) with the classical strain energy density (2.54) gives

,__ 3E
- Thét(1+v)’

Isotropic Expansion Analysis

To derive parameters a and d, consider the isotropic expansion
T
€= [3 S O] )

this corresponds to the deformation gradient

1+s 0
F =
0 1+ s
The resulting stress vector is

Es
1—v
o = DPSE = ﬁ
1-v

0
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The classical strain energy density and dilatation become

1 Es?
’sg:"nmal = §UT€ = 1—0’ (266)
em =% (267)

The deformed bond under isotropic expansion becomes

rpcostp(l+s
y—y=F - (x-x)=1" b ) , (2.68a)
rpsinfy(1 + s)

}y’ — y} = (14 s)rp. (2.68b)
The volume element in polar coordinate (rp,6,) is
dV' = ry,d, dr,. (2.69)

The corresponding peridynamic strain energy density in (2.13), expressed in integral

form for isotropic expansion with h denoting the thickness is

W = 0Ot 50 [ (ly = y] =[x =x])” v

5 oo 5 (2.70)

= a(2s)% + bh/ / — [(1 4 8)rp — 1)) 7 dB, drp.
oJo Tp

Since the integrand is independent of 6, the angular integration yields a factor of 2.
Integrating yields
wre

normal

2
= das® + gwbh54s2. (2.71)

The corresponding peridynamic dilatation in (2.14), expressed in integral form for

isotropic expansion with A denoting the thickness is

Y-y x-x
s =, (3 == ¢ =) (523 =) v

6 2w
:dh// O+ sy —r) (2.2, db, dr,.
o Jo Tp Tp Tp

(2.72)
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Since y’ — y is collinear with x’ — x under isotropic expansion, the unit vectors are
identical and (rp/rp) - (rp/rp) = 1. The integrand is therefore independent of angular
variables. Integrating yields

pd
enormal

= wdhd>s. (2.73)

By equating (2.67) with (2.73), the expression for d is obtained as

2
d= whd3’

(2.74)

Similarly, equating (2.66) with (2.71) yields the relationship between a and b. Solving

these equations gives
EBr—-1)
= . 2.75
“TA1 )1+ (275)

Summary of Parameters in Plane Stress

EBr—1)

= ) t0) (2.76a)
3E
2

2.4.4 Parameter Calibration for Plane Strain

In the plane strain condition, deformation in the out-of-plane direction is assumed

negligible. The constitutive relation is thus simplified to

o = D, (2.77)
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where DP¢ is the reduced 3 x 3 stiffness matrix under the plane strain assumption,

defined as

D¢ = v 1—v 0 |. (2.78)

2
To calibrate the peridynamic parameters, we first examine the system under a simple

shear condition. Under such loading, the stress tensor o and the corresponding strain

ccm

o . remain identical to those in the plane stress case. Therefore,

energy density

parameter b is the same as in plane stress case:

3E
b —_— m. (2-79)

Next, we consider the isotropic expansion in the plane. Under such loading condi-

tion, the stress state becomes

Es
(I+v)(1—2v)

o =D = (Huﬁﬁ . (2.80)

0

The corresponding strain energy density under classical continuum mechanics is

1 Es?
cem T
=— = . 2.81
normal 20- € (1 + l/)(l _ 2y) ( )
The dilatation in this case is also the same as that under plane stress:
%%Tmal = 257 (282)
which leads to a similar expression for parameter d:
2
d=—%. 2.83
53 (2.83)

The only parameter that differs between plane strain and plane stress is parameter a. It

can be determined by equating the classical strain energy density with its peridynamic
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counterpart, using the expression for d in (2.83):

 E(v-1)
T i) -2) (2:84)

Summary of Parameters in Plane Strain

_ BE4v-1)
T A1) —2v) (2.852)
3E
= ST (2.85b)
2

A detailed derivation of the parameters a, b, and d under plane strain conditions

can be found in Appendix B.

2.5 Discretisation Concepts

2.5.1 Discretisation of Peridynamic Equations

As shown in Figure 2.4, the peridynamic equation of motion (2.7) can be discretised to
enable numerical computation. The resulting discrete form reads

N

prik =D [t (V) — Yio X — Xit) — b (Ve — ¥ Xk — X5, )] Vi + bg,  (2.86a)
7j=1

or equivalently,

N
priir = Y [T(xx, 1) (x; — xi) — T(x5,1) (x5 — X;)] Vj + by (2.86b)

j=1

Here, N denotes the number of particles located within the horizon of particle k, and
V; is the nodal volume associated with particle j. From this point forward, the symbols
k and j are reserved exclusively for particle indices. Unless otherwise noted, subscripts

k and j refer to particle-specific properties, while the notations kj and jk denote bond-
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Qo

————— Family Hy with radius §
X Family H,s with radius ¢

Figure 2.4: Displacements of particles and the resulting force density. The horizon is
set to three times the particle spacing, and bonds are rendered as grey dotted lines.
Horizons in the undeformed and deformed configurations are illustrated.

specific properties between particle £ and particle j.

2.5.2 Interface Treatment

The peridynamic parameters a, b, and d, as defined in (2.48), (2.76), and (2.85), were
derived under the assumption of isotropic and homogeneous material domains. Conse-
quently, these formulations are directly applicable only when the interacting particles
belong to the same material phase.

However, in multi-material systems where distinct isotropic materials coexist, bonds
may span across material interfaces. An even more complex scenario arises in function-
ally graded materials (FGMs), where engineering constants such as Young’s modulus
FE and Poisson’s ratio ¥ may vary continuously along the bond.

To handle such cases, several strategies are available for assigning effective bond

properties that reflect the heterogeneous material environment. The following subsec-
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tions describe and compare four representative approaches.

Direct Averaging of Engineering Constants

The direct averaging approach, as employed by [10,11] in their studies on ordinary
state-based peridynamic modelling of functionally graded materials (FGMs), assumes
a straightforward treatment of material property variation. In this method, selected en-
gineering material constants at the two bond endpoints (particles k£ and j) are averaged

as
_ B+ P

Py; 5

(2.87)

Here, P denotes engineering material constants such as Young’s modulus £ and Pois-
son’s ratio v. The averaged pair (Ej;, ;) is then used in the constitutive mapping
equations (2.48), (2.76), and (2.85) to determine the effective peridynamic parameters
(a,b,d) associated with bond kj.

This method is computationally efficient and sufficiently accurate for smoothly vary-

ing materials but may introduce artefacts when applied near sharp interfaces.

Weaker-Dominant Assignment of Peridynamic Parameters

In scenarios where strength reduction at material interfaces is physically expected but
computational efficiency is still a priority, one may opt for a conservative assignment
strategy where the weaker material’s properties are used to define the bond. This
approach was adopted in [12].

Here, “weaker” is typically defined in terms of Young’s modulus F, rather than
peridynamic constants themselves, since the latter are not necessarily linearly correlated

with material strength. The assignment is formulated as
ij =P H‘(Ek > Ej) + P] W(Ek < Ej), (2.88)

where J¥(-) is the indicator function, equal to 1 when the condition is satisfied and 0
otherwise. Once the selected property pair Py; is determined, it is passed to (2.48),

(2.76), and (2.85) to compute the bond’s effective peridynamic parameters (a, b, d).
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c(k’j§1)c(k’j§2) C(kvj;m) C(k7j§M)
ko— : : —e

O R B B— [,

P

Figure 2.5: Peridynamic bond kj at a dissimilar material interface, divided evenly into
M segments with sampling points marked.

This method reflects a physically motivated lower-bound estimate while avoiding

the overhead of fine-grained sampling.

Harmonic Mean of Engineering Constants

In scenarios where computational cost is not a primary constraint, the material con-
stants along a bond can be evaluated using a harmonic mean of the engineering con-
stants (e.g., Young’s modulus E, Poisson’s ratio v) sampled along the bond path. This
approach improves accuracy when modelling material interfaces between dissimilar con-
stituents.

As shown in Figure 2.5, a random bond kj is divided into a total of M segments,
each with length d,,. At the midpoint of each segment is a sampling point where ma-
terial attributes are evaluated. The symbol ¢ represents the selected engineering
constant sampled at point m along bond kj.

The harmonic mean over the M sampled points is computed as

Mo M -1
Crj = (Z s > dm> . (2.89)
m=1

m=1

This effective constant cj; is then used to determine the peridynamic bond parameters
(a,b,d) via the constitutive relations in (2.48), (2.76), and (2.85).

While the harmonic-mean sampling strategy provides more accurate representa-
tion of gradual or abrupt transitions across material interfaces, it is computationally
more expensive than simpler averaging schemes. In many practical cases, particularly

for homogeneous or only mildly heterogeneous media, the improvement in accuracy is
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Figure 2.6: Peridynamic fictitious boundary layer with a depth equal to the horizon
size 0.

marginal and often does not justify the additional cost. Nevertheless, for consistency
and to ensure reliable treatment of strongly heterogeneous interfaces, this harmonic-
mean parameter assignment is used in all subsequent benchmark tests within the pro-

posed peridynamic computational homogenisation framework, unless otherwise stated.

Harmonic Mean of Peridynamic Parameters

In contrast to averaging engineering constants, one may also apply a harmonic mean
directly to the peridynamic parameters (a, b, d) along a bond, each parameter is treated
independently. This approach uses the same formulation as in (2.89), but with ¢
representing the peridynamic parameters sampled at point m along the bond between
particles k£ and j.

This direct treatment avoids the intermediate step of converting engineering con-
stants into peridynamic coefficients and was used in the author’s earlier work [13].
While simpler to implement in certain contexts, this method can be less physically

interpretable when dealing with complex heterogeneous materials or interface regions.

2.5.3 Fictitious Boundary

Peridynamic equation of motion (2.7) does not contain any spatial derivatives, hence

its explicit solution generally requires no constraint conditions. However, for those
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situations where displacement boundary conditions are required, a fictitious boundary
layer Q¢ as shown in Figure 2.6, could be defined along the boundary of domain €.
According to [14], the depth of Q¢ should be equal to the horizon ¢ for an appropriate

reflection of the boundary condition onto the problem domain.

2.5.4 Damage Modelling

Damage modelling in peridynamics is typically done by scaling the bond force density
expression (2.16) with an activation function. Defined as a binary switch, it takes the

form

0, if bond intersects with discontinuities
Vrj = (2.90)

1, otherwise

Therefore, when a bond meets the criterion for breaking (i.e., when nonlocal damage is
detected for that bond), its contribution to the force density in the equation of motion

is set to zero.

Two-Dimensional Crack

In two-dimensional analyses, cracks and bonds are both represented as line segments.
The bond breaking criteria in this case becomes the problem of determining whether
two line segments intersect in a two-dimensional plane.

This is a fundamental problem in computational geometry. One possible approach
to this problem is by utilising a vector based approach to find the intersection point, and
determine if intersection happens within both line segments(and if not exist, parallel).
Note that the intersection point’s coordinate is redundant in this case as we are only
interested in finding whether intersection happens. Therefore, a more efficient approach
is to use cross product to check line orientations, as described in [15]

Consider bond AB and crack CD, where points A, B, C' and D are endpoints of line
segments with corresponding position vector a(ay, ay), b(bz, by), c(cz, ¢y) and d(dy, dy),
respectively. The intersection condition can be understood as points A and B on the

opposite side of CD, as well as points C and D on the opposite side of AB. This can
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be achieved by defining an orientation operator

orient(a, b, c) = cross(b — a,c — a), (2.91)

where cross(+) is the cross operator concerning only the magnitude and sign. For vectors

v(vg,vy) and w(w,,w,), operator cross(-) is defined as

cross(v, w) = vpWy — VyWsy. (2.92)

Positive outcome of orient(a, b, ¢) indicates path A to B to C forms a left turn, negative
outcome indicates right turn, while zero means points A, B and C form a straight line.

Proper intersection condition of AB and CD can then be written as

orient(c, d, a) - orient(c,d, b) < 0

A orient(a, b, c) - orient(a,b,d) < 0. (2.93)

Note that condition (2.93) only considers proper intersection, while edge cases are

disregarded.

Three-Dimensional Crack

In three dimensions, pre-existing cracks are represented as triangulated surface meshes.
Each crack is defined by a location vector x = (z,y,2) and an orientation described
by a quaternion q = (a, b, ¢, w). The crack surface is first defined in a local coordinate
system, where each quadrilateral patch is decomposed into two triangles, (c0,cl,c3)
and (cl,c2,¢3). The global Cartesian coordinates of the mesh nodes are obtained by
rotating the local coordinates using the quaternion q and then translating by x.
Determining whether a peridynamic bond (x,x’) intersects a crack surface is there-
fore equivalent to checking for segment-triangle intersections. This work employs
the Moller-Trumbore algorithm [16], which provides an efficient and widely validated
method for ray-triangle intersection. For each triangle, the bond is treated as a finite-

length ray, and an intersection is registered only if (i) the parametric intersection lo-
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mm Random Crack surface

Figure 2.7: Hlustration of randomly oriented three-dimensional crack surfaces generated
within the RVE.

c3 c2
q(a,b,c,w)
h
c0 w cl
x(x,y.2)

P

Z

Figure 2.8: Example of a triangulated crack-surface mesh subjected to a prescribed
quaternion-based rotation.
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cation lies within the triangle, and (ii) the intersection lies between the two bond end-
points. To avoid unnecessary computation, the algorithm is implemented in a clipped
form in which intersection tests are terminated once the potential intersection falls
outside the bond segment limits.

Compared with the two-dimensional case, several geometric edge cases arise in
three dimensions, for example nearly coplanar configurations, grazing intersections, and
intersection points lying exactly on triangle edges. These cases are handled explicitly
by thresholding the determinant term of the Méller-Trumbore test and by disregarding
ambiguous configurations that fall below numerical tolerances.

This ray-tracing approach naturally extends to crack surfaces of arbitrary complex-
ity. Provided that the surface can be discretised into a triangle mesh using any suitable
meshing algorithm, the same intersection procedure applies triangle-by-triangle. To
assist reproducibility, a simplified pseudo-code version of the bond-crack intersection

routine is included in Algorithm 1: This approach provides a general, robust, and

Algorithm 1 Bond-Crack Intersection Detection

1: function BONDINTERSECTSCRACK (bond, crack_mesh)

2 for each triangle tri € crack-mesh.triangles do

3 (hit,t) < MollerTrumbore(bond.start, bond.length, bond.direction, tri)
4: if hit and 0 <t < 1 then

5: return true

6 return false

highly efficient mechanism for bond breaking in three-dimensional peridynamic simu-

lations involving arbitrarily oriented and arbitrarily shaped crack surfaces.

2.5.5 Surface Correction

Peridynamic parameters a, b and d are derived by calculating dilatation and strain
energy density of a particle fully embedded within an isotropic homogeneous medium.
Previously we considered the situation for dissimilar material interfaces, however, the
requirement for complete horizon still stands. Thus, the previously derived peridynamic
parameters are still not valid at free surfaces or material interfaces. To resolve this issue

we resort to a surface correction procedure for parameter b and d. Note that parameter
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a does not depend on horizon integration thus is exempt from surface correction.

The surface correction for parameter b and d covers the situation where particle
is near free surfaces (including crack surfaces) or material interfaces. For computa-
tional homogenisation, the only free surfaces in the system are from cracks and other
discontinuities, while the domain boundary is normally covered by periodic boundary
condition which is considered full horizon computationally for particles reside within.

The surface correction factor for parameter b at particle k, denoted s%m (m =
x,y, z), can be obtained by comparing strain energy density definition under classical
continuum mechanics against its peridynamic counterpart.

To eliminate dilatation from peridynamic strain energy density formulation (2.13),
three simple shear deformation cases can be applied to the system separately for cor-
rection factors along each axial direction. They are written in terms of the deformation

gradient as

1 50 1 0 0 10 0
F,.=|010|, FF=|01s|, F-=]01 0], (2.94)
00 1 00 1 s 0 1

with s being a small value. Deformation cases F, F, and F, correspond to correction

factor components sz . sz Y and 82 ., Tespectively. We then have

;Czcm 1/1/32
SZ,m = L 2 (m=ux,y,2) (2.95)

- d N )
Wlf,m ij=1 ij(b’j —Y&| — ’Xj - XkDQVj

Similarly, surface correction factor for parameter d at particle k, denoted s%m (m =
x,y, z), can be obtained by applying three normal strain deformations separately for

each axis. Written in deformation gradients

1+s 0 0 1 0 0 10 0
FF=| o 10|, F,=|01+s 0|, FE=|01 o0 |, (296
0 0 1 0 0 1 00 1+s

with s being a small value. Deformation cases F, F, and F, correspond to correction
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d

d
factor components Skas Sky

and SZ,Z, respectively. By comparing dilatation obtained

using classical continuum mechanics against its peridynamic counterpart (2.14), we

have
ccm
d _Tkm _ S
km — od N __ __ )
Om AN s (lys = vel = I = xu) (22 2250V, (07

(m=,y,2)

So far, we have obtained surface correction factor 32 m and SZ ., for particle k. Peri-
dynamic parameters b and d are bond related attributes, therefore we could calculate

the direct average of s’ and s%,,, (a =b,d)

o a
Sk,m + Sj,m

S = (2.98)

and then apply ellipsoid rule to Skjm 8lves the final form of surface correction factors

for parameter b and d as follows

2 2 2
Soo— || e My Nz 2.99
i we o) Tle ) s ’ (2.99)
], 7Y Jr%

where ng, n, and n, are components of the unit vector:

N

n= 3%k (2.100)

Ixj — xx|

Dilatation (2.14) and strain energy density (2.13) can then be surface corrected as

follows
= Yi— ¥k X=X
0, =d S Vi — V| — |x; —xp < J ko k)V-, 2.101
j; kj J(| J | ‘ J |) ‘Yj_yk‘ |xj_xk| J ( )
N
Wi = abj +b S joni(lys — yil =[x — xx])*Vj. (2.102)
j=1
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Computational Homogenisation

Framework

This chapter presents the computational homogenisation framework developed to link
microscale material behaviour with macroscale mechanical response. A first-order ho-
mogenisation approach is adopted, under the assumption of clear scale separation be-
tween the macro- and microscales. Theoretical foundations are established through
averaging theorems and the Hill-Mandel energy consistency condition, culminating in
the formal definition of effective material properties.

Analytical bounds and micromechanical models are reviewed to contextualise nu-
merical results. Particular emphasis is placed on the enforcement of periodic boundary
conditions within a peridynamic setting, which is critical for ensuring consistency across
scales. The chapter concludes with a detailed description of the numerical procedure
used to compute the effective stiffness tensor, forming the basis of the multiscale anal-
ysis employed throughout this work.

Portions of the content are adapted from work previously published by the author

during the course of this PhD research [13,17].
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3.1 Introduction

Computational homogenisation is a multiscale modelling technique designed to bridge
the gap between microscopic material behaviour and the effective properties used in
macroscopic continuum models. Rather than relying solely on empirical or analyt-
ical estimates, computational homogenisation derives macroscopic stress-strain rela-
tionships from detailed simulations of a representative volume element (RVE) of the
microstructure. The RVE is subjected to suitable boundary conditions, and its mechan-
ical response is averaged to extract effective material properties. This methodology is
particularly well suited for heterogeneous materials with periodic or statistically homo-
geneous microstructures, where an RVE can be meaningfully defined.

The foundations of computational homogenisation were established by classical
works such as those of Hill [18,19], Nemat-Nasser [20], and Suquet [21], who formalised
the mathematical principles connecting microscopic and macroscopic quantities via av-
eraging theorems and energy consistency conditions. With the advent of the finite
element method and modern computing power, these concepts evolved into practical
multiscale strategies, particularly in the form of first-order computational homogenisa-
tion [22,23]. This approach is now widely applied to composites, polycrystals, porous
media, and other complex materials. Typically, each integration point in a macroscopic
finite element model is coupled to a microscale boundary value problem whose solution
provides the effective constitutive response [24-26].

In parallel with computational approaches, a range of analytical micromechanical
models, such as the Voigt [27] and Reuss [28] bounds, the Hashin—Shtrikman variational
principles [29], and the Mori-Tanaka method [30,31] have been developed to estimate
effective properties from known phase properties and geometries. A central theoretical
foundation for many of these models is Eshelby’s solution for an ellipsoidal inclusion in
an infinite medium [32], which introduced the concept of the Eshelby tensor and enabled
analytical treatment of inclusion problems in elasticity. Building on this, mean-field
approaches such as the self-consistent scheme [33] and its generalised extensions [34]

offer improved accuracy for polycrystalline and random composites by treating each
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phase as an inclusion embedded in an effective medium. While less flexible than full-
field numerical schemes, these analytical models remain useful for rapid estimation,
parameter studies, and validation. Some of them, including modified Mori-Tanaka
formulations for transversely isotropic media (e.g., the Tandon-Weng model [35]) and
semi-empirical relations such as the Halpin-Tsai equations [36], will be reviewed in this
chapter and later employed for comparison in Chapters 5 and 6.

Despite its broad applicability, classical computational homogenisation encounters
challenges in situations involving discontinuities, damage, or other nonlocal effects,
where standard continuum mechanics may fail to capture essential behaviour. In such
cases, peridynamics [1], which is a nonlocal theory of continuum mechanics, offers
a compelling alternative. Its integral-based formulation allows for the modelling of
cracks and other discontinuities without the need for special enrichment techniques or
discontinuity tracking. These features make peridynamics an attractive candidate for
governing microscale behaviour within multiscale frameworks.

This chapter presents a computational homogenisation methodology in which state-
based peridynamics [2] is employed to model the microscale RVE, while classical contin-
uum mechanics governs the macroscopic scale. The overall strategy includes a review
of theoretical foundations, averaging theorems, boundary conditions, and analytical
micromechanical models, culminating in a robust procedure for computing effective
stiffness tensors. This methodology forms the basis for the multiscale analysis pre-

sented in the subsequent chapters.

3.2 Multiscale Homogenisation Framework

The foundation of computational homogenisation lies in the assumption of a clear
separation between the microscopic and macroscopic scales. This section formalises the
scale separation hypothesis, outlines the adopted first-order homogenisation framework,

and establishes the associated notational conventions.
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3.2.1 Scale Separation and First-Order Homogenisation

A heterogeneous material that appears statistically homogeneous at the macroscale is
considered. A well-defined scale separation is assumed between the microscopic and

macroscopic length scales as follows

emicro < gmacro .

This assumption ensures that macroscopic fields such as strain and stress vary smoothly
over the domain. Consequently, a first-order computational homogenisation framework
is adopted, wherein higher-order coupling effects and explicit microscale field gradients

are neglected.

3.2.2 Multiscale Modelling Strategy

Macroscale
(e.g., composite)

\
N

xxx

tl
Ql
al

Microscale BvPs

(RVE)

Figure 3.1: Computational homogenisation scheme

The computational homogenisation procedure adopts a two-scale modelling strat-
egy. As illustrated in Figure 3.1, the macroscopic continuum domain is discretised
using finite elements, with each integration point associated with a corresponding RVE
at the microscale.

At each macroscopic integration point, prescribed boundary conditions, typically
six independent small-strain components in the case of three-dimensional first-order ho-

mogenisation are imposed on the RVE. A boundary value problem (BVP) is solved over
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the RVE, and the resulting homogenised response, such as effective stress or stiffness,

is passed back to the macroscopic model to inform the constitutive behaviour.

3.2.3 Representative Volume Element (RVE)

The RVE must be sufficiently large to statistically capture the material’s microstruc-
tural features, yet small enough relative to the macroscopic domain to ensure compu-
tational tractability. For materials with periodic microstructures, as considered in this
work, the RVE can be reduced to a single periodic unit cell.

At the microscale, the displacement field u(x) is additively decomposed as

u(x) =¢- -z + u(x), (3.1)

where € is the prescribed macroscopic strain tensor, and @ (x) denotes the displacement
fluctuation field. For periodic media, @(x) is required to be periodic across opposing
RVE boundaries. Rigid body motions are excluded, as the RVE displacement field is
constructed to satisfy kinematic admissibility conditions, such as periodic boundary
enforcement.

3.2.4 Notation Conventions

Throughout this chapter, the following notational conventions are used:

e The Einstein summation convention is adopted: repeated indices imply summa-

tion unless stated otherwise.

e Latin indices i, j, k, | denote Cartesian components and range from 1 to n, where

n is the number of spatial dimensions (typically n = 2 or 3).
e Macroscopic quantities are denoted using an overline (e.g., €, @).

e Tensor and vector quantities are written in boldface, while scalar quantities are

written in standard (non-bold) typeface.
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e The double contraction between tensors is denoted by a colon symbol (:). For
example, A : B = A;jiyB;ji for fourth-order tensors, or o : € = oy;¢;; for

second-order tensors.

3.3 Volume Averages and Averaging Theorems

This section presents the mathematical foundations of volume averaging used in com-
putational homogenisation, establishing the link between microscopic and macroscopic

field quantities.

3.3.1 Volume Averages of Field Quantities

Volume averaging provides the mathematical foundation for relating microscopic fields
to effective macroscopic quantities.
For a microscopic field quantity f(x) defined over the RVE domain Qgryg, its volume

average is defined as
1

Qrve] Jopye

f(z)dV, (3.2)

where |Qryvg| denotes the volume (or area in 2D) of the RVE. These volume averages
are used to define macroscopic field quantities. In particular, the macroscopic strain €

and stress o are defined as the respective averages of their microscopic counterparts.

3.3.2 Averaging Theorems and Hill-Mandel Condition

Averaging theorems provide a rigorous framework to link microscale behaviour to
macroscopic response. A central concept is the Hill-Mandel macrohomogeneity con-
dition, which ensures energy consistency between the micro- and macro-scales.

Fundamental contributions by Hill [18], Nemat-Nasser and Hori [20], and Suquet [21]
establish the conditions under which macroscopic fields can be obtained as volume av-
erages of microscopic fields. These conditions require clear scale separation, a repre-
sentative microstructure, and appropriate boundary conditions.

The essential averaging relations are:
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e The macroscopic strain is the volume average of the microscopic strain field:

i = (€ij.) (3.3)
e The macroscopic stress is the volume average of the microscopic stress field:

aij = (035). (3.4)

e The Hill-Mandel condition ensures energetic equivalence between scales under
virtual work:

<Uij 55ij> = 0yj 5@']’. (3.5)

Physically, the Hill-Mandel condition states that the work done by microscopic
stresses on microscopic strains within a representative volume element (RVE) must
equal the work done by the corresponding macroscopic stress on the macroscopic
strain. In other words, the RVE behaves energetically like a homogeneous material
at the macro-scale. This is particularly relevant for peridynamics, where nonlocal in-
teractions replace classical stress-strain relations: enforcing the Hill-Mandel condition
ensures that the computed nonlocal internal forces in the RVE consistently reproduce

the macroscopic energy, allowing accurate multiscale predictions.

3.4 Analytical Estimates of Effective Properties

Before resorting to full computational homogenisation, several analytical approaches
can provide estimates of the effective mechanical properties of heterogeneous materi-
als. These methods, based on simplifying assumptions about the distribution of stress
and strain within the microstructure, serve as useful benchmarks, offering bounds or
approximate values that aid in preliminary design, parametric studies, and validation
of numerical models.

Table 3.1 summarises the main analytical methods, which serve as benchmark ref-

erences in later chapters, highlighting the type of estimate each one provides. The
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following subsections describe each method in detail.

Table 3.1: Summary of analytical estimates of effective properties.

Method Type of Estimate
Voigt and Reuss Bounds
Hashin—Shtrikman Bounds

Mori—Tanaka Approximation
Tandon—Weng Approximation
Halpin—Tsai Empirical

3.4.1 Voigt and Reuss Bounds
A straightforward estimate of the effective stiffness tensor is given by the Voigt model
[27], which assumes a uniform strain field throughout the RVE as:

e =7y, (3.6)

where r indexes the material phases. Under this assumption, microscale displacement
fluctuations are neglected, and equilibrium equations within the RVE need not be
solved.

The effective stiffness tensor is obtained by a volume-weighted average of the indi-

vidual phase stiffness tensors as:
— Voigt r r
Cijit = Z ft )Ci(jlzl’ (3.7)

where f (") is the volume fraction and Cglz

; is the stiffness tensor of phase r.

The Voigt estimate provides an upper bound on the effective stiffness, assuming per-
fect strain compatibility and no local stress concentrations. It typically overestimates
the true effective stiffness, especially when stiff phases dominate.

In contrast, the Reuss model [28] assumes a uniform stress field:

UZ) = 0j- (3.8)

Here, stress continuity is enforced, but strain compatibility across phase interfaces is
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not. Internal equilibrium equations are again not required.
The effective compliance tensor is computed as the volume-weighted average of the

phase compliance tensors:
—Reuss
Sin = IOS5 (3.9)
'
-1
where Sffiz = ( z(;lzl> is the compliance tensor of phase r. The effective stiffness
tensor is then obtained:

(3.10)

—Reuss —Reuss\ ~1
Cijkl = <Sz‘jkl )

The Reuss estimate yields a lower bound on effective stiffness, representing an
idealised scenario of uniform stress and maximum strain heterogeneity. It often under-
estimates the overall stiffness, particularly in composites dominated by soft phases.

Taken together, the Voigt and Reuss bounds define an envelope within which the
actual effective stiffness of the heterogeneous medium is expected to lie. More refined

estimates (e.g., Hashin-Shtrikman) aim to narrow this interval.

3.4.2 Hashin—Shtrikman Bounds

The Hashin—Shtrikman (HS) bounds [29] provide rigorous theoretical estimates for the
effective elastic moduli of two-phase composites with isotropic constituents. Derived
using variational principles, these bounds are the tightest possible given only the volume
fractions and elastic properties of the individual phases.

Consider a composite composed of two isotropic phases with bulk moduli K7, Ko,

shear moduli G1, G2, and volume fractions f; and fo = 1 — f;. The Hashin—Shtrikman
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bounds on the effective bulk modulus K and shear modulus G are given by:

fe

H

Y Kk + : N 55 (3.11)
Ko — K1 | 3K +4GC,
B — Ky + - fi 5 (3.12)
K — K, | 3K+ 4Gy
G =G+ — f2 , (3.13)
G _a T Gfa
ot _ g, ot . f1 7 (3.14)
G- G, + Caf2
where the auxiliary parameters (; are defined as
= SHEH2G) (3.15)

- 5Gi(3Ki + 4Gz) ’

These bounds are tighter than the Voigt and Reuss estimates, which assume uniform
strain and uniform stress, respectively. The Hashin—Shtrikman bounds are especially
valuable when microstructural details are unavailable, but the constituent moduli and
volume fractions are known.

In practice, these bounds serve as useful benchmarks for validating numerically
computed effective properties. Deviations outside the HS bounds typically indicate

numerical errors or a violation of the underlying assumptions of homogenisation theory.

3.4.3 Mori—Tanaka Method

The Mori—Tanaka method is a widely used mean-field homogenisation approach for es-
timating the effective elastic properties of composites with aligned inclusions embedded
in a matrix [30,31]. Unlike the Voigt, Reuss, and Hashin—Shtrikman bounds, which
provide upper and lower limits, the Mori—-Tanaka method yields a single estimate based
on the assumption that the inclusions are sufficiently dispersed and interact with the
average field of the matrix.

Consider a two-phase composite consisting of an isotropic matrix phase (denoted
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by subscript 1) and ellipsoidal inclusions of an isotropic second phase (denoted by 2),
with respective volume fractions f; and fo = 1 — f;. The effective stiffness tensor C is

estimated using the Mori—-Tanaka method as:
C = Ci+ fo (CQ — Cl) DA, (316)

where A is the strain concentration tensor, defined as:

A=|I+S:(C) ' (C,—Cy)| . (3.17)

Here, I is the fourth-order identity tensor, and S is the Eshelby tensor, also fourth-
order, which depends on the shape of the inclusion and the elastic properties of the
matrix phase.

Closed-form expressions for the effective bulk modulus K and shear modulus G can
be derived from (3.16) in specific cases, depending on the inclusion aspect ratio and
material contrast. Such formulations are detailed in [31]. These estimates typically lie
within the Hashin—Shtrikman bounds.

The Mori—-Tanaka method assumes that inclusions are non-interacting, uniformly
dispersed, and embedded in an infinite matrix subjected to uniform remote loading.
It performs well for composites with low to moderate inclusion volume fractions, espe-
cially when the inclusions are stiffer than the matrix. However, the method becomes
less accurate as the inclusion content increases or when strong interactions between

inclusions arise.

3.4.4 Tandon—Weng Model

The Tandon-Weng model [35] is a semi-analytical extension of the Mori-Tanaka method
tailored for unidirectional composites reinforced by aligned, ellipsoidal inclusions. By
incorporating Eshelby’s tensorial solution for ellipsoidal inhomogeneities, the model
explicitly accounts for inclusion shape, particularly the aspect ratio and its impact on
anisotropic elastic behaviour. This approach makes the Tandon—Weng model especially

suitable for fibre-reinforced composites, where the reinforcement phase can be idealised
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as prolate spheroids aligned along a common axis.

The model considers a two-phase composite comprising an isotropic matrix (phase
1) and aligned ellipsoidal inclusions of a second isotropic phase (phase 2), with respec-
tive volume fractions fi; and fo = 1— f1. Under the assumption of perfect bonding and
linear elasticity, the effective stiffness tensor C exhibits transverse isotropy and admits
closed-form expressions for all five independent engineering constants.

For instance, the effective longitudinal and transverse Young’s moduli,F; and E,

are expressed as:

_ E
E =
YT F A4 + 201 Ag) /A
By — =
T 1+ fo[-201 A5 + (1 — 1) Aq + (1 + 1) A5 A]/(2A)’

(3.18)

(3.19)

where E7 and v are the Young’s modulus and Poisson’s ratio of the matrix, respectively,
and the geometric factors A and A,, are functions of the inclusion aspect ratio derived
from the Eshelby tensor.

Analogous expressions are available for the in-plane and out-of-plane shear moduli
G12 and G23, as well as the transverse bulk modulus K3, enabling a full characterisa-
tion of the transversely isotropic response. These closed-form relations underscore the
sensitivity of transverse and shear properties to the inclusion geometry, even when the
volume fraction remains fixed.

The Tandon—Weng model has found wide application in micromechanics and com-
posite materials design, offering a convenient yet insightful tool for exploring how re-
inforcement shape and orientation influence effective stiffness. However, the model’s
applicability is limited by its assumptions, including uniform alignment, dilute concen-
trations, and non-interacting inclusions. It also assumes isotropic phases and perfect
interfacial bonding, which may not hold in real systems with interfacial degradation
or complex morphologies. Despite these simplifications, the model remains a founda-
tional analytical method for estimating the geometry-dependent anisotropic properties

of aligned composite systems.
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3.4.5 Halpin—Tsai Equations

The Halpin—Tsai equations provide a semi-empirical framework for estimating the ef-
fective elastic properties of composite materials containing aligned, short or continuous
fibres. Developed to bridge the gap between micromechanical theories and experimen-
tal results, the method introduces adjustable geometric parameters to account for rein-
forcement shape and orientation, offering engineers and materials scientists a flexible yet
analytically tractable approach. Unlike purely theoretical models such as Mori—Tanaka
or Eshelby-based solutions, the Halpin—T'sai equations are grounded in curve-fitting to
experimental data and are particularly useful when dealing with composites reinforced
by high-modulus fibres in a lower-modulus matrix.

The generalised Halpin—Tsai formulation is expressed as:

P—p .1+§77f

with = B/ P — 1

BT AN Y/ e 20

where P is the effective property of the composite (such as a modulus or shear property),
P, and P,, denote the reinforcement and matrix properties respectively, f is the volume
fraction of the reinforcement, and £ is a shape parameter that depends on the geometry
and loading condition. The parameter £ is often treated empirically; typical values
range from 1 for disk-shaped fillers to 2 or more for aligned fibres.

The strength of the Halpin—T'sai model lies in its simplicity, adaptability, and ability
to capture trends observed in experimental data across a variety of composite systems.
It provides a convenient framework for quick estimates and parametric studies, espe-
cially in early-stage material design. However, its empirical nature also constitutes its
primary limitation. The shape parameter £ lacks a rigorous physical basis and must of-
ten be calibrated for specific systems. Additionally, the model assumes perfect bonding,
isotropic constituents, and a uniform dispersion of inclusions, which may not hold in
real composites. Despite these limitations, the Halpin—Tsai equations remain a widely
used and practical tool for estimating effective composite properties in engineering

applications.
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3.5 Boundary Conditions at the Microscale

The choice of boundary conditions applied to the RVE plays a critical role in determin-
ing the computed effective properties. Different boundary conditions lead to distinct
microscale responses and, consequently, different macroscopic estimates. The three
most commonly employed types of boundary conditions in computational homogenisa-

tion are:

1. Prescribed displacement boundary conditions (Dirichlet),
2. Prescribed traction boundary conditions (Neumann),

3. Periodic boundary conditions (PBCs).

Each of these imposes different constraints on the RVE and corresponds to different
assumptions regarding the surrounding material environment. Their implications are

discussed in the subsections that follow.

3.5.1 Prescribed Displacements (Dirichlet)

Prescribed displacement boundary conditions, also known as Dirichlet boundary con-
ditions, involve enforcing a macroscopic strain state by prescribing the displacement
field along the boundary of the RVE. This approach requires solving the full microscale
boundary value problem and, although computationally intensive, provides detailed
resolution of the local mechanical response, including phase interactions and internal
heterogeneity.

Formally, for a given macroscopic strain tensor £, the displacement u(x) at any

boundary point @ € JQgyx is prescribed as:
u(x) =¢-x, x¢c IOpVE. (3.21)

This condition enforces a uniform macroscopic strain across the RVE boundary
while allowing the internal fields to develop freely in response to material heterogeneity.

The resulting microscale stress field o(x) is then volume-averaged to compute the
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macroscopic stress . Due to the kinematic constraint imposed, this method yields an
upper bound on the effective stiffness tensor, similar in nature to the Voigt estimate,

though generally more accurate owing to the resolved microstructural detail.

3.5.2 Prescribed Tractions (Neumann)

In the Neumann boundary condition approach, tractions rather than displacements are
prescribed along the boundary of the RVE. This corresponds to imposing a macroscopic
stress state by applying consistent surface forces. For a given macroscopic stress tensor

o, the boundary traction ¢(x) at a point € 0Qgryg is specified as:

t(a:) =0 - n(a:), x € 0QRVE (3.22)

where n(x) denotes the outward unit normal vector at the boundary.

This condition ensures that the RVE is in equilibrium with the imposed macroscopic
stress, but it does not constrain the displacement field, which remains undetermined
up to a rigid body motion. Although the resulting microscale displacement field can
still be used to compute an average strain, the absence of direct strain control makes
this approach less compatible with first-order computational homogenisation schemes,
where the macroscopic strain is typically the known input.

Due to this limitation, Neumann boundary conditions are generally unsuitable for
multiscale frameworks that rely on strain-driven formulations. Accordingly, this bound-

ary condition is not employed in the numerical implementation developed in this thesis.

3.5.3 Periodic Boundary Conditions for Peridynamics

While Dirichlet boundary conditions offer simple formulations for RVE problems, they
may not fully capture the periodic nature of many heterogeneous materials. Periodic
boundary conditions (PBCs) provide a more representative coupling between opposing
boundaries of the RVE by enforcing continuity of displacement fluctuations and anti-
periodicity of tractions. This approach not only ensures better consistency with the

assumptions of first-order homogenisation but also minimises artificial boundary effects,
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making it especially suitable for materials with repeating microstructures.
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Figure 3.2: Peridynamic particle coupling for periodic boundary condition

Generally, peridynamics requires displacement-based boundary conditions to be ap-
plied over a finite volumetric region to ensure accurate enforcement within the domain.
As illustrated in Figure 3.2, this fictitious layer is divided into multiple regions, each
assigned an identifier (e.g., C0, C1, C2, etc.) and labeled as CHILD. Similarly, the ex-
terior volume of the RVE is partitioned into corresponding regions labeled as PARENT,
each with matching identifiers.

From here we establish the peridynamic volumetric adaptation of the commonly

known PBCs, thus ensures compatibility and equilibrium across opposite faces
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uf = uf + éij(xj — xz;) (3.23)

here, u is displacement, z is reference location. Superscripts ¢ and p refer to CHILD
and PARENT region, respectively. &;; is the macroscopic strain tensor. Subscripts
follow Einstein summation convention with iteration matching the dimension of RVE.

Essentially, for each CHILD-PARENT region pair with matching identifier in Fig-
ure 3.2, their respective interior particles follow the periodic relation prescribed in
(3.23). Note that Figure 3.2 illustrates the displacement coupling relation for a two-
dimensional RVE under peridynamic discretisation. However, the formulation in (3.23)
is not limited to two dimensions, and the coupling scheme shown in Figure 3.2 can be
naturally extended to a three-dimensional cuboidal RVE. A 3D version of the diagram
is not shown here, as the 2D illustration is sufficiently clear and the extension to 3D
should be intuitive to the reader.

These boundary conditions enforce periodic displacement fluctuations, such that
the displacement difference between corresponding points on opposite faces reflects a
uniform macroscopic strain. Under these conditions, it can be shown that the volume-
averaged microscopic virtual work equals the macroscopic virtual work, thereby satisfy-
ing the Hill-Mandel macro-homogeneity condition. A detailed derivation and discussion
of the volumetric boundary conditions within peridynamic micromechanics is provided

in [4].

3.6 Computation of Effective Properties

To link microscale behaviour with macroscale constitutive response, it is necessary
to extract effective material properties from the solution of boundary value problems
on the RVE. This section outlines the procedure for computing the effective stiffness
tensor from the microscale fields obtained under prescribed boundary conditions. The
resulting homogenised properties characterise the overall mechanical behaviour of the

heterogeneous material and serve as input for macroscopic continuum models.
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3.6.1 Definition of Effective Stiffness Tensor

The homogenised (macroscopic) stiffness tensor is computed from the microscale re-
sponse of the RVE subjected to a set of controlled boundary conditions. At the mi-

croscale, the local constitutive relation is expressed as
oij = Cijkl €kl (3.24)

where Cjjr; denotes the spatially varying stiffness tensor of the heterogeneous mi-
crostructure.
The effective (homogenised) stiffness tensor Uijkl is defined as the derivative of the

macroscopic stress with respect to the macroscopic strain:

— 00,
Cijhi = 2. 3.25
ik = G (3.25)
It governs the macroscopic constitutive behaviour via the relation
Gij = Clijki Eni, (3.26)

where 7;; and gy are the volume-averaged stress and strain fields over the RVE domain.

3.6.2 Boundary Value Problems and Numerical Procedure

The effective stiffness tensor 6ijkl is computed by solving a sequence of boundary
value problems on the RVE, each corresponding to a prescribed macroscopic strain
state. For each case, suitable boundary conditions are applied to enforce the imposed
macroscopic strain € on the RVE domain. The resulting microscopic displacement
fields are obtained by numerically solving the governing equations of motion at the
microscale. From the computed displacement field, the microscopic stress tensor o;;
can be subsequently evaluated using peridynamic-based constitutive formulations.

Following the formulation of Lehoucq and Silling [37], the peridynamic Cauchy
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stress tensor is defined for an ordinary state-based material as

o) =5 [ [Hex)@ (¢ - x) +Hx) @ (- x)] s (327

where f(x,x’) is the pairwise force density and Hyx is the peridynamic horizon. This

expression recovers the classical Cauchy stress in the limit of vanishing horizon [37].
In this work, o (x) is evaluated at all material points after the equilibrium solution

for each macroscopic strain case. The homogenised RVE stress is then obtained by

volume averaging:

1

S o AV (3.28)
1QrvE| Jagye

gij =

This procedure is repeated for six linearly independent macroscopic strain states in
three dimensions. The resulting macroscopic stress-strain pairs form a linear system
from which the components of Uijkl are extracted. For numerical implementation, the
fourth-order tensor is represented in Voigt notation.

This workflow follows the established approach for computing peridynamic stress
tensors and homogenised moduli, introduces no additional assumptions, and has been
validated against analytical and FEM benchmarks for displacement, strain, and stress

fields.
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Numerical Implementation

This chapter presents the numerical implementation developed to simulate peridynamic
models and compute effective material properties within a multiscale context. The
codebase is written in C++ and leverages a hybrid parallel strategy using OpenMPT [38]
and PETSc [39]. The primary goal is to enable scalable and flexible peridynamic
simulations for evaluating the homogenised stiffness of representative volume elements
(RVEs).

The implementation follows a three-phase simulation workflow:

e Preprocessing: Configuration of simulation parameters, domain decomposition,
particle discretisation, family (neighbour) search, surface correction, and prepro-
cessing of model-specific constants. Particle distribution across MPI ranks is

designed to balance computational load.

e Solution: Assembly and solution of the global sparse system of equations, ap-
plication of boundary conditions (e.g., periodic via Lagrange multipliers), and

evaluation of displacement fields using PETSc’s iterative solvers.

e Postprocessing: Computation of strain and stress fields under the peridynamic
formulation, volume-averaging of field quantities, and extraction of effective stiff-
ness using compliance-based methods. The Eigen library is used for local algebraic

operations.
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Figure 4.1: Computational workflow of the peridynamic homogenisation framework.
The procedure includes preprocessing of the RVE, assembly and preallocation of the
global sparse system, solver configuration, sequential solution of six periodic bound-
ary value problems corresponding to independent macroscopic strain states, and post-
processing to obtain the homogenised stiffness tensor éijkl.

54




Chapter 4. Numerical Implementation

The overall numerical workflow of the proposed homogenisation framework is sum-
marised in Figure 4.1. This architecture emphasises modularity and transparency,
making it suitable for both high-performance production runs and method develop-

ment.

4.1 Parallelisation and Domain Decomposition

Parallelism is achieved through MPI-based domain decomposition, where each MPI
rank owns a spatial subdomain and manages all particles and interactions contained
within it. PETSc provides distributed linear algebra capabilities via the MATMPIAIJ and
VECMPI formats, which automatically handle inter-rank communication during matrix
assembly and linear system solutions.

In addition to PETSc-managed objects, the simulation requires the storage and
exchange of particle-level data that lie outside PETSc’s abstraction (e.g., per-particle
states, bond information, or damage-related attributes). These data structures often
take the form of nested C++ containers such as std: :vector<std::vector>. Because
these are not natively supported by PETSc, they are managed using custom MPI
communication layers.

During the preprocessing phase, load-balancing information (specifically, the num-
ber of particles owned by each rank) is synchronised using MPI_Allgather. This infor-
mation is used to construct a global load-balancing sheet that records the offsets and
counts required for later communication routines.

FEach MPI rank maintains local copies of the simulation-specific particle data within
dedicated communication-handler classes. When synchronisation is required, these
classes serialise the nested container structures into one-dimensional buffers based on
the previously constructed load-balancing sheet. The flattened buffers are then ex-
changed across all ranks using MPI_Allgatherv, which accommodates variable send
and receive sizes. After communication completes, the buffers are deserialised back
into their original nested structure to permit local computation.

This communication pattern is applied only to native particle-level data that require

nonlocal information stored on remote ranks. Synchronisation is invoked judiciously,
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typically deferred until all modifications to the relevant data are completed to minimise
communication overhead. A synchronisation step must occur any time a remote fetch
is issued on data that may have changed, ensuring consistency across subdomains while
avoiding unnecessary MPI traffic.

Because these communication handlers temporarily store complete local copies of
intermediate data arrays, memory consumption can become significant. Although this
typically has negligible impact on performance for mid-scale problems, explicit memory
management becomes essential for large-scale, multi-node simulations. All temporary
buffers and auxiliary class data are manually released once they are no longer needed.
Without this precaution, the increased memory footprint would hinder the scalability of
very large problems. As demonstrated in Section 6.2, the software exhibits near-linear
strong scaling for systems exceeding 1.3 million degrees of freedom, a performance trend

that would be unattainable without careful control of memory usage.

4.2 Matrix Assembly

The global sparse stiffness matrix is assembled in parallel at the beginning of each
loading case. Each MPI rank is responsible for the peridynamic interactions within its
local subdomain and performs batched sparse insertions into the distributed PETSc
matrix using the MatSetValues routine. To ensure scalability, an explicit memory
preallocation step is performed before any insertion occurs. A custom preprocessing
module estimates the row-wise sparsity pattern by scanning the family structure of each
particle and generating approximate nonzero counts for both diagonal and off-diagonal
blocks. The estimates intentionally over-predict the number of nonzeros to prevent
dynamic memory reallocation during assembly.

Memory preallocation is performed through MatMPIAIJSetPreallocation, and the
efficiency of the predicted sparsity pattern is monitored using MatGetInfo. In practice,
the current implementation achieves approximately 110% preallocation relative to the
final matrix structure. This slight overestimation ensures that no expensive realloca-
tions occur during matrix insertion, which is essential for high-performance computing

environments because insufficient preallocation leads to severe slowdowns and can ren-

56



Chapter 4. Numerical Implementation

der large-scale simulations impractical.

The equations corresponding to real particles inside the RVE are assembled follow-
ing standard peridynamic discretisation procedures. Because ordinary state-based peri-
dynamics generally leads to a non-symmetric operator, and because periodic boundary
conditions are enforced through Lagrange multipliers, no symmetry assumptions are
imposed on the global system. Consequently, the stiffness matrix is stored in PETSc’s
MATMPIAIJ format, which supports scalable parallel assembly and efficient SpMV op-
erations on distributed-memory architectures.

Periodic boundary conditions are enforced through Lagrange multiplier constraints,
which occupy dedicated rows in the global matrix. These rows correspond to fictitious
particles associated with constraint equations, rather than physical particles in the
RVE. No physical balance equations are assembled for these fictitious entities; instead,
their matrix rows are populated with the coupling terms that enforce displacement
periodicity. Only these constraint-related blocks change between loading cases, while
the bulk peridynamic contributions remain fixed across simulations. This separation
significantly reduces assembly cost during multiscale homogenisation, where multiple

boundary value problems with distinct macroscopic strain states must be solved.

4.3 Solver Configuration and Solution Method

The linear systems arising from peridynamic discretisation and periodic constraint en-
forcement are solved using PETSc’s Krylov Subspace Solver (KSP) framework. After
the global sparse matrix and right-hand-side vector are assembled, the solution is ob-
tained by issuing a call to the KSPSolve routine. This routine performs all iterative
updates, residual monitoring, and convergence checks according to the configuration
specified by the user.

In this work, the iterative solver is configured to use the KSPBCGSL method [40-42],
which is a stabilised variant of the BiCG family known for robustness on non-symmetric
systems. For all boundary value problems solved during homogenisation, a relative
KSP tolerance of 10710 is prescribed. Solver performance was tested across a range

of tolerances (from 10~% to 10~!4), with negligible differences observed in the results.
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The selected value of 10710 represents a reliably achievable and conventionally strict
benchmark.

Default PETSc options are used for preconditioning and Krylov subspace parame-
ters. Extensive testing with alternative preconditioners and user-defined configurations
did not provide consistent improvements for the types of non-symmetric saddle-point
systems encountered in ordinary state-based peridynamics under a homogenisation
workflow with periodic boundary conditions. Solver diagnostics, including the num-
ber of iterations and the convergence reason, are collected through the
KSPGetIterationNumber and KSPGetConvergedReason routines to provide quantita-
tive verification. No fallback strategies or adaptive restarts were required in production
runs.

The solution phase is performed sequentially for the six canonical macroscopic strain
states required in first-order computational homogenisation. For each prescribed strain
state, periodic boundary conditions are enforced, and the corresponding distributed
linear system is assembled across all MPI ranks. A collective call to KSPSolve then
invokes the parallel iterative solver, which manages all inter-rank communication in-
ternally. This process is repeated for all six canonical strains to obtain the complete
set of microscopic displacement fluctuation fields needed to compute the homogenised

stiffness tensor.

4.4 Summary

The framework outlined in this chapter combines PETSc’s high-performance solver
backend with custom MPI communication routines to provide a robust and scalable
environment for peridynamic simulations. The modular architecture supports a range
of model types and boundary conditions and has been validated on HPC platforms
with millions of degrees of freedom. This provides a solid foundation for the numerical

performance and verification studies presented in subsequent chapters.
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Numerical Results in 2D

5.1 Overview and Setup

This chapter presents a sequence of numerical benchmarks designed to assess the accu-
racy, robustness, and applicability of the proposed peridynamic homogenisation frame-
work in two dimensions under plane strain assumptions. The study systematically
investigates the effective transverse elastic behaviour of heterogeneous composites and
the influence of matrix cracking on these properties.

The simulations focus on two main composite types: (i) fibre-reinforced composites
with transversely isotropic microstructures, and (ii) pure matrix systems with embed-
ded cracks. All benchmarks assume a plane strain configuration, which is appropriate
for modelling thick composite plies and aligns with conventional assumptions in ho-
mogenisation theory.

A convergence study based on a boron-aluminium RVE is first conducted to validate
the discretisation quality and support the selection of numerical parameters. This is

followed by four benchmarks:

e Benchmark I: Evaluation of effective transverse elastic properties of a boron-

aluminium composite with a fixed fibre volume fraction (vy = 0.47).

e Benchmark II: Variation of the effective transverse modulus in glass fibre-epoxy
composites across a range of fibre volume fractions, with comparisons to analytical

bounds and micromechanical estimates.
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e Benchmark III: Degradation of effective transverse modulus due to matrix

cracking in RVEs, including isolated and coalescing crack configurations.

e Benchmark IV: Visualisation of local stress fields in a tiled composite RVE

with embedded cracks to examine internal stress distributions and interactions.

All simulations are performed on periodic representative volume elements (RVEs)
using the ordinary state-based peridynamic formulation. Bond stiffnesses are assigned
using the Harmonic Mean of Engineering Constants method (see section 2.5.2) to
ensure smooth transitions at material interfaces. A fixed horizon size of § = 3h is used,
where h is the particle spacing.

The constituent material properties are listed in Table 5.1. Periodic boundary con-
ditions are applied as described in subsection 3.5.3, ensuring compatibility with classical
homogenisation theory and enabling the extraction of effective stiffness properties from

RVE-level responses.

Table 5.1: Material properties used in 2D benchmarks.

Material Young’s modulus £ (GPa) Poisson’s ratio v
Boron 379.30 0.10
Aluminum 68.30 0.30
Glass 72.40 0.20
Epoxy 2.76 0.35

5.2 Convergence Study

To establish an appropriate discretisation resolution and verify numerical stability, a
convergence study is conducted on a single boron-aluminium RVE, consistent with
the configuration used in Benchmark I. The goal is to identify the minimum resolu-
tion required to obtain accurate effective stiffness results without incurring excessive
computational cost.

The RVE geometry used for this study is illustrated in Figure 5.1. It consists of
a single cylindrical boron fibre embedded in an aluminium matrix, arranged within a

square domain and discretised using a uniform particle grid. Periodic boundary condi-
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tions are applied to ensure compatibility with the homogenisation framework described

in Chapter 3.

Figure 5.1: Geometry of the 2D boron-aluminium RVE used in the convergence study.
The RVE has unit size and contains a single boron fibre embedded in an aluminium
matrix, corresponding to a fibre volume fraction of 0.47. Periodic boundary conditions
are applied.

Convergence is assessed based on the relative error in three key effective properties:
the Young’s modulus E,, the shear modulus G,,, and the Poisson’s ratio v,,. For

each property, the relative error is defined as:

’Qh - Qref‘

Relative Error = —————,

Qref

where ();, denotes the computed property at grid resolution A, and Q,ef represents the
value obtained at the highest resolution used in this study, treated as the reference
solution.

Five discretisation levels are considered: 50 x 50, 100 x 100, 150 x 150, 200 x 200,
and 250 x 250. The results, plotted in Figure 5.2, show a clear monotonic convergence

of the computed effective properties with increasing resolution.
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To quantify convergence, the relative error of a solution at resolution N x N is
defined with respect to the finest available mesh (250 x 250). The convergence plot
shows that the relative error for all three properties falls below 1% at a resolution of
150 x 150 and reduces to less than 0.5% at 200 x 200. More importantly, the rate of
decrease in error diminishes significantly at higher resolutions—the improvement from
200 x 200 to 250 x 250 is markedly smaller than from 150 x 150 to 200 x 200. This
indicates the solutions are approaching a mesh-independent asymptotic value, and the
250 x 250 case can be considered a sufficiently accurate reference for error estimation.

Extrapolating this trend suggests that a hypothetical 270 x 270 simulation would
yield results differing from the 250 x 250 case by less than 0.1%, which is negligible
for the purposes of this study. Therefore, a resolution of 200 x 200 is selected for all
subsequent 2D simulations. This choice provides a practical balance between numerical
accuracy and computational efficiency, ensuring results are well within an acceptable

error tolerance (< 0.5%) relative to the asymptotic converged solution.

Relative Error (%)

0_

1 1 1 1 1 1
50 75 100 125 150 175 200 225 250
Resolution (particles per axis)

Figure 5.2: Convergence of effective elastic properties in plane strain. Relative errors
(%) in Eyy, Gay, and v,y are plotted against increasing RVE resolution.
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5.3 Benchmark I: Effective Transverse Elastic Properties

of Boron-Aluminium Composite

This benchmark assesses the accuracy of the proposed peridynamic homogenisation
framework in predicting the effective in-plane elastic properties of a fibre-reinforced
composite under plane strain conditions. The representative volume element (RVE)
consists of boron fibres embedded in an aluminium matrix, with a fibre volume fraction
of Vi = 0.47.

The discretisation used in this benchmark corresponds to the converged resolution
identified in section 5.2, and further refinement was found to have negligible influence
on the reported results.

Figure 5.3 illustrates the RVE discretisation used in this study. Material points are
uniformly distributed, with particles assigned either to the fibre or matrix phase based
on their radial position. The particle resolution is 200 x 200, and periodic boundary

conditions are applied following the framework introduced in Chapter 3.

Aluminum
+  Boron

0.4 4

0.2 4

0.0 4

—0.2 4

—0.4 4

-0.4 —0.2 0.0 0.2 0.4

Figure 5.3: Discretisation of the unit-sized composite RVE used in Benchmark I. Each
point represents a material point in the peridynamic grid. Colours indicate the material
phase: boron fibre (dark grey) and aluminium matrix (light grey).
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Table 5.2 presents the computed effective properties from the current peridynamic
model, alongside results from established homogenisation methods and available ex-
perimental data. The predicted values of E,,, Gy, and v, exhibit strong agreement
with reference models, generally falling within the range of reported numerical and
theoretical estimates.

The slightly elevated stiffness predictions, relative to finite element and asymptotic
homogenisation methods, may be partially explained by the plane strain assumption
adopted in the present model. In contrast to 3D formulations used in the reference
studies, the plane strain constraint suppresses out-of-plane deformation and can result
in higher apparent in-plane stiffness. Additional factors, such as differences in how
interfacial regions are represented or the use of volumetric periodic boundary conditions
may also contribute, though their specific impact is difficult to isolate without further
study. Nonetheless, the overall consistency of the results affirms the reliability of the

proposed approach in capturing the effective behaviour of fibre-reinforced composites.

Table 5.2: Comparison of effective elastic properties under plane strain (fibre volume
fraction = 0.47).

Source E.. [GPa] Ggy [GPa] 1y

Present Model 149.7 46.61 0.282
Madenci et al. [3] 144.4 45.88 0.251
Sun and Vaidya [43] 144.0 45.90 0.290
Yu and Tang [44] 144.1 45.92 0.255
Aboudi et al. [45] 144.0 45.83  0.255
Chamis [46] 156.0 43.6 0.31

Kenaga et al. [47] (Exp.) 140.0 - -

Notes: Exp. = Experimental.

5.4 Benchmark II: Effective Transverse Elastic Modulus
of Glass Fibre-Epoxy Composites Across Varying Fi-

bre Volume Fractions

This benchmark investigates the ability of the proposed peridynamic homogenisation

framework to capture the effective transverse stiffness of a unidirectional glass fibre-
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epoxy composite across a range of fibre volume fractions. The goal is to assess the
consistency of the model when subjected to increasing microstructural anisotropy and
phase contrast.

The discretisation used in this benchmark corresponds to the converged resolution
identified in section 5.2, and further refinement was found to have negligible influence
on the reported results.

The transverse effective modulus Fso is computed for fibre volume fractions rang-
ing from 0 to 0.60 in increments of 0.05, using 2D plane strain simulations. The
microstructure is modelled as a periodic array of circular glass fibres embedded in an
epoxy matrix, with both phases assumed isotropic. For each configuration, the ho-
mogenised transverse stiffness is extracted using the peridynamic framework, and the
results are compared against several classical micromechanical models.

Figure 5.4 shows the evolution of the effective transverse modulus as a function of

fibre volume fraction. The reference models include:

e Inverse Rule of Mixtures (IROM): often associated with the Reuss bound,

representing a lower-bound estimate;

e Halpin-Tsai model: an empirical semi-theoretical model widely used for fibre-

reinforced composites;

e Modified Mori-Tanaka model: specifically the transversely isotropic formu-

lation proposed by Tandon and Weng.

Despite being formulated under a plane strain assumption, the peridynamic predic-
tions exhibit strong qualitative agreement with 3D analytical models. The FEqo values
lie slightly above the reference curves, as expected due to the added constraint on
out-of-plane deformation. While a direct quantitative comparison is not strictly valid,
especially at higher fibre volume fractions, the peridynamic trend closely follows the
Halpin-Tsai and Tandon-Weng models, particularly at lower volume fractions.

Across the full range of fibre content, the peridynamic results remain above the
IROM (Reuss) lower limit and closely follow established micromechanical models, in-

dicating consistent and physically meaningful behaviour. The close alignment with the
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Halpin-Tsai model across most of the domain, and the reasonable proximity to the
Tandon-Weng predictions, further support the capability of the proposed homogenisa-
tion framework to capture transverse stiffness evolution under simplified 2D assump-

tions.

14
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Figure 5.4: Effective transverse Young’s modulus K3z versus fibre volume fraction Vy.
Results from the present peridynamic model (plane strain) are compared with analytical
estimates from the inverse rule of mixtures (Reuss [28]), Halpin-Tsai model [36], and
modified Mori-Tanaka model (Tandon and Weng [35]).

5.5 Benchmark III: Effective Transverse Modulus Degra-
dation in Cracked Matrix RVEs

This benchmark evaluates the degradation of effective stiffness in cracked matrix ma-
terials using the proposed peridynamic homogenisation approach. Two types of rep-
resentative volume elements (RVEs) are examined, both composed of a homogeneous
isotropic matrix material with Young’s modulus E = 2 x 10° Pa and Poisson’s ratio

v = 0.3. The RVEs are unit-sized square domains, subjected to a series of simulations
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with increasing crack lengths.

The first RVE contains a single central horizontal crack. The crack length L is swept
from 0 to 0.9 in increments of 0.01. The second RVE contains two coalescing horizontal
cracks that propagate from their respective origins. For this case, the total crack length
is again varied from 0 to 0.9 with a base increment of 0.01, but is locally refined to
0.001 increments in the interval L € [0.45,0.5) to accurately resolve the near-singular
behaviour as the two cracks approach coalescence.

Two RVE configurations are considered: one containing a single central horizontal
crack, and another featuring two coalescing horizontal cracks that propagate from their
respective origins. In both cases, the total crack length L is varied from 0 to 0.9. A
base increment of 0.01 is used throughout, except for the coalescing crack case, where
the increment is refined to 0.001 within the interval L € [0.45,0.5) to resolve the steep
stiffness transition near crack merging. The upper limit of L = 0.9 is intentionally
chosen to avoid the singular behaviour that arises when the crack spans the full width
of the unit cell (L = 1), at which point the RVE becomes discontinuous and the
homogenisation problem ill-posed.

The discretisation used in this benchmark corresponds to the converged resolution
identified in section 5.2, and further refinement was found to have negligible influence

on the reported results.
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(a) Single central horizontal crack RVE. (b) Two coalescing horizontal cracks RVE.

Figure 5.5: RVE configurations used in Benchmark III. Each RVE is of unit size, and
the total crack length is L. (a) Single central horizontal crack. (b) Two coalescing
horizontal cracks.

Figure 5.5 illustrates the geometry of both RVE configurations, and Figure 5.6
presents the computed transverse stiffness component Cag9o as a function of crack
length. Peridynamic results are compared against analytical solutions (see [48]) drawn
from a published model that explicitly accounts for both isolated and coalescing crack
configurations. The results show excellent agreement between the peridynamic predic-
tions and the analytical solutions, including the pronounced reduction in stiffness as
the cracks grow and merge. In particular, the PD model successfully captures the steep
decline in effective stiffness near L — 0.5 in the coalescing case, which is a physically
significant feature associated with topological disconnection and loss of load transfer
capacity.

To further investigate the mechanical degradation, effective material properties were
extracted from the peridynamic simulations and normalised against the undamaged ref-
erence case (denoted with an asterisk). Figure 5.7, Figure 5.8, and Figure 5.9 show the

evolution of Ey,/E

oy Gay/ Gy, and vy, /v, Tespectively. As expected, all three prop-

Yz

erties decrease with increasing crack length, reflecting the progressive loss of structural
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Figure 5.6: Transverse stiffness component Cog99 versus crack length L for both single
and coalescing crack configurations. Peridynamic results are compared with analytical
solutions. The abrupt stiffness reduction near crack coalescence is accurately captured;
however, the step-like pattern in the curve arises from the finite discretisation resolution
(200 x 200), rather than a physical discontinuity.
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integrity. In contrast, v, (calculated as —S72/S11) remains nearly constant, while Vya
(as —S21/S22) exhibits a notable decline. This anisotropic behaviour arises from the
directionality of the crack damage and highlights the sensitivity of the peridynamic
method to directional stiffness loss.

1.2
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—— PD - Coalescing Cracks
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Figure 5.7: Normalised effective Young’s modulus Ey,/ E;,, as a function of crack length
L for single and coalescing crack configurations. Progressive degradation is observed
with increasing crack length, consistent with loss of transverse load-carrying capacity.

Because the dominant stiffness degradation occurs in the transverse (y) direction,
the comparison against the analytical prediction of Cy00 provides a quantitative vali-
dation of the homogenised response. The remaining effective elastic constants exhibit
consistent qualitative trends that reflect the directional influence of matrix cracking.
Taken together, these results indicate that the proposed peridynamic homogenisation
framework reliably captures both the magnitude and anisotropy of stiffness degradation

in cracked media.
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Figure 5.8: Normalised effective shear modulus G, /Gy, versus crack length L. Both
RVE configurations show shear degradation as crack length increases.
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Figure 5.9: Normalised Poisson’s ratio vy, /v, as a function of crack length L. The
steady decline in v, suggests that vertical transverse deformation becomes less coupled
to horizontal loading as the crack length increases, whereas v, (not shown) remains
relatively unchanged, consistent with the orientation of the cracks.
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5.6 Benchmark IV: Stress Field Visualisation in a
Cracked Composite RVE (2D)

To examine local stress distributions and interaction phenomena in a complex mi-
crostructure, we constructed a 3 x 3 tiled RVE based on the same boron-aluminium
composite used in Benchmark I (vy = 0.47). Each tile has edge length ¢ = %, giving
the full RVE a unit size of 1 x 1. Within each tile, the central fibre remains intact, but
two types of microstructural damage are introduced: horizontal fibre-matrix debonding
cracks at the interface and vertical matrix cracks embedded symmetrically. All cracks
have a uniform length of 0.1¢ and are modelled as traction-free internal discontinuities
without volume, consistent with the methodology outlined in earlier chapters.

The resulting composite RVE structure is shown in Figure 5.10, where both the
tiling and symmetric crack layout are apparent. Periodic boundary conditions are
imposed on all sides, and standard strain-controlled homogenisation procedures are

applied, following the same workflow used in the prior benchmarks.
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Figure 5.10: RVE configuration used in Benchmark IV. The unit-sized composite RVE
is formed by tiling the boron-aluminium microstructure used in Benchmark I into a 3 x 3
grid. Debonding cracks are placed at fibre interfaces, and matrix cracks are embedded
vertically. All cracks are of length 0.1¢. Periodic boundary conditions are applied.

For each of the three macroscopic strain loading modes (44, €yy, and e4y), the
corresponding dominant stress component (045, 0y, and oy, respectively) is extracted
and visualised across the RVE. Additionally, the von Mises stress field is computed and
plotted for each loading case to capture combined stress concentrations. In total, six

field plots are presented, grouped by loading condition.
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Figure 5.11: Stress fields under macroscopic strain e,,. (a) Stress component o,,. (b)
von Mises stress oym.
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Figure 5.12: Stress fields under macroscopic strain €,,. (a) Stress component o,,. (b)
von Mises stress oym.
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Figure 5.13: Stress fields under macroscopic shear strain e,,. (a) Stress component
Ozy. (b) von Mises stress oym.

As expected, the stress fields display strong periodicity consistent with the imposed
boundary conditions. Stress concentrations are observed near fibre-matrix interfaces,
particularly at debonding regions, and at crack tips where local gradients are ampli-
fied. Regions where cracks are in close proximity exhibit clear interaction effects, often
resulting in intensified local stress bands. The von Mises fields further highlight these
high-stress zones, revealing how the interplay between microstructural heterogeneity
and damage governs local stress amplification.

All plots are presented in physical units (Pa), without normalisation, to preserve
the true scale of stress variation. While no direct analytical comparison is provided for
this benchmark, the observed field patterns and concentration zones are qualitatively
consistent with results reported in the literature, such as in [49, 50]. In particular,
similar stress localisation and crack interaction behaviours have been noted in prior
micromechanical studies, lending confidence to the fidelity of the present approach,

even though the material systems and geometric configurations differ.
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Chapter Summary

This chapter presented a series of two-dimensional numerical benchmarks designed to
assess the predictive capabilities of the proposed peridynamic homogenisation frame-
work. Through comparisons with analytical solutions, classical micromechanics mod-
els, and detailed field visualisations, the method demonstrated strong consistency and
physical fidelity across a range of composite configurations and damage scenarios. In
particular, the effective stiffness predictions aligned well with theoretical models at
various fibre volume fractions, and the degradation behaviour in cracked matrices was
accurately captured. The qualitative stress field plots further revealed the localised
effects of damage and interface discontinuities.

These 2D results form the basis for the extended 3D analyses presented in the next
chapter, where the framework is applied to three-dimensional RVEs to evaluate its

scalability and robustness in capturing complex material behaviour.
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Chapter 6

Numerical Results in 3D

6.1 Overview and Setup

This chapter extends the computational homogenisation framework developed in chap-
ter 5 to three-dimensional composite materials. Four benchmarks are presented, pro-
gressively addressing stiffness prediction in fibre composites, particulate composites,
crack-induced property degradation, and local stress field visualisation in damaged mi-
crostructures. The purpose of these benchmarks is to demonstrate the method’s appli-
cability in predicting effective anisotropic properties, modelling damage-driven stiffness
loss, and resolving local stress interactions within fully three-dimensional representative
volume elements (RVEs).

The material systems analysed include both boron-aluminium and glass-epoxy com-
posites, representing typical high-stiffness and particulate-reinforced materials, respec-

tively. Their linear elastic properties are summarised in Table 6.1.

Table 6.1: Material properties used in 3D benchmarks.

Material Young’s Modulus (GPa) Poisson’s Ratio

Boron 379.30 0.10
Aluminium 68.30 0.30
Glass 72.40 0.20
Epoxy 2.76 0.35

All simulations employ uniform grid discretisation with the peridynamic horizon set
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at three times the particle spacing. Periodic boundary conditions are enforced on all
RVE boundaries to ensure compatibility with homogenisation theory. For modelling
material interfaces, harmonic mean sampling using ten quadrature points along each
bond is applied consistently across the entire domain. Bonds intersected by cracks
are deactivated based on ray-tracing using a modified Moller-Trumbore algorithm with
edge-contact handling.

Numerical solutions are obtained using the PETSc library, specifically the KSP-
BCGSL iterative solver, with a convergence tolerance of 1071°. All benchmarks are
executed on a single high-performance computing node utilising 40 MPI ranks, with
each rank allocated 3.5 GB of RAM. Benchmark-specific discretisation resolutions and
runtimes are reported individually within the corresponding sections.

The subsequent sections detail the setup, results, and analysis for each benchmark.

6.2 Convergence Study

This section investigates the numerical convergence behaviour of the proposed peri-
dynamic homogenisation framework applied to a three-dimensional boron-aluminium
composite RVE with a fibre volume fraction of vy = 0.47 (see Table 6.1 for material
parameters). As illustrated in Figure 6.1, the geometry consists of a single cylindrical
boron fibre embedded in an aluminium matrix, oriented along the z-axis (corresponding

to direction 1 in tensor notation).
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X

Figure 6.1: Geometry of the 3D boron-aluminium RVE used in the convergence study.
A single cylindrical boron fibre is embedded in an aluminium matrix and aligned along
the z-axis (direction 1).

Fight discretisation levels were tested, corresponding to nominal resolutions of
[20, 30, 40, 50, 60, 70, 80, 90] particles per spatial dimension. To enforce periodic bound-
ary conditions, a padding layer is added at each boundary. The thickness of this padding
is set to three particles, corresponding exactly to the horizon size of 6 = 3Axz, ensuring
that all interactions within the horizon of points near the domain boundary are fully
accounted for across the periodic interface. This results in actual particle counts of
[26, 36, 46, 56, 66, 76, 86, 96] along each axis.

To evaluate sensitivity to spatial resolution, the relative error of each homogenised
stiffness component is computed with respect to the highest-resolution result (90 par-
ticles), treated as the reference solution:

C%’kl - C'r;lgl

1, 1,

Relative Error = ,
ref

ijkl

where C’ihj i1 18 the computed stiffness at resolution level h, and C’f;,gl denotes the corre-
sponding value at the finest resolution.

The results are grouped into three categories:
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e Axial moduli: Cy111, Ca2220 = Cs333

e Shear moduli: Cy303, C1212 = Ci313

e Coupling moduli: Cy122 = C1133, C2211 = Cs311, C2233 = C3322
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Figure 6.2: Convergence of axial stiffness components. Relative error (%) in Ci111,
C9999, and (3333 as a function of RVE resolution.

As shown in Figure 6.2, the tensor component C7117 becomes nearly insensitive to
resolution beyond 503, with relative errors remaining below 0.1%. The components
(9299 and (3333 are identical due to the transverse isotropy of the RVE geometry. The
anomalous dip at the 403 resolution was investigated for robustness. Multiple simula-
tions with different solver configurations confirmed the result is repeatable and not a nu-
merical artefact. This localized deviation is therefore attributed to a resolution-specific
discretisation effect. At this specific particle density, the geometric representation of
the fibre-matrix interface may lead to a slight, non-systematic shift in the apparent

volume fraction or local connectivity, causing a small deviation from the overall trend.
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Figure 6.3: Convergence of shear stiffness components. Relative error (%) in Cia12,
C1313, and Ch393 as a function of RVE resolution.

As shown in Figure 6.3, the shear stiffness components converge smoothly with
increasing resolution. The values of Cio12 and Cy313 fall below 1% relative error after
the 703 case, reflecting rapid convergence. These two components are identical due
to the transverse isotropy of the microstructure. In contrast, Cy303 exhibits slower
convergence, likely due to its greater sensitivity to the discretised fibre-matrix interface

in the 2-3 plane.
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Figure 6.4: Convergence of coupling stiffness components. Relative error (%) for C1192,
C1133, C9933, Cs322, Cao11, and Cs311 plotted against increasing RVE resolution.

In Figure 6.4, the coupling components C1120 and C1133 exhibit minimal sensitivity
to resolution, with relative errors below 0.3% even at coarse discretisations. Cross-
directional terms such as Cos33 and Cae11 show a more gradual convergence trend, but
their errors fall below 1% at resolutions of 70% and higher.

Overall, the convergence trends demonstrate that increasing the discretisation res-
olution improves the accuracy and stability of the computed effective stiffness com-
ponents. Most tensor entries achieve sub-1% relative error at resolutions above 702,
with many converging significantly earlier. The anomaly observed at the 402 level seen
across several components is likely due to geometric representation artefacts, such as
abrupt shifts in realised fibre volume fraction resulting from coarse discretisation.

A resolution of 90° (corresponding to 96 x 96 x 96 particles and approximately 2.65
million degrees of freedom) is adopted for all subsequent three-dimensional benchmarks,
unless otherwise specified. This choice offers high accuracy while remaining within the

memory limits of a single-node, 40-core HPC configuration. Higher resolutions, such as
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1003, exceed available memory and require multi-node or high-memory setups. Thus,
90° represents the optimal balance between fidelity and computational feasibility for

the present study.

Wall-clock runtime (hours)

0.5 1.0 1.5 2.0 2.5
Total degrees of freedom le6

Figure 6.5: Wall-clock runtime versus total number of degrees of freedom for homogeni-
sation of boron-aluminium composite RVE. The non-uniform spacing of DOF values
reflects the cubic growth of the discretisation. The results demonstrate the scalability
of the MPI-based peridynamic homogenisation framework with increasing problem size.

In Figure 6.5, we report the wall-clock runtime for the five RVE discretisations
executed on a uniform 40-rank configuration. For smaller problem sizes (below ap-
proximately 1 million DOF), the runtime departs from linearity because initialisation
procedures, family-list construction, and communication overheads are comparable to
the computational workload. Once the problem size exceeds about 1.3 million DOF,
the runtime demonstrates near-linear growth, indicating that the implementation has

reached its asymptotic scaling regime.

84



Chapter 6. Numerical Results in 3D

6.3 Benchmark V: Effective Stiffness of Boron-

Aluminium Composite

This benchmark evaluates the accuracy of the proposed peridynamic homogenisation
method by computing the effective stiffness of a three-dimensional boron-aluminium
composite. The RVE considered here is identical to that used in the preceding con-
vergence study, with a fibre volume fraction of vy = 0.47. The geometry consists of
a single cylindrical boron fibre embedded in an aluminium matrix and aligned along
direction 1 (z-axis). The homogenisation is performed using the finest tested resolution
of 903 interior particles, which, accounting for periodic boundary padding, results in a

96> grid and approximately 2.65 million degrees of freedom.

Figure 6.6: Discretisation of the boron-aluminium RVE used in Benchmark V. The
fibre is aligned along direction 1 (z-axis), with periodic boundary conditions applied in
all directions(not shown).

The homogenised effective stiffness tensor C* and its inverse, the compliance tensor
S*, are obtained by applying macroscopic strain-controlled periodic boundary condi-

tions, as detailed in earlier methodology chapters. The full tensors are presented below.
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All values are in physical units (Pa and Pa~!). Small off-diagonal terms are retained

as-is to reflect numerical fidelity and floating-point limits. These terms do not exceed

expected tolerances, and the overall symmetry and transverse isotropy of the RVE are

well captured.

[ 2.31128E+11
3.68198E+10
3.68198E+10
—4.20361
—34.9252
12.1984

cr =
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1.231E—22
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1.564E—22
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Pa~!

The key effective moduli extracted from the homogenised stiffness tensor are sum-

marised and compared against various micromechanical models and experimental data

in Table 6.2. The proposed method achieves excellent agreement with both finite ele-

ment and peridynamic unit cell approaches, with deviations generally under 3%. Slight

differences in Poisson’s ratios may arise due to interface treatment strategies, such as

the weighted average approach described in section 2.5.2.
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Table 6.2: Comparison of effective elastic properties (fibre volume fraction = 0.47). All
stiffness and shear modulus values are in [GPa].

Source E1 E2 G12 G23 V12 93

Present Model 216.88 149.11 56.21 4751 0.193 0.238
Madenci et al. [3] 215.06 1444 543 458 0.195 0.251
Sun and Vaidya [43] 215 144 07.2 459 019 0.29
Yu and Tang [44] 215.3 144.1 54.39 4592 0.195 0.255
Aboudi et al. [45] 215.4 144 54.34 45.83 0.195 0.255
Chamis [46] 214.0 156.0 62.6 43.6 0.2 0.31
Kenaga et al. [47] (Exp.) 216.0 140 52.0 - 0.29 -

Notes: Exp. = Experimental.

These results confirm the ability of the proposed framework to deliver high-fidelity
predictions for anisotropic composites in three dimensions. The computed stiffness
matrix captures both directional moduli and coupling terms in accordance with theo-
retical expectations, with physically reasonable deviations from other models. These
discrepancies are most likely attributable to differences in interface modelling strate-
gies. Overall, the model’s agreement with a wide range of literature benchmarks builds
confidence in its applicability to more complex field analyses and damage scenarios in
later sections.

The full-scale homogenisation was performed on a single high-performance comput-
ing node with 40 MPI ranks, each allocated a memory limit of 3.5 GB per core. The
total runtime for the 90 case was 7 hours, 33 minutes, and 37 seconds. The primary
performance bottleneck arises from the interface treatment strategy (Harmonic Mean
of Engineering Constants) described in section 2.5.2, where each bond is sampled at
10 equidistant points along its length to account for spatial variation in material prop-
erties. Bond stiffness is then computed based on peridynamic parameters assembled
from the harmonically averaged engineering constants. At present, this sampling is
applied uniformly to all bonds, regardless of whether they cross a material interface,
which introduces significant computational overhead. While this approach ensures con-
sistency and simplifies implementation, it is recognised as an inefficiency that could be

addressed through selective sampling in future optimisation. Nevertheless, the high-
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resolution case remains solvable on a single node, demonstrating the robustness of the

present formulation under demanding conditions.

6.4 Benchmark VI: Effective Properties of Glass-Epoxy

Composites Across Varying Fibre Volume Fractions

This benchmark investigates the predictive capability of the proposed peridynamic
homogenisation framework in capturing the effective elastic behaviour of glass-epoxy
composites across a range of fibre volume fractions. A simplified representative volume
element (RVE) is constructed by embedding a single spherical glass inclusion inside an
epoxy matrix, with the inclusion volume fraction v, varied from 0.0 to 0.5 in increments
of 0.1. All RVEs are discretised using the same high-fidelity peridynamic resolution of
902 grid points, corresponding to 962 material points after periodic boundary padding.
The peridynamic horizon is set to three times the particle spacing, and periodic bound-
ary conditions are applied on all faces.

A sample discretisation for the vy = 0.3 case is shown in Figure 6.7, where glass
and epoxy particles are colour-coded to illustrate phase distribution. The spherical
inclusion is centrally embedded, and the entire structure is constructed to maintain

perfect periodicity.
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Figure 6.7: Discretisation of the composite RVE used in Benchmark VI, with fibre
volume fraction vy = 0.3. A single spherical glass inclusion (dark red) is embedded in
an epoxy matrix (silver grey). Periodic boundary conditions are applied on all faces
(not shown).

The effective elastic constants are extracted via the standard homogenisation proce-
dure outlined in Chapter 3, with the same numerical settings used throughout: solver
tolerance 107!, high-performance computing (HPC) node with 40 MPI ranks, and
memory allocation of 3.5 GB per rank. Each volume fraction case requires approxi-
mately 7.5 hours to complete. As discussed in section 6.2, the resolution 90% has been
validated for similar material systems and is used consistently here to ensure compara-
bility.

Analytical micromechanics models typically express effective composite behaviour
in terms of bulk modulus K and shear modulus G, rather than Young’s modulus and
Poisson’s ratio. Accordingly, the present benchmark focuses on these two quantities to
enable direct and meaningful comparison across different theoretical estimates. Ana-
lytical bounds and classical micromechanics estimates are included for reference: Voigt
and Reuss bounds (upper and lower bounds), Hashin-Shtrikman (HS*/HS™) bounds,
and Mori-Tanaka (MT) theory.
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Figure 6.8: Effective bulk modulus K of glass-epoxy composite versus fibre volume frac-
tion vy. Comparison is made against Voigt/Reuss bounds, Hashin-Shtrikman bounds,
and Mori-Tanaka theory. The PD model prediction tracks HS™ and MT closely.
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Figure 6.9: Effective shear modulus G of glass-epoxy composite versus fibre volume
fraction vy. Similar to the bulk modulus, the PD model aligns well with the Hashin-
Shtrikman lower bound and Mori-Tanaka estimate.

As shown in Figures 6.8 and 6.9, the peridynamic model yields effective bulk and
shear moduli that remain fully bounded by classical estimates across all volume frac-
tions. The Voigt-Reuss envelope provides the widest bounds, with HS* offering tighter
constraints. In this case, the Mori-Tanaka predictions are observed to coincide with
the Hashin-Shtrikman lower bounds across all volume fractions, consistent with expec-
tations for isotropic composites containing well-dispersed spherical inclusions.

The PD results closely follow the HS™ and MT predictions, particularly for vy <
0.35, indicating that the proposed framework is well suited for modelling moderately
reinforced composites. Slight upward deviation from the HS™ bound is observed at
higher fibre content, which remains physically plausible and may be attributed to local
interface averaging effects introduced by the weighted bond sampling strategy.

Overall, the benchmark demonstrates that the peridynamic homogenisation method

not only preserves theoretical bounding behaviour, but also delivers quantitatively con-
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sistent estimates in comparison to widely accepted analytical models. These results
reinforce the method’s applicability in isotropic-inclusion systems and motivate further

exploration into damage-driven property degradation in the next benchmark.

6.5 Benchmark VII: Effective Property Degradation
in Cracked Matrix RVEs

This benchmark examines the degradation of effective stiffness in a cracked matrix RVE,
extending the previous two-dimensional analysis into a fully three-dimensional setting.
The RVE consists of a pure matrix material with no fibre inclusions. The matrix is
modelled as a solid plate with explicit thickness, with Young’s modulus £ = 2 GPa and
Poisson’s ratio v = 0.3.

Two crack configurations are considered: a single central crack, and a pair of coa-
lescing horizontal cracks. As illustrated in Figure 6.10, both crack systems are oriented
in the zz-plane and span the full thickness of the RVE. Cracks are explicitly represented
as zero-thickness surfaces using triangle mesh geometry, allowing precise resolution of

surface intersections in the peridynamic bond-breaking procedure.
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(a) Single horizontal central crack. (b) Two coalescing horizontal cracks.

Figure 6.10: Planar z-y view of the cracked RVE used in Benchmark VII. Each RVE
is of size 1 x 1 x 0.08, and the total crack length is L. Periodic boundary conditions
applied. (a) Single horizontal crack; (b) Two coalescing horizontal cracks.

The RVE is discretised using a uniform grid of 100 x 100 x 8 particles, consistent
with prior peridynamic homogenisation studies [3]. Accounting for periodic boundary
condition padding, the actual discretisation employed is 106 x 106 x 14. The peridynamic
horizon is maintained at three times the particle spacing. Cracks are incorporated using
the modified Moller-Trumbore ray-tracing algorithm with edge-contact handling, as
described in earlier methodology sections. This approach ensures accurate identification
and deactivation of bonds intersected by the crack surfaces.

Simulations are conducted using a Krylov Subspace solver with a tolerance of 10710,
employing 40 MPI ranks distributed across a single high-performance computing node.
The total crack length L is varied from 0 to 0.95 in increments of 0.01. For the two-
crack coalescence scenario, an additional refinement is applied over L € [0.45,0.5)
with smaller increments of 0.001 to resolve the rapid stiffness degradation during crack
merging. As L — 1, the RVE approaches geometric separation into two disconnected
blocks, leading to a rapid decline in effective stiffness. To avoid numerical singularities

arising from complete severance at L = 1, the upper limit of L is capped at 0.95.
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The evolution of the effective stiffness component Cy99 as a function of total crack
length L is presented in Figure 6.11, covering both the single-crack and coalescing-crack
configurations. Analytical predictions from the asymptotic solutions of Markenscoff [48]

are included for comparison.
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Figure 6.11: Effective stiffness component Ca990 versus total crack length L for both
single-crack and coalescing-crack configurations. Peridynamic predictions are compared
against analytical solutions [48]. The sharp stiffness reduction during crack coales-
cence is accurately captured. The step-like pattern in the curves reflects discretisation-
induced artefacts from the finite resolution (100 x 100 x 8), rather than physical dis-
continuities.

Across both configurations, the peridynamic model successfully reproduces the ex-
pected stiffness degradation trends, showing good agreement with analytical predic-
tions. The progressive reduction of Casg2 is captured accurately, including the abrupt
stiffness drop associated with crack coalescence. Minor step-like variations observed

in the numerical results are attributed to finite discretisation resolution rather than
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physical effects.

Overall, these results confirm the capability of the proposed framework to predict ef-
fective property degradation in cracked matrix composites under fully three-dimensional
conditions. The method accurately captures both crack propagation and interaction

effects, demonstrating robustness for modelling fracture-driven stiffness degradation.

6.6 Benchmark VIII: Stress Field Visualisation
in a Cracked Composite RVE (3D)

To examine local stress distributions and crack interaction phenomena in a three-
dimensional microstructure, a 3 x 3 tiled RVE was constructed based on the boron-
aluminium composite system used in Benchmark V (vy = 0.47), forming a plate-like
RVE of dimensions 0.05 x 1 x 1. Fibres and cracks are extruded along the thickness
direction (x). Within each tile, the central boron fibre remains intact, while two types
of microstructural damage are introduced: horizontal fibre-matrix debonding cracks lo-
cated at the fibre interfaces, and vertical matrix microcracks positioned symmetrically
between fibres. All cracks have a uniform length of 0.1¢ and are modelled as internal
zero-thickness surfaces, consistent with the methodology outlined in earlier chapters.
A planar view of the RVE configuration in the y-z plane is shown in Figure 6.12,
illustrating the tiled structure and crack placement. Each tile has an edge length of
l = % Periodic boundary conditions are applied to all faces, and strain-controlled

macroscopic loading is imposed following the homogenisation procedure described pre-

viously.
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Figure 6.12: Planar y-z view of the composite RVE used in Benchmark VIII. The RVE
has size 0.05 x 1 x 1. The fibres and cracks extend fully through the thickness direction
(z). Fibre-matrix debonding cracks and matrix microcracks are included as internal
zero-thickness surfaces. Periodic boundary conditions applied.

The RVE is discretised using a uniform grid of 10 x 200 x 200 particles along the
x, y, and z axes, respectively. Accounting for periodic boundary condition padding,
the actual discretisation employed is 16 x 206 x 206. The peridynamic horizon is
maintained at three times the particle spacing. Cracks are represented by triangle mesh
surfaces and used to define bond-breaking conditions via the modified Méller-Trumbore
ray-tracing algorithm. Bond properties across material interfaces are evaluated using
harmonic mean sampling with 10 quadrature points along each bond, consistent with
prior benchmarks.

Simulations are performed on a single high-performance computing node with 40
MPI ranks, each allocated 3.5 GB of RAM. The total runtime for this benchmark was

7 hours, 15 minutes, and 30 seconds.
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Figure 6.13: Discretisation of the composite RVE used in Benchmark VIII. The RVE
is discretised using a uniform grid of 10 x 200 x 200. Fibre particles are shown in dark
red and the matrix particles in grey. Cracks are not visualised, as their zero-thickness
mesh representation does not influence particle positions.

To investigate stress transfer and damage interaction mechanisms, six independent
macroscopic strain cases are applied: €.z, €yy, €22, Vyz» Vzu, and vzy. For each loading
mode, the corresponding dominant stress component (0yz, Oyy, T2z, Oyz, 02z, a0d Ogy,
respectively) and the von Mises stress field are extracted. All stress fields are evaluated
on the mid-plane slice in the y-z plane, corresponding to the mid-thickness in the z-
direction. Field visualisation is performed using triangular contour interpolation with
100 levels.

Figures 6.14 through 6.19 present the stress fields for all six loading cases.
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Figure 6.14: Stress fields at the mid-plane of the RVE under macroscopic strain e,
(a) Stress component og,. (b) von Mises stress oym.
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Figure 6.15: Stress fields at the mid-plane of the RVE under macroscopic strain ey,.
(a) Stress component o,,. (b) von Mises stress oym.
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Figure 6.16: Stress fields at the mid-plane of the RVE under macroscopic strain €,,.
(a) Stress component o,,. (b) von Mises stress oypy.
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Figure 6.17: Stress fields at the mid-plane of the RVE under macroscopic strain -,..
(a) Stress component o,.. (b) von Mises stress oym.
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Figure 6.18: Stress fields at the mid-plane of the RVE under macroscopic strain ...
(a) Stress component ;. (b) von Mises stress oyp,.
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Figure 6.19: Stress fields at the mid-plane of the RVE under macroscopic strain vz, .
(a) Stress component o4,. (b) von Mises stress oym.

As observed, the stress fields display strong periodicity consistent with the applied
boundary conditions. Stress concentrations develop at fibre-matrix interfaces, espe-
cially around the debonding regions, and at crack tips where local stress gradients are
amplified. In zones where multiple cracks are in close proximity, clear interaction effects
emerge, leading to intensified stress bands. The von Mises stress fields further highlight

regions of combined stress concentrations.
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Notably, in the thickness direction (z-axis), stresses are predominantly carried by
the boron fibres, as revealed in the o,;-dominated loading case. Surrounding matrix
regions show comparatively lower stress levels, consistent with expected load transfer
behaviour in fibre-reinforced composites. This distribution pattern, explicitly visualised
due to the 3D formulation, reinforces the physical fidelity of the simulation and validates
the extension from two-dimensional to fully three-dimensional modelling.

While no direct analytical comparison is included, the observed stress distributions
and crack interaction effects align well with prior literature findings [49, 50] and the
two-dimensional results presented in Chapter 5.

All plots are presented in physical units (Pa), without normalisation, preserving
the absolute scale of stress magnitudes. This benchmark thus provides qualitative
validation of local stress transfer and interaction phenomena in damaged composite

microstructures under three-dimensional conditions.

Chapter Summary

This chapter extended the peridynamic computational homogenisation framework to
fully three-dimensional RVEs, demonstrating its robustness and accuracy across a range
of benchmark scenarios. Through systematic evaluation of effective stiffness tensors,
interface treatment strategies, damage-induced property degradation, and local stress
transfer phenomena, the method’s applicability to complex 3D composite microstruc-
tures was established.

Benchmark V validated the framework’s ability to predict anisotropic stiffness ma-
trices for periodic fibre composites, with results aligning closely to theoretical expec-
tations and confirming resolution convergence. Benchmark VI investigated effective
bulk and shear moduli of glass-epoxy particulate composites across varying fibre vol-
ume fractions, showing good agreement with analytical models such as Mori-Tanaka
and Hashin-Shtrikman bounds. Benchmark VII examined effective stiffness degrada-
tion in cracked matrix RVEs, capturing both progressive and abrupt stiffness loss trends

consistent with analytical solutions and prior two-dimensional findings. Finally, Bench-
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mark VIII visualised three-dimensional stress fields in a complex cracked composite,
highlighting load transfer mechanisms, stress localisation, and crack interaction effects.

Collectively, the results presented in this chapter confirm the accuracy, flexibility,
and physical consistency of the proposed three-dimensional peridynamic homogenisa-
tion approach, establishing a strong foundation for its application to multi-physics and

damage modelling tasks in subsequent studies.
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Conclusion

This thesis presents a robust and scalable computational framework for the homogeni-
sation of cracked composite materials using ordinary state-based peridynamics. By
integrating raytracing-based bond-breaking, volumetric periodic boundary conditions,
harmonic mean interface sampling, and strain-controlled homogenisation, the frame-
work enables accurate analysis of complex microstructures in both two and three di-
mensions.

A principal novelty of this work is the generalised bond-breaking algorithm based
on a modified Moller-Trumbore raytracing scheme, which transforms arbitrary cracks
into triangle mesh surfaces, allowing natural and robust handling of complex damage
morphologies without specialised treatments. The use of volumetric periodic boundary
conditions ensures physically representative boundary behaviour for both 2D and 3D
RVEs, while the MPI-based parallel implementation allows efficient simulation of large-
scale problems. The framework exhibits near-linear computational scaling for problems
exceeding approximately 1.3 million degrees of freedom, demonstrating its practical
suitability for high-resolution 3D analyses.

Comprehensive benchmarks were conducted for both 2D and 3D composites, val-
idating the framework against analytical solutions and established micromechanical
results. Stress field visualisations, effective stiffness predictions, and crack interaction
analyses confirm the method’s robustness and physical fidelity across a wide range of

scenarios.
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Despite these strengths, the current framework is limited to purely elastic materials
and neglects plasticity and temperature-dependent effects. Future developments could
incorporate thermoelasticity, plasticity, progressive damage evolution, and multiscale
coupling to extend the method’s applicability to more complex material behaviours.

In summary, this thesis delivers a novel, general-purpose, and scalable compu-
tational approach for peridynamic homogenisation of cracked composites, combining
advanced modelling features, validated physical fidelity, and parallel efficiency, while

identifying clear directions for future enhancement.
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Appendix A

Notation

Symbol Description

Q(t) Domain of the current (deformed) configuration at time ¢

Qo Domain of the reference (undeformed) configuration

d Spatial dimension, d € {1,2,3}

x, x’ Material points in the reference configuration

av’ Differential volume element associated with point x’

p(x) Mass density at material point x

1) Peridynamic horizon defining the extent of nonlocal interactions
Hy Family of material point x (i.e., points within horizon ¢)

u(x) Displacement vector at point x

u(x,t) Acceleration vector at point x and time ¢

v,y Deformed positions of x and x’

y -y Relative position vector in the deformed configuration

x —x Relative position vector in the reference configuration

S Bond stretch (relative elongation of a bond)

Y Deformation state operator (maps reference bond to deformed bond)
T Force state operator (returns force density vector)

t, t/ Force density vectors exchanged between particles

f Symmetric pairwise force density (bond-based formulation)
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Appendix A. Notation

Notation (continued)

Symbol Description

b(x,t) Body force density at point x and time ¢

C Auxiliary parameter in bond-based peridynamics

C, éijkl Effective stiffness tensor

S, gijkl Effective compliance tensor

A B Auxiliary parameters in the ordinary state-based peridynamic model
w, W’ Strain energy densities at points x and x’

0,0 Dilatation at points x and x’

a, b, d Peridynamic material parameters calibrated to E, v, and §
E Young’s modulus

v Poisson’s ratio

K Bulk modulus

G Shear modulus

A, 1 Lamé parameters

F Deformation gradient

€ Strain tensor in Voigt notation

o Cauchy stress tensor in Voigt notation

D Elastic stiffness matrix in Voigt notation

Dps Plane stress stiffness matrix in Voigt notation

Dre Plane strain stiffness matrix in Voigt notation

Oij Components of the stress tensor

Eij Components of the strain tensor

S Applied shear or isotropic strain magnitude

h Out-of-plane thickness (used in 2D plane stress problems)
rs, 05, ¢s Spherical coordinates for 3D numerical integration

Tp, Op Polar coordinates for 2D numerical integration

w, W Influence functions (bond weighting functions)

v, Vv’ Volumes associated with points x and x’
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Appendix A. Notation

Notation (continued)

Symbol Description

gem Classical strain energy under simple shear

shear
Wf,il car Peridynamic strain energy under simple shear
el Classical strain energy under isotropic expansion
Wf:;irm .  Peridynamic strain energy under isotropic expansion
o . Classical dilatation under simple shear
o mal Classical dilatation under isotropic expansion
491;’,05 car Peridynamic dilatation under simple shear
iirm al Peridynamic dilatation under isotropic expansion
sz’m Correction factor for parameter b at particle k, with direction m € {x,y, z}
Double contraction operator for tensors
E, 0 Macroscopic strain and stress tensors
v Gradient operator
A Laplace operator
0 Partial derivative
R Set of real numbers
1 Fourth-order identity tensor
S Fourth-order Eshelby tensor
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Appendix B

Peridynamic Parameter
Derivation under Plane Strain

Conditions

In two-dimensional plane strain conditions, the stress and strain vectors in Voigt nota-

tion reduce to:

T

e=lew eu gxy]T. (B.1b)

The corresponding stiffness matrix, obtained by inverting the compliance matrix,

is:

D = v 1-v 0 |. (B.2)

To determine the peridynamic material parameters under plane strain, we follow
the same calibration procedure as in subsection 2.4.2 by considering two deformation
modes: simple shear and isotropic expansion. In each case, we compute the classical

strain energy density and match it to the corresponding peridynamic expression.

Simple Shear Analysis
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Appendix B. Peridynamic Parameter Derivation under Plane Strain Conditions

To determine the peridynamic parameter b, consider a simple shear strain state:
T
€= [0 0 3} . (B.3)

This corresponds to the deformation gradient:

The resulting stress vector is:

T

oc=De=10 0 2(ij) : (B.5)

The strain energy density from classical continuum mechanics is:

1 Es?
shear = §UT€ = ) (B.6)

Since simple shear produces no volumetric change:

cem ), (B.7)

shear

We now evaluate the same deformation under the peridynamic formulation using

polar coordinate (ry,6,), with:

|X' - x‘ =1y, (B.8a)
7, Ccos 0

xX—-x=|" "l (B.8b)
rpsin b,

The deformed bond under simple shear becomes:

7y, cos 0, + sr,sin 0
y-y=F-x-x)=|"""" """ (B.9a)
Tpsin b,

ly' —y| = [1+ (sin 6, cos6,)s] rp. (B.9b)
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Appendix B. Peridynamic Parameter Derivation under Plane Strain Conditions

The bond length is linearised for small shear strains s < 1 using a first-order Taylor
expansion, with higher-order terms O(s?) neglected.

The volume element in polar coordinate (7, 6),) is:
dV' = r,db,dr,. (B.10)

The corresponding peridynamic strain energy density in (2.13), expressed in integral

form for simple shear is:

Wik =b [ Iy =] = ¢ —x))? av”
5 o (B.11)
:b// —{[1—|—(sinHPCOSHP)S]Tp—Tp}ZTdepdTp-
o Jo Tp

Exploiting isotropy of the circular horizon, the angular integration yields a constant

factor, independent of radius. The strain energy therefore becomes:

4
Wit =55 [ i, (B.12)
0

integrating yields:

pd wots?
shear — 12

b. (B.13)

Equating (B.13) with the classical strain energy density (B.6) gives:

3E
b= ———. B.14
w64 (1 +v) ( )
Isotropic Expansion Analysis
To derive parameters a and d, consider the isotropic expansion:
T
€ = {5 s O] . (B15)

110



Appendix B. Peridynamic Parameter Derivation under Plane Strain Conditions

This corresponds to the deformation gradient:

1+s 0
F = . (B.16)
0 1+ s

The resulting stress vector is:

Es
(I+v)(1—2v)

o=Drfe= | B | (B.17)

0

The classical strain energy density and dilatation become:

1 Es?

cem T

=_ = B.18
normal 20- € (1 + l/)(l — 21/)7 ( )
Z%Tmal = 2s. (Blg)

The deformed bond under isotropic expansion becomes:

rpcosf,(l+ s
y-y=F-x-x)=|" bl ) , (B.20a)
rpsinf,(1 + s)

Iy —y| =1+ s)rp. (B.20b)
The volume element in polar coordinate (rp,6)) is:

dV' = r, db, dr,. (B.21)

The corresponding peridynamic strain energy density in (2.13), expressed in integral

form for isotropic expansion is:

ccm 2
Wﬁgrmal :a( normal)2+b/H w (}y,_y} — ‘X/—XD dv’
d 27rx 5 (B22)
= oo +0 [ [ L0+ ol iy
o Jo Tp
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Appendix B. Peridynamic Parameter Derivation under Plane Strain Conditions

Since the integrand is independent of 6, the angular integration yields a factor of 27.
Integrating yields:
wre

normal

2
= das® + gwb5452. (B.23)

The corresponding peridynamic dilatation in (2.14), expressed in integral form for

isotropic expansion is:

pd _ I A y/_y'X/_X /
Qnormal - d/H w (}y y‘ ‘X XD <‘y/ _ y’ ‘X/ _ X‘) av

6 2w
= d/ / o [(1+ s)rp —1p) e Tp rp df)p dryp,
oJo Tp p Tp

Since y’ — y is collinear with x’ — x under isotropic expansion, the unit vectors are

(B.24)

identical and (rp/rp) - (rp/rp) = 1. The integrand is therefore independent of angular

variables. Integrating yields:

pd
enormal

= wd&3s. (B.25)

By equating (B.19) with (B.25), the expression for d is obtained:

d=—. (B.26)

Similarly, equating (B.18) with (B.23) yields the relationship between a and b.

Solving these equations gives:

E(4v — 1)
41 +v)(1 —2v)

a =

(B.27)

Summary of Parameters in Plane Strain

E(4v —1)
A1+ )1 —2v)

a= (B.28a)

3E

b= (B.28b)
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Appendix B. Peridynamic Parameter Derivation under Plane Strain Conditions

d=—. (B.28¢)
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