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Abstract

Wave energy converters are devices that are designed to extract power from ocean

waves. Existing wave energy converter technologies are not financially viable yet. Con-

trol systems have been identified as one of the areas that can contribute the most

towards the increase in energy absorption and reduction of loads acting on the structure,

whilst incurring only minimal extra hardware costs. In this thesis, control schemes are

developed for wave energy converters, with the focus on single isolated devices.

Numerical models of increasing complexity are developed for the simulation of a point

absorber, which is a type of wave energy converter with small dimensions with respect

to the dominating wave length. After investigating state-of-the-art control schemes, the

existing control strategies reported in the literature have been found to rely on the model

of the system dynamics to determine the optimal control action. This is despite the fact

that modelling errors can negatively affect the performance of the device, particularly in

highly energetic waves when non-linear effects become more significant. Furthermore,

the controller should be adaptive so that changes in the system dynamics, e.g. due

to marine growth or non-critical subsystem failure, are accounted for. Hence, machine

learning approaches have been investigated as an alternative, with a focus on neural

networks and reinforcement learning for control applications. A time-averaged approach

will be employed for the development of the control schemes to enable a practical

implementation on WECs based on the standard in the industry at the moment.

Neural networks are applied to the active control of a point absorber. They are used

mainly for system identification, where the mean power is related to the current sea

state and parameters of the power take-off unit. The developed control scheme presents

a similar performance to optimal active control for the analysed simulations, which rely

on linear hydrodynamics.

Reinforcement learning is then applied to the passive and active control of a wave energy

converter for the first time. The successful development of different control schemes is

described in detail, focusing on the encountered challenges in the selection of states,

actions and reward function. The performance of reinforcement learning is assessed

against state-of-the-art control strategies. Reinforcement learning is shown to learn the

optimal behaviour in a reasonable time frame, whilst recognizing each sea state without

reliance on any models of the system dynamics. Additionally, the strategy is able to

deal with model non-linearities. Furthermore, it is shown that the control scheme is

able to adapt to changes in the device dynamics, as for instance due to marine growth.
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List of Symbols

As this thesis deals with the topics of wave energy, neural networks and reinforcement

learning, many symbols are used, which may take on different meanings depending on

the context. As a result, here the reader can find a list of symbols which should make

the thesis easier to read.

Linear wave theory and WEC modelling

Note that the hat indicates complex numbers (complex notation is useful in the fre-

quency domain). An arrow indicates three-dimensional vectors, while bold small letters

indicate vectors of higher order. Matrices are indicated with bold capital letters.
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x displacement in surge

y displacement in sway

z displacement in heave

φ displacement in roll

θ displacement in pitch

ψ displacement in yaw

~v flow velocity vector
~f vector of gravitational force per unit volume

p fluid pressure

µ fluid viscosity

Φ velocity potential

g gravitational acceleration

C integration constant

~n unit normal vector

~vb body velocity vector

h water depth

ζ wave elevation

ω circular wave frequency

β wave direction angle

k wave number

λ wave length

ζa wave amplitude

patm atmospheric pressure

ρ water density

p̂ complex hydrodynamic pressure

vp propagation velocity

vg wave group velocity
~f three-dimensional hydrodynamic force vector

~m three-dimensional hydrodynamic moment vector

f six-dimensional generalised force vector

~s position of infinitesimal surface element

~u three-dimensional linear velocity vector

~Ω three-dimensional angular velocity vector

n six-dimensional normal vector

v six-dimensional generalised velocity vector

Φi incidence velocity potential

Φd diffraction velocity potential

Φr radiation velocity potential

φ radiated velocity potential vector

R distance from rigid body

S body wetted surface area
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fr radiated force vector (either frequency- or time-domain depending on context)

Z radiation impedance matrix

A added mass matrix

B hydrodynamic damping matrix

fe excitation force vector (either frequency- or time-domain depending on context)

H vector of incidence and diffraction velocity potentials per wave amplitude

ξ six-dimensional position vector in an inertial reference frame

ξ0 six-dimensional equilibrium position

η six-dimensional displacement vector

fh hydrostatic restoring force vector (either frequency- or time-domain)

C hydrostatic restoring matrix

Ch hydrostatic restoring matrix for multiple bodies

M mass matrix

a six-dimensional generalized acceleration vector

I identity matrix

IG inertia tensor

G centre of gravity

m body mass

v six-dimensional generalised velocity vector

K radiation impulse response function matrix

µ matrix of constants

h excitation impulse response vector

H Fourier transform of the excitation impulse response function

γ phase angle

t time

R ramp function

tr duration of initial ramp function

S wave spectrum

nw number of individual wave components

SB Bretschneider wave spectrum

SJ JONSWAP wave spectrum

Hs significant wave height

Tp peak wave period

ωp peak circular wave frequency

γ non-dimensional peak shape parameter

σ JONSWAP shape function

∆ω circular wave frequency step

a amplitude of each wave component
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Te energy wave period

P polynomial of zeros

Q polynomial of poles

xss state-space vector for radiation approximation

Ass, Bss, Css and Dss state-space matrices

fm mooring force vector

Bm mooring damping matrix

Cm mooring stiffness matrix

fd viscous damping force vector

Cd viscous drag matrix

Ad characteristic area

vG generalised vector of unperturbed flow velocity

fPTO PTO force vector

P and Q matrices used in the assembly of the time domain model of a WEC

w velocity in heave

Model of Seabased WEC

Is stator current

Pnom nominal power of generator

Vnom nominal voltage of generator

vnom nominal speed of generator

lp piston length

ls stator length

ku stiffness of upper end stop

kl stiffness of lower end stop

kw stiffness of wire

ks stiffness of restoring spring

mb mass of float

mp mass of piston

fu force of upper end stop

fl force of lower end stop

fem electromotive or PTO force

fs force of restoring spring
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Control of WECs

BPTO PTO damping coefficient

CPTO PTO stiffness coefficient

BPTO,opt optimal PTO damping coefficient

CPTO,opt optimal PTO stiffness coefficient

ż velocity in heave

P̄opt mean optimal power

kτ generator torque constant

is current of stator

Afac active area

b constant

P absorbed power

η PTO system efficiency

L capture width

Pw mean power per unit crest

cg wave group velocity

D diameter of point absorber
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Neural networks

x input vector

w weight vector

d signal from each input node

y neuron output

b bias term for each neuron

n index of individual neuron

l index of individual layer

W l weight matrix between every two layers

bl bias vector between every two layers

f l activation function of each layer

ol output vector of each layer

J performance index or cost function

y output vector of neural network

ytr input vector of training data

ytr output vector of training data

λ scale of regularization term

α learning rate

δ sensitivity vector

J Jacobian of the vector of independent variables

µ weighting variable

Reinforcement learning

The tilde denotes learnt values.
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s current state

s′ next state

a current action

a′ next action

r reward associated with current state and action

Q state-action value function

V state value function

S state variables space

A action space

P probability of transitioning to a particular state

γ discount factor

R reward corresponding to a particular transition

π policy

Ω set of all probability distributions

E expected reward

P matrix of the transition model

Π matrix of possible policies

I identity matrix

ε exploration rate

ε0 initial exploration rate

α learning rate

α0 initial learning rate

N matrix of the number of visits to each state-action pair

Nε parameter of minimum number of visits to a specific state before

reducing the exploration rate

Nα parameter of minimum number of visits to a specific state-action pair before

reducing the learning rate

R list of all returns

φ vector of features

Θ weight matrix

µ vector of bandwidth of radial basis functions

s vector of positions of the centres of radial basis functions

i input vector to neural network

o output vector from neural network

e mean squared error of neural network

Qtarget target Q-value

S list of samples

Tπ Bellman operator

Φ matrix of features

w weight vector
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µ probability distribution

∆µ diagonal matrix of projection weights

A and b matrix and vector used in determination of weights of function approximation

WEC control based on neural networks and reinforcement lear-

ning

H wave height of regular waves

T wave period of regular waves

Pavg averaged absorbed power

Bmin minimum allowable PTO damping coefficient

Bmax maximum allowable PTO damping coefficient

Cmin minimum allowable PTO stiffness coefficient

Cmax maximum allowable PTO stiffness coefficient

c cost function

Nh number of time horizons

h index of time horizon

D(h) or HRL time horizon duration

ti initial time of the episode

tf final time of the episode

E energy extracted over an episode

E mean energy for each state-action combination

Nc matrix of number of visits to each state-action combination

∆BPTO step change in PTO damping coefficient

∆CPTO step change in PTO stiffness coefficient

m vector of mean reward values for each discrete state

p penalty term

δc distance between kernels of radial basis functions

M number of radial basis functions employed

zlim soft displacement constraint in heave
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velocity ż, (b) PTO force FPTO and generated power P in regular waves once

the optimal policy has been found. Additionally, (c) shows the corresponding

absorbed energy as compared with resistive control. . . . . . . . . . . . . . . . 139

6.6 Variation in the capture width ratio of the point absorber with wave period

in regular waves of unit amplitude for resistive and reinforcement learning

declutching control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Convergence of the Q-value of each state action pair with time in irregular waves. 140



FIGURES AND TABLES xxii

6.8 Time series of the (a) wave elevation ζ, body vertical displacement z and
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Chapter 1

Introduction

Economical, sustainable and secure energy sources are fundamental for continuous

development of modern economies. Since the industrial revolution, fossil fuels have

represented a major energy supply due to their high energy density, ease of storage and

distribution and low extraction costs. Nevertheless, most countries have recently started

to shift their energy policy towards more sustainable and secure energy sources. Most

scientists have recognized the negative impact of green-house emissions associated with

fossil fuels (Maslin, 2014). The role of renewable energy in power generation has thus

been increasing substantially in importance, due to its sustainable and secure nature.

In particular, solar and wind power can be considered to have reached commercial

maturity. Conversely, wave energy technologies are not financially viable yet, despite

the enormous resource potential of up to 2.1 TW of power worldwide (Gunn and Stock-

Williams, 2012).

The main issue associated with wave energy is its high energy content, which requires

strong, sturdy, complex machines that are able to withstand high loadings. This problem

is exacerbated by the high peak-to-mean of wave power, which has to be addressed

with devices optimized to absorb as much energy as possible in calm sea states and

at the same time survive the worst storms. In addition, locations with a high energy

resource tend to be located in remote areas, which increases operation and maintenance

costs. Furthermore, matching supply and demand is difficult like with renewable energy

sources, as the availability is dictated by environmental conditions. Nevertheless, the

increase in wave energy content in winter months sits well with standard energy de-

mand patterns in countries located north and south of the tropics, such as the United

Kingdom.

In order to reach commercial maturity, the levellised cost of energy produced by wave

energy converters (WECs) needs to be brought down from current levels. In particular,

Wave Energy Scotland (2017) has identified the requirement to bring the levellised cost

of energy below £150/MWh as fundamental. Control systems have been identified as an

area that can significantly improve the financial viability of WEC technologies (Wave

Energy Scotland, 2017), as they may be used to increase energy absorption, reduce

1
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loads and ensure the compliance with motion and power flow constraints.

This thesis will present the development of innovative control strategies for WECs based

on methods developed by the artificial intelligence community.

1.1 Motivation

WECs convert the oscillation of kinetic and potential energy carried by ocean gravity

waves to electrical energy that can be delivered to the electrical grid through a me-

chanism known as power take-off system (PTO). The PTO may include intermediate

hydraulic and/or mechanical stages. By controlling the force that the PTO exerts

on the WEC, it is possible to tune the system dynamics to the incoming waves for

the maximization of energy absorption and/or reduction of loads on the structure.

As aforementioned, Wave Energy Scotland (2017) has identified the development of

suitable control strategies as of fundamental importance for the development of the

wave energy industry, with an expected decrease in levellised cost of energy.

The schemes for WEC control can be classified into real-time and time-averaging

approaches. The former strategies have become the focus of substantial research work

by academics in the past decade, particularly model predictive control (Ringwood et al.,

2014; Korde and Ringwood, 2016). Nevertheless, the practical uncertainties related to

the measurement and prediction of the incoming wave elevation profile mean that time-

averaging approaches have been mostly applied on real devices by the wave energy indu-

stry to date (Wave Energy Scotland, 2016). These strategies assume stationary sea state

conditions for intervals lasting 15-30 minutes, with the controller parameters optimized

for the average conditions during that time. The optimized controller parameters are

computed from simulations and validated through experimental testing (Wave Energy

Scotland, 2016). Due to the industrial nature of the project, these methods will be

investigated in this thesis.

Modelling errors in the determination of the control parameters can have a negative

impact on the performance of the WEC. In particular, non-linear effects are more

important in waves with a higher energy content, where damage to or failure of the

device is also more likely. Furthermore, the consideration of scaling effects is difficult

in the development of control strategies for WECs (Wave Energy Scotland, 2016).

In addition, the control of WECs should adapt to inevitable changes to the system

dynamics over its life span, which are due to the ageing of components and marine

growth. Similarly, the controller should maximize the availability of power generation

by possibly adapting to non-critical subsystem failures and continuing operations until

a suitable window is found for maintenance.
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For these reasons, this thesis will address adaptive control strategies for WECs. Effective

solutions in the area have been proposed by different research groups, for instance Fusco

and Ringwood (2013), Bacelli (2014) and Zou et al. (2017). In this thesis, innovative

approaches based on reinforcement learning and neural networks will be developed.

This work will exploit the rapid improvements in the design of adaptive control schemes

achieved by the robotics and computer science communities. Research in reinforcement

learning was initiated by Pelamis Wave Power Ltd., but was stopped early on due to the

bankruptcy of the company. This thesis presents the successful development of these

strategies and an assessment of their performance.

1.2 Aims and objectives

1.2.1 Research question

Some types of control systems rely on a model of the plant to find the optimal control

action. Plant models can be either explicit or implicit (Bordons and Camacho, 2007).

Explicit models are created explicitly, often from physical processes and observations,

whereas implicit models are built within the controller.

How to obtain an adaptive and optimal control performance that is independent of an

explicit model of the plant?

1.2.2 Aim

As indicated by the research question that this thesis tries to address, the main aim

of this project has been the development of adaptive optimal control strategies for the

passive and active control of WECs, with a particular focus on model-free techniques.

As a result, machine learning algorithms have been given special attention, exploiting

the recent developments in the field.

1.2.3 Objectives

The over-arching aim of the project will be achieved via the following list of objectives:

1. First of all, an extensive literature review is carried out on the strategies developed

to date for the control of WECs in order to analyse the properties of the state-

of-the-art schemes and their possible short-comings.

2. The hydrodynamic model of a WEC is developed for the testing and validation

of the proposed control algorithms. In particular, the model should present incre-

asing complexity to assess the response under the influence of non-linear effects.
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3. The performance of state-of-the-art control methods should be assessed using the

generated WEC model.

4. The application of artificial neural networks to the active control of WECs should

be investigated.

5. Suitable control algorithms should be developed for the passive and active control

of WECs employing reinforcement learning. Care is required for the implementa-

tion of realistic force and displacement constraints.

6. Extensive experimental testing should be carried out to assess the performance of

the developed algorithms against state-of-the-art control schemes. In particular,

the ability of the controller to adapt to changes in sea state and system dynamics

as well as its applicability to non-linear problems need to be analysed.

1.3 Contributions

1. The primary contribution of this thesis is the application of reinforcement learning

to the time-averaged passive and active control of WECs. In particular, this work

shows that:

(a) Reinforcement learning learns the optimal parameters in every sea state

for the maximization of power absorption, whilst abiding by displacement

constraints and accounting for force saturation.

(b) Learning time is acceptable for a realistic implementation.

(c) The proposed control strategy is unaffected by system non-linearities and

can adapt to changes in the system dynamics, e.g. due to marine growth or

non-critical subsystem failure, since the approach does not rely on models

to determine the control action.

(d) The method has been tested with simulations of different WEC technologies

considering a single unit. However, the modularity of its framework and its

model-free nature enable the proposed strategy to be extended to arrays of

WECs.

2. A further contribution is the application of reinforcement learning to the de-

clutching control of a WEC. Monte-Carlo methods are used to determine the

optimal timing for the application and release of the power take-off system force.

The developed strategy is based on a simplistic implementation, but shows the

potential for the development of real-time control schemes based on reinforcement

learning for the control of WECs.

3. Finally, artificial neural networks are applied to the time-average active control

of WECs. In particular, the learning time is found to be less than for reinforce-

ment learning. Nevertheless, issues with constraints implementation need to be
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addressed before practical use. Suggestions on how to exploit the advantages of

this method and how to further improve its benefits are made.

1.3.1 Publications

1.3.1.1 Journal articles

• Anderlini, E., Forehand, D. I. M., Stansell, P., Xiao, Q., and Abusara, M. (2016).

”Control of a Point Absorber Using Reinforcement Learning”. IEEE Transactions

on Sustainable Energy, 7, 4, October, pp. 1681-1690.

• Anderlini, E., Forehand, D. I. M., Bannon, E., and Abusara, M. (2017). ”Control of

a Realistic Wave Energy Converter Model using Least-Squares Policy Iteration”.

IEEE Transactions on Sustainable Energy, 8, 4, October, pp. 1618 - 1628.

• Anderlini, E., Forehand, D. I. M., Bannon E., and Abusara, M. (2017). ”Reactive

Control of a Wave Energy Converter using Artificial Neural Networks.” Interna-

tional Journal of Marine Energy, 19, September, pp. 207-220.

• Anderlini, E., Forehand, D. I. M., Bannon, E., Xiao, Q. and Abusara, M. (2017).

”Reactive Control of a Two-Body Point Absorber using Reinforcement Learning”.

Ocean Engineering, IDCORE special issue, in press.

1.3.1.2 Conference articles

• Anderlini, E., Forehand, D. I. M., Stansell, Bannon, E., Xiao, Q., and Abusara,

M. (2016). ”Declutching Control of a Point Absorber based on Reinforcement

Learning”. Asian Wave and Tidal Energy Conference, Singapore, October.

• Anderlini, E., Forehand, D. I. M., Bannon, E., and Abusara, M. (2017). ”Con-

straints Implementation in the Application of Reinforcement learning to the

reactive control of a point absorber”. Conference on Ocean, Offshore and Arctic

Engineering, Trondheim, June.

• Nambiar, A. Anderlini, E., Payne, G., Forehand, D. I. M., Kiprakis, A., and Wal-

lace, R. (2017). ”Reinforcement Learning Based Maximum Power Point Tracking

Control of Tidal Turbines”. European Wave and Tidal Energy Conference, Cork,

August.

Note that in the last article some of the reinforcement learning strategies developed in

this project have been applied to the control of a tidal turbine for the first time. The

student has provided help with the development of the algorithms, with Dr Nambiar

adapting them to the new application. Since this thesis deals with wave energy, the

work done on tidal energy has not been included in this document, even though neural

fitted Q-iteration is still presented in Chapter 4.
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1.4 Organization of the thesis

The thesis comprises of seven additional chapters, which are outlined here.

Chapter 2 covers the development of dynamic models of wave energy converters. To start

with, wave energy conversion is introduced and the functioning of WECs is described.

Then, tools that are used for the modelling of WEC dynamics are discussed. Potential

flow theory, in conjunction with the inclusion of some non-linear effects, is selected due

to its associated good compromise in modelling quality and computational performance.

The chapter continues with the description of the theory of wave-body interactions

under the framework of potential flow theory. Equations of motions of the body are

derived in both the frequency and time domains. Finally, the dynamics of three different

point absorber geometries are modelled with systems of increasing complexity. These

models will be used throughout this work for the assessment of control strategies.

Chapter 3 addresses the state-of-the-art methods for the control of wave energy conver-

ters. After a literature review, resistive and reactive control are analysed in detail. The

model of a simple point absorber is employed as a case study to assess the performance

of the control schemes.

In Chapter 4, reinforcement learning, a class of unsupervised learning algorithms, is

described. After explaining its evolution from Markov decision processes, the issue

of exploration and exploitation is discussed. Subsequently, Monte-Carlo methods, a

type of reinforcement learning schemes, are introduced. This is followed by a detailed

explanation of temporal difference schemes, which is an alternative, popular class of

algorithms, including function approximation. In particular, Q-learning, Sarsa, neural

fitted Q-iteration and least-squares policy iteration are described in detail. The chapter

is concluded with the presentation of two classical examples of reinforcement learning

applications.

In Chapter 5, an innovative strategy for the reactive control of WECs based on artificial

neural networks is developed. After describing the proposed algorithm, a case study is

presented for the assessment of the performance of the algorithm against state-of-the-art

reactive control. The reader can found more information on artificial neural networks

in Appendix A. The functioning of and the methods used to train neural networks are

described here.

In Chapter 6, different reinforcement learning algorithms are used for the development

of innovative control schemes for WECs. Firstly, Monte Carlo methods are applied to the

declutching control of a WEC using a simple state-space description. The performance

of the strategy is assessed with simulations of a point absorber, whose model was

introduced in Chapter 2. Then, Q-learning, Sarsa and least-squares policy iteration are

applied to the resistive and reactive control of WECs. Two case studies per control
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type are introduced to assess the performance of reinforcement learning against state-

of-the-art control strategies.

Finally, in Chapter 7, the findings are summarised and conclusions are drawn. The

document is completed by a discussion of proposed future work.



Chapter 2

Dynamic models of wave energy

converters

WECs are machines that are designed to absorb part of the energy transported by

water waves. The extracted power is not only dependent on the wave resource, but also

on the physical properties and control of the device itself. An example of a WEC can

be seen in Figure 2.1, which displays one of the devices developed by Pelamis Wave

Power Ltd. This chapter describes methods that can be used to model the dynamics of

WECs so that they can inform the design and control processes of these machines.

Firstly, the principle of wave energy conversion is summarised, and the main categories

of WECs are presented. Then, different modelling tools for WEC dynamics are descri-

bed. Of these, the theory of wave-body interactions based on potential flow is selected

for the derivation of the equations of motion of the devices analysed in this thesis. This

method is then described in detail and employed to simulate the dynamics of three

machines, which will be studied throughout this work.

Figure 2.1: Pelamis P2 WEC in Orkney (with permission from Pelamis Wave Power Ltd.).

8
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(a) (b) (c)

Figure 2.2: Three main categories of wave energy technologies: attenuator (a), point
absorber (b) and terminator (c) in planar waves. Waves radiated by the WEC are not
shown in this diagram for simplicity.

2.1 Wave energy conversion

Ever since WECs have been proposed by Salter (1974), numerous devices have been

developed and built for the extraction of energy from gravity waves. A thorough des-

cription of wave energy designs and theory can be found in the books by Falnes (2005),

Cruz (2008) and Korde and Ringwood (2016). Furthermore, Falnes (2007) presents a

summary of the physics behind the functioning of WECs, while comprehensive reviews

of the topic with a focus on the main technologies developed to date can be found in

Drew et al. (2009), Falcão (2010), Titah-Benbouzid and Benbouzid (2014) and Santhosh

et al. (2015). Moreover, a special issue of the Transactions of the Royal Society was

dedicated to the field of wave energy (Farley et al., 2012). In addition, Babarit et al.

(2012) have compared the performance of the main WEC types using numerical studies.

Finally, specialised reviews have been completed by Salter et al. (2002) and Falcão and

Henriques (2016) on the PTO mechanisms and oscillating water columns, a WEC type,

respectively.

Considering only WECs that extract kinetic energy from the ocean waves, i.e. excluding

devices that rely on potential energy like hydro-power schemes such as Wave Dragon,

all devices absorb power from the difference in motion between a prime mover that

is excited by the incident waves and a reference (Korde and Ringwood, 2016). The

reference may be represented by the sea floor, another body with a higher inertia and

at greater depth or an internal moving mass. The prime mover need not be fixed, as

it can consist in flexible membranes or even the water surface itself, as is the case for

oscillating water columns. The treatment of all wave energy technologies developed to

date goes beyond the scope of this thesis. Here, we first summarize the three main

categories of WECs. Focusing on point absorbers, we then describe the different PTO

mechanisms that have been developed for the extraction of energy from water waves.

Drew et al. (2009) classify WECs into three main categories: attenuators, point ab-
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sorbers and terminators. Attenuators, shown in Figure 2.2a, are placed along the

dominating direction of wave propagation, thus absorbing energy along their length.

An example is the device produced by Pelamis Wave Power Ltd., which can be seen

in Figure 2.1. Stansell and Pizer (2013) have demonstrated that attenuators present

an energy absorption proportional to the displaced volume irrespective of volume con-

straints as opposed to point absorbers, whose performance is thus limited by their

size. Therefore, they seem to be preferable from a perspective of economies of scale.

Point absorbers are the second category that can be seen in Figure 2.2b. They present

a characteristic length which is small with respect to the wave length. Due to their

small size, wave direction is not important for these machine, which tend to have an

axisymmetric geometry. Examples are the units produced by Ocean Power Technology

or Carnegie Wave Power. Terminators represent the final WEC category and are shown

in Figure 2.2c. They are placed perpendicular to the predominant wave direction and

physically intercept the incoming waves. They can greatly benefit from economies of

scale; however, terminators should be placed in near-shore locations, where waves are

channelled along a main direction. The Salter Duck, first proposed in Salter (1974),

and the Aquamarine Oyster are examples of this category.

In general, point absorbers present fewer joints than attenuators thus reducing the

complexity of the problem. Additionally, although parametric coupling between pitch,

roll and heave have been well documented (Falnes, 2005), the degrees of freedom of

axisymmetric point absorbers (with axisymmetric PTO systems) can be decoupled

if assuming linear wave theory. Therefore, they can be modelled with fewer degrees

of freedom, which simplifies the understanding of the working principles and results

in a smaller computational cost. For these reasons, only point absorbers have been

analysed within this work, although the developed strategies should be applicable to

non-linear systems. In particular, the focus has been on the study of individual devices.

Nevertheless, the control strategies that are developed can be extended to the treatment

of attenuators and terminators as well as arrays of WECs. In the next section, power

take-off (PTO) systems are addressed in greater detail.

2.1.1 Power take-off systems

The main purpose of the PTO system is to transform the energy associated with the

motions of the primary mover to a smooth flow of energy suitable for being delivered to

the electrical grid. This poses significant challenges, since the oscillations of the device

can be stochastic in irregular waves, whereas the electricity flowing in the national

grid is sinusoidal and subject to quality checks (Cruz, 2008). Furthermore, wave energy

varies on slower time scales as well, with more energy being available in storms and

during the winter months. Nevertheless, it is the stringent requirements on the delivered
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Figure 2.3: Block diagram of common PTO configurations, adapted from Bacelli (2014).
Mechanical, hydraulic and electrical components are indicated by violet, yellow and green
blocks, respectively.

electricity that are most relevant for the design of the PTO system. In addition, the

direction of the flow is inverted every half wave cycle due to the oscillatory nature of

gravity waves, which may create problems with existing generators. Therefore, since

the first studies, storage systems and rectifiers have been included in the design, with

hydraulic systems representing a clear candidate initially due to the technology transfer

from oil and gas. Nowadays, it is possible to recognize four main types of PTO systems

as displayed in Figure 2.3: hydraulic with hydraulic rectifier, hydraulic with electrical

rectifier, mechanical with mechanical rectifier and direct drive.

In hydraulic PTO systems with a hydraulic rectifier, the hydraulic system provides

good energy storage and flow rectification capacity (Forehand et al., 2016). As a result,

it is possible to use a simpler, cheaper synchronous generator. In a hydraulic PTO, the

motion of the hydrodynamic absorbing body drives hydraulic fluid through rams in a

hydraulic circuit with two parallel branches. A rectifying valve ensures the liquid flows

in only one direction into the hydraulic motor, which is connected to a flywheel. High-

and low-pressure accumulators result in a smooth hydraulic flow to the motor, while the

flywheel, which is connected to the generator, further smooths out any oscillation. These

systems have been implemented on most of the original WEC technologies, including

by Pelamis Wave Power Ltd. (Henderson, 2006). Nowadays, a very efficient solution is

proposed by Artemis Intelligent Power1.

A similar unit is represented by the hydraulic PTO with electrical rectifier, where

the hydraulic system is used only to increase the speed of the motions from the very

low velocities associated with the motions of the device due to the wave excitation.

Additionally, it enables the use of rotatory electrical generators, which are cheaper than

1. http://www.artemisip.com/

http://www.artemisip.com/
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linear ones. The energy storage function is provided by the electrical system through

the use of batteries. In the electro-mechanical PTO, the increase in velocity is provided

by a gearbox. These systems have the potential of lower capital and maintenance costs

and increased efficiency due to the smaller number of components that may fail. An

example is the PTO system designed by Umbra Cuscinetti (Castellini et al., 2014).

Finally, direct-drive PTO systems have been proposed as well. These are machines that

convert the kinetic energy of the moving body straight to electrical energy through a

linear generator with permanent magnets. The design of the generator is very complex

and performed ad-hoc in order to deal with the very low velocity of the wave motion (<

10 m/s) and the associated large force (or torque for rotatory generators). The moving

body is connected directly to the translator of the generator and power electronics are

necessary to rectify the signal and provide power smoothing. An example of this PTO

can be found in the Seabased point absorber, which has been developed at Uppsala

University over a number of years (Danielsson, 2006; Eriksson, 2007; Waters, 2008;

Stalberg et al., 2008; Lejerskog et al., 2015).

Some more exotic PTO designs have been proposed recently, e.g. through the use of

piezo-electric membranes. An up-to-date description of the state-of-the-art technologies

can be found in the website of Wave Energy Scotland dedicated to their PTO projects2.

Additionally, Salter et al. (2002) and Peñalba Retes and Ringwood (2016) provide a

review of the various PTO systems with a particular focus on their modelling. In this

work, the PTO system is not modelled with the exception of the Seabased device, with

an ideal PTO control force being employed instead for simplicity. Hence, the developed

control strategies mainly deal with the control of the motions of the prime mover, which

can be achieved in practice through the control of the PTO system using conventional

strategies, such as PID control.

2.1.2 Background of dynamic modelling for wave energy converters

Although the control algorithms proposed as part of this work do not rely on explicit

models of the system dynamics to select the control action, models of WECs have

been developed in order to validate the schemes. The complexity of the simulation

model also sets the severity of the control challenge. As a result, due to the real-

time nature of the control strategies, models in the time domain are investigated.

Although ideally non-linear hydrodynamic models should be employed to assess the

performance of the learning algorithms, the duration of the learning process meant that

the computational cost of the simulations would be excessive. Hence, linear models have

been used instead, with the application of some non-linearities to the PTO models.

2. http://www.waveenergyscotland.co.uk/programmes/details/power-take-off/

http://www.waveenergyscotland.co.uk/programmes/details/power-take-off/
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Figure 2.4: Operating regions for WECs and corresponding operational modes, adapted
from Peñalba Retes et al. (2015).

Similarly, unfortunately, the project had no funding for experimental testing, which

should be ideally used to validate the numerical results.

A review of numerical methods for the modelling of the dynamics of WECs can be found

in Li and Yu (2012), with a particular focus on point absorbers. Peñalba Retes et al.

(2015), Giorgi et al. (2016a) and Peñalba et al. (2017) treat the non-linear approaches

more in detail, with the second work dealing mainly with point absorbers. As shown

in Figure 2.4, it is possible to identify three main regions of operation for WECs:

linear, non-linear and highly non-linear regimes. While the first two areas encompass the

normal power generating mode, the last one is specific to the survival mode wave energy

devices have to enter in extreme conditions. Over the years, tools have been developed

for the modelling of WECs in the three regions, which present higher complexity and

computational requirements the more non-linear effects are accounted for.

Linear methods have been investigated first due to their simpler nature and lower

computational cost. These models are based on potential flow theory, carrying across

knowledge from the field of marine hydrodynamics. Although many articles have been

published on the topic, the books by Newman (1977) and Falnes (2005) represent the

most reputable summaries of these methods. Whereas the former mainly deals with

marine hydrodynamics from an offshore engineering and naval architecture perspective,

the latter is specific to wave energy conversion. Thanks to the assumption of ideal,

potential flow, linear methods allow the separation of the force components, so that it is

possible to study their individual contribution to the dynamics of the system. Hence, the

effect of the waves is divided into incident, diffraction and radiation components, as will

be treated in the next section. These force components can be calculated analytically

for specific geometries (Li and Yu, 2012), such as hemispheres and cylinders. However,

for most realistic geometries, it is necessary to use boundary integral equation methods

(Li and Yu, 2012), with commercial packages such as WAMIT (2013), Ansys Aqwa

and open-source software NEMOH (Babarit and Delhommeau, 2015) being standard

in the industry. These tools discretize the body surface with a number of panels in
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order to calculate the hydrodynamic coefficients. WAMIT can also remove the effect of

irregular frequencies (Zhu and Lee, 1994), i.e. numerical errors associated with resonant

frequencies dependent on the internal surface of the body. In addition, the hydrostatic

and mooring restoring forces are modelled as linear functions of the body displacement

and velocity. Initially, linear models were developed in the frequency-domain. Then,

using Cummins (1962) formulation for the radiation force, the equations of motions

of WECs were transformed to the time domain. The time-domain methods enable the

development of superior control strategies for WECs (Peñalba Retes et al., 2015), and

they are fundamental for the modelling of non-linear PTO effects due to end stops

(Pizer and Henderson, 2010).

The non-linear regime corresponding to the power absorbing mode can still be modelled

with potential flow, although some modifications are necessary (Peñalba Retes et al.,

2015). The Froude-Krylov (i.e. incident wave) and hydrostatic forces are now treated as

non-linear, calculating the actual forces at every time step based on the instantaneous

wetted and water-plane areas, respectively. It is clear that this process can present

an extremely high computational cost (Giorgi et al., 2016a). Therefore, techniques

have been proposed for the calculation of the coefficients using analytical formulae

for established geometries (Giorgi et al., 2016a). Similarly, at Pelamis Wave Power

Ltd., the incident wave and hydrostatic coefficients were pre-calculated for a range of

draughts and roll angles to speed up code performance (Pizer and Henderson, 2010).

It is extremely important to notice, however, that non-linear effects on the hydrostatic

force should be modelled only in conjunction with a non-linear Froude-Krylov force,

since otherwise the code performance becomes worse than the linear code (Giorgi

et al., 2016a). This is because of the possible scenario of a WEC flying in air when

no restoring force is applied. Furthermore, non-linear mooring effects can be included

in the modelling of the WEC dynamics, using either a quasi-static or a fully dynamic

approach (Harnois et al., 2015). The latter results in a much higher computational cost,

and it requires the discretization of the mooring lines in a number of finite elements. In

addition, viscous damping effects, which can be significant for geometries with sharp

edges, can be modelled using the Morison et al. (1950) equation. The drag coefficient

used to be calculated from experimental measurements in wave basins, but can now be

obtained from virtual wave basins using computational fluid dynamics (CFD) (Peñalba

Retes et al., 2015; Giorgi et al., 2016a; Davidson et al., 2016).

CFD represent the method of choice for the modelling of WECs under extreme wave

conditions (Li and Yu, 2012; Peñalba Retes et al., 2015). CFD approaches for WECs

usually rely on the solution of the Navier-Stokes equations with two fluids using the

finite-volume approach. Most commonly Reynolds-Averaged Navier-Stokes equations

(RANS) solvers are employed, also relying on commercial software such Ansys CFX, An-
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sys Fluent, Star-CCM+ and (open-source) OpenFoam. In addition, smoothed-particle

hydrodynamics (SPH) and other schemes more specific to wave energy can be employed

as well. A description of these methods goes beyond the scope of this study, with these

approaches treated in Li and Yu (2012) and Peñalba Retes et al. (2015).

In general, CFD approaches provide the best agreement with experimental measure-

ments in tests with high, steep waves, with the quality of the prediction provided by the

three approaches becoming similar in longer, gentler waves (Li and Yu, 2012; Peñalba

Retes et al., 2015). In particular, even the prediction provided by potential theory

with some non-linear components was deemed of sufficient quality by Pelamis Wave

Power Ltd. However, as aforementioned, the more complex the method, the longer the

associated computational cost. In particular, Giorgi et al. (2016a) have shown that the

non-linear methods present computational requirements an order of magnitude greater

than those of linear methods, and CFD approaches up to 5 order of magnitude greater.

This project mainly deals with the development of control strategies for WECs, which

are likely to require a relatively long time (12-24 hours) for convergence. For this

reason, CFD approaches have been discarded. Furthermore, the PTO control force

is expected to be non-linear. Therefore, we decided to employ mainly linear, time-

domain methods to model the dynamics of WECs with a weakly non-linear PTO model.

Although the proposed machine learning strategies rely on non-linear methods and their

use is motivated by the possible improvement they can bring to the control of actual

WEC devices, linear hydrodynamic models have been deemed to be a good platform

for the initial development of the proposed strategies. Additionally, individual WECs

are considered to further reduce the computational cost of the simulations, with the

methods being extensible to the treatment of wave farms. Some non-linear effects, such

as viscous drag and mooring forces, have been included in the analysis in order to assess

the control behaviour under non-linear conditions. Although commercial software have

been developed such as WaveDyn (Lucas et al., 2012), InWave (Combourieu et al.,

2014) and (open-source) WEC-Sim (Ruehl et al., 2014), which rely on potential flow

theory and even include non-linear effects (Lawson et al., 2014; Sirnivas et al., 2016),

we have preferred to develop the modelling tools from first principles in order to obtain

a higher computational performance. In the next section, we describe the theory of

wave-body interactions based on potential flow.
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Figure 2.5: Rigid body with notation used in the derivation of its equations of motion.

Table 2.1: Modes of motion of a WEC.

Mode Component Direction Name

1 x along x-axis surge
2 y along y-axis sway
3 z along z-axis heave
4 φ about x-axis roll
5 θ about y-axis pitch
6 ψ about z-axis yaw

2.2 Theory of wave-body interactions

The theory of wave-body interactions has its origin in the field of marine hydrodyna-

mics. The same equations that will be used here to model WECs were initially developed

to describe the motions of ships and offshore structures in waves. A full derivation of the

equations presented hereafter can be found in Newman (1977) and, more specifically

to WECs, Falnes (2005). Furthermore, the reader is referred back to the nomenclature

of this thesis for the description of each symbol.

The WEC is modelled as a rigid body free to move in six degrees of freedom. These

modes of motions are described in Table 2.1, while the coordinate system is shown in

Figure 2.5.

The system of equations that describes a simple, uncontrolled WEC subject to linear

motion is derived in the following sections in the frequency domain. The time-domain

form is then obtained through Fourier transforms. As these sections are based on

Newman (1977) and Falnes (2005), these references are no longer reported to aid

readability.
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2.2.1 Hydrodynamic model

The behaviour of a fluid is described by pressure and flow velocity. These properties can

be calculated at any point in the fluid domain using the conservation principles for mass

and momentum. In potential flow theory, an ideal fluid is assumed, i.e. incompressible,

irrotational and inviscid.

For an incompressible fluid with constant density ρ, mass conservation states the

equality of the rate of mass entering and exiting a system, and is expressed by the

continuity equation

∇ · ~v = 0, (2.1)

where ~v(x, y, z, t) indicates the flow velocity vector. The conservation of momentum is

represented by the Navier-Stokes equations

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= ~f −∇p+ µ∇2~v, (2.2)

with ~f = [0, 0,−ρg]T being the gravitational force per unit volume, g the gravitational

acceleration, p the fluid pressure and µ the fluid viscosity. CFD approaches find the

fluid pressure and flow velocity by solving the system of equations represented by (2.1)

and (2.2).

However, with the assumption of an inviscid, i.e. µ = 0, and irrotational fluid, i.e.

∇× ~v = 0, this is not necessary. Under these conditions, there exists a scalar function

Φ(x, y, z, t) called velocity potential (hence, the name potential flow theory) such that

~v = ∇Φ. (2.3)

By substituting (2.3) into the continuity equation (2.1), the Laplace equation is obtained

∇2Φ = 0. (2.4)

The velocity potential is obtained from the solution of (2.4), and then the flow velocity

from (2.3).

The assumption of inviscid fluid is used to simplify (2.2) by dropping the last term.

Therefore, it is possible to obtain the Bernoulli equation by integration (2.2) along a

streamline of the velocity field:

p

ρ
+
∂Φ

∂t
+

1

2
(∇Φ)2 + gz = C, (2.5)

with C being an integration constant.

Boundary conditions are necessary to calculate the velocity potential and pressure from
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(2.4) and (2.5). If the rigid body is assumed to be impermeable, the velocity of a fluid

particle on its surface must be zero in the direction normal to the body surface, where

the direction is given by the unit normal vector ~n directed into the fluid domain. For a

body moving with velocity ~vb, the kinematic boundary condition on the body surface

is given by
∂Φ

∂~n
= ~vb · ~n. (2.6)

For a static body, the boundary condition reduces to

∂Φ

∂~n
= 0. (2.7)

Furthermore, assuming the sea floor to be planar and horizontal, the sea-floor boundary

condition can be expressed as

∂Φ

∂z
= 0 on z = −h, (2.8)

where h is the water depth.

An additional kinematic condition must be specified on the free water surface, which

is described by

z = ζ(x, y, t), (2.9)

where ζ is the wave elevation. The free-surface kinematic condition states that a fluid

particle on the free-surface is assumed to remain on the free surface, and is then

expressed as

∂ (z − ζ(x, y, t))

∂t
+ ~v · ∇ (z − ζ(x, y, t)) = 0 on z = ζ(x, y, t). (2.10)

By substituting (2.3) into (2.10), an explicit version of the kinetic free surface boundary

condition is obtained:

∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
+
∂Φ

∂y

∂ζ

∂y
− ∂Φ

∂z
= 0 on z = ζ(x, y, t). (2.11)

On the free surface (z = 0), the water pressure equals the atmospheric pressure patm.

Assuming the fluid to be motionless and neglecting the surface tension at the air-

water interface, the constant of integration in the Bernoulli equation (2.5) is obtained

as C = patm/p. Therefore, it is possible to define the dynamic free surface boundary

condition as

gζ +
∂ζ

∂t
+

1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
]

= 0 on z = ζ(x, y, t). (2.12)
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2.2.1.1 Linear wave theory

On the one hand, the Laplace equation (2.4) expressing the velocity potential is linear;

on the other hand, the free surface conditions (2.11) and (2.12) are non-linear. Linear

wave theory is used to simplify these conditions so as to obtain a linear relationship

between the motion of and forces acting on the rigid body and the wave amplitude.

An intermediate step is to express the velocity potential as proportional to the wave

elevation.

Equations (2.11) and (2.12) can be linearised by neglecting higher-order terms and by

approximating the free-surface to z = 0 rather than (2.9). This assumes a small wave

elevation as compared with the wave length. As a result, the linearised free-surface

kinematic and dynamic boundary conditions become

∂ζ

∂t
=
∂Φ

∂z
on z = 0, and (2.13a)

gζ +
∂Φ

∂t
= 0 on z = 0, (2.13b)

respectively. The combined free-surface boundary condition is thus

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 on z = 0. (2.14)

2.2.1.1.1 Plane harmonic waves

For harmonically oscillating planar waves with angular frequency ω, the velocity po-

tential can be expressed as

Φ(x, y, z, t) = Re
(

Φ̂(x, y, z)eiωt
)
. (2.15)

By substituting the trial solution into (2.4), the velocity potential can be computed by

solving the Laplace equation ∇2Φ̂ = 0 using the method of the separation of variables.

Falnes (2005) shows that for planar waves of infinite width, the following particular

solution can be obtained using (2.8) and (2.14):

Φ̂ = − g

iω
ζa

cosh(kz + kh)

cosh(kh)
e−ikx cosβ−iky sinβ, (2.16)

where ζa is the amplitude of the wave elevation, k = 2π/λ the wave number, with λ being

the wave length and β the wave direction. The assumption of planar waves is realistic

near the shoreline, particularly if the bathimetry and geography of an area ensures

waves are channelled towards the coast (Holthuijsen, 2007; Cruz, 2008). Conversely, in

deeper waters, wave spreading should be taken into account.
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The wave number is related to the wave frequency by the dispersion relation

ω2 = gk tanh(kh). (2.17)

By reformulating the free-surface boundary condition (2.12) as

ζ̂ = − iω
g

Φ̂|z=0, (2.18)

the wave elevation can be calculated as

ζ̂ = ζae
−ikx. (2.19)

From (2.3) and (2.16), it is possible to calculate the fluid flow velocity vector as

~vx =
∂Φ̂

∂x
= ωζa cosβ

cosh(kz + kh)

sinh(kh)
e−ikxcosβ−ikysinβ, (2.20a)

~vy =
∂Φ̂

∂x
= ωζa sinβ

cosh(kz + kh)

sinh(kh)
e−ikxcosβ−ikysinβ, (2.20b)

~vz =
∂Φ̂

∂x
= iωζa

sinh(kz + kh)

sinh(kh)
e−ikxcos(β)−ikysinβ. (2.20c)

Using the linearised Bernoulli equation, i.e. ignoring (∇Φ)2 from (2.5), the pressure can

be obtained as the sum of a hydrodynamic and hydrostatic term:

p− patm = − ρ
∂Φ

∂t︸︷︷︸
dynamic

− ρgz︸︷︷︸
static

. (2.21)

Therefore, it is possible to express the hydrodynamic pressure in complex form as a

function of the velocity potential Φ̂ or the wave amplitude as

p̂ = −iωρΦ̂ = ρgζa
cosh(kz + kh)

cosh(kh)
e−ikxcos(β)−ikysinβ. (2.22)

While (2.16) provides a linear relationship between the velocity potential and the wave

elevation, the wave elevation and the hydrodynamic pressure are related by (2.22).
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2.2.1.1.2 Dispersive waves

Gravity ocean waves are dispersive, i.e. their velocity of propagation is dependent on

their frequency of oscillation. The velocity of propagation of a single wave is denoted

by the phase velocity

vp =
ω

k
=
g

ω
tanh(kh) (2.23)

for constant depth h. Waves with different frequencies travel at different velocities. The

group velocity describing the velocity of the envelope modulating of the dispersive wave

is defined as

vg =
dω

dk
=

g

2ω

(
1 +

2kh

sinh(2kh)

)
tanh(kh). (2.24)

2.2.1.2 Forces acting on the rigid body

Defining the three-dimensional vectors of the hydrodynamic force and moment applied

to the body as ~f and ~m, respectively, the six-dimensional generalised force vector is

expressed as

f =

[
~f

~m

]
. (2.25)

The hydrodynamic forces and moments acting on the WEC are thus computed by

integrating the pressure over the wetted surface area as

f = −
∫∫

S
pndS, (2.26)

where the six-dimensional normal vector is defined as

n =

[
~n

~s× ~n

]
. (2.27)

The vector ~s expresses the position of the infinitesimal surface element dS with respect

to the selected reference system, as shown in Figure . The velocity of the element is given

by ~vb = ~u+~Ω×~s, with ~u and ~Ω being the three-dimensional linear and angular velocity

of the floating body, respectively. The six-dimensional generalised velocity vector can

thus be expressed as

v =

[
~u

~Ω

]
. (2.28)

Assuming the motions of the rigid body to be small as compared with the wave

amplitude, the velocity potential can be linearised and expressed as the sum of three

contributions, namely due to wave incidence (Φi), diffraction (Φd) and radiation effects
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(Φr):

Φ = Φi︸︷︷︸
incident

+ Φd︸︷︷︸
diffracted

+ Φr︸︷︷︸
radiated

. (2.29)

The first term describes the effect due to the unperturbed incident wave, while the

second term expresses the disturbance to the incident wave due to the presence of the

body. The radiation component describes the effects that the oscillating body exerts

on a calm fluid (i.e. in the absence of incoming waves).

Substituting (2.15), (2.21) and (2.22) into (2.26) yields the complex generalised force

vector

f̂ = iωρ

∫∫
S

Φ̂ndS = iωρ

∫∫
S

Φ̂indS︸ ︷︷ ︸
incident force

+ iωρ

∫∫
S

Φ̂dndS︸ ︷︷ ︸
diffraction force

+ iωρ

∫∫
S

Φ̂rndS︸ ︷︷ ︸
radiation force

. (2.30)

2.2.1.2.1 Radiation force

Owing to linearity, the velocity potential associated with the radiated waves Φ̂r is

given by the linear combination of the potentials associated with the waves radiated by

oscillation in each mode. In addition, the radiation potential associated with each mode

is proportional to the oscillation amplitude. Therefore, the radiation velocity potential

can be expressed for the rigid body as

Φ̂r =
6∑
j=1

φj v̂j = φ · v̂, (2.31)

where φj(x, y, z) is a function of position, but independent of time, and where v̂ is the

complex generalised velocity vector.

The coefficients φj should be interpreted as the radiated velocity potential when the

body oscillates in the jth mode with unit velocity amplitude. Their calculation is the

aim of the radiation problem, which is achieved by having Φ̂r satisfy the Laplace

equation (2.4) and the free-surface (2.14), sea-floor (2.8) and rigid-body (2.6) boundary

conditions. In order to ensure a unique solution is found, an additional boundary

condition at infinite distance from the body is specified based on the principle of

conservation of energy:

Φ̂r ∝ R−1/2e−ikR, (2.32)

where R→∞ is the distance from the rigid body.

Substituting (2.31) into the radiation component of (2.30) yields the following lth term

of the radiation force vector f̂ when the body is forced to oscillate in the jth mode
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only:

f̂r,l = iωρ

∫∫
S
φj v̂jnldS. (2.33)

Since the body is assumed to be rigid, the terms of the generalized velocity vector v̂

are constant in the integration over the body surface. Hence, (2.33) can be re-written

as

f̂r = −Z(ω)v̂ in matrix form, or (2.34a)

f̂r,l = −Zl,j v̂j , with Zl,j = −iωρ
∫∫

S
φjnldS. (2.34b)

This means that the radiation force is linearly proportional to the body velocity, with

the constant of proportionality being given by Z, known as the radiation impedance

matrix. The negative sign indicates that the radiation force opposes the body motion.

Applying the boundary condition on the body surface (2.6) results in the following

expression for the radiation impedance:

Zl,j = −iωρ
∫∫

S
φj
∂φl
∂n

dS. (2.35)

It is clear that the radiation matrix is complex and frequency-dependent. As a result,

it is usually expressed as

Z(ω) = B(ω) + iωA(ω), (2.36)

where A and B are the frequency-dependent added mass and hydrodynamic damping

matrices, respectively. When a body is accelerating in a fluid, some amount of the

fluid must accelerate around the body as well. Therefore, greater force is required to

accelerate the body in a fluid than in a vacuum. The added mass represents the extra

inertia that needs to be added to the body in order to match the increase in force. In

the case of a floating WEC, the added mass of the part of the body exposed to air is

neglected. The hydrodynamic damping represents the damping effect water has on the

oscillating body. However, this must not be confused with viscous damping, which is

ignored by potential flow theory, since the fluid is assumed to be inviscid.

2.2.1.2.2 Excitation force

Similarly to the radiation problem, the incident and diffraction velocity potentials must

satisfy the Laplace equation (2.4) and meet the boundary conditions on the free-surface

(2.14), sea-floor (2.8), rigid-body (2.6) and at infinite distance from the body (2.32).

The diffraction potential represents the disturbance caused by a force motion of the

body with a resulting normal velocity equal and opposite to the velocity of the incident

wave. Therefore, assuming that the incident velocity potential is linearly proportional
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to the wave amplitude, then so is the diffraction potential. Hence, the wave excitation

force, which can be considered as the sum of the incident and diffraction wave force,

can be expressed as a function of the wave elevation:

f̂e = H(ω, β)ζ̂, (2.37)

where the vector of frequency- and direction-dependent excitation force coefficients is

given by

H(ω, β) = iωρ

∫∫
S

(
Φ̂0

i + Φ̂0
d

)
ndS. (2.38)

In (2.38), Φ̂0
i and Φ̂0

d are the incident and diffraction velocity potentials per wave unit

amplitude, which can be obtained, for instance, by normalizing (2.16) with respect to

the wave amplitude.

An alternative approach for the calculation of the excitation force was proposed by

Haskind in 1957 (Newman, 1962):

f̂e,j = iωρ

∫∫
S

(
Φ̂i
∂φj
∂n
− φj

∂Φ̂i

∂n

)
dS. (2.39)

As it can be seen, this technique employs the solution of the radiation problem to

find the excitation force. Not only does this method represent an effective tool for

the validation of (2.37), but it is also more computationally efficient (WAMIT, 2013).

Additionally, it can be run as part of the post-processing after the radiation coefficients

have been calculated.

In irregular waves, the principle of superposition is employed to obtain the wave exci-

tation force owing to the assumption of linearity. Thus, considering K individual waves

each of which with elevation ζ̂k, frequency ωk and direction βk, the total excitation

force is given by

f̂e =
K∑
k=1

H(ωk, βk)ζ̂k. (2.40)

2.2.1.2.3 Hydrostatic force

The hydrostatic force represents the restoring force exerted by the water on a floating

rigid body. By setting patm = 0 in the Bernoulli equation (2.21), the hydrostatic

component of the pressure can be calculated as

p = −ρgz. (2.41)
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The generalized hydrostatic force vector is then computed by integrating the hydrostatic

pressure over the body surface S:

fh = ρg

∫∫
S
zndS. (2.42)

The relationship between the integral in (2.42) and the body position and attitude, i.e.

orientation, with respect to an inertial reference frame is non-linear. Hence, linearisation

will be necessary. Let us first define the six-dimensional vector ξ that describes the

configuration of the body with respect to an inertial reference frame according to Table

2.1 as

ξ =
[
x y z φ θ ψ

]T
, (2.43)

and the displacement from the equilibrium position ξ0 as η:

η = ξ − ξ0. (2.44)

Assuming small perturbations, the hydrostatic force can be linearised with respect to

the displacement vector η as follows:

fh = −Cη, (2.45)

where C ≥ 0 is the positive semidefinite hydrostatic restoring coefficients matrix. The

full derivation of the linearised form can be found in Newman (1977).

2.2.2 Multiple bodies

The equations presented above can be easily extended to the treatment of the interacti-

ons between N rigid bodies. Due to the assumption of linearization, the only change is

in the number of components of the generalised vectors, which now becomes 6N , i.e. 6

degrees of freedom per body. For instance, the term A2,9 indicates the added mass the

1st body experiences in sway when the 2nd body is oscillating in heave. This notation

follows the convention of WAMIT (2013).

Since restoring effects of one body should not interfere with other bodies, the overall

restoring stiffness matrix is given by

Ch =



C1 0 . . . 0 . . . 0

0 C2 . . . 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . Cn . . . 0
...

... . . .
...

. . .
...

0 0 . . . 0 . . . CN


, (2.46)



2.2. Theory of wave-body interactions 26

where Cn is the 6-dimensional stiffness matrix of the nth body.

2.2.3 Equation of motion in the frequency domain

The motion of a moving body is described by Newton’s law as

Ma =
∑

f , (2.47)

where M is the mass matrix, a the six-dimensional generalised acceleration vector and∑
f indicates the sum of all forces and moments acting on the body. The mass matrix

is dependent on the selected reference system. In the special case of system of reference

being centred at the centre of gravity of the body, G, the mass matrix is given by

M =

[
mI 0

0 IG

]
, (2.48)

where m is the body mass and IG indicates the inertia tensor with respect to G, while

I is the three-dimensional identity matrix. Similarly to the stiffness matrix, the mass

matrix for N bodies is given by

M =



M1 0 . . . 0 . . . 0

0 M2 . . . 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . Mn . . . 0
...

... . . .
...

. . .
...

0 0 . . . 0 . . . MN


, (2.49)

The forces acting on the body due to the interaction with the waves are due to

wave excitation, radiation and hydrostatic restoring effects. Equation (2.47) may be

extended to the treatment of N bodies, since the equations are linear in their variables.

Considering the simplest case of a sinusoidal wave, (2.47) becomes

Ma− f̂r − f̂h = f̂e, (2.50)

where a = iωv̂. Substituting the results from (2.37), (2.34b) and (2.45) into (2.50)

yields:

M iωv̂ +Z(ω)v̂ +Ch
v̂

iω
=

[
iω (M +A(ω)) +B(ω) +

Ch

iω

]
v̂ = H(ω, β)ζ̂. (2.51)

Substituting η̂ = v̂/iω into (2.51) yields the following equation of motion in the
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frequency domain:

{
[
C − ω2 (M +A(ω))

]
+ iωB(ω)}η̂ = H(ω, β)ζ̂. (2.52)

In this work, a single wave direction is considered for simplicity: β = 0. Hence, effects

due to wave spreading will no longer be treated in this thesis. From (2.52) it is possible

to express the response amplitude operator (RAO), i.e. the response of the WEC(s) for

unit wave amplitude, as

η̂

ζ̂
= {
[
C − ω2 (M +A(ω))

]
+ iωB(ω)}−1H(ω) (2.53)

2.2.4 Equation of motion in the time domain

The equation of motion of a WEC in the time domain needs to be applicable to irregular

waves as well as account for the memory effects in the fluid-body interaction due to

radiated waves. Cummins (1962) was the first to propose a model that could describe the

transient response thanks to the adoption of a test function for the radiation problem

that comprises of two terms: while the first one considers the instantaneous effects of

the fluid acceleration, the second one deals with the memory effects. The candidate

solution to the radiation problem is thus

Φr(t) =
6N∑
j=1

φj η̈j(t) +
6N∑
j=1

∫ t

−∞
χj(t− τ)η̇j(τ)dτ (2.54)

subject to satisfying the Laplace equation (2.4) and the boundary conditions (2.8),

(2.14), (2.32) and (2.12). While the first term represents the instantaneous hydrodyn-

amic response, the convolution integral describes the memory effect, with χ being the

impulse response. As a result of the velocity potential in (2.54), the radiation force

according to Cummins (1962) is given by

fr(t) = −µη̈(t)−
∫ t

−∞
K(t− τ)η̇(τ)dτ, (2.55)

where µ ∈ <6N×6N is a matrix of constants is a matrix of constants andK(t) ∈ <6N×6N

is the radiation impulse response function matrix. K(t) is symmetric and its elements

are zero for negative times, i.e. the relationship between the radiation force and the

body velocity is causal (Falnes, 2005).

Similarly, the excitation force is also described by a convolution integral as described

in Falnes (2005):

fe(t) =

∫ ∞
−∞

h(t− τ)ζ(τ)dτ. (2.56)
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However, as discussed in Falnes (1995), the excitation force is non-causal as opposed to

the radiation force, i.e. fe(t0) also depends on future values of the wave elevation ζ(t),

for t > t0. Furthermore, the excitation impulse response vector h(t) ∈6N×N is different

from zero for negative times.

In fact, the excitation force coefficients in the frequency domain, H(ω), is the Fourier

transform of the excitation impulse response function h(t). Similarly, by applying the

Fourier transform to (2.55), it is possible to obtain the Ogilvie (1964) relations

B(ω) =

∫ ∞
0
K(t) cosωtdt, (2.57a)

A(ω) = µ− 1

ω

∫ ∞
0
K(t) sinωtdt. (2.57b)

As the impulse response K(t) is square integrable, the following equations hold true

(Kristiansen et al., 2006):

lim
ω→∞

∫ ∞
0
K(t) cosωtdt = lim

ω→∞

∫ ∞
0
K(t) sinωtdt = 0, (2.58a)

lim
ω→∞

B(ω) = 0, (2.58b)

lim
ω→∞

A(ω) = A(ω) = µ. (2.58c)

Hence, the matrix of constants µ in (2.55) is equal to the added mass at infinite wave

frequency.

Similarly, using inverse Fourier transforms it is possible to show that (Falnes, 2005)

K(t) =
2

π

∫ ∞
0
B(ω) cosωtdt, (2.59a)

K(t) = − 2

π

∫ ∞
0

ω (A(ω)−A(∞)) sinωtdt. (2.59b)

The integral in (2.59a) converges faster than the one in (2.59b); hence, (2.59a) is

typically employed to calculate the radiation impulse response function using frequency-

domain coefficients.

In conclusion, the time-domain equation of motion corresponding to (2.52) is given by

(M +A(∞)) η̈(t) +

∫ t

∞
K(t− τ)η̇(τ)dτ +Cη(t) =

∫ ∞
−∞

h(t− τ)ζ(τ)dτ. (2.60)
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2.2.5 Wave elevation generation

From (2.56), it is clear that the wave elevation time series is required in order to obtain

the wave excitation force. For simplicity, here we consider planar, linear waves with no

spreading. Additionally, the body is assumed to be sited at the centre of the reference

system, about which point all forces and moments are taken.

2.2.5.1 Regular waves

The time-dependent wave elevation of a planar, sinusoidal wave with amplitude ζa and

period T is given by (Holthuijsen, 2007)

ζ(t) = ζasin(ωt+ kx+ γ), (2.61)

where the circular wave frequency is ω = 2π/T and γ in this case represents a phase.

Assuming γ = 0 and remembering that x = 0 at the origin, (2.61) can be expressed as

ζ(t) = ζaR(t) sin(ωt), (2.62)

where R is a ramp function that prevents divergence of the numerical solution of teh

system dynamics during the initial transient response. This function is taken from

NREL (2015) and is expressed as

R(t) =

 0.5

[
1 + cos

(
π +

πt

tr

)]
if t < tr (2.63a)

1 otherwise, (2.63b)

where tr is the specified duration of the initial ramp function.

2.2.5.2 Irregular waves

In linear wave theory, the wave elevation in irregular waves can be obtained as the

superposition of nw individual sinusoidal waves. The content in real random waves is

typically represented through a wave spectrum S(ω) (Holthuijsen, 2007), from which

the individual wave components can be determined. Here only two of the most common

wave spectrum models are employed: Bretschneider and JONSWAP. While the former

is more representative of oceanic waters, e.g. off the West coast of Scotland, the latter,

which stands for JOint North Sea WAve Project, is more suitable for shallower, enclosed

seas, such as the North Sea (Holthuijsen, 2007).

The wave spectra equations are taken from Det Norske Veritas (2010), where the

Bretschneider spectrum is labelled as Pierson-Moskowitz. The Bretschneider and JONS-
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WAP spectra are obtained as

SB(ω) =
5

16
H2

s

ω4
p

ω5
exp

[
−5

4

(
ω

ωp

)−4
]
, (2.64a)

SJ(ω) = (1− 0.287 ln γ)
5

16
H2

s

ω4
p

ω5
exp

[
−5

4

(
ω

ωp

)−4
]
γ

exp
[
−0.5

ω−ωp
σ(ω)ωp

]
, (2.64b)

respectively, where Hs is the significant wave height, ωp = 2π/Tp is the peak circular

wave frequency and Tp the peak wave period, γ = 3.3 is a non-dimensional peak shape

parameter (Det Norske Veritas, 2010) and

σ(ω) =

{
0.07 if ω ≤ ωp , (2.65a)

0.09 otherwise. (2.65b)

The JONSWAP is a peakier spectrum and it is expected to be valid for the range

3.6 < Tp/Hs < 5 (with Tp and Hs expressed in s and m, respectively) (Det Norske

Veritas, 2010).

Once the wave spectrum is known for nw individual values of the circular wave fre-

quency, with a circular wave frequency step of ∆ω, the amplitude of each wave compo-

nent is determined as (Holthuijsen, 2007)

a(ω) =
√

2S(ω)∆ω. (2.66)

Furthermore, each individual wave presents a different, random phase γi. Hence, the

wave elevation in irregular waves is obtained as

ζ(t) = R(t)

nw∑
i=1

a(ωi) sin(ωit+ γi), (2.67)

2.2.5.3 Obtaining sea state parameters

Energy content in waves usually varies every 0.5 to 6 hours, with average wave condi-

tions being labelled as sea states (Holthuijsen, 2007). The wave height and period are

two parameters that are used to define average wave conditions. As aforementioned,

the significant wave height is the statistical quantity used to characterise the wave

height. Its value corresponds to the mean of the 33% observed highest wave heights

per sea state, since this corresponds approximately to the wave height that could be

recorded by an observer on a ship (Holthuijsen, 2007). Furthermore, the significant wave

height can also be computed more formally from the 0th moment of the wave spectrum
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(Holthuijsen, 2007):

Hs = 4

√∫ ∞
0

S(ω)dω. (2.68)

The peak wave period is the period corresponding to the maximum point of the wave

period spectrum. Like the significant wave height, it can be calculated formally as

(Holthuijsen, 2007)

Tp =

(∫∞
0 ω−2S(ω)dω

) (∫∞
0 ωS(ω)dω

)(∫∞
0 S(ω)dω

)2 . (2.69)

Although the peak wave period is fundamental for the generation of waves using wave

spectra models, the energy and mean zero-crossing wave periods are more commonly

used when extracting information about the current sea state using wave buoys (Holt-

huijsen, 2007). While the former represents the period of regular waves having the same

energy content as the analysed sea state, the latter indicates the mean period of waves

crossing ζ = 0. Similarly to Hs and Tp, they can be calculated as

Te =

∫∞
0 ω−1S(ω)dω∫∞

0 S(ω)dω
, (2.70a)

Tz =

√ ∫∞
0 S(ω)dω∫∞

0 ω2S(ω)dω
, (2.70b)

respectively (Holthuijsen, 2007). In particular, the energy wave period is usually most

accurate, since it is least affected numerical errors associated with very small wave

frequencies (Holthuijsen, 2007). Realistic sea states have a significant wave height

ranging from 0 to 12 m and an energy wave period ranging from 5 to 18 s (Holthuijsen,

2007), although there may be exceptions.

The extraction of a wave spectrum from a time-domain wave trace is achieved through

spectral analysis and the use of Fourier transforms as described in Appendix C of

Holthuijsen (2007).

2.2.6 Approximation of the radiation force

Considering a practical implementation, the solution of the radiation and excitation

convolution integrals can be very computationally demanding. On the one hand, the

excitation force may be pre-generated for all time steps of the analysed wave trace, since

it depends on the wave elevation signal. On the other hand, this is not possible for the

radiation force, since it is dependent on the body velocity vector. Therefore, for the

modelling of WECs, it is standard practice to approximate the radiation convolution

integral to speed up the simulations (Ringwood et al., 2014; Korde and Ringwood,
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2016). In particular, the benefit of approximating the radiation convolution with a

state-space approach is discussed in Taghipour et al. (2008) in terms of computational

resources. This improvement is due to the Markovian property of state-space models,

where the current state of the model summarises all past information (Pérez and

Fossen, 2008). Pérez and Fossen (2008) present different frequency- and time-domain

methods for the approximation of the radiation force based on system identification.

Here, frequency-domain system identification is used, as described in Forehand et al.

(2016).

Using inverse Fourier transforms, the frequency-domain radiation impedance function

may be obtained as

K(ω) =

∫ ∞
0
K(t)e−iωtdω = B(ω) + iω [A(ω)−A(∞)] . (2.71)

Matrices A, B and K are all symmetric (Falnes, 2005). Each radiation impedance

function Ki,j(ω) is then fitted with a rational transfer function K̂i,j(ω) with polynomials

in the numerator and denominator of order m and n, respectively (Pérez and Fossen,

2008; Forehand et al., 2016):

K̂i,j(s,θ) =
P (s,θ)

Q(s,θ)
=
pms

m + pm−1s
m−1 + · · ·+ p0

sn + qn−1sn−1 + · · ·+ q0
(2.72)

where m < n, s = iω as per standard control literature (Franklin et al., 2008) (not to

be confused with states in Chapter 4) and the vector of parameters is defined as

θ =
[
pm . . . p1 qn−1 . . . q0

]T
. (2.73)

A first approximation to the parameters vector is found using least-squares error fitting

(Levy, 1959). Then, this result is employed as the initial starting point for a second

algorithm that relies on a damped Gauss-Newton iterative search method (Dennis and

Schnabel, 1983). This second step is required to guarantee the stability of the computed

transfer function (Forehand et al., 2016), i.e. it ensures that its poles, i.e. the zeros of

the denominator polynomial, are all in the left half-plane (Franklin et al., 2008). From

a practical perspective, (2.72) is implemented in Matlab using the invfreqs function.

The orders m and n are increased incrementally for each radiation impedance function

until the root-mean-square error between Ki,j and K̂i,j is less than 1%.

Once all approximate transfer functions have been obtained for all degrees of freedom

(hence, 6N×6N in total, although symmetry greatly reduces the number of individually

distinct transfer functions), the system is converted into a single equivalent state-space

model. However, for each set of radiation convolution terms there is an infinite set of

equivalent state-space models, most of which will be numerically unstable (Forehand
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et al., 2016). Even formulations that have been constructed to be mathematically stable

may become unstable as a result of number overflow and truncation, which can result in

a change in the roots of the characteristic equation (eigenvalues of the system matrix).

In the application to the approximation of the convolution integral, Forehand et al.

(2016) have found a modified version of the controllable canonical form to suffer from

this problem. For this reason, they have proposed the more robust approach of first

converting each transfer function to zero-pole-gain form by factorizing the numerator

and denominator polynomials. Subsequently, the resulting system of zero-pole-gain

models is converted to a single state-space system in modal canonical form (Franklin

et al., 2008). Hence, the resulting approximate radiation force is given by

ẋss(t) = Assxss(t) +Bssuss(t), (2.74a)∫ t

−∞
K(t− τ)η̇(τ)dτ ≈ yss(t) = Cssxss(t) +Dssuss(t), (2.74b)

where uss = η̇, xss and yss are the input, state and output vectors, and Ass, Bss, Css

and Dss are the state, input, output, and feedthrough matrices, respectively. In the

case of the analysed point absorber geometries, Dss = 0.

2.2.7 Additional non-linear forces

The time-domain model in (2.60) is based on linear hydrodynamics and ignores some

realistic non-linear effects. In particular, the following effects can have a significant effect

on the WEC dynamics and may be added to the previously obtained model based on

potential flow theory:

• PTO system force: this is the force exerted by the PTO system onto the WEC,

whose generalised vector is represented by fPTO. This force represents the main

control input. As such, it will be treated in the next chapter.

• Mooring force: this is the restoring force exerted by the mooring system onto the

WEC, which will be treated in Section 2.2.7.1.

• Viscous damping force: this is a damping force caused by hydrodynamic viscous

effects. Although the fluid is considered inviscid by potential wave theory, water

viscosity can be significant in highly energetic waves and for particular device

geometries (Cruz, 2008). A simple, but effective model for the treatment of viscous

effects in conjunction with potential flow theory was proposed by Morison et al.

(1950) and is treated in Section 2.2.7.2.

• Non-linear hydrostatic force: although a linearised hydrostatic force is employed

in (2.60), in fact the restoring effects are dependent on the instantaneous water-

plane area.

• Non-linear Froude-Krylov force: like the hydrostatic force, the actual Froude-
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Krylov, or wave excitation force, changes based on the instantaneous underwater

geometry.

Parametric approaches have been proposed for the treatment of non-linear hydrostatic

and Froude-Krylov forces in a computationally efficient manner, as for instance discus-

sed by Giorgi et al. (2016a). A similar approach was adopted at Pelamis Wave Power

Ltd. for the development of a more realistic model of the WEC dynamics in high waves

in conjunction with strip theory (Pizer and Henderson, 2010). Although the adoption of

these techniques results in a prediction of the WEC motion of higher quality, only linear

Froude-Krylov and hydrostatic forces have been considered to lower the computational

cost of the simulations.

2.2.7.1 Mooring forces

Mooring forces can be analysed with different techniques of increasing complexity and

quality of prediction: linear model, quasi-static and dynamic (Harnois et al., 2015).

Although non-linear mooring forces have been considered for control applications, for

instance by Richter et al. (2013), here only a simplified, linear mooring force is analysed

(Bacelli, 2014; Korde and Ringwood, 2016):

fm = −Bmη̇ −Cmη, (2.75)

where fm is the generalised mooring force vector and Bm and Cm the mooring damping

and stiffness matrices, respectively.

2.2.7.2 Viscous damping force

Viscous damping effects can be modelled with the simple model proposed by Morison

et al. (1950):

fd = −1

2
ρCdAd|η̇ − vG| (η̇ − vG) , (2.76)

where Cd is the diagonal matrix of the drag coefficients, Ad is a characteristic area

specific to each body and vG is the generalized vector of the unperturbed flow velocity at

the centre of gravity of each body. Experimental tests should be performed to estimate

the drag coefficients, as for instance done by Lok et al. (2014). However, identifying

Cd in a numerical wave tank with CFD as in Bhinder et al. (2011) may speed up and

reduce the cost of the process (Giorgi et al., 2016a).



2.2. Theory of wave-body interactions 35

2.2.8 Time-domain, dynamic model of wave energy converters

Using (2.74a), (2.74b), (2.75) and (2.76), the equation of motion in time domain in

(2.60) may be re-written as

(M +A(∞)) η̈ +Bmη̇ +Cssẋss + (C +Cm)η = fe + fPTO + fd, (2.77a)

ẋss = Assxss +Bssη̇, (2.77b)

where the time dependence of the generalized vectors has been dropped to simplify the

notation. The reader is reminded that in (2.77a) and (2.77b) M indicates the inertia

matrix of the WEC(s), A(infty) the added mass matrix at infinite wave frequency, Bm

and Cm the damping and stiffness matrices associated with the mooring, respectively,

C the hydrostatic restoring stiffness matrix, fe the excitation force vector, fPTO the

PTO force vector and fd the viscous damping force vector. Additionally, η is the vector

of the displacement of the WEC(s) in all degrees of freedom and xss the vector of the

state-space system that is used to approximate the convolution integral associated with

the radiation force.

Throughout this work, the system of the equations of motion has been solved nume-

rically. This requires the addition the additional variable ν(t) = η̇(t). Rearranging

(2.77a) and (2.77b), it is possible to obtain

ẋ(t) = Px(t) +Qu(t), where (2.78a)

x =
[
ηT νT xTss

]T
, (2.78b)

u = fe + fPTO + fd, (2.78c)

P =

 0 I 0

− (M +A(∞))−1 (C +Cm) − (M +A(∞))−1Bm − (M +A(∞))−1Css

0 Bss Ass

, (2.78d)

Q =

 0

(M +A(∞))−1

0

 . (2.78e)

Equation (2.78) can then be solved numerically using any from a range of well docu-

mented numerical solvers (Süli and Mayers, 2003). In this work, fixed-step solvers have

been adopted, since the developed control schemes could have been implemented on a

real system if there had been sufficient time and resources for experimental testing. In

particular, either a first-order-accurate Euler scheme or a fourth-order-accurate Runge-

Kutta method have been employed. The former was found to result in sufficient accuracy

with the linear models, whereas the latter was preferred with the weakly non-linear

model of the PTO unit.
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Figure 2.6: Diagram of the point absorbers simulated in this thesis.

2.3 Modelled wave energy converters

As aforementioned, in this thesis only point absorbers are considered. In particular,

three distinct devices have been analysed as shown in Figure 2.6: a simple float that

reacts against the sea floor (Figure 2.6a), a two-body point absorber that comprises of

a float and a reaction plate (Figure 2.6b), and a float that reacts against a moving mass

within a PTO system sited at the sea bottom (Figure 2.6c). The difference between the

first and last devices consists in the model of the PTO system, which is represented by

a realistic non-linear model in the third study. The last two devices have been inspired

from actual WECs, while the former presents a simple case study first introduced by

Newman (1977).

In this chapter, the motions of the three machines are modelled as described above. The

commercial software WAMIT (2013) is used to extract the respective hydrodynamic

coefficients assuming deep water. Furthermore, the response of each device in both

regular and irregular waves is shown when no control force is applied. The wave elevation

of the two traces can be seen in Figure 2.11 and Figure 2.12 for regular waves with

unit amplitude and a period of 8 s and irregular waves with a Bretschneider spectrum

and Hs = 2 m and Tp = 9.25 s (corresponding to Te = 8 s from spectral analysis),

respectively. Sea water with a density ρ = 1025 kg/m3 is considered. The gravitational

acceleration is assumed to be g = 9.81 m/s2.

2.3.1 Point absorber with single degree of freedom

First of all, a simple point absorber that comprises a float reacting against the sea

floor is considered, as shown in Figure 2.7a and Figure 2.7b for a hydraulic and an

electromechanical PTO system, respectively. With the former system, the mechanical

energy derived from the motions of the float due to the wave excitation with respect to

the sea floor is converted into hydraulic and then electrical energy by the PTO system.

With the latter system, the mechanical energy is converted directly into electrical

energy. For simplicity, the body is assumed to be constrained to motions in heave.
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The corresponding free-body diagram can be seen in Figure 2.8.

2.3.1.1 Hydrodynamic coefficients

The hydrodynamic coefficients for the selected floater geometry have been calculated

using the commercial software WAMIT (2013) by employing the analytical geometry

and higher-order methods functions. The non-dimensional coefficients are shown in

Figure 2.9. Note that the non-dimensional coefficients in heave and frequency are

calculated as follows (Falnes, 2005):

A∗3,3(ω) =
A3,3

ρ∇
(2.79)

B∗3,3(ω) =
B3,3

ρ∇
(2.80)

f∗3 (ω) =
fe,3

ρgζa∇2/3
(2.81)

ω∗ = ω

√
r

g
(2.82)

where r and ∇ are the radius and displaced volume of the cylinder, respectively.

Additionally, the magnitude of the frequency-domain response amplitude operator

obtained from (2.53) is plotted in Figure 2.10 against the wave period.

2.3.1.2 Time-domain dynamic model

Using the method described in Section 2.2.6, it is possible to obtain the following

matrices for the state-space approximation of the radiation coefficients:

Ass =


−0.4625 1 0 0

−0.3291 −0.4625 0.3480 0.9764

0 0 −0.5580 1.1738

0 0 −1.1738 −0.5580

 ,Bss =


0

134.6859

0

126.0996

 , (2.83a)

Css =
[
−61.5541 129.5137 0 0

]
,Dss = 0. (2.83b)

These matrices present a maximum condition number of 4.6106. The added mass in

heave at infinite wave frequency is given by A3,3(∞) = 243.081 tonnes. In order to

obtain the equations of motion of the float, it is necessary to introduce the variable

w = ż that represents the vertical velocity of the body, with z indicating the heave

displacement, as shown in Figure 2.8. The equations of motion of the float is expressed

by (2.78). Since the float is constrained to motions in heave, the matrices and vectors
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Figure 2.7: Diagram of the single-degree-of-freedom point absorber with a hydraulic (a)
and an electromechanical (b) PTO system.
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Figure 2.8: Free-body diagram and dimensions of the floating vertical cylinder point
absorber with a single degree of freedom: heave.

in (2.78) reduce to:

x =
[
z w xTss

]T
, (2.84a)

u = fe,3 − fPTO, (2.84b)

M = m, A(∞) = A3,3(∞), C = C3,3, Bm = 0, Cm = 0. (2.84c)

The equations of motions are discretized with a first-order-accurate Euler scheme (Süli

and Mayers, 2003) and a time step of 0.1 s.

2.3.1.3 Free motions in regular and irregular waves

The motion of the point absorber with a single degree of freedom is simulated in both

regular and irregular waves. For simplicity, at this stage no control force is applied by

the PTO system. The wave elevation, float displacement and velocity can be seen in

Figure 2.11 and Figure 2.12 for the regular and irregular wave traces, respectively. From

Figure 2.10 and Figure 2.11, it is interesting to notice that the amplitude of the body

displacement in the time domain is within 1% of amplitude of the response amplitude

operator for the same wave period.
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(a)

(b)

Figure 2.9: Variation of the non-dimensional radiation (a) and diffraction (b) coefficients
with non-dimensional circular wave frequency for the floating vertical cylinder with a radius
of 5 m and a draught of 8 m.
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Figure 2.10: Magnitude of the response amplitude operator against wave period for the
floating vertical cylinder with a radius of 5 m and a draught of 8 m.

Figure 2.11: Wave elevation, float displacement (a) and velocity (b) in regular waves of
unit amplitude and a period of 8 s with no control force being applied.
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Figure 2.12: Wave elevation, float displacement (a) and velocity (b) in irregular waves
with a Bretschneider spectrum with Hs = 2 m and Tp = 9.25 s (corresponding to Te = 8 s)
with no control force being applied.

2.3.2 Point absorber with floater and reaction plate

The two-body point absorber analysed here is inspired by the reference model 3 (RM3)

developed by the National Renewable Energy Laboratory and Sandia National La-

boratories. The development of the device is described in Neary et al. (2014), the

experimental testing of three models with different scales is reported in Yu et al. (2015)

and validation of numerical studies is discussed in Previsic et al. (2014). The WEC

comprises of two axisymmetric bodies: a float and a reaction plate. As shown in Figure

2.13, energy is extracted by a hydraulic PTO from the relative motion of the float

with respect to the reaction plate. While the float follows the displacement of the wave

elevation, the reaction plate presents motions of a much smaller magnitude due to its

depth, high inertia and high viscous drag. The geometry of the point absorber can

be seen in Figure 2.14, where the dimensions of the two bodies are reported. In this

simplified drawing, no space is left between the inner surface of the float, which has

an annular shape, and the outer surface of the spar connected to the reaction plate. In

reality, there will be a gap to account for construction tolerances.

Both the float and the reaction plate are axisymmetric. Hence, within the framework

of linear motions, heave is decoupled from the other degrees of freedom, although the

heave degrees of freedom of the two bodies are coupled. For simplicity, in this work

only heaving motions are considered, assuming the other motions to be negligible. The

free body diagram of the two bodies is displayed in Figure 2.15. The float is indicated

as body 1 with mass m1 = 727 tonnes, while the reaction plate as body 2 with mass
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Figure 2.15: Free-body diagram of the float and reaction plate constrained to heaving
motions.

m2 = 912.7 tonnes. The heave degree of freedom of the float is thus described by the

digit 3, while the heave degree of freedom of the reaction plate by the digit 9, with the

corresponding displacements being η3 and η9, respectively. The float is not connected to

any moorings, so that its heaving restoring stiffness is C3,3 = 2.8868 MN/m (2.42) and

(2.45). The reaction plate presents a very small water-plane area, which corresponds to

the cross-section of the spar. However, a mooring system is envisioned so that the overall

stiffness coefficient of the second body is assumed to be C9,9 = C9,9+Cm,9,9 = 10 MN/m.

Therefore, the reduced inertia and stiffness matrices are, respectively,

M =

[
m1 0

0 m2

]
and C =

[
C3,3 0

0 C9,9

]
. (2.85)

Furthermore, the damping force of the mooring system is neglected, i.e. Bm = 0.

In addition, while the viscous drag force of the float is ignored, a constant drag coeffi-

cient Cd = 5 is applied to the reaction plate, which has been measured experimentally

in Previsic et al. (2014). The characteristic area is set to Ad = π1̇52 m2. The viscous

drag force on the reaction plate is the computed from (2.76).
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2.3.2.1 Hydrodynamic coefficients

The hydrodynamic coefficients for the selected floater geometry have been calculated

using the commercial software WAMIT (2013). The float and the reaction plate have

been modelled as two distinct bodies (rather than developing generalized modes), but

their interactions have been accounted for. Due to their complex geometries, they

have been discretized with a number of panels of sufficient quality and the low-order

simulation method has been used. Care has been taken in ensuring the points on the

panels on the inner surface of the float match those on the outer surface of the spar.

Furthermore, the thin reaction plate has been modelled with special dipole panels

(WAMIT, 2013). In Figure 2.16a, 2.16b and 2.17, it is possible to see the variation

of the computed added mass, hydrodynamic damping and the wave excitation force

with circular wave frequency, respectively.

2.3.2.2 Time-domain dynamic model

Employing the approach described in Section 2.2.6 developed by Forehand et al. (2016),

it is possible to obtain the following matrices for the state-space approximation of the

radiation coefficients:

Ass =
[
Ass,1 Ass,2 Ass,3 Ass,4

]
where (2.86)
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(a)

(b)

Figure 2.16: Variation of the added mass (a) and hydrodynamic damping (b) with circular
wave frequency for the heaving motions of the floater (3) and the spar plate (9) of the RM3
WEC.
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Figure 2.17: Variation of the wave excitation force with circular wave frequency for the
heaving motions of the floater (3) and the spar plate (9) of the RM3 WEC.

Ass,1 =



−0.4684 1 0 0 0

−0.1401 −0.4684 6.2358 2.3048 −1327943.7066

0 0 −1.0458 1.3292 0

0 0 −1.3292 −1.0458 −7996171.4699

0 0 0 0 −1597207958577.22

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, (2.87)
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Ass,2 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−0.4069 1 0 0 0

−0.1494 −0.4069 −0.8309 0.8143 0

0 0 −0.5234 1 0

0 0 −0.5923 −0.5234 0

0 0 0 0 −0.3290

0 0 0 0 −0.1733

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, (2.88)
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Ass,3 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

−0.3290 −0.8071 0.5003 0.2673 −0.3447

0 −0.4779 1 0 0

0 −0.6671 −0.4779 0.2414 −0.3112

0 0 0 −0.7220 3.3249

0 0 0 −3.3249 −0.7220

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, (2.89)



2.3. Modelled wave energy converters 50

Ass,4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−0.2954 1 0 0 0 0

−0.2533 −0.2954 −0.0571 1.0196 0 0

0 0 −0.3992 1 0 0

0 0 −0.71902 −0.3992 0.3955 −4.4659

0 0 0 0 −1.9059 1

0 0 0 0 0 −20.3028



, (2.90)
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Bss =



0 0

275447.5122 0

0 0

1658598.5743 0

331299404092.387 0

0 0

265.7784 0

0 0

286.8697 0

0 0

0 262.5500

0 0

0 237.0285

0 0

0 108.8952

0 0

0 0

0 0

0 512.4006

0 0

0 2293.7115



, (2.91)

Css =
[
Css,1 Css,2 Css,3 Css,4

]
where (2.92a)

Css,1 =

[
−74616019813.8840 159452826352.593 0 0 0

0 0 0 0 0

]
, (2.92b)

Css,2 =

[
0 0 0 0 212.8615

243.4395 −605.2666 0 0 0

]
, (2.92c)

Css,3 =

[
−652.7569 0 0 0 0

0 0 0 0 0

]
, (2.92d)

Css,4 =

[
0 0 0 0 0 0

−889.7882 3065.6494 0 0 0 0

]
, (2.92e)

Dss =

[
0 0

0 0

]
. (2.93)

It is important to notice that the size of the matrices is due to the approximation system

modelling also the coupling between the radiation force of the floater and reaction plate.
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The added mass matrix at infinite wave frequency is given by

A(∞) =

[
1284.858 −162.148

−161.807 10241.712

]
tonnes. (2.94)

For this particular WEC, the time-domain equations of motions is given by (2.78) with

x =
[
η3 η9 ν3 ν9 xTss

]T
, (2.95a)

fe =
[
fe,3 fe,3

]T
, (2.95b)

fPTO =
[
−fPTO fPTO

]T
, (2.95c)

fd =
[
0 fd,9

]T
. (2.95d)

The equations of motions are discretized with a first-order-accurate Euler scheme (Süli

and Mayers, 2003) and a time step of 0.1 s.

2.3.2.3 Free motions in regular and irregular waves

The motion of the float and reaction plate is simulated in both regular and irregular

waves. For simplicity, at this stage no control force is applied by the PTO system. The

wave elevation, float and reaction plate heave displacement and velocity can be seen in

Figure 2.18 and Figure 2.19 for the regular and irregular wave traces, respectively.

As can be seen in Figure 2.18, in regular waves the heave displacement and velocity of

the reaction plate is much smaller in magnitude than those of the float, as expected.

Whereas the float is almost in phase with the wave elevation, the reaction plate is

almost completely out of phase. In irregular waves (Figure 2.19), the float still follows

the wave elevation closely. Conversely, the behaviour of the reaction plate is more

difficult to understand, despite the much lower magnitude of its motion.

2.3.3 Point absorber with direct-drive PTO

The team at Uppsala University has developed over the years a sea-floor-referenced

point absorber with a direct-drive PTO system. The development and testing of a

number of full-scale prototypes of this device, known as Sebased, is well described in

the literature (Danielsson, 2006; Eriksson, 2007; Waters, 2008; Stalberg et al., 2008;

Lejerskog et al., 2015).

Figure 2.20 shows a diagram of the device, which is inspired by Eriksson et al. (2007).

A small float, excited by incident waves, drives a linear, permanent-magnet generator
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Figure 2.18: Wave elevation, heave displacement (a) and velocity (b) of the float (3) and
reaction plate (9) in regular waves of unit amplitude and a period of 8 s with no control
force being applied.

Figure 2.19: Wave elevation, heave displacement (a) and velocity (b) of the float (3) and
reaction plate (9) in irregular waves with a Bretschneider spectrum with Hs = 2 m and
Tp = 9.25 s (corresponding to Te = 8 s) with no control force being applied.
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Figure 2.20: Diagram of the prototype Seabased WEC.

along vertical rails. The two bodies are connected by a mooring line. When the distance

between the float and the translator decreases, the mooring line goes slack and the

translator is pulled downwards by a dedicated spring. Additionally, springs at upper

and lower end stops prevent the translator from breaking the casing in high waves.

The motion of the magnet induces electrical current in the coils wound around the

stator. Power absorption is controlled through a power electronic converter by setting

the stator current Is to be proportional to the velocity of the translator. A second power

electronic converter controls the voltage across the capacitor between the converters by

setting the grid current. The wave elevation ζ is measured through a wave buoy sited

80 m from the prototype at the Lysekil wave energy research site (Waters, 2008).

In Figure 2.20, the same naming convention as in Eriksson et al. (2007) is held, with

the values of the variables quantities being given in Table 2.2. The importance of the

nominal rating, voltage and velocity of the generator is explained in the next chapter.

In addition, le,u = 0.25 m and le,l = 0.14 m are a measure of the end stops length, as

given in Waters (2008).

The float of the first Seabased prototype is a vertical cylinder with a radius of 1.5 m, a

height of 0.8 m, a draught of 0.4 m and a mass of 1000 kg. Furthermore, in this work a

study will be performed assuming a change in the geometry due to marine bio-fouling.
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Table 2.2: Main features of the Seabased WEC, taken from Eriksson et al. (2007).

f0 (kN) 8.12 Pnom (kW) of generator 10
Vnom (V) 133 vnom (m/s) 0.67
Pole width (m) 0.050 Piston mass (kg) 1000
lp (m) 1.867 ls (m) 1.264
ku (kN/m) 243 kl (kN/m) 215
kw (kN/m) 450 ks (kN/m) 6.2

As a result, the buoy geometry is assumed to change to a vertical cylinder with a radius

of 1.75 m and a draught of 0.5 m. The corresponding increase in mass is assumed to be

equal to the change in displaced volume. Hence, two float geometries are considered.

2.3.3.1 Hydrodynamic coefficients

The hydrodynamic coefficients for the selected floater geometries have been calculated

using the commercial software WAMIT (2013) employing an analytical geometry and

the higher order method. The non-dimensional coefficients are shown in Figure 2.21 for

both the original and modified floater. Furthermore, the magnitude of the frequency-

domain response amplitude operator obtained from (2.53) is plotted against the wave

period for the two geometries in Figure 2.22.

2.3.3.2 Time-domain dynamic model

A weakly non-linear mathematical model of the system dynamics has been developed

by Eriksson et al. (2007). As this section is adapted from that work, the reference is no

longer cited in this section.

Although the float is free to move in all directions in reality, only the heave degree of

freedom is analysed because the influence of the other motions is considered negligible

(Eriksson et al., 2006). This reduces the system to two degrees of freedom: the displa-

cements of the float and translator, which are labelled as z and y, respectively. From

the analysis the free-body diagram shown in Figure 2.23, the motions of the two bodies

are expressed through the following system of equations (Eriksson et al., 2007)

(mb +A3,3(∞)) z̈(t) = fe(t)− fr(t)− fh(t)− fw(t), (2.96a)

mpÿ(t) = fm(t)− fPTO(t)− fs(t) + fu(t) + fl(t), (2.96b)

where mb and mp the mass of the float and piston respectively, fw the tension in the

wire connecting the float to the translator, fs the force of the restoring spring in Figure

2.20, fu and fl the spring force of the upper and lower end stops, respectively. The

non-linearities are associated with fw, where compression effects are ignored, fu and fl,
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(a)

(b)

Figure 2.21: Variation of the non-dimensional radiation (a) and diffraction (b) coefficients
with non-dimensional circular wave frequency for the two floating vertical cylinders with
a radius of 1.5 m and a draught of 0.4 m (original) and 1.75 m and 0.5 m (modified),
respectively.
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Figure 2.22: Magnitude of the response amplitude operator against wave period for the
two floating vertical cylinders with a radius of 1.5 m and a draught of 0.4 m (original) and
1.75 m and 0.5 m (modified), respectively.
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Legend:

fr:     radiation force

fe:     wave excitation force

fh:     hydrostatic force

fm:    mooring force

fu:     upper end-stop force

fPTO: electro-motive force

fl:     lower end-stop force

fs:     spring restoring force

Figure 2.23: Free-body diagram of the Seabased WEC subject to heaving motions only.
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which are activated only if the end stops are reached, and fem, which depends on the

exposure of the translator to the stator.

Using the method described in Section 2.2.6, it is possible to obtain the following

matrices for the state-space approximation of the radiation coefficients for the original

and modified float, respectively:

Ass =


−1.1538 1.2190 0 0

−1.2190 −1.1538 −1.8303 1.9300

0 0 −2.1212 3.2847

0 0 −3.2847 −2.1212

 ,Bss =


0

74.9326

0

145.3925

 , (2.97a)

Css =
[
−134.8297 143.7977 0 0

]
,Dss = 0 and (2.97b)

Ass =


−1.0629 1.1919 0 0

−1.1919 −1.0629 −1.5449 1.8056

0 0 −1.8761 3.0370

0 0 −3.0370 −1.8761

 ,Bss =

 0

73.7882

0131.9090

 , (2.98a)

Css =
[
−166.4568 190.0697 0 0

]
,Dss = 0. (2.98b)

These matrices present a maximum condition number of 3.5556 and 3.3770, respectively.

The added mass in heave at infinite wave frequency is given by A3,3(∞) = 5.715 tonnes

and A3,3(∞) = 9.130 tonnes, respectively.

The electromotive, or PTO control, force fPTO is discussed in the next chapter. The

hydrostatic force is calculated from (2.42) and (2.45). Hence, C3,3 = 71.076 kN/m

and C3,3 = 96.743 kN/m for original and modified floaters, respectively. Ignoring

compression effects, the non-linear mooring force is given by

fm =

{
−kw(z − y) if z > y, (2.99a)

0 otherwise, (2.99b)

with kw being the wire stiffness. Similarly, the forces due to the upper and lower end

stops are given by

fu =

{
−ku(y − lu) if y > lu, (2.100a)

0 otherwise, (2.100b)

fl =

{
−kl(y + ll) if y < −ll, (2.101a)

0 otherwise, (2.101b)
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where ku and kl are the equivalent stiffness values of the springs in the upper and lower

end stops respectively. lu and ll are the distance of the two end stops from the vertical

midpoint of the translator at equilibrium, as shown in Figure 2.20. The force of the

spring connected to the translator is expressed as

fs = f0 + ksy, (2.102)

where f0 is a static force due to pre-charging, and ks is the spring stiffness. The values

of ll, lu, kl, ku, kw, ks, mb, mp, f0 and Sw for the Seabased device can be seen in Table

2.2.

Using (2.99-2.102), (2.96) has been expressed in the following non-linear state-space

form

ẋ(t) = Ax(t) +Bu(t, x) +Bw(t) +Bl(t, z, y), where (2.103a)

x =
[
z(t) ż(t) y(t) ẏ(t) xTss(t)

]T
, (2.103b)

u =
[
0 −fPTO(x)

]T
, (2.103c)

w =
[
fe(t) 0

]T
, (2.103d)

l =
[
−fm(x, y) fm(x, y)− f0 + fu(x) + fl(x)

]T
, (2.103e)

A =


0 1 0 0 0T

−C3,3/ (mb +A3,3(∞)) 0 0 0 −Css/ (mb +A3,3(∞))

0 0 0 1 0T

0 0 −ks/mp 0 0T

0 Bss 0 0 Ass

, (2.103f)

B =

[
0 (mb +A3,3(∞))−1 0 0 0T

0 0 0 1/mp 0T

]T
. (2.103g)

The equations of motions are discretized with a fourth-order-accurate Runge-Kutta

scheme (Süli and Mayers, 2003) and a time step of 0.01 s.

2.3.3.3 Motions in regular and irregular waves

The motion of the Seabased device is also simulated in the regular and irregular wave

traces. However, in this case it is necessary to specify a control force due to instabilities

in the numerical model for the case of no electromotive force. Here, the PTO force is

specified to be proportional to the vertical velocity of the translator, fPTO = BPTOẏ,

with BPTO = 10 kNs/m. This value is the smallest possible value to ensure stability.

The model of the PTO system and the control strategy are described in detail in the

next chapter.
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Figure 2.24: Wave elevation, heave displacement (a) and velocity (b) of the float (z) and
translator (y) in regular waves of unit amplitude and a period of 8 s with no control force
being applied.

For simplicity, only the motions associated with the original float are displayed here.

The resulting displacement and velocity of the buoy and translator can be seen in Figure

2.24 and Figure 2.25 for the regular and irregular wave traces, respectively.

As can be seen in Figure 2.24 and Figure 2.25, in both regular and irregular waves

both the float and translator follows closely the wave elevation due to the high mooring

stiffness and the ineffectiveness of the end stops in these mild wave conditions. The

velocity of the translator presents some instabilities due to the bang-bang nature of the

mooring force. A more realistic model could be obtained with a different formulation

of the mooring force and a finer time step.

2.4 Chapter summary

In this chapter, after explaining briefly the working mechanisms of WECs and their

PTO units, methods for the modelling of their dynamics have been discussed. In

particular, potential flow theory with the addition of some non-linear effects has been

selected to be used in this thesis due to its good compromise of accuracy and compu-

tational cost. Subsequently, the theory of wave-body interactions has been described in

detail and the equations of motion of a WEC have been derived in both the frequency

and time domains. Finally, three different point absorber technologies with increasing

complexity have been introduced and modelled. These models will be used throughout

this document for the testing and assessment of the developed control strategies.
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Figure 2.25: Wave elevation, heave displacement (a) and velocity (b) of the float (z)
and translator (y) in irregular waves with a Bretschneider spectrum with Hs = 2 m and
Tp = 9.25 s (corresponding to Te = 8 s) with no control force being applied.



Chapter 3

Control of wave energy converters:

state-of-the-art

In this chapter, the state-of-the-art schemes for WEC control are discussed. After

providing a background summary of existing technologies, some strategies will be

analysed in detail, as they will form the basis of the learning algorithms developed

in this thesis.

3.1 Literature review

Since the 1970s, multiple control strategies have been proposed for the maximization of

energy absorption of WECs. A review of the initial schemes can be found in Salter et al.

(2002). More recent developments can be found in the review by Ringwood et al. (2014)

and the book by Korde and Ringwood (2016), which is dedicated to the topic of WEC

control. Whereas the first schemes were based purely on hydrodynamic considerations,

there has been a growing technology transfer in the past decade from the field of control

systems, which has resulted in the application of innovative techniques, such as model

predictive control. Even greater innovation is expected as a result of the current control

call by Wave Energy Scotland (2017).

The main challenge with WEC control is that the control problem is non-causal, i.e.

information on both the past and current wave excitation force is required in order to

select the optimal control action. This requires the prediction of the wave elevation over

a future time horizon. Fusco and Ringwood (2010a) have employed cyclical models, an

extended Kalman filter, autoregressive models and neural networks for the forecast of

the wave elevation at a defined point in space. Autoregressive models have been found

to have the best performance, with a good accuracy over a couple of wave periods in

the future with swell waves. An alternative approach based on deterministic sea wave

prediction was proposed by Li et al. (2012), which employs a network of buoys or

LIDAR. Nevertheless, these approaches have not been tested in the actual environment

yet. The main problems are caused by the impossibility to measure the wave elevation

62
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at the exact location of the WEC. As a result, measurement noise and local effects

(e.g. wind) can affect the estimation of the current wave elevation and spreading at the

WEC position, and thus any subsequent wave prediction. For these reasons, the first

studies of WEC control have assumed stationary wave conditions over periods lasting

15-30 minutes, known as sea states (Holthuijsen, 2007), during which constant control

settings may be used. This technique was also adopted successfully at Pelamis Wave

Power on the P1 and P2 prototypes.

From hydrodynamic considerations, the simplest control strategy consists in setting

the PTO force to be proportional to the velocity at the PTO (Salter et al., 2002).

This method is known as passive or resistive control, and it enables the control of the

amplitude of the WEC response. The main advantages of this method are its simple

practical implementation and the associated absence of negative power flows (i.e. power

supplied to the WEC during parts of the wave cycle). This strategy can be extended to

phase and amplitude control through the addition of a stiffness term (Salter et al., 2002),

i.e. the PTO force is given by the combination of a term proportional to the velocity

and one to the displacement. This approach, known as complex-conjugate, impedance-

matching or reactive control, results in optimal energy absorption from hydrodynamic

considerations (Falnes, 2005). Nevertheless, this technique suffers from a number of

problems. As hinted by the name, the strategy presents reactive power flows during

part of the wave cycle so as to maximize the overall extracted energy. This can result

in a very high peak to mean power ratio, which would require more expensive electrical

machinery. Furthermore, the scheme would cause very large displacements of and loads

on the WEC, so that realistic constraints should be considered for the PTO force

saturation and PTO displacement to prevent damage in energetic waves. In addition,

for point absorbers the optimal stiffness coefficient is likely to be negative (Falcão,

2008). Although this can be achieved in practice with power electronics, the system

may become unstable if the magnitude of the control stiffness coefficient exceeds the

hydrostatic and mooring stiffness of the WEC (Wave Energy Scotland, 2016). For these

reasons, suboptimal control strategies have been proposed over the years instead.

It is possible to show from first principles that the optimal damping and stiffness

coefficients for the maximization of energy absorption depend on the wave frequency

(Salter et al., 2002; Ringwood et al., 2014; Korde and Ringwood, 2016). Hence, the

controller parameters should be adapted to the current wave conditions. However, this

is challenging in irregular waves due to their stochastic nature. The simplest approach

consists of assuming stationary sea state conditions, as aforementioned. Discrete sea

states are identified as determined by statistical measures for the wave period and

amplitude. In particular, for wave energy, the significant wave height and the energy

wave period have been identified as the preferred parameters (Cruz, 2008). The signi-
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ficant wave height becomes influential in the selection of the control parameters due

to the displacement constraints that may be reached in high waves. Simulations are

then run with numerical models to determine the optimal control coefficients in each

sea state, which are stored in a look-up table. Although originally frequency-domain

models were more common (Cruz, 2008), time-domain models are now used more often

due to the necessity to account for realistic saturation limits on the PTO force and non-

linear effects. During the operation of the WEC, the current sea state conditions are

determined by near-by wave buoys and the optimal control coefficients selected from the

look-up table. The approach could be further simplified by considering seasonal settings,

as investigated by Valério et al. (2008). Despite the simplicity of the control strategies,

Pelamis Wave Power Ltd. predicted an increase in absorbed energy by as much as 100%

from numerical studies using the adaptive resistive control rather than a fixed damping

coefficient. During tests on the full-scale P2 prototypes, the actual improvement was

quantified as 37%. Even greater power absorption is predicted with reactive control,

with a increase of 50% in annual absorbed energy over resistive control being reported

by Nambiar et al. (2015) from a numerical study of an array of point absorbers. Indeed,

resistive and reactive control can be easily extended to the treatment of devices with

multiple degrees of freedom and wave farms. Nevertheless, WEC performance could be

improved further by adapting its response on a wave by wave approach, which would

also reduce the failure risks associated with rogue waves.

As a result, a number of research groups have tried to develop adaptive control schemes,

which can be solved in a realistic computational time for a real-time implementation.

One of the most promising strategies is simple-but-effective control, proposed by Fusco

and Ringwood (2013) and discussed in Ringwood et al. (2014) and Korde and Ringwood

(2016). The basis of this algorithm is the assumption that the wave excitation force is a

narrow-banded (i.e. sinusoidal) process. Therefore, the search for the coefficients reduces

to that in regular waves. An extended Kalman filter is used to find the approximate am-

plitude and frequency corresponding to the current wave. The displacement constraints

are expressed through an equivalent velocity, and thus gain, limit from first principles.

The method is found to result in a relative capture width within 10% of model predictive

control, which will be discussed later on, and even presents superior performance for

long wave periods (Ringwood et al., 2014), despite the lower computational cost. A

similar strategy based on a Lyupanov function has been developed by Korde et al.

(2016), although it presents a worse performance. An alternative approach that does

not require wave prediction (hence, it assumes the WEC control problem to be causal)

has been proposed by Zou et al. (2017). The method switches between circular arc and

bang-bang modes based on Pontryagin’s principle, presenting a performance similar to

complex-conjugate control. Scruggs and Nie (2015) investigate an alternative adaptive

technique that includes the prediction of the wave excitation force using a moving
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window approach with a Gauss-Markov innovations model. An even different approach

is adopted by Cantarellas et al. (2017) based on an adaptive vectorial approach, which

focuses on the reduction of large power fluctuations.

A completely different method for the real-time, phase control of WECs is characterized

by discrete control schemes, such as latching and declutching control. Latching control

has been first proposed by Budal and Falnes (1977) for the maximization of the energy

absorption of point absorbers in waves with a period greater than the natural frequency

of the device. In particular, the heaving motion only has been analysed. The authors

showed that one condition for the maximization of the energy absorption is for the

body velocity to be in phase with the excitation force. Latching control achieves this

situation by locking, or latching, the body in place at the instant when its velocity

vanishes at the end of one oscillation. The device is then released after a predefined

time interval, which needs to be determined. The optimal solution is non-causal relative

to the wave excitation (Clément and Babarit, 2012), i.e. it depends on the future values

of the wave excitation. In the frequency domain, it is possible to find the optimal latched

mode duration, since by definition the future is the same as the past. Nevertheless, this

situation practically applies only to regular waves. Therefore, in the real world, sub-

optimal solutions obtained in the time domain are necessary, which rely on Pontryagin’s

principle (Clément and Babarit, 2012).

Over the years, latching control has been analysed by different researchers due to

the associated large increase in energy production over resistive control. Some works

have been carried out in the frequency domain (Bjarte-Larsson and Falnes, 2006;

Valério et al., 2007; Falcão, 2008). Hoskin and Nichols (1986) have first proposed the

application of Pontryagin (1987) principle to find the optimal control of WECs. Since

their work, Korde (2002), Babarit et al. (2004), Babarit and Clément (2006), Clément

and Babarit (2012) and Henriques et al. (2016) have applied Pontryagin’s principle

to find the optimal control action (i.e. latch or delatch) at each time instant using

time-domain simulations. This approach requires information of the excitation force

over a future time horizon. A solution is found by firstly initiating the control input

randomly. Subsequently, the state equations are integrated forward in time and then

the costate equations backward in time until convergence is achieved for the control

input. Nevertheless, Korde (2002), Babarit et al. (2004), Babarit and Clément (2006)

and Clément and Babarit (2012) assume knowledge of the excitation force over the

whole wave trace they consider. This is unrealistic for a practical application, since the

wave elevation can predicted with confidence up to 15 s (Fusco and Ringwood, 2010b)

and the computational cost would prevent a real-time implementation. Henriques et al.

(2016) provide a more practical approach based on a receding horizon with a realistic

duration, where data from the previous time step is used to initialize the estimates at
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the current time step.

The main advantage of latching control is its increase in energy absorption being

achieved without any reactive power flows (Clément and Babarit, 2012). Thus, the

generator does not need to act as a motor and the system does not need to feed power

into the sea for part of the wave cycle. As a result, the cost of the electrical and power-

electronics components can be greatly reduced. Conversely, the design of the breaking

system does not need to be very complex. Additionally, since the device is latched

when its velocity is zero, the magnitude force the breaking system experiences is never

excessive. However, maintenance and fatigue life need to be considered in the design of

the breaking system. For OWCs, the breaking system is represented by a high-speed

valve in series with the turbine (Henriques et al., 2016). Nevertheless, its latching action

will not be immediate due to the air chamber stiffness (Henriques et al., 2016).

Budal and Falnes (1977), Bjarte-Larsson and Falnes (2006), Valério et al. (2007) and

Falcão (2008) have treated a single-degree-of-freedom device in heave, while Korde

(2002), Babarit et al. (2004), Babarit and Clément (2006), Clément and Babarit (2012)

and Henriques et al. (2016) have considered the interactions from multiple degrees of

freedom on the same WEC. In particular, latching control has been applied to different

classes of WECs, including OWCs (Korde, 2002; Henriques et al., 2016), a submerged

point absorber (Valério et al., 2007), heaving buoys (Budal and Falnes, 1977; Bjarte-

Larsson and Falnes, 2006; Babarit et al., 2004; Babarit and Clément, 2006; Clément

and Babarit, 2012), and point absorbers with internal moving masses (Babarit et al.,

2004; Babarit and Clément, 2006; Clément and Babarit, 2012). To date, no work has

been published on the application of latching control to an array of WECs. In fact, the

considerations on optimal phase conditions on which latching control is based do not

hold for the treatment of multiple WECS (Falnes, 1980; Thomas and Evans, 1981).

Declutching control is a similar discrete strategy introduced by Salter et al. (2002) that

consists in the connection and disconnection (or declutching) of the control system

during part of the wave cycle in order to control the phase of the response of the WEC.

The application of no control force during part of the wave cycle results in motions of

greater magnitude and with a phase matching the wave excitation during the remaining

part of the wave cycle, which results in an overall increase in energy absorption. In

hydraulic PTO systems, the declutching is obtained through the activation of a by-

pass valve, while in electromechanical PTO systems it can be achieved through a

clutch mechanism. Babarit et al. (2009) have proposed the adoption of Pontryagin’s

principle for the determination of the optimal declutching timing in irregular waves.

They have shown that with a hydraulic PTO system using declutching control results

in a simpler, cheaper PTO unit and an increase in performance over resistive control.

Both latching and declutching control achieve phase control without any associated
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negative, or reactive, power flows, although a very small amount of energy is required

for the operation of the latching and declutching mechanisms, respectively. Clément

and Babarit (2012) have shown that combining latching and declutching control can

result in a substantial increase (by as much as 2.6 times as compared with latching

control and 25 times over declutching control in regular waves) in energy absorption

over either method. However, these studies do not account for realistic displacement

constraints and a realistic computational time for a real-time implementation.

Alternative discrete control types based on bang-bang approaches have been proposed

by Li et al. (2012) and Abraham and Kerrigan (2013), with the former relying on

dynamic programming and the latter on a non-linear system optimized with a variation

of the projected gradient scheme.

One of the most promising approaches to the control of WECs that has been the centre

of academic research over the past decade is model predictive control. Model predictive

control (Bordons and Camacho, 2007) is a control scheme with a successful record

in chemical engineering, plant and process control. It consists in the selection of an

optimal control action at every sample time by running a quadratic optimization of the

dynamic model over a finite future time horizon with a moving window, thus relying on

an element of prediction. The application of model predictive control to WECs has been

first proposed by Gieske (2007). The first studies on model predictive control relied on

linear state-space models of the WEC dynamics (Brekken, 2011; Hals et al., 2011; Cretel

et al., 2011; Richter et al., 2014; Li and Belmont, 2014a). An observer of the fictitious

radiation states has been included by Andersen et al. (2014). Ferri et al. (2014) have

included the consideration of structural loadings and fatigue lifetime within the cost

function. Non-linear mooring effects have been considered by Richter et al. (2013) and

Amann et al. (2015), with the former approach presenting implementation issues due to

the high cost associated with a real-time optimization of a non-convex problem and the

second approach relying on an estimator and linear model predictive control instead.

Implementations for the decentralised and centralised control of a small array of WECs

have also been proposed by Oetinger et al. (2014) and Li and Belmont (2014b) and

Oetinger et al. (2015), respectively.

The main advantage of model predictive control is the simple inclusion of displace-

ment, velocity and force constraints and a reduction of the reactive power flow in

its framework. As a result, model predictive control typically shows greater energy

absorption than other control strategies when realistic constraints are active (Hals

et al., 2011; Cretel et al., 2011; Richter et al., 2014). Nevertheless, no studies to date

show the performance of model predictive control in energetic wave conditions, when

realistic non-linear effects become important. Under those conditions, the accuracy of

the dynamic model used by model predictive control is likely to drop significantly,
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with negative consequences on system performance (Wave Energy Scotland, 2016).

Furthermore, model predictive control is likely to suffer significantly from measurement

noise in the wave elevation as well as in its forecast, as shown by Tona et al. (2015).

Most of the approaches described above are not adaptive to changes in the system

dynamics with time. These may occur either due to slow marine growth effects or

sudden non-critical subsystem failures. Adapting the response of the device optimally

to these changes can be advantageous for the reduction of operation and maintenance

costs. An adaptive control scheme could enable a more flexible maintenance schedule

to be developed, allowing a more cost effective solution in the events of non-critical

faults thus without incurring the costs associated with emergency maintenance tasks,

which are particularly tricky in marine operations due to the requirements of suitable

weather windows. Fusco and Ringwood (2014) propose a strategy that tries to address

this issue with the development of a robust hierarchical controller for the reduction

of the sensitivity to modelling errors and non-linear effects. An alternative approach

that deals with non-linear effects is proposed by Valério et al. (2008) that relies on

neural networks for the system identification of the Archimedes Wave Swing device.

The proposed approach presents a 160% increase in energy absorption over resistive

control. In this thesis, machine learning strategies, in particular neural networks and

reinforcement learning, are further investigated. The objective is their application to

existing control schemes, such as resistive and reactive control, for the creation of

adaptive, practical algorithms that present a practical implementation.

In the next sections, resistive and reactive control will be analysed in greater detail,

as they will be employed as the basis for the development of the innovative control

strategies due to their simplicity.

3.2 Resistive control

Here, resistive or passive control is analysed more in detail. As aforementioned, with

this strategy, the PTO force is set to be proportional to the velocity at the PTO. For

simplicity, in this thesis a PTO system with a single degree of freedom is considered,

although it is possible to extend the following methodology to the treatment of multiple

degrees of freedom, as for instance done at Pelamis Wave Power Ltd.

Defining the damping coefficient as BPTO, for point absorber subject to heaving moti-

ons, this can be expressed as

fPTO = BPTOż. (3.1)

The corresponding instantaneous absorbed power is given by (Korde and Ringwood,
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2016)

P = BPTOfPTO, (3.2)

where the PTO force may present saturation constraints.

Ignoring the effects associated with PTO force saturation, in the frequency domain using

(2.52) it is possible to show that the optimal control damping coefficient for regular

waves with circular frequency ω is given by (Falnes, 2005; Korde and Ringwood, 2016)

BPTO,opt =

√
B2

3,3(ω) +

[
ω (M3,3 +A3,3(ω))− C3,3

ω

]2

, (3.3)

which results in the maximum mean absorbed power

P̄opt =
1

4

|fe,3|2

B3,3(ω) +

√
B2

3,3(ω) +
[
ω (M3,3 +A3,3(ω))− C3,3

ω

]2
. (3.4)

Although it is possible to extend these formulae to the treatment of irregular waves using

superposition, realistic saturation force constraints cannot be simply represented in the

frequency domain. For this reason, an alternative approach based on optimizations

using non-linear, time-domain models is usually preferred (Nambiar et al., 2015; Wave

Energy Scotland, 2016).

The simulations are usually based on models similar to (2.78), which present a good

compromise between accuracy and computational cost. The mean power is usually

measured over a time interval of at least 5 minutes in the same sea state, after the

dynamic model is fully initialized. At Pelamis Wave Power Ltd., it was common practice

to run the simulations for a time of 6 minutes after initialization, which resulted in a

feasible computational cost. Nevertheless, waves were generated for a much longer time

for the same sea state (say 6-12 hours). The highest observed wave was then included

within the wave trace the controller had to be optimized with. This is a conservative

approach that is used to design the controller so that it takes into account the worst

case scenario in each sea state. Indeed, not only is the cost function of the optimization

scheme designed for the maximization of the energy absorption, but it also accounts

for the abidance of displacement constraints. Different optimization schemes have been

adopted, with the Simplex being preferred by Nambiar et al. (2015) and simulated

annealing by Pelamis Wave Power Ltd. Both are non-convex optimization schemes

(Arora, 2012), which are preferred due to the non-linear nature of the model of the

system dynamics.

The optimal damping coefficient is found in each sea state as determined by discrete

values of the significant wave height and the energy wave period. The coefficients are
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then stored in a look-up table, which will be used by the controller on the full-scale

WEC to select the optimal parameter for each sea state. Nevertheless, it is clear that

this approach is overly simplistic. The assumption of stationary wave conditions and

the corresponding lack of need for wave forecasting make for a practical implementation

at the expense of performance. Furthermore, the system may be significantly affected

by modelling errors and the controller cannot adapt to changes in the system dynamics

with time.

3.2.1 Special cases

The case studies analysed in this thesis present particular implementations of resistive

control that are treated in the following sections.

3.2.1.1 Two-body point absorber

Although the RM3 point absorber presented in Section 2.3.2 presents two bodies, each

with a degree of freedom, the PTO can be reduced to a single degree of freedom. In

(2.95), the PTO force acting on each body in opposite directions is given by

fPTO = BPTO (η3 − η9) , (3.5)

where η3 and η9 are the heaving displacements of the float and reaction plate, respecti-

vely. Realistic saturation constraints can be applied to the control force.

3.2.1.2 Seabased point absorber

The Seabased point absorber presents a more complex PTO force due to its direct

drive PTO system. A simple model that accounts for the overlap between translator

and stator has been proposed by Eriksson et al. (2007). The electromotive force is

proportional to stator current is and active area Afac

fPTO = kτAfac(y)is, (3.6)

where kτ is the generator torque constant. If the current is controlled (by power

electronics) so that it is proportional to speed such as is = bẏ, with b being a constant,

then (3.6) becomes

fPTO = kτ bAfac(y)ẏ, or (3.7a)

fPTO = BPTOAfac(y)ẏ, (3.7b)
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where BPTO = kτ b is the PTO damping coefficient. The active area, i.e. the overlap

between stator and translator, is given by

Afac(y) =


0 if |y| ≥ 0.5(lp + ls), (3.8a)

1 if |y| ≤ 0.5(lp − ls), (3.8b)

[0.5(lp + ls)− |y|] /ls else, (3.8c)

with lp and ls being introduced in Section 2.3.3.

3.3 Reactive control

Reactive control can be considered to be an extension of resistive control, with the

PTO force now having a term proportional to the velocity and one to the velocity at

the PTO:

fPTO = BPTOż + CPTOz (3.9)

for a single degree of freedom system, where CPTO is the PTO stiffness coefficient. The

stiffness term contributes to the control of the phase of the WEC response. Note that

as an alternative means of phase control, it is possible to employ an inertia term, as for

instance investigated by Price (2009). However, Hansen et al. (2013) has shown that

the stiffness term results in a more robust control with a flatter response.

The addition of the stiffness term results in negative power flow during part of the

wave cycle. This corresponds to power being fed into the waves in order to change the

response of the device with an increase in power absorption in the remaining part of

the wave cycle, for an overall maximization of the extracted energy. The negative power

is in fact achieved through the generator acting as a motor for part of the wave cycle,

which requires a special design. In practice, this has been successfully achieved by a

number of companies at both model and full scale (Wave Energy Scotland, 2016).

Using (2.52) in the frequency domain in regular waves with circular frequency ω and

ignoring the effects associated with PTO force saturation, the optimal control damping

and stiffness coefficients can be expressed for a point absorber limited to heave as

(Falnes, 2005; Korde and Ringwood, 2016)

BPTO,opt = B3,3(ω), (3.10a)

CPTO,opt = ω2 (M3,3 +A3,3(ω)) , (3.10b)

which correspond to the maximum mean absorbed power

P =
|fe,3|2

8BPTO
. (3.11)
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Therefore, it is clear that for optimal power absorption the controller should match the

radiation impedance of the WEC; thus the name impedance-matching.

Even though reactive power results in much greater energy absorption theoretically, as

shown in the next section, in practice this this is associated with values of the control

force, body displacement, structural loading and negative power flows that are not

feasible in practice. For this reason, the PTO force is likely to reach the saturation limit

and displacements constraints are likely to be exceeded in all but the mildest sea states.

A solution is the increase of the damping coefficient and a reduction of the magnitude

of the stiffness coefficient. Furthermore, point absorbers are likely to present a negative

optimal control stiffness coefficient (Falcão, 2008; Wave Energy Scotland, 2016). If the

magnitude of the PTO coefficient exceeds the actual restoring stiffness of the WEC, the

system will become unstable (Wave Energy Scotland, 2016). As a result, simulations

in the time domain are necessary for the selection of suitable coefficients with reactive

control (Nambiar et al., 2015), particularly if sea states are assumed to be stationary.

3.4 Power calculation

Real PTO systems present energy losses associated with the conversion of energy. In

general, the smaller the number of energy conversion stages, the higher the efficiency

of the PTO system, with direct drive units promising greater efficiency than electro-

mechanical systems, which in turn are expected to outperform hydraulic systems (Cruz,

2008; Castellini et al., 2014).

In this thesis, a very simplistic model is used to account for the PTO losses, with a

unique figure being used for the efficiency of the overall PTO system, η, as done by

Nambiar et al. (2015). This approach is very computationally efficient and does not

affect the methodology developed in this work. However, during later stages of the

design process, more detailed models will be necessary.

With this method, the instantaneous generated power is approximated as (Nambiar

et al., 2015)

P (t) =


ηfPTO(t)ż(t) if fPTO(t)ż(t) > 0, (3.12a)

1

η
fPTO(t)ż(t) otherwise . (3.12b)

This equation accounts for both positive (i.e. generated) and negative (i.e. supplied to

the device) power flows.
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3.5 Case study

In this section, state-of-the-art resistive and reactive control with stationary sea states

are applied to the single degree point absorber introduced in Section 2.3.1.

3.5.1 Regular waves

First of all, regular waves are analysed with no PTO force saturation and no displace-

ment constraints. As a result, it is possible to obtain the optimal damping and stiffness

coefficients in the frequency domain with (3.3) and (3.10a) and (3.10b) for resistive

and reactive control, respectively. The corresponding mean absorbed power in regular

waves with unit amplitude is computed with (3.2) and (3.11), respectively. From the

mean power, it is possible to compute the capture width, which indicates the width of

the incoming wave front with a power corresponding to the one absorbed by the device

(Cruz, 2008). As a result, the capture width can be obtained as

L (ω, β) =
P

Pw
. (3.13)

For an axisymmetric device, as those treated in this thesis, the dependence on the wave

direction is dropped. In (3.13), Pw is the mean power per unit crest of the incoming

waves (Cruz, 2008), which is given by

Pw =
1

2
ρga2cg, (3.14)

where a is the wave amplitude (1 m here) and cg the wave group velocity, which is

obtained as follows, assuming deep water:

cg =
1

2

g

ω
. (3.15)

The capture width ratio expresses the ratio of the capture width and a typical device

dimension (Cruz, 2008). In the case of an axisymmetric point absorber, the diameter

(10 m in this case) is typically used as parameter, with the capture width ratio being

by L/D.

The variation with non-dimensional wave frequency of the capture width ratio of

analysed point absorber when resistive and reactive control are applied can be seen

in Figure 3.1. The axes are limited to produce a clearer plot. The capture width

ratio associated with reactive control and no constraints tends to infinity as the wave

frequency tends to zero.

Subsequently, the influence of PTO force saturation and displacement constraint is

investigated in the time-domain. A single sea state with regular waves of unit amplitude
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Figure 3.1: Variation in the capture width ratio of the analysed point absorber with non-
dimensional wave frequency. The curves for both resistive and reactive control are applied.

and a period of 8 s is considered. In this wave trace, the response of the device is analysed

when resistive and reactive control are applied with no constraints, with a force satu-

ration limit of 200 kN and unbounded displacement, and with no force saturation but

with the displacement magnitude constrained to 1 m. A Simplex optimization algorithm

(Arora, 2012) is used for the determination of the optimal PTO damping coefficient and

PTO damping and stiffness coefficients for resistive and reactive control, respectively.

The PTO damping coefficient was bounded to a maximum value of 10 MNs/m to

prevent numerical errors. The computed values can be seen in Table 3.1.

The results of this analysis are displayed in Figures 3.2 and 3.3 for resistive and reactive

Table 3.1: Optimal controller damping and stiffness coefficients for all analysed control
types and limits on the PTO force and body displacement in regular waves of unit amplitude
and a period of 8 s.

control type max |fPTO| (kN) max |z| (m) BPTO,opt kNs/m CPTO,opt kN/m

resistive - - 305.536 -
resistive 200 - 3232.143 -
resistive - 1 464.639 -
reactive - - 100.652 -226.505
reactive 200 - 6781.990 -2615.230
reactive - 1 404.194 -119.478
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Figure 3.2: Wave elevation (a), body vertical displacement (b) and velocity (c), PTO force
(d) and corresponding absorbed power (e) when the WEC is passively controlled in regular
waves of unit amplitude and a period of 8 s. The PTO damping coefficient and the force
and displacement limits shown in Table 3.1 are used.

control, respectively. The figures show the body displacement and velocity, the PTO

force and the absorbed power after the system is fully initialized. No curves are shown

for the filtered, mean power. In these figures, it is possible to distinguish the curves

corresponding to the case of no constraints, PTO force saturation and displacement

limit.
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Figure 3.3: Wave elevation (a), body vertical displacement (b) and velocity (c), PTO force
(d) and corresponding absorbed power (e) when the WEC is actively controlled in regular
waves of unit amplitude and a period of 8 s. The PTO damping and stiffness coefficients
and the force and displacement limits shown in Table 3.1 are used.
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Table 3.2: Optimal controller damping and stiffness coefficients for all analysed control
types and limits on the PTO force and body displacement in irregular waves with a
JONSWAP spectrum, Hs = 2 m and Te = 8 s.

control type max |fPTO| (kN) max |z| (m) BPTO,opt kNs/m CPTO,opt kN/m

resistive - - 408.118 -
resistive 200 - 473.042 -
resistive - 1 657.027 -
reactive - - 187.036 -320.794
reactive 200 - 440.246 -274.394
reactive - 1 906.016 -415.915

3.5.2 Irregular waves

Similarly to regular waves, an analysis has been conducted in a 500-s-long wave trace in

irregular waves with a JONSWAP spectrum with a significant wave height of 2 m and a

peak wave period of 9.25 s, corresponding to an energy wave period of 8 s from spectral

analysis (Holthuijsen, 2007). As before, the response of the device is analysed when

resistive and reactive control are applied with no constraints, with a force saturation

limit of 200 kN and unbounded displacement, and with no force saturation but with

the displacement magnitude constrained to 1 m. The obtained optimal PTO damping

and stiffness coefficients can be seen in Table 3.2.

The results of this analysis are displayed in Figures 3.4 and 3.5 for resistive and reactive

control, respectively. The figures show the body displacement and velocity, the PTO

force and the absorbed power after the system is fully initialized (starting from a time

of 200 s). No curves are shown for the filtered, mean power. In these figures, it is

possible to distinguish the curves corresponding to the case of no constraints, PTO

force saturation and displacement limit.

3.5.3 Discussion

As is clear from Figure 3.1, reactive control has the potential of much higher energy

absorption over resistive control. From Table 3.1, it is interesting to notice that the

optimal PTO stiffness coefficient presents a negative value, as predicted by Falcão

(2008) and Wave Energy Scotland (2016) for point absorbers.

However, as shown by Figures 3.2 and 3.3, reactive control also results in significantly

greater body displacements and PTO force as well as substantial negative power flows.

In order to meet the body displacement constraints, the controller increases the PTO

damping coefficient for both resistive and reactive control, and decreases the magnitude

of the PTO stiffness coefficient for reactive control, as can be seen in Table 3.1. The

controller behaviour in regular waves under PTO saturation is more interesting, with
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Figure 3.4: Wave elevation (a), body vertical displacement (b) and velocity (c), PTO force
(d) and corresponding absorbed power (e) when the WEC is passively controlled in irregular
waves with a JONSWAP spectrum, Hs = 2 m and Te = 8 s. The PTO damping coefficient
and the force and displacement limits shown in Table 3.1 are used.
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Figure 3.5: Wave elevation (a), body vertical displacement (b) and velocity (c), PTO force
(d) and corresponding absorbed power (e) when the WEC is actively controlled in irregular
waves with a JONSWAP spectrum, Hs = 2 m and Te = 8 s. The PTO damping and
stiffness coefficients and the force and displacement limits shown in Table 3.1 are used.
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the control force converging towards a bang-bang type of control. This is clear from the

shape of the PTO force in Figures 3.2 and 3.3, which resembles a square wave.

In irregular waves (Figures 3.4 and 3.5), the bang-bang behaviour is no-longer observed

when the force saturates, since the limits apply to a much shorter instance related

to particularly energetic waves. Hence, it is more advantageous for the controller to

maximize energy absorption over the whole wave trace, whilst meeting the constraint

only for the highest wave. This results in a small change in PTO coefficients and thus a

small drop in performance. Conversely, the performance of the controller is much more

affected by limits on the body displacement than in regular waves, as the coefficients

are tailored to meet the strictest constraints associated with the highest wave in the

analysed wave trace for the optimization. This behaviour was observed in previous

studies (Cretel et al., 2011; Richter et al., 2014) and is the main reason for the research

in real-time control schemes, such as model predictive control, which can better deal

with constraints due to their optimization of the response on a wave by wave basis.

Finally, from Figures 3.4 and 3.5, it is also interesting to notice the transport of wave

power in packets, which are known as wave groups.

3.6 Chapter summary

In this chapter, state-of-the-art technologies for the control of WECs are reviewed.

A distinction is made between strategies that have been successfully implemented on

WEC prototypes and schemes that show promise of superior performance, but are still

the subject of academic studies. Of the latter strategies, model predictive control, a real-

time technique, is considered to have great potential. Nevertheless, due to the industrial

nature of this project, the former group of schemes is selected for the development of

innovative algorithms. These methods are based on the assumption of stationary wave

conditions (known as sea states) for periods of 15 to 30 minutes, which relies on wave

data statistics. The PTO force is then modelled as a damping or the combination

of damping and stiffness terms for passive and active (also known as resistive and

reactive) control, respectively. For each sea state, the optimal coefficients are found

using simulations. The cost function is based on the maximization of energy absorption

while considering realistic constraints on the PTO force and body displacement. A case

study is presented using the model of point absorber constrained to heave, which was

introduced in the previous chapter. The superior performance associated with reactive

control is shown, although the limitations in performance of these strategies when

displacement constraints are active is discussed.

From the literature review, it is clear that the existing control strategies for WECs

can be adaptive to changes in wave conditions, but not changes in their dynamics.
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Nevertheless, marine growth seriously modifies the response of the WECs during their

lifetime. Additionally, it would be advantageous for the WEC to adapt to non-critical

subsystem failures so that the maintenance schedule can be optimized. For these rea-

sons, machine learning strategies will be investigated for the development of model-free

control schemes for WECs. In the next chapter, neural networks, a class of supervi-

sed learning schemes, are treated, while reinforcement learning, a framework to make

decisions belonging to the unsupervised learning class, is discussed in Chapter 4.
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Reinforcement learning

4.1 Background

Reinforcement learning is a class of nature-inspired algorithms, which have become very

popular within the robotics and machine learning communities (Mnih et al., 2015). The

technique belongs to the class of unsupervised learning strategies and it is based on the

idea of learning from experience coupled with the principle of reward and punishment

for survival and growth (Khan et al., 2012). The theory of reinforcement learning is

treated in detail in Sutton and Barto (1998), which is the main introductory book on

the subject, and Busoniu et al. (2010). A review of modern applications can be found

in Khan et al. (2012) and Littman (2015). Furthermore, modern approaches, including

function approximation and newer algorithms, are addressed in detail in Geramifard

et al. (2013).

In reinforcement learning (Sutton and Barto, 1998), an agent, which is in a particular

state s, interacts with the surrounding environment by taking an action a. The agent

then moves to a new state, s′, and the action is followed by a reward, r, depending

on its outcome. The action selection process is modelled as a Markov decision process

based on the value function, which expresses the estimate of the future reward. The

agent is expected to learn an optimal behaviour, known as policy, over time for the

maximization of the total reward. This process is shown graphically in Figure 4.1,

which is taken from Sutton and Barto (1998). In control terminology, Figure 4.1 can

be explained as follows (Khan et al., 2012):

• the state signal describes the state of the environment and agent;

• the action signal represents the control input;

• the reward signal is a feedback signal.

If the agent selects an action based purely on the aim of maximising the reward function

(i.e. exploiting the environment), it will never visit states other than the usual ones,

and these other states may in fact result in higher rewards. This is known as the issue

of exploration versus exploitation. Hence, it is still beneficial to adopt an approach

that ensures some exploration at the expense of exploitation, particularly for the initial

82
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Agent

Environment

Action

: a

State:

s

Reward: r

New state:

s’

Figure 4.1: Diagram of the reinforcement learning work flow (Sutton and Barto, 1998).

stages. Once the simulation has been initialized, the balance may be shifted towards

exploitation. Exploration strategies will be treated in Section 4.3.

Before moving to the treatment of different schemes, some of the reinforcement learning

terms that have been introduced are explained thoroughly, since they will be employed

throughout this and future chapters.

• The policy, usually represented as π, is the behaviour of the agent at a particular

time. It may be stochastic or deterministic. A greedy policy, i.e. such that it

maximizes the value function, is typically specified, with a strong link to the

exploration strategy. The reinforcement learning process will lead to an optimal

policy with time (Sutton and Barto, 1998).

• The reward function can be considered as an inverse cost function. It is defined

on the basis of the goal the agent is expected to achieve. A discount factor can

be used to give more importance to either immediate or more future-oriented

reward. Designing an appropriate reward function is particularly challenging,

since it can be very difficult to determine what actions should be rewarded in

complex problems. For this reason, apprenticeship learning has been developed

(Abbeel, 2008), where the reward function is derived from a statistical study of

the actions taken by an expert while performing the task.

• Two types of value functions are used in the reinforcement learning literature:

the state value function, V (s), and the state-action value function, Q(s, a). The

former is preferred when a model of the environment is available, e.g. in dynamic

programming; the latter is used when the model of the environment is not known,

e.g. in the Monte-Carlo and temporal difference methods (Sutton and Barto,

1998). The value function represents the prediction of the future reward for

a given state or state-action pair. Conversely, the reward function returns the

immediate reward. Therefore, decisions on the action selection are based on the

value function, rather than the reward function, since it provides an estimate of
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the total future reward expected after landing in a specific state.

Reinforcement learning methods can be divided into three main categories: dynamic

programming, temporal difference and Monte-Carlo methods (Sutton and Barto, 1998).

Dynamic programming is mathematically well developed, but needs a full model of the

environment in order to determine a suitable policy (Sutton and Barto, 1998; Busoniu

et al., 2010). Thus, this strategy is not treated in this work because the aim is the

development of a model-free controller. Conversely, with Monte-Carlo and temporal

difference methods learning can occur from direct observations of the environment.

While Monte-Carlo techniques need to wait for the end of the task before updating the

value function, temporal difference schemes can learn on-line like dynamic programming

(Sutton and Barto, 1998; Busoniu et al., 2010). Monte-Carlo methods are treated in

Section 4.4, while temporal difference strategies in Section 4.5. First of all, Markov

decision processes are described in Section 4.2, introducing the Bellman equation, while

exploration strategies are considered in Section 4.3.

4.2 Markov decision processes

The theory of Markov decision processes is taken from Sutton and Barto (1998),

Lagoudakis and Parr (2003), Busoniu et al. (2010) and Geramifard et al. (2013) so

that these references will no longer be repeated in this section. A Markov decision

process is defined as a tuple of the form (S,A,P, γ) where S = {s1, s2, . . . , sI} is a

finite set of I states and A = {a1, a2, . . . , aJ} a finite set of J actions. P is a Markov

transition model, with P(s, a, s′) = p(s
a−→ s′) being the probability of transitioning

to state s′ when taking action a in state s. γ ∈ [0, 1] is the discount factor for future

rewards. It is assumed that the Markov decision process has an infinite horizon so that

future rewards are discounted exponentially. R : S×A×S 7→ IR is the reward function,

where R(s, a, s′) is the reward corresponding to the transition s
a−→ s′. The notation can

be simplified to R : S × A 7→ IR, with the predicted reward for state-action pair (s, a)

expressed as

R(s, a) =
∑
s′∈S
P(s, a, s′)R(s, a, s′). (4.1)

For a Markov decision process, a stationary policy π is a mapping between states and

actions: π : S 7→ Ω(A), where Ω(A) is the set of all probability distributions over

A. Hence, π(a; s) indicates the probability that policy π selects action a in state s.

A particular case is represented by a stationary deterministic policy that results in a

single action choice per state. In this case, the mapping reduces to π : S 7→ A from

states to actions, so that π(s) indicates the action taken in state s.
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The state-action value function Qπ(s, a) of any policy π is defined over all possible

combinations of states and actions. As aforementioned, the value function indicates the

expected, discounted, total reward that will follow the selection of action a in state s

and following policy π thereafter:

Qπ(s, a) = Eat∼π;st∼P

( ∞∑
t=0

γtrt|s0 = s, a0 = a

)
, (4.2)

where E is the expected reward, rt the reward at time t and s0 and a0 as the starting

state and action, respectively. For all state-action pairs, the exact state-action values

can be found by solving the linear system of the Bellman equations (Bellman, 1957):

Qπ(s, a) = R(s, a) + γ
∑
s′∈S
P(s, a, s′)

∑
a′∈A

π(a′; s′)Qπ(s′, a′). (4.3)

This system can be expressed in matrix form as

Qπ = R+ γPΠπQ
π, (4.4)

whereQπ andR are vectors of size (|S||A|, 1). P is a stochastic matrix of size (|S||A|, |S|)
that includes the transition model of the process

P
(
(s, a), s′

)
= P(s, a, s′). (4.5)

Ππ is a stochastic matrix of size (|S|, |S||A|) that describes the policy

Ππ

(
s′, (s′, a′)

)
= π(a′; s′). (4.6)

The resulting linear system

(I − γPΠπ)Qπ = R (4.7)

can be solved analytically or iteratively in order to obtain the exact state-action values,

where I is the identity matrix in this case.

For every Markov decision process, there exists an optimal deterministic policy, π∗,

which maximizes the expected, total, discounted reward from any initial state. This

corresponds to

π∗ = arg max
π

Qπ(s, a),∀s ∈ S, a ∈ A. (4.8)

Hence, the search for the optimal policy can be restricted only to the space of determi-

nistic policies.

In Monte-Carlo and temporal difference methods, the transition matrix P is not known

if a model of the system is not employed. Hence, the state-action value function is
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updated using information derived from direct observations of the environment. In

particular, with on-line temporal difference schemes, the update occurs at every step

of the algorithm, while with batch-mode algorithms the Q function is updated using a

number of samples stored in a batch. The difference between on-line and batch-mode

temporal difference strategies is treated in Section 4.5. With Monte-Carlo methods, the

state-action value function is updated at the end of each episode.

4.3 Exploration strategy

Different strategies have been proposed in order to ensure sufficient exploration at the

start of a reinforcement learning problem, whilst shifting the focus to exploitation of the

best actions as learning progresses. The most famous techniques are known as ε-greedy,

Boltzmann and counter-based exploration (Busoniu et al., 2010). Of these strategies,

ε-greedy and Boltzmann exploration have been investigated, but only the former has

been applied to the control of wave energy converters.

Given the current state s, an ε-greedy policy selects the action at the start of each step

of the algorithm (Busoniu et al., 2010)

a =

{
arg max

a′∈A(s)
Q(s, a′) with probability 1− ε, (4.9a)

random action with probability ε, (4.9b)

where ε is the exploration rate. This means that with probability 1−ε the greedy action

is selected, i.e. the exploitative action that maximizes the value function and thus the

expected total future reward; otherwise an exploitative action is chosen instead. It is

important to notice that in (4.9), the action space is described as a function of the

state. This is because particular states, e.g. those lying on the boundary of the state

space, may present a limited set of actions so as to prevent exceeding the constraints.

For instance, this is the case for grid-world problems, with an example being analysed

in Section 4.6.1.

In order to ensure greater exploration at the start of reinforcement learning control,

whilst focusing on exploitative actions as learning progresses, in this work the explora-

tion rate is decreased with time as follows:

ε =

{
ε0 if N ≤ Nε, (4.10a)

ε0/
√
N −Nε otherwise. (4.10b)

In (4.10), ε0 is the initial exploration rate, while Nε indicates the minimum number

of visits to a specific state before reducing the exploration rate. The number of visits

to all discrete state-action pairs is stored in the matrix N with size (|S|, |A|), with S
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indicating the state space and A the action space. The entry corresponding to the state-

action pair (s, a) is given by N(s, a). In (4.10), N =
∑

a∈AN(s, a), i.e. N corresponds

to the sum of the number of visits to all actions for the current state. Discrete states are

used for the determination of the exploration rate even when function approximation

is employed. Note that the decay of the exploration rate presented in (4.10) has been

optimized for the application of reinforcement learning to the control of WECs analysed

in this work. For more conventional reinforcement learning problems with a greater

number of episodes, a slower decay rate may be beneficial. Usually, in these problems

the exploration rate decay is dependent on the number of episodes instead (Geramifard

et al., 2013).

4.4 Monte-Carlo methods

With Monte-Carlo methods, the reinforcement learning problem is solved based on

averaging sample rewards (Sutton and Barto, 1998). In fact, in the terminology of

Monte-Carlo techniques, the reward is referred to as return. These schemes are defined

only for episodic tasks so as to ensure well-defined, complete returns. This means that

the experience that the controller observes from interactions with the environment is

divided into discrete episodes, which present a defined end no matter what actions are

taken. Therefore, the policy is updated only at the end of each episode rather than on-

line. This characteristic makes the application of Monte-Carlo strategies to real-time

control problems challenging.

In Monte-Carlo methods, the state-value function for a given policy is estimated by sim-

ply averaging over the returns experienced after observing that particular state (Sutton

and Barto, 1998). In particular, two different techniques have been developed since the

1940s that differ in their treatment of the visits to a particular state within an episode.

In the every-visit Monte-Carlo approach, the value function V π(s) is approximated by

the mean of the returns following all visits of state s in a set of episodes while following

policy π. In the first-visit Monte-Carlo method, the value function is determined from

the average over only the first visits to the state. Both techniques converge towards the

state-value function V π(s) for an infinite number of visits to the state s by the law of

large numbers (Sutton and Barto, 1998).

When a model of the environment is not available, Monte-Carlo methods find the opti-

mal policy by alternating a stage of policy evaluation and a stage of policy improvement

at the end of each episode. This is shown graphically in Figure 4.2, which is taken from

Sutton and Barto (1998). During the policy evaluation phase, the state-action value

function is evaluated using the returns stored during the episode. During the policy

improvement stage, the policy is updated to the greedy policy with respect to the newly
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Qπ
π←greedy(Q)

improvement

evaluation

Q←Qπ

Figure 4.2: Policy iteration in Monte-Carlo methods (Sutton and Barto, 1998).

computed value function, i.e. the policy that maximizes the value function and thus the

expected total return. Policy iteration is described in greater detail in Section 4.5.7.1.

Furthermore, Monte-Carlo methods are divided into on- and off-policy schemes. On-

policy schemes evaluate and improve the policy that is used to make decisions. Con-

versely, with off-policy techniques, the episodes can be generated following a different

policy from the one being evaluated. On- and off-policy schemes will be treated in

greater detail in Sections 4.5.1 and 4.5.2, respectively, for temporal difference methods.

Here, an on-policy, first-visit Monte-Carlo method is treated. In order to ensure all

actions are selected infinitely often, soft, i.e. meaning that π(s, a) > 0 ∀s ∈ S, a ∈ A(s),

ε-greedy strategies have been proposed (Sutton and Barto, 1998). These schemes,

like the exploration strategy described in the previous section, gradually shift the

policy to a deterministic optimal policy. In Sutton and Barto (1998), all non-greedy

actions are selected with probability ε/|A(s)|, while the greedy action with probability

1−ε+ε/|A(s)|, where ε is the exploration rate. This is similar to the ε-greedy exploration

strategy described in (4.9). The exploration rate is still calculated according to (4.10),

although it is no longer updated at each time step, but rather at the end of each episode.

The work flow can be seen in Algorithm 1, which is adapted from Sutton and Barto

(1998). It should be noted that this algorithm assumes discrete states and actions. In

Algorithm 1, the first for-loop corresponds to the policy evaluation stage, while the

second one to the policy improvement step. R is a list storing all returns, while R

indicates the return following the first occurrence of (s, a).

Monte-Carlo methods have been the focus of the early research in reinforcement lear-

ning. Famous applications include the determination of the best actions in the multi-

arm bandits and black-jack games (Sutton and Barto, 1998). Other problems in the

literature include the soap bubble and racetrack examples (Sutton and Barto, 1998).

Nevertheless, since the 1990s, reinforcement learning research has focused mainly on
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Algorithm 1: On-policy, first-visit Monte Carlo algorithm with ε-greedy exploration,
adapted from Sutton and Barto (1998).

Input: ε0, Nε, S, A
Output: π
initialize Q(s, a) arbitrarily ∀s ∈ S, a ∈ A(s);
initialize R(s, a)← [] ∀s ∈ S, a ∈ A(s);
initialize π with an arbitrary ε-soft policy;
while end time not reached do

run episode following π;
for each pair (s, a) in the episode do

R← return following the first occurrence of (s, a);
Append R to R(s, a): R(s, a)← [R(s, a), R];
Q(s, a)← mean(R(s, a));

end
for each s in the episode do

a∗ ← arg maxa′∈AQ(s, a′) greedy action;
for all a ∈ A(s) do

if a = a∗ then
π(s, a)← 1− ε+ ε/|A(s)|;

else
π(s, a)← ε/|A(s)|;

end

end

end

end
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temporal difference and dynamic programming methods.

In the context of wave energy control, Monte-Carlo methods have been applied whe-

never temporal difference methods failed to converge. Their averaging nature ensures

Monte-Carlo methods are more robust and are thus able to find the optimal policy

even in the most challenging scenarios. In this thesis, Monte-Carlo methods have been

applied to the declutching control of a WEC, as can be seen in Chapter 6.

4.5 Temporal difference methods

Temporal difference methods merge the positive aspects of dynamic programming and

Monte-Carlo methods (Sutton and Barto, 1998). Like Monte-Carlo methods, temporal

difference schemes are independent of a model of the environment dynamics, thus

learning from direct observations. Similarly to dynamic programming, these strategies

are not episodic, i.e. they can learn on-line without the need to wait for the completion

of the task. In particular, temporal difference schemes update their estimate of the

value function at the end of each step. Furthermore, temporal difference methods are

guaranteed to converge to the actual value function for a fixed policy for a sufficiently

small step-size parameter (Sutton and Barto, 1998).

Temporal difference methods have been widely adopted by the robotics and computer

science industries. A thorough review of known applications and studies can be found in

Khan et al. (2012). Littman (2015) focuses on possible future applications in the field

of neuroscience. The most famous recent application of reinforcement learning, and

temporal difference methods in particular, is the deep reinforcement learning algorithm

that Google DeepMind has successfully used to beat the human champion in the game

of Go (Mnih et al., 2015).

Temporal difference methods are further subdivided into on-line and batch-mode al-

gorithms. With the former strategies, the state-action value is updated at each step

(Geramifard et al., 2013). In this work, the popular Sarsa (Rummery and Niranjan,

1994) and Q-learning (Watkins, 1989; Watkins and Dayan, 1992) on-line algorithms

are described. Conversely, batch-mode schemes update the state-action value function

off-line using information from a number, or batch, of stored (and previously generated)

samples in the form (s, a, r, s′) (Geramifard et al., 2013). Here, Neural Fitted Q-iteration

(NFQ) (Riedmiller, 2005) and Least-Squares Policy Iteration (LSPI) (Lagoudakis and

Parr, 2003) are explained.
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4.5.1 Sarsa

Sarsa, which stands for State-Action-Reward-State-Action is an on-line, on-policy rein-

forcement learning algorithm originally proposed by Rummery and Niranjan (1994).

This means that the policy used to gather observations is the same as the one used for

learning (Geramifard et al., 2013). At each step of the algorithm, the Q-value for the

current state-action pair is updated using the resulting immediate reward r and the

Q-value for the new state and new action, which will be experienced in the next step

(Sutton and Barto, 1998):

Q(s, a)← Q(s, a) + α
[
r + γQ(s′, a′)−Q(s, a)

]
, (4.11)

where s′ and a′ represent the state and action in the next step, respectively. Equation

(4.11) can be considered as a numerical approach for the solution of the Bellman equati-

ons in (4.4). It is particularly important to visualize the state-action value function Q as

a measure of the expected total reward for a particular state and action pair. Note that

in this implementation, discrete states and actions are considered. As a result, the state-

action value function (or Q-function) can be described by a table. The Sarsa algorithm

with linear function approximation for the state space can be found in Section 4.5.4.

In 4.11, α represents the learning rate and γ the discount factor. The discount factor

is used to discount future rewards. The learning rate determines the proportion of new

and old knowledge that is retained during learning and is calculated here as

α =

{
α0 if N(s, a) ≤ Nα, (4.12a)

α0/(N(s, a)−Nα) otherwise, (4.12b)

where α0 and Nα are specified parameters. Equation (4.12) ensures sufficient learning

when each state-action pair is visited for the first few times. As learning progresses,

older knowledge is given greater importance to limit the impact of sensor noise. Note

that the decay of the learning rate presented in (4.12) has been optimized for the

application of reinforcement learning to the control of WECs analysed in this work. For

more conventional reinforcement learning problems with a greater number of episodes,

a slower decay rate may be beneficial. Sarsa is guaranteed to converge for discrete

actions and states, a bounded reward variance, the use of a discount factor and a

properly decaying learning rate (Singh et al., 2000). The Sarsa algorithm for discrete

states is represented in Algorithm 2.

The learning time of the Sarsa algorithm can be greatly reduced with the use of

eligibility traces (Sutton and Barto, 1998). Eligibility traces aid the learning algorithm

determine the sequence of actions that maximizes the total reward. From a theoreti-

cal perspective, they provide a bridge between Monte-Carlo and temporal difference
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Algorithm 2: Sarsa: on-line, on-policy reinforcement learning algorithm with discrete,
exact states, adapted from Sutton and Barto (1998).

Input: S, A, α0, Nα, γ, ε0, Nε

Output: π
initialize Q(s, a) arbitrarily;
for each episode do

initialize N ← 0;
initialize s;
get ε with (4.10);
choose a given s using an ε-greedy policy with (4.9);
for each step in the episode do

take action a, observe r, s′;
update N(s, a)←N(s, a) + 1;
get ε with (4.10);
choose a′ given s′ using an ε-greedy policy (4.9);
get α with (4.12);
update Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)] ;
update s← s′ ;
update a← a′;

end

end

methods (Sutton and Barto, 1998). Although eligibility traces are a very powerful tool,

they are not employed in this work because of the nature of the analysed reinforcement

learning application, which presents a single episode.

In the context of WEC control, Sarsa has been applied to the resistive control of a

point absorber for a comparison with Q-learning and least-squares policy iteration,

which have been preferred throughout this work.

4.5.2 Q-learning

The Q-learning algorithm, originally proposed by Watkins (1989) and Watkins and

Dayan (1992), is one of the most successful and widely adopted algorithms in robotics

applications (Khan et al., 2012). In fact, Sarsa and NQF can be considered to be

modified versions of this scheme. The main difference between Sarsa and Q-learning is

that the state-action value function is not necessarily updated with the policy that is

being followed (Sutton and Barto, 1998):

Q(s, a)← Q(s, a) + α

[
r + γ max

a′∈A(s′)
Q(s′, a′)−Q(s, a)

]
. (4.13)

For this reason, Q-learning is known as an off-policy algorithm. Similarly to Sarsa,

Q-learning is guaranteed to converge for discrete actions and states, a bounded reward
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variance, the use of a discount factor and a properly decaying learning rate (Jaakkola

et al., 1994).

Algorithm 3 shows the Q-learning scheme for exact, discrete states. Like for Sarsa,

eligibility traces are not employed. Q-learning with linear function approximation for

the state space is described in Section 4.5.5.

Algorithm 3: Q-learning: on-line, off-policy reinforcement learning algorithm with
discrete, exact states, adapted from Sutton and Barto (1998).

Input: S, A, α0, Nα, γ, ε0, Nε

Output: π
initialize Q(s, a) arbitrarily;
for each episode do

initialize N ← 0;
initialize s;
for each step in the episode do

get ε with (4.10);
choose a given s using an ε-greedy policy with (4.9);
take action a, observe r, s′;
update N(s, a)←N(s, a) + 1;
get α with (4.12);
update Q(s, a)← Q(s, a) + α

[
r + γmaxa′∈A(s)Q(s′, a′)−Q(s, a)

]
;

update s← s′ ;

end

end

In the context of WEC control, Q-learning has been the first reinforcement learning

algorithm that has been investigated. It has successfully been applied to the resistive

and reactive control of a WEC, as can be seen in Chapter 6.

4.5.2.1 State-action value function example

Before moving on to the treatment of function approximation and other reinforcement

learning algorithms, let us consider a simple example in order to fully understand the

function of the reinforcement learning update of the state-action value function.

Let us consider a very simple, one-dimensional, grid-world navigation problem, where

the robot is restricted to motions in only 4 cells arranged horizontally, as shown in

Figure 4.3. At each step, the robot can decide to go left, right, or stay in the same

cell, i.e. there are 3 actions in total. The leftmost and rightmost cells present only two

actions to prevent the robot from exceeding the state space limits. The robot receives a

reward of +1 whenever it moves to (or stays in) the third cell from the left. No ”living

cost” penalty is awarded. The learning rate is set to 0.4 and the discount factor to 0.9.
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- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -

(a)

- 0.0000 0.0000 0.0000 0.0000 0.4000 0.0000 0.0000 0.0000 0.0000 0.0000 -

(b)

- 0.0000 0.0000 0.0000 0.0000 0.4000 0.1440 0.0000 0.0000 0.0000 0.0000 -

(c)

- 0.0000 0.0000 0.0000 0.0000 0.6518 0.1440 0.0000 0.0000 0.0000 0.0000 -

(d)

- 0.0000 0.0000 0.0000 0.0000 0.6918 0.1440 0.4518 0.0000 0.0000 0.0000 -

(e)

- 0.0000 0.0000 0.0000 0.0000 0.6918 0.1440 0.4518 0.1626 0.0000 0.0000 -

(f)

- 0.0000 0.0000 0.0000 0.0000 0.6918 0.1440 0.4518 0.1626 0.5626 0.0000 -

(g)

- 0.0000 0.0000 0.0000 0.0000 0.6918 0.1440 0.8337 0.1626 0.5626 0.0000 -

(h)

Figure 4.3: Position of the robot in the example one-dimensional grid world navigation
problem at different steps. The red arrow indicates the selected action (or a ring if the
robot is to stay in the same state). The dashed red square is associated with a reward of
+1. The entries for the Q-table after the update in each step are displayed on the top of
the cells.



4.5. Temporal difference methods 95

From this description, it is clear that the problem presents 4 exact (or discrete) states

and 3 actions (except at the end points). Hence, it is possible to represent the state-

action value function as a matrix of size (4, 3), where the entries (1, 1) and (4, 3) are

void. Figure 4.3 shows how the Q-table is updated at the end of each step using (4.13)

starting from Q = 0 for an arbitrary selection of actions. The actions are represented

by either the red arrows or the red ring (if the action is to stay in the same cell). The

figure also displays the state-action values for each state-action pair at the top of each

cell: the left, middle and right cells correspond to the actions move left, stay and move

right, respectively. Each cell corresponds to a particular state. The updated state-action

value at the end of the step is highlighted in red.

Now that the mechanism of temporal difference methods has been described with exact

states and actions, the topic of the approximation of the state-action value is introduced.

This technique can result in a significant computational saving for large state and action

spaces.

4.5.3 Function approximation

So far, we have considered discrete, exact actions and states. Hence, the state-action

value function could in fact be represented by a table (Sutton and Barto, 1998).

Nevertheless, for control applications in engineering, continuous states and actions are

more common (Busoniu et al., 2010), e.g. the voltage or current of an electric motor.

Function approximation can be used to describe Q as a function of the continuous

actions and states. The approximate state-action value function is typically represented

as Q̂ and the notation is followed here as well. Most function approximation methods

have been developed for discrete, exact actions. These schemes apply to bang-bang

control types or whenever the control action corresponds to a step change in a particular

variable at each time step (Busoniu et al., 2010), e.g. a step change in torque of an

electric motor. In fact, most systems nowadays present digital control strategies due

to the low cost of micro-controllers, so that the assumption of discrete actions is not

unrealistic. For this reason, only the state space is treated as continuous in this work,

and we ignore more exotic schemes that fit the action space as well.

Not only does function approximation reduce the computational costs associated with

the representation of large state and action spaces, but it also enables reinforcement

learning algorithms to generalize for unseen states, with a possible decrease in conver-

gence time (Geramifard et al., 2013). The simplest approximation of a continuous state

space is to use a number of discrete tiles (Sutton and Barto, 1998). The continuous

space enclosed by the boundary of each tile corresponds to a particular discrete state.

Such a procedure is also known as a tabular representation (Geramifard et al., 2013),

which presents a very low accuracy for most applications. Hence, a large number of tiles
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may be required to approximate the state space, which clearly results in a very large

computational cost in the calculation and update of the state-action value function. Alt-

hough it is possible to improve the computational efficiency of this particular strategy

with either the use of hashing or the adoption of non-uniform tiles (Sutton and Barto,

1998), alternative methods may be more efficient. Here, we focus on linear features and

neural networks for the function approximation of the state space.

4.5.3.1 Linear function approximation

The main advantages of linear function approximation (i.e. with linearly independent

features) are its simple implementation and the ease of debugging and feature engi-

neering (Lagoudakis and Parr, 2003). With this strategy (Geramifard et al., 2013), the

state-action value function is expressed in matrix notation as

Q(s, a) ≈ Q̂(s, a) = φ(s)TΘ:,a, (4.14)

where Θ is the weight matrix and φ is the vector of arbitrary, linearly independent,

usually non-linear basis functions, or features. The weight matrix presents a column for

each discrete action (hence |A| columns in total), so that Θ:,a indicates the ath column

of Θ. Θ and φ have J rows. Usually, J � |S| so that the memory cost of a linear

architecture is smaller than the exact representation, with S indicating the state space.

Although a wide range of basis functions are possible, in this work two types of

feature are used: tabular and radial. As aforementioned, the tabular representation

is the simplest and consists in assigning a separate weight for each state-action pair

(Geramifard et al., 2013). With this method, the jth feature associated with the current

state sj is 1, while all other parameters zero:

φj(s) =

{
1 if s = sj , (4.15)

0 if s 6= sj . (4.16)

For discrete states, this corresponds to the exact representation Q(s, a), although its

size is equal to the whole state-action space, i.e. J = |S|. As a result, there is no gain

in computational performance.

Gaussian radial basis functions (RBFs) (Moody and Darken, 1989) enable a continuous

representation of the state space. These features have been widely applied to reinforce-

ment learning problems (Busoniu et al., 2010; Geramifard et al., 2013). In RBFs, the

feature activation decays continuously away from the state-action pair where the basis

function is centred, sj for the jth RBF, spanning many discrete states (Geramifard

et al., 2013):

φj(s) = exp

(
−||s− sj ||

2

2µj

)
, (4.17)
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Figure 4.4: Activation function of radial basis functions in two dimensions as per (4.17).

where µj indicates the bandwidth of the jth RBF. RBFs are shown graphically in two

dimensions in Figure 4.4. A larger value of µ results in a flatter curve. Basis functions can

present a different bandwidth for each direction, resulting in elliptical basis functions

(Busoniu et al., 2010). Since the output of RBFs decays to zero far away from its centre,

the location of the centres has a strong influence on the accuracy and validity of the

resulting representation (Geramifard et al., 2013). For instance, Geramifard et al. (2013)

have shown that a random distribution of RBFs can result in severe learning problems in

the benchmark pole-cart problem. Different strategies to address this problem, including

an adaptive location strategy, are discussed in Geramifard et al. (2013). Here, a uniform

distribution of RBFs is employed. An additional bias term, which presents a value of

1 and a corresponding weight, is also included to provide the offset of the fit of the

function approximation.

4.5.3.2 Neural function approximation

Recently, the application of non-linear basis functions has been proposed. Many stra-

tegies have been developed, including regression and machine learning techniques. An

example is the use of regression trees in Ernst et al. (2005). Here, only neural networks

have been considered based on NFQ described by Riedmiller (2005). Neural networks

represent a powerful, non-linear tool that allows global approximation also for non-linear

problems. Their main advantage is the capacity to generalize for unseen situations.

However, they present also a major disadvantage: when updating the state-action value

function, information from the current state-action pair may affect the prediction of

other state-action pairs in an unforeseeable manner (Riedmiller, 2012), even overwriting

previous information. As a result, feature engineering is much more complex than for

linear basis functions. The method proposed by Riedmiller (2005) to overcome this issue

is described in Section 4.5.6.

Here, a feed-forward multi-layer ANN with a single hidden layer with m neurons is

considered, as shown in Figure 4.5. The output of the ANN can be obtained with forward
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Figure 4.5: Schematic diagram of the feed-forward neural network used here for the function
approximation of the state-action value (assuming one state and one action).

propagation, as described in Section A.2.3. Similarly, as explained in Section A.2.4, for

a neural network learning occurs by tuning the weight matrices so that the network

provides an accurate mapping between provided input and output data. To simplify

the notation, here we denote the mapping provided by the neural between input i and

output o as

o = f(i). (4.18)

The neural network is then trained using input and output data with backward pro-

pagation as described in Section A.2.4. Although the Rprop algorithm (Riedmiller and

Braun, 1993) is used in Riedmiller (2005), here we employ the efficient Levenberg-

Marquardt scheme (Hagan and Menhaj, 1994) for training (Section A.2.4.2).

4.5.4 Sarsa with linear function approximation

The Sarsa algorithm is described for discrete states in Section 4.5.1. The more general

form of the scheme with the inclusion of function approximation can be found in

Algorithm 4. Only linear function approximation is considered here for simplicity. Even

though different function approximation features are investigated, a tabular approach

is used for the update of the exploration and learning rates. Hence, this means that the

number of discrete states is Sd, each of which corresponds to a row of the N matrix.

Thus, for each continuous state s, the corresponding closest discrete state sd is found.

This is specific to this particular application of reinforcement learning to the control of

WECs, where only one episode is considered. For more standard applications, a greater

number of episodes is used to teach the controller a particular task, e.g. acrobatic

manoeuvres for helicopters (Abbeel, 2008). Therefore, it is usually preferred to update
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the exploration and learning rates based on the number of episodes (Busoniu et al.,

2010; Geramifard et al., 2013).

Algorithm 4: Sarsa: on-line, on-policy reinforcement learning algorithm with linear
function approximation, adapted from Sutton and Barto (1998).

Input: A, α0, Nα, γ, ε0, Nε, Sd, φ
Output: π
initialize Θ arbitrarily;
for each episode do

initialize N ← 0;
initialize s;
for all a ∈ A(s) do

get Q̂(s, a) = φ(s)TΘ:,a with (4.14);
end
get ε with (4.10);
choose a given s using an ε-greedy policy with (4.9);
for each step in the episode do

get the discrete state sd from s;
update N(sd, a)←N(sd, a) + 1;
get ε with (4.10);
get α with (4.12);
take action a, observe r, s′;

initialize δ = r − Q̂(s, a);
for all a ∈ A(s′) do

get Q̂(s′, a) = φ(s′)TΘ:,a with (4.14);
end
choose a′ given s′ using an ε-greedy policy (4.9);

update δ ← δ + γQ̂(s′, a′);
update Θs,a ← Θs,a + αδ ;
update s← s′ ;
update a← a′;

end

end

4.5.5 Q-learning with linear function approximation

Q-learning for discrete states and actions is described in Section 4.5.2. Algorithm 5

presents the more general version for linear function approximation. In this case, as for

Sarsa, discrete states are used to update the learning and exploration rates.
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Algorithm 5: Q-learning: on-line, off-policy reinforcement learning algorithm with
linear function approximation, adapted from Sutton and Barto (1998).

Input: A, α0, Nα, γ, ε0, Nε, Sd, φ
Output: π
initialize Θ arbitrarily;
for each episode do

initialize N ← 0;
initialize s;
for each step in the episode do

for all a ∈ A(s) do

get Q̂(s, a) = φ(s)TΘ:,a with (4.14);
end
get ε with (4.10);
choose a given s using an ε-greedy policy with (4.9);
get discrete state sd from s;
update N(sd, a)←N(sd, a) + 1;
get α with (4.12);
take action a, observe r, s′;

initialize δ = r − Q̂(s, a);
for all a ∈ A(s′) do

get Q̂(s′, a) = φ(s′)TΘ:,a with (4.9);
end

update δ ← δ + γmaxa′∈A(s) Q̂(s′, a′);

update Θs,a ← Θs,a + αδ ;
update s← s′ ;

end

end
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4.5.6 Neural fitted Q-iteration

NFQ was originally proposed by Riedmiller (2005). The scheme was developed to

combine Q-learning with neural function approximation so as to exploit the advantages

of both approaches: a strong, efficient learning algorithm and a tool that is able to fit

non-linear functions accurately. According to the Q-learning state-action value function

update in (4.13), the target of the neural network (i.e. the output) can be set to

Q̂target(s, a) = r + γ max
a′∈A(s′)

Q̂(s′, a′). (4.19)

As a result, the output squared error of the neural network is given by

e =
(
Q̂(s, a)− Q̂target(s, a)

)2
, (4.20)

which can be then backward propagated as described in Chapter ??. In (4.19), Q̂ is

denoted as approximate, as it is computed by the ANN.

However, in order to solve the problem caused by the training of neural networks on-line,

a batch-mode algorithm was developed instead. This means that the state-action value

function is updated off-line at regular intervals using samples of the form (s, a, r, s′) that

are stored at each step from the interactions with the environment. In particular, the

whole set of transition experiences (i.e. all past samples) and the Levenberg-Marquardt

algorithm are used for the training of the neural network weights. This procedure is

repeated for a specified number of epochs, kmax. This approach has been found to work

well, and is more computationally efficient than setting a limit for the error (Riedmiller,

2012). In a practical application, a finite number of samples can be stored due to

memory requirements and the computational cost associated with training the neural

network. It will be important to ensure a broad range of samples is maintained in order

to produce a network of sufficient quality.

Neural fitted Q-iteration is summarized in Algorithm 6. The notation S:,j indicates the

jth column vector of the list of samples S. The condition for the update of the weights

of the neural network usually corresponds to the collection of a specified number of

samples.

Neural fitted Q-iteration has not been applied to the control of WECs, but rather to

the control of tidal turbines.
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Algorithm 6: Neural fitted Q-iteration: off-line, off-policy reinforcement learning
algorithm with neural function approximation, adapted from Riedmiller (2005).

Input: A, Nα, γ, ε0, Nε, Sd

Output: π
initialize W (neural network weights) randomly;
initialize S ← [] (empty samples list);
get number of actions |A|;
for each episode do

for each step in the episode do
observe current continuous state s;
get corresponding discrete state sd;
update exploration rate ε with (4.10);
for each action a in A do

get Q̂(s, a) ≈ f(s, a) with (4.18);
end
select an action a with an ε-greedy policy with (4.9);
apply action a and observe reward r and new state s′;
store S ← [S; (s, a, r, s′)];
if condition met for off-line neural network update then

get the number of samples ns;

initialize Q̂target = 0 with size (ns, |A|);
for k = 1 : kmax do

for each sample i in S do
for each action a in A do

get Q̂(s′, a′) ≈ f (S(i, 4), a′) with (4.18);
end

get Q̂target(i) = S(i, 3) + γmaxa′∈A Q̂(s′, a′) with (4.19);

end
train neural network as in Hagan and Menhaj (1994) with input S(:, 1)
and S(:, 2) and output Q̂target;

end

end

end

end



4.5. Temporal difference methods 103

4.5.7 Least-squares policy iteration

Least-squares policy iteration is an off-line, on-policy reinforcement learning scheme

developed by Lagoudakis and Parr (2003). Its inspiration is taken from policy iteration,

a technique to find the optimal policy for any Markov decision process (Howard, 1960).

In a reinforcement learning framework, the underlying Markov decision process is not

available. Thus, the algorithm must rely on information coming from direct interactions

with the environment. At each time step, observations are stored as samples of the form

(s, a, r, s′) (Lagoudakis and Parr, 2003). As before, s indicates the current state, a the

action taken by the controller, r is the observed reward and s′ indicates the new state

the agent lands into.

Least-squares policy iteration is an approximate policy-iteration algorithm that learns

decision policies from the stored samples (Lagoudakis and Parr, 2003). The state-action

value, or Q-value, is approximated with linear features and calculated on demand. This

means that for any desired state s, the Q-value is computed for all actions using the

stored parameters of the approximation. The greedy action is then selected. Least-

squares temporal difference Q (LSTDQ) (Lagoudakis and Parr, 2003) is used to update

the policy using the stored samples. In the following subsections, these steps will be

described in detail.

4.5.7.1 Policy iteration

As opposed to the other temporal difference methods described above, in policy ite-

ration the policy is represented with a separate memory structure independent of the

value function (Sutton and Barto, 1998). The optimal policy is found by alternating

iteratively between a stage of policy evaluation, where the Q-value is estimated for the

current policy from the linear system of the Bellman equations, and a stage of policy

improvement, where the policy is updated to the policy that optimizes the action-value

(Lagoudakis and Parr, 2003). In this particular application, the policy is improved by

using the ε-greedy policy previously described. The two steps of the process are repeated

until there is no longer a change in the policy, which has fully converged to the optimal

policy. Policy evaluation is also referred to as the critic and policy improvement as the

actor (Lagoudakis and Parr, 2003). Therefore, policy iteration strategies are known as

actor-critic architectures (Sutton and Barto, 1998).

Policy iteration is guaranteed to converge to the optimal policy only for a tabular

representation of the state-action value function, exact solution of the Bellman equa-

tions and a tabular representation of the policy (Lagoudakis and Parr, 2003). The

associated computational cost becomes excessive for large state and action spaces, so

that approximation methods are usually employed. In particular, two approximations

are typically made (Lagoudakis and Parr, 2003):
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Figure 4.6: Diagram of approximate policy iteration, adapted from Lagoudakis and Parr
(2003).

• The exact representation of the value function Qπ(s, a) (for policy π, state s and

action a) is replaced by the parametric function Q̂π(s, a, w), where w indicates

the adjustable weights of the approximator.

• The exact policy π(s) is replaced by the approximate representation π̂(s, θ), where

θ corresponds to the adjustable parameters of the representation.

As only the parameters need to be stored, the memory requirements are much smaller

for approximate policy iteration than for exact policy iteration. The policy evaluation

and the action-value estimation (or projection) are merged into a single phase, while

policy improvement and the policy projection are blended into the second phase. Ap-

proximate policy iteration is shown graphically in Figure 4.6.

The soundness of the approximation strategy of policy iteration is supported by the

findings by Bertsekas and Tsitsiklis (1996) and Munos (2003). These studies proved

that approximate policy iteration converges to the optimal policy if the errors in the

approximation of the policy and Q-value are bounded and decrease to zero.

4.5.7.2 Least-squares fixed-point approximation

The state value function can be approximated through the Bellman residual minimizing

approach (Schweitzer and Seidmann, 1985), based on the Bellman equations in (4.4).

Although the Bellman residual minimizing technique is more stable and predictable, a

different method, known as least-squares fixed-point, is more suitable for the approx-

imation of the state-action value function in the context of learning (Munos, 2003).

In particular, only a generative model of the Markov decision process can produce

the ”doubled” samples necessary for the former approach (Lagoudakis and Parr, 2003).
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Furthermore, the policies obtained from least-squares fixed-point approximation have

been found to be superior in practice (Lagoudakis and Parr, 2003). For these reasons,

only this method is presented here.

The least-squares fixed-point scheme has been developed by Bradtke et al. (1996) for

learning the state-action value function from samples. This method is based on the

observation that the state-action value function Qπ of policy π is a fixed point of the

Bellman operator Tπ (Lagoudakis and Parr, 2003):

TπQ
π = Qπ, (4.21)

which is identical to (4.4). Therefore, a good approximation for the value function would

be a fixed point under the Bellman operator, which must lie in the space spanned by

the basis functions (Lagoudakis and Parr, 2003). Although Qπ lies there by definition,

this may not be true for TπQ
π, which must be projected. Lagoudakis and Parr (2003)

consider an orthogonal projection that minimizes the L2 norm:
(
ΦT (ΦΦ)−1ΦT

)
. The

problem reduces to the search for the approximate value function Q̂π that is invariant

under one application of the Bellman operator Tπ followed by the orthogonal projection

(Lagoudakis and Parr, 2003):

Q̂π =
(
ΦT (ΦΦ)−1ΦT

) (
TπQ̂

π
)
, (4.22)

Q̂π =
(
ΦT (ΦΦ)−1ΦT

) (
R+ γPΠπQ̂

π
)
. (4.23)

Since linearly independent features are used for the function approximation, the column

space of Φ is well defined. Rearranging (4.23), it is possible to express the problem as

the solution of a (K×K) linear system, with K being the total number of basis functions

(Lagoudakis and Parr, 2003):

ΦT (Φ− γPΠπΦ)wπ = ΦTR. (4.24)

For a finite number of any γ values and for any Ππ, the solution to the system, which

is known as least-squares fixed-point approximation, is guaranteed to exist (Koller and

Parr, 2000):

wπ =
(
ΦT (Φ− γPΠπΦ)

)−1
ΦTR. (4.25)

In order to control the distribution of the approximation error, a weighted projection

is typically employed. Defining µ as the probability distribution over (s, a) and ∆µ

as the diagonal matrix with the projection weights µ(s, a), the weighted least-squares

fixed-point approximation is (Lagoudakis and Parr, 2003)

wπ =
(
ΦT∆µ(Φ− γPΠπΦ)

)−1
ΦT∆µR. (4.26)
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4.5.7.3 Least-squares temporal difference learning for the state-action value function

With temporal difference methods, the model of the environment is not available. Hence,

the weighted least-squares fixed-point approximation must be learned from samples.

Taking into account that there are K linearly independent basis functions, this problem

reduces to learning the parameters wπ of Q̂π = Φwπ (Lagoudakis and Parr, 2003). From

(4.26), the exact values for wπ are computed by solving the following linear system of

equations (Lagoudakis and Parr, 2003):

Awπ = b, (4.27)

where

A =
(
ΦT∆µ(Φ− γPΠπΦ)

)
, (4.28)

b = ΦT∆µR, (4.29)

and µ is a probability distribution over (S × A) that describes the weight of the

projection.

In temporal difference methods, A and b are not known a-priori, but rather must be

learned from samples. Denoting learned values with ,̃ considering samples of the form

(s, a, r, s′) and assuming that the distribution of the samples matches µ, Lagoudakis

and Parr (2003) have shown that for L samples the learned values of A and b can be

expressed as:

Ã =
1

L

(
Φ̃T (Φ̃− γP̃ΠπΦ)

)
, (4.30)

b̃ = Φ̃T R̃, (4.31)

where

Φ̃ =
[
φ(s1, a1)T . . . φ(sl, al)

T . . . φ(sL, aL)T
]T
, (4.32)

P̃ΠπΦ =
[
φ(s′1, π(s′1))T . . . φ(s′i, π(s′l)

T . . . φ(s′L, π(s′L)T
]T
, (4.33)

R̃ =
[
r1 . . . rl . . . rL

]T
. (4.34)

In the limit of an infinite number of samples, Ã and b̃ converge to A and b. In this

particular case, an ε-greedy strategy is employed. Hence, π(s) is given by the evaluation

of the state-value function for all available actions for the current state and the selection

of the one that results in the maximum value, unless a random action is chosen.

A problem with (4.27) is that Ã needs to be inverted. However, the matrix will not be

full rank until a sufficient number of samples has been collected. Lagoudakis and Parr

(2003) have proposed the adoption of recursive least-squares techniques to compute the
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Figure 4.7: Diagram of the LSPI algorithm, adapted from Lagoudakis and Parr (2003).

inverse of Ã recursively and more information can be found in their work.

4.5.7.4 Least-squares policy iteration algorithm

At this point, using the knowledge of linear function approximation, approximate

policy iteration, least-squares fixed-point approximation and least-squares temporal

difference learning for the state-action value function, it is possible to express LSPI as

in Algorithm 7. In addition, Figure 4.7 summarizes LSPI graphically.

In a WEC control context, least-squares policy iteration has been applied to the resistive

and reactive control of a point absorber, as can be seen in Chapter 6. In particular, the

performance of LSPI has been assessed against Q-learning and Sarsa.

4.6 Benchmark problems

The performance of the Sarsa, Q-learning and LSPI algorithms has been assessed using

two established benchmark cases: a grid-world navigation problem and the control of

an inverted pendulum on a cart. Both discrete states (i.e. tabular features) and RBFs

are used to approximate the state space for all algorithms. Monte-Carlo methods and

neural fitted Q-iteration have been neglected from these studies, since they have been

analysed only peripherally in this project. Nevertheless, it is possible to find a successful

implementation of neural fitted Q-iteration for the inverted pendulum problem in

Riedmiller (2005).
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Algorithm 7: Least-squares policy iteration: off-line, on-policy reinforcement learning
algorithm with linear function approximation, adapted from Lagoudakis and Parr
(2003).

Input: A, α0, Nα, γ, ε0, Nε, Sd, φ, δ
Output: π, Θ
initialize Θ arbitrarily;
initialize Θ0 = 0;
initialize S ← [] (empty samples list);
get number of actions |A|;
for each episode do

for each step in the episode do
observe current continuous state s;
get corresponding discrete state sd;
update exploration rate ε with (4.10);
for each action a in A do

Q̂(s, a) = φ(s)TΘ:,a;
end
select an ε-greedy action a with (4.9);
apply action a;
observe reward r;
observe new continuous state s;
store S ← [S; (s, a, r, s′)];
if condition met for off-line weight matrix update then

Θ1 ← Θ0;
while ||Θ−Θ1|| ≥ δ do

Θ1 ← Θ;

Ã← 0;
b← 0;
for each sample (s, a, r, s′) ∈ S do

Ã← Ã+ φ(s) (φ(s)− γφ (s′, π(s′)))T ;

b̃← b̃+ φ(s)r;
for each action a ∈ A do

Θ:,a ← Ã−1b̃;
end

end

end

end

end

end
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Figure 4.8: Representation of the analysed grid world. The starting position of the agent
is represented by the red dot, while the black cell and green dot indicate the desired final
position.

4.6.1 Grid-world navigation

Grid-world problems are some of the simplest established test cases for reinforcement

learning algorithms and examples can be found in Sutton and Barto (1998), Busoniu

et al. (2010) and Geramifard et al. (2013). In these situations, the reinforcement learning

agent is placed in a two-dimensional, maze world with discrete states. At each step, it

can take an action that results in a change of state and a movement on the grid from

one cell to a neighbouring one. Some small uncertainty may be applied to the action

implementation by adding a random noise element to the action selection process. The

aim of the task consists in having the agent learn how to navigate from the starting

position to a fixed cell in the grid, which is associated with a positive reward. Usually, a

number of obstacles can be found in the form of walls or, worse, pits, which result in a

penalty. An additional smaller penalty may be applied at each step due to ”living”costs,

whose function is to speed up the selection of the shortest path. Despite their simplicity,

grid-world are central to the discrete version of WEC control based on reinforcement

learning treated in Chapter 6.

Here, a very basic grid-world problem is considered, which is shown in Figure 4.8.

The blue dots indicate the position of the centres of the RBFs, with µ = 2. The

green and red dots also correspond to two additional centres. Furthermore, the red dot

indicates the cell from which the agent starts in each episode. The green dot indicates

the desired ultimate position to be reached, with the black square indicating that the
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episode is completed once the agent reaches this point and decides to stay in the same

spot in the next step. Before completion, a reward of +1 is returned to the agent for

reaching the desired goal. No living penalty cost is applied. Similarly, no obstacles are

included, although the agent cannot go beyond the grid-world boundaries. Hence, the

action selection is constrained on the limit of the state space. Otherwise, 5 actions are

available to the agent: either take one step up, right, down or left, or stay in the same

spot in the next step as well. No random noise is applied to the action selection for

simplicity, which results in a deterministic policy. The exploration and learning rates

present a simpler decay formulation than (4.10) and (4.12), respectively. The learning

and exploration rates are initialized as α ← 0.4 and ε ← 0.6, respectively. At the end

of each episode, both rates are updated as

α← 0.99α and ε← 0.99ε, respectively. (4.35)

The discount factor is set to γ = 0.95.

For all algorithms, 1000 episodes are run for 100 different seed values to the random

number generator. For LSPI, the weights of the function approximation are updated

only once every 50 episodes. Note that this is different from the application to the

control of WECs, where the update is performed after a specified number of steps

rather than episodes. As shown in Figure 4.9, all algorithms converge towards the

optimal policy in less than 1000 episodes, i.e. such that the agent completes the episode

in 8 steps (including lingering in the final position). The figure displays the curve of the

mean number of steps with episode number over all 100 repeats with 95% confidence

limits as well as the best and worst curves over all cases (i.e. the lowest and highest

number of steps, respectively). It is very important to notice the different scales of the

x-axis for the different strategies. From Figure 4.9, it is clear that the on-line Sarsa

and Q-learning schemes with discrete states perform best for the grid-world problem,

due to the small number of discrete states. Furthermore, the associated computational

cost (not displayed) is much lower. LSPI with tabular features takes longer to converge,

since the weights are updated only once every 50 episodes. Despite the discrete nature of

the states, even the schemes with function approximation are able to learn the optimal

policy. However, this may be due to the location of the centres of the RBFs, with one

lying on the final state.

In this simple problem, it is possible to visualize the optimal policy in Figure 4.10,

which shows the policy to which Sarsa with discrete states converges. This is achieved

by displaying the direction associated with the action that results in the maximum

state-action value for each discrete state with arrows. In fact, in this case the algorithms

converge towards different optimal policies for the various seeds to the random number

generator due to the exploration process. However, all policies are optimal in that they
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Figure 4.9: Plots of the number of steps required to reach the optimal point versus number
of episodes for the three considered reinforcement learning algorithms with and without
function approximation for the navigation in the grid world.
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Figure 4.10: Policy selected by the Sarsa scheme with discrete states for the first seed
value.

present 8 steps before completing the episode.

4.6.2 Control of an inverted pendulum on a cart

The second reinforcement learning task consists in the control of an inverted pendulum

on a cart, which can be seen in Figure 4.11. No model is provided to the reinforcement

learning algorithm and the agent needs to learn how to balance the pole by applying a

fixed force onto the cart. This is also a renown benchmark problem for the assessment

of reinforcement learning schemes (Busoniu et al., 2010). Here, we consider the specific

variant treated in Lagoudakis and Parr (2003), Riedmiller (2005) and Geramifard et al.

(2013). This case study is considered to show the importance of function approximation

in standard control tasks.

The motion of the mass on the top end of the pole can be expressed by the following

equation of motion (Lagoudakis and Parr, 2003):

θ̈(t) =
g sin (θ(t))− αml

(
θ̇(t)

)2
sin (2θ(t)) /2− α cos (θ(t))u

4l/3− αml cos2 (θ(t))
, (4.36)

where g = 9.81 m/s2 is the gravitational acceleration, m = 2 kg the mass at the

end of the pole, which is assumed to be massless and with length l = 0.5 m, and

α = 1/(m + M), with M = 8 kg being the mass of the cart. In (4.36), θ is the

instantaneous angle between the pole and the vertical line, as shown in Figure 4.11,
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θ 

dθ/dt

u

Figure 4.11: Control of an inverted pendulum on a cart.

Figure 4.12: Position of the centres of the RBFs used in the reinforcement learning
formulation of the control of the inverted pendulum. The position of the centres has been
selected to match that proposed by Geramifard et al. (2013).

while u is the control force applied to the cart. In order to solve (4.36) numerically, a

second state variable is introduced: Θ(t) = θ̇(t). Hence, (4.36) is rearranged into the

following system of equations:

θ̇(t) = Θ(t), (4.37a)

Θ̇(t) =
g sin (θ(t))− αml (Θ(t))2 sin (2θ(t)) /2− α cos (θ(t))u

4l/3− αml cos2 (θ(t))
. (4.37b)

Equations (4.37a) and (4.37b) have been solved using a fourth-order Runge-Kutta

scheme (Süli and Mayers, 2003) and a time step of 0.1 s.

For this reinforcement learning problem, each episode finishes when the pole falls, i.e.

|θ| ≥ π/2 rad. When this happens, a penalty of −1 is returned; otherwise a return of 0 is
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observed. Hence, the agent should learn to balance the pole for as long as possible. The

action space consists of three actions: apply a control force of −50 N, 0 N, or +50 N on

the cart. In this case, the actions present no constraints; however, a uniform, random

noise in [−10, 10] N is added to the selected action. The state-space is represented by

the two state variables, namely the angular displacement and velocity of the pole (θ

and Θ, respectively). Here, only 9 features are used for each action for both tabular

and radial basis functions in addition to a bias feature for each action, for a total of 30

basis functions for each algorithm. A regular distribution of the features is employed, as

shown in Figure 4.12. The dots in Figure 4.12 correspond to the centres of either the tiles

or the RBFs for tabular and radial features, respectively. A value of µ = 1 is employed.

The same exploration rate, learning rate and discount factor formulations as for the

grid-world problem in Section 4.6.1 are adopted. Each episode is run for a maximum

of 3000 steps, corresponding to 5 minutes. The control is deemed to be successful if

the pole does not fall for the whole episode duration. For all algorithms, 1000 episodes

have been investigated, which have been repeated 100 times with a different value of

the seed to the random number generator. As for the grid world problem, the weights

of the function approximation are updated only once every 50 episodes for the LSPI

algorithm. The learning behaviour of the analysed reinforcement learning schemes can

be seen in Figure 4.13. The figure displays the curve of the mean number of steps with

episode number over all 100 repeats with 95% confidence limits as well as the best and

worst curves over all cases (i.e. the highest and lowest number of steps, respectively).

Note that on purpose the same number of features is used for the tabular and radial basis

functions, no experience replay is applied to the Q-learning and Sarsa algorithms and no

pre-training data is provided to LSPI as opposed to the work presented by Lagoudakis

and Parr (2003) and Geramifard et al. (2013). From the analysis of Figure 4.13, it is

possible to make the following observations:

• the decay of the exploration and learning rates is too abrupt: the exploitative

action is always selected for a number of episodes greater than 400.

• the number of tabular features is too small. Geramifard et al. (2013) have shown

that 400 discrete states are required to ensure the pole is balanced for at least

5 minutes.

• LSPI with discrete sates performs worse than Q-learning and Sarsa, as observed

in Section 4.6.1 for the grid world navigation problem.

• Experience replay is fundamental in ensuring convergence of Q-learning and Sarsa

with function approximation, as shown by Lagoudakis and Parr (2003) for Q-

learning.

• LSPI with RBFs is the only algorithm that manages to learn the optimal policy

by balancing the pole for at least 5 minutes. However, a slower decay of the

exploration rate is required in order to ensure convergence for all repeats.
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Figure 4.13: Plots of the number of steps required to reach the optimal point versus
number of episodes for the three considered reinforcement learning algorithms with and
without function approximation for the control of the inverted pendulum.



4.7. Summary and discussion 116

• While function approximation was not required for the simple grid world naviga-

tion problem, here RBFs are fundamental in decreasing the learning time due to

the continuous nature of the state space.

4.7 Summary and discussion

In this chapter, the theory of reinforcement learning has been introduced. Firstly,

Markov decision processes are described so as to explain the reasoning behind the

development of reinforcement learning strategies. Similarly, the problem of exploration

versus exploitation typical of reinforcement learning applications has been discussed.

Subsequently, two different reinforcement learning methodologies have been described

in detail: Monte-Carlo and temporal difference methods. Algorithmic implementations

have also been presented, including four popular temporal difference schemes. In ad-

dition, function approximation has been discussed. Finally, two benchmark problems

have been analysed in order to assess the performance of the Q-learning, Sarsa and

LSPI algorithms, which have been mainly used during the project. Furthermore, the

benchmark problems have also shown that whereas function approximation is not

necessary if the problem presents a small number of discrete states, the technique is

necessary to ensure learning in a feasibly small amount of episodes for larger, continuous

state spaces.

In Chapter 6, reinforcement learning will be applied to the control of WECs. Firstly,

a basic implementation of Monte-Carlo methods is applied to the declutching control

of a point absorber. Then, Q-learning, Sarsa and LSPI algorithms are implemented for

the resistive and reactive control of WECs. In particular, the time averaged control

problem is expressed in a formulation similar to the grid world problem to speed up

learning and aid convergence. NFQ has been applied to the control of a tidal turbine in

a collaboration with other researchers at the University of Edinburgh. Since this topic

goes beyond the focus of this project, it will no longer be treated within this thesis.



Chapter 5

Application of ANNs and

optimization to the determination

of PTO parameters

In this chapter, neural networks are applied to the reactive, or impedance-matching,

control of WECs, which is introduced in Section 3.3. ANNs are a class of supervised

learning algorithms. Fore more information, the user is referred to Appendix A. ANNs

have been previously employed for the real-time system identification of WECs, for

instance in the works of Giorgi et al. (2016b) and Valério et al. (2008). In particular,

autoregressive ANNs with exogenous inputs and locally recurrent ANNs have been

adopted. Here, a different approach is proposed.

Although ANNs are still used for system identification, the analysed system presents

much slower variation. Instead of analysing the system in real time, a time-averaged,

non-linear model is obtained, which maps the significant wave height, Hs, energy wave

period, Te, and PTO parameters, namely the PTO damping and stiffness coefficients

(BPTO and CPTO, respectively) to the mean generated power, Pavg, and maximum

displacement magnitude, max |z|. This formulation enables the selection of the optimal

PTO coefficients that maximize energy absorption while meeting displacement con-

straints at the start of each time interval. The length of the time interval is selected to

be long enough to ensure the full decay of transient effects associated with a change

in PTO coefficients. As a result, the coefficients from previous time intervals do not

greatly affect the data in the current interval so that simpler feedforward ANNs can be

used instead of autoregressive and local recurrent ANNs.

Hence, in order to train the ANNs, values of Hs, Te, BPTO, CPTO, the mean absorbed

power, Pavg, and max |z| are collected for each time horizon throughout the operation

of the device, as entries of the training data set. Wave prediction techniques (for the

determination of Hs and Te) would be used in a realistic scenario to aid the selection

of suitable control parameters. The estimates for Pavg and max |z| can be expressed

through the functions f (Hs, Te, BPTO, CPTO) and g (Hs, Te, BPTO, CPTO) respectively.

117



5.1. Application of ANNs to the reactive control of WECs 118

ANN(s)Hs, Te, BPTO, CPTO Pavg, max|z|

Input Output

(a)

ANN(s)
Hs, Te

Pavg, max|z|

Input Output

BPTO, CPTO

BPTO, CPTO

Minimize Pavg with 

constraint  max|z|<zMax

Optimization

(b)

Figure 5.1: Diagram of the ANN(s) used for the system identification of the WEC power
absorption and maximum displacement (a) and diagram of the optimization strategy that
relies on the ANN(s) (b).

The trained ANNs will then be fed to optimization functions in order to find the

optimal PTO damping and stiffness coefficients for every new time horizon based on the

forecast sea state conditions. A brute-force approach that relies on parallel processing

is proposed for the optimization due to the non-linear nature of the model provided by

the ANN.

Figure 5.1a shows the proposed ANN(s) graphically, while Figure 5.1b displays the

adopted optimization procedure.

The following sections will describe the proposed approach in detail. A case study,

based on the simple point absorber model introduced in Section 2.3.1 is also provided

to demonstrate the performance of the scheme.

5.1 Application of ANNs to the reactive control of WECs

As aforementioned, in this work ANNs are employed in order to map the mean generated

power and the maximum displacement at the PTO to Hs, Te, BPTO and CPTO. This is

achieved through a multi-layer, feed-forward ANN with two output variables: Pavg and

max |z|.

In order to select a suitable size for the ANN, a preliminary study was conducted
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(a) (b)

Figure 5.2: Mean central processing unit (CPU) time (a) and mean square error (MSE) (b)
associated with the prediction of the mean generated power for different ANN configurations
in terms of hidden layers and neurons for 5 weight initializations and 5 training and test sets.
The upper bar corresponds to the sum of the mean value and half the standard deviation,
while the lower bar to the minimum value of all cases in order to prevent negative values.

to assess the performance of possible network configurations in estimating the mean

absorbed power (hence, ignoring max |z| and reducing the number of output variables to

one). This study has been performed with the linear model of the point absorber limited

to motions in the heave degree of freedom, which was first introduced in Section 2.3.1.

In particular, a single hidden layer with 5, 10, and 100 neurons, and two hidden layers

with 5, 10 and 25 neurons each have been considered. For each configuration, 25 cases

have been generated as the combination of 5 different random initializations of the

weight matrices and 5 training and test datasets. In fact, a single training dataset has

been sampled from simulations in irregular waves for the sea states in Table 5.1, which

has also been used to pre-initialize the ANN-based control in Section 5.3.3. According

to standard practice with ANN training (Hagan et al., 1996), the whole set has been

subdivided into the five distinct training and test sets by randomly reordering it, and

each time selecting the first 250 points for the test set (about 10%) and the remaining

2239 samples for the training set (approximately 90%). For each case, the ANN has

been trained using the training samples, and then used to estimate Pavg for the test set.

The mean square error between the prediction and the actual mean generated power

value has been calculated, as well as the overall computing time required for the ANN

implementation described below. Afterwards, the mean and standard deviation of these

values have been computed for each network configuration, and plotted in Figure 5.2.

From Figure 5.2, it is clear that the decision on the size of the ANN should be

based on a compromise between performance and accuracy. On the one hand, denser

networks result in greater memory requirements and computational cost, as shown

in Figure 5.2a. In particular, it is interesting to notice that the configuration with

two hidden layers with 10 neurons each, which contains a total of 100 connections
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between the two hidden layers, presents a much lower computational cost than a single

layer with 100 neurons, mainly due to implementation reasons. On the other hand,

the deeper the network, the greater the number of features that can be matched from

the original function; similarly, the greater the number of neurons, the more complex

the fitted function shape (LeCun et al., 2015). An example is the lower mean square

error associated with the configurations with 10 neurons as compared with those with

5 in Figure 5.2b. Nevertheless, an excessive number of neurons can result in overfitting

the input data (Hagan et al., 1996), i.e. fitting the random noise in addition to the

underlying relationship, which is highly undesirable since the ANN is expected to

generalise the shape of the Pavg and max |z| curves. In Figure 5.2b, this evidently

occurs for a single hidden layer with 100 neurons and two hidden layers with 25 neurons

each. Although a single hidden layer seems to perform best, this preliminary study has

been carried out on a relatively small dataset, considering only a limited number of

sea states. Therefore, it has been preferred to use a configuration with two hidden

layers each with 10 neurons in order to represent the possible extra features associated

with the additional sea states. Additionally, this results in only a minor increase in

computational time. Similar results are obtained from the mapping of the maximum

displacement.

A schematic diagram of the feed-forward ANN can be seen in Figure 5.3. The network

presents an input layer with 4 neurons (one for each input variable), two hidden layers

with m = 10 and n = 10 neurons each, and an output layer with two output variables.

Furthermore, it is possible to see that the input and hidden layers have an additional

bias term, which is required to find the intercept of the fitted functions at each stage in

the ANN Hagan et al. (1996). Each layer l presents input and output vectors ol−1 and

ol, respectively, with the input and output to the network being denoted by the vectors

(or matrix, for multiple samples) x and y, respectively. The signal between each two

matrices is multiplied by weight matrices W l, with l = 1, 2, 3. The weight matrices for

the bias terms are represented as bl.

For a given sample, the ANN provides a predicted output using forward propagation,

as described in Section A.2.3. As shown in Figure 5.3, the hidden layers present the

hyperbolic tangent activation function, while the output layer a linear function. The

network is updated at regular intervals by employing a number of samples with the

Levenberg-Marquard batch method devised by Hagan and Menhaj (1994), which is

described in Section A.2.4.2.

It is important to notice that the input variables, i.e. Hs, Te, BPTO and CPTO, need

to be normalized through their mean and standard deviation before being fed to the

ANNs for training. Furthermore, the mean power values have also been normalized

with respect to the maximum (for positive values) and minimum (for negative values).
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Figure 5.3: Schematic diagram of the feed-forward ANN for the approximation of the mean
generated power or maximum PTO displacement.
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This has been necessary because the points lying on the BPTO = 0 boundary of the

search space presented excessively high negative power values that seriously affected

the quality of the mapping.

5.2 Multistart optimization

At the start of every new time horizon, the controller should select the PTO damping

and stiffness coefficients that will result in maximum energy extraction for the predicted

sea state during the horizon, in compliance with the constraint on the PTO displace-

ment. This is clearly a non-linear optimization problem, since both Pavg and max |z|
are non-linear functions of Hs, Te, BPTO and CPTO. In addition, the values of the PTO

damping and stiffness coefficients must be bounded within sensible values, so that the

problem is constrained as well.

By removing the dependence on the significant wave height and wave energy period

from functions f and g due to space limitations for display purposes, the cost function

can be expressed at the start of each new time horizon h as follows:

c(h) =

{
−f (BPTO, CPTO) if |g (BPTO, CPTO) | ≤ zMax (5.1a)

+1 if |g (BPTO, CPTO) | > zMax (5.1b)

subject to:

Bmin ≤ BPTO ≤ BMax, (5.2a)

Cmin ≤ CPTO ≤ CMax. (5.2b)

The values of the maximum and minimum allowable PTO damping and stiffness coeffi-

cients can be derived through simulations with accurate, non-linear models during the

design stage in order to prevent damage to the generator in the most energetic sea

states likely to be encountered, where the WEC velocity and displacement are highest.

Note that to prevent unstable behaviour of the WEC, Bmin > 0 should be selected.

Due to the non-linear nature of the mapping provided by the ANN, a global optimi-

zation scheme is necessary. Genetic and other nature-inspired algorithms have been

extensively used recently for the solution of non-linear optimization problems that

present multiple minima (Arora, 2012). Nevertheless, in this work, a strong emphasis is

given to performance, since the optimization needs to be repeated at the start of each

new time interval. For this reason, it has been preferred to use the Multistart algorithm,

developed by Ugray et al. (2006).

This algorithm is a type of ”brute-force” strategy. The technique consists in generating

a number of start points, sampled randomly within the BPTO, CPTO search space. From
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each point, a fast convex optimization scheme will be run, which will converge towards

the nearest local optimum. Although convergence is not assured, a large number of

starting points greatly increases the chances (Ugray et al., 2006). The main advantage

of this technique over alternative methods, such as global search, is its simple parallel

implementation, which can result in large savings in computational time. However, note

that the use of genetic algorithms in conjunction with parallel processing could be a

valid alternative.

In this application of the Multisearch algorithm with parallel processing, a value of

100 starting points has been selected. From each point, an optimization is run using an

interior point algorithm, which is described in Byrd et al. (2000) and Waltz et al. (2006).

In particular, the Mathworks functions MultiStart and fmincon (relying on the interior

point optimization algorithm (Arora, 2012)) have been used respectively. With these

implementations, one Multistart optimization using the cost function in (5.1) takes 8.62

s on a quad-core, i7 computer with 16GB RAM, whereas a global search takes 29.20 s.

A greater number of cores and an implementation in a lower-order language, such as C

or Fortran, can result in even greater computational savings.

5.2.1 Algorithm

Figure 5.4 shows the algorithm for the ANN-based reactive control of the point absorber

described in this article. As aforementioned, a time-averaged approach is used, where

new values of BPTO and CPTO are selected at the start of every new time horizon

h and applied throughout its duration D(h). On the one hand, a longer duration is

preferable for the power averaging and sea state statistical analysis so as to produce

less noisy training data. On the other hand, a shorter time span can result in faster

training. Furthermore, the controller would be able to track changes in the sea state on

a smaller time scale, thus moving towards real-time control and possibly higher energy

extraction. For these reasons, D(h) = 20Te(h) has been chosen in both regular and

irregular waves.

As can be seen from Figure 5.4, the first step in every time horizon is to predict

the significant wave height and energy wave period during the time interval. Different

approaches have been proposed for this problem, with example methods being Kalman

filters, deterministic sea wave prediction (Li et al., 2012), autoregressive models (Fusco

and Ringwood, 2010b), and even ANNs (Shoori J. et al., 2015). Although these studies

analyse the wave elevation, which is forecast with accuracy only 15 s into the future

(Fusco and Ringwood, 2010a), it is assumed that similar strategies can be found for

the forecast of the statistical wave conditions for one time horizon. For simplicity, in

this initial work the actual values for Hs and Te have been used, since the wave traces

employed in the simulations are known in advance. Hs(h) and Te(h) are then used to
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Figure 5.4: Flow chart of the ANN-based reactive control of a point absorber.
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update the count of the number of observations in the current discrete sea state, s. For

this purpose a table, N , is employed, with an entry for each discrete sea state with

ranges of 1 m and 1 s for each dimension respectively.

During the first Ni visits to each discrete sea state, the values of the PTO damping and

stiffness coefficients are selected randomly to ensure initial exploration. Once N(s) >

Ni, the Multistart optimization can be run using the cost function in (5.1) in order to

find the optimal coefficients, BPTO,opt and CPTO,opt, for the forecast significant wave

height and energy wave period. However, the ANN estimates f and g can be very

inaccurate initially. For this reason, BPTO and CPTO are in fact selected randomly

within a region around the optimum that shrinks with the number of data points

collected in the sea state:

BPTO = BPTO,opt + ∆BPTO, where (5.3a)

∆BPTO = (r − 0.5) · range(BPTO) · 0.9N(s)−Ni , (5.3b)

with r = [0, 1] being a random number. The same applies to CPTO. Upper and lower

bounds are used to ensure the chosen values lie within the desired range. As more data

points are collected in the optimal region, the accuracy of the ANN fit will increase.

Once BPTO and CPTO are chosen and applied, measurements are employed to compute

the mean absorbed power, maximum PTO displacement and actual Hs(h) and Te(h)

during the time interval. These values are in fact calculated using the data only after

an initial time of 8Te(h) within the current horizon h in order to exclude the initial

transient effects associated with a change in PTO parameters. This relatively long time

also ensures that the time required for the Multistart optimization does not become

an issue. Once the desired values are obtained, they are stored in memory as a data

sample so that they can be used for training the ANN.

The ANN is trained every Nh = 20 time horizons, employing 90% of training points.

The remaining 10% of the samples is used for validation and hence to check the quality

of the fit. Each sample presents Hs, Te, BPTO, CPTO as input, and Pavg and max |z|
as output. The larger the number of training points, the less the risk of overfitting the

data and the more accurate the estimates of the ANN. However, this will also cause an

increase in training time and, more importantly, it may result in an excessive memory

requirement. Therefore, for a practical application, it is expected that the number of

training points will be limited to a large number, say 106. Care will be needed in order

to ensure that a similar number of data points is kept for each discrete sea state when

overriding old data with new readings, as well as to explore a broad range of BPTO and

CPTO values so as to aid the training of the ANN.
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Figure 5.5: Flow chart of the program used in the simulations of the point absorber with
ANN reactive control.

5.3 Simulation Results

5.3.1 Simulation system

The performance of the proposed algorithm has been assessed with simulations of the

simple point absorbers restricted to motions in heave, introduced in Section 2.3.1. The

PTO force saturation and float displacement limits have been set to 1 MN and ±5 m,

respectively. A PTO efficiency of 75% is assumed.

Figure 5.5 shows graphically the the program used for the simulation of the WEC.

Instead of sensors installed on a wave buoy, in the simulations a wave model provides

the recorded wave elevation.

The search space has been limited to within Bmin = 0 and BMax = 2 MNs/m, and

Cmin = −1 MN/m and CMax = 0 for the PTO damping and stiffness coefficients,

respectively. A wider search space has been selected for the PTO damping coefficient

in order to prevent damage in large waves, when greater damping and no stiffness are

required as shown in Section 3.5. Nevertheless, the larger the search space, the longer

the learning time; hence, an excessive search space needs to be avoided.

For the first 15 minutes of the simulations, no control force is applied in order to let

the system dynamics settle. For this reason, all wave traces are in fact generated with

an extra 15-minute interval at the start.
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5.3.2 Results in regular waves

In regular waves, a 6-hour-long wave trace with unit amplitude and a wave period

of 8 s has been analysed. As can be seen in Figures 5.6a and 5.6b, the ANN-based

algorithm learns successfully the optimal PTO damping and stiffness coefficients re-

spectively. The optimal values (dotted lines) have been obtained by running a Nelder-

Mead optimization with the time domain model described in Section 2.3.1 and Chapter

3 (hence, the optimization is run with the WEC model, without relying on ANNs).

In particular, a wave trace lasting 20 minutes has been considered. It should be noted

that the time-domain rather than the frequency-domain model has been used for the

computation of the optimal PTO coefficients and corresponding absorbed power so that

the force constraint could be incorporated. Figure 5.6c shows the difference in the mean

power generated with ANN-based control and state-of-the-art reactive control, where

Pavg,opt = 176.24 kW. A value of Ni = 40 has been used.

5.3.3 Results in irregular waves

In irregular waves, even within a single sea state, the significant wave height and wave

energy period do vary, if they are measured within a short time interval like 20Te. On

the one hand, it would be nice to show convergence of the algorithm in one sea state,

and then build onto learning in multiple sea states. On the other hand, the accuracy

of ANNs is greatly improved and the effects of overfitting greatly reduced the wider

the range of their samples (Hagan et al., 1996) and thus the wider the range of sea

conditions. For this reason, the proposed ANN-based reactive control algorithm is run

for the 9 wave traces shown in Table 5.1. Each wave time series is generated with a

Bretschneider spectrum (thus, broad-banded) (Holthuijsen, 2007) and lasts 3 hours.

Although these wave traces have been simulated independently due to computational

constraints, they should be treated as a continuous time series where 9 independent

sea states are observed in the order provide in Table 5.1, with a value of Ni = 120

being used. In particular, for each wave trace the list of samples is initialized with the

values observed in the previous runs. The series of a sea states is repeated another time

but with a different seed number to the random number generator for a total wave

trace with an overall duration of 54 hours (excluding the 15 minutes required for the

initialization of each wave trace).

The learning behaviour of the proposed ANN-based reactive control algorithm in irre-

gular waves is displayed in a compact way in Figure 5.7. The figure shows the controller

performance for the first wave trace, i.e. Hs = 2 m and Te = 8 s. In particular, the very

first run (when the list of samples is empty at the start) is shown with dotted lines and

labelled as ”initial”, since learning has just been initialized. The system is simulated

in the same wave conditions again after the control has been applied for 54 hours in
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(a)

(b)

(c)

Figure 5.6: PTO damping (a) and stiffness (b) coefficients obtained from the ANN-based
control as compared with the optimal value in regular waves with Hs = 2 m and Te = 8 s.
(c) shows the difference in the corresponding mean generated power.

Table 5.1: Significant wave height, energy wave period and duration of the wave traces
used for the analysis of the ANN-based control in irregular waves.

Hs (m) 2 1 1 1 2 2 3 3 3
Te (s) 8 8 9 10 9 10 10 9 8
duration (hr) 3 3 3 3 3 3 3 3 3
no. repetitions 2 2 2 2 2 2 2 2 2
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the wave traces shown in Table 5.1. The corresponding performance is shown with

continuous lines in Figure 5.7 and labelled as ”trained”, since learning has completed

by then with a large number of samples being available for the training of the ANN.

Furthermore, in this case the exploration rate has almost fully decayed, as the discrete

sea state has already been experienced for 6 hours. Additionally, the optimal value for

the PTO coefficients and the corresponding absorbed energy is calculated running a

MultiStart optimization of the WEC model in the same wave trace.

5.4 Discussion

5.4.1 Regular waves

As shown in Figure 5.6, the ANN-based algorithm learns the optimal PTO damping and

stiffness coefficients in regular waves within 4 hours after being randomly initialized.

In the figures, it is possible to recognize three distinct regions: an initial region where

completely random actions are selected (N(s) ≤ Ni), a section where random actions

are taken around the expected optimum within a shrinking range (until 0.9N(s)−Ni →
0), and a final part where convergence has been reached. Within this last region, it is

interesting to notice three random points (after approximately 5.5 hours). These are

caused by the Multistart algorithm converging towards the wrong local optimum in the

corresponding time horizons. This is a possibility that needs to be taken into account

when designing the control for an actual device, with its probability decreasing with

the number of starting points. Nevertheless, the low computational cost means this

optimization method is still preferred over global search or genetic algorithms. Oddly,

the three random points also provide the ANNs with the missing training points for

perfect convergence to the optimal PTO coefficients.

5.4.2 Irregular waves

The convergence of the algorithm to the optimal PTO coefficients in irregular waves is

shown by the ”trained” lines in Figure 5.7. Oscillations in the values obtained with the

ANN-based control are due to changes in wave conditions over the smaller time scale

of 20Te. The energy absorption is almost identical to state-of-the-art reactive control

applied using the optimal coefficients for the WEC model in this wave trace.

At first sight, 54 hours may seem like a very long learning time. However, this cor-

responds to 6 hours of learning time for each sea state, which is much more realistic.

Once a sufficient number of points is obtained, the ANN can generalise the information

to unseen sea states, thus further reducing the overall learning time. In addition, the
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(a)

(b)

(c)

Figure 5.7: PTO damping (a) and stiffness (b) coefficients adopted by the ANN-based
control at the start and after 54-hours of training in the wave conditions shown in Table 5.1
in irregular waves with Hs = 2 m and Te = 8 s. Additionally, (a) and (b) display the optimal
coefficients computed from a time-domain simulation in a 20-minute-long wave trace. The
corresponding curves for the absorbed energy are plotted in (c).



5.5. Chapter summary 131

convergence time should be assessed in the context of the lifetime of a WEC, which is

expected to be 20 to 25 years long (Cruz, 2008).

In this work, discrete sea states have been analysed, each lasting 3 hours due to practical

issues with the code implementation. In reality, the energy content in waves changes

uniformly in time (hence, not through discrete sea states), with the duration of a

typical sea state being 0.5 to 6 hours (Holthuijsen, 2007). Since Pavg and max |z| can

be considered to be purely dependent on the values of BPTO, CPTO, Hs and Te in the

current time interval, the samples of the ANN are independent of past data. Therefore,

the algorithm can be safely applied to realistic, continuously varying wave conditions.

In fact, the quality of the mapping provided by the ANN is expected to improve in

continuously varying sea states, which result in a broader range of samples (Hagan

et al., 1996). Furthermore, under realistic wave conditions, the ANN-based reactive

control is expected to result in higher energy absorption than coefficient-based reactive

control, since the latter uses a look-up table with discrete sea states, thus being less

responsive to changes in wave energy over a shorter time scale. Additionally, the ANN-

based method can adapt to changes in the device dynamics with time, e.g. due to

marine growth or non-critical subsystem failure.

5.5 Chapter summary

In this chapter, an adaptive algorithm for reactive control of a WEC has been proposed,

which relies on ANNs. The approach uses a time-averaged approach, where the PTO

damping and stiffness coefficients are optimized for each sea state, as given by the

significant wave height and energy wave period. The time-averaging interval lasts 20

wave cycles. A neural network is employed to provide a mapping between the mean

generated power and maximum observed displacement amplitude, and the significant

wave height, energy wave period, the PTO damping and stiffness coefficients. The ANN

thus provides a non-linear model for the system in an example of system identification.

A global optimization scheme is then used to find the optimal coefficients at the start

of each new time interval based on the predicted wave conditions. The algorithm has

been shown to learn the optimal coefficients in each sea state in less than 6 hours per

sea state, with 9 different sea states being analysed.

Although the implementation of the proposed algorithm would be feasible in a real

WEC, some issues need to be analysed more in detail.

• Although using a relatively long time interval ensures the convergence of the

learning behaviour, energy content in waves varies with wave group. Hence, the

time interval length should be adapted to the duration of different, recognizable

wave groups. This information can be obtained by a network of wave buoys ahead
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of the device, which would also provide accurate prediction for the incoming

waves. Therefore, the algorithm should be further developed to include these

considerations.

• The behaviour of the algorithm under PTO force saturation and displacement

constraints should be addressed in greater detail. A move towards the treatment

of wave groups should result in superior treatment of constraints, but this needs

to be studied thoroughly.

• At the moment, the imposition of a displacement constraint based on the maxi-

mum displacement over the averaging period leads to conservative operation and

thus a loss in the absorbed energy. Solutions can be either a move towards real-

time control or the investigation of less conservative approaches in the application

of the displacement constraints.

In the next chapter, the application of reinforcement learning to the declutching,

resistive and reactive control of a WEC is studied as an alternative to ANNs.



Chapter 6

Application of reinforcement

learning to the control of wave

energy converters

In this chapter, reinforcement learning is applied to the control of WECs for the first

time. First of all, the declutching control of a point absorber is analysed in Section 6.1

using a simple Monte-Carlo implementation. Work on this problem was initiated by

a different researcher at Pelamis Wave Power Ltd and completed by the student.

Nevertheless, as described below, this approach is found to be overly simplistic. For

this reason, reinforcement learning was then employed to find the optimal PTO coef-

ficients for each sea state in resistive and reactive control, as described in Sections 6.2

and 6.3, respectively. In this application, reinforcement learning has been found to

learn successfully in a reasonable time frame, showing adaptability to changing system

dynamics, e.g. to non-critical subsystem failure or marine growth. Different algorithms

have also been analysed to assess their convergence properties.

The structure of this chapter is summarized in Table ??.

6.1 Monte-Carlo methods for declutching control

As described in Chapter 4, in reinforcement learning the controller learns an optimal

policy from direct interactions with the environment by taking an action in a specific

state and observing the reward, or return for Monte-Carlo methods. Since declutching

control presents a bang-bang type of actuation (Chapter 3), identifying the action space

is simple. Conversely, declutching control requires the identification of an optimal timing

for the action selection in order to maximize energy absorption. Hence, the choice of

suitable state variables is more complex to determine. Furthermore, it is important

to remember that Monte-Carlo methods are episodic (Chapter 4), so that the real-

time implementation will need to be divided into episodes. Nevertheless, their main

advantage is that they have been proved to converge towards the optimal policy for an

133
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Table 6.1: Application of reinforcement learning algorithms to the control of WECs within
this chapter.

Section RL method WEC cont-
rol type

WEC type Comments

6.1 Monte-Carlo declutching linear point
absorber

single sea state
analysis

6.2.3 Q-learning resistive linear point
absorber

single and
multiple sea
state analysis,
discrete RL
states

6.2.4 LSPI resistive point absorber
with non-
linear PTO

single and
multiple sea
state analysis,
discrete RL
states and
function
approxima-
tion, changes
in system
dynamics

6.2.4 Q-learning resistive point absorber
with non-
linear PTO

single sea
state analysis,
discrete RL
states, changes
in system
dynamics

6.2.4 Sarsa resistive point absorber
with non-
linear PTO

single sea
state analysis,
discrete RL
states, changes
in system
dynamics

6.3.7 Q-learning reactive point absorber
with two bo-
dies

single and
multiple sea
state analysis,
discrete RL
states

6.3.8 LSPI reactive linear point
absorber

single and
multiple sea
state analysis,
discrete RL
states
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Figure 6.1: Block diagram of the Monte-Carlo declutching control of the point absorber.

infinite number of visits of each state-action pair (Sutton and Barto, 1998). In the next

sections, the control implementation for the point absorber introduced in Section 2.3.1

is described.

6.1.1 Formulation of Monte-Carlo declutching control

The work flow of the proposed declutching control of the point absorber is shown in

Figure 6.1. The declutching control is modelled in this simple case as the actuation of

either resistive control, so that the PTO force is fPTO = BPTOż, with damping PTO

coefficient BPTO, or no control, so that fPTO = 0.

As can be seen from Figure 6.1, an episode can be defined as lasting NT wave cycles,

where a value of 4 is selected due to the randomness of irregular waves. The figure also

shows the state, action and reward selection, which will be described in the following

sections.

Furthermore, an external controller feeds the PTO damping coefficient to the algorithm

based on the sea state measurements from a neighbouring buoy. The significant wave

height, Hs, and energy wave period, Te, are computed from a Fast Fourier Transform

analysis (Holthuijsen, 2007). Hence, in fact the states, shown on the bottom right

corner of the figure, have an extra dimension given by the total number of discrete

states selected. This means that there may be a different optimal policy for each sea

state. For simplicity, in this section, the method is presented for a single sea state.

It can be then easily extended to multiple sea states by adding an extra dimension

to the state-space. This will be described in greater detail in Section 6.2 and 6.3 for
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the application of temporal difference methods to the resistive and reactive control of

WECs.

6.1.1.1 State variables

The choice of suitable reinforcement learning states is particularly important, since it

will determine the timing of the selection of particular actions. In this work, a practical

approach is adopted, taking into account only the variables that can be measured on-

line with accuracy.

On the one hand, the motions of the device, derived from on-board accelerometers,

are available in real time. On the other hand, the wave elevation, which would be

an interesting state variable if its phase difference with the body displacement is

analysed, is difficult to be observed accurately at the location of the device itself,

since it is measured by a neighbouring wave buoy. The exception would be in the

case of perfectly two-dimensional waves, which may occur in a channel. Therefore, the

vertical displacement and velocity of the point absorber, which correspond to those at

the PTO, have been taken as state variables. In particular, the states are determined

by the combination of their signs, so that there are four states per wave period, or 16

states per episode. The four distinct states can be seen in the bottom left corner of

Figure 6.1.

It is clear that this description of the state-space is overly simplistic, despite its possible

simple, practical implementation. In general, the wave elevation (and even better the re-

sulting wave excitation force) should be included in the state space for the maximization

of energy absorption. The phase difference between the excitation force and the body

velocity is of particular interest (Falnes, 2005). Indeed, the proposed implementations

of declutching control with optimal command theory rely on future information on the

wave elevation at the position of the device (Babarit et al., 2009; Clément and Babarit,

2012). Nevertheless, here the more practical approach is selected. This issue will be

described in greater detail in Section 6.1.5.

6.1.1.2 Action space

In this simple implementation of declutching control, the action space comprises of two

actions, namely whether to apply no or a resistive control force, as shown in Figure 6.1.

In an actual device, or in a more complex model of the hydraulic PTO, the damping

term will be substituted by the operation (opening and closing) of the valves that

connect the accumulators to the hydraulic circuit as well as the bypass valve.
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6.1.1.3 Return function

Within this thesis, the aim of the control of a WEC is assumed to be the maximization

of its energy absorption. In fact, the development of a survival strategy, the reduction

of loads on the structure and the consequent increase in fatigue life are at least as, if

not more, important. Nevertheless, for simplicity, at this stage no penalties are applied

for large displacements, although this will be implemented in the future. Therefore, the

return function should be the energy extracted over an episode i:

E(i) =

∫ tf(i)

ti(i)
P (t)dt, (6.1)

where ti and tf are the initial and final times of the episode. Nevertheless, due to the

stochastic nature of irregular waves, there can be significant variations in the energy

measured over multiple episodes for the same policy. Even within the same sea state,

there are individual wave cycles with varying wave height and period, and thus wave

power, as energy is transported in wave groups (Holthuijsen, 2007). Therefore, in order

to ensure convergence towards the optimal policy even in irregular waves, a table

S is created where the energy values are stored (i.e. summed) for each state-action

combination. These correspond to all the possible policies. Since there are 2 possible

actions in 4 different states, there is a total of 24 = 16 possible combinations, and

thus entries in the table. A separate table N is also created, which contains the total

number of values per entry. Hence, the mean energy per states-actions combination can

be found as follows (� indicates element-wise division):

E = S �N . (6.2)

The mean energy can be very similar for a number of policies close to the optimal one.

As a result, the learning time can be very long. For this reason, in order to speed up

convergence, the mean energy values are first normalized and then raised to a power in

order to obtain the return function for each policy. Therefore, for the current policy j

the return function is given by:

r =

(
E(j)

maxk=1:16E(k)

)g
. (6.3)

A value of g = 25 has been used in this work in order to speed up the learning time.
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6.1.1.4 Exploration strategy

As discussed in Chapter 4, the policy π represents the mapping of actions to states.

This means that the policy indicates which actions should be taken in which states. In

Monte-Carlo methods, the policy needs to be selected at the start of each episode. It has

been decided to choose a unique policy for each episode, so that the policy is repeated

four times (i.e. four wave cycles) every episode. As a result, all states are visited four

times in every episode.

The ε-greedy policy in (4.9) is selected to ensure sufficient exploration at the start of

the task, with the focus shifting towards exploitation as learning progresses. This is

achieved by decreasing the exploration rate after every episode as

ε = ε00.9Nc(j,l), (6.4)

where ε0 = 0.5 is the initial exploration rate, Nc is a table that contains the number

of visits to each combination of states and actions (j) and each discrete sea state (l).

Due to the small number of possible state-action combinations (16), it has been decided

to ensure exploration of the complete state-action space by selecting each combination

in turn for a total of four times. This results in the first 64 episodes (or 256Te in time

units) presenting a fixed policy. Although this can result in a delay in the learning time,

this initial forced exploration ensures the correct policy is learned.

6.1.1.5 Monte-Carlo scheme for declutching control

With the exploring-starts Monte-Carlo algorithm, it is necessary to create a three-

dimensional list R, which has 4 rows (number of states) and 2 columns (number of

actions). At the end of each episode i, the return r is appended to R(s, a), where s, a

indicate the state-action pairs that have been observed during the episode (Sutton and

Barto, 1998), as given by the policy π. An every-visit Monte-Carlo scheme is used,

where the return is calculated over all visits (or encounters) of the state-action pairs

rather than just the first one (first-visit Monte-Carlo) (Sutton and Barto, 1998).

The state-action values are calculated at the end of each episode for each state-action

pair as the mean of all returns, as shown in Algorithm 1:

Q(s, a)← average(R(s, a)), s ∈ S, a ∈ A. (6.5)
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Figure 6.2: Flowchart of the Monte-Carlo algorithm for the declutching control of the point
absorber.

6.1.1.6 Algorithm

The proposed algorithm for the declutching control of the point absorber can be seen

in Figure 6.2. The algorithm is a summary of the items discussed within this section.

It summarises all points raised within this section. As can be seen from the figure, the

PTO damping coefficient is selected for each sea state by an external controller. This

value can be either obtained from simulations, as is common practice in the wave energy

industry (for instance, at Pelamis Wave Power Ltd), or through learning techniques, as

described in Section 6.2.

6.1.2 Simulation results

The point absorber described in Section 2.3.1 is analysed to demonstrate the learning

capabilities of the proposed algorithm. A finer time step of 0.01 s is adopted due to

the non-linear nature of declutching control. For simplicity, the algorithm is tested in

a single sea state in both regular and irregular waves. In regular waves, a two-hour

long wave trace with unit amplitude and a wave period of 8 s is generated. In irregular

waves, a three-hour long wave trace with a Bretschneider spectrum with Hs = 2 m and

Tp = 9.25 s, corresponding to Te = 8 s from a spectral analysis, is generated. In order
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Figure 6.3: Work-flow diagram of the program used to simulate the point absorber.

to ensure the motions of the model are fully developed, the Monte-Carlo algorithm is

run only after 15 minutes from the start of the time series.

An optimization is run in order to find the optimal PTO coefficient in each sea state

using the time-domain model in 20-minute-long wave traces, as described in Section 5.3.

For the regular waves, a PTO damping coefficient of 305.678 kNs/m is adopted, while

for the irregular wave trace a very similar PTO damping coefficient of 308.347 kNs/m

is chosen. These values correspond to the optimal PTO damping coefficients in regular

waves with T = 8 s and irregular waves with Te = 8 s, respectively.

The program used to simulate the point absorber is summarised in Figure 6.3 for clarity.

6.1.3 Results in regular waves

Regular waves have been analysed first in order to assess the convergence properties

of the proposed reinforcement learning control under deterministic conditions. Figure

6.4a shows the variation of the entries of the Q-table with time. In Figure 6.4b, it is

possible to see the corresponding absorbed energy per episode.

The optimal policy found in Figure 6.4a once convergence is achieved is shown in

Figures 6.5a and 6.5b for a short wave trace. Figure 6.5b also shows the time series

of the instantaneous generated power. Figure 6.5c shows the corresponding absorbed

energy as compared with optimal resistive control.

Then, a range of periods is analysed. For most wave periods, the optimal policy is

unchanged: apply resistive control for z ≥ 0, ż < 0 and z < 0, ż ≥ 0, and no PTO force

for the remaining states. However, for Te = 9, 7, 11 s a different optimal policy is found:

always apply resistive control except when z < 0, ż ≥ 0. Since no penalty is applied for

large displacements, only one wave amplitude has been considered (1 m). Figure 6.6

shows the variation in the capture width ratio of the point absorber with wave period

when the optimal policy in each sea state is adopted. The performance of Monte-Carlo

declutching control is compared with that of resistive control as a benchmark.
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Figure 6.4: Convergence of the Q-value of each state action pair (a) and the absorbed
energy per episode (b) with time in regular waves.
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(a)

(b)

(c)

Figure 6.5: Time series of the (a) wave elevation ζ, body vertical displacement z and
velocity ż, (b) PTO force FPTO and generated power P in regular waves once the optimal
policy has been found. Additionally, (c) shows the corresponding absorbed energy as
compared with resistive control.
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Figure 6.6: Variation in the capture width ratio of the point absorber with wave period in
regular waves of unit amplitude for resistive and reinforcement learning declutching control.
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Figure 6.7: Convergence of the Q-value of each state action pair with time in irregular
waves.

6.1.4 Results in irregular waves

In Figure 6.7, it is possible to see the Monte-Carlo algorithm learning the optimal policy

within three hours in the irregular wave trace.

The optimal policy is then shown in Fig. 6.8. The gain in absorbed energy associated

with the Monte-Carlo declutching control over resistive control can be seen in Figure

6.8c.

6.1.5 Discussion of the results of Monte-Carlo declutching control

6.1.5.1 Regular waves

As it can be seen in Fig. 6.4b, the Monte-Carlo algorithm learns the optimal policy for

the maximization of energy absorption in regular waves. It is possible to notice that

the zig-zag nature of the curve over approximately the first 40 minutes is due to the

predefined exploration of all possible policies. Figure 6.4a shows that the state-action

pairs belonging to the optimal policy present the highest Q-values. Because of the

nature of the return function as described in Section 6.1.1.3, it is interesting to notice

that if the optimal policy is selected for a very large number of times once learning has
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(a)

(b)

(c)

Figure 6.8: Time series of the (a) wave elevation ζ, body vertical displacement z and
velocity ż, (b) PTO force FPTO and generated power P in irregular waves once the
optimal policy has been found. Additionally, (c) shows the corresponding absorbed energy
as compared with resistive control.
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finalised, the corresponding state-action values will converge to 1.

Figure 6.5 shows the optimal policy graphically, which is very similar to the one found

with optimal command theory in Babarit et al. (2009). Nevertheless, in this work, when

the bypass valve is closed, the control force is achieved with resistive control rather than

through a step input. Additionally, from Figure 6.5, it is clear that there is an increase

in energy absorption over resistive control, but without incurring any reactive power

flow. This is the main advantage over reactive control (which in fact results in even

greater power extraction), since strong reactive power flows, i.e. switches in power from

positive to negative power values, can seriously damage the PTO system (Falcão, 2008;

Babarit et al., 2009). Furthermore, in Figure 6.5a, it is possible to see the non-linear

behaviour of the body velocity due to declutching control. For this reason, a very small

time step has been used to prevent numerical instabilities.

Figure 6.6 shows the increase in performance with declutching control over resistive

control in regular waves in absolute terms. Although the increase in power absorption

is not as great as it would be expected with reactive or latching control, it is of a

comparable magnitude to that obtained by Babarit et al. (2009). Nevertheless, this

is obtained with a much simpler method for WEC developers to implement, which

furthermore does not depend on any models of the device dynamics. Even greater

power absorption could be obtained if the current wave profile could be measured, and

the wave elevation used as a state variable, as assumed in other works.

As described in Section 6.1.3, for a number of wave periods a different optimal policy

has been found. This is because of the different phasing between the body vertical

displacement and velocity in these sea states. This further supports the adoption of the

wave elevation as a state variable.

6.1.5.2 Irregular waves

Figure 6.7 shows that the same optimal policy is valid for both regular and irregular

waves with Hs = 2 m and Te = 8 s. Nevertheless, as compared with Figure 6.4a conver-

gence is slower. In particular, a suboptimal policy is followed until after approximately 2

hours, after which the optimal policy is found. This shows the capability of Monte-Carlo

methods to learn the optimal policy for an infinitely large number of samples.

It is known that realistic sea states usually last between 0.5 and 6 hours (Holthuijsen,

2007). Hence, three hours may in fact be too long for convergence, with a likely further

time increase in the learning process due to variable generator efficiency in practice. This

time may be slightly reduced by shrinking the exploration rate more rapidly, decreasing

the number of times all states are explored (4 at the moment), or both. Furthermore,

three hours per sea state represent a very short time as compared with the expected
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operational life of the WEC, which ranges between 20 to 25 years.

In Figures 6.8a and 6.8b, it is possible to see the random nature of irregular waves,

which is the main cause for the longer learning time required as compared with de-

terministic regular waves. However, Figure 6.8c shows that Monte-Carlo declutching

control still results in a gain in power absorption over resistive control, even though not

as pronounced as in regular waves (Figure 6.5c).

6.1.5.3 Comparison with optimal command theory

The Monte-Carlo algorithm results in a very similar control policy to the one obtained

from optimal command theory by Babarit et al. (2009). Nevertheless, RL presents a

much lower computational cost: the algorithm is updated only every 4Te, with the

update step itself requiring only minimal resources due to the small number of states

and the nature of the equations used. Conversely, with optimal declutching control

(Babarit et al., 2009), at each time step, an optimization problem is solved in order

to find the optimal control setting for the maximization of the energy absorption over

a future time horizon, typically 3- to 10-s-long. Depending on the time step length

(usually 0.005-0.1 s), each computation can be very resource-intensive. It is clear that

if the optimization takes longer than the time step length, these algorithms cannot be

implemented in practice.

However, the main advantage of the Monte-Carlo method proposed in this work over

optimal command theory for the declutching control of WECs is the fact that it does

not rely on knowledge of the instantaneous wave elevation. Yet, if this information

were available, either through the use of wave buoys (e.g. Li et al. (2012)) or system

identification (e.g. Giorgi et al. (2016b)), then a great increase in power absorption is to

be expected with optimal command theory. Similarly, the forecast of the wave elevation

can be incorporated within the reinforcement learning algorithm as an additional state

variable.

Furthermore, real-time strategies such as optimal declutching control enable the inclu-

sion of constraints not only on the PTO force, but also on the maximum allowable

displacement in order to prevent damage when the end stops are reached. Conversely,

with reinforcement learning strict displacement constraints cannot be enforced, but

penalties can be used to teach the controller to avoid selecting a policy that results in

excessive motions.

Instead of extending the initial work on declutching control, with the inclusion of the

wave elevation as state variable and the addition of penalties on large displacements,

we have preferred to apply reinforcement learning, and in particular the more effective

temporal difference methods, to the resistive and reactive control of point absorbers.
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This was done to reflect the state-of-the-art of the wave energy industry (based on

direct experience at Pelamis Wave Power Ltd), with reinforcement learning expected

to provide a more robust method for the application of existing control strategies. These

developments are treated in the following sections.

6.1.5.4 Comments on the application of temporal difference methods to the de-

clutching control of WECs

Based on the literature review in Chapter 4, initially Q-learning and Sarsa were selected

for the application of reinforcement learning to the declutching control of the point

absorber. In particular, the same state variables, action space and reward function as

described in this section were adopted. However, it was soon discovered that these

strategies were unable to converge towards the optimal policy. Although they did find

the optimal policy in some instances, for other initial conditions this was not the case.

Thus, the algorithms developed from Q-learning and Sarsa were not deemed robust

and were discarded from practical applications. Monte-Carlo methods have proven to

be much more robust. The reason for this is believed to be their underlying averaging

nature.

Temporal difference methods may be applied if the state variables are modified so as

to include the time to declutch.

6.2 Application of reinforcement learning to resistive control

In the application to resistive, or passive, control of the point absorber, reinforcement

learning should be used to determine the optimal PTO damping coefficient in each sea

state without relying on a model of the system dynamics. This approach is practical and

efficient, and has been inspired by the work of Wei et al. (2015) and Wei et al. (2016) for

the adaptive optimal control of wind turbines. If the PTO coefficient is discretized in a

number of values, then the problem can be visualized as the extension of the grid-world

in Section 4.6.1 to multiple dimensions, where the additional dimensions are provided

by the sea state, i.e. the combination of statistical measures of the wave height and

period.

The reinforcement learning formulation for the resistive control of the point absorber

is summarized in Figure 6.9. At each step, the controller selects a change in BPTO,

the action, which is implemented by the PTO unit, the agent. How this is achieved in

practice is dependent on the PTO type. The change in coefficient results in a reward

that is a function of the generated power and in a change of state, where each state is

represented by one value for the significant wave height, Hs, the mean zero-crossing or

energy wave period, Tz or Te, respectively, and the PTO damping coefficient.
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Reinforcement 

learning

Point absorber 

subject to sea waves

PTO and 

generator

Reward = 

{Power}

State={wave height, wave period, PTO damping}

Action = 

{ΔBPTO}

Agent Environment

Figure 6.9: Block diagram of the reinforcement learning control of the point absorber.

Due to the oscillatory nature of gravity waves, the generated power in the reward

function needs to be averaged over at least one wave cycle. The averaging is performed

over a horizon, HRL, during which the state and action are constant, so that all

time steps now have length HRL. Then, a new action is selected, which results in an

immediate change of state and a new averaging process.

The state-action value function is updated either at the end of each step, if an on-

line reinforcement learning scheme is used, e.g. Q-learning and Sarsa, or off-line after

a number of samples are collected, when LSPI is employed. These algorithms are

described in Chapter 4.

The state and action spaces, reward function, learning and exploration rates, and

discount factor of the reinforcement learning formulation of the resistive control are

described in detail in the following sections.

6.2.0.1 State variables

As shown in Figure 6.9, the state variables are taken to be the significant wave height,

either the energy wave period, and PTO damping coefficient so that the adopted

reinforcement learning state space is:

S =

s|si,k,l = (Hs,i, Te,k, BPTO,l) ,

i = 1 : I,

k = 1 : K,

l = 1 : L

 . (6.6)

If the mean zero-crossing or peak wave period are employed instead, Te should be

subsituted with Tz or Tp, respectively.

If discrete states (or tabular features) are used, the total number of features is given by

J = IKL and the state-action value function is exact. With function approximation, a

smaller number of features may be adopted to reduce the computational cost. In fact,

for the control of WECs, a hybrid approach is selected, where discrete sea states are
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still employed, while RBFs approximate the control variable. I and K are determined

from the wave data at the deployment site, with steps of 0.5 m or 1 m, and 0.5 s or

1 s being common for the significant wave height and energy wave period, respectively

(Holthuijsen, 2007). With a hydraulic PTO system, the value of L can be determined

by the number of accumulators. Indeed, as shown in Henderson (2006), the time series

of the PTO force is characterized by a number of discrete values.

6.2.0.2 Action space

Considering the selected state space, for passive control the action space is thus defined

as:

A = {a|(−∆BPTO, 0,+∆BPTO)}, (6.7)

where ∆BPTO = BPTOl+1 − BPTOl. The states corresponding to the minimum or

maximum damping coefficient, i.e. BPTO1 and BPTOL, have a limited (from 3 to 2)

number of actions in order to prevent the controller from exceeding the state space

boundary. For instance, for BPTO1, the action −∆BPTO is precluded in the current

state.

6.2.0.3 Reward function formulation

The reward function represents the goal that the controller is expected to maximise.

Hence, for the passive control of WECs, the reward function needs to be a function of

the absorbed power. Although Wei et al. (2015) and Wei et al. (2016) formulate the

reward as a function of the change in power between time steps due to the legacy of

the wind control industry (for instance as is practice with the maximum point tracking

algorithm), the current power value should be used as reward instead. This is because

reinforcement learning maximises the total reward, which is a function of both the

current and expected future reward (through the state-action value), as described in

Chapter 4. Hence, setting the change in power as reward function would result in the

controller selecting those actions that result in the greatest change in power absorption.

The region where the curve of absorbed power with PTO coefficient is steepest is

unlikely to coincide with the region corresponding to the maximum extracted energy.

Even after recognizing that the reward should be a function of the mean generated

power, Pavg, it is clear that this value may be more influenced by changes in the

significant wave height than variations in the PTO damping coefficient depending on the

chosen state refinement. This can be dealt with by using Pavg/Hs
2 as a reward, since the

absorbed power is proportional to the square of the significant wave height (Holthuijsen,

2007). In addition, due to the discretization of the state variables and the stochastic

nature of irregular waves, not only should the generated power be averaged over a



6.2. Application of reinforcement learning to resistive control 150

horizon HRL to produce Pavg, but the reward function needs to be built on the mean

of a number M of these values for each state. This can be achieved by storing the M

most recent Pavg/Hs
2 values for each discrete state (even when function approximation

is employed) in a multi-dimensional list, R. The size of the list is at most (|S|,M), with

|S| being the number of discrete states. It is then possible to obtain the mean value in

each discrete state and express it with the vector m = 〈R(sd,m)〉m=1:(M∨end) of size

(|S|, 1).

Depending on the selection of ∆BPTO, the curve of the mean generated power with

PTO coefficient can be very flat, particularly in the region near the optimal BPTO value.

This can cause the learning process to become very slow, since the benefit of picking

the optimal damping coefficient in each sea state should be evident. This problem

can addressed by raising the values within m to a power. This way the difference in

mean generated power corresponding to neighbouring PTO coefficients is maximized.

In order to prevent numerical instabilities, it is advantageous to first normalize the

value of the vector for each state with the maximum value for each sea state. Hence,

for discrete state sd, the maximum value needs to be searched between the indices

o = floor
(
sd−1
L

)
L + 1 and p = floor

(
sd−1
L

)
L + L of the vector m. The indices o and

p ensure that the normalization is performed only over the values of m corresponding

to the current sea state. The power value, defined as u, needs to be an odd number in

order to avoid rectifying negative power values. Its determination is case specific.

In addition, in extreme seas the selected optimal damping coefficient may result in

excessive motions, which can result in complete submergence or emergence of the

machine or in the hit of the end stops (if present). This may cause severe structural

damage if not complete failure. In order to prevent this, a penalty, p < 0, is returned

when the magnitude of the maximum displacement over the averaging horizon exceeds

a set value, zMax. Usually, zMax should represent a soft constraint in order to avoid

failure. This is discussed in greater detail in Section 6.3, since greater displacements

are a graver problem with reactive control.

The formulated reward function is thus expressed as follows for time step h (with

duration HRL):

r =


[

m (sh)

maxs′′=o:pm (s′′)

]u
if constraints met, (6.8a)

p otherwise. (6.8b)
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Figure 6.10: Flowchart of the Q-learning or Sarsa algorithm for the resistive control of the
point absorber.

6.2.1 Algorithm

The algorithm of resistive control of WECs with reinforcement learning is summarised

in the following two sections for on- and off-line strategies.

6.2.1.1 Q-learning and Sarsa

Figure 6.10 shows the algorithm for the resistive control of the point absorber using

either Q-learning or Sarsa. If discrete states are used, the scheme should be built on

top of Algorithms 3 and 2. When function approximation is employed, Algorithms 5

and 4 should be preferred instead.

As can be seen in Figure 6.10, the first stage of the algorithm is the initialization of all

required variables. This includes the state-action value as well as the matrix N , which
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contains the record of the number of visits to each discrete state-action pair. The value

of L for the specification of the size of the matrix R has been set to 10 in regular waves

and 25 in irregular waves. It is possible to speed up convergence by pre-calculating the

entries of the R matrix in a run in a similar wave trace, whilst taking random actions.

Simulations can also be used to initialize the R matrix for the full-scale device, since

its entries will slowly be replaced from those of the actual environment.

After the initialization phase, the algorithm is run indefinitely until maintenance is due.

At every time step, the generated power, the displacements and the wave elevation are

measured. The mean generated power is computed only over the latter part of each

averaging time period, i.e. after a time of HRL,1 has passed since the start of the horizon.

This improves the learning behaviour by filtering the transient effects associated with

a change in PTO damping coefficient. At the end of the time interval, with duration

HRL, the actual policy update takes place according to Algorithms 2-5.

The selection of suitable values for HRL is based on a compromise between a small

value for quicker response and a large value for a more stable algorithm. Indeed,

although a sea state can be stationary for a period ranging from 20 minutes to 6

hours (Holthuijsen, 2007), individual neighbouring waves within this time can present

very different characteristics, with energy packets typically being carried by wave groups

with similar energy content. Continuous changes in the sea state from a step to the next

prevent the algorithm from converging, since the agent could land in any states due to

the environmental noise. Therefore, although the aim should be to obtain a real-time

control in the future, as discussed in Chapter 7, in this thesis a longer averaging time

spanning multiple wave periods has been selected to ensure converge of reinforcement

learning as a proof of concept. Irregular waves in particular require a longer duration

of the power averaging process due to their stochastic nature. If a wider-banded wave

spectrum is adopted, the horizon length should be increased.

6.2.1.2 Least-squares policy iteration

Figure 6.11 shows the algorithm for the resistive control of the point absorber using

LSPI. The algorithm is very similar to Figure 6.10. The main difference lies in the

additional sample collection stage, with the policy improvement taking place off-line as

described in Chapter 4. The policy is improved using the LSPI algorithm in Algorithm 7

every Nh = 40 time horizons. This operation can be performed on separate computing

cores so as to reduce the computational effort and ensure the on-line implementation

is feasible.

At the end of each horizon, the current state, action, next state and reward are sampled

and added to S. Due to the finite memory of the controller computer, a specified number

of samples can be stored, say 106. Therefore, new samples will be stored only if they
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Figure 6.11: Flowchart of the LSPI algorithm for the resistive control of the point absorber.
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Figure 6.12: Work-flow diagram of the program used to simulate the point absorber with
reinforcement-learning-based resistive control.

have not been recorded before, with a difference greater than 10−3 being acceptable for

the reward. Once the memory limit is reached, older values will need to be overwritten,

ensuring the sample range is broad, i.e. accounting for the different sea states and values

of the PTO damping coefficient.

6.2.2 Case studies

The proposed resistive control for WECs based on reinforcement learning has been

tested on two numerical benchmark cases:

• the linear point absorber with a single degree of freedom, first introduced in

Section 2.3.1;

• the model of the Seabased device, which includes non-linearities in the PTO

model, as described in Sections 2.3.3 and 3.2.1.2.

The first case study represents a benign framework for a proof of concept. The example

is used to show the learning behaviour of the control even in multiple sea states in

irregular waves. In addition, the behaviour of the controller in case of PTO force

saturation is described. The second case study includes the influence of non-linear

effects and end stops in order to study their impact on the convergence properties of

the algorithm. Furthermore, the adaptiveness of the control is assessed by changing the

system dynamics as if due to marine bio-fouling.

In both case studies, the simulation system shown in Figure 6.12 has been used.
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6.2.3 Case study: linear point absorber

First of all, the resistive control based on reinforcement learning is applied to the point

absorber restricted to heaving motions introduced in Section 2.3.1. The maximum PTO

force has been assumed to be 1 MN, while the float displacement has been limited to

±5 m (for the application of any penalties).

The PTO system of the device has been assumed to be composed of 4 accumulators.

Hence, 9 discrete values are used for the PTO damping coefficient, which ranges from

0 to 800 kNs/m with ∆BPTO = 100 kNs/m. In this initial study, a smaller number of

discrete states are used in irregular waves to speed up convergence when the control is

tested in multiple sea states in random seas. In this case, only 5 damping coefficients

values are employed, with the same range but ∆BPTO = 200 kNs/m. However, a wider

range and finer resolution are likely to be required for a more realistic implementation.

For this case study, only Q-learning is investigated. The values of the discount factor,

the initial exploration and learning rates are set to γ = 0.75, ε0 = 0.5 and α0 = 0.4,

respectively. Furthermore, the parameters for the decay of the exploration and learning

rates are specified as Nε = 25 and Nα = 5, respectively. In the reward function, the

values u = 21 and p = −2 have been adopted. The duration of each time horizon has

been set to HRL = 10T in regular waves and HRL = 30Tz in irregular waves. These

values have been found to be the minimum in order to ensure convergence. The time

averaging process is started after HRL,1 = 5Tz, which represents a heavy filter.

6.2.3.1 Results in regular waves

Regular waves have been analysed first in order to assess the convergence properties of

the proposed reinforcement-learning-based control (RL) under deterministic conditions.

A single sea state (hence, I = K = 1) with unit wave amplitude and a wave period of

8 s has been considered, with the time series lasting 4 hours.

Figure 6.13a shows the convergence of the reinforcement learning algorithm towards the

optimal PTO damping for this sea state. The optimal value has been calculated with

state-of-the-art resistive control as described in Section 3.2 using a wave trace lasting

20 minutes in the simulation. The corresponding mean absorbed power over H = 10Tz

can be seen in Figure 6.13b.

Due to the low wave height selected in all simulations, the PTO force never reaches its

limit, with the maximum force being 237.910 kN for the optimal BPTO in Figure 6.13.

In order to analyse the effects of the force clip, or saturation, on the optimal PTO

damping coefficient and the learning process, the force limit has been reduced to FMax =

237.910 kN. Then, the wave amplitude has been slightly increased to 1.1 m. This is

analogous to the device reaching the original saturation limit in more extreme waves,
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(a)

(b)

Figure 6.13: Optimal and reinforcement-learning-selected PTO damping coefficient (a)
and corresponding mean absorbed power (b) in regular waves of unit amplitude and a wave
period of 8 s.
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(a)

(b)

Figure 6.14: PTO damping coefficient selected by the Q-learning algorithm (a) and
corresponding mean generated power (b) in regular waves with Hs = 2.2 m and Tz = 8 s,
when FMax = 237.910 kN.

whilst the validity of the assumption of linear wave theory in the hydrodynamic model

is ensured.

The convergence of the reinforcement learning algorithm towards a new PTO damping

coefficient and the corresponding mean absorbed power can be seen in Figures 6.14a

and 6.14b respectively. Note that the optimal BPTO value would be far beyond the

state space we have defined, so that it is saturated at 800 kNs/m. The reason for this

behaviour can be understood by looking at Figure 6.15, which shows the variation of

the PTO velocity and force over time with the two different PTO damping coefficients,

300 and 800 kNs/m, in regular waves of unit amplitude and a wave period of 8 s. With

the lower saturation limit FMax = 237.910 kN, the controller tries to maximise the

absorbed power by maximising the area under the curve of the PTO force through a

square wave. The limit on the PTO damping coefficient prevents the realization of a

fully non-linear, bang-bang type of control response.
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Figure 6.15: PTO velocity and force over two wave periods in regular waves with Hs = 2 m
and Tz = 8 s for the cases of unsaturated (BPTO = 300 kNs/m) and saturated (BPTO =
800 kNs/m) PTO force, when FMax = 237.910 kN.

6.2.3.2 Results in irregular waves

6.2.3.2.1 Single sea state

Firstly, a wave trace generated using a single JONSWAP spectrum is considered, with a

significant wave height of 2 m and a peak wave period of 9 s, corresponding to Tz = 7 s

from the spectral analysis. Although there are oscillations in the predicted values of

Hs and Tz over neighbouring horizons, J = K = 1 have been used for simplicity, so

that J = 9. The wave trace lasts 12 hours, with a preliminary initialization lasting

15 minutes.

Figure 6.16a shows the convergence of the PTO damping coefficient selected by Q-

learning towards the optimum. The optimal value has been calculated as described in

Section 3.2, where the simulations rely on a 20-minute-long wave trace with 5 different

seed values. The mean absorbed power corresponding to the selected and optimal BPTO

values can be seen in Figure 6.16b.
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(a)

(b)

Figure 6.16: Optimal and reinforcement-learning-selected PTO damping coefficient (a) and
corresponding mean absorbed power (b) in irregular waves with Hs = 2 m and Tz = 7 s,
generated using a JONSWAP spectrum.
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Figure 6.17: Significant wave height and mean zero-crossing period calculated over each
horizon (continuous lines) and over overlapping 15-minute windows every minute (dotted
lines) for the multiple sea state wave trace.

6.2.3.2.2 Multiple sea states

In ocean waves, sea states can last from a minimum of 30 minutes to a maximum of six

to eight hours, with swells lasting typically between three and six hours (Holthuijsen,

2007). Hence, a semi-realistic wave trace (Figure 6.17) has been generated from the

concatenation of four sea states, each lasting three hours and corresponding to a

JONSWAP spectrum. In order to achieve convergence, the wave trace has been repeated

4 times for a total of 48 hours.

In Figures 6.19a and 6.19b, it is possible to see the behaviour of the Q-learning algorithm

when I = 1 (Hs = 2 m) and K = 4 (Tz = 6, 7, 8, 9 s). Although only four wave spectra

are employed to generate the sea state, determining the sea state over the horizon length

HRL results in 4 discrete values of both the significant wave height (1-4 m, in steps of

1 m) and the mean zero-crossing wave period (6-9 s, in steps of 1 s). However, of these

only one value is employed for the significant wave height, 2 m, since the wave energy

is too low for the generator to reach its limit within this wave trace. This means that

the optimal damping coefficient is dependent only on the Tz value.

Figure 6.18 shows the initial behaviour of the Q-learning algorithm, while Figure 6.19

shows the control performance after the optimal PTO damping coefficient has been

learnt in each sea state. Figures 6.18a and 6.19a also present the optimal value for the

PTO damping coefficient, calculated as described in the previous section for the four

individual sea states. However, as opposed to the reinforcement learning method, in

this case the values of Hs and Tz are obtained from 15-minute moving windows every

minute, as shown by the dotted lines in Figure 6.17. In Figures 6.18b and 6.19b, it is

possible to see the difference in the mean absorbed power obtained using reinforcement

learning and the optimal PTO damping coefficient, where the optimal mean absorbed

power has an average value of 26.147 kW, 56.429 kW, 59.191 kW, and 25.208 kW in
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(a)

(b)

Figure 6.18: Optimal and control-selected (I = 1, K = 4, L = 5) PTO damping coefficient
(a) and corresponding mean absorbed power (b) in irregular waves with four sea states,
generated from the combination of Hs = 2, 3 m and Tz = 7, 8 s.

each sea state respectively, over the 3-hour wave traces.

6.2.3.3 Discussion

6.2.3.3.1 Regular waves

As can be seen from Figure 6.13, in regular waves the Q-learning algorithm can converge

towards the optimal PTO damping coefficient for passive control in less than three hours

starting from a random initialization. This is possible because of the deterministic

nature of regular waves, which also enables the use of a relatively short averaging

horizon. Similarly, the use of the tabular approach for the reward function would not

be necessary. It is also interesting to notice that due to the selected exploration strategy,

random actions may be taken even after the state-action values have fully converged.

From Figure 6.14, it is clear that the application of the force clip results in the optimal

PTO damping coefficient moving to the upper limit. As aforementioned, the reason

for this behaviour is the fact that the control force tends to a square wave shape

(Figure 6.15), which maximises the area under the curve. Conversely, due to the force
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(a)

(b)

Figure 6.19: Optimal and control-selected (I = 1, K = 4, L = 5) PTO damping
coefficient (a) and corresponding mean absorbed power (b) in irregular waves with four
sea states, generated from the combination of Hs = 2, 3 m and Tz = 7, 8 s (Continuation
of Figure 6.18).
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saturation, the magnitude of the body velocity, which corresponds to the velocity at

the PTO in this simple case, is not significantly affected by the PTO force. Since

the absorbed power is proportional to the product of the PTO velocity and force, a

square wave shape of the PTO force maximises the amount of generated energy. Hence,

the controller is able to turn to a bang-bang type of control action when the force

saturates, which can result in greater energy absorption than resistive control, as for

instance shown by Li et al. (2012), despite a stronger generator loading. Nevertheless,

as this section focuses on the application of reinforcement learning to resistive control,

a relatively low limit has been imposed on the PTO damping coefficient to prevent the

controller behaviour from becoming strongly non-linear.

In Figure 6.15, it is also interesting to notice that the saturated body velocity, like the

PTO force, is no longer sinusoidal. The two curves are still in phase, but the velocity

is affected by the higher order harmonics of the PTO force due to the saturation.

Similarly, although the specified limit on the body displacement is never reached in

the tests considered, the reinforcement learning control would be expected to return a

higher PTO damping coefficient than the optimal value if this were the case. Indeed,

stronger damping is associated with a smaller motion amplitude.

6.2.3.3.2 Irregular waves

The statistical reward function is proven to be very effective in the treatment of irregular

waves, as it is clear from Figure 6.16. However, a longer time is required for convergence

to occur as compared with regular waves. This is evident from the comparison of

Figures 6.18 and 6.19, which respectively show a random response while the controller is

learning and the optimal performance once convergence is achieved. From this analysis

of multiple sea states, it is possible to deduce that the controller needs to spend a

minimum of 12 hours in each sea state in order to learn the optimal policy by ensuring

sufficient exploration, when 5 values are used for the PTO damping coefficient (for a

total of 20 states, not all of which are encountered). This time is likely to rise when a

finer mesh is used for the reinforcement learning state space. In particular, assuming

the learning time to be proportional to the number of states, a very large number of

discrete BPTO values can seriously affect the convergence properties of the algorithm,

since the number of states is equal to the product of L and the number of sea states.

Although a 12-hour-long learning time seems much longer than the 20-minute window

used for the Nelder-Mead optimization, multiple iterations are required for convergence

with any search technique, so that reinforcement learning does in fact converge faster in

an on-line application. In fact, a real-time, model-free implementation of an exhaustive

search method would be impossible. Since in the real environment a wave trace is never
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repeated exactly, any search scheme would be unable to recognize whether a change in

the cost function is due to the change in PTO damping or wave noise. Conversely, as

Figure 6.19 shows, the proposed Q-learning strategy is able to start the optimization in

any sea state from where it left off the last time it entered that specific sea state. Once

convergence is achieved, the reinforcement learning approach is reduced to a look-up-

table method until the exploration rate is increased in order to check if there have been

any changes in the dynamics of the device. This can be done every season, but it will

result in much shorter learning times during which the performance will never be far

from the optimum, since the state-action value function is already initialized. Thus, as

the operational life of a WEC is planned as 25 years, a relatively poor efficiency during

the very first stages of operation should not affect the economic performance of the

device.

From Figure 6.19a, it may look like the Q-learning algorithm has still not fully learnt the

optimal policy even after 48 hours, despite a much better performance as compared with

Figure 6.18a. In fact, the state-action value function has by now converged towards the

correct optimal PTO damping coefficient in each sea state. However, the optimal values

in them vector, used to calculate the reward function, lie closest to BPTO = 200 kNs/m

for Tz = 6 s, BPTO = 400 kNs/m for Tz = 7 s, BPTO = 600 kNs/m for Tz = 8 s, and

BPTO = 800 kNs/m for Tz = 9 s. Hence, the oscillations in the PTO damping coefficient

selected by the Q-learning algorithm in fact correspond to changes in sea state, as it

is possible to understand from a close comparison with Figure 6.17. As a result, the

reinforcement learning method even presents higher power absorption at some points

as compared with the standard resistive control in Figure 6.19b despite the use of a

very coarse reinforcement learning state space at this stage.

No comparison has been made at this stage with other control strategies, such as

latching or model predictive control, because reinforcement learning is considered to be

a method to make existing control strategies independent of the hydrodynamic model

of the wave energy converter. Hence, its performance is only as good as the control

scheme itself.

6.2.3.4 Summary

This simple case study has shown that the proposed Q-learning algorithm is able to

learn the optimal PTO damping coefficient in each sea state for the resistive control

of a WEC. Furthermore, the controller can recognize the current sea state and pick up

learning from where it left off the last time the sea state was encountered. Nevertheless,

despite the linearity of the model, up to 12 hours are required for convergence in each

sea state. In spite of the long expected life time of a WEC, this value is considered to

be still excessive. For this reason, in the following case study, we investigate whether
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Table 6.2: Distance between kernels, bandwidth and number of kernels used in the study
of LSPI with RBFs.

δc (kNs/m) µ (kNs/m) M

10 10 10
10 20 10
20 10 5
20 20 5
20 40 5

function approximation and more efficient algorithms, such as LSPI, can help reduce

the learning time. Additionally, the claim of controller adaptability is studied in detail.

6.2.4 Case study: Seabased device

The second case study considers the model of the Seabased WEC described in Secti-

ons 2.3.3 and 3.2.1.2 ((2.96)-(2.103)), which has non-linear mooring (due to the slacking

of the mooring line) and PTO (due to the end stops) forces. This device presents

end-stops, which means that in the reward function a penalty p = −1 is returned if

max y > lu + le,u or min y < −(ll + le,l) during each time horizon, where y is the

displacement of the translator. The PTO damping coefficient has been assumed to

range from 0 to 100 kNs/m in steps of 10 kNs/m (for a total of 11 discrete values per

sea state) based on preliminary calculations.

For this case study, three reinforcement learning algorithms are assessed: Q-learning,

Sarsa and LSPI. In addition, for LSPI both tabular and radial features have been

analysed. With RBFs, a smaller number of values can be used. In particular, five cases

have been considered in order to study the influence of the number of kernels, or centres,

and bandwidth on the learning behaviour of LSPI with RBFs. In Table 6.2, it is possible

to see the distance between kernels δc = sj−sj−1 and bandwith µ for each case as given

in (4.17). The first kernel is always sited at γ = 0 kNs/m.

The values of the discount factor and initial exploration and learning (for Q-learning

and Sarsa only) rates have been set to γ = 0.95, ε0 = 0.5 and α0 = 0.4, respectively.

Furthermore, the parameters for the decay of the exploration and learning (for Q-

learning and Sarsa only) rates are specified as Nε = 5 and Nα = 5, respectively. In the

reward function, a power value of u = 25 has been adopted. The duration of each time

horizon has been set to HRL = 10T in regular waves and HRL = 25Te in irregular waves.

These values have been found to represent the best compromise between convergence

speed and computational cost. The time averaging process is started after HRL,1 = 5Te,

which represents a heavy filter. With LSPI, the policy is improved every Nh = 40

samples.
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(a)

(b)

Figure 6.20: PTO damping coefficient selected by different reinforcement learning control
strategies as compared with the optimal value in regular waves with unit amplitude and
T = 6 s starting from BPTO = 0 kNs/m.

6.2.4.1 Results in regular waves

The behaviour of Sarsa, Q-learning and LSPI has been assessed against the optimal

PTO damping coefficient, which has been calculated using the Matlab optimization

function fmincon in each sea state as described in Section 3.2. The optimizer is run

with a time-domain simulation in a 20-minute-long wave trace to provide a benchmark

of the control variable that results in the maximum mean generated power.

Regular waves of unit amplitude and a wave period of 6 s have been analysed first, with

a wave trace lasting 3 hours. Two different starting points have been selected, namely

BPTO = 0 and BPTO = 100 kNs/m, as shown in Figures 6.20 and 6.21, respectively.

For the RBFs, δc = 10 kNs/m and µ = 10 kNs/m, i.e. an almost tabular approach

has been used. For each figure, the same seed number has been set to the random

number generator for all algorithms, selecting a particularly unfavourable number for

Figure 6.21 in order to assess the convergence properties under difficult conditions.

In Figure 6.22, it is possible to see the behaviour of the LSPI algorithm for the RBF
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(a)

(b)

Figure 6.21: PTO damping coefficient selected by different reinforcement learning control
strategies as compared with the optimal value in regular waves with unit amplitude and
T = 6 s starting from BPTO = 100 kNs/m.
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Figure 6.22: PTO damping coefficient selected by the LSPI algorithm with different RBF
settings in regular waves with unit amplitude and T = 6 s. The values of δc and µ are in
kNs/m.

Figure 6.23: Mean generated power for the run with LSPI with RBFs and δc = 10 kNs/m
and µ = 10 kNs/m in Figures 6.21b and 6.22.

settings in Table 6.2, when the starting value of the PTO coefficient is BPTO =

100 kNs/m. For all runs, the same seed values is used as in Figure 6.21. A longer

wave trace lasting 4 hours is employed.

The mean generated power corresponding to the run with LSPI with RBFs and δc =

10 kNs/m and µ = 10 kNs/m in Figures 6.21b and 6.22 is plotted in Figure 6.23.
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6.2.4.2 Results in irregular waves

In irregular waves, an 8-hour long wave trace with Hs = 2 m and Te = 6 s with a

JONSWAP spectrum has been analysed, typical of the Lysekil testing site (Waters

et al., 2009). In Figures 6.24a and 6.24b, the learning behaviours of the three control

algorithms are shown, with the same setting being used for LSPI with RBFs as in

Figure 6.21 throughout this section. The difference in mean generated power between

LSPI with RBFs and the optimal control setting is shown in Figure 6.24c.

Nevertheless, real sea states actually last between 0.5 to 6 hours (Holthuijsen, 2007).

Therefore, in order to prove that reinforcement learning is able to deal with changing

sea states, the control is tested in an additional 12-hour-long wave trace composed of

the alternation of two sea states, so that I = K = 2. Both have a JONSWAP spectrum

and last for two hours before changing. The first one corresponds to Hs = 2 m and

Te = 5 s, while the second one has Hs = 1 m and Te = 6 s. Figures 6.25a and6.25b show

the learning behaviour of the three reinforcement learning algorithms. In Figure 6.25c,

the difference in mean power between LSPI with RBFs and the optimal control setting

in each sea state can be seen.

Furthermore, although reinforcement learning is expected to result in adaptive control,

as it is model-independent (Lewis et al., 2012), this was not proven in the previous case

study. Hence, a simple example is treated here to show the adaptivity of reinforcement

learning to possible marine growth effects. Bio-fouling is expected to affect the dynamics

of the system mainly through an increase in its inertia and especially drag force.

However, in this simple model, the viscous drag force is not considered. Hence, we

treat the case of a sudden increase in the radius and draught of the floater to 1.75 m

and 0.5 m, respectively (from 1.5 m and 0.4 m, respectively, in Eriksson et al. (2007)).

These values have been assumed, as they result in a significant change in the optimal

damping coefficient in the analysed sea state. A full sensitivity analysis of the power

absorption and control of the device to the variations in floater design as well as a

realistic treatment of marine growth effects go beyond the scope of this study. The

hydrodynamics for the two floater geometries can be found in Section 2.3.3.

The same sea state as in Figure 6.24 is used in this simple example, whereas the new

geometry of the floater is employed. In particular, a simulation is initialized with the

final values of Figures 6.24a and 6.24b being set for each reinforcement learning strategy.

Additionally, the same values of the m vector have been kept for each scheme. This

corresponds to initializing the reward function to incorrect values for each discrete

damping coefficient. For this reason, the exploration rate (as well as the learning rate

for Q-learning and Sarsa) is reinitialized.

In Figures 6.26a and 6.26b, the learning behaviours of the three control algorithms
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(a)

(b)

(c)

Figure 6.24: PTO damping coefficient selected by different reinforcement learning control
strategies as compared with the optimal value in irregular waves with Hs = 2 m and
Te = 6 s and a JONSWAP spectrum starting from BPTO = 100 kNs/m (a-b). (c) shows
the difference in the mean generated power for the optimum (Pavg,opt) and the case of LSPI
with RBFs (Pavg,LSPI).
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(a)

(b)

(c)

Figure 6.25: PTO damping coefficient selected by different reinforcement learning control
strategies as compared with the optimal value in irregular waves with two alternating sea
states (JONSWAP spectra with Hs = 2 m and Te = 5 s, and Hs = 1 m and Te = 6 s)
starting from BPTO = 100 kNs/m (a-b). (c) shows the difference in the mean generated
power for the optimum (Pavg,opt) and the case of LSPI with RBFs (Pavg,LSPI).
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are shown. The difference in mean generated power between LSPI with RBFs and the

optimal control setting is shown in Figure 6.26c.

The computational time of the algorithm run at the start of each time horizon has been

less than 0.06 s on an i7 processor with 16Gb RAM in all simulations run here. As this

time is proportional to the number of states, if, say, 100 sea states were to be used,

the computational time would increase to 0.3 s. Hence, a practical implementation is

realistic, particularly considering the much longer time horizon duration.

6.2.4.3 Discussion

Although in the previous case study no formal definition of convergence was attempted,

here we consider the reinforcement learning algorithms to have converged towards a

policy once the same PTO damping coefficient is selected for longer than an hour.

However, within the short duration of the analysed wave traces, the exploration rate

does not fully decay. Hence, the definition of convergence is extended to include a

maximum of up to 5 distinct deviations from the mean value of the selected BPTO

within the one-hour period, which may be due to random actions being adopted.

6.2.4.3.1 Regular waves

In Figure 6.20, it can be seen that all algorithms learn the optimal PTO damping

coefficient within 2.5 hours, with subsequent wiggles, especially visible for Q-learning

and Sarsa, mainly due to the exploration rate not having fully decayed. This fast

learning is because this is a benign case, with the optimal value of BPTO being very

close to the starting PTO damping coefficient, thus requiring little exploration before

finding the optimum. Conversely, Figure 6.21 represents a more challenging scenario

for the algorithms. In particular, Sarsa and Q-learning are unable to converge to the

optimal policy, and learn a suboptimal policy instead, which results in less energy

absorption than the optimal policy. This problem could be solved with a slower decay

in the exploration and learning rates, which would cause learning to be smoother, but

also slower. This behaviour is particularly worrying in the case of extreme waves because

if this oscillation occurs on the boundary of the feasible damping coefficient envelope

to prevent excessive displacements, it could lead to failure. Conversely, LSPI with both

tabular and radial basis functions learns the optimal policy within 2.5 hours in regular

waves in Figure 6.21b.

Comparing the behaviour of LSPI with tabular features and RBFs with δc = 10 kNs/m

and µ = 10 kNs/m in Figures 6.20b, 6.21b and 6.24b, the two approaches almost

completely match, with RBFs actually resulting in a stabler behaviour in regular waves

and greater exploration in irregular waves. This is expected because almost the same
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(a)

(b)

(c)

Figure 6.26: PTO damping coefficient selected by different reinforcement learning control
strategies as compared with the optimal value for the new floater geometry in irregular
waves with Hs = 2 m and Te = 6 s and a JONSWAP spectrum. The initial conditions
are set based on the final settings of Figures 6.24a and 6.24b, respectively. (c) shows the
difference in the mean generated power for the optimum (Pavg,opt) and the case of LSPI
with RBFs (Pavg,LSPI).
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number of kernels as discrete states are used, with the bandwidth spanning the space

between discrete states. In Figure 6.22, decreasing the number of kernels was assumed

to result in faster learning because the RBFs are expected to generalise the shape of

the Q-function for unseen states and actions (Geramifard et al., 2013). In fact, this is

not the case, with LSPI with RBFs with δc = 20 kNs/m (thus half as many kernels)

and µ = 20 kNs/m taking longer to learn the optimal policy. Increasing the bandwidth

of RBFs also augments the confusion in the controller, as the overlap between distinct

RBFs is increased spanning multiple BPTO values, thus causing the algorithm to diverge

from the optimal policy. These counter-intuitive results are believed to be due to the

small number of discrete states used, with many more features being typical for standard

reinforcement learning problems (as for instance in the examples in Chapter 4). Hence,

the use of 5 or less RBFs incurs in an underfitting problem, i.e. using too coarse a model

to fit the state-action value function. A minimum of 10 RBFs is recommended for the

control of WECs with LSPI. Additionally, setting the bandwidth to match the distance

between kernels seems to provide best behaviour. Nevertheless, designing RBFs features

needs care, and it is likely to be device-specific.

6.2.4.3.2 Irregular waves

Q-learning and Sarsa are similarly unable to converge towards the optimal policy in

irregular waves as well, as shown in Figures 6.24 and 6.25. Again, this is an indicator that

the exploration and learning rates should be decreased more slowly for these algorithms,

thus resulting in longer learning times. Conversely, LSPI with both tabular and radial

basis functions is able to learn the optimal policy in less than 6 hours in each sea

state, despite some wiggles owing to the exploration rate not having decayed fully yet

in Figure 6.25b. In particular, the learning time is lower than the 12 hours required by

Q-learning for convergence in irregular waves in the previous case study, where a more

benign linear WEC model was used for validation. This diminished convergence time

is mainly due to the shorter time-averaging horizon length employed in this study and,

especially, the superior capacity of LSPI to learn using a small number of observations

(Lagoudakis and Parr, 2003). Furthermore, as shown in Figure 6.25b, LSPI is able to

pick up learning in a specific sea state from where it left off the last time the controller

was in that sea state. This is a fundamental consideration for a realistic application,

since actual sea states usually last for a shorter time than 6 hours (Holthuijsen, 2007).

As the Seabased device is tested in the Skagerrak strait (Eriksson et al., 2007), a

JONSWAP spectrum is appropriate due to its bounded, shallow-water nature (Holt-

huijsen, 2007). However, a JONSWAP spectrum is a single-peaked spectrum with

a relatively narrow frequency range (Holthuijsen, 2007). This means that energy is

contained mainly in a region close to the peak wave period. As a result, determining
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the optimal PTO damping coefficient for each sea state is simpler than for wider-

banded wave spectra, such as Bretschneider or even double-peaked spectra. Although

reinforcement learning is expected to find the global optimum (Sutton and Barto, 1998),

the learning process would be expected to take longer if the latter spectra were used: a

longer time horizon length would be necessary. In particular, a double-peaked spectrum

would cause significant challenges to the convergence behaviour. This will be the focus

of future studies.

Being model-free, reinforcement learning is proven to be able to adapt to changes in the

dynamics of the WEC in Figure 6.26. Even though the reward function is initialized

with the wrong values, reinforcement learning is able to converge towards the optimal

PTO damping coefficient with all three analysed algorithms. However, it is important

to note that this is possible because the exploration rate is reset after the change of the

system dynamics. Therefore, during operation of a WEC, it is necessary to reset the

exploration rate after specific time intervals, say yearly, in order to pick up any possible

changes in the device response.

6.2.4.4 Summary

This case study proves that reinforcement learning is not affected by model non-

linearities as expected. More importantly, LSPI is shown to achieve convergence towards

the optimal passive control setting in less than 6 hours per sea state even in challenging

conditions. This is a great improvement over the simple reinforcement learning control

implementation of the previous section. At the same time, the controller is able to

recognize a change in sea state and update the search for the PTO damping coefficient

accordingly. In addition, the adaptive nature of reinforcement learning control is proven

for all tested algorithms with a simple experiment.

The results with function approximation are more mixed, though. The expected im-

provement in performance has not materialised, possibly due to the small number of

discrete values of the PTO damping coefficient employed. For a greater number of

discrete values, greater benefits are expected with the use of function approximation,

as shown in the studies on tidal energy not contained within this thesis or by the results

of Wei et al. (2016) for the control of wind turbines. Nevertheless, the use of RBFs has

been observed to stabilise the learning performance of the controller.

In both case studies, the influence of penalties for large displacements has not been

studied in detail. This will be addressed in the next section on reactive, or impedance-

matching, control, which results in a great increase in motion amplitude as well as

energy absorption (Section 3.3). Similarly, the performance of reinforcement learning

in broader banded spectra will be investigated.
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6.3 Reactive control

In reactive, or impedance-matching, control, the controller can exert an additional

stiffness term, i.e. the phase of the response can be controlled. As a result, the control

problem no longer lies in the determination of an optimal damping coefficient per sea

state, but rather the combination of a stiffness and a damping coefficient per sea state.

In addition, since much greater power extraction and motion amplitude is expected

due to the phase control, as shown in Section 3.3, penalties for large displacements will

become more important than for resistive control.

The following sections will deal with the required changes in the reinforcement learning

algorithm formulation as compared with resistive control.

6.3.1 State variables

The selected state space is as a result extended to:

S =

s|si,k,l = (Hs,i, Te,k, BPTO,l, CPTO,n) ,

i = 1 : I,

k = 1 : K,

l = 1 : L

n = 1 : N

 , (6.9)

where CPTO is the PTO stiffness coefficient. The discretization of the state variables

is performed as for resistive control. However, it is important to notice that some

combinations of PTO damping and stiffness coefficients must not be selected, as these

can result in an unstable behaviour. For point absorbers (and other WEC designs), a

negative control stiffness coefficient may be required to achieve optimal performance

in particular wave lengths (Wave Energy Scotland, 2016). This negative value can be

achieved in practice by the electrical components of the PTO system. Nevertheless, it

is fundamental to ensure that the negative PTO coefficient is never greater in magni-

tude than the positive hydrostatic stiffness coefficient, otherwise the system becomes

unstable (Wave Energy Scotland, 2016).

For this reason, combinations with BPTO = 0 and CPTO < 0 are excluded from the

search space. Preliminary simulations must be run for each particular design in order to

identify the combinations of PTO damping and stiffness coefficients that would result

in an unstable behaviour, so that they can be avoided.
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6.3.2 Action Space

For reactive control, the action is a combination of increase, decrease, or not change

the PTO damping and stiffness coefficients. This gives 9 possible actions as opposed to

only 3 in the case of resistive control in Section 6.2. It has been preferred, however, to

vary only one variable at a time in order to limit the action-state space thus decreasing

the size of the state-action value function. This has a direct positive consequence on

the overall learning time. The action space is thus given by:

A = {a| [(−∆BPTO, 0), (0,−∆CPTO), (0, 0), (+∆BPTO, 0), (0,+∆CPTO)]}, (6.10)

where ∆BPTO = BPTO,l − BPTO,l−1 and ∆CPTO = CPTO,n − CPTO,n−1 are predefined

step changes in the PTO damping and stiffness coefficients respectively.

The states corresponding to the minimum or maximum PTO damping and stiffness

coefficients, i.e. BPTO,1, BPTO,L, CPTO,1 and CPTO,N , present a smaller action state

to prevent the controller from exceeding the state space boundary. For instance, for

CPTO,N , the action +∆CPTO is invalid.

6.3.3 Reward function

The formulation of the reward function is the same as for resistive control in Section 6.2.0.3.

However, in this case, due to the possible presence of negative power flows for a

poor selection of PTO damping and stiffness coefficients, a separate normalization is

performed for positive and negative power values, so that values are contained in the

interval (-1,1) rather than (0,1) as in resistive control. The selection of an odd value of

u is particularly important to prevent the rectification of negative power flows and the

learning of a dangerous policy.

The reward function calculation process is summarized in Figure 6.27, where the data

comes from the case study with the RM3 two-body point absorber introduced in

Section 2.3.2. In the figure, w(sh) indicates the non-penalty term in (6.8) (i.e. when the

displacement constraints are not active).

6.3.4 Algorithm

The reactive control algorithms based on reinforcement learning are very similar to those

described in Section 6.2.1 for resistive control. The main difference is the increase of the

state space to include the PTO stiffness coefficient. Furthermore, the power averaging is

initialised only after a longer time interval than for resistive control, since the transient

effects associated with a change in both PTO damping and stiffness coefficients are

more significant.
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Figure 6.27: Calculating the reward w (excluding penalties for large motions) at one step
of the reinforcement learning algorithm in irregular waves. This corresponds to the last step
in Figure 6.32 in Section 6.3.7.2.

Figure 6.28 shows the algorithm for the reactive control of a WEC using either Q-

learning or Sarsa. If discrete states are used, the scheme should be built on top of

Algorithms 3 and 2. When function approximation is employed, Algorithms 5 and 4

should be preferred instead. Conversely, Figure 6.29 displays the algorithm for the

reactive control of a WEC using LSPI.

6.3.5 Displacement constraint handling controller

Although the penalty term in the reward function is effective in teaching the controller

to avoid selecting combinations of the PTO coefficients that result in large motions, it

does not prevent it from taking them. In fact, the agent needs to take those actions

first in order to learn that they are bad. Including a safety factor in the displacement

constraints reduces this risk considerably. Similarly, simulations can be used to pre-train

the controller within a safe environment. When the control scheme is then applied to

the actual device, the controller is expected to move only about the optimum point.

Furthermore, the displacement constraints that must be met in order to prevent the

application of a penalty should be set as soft constraints, i.e. with a magnitude smaller

than the actual maximum allowable displacement. Nevertheless, these approaches do

not remove the risk of exceeding the actual displacement constraints completely due to

the random element in the ε-greedy exploration strategy in (4.9).

A solution is the implementation of a simple displacement-constraint-handling control-

ler acting within reactive control. The controller operates directly on the PTO force

in real time in order to try to keep the displacement at the PTO within safe limits.
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Figure 6.28: Flowchart of the Q-learning or Sarsa algorithm for the reactive control of a
WEC.
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Figure 6.29: Flowchart of the LSPI algorithm for the reactive control of a WEC.
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Whether this is feasible in practice or how it is implemented in reality is not treated

within this work. A superior alternative would be the implementation of a controller

with an optimization and prediction component similar to model-predictive control,

but this task also goes beyond the scope of this work.

A very simple scheme is considered based on the magnitude of the instantaneous

magnitude of the displacement and sign of the velocity of the float. Originally, if the

magnitude is greater than a certain value that corresponds to a soft constraint, say

zlim = 90%zMax, and the sign of the velocity is either rising in a wave peak or decreasing

in a wave trough, the applied PTO force is changed in sign:

fPTO,rt(t) =

{
−fPTO(t) if z > zlim & ż > 0 or z < −zlim & ż < 0 , (6.11a)

fPTO(t) otherwise, (6.11b)

where fPTO is obtained as usual for reactive control as described in Section 3.3. Ho-

wever, it is clear that the switch in sign relies on the assumption of the stiffness term

dominating the PTO force. If this is not the case, then a switch in sign is strongly

undesirable, since the damping effect would be lost and in fact inverted. As a result,

an improved simple controller is proposed in the form:

fPTO,rt(t) =

{
0 if z > zlim & ż > 0 or z < −zlim & ż < 0, (6.12a)

fPTO(t) otherwise. (6.12b)

It should be noted that zMax is obtained from the sensitivity analysis of the displacement

on the PTO coefficients in each sea state using simulations and it already includes a

safety factor, as aforementioned.

This extra controller will be studied only in the second case study, in Section 6.3.8.

6.3.6 Case studies

The proposed reactive control for WECs based on reinforcement learning has been

tested on two numerical benchmark cases:

• the reference model 3 (RM3) point absorber that comprises of a float and a

reaction plate, first introduced in Section 2.3.2;

• the linear point absorber first introduced in Section 2.3.1.

Only the Q-learning algorithm is applied to the first case study, which represents the

proof of concept. Although the device presents two bodies, the PTO has only one degree

of freedom so that the problem is simplified considerably. Furthermore, this case study

presents a Bretschenider spectrum, typical of the West Coast of the United States

(Neary et al., 2014). The second case study, done on a simpler model in a JONSWAP
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Figure 6.30: Work-flow diagram of the program used to simulate the point absorber with
reinforcement-learning-based reactive control.

spectrum, is used mainly to address the problem of displacement constraint abidance

of the proposed reinforcement learning strategies.

In both case studies, the simulation system shown in Figure 6.30 has been employed.

6.3.7 Case study: RM3 two-body point absorber

The maximum PTO force that can be exerted due to the generator rating has been

assumed to be FMax = 1 MN, while the magnitude of the maximum displacement at

the PTO has been limited to xPTO,Max = 5 m. The PTO efficiency is set as η = 80%.

For simplicity, the PTO damping coefficient is assumed to range from 0 to 4.2 MNs/m

in steps of 1.4 MNs/m, so that L = 4. Similarly, the PTO stiffness coefficient is taken

to range from -3.6 MN/m to 0 MN/m in steps of 1.2 MN/m, so that N = 4. These

values have been selected as they fully enclose the optimal coefficients for the analysed

sea states. As a result of the choice of PTO damping and stiffness coefficients, 16

reinforcement learning states are used when a single sea state, as given by Hs and Te,

is considered. Nevertheless, for a more realistic implementation a finer resolution and

a wider range are expected.

In the Q-learning algorithm, the discount factor and the initial exploration and learning

rates have been set to γ = 0.95, ε0 = 0.6 and α0 = 0.4, respectively. The parameters for

the decay of the exploration and learning rates have been set to Nε = 25 and Nα = 5,

respectively. The power of the reward function is set to u = 25 and the penalty for

large displacements to p = 2. In addition, in both regular and irregular waves, the

time horizon duration has been set to HRL = 20Te. Due to the longer transient period

after the change in PTO coefficients, the power averaging process is started only after

a period of HRL = 8Te from the start of the period.

In both regular and irregular waves, a single sea state (i.e. I = K = 1) is analysed for

simplicity, since the reinforcement learning control has been shown to learn in multiple
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sea states for resistive control previously (Section 6.2).

6.3.7.1 Results in regular waves

A single sea state, i.e. I = J = 1, has been analysed in regular waves, with unit

amplitude and a wave period of 8 s. The wave trace lasts 8 hours after a preliminary

initialization, which is discarded. Figures 6.31a and 6.31b compare the curves of the

PTO damping and stiffness coefficients respectively with time as selected by the Q-

learning algorithm against the optimal values. The difference in the corresponding mean

absorbed power and the optimal mean generated power of 260.5 kW (obtained as per

Section 3.3 with a 20-minute-long wave trace) can be seen in Figure 6.31c.

6.3.7.2 Results in irregular waves

Similarly, a single sea state, with a significant wave height of 2 m and a peak wave

period of 9.25 s is considered in irregular waves with a Bretschneider spectrum as a

proof of concept. From the Fast Fourier Transform analysis, the energy wave period for

the generated wave trace is 8 s. The wave time series is 8 hours long. As per the regular

waves case, I = J = 1 so that the reinforcement learning problem reduces to 16 states.

In Figures 6.32a and 6.32b, it is possible to see the PTO damping and stiffness coeffi-

cients respectively adopted by the reinforcement learning control scheme as compared

with the optimal values in this sea state. Figure 6.32c shows the difference in the

corresponding mean absorbed power, with the mean generated power obtained by using

the optimal coefficients being 90.582 kW.

6.3.7.3 Discussion

6.3.7.3.1 Regular waves

As is clear from Figure 6.31, in regular waves the Q-learning algorithm learns the

optimal PTO coefficients in approximately six hours from a random start (Q = 0).

This is almost double the time required by the control scheme for resistive control in

Section 6.2.2 mainly due to the longer time horizon employed: 20Te as opposed to 10Tz

or 10Te, with the energy wave period being typically greater than the zero-crossing mean

wave period. In fact, a shorter time horizon may be used considering the deterministic

nature of regular waves. Additionally, the convergence time is strongly dependent on

the number of discrete BPTO and CPTO values employed, with only 16 states currently

being used.

In Figure 6.31, it is also interesting to notice the random initial behaviour of the

controller due to the selected exploration strategy, which enables the agent to visit
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(a)

(b)

(c)

Figure 6.31: Time variation of the PTO damping (a) and stiffness (b) coefficients chosen
by the Q-learning control as compared with the respective optimal values in regular waves of
unit amplitude and a wave period of 8 s. (c) shows the difference between the corresponding
mean generated power and the optimal mean generated power.
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(a)

(b)

(c)

Figure 6.32: Time variation of the PTO damping (a) and stiffness (b) coefficients chosen
by the reinforcement learning control as compared with the respective optimal values in
irregular waves with Hs = 2 m and Te = 8 s. (c) shows the difference between the
corresponding mean generated power and the optimal mean generated power.
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most states. As the learning progresses, the exploration rate tends to zero and the

algorithm chooses the optimal, exploitative actions.

In order to meet the requirements of the linear wave theory assumption of the hydrody-

namic model, a short wave height has been chosen. As a result, the prescribed maximum

PTO displacement is never exceeded. Hence, the penalty term in (6.8) is not applied.

If it were, the controller would be expected to select a higher PTO damping coefficient,

like for resistive control. Conversely, a PTO stiffness coefficient with a smaller, if not

zero, magnitude is forecast, as the controller tries to move away from resonance. On the

other hand, the force reaches the saturation limit even in this mild sea state. However,

a bang-bang behaviour similar to the one in Section 6.2.2 is not observed with reactive

control.

6.3.7.3.2 Irregular waves

From Figure 6.32, it is evident that the developed statistical reward function is effective

in ensuring convergence in irregular waves as well, despite their stochastic nature. Furt-

hermore, since the same horizon time length is employed as per the regular waves run,

the learning time is no greater than Q-learning for resistive control as in Section 6.2.2.

Nevertheless, the challenge that irregular waves pose to the convergence of the correct

action selection can be understood by comparing Figures 6.31c and 6.32c, where the

much more oscillatory nature of the mean absorbed power in irregular waves is clear.

A typical sea state has a duration that ranges between 30 minutes and 6 hours (Holt-

huijsen, 2007). Hence, even though the learning time is smaller than in Section 6.2.2

despite the larger number of states, convergence is still unlikely to be achieved before

there is a variation in the significant wave height and energy wave period. However,

as shown in Section 6.2.2 for irregular waves with multiple sea states, the Q-learning

algorithm applied to the control of WECs is able to pick up the learning process from

where it left off the last time it encountered a particular sea state. This represents

the main advantage of reinforcement learning over traditional optimization algorithms,

which would be unable to identify whether a change in the cost function is due to a

change in the PTO damping or stiffness coefficients or due to noise in the wave energy.

In a realistic application, a finer grid of BPTO and CPTO values would be desired in

order to deal with a large range of sea states. Nevertheless, this may increase the

learning time excessively and will be studied in the next section. The state-action value

function is expected to be pre-initialized through numerical simulations in order to

prevent selecting PTO settings that result in excessive motions in energetic sea states,

which could be a real problem with reactive control.

Finally, it is important to understand that reinforcement learning is proposed as a
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method to remove the dependence of existing WEC control strategies from hydrodyna-

mic models. Therefore, the overall controller performance is only as good as the control

scheme itself, with reactive control representing a significant improvement over resistive

control treated in Section 6.2.

6.3.7.4 Summary

In this case study, the Q-learning algorithm has been applied to the reactive control

of a two-body point absorber. This application basically represents a generalization of

the resistive control scheme, with a corresponding greater search space. This case study

further supports the applicability of reinforcement learning control to different WEC

technologies.

In the next case study, the performance of reinforcement learning control under displa-

cement constraints conditions is analysed.

6.3.8 Case study: linear point absorber

In this case study, the simple linear point absorber constrained to motions in heave

first introduced in Section 2.3.1 is considered. The overall PTO efficiency has been set

to η = 0.75 and the force constraint to FMax = 0.5 MN. Only LSPI is applied to the

reactive control of the point absorber.

Simulations have been run in both regular and irregular waves. In regular waves, the

wave height and period have been set to H = 2 m and T = 8 s, respectively. As a

single sea state is considered, I = K = 1 and J = LN . In irregular waves, a JONSWAP

wave spectrum has been adopted. In order to demonstrate the ability of reinforcement

learning to switch between different sea states as for resistive control, two alternating

sea states are considered. The first sea state presents Hs = 2 m and Te = 7 s, while

the latter Hs = 2 m and Te = 8 s. The two sea states alternate every 2 hours, which

is a realistic duration for a sea state, with typical values ranging from 0.5 to 6 hours

(Holthuijsen, 2007). Therefore, I = 1, K = 2 for the simulations in irregular waves.

Using the LSPI algorithm with discrete features, the PTO damping and stiffness coef-

ficients are each discretized with 7 values, ranging from 0 to 300 kNs/m and -300

to 0 kN/m with steps of 50 kNs/m and 50 kN/m, respectively. This relatively fine

discretization seems realistic for practical applications. In irregular waves, only 4 values

are used for the PTO damping coefficient (hence, in steps of 100 kNs/m) in order to

speed up convergence, since the mean generated power is more affected by the PTO

stiffness coefficient. As a result, the total number of states for each sea state is 49 and

56 in regular and irregular waves, respectively.
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Additionally, an optimization is run to find the optimal coefficients for each sea states

in the analysis as described in Section 3.3. This has been used in the presentation of

the results as a benchmark for the reinforcement learning solution.

6.3.8.1 Results with no displacement constraints

Initially, the simulations are run with the float displacement limit set at zMax = 5 m,

which is never exceeded in either regular or irregular waves for the selected sea states.

6.3.8.1.1 Regular waves

A wave trace lasting 6 hours is generated. The time variation of the PTO damping and

stiffness coefficients selected by the LSPI algorithm can be seen in Figures 6.33a and

6.33b, respectively. Figure 6.33c shows the difference between the generated power and

the power generated using the optimal coefficients, used as a benchmark.

6.3.8.1.2 Irregular waves

A 24-hour long time series is employed, with the sea states alternating every 2 hours.

The reinforcement learning control action and the corresponding generated power can

be seen in Fig. 6.34. It can be seen that the first sea state (Hs = 2 m and Te = 7 s) is

run for an extra hour to show that the wiggle in the BPTO value just before t = 22 hr

is due to random actions being selected by the ε-greedy exploration strategy.

6.3.8.2 Results with displacement constraints active

In order to assess the efficacy of the penalty formulation, the displacement constraint

has been lowered to ±2 m, which is lower than the amplitude of the response achieved

with the optimal PTO setting. This is preferred over an increase in the energy content

of waves because a linear model is used for the hydrodynamics, whose validity is void

for large motions. Only regular waves have been analysed for this study, considering a

10-hour-long wave trace.

The control action selection of reinforcement learning can be seen in Figure 6.35

as compared with the optimal coefficients. These are calculated by modifying the

cost function of the optimization to return a power value of 0 if the displacement

constraint is exceeded. The difference in the generated power between the reinforcement

learning response and the optimal solution is shown in Figure 6.35c. Note that for the

combinations BPTO = 200 kNs/m and CPTO = −250 kN/m, and BPTO = 200 kNs/m

and CPTO = −300 kN/m the constraint is exceeded.
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Figure 6.33: Selection of the PTO damping (a) and stiffness (b) coefficients by the
reinforcement learning control as compared with the respective optimal values in regular
waves with H = 2 m and T = 8 s and a maximum allowable displacement of 5 m. The
difference in the corresponding mean generated power can be seen in (c).
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Figure 6.34: Time variation of the PTO damping (a) and stiffness (b) coefficients chosen
by the reinforcement learning control as compared with the respective optimal values in
irregular waves with two, alternating sea states. (c) shows the difference between the
corresponding and the optimal mean generated power.
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Figure 6.35: Time variation of the PTO damping (a) and stiffness (b) coefficients chosen
by the reinforcement learning control as compared with the respective optimal values in
regular waves with H = 2 m and T = 8 s and a maximum allowable displacement of 2 m.
(c) shows the difference between the corresponding and the optimal mean generated power.
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6.3.8.3 Results for the real-time controller for soft displacement constraints

The performance of the proposed low-level controller is assessed with simulations in

both regular and irregular waves. In particular, the coefficients learned by LSPI in the

unconstrained runs are employed in conjunction with a soft constraint zlim = 0.9zMax =

1.8 m. For clarity, the constrained response of the point absorber is plotted against the

unconstrained response.

6.3.8.3.1 Regular waves

In regular waves with H = 2 m and T = 8 s, the PTO coefficients are set to BPTO =

150 kNs/m and CPTO = −200 kN/m. A 120-s-long time series is sufficient to get

a fully-developed response, as shown in Figure 6.36 for both constrained (continuous

line) and unconstrained (dotted line) cases. In particular, Figure 6.36a presents the float

displacement and the wave elevation ζ, Figure 6.36b the float velocity, Figure 6.36c the

PTO displacement, and Figure 6.36d the instantaneous and mean generated power.

6.3.8.3.2 Irregular waves

Considering only one sea state with Hs = 2 m and Te = 8 s and a JONSWAP

spectrum, the PTO coefficients are set to BPTO = 200 kNs/m and CPTO = −300 kN/m.

Figure 6.37 shows the response of the point absorber for a portion of the wave trace with

a higher energy content. In particular, Figure 6.36a presents the float displacement and

the wave elevation ζ, Figure 6.36b the float velocity, Figure 6.36c the PTO displacement,

and Figure 6.36d the instantaneous and mean generated power.

6.3.8.4 Discussion

6.3.8.4.1 Reinforcement learning analysis

By looking at Figures 6.33 and 6.34, LSPI with discrete states and actions is found to

learn the optimal coefficients in both regular and irregular waves when no displacement

constraints are active. However, the selected large number of states results in very slow

learning time. This is particularly evident in irregular waves, where up to 12 hours are

required for convergence per sea state. Nevertheless, this figure shows that reinforce-

ment learning is able to recognize the change in sea state and pick up learning from

where it left off the last time the controller encountered those wave conditions. This is

fundamental for a practical implementation of LSPI control of a WEC. The learning

time strongly depends on the number of states and thus on the discretization of Hs, Te,

BPTO and CPTO. For this reason, alternative machine learning schemes that provide a
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Figure 6.36: Response of the device in both constrained and unconstrained conditions in
regular waves with H = 2 m and T = 8 s, including plots of the displacement, velocity,
PTO force and generated power.
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Figure 6.37: Response of the device in both constrained and unconstrained conditions in
irregular waves with Hs = 2 m and Te = 8 s, including plots of the displacement, velocity,
PTO force and generated power.
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continuous regression, such as artificial neural networks, which have been investigated

in the previous chapter, may be superior.

From Figure 6.35, when the displacement constraints are active, LSPI seems to be

unable to converge towards the optimal coefficients. In fact, under closer scrutiny it does

learn the optimal coefficients, since the penalty term is active for both combinations

BPTO = 200 kNs/m and CPTO = −250 kN/m, and BPTO = 200 kNs/m and CPTO =

−300 kN/m. Hence, the response of reinforcement learning is affected by the inability

to select a PTO damping coefficient closer to 220 kNs/m, which results in a power loss

of about 30 kW as compared with the optimal response, as can be seen in Figure 6.35c.

The sensitivity of the mean generated power on the PTO coefficients with reactive

control is another indicator that a continuous optimization method, such as the one

based on neural networks in Chapter 5, is superior for this application.

Another worrying feature that can be seen in Figure 6.35 is the selection of combinations

of the PTO coefficients that result in the exceedance of the displacement constraint

during the exploration stage of the reinforcement learning algorithms. Although the

algorithm does learn to avoid these states because of the penalty term, the fact that

they are encountered at all would result in failure in practice. A solution would be

to pre-train reinforcement learning with simulations, so that it learns to avoid some

extreme actions. Once applied to the actual device, the controller would then correct the

rewards it obtained from the simulations from those observed in reality. Nevertheless,

this does not completely remove the possibility of selecting catastrophic actions. Hence,

the proposed low-level controller is likely to be required as a fall-back option in any

case.

6.3.8.4.2 Real-time controller for soft displacement constraints

As is clear from Figure 6.36a, the proposed real-time controller is able to limit the

float displacement within ±2 m in regular waves despite the use of soft rather than

hard constraints. The action of the controller is evident in Figure 6.36c from the

comparison between the constrained and unconstrained cases. Whether such a response

is practically feasible is another problem that will need addressing. Furthermore, as

expected the application of the constraints results in a drop in mean generated power

in Figure 6.36d.

In irregular waves, a particularly challenging situation has been analysed, with energetic

waves relative to the selected sea state. As can be seen in Figure 6.37, the soft constraints

are not able to prevent the float from exceeding the limits, despite the magnitude of

the displacement is only just greater than 2 m. This is because of the steepness of the

response, which means the effect of the PTO force of opposite sign comes too late.
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This shows that the selected controller is too simplistic, and more accurate studies are

required in order to prevent exceedance of displacement constraints in realistic wave

conditions. In particular, the value of 90% use to determine the soft constraints will

need to be adjusted based on the device dynamics and the sea states of interest.

6.3.8.5 Summary

In this case study, LSPI with discrete features has been applied to the reactive control of

a simple point absorber. A fine discretization has been used for the PTO damping and

stiffness coefficients. As a result, the algorithm requires 12 hours to learn the optimal

policy in each sea state.

The treatment of displacement constraints has been analysed in detail. Although the

penalty term in the reward function ensures that the algorithm learns to avoid large

displacements, these need to be experienced first, which may cause to damages to or

failure of the WEC. Therefore, it is possibly best to train the controller with simulations

first, so that during actual operations the controller will explore only an area near the

optimum. An alternative approach with a simple, lower-level control has also been

addressed, but this is shown to be overly simplistic and case specific.

6.4 Chapter summary

In this chapter, reinforcement learning has been successfully applied to the control of

WECs.

To start with, Monte-Carlo methods have been used in a simple implementation of

declutching control. Although there is a performance gain over resistive control, the

approach is too simplistic and inferior to declutching control with optimal command

theory.

Subsequently, a practical control for the resistive control of WECs is developed based

on reinforcement learning. The scheme is then generalized to reactive control. The

controller finds the optimal PTO coefficients in each sea state for the maximization

of energy absorption. At the same time, realistic force constraints are considered as

well as penalties for large displacements. Three different algorithms are analysed: Q-

learning, Sarsa and LSPI. Similarly, three different WEC models are used to assess the

convergence properties of the algorithms for different levels of abstraction.

From the case studies analysed within this section, the following observations have been

made:
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• LSPI provides superior performance to Q-learning and Sarsa, with a learning time

of up to 6 hours per sea state with resistive control. This increases to 12 hours

with reactive control due to the wider search space.

• The controller is able to recognize changes in sea states. In particular, whenever

it enters a particular sea state, the agent will pick up learning from where it left

off the last time that sea state was encountered.

• The reinforcement learning schemes are not affected by system non-linearities due

to their model-free nature.

• The controller is able to adapt to changes in the system dynamics. These may

be either abrupt, as in the case of non-critical sub-system failures, or slower, for

instance due to marine growth and components ageing.

• Function approximation has not been found to be particularly beneficial for

resistive control due to the small search space. However, it improves the stability

of the learning behaviour.

• The proposed control strategy accounts for realistic saturation constraints on the

PTO force. If the force saturates, the controller finds the optimal policy for the

maximization of energy absorption that applies to the new scenario. In some

cases, this seems to converge towards a bang-bang type of control.

• The penalty term on large displacements is effective, since the controller learns

to avoid those actions. However, in order to do so, the agent needs to experience

those conditions, which may lead to failure.

• An additional, lower-level controller has been developed to try to address the

problem of displacement constraint exceedance. Nevertheless, it has been found

to be overly simplistic and case-specific.

Therefore, the following conclusions may be made:

• A practical implementation of resistive control with reinforcement learning is

feasible.

• Conversely, the larger state-action space associated with reactive control means

that learning can be very slow. Function approximation may alleviate this problem

by speeding up convergence.

• In these studies, sea states have been assumed to be stationary for the duration of

a time horizon (approximately 3-8 minutes). However, this is not true in practice,

as shown by the necessary application of statistical techniques for the development

of the reward function. Energy is transported in packets by wave groups. So,

realistically in order to maximize performance the controller should optimize the

controller parameters for each wave group.

• Similarly, to ensure the maximization of energy absorption, the reduction of loads

and the abidance by displacement constraints, it is necessary to include prediction

within the algorithm, as done in the previous chapter. If the controller operates on
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a wave-group-by-wave-group basis, the prediction becomes feasible if a network

of buoys is installed at a sufficient distance in front of the WEC.

• The controller should be coupled with a higher-order controller that would shut

down the system to survival mode if an extreme storm is forecast, when the PTO

action is predicted to be poor due to force saturation.

• Simulations should be used to pre-train the reinforcement learning behaviour

in energetic sea states, so that the controller learns to avoid the selection of

parameters that may lead to failure.

• The exploration rate will need to be periodically reset, even though possibly by

a small amount, so that the controller is able to adapt to any possible changes in

the system dynamics in the meantime.



Chapter 7

Conclusions

The main contribution of this work has been the development of algorithms based on

reinforcement learning for the passive and active control of wave energy converters

(WECs). Focus was given to a practical implementation that is realistic as inspired by

the state-of-the-art control strategies employed by the wave energy industry. Therefore,

rather than being optimized in real-time, the controller parameters are selected for a

particular range of wave conditions (known as sea states), which are assumed stationary

over a time period lasting tens of wave cycles. The sea state is indicated by the wave

height and wave period in regular waves, and the significant wave height and energy

wave period in irregular waves. The control parameters are represented by a damping

coefficient (passive or resistive control) or a damping and a stiffness coefficient (active

or reactive control). Within the reinforcement learning framework, at the start of each

time period the controller is in a particular state, as given by the combination of the sea

state and control parameters. It then selects an action which is a change (or no change)

in control parameters and updates the control force. At the end of the control signal,

the controller receives a reward, which is a function of the mean generated power in

the time interval. If soft displacement constraints are exceeded during the time period,

a penalty is returned instead. At the start of the new time interval, the controller is in

a new state and the cycle is repeated. Through reinforcement learning, the controller

learns an optimal behaviour with time for the maximization of the total reward.

In this thesis, we have shown that reinforcement learning successfully converges towards

the optimal coefficients in simulation studies, as obtained from an optimization. In

particular, the controller is able to recognize changes in sea states and update the control

parameters accordingly. This is achieved without reliance on models of the system

dynamics. For this reason, the control strategy is unaffected by system non-linearities, as

shown in this thesis by different case studies using simulations with models of increasing

complexity. In addition, reinforcement learning is proven to adapt to sudden changes

in system dynamics. This could correspond to non-critical subsystem failures or slower

effects due to marine growth. The adaptive characteristics of reinforcement learning

are fundamental in achieving an increase in the levellised of energy produced by WECs

through an increase in capacity factor and system performance.

199
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Detailed studies have been conducted to assess the performance of different reinfor-

cement learning algorithms. In contrast with results typical of the robotics industry,

function approximation has not been found to be particularly beneficial, mainly due

to the small number of states employed. The most promising strategy that has been

analysed, least-squares policy iteration, is shown to find the optimal control parameters

within 6 and 12 hours in irregular waves for passive and active control, respectively.

These figures are considered realistic for a practical implementation considering the

expected lifetime of a WEC (approximately 20 years). Furthermore, although sea states

typically last up to 6 hours in fact, reinforcement learning is proven to recognize changes

in sea state and pick up learning from where the controller left off the last time that

particular sea state was encountered. In addition, reinforcement learning is shown to

adapt its response if realistic saturation limits are reached for the force exerted by the

power take-off system (PTO). The control scheme can also learn to avoid parameters

that would result in the exceedance of displacement constraints in energetic waves,

which may lead to damages to or failure of the device. However, in order to learn this

behaviour, the controller needs to experience the sea states and actions first, which is

undesirable. Finally, thanks to its model-free nature, reinforcement learning control has

been shown to converge towards the optimal control parameters even when non-linear

effects are present, e.g. due to the PTO unit, and to adapt to changes in the system

dynamics.

An alternative approach based on artificial neural networks has also been proposed

for the reactive control of WECs. This technique is also based on the assumption

of stationary sea conditions for a time period lasting tens of wave cycles. A neural

network is used to produce the non-linear mapping between mean generated power and

maximum displacement amplitude with significant wave height, wave energy period and

control parameters in each time interval. This can be considered to be a type of sy-

stem identification. A global optimization scheme based on computational performance

(through exploitation of parallel processing) is suggested for the determination of the

control parameters at the start of each time horizon based on the predicted significant

wave height and energy wave period. An exploratory technique is used to investigate

the search space, with the focus shifting towards the selection of the expected optimal

action as the number of sample points increases. Nevertheless, this approach may result

in the selection of control parameters that result in highly negative power flows or an

exceedance of the displacement constraints due to the randomness of the exploration

strategy. In irregular waves, the controller is shown to learn faster the optimal control

parameters than reinforcement learning due to the continuous nature of its features.

A final merit of this thesis is the detailed description of reinforcement learning and its

introduction to the wave energy industry. Although only simple, theoretical (i.e. not
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treating the control design in detail, including its interactions with the hardware and

monitoring capabilities) implementations have been proposed in this work, the thesis

shows the potential of this method so that it may be further developed by the wave

energy industry.

7.1 Limitations of the proposed methods

The proposed methods present attractive advantages, but do not come without limita-

tions.

In this thesis, the control strategies developed based on reinforcement learning and

artificial neural networks rely on the assumption of stationary wave conditions over a

fixed number of wave cycles. Although it is possible to statistically recognize stationary

sea states, greater power absorption is expected from a control strategy that can adapt

to the wave excitation force in real time. More importantly, a real-time approach would

provide a more robust approach for dealing with constraints on the displacement,

velocity, force and power flow at the PTO units or joints. The proposed reinforcement

learning and neural network methods result in a conservative behaviour due to the

assumption of stationary wave conditions. Indeed, in irregular waves, the displacement

constraint may be exceeded only for a very short period of time, e.g. over one wave

cycle (in the order of 7-15 s), over the whole time horizon (in the order of 200-

400 s). Yet, a penalty is still returned, which will teach the controller to avoid the

controller parameters that caused the constraint exceedance in that particular sea state.

Therefore, it is clear that a superior approach must be developed for the handling of

the displacement constraints, which is likely to be performed in real time.

Another issue is represented by the fact that the proposed reinforcement learning

and neural network methods can account for penalties on the displacement only after

experiencing the situations that should be avoided. For this reason, the controller should

be trained with simulation and experimental data before being applied to a prototype

WEC. Additionally, in the event of unforeseen circumstances that cause the device

to experience untested conditions, linear theory should be employed to provide a first

guess to prevent completely random behaviour.

A further limitation is represented by the lack of a prediction component in the proposed

reinforcement learning schemes. This enables a fully model-free approach. Nevertheless,

from the literature it is clear that the wave elevation forecasting is very important

for the maximization of energy absorption and the meeting of realistic constraints. A

prediction component could be included in a reinforcement learning scheme, although

this would require a statistical model (hence, using dynamic programming). Conversely,
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the proposed neural networks strategy employs information on the predicted wave

conditions. In practice, for stationary wave conditions, sea-state data can be obtained

from meteorological organizations.

Finally, reinforcement learning is most suitable when there is a discrete number of

possible actions. Hence, bang-bang types of control would be more appropriate than

the developed strategies for resistive and reactive control of WECs.

7.2 Future work

Based on the drawn conclusions and identified limitations of the proposed methods, the

following recommendation for future work are made.

The energy content in waves is subdivided into packets, known as wave groups. With

the use of a network of buoys around a WEC (or, more economically in the future,

a WEC array), it would be possible to determine incoming wave groups. Hence, the

controller could be designed to adapt the control parameters based on the predicted

incoming wave groups. Modifying the proposed approaches to the treatment of wave

groups would make the control schemes more responsive, with a predicted increase in

performance. The prediction of incoming wave groups would also be feasible with the

use of wave buoys, as opposed to the forecast of the wave conditions over future tens

of wave cycles. Nevertheless, transient effects associated with a change in parameters

would become more relevant, which requires the development of effective solutions for

this problem.

In addition, the method combining neural networks as a modelling tool and an op-

timization function should be carried forward for reactive control due to its superior

performance over reinforcement learning for the determination of the optimal control

parameters with reactive control. Nevertheless, the neural network must be pre-trained

using simulations (including non-linear models) and tank test experiments to prevent

the selection of random actions that may result in failure.

Conversely, the discrete nature of reinforcement learning indicates that its use would

be best for a bang-bang type of control. Hence, a more realistic implementation of

declutching control should be investigated. Latching control also represents an ideal

candidate, with associated higher energy extraction than for declutching control. In

fact, latching and declutching control could be considered within the same framework

to further increase energy absorption, as suggested by Clément and Babarit (2012) with

optimal command theory instead of reinforcement learning. Serious thought should be

dedicated to constraint abidance, though. Furthermore, the use of function approxima-

tion is considered to be necessary if the state space is based on the WEC motions.
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Finally, once methods are finalised for the control of an individual WEC, the schemes

should be extended to the treatment of arrays of WECs. Using the proposed methods,

this generalization should be straightforward. The achievement of economies of scale is

fundamental in lowering the levellised cost of energy generated by WECs.

7.3 Recommendations

Although the proposed strategies are applicable to any devices, the methods have been

validated with linear models (including only some non-linear effects in the PTO). Hence,

it is recommended to assess their performance of these methods with fully non-linear

models, such as virtual wave tanks (in CFD), or experimentally in wave tanks.

At the moment, the proposed methods are conservative in the handling of displace-

ment constraints due to their time-averaging nature. Hence, it would be interesting to

develop a framework that is able to deal with constraints in real-time to improve the

performance of the proposed strategies. This could be either a reformulation of the

reinforcement learning problem or simply the inclusion of a controller that deals with

the constraints.

Finally, this thesis has developed the methods from a theoretical perspective. Therefore,

the algorithms have been started from random initial conditions to show their conver-

gence capabilities. Nevertheless, for real-applications, the results coming from linear

wave theory should be used as an initial guess to prevent undesired behaviour and

possible damage to the WEC. In particular, existing control strategies, such as model

predictive control, may be used to control the WEC, with machine learning schemes,

such as neural networks, providing the adaptive component by correcting the explicit

model of the scheme with the observed data.

7.4 Concluding remarks

The development of an effective control strategy is fundamental in achieving a necessary

increase in the levellised cost of energy extracted from ocean waves. Not only are the

benefits associated with a rise in power absorption, but also in a reduction of loads

and consequent damages to WECs. Machine learning approaches are shown to provide

successful control strategies, which do not rely on models of the system dynamics for

the determination of the optimal control actions. As a result, the system can adapt

to both varying wave conditions and also changes in the system dynamics, e.g. due

to marine growth or non-critical subsytem failures. Their potential should be further

explored by the wave energy industry.



Appendix A

Neural Networks

In this chapter, we discuss some neural networks strategies that will later be applied to

the control of WECs. First of all, we discuss briefly the development of neural networks

and the main architectures. Then, we move on to the treatment of the simple feed-

forward neural networks, which will be used in this thesis. In particular, we show their

use as function approximation tools and some of the approaches used in their training.

Finally, we present a test case to show the performance of the described neural network

type.

A.1 Background

Artificial neural networks (ANNs) are a class of supervised learning algorithms that are

inspired from nature. In supervised learning schemes, the machine learns the mapping

between input and output data that is provided by a supervisor, i.e. the user, in a

training data set. The machine learning algorithms will then generalised the knowledge

to unseen situations and predict the output corresponding to the desired input data.

Like the biological brain which comprises of many interconnected neural cells, ANNs are

made up of a network of interconnected functional units, known as nodes. By combining

multiple neurons in a number of layers, so that the output of the neurons in one layer

becomes the input to the neurons in the next layer, ANNs can be used to fit non-linear

functions with a large number of input values. However, ANNs are no longer limited

to use as function approximators. In fact, they have recently become ubiquitous in a

number of disciplines and applications, with some of the most famous examples being

the deep learning solutions to image and speech recognition in computer science (LeCun

et al., 2015). Indeed, deep learning can be considered to be the training of ANNs with

a very large number of layers.

Due to their importance, there is a very large number of publications and even journals,

such as Neural Networks and Neurocomputing, on ANNs. In this thesis, we rely mainly

on the reviews on deep learning by Schmidhuber (2015) and LeCun et al. (2015), with

the former providing an overview of the history of the development of ANN techniques
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up to deep learning and the latter focusing mainly on the recent advances, with a focus

on image, word and speech recognition. The treatment of the historical development

of neural networks goes beyond the scope of this work and the reader is referred to

those works for greater information. Nørgaard et al. (2003) focus on the application of

ANNs to modelling and control. In addition, the book by Hagan et al. (1996) supplies

a practical description of the basic ANN methods, which will be employed in this work.

Indeed, the power of deep learning goes beyond the requirements of the control of

WECs for the time being, with more interest being possible once arrays of WECs are

deployed.

Since the first study on neural networks by McCulloch and Pitts (1943), different

network architectures and learning strategies have been developed. The first archi-

tecture to be proposed was the perceptron (Rosenblatt, 1958), which was soon found to

have a limited set of applications. Since then multi-layer perceptrons, feed-forward,

recurrent and convolutional neural networks have been investigated (LeCun et al.,

2015). Feed-forward neural networks are one of the simplest architectures, but they

have been employed effectively for non-linear function approximation. Convolutional

neural networks, which rely on local connections, shared weights, pooling and many

layers, have become the standard in image and speech recognition applications (LeCun

et al., 2015). In recurrent ANNs, the output of some neurons is fed back to previous

layers of the network (Mandic and Chambers, 2001). As a result, they are more sensitive

to noise and may become unstable. Nevertheless, they have been successfully applied

to system identification in WECs by Valério et al. (2008) and Giorgi et al. (2016b).

The employed recurrent ANN types are neural network auto-regressive with exogenous

inputs (Leontaritis and Billings, 1985a,b) and locally recurrent network (Elman, 1990).

However, in this work ANNs are used mainly to produce a non-linear mapping between

specified input and output variables. As a result, the simpler feed-forward architecture

is employed.

Learning methods for ANNs are summarized in Atiya (1991). Over the years, many

strategies have been developed including associative, performance and competitive

learning, which originate from the work by Hebb (1949), Widrow and Hoff (1960) and

Rosenblatt (1958) respectively. In this work, we consider backpropagation (Rumelhart

et al., 1986), which is a performance learning scheme. This algorithm updates the

weights of the neural network by propagating the error signal backwards through the

layers of the network. This scheme is behind the success of deep learning and it is

nowadays widely adopted for the training of most ANN applications (LeCun et al.,

2015).
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Input layer Hidden layer Hidden layer Output layer

Figure A.1: Graphic representation of a simple feed-foward ANN.

A.2 Feed-forward neural networks

As aforementioned, feed-forward networks are a simple type of ANNs where the signal is

propagated forward. A graphic representation of an example can be seen in Figure A.1.

The network consists of neurons arranged in a number of layers. The signal is propagated

forward from the input to the output layer along the arrows, which correspond to

synapses in the biological brain. Similarly, the signal along each arrow and into each

neuron is different from the neighbouring ones, as would the case in the real brain based

on the activation of the specific connections for a particular task. In a mathematical

framework, this is achieved by allocating a weight for each arrow and an activation

function at each node. Training occurs by tweaking the weights so as to obtain a match

between the prediction of the ANN and the provided output data based for the same

input data.

The model of each neuron is described in the next section, including the most common

activation functions. Then, a mathematical model for the whole network is obtained in

Section A.2.2.

A.2.1 Neuron model

Figure A.2 shows the diagram of a single neuron or peceptron from a mathematical

perspective. The input to the neuron is represented by the vector x, which comprises

of two element in this example. The signal from each input node n is then multiplied

by a weight wn before being summed to the other signals (Hagan et al., 1996). This

can be expressed in matrix form as

d = wTx. (A.1)

It is clear that to prevent imbalances and numerical instabilities, each input value should

be normalized prior to being fed to the neuron. The signal d is then passed through an
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Figure A.2: Diagram of a single neuron or perceptron.

activation function f to yield the output of the neuron (Hagan et al., 1996)

y = f(d). (A.2)

An additional type of node exists known as bias, which is characterized by a fixed value

of 1 (Hagan et al., 1996). The associated signal presents a weight b. From a mathematical

perspective, the bias provides the offset of the function fit. It can be omitted from a

particular layer if desired. In case the input layer to the neuron presents a bias term as

for instance in Figure A.2, then (A.1) is modified to

d = wTx+ b. (A.3)

Different activation functions have been proposed over the years, and these will be

discussed next.

A.2.1.1 Activation functions

The activation function is known as such because it shows the amount by which the

neuron is activated for given input signals. In general, non-linear functions are employed

with values ranging from 0 to 1 or -1 to 1 to prevent numerical errors and excessive

imbalances. One of the simplest activation functions is the hard limit activation function

(Hagan et al., 1996), which is obtained as

y =

{
1 if d > 0, (A.4a)

−a otherwise, (A.4b)

where a = 0 or a = 1 for the asymmetrical and symmetrical hard limit function,

respectively. An alternative simple activation function, unconstrained to [0, 1] or [−1, 1],

is the linear function

y = d. (A.5)
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From this function, it is also possible to obtain the rectified linear function

y = max(0, d), (A.6)

which is analogous to half-wave rectification (Hagan et al., 1996). Additional activation

functions are the asymmetric and symmetric linear saturation functions

y =


1 if d > 1, (A.7a)

d −a ≤ d ≤ 1, (A.7b)

−a if d < −a, (A.7c)

where a = 0 or a = 1 for the asymmetrical and symmetrical saturation linear function,

respectively.

Nevertheless, these functions (with the exception of the linear function) present at least

one point of discontinuity at which the derivative is undefined. In the backpropagation

process, as discussed in Section A.2.4, the derivative of the activation function is

required for the training of the ANN. For this reason, two smooth functions with a

shape similar to the linear saturation function have been the study of most applications

until recently (Hagan et al., 1996; LeCun et al., 2015): the asymmetric standard logistic

sigmoid and the symmetric hyperbolic tangent functions.

The standard logistic sigmoid (or simply sigmoid) function is expressed as Hagan et al.

(1996)

y =
1

1 + e−d
. (A.8)

In fact, it corresponds to the derivative of the smooth approximation to the rectified

linear function: the soft-plus function

y = ln
(

1 + ed
)
. (A.9)

The derivative of the sigmoid function itself can be calculated as

ḟ(d) =
ed

(1 + ed)
2 = f(d) (1− f(d)) , (A.10)

where f indicates the sigmoid function.

Similarly, the hyperbolic tangent is given by

y = tanh(d) =
1− e−2d

1 + e−2d
, (A.11)

with derivative

ḟ(d) =
e2d − 1

e2d + 1
= 1− tanh2(d) = 1− f(d)2, (A.12)
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where f indicates here the hyperbolic tangent function.

The linear function presents a derivative with value 1 for all values of d, while the

rectified linear function a value of 0 for d < 0 and 1 for d > 0, with a discontinuity at

d = 0.

The functions described in (A.4), (A.5), (A.6), (A.7), (A.8) and (A.11) are shown

graphically in Figure A.3. Recently, the rectified linear function in (A.6) has become

the mainstay of deep learning applications, as it enables faster learning for applications

with a large number of layers (LeCun et al., 2015). However, in this work, only a few

layers will be employed. For this reason, the smoother hyperbolic tangent in (A.11) has

been used as the activation function in the input and hidden layers. Conversely, the

output layer presents a linear activation function (A.5), since ANNs are applied to a

regression rather than a classification task (Hagan et al., 1996). This means that ANNs

are employed as a function approximation method rather than to classify items in a

limited number of categories.

A.2.2 Network model

The feed-forward neural network in Figure A.1 is expressed with the mathematical

model of the perceptron of Figure A.2 in Figure A.4. In this example, the ANN presents

an input layer with two values, two hidden layers with three nodes each and an output

layer with a single variable. Each layer is described by an index l, with l = 1 and

l = 4 corresponding to the input and output layers, respectively. Each node presents an

output oln, with l and n indicating the indices of the layer and the position of the node

within the layer, respectively. Similarly, each node presents the activation variable dln.

Therefore, each layer can be described by the vectors d and o. Furthermore, each layer

(except for the input layer) is characterized by the activation function f l. The input

layer is represented by the vector of parameters x while the output layer by y for each

sample. Each arrow, or synapsis, has an associated weight W l
i,j that is characterized

by the indices l, i and j, which represent the layer that precedes it, the node that is

the starting point in layer l and the node that the arrow points to in layer l+ 1. Hence,

each sets of arrows can be represented by the weight matrix W l. In addition, all layers

other than the output layer have an associated bias term, with corresponding vector bl.

In order to assess the performance of ANNs and determine the system geometry (i.e.

the number of layers and neurons per layer), after rearranging the points randomly,

the original data set is usually divided into three subsets: the training, validation and

test sets (Ng, 2016). The training data set, which typically comprises 50% to 80% of

the original data points, is employed for the training of the ANN. For this reason, it

is used to determine the end conditions for training after performance convergence is

achieved. The validation data set, which is usually made of 10%-25% of the original data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.3: Some of the possible activation functions for ANNs: asymmetrical (a) and
symmetrical hard limit (b), asymmetrical (c) and symmetrical linear saturation (d), linear
(e), rectified linear (f), standard logistic sigmoid (g) and hyperbolic tangent functions (h).
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Figure A.4: Diagram of the ANN in Figure A.1 expressed with the mathematical model of
Figure A.2.

samples, is employed after the network is trained to assess its performance on unseen

points. The purpose for this check is to assess the importance of over-fitting, i.e. the

mapping of not only the underlying relationship between input and output data, but

also of the inevitable noise (Ng, 2016). If the performance of the ANN is excellent on the

training set, but substantially worse for the validation set, over-fitting is an issue with

the network and the network geometry should be modified, by reducing the number

of neurons or by changing the activation functions or training method. Therefore, the

validation set is employed to select the best performing approach. Finally, the test

set, which entails 10%-25% of the original data samples, has a similar purpose to the

validation set. However, it is employed to more specifically estimate the accuracy of

the chosen approach after the method has been finalised. As a result, test data sets are

often used to compare the performance of different machine learning algorithms (Ng,

2016).

In the next section, we describe the procedure for the computation of the predicted

output given the input and weight matrices for each sample through a process known

as forward propagation. In Section A.2.4, backpropagation is used to train the weights

of the ANN.
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A.2.3 Forward propagation

For each sample point k with input xk, it is possible to calculate the approximate

output yk by propagating the signal forward through the network. This process, known

as forward propagation, assumes the weight matrices W and b to have already been

determined. Their training is explained in the next section.

The equations in Section A.2.1 are modified to reflect the multi-node and multi-layer

nature of the ANN. For each layer l = 2, . . . , L with N l nodes, the vectors of activation

and output signals are computed as

dl = W l−1Tol−1 + bl−1, (A.13a)

ol = f l
(
dl
)
, (A.13b)

respectively. The matrices and vectors are discussed in the previous section and are

shown graphically in Figure A.4. The weight and bias matrices W l and bl have size(
N l−1, N l

)
and

(
N l, 1

)
, respectively. The signal vectors dl and ol have size

(
N l, 1

)
.

The input to the second layer is in fact equal to the input to the whole ANN for each

sample point, i.e. o1 = xk. Similarly, the output of the output layer matches the output

of the ANN, i.e. yk = oL.

A.2.4 Training: backpropagation

During the training process, the weights of the ANN are updated so as to provide the

mapping of highest accuracy between input and output data in a specified training set

that comprises K points. As aforementioned, different strategies have been developed

over the years for the training of ANNs. Here, we consider one of the performance lear-

ning schemes: backpropagation (Hagan et al., 1996). This algorithm is a generalization

of the least mean-squares training scheme developed by Widrow and Hoff (1960). Thus,

backpropagation can be considered as an approximate steepest descent algorithm, which

presents the mean square error as performance index, whose adoption represents the

key insight of Widrow and Hoff (1960). For a given training set with input matrix xtr

and output matrix ytr with size
(
K,N1

)
and

(
K,NL

)
, respectively, the corresponding

output predicted by the ANN is computed with forward propagation as y with size(
K,NL

)
. N1 indicates the number of features of the input layer, while NL those of the

output layer. The performance index employed by backpropagation is thus expressed

as

J =
1

2
||ytr − y||2. (A.14)

The constant term 1/2 is typically included to cancel out the term 2 deriving from

the differentiation of the cost function. Often, a weight decay term is included to help

reduce over-fitting (Hagan et al., 1996), which occurs when the ANN maps not only
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the underlying function, but also noise effects. The modified performance index with

the addition of the regularization term is thus expressed as

J =
1

2
||ytr(k)− y(k)||2 +

λ

2

K∑
k=1

L∑
l=2

N l−1∑
i=1

N l∑
j=1

(
W l
i,j(k)

)2
. (A.15)

Backpropagation consists in two main steps. Firstly, a forward sweep is run through

the network, calculating the activation and output signals of each layer, including the

predicted output of the ANN (LeCun et al., 2015). This can be done using either

a sample point or a batch of points at a time. Then, the second step consists in

propagating a sensitivity signal that depends on the prediction error backwards through

the network; hence, the name backpropagation. The propagated sensitivity signal in

each node is dependent on how much each node contributes to the overall error and the

weight and bias matrices are updated accordingly.

Although different learning strategies are effective in training networks with a single

hidden layer, most techniques are incapable of dealing with deep ANNs. Backpropa-

gation is an effective scheme that deals with this issue. Since its development in the

1980s (LeCun et al., 2015), it has been fundamental in the rapid rise of neural network

technologies. In fact, backpropagation can be considered as a practical application of the

chain rule of differentiation for the calculation of the gradient of an objective function

(LeCun et al., 2015).

Even within the backpropagation framework, different practical implementations have

been proposed for the training of the ANN weights. Here, two famous schemes are

analysed: gradient descent and the Levenberg-Marquart algorithms. The former is

described first due to its simpler nature. It updates the neural weights by employing one

training sample at a time. Conversely, the Levenberg-Marquart method is an example

of an efficient batch scheme, which employs multiple samples at a time for the update

of the ANN.

A.2.4.1 Gradient descent

The gradient descent algorithm is a simple iterative scheme that updates the weights

of the network using one sample at a time. The update is based on the minimization

of the cost function in (A.15) at every iteration a. Using a steepest descent algorithm

(Hagan et al., 1996), it is possible to express the update of the weights as

W l
i,j(a+ 1) = W l

i,j(a)− α ∂J

∂W l
i,j

, (A.16a)

bli(a+ 1) = bli(a)− α∂J
∂bli

, (A.16b)
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for every iteration a and sample k. α ∈ [0, 1] is known as the learning rate and it

determines the quality of the learning.

In matrix form, for each sample k the gradient descent algorithm for backpropagation

can be thus summarized as follows (Ng, 2016):

• Run a feed-forward sweep through the neural network, computing the activations

for layers l = 2, . . . , L. Use (A.13a) and (A.13b).

• For the output layer L, obtain the error or sensitivity term δ, which is a measure

of the influence of each neuron on any errors in the predicted output, as

δL = − (ytr(k)− y(k))� ḟL
(
dl
)
, (A.17)

for every sample k, where the dot indicates differentiation and � the Hadamard,

or element-wise, product.

• The error signal is then propagated backwards along the network for every layer

l = L− 1, L− 2, . . . , 2:

δl =

[(
W l
)T
δl+1

]
� ḟL

(
dl
)
. (A.18)

• The change in the partial derivatives of the weight and bias matrices is computed

as:

∇W lJ = δl+1
(
ol
)T

, (A.19a)

∇blJ = δl+1. (A.19b)

• Add the regularization term.

• Update the weight and bias matrices with (A.16a) and (A.16b).

The procedure is repeated for a number of epochs a until convergence is achieved. This

is typically determined by the change in the mean squared error on the training data

set being less than a predefined value (Hagan et al., 1996).

A.2.4.2 Levenberg-Marquardt algorithm

In mathematics, the Levenberg-Marquardt algorithm can be considered to be an evo-

lution of the Newton-Gauss method for the minimization of functions that consist in

the sum of quadratic terms, which is itself an evolution of Newton’s method. Greater

information on non-linear optimization schemes can be found in Scales (1985), as this

topic goes beyond the scope of this thesis. The evolution of Newton’s method into the

Levenberg-Marquardt technique is also described in Chapter 12 of Hagan et al. (1996).

The treatment of a quadratic cost function is fundamental in improving the algorithm
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performance, as it removes the need for the determination of the second derivative of

the cost function (Hagan et al., 1996).

In a minimization framework, the goal is to find the minimum point of the function

f(x) quadratic in the vector of independent variables x:

f(x) = vT (x)v(x). (A.20)

Using the Levenberg-Marquardt scheme, at every step a it is possible to update the

vector of independent variables as follows (Hagan et al., 1996):

xa+1 = xa −
[
JT (xa)J (xa) + µaI

]−1
JT (xa)v (xa) , (A.21)

where I is the identity matrix and J (x) is the Jacobian of the vector of independent

variables. The term µ is fundamental in ensuring that the Hessian matrix of x is inver-

tible. The Levenberg-Marquardt algorithm converges to the steepest gradient descent

with small learning rate as µ is increased (Hagan et al., 1996). Conversely, the algorithm

becomes the Gauss-Newton scheme for µ = 0. By starting with a small trial value for

µ and then increasing it based on the convergence properties, the method is a good

compromise between the speed of Newton’s approach and the guarantee of convergence

associated with steepest descent (Hagan et al., 1996).

In the application to neural networks, the function to be minimized is the quadratic cost

function in (A.15). In addition, the problem is extended to the treatment of multiple

samples of the training set, as implied by the category batch learning under which the

Levenberg-Marquardt scheme is classified. The application of the Levenberg-Marquardt

to the training of neural networks is straightforward and similar to the approach

described in the previous section for steepest gradient descent. However, the equations

of the sensitivity of each layer need to be slightly modified. A detailed treatment of this

method goes beyond the scope of this work, as the derivation is rather long. Therefore,

the reader is referred to the article by Hagan and Menhaj (1994), which presents the

first application of the Levenberg-Marquardt algorithm to the training of ANNs, and

Chapter 12 of Hagan et al. (1996), which contains a clearer summary.
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Valério, D., Mendes, M. J. G. C., Beirão, P., and Sá da Costa, J. Identification and
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