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Abstract

Ageing infrastructure worldwide requires periodic inspection, often
in-situ, in order to ensure continued safe and economic operations
as well as adherence to stringent quality and performance require-
ments. In service automated Nondestructive Evaluation, where fea-
sible, is highly attractive, and potentially allows inspection of opera-
tional plant. The use of such technology is very attractive in terms
of safety, cost and the potential for minimal disruption to the inspec-
tion site especially if plant operations can remain online. Automated
Nondestructive Evaluation in the form of remotely operated robotic
vehicles is an active area of research. Knowledge of position relative
to a frame of reference is a key aspect for a robotic Nondestructive
Evaluation system in order to associate sensor measurements with
locations on the structure being investigated.

This thesis investigates relative and absolute positioning techniques
for a single robot. The accuracy and repeatability of a photogramme-
try system is characterised over a large volume using a high accuracy
metrology instrument. It was found that the photogrammtery system
was most accurate in the centre of the volume and least accurate at
the edges. This photogrammetry system is then used to evaluate the
performance of algorithms developed in subsequent research. An im-
age based positioning system is implemented which extracts motion
information from a camera carried onboard a robot. The system is
evaluated on surfaces typically found in industrial environments. Ul-
trasonic ranging techniques are investigated for robot positioning. In
particular a low cost, modular, ultrasonic positioning system is char-
acterised and calibrated. Bayesian filtering in the form of an Extended
Kalman and Particle Filter are implemented to fuse noisy optical en-
coders estimates available at 100 Hz and the ultrasonic positioning
measurements available at 3 Hz. The Extended Kalman Filter, at
lower computational cost, was found to produce the lowest error.
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Chapter 1

Introduction

1.1 Nondestructive Evaluation

Ageing infrastructure worldwide requires periodic inspection, often in-situ, in

order to ensure continued safe and economic operations as well as adherence to

stringent quality and performance requirements. Many of the structural assets

comprising this infrastructure have been subject to operating life extensions.

The Health and Safety Executive estimates that over 50% of offshore platforms

resident in the UK Continental Shelf have exceeded their original design life [1].

A number of factors can be attributed to this extension namely the continual

need for oil and gas coupled with improved low pressure oil extraction techniques

which have allowed installations to remain operational. Clearly the harsh envi-

ronmental conditions present offshore have a significant impact on the structural

integrity of the rig and therefore it needs to be regularly inspected. Indeed the

recent Deepwater Horizon disaster in the Gulf of Mexico in which eleven workers

were killed and an estimated four million barrels spilled into the ocean serves to

highlight the severity of accidents that can occur [2]. A similar case of prolonging

operational lifetime is true of the nuclear industry. Fundamentally it is cheaper to

implement lifetime extension than to construct a new plant; it is estimated that

a new build costs in region of £600 billion while decommissioning and associated
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disposal and waste treatment costs £250 billion [3]. A specific example of the ex-

tending lifetime occurred in 2008 when the Nuclear Decommissioning Authority

(NDA) announced that Oldbury Nuclear power plant would continue operations

into 2009 beyond its scheduled closure at the end of 2008 [4]. This action was

taken to raise more decommissioning funds with the operating life extension con-

sidered more economically viable following investment in safety upgrades. This

initial extension has been subsequently increased to 2012 [5].

The concept of lifetime extension depends critically upon the technology of Non

Destructive Evaluation (NDE) also known as Non-Destructive Testing (NDT).

The NDE of engineering structures is an important and challenging activity which

can help to locate the presence and extent of structural defects before failure

occurs. It is used to interrogate the structural integrity of engineering components

without damaging the component itself. Inspection of critical components can

thus reduce costly outages, negative environmental impact as well as potential loss

of life. A range of non-invasive NDE techniques are available including ultrasonic,

visual, electromagnetic and radiography which are used to detect and characterise

flaws in terms of their nature, size and position [6]. Through identification of

anomalies, NDE can be used to replace only those components determined to

be defective and can thus contribute to the extension of the operational life of

the structure. Additional complexity to the inspection task is brought about by

the scale of the entity under consideration which varies by application domain:

structures can range in size from, for example, an jet engine turbine blade to

kilometres of pipeline in an oil refinery.

Industrial sectors for which NDE is of major importance include oil and gas, nu-

clear, automotive, aerospace and power generation. Such industries are a sources

of particular difficulties, often presenting inspection sites occupying inaccessi-

ble areas or where environmental conditions are hazardous for human operators

working at height, exposed to radioactivity and proximity to high temperature

and/or pressure process plant. The financial impact of NDE inspections is also

significant, arising from both the intrinsic inspection costs and the associated cost

of taking plant offline to conduct inspections [7]. Given that inspection in indus-

tries such as automotive, aerospace and rail is considered imperative under strict
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industry standards and regulations, it is no surprise that NDE is big business.

Frost and Sullivan in a 2009 report [8] estimate that in 2008 the NDE market

generated revenues of $1.1 billion with the major end users of NDE equipment.

Indeed focus upon safety and the resultant legislation is driving the NDE market

forward.

In service automated inspection where feasible, is highly attractive, and poten-

tially allows inspection of operational plant. The safety, environmental and finan-

cial benefits for automating NDE measurements are clear, and applicable across a

broad range of NDE technology. Automation is currently being addressed through

deployment of sensor laden remotely controlled robotic devices, well established

examples being Pipeline Inspection Gauge (PIG) systems for internal pipe in-

spections or unmanned aerial vehicles (UAV) for visual inspection. The use of

such technology is very attractive in terms of safety, cost and the potential for

minimal disruption to the inspection site especially if they allow plant operations

to remain online.

1.2 State of the work at Strathclyde University

An established, industry driven, programme of work has been running within

CUE which is concerned with the development of wireless miniature robotic vehi-

cles or Remote Sensing Agent (RSA) for NDE. This work is a programme initiated

by The Research Centre for Non-Destructive Evaluation (RCNDE) which is a col-

laboration between industry and academia within the UK. The objective of this

organisation is to facilitate the transition from University research into industry

applicable technology and has membership from large end user companies includ-

ing Shell, Airbus, BP, Rolls Royce and the National Nuclear Laboratory. The

RSA’s offer a mechanically robust, flexible and expendable inspection solution de-

signed specifically for NDE. They are able to operate in inspection scenarios for

which human involvement may be too costly such as the requirement for scaffold-

ing and climbing equipment or inhibited by access limitations and/or biological,

radioactive or chemical contamination. Each robot in isolation can perform a
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limited function, it is the combination of many such devices that essentially con-

stitutes a reconfigurable 3D scanner capable of complex geometry inspection of

structures with complex geometry.

Friedrich [9, 10, 11, 12, 13], developed a bespoke robotic vehicle, NDE sensors

and data fusion algorithms for carrying out automated NDE. Following on, Dobie

[14], [15] added greater processing capability to the platform, considered the

positioning problem aspect of the reconfigurable scanner and investigated the use

of guided wave sensors launched from transducers mounted onboard the vehicle.

The evolution of the platform is shown in Figures 1.1 (a)-(c) where the latter two

designs were used in this thesis. Figures 1.1 (d) displays an array of the previously

developed NDE sensors the could be connected to an RSA unit to conduct an

inspection.

(a) (b) (c) 

(d) 

Figure 1.1: Evolution of the RSAs. (a) Mark I (b) Mark II (c) Mark III (current)
(d) Sensors. Ultrasonic, Eddy Current and Cameras

4



1. INTRODUCTION

1.3 Aims of this Thesis

Central to accomplishing the required degree of cooperating behaviour between

multiple robots within the reconfigurable scanner concept, is the accurate po-

sitioning of the individual RSAs. Furthermore, the requirement for integrating

NDE measurements onto the robots presents a significant challenge to the posi-

tioning problem. For useful NDE images to be assembled from the RSA scanning,

there are a number of physical influences on the measurement process that can

considerably degrade the quality of the NDE images and thus their usefulness.

For example in air-coupled ultrasonic imaging applications, the separation and

orientation of the transducers to the sample is critical [16]. This is in addition to

the basic degradation of image quality from the gross positional uncertainty of

the RSA. For example it may not be possible to assert defect presence or absence

based upon comparison of expected time of flight and measured due to delays

caused by error in location. For example, when scanning a surface accurate posi-

tioning is required to ensure full sensor coverage; deviating from the path leaves

bands of missed surface area, while overlapping leads to longer inspection times.

Positioning is also of importance for registering NDE measurements from different

sensors acquired from multiple scans conducted at different times. In addition, it

important that the robot is able to return to the same location on the structure

repeatedly in order to monitor the time evolution of previously identified defects.

This thesis investigates a range of positioning strategies for a single RSA unit, the

structure of the thesis is shown in the block diagram of Figure 1.2. Throughout

this research a photogrammetry system is used to evaluate the performance of

the developed algorithms. The accuracy and repeatability of this system for use

as a ground truth system is investigated in Chapter 3. An onboard positioning

system which extracts motion information from an image stream is developed and

evaluated in Chapter 4. A low cost ultrasonic positioning system is characterised

in terms of accuracy and repeatability for use in tracking applications in Chapter

5. In addition, several algorithms for ultrasonic ranging are investigated with a

view to creating a high accuracy acoustic positioning system. In a real inspection

scenario multiple positioning systems would need to be employed in order to
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deal with the failure modes of each individual system. In Chapter 6, Bayesian

filters are implemented for combining multiple sources of noisy positional data to

produce an overall estimate of the position of an RSA.

Vicon Motion 
Capture System 

Leica Absolute 
Tracker  AT901-B 

Cricket Indoor 
Location System 

 
Visual Odometry 

Wheel Odometry 

 
Bayesian Filtering 

Absolute 

Relative 

Chapter 3 

Chapter 4 

Chapter 6 

 
Air Ranging 

Methods 

Chapter 5 

𝑥  
𝑥  

𝑥 

Figure 1.2: Block diagram showing the interconnections between the components
of the thesis

1.4 Contributions to Knowledge

A high accuracy, high precision laser tracking metrology system was used to

characterise the accuracy and repeatability of a commercial camera based mo-

tion capture system. The former provides single target tracking in 3 degrees of

freedom while the latter has the capability of high target density, rapid tracking in

6 degrees of freedom and forms the ground truth system utilised throughout this

thesis. The spatial error distribution of the camera system was evaluated follow-

ing optimal calibration: such information may then be used to inform subsequent
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experiments that utilise the equipment. Quantification of error was implemented

through simultaneously tracking a test object scanned through a fixed measure-

ment volume using both systems. A rigorous error analysis compares the accuracy

of the camera based measurements to ground truth measurements as provided

by the laser system. The presented analysis is the first detailed consideration of

tracking error as a function of the measurement location in the system volume;

this forms one of the main contributions of this thesis.

All sensors have limited perception capabilities imposed by the physical mecha-

nism employed to perform measurements. This means that they have different

accuracies, uncertainties and failure modes. In the case of robot tracking, data

fusion is required to optimise continuous estimation of location. A detailed exper-

imental evaluation of two Bayesian filtering algorithms using multiple positional

sensing data to track the planar motion of a vehicle was carried out. A real

time, on-robot implementation of an Extended Kalman and Particle filter was

used to control a robot performing representative raster scanning of a sample.

Both absolute and relative positioning were employed - the absolute being an

indoor acoustic GPS system that required careful calibration. The performance

of the tracking algorithms are compared in terms of computational cost and the

accuracy of trajectory estimates.

A visual based relative positioning system was developed and evaluated for ve-

hicles designed for challenging surface conditions, for which conventional optical

encoder base positioning fails. An onboard machine vision camera is mounted

perpendicularly to the heading vector of the robot such that it observes the sur-

face over which the vehicle is travelling. The resultant orthographic images are

transmitted over a network link to a base station PC for processing. The aim of

the system is to provide the dual function of stitching successive surface images

and simultaneously estimating the motion of the vehicle through consideration

of the apparent motion of image features. The inspection domain determines the

method of platform locomotion as result of surface terrain/material. Although

the visual odometry by the nature of the estimation process will drift, it can

provide a useful low level source of positioning data to be fed as an estimate into

further processing.

7



1. INTRODUCTION

The acoustic based positioning system is particularly attractive in comparison to

the other systems employed in this thesis in terms of its relative low cost and small

footprint; this property is of particular interest in access restricted inspections.

Consider an inspection by a multi-robot system where access limitations preclude

use of the laser tracker. In this scenario, the modularity such a system gives rise to

the possibility of utilising, as the nodes of a positioning system, a subset of vehicles

equipped with the associated acoustic positioning modules. The locations of such

vehicles would become fixed upon entry into the inspection site and following the

determination of inter module distances, these robots would act as transmitters

to provide positional updates to vehicles conducting the inspection. his chapter

provides a brief comparison of several methods for through-air ultrasonic ranging

with a view to creating a high accuracy acoustic positioning system.

1.5 Publications Arising from this Thesis

Summan R, Pierce SG, Dobie G, Hensman J, MacLeod CN, “Practical Con-

straints on Real time Bayesian Filtering for NDE Applications”, Mechanical Sys-
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Dobie G, Summan R, MacLeod CN, Pierce SG, “Visual Odometry and Image

Mosaicing for NDE”, NDT International (under review)

MacLeod CN, Pierce SG, Sullivan J, Pipe A, Dobie G, Summan R, “An Ac-

tive Whisking Based Remotely Deployable NDE Sensor”, IEEE Sensors Journal

(under review)

Dobie, G, Summan R, Pierce SG, Galbraith W, Hayward G, “A noncontact
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Chapter 2

Problem Background

2.1 Introduction

In carrying out a task, a key aspect for any robotic system is determining its loca-

tion with respect to a frame of reference. If a robot does not possess this function,

its resultant behaviour consists entirely of reacting to sensory input within the

field of view of its sensors and renders it incapable of planning actions beyond

this vicinity. It is recognised that a fundamental requisite of autonomous mobile

robotics is that the robot be aware of its location in space [17]. This chapter

firstly provides a general overview of robotic systems and their applications. The

concept of position in the context of robotics is then defined and an overview of

the techniques and algorithms that can be used to compute position is provided.

The techniques discussed in this chapter are employed by the algorithms and

technology used in subsequent chapters, the reader can therefore use this chapter

as reference for understanding a particular positioning methodology. A review

of robotic inspection systems is carried out and compared to the idea of a RSA

based scanning system.
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2.2 Overview of Robotics

Robotic systems have uses in ever-expanding application domains including man-

ufacturing, military, transportation, space exploration and hazardous environ-

ments driven by goals primarily based upon efficiency and safety. This technology

has its origin in the manufacturing industry and has a key role therein by min-

imising costs whilst offering increased productivity, versatility and quality [18]:

indeed robots are well established in large-scale manufacturing especially in the

automotive industry and component assembly type tasks. Robotic technology

has an important role in military scenarios in the form of ground and aerial vehi-

cles for reconnaissance missions where it is too dangerous for soldiers to explore

or the surroundings preclude their entry [19]. Intelligent vehicles defined as those

with additional sensory perception, actuating devices and reasoning allow for

such tasks as regulating speed based on traffic and safe lane following/changing

is a growing area of research. Space exploration by orbital and surface robots in

highly unstructured environments is an emerging field with the Mars Rovers [20]

being a successful application. Remote handling manipulators are used in deac-

tivation and decommissioning activities in the nuclear industry. Equipped with

manipulator mounted power tools and multi-view camera capabilities such de-

vices under human control are used to dismantle installations and remove debris

[21]. Swarm robotics is a research field concerned with coordinating the control of

large numbers of relatively simple, self-similar robots in order to achieve some goal

as a collective. This area seeks to draw upon observations of the natural world

taking inspiration from the interaction of insects such as ants, wasps. Examples

of different types of robotic systems are shown in Figure 2.1.

11



2. PROBLEM BACKGROUND

(a) (b) (c) 

(d) (e) (f) 

Figure 2.1: Robotic Systems used in different application domains (a) Self driving
vehicle “Stanley” winner of the DARPA Grand Challenge (b) NASA Mars Rover
(c) Nuclear Decommissioning Robot (d) Military Robot (e) KUKA industrial
robotic arm (f) Swarming robots

The concept of autonomy with respect to robotics according to Gitalt et al [22]

can be separated into two sub-concepts namely that of operating autonomy and

decisional autonomy. The former refers to the ability of repetitively executing

a set of actions that does not require human operator intervention: the authors

consider that this a fundamental level of autonomy that in isolation does not

render the robot autonomous. The latter sub-concept concerns the capability of

the robot to make decisions to carry out a task for which the actuator actions have

not been fully preprogrammed. The level of autonomy is a measure of the capacity

of the machine to reason about how to execute a task by intelligently relating

sensory observations to actuator actions. The level of autonomy embedded in

a robotic system is a function of its application. In the automotive industry

for example welding robots (e.g. KUKA robot in Figure 2.1 (e)) carry out well

defined repetitive actions in a carefully engineered environment which is known a

priori. The underlying instructions can be preprogrammed by a human operator

in an offline phase before the robot is used online. Given the constrained nature

of its operation such robots do not require sophisticated sensors to perceive the
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environment. This contrasts with the application of a self-driving vehicle which is

operating in an a priori unknown and therefore inherently uncertain environment.

Such systems require various sensors such as cameras and LIDAR to sense the

environment in order to detect and avoid obstacles, stay on the road etc - see

for example Stanley winner of the DARPA challenge in Figure 2.1. A common

thread linking these different types of robotic systems is the positioning task: the

following sections present a review of positioning methodologies and discusses

notable robotic inspection systems.

2.3 Review of Positioning Methodologies

In carrying out a task, a key aspect for any robotic system is determining its

location with respect to a frame of reference. If a robot does not possess this

function, its resultant behaviour consists entirely of reacting to sensory input

within the field of view of its sensors and renders it incapable of planning actions

beyond this vicinity. It is recognised that a fundamental requisite of autonomous

mobile robotics is that the robot be aware of its location in 2D/3D space [17]. The

positioning methodology employed depends both upon the mobility of the robot

and the operating environment. This section presents an overview of positioning

concepts/technologies that enable location to be calculated. The different forms

of positioning can be divided into three categories;

1. Relative Positioning

2. Absolute Positioning

3. Simultaneous Localisation and Mapping

This following subsections firstly define the concept of position in the context of

robotics and proceeds to consider each of the above approaches in turn.
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2.3.1 Definition of Pose

The term pose refers to both the position and orientation of the robot relative

to a world coordinate frame. Often robots are constrained to operate in a Two

Dimensional (2D) plane, in this case, pose can be fully specified by the 3-vector:

x = [x, y, θ]T (2.1)

This descriptor defines the (x, y) position of the robot coordinate frame (r) in

the plane as well as its orientation, θ, with respect to the x-axis of the World

Coordinate System (WCS), this is illustrated in Figure 2.2. A description of

this type is appropriate in applications such as navigation in a factory where the

sensor platform is driving along a flat surface. If the robot is moving in a Three

dimensional (3D) space then pose is represented by the 6-vector:

x = [x, y, z, θx, θy, θz]
T (2.2)

composed of the Cartesian position (x, y, z) and orientation in terms of roll, pitch

and yaw (θx, θy, θz) respectively, this is shown in Figure 2.3. Such a pose vector

is applicable for describing the position and orientation of an aerial vehicle or

multiple RSAs moving over a non-planar structure. The technologies and algo-

rithms employed in this thesis estimate either a subset of the elements or all of

the elements composing the pose vector of the robot. The process of estimating

the pose vector of a robot is termed positioning.

14
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θ 

Figure 2.2: Variables comprising the pose vector for 2D motion

𝜃𝑥 

𝜃𝑧 

𝜃𝑦 

Figure 2.3: Variables comprising the pose vector for 3D motion
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2.3.2 Relative Positioning

Dead Reckoning is the simplest form of position estimation. The technique recur-

sively aggregates measurements of change in position to produce an estimate of

the trajectory of the vehicle. Importantly it makes use of only on-board sensors

to estimate change in location and therefore does not require the use of external

positioning infrastructure. In this scheme the pose estimate at time step t is a

function of the estimate at time t−1 and therefore any error in the prior estimate

is carried forward to the current estimate: this problem is known as drift. Dead-

reckoning can therefore produce an estimate that can deviate substantially from

the true trajectory of the robot with distance traversed and so must not be used

as the only source of positional information. The estimated change in position

in general is not significantly erroneous and often serves as an input to be fused

with some other form of positional estimate - this technique is investigated in

Chapter 6. The effect of drift is illustrated very clearly in Figure 2.4 which shows

GPS and wheel encoder estimates of a vehicle exploring the environment. The

odometry estimate deviates substantially from the output of the GPS module

due to many small errors integrated over the path length. Regardless of the un-

derlying technology relative systems are subject to drift which grows unbounded

with either distance or time and therefore such systems cannot be used as the

sole positioning device.
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Figure 2.4: Extreme demonstration of encoder drift using the Victoria Park
dataset [23].

2.3.2.1 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a device that makes use of a number

of measurement sub-systems to estimate the relative pose, velocity and accelera-

tion of a mobile entity. These sub-systems typically comprise of gyroscopes and

accelerometers. Gyroscopes measure rate of rotation by making use of physical

laws that induce predictable results under rotations and are available in mechani-

cal, optical and microelectromechanical systems based forms. The latter is based

upon vibrating mechanical elements to sense rotation and is commonly used in

robotics applications due to there being no rotating parts, compact dimensions

and low power consumption. A single gyroscope measures rotation about one

axis only, therefore, three such devices in an orthogonal configuration are used to

measure 3D rotations. Accelerometers sense external forces acting upon robot, in-

cluding the force of gravity, from which it determines acceleration. These devices
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can be mechanical or piezoelectric based with the latter, which is more commonly

used, measuring the voltage developed across a piezoelectric crystal. This voltage

changes in response to a mass acting upon the crystal, which in turn is the result

of external forces. As is the case for the gyroscopes, three accelerometers are

typically used in an orthogonal arrangement.

The operation of the IMU utilises the integrated rotation rate of the gyroscope to

transform the accelerations from the accelerometers into a local level navigation

frame allowing the gravity vector to be cancelled out from the estimation: this

results in an acceleration measurement of the vehicle. The acceleration estimate is

once and twice integrated to produce velocity and position estimates respectively.

The estimates produced by the IMU are very sensitive to errors in the raw data

from the underlying sub-systems which are integrated over time resulting in drift

and thus some form of absolute correction is necessary in practical use [18].

2.3.2.2 Optical Encoders

Optical Encoders are devices that can be attached to rotational joints in order to

measure angle of rotation. In combination with a kinematic model of the drive

mechanism employed by the robot, the output of the encoders can be used to

estimate position. The principle of operation comprises of a focused beam of light

being directed at a photodetector lying behind a rotating disk. This disk which

is attached to the shaft whose rotation is to be measured contains an encoded

pattern of transparent and opaque regions. When the light passes through the

transparent areas on the disk, the photodetector senses the light beam resulting

in a high output while opaque regions yield a low output. Once the factor of

pulses per degree of rotation has been established, counting the number of pulses

can be used in a straightforward calculation to obtain angle.
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Figure 2.5: Incremental wheel encoder from Borenstein [24].

Encoders are available in two forms namely absolute and incremental form. The

former divides the disk into N circular tracks that in part defines the resolu-

tion of the device. Multiple light beams and a detector array are then used to

read clear/dark regions of the tracks where each angular position is encoded by a

unique bit pattern as defined by these regions. Absolute encoders are only applica-

ble for measuring slow and infrequent rotations. Incremental encoders, however,

are utilised for measuring fast continuous rotation such as the drives wheels of

a robot. These devices measure the motion of the shaft relative to its previous

position. A particular type incremental encoder called a Phase-Quadrature en-

coder is widely used and is illustrated in Figure 2.5. This device make uses of

two channels separated in phase by 90◦ and can be used to determine both the

speed and direction of the rotating shaft and also increase the resolution of the

device. The problem of encoder based drift is clearly illustrated in Figure 2.4.

2.3.3 Absolute Positioning

Estimation of the vehicle’s position without drift and bounded uncertainty is

only possible through use of an absolute positioning system. This type of scheme

utilises infrastructure external to the robot and therefore requires the environ-

ment to be prepared prior to operation: this may not always be possible in real

world scenarios. This infrastructure is composed of distinct landmarks the set

of which is referred to as a map. The term localisation is used to describe the
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scenario of estimating the robot’s pose with respect to an a priori known map.

The section presents the principles of operation for an absolute positioning sys-

tem. Notable examples of this are the Global Positioning System (GPS) discussed

in the following section. In addition to this the Facility for Innovation and Re-

search in Structural Testing (FIRST) laboratory within CUE has a number of

positioning technologies used during the course of this thesis which are discussed

in detail below. A general overview of the fundamental measurements necessary

to compute position are given.

2.3.3.1 Principle of Calculation

Fundamentally measurements of distances and angles to an object are required

to calculate its position. There are several physical mechanisms that enable

acquisition of these quantities which are discussed below but firstly the techniques

that calculate location from this data are discussed. The two methods of position

computation comprise of Triangulation andTrilateration; each shall be discussed

in turn. Trilateration [25] is a method to calculate the position of an object given

simultaneous range measurements from three stations located at known locations,

given more stations multi-lateration can be used. Triangulation uses sensors

separated by a known distance to measure the angle of the object with respect

to each sensor. Given the fixed distance and measured angles the distance to the

object can be calculated. These techniques have their origins in the surveying

literature where they are used to compute accurate control points for creating

topographic maps, charting lakes and for surveys of substantial public/private

works [26].
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2.3.3.2 Triangulation

Triangulation [27] is a technique that estimates distance to an object by using

measurements of angles to the object acquired from sensors separated by a known

distance or baseline. The technique is illustrated in Figure 2.6 where the sensors

observe the target at bearings α and β. Using the angles in combination with the

sensor baseline L, the object range, d, can be calculated as follows:

d =
L

1
tan(α)

+ 1
tan(β)

(2.3)

α β

Reflector 

Sensor 1 Sensor 2 

𝑑 

Figure 2.6: Triangulation diagram. The sensors measure the angle of the target
with respect to the baseline of length L on which the sensors lie.

Triangulation is the method by which a stereo pair of cameras determine the 3D

locations of imaged points. Each camera provides bearing measurements to points

in the scene being observed. Assuming that the same point has been identified in

both images, the pixel distance between these two points can be calculated and

then triangulation can be used to to determined 3D position. Figure 2.7 which

shows the pinhole model of camera illustrating the mapping from a real world
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point to an image point. With reference to Figure 2.7, the following provides an

overview of the principle of operation of camera triangulation. From a scene point

X there emerges a ray of light that impinges upon the image plane of the camera

at the point x and terminates at the projection centre (origin of the coordinate

frame), C, of the camera coordinate frame. The camera coordinate system is

related to the world coordinate system via the transformation matrix T . The

image plane records only the direction of the ray. The mapping from the world

or scene point, X = [X, Y, Z, 1]T (expressed in homogeneous coordinates [28]), to

the image point, x, is expressed via the projection matrix, P ∈ R3×4, as follows:

Optical Axis 

Principal Point 

(𝑢𝑜𝑣𝑜)
𝑓

Figure 2.7: Pinhole camera model, diagram adapted from [29]. The scene point
X is imaged at the point x.

x = PX (2.4)
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where, x is given by:

x =

[
f
X

Z
, f
Y

Z
, 1

]T
(2.5)

which through the use of similar triangles may be observed from Figure 2.7.

Importantly, the image coordinates are normalised by the depth, Z, of the world

point. This means the from a single image 3D position cannot be recovered from

the corresponding image point. The projection matrix can be decomposed into

the the product of an intrinsic (also known as the camera calibration matrix), K,

and an extrinsic matrix, T , as follows:

P = KT (2.6)

The intrinsic matrix contains camera specific internal parameters and has an

upper triangular form:

K =

αu s u0

0 αv v0

0 0 1

 (2.7)

where αu = fku and αv = fkv are scale factors in which, ku and kv, are the pixel

sizes in u and v directions of the camera respectively. The factor, f , is the focal

length of the camera, s, is a skew factor of significance for non-rectangular pixels

and the coordinate, u = [uo, vo], is the principal point; the point at which the the

principal axis intersects the image plane. The extrinsic matrix is composed of the

rigid body parameters of rotation and translation relating the camera coordinate

frame to the world coordinate system, it is expressed as follows:

T =
[
R t

]
(2.8)
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where, R ∈ R3×3, is a 3D rotation matrix and t = [tx, ty, tz]
T is a translation

vector.

The scenario in which the same scene point is imaged from two different views is

illustrated in Figure 2.8 where it has been assumed that the camera has undergone

both translation and rotation in moving from view 1 to view 2. The configuration

yields specific geometric constraints which can be used to triangulate X. The

projection centres, C and C ′, together with the scene point X define a plane

referred to as the epipolar plane which intersects the images planes observing the

scene from two different viewpoints. The points of intersection of the baseline

connecting the projection centres with the image planes are known as the epipoles

denoted, e and e′, in Figure 2.8. There are a number of geometric constraints

that hold when the cameras observe the scene in the arrangement. If a ray is

back-projected from the image point x then the resultant line is imaged in the

sensor of view 2 as a line l known as an epipolar line. The image of X in the

second view i.e x′ is then constrained to lie along this line. The epipolar geometry

is embedded in the fundamental matrix, F , expressed as:

F = K ′−T [t]xRK
−1 (2.9)

which is a function of intrinsic matrices K and K ′ associated with each camera

and the translation, t, and rotation, R, relating to the two views. Note, t, in

Equation 2.9 is in skew symmetric form:
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View 1 View 2 

Scene point 
Imaged Points 

Image Planes 

𝑙 

Figure 2.8: Illustration of the epipolar geometry that results from two views of
the same scene.

[t]x =

 0 −t3 t2

t3 0 −t1
−t2 t1 0

 (2.10)

The objective is to extract the motion parameters from F . If at least eight image

point correspondences between the two images are established then F can be

calculated. A number of different techniques can then be employed to extract

the rotation and translation factors: a review of numerically stable methods are

described in [28]. Given a sequence of images acquired from a single camera the

true metric motion of the camera cannot be determined due to the projective

nature of the camera. The motion can be determined, instead, up to a projective
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transform [28]. In a stereo configuration in which two cameras are separated by a

fixed distance as in Figure 2.6 then it is possible to determined the 3D coordinate

of an world point from its imaged points in the camera views.

2.3.3.3 Trilateration

RX-1 
RX-2 

RX-3 

d1 
d2 

d3 

Figure 2.9: The transmitter is located at the intersection of the receiver centred
circles resides at a distance di from the ith beacon.

Trilateration is a technique for determining the location of an object through

the use of simultaneous range measurements from three stations with known

positions. This method is commonly applied in robotics as well as aeronautics

and computer graphics [30]. The technique is based upon finding the intersection

of three spheres which corresponds to the solution of the quadratic equations:
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(x− x1)2 + (y − y1)2 + (z − z1)2 = d2
1

(x− x2)2 + (y − y2)2 + (z − z2)2 = d2
2

(x− x3)2 + (y − y3)2 + (z − z3)2 = d2
3 (2.11)

where the receiver positions are given by the coordinates, (xi, yi, zi), and the

object-receiver distances are given by, di, for i = 1...3. The location of the object

is (x, y, z), the principle of operation is illustrated in Figure 2.9. Note that the

role of the transmitters and receivers may be exchanged. The solution to Equa-

tions 2.11 can be found either in closed form by assuming particular geometric

arrangements or via numerical methods if the configuration is not constrained.

2.3.4 Ranging Methods

Time of Flight (ToF) is a method that employs pulsed waveforms to measure the

time delay incurred by a signal in traversing the path from a transmitter to a

receiver. Given the time delay, ∆t, as measured by the receiver and the known

signal velocity, v, the distance may be extracted in a straightforward manner

through use of the following equation:

d = v∆t (2.12)

In order to extract the time delay this method assumes that the transmitter and

receiver are using synchronised clocks which may be complex to implement in

practice - a diagram of the method is shown in Figure 2.10.

A sub-technique of ToF that avoids the synchronisation issue is the Time Differ-

ence of Arrival (TDoA) method which measures at the receiver the TDoA of the

simultaneous emissions of two signals with different velocities, v1 and v2 from the
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TX RX 

 Timer 

Figure 2.10: Time of flight. The transmitter and receiver have to be synchronised
clocks (in effect the same clock in order) to measure the transit time of the pulse

transmitter e.g. acoustic and electromagnetic signals travel at different velocities.

the technique is illustrated in Figure 2.11. The distance can then extracted using

the equation:

TX RX 

v1 

v2 

 Timer 

Start 

Stop 

Figure 2.11: Time difference of arrival. The signal that reaches the receiver first
starts the timer which is then stopped by the slower secondary signal resulting
in the time difference of arrival.

d =
∆t

1
v1
− 1

v2

(2.13)

If an electromagnetic wave is used as the physical basis of the signal, very high

accuracy is required with respect to measurement of the transit time of the signal.

Approximating the speed of light in a vacuum to 3×108 ms−1 and given that the

estimated transit time has associated with it a standard deviation of 10−10 s, the

standard deviation in distance is 15 mm using Equation 2.12. This requirement

of high precision timing motivates the use of the following phase based technique.
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The Phase Shift method utilises continuous wave emissions to derive distance

through measurement of the phase difference, ∆φ, between the transmitted and

received signals. The principle is illustrated in Figure 2.12. The distance mea-

surement is obtained through summing the integer number of wavelengths and the

fractional wavelength ∆λ = ∆φ
2π

accrued in traversing the transmitter to receiver

path [31]. The estimated distance is then given by:

d = M(
λ

2
) +

∆φ

2π
(
λ

2
) (2.14)

TX 

RX 
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Figure 2.12: Principle of phase shift measurement. The phase shift ∆φ measured
through analogue or digital methods yields the fractional wavelength ∆λ
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where, M , is the number of complete wavelengths, ∆φ, is the phase angle dif-

ference and λ/2 is the fundamental wavelength of radiation. Evaluation of the

phase difference only extracts the fractional wavelength. The integer number of

whole wavelengths, M , is obtained through use of a secondary waveform with a

larger wavelength. The high frequency wave serves to obtain the fractional part

of the distance while the lower frequency secondary waveform is used to acquire a

“rough” estimate of the distance. A potential issue with the phase ranging tech-

nique relates to ∆φ going beyond 2π which give rise to the so called ambiguous

range which does not permit the phase difference to be mapped to the correct

distance. The ambiguous distance may be calculated by the formula [24]:

rambiguous =
v

2f
(2.15)

2.3.4.1 Global Navigation Satellite Systems

Global navigation satellite systems systems such as the Global Positioning Sys-

tem (GPS) are capable of estimating the position of any point on or above the

earth’s surface assuming the receiver is visible by a minimum of four satellites

[32]. The satellites comprising the system circulate the earth in predictable or-

bits allowing their positions to be estimated for the localisation task. One of

the most commonly used systems is the NAVSTAR satellite system built and

maintained by the United States. The RF signals transmitted by the satellites

are synchronised by atomic clocks where the emissions comprise of encoded bit

streams. The receiver solves for four unknowns in the form of (x, y, z) location

with an accuracy of approximately 10 m and time given the time shifted bit

streams from four satellites whose positions are known. This accuracy can be

substantially improved through making use of fixed ground-based GPS stations

with accurately surveyed coordinates. The error between the GPS estimated and

known locations can be used to estimate signal noise and drifting bias which can

be subsequently removed from the estimate of the target object’s location. This
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mode of operation is known as Differential GPS and can provide estimates with

1-2 m accuracy. A further variant called kinematic DGPS is also available and

can provide an accuracy of 1-2 cm.

The main issue with GPS is the requirement for unobstructed line of sight -

this requirement can very easily be violated particularly in nuclear inspection

scenarios and also in other in situ inspections where the robot is surrounded by

metallic structures acting to block the GPS signal. As well as the line of sight

criterion, there is the problem of multipath where the GPS signal has not taken

a direct path to the receiver and will subsequently result in a greater distance

being reported and thus error in position.

2.3.5 Simultaneous Localisation and Mapping

There are many instances in which the robot must operate in environments for

which there exists no form of positioning infrastructure. Absence of such infras-

tructure can result for a number reasons including access restrictions, dangerous

operating conditions and high cost of the technology and associated installation.

In addition to this the blueprints pertaining to a building often do not correspond

with reality thus rendering the environment effectively unknown. This unknown

factor means that the environment is inherently uncertain with respect to the self

localisation task of the sensor platform. As well as environmental uncertainty,

there is uncertainty associated with the robot it itself due to number of sources

as described by Thrun et al [33]:

� Sensors are limited in what they can perceive

� Robot actuators do not execute the desired action perfectly

� Software models are approximations

� Algorithmic approximations used to bound processing time can potentially

lead to reductions in accuracy
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Asserting that the vehicle resides in a particular location without accounting for

these sources of uncertainty in the data processing will results in divergence of

the estimate from the true path: the uncertain nature of the data gives rise to

more than one possible location. Uncertainty, therefore, needs to be explicitly

modelled and accommodated in any algorithms utilising data from these sources

where the variables involved are random variables with associated probability

distributions.

The term mapping is defined as the task of determining the location of the land-

marks in the area of operation given that the robot’s true trajectory is known.

Simultaneous localisation and mapping (SLAM) is the technique applied when

neither the trajectory of the robot nor landmark locations are known: this is a

more challenging problem than either localisation or mapping in isolation. The

feature based SLAM technique builds up a dynamic, stochastic map of the envi-

ronment in realtime using purely on-board sensors. Ideally the sensor provides

both range and bearing estimates to targets in the environment. However, it is

possible with greater difficulty to use only range [34] or only bearing measure-

ments [35]. There are three forms of maps typically used in robotics, namely

feature based maps, occupancy grids and topological maps. Each type of map

will be considered in turn in the following sections.

2.3.6 Feature Based Maps

Feature based maps are a metric representation that model the environment by a

sparse set of salient objects or features that naturally reside in situ. Features usu-

ally in the form of points and lines are extracted and parametrised from incoming

sensory data. Man-made indoor environments typically have a rectilinear struc-

ture thus allowing extraction of such features from for example Light Detection

And Ranging sensors (LIDAR). Feature extraction in general outdoor scenarios

can be more difficult with respect to LIDAR’s in terms of sparseness of reflec-

tors in which case augmenting the robot’s perception with vision sensors may be

appropriate [36].
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The operation of feature based SLAM comprises of two tasks namely that of

adding features to the map whose parametrisations are functions of vehicle pose

and then, when the robot moves, estimating pose from the landmarks in the map.

These steps are illustrated in Figure 2.13. The true path of the robot is shown

as the white sequence starting with pose xk−1 and ending at xk+2 driven by the

controls uk where k is the time index. The sequence of shaded vehicles results

from the execution of noise corrupted controls leading to deviation from the true

path. The point features L1 and L3 are observed from the robot at pose xk−1.

The coordinates of these features with respect to the world coordinate system

when initialised in the map are calculated from both the corresponding sensor

reading and xk−1: any error in vehicle pose and the measurement are carried into

the estimate of the point. When the robot subsequently moves to xk driven by

the control uk and re-observes L3, the estimate of the robots pose is determined

from the control and importantly from the map and is thus a function of L3.

Uncertainty in sensor measurements, therefore, yields both uncertain estimates

of feature locations and uncertain estimates of pose: the pose and landmark

uncertainties are correlated. Due to this correlation in order to determine the

true path of the robot, the map must also be estimated, therefore making feature

based SLAM a problem of jointly estimating the map and the robots path.
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Figure 2.13: Representation of SLAM adapted from [17].

The technique works by tracking objects that are normally present within the

workspace thus avoiding the need to install specially engineered landmarks to

allow pose determination. The seminal paper by Smith et al [37] introduced

the first mathematically convergent mapping technique. The proposed algorithm

embraces directly the probabilistic nature of the problem through explicitly mod-

elling the uncertainties pertaining to sensors and the actuators of the robot. The

problem is cast into the framework of state estimation wherein the authors make

use of an Extended Kalman Filter (EKF) as the basis of the estimation to incre-

mentally update a map with sensor observations. The map comprises of a vector,

x̂ ∈ R(3N+1), estimating the true state x holding the three elements constituting
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robot pose (assuming planar motion) as well as the locations of N point land-

marks in the environment parametrised by their 3D location, L = [Li,xLi,y, Li,z]
T ,

for i = 1 . . . N as follows:

x̂t = [xt, yt, θt, L1,x, L1,y, L1,z, . . . , LN,x.LN,y, LN,z]
T (2.16)

Both the robot and landmark coordinates above are referenced to a single global

coordinate fame. Note that the time index, t, is applied to the pose of the robot

only as the landmarks are assumed to be static in the environment over time,

it is however possible to deal with objects that move over time and filter out

their influence in the estimation process [38]. Associated with the estimate is a

measure of its corresponding uncertainty and is encoded in the covariance matrix

Σt ∈ R(3N+1)×(3N+1) as follows:

Σt =



σ2
x σxσy σxσθ . . . σxσLN,x

σyσx σ2
y σyσθ . . . σyσLN,x

σθσx σθσy σ2
θ . . . σθσLN,x

...
...

...
. . .

...

σLN,xσx σLN,xσy σLN,xσθ . . . σ2
LN,x


(2.17)

The diagonal terms are the variances associated with each variable in the state

vector while the off-diagonal terms capture the cross-covariances between different

elements of the vector. The level of dependency between elements shown in the

matrix can be more easily shown via correlation coefficients calculated by dividing

the covariance term by the standard deviations of the variables in isolation:

ρij ,
σij
σiσj

, −1 ≤ ρij ≤ 1 (2.18)

where a coefficient of 1 (variables vary in the same direction) or −1 (variables vary

in different direction) denotes full correlation and 0 indicates no linear correlation.

As the sensor platform explores the environment and new landmarks are observed
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the state vector grows in length and the covariance matrix expands with the

square of the state vector size. This growth has implications with respect to the

computation required to execute the algorithm: this is one of the main downfalls

of the EKF approach. Implementation of SLAM requires solution to a number of

sub-problems namely that of data association and loop closure discussed in the

following sections.

2.3.6.1 Data Association

Data association is a core problem within SLAM and refers to the problem of

correspondence which in turn is the problem of identifying the same entity in

different sets of data e.g. recognise the same object in two different images. The

parametrisation or descriptor associated with landmarks need to be sufficiently

robust and information rich to enable reliable correspondence between incoming

sensory observations and the current list of landmarks in x̂. The selected rep-

resentation is also a function of the sensor being used for example image based

descriptors would differ to those utilised with a LIDAR. The descriptor, addition-

ally, must allow efficient comparisons to be made in order to achieve real time

operation. Data association must determine if a new measurement originates 1)

from one of the features already in the map 2) results from a new previously un-

observed feature or 3) is spurious. Invalid data association is one of the primary

causes of filter divergence in the EKF framework which can lead to complete fail-

ure of the algorithm [39]. Environments which contain repetitive structures can

potentially lead to failed data association. There exist techniques which consider

comparisons between batches of landmarks arranged in a particular configuration

over simply comparing two points leading a higher percentage of valid matchings.

Data association can take the form of Nearest Neighbour (NN) gating which

matches sensor measurements with map features by evaluating a distance metric:

the pairing that produces the lowest metric and is lower than a preset threshold

is flagged as a match. If the distance metric is higher than the threshold then it

it likely that a previously unobserved feature has come into sensor view and can

therefore be initialised as a new element in the map. The distance metric used is
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often the Mahalanobis distance [40] which considers the positional uncertainties of

the vehicle and feature in the distance calculation. The NN technique is effective

in situations where the environment contains little clutter i.e. objects of no

interest to the mapping problem, high sensor precision and moderate error in pose.

If these conditions are violated then there exists more sophisticated techniques

such as Joint Compatibility Branch and Bound [41] which takes into account

constraints amongst multiple landmarks when searching for a pairing resulting in

a lower rate of false positives. One of the main causes for failure of the feature

based mapping technique is the problem of false positives in the data association

process.

2.3.6.2 Loop Closure

Loop closure is the event in which the robot recognises that it has returned

to a previously visited location after having travelled in a loop. Prior to loop

closure the tracking error of SLAM is effectively the same as that of relative

positioning. Loop closure constitutes one of the major sub-problems of SLAM and

consequently has been a heavily researched area. This problem is highly related

to data association but can be differentiated in that during loop closure there

is much larger vehicle pose uncertainty in comparison to the uncertainty when

determining correspondences over a short segment of motion. This increased level

of uncertainty gives rise to a greater search space in terms of the required number

of comparisons when trying to match current observations with landmarks in the

map. When a loop closure has been found the error transform between the start

and end points of the loop can be calculated and propagated back around the

loop to correct the trajectory: this is the key to SLAM. As in the case of local

data association, NN can be used in the process of determining loop closure: if

the distance metric returns a value less than a threshold then loop closure can be

asserted. The use of NN is only viable where the robot is not in gross error of its

true location which is generally not the case during loop closure, therefore, more

robust methods are required.
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Detecting loop closure on the basis measured position is difficult due to the gross

error in vehicle pose at the time of loop closure. Advances in processor technology,

especially graphics processing units, have brought visual methods to the fore in

recent years to carry out appearance-based approaches to closing loops. Newman

and Ho [42] consider that the most difficult element of loop closure is detecting

when it is even a possibility: it requires the vehicle to have the ability to decide

where and when to look. It is not sufficient to search only within the local

vicinity of the sensing platform given gross error in pose. The authors propose

the use of a camera to provide a loop closing capability that is independent of

the central SLAM estimation loop. The authors present a system that utilises a

scanning laser to build the SLAM map and invokes camera data, which has been

periodically collected, during loop closure events. Salient and wide-baseline stable

image regions are selected from incoming images: image features are subsequently

extracted and stored in a database. If a recent image is found to match an image

acquired earlier then it is likely that loop closure is a possibility - this is predicated

independently of the laser data.

Fast Appearance Based Mapping by Cummins and Newman [43] is one of the

most successful vision based systems demonstrating stereo vision as the primary

SLAM sensor. The system employs a sophisticated machine learning approach

for performing data association. In an offline phase a large collection of images

are acquired from the traversal of general outdoor scenery. These images are then

input into a “bag-of-words algorithm” that effectively performs data reduction

in generating a collection of v visual words that, in different combinations, can

be used to approximate the original images - running this algorithm is computa-

tionally expensive. During online operation, the visual words enable places to be

parametrised by binary vectors of length v, where the presence of a 1 in bit posi-

tion N indicates that the N th word is present in the image being considered - this

operation is quick allowing for frame-rate operation. Probabilistic comparison of

visual words is used to determine loop closures.
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2.3.7 Occupancy Grid

An occupancy grid, introduced in [44], represents the environment as a set of cells

each of which is assigned a probability of occupancy typically based upon laser

or sonar sensor measurements. This form of map is widely utilized in robotics for

dense environment modelling and is particularly effective where feature extraction

is difficult to carry out [45]. They also have the advantage over feature maps in

that both free and occupied space are represented which is beneficial for path

planning and obstacle avoidance. Occupancy grids are commonly generated when

the true path of the robot is known i.e. with known poses, it is however possible to

map with unknown poses whereby the robot estimates its position online [46], [47].

In the case of known pose it is assumed that ground truth is available directly

or SLAM is carried out to estimate the true path of the robot such that the

occupancy grid can by generated in post processing offline. In the case that pose

is unknown, it is a more difficult problem that aims to generate the occupancy

grid online tending more towards SLAM. A brief summary of the theory for the

former case is presented and then the latter technique is reviewed in the following

section.

The scheme divides the environment into a regular grid which can be expressed

as a set, m = {mi}, with cardinality N consisting of the cells mi each of which

resides in a binary state: unoccupied = 0 or occupied = 1. The idea is shown in

Figure 2.14 for a robot using a LIDAR.
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Figure 2.14: Occupancy grid generated by a robot carrying a LIDAR sensor.
Detected obstacles are assigned a probability of occupancy in the corresponding
grid cells

The occupancy grid ideally maintains a joint probability distribution across the

the cells [33]:

p(m|z1:t, x1:t) (2.19)

where, t, is time, z1:t, is the history of sensor measurements and x1:t is the trajec-

tory of the robot. The binary state of the cells gives rise to 2N possible occupancy

maps over which the distribution must be maintained, for large N i.e. a detailed

representation, this is computationally intractable. An approximation of this

distribution can be made by assuming the cells are independent thus allowing

evaluation of Equation 2.19 as a product of the marginal cell probabilities:

p(m|z1:t, x1:t) =
N∏
i

p(mi|z1:t, x1:t) (2.20)
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which drastically reduces the required computation at the expense of losing the

ability to express dependencies between cells. It should be noted that the matrix

representation could be wasteful for non-rectangular environments. Occupancy

grids can take the form of planar maps acquired from robots operating on flat

surfaces. Such a case is shown in Figure 2.15 in which an area has been divided

into 10 cm x 10 cm cells that are assigned a probability of occupancy based

on sonar sensor returns. White cells represent free space while the grayscale

cells express probability of occupancy. Note that the grey background is due to

a prior probability of cell occupancy. When the vehicle is not constrained to

planar motion, occupancy grids can be represented by 3D grids synthesised using

algorithms such as Octomap [48].

Figure 2.15: A 114× 120 cell 2D occupancy grid from Thrun [45] generated by a
robot carrying an array of 24 sonar sensors.

Occupancy grids facilitate fusion of measurements from different sensors by virtue

of the grid structure. Stepan, Kulich and Preucil [49] demonstrate, under the

assumption of planar motion, a system which fuses measurements from on-board

laser, sonar and camera sensors toward improving robustness and accuracy of the

generated map. Occupancy grids are firstly constructed for each sensor separately,
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three methods are then presented for fusion. The first merges the maps on a

cell by cell basis by combining measurements directly following filtration of false

measurements due to for example specular reflections in the sonar. The second

method casts the fusion process into a Bayesian framework employing Bayes rule

to merge the probabilities of occupancy output from the sensors for each cell.

The third method is an extension of the second with sensor precision being taken

into account through comparison of a neighbourhood of cells resulting from sonar

returns with higher precision camera measurements; if the two measurements

don’t agree then the sonar measurements are disregarded and the camera data is

used exclusively.

Birk and Carpin [50] describe a system that merges the maps generated from

multiple robots exploring the same environment with the objective of speeding

up the mapping process. The authors detail a technique in which an optimisation

algorithm seeks to maximise the overlap between acquired maps. Independent

of pose information, a map m is rotated and translated with respect to a ref-

erence map m′ until a common region is maximised as specified by an image

processing based similarity metric. Results are shown in which maps from six

robots are merged to produce a single global map. Once an occupancy grid exists

navigation can be achieve by cross correlating sensor observations with the map.

The computational effort is a function of the granularity of the grid, there is a

trade-off between having a very detailed grid in which accurate localisation may

be achieved at the expense of greater computational burden over the scenario of

utilizing a coarse map offering fast but inaccurate localisation.

Schiele and Crowley [51] desribes a method of localisation using occupancy grids

where it is assumed that the occupancy grid does not exist a priori. The approach

taken involves maintaining two occupancy grids, one that models the local vicin-

ity of the robot while the other is a global representation which evolves with

exploration of the environment. Local grids are folded into the global grid via

an update step which importantly takes into account the uncertainty associated

with the robots position. The general technique firstly treats the grids as images

through the application of an extended Hough transform developed within the

paper to extract line segments i.e. areas where there are contiguous cells with
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high probability of occupancy. Correspondence between line segments in the local

and global grids are established from which rotation and translation parameters

are calculated with slight variations of this being presented.

Yamauchi et al [46] make use of a similar concept in the generation of short term

maps which are regularly registered with a long-term map of the environment: the

process uses a constrained stochastic search to determine the optimal translation

and rotation. The values calculated are then used to correct the path estimate

of the robot such that is aligns with the long-term map. The occupancy grid is

segmented using image processing based techniques into so-called frontiers, areas

on the boundary between unoccupied and unexplored space. The objective of the

described system is to find new areas to explore: frontiers serve as starting point

to map previous unexplored areas of the environment.

2.3.8 Topological Maps

Topological maps are non-metric models of the environment. Such maps serve

to represent the interconnections amongst points in the environment much like

underground railway system maps. This kind of representation can be considered

to be a graph in which the edges represent instructions for how to get from one

node to another where nodes represent landmarks in the environment. Topologi-

cal maps offer benefits in terms of fast path planning and a compact representation

of the operating environment. One of the major issues with this method is that

it does not allow accurate determination of pose of the vehicle and relies heavily

upon the ability to recognise the places specified by the nodes [52].

2.3.9 Discussion

In a practical system the robot would explore the environment and in doing so

build up a feature based map. Because of the computational complexity of the

algorithms that implement feature based SLAM, the map tends to be a sparse

representations of the environment. Given the feature based map which has
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corrected for positional drift, a dense representation of the environment may be

constructed through an occupancy grid. Occupancy grids divide the environment

into cells and assign a value of occupancy to them depending up sensor obser-

vations; the number of cells that need to be updated is a function of the field

of view of the sensor. Dependent upon the granularity of the grid, this means

that updating the map can be achieved at potentially lower computational cost

in comparison to the feature based map. Also, since the feature based map has

corrected for drift, there should be minimal drift in the occupancy grid. Such a

representation has the benefit of explicitly indicating free space which is required

for path planning routines. The topological map abstracts away distance and

scale information, rather it represents only connections between locations in a

map and can be used for path planning purposes.

2.4 Review of Robotic Inspection Systems

The purpose of NDE is to detect internal and surface flaws such as cracks, voids,

porosity, inclusions and corrosion in engineering structures without compromis-

ing the structure itself during the testing. Industrial sectors for which NDE

is of major importance include aerospace, nuclear and petrochemical extraction

and processing. Such industries are a source of particular challenges, often pre-

senting inspection sites located in inaccessible locations or where environmental

conditions are hazardous for human operators working at height, exposed to ra-

dioactivity, proximity to high temperature and/or pressure process plant. The

financial impact of NDE inspections is also significant, arising from both the

intrinsic inspection costs and the associated cost of taking plant offline to con-

duct inspections [7]. Application of NDE testing methodologies is often a labour

intensive task. This means operator fatigue leading to higher potential of erro-

neous equipment usage and therefore “bad” data which is not representative of

the structural condition of the entity under investigation. A number of NDE

inspection tasks, currently conducted manually, can be automated with robotic

devices to address these issues.
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Development of inspection platforms is being driven by a combination of in-

creasing safety legislation and the high economic and time costs associated with

manual inspections. Robotic systems offer several advantages to inspection tasks

over their human counterparts. The use of robots can decrease inspection times

by operating in situ and thus avoid disassembling complex structures, scaffold-

ing/excavation requirements and equipment recalibration. Zwicker and Zesch

[53] report on the design of a robot for the NDE of low-pressure steam turbine

rotors. The robot takes thirty minutes to complete the inspection whereas a

manual approach takes an average of four hours, furthermore using two robots in

parallel could reduce the time to fiften minutes: the time saving is substantial.

This example also serves to illustrate the idea that multiple devices can poten-

tially be used simultaneously and also that the number of robots can be scaled

with the size of the inspection area. Robotic NDE can offer higher reliability

than human operators as they do not fatigue and can lead to the generation

of digital documentation of defects registered against position. Automated in-

spection where feasible, is highly attractive, and potentially allows inspection of

operational plant. The safety, environmental and financial benefits for automat-

ing NDE measurements are clear, and applicable across a broad range of NDE

technology.

Robotic NDE inspection platforms are an active area of research, there are numer-

ous examples in the literature proposing devices for diverse application domains.

The majority of the research in this area is funded from government agencies or

arise from collaborative projects. The systems being utilised can be divided into

two categories namely those that are designed for a specific task and those that

are based around conventional robot work cells such as pick and place type robots

that are being used to carry out repetitive scanning of components potentially

prior to use : North Star Imaging Inc offers several real-time systems based on

ABB or Fanuc robotic arms [54]. The former are highly specialised devices, with

varying levels of autonomy, that must satisfy very specific constraints determined

by the application. The design is a function of access restrictions, safety issues,

structural geometry and the material composition pertaining to the entity that

is to be interrogated. There exist a wide range of inspection conditions giving
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rise to the development of inspection devices for a broad spread of engineering

structures/components including storage tanks, pipe networks, ships’ hulls and

offshore structures. Independent of the application domain any inspection robot

must address the following areas:

1. Adhesion - Due to the complex 3D shapes of structures encountered in the

field, the adhesion mechanism must be capable of holding the robot in all in-

clinations. If the structure is ferromagnetic, permanent/electromagnets are

typically used as the method of adhesion. In the case of non-ferromagnetic

scenarios, vacuum suction is often employed.

2. Locomotion - The locomotion employed is one from the set comprising: fluid

driven; wheel; caterpillar; wall pressed; inchworm; screw or some combina-

tion of these methods.

3. Localisation - Inertial measurement units, odometers, absolute positioning

systems.

4. System Integration - Robots developed for NDT can be differentiated in

terms of the level of system integration. Compact platforms require greater

integration to satisfy size constraints. Larger robots operating in less re-

strictive environment can make use of commercially available sensors and

control units.

With respect to the literature, the focus is mainly on the mechanical design

required to negotiate the geometry of the specific structure under investigation.

This section will concentrate on reviewing notable systems in the literature and

consider in particular the positioning systems being employed.

Pipeline Inspection Gauge (PIG) systems are used to carry out internal pipe in-

spections of oil, water and gas pipelines and constitutes one of the most widely

adopted methods for such applications. PIGs can be used in live operation

whereby the fluid running through the pipe serves to propel the device along

the pipeline. This type of platform often has a bullet like form, with diameter
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matched to the pipe to be inspected. They were originally used for cleaning pipes

but are now used to carry sensors to measure properties of the pipes: Magnetic

Flux Leakage (MFL)and ultrasonic techniques are typically used to measure loss

of wall thickness [55]. The position of the PIG is recorded using relative and

absolute sensors. Odometers attached to arms that maintain contact with the

pipe walls provide distance measurement along the pipe. IMUs are commonly

carried onboard providing data to measure pipe curvature, orientation and loca-

tion as well as PIG position. GPS tracked receivers are often attached to the

pipeline allowing the passage of the PIG to be recorded providing an absolute

measurement.

Czyz et al [56] present a pigging system which makes use of IMUs to provide dense

measurements of bending strain along a 70 km pipe section. Regularly spaced

control points comprised of distinctive features (such as valves, bends etc) along

the pipeline are identified in the IMU data and registered with the differential

GPS measured locations of these points to minimise positional drift. Given am

inter control point spacing of 10 km and the characteristics of the IMU, the PIG

has a worst case positional accuracy of 2.5 m.

Yu et al [57] describe a system which fuses data from on-board odometers with

IMU data to combat drift. The data fusion is carried out using a filter based

technique to yield a filtered trajectory error with respect to the absolute mea-

surements of less than 1 m. Use of passive pigging is limited to inspection in

which the pipe network consists of straight sections with mild bends and a di-

ameter which can accommodate the PIG. Disadvantages include the inability to

turn through 90◦ bends, failure to deal with couplings where the pipe diameter

changes and the possibility of becoming stuck in the pipe.

A recent paper by Schempf et al [58] describes a pipeline robot developed to con-

duct inspections of natural gas distribution mains. The device is untethered with

control being issued over a point-to-point communication system operating in the

industrial, scientific and medical radio band using custom protocols and antennae.

The robot is composed of interlocking modules each fulfilling certain functions:

a set of modules contribute drive mechanisms necessary for controlled vertical

47



2. PROBLEM BACKGROUND

ascent/decent and active negotiation of 45◦/90◦ bends while others contain NDE

sensors, batteries (providing enough energy for a average single day mission) and

camera/lighting capabilities. The robot has a diameter of 0.1 m while its length

and weight can vary between 1.5 − 2.7 m and 6 − 39 kg respectively depending

upon the number of connected modules. The camera subsystems are compli-

mented with MFL sensors which together constitute the inspection sensor suite

for the platform. Positioning is achieved through the use of encoders attached

to the wheels of the modules and also through use of the camera counting the

welds connecting pipe sections of known length. As a result of experimentation

the authors conclude that the raw odometry provides an estimate of the robot

and thus defect locations with an error range of 0.3− 0.9 m.

White et al [59] designed, developed and trialled a large (0.5 × 0.8 × 0.5 m3,

20 kg with payload) mobile tethered crawler type robot for application in the

aerospace industry. The system utilises vacuum suction as the traction mech-

anism for the rapid inspection of non-ferrous external surface structures such

as wings enabling vertical and overhanging surfaces to be negotiated. An abso-

lute positioning system in the form of a laser tracker (Leica LTD-800) providing

(x, y, z) measurements is employed to track a pan-tilt mounted retroreflector: the

retroreflector is actively driven to maintain line of sight with the tracker. In com-

bination with angular feedback from the pan-tilt head and odometric data the

Leica measurements are fused using an extended Kalman Filter to estimate the

complete pose of the crawler. The authors report an accuracy on a flat verti-

cal plate of ±0.1 mm, the orientation accuracy, however, is not mentioned. The

inspection system makes use of a probe that enables measurement of the full 6

degrees of freedom of the crawler and provides an accuracy of 0.05 mm in position

and 0.04◦ in orientation.

The paper by Caprari et al [60] describes several prototype robotic devices for

use in power plant inspections which are the result of industry-university collab-

oration between ALSTOM Ltd and the Swiss Federal Institutes of Technology

in Zurich and Lausanne. One of the most impressive systems which has now

been commercialised is Magnebike described by Tâche in [61]. Magnebike is a

compact (185 × 143 × 263 mm3, 3.5 kg), tethered, high mobility bicycle based
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robot designed for inspection of complex shaped ferromagnetic structures such

as the inner casing of pipes. The wheels are composed of permanent magnets

that when coupled with magnetic force reducing lifters allow the vehicle to pass

complex 90◦ convex and concave obstacles with almost any inclination with re-

spect to gravity. Localisation is a detailed consideration in the system given that

during operation in enclosed environments the device is likely to be out of view

of the operator. Wheel encoders and a 3-axis accelerometer is used to provide an

odometry estimate of the motion of the bike. A LIDAR in the form of a Hokuyo

URG-04LX is used to periodically scan the environment producing a set of point

measurements of the environment at time t that overlaps that obtained at t− 1.

A scan matching procedure is carried out to find the rotation and translation

parameters relating successive scans and thus the 6 degree of freedom motion of

the robot between scans. The scanning matching procedure is optimisation based

in which the odometry estimate serves to provide a starting point. In order to

minimise drift periodically non-successive scans are matched. The authors con-

sider that a positional accuracy of ±5 cm is necessary for safe remote operation.

In the course of localisation experiments it found an that an accumulated error

of 5 cm in position is true after a traversal of 0.33 m. The desired error can be

maintained if scans are acquired at 0.33 ms intervals. In terms of the orientation

estimate an accuracy of ±10◦ is achievable by taking scans every 0.4 m of travel.

This work focuses primarily on the locomotion and localisations aspects of the

problem, NDE payloads have not been considered.

Unmanned aerial vehicle (UAV) based inspections have come to prominence as

a result of advances in the underlying technology especially battery technology.

Visual inspections from stabilised cameras conducted by UAV’s offer cost reduc-

tion over the alternative of full size aircraft inspection. Such devices are being

to carry out power line inspections [62]. There a number of companies offering

inspection services by UAV’s such as the UK based company Cyberhawk Inspec-

tions Systems Ltd [63].

The robotic inspection systems discussed tend to be purpose built to carry out

a particular inspection job. This differs markedly from the concept of the RSA

based scanning system composed of multiple general purpose robots that work
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together to achieve the inspection goal. In all cases the above robots combine

relative and absolute positioning systems available at different rates in order to

estimate pose. In this arrangement, the lower rate absolute positioning system

effectively corrects for the error accumulated by the higher rate relative position-

ing system. This method is demonstrated for a single RSA in Chapter 6 where

an external acoustic based positioning is fused with onboard encoders to estimate

pose in a planar environment.

2.5 Conclusion

This chapter has presented a review of the state of the art in robotic inspection

systems. A common feature of such systems is that they are generally purpose

built in order to address the specific inspection need. In addition, these devices

often have constrained motion determined by the structure under investigation,

for example, PIGs. This differs markedly from the concept of the RSA based

scanning system which aims to provide a flexible and scalable inspection system

that can potentially move in an unconstrained manner over complex geometry

surfaces.

A central problem in the field of robotics is that of estimating the location of

the robot. With respect to the RSA scanner, estimating the location of the

constituent vehicles is very important in the NDE context for a number of reasons.

Positional information is required to register a defect with the location at which

it was found on the structure. However, the required accuracy of the positioning

data is dependent upon the inspection scenario. For example, when inspecting a

structure composed of panels such as an aircraft wing section, centimeter accuracy

may be sufficient to specify where the defect is located - in reality an entire panel

will be replaced. One of the primary advantages of a scanner composed of mobile

robots is the ability to produce dense scans of an area. In such an inspection the

quality of NDE images generated from positional information is directly related

to the accuracy with which the position of the robot is known. Dependent upon

the charactersitics of the sensor much greater than centimeter accuracy may be
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required. When trying to return to a previously visited location on a structure

to assess the condition of a known defect, the accuracy with which the robot

can return to this location could determine if the structure is allowed to remain

operational.

A review of techniques for estimating position was presented. These techniques

may be divided into relative, absolute and SLAM. Relative techniques can be used

onboard a robot and operate through sequentially composing estimates of relative

motion to obtain an absolute trajectory. However, each individual estimate has

an associated error and when many estimates are composed the resultant path can

drift significantly over time and distance. Absolute positioning systems make use

of sensors embedded in the operating environment that require line of sight to the

robot. Such systems can provide positional estimates that do not drift. Clearly,

for an in situ inspection absolute positioning systems may not be suitable due to

access constraints and occlusions. SLAM based techniques offer the possibility

of using features in the environment itself to navigate. Such features can be

repeatedly identified and tracked by a sensor carried onboard the robot and used

to build a sparse map of the environment. However, the technique relies upon

the availability of features in the environment and also that the features are

sufficiently distinctive such that they are identified correctly. SLAM has the

potential to be the most applicable technique for the RSA based scanner, however,

an absolute positioning system is likely to offer greater reliability.

This body of research makes use of several technologies that implement the dis-

cussed techniques. The reader may refer back to this chapter to gain an under-

standing of the underlying theory when these technologies are used in subsequent

chapters.
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Chapter 3

Spatial Error Characterisation of

the Vicon Motion Capture

System

3.1 Introduction

This chapter describes an experimental characterisation of the Vicon motion cap-

ture system, one of the main tracking systems employed during the course of this

research. This system was used both to serve as the primary tracking system

employed during experiments and was also used to validate the performance of

algorithms developed to estimate vehicle pose. The study was motivated by

empirical observations of Vicon measurement accuracy varying as a function of

location within the system measurement volume. Due to the extensive use of

the system, a systematic analysis was conducted to understand the error sur-

face evaluated across the measurement space. Such positional dependence was

thought to stem from the spatial distribution of measurements acquired during

system calibration. The calibration phase of operation is a key step required

before equipment usage often taking place twice daily in typical circumstances

thus making the present evaluation an important consideration. The aim of this
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chapter is to evaluate the spatial error distribution of the system following best-

practice calibration: such information may then be used to inform subsequent

experiments that utilise the equipment. Quantification of error was implemented

through simultaneously tracking a test object volumetrically scanned through a

measurement space using both the Vicon system and a Leica Absolute Tracker

AT901-B. The accuracy of the Vicon measurements were compared to ground

truth measurements as provided by the Leica Tracker which by virtue of its op-

erating principle offers greater accuracy and precision. An overview of the two

systems is firstly presented followed by a description of the experiment and the

results of data analysis.

3.2 Overview of Systems

This section provides an overview of the positioning systems involved in the ex-

periment describing their respective implementations of the techniques discussed

in Chapter 2. The pros and cons of each system in the context of tracking mobile

robots are also discussed.

3.2.1 Laser Tracker

The Leica Absolute Tracker AT901-B (LAT) is a metrology system intended for

use in applications where high accuracy, precise tracking capabilities are required

typically involving sparse target densities. This system is commonly used in the

automotive and aerospace industries in tasks such as aligning and assembling

parts and also where use of traditional fixed coordinate measuring machines are

infeasible due to part size. The ranging method utilised is described in Section

2.3.4. The instrument measures the 3D location of passive Spherically Mounted

Reflectors (SMR) through the projection of a laser beam from the instrument to

the SMR. An image of the LAT and associated control equipment is shown in

Figure 3.1 wherein the system dimensions equal 620 mm x 290 mm x 240 mm

(ignoring the tripod) thus offering portability for field use. The head of the LAT
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rotates around the vertical axis of the body, providing azimuthal scanning of

the laser, while a rotating mirror provides elevational scanning. High resolution

encoders with an angular resolution of 0.14 arc sec are attached to theses axes

providing the angular data necessary to transform the native spherical coordinates

into Cartesian form. The system is capable of detecting reflectors in a volume of

radius 80 m at a rate of 1000 points/s. Control of the LAT is performed via the

AT Controller 900 which runs the Leica EmScon server.

(a)  
AT 900 Controller 

(b)  
Leica AT901-B Tracker 

(c)  
Tracking Head 

(d)  
Bird Nest 

Figure 3.1: (a)AT Controller 900 running EmScon software (b) Leica Absolute
Tracker AT901-B mounted to heavy duty tripod (c) Tracking head which moves
during operation to track an SMR (d) Bird nest serving as a starting point for
the IFM

A particular SMR called a Red Ring Reflector (RRR), which is attached to a

magnetic mount known as a drift nest is shown in the image of Figure 3.2. The

internal construction of the RRR consists of a corner cube reflector with an associ-
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ated acceptance angle for the laser beam of ≤ ±30◦ assuming the detachable ring

is present. The ring serves to prevent the reflector from assuming orientations in

the drift nest that would block entry of the laser beam: if removed, however, and

used carefully this acceptance angle can be increased significantly. The spherical

design of the SMR means that, at all times, its centre resides at a fixed distance

offset with respect to any surface being measured. The major limitation of the

LAT is the requirement for both line-of-sight between the tracker and the SMR

and the reflector must be oriented such as to allow entry of the laser beam. The

RRR offers the highest accuracy tracking available from Leica Geosystems and

was the reflector used in the experiment.

The tracking system of the LAT is composed of two sub-systems namely an Abso-

lute Distance Meter (ADM) and an Interferometer (IFM) which in combination is

referred to as a Absolute Interferometer. The ADM provides absolute positional

data by using time-of-flight to compute the location of a SMR with respect to the

coordinate system of the LAT in a point-and-shoot type operation. The ADM

provides a typical-value accuracy of ±10 µm [64]. The IFM provides relative

measurements of the SMR through monitoring the incoming and outgoing con-

tinuous wave signals. The interference of these waveforms is calculated wherein

every peak in the resultant wave corresponds to a change in distance of half of a

wavelength which in turn equates to a distance of ∆d = 0.32 µm [65]. Through

counting the number of peaks and multiplying by ∆d the change in distance can

be obtained: this operation can execute almost instantaneously. The IFM offers

a typical-value accuracy of ±0.2 µm + 0.15 µm/m [64].

The rate of operation of the IFM is far quicker than the ADM due to the in-

tegration time incurred by the ADM during distance calculation. The IFM is

then well suited to dynamic measurements but as mentioned previously only pro-

vides relative measurements therefore some means of providing a datum point is

necessary for IFM only based operation. Two options are available. The first

option makes use of a known position attached to the body of the LAT referred

to as the bird nest, see Figure 3.1(d), which serves as a starting point for IFM

measurements: this imposes the limitation that the SMR be initially located in

the nest and moved to the measurement location. The datum point may also
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be supplied by the ADM if the laser beam is broken during system operation.

Aided by an overhead camera which can find the lost SMR in incoming images

and subsequently provide data to drive the tracker head motors, the ADM can

be used to obtain the absolute position of the reflector at which point the IFM

takes over.

(a) (b) 

Figure 3.2: RRR, ø = 1.5”, 170 g, constructed from surface-hardened stainless
steel and has a removable ring. (b) ø = 0.5” fixed installation reflector intended
for use with robotic platforms

The LAT outputs only the 3D coordinates of points using the default software

running on the laser controller: it does not compute orientation of an object which

has multiple reflector mounted onto it. There do exist specific products which

can provide full pose information such at the T-Probe/T-MAC also available from

Leica Geosystems. However, these devices are too unwieldy to be mounted onto

the CUE robotic platforms. Another possibility for extraction of full pose data is

to mount at least 3 reflectors on the robot and multiplex to measure each reflector

in turn. A kinematic model of robot motion based on wheel encoder data could

be used to guide the LAT in searching for the reflectors.
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3.2.2 Vicon Motion Capture System

The Vicon Motion Capture System (VMCS) is a digital motion capture sys-

tem that tracks the 3D motion of passive spherical/hemispherical targets from

multiple camera images acquired from different viewpoints. The system is pre-

dominantly employed in the life sciences and animation production and also engi-

neering in the form of virtual prototyping where dense object tracking is required.

It also has specific application in robotic tracking with notable users being the

Bristol Robotics Lab for tracking wheeled vehicles and the GRASP Laboratory at

the University of Pennsylvania and ETH Zurich for tracking UAV’s. The VMCS

employs multi-view stereo image processing to locate a single target in space as

described in Chapter 2: at least two cameras are required to observe a marker

in order for its 3D position to be determined through triangulation. The CUE

laboratory setup is as illustrated in the schematic of Figure 3.3 which shows six

T160, 16 megapixel cameras symmetrically arranged at two ends of a rigid frame

enclosing a large measurement volume. Through attachment of at least three

markers to the object to be tracked, its orientation in terms of yaw, pitch and

roll may also be estimated alongside the 3D location. If there are multiple ob-

jects to be tracked, then arranging markers uniquely and asymmetrically for each

object allows simultaneous tracking. The VMCS is also capable of dealing with

partial observation of the tracked objects.
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6.8m 

3.8m 

Vicon T160 Cameras  

Measurement Volume 

Figure 3.3: The cameras were clamped using professional grade camera mounts
to the smallest sides of a rigid aluminium frame (pipes ø = 50 mm).

Each camera has mounted onto it a strobe unit which consists of a ring arrange-

ment of LED’s that serve to flood the measurement volume in high intensity

infrared light: an image of a T160 camera is shown in Figure 3.4. A strobing unit

containing a ring of LED’s comprising 320 visible red (623 nm) and 252 Near

IR (780 nm) is attached to the front of the camera. The image sensor consists

of custom 4704 × 3456 CMOS 10 bit sensor while frame rate can be can vary

between 30-2000 fps. The processing unit contains three processors carrying out

tasks such as masking, thresholding and 2D tracking [66] Under such illumina-

tion, the Vicon targets which individually comprise of a spherical construction

of wrapped retroflective tape, glow very brightly in the images captured by the

cameras. A 12 mm diameter Vicon target is shown in Figure 3.5(a) illustrating

the wrapped tape construction. When illuminated the marker produces a very

strong reflection as shown in Figure 3.5(b).
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LED 
Strobe 
Unit 

Lens 

Image sensor + 
processing unit 

Figure 3.4: Vicon T160 camera

(a) (b) 

12mm 

Retroreflective Tape 

Figure 3.5: (a) 12 mm diameter spherical Vicon target consisting of wrapped
retroreflective tape mounted upon a plastic base. (b) Vicon target under IR
illumination from a camera flash illustrating strong reflective properties of the
tape.

The system is controlled by a closed-source software package called Vicon Tracker.

This particular software allows the motion of rigid bodies to be tracked and

assuming full resolution capture this can be achieved at a rate of around 120

Hz. The Tracker representation of the camera configuration of Figure 3.3 is
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shown in Figure 3.6(a) where each frustum represents a camera. The intersection

of the bold white cross in the grid below the cameras represents the origin of

the system coordinate frame. Figure 3.6(b) shows the virtual representation of

an object composed of six retroreflectors shown as the connected network of

spheres. The object has an associated coordinate frame with the red, green and

blue perpendicular axes above corresponding to the x, y and z object frame axes

respectively. The tracked point on the object corresponds to the centroid of the

markers which in turn resides at the centre of the cube in the image, the tracked

point can also be user defined. Note that this view follows from carrying out a

calibration procedure discussed in the proceeding section.

(a) 

(b) 

(0,0,0) 

Figure 3.6: (a) Virtual representation of Vicon cameras in Tracker software. (b)
Virtual representation of object.
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3.2.3 Tracking Mobile Robots

The section compares the VMCS and LAT in the context of tracking mobile

robots. The VMCS is capable of tracking multiple objects over large volumes

where the size of the volume can be increased by using additional cameras. Im-

portantly, the system provides both position and orientation directly at 120 Hz.

However, it requires the cameras to be rigidly fixed in the environment and also

arranged around the workspace. Furthermore, the system requires calibration

which requires access to the workspace. Deploying this system in the field, there-

fore, would be problematic for access restricted areas. In addition to this, shiny

materials in the environment could be confused for retroreflector targets. For

these reason the VMCS is particularly suited for controlled laboratory settings.

The LAT is a able to track the position of a single target at any one time over

a large volume from a single viewpoint. The tracking volume can be increased

through the use of multiple trackers. The system consists of the instrument itself

and a control unit and therefore offers great mobility allowing for transportation

to site locations in the boot of car. The requirement for only a single view would

be advantageous in a number of environments. For example, in nuclear scenarios

access to areas in some cases can be limited to a small hatch. However, the

SMR beam acceptance limits could be challenging to meet in complex industrial

environments. The ability to track only a single object at a time is limiting if using

multiple robots. This could be alleviated to some extent by searching in areas

determined though predicting the positions of the robots from other sensors. The

system is only able to provide position information directly at 1000 Hz. However,

through attachment of multiple reflectors orientation could also be determined.

The LAT is well suited to in the field use, however, integration with other sensors

is required to maximise its potential.

In combination, the two systems provide tracking capability over a wide range of

inspection scenarios.
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3.3 Experiment

The objective of the experiment was to carry out a volumetric scan of the mea-

surement space in order to characterise the accuracy of the VMCS as a function

of position with respect to ground truth LAT data. In order to conduct the com-

parison, the systems had to measure in the same coordinate frame. Section 3.3.5

describes the procedure used to create a global coordinate frame shared by both

systems. In addition to this, the object coordinate frames had to be made equal

to ensure that each system was measuring the same point in space - the method

used is described in Section 3.3.9.

Prior to carrying out this task the LAT was levelled in the pitch and roll axes of

the system and the necessary calibration procedures were carried out. It should

be noted that the exact numerical results obtained from the data set acquired

during the course of this experiment is calibration dependent and thus may vary

between calibrations. The calibration procedure was carried out in a repeatable

fashion in order to try to minimise the effect of this variable in the experiment.

The objective was then to identify trends in the spatial distribution of the data.

The following sections describe the steps taken to optimise the performance of

the VMCS, the design of the experiment and the results of data analysis.

3.3.1 Volume Coverage

A key step in the setup procedure for Vicon is that of positioning the cameras

so as to maximise coverage within the desired measurement volume. Each cam-

era has an associated Field of View (FOV) in the horizontal and vertical planes

which is a function of the camera lens and takes the form of a cone. Figure 3.7

(a) illustrates an approximation of this cone for a particular camera that may be

observed in the Tracker software. The problem of measurement coverage reduces

to maximising the use of the FOV of each camera in terms of covering the desired

measurement volume whilst simultaneously ensuring that at least two cameras

can observe any Vicon target within this volume to allow its location to be tri-
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angulated. The arrangement of the cameras was determined through an iterative

process of traversing the volume with Vicon targets seeking out blind spots and

making appropriate adjustments to the camera positions. The final arrangement

of the cameras is shown in Figure 3.8 where the cameras were rotated to lie in a

horizontal position in order capture markers at the edge of the volume and the

central camera was mounted higher to maximise the height of the measurement

volume. The intersection of the cones for one side of the volume is shown in

Figure 3.7 (b), note that this configuration is mirrored on the opposite side of

the volume.

(a) (b) 

Figure 3.7: (a) Approximate FOV cone for a particular camera used for guidance
in positioning the cameras. (b) The intersection of the FOV’s of the cameras
located at the right hand side of the volume. This arrangement is repeated on
the opposite side but has been left out for clarity.

3.3.2 Vicon Calibration

The accuracy of Vicon is a function of the data gathered during the system

calibration phase of operation. For the calibration a “wand dance” is carried

out whereby a calibration artifact or wand with a priori known dimensions and
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Vicon T160 Cameras 

Figure 3.8: Camera arrangement on the right hand side of the frame in Figure
3.3. This arrangement was found to maximise coverage within the measurement
volume.

marker arrangement is swept through the volume whilst being moved in a figure

of eight motion. During this time each camera captures a user defined number

of frames of the wand in different positions and orientations. The resultant point

cloud data gathered by each camera is then used in an optimisation process to

determine the intrinsic camera matrices and relative positions of the cameras. The

calibration wand can then be used to define the location of the global coordinate

frame through placement of the wand in a user defined location in the volume.

The quality of the calibration and thus accuracy of the system is a function of the

point cloud data and therefore the wand motion as executed by the operator. The

calibration quality is measured by image error, a value which is associated with

each camera and is expressed in terms of pixels. The image error also depends

upon the settings of lens aperture and focal length which need to be adjusted

before operations.
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3.3.3 Optimal Lens Adjustment

Prior to conducting the experiment each camera lens was adjusted to ensure op-

timal system operation. The procedure consisted of placing the calibration wand

into the centre of the volume followed by adjusting the aperture and focal length

of each lens according to the characteristics of the imaged wand. A thresholded

grayscale image of the wand in Figure 3.9 for a particular camera is shown in the

Figure 3.10. This shows an ideal image of the wand resulting from application

of the below adjustments. The specific marker characteristics that are of concern

in this process are the intensity and circularity of the pixel arrays representing

markers in the image. As part of the processing used in the system, circles are

fitted to the marker pixel arrays and thus suboptimal lens optics can be a source

of tracking error.

310mm 

520mm 

Figure 3.9: Calibration Wand

The aperture controls the amount of light entering the camera and thus the

intensity of the pixels corresponding to the markers. Figures 3.11(b) and 3.11(b)

illustrate the effect of the aperture for semi and fully open settings. The pixel

intensity of the former is of an intermediate level thus making it more error prone
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Figure 3.10: Example camera view of the calibration wand used to adjust lens
properties for a particular camera.

while the latter is the ideal consisting of a high intensity array less likely to be

affected by noise. The fully open setting can only be realised in environments

containing little noise contributing anomalous reflectors. The aperture of each

camera was set to fully open or nearly fully open as the measurement volume was

clear of reflective materials.

Lens focus controls the circularity of the imaged marker which ideally should be

a circular array of pixels. Figure 3.11(a) shows this ideal shape while Figure 3.12

displays a suboptimal focal length setting. The focal length of each camera was

adjusted to yield circular pixel arrays such that the final wand image was of the

form of Figure 3.10.

3.3.4 Custom Vicon Target

In order to compare the output of the VMCS with the LAT it was required that

both systems measured the same point in space. This problem could be solved

in a direct manner through making use of markers of equal dimension for both

systems. The LAT RRR offered the most accurate optical centring accuracy of

66



3. CHARACTERISATION OF VMCS

(a) (b) 

Figure 3.11: (a) Aperture fully open showing high intensity white pixels repre-
senting a marker (b) Aperture semi open resulting in low intensity pixels for a
marker

Figure 3.12: Non-circular array of pixels for marker resulting from sub-optimal
setting of focusing dial on lens
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the available SMRs, therefore, it was chosen for use in the experiment. Because

a VMCS target of equal size did not exist in the set available targets, a custom

spherical VMCS target with a diameter equal to the LAT RRR was created.

A 1.5” steel ball bearing was used as the basis of the target thus allowing it

to be held in a magnetic drift nest during measurements. The bearings were

given a retroreflective capability through bonding to the surface glass micro-

beads (obtained from Polytec Ltd) with diameters ranging from 45 µm to 63

µm. The use of glass beads offered the advantage of greater marker sphericity

in comparison to a wrapped tape version. The method used to wrap the tape

leads to an elliptical marker with a non-smooth surface that would result in

unwanted offsets. The micro beads were bonded using a 3M PhotoMount spray

which allowed a thin layer of adhesive to be sprayed onto the surface of the

bearing. The optimal photomount layer thickness with respect to the strength of

retroreflection is half the mean diameter of the micro-bead: this thickness leaves

exposed half of a micro-bead to fulfil the reflection function of the target.

A technique was developed to produce an even surface coverage of both the

photomount and micro-beads, in total five targets were created. The 1.5” bearing

used as the basis of the custom target is shown in Figure 3.13 (a) in its original

condition. Application of the glass micro-beads is shown in Figure 3.13(b) in

which the surface has become dulled with respect to Figure 3.13(a). The target

retroreflection capability is shown in Figure 3.13(c) under illumination from a

camera flash. Shot blasting the ball bearing prior to application of the micro-

beads was also investigated but it was found that the original shiny surface of

the bearing worked best.

It was found in practice that the ball bearing based markers displayed a bright

spot in the centre of the surface and that the beads did not reflect the IR light as

strongly as the taped based markers. As a result the threshold for each camera

had to be adjusted carefully to ensure marker visibility at each measurement

location during the experiment.
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(a) (b) (c) 

Figure 3.13: Custom ball bearing markers (a) Clean 1.5” ball bearing (b) Glass
micro beads applied to ball bearing (c) Retroreflective behaviour of micro beads
responding to a camera flash
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3.3.5 Defining a Joint Coordinate Frame
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Figure 3.15: Arrangement of ground mounted drift nests forming the joint coor-
dinate frame as measured by the LAT.

Since the VMCS and LAT measure with respect to their native frames of refer-

ence, the raw point cloud data resulting from the experiment would require trans-

formation by the fixed rotation, R, and translation, t, relating the two frames.

This operation could be carried out post experiment through a least squares pro-

cedure to minimise the error between the point clouds as a function of R and t.

Alternatively the systems could be calibrated prior to the experiment such that

they measure in the same coordinate frame. The latter approach was adopted

in order facilitate data collection by making the measurements directly compara-

ble during the experiment thus allowing invalid measurements to be reacquired

systematically.
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The coordinate frames for the two systems were made coincident through defining

a new joint World Coordinate System (WCS), FWCS, with dimensions compara-

ble to the measurement volume. This new frame was defined by a set of drift nests

rigidly affixed to specific locations on the floor within the volume: a schematic

of the arrangement is shown in Figure 3.14. Use of the drift nests importantly

enabled the same calibration artifact to be used with targets of the same dimen-

sions for both systems. The arrangement of drift nests had to adhere to two rules

observed by the VMCS specifically with respect to the number of targets used

to define the frame and the inter-target separation. The minimum number of

targets that can be used to define a VMCS frame is four while the inter-target

distance within this frame must differ. Under guidance of the LAT, four drift

nests were mounted onto the floor in an L-shape configuration, arranged so as

to maximise inter-drift nest distances across the volume whilst keeping them in

view of the cameras.

The procedure consisted of firstly mounting the drift nests, D1 and D2, to the floor

in order to define the y-axis of the frame. A third nest, D3, was then introduced to

define the x-axis and positioned so as to create an approximate right angle which

was subsequently fine tuned using feedback from the LAT. Through placement of

the RRR into each drift nest, the location Di = (Di,x, Di,y, Di,z) of each nest was

measured and used to compute the set of relative distances {dij|i, j = 1...4, i 6= j}
as shown in Figure 3.15. These distances were input into Equation 3.1 as follows:

α = cos−1

(
d2

23 − d2
12 − d2

13

−2d12d13

)
(3.1)
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to yield the angle between x and y axes. Following this, the angular error αerr =

(90◦ − α) was calculated and used to pivot the y-axis around the origin D1 via

Equation 3.2:

D90◦ =

cos(αerr) − sin(αerr) D1,x(1− cos(αerr)) + sin(αerr)D1,y

sin(αerr) cos(αerr) D1,y(1− cos(αerr))− sin(αerr)D1,x

0 0 1


D2,x

D2,y

1


(3.2)

Corrections offsets in the LAT coordinate system were then calculated using

Equation 3.3:

Doffsets = D2,(x,y) −D90◦,(x,y) (3.3)

where the notation Di,(x,y) indicates use of only the (x, y) components of the

coordinate. The angular error was minimised iteratively using the above proce-

dure following multiple measurements. The final arrangement of the drift nests is

shown in Figure 3.15 where an inter-line angle of 90.01◦ was achieved. The new

frame was completed by the addition of a fourth drift nest, D4, that was situated

colinearly between D1 and D2. Colinearity was measured through calculating the

area of the triangle resulting from the preceding drift nests using Equation 3.4 as

follows:

lim
D′4→D4

|D1,x(D2,y −D′4,y) +D2,x(D
′
4,y −D1,y) +D′4,x(D1,y −D2,y)|
2

= 0 (3.4)

where the area vanishes to zero when the current position of the fourth drift nest,

D′4, assumes the ideal position, D4. The final area calculated following iterative

refinement of the position was 0.0017m2. The following sections describe the

transformation procedure from the system native frames into the new joint frame

FWCS.
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Aligning the VMCS with FWCS

After precisely aligning the drifts nest to form the new joint world coordinate sys-

tem the nest locations measured in the frame of the LAT, FLAT , were transformed

into FWCS wherein D1 was designated as the origin; these locations are shown

in Table 3.1 alongside the original coordinates in FLAT . In order for the VMCS

to make use of this custom calibration artifact in the Vicon Tracker software,

an Extensible Markup Language (XML) based Vicon Skeleton (VSK) file was

created. A MATLAB script was written to generate the necessary XML which

defined the positions and connectivity amongst the targets in addition to param-

eters such as target radius, intensity thresholds and positional variance. Given

the VSK file, setting FWCS as the world coordinate frame reduced to selecting

the new calibration artifact in the calibration phase of system operation. The

image errors resulting from the calibration are as shown in Table 3.2.

FLAT FWCS

Target X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

1 -412.49 4902.88 -1378.75 0 0 0

2 1218.46 2259.26 -1390.38 -0.57 3106.24 -11.63

3 -2423.91 3662.47 -1376.40 2363.13 0 2.36

4 212.26 3888.18 -1379.54 0.85 1191.61 -0.78

Table 3.1: RRR coordinates as measured in FLAT and specifed in FWCS
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Camera Image Error (Pixels)

1 0.34

2 0.30

3 0.36

4 0.33

5 0.30

6 0.27

Table 3.2: Camera Image Errors Following Calibration

Aligning the LAT with FWCS

The transformation procedure from FLAT into FWCS consisted of a least squares

minimisation of the rigid body mapping of the set of RRR positions measured

in FLAT onto the set of positions in the frame of FWCS shown in Table 3.1. The

mapping from FLAT to FWCS may be expressed as follows:

T (x) = t +
1

s
Rx (3.5)

where T (x) is the transformed point x, R and t are the 3×3 rotation matrix and

translation vector relating the two frames respectively while, s, is a temperature

related scale parameter in this case set to unity. Point measurements acquired

by the LAT are the result of several measurements acquired internally thus al-

lowing an associated covariance matrix to be calculated: the covariance matrix is

available through enabling the extended statistics mode in EmScon and has the

form:

Cp =

C(x, x) C(x, y) C(x, z)

C(y, x) C(y, y) C(y, z)

C(z, x) C(z, y) C(z, z)

 (3.6)
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where C(x, y) = E[(x− µx)(y − µy)] and E is the expectation operator. The al-

gorithm used to determine the R and t parameters was implemented onboard the

AT Controller 900 which took as input the two point sets of Table 3.1 alongside

the covariance matrices associated with the LAT measured points. The algo-

rithm seeks to minimise the Residual Square Sum (RSS) defined by the following

function:

RSS =
n∑
i=1

rTi Wiri (3.7)

where ri and W are the ith residual and weight matrix respectively. The weight

matrix is the inverse of the covariance matrix of the residual. The residual is

calculated as follows:

residual = T (actual)− nominal (3.8)

where actual is the point measured in FLAT and FWCS. The parameters calculated

by the procedure are shown in Table 3.3.

Parameter Unit Optimised Value σ

tx -412.49 0

ty (mm) 4902.88 0

tz -1378.75 0

rx 0 0

ry ◦ 0 0

rz -148.34 0

s N/A 1 0

RMS (mm) 0 N/A

Max Deviation (mm) 0 N/A

Variance Factor N/A 0 N/A

Table 3.3: Summary of transformation parameters shown to 6 significant figures
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3.3.6 Acquisition Software

A custom software package was implemented using the C# programming lan-

guage to facilitate synchronous/asynchronous measurement acquisition from the

tracking systems. A screenshot of the developed Graphical User Interface (GUI)

is shown in Figure 3.16. The control software pertaining to each system offered

server functionality to allow positional data to be broadcast over network connec-

tions. The GUI then acted as a client reading streams containing object position

data via the Vicon Tracker and Leica EmScon Dynamic-link library’s (DLL) as-

sociated with the respective systems: a block diagram illustrating the underlying

structure of the software is shown in Figure 3.17. The program was written to

allow control of some basic LAT features such as initialisation and measurement

mode and reflector type selection as well enabling coordinate frame transforms.

A grid mode capability was included to assist the user in spatially sampling the

measurement volume at regular intervals: this functionality was used during the

experiment.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 3.16: Screenshot of Leica Vicon Measurement Acquisition GUI (a) LAT
controls allowing control of basic features and the coordinate transform procedure
(b) Vicon controls allowing the virtual object name to be set and filtered from
the input stream (c) LAT information window (d) Grid mode parameter settings
where the number of points/location can be specified (e) Visual indication of
current grid cell in which acquisition is taking place
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Figure 3.17: Block diagram showing underlying structure of GUI

3.3.7 Scanning System

A scanning mechanism was required to sweep the test object through the mea-

surement space. A 3-axis XY Z scanner of dimensions comparable to the mea-

surement volume would ideally fulfil this function, however, implementation of

this was infeasible due to the associated scale and cost, therefore alternative ap-

proaches were considered. The criterion of critical importance in making this

selection was concerned with the stability of the scanning system during mea-

surement acquisition: ideally it would be subject to little or no movement. The

LAT would provide the ground truth location of the test object in the volume

therefore movement was not constrained to be recti1inear thus increasing the

number of possible scanning methods.
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The approach taken was to use a tripod to provide the scanning function. A

professional grade Manfrotto 161MK2 tripod was selected as this particular tripod

is an option offered by Vicon for mounting cameras due to its high rigidity. This

approach would offer single user operation and rapid scanning. The stability

of the tripod for carrying out measurements was considered with respect to the

fixed frame through measuring the location of a reflector attached to the frame

and the tripod in turn. The measurement data in the XY plane for the tripod

is shown in Figure 3.18 while Figure 3.19 shows the measurements taken on the

frame. The measurements in X and Y for the frame show a negative correlation

while the tripod displays no correlation. The correlation can be attributed to

the ambient vibrations in the laboratory causing vibration of the frame which

is directly bolted to the floor. The tripod, however, has rubber feet providing

isolation from the vibration.
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Figure 3.18: 10000 measurements of a reflector attached to the fixed frame.
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Figure 3.19: 10000 measurements of a reflector attached to the tripod.

In both cases the data are bounded by a three standard deviation uncertainty

ellipse. The covariance matrices corresponding to the data are as follows:

Cframe =

523.7334 −85.5730 −8.4355

−85.5730 15.6139 −22.6894

−8.4355 −22.6894 393.5643



Ctripod =

341.5980 −7.0513 47.7879

−7.0513 18.7355 −51.5729

47.7879 −51.5729 144.5779

 ,
where the units are in µm2. From the diagonal entries of the covariance matrices

which correspond to the positional variance in each axis, the tripod is subject

to smaller perturbations than the frame therefore was considered to be the best

option. Note that the reflector is subject to less variation in the x-axis in com-

parison to the y-axis in both cases. The graphs have been plotted to show the

distribution of the measurements where the frame data displays a negative cor-
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relation between the x and y axes while the tripod data yields little correlation

between the same axes. The tripod was used at three different height settings as

illustrated in Figure 3.20. The tripod was selected as the scanning mechanism

due to flexibility it offered.

(a) (b) (c) 

≈2.5m 

≈ 1.7m 

≈ 1.1m 

Figure 3.20: Different tripod height settings

3.3.8 Drift Nest Stability Analysis

The stability of the floor mounted drift nests forming the joint coordinate frame

was also considered. The variances of each drift nest in the X, Y and Z axes are

summarised in Table 3.4. The values of variance show a high level of stability for

the drift nests.

3.3.9 Test Object Design

A test object had to be designed to sweep through the measurement space. The

design had to be such that a common point could be tracked by both systems

in order to compare accuracy. An arrangement of drift nests mounted onto an

82



3. CHARACTERISATION OF VMCS

Drift Nest σ2
x(µm

2) σ2
y(µm

2) σ2
x(µm

2)

1 70.71 15.87 104.54
2 161.89 40.60 71.56
3 91.02 29.79 102.25
4 105.51 8.03 64.73

Table 3.4: Summary of drift nest variances

aluminium plate was used as the test object. The locations of each nest could be

measured precisely using the LAT therefore accurate alignment during manufac-

ture was not necessary, these position are shown in Figure 3.22. The test object

was mounted on top of the tripod in order to minimise target occlusion.

In total five drift nests were mounted onto the plate, where four would be utilised

by VMCS and the fifth would be used by the laser - the test object is shown

in Figure 3.21. The centroid of the object defined in the Vicon software was set

equal to the location of the RRR occupying the central location on the plate. The

virtual object is shown in Figure 3.23. Just as with the new world coordinate

frame, the relative locations of the markers were calculated.

1 

2 

3 

4 

5 

Figure 3.21: Test object containing coplanar targets. The centroid of the tracked
object coincides with the location of the RRR.

83



3. CHARACTERISATION OF VMCS

−740 −720 −700 −680 −660 −640 −620 −600 −580 −560
3080

3100

3120

3140

3160

3180

3200

3220

3240

3260

3280

Target 5

137.498 mm137.498 mm

103.272 mm103.272 mm

164.728 mm164.728 mm

Target 4

178.59 mm178.59 mm

RRR X Position (mm)

115.949 mm115.949 mm

Target 3

189.452 mm189.452 mm

93.6592 mm93.6592 mm

78.6 mm78.6 mm

94.4773 mm94.4773 mm

Target 1

134.471 mm134.471 mm

Target 2

R
R

R
 Y

 P
o

s
it

io
n

 (
m

m
)

Figure 3.22: Relative measurements of target positions used to create Vicon
object XML file

The location of the RRR was set to the tracked point in the Vicon Tracker

software via the custom defined XML based upon the LAT measurements.

The strength of reflection from the custom retroreflectors is shown in Figure 3.24

using a binary image from one of the cameras.
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Figure 3.23: Virtual representation of the test object in which the underlying
XML file has been defined by the LAT

Figure 3.24: Recognition of custom markers by VMCS cameras
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3.3.10 Method

A 4 × 3 grid was marked on the floor serving to help spatially sample the mea-

surement space at approximately regular intervals on each level as specified by

the tripod height setting. In total data in four layers were captured labelled 0−4

at heights of approximately 0.1 m, 1.1 m, 1.7 m and 2.5 m respectively. The grid,

whose perimeter was comparable to the footprint of the fixed frame, is shown in

Figure 3.25 wherein each large grid cell was further divided into 4 cells giving

rise to 48 sampling points/layer, in addition the grid was aligned with the axes

of the world coordinate frame. The test object was placed in row 0, col 0 at the

beginning of the experiment and was subsequently scanned column-wise through

the grid. Upon completion of a layer the tripod was set to the next level and the

test object was returned to row 0, col 0 to commence collection of the next set

of measurements. A plot of the resultant data which takes the form of a grid is

shown in Figure 3.26, where the measurements have been acquired in the joint

coordinate frame. Note that due to line-of-sight issues with measurements of the

test object close to the LAT, some data on layers 0 and 3 are absent. Layers

1 and 2 contain 48 measurement locations while layers 0 and 3 contain 42 and

30 measurement locations respectively. At each acquisition location about 100

points were acquired.
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+Xwcs 

+Ywcs 

Row 0 

Col 0 

Figure 3.25: Measurements were acquired according to the grid marked on the
floor giving rise to 48 samples/layer.

The threshold of each camera was adapted as a function of the height of the test

object in the volume: this was necessary due to the strength of the reflection of

the targets failing the circle fitting process carried out on-board each camera.
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Figure 3.26: Plot of the raw data showing four layers in which measurements
were acquired.

For each measurement location the error vector between the mean of the VMCS

and LAT data is plotted in Figure 3.27. At each location the vector points to the

LAT data. Interestingly a non-random behaviour is displayed in the data and

indicates that the VMCS measurements are contracted with respect to the LAT

data.
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Figure 3.27: Plot of the error vectors

3.3.11 Results

3.3.11.1 Accuracy of Vicon Measurements

The Euclidean distance error of the VMCS with respect to the LAT is calculated

as follows:

e(r,c) = ||p̄VMCS − p̄LAT|| =
√

(p̄VMCS − p̄LAT).(p̄VMCS − p̄LAT) (3.9)
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where p̄VMCS = 1
N

∑N
i=1 pVMCS

i and p̄LAT = 1
M

∑M
i=1 pLAT

i are the mean values

of each measurement cluster containing N and M points respectively. The plots

of Figures 3.28a through 3.28d show positional error for layers 0 through 3 re-

spectively. Empirical observations of error as a function of location within the

measurement space indicated greater error at the edges of the volume in compar-

ison to its centre suggesting the error function would assume a parabolic form.

This shape is borne out in Figure 3.28a showing the error for the test object as

placed on the floor of the volume and to a lesser extent in the plots of Figures

3.28b through 3.28d. The layer error maximum for each graph was as follows

6.06 mm, 5.19 mm, 4.69 mm and 4.95 mm.

If the grid is considered to be composed of concentric rings, Ri, for i = 0 . . . 2

as shown by Figure 3.31 the error at the edges of the volume may be compared

to the inner regions. Fixing the layer under consideration Lj and plotting the

error attributed to each Ri results in the graphs of Figures 3.29a through 3.29d

for j = 0 . . . 3. Note that the different curves lengths result from the descending

number of contributing cells in going from the outer to the inner ring of the grid.

Figure 3.29c contains missing data as a consequence of the test object being in

a dead space spot with respect to the VMCS. If corresponding Ri’s are plotted

through each layer, Figures 3.30a through 3.30c result. The plots suggest that

the upper and lower most layers exhibit higher error than the intermediate layers

1 and 2 and thus the centre of the measurement volume has better tracking

accuracy than the surrounding regions.
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(b) Layer 1
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(d) Layer 3

Figure 3.28: Surface plots of error as a function of grid location in measurement
space
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Figure 3.29: Surface plots of error as a function of grid location in measurement
space (a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3
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Figure 3.30: Plots of the same ring data for as a function of the layers (a) Ring
0 (b) Ring 1 (c) Ring 2
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3.3.11.2 Uncertainty in Vicon Measurements

The standard deviation associated with the measurement clusters acquired at

each grid location is considered in this section where the standard deviation, σx,

is calculated as follows:

σx =

√√√√ 1

(n− 1)

n∑
i=1

(xi − x̄)2 (3.10)

where xi is a sample and x̄ is the mean resulting from n samples. Evaluation of

the preceding equation through holding constant the ring, Ri, under consideration

the standard deviation data corresponding to layers Lj for j = 0 . . . 3 is plotted

for i = 0 . . . 2 in Figures 3.32, 3.33 and 3.34 for the X, Y and Z axes respectively.

Viewing the data in this form allows consideration of the variance as a function

of height and it can been seen that the mean levels appear similar discounting

the the outlier data. The outlier data was due to the VMCS failing to track

consistently in some locations due low target reflectance. In order to compute

the mean standard deviation for each curve the data associated with each curve

was filtered to remove these outliers through retaining those points, si, which

satisfy the condition

(si − s̄) ≤ 2σs, (3.11)

where s̄ is the mean level of the curve and σs is the standard deviation of the curve.

Repeating the above procedure but plotting the mean of the filtered data yields

the graphs of Figure 3.35. The maximum and minimum standard deviations are

74.39 µm and 4.97 µm respectively over the entire volume, this information is

summarised in a per axis basis in σ̄X , σ̄Y and σ̄Z in Figure 3.36.

If each layer Lj is considered in isolation and the mean filtered data pertaining

to rings, Ri for i = 0 . . . 2 is plotted then Figure 3.37 results where the rows

iterate through j = 0 . . . 3. Analysing the data in this way allows the deviations
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in the outer ring to be compared to those of the inner rings. Given the empirical

observations of greater tracking error at the fringes of the measurement space,

it was expected that the deviations would follow a similar parabolic mapping

with respect to the rings. Figure 3.37 (a), (c), (e), (f), (g), (h), (i), (k) and

(l) validate these observations in showing that the size of the mean standard

deviations descend in going from rings R0 to R2. The graphs in (d) and (j) display

higher deviations in the Y components of the measurements in comparison to X

while (b) shows higher deviation for the Z component over the Y component.

+Xwcs 

+Ywcs 

Row 0 

Col 0 

Ring 0 

Ring 1 

Ring 2 

Figure 3.31: Viewing the measurement space as concentric rings facilitating com-
parison of the outer regions to the inner regions of the measurement volume.
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Figure 3.32: σ in the X-axis expressed in terms of the concentric ring composing
the layers (a) Ring 0 (b) Ring 1 (c) Ring 2
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Figure 3.33: σ in the Y -axis expressed in terms of the concentric ring composing
the layers (a) Ring 0 (b) Ring 1 (c) Ring 2
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Figure 3.34: σ in the Z-axis expressed in terms of the concentric ring composing
the layers (a) Ring 0 (b) Ring 1 (c) Ring 2
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(b) Ring 0 σ̄Y
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(c) Ring 0 σ̄Z
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(d) Ring 1 σ̄X
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(f) Ring 1 σ̄Z
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(g) Ring 2 σ̄X
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(h) Ring 2 σ̄Y
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Figure 3.35: Mean Ring variance for each layer
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Figure 3.36: Average σ in each axes over volume
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Figure 3.37: Mean Ring variance for each layer
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3.4 Conclusion

An experimental characterisation of the Vicon photogrammetry system using a

high accuracy laser tracker was conducted. The study was motivated by empirical

observations of measurement accuracy varying as a function of location within

the system measurement volume. Error quantification was implemented through

simultaneously tracking a test object volumetrically scanned through a measure-

ment space using both systems. The test object, held by a tripod, was measured

at each point of a grid of dimension 8 × 6 and moved through four height set-

tings. A parabolic surface was obtained when considering error as a function of

position for a fixed height setting confirming the empirical observations. It was

found that the maximum observed error (in terms of Euclidean distance) was

approximately 6 mm while the maximum standard deviation was approximately

74 µm. The results show that the system is precise but inaccurate. Importantly

this inaccuracy is a systematic error that may be mitigated through improving

the calibration of the system. The underlying reason is thought to arise from the

number of cameras contributing to the reconstruction of marker positions in the

volume centre being higher than the edges.

This study has been carried out under the net effect of a number of error con-

tributing variables that should be considered in isolation in future work. For

example, the relationship of estimation accuracy and the number of camera rays

involved in reconstruction is a important consideration. Temperature variation

can cause expansion of the metal comprising the fixed frame thus changing the

relative positions of the cameras and in turn reducing the accuracy of the calibra-

tion. Each camera is fundamentally focused in only one plane, the effect of depth

of field on estimation accuracy is another factor that should be investigated. All

measurement systems have limitations, of course, and the validity of the mea-

surements taken by Vicon is dependent upon the nature of the experiment being

conducted in the volume. The measurements are only valid when the measured

quantity is not masked by the error in the measurement system itself.
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The results obtained in this chapter are extremely important in the context of

this thesis and a wider context for end users of Vicon systems. In terms of this

thesis it may be concluded from the results that the centre of the volume yields

the lowest error and variance in measurements with respect to the laser tracker.

This implies that experiments utilising the Vicon system should be conducted

within this central area. Vicon systems are used pervasively in the life sciences,

animation and engineering applications. The procedure developed in this chapter

and future work has the potential to improve the performance of the system. For

example, the errors calculatd from the procedure could be added as an extra term

to be minimised in the optimisation used in the calibration of the system.
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Chapter 4

Visual Odometry

4.1 Introduction

This chapter describes the design, implementation and evaluation of a Visual

Odometry (VO) system for use in planar operating environments. An onboard

machine vision camera is mounted perpendicularly to the heading vector of the

robot such that it observes the surface over which the vehicle is travelling. The

resultant orthographic images are transmitted over a network link to a worksta-

tion for processing. The aim of the system is to provide the dual function of

stitching successive surface images and simultaneously estimating the motion of

the vehicle through consideration of the apparent motion of image features. The

former is of direct benefit in the context of NDE in that the resultant image

mosaic may be used for visual NDE.

The motivation for this work is based on the fact that the inspection environment

determines the method of platform locomotion as result of, for example, surface

terrain/material. The position of this platform may not always be amenable

to estimation by wheel encoders which is the case for a four wheel drive robot

(see Figure 4.1) which depends upon wheel slippage in order for the vehicle to

turn: encoders attached to the wheels would drift very quickly. Although visual
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4. VISUAL ODOMETRY

odometry by the nature of the estimation process will drift, it can provide a

useful low level source of positioning data to be fed as an estimate into further

processing.

Figure 4.1: Four wheel drive NDE robot designed to operate on a standard non-
slip metal chequerboard for industrial inspection application in nuclear plant.

4.1.1 Literature Review

Continual advancements in processing power particularly with Graphical Process-

ing Unit (GPU) technology have meant that realtime image processing techniques

are being used increasingly in robotics. Camera sensors can play several roles due

to the information rich nature of an image including object/shape recognition,

motion estimation and ranging. In the context of mobile robotics, the use of a

multi-purpose sensor could be beneficial in terms of weight, power and cost. An

additional advantage of a single sensor is that potentially complicated inter-sensor

calibration can be avoided. In NDE inspections, visual inspection is extremely
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important in its use as a first pass in identifying anomalous features on the struc-

ture under investigation, as such visual sensors form one of the major sensors

carried on-board the RSAs.

4.1.1.1 Camera as a Metric Device

A single camera receives a projection of the scene onto its image sensor. This

data by itself cannot provide metric information about the content of the image.

If constraints are applied, however, such as knowing a priori the dimensions of

an artefact in the scene then metric data can be obtained through a scaling

from pixels to metric length. Monocular systems such as the one presented in

this chapter must make use of such constraints. Single cameras augmented with

sensors such as IMU’s can provide metric data where for example the camera

provides a refinement in the positional estimate output by the IMU. Metric data

can be estimated directly if more than one camera is utilised in for example a

stereo configuration as described in Section 2.3.3.2.

4.1.1.2 Image based Motion Estimation

The premise of all image based motion estimation systems is the same: identify

common areas in different images and then use these areas to infer how the camera

has moved between images or conversely how the object has moved between

cameras. The common points can be a priori known markers or fiducials ; this is

the case for the Vicon system which uses fixed spherical markers. Because the

system in effect knows what to look for in the incoming images, processing is

inexpensive and the system can be made robust. There also exists the concept

of markerless systems where the common areas comprise pixel arrays derived

from the content of the image - this type of system is much more difficult to

implement in practice. This is the type of system implemented in this chapter

because usually in most cases the inspection environment cannot be prepared a

priori and therefore virtual fiducials must be created.
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Image stitching (also known as mosaicing) without the use of fiducials is an ex-

tensively researched area in the computer vision literature. Szeliski [67] provides

a detailed overview of the techniques available for aligning images: the categories

reduce to direct alignment or feature based alignment. The direct approach at-

tempts to align images through minimisation of an error metric describing how

well the pixels in both images agree - every pixel in both images are taken into

consideration. For the method to work well it needs to be initialised close to the

global minimum. The feature based approach seeks to align the images through

consideration of a set of points extracted from both images - only a subset of

pixels are used. With advancements in feature extraction algorithms, the feature

based approach has gained favour in the literature [68] and as such the feature

based approach was adopted for the system developed in this chapter.

Estimating vehicle motion from images was firstly considered by Moravec [69] for

the case of a stereo pair of images and more recently in [70]. Nister [71] reports

on a robust real time visual odometry system for both the stereo and monocular

case executing on consumer grade hardware in outdoor environments. These

systems employ the same fundamental steps: stable features are extracted from

incoming images; an outlier rejection scheme is applied and the resultant set of

points are used to estimate inter-frame vehicle motion. The problems of stitching

and motion estimation are closely related. The estimate of motion in this system

results as by product from determining the optimal rigid body parameters that

minimise the positional error between features extracted in both images.

MacKenzie [72] demonstrated the use of a low cost imaging sensor integrated into

a pipe crawling platform for automated defect recognition and classification. One

of the objectives in this chapter is to stitch successive overlapping images, that

the resultant image could then be supplied to the system developed in [72] for

post inspection defect analysis.

A system conceptually similar to that developed here is reported in the paper by

Ferrer et al [73]. The system creates an image composite from multiple images

acquired from a subsea vehicle using a monocular camera observing the seafloor.

The approach firstly arranges the images according to the position of the vehicle
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estimated by an onboard IMU. The positions of the images are then refined

through a global optimisation to minimise a cost function expressing positional

error between the extracted features in the images. This system falls in the

category of camera and sensor for providing metric data.

Hansen et al [74] describe a monocular visual odometry system for application

in NDE that has several similarities to the system developed here. High resolu-

tion visual metric maps of internal pipe walls are generated by a wheeled robotic

crawler (travelling axially in both directions) to enable the inspection of pipes

carrying liquefied natural gas. Lighting is provided by Light Emitting Diode’s

(LED) coupled with an application specific calibration procedure to minimise the

adverse effect of non-uniform illumination in the images. To extract metric data

from a single camera the system relies upon two important constraints namely

that the pipe is a straight section and is of constant radius. If these assumptions

hold, the system is capable of estimating the 3D orientation and position of the

camera through optimising the alignment of all (overlap from both passes) over-

lapping images. The authors implement both direct and feature based alignment

methods and show that the positional error compared to ground truth is within

1% when traversing 4 m and 6 m long pipes.

In a follow up paper Hansen et al [75] substitute the single camera with a stereo

configuration that enables direct 3D measurements and thus allows the previous

pipe geometry constraints to be relaxed. A similar optimisation scheme is then

used to best align all overlapping images, again the authors show an error of

less than 1% compared to ground truth on the datasets used to demonstrate the

system.

The feature based techniques discussed above depends upon the availability of

features in the operating environment. If features are not present motion cannot

be estimated from image data. This condition is usually met in natural environ-

ments such as in the outdoor and subsea environments in [71] and [73]. However,

in artificial environments scenes composed of repeating structures and low texture

materials could be problematic for feature extraction. As demonstrated in [74],

the NDE operating environment is usually rich in texture from mechanical fix-
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tures and surface defects such as rust, cracks and scratches. Given the likelihood

of features being available in real world scenarios, the feature based approach was

chosen.

4.2 Hardware Implementation

This section describes the embedded hardware and software used to implement

the visual odometry system. The high level embedded system carried by each

RSA is described followed by details of the imaging sensor that was interfaced

with this embedded controller.

4.2.1 Embedded System

During the course of this research the embedded system used by the RSA was

phased out of production, therefore, it was necessary to migrate to a new hard-

ware platform. The Overo Fire embedded computer produced by Gumstix Inc.

was selected as the basis of new the hardware system. The Gumstix would serve

as the high level processor communicating with a server controlling one or more

RSA units. The selection was based upon form factor, wireless communications

and extensive processing capability provided by a 720 MHz processor coupled with

graphics and digital signal processors. The system runs an embedded Linux op-

erating system which supports a number of programming languages, the C/C++

programming language was chosen for efficiency. The Gumstix provides more

computational resource than required on a robot, however, it results in great

flexibility for development.
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4.2.2 Image Sensor

25mm 

41mm 

44mm 

50mm 

Figure 4.2: Point Grey Research Chameleon. Sony ICX445 1/3” CCD based
camera of dimension 25.5 mm x 41 mm x 44 mm

A Charge Coupled Device (CCD) based Chameleon camera from Point Grey Re-

search Inc [76] was chosen for image acquisition, the sensor is shown in Figure 4.2.

A Universal Serial Bus (USB) 2.0 connection allowed it to be interfaced with the

embedded computer in a straightforward and robust manner. The CCD of size

1296 x 964 pixels with 8/16 bits of resolution and can produce color/grayscale

images. The camera also has an external trigger to allow synchronisation with

data captured from other sensors. A key selection criterion for the camera was

the availability of a global shutter which is extremely important for imaging fast

moving objects. Such a shutter exposes all pixels for the same time period en-

suring that the scene being observed is captured without image smearing; this is

an effect that can occur with rolling shutters. Use of a rolling shutter would be

detrimental to the feature matching process as features could be smeared leading

failed matches or false positives. A C-mount Fujinon [77] low distortion lens with
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a focal length of 6 mm, variable F -number ranging from F1.2-F16 and horizontal

and vertical fields of view of 43◦ and 33◦ respectively was selected to pair with

the imaging sensor.

In the RSA implementation, 640 x 480 pixel images with 8 bits/pixel were ac-

quired at a rate of approximately 30 Hz into the embedded system. The camera

application programmers interface embodied the IEEE 1394 standard allowing

manipulation of several important parameters controlling image acquisition in-

cluding the shutter time and and gain factors. The libUSB [78] library was used

to convert the IEEE 1394 packets into USB packets. Following acquisition the

images were relayed across the active network connection (Wi-Fi/Ethernet) to

a central controlling server for image processing. The images were transmitted

without compression in order to avoid compression artefacts that could modify

image features. A block diagram of the processing pipeline is shown in Figure

4.3.

Chameleon Overo Fire 

USB 2.0 

GUI 

Wi Fi 
≈10Hz 

640 x 480  
Raw  Greyscale  
Image 

Ethernet 
≈ 28Hz 

Visual 
Odometry 

RSA Workstation 

N 640 x 480  
Raw  Greyscale  
Image 

Figure 4.3: System block diagram. The acquisition rate over Wi-Fi was on average
10 Hz while 28 Hz was achievable on Ethernet.

4.2.3 Image Distortion

Prior to camera operation, the camera was calibrated in order to determine the

parameters defining the mapping from world to camera frame coordinates. This

mapping is a combination of a linear component resulting from the idealized pin

hole model of the camera discussed in Section 2.3.3.2 and a non-linear component

arising from the lens whose operation deviates from this ideal. The extent of the
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non-linearity is a function of the focal length of the lens: the smaller this value

then the greater the ability of the lens to bend incoming light rays and as result

the greater is the non-linearity [28]. The distortion introduced by the lens may

be modelled by radial and tangential distortion of which the former typically

dominates in contribution. The image plane point to which a world coordinate

maps is denoted, (u, v), and given by the following [79]:

(
u

v

)
=

(
cx

cy

)
+
f

zc

(
xc

yc

)
, (4.1)

where (xc, yc, zc) is the 3D world coordinate in the frame of reference of the camera

and f (assuming square pixels) is the camera constant denoting the distance in

pixels between the image plane and the projection centre. If the distorted version

of this coordinate is denoted (ud, vd) then the problem becomes one of finding the

functional mapping between the two coordinates. In the case of radial distortion,

the distortion can be modelled as follows:

xd = xn(1 + k1r
2 + k2r

4), (4.2)

where r = |xn| i.e. the radius upon which the undistorted point lies, k1 and k2 are

distortion parameters and the points xn and xd result from rearranging Equation

4.1 and evaluating for zc = 1. The tangential distortion can be modelled as

follows:

xt = xn +

(
2k3xnyn + k4(r2 + 2x2

n)

k3(r2 + 2y2
n) + 2k4xnyn

)
(4.3)

which is a function of distortion parameters k3 and k4. The full lens distortion

model is a linear combination of the radial and tangential contributions as follows:

xd = xr + xt (4.4)
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Equation 4.4 is a forward model. Given the distorted coordinates, the objective is

to recover the original undistorted coordinates, i.e. the inverse model is required.

The inversion of the Equation 4.4 cannot be carried out analytically due to the

undistorted point xn being a independent of (ud, vd). An iterative procedure can

be used to minimise an approximate inverse model of the form:

xn ≈ x′n =
1

(1 + k1r2 + k2r4)

[
xd −

(
2k3xnyn + k4(r2 + 2x2

n)

k3(r2 + 2y2
n) + 2k4xnyn

)]
, (4.5)

where x′n is the approximation of the true undistorted coordinate xn. Distor-

tion can be handled in two ways: either every pixel of the incoming image is

remapped to undo the lens distortion or alternatively if a feature based method

is being used then features can be passed through the forward (Equation 4.4)

and inverse mappings (Equation 4.5) [80] with the every pixel method being

more computationally expensive than the feature based method. In the present

implementation the “every pixel” method was used for simplicity.

The Matlab Camera Calibration Toolbox [81] was used to determine the camera

intrinsics matrix of Equation 2.7 and the distortion parameters k1 through k4.

The procedure consisted of capturing 25 images of a calibration artefact with

known geometry from varying viewpoints. The grid intersection points from the

resultant set of images were manually extracted to subpixel resolution and used by

the toolbox to find the mapping from the distorted version of the grid to the ideal

rectilinear form. A distorted image of the artefact which consisted of a black and

white grid with known cell size is shown in Figure 4.4(a) while the corresponding

undistorted version is shown in Figure 4.4(b). As can been seen in Figure 4.4(a),

the true straight lines of the grid appear curved with the severity of the distortion

being greater at the edges of the image compared to its centre. The undistorted

grid corrects for the distortion and in doing so some of the original image data is

lost. Figure 4.5(a) visualises the effect of the lens distortion wherein the length

and direction of each arrow represents the displacement of the corresponding pixel

introduced by the lens.
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(a) (b)

Figure 4.4: (a) Distorted image of calibration grid. The straight lines of the grid
appear curved. (b) Undistorted image of calibration grid. The straight lines of
the grid appear straight following calibration
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Figure 4.5: (a) Visualisation of the tangential and radial lens distortion of pixels
in a VGA resolution image (b) XY residuals between true corner points and
model predicated points using parameters from Tables 4.1 and 4.2

The estimated parameters of the intrinsics matrix and distortion coefficients are

shown in Tables 4.1 and 4.2 respectively with their associated uncertainties. The

tangential parameters are an order of magnitude smaller than those for the radial

distortion as suggested by the image of the artefact. The error resulting from the
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difference between the manually extracted corner points for an image and those

predicted through application of the distortion model is plotted in terms of XY

error for each image in Figure 4.5(b). The graph shows that the mean error in each

of the components is around 0.5 pixels which was considered sufficiently low to

proceed with the values calculated from the procedure. Given these parameters,

the distortion correction was implemented in C++ using the associated functions

in OpenCV [82].

Intrinsic Parameter (Pixels) Optimised Value ±3σ

Focal Length (fc)

(
840.45

838.91

)
±

(
9.30

9.39

)

Principal Point (cc)

(
331.13

235.01

)
±

(
7.41

7.44

)
Skew (αc) 0

Table 4.1: Entries of the intrinsics matrix resulting from the calibration procedure

Distortion Parameter Optimised Value ±3σ

k1 −0.14± 0.044

k2 −0.52± 0.48

k3 0.0012± 0.0015

k4 0.0024± 0.0016

Table 4.2: Distortion Parameters calculated from calibration

The extent to which successive images overlap is a function of vehicle speed

and the frame rate of the camera of which the latter is less flexible. Vehicle

speed should therefore be chosen to maximise overlap within the time constraints

of the inspection. The developed system operates offline therefore for ease of

development the entire image was undistorted before proceeding with the feature

extraction stage.
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4.3 Feature Extraction

An image is a information-rich signal which can enable several functions to be

carried out within a robotic system. For visual odometry, only a subset of this

data is required. Feature extraction is a commonly used dimensionality reduction

technique which constitutes a fundamental task in computer vision. It comprises

two sub-problems namely feature detection and description.

A feature may be defined as a region of the image which is dissimilar to its imme-

diate neighbourhood in terms of properties such as intensity, colour and texture

[83]. Each feature has an associated descriptor consisting of a set of measure-

ments representing the image structure in its neighbourhood. Once defined, the

descriptor can be used to identify the same feature in another image which po-

tentially has a different viewpoint of the scene. The extracted feature may have

relevance in the context of the image for example if the detector extracts edges

these could correspond to lines on the object in the image. Features can also be

regions of the image which may not have particular meaning with respect to the

image but the composition of the pixels is such that in tracking applications it can

serve as an area that can be tracked in an accurate and stable manner. Within

this area of research there exists the concept of local and global features. Global

features reduce an image to a single set of parameters and are often used in object

recognition tasks [84]. This type of feature tends to be sensitive to clutter in the

scene and occlusions of the object in question. Local features first investigated by

Schmid and Mohr [85] on the other hand produce many features and associated

descriptors from a single image. There exist a large range of feature extraction

algorithms in the literature that focus on extracting different types of feature

including, corner detectors, blob detectors and region detectors.

Local features have gained widespread use in computer vision tasks including

texture recognition, robot localisation, building panoramas primarily for their

invariance to operations such as scaling, rotation and illumination changes. The

paper by Tuytelaars and Mikolajczyk [83] lists several desirable properties that

extracted local features should exhibit. The most important is that of repeatabil-
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ity meaning the ability to re-detect the same point across images with differing

viewing conditions. The property of repeatability is a function of the property of

distinctiveness which refers to the uniqueness of the vector of parameters used as

a fingerprint for the feature. In addition to the preceding a good feature should

be local in order to minimise occlusion effects; there should exist a reasonable

quantity of features in the image; the features should be accurately localised in

the image and finally it should be efficient to calculate the descriptor.

The descriptor can take the form of an image patch which is effectively an area

cut out of the image whose centre lies on the feature. To determine if a particular

feature resides in a different image, the correlation of the two patches from each

image can be used to determine patch similarity. This method can be made to

be illumination and rotation invariant, however, matching failure can occur due

to the relative warping of the patches resulting from camera viewpoint changes.

Another technique often used is based upon histograms which capture colour

information in the image. Evaluating the histogram of patches in the neighbour-

hood of the feature can been used in combination with shape information to

identify a point.

The Scale Invariant Feature Transform (SIFT) developed by Lowe [86] proposes

both a detector and invariant descriptor. SIFT features are robust to changes

in image scale, rotation and partially invariant to illumination changes. The al-

gorithm comprises of several involved steps, the reader is referred to [86] for a

comprehensive description; the following provides a brief overview of its opera-

tion. A feature is obtained from scale-space extrema of Difference of Gaussians

(DOG) within a DOG pyramid. A Gaussian pyramid is created from the in-

put image through repeated smoothing and subsampling. The DOG pyramid is

then computed from the differences between adjacent levels in the pyramid. The

coordinates of features are points in the DOG that are extrema. A descriptor

comprising of a 128 element vector is created for each SIFT feature calculated

from a 16x16 grid of pixels centred on the feature. This window is then divided

into a 4x4 pixels block. In each block the gradient and orientation for each pixel

is calculated and discretized into eight orientation bins. The SIFT descriptor is

composed of the gradient and orientation values from each block.
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SIFT is used pervasively in the computer vision based robotics literature. Miko-

lajczyk and Schmid [87] carry out an exhaustive evaluation of ten local descrip-

tors comprising of histogram, spatial frequency and differential based descriptors

through consideration of matching and recognition of the same scene/object un-

der different viewing conditions. In particular, the authors consider geometric and

photometric image transformations in scale, rotation, blurring, viewpoint and il-

lumination, the effects of JPEG compression are also considered. It is found that

the Scale Invariant Feature Transform (SIFT) performs very well in comparison

to the other types of descriptors for most of the tests only being out performed

by the gradient location and orientation histogram descriptor proposed by the

authors.

Bauer et al [88] carry out a comparison of SIFT and the Speeded Up Robust

Features (SURF) [89] algorithm on a set of natural scene outdoor images. Simi-

larly to SIFT, SURF provides both a detector and invariant descriptor. Instead

of calculating the DOG, SURF computes the Hessian matrix for identifying fea-

ture points within the image. A 64 element descriptor describes the distribution

of Haar-wavelet responses in a window surrounding the feature coordinate. The

smaller feature length reduces the time required for feature computation and

matching compared to SIFT. It was found that the SIFT produced more features

per image than SURF and that the associated quality of matching was slightly

greater for SIFT according to the metric defined as the ratio of correct to incorrect

matches. SURF, however, was found to produce more interest points per unit

time in comparison to SIFT which may be of importance for real time systems.

The authors conclude that for real time systems the better run-time performance

of SURF outweighs the slightly better feature quality of SIFT. The greater ac-

curacy of SIFT was favoured over SURF in the current implementation. With

the rise of GPU implementations [90], the reduction in realtime performance was

not considered to be an issue. The widely used MATLAB/C++ based SIFT

implementation due to Vedaldi [91] was used.

The power of the feature extraction concept lies in matching features between im-

ages using the descriptors. This is implemented in terms of the nearest neighbour

(subject to a threshold constraint) in terms of Euclidean distance in the descriptor
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space. Carrying out the matching procedure yields a set of point correspondences

between the images which can be used to infer motion of the camera from changes

in feature image locations. Invalid matches can occur when the descriptor vec-

tors assume similar values as a results of, for example, the image containing self

similar patches or sensor noise. Failure to remove such false positives or outliers

will produce incorrect estimates of motion and thus have a significant impact on

accuracy of the motion estimates. The following section presents a technique for

performing outlier rejection.

4.4 Random Sample Consensus

In the set of correspondences there generally exist erroneous matches which can

introduce error into the calculation of the image to image transform. The Ran-

dom Sample Consensus (RANSAC) algorithm introduced by Fischler and Bolles

[92] was used to perform outlier rejection. RANSAC is an iterative algorithm

which uses a hypothesise-verify framework to estimate model parameters. This

is achieved through generating a model from putative inliers and subsequently

checking the deviations of the model with respect to the remaining data. Specif-

ically a random subset of the data is selected where the cardinality of this subset

is the minimum necessary to compute the free parameters of the model. This

fundamentally differs from least squares techniques that make use of all available

data to estimate the model parameters. The point wise errors of the model with

respect to the data is then evaluated. If the sum of such errors is less than a user

defined threshold, ε, which is a function of the noise contaminating the points then

the current parameters are stored in a consensus set. If this error is greater than

ε, the model is discarded and the preceding steps are iterated until the threshold

constraint is satisfied. As a result of multiple iterations, several consensus sets

will be generated and can be ranked according to their cardinality. When the

total number of iterations has been completed the model parameters associated

with the largest consensus set is selected as the output of the algorithm.
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The number of iterations, N , of the algorithm may be set through the following

analysis [93]. Let p be the probability that at least one of the random sets does

not contain an outlier. If the probability of selecting an inlier is assigned, u, then

the probability of a random set of size, m, elements containing inlier’s exclusively

is um assuming the points are independent. The probability that a least one point

in the random set is an outlier is, 1 − um, which is greater than the probability

that they are all outliers (1 − u)m. Given the preceding the following equation

may be established assuming the iterations are independent:

1− p = (1− um)N (4.6)

Through rearrangement of Equation 4.6 a lower bound for N can be derived as

follows:

N =
log(1− p)

log(1− um)
(4.7)

In the current implementation N was set to 1000. Given the set that has produced

the best fitting model parameters, the inlier’s making up this set can be used to

recompute the model parameters using a least squares technique. In this system,

RANSAC was used to estimate the homography, H, relating two images. A

homography is an invertible image transform that can describe general perspective

changes between two images. H was estimated using the Direct Linear Transform

(DLT) [28] with a random subset size of four. The inliers corresponding to the

best fitting homography were used to compute the rigid body transform relating

two images described in Section 4.7.

4.4.1 Outlier Rejection Example

The image processing pipeline in this system is demonstrated by a simple ex-

ample. Figure 4.6 displays consecutive images of a grid acquired by the robot

during a traversal of approximately 20 mm, this is illustrated by the downward
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translation of the handwritten “25” in going from one image to the next. A

subset of the extracted SIFT features are shown in the left of Figure 4.7. The

corresponding features matched to this set through computing the nearest neigh-

bour in descriptor space are plotted in the right and connected by a line. Notice

that the majority of lines look to have a gradients of similar value across the

two images while the two outliers are clearly visible with a markedly different

gradient: the purpose of RANSAC is eliminate such outliers from the set of point

correspondences.

Figure 4.6: Left: imaget−1, Right: imaget. During interval ∆t the vehicle has
translated approximately 20 mm

Figure 4.7: Subset of SIFT matches prior to outlier removal. The lines connect
matched features between the two images.
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4.5 Conversion to Metric

The use of a monocular camera as metric device in this system depends upon

the assumption that the robot is travelling on a flat surface which gives rise to

the constraint of constant depth, z. The configuration is shown in Figure 4.8(a)

where the camera captures a fixed area, in this case, 29.89 mm x 39.86 mm,

of the surface over which it is moving. The focusing distance and field of view

of the lens determine the area that can be imaged. This constraint means that

it is possible to determine a conversion factor to transform from pixels to mm.

This is similar to the constant radius assumption used in the pipe crawler in [74].

The planarity assumption is not very restrictive in the context of NDE as many

scenarios consist of inspecting large panel type structures.
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Figure 4.8: (a) Point Grey Research Chameleon camera mounted perpendicularly
to the direction of travel. The Z offset was ≈ 40 mm. (b) Robot and camera
coordinate frames

4.6 Feature Extraction on Industrial Surfaces

The applicability of the technique relies critically on the texture of the surface

over which the vehicle is travelling. Highly textured surfaces meaning those that

exhibit large variations in pixel intensity generally yield a high count of distinctive

features and thus provide many points from which to compute the inter-image
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transform. Low texture surfaces conversely provide a low feature count and also a

higher probability of the extracted descriptors being similar due to the underlying

homogeneity of the surface. Such surfaces can therefore prove to be difficult both

in terms of an insufficient number of features to compute the transform (minimum

of three points are required) coupled with erroneous matching amongst these

features due to the similarity of the descriptors: these factors can cause failure of

the method.

This section assesses the effectiveness of feature extraction on a range of NDE

materials through the computation of mean feature densities. SIFT features and

descriptors are extracted on samples of aluminium, steel, bricks and substantially

rusted steel. Images of the laboratory floor are also considered - such images are

used in the results section to demonstrate application of the technique on a large

dataset. The different materials are shown in Figure 4.9 where it is apparent that

the surfaces display varying levels of reflectivity and texture under the ambient

lighting conditions.

4.6.1 Illumination

Illumination of the scene plays an important role in any image processing ap-

plication: in this study experiments were conducted under controlled laboratory

lighting. In practice the available lighting is a function of the inspection scenario.

For example, limited access could mean that external lighting needs to be de-

ployed into the area before the inspection can take place. Independence of the

ambient conditions in-situ could be gained through mounting the camera in an

enclosure that internally projects light uniformly onto the surface. The experi-

ments approximated the use of uniform lighting via external flood lights arranged

so as to minimise shadows.
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(a) 

(c) 

(b) 

(d) 

(e) 

Figure 4.9: Typical image of the samples used for evaluation (a) Reflective alu-
minium plate section (b) Smooth steel plate section (c) Construction bricks (d)
Weathered section of steel containing flaking patches of rust and areas pitting (e)
Matte laboratory floor
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4.6.2 Methodology

A test sequence of 60 images was recorded for each type of material. The metric

of feature density measured at sequential stages of the feature extraction pipeline

was used as the evaluation criteria for the materials. Specifically the densities

associated with the following were considered:

1. Extracted SIFT features

2. Successfully matched features detected in 1.

3. Inliers found by RANSAC resulting from the set of matched points in 2.

The vehicle was instructed to drive a linear path at an average speed of 20 mm/s

resulting in a mean overlap of 75% between consecutive images. The SIFT match-

ing and RANSAC thresholds were set to values found to be empirically optimal

from observation of path errors evaluated from many runs of the experiment.

Feature densities were measured simply by dividing the number of features in

steps 2. and 3. by the area of image intersection calculated from VCMS ground

truth. The total feature density in 1. was calculated with respect to the total

fixed area captured by each image as shown in Figure 4.8(a).

It was considered from visual inspection of the samples in Figure 4.9 that the alu-

minium sample would present a particular challenge due its reflectivity and self

similar appearance. The remaining surfaces conversely displayed very little or no

reflections and had clear textural patches suitable for satisfying the constraints

specified by the SIFT detector. These observations are borne out in Table 4.3

which summarises the feature densities associated with the total number of ex-

tracted features, the number of successfully matched features and the number of

inliers determined by RANSAC.
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Material
Mean Feature Density(pts/mm2)

Total Matched RANSAC

Aluminium 0.92 0.0041 0.0026

Steel Plate 1.06 0.19 0.18

Bricks 1.07 0.58 0.58

Rusted Steel 1.65 0.85 0.84

Lab Floor 0.96 0.16 0.13

Table 4.3: Feature densities measured for a set of NDE materials. SIFT match
threshold was set to 3 and the RANSAC threshold was set to 0.0055.

4.6.3 Results

The aluminium sample had a total extracted feature density of 0.92 pts/mm2

which is of similar magnitude to the density for the bricks and steel samples.

There is, however, a dramatic reduction in the matched and RANSAC densities

for the aluminium sample in comparison to the steel and bricks, the implication

being that although there are comparable feature densities the descriptors are

indistinct. This is further evidenced by the relatively large reduction in going

from the matched to RANSAC densities - this reduction indicates that there is a

high level of incorrect matches. In addition to this, in applying SIFT to this test

sequence there were several occurrences of no detected inliers. It is considered

that the lighting conditions and reflectivity of the material may have been too

testing for the partial illumination invariance property of the SIFT descriptors.

This test demonstrated that aluminium was not suitable for visual odometry due

to high levels of incorrect matches.

The rusted steel sample produced the highest total feature density, a result sug-

gested by observation of Figure 4.9(d) which shows a high degree of surface

texture. The quality of the SIFT matches is indicated by the small difference

between the matched and RANSAC densities; this shows that the majority of

SIFT matches were valid. The steel plate, bricks and lab floor image sets yield
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similar levels of total feature densities with the bricks and lab floor giving rise

to less matched points. There exists small difference between the matched and

RANSAC densities again indicating a high quality of SIFT matching. These

measurements correlate with the visible texture shown by the surfaces in Figure

4.9.

Real NDE inspection scenarios generally contain texture rich surfaces as a result

of the environmental conditions. The rusted steel sample is particularly repre-

sentative of the condition of materials likely to be encountered in the field. The

high quality of SIFT matching on this material demonstrates the suitability of

the feature based technique for real inspections.

4.7 Image Based Odometry

The problem of estimating the transform between images is illustrated in the

schematic of Figure 4.10. In the interval between time t− 1 and t the robot has

both translated and rotated giving rise to the arrangement shown. Given common

features (circles in this case) identified in both images, the objective is to recover

the transform, T , relating the poses of the robot when the images were captured.

Note that the images are captured at an offset toffset = (∆xCAMCR ,∆yCAMCR ) with

respect to the centre of rotation CR. The offsets must be estimated in order to

transform from the camera frame to the robot’s frame of reference.

The pipeline for the image processing used to determine T is shown in Figure 4.11.

It operates in an incremental fashion whereby incoming images are immediately

processed and integrated into the positional estimate. The image arriving at

time, t − 1, is firstly undistorted followed by the extraction of a large number

of SIFT features, ft−1, whose associated descriptors, dt−1, are then stored. The

same process is carried out for the image arriving at time t yielding ft and dt.

A search for the descriptors obtained for imaget−1 is carried out in imaget. The
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Figure 4.10: Schematic showing the geometry of the problem through overlapping
imaget (red) and imaget−1 (black).

result is a set of correspondences, fmatched. Incorrect matches within this set are

removed using RANSAC to yield the set of inliers finliers which are subsequently

used to compute the rigid body transform relating the two point sets.
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Figure 4.11: Diagram of image processing pipeline

130



4. VISUAL ODOMETRY

4.7.1 Estimating the rigid body transform

Given two N-point data sets, M = {mi|i = 1 . . . N} and D = {di|i = 1 . . . N},
containing point correspondences from image t − 1 and image t respectively the

objective is to determine the parameters of the rigid body transform, R and t,

that minimises the cost function:

E(R, t) =
1

N

N∑
i=1

‖mi − (Rdi + t)‖2, (4.8)

where in the 2D case R is the 2× 2 matrix:

R(∆θ) =

[
cos(∆θ) −sin(∆θ)

sin(∆θ) cos(∆θ)

]
, (4.9)

and t is a 2-vector:

t = [∆x,∆y]T , (4.10)

note that the notation ‖‖ denotes Euclidean distance. Minimisation of such

a function is not limited to the work described in this thesis - this a general

problem that occurs when trying to register data sets arising from any sensor that

produces point cloud data e.g. LIDAR. The paper by Nüchter et al [94] provides

an in depth review of the known closed form solutions and also presents some

linearised techniques. This problem may be cast as a constrained optimisation

where the constraint pertains the particular form that the matrix R may assume.

A rotation matrix is one in which the columns are orthonormal, det(R) = 1

and R−1 = RT . The closed form method developed in [95] based upon the

Singular Value Decomposition (SVD) of the correlation matrix generated from the

point correspondences was selected for its simplicity and ease of implementation.

This selection is supported by the paper by Lorusso et al [96] in which it is

demonstrated that the SVD approach performs well in terms of accuracy and
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stability with respect to degenerate datasets in a simulation based comparison

with three other well known algorithms. The centroid of each dataset M and D

is firstly calculated:

cm =
1

N

N∑
i=1

mi (4.11)

cd =
1

N

N∑
i=1

di (4.12)

and removed from the points comprising D and M respectively such that each

point cloud has been translated to the origin. The correlation matrix C is then

calculated as according to Equation 4.13:

C =
N∑
i=1

m′Ti d′Ti =

(
Sxx Sxy

Syx Syy

)
, (4.13)

where m′i = mi − cm and d′i = di − cd. The SVD of C is evaluated to yield the

following decomposition:

C = UΛV T , (4.14)

where U and V are unitary matrices and Λ is a diagonal matrix with non-negative

real numbers on the diagonal. Given these matrices rotation is calculated as

follows:

Rt
t−1 = V UT , (4.15)
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where the change in angle can be recovered by:

∆θ = arctan(
Rt
t−1,12

Rt
t−1,22

). (4.16)

Note that computation of the rotation matrix is independent of the units of

the coordinates used to generate the correlation matrix, C. Given, Rt
t−1, the

translation between the point clouds is given by:

t = cd −Rt
t−1cm (4.17)

Equation 4.17 computes the translation in the frame of reference of the camera

Fc, see Figure 4.8(b). The trajectory of the robot is recursively estimated via the

following set of update equations:

pt,θ = pt−1,θ + ∆θ (4.18)

pt,(x,y) = pt−1,(x,y) +RW
r (pt,θ)t

′, (4.19)

where the term RW
r (pi,θ) is:

RW
r (pi,θ) =

[
cos(pi,θ) −sin(pi,θ)

sin(pi,θ) cos(pi,θ)

]
, (4.20)

is the rotation matrix mapping the translation calculated in the Fr to the global

world frame, Fw, and t′ = [−∆x,∆y]T . The update equations are independent of

an underlying kinematic model describing vehicle motion across successive time

steps and thus the applicability to vehicles such as the 4 wheel drive robot in

Figure 4.1 is clear.
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4.7.1.1 Transform Mean Square Error

The transform Mean Square Error (MSE) is given by instantiating Equation 4.8

with the model parameters calculated in the preceding steps.

MSE =
1

N

N∑
i=1

‖mi − (Restdi + test)‖2 (4.21)

Pose estimation in the robot frame, Fr, is achieved through application of the

transform relating the camera and robot coordinate frames in accordance with

Equation 4.22. Note that this equation is applied before mapping the pose esti-

mate into the global frame.

prt = pct −R(pt−1,θ)toffset (4.22)

4.8 Estimate of Transform Uncertainty

As a result of the recursive nature of the estimation the uncertainty in the visual

odometry estimate can grow without bound - this is the case for any odometry

system. A useful property of the visual technique is that there is a clear method

for characterisation of this uncertainty through analysis of the inter image trans-

form. This uncertainty arises from:

1. Detector Noise

2. The random behaviour of RANSAC

As a result of 1) the relationship between the correspondences is in general non-

rigid necessitating the optimisation procedure to determine the best fitting rigid

parameters. A sequence of static images of the materials considered in Section

5 is used to evaluate detector noise. In 2) the features selected to form the set
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of inliers is a function of the RANSAC threshold, ε, and thus the rigid body

parameters can be viewed to be a function of ε; the influence of this parameter

on the transform is investigated.

4.8.1 Detector Noise

A sequence of 50 images for the materials (b)-(d) shown in Figure 4.9 was ac-

quired from a stationary robot. In order to consider the noise associated with

the detector, a particular point, p, was extracted in image1 and a set of cor-

respondences, p′i, were detected in the remaining images using the descriptor

obtained in image1. The variances in the x and y components for each material

are shown in Table 4.4. The steel and aluminium samples display differing vari-

ances for the x and y components while those for the bricks and rusted steel are

of similar value. These measured variances will be used as an approximation of

detector noise when the robot is in motion. These values do not take account

of image blurring, however, this was minimised as far as experimentally possi-

ble through prudent selection of the camera shutter time, therefore, blur made

negligible contribution to the computed variances.

Material σ2
x (Pixels2) σ2

y (Pixels2)

Steel Plate 0.17 0.023

Bricks 0.012 0.012

Rusted Steel 0.010 0.023

Lab Floor 0.025 0.058

Table 4.4: Detector variance evaluated for different materials
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4.8.2 Effect of Threshold on Outlier Rejection

SIFT and the matching procedures are deterministic functions, RANSAC injects

a source of random behaviour. One of the key parameters controlling RANSAC

is the distance threshold, ε, used to determine if a data point is an inlier or oulier

from its distance from the corresponding model point. As ε is increased the mean

number of inliers increases, this is shown in Figure 4.12. Using the same input

image pair ten equally spaced ε settings lying in the range [0.001, 0.01] are plotted

against mean number of inliers where ten trials have been used to compute the

mean. The error bars denote the maximum and minimum values obtain during

these trials. Note that the data points are normalised such that their average

distance from the origin is
√

2 and thus a fixed valid range of [0.001, 0.01] was

used for ε.
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Figure 4.12: Plot of the mean number of inliers over a range of RANSAC threshold
settings
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The distance threshold controls the number of points available to compute the

parameters of the rigid body transform relating two images. The purpose of this

section is to consider the effect of this threshold on the variability of the resultant

transform. The distance threshold is swept from [0.001, 0.01] to determine the

variance of the transform parameters - this procedure is carried out for each type

of type of material in Figure 4.9 apart from aluminium. This test was performed

on several image pairs from each of the preceding datasets. For a representative

image pair from each dataset the variance of the computed transform parameters

are shown in Table 4.5. The conclusion that can be drawn here is that for the

particular type of images considered in this scenario, the distance threshold has

little influence on variability of the parameters.

Material σ2
x (Pixels2) σ2

y (Pixels2) σ2
θ (◦2)

Steel Plate 5.23×10−4 7.99×10−4 3.26×10−5

Bricks 3.67×10−5 7.39×10−5 2.02×10−6

Rusted Steel 1.76×10−4 1.82×10−4 1.44×10−6

Table 4.5: Variance of transform parameters resulting from ε sweep

4.9 System Evaluation

The system was evaluated on four different surface types using the differential

drive robot shown in Figure 4.8(a). This enabled a comparison with encoder

odometry to be made. Given the recursive nature of the estimation, it was ex-

pected that the system would display accurate inter image alignment but would

exhibit large error over long distances due to drift - the results show this to be

the case. The error with respect to Vicon ground truth is evaluated for each

image set. Visualisation software (developed by Dr Gordon Dobie in CUE) en-

abling images to be displayed inside a virtual world with a specific (x, y) location

and orientation θ was used to create large image composites to demonstrate the

stitching function of the system.
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4.9.1 Experimental Setup

Vicon markers were affixed both to the centre of rotation of the robot defining

the robot frame, Fr, and directly onto the camera to define the camera frame, Fc,

the configuration is shown in Figure 4.8(b). The visual trajectory is estimated in

Fc while encoder and ground truth are estimated in Fr. In the experiments pre-

sented in the Results section 4.9.2 the transform mapping Fc to Fr as determined

from Vicon data was applied to the image based estimate to yield robot centred

coordinates allowing a comparison with the encoder odometry and ground truth.

Prior to conducting the experiments the UMBmark [97] procedure was carried out

to fine tune the robot kinematic model parameters in the form of the inter wheel

distance and wheel diameters ensuring optimal encoder based pose estimation.

4.9.2 Results

This section presents the results of applying the algorithm on four datasets com-

prising images of:

1. Grid paper (open loop)

2. Steel plate (open loop)

3. Laminate surface (open loop)

4. Laminate surface (closed loop)

where open loop indicates that the robot updates its position from encoder odom-

etry while closed loop denotes Vicon positional updates. The technique is firstly

applied on a calibration dataset consisting of images of grid paper. Importantly,

this dataset demonstrates the optimal operation of the ground truth system and

was used to set the scaling factor mapping image pixels to millimetres. An NDE

dataset comprising of images of a steel plate (Figure 4.9(b)) is used to demon-

strate the technique in a realistic inspection scenario. The laminate floor surface
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was selected on the basis of providing a large area to test the method and the

easily identifiable features within the images to make apparent alignment issues.

The type of path used in the steel plate dataset is repeated for application on the

laminate floor and comparisons are made. Finally a large dataset consisting of

laminate floor images is used to compare the short term and long term accuracy

of the system; closed loop control was used in order to ensure sufficient overlap

for illustrating image alignment.

4.9.2.1 Grid Paper Dataset

An image composite of grid paper, composed of square cells of side 10mm, con-

structed from ground truth data is shown in Figure 4.13 (a). The straight lines

composing the grid are approximately aligned with lateral errors being ≈ ±2 pix-

els. The mapping from pixels to millimetres was determined through averaging

the scaling factor over several grid cells in the virtual environment.
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(a) (b) 

Figure 4.13: Grid paper dataset (a) Vicon placement. (b) Visual odometry place-
ment. The enlarged subsections of each path displays improvement in image
alignment resulting from the visual odometry. The complete mosaic exhibits
drift due to the build up of error.

The regular structure of the grid can be used to show some properties of the

algorithm, namely that of accurate image to image alignment and overall drift.

Using image data only the visual odometry was run to produce the composite

displayed in Figure 4.13 (b). The image to image alignment has improved as

shown by the enlarged subsections, however, over the length of the path driven
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by the robot, the departure from the true rectilinear pattern is significant. The

error in the linearity of the grid appears large as indicated by the overlaid red

line, however, the inter image error is small; this occurrence may be explained by

there being a large number of small of errors distributed across a long distance.

4.9.2.2 Steel Plate Dataset

This dataset demonstrates the technique on a realistic NDE sample in which the

robot (under open loop control) completes a partial raster scan consisting of 400

mm and 100 mm horizontal and vertical sweeps respectively. Figures 4.14(a) and

(b) show the XY and θ estimates of the path while the errors with respect to

ground truth for both visual and encoder odometry are shown in Figure 4.14

(c) and (d). The major error in the path occurs between sections 2 and 3

in Figure 4.15(b) where the angle is incorrectly estimated. The first point of

intersection at ≈ 70 seconds of the curves in Figure 4.14 (c) coincides with a

large bias in the angular estimate around the same time. Note that the error

curves in Figure 4.14 (c) and (d) display a strong correlation indicating that the

two systems have similar behaviour. Neither system accurately estimates the true

path of the robot with visual odometry giving rise to greater error (integral of

visual odometry error curve) than the encoders. The raw matches and RANSAC

filtered matches in Figure 4.14(e) show a strong correlation indicating that the

feature descriptors are distinctive. The transform MSE in Figure 4.14(f) attained

a maximum value of 0.01 mm2 with a mean of about 0.005 mm2. The mosaics

resulting from ground truth and visual odometry are shown in 4.15 (a) and (b)

respectively. Note that the arcs result from Fc not being coincident with Fr.
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Figure 4.14: Steel Plate Dataset. The mean feature densities for total, matched
and RANSAC were 1.092, 0.30 and 0.26
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Figure 4.15: Steel plate mosaic (a) Vicon placement (b) Visual odometry place-
ment

4.9.2.3 Laminate Floor Dataset (Open Loop)

This section applies the method to the laminate floor of the laboratory where

the robot was instructed to complete a similar motion to that conducted in the

steel plate dataset. The horizontal and vertical sweeps were 400 mm and 25 mm

during this test. In this and the following dataset, a grid of 1 m x 1 m cells

composed of masking tape was applied to the surface such that the grid lines

spanned multiple images:this is used to highlight misalignment. The XY and

θ estimates are shown in Figures 4.16(a) and (b). As shown by Figure 4.16(a),

visual odometry in this cases produces less error than the encoders in terms of the

distance error. The angular error is also smaller for visual technique compared to

encoder odometry as shown in Figure 4.16(d). The mosaics resulting from Vicon

and visual odometry are show in Figure 4.17 in which the path has been divided

143



4. VISUAL ODOMETRY

into sections 1 - 4 to aid the analysis. As can be seen from Figure 4.17(b),

the greatest error occurs between sections 3 - 4 which correlates with a large

bias in the estimate of θ in Figure 4.16(b). The areas showing the masking tape

have been highlighted. In Figure 4.17(a) a continuous grid line is indicated by

the red dashed line, however, the same line in Figure 4.17(b) is reconstructed as

two lines: the red and blue which should be the same. The raw matches and

RANSAC filtered matches in Figure 4.16(e) show a strong correlation indicating

that the feature descriptors are distinctive. The transform MSE in Figure 4.16(f)

attained a maximum value of 0.04 mm2 and a mean of about 0.015 mm2.
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Figure 4.16: Laminate floor dataset. The mean feature densities for total,
matched and RANSAC were 0.94, 0.20 and 0.15 respectively.
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Figure 4.17: Laminate floor mosaic (a) Vicon placement (b) Visual odometry
placement.
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4.9.2.4 Comparison of steel and laminate floor datasets

In Equation 4.17, translation is expressed as a function of rotation and thus error

in the former is compounded by any error in the estimate of the latter. The

accuracy with which the rotation is estimated is therefore of key importance for

reducing drift. The magnitude of the θ error in Figure 4.16(d) for the laminate

surface is upper bounded by 4◦ until ≈ 100s after which point the path estimate

begins to drift substantially. For steel, in Figure 4.14(b) the angular error in-

creases more quickly than in the laminate surface case causing an earlier onset of

drift in the visual odometry path.

4.9.2.5 Laminate Floor (Closed Loop)

A dataset acquired from executing a figure of eight path over the laminate surface

is used to demonstrate the technique on a large area. The figure of eight path was

chosen such that the dataset contained images of the same area distributed with

large temporal separation across the dataset - this is used to highlight alignment

problems. The XY and θ estimates for the encoders and visual odometry are

shown in Figures 4.18(a) and (b). As a result of closed loop control the encoder

estimate is very closely aligned to Vicon ground truth in Figure 4.16(a). However,

due to time delays associated with applying path corrections calculated from

Vicon they are not equivalent as shown in Figure 4.18(c) and (d). In these error

plots the encoder and visual odometry curves display a strong correlation, up to

around 45 s, thereafter the visual odometry XY error increases substantially as

a result of angular error. The raw matches and RANSAC filtered matches in

Figure 4.18(e) are strongly correlated indicating that the feature descriptors are

distinctive. The transform MSE in Figure 4.18(f) had a maximum value of 0.045

mm2 and a mean of 0.02 mm2.

The composites resulting from the ground truth and visual odometry pose esti-

mates are shown in Figures 4.19 (a) and (b) respectively. The areas showing the

masking tape have been highlighted where the red, green and blue dashed lines

indicate the same grid line on the surface. Note that the path has been divided
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into sections 1 - 5 to aid the analysis. In Figure 4.19 (b) it is evident by

inspection that the images between locations 1 and 2 have been assembled

locally in an accurate fashion, this is shown by the alignment of the long piece

of tape as highlighted by the green lines. Figure 4.19 (a) shows a similar result.

In section 2 - 3 , there exists an area of overlap with 1 - 2 located after

the turn. The tape within this region should ideally be aligned with the tape

imaged in section 1 - 2 which is the case for the Vicon composite, however,

the build up in error in the visual odometry case has caused drift resulting in

misalignment: this shows the global error. Surprisingly, in the upper region of

the path between locations 2 and 4 ( highlighted in red).
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Figure 4.18: Errors for laminate floor figure of 8 dataset. The mean feature
densities for total, matched and RANSAC were 0.93, 0.19 and 0.17 respectively.
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Figure 4.19: Figure of 8 mosaic on laminate floor (a) Vicon based composite (b)
Visual odometry based composite.
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4.9.3 Discussion

This section discusses the advantages and disadvantages of the visual method

for odometry when compared to the encoder based technique. Together the two

methods offer the capability to estimate motion in a range of environments. The

major benefit of visual odometry is that it can be utilised in slippery environ-

ments and can be used for vehicles where wheel slippage plays a major part in

the method of locomotion. It is, however, reliant upon a constant height above

the surface, uniformity of illumination and availability of surface texture. Vi-

sual odometry also makes use of computationally intensive image processing and

optimisation in order to produce the pose estimates. Unlike the visual method,

encoder odometry requires a kinematic model of the robot but is otherwise com-

paratively simple enabling pose estimates to be made on-robot with minimal

computational resource. The accuracy of the encoder odometry technique is a

function of the kinematic model parameters and the amount of wheel slip expe-

rienced. The accuracy of visual odometry is primarily a function of the quality

of feature matching which in turn is a function of the illumination and distinc-

tiveness of surface features. Given a scenario in which the conditions are such

that either system could be applied, encoder odometry would be the preferable

choice due to its lower computational requirement. There also exists the possi-

bility of using both encoder and visual odometry in a hybrid approach where, for

example, the visual estimates could potentially compensate for wheel slippage.

The correlation between feature matches and RANSAC filtered matches in com-

bination with the transform MSE could be used to weight the contribution of

the visual estimate to the the overall estimate of motion. Fusing data in this

manner could be implemented using a Bayesian filtering approach, this technique

is demonstrated for fusing different positional data in Chapter 6.
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4.10 Sources of Error

This section discusses a number of error contributing sources in the estimation

process. Aligning the virtual VMCS object coordinate frames, Fc and Fr with

the physical axes of the robot is not a straightforward problem. With reference

to Figure 4.8(b) it can be seen that the x-axis should ideally be normal to the

axis connecting the wheels of the robot, any discrepancy in this location could

cause a systematic error in the estimate of angle. The corresponding axes of

Fc and Fr would ideally be parallel, angular error in the configuration of these

axes could again induce systematic errors into the visual odometry estimate. In

order to reduce coordinate frame alignment errors a tool was manufactured to

systematically align the frames; this procedure aligned the frames as best as

experimentally possible. Using this technique the translation error was less than

a millimetre while the angular error was less than half of a degree.

4.11 Conclusion/Future Work

This chapter has described an image based motion estimation system that is

applicable in planar operating environments. The primary objective of the system

is to provide a means of pose estimation for vehicles for which encoder based

estimation is not possible. Such a robot is shown in Figure 4.1, where due to

the dependence upon wheel slip for turning, encoder based odometry would drift

very quickly. Features extracted from images are used to infer camera motion.

This inference involves finding the parameters that optimally align successive

images. Alignment of the images is equivalent to stitching and thus the system

has a desirable NDE based output of creating mosaics of the surface upon which

the robot is travelling. Importantly the composite image could then be used in

performing visual NDE. The applicability of the feature extraction technique was

investigated for materials of the type encountered in NDE and shown to be usable
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for matte texture rich surfaces and problematic on shiny surfaces. The system

was demonstrated on several datasets and compared to Vicon ground truth and

encoder odometry.

The visual odometry technique was tested on steel and laminate surfaces un-

der controlled laboratory conditions. Both surfaces yielded approximately 1

features/mm2 while the RANSAC filtered matches were 0.26 features/mm2 for

steel and 0.15− 0.17 features/mm2 for laminate. Although the feature densities

in the steel dataset are greater, the angular error increases more quickly than for

the laminate surface resulting in drift earlier in the visual odometry path. In the

steel dataset the greater error for encoder odometry was 28 mm while the visual

odometry was 52 mm. However, for the open loop laminate case the maximum

error was 60 mm while the error for the encoders was around 138 mm. In the

closed loop laminate dataset, visual odometry again attained a maximum error

of 59 mm.

The presented system operates in an incremental fashion whereby incoming im-

ages are immediately processed (potentially in real time) and integrated into the

estimate of vehicle pose. Drift is a problem that stems from the recursive nature

of the estimation where only successively overlapping images are considered. In

the path driven by the robot, however, the same point may be passed at non-

successive times as was shown in the dataset of Section 4.9.2.5. Taking account

of such non-sequential overlap through forcing all common features sets to align

optimally could substantially reduce drift. The optimisation would take as input

the image positions as specified by the visual odometry and then look to refine

them through the non-successive overlap. Such an optimisation could be imple-

mented in the framework of Structure from Motion [98] or SLAM and would be

the logical extension to the work presented in this chapter. The work presented

here has made use of algorithms to extract features from images of the operating

environment. However, the techniques are not limited to visual data, features

extracted from other types of NDE sensors could be used for example sub-surface

defects detected by Eddy currents or defects detected by ultrasond fired into the

structure.
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Chapter 5

Air Ranging Methods

5.1 Introduction

The estimation of range by a positioning device from itself to an object is funda-

mental to determine the objects location. A review of the conventional methods

to compute range was presented in Chapter 2 where, in summary, the techniques

consisted of triangulation, time of flight and phase based methods. Indeed, each

3D positioning system employed in this thesis has used one of these techniques:

the VMCS uses stereo vision based triangulation and the LAT derives distance

from a phase measurement. This chapter introduces the Cricket Indoor Location

System, a low cost, modular, ultrasonic based positioning system that uses the

time of flight of two pulses to compute range. The accuracy of this system is

characterised in the 1D and 2D cases and calibration procedures are developed

to improve this accuracy. The results of this analysis are used in the following

Chapter 6 in which Bayesian filtering is used to fuse ultrasonic measurements

with wheel encoder data.

Of the systems considered in this thesis, the ultrasonic positioning system is

particularly attractive in terms of its relative low cost and small footprint; this

property could be of interest in access restricted inspections. Consider an inspec-

tion by a multi-robot system where access limitations preclude use of the laser
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tracker. In this scenario, the modularity of the ultrasonic system gives rise to the

possibility of utilising, as the nodes of a positioning system, a subset of vehicles

equipped with the associated modules. The locations of such vehicles would be-

come fixed upon entry into the inspection site and following the determination

of inter module distances, these robots would act as transmitters to provide po-

sitional updates to vehicles conducting the inspection. With a view to creating

a more accurate version of the ultrasonic system in the future through improve-

ment of the specific ranging technique employed, this chapter also provides a brief

comparison of several methods for through-air ultrasonic ranging.

5.2 Ultrasound

Acoustic waves with a frequency greater than 20 kHz (upper limit of human hear-

ing) are said to be ultrasonic. Ultrasonic waves are used in variety of applications

including ranging, chemical processing and medical/NDE imaging. Ranging tech-

niques using pulsed waveforms such as ultrasound were discussed in Section 2.3.4.

A fundamental limit in ranging applications using sound waves is knowledge of

the speed of sound in the propagation medium which is greatly effected by tem-

perature. The speed of sound in air is a function of temperature and therefore

error in measuring temperature is propagated to error in range. The dependency

is expressed as follows:

c =

√
γp

ρ
=

√
γRT

M
, (5.1)

where γ is the adiabatic index of air, p is the pressure, and ρ is the density. Note

that Equation 5.1 can be approximated by

c = 300 + 0.6T, (5.2)
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where T is in Celsius. Given Equation 5.1, the fractional error in a range mea-

surement ∆d/d (where ∆d is the standard deviation, or error, of the range mea-

surement d) may be computed as a function of the fractional error in both time

of flight ∆tF/tF and temperature ∆T/T using the following equation:(
∆d

d

)2

=

(
∆tF
tF

)2

+
1

4

(
∆T

T

)2

. (5.3)

Equation 5.3 shows the difficulty in obtaining accuracy in many practical scenar-

ios. In Equation 5.3, the fractional error derived from an uncertain temperature

can dominate the fractional error in the time of flight measurement and thus the

fractional error in distance would be dominated by the temperature inaccuracy.

Methods for temperature-compensated ranging include direct temperature mea-

surement through the use of thermistors and resistance temperature detectors. If

there are temperature gradients in the medium, however, then this method could

result in poor accuracy.

In practice, the uncertainty in the speed of sound may be reduced through mea-

suring it directly. Chande et al [99] describes a method that avoids the need

to accurately measure temperature. The technique measures the time-of-flight

of an acoustic pulse over a known distance while simultaneously ensonifying the

environment. The speed of sound is measured independently of the medium,

assuming that the fixed distance is known accurately.

5.3 Acoustic Beacon Location System

A commercially available indoor acoustic positioning system was used to provide

global position measurements. The fundamental operating principal is described

in Section 2.3.4. Developed by Priyantha [100], the ultrasonic system provided an

update rate of 3 Hz. The system comprises of a collection of modules each con-

figurable to be a transmitter or receiver, a module is shown in Figure 5.1. The

156



5. AIR RANGING METHODS

system performs multi-lateration through measurement of at least three inter-

module distances. The distances are estimated through measurement at the re-

ceiver of the time difference of arrival (TDoF) between the transmitter emissions

of an ultrasonic pulse and radio frequency signal. The radio signal encodes the

module identifier while the ultrasonic pulse serves to enable the TDoF calcula-

tion. The piezoelectric transducers, in Figure 5.1, have a resonant frequency 40

kHz and are used for transmission/reception of the ultrasonic pulse. The 1 cm

aperture and operating frequency produces a beamwidth at the −3 dB point of

±26◦ with respect to the line perpendicular to the transducer face. The system

compensates for changes of sound speed due to temperature through using the

average of the temperatures measured (using thermistors) by each module.

Cricket may operate in two modes: the transmitters are fixed and the receiver

is mobile such that the transmitters must use a time multiplexing approach (in

order to avoid signal interference amongst different modules) or the alternate

mode where the transmitter is mobile and the receivers are fixed resulting in

non-simultaneous updating of the robots. The former is preferred when multiple

robots are in use allowing the platforms to simultaneously update their locations.

1
0
0

m
m

 

40mm 

Figure 5.1: A Cricket transceiver module
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Assuming three receiver to transmitter distances have been acquired and given

that the receivers lie on a ring with radius r the location of the transmitter is

calculated by trilateration [100] as follows:

 xtx

ytx

ztx

 =


1
2r

(d2
1 − d2

2 + r2)
1
2r

(d2
1 − d2

3 + r2)

±
√

(d2
1 − x2 − y2)

 , (5.4)

where d1, d2 and d3 are three receiver - transmitter distances output from Cricket.

The receiver corresponding to d1 is the origin of the coordinate frame, the positive

x-axis is defined by receivers 1 and 2 and the positive y-axis by receivers 1 and 3.

The arrangement is shown in Figure 5.2 in which the modules were rigidly affixed

to a frame such that the receiver transducers of each module were positioned to

be 1 m apart and 1.1 m above the plane containing the sample. The z-axis of

the system coordinate frame was defined by the line perpendicular to the sample

surface passing through RX1. The x and y axes were defined to lie along the

edges of the sample.
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Figure 5.2: Schematic showing the experimental setup of the acoustic positioning
system.

Given a robot (x, y) position and the location of the beacons, the distances can

be easily recovered as follows:

db =
√

(x− xb)2 + (y − yb)2 + z2
b , (5.5)
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where (xb, yb, zb) are the beacon locations for b ∈ {1, 2, 3}. The following section

quantifies the uncertainty in the Cricket estimated position/distance for use in

the filtering algorithms.

5.3.1 Error Characterisation of Acoustic System

The accuracy and standard deviation of measurements for the ultrasonic system

was considered in the simplest case of 1D followed by consideration of the 2D

case assessed over the working area used in the experiment.

5.3.1.1 One Dimensional Test

The 1D experiment consisted of holding a transmitter static while a receiver

unit was moved in increments of 20 mm along a measurement rail with 1 mm

resolution from 0 − 2000 mm. At each step 50 distance measurements were

taken. The range of 2000 mm was chosen because it matched the distance covered

in the experimental evaluation section. Plotting the mean measured ultrasonic

distance against the true distance (the line y = x) yields the graph shown in

Figure 5.3 which clearly shows an error in gradient and offset with respect to the

ideal.It was considered, following inspection of the software, that this error was

due to the assumed clock frequency of 8 MHz differing from the actual oscillator

frequency running at 7.37 MHz. A calibration procedure was carried out to

compute the gradient and y-offset terms that minimise the error between the

ultrasonic measurements and true range: the residual errors are shown in Figure

5.4 with mean, maximum and minimum errors of −1.80×10−5 mm, 4.18 mm and

−4.79 mm respectively. The standard deviation evaluated from the 50 distance

measurements at each location as a function of range is plotted in Figure 5.5

with mean, maximum and minimum values of 1.45 mm, 3.37 mm and 0.53 mm

respectively. The uncertainty of the distance readings returned from Cricket was

evaluated after the spatial realignment and it was found that the histogram of
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distances pertaining to each measurement location was a function of the grid

position and in the worst case followed a zero mean Gaussian density with a

variance of 23 mm2.
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Figure 5.3: Average ultrasonic measured distance vs True distance over a distance
of 0 to 2000 mm
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Figure 5.4: Error in ultrasonic measurements following 1D calibration procedure
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Figure 5.5: Standard Deviation in ultrasonic distance measurements vs True
distance over a distance of 0 to 2000 mm.
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5.3.1.2 Two Dimensional Test

The positional accuracy of the ultrasonic system in two dimensions was measured

through the acquisition of 300 measurements at each intersection point of a 7 x

7 grid with divisions of size 100 mm x 100mm with and a resolution of 0.5 mm;

finer dimensions than considered in [100].
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Figure 5.6: Uncertainty in ultrasonic measurements in the XY plane. The blue
clusters represent raw measurements with the 1D correction applied, the green
clusters result from the spatial correction and the red dot indicates the true
location of the ultrasonic system module.
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Figure 5.7: Plot of mean positions of the measurement clusters. The blue cross
denotes raw ultrasonic data, the red cross indicates the calibrated location, while
the green dot shows the true transmitter location.

The spatial distribution of raw ultrasonic measurements in the plane assumed

the form shown in Figure 5.6; it can be seen that the uncertainty could be well

approximated by a Gaussian distribution. Evaluating the mean position of each

measurement cluster results in Figure 5.7 where it is apparent that the (x, y)

estimates display a degree of distortion. A calibration procedure was applied

to correct this distortion in order to simplify the measurement equations of the
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filters described in the following sections. The calibration process consisted of

measuring with Cricket known corner points of the rectangular 600 mm x 500

mm inspection area used in the experiments to form the following matrix:

A =

(
BRx TLx

BRy TLy

)−1

, (5.6)

where (BRx, BRy), (TLx, TLy) were the bottom right and top left corners of

the inspection area respectively. An ultrasonic measurement pm = (x, y) then

undergoes a transform by Equation 5.6:

P ′ = APm (5.7)

yielding the point P ′ = (x′, y′). The calibrated point Pcalib is then given as follows:

Pcalib = (
x

1− ( y
y′

)(1− x′)
)(

y

1− ( x
x′

)(1− y′)
). (5.8)

This calibration procedure was chosen for its simplicity and speed as only two

points need to be recorded; it could subsequently be applied in online operation

very easily. Using the mean point of each raw measurement cluster as input to

the calibration process yielded the cross points in Figure 5.7. The displacement

on a per grid point basis is illustrated in figure 5.8 for both the uncalibrated and

calibrated cases. It is evident from these graphs that the spatial calibration has

reduced the offset error to approximately zero.
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Figure 5.8: Error in the calibrated and uncalibrated cases

5.4 Ultrasonic Ranging Methods

This section reviews several ranging techniques comprising of threshold detec-

tion, cross correlation, phase measurement and the Biologically Inspired Ranging

Algorithm.

5.4.1 Threshold detection

Threshold detection simply involves detecting the arrival of an ultrasonic signal

by triggering the event when the receiver voltage exceeds a predefined threshold,

ε. The equation is given by Equation 5.9. The signal can be a single-frequency

amplitude-modulated signal, or take the form of an impulse function. In general,

signals are tone-bursts - several cycles of a single frequency, often windowed to

reduce the bandwidth of the signal. Threshold based systems are typically used

in combination with narrow-bandwidth transducers to maximise the intensity
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of the sound output and therefore range. The ultrasonic system uses threshold

detection in order to detect the ultrasonic pulse used for the time difference of

arrival calculation.

d(t) =

1, if sT (t) ≥ ε

0, if sT (t) < ε
(5.9)

In general, the threshold technique does not require complex calculations or data

storage, therefore, the required computational effort is low. It can be imple-

mented with inexpensive single frequency ultrasonic transducers such as the 40

kHz transducers employed by the ultrasonic system. Regarding error the main

sources consist of, low sampling frequency, low signal to noise ratio, and inherent

bias due to the requirement of a threshold parameter. A low sample rate could

introduce error due to the possibility of the sample points missing the true arrival

time - using a high frequency increases the likelihood of capturing the true start

point of the signal. In a low signal to noise ratio case, the noise could trigger the

threshold causing error in the time estimate.

5.4.2 Cross-correlation

In ultrasonic time of flight systems, knowledge that the received signal will be

temporally similar to the emitted signal means that a cross correlation between a

transmitted signal and a received signal will result in substantial noise reduction.

Cross correlation is also improved through signal design; a frequency modulated

signal produces a sharper cross correlated peak than that obtained from a single

frequency tone burst. For these reasons, cross-correlation has been called matched

filtering, and when used in conjunction with frequency modulated signals, pulse

compression. At its most simple, the method of cross correlation takes a trans-
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mitted and received signal ,sT (t), and sR(t) ∼ sT (t − τ0)) and produces a time

domain signal whose maximum occurs at the delay time τ0. The cross correlation,

c(t), is calculated for these real signals by:

c(t) =

∫ ∞
−∞

sT (τ)sR(t+ τ)dτ (5.10)

It is often simpler in practice to perform the calculation in the frequency domain,

where C(f) = S∗T (f)SR(f) = F (sT (t))∗ F (sR(t)), and c(t) is the inverse Fourier

transform of the cross spectrum C(f). Cross correlation has noise-reduction prop-

erties, because the cross-correlation of random noise is theoretically zero. Appli-

cation of cross correlation then has the potential to reduce the noise associated

with the onset time of the received signal.

Cross correlation can be very accurate when the waveform is a frequency-modulated

signal (FM), such as a linear chirp. The width of the pulse (∆T ) created when

performing cross correlation is inversely proportional to the bandwidth (∆f) of

the transmitted signal. FM chirps are widely used in conjunction with cross

correlation for RADAR and SONAR applications. They require wideband trans-

ducers, and if appropriate wideband technology is available, then cross correlation

using FM chirps is an optimal ranging method.

5.4.3 Phase Measurement

Measurement of the phase of the received signal, sR(t), can be used to determine

range. This scheme can operate in a single frequency or multi-frequency config-

uration. The technique requires the entire time record of the signal, otherwise,

offsets will be introduced causing the result to be incorrect.
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5.4.3.1 Single frequency signals

Time of flight can be determined from measuring the phase of a single-frequency

signal. A wave, s(x, t), at a spatial position, x, and time, t, in a non-dispersive

medium may be expressed as follows:

s(x, t) = Aei(kx−2πft) = Aei(2πf(xc−t)), (5.11)

where, A, denotes amplitude, k, is the wavenumber, f , is the frequency of the

signal and c is the speed of sound in the medium. According to Equation 5.11 at

any point x, the Fourier transform of s(x, t) yields a spectrum where the phase

φ of the frequency f is given by φ = 2πfx/c. Since x/c = tF , the phase is a

direct measure of the time of flight. Phase is 2π periodic, therefore for any time

of flight tF > 1/f , there exists ambiguity. In the context of through air ranging,

this ambiguity occurs even at very small distances, i.e. if f = 40 kHz and

c = 345ms−1, then ambiguity occurs for any distance between transmitter and

receiver greater than ∼ 8.6 mm. Practically, therefore, a single-frequency phase

method cannot work for large-scale time of flight measurements in air, unless

coupled with other methods. In the literature, this technique is often referred to

as the phase shift method [99].

5.4.3.2 Multi frequency signals

A larger unambiguous range may be obtained through the use of two or more fre-

quencies in the transmitted signal [99, 101]. In the single-frequency case, unam-

biguous operation over longer distances requires signal frequency to be reduced.

For example, to measure over a range of 0-345 mm in air, a signal with a fre-

quency ∼ 1 kHz must be used. In the multi-frequency case, rather than using a

1 kHz single frequency signal, two signals separated in frequency by ∼ 1 kHz, for

example 40 kHz and 41 kHz, can be utilised. It can be shown that the difference

in the phases of each signal is unambiguous for ∼ 345 mm.
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Given two frequencies f1 and f2, the time of flight tF may be computed as a

function of the two frequencies phases ϕ2 and ϕ1 as follows:

tF =
1

∆f

(
∆n+

∆ϕ

2π

)
=

1

f2 − f1

(
n2 − n1 +

ϕ2 − ϕ1

2π

)
, (5.12)

where ∆n = n2 − n1 is the difference in the number of cycles ni accumulated by

frequency fi. Ambiguity occurs when ∆n 6= 0; in this case when tF > ∆f .

5.4.4 Frequency modulated chirps and the cross spectrum

Wideband chirps provide an extension of the multi-frequency phase technique: a

change from discrete frequency operation to continuous frequency representation.

This is apparent by noting that Eq. 5.12 is a simple case of a more general

equation that describes the behaviour of phase as a function of frequency and its

relation to the time-of-flight of an acoustic pulse. In the limit of ∆f → 0, with

∆n = 0, Equation. 5.12 becomes

tF = lim
∆f→0

(
1

∆f

∆ϕ

2π

)
=

1

2π

∂ϕ

∂f
, (5.13)

which is a general result relating the time-of-flight tF = x/c to the gradient of

relative phase plotted against frequency. Therefore, with a wideband signal, one

only needs to know the relative phase between the two signals over a range of

frequencies to obtain a value for the time of flight.

The simplest method to calculate the relative phase between two chirped signals

is by calculating the cross spectrum. For a transmitted and received signals, sT (t)

and sR(t) respectively, the cross spectrum is C(f) = F(c(t)) = S∗T (f)SR(f) where

c(t) is the cross correlation of sT (t) and sR(t), with ST (f) and SR(f) their Fourier

170



5. AIR RANGING METHODS

transforms. The phase of the cross spectrum is Arg(C(f)) = Arg(S∗T (f)SR(f)) =

Arg(SR(f))−Arg(ST (f)); that is, the phase of the cross spectrum is the difference

in the phases between received and transmitted signal.

An FM chirp phase based measurement can therefore be performed as follows:

The cross spectrum C(f) between the transmitted and received signals is calcu-

lated. The relative phase ∆ϕC is obtained through ∆ϕC = tan−1 (=(C(f))/<(C(f))).

This relative phase must be unwrapped to reveal a linear relative phase as a func-

tion of frequency. At this point, a simple linear fit will give the value of dϕ/df to

be used in Equation.5.13 to calculate the time of flight tF of the acoustic signal.

5.4.5 Biologically Inspired Ranging Algorithm

Bats employ complex airborne ultrasonic chirp sequences enabling detection of

sub-millimetre targets. They display an impressive ability to discriminate closely

spaced overlapping echoes in the received signal - it has been shown experimen-

tally [102] that bats are able to resolve separation delays smaller than the inverse

bandwidth limit imposed by man-made systems based on coherent matched fil-

tering receivers [103]. The Eptesicus fuscus bat can discriminate echoes in air

with a resolution of 2 µs vs 10 µs of conventional systems assuming a signal band-

width of 100 kHz. It is believed that the sonic emissions potentially composed of

multiple spectral components and the associated signal processing of such signals

enable this high resolution discrimination. The underlying assumption is that

bats possess this ability to identify the acoustic signature of their prey [102].

The Bio-Inspired Range Finding Algorithm (BIRA) developed by Devaud et al

[104], based upon the previous computational models by Matsuo et al [105] and

Saillant et al [106], attempts to replicate, through time/frequency processing, the

resolution with which bats are able to echo-locate. BIRA processes a received

signal xrec(t) that is composed of a sum of overlapping Linear Frequency Modu-

lated (LFM) chirps inspired by bat signals. This signal is processed temporally

to extract time-of-flight while the fine delays arising from reflections, or glints, of
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the complex reflecting object are determined through frequency-domain process-

ing. It is the temporal processing that is the focus of this section, see [104] for

details of the fine delay extraction algorithm.

5.4.5.1 Temporal Processing

The temporal processing component of BIRA seeks to mimic the operation of

the basler membrane, a component of the bat inner ear. This membrane trans-

forms received acoustic vibrations into electrical signals where this conversion is a

function of varying frequency sensitivity along the length of the membrane. The

temporal block makes use of a filterbank as a first order approximation of the

basler membrane [106]. The nature of the sweep function in real bat chirps varies

among species but in general assumes a hyperbolic shape in time. LFM chirps

were chosen as an engineering simplification, however, the temporal subsystem

can be reconfigured to process more realistic sweep functions. The received signal

xrec(t) is convolved with a filterbank composed of 101 Gaussian chirplet filters

characterised by the following equation [105]:

F (fj, t) = exp(
−t2

α
) exp (2πi(fjt+

1

2
st2)) (5.14)

where fj is the starting frequency for the jth chirplet filter, s is the sweep rate

of the emitted wave and α is a parameter for the width of the Gaussian window

function. The filterbank serves to decompose the received signal into a set of sub-

bands each appearing in time as function of the linear frequency modulation, an

effect similar to the action of the mammalian cochlea. The computational com-

plexity of the algorithm is quadratic in the number of filters, N , and therefore

the selection of 101 filters represents a compromise between an efficient discretiza-

tion of the bandwidth and a manageable computational complexity, following the

model of Matsuo [105].
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The action of the temporal block can be viewed as an approximate parallel form

of cross correlation wherein the signal is simultaneously convolved with a number

of filters each of which processes a particular spectral band of the input. It is

essentially carrying out a cross correlation of the received signal with a discretized

version of the transmitted chirp - the action of the temporal block is illustrated

in Figure 5.9.

The time of flight information is extracted through aligning the outputs of the

filterbank with respect to the frequency which occurs first in time. The sum

of the filter outputs across the time axis is then evaluated resulting in a single

waveform the maximum peak of which is taken to be the time-of-flight of xrec(t).

This process is illustrated in Figure 5.9(c) where a subset of filterbank outputs

is shown and subsequently aligned and summed to produce the single waveform

used to estimate time-of-flight.
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(a) (b) 

(c) 

Figure 5.9: Operation of BIRA (a) The input signal xrec(t) is convolved with a
filterbank composed of 101 Gaussian chirplet filters (b) The filters composing the
filterbank process different frequency bands across the spectral occupancy of the
input chirp (c) The chirp is converted into a series of pulses (subset shown). Note
that the linear trend corresponds to the linear sweep rate of the chirp

5.5 Experimental Setup and Results

An experimental comparison of cross correlation, the cross spectrum technique

and the BIRA was carried out using linearly swept chirps with frequency rising

from 20 kHz to 120 kHz. The signal were transmitted from a wideband capacitive

ultrasonic transducer to a calibrated microphone (1/8” Bruel and Kjaer, Naerum,
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Denmark) placed at various distances on the acoustic axis of the transducer. The

microphone was placed on a linear encoder with a positioning accuracy of ±250

µm, over a range of 10 to 90 cm (the limits of the linear stage). For each distance,

10 single-shot chirps were recorded (at 10 MS/s), and the distance calculated

using the different algorithms.

A plot of real distance against accuracy for the three techniques is shown in Figure

5.10 while the standard deviation as a function of distance is shown in Figure 5.11.

The methods have similar accuracies with the cross spectrum method being the

most accurate. The standard deviation curves show the cross correlation and

cross spectrum techniques to be very similar in repeatability while the BIRA

display a comparatively lower level of repeatability.
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Figure 5.10: Accuracy plot for the three ranging techniques
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Figure 5.11: Standard deviation for the three ranging techniques

5.6 Conclusion

This chapter introduced the Cricket Indoor Location System, a low cost acoustic

based positioning system. The accuracy of this system was characterised and

calibration procedures were developed to correct range measurements and re-

move a radial type distortion observed in the 2D positional measurements. An

overview and experimental comparison of a set of through air ranging techniques

was also presented. This set comprised of the conventional threshold detection,

cross correlation and phase based methods and the novel BIRA. The accuracy

of these ranging techniques were tested upon signals acquired over a range of 10

to 90 cm. If was found that the methods produced very similar accuracy curves

as shown in Figure 5.10. The minimum magnitude errors for the BIRA, cross

correlation and phase based methods were 0.02 mm, 0.03 mm and 0.04 mm while
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the largest magnitude errors were 0.31 mm, 0.35 mm and 0.29 mm respectively.

However, the BIRA requires reater computational expense due to the filterbank

in comparison to the other techniques.

In terms of repeatability as measured by standard deviation, the cross spectrum

and cross correlation methods display similar results. The minimum minimum

standard deviations were 0.008 mm and 0.01 mm for the cross spectrum and cross

correlation respectively while the maximum deviations were 0.0275 mm, 0.0325

mm. However, the BIRA yields greater standard deviation for ranges greater

than 300 mm, rising to a maximum of 0.035 mm.

The motivation for comparing different ranging methods stems from the desire

to create a more accurate version of the ultrasonic system which as mentioned

previously has the advantage of modularity and a small footprint in comparison

to the other positioning systems considered in this thesis. An important factor

in through air ultrasound is the dependency of sound speed on temperature, the

effect of which can be substantial. Approaches for mitigating the temperature

dependency were also discussed namely measurement of the ambient temperature

and a calibration procedure make use of a known distance.
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Chapter 6

Comparison of Bayesian Filters

for Data Fusion

6.1 Introduction

All sensors have limited perception capabilities imposed by the physical mecha-

nism employed to perform measurements. This means that they have different

accuracies, uncertainties and failure modes. In mobile robot tracking, therefore,

multiple positional sensors are utilised to continuously estimate vehicle pose. In

such systems, the data resulting from each sensor is combined to compute a single

estimate with the objective of having lower error than using each source in isola-

tion. Since all measurements have an associated uncertainty their contribution to

the overall estimate should be weighted accordingly. A probabilistic approach for

sensor measurement fusion in which uncertainty is explicitly modelled has proven

to be very effective in the robotics literature as exemplified by Thrun et al [107].

This approach casts the problem of merging multiple streams of noisy sensor data

into the framework of Bayesian filtering which enables the joint estimate to be

recursively updated by incoming measurements.
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This chapter performs an experimental evaluation of two Bayesian filtering al-

gorithms using multiple positional sensing data to track the planar motion of a

vehicle. A real time, on-robot implementation of an Extended Kalman and Par-

ticle filter was used to control a robot performing representative raster scanning

of a sample. Both absolute and relative positioning were employed - the absolute

method being an indoor acoustic positioning system that required careful cali-

bration. The performance of the tracking algorithms are compared in terms of

computational cost and the accuracy of trajectory estimates.

6.2 Bayesian Filtering

Probabilistic estimation of a robot’s position through fusion of multiple sensor

outputs is a strongly researched area in robotics. It is a long-standing problem in

the field and is considered a fundamental requisite of autonomous systems [17]. A

typical component of a wheeled robotic system is odometry in the form of rotary

encoders attached to the drive mechanism of the robot. These devices return

pulses resulting from discrete increments of rotation thus providing a low-level

source of positional information - the principle of operation was as illustrated

in Chapter 1 section 2.3.2.2. Such sensors although providing accurate short-

term tracking are subject to long term accumulation of errors introduced, in

particular, by wheel slippage (driving on uneven terrain or slippery surfaces) and

interaction with a priori unknown objects in the environment that may perturb

the course of the robot [24]. These accumulated errors eventually lead to gross

error between the true location and the encoder reported location. In relative

positioning systems the uncertainty associated with the positional estimate can

grow without bound as described in Chapter 2 2.3.2. The effect is illustrated in

Figure 6.1 in which the ellipses which represent the contours (at the 3σ bounds)

of Gaussian distrbutions over pose expand with distance. A simulation of a robot

executing a raster scan is shown in Figure 6.2 in which its position is estimated by

encoders. The blue line corresponds to the path reported by encoder odometry
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while the green line corresponds to the actual motion of the robot that resulting

from wheel slippage on the corners of the path. The error between the odometry

reported path and actual path increases with trajectory length.

Uncertainty Ellipse 

Figure 6.1: The ellipses representing positional uncertainty grow with distance
travelled in encoder based positioning
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Figure 6.2: Typical raster path for NDE. Uncertainty in the robot’s position
grows with path length.
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In the case of relative pose estimation, the build up in error of the estimate

cannot be removed without the aid of some other form of sensing. This extra

data can be provided by fixed beacons - forming an absolute positioning system -

embedded in the operating environment to correct the path. It is also possible to

use purely onboard sensors through application of SLAM as described in Chapter

2 2.3.5 wherein beacons are in effect automatically created from the environment

itself. Both techniques although applicable in different cases make use of the

same underlying filtering theory in order to combine sensor outputs.

6.2.1 Recursive Bayesian Filtering

The recursive Bayesian filter provides a probabilistic framework to fuse multiple

noisy measurements to estimate a quantity, xk (where k is the time increment),

modelled as a Random Variable (RV). The quantity, xk, is termed the state and,

in general, it assumes the form of a random vector whose elements comprise all

variables of interest in the system: the specific problem under consideration is

then known as state estimation. The objective of the filter is to combine the

measurements to generate an estimated output, x̂k, such that the estimation

error xk − x̂k is minimised.

At each time instant a Probability Distribution Function (PDF) p(xk) expresses

the probability of the system being in each state comprising the state space which

may be continuous or discrete. The PDF is in general multi-modal. Over time

the system transitions from state to state and thus the shape of p(xk) should

be warped accordingly with time. This is the function of the Bayesian filter; it

manipulates p(xk) given the previous state and information provided by the set

of incoming measurements, Zk = {z0, . . . ,zk}, to form the conditional density

p(xk|xk−1,Z
k).
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The operation of the Bayesian filter may be derived as follows (following the

exposition in [108]). Let the PDF associated with the state xk−1 at time k−1 be

denoted by p(xk−1|Zk−1). In the absence of any new measurements, xk−1 may

be projected into the next time step using Equation 6.1 (using the theorem of

total probability [109]):

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (6.1)

where the term, p(xk|xk−1), corresponds to the PDF over the state following state

transition between k−1 and k. The term p(xk|Zk−1) is referred as the prediction

PDF and application of Equation 6.1 is known as filter prediction. This prediction

is subsequently updated in light of a measurement zk arriving at time k using

Equation 6.2:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (6.2)

where p(zk|xk) is termed the likelihood function, p(xk|Zk−1) from Equation 6.1

is now termed the prior PDF and p(xk|Zk) is referred to as the posterior PDF:

Equation 6.2 is know as the filter update. The denominator is a normalising

constant that ensures that the posterior is a valid PDF. Note that any function

that lies on or above the x-axis and integrates to 1 (sums to 1 in the discrete case)

is a valid PDF [110]. In Equation 6.2 the prior can be considered to express the

knowledge about the state before the arrival of a measurement. Upon arrival of

zk, the likelihood function evaluates the xk most likely to have given rise to the

observed measurements. The posterior is then the PDF over the state integrating

using both knowledge of how the state evolves in time and the observations which

effectively refine the prediction through measurements.

Figure 6.3 illustrates the predict-update steps of the Bayesian filter. The prior,

due to the uncertainty in state transition, has the effect of broadening the dis-

tribution over p(xk−1|Zk−1) and sliding it along the x-axis to the predicted state

. Upon arrival of zk, the xk most likely to have given rise to zk is evaluated:
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this is typically a narrower PDF that depends upon the sensor. The product

(normalised) is taken to form the belief in xk in light of zk; this is the posterior

distribution.

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

)|( k

k Zxp)|( 1k

k Zxp )|( kk xzp

Prior Likelihood Posterior 

kx
kz kx

Figure 6.3: Depiction of predict-update cycle of the Bayesian filter assuming
Gaussian PDF’s

The practical use of Equations 6.1 and 6.2 is, in general, computationally in-

tractable because the PDF, in real world systems, needs to be maintained over

a potentially very large number of states. Consider, for example, a discrete case

in which a 3-vector state may only take on values drawn from a fixed set where

each variable in the vector can take on 100 different values. The Bayesian filter in

this example would have to manipulate probabilities for 1003 possible states; the

values in this example are not unrealistic yet propagating a PDF comprising 106

entries would be very difficult to compute especially on an RSA. In the continu-

ous case the filter would require to maintain the PDF over an infinite number of

states. Practical implementation requires the introduction of constraints to make

the manipulation of the PDF feasible.

6.2.2 Filter Implementation

Realisation of the predict-update cycle of the Bayesian filter requires process and

measurement models; where the former pertains to calculation of the prior and

the latter is involved in the evaluation of the likelihood. The process model
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describes the state transition calculated in the predict step which consists of a

deterministic function, fk(xk−1) which is mostly likely to be nonlinear in real

systems. This transition step is however uncertain and thus has an additive

random noise component as follows:

x̂k = f(x̂k−1) + εk, (6.3)

where εk is random vector drawn from the process noise PDF; the expansion of the

state PDF (prior) in Figure 6.3 is due to this noise. There is a also a requirement

for a model describing how the system state maps to the measurement space in

which the different sensors are measuring; this model is encoded in the (non-

linear) function hk(xk−1) while the noise perturbing incoming measurements is

represented by the random vector δk.

ẑk = h(x̂k−1) + δk, (6.4)

where δk is drawn from the measurement noise PDF. Two quantities need to

be taken care of in the filter namely the estimate of the state and probability

distribution over all states. A diagram showing the sequence of steps that take

place in the filter as a function of time is shown in Figure 6.4 (adapted from

[111]).
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Figure 6.4: Filter Timing Diagram

Note that the (−) and (+) denote before and after integration of the measure-

ment zk. At time step k − 1 the estimate of the true state vector is denoted

x̂k−1(−). Through application of the function, hk(x̂k−1), in combination with

the measurement covariance Rk, the update step is executed to yield the updated

state estimate x̂k−1(+). The function f defines the property of the PDF used as

the estimate output by the filter. This may simply be the state coinciding with

the maximum point of the PDF or it may be defined as the expected value, E

of the distribution. The expectation operator is defined in the discrete case as

follows:

E(x) =
N∑
i

xip(xi) (6.5)

which is in effect a weighted average of the all possible states (of which there are

N) that the estimated state can assume. The function, fk(x̂k−1), in combination

with the process covariance Qk−1, drives the state transition from k − 1 to k

at which point the process repeats. As well as updating the state estimate, the

filters require to update the estimate of the uncertainty associated with the state.

In Figure 6.4 the PDF is represented by the quantity Pk which is also subject to
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the predict-update cycle. The following sections describe the Extended Kalman

Filter and Particle Filter which introduce constraints to make the implementation

possible.

6.2.3 Extended Kalman Filter

The Kalman Filter (KF) [112] is an analytic approximation of the Bayesian filter

that constrains the PDF to have a fixed form. The derivation of the KF makes

the assumption that the distribution over the state space at any time instant is

Gaussian. The unimodal property of this distribution implies that the system

state is mostly likely to reside in one location of the state space. A multivariate

Gaussian PDF over the RV, x ∈ <N , is defined as follows:

g(x) =
1

(2π)N/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)), (6.6)

where µ ∈ <N , is the mean and, Σ ∈ <N×N , is the covariance of the distribution,

note that, ||, denotes matrix determinant; a plot for the N = 2 case is shown in

Figure 6.5(a).
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Figure 6.5: Gaussian assumption of EKF (a) Multivariate Gaussian PDF over
x ∈ <2 (b) Plot of contour at 3σ bounds
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The variable µ (which coincides with the mode and median of the distribution)

is defined to be the output of the filter and may be extracted by the expectation

operator as follows:

x̂ = E(x). (6.7)

The covariance term is computed from the expectation of the estimation error

x̃ = x− x̂ as follows:

Σ = E((x− x̂)(x− x̂)T ). (6.8)

The covariance matrix is a symmetric, positive semi-definite matrix that encodes

the shape of the contour of the PDF as shown in 6.5(b). It is a multi-dimensional

measure of the spread of the distribution, in the 1D case covariance becomes vari-

ance. The diagonal entries of Equation 6.8 are the variances in the corresponding

elements of x. The off-diagonal terms are a measure of the extent to which the

elements of the state vary together. The covariance matrix can also be viewed

to be the MSE of the estimate with respect to the true state. The task of the

KF then, is to propagate the mean and covariance of the state PDF over time

which is equivalent to propagating the state estimate and associated estimate

uncertainty over time.

6.2.3.1 Gaussian Assumption

The underlying assumption of the KF forces the random vectors in Equations 6.3

and 6.4 to be drawn from zero mean Gaussian PDFs. This condition is expressed

as follows:

E(εk) = 0, E(εkε
T
k ) = Qk, (6.9)
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E(δk) = 0, E(δkδ
T
k ) = Rk, (6.10)

where Qk and Rk are covariances of the process and measurement noise respec-

tively.

Because a linear transform of a Gaussian RV results in another Gaussian RV,

the derivation of the KF relies upon the functions in Equations 6.3 and 6.4 be-

ing linear. If these functions are non-linear the Gaussian assumption no longer

holds and the estimate will diverge. There exist several extensions to the KF for

non-linear systems of which the Extended Kalman Filter (EKF) and Unscented

Kalman Filter (UKF) [107] are the mostly commonly used. The EKF simply lin-

earises Equations 6.3 and 6.4 around the current state estimate and then proceeds

to make use of the standard KF equations. The UKF selects several samples of

the state space surrounding the current estimate, passes these points through the

non-linear transform and then constructs a Gaussian PDF from the resultant set

of points. In practical applications the performance difference between the EKF

and UKF has been found to be negligible [107] with the latter also having greater

computational overhead. In this study the EKF was selected for the experimental

comparison with the Particle Filter.

6.2.3.2 Prediction

The EKF linearises the process and measurement models through truncating

terms with order greater than or equal to 2 in the multidimensional Taylor ex-

pansion around the predicted state estimate. The coefficients of the complete

expansion progressively reduce in magnitude and thus the lower order terms dom-

inate in contribution [113]. It is possible then, to maintain an accurate approxi-

mation through retaining only the terms defining the linear approximation. The

accuracy of the approximation is ultimately a function of the local nonlinearity
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surrounding the region in which the function linearisation is being evaluated. In

the case of highly nonlinear functions, the EKF could be a poor state estimator.

In the EKF, filter prediction is implemented by Equation 6.11:

x̂k = f(xk−1), (6.11)

which corresponds to the expected value of Equation 6.3. The predicted state

uncertainty is computed through first order propagation of the uncertainty from

the previous time step. Consider the 1D case, where a function, g, depends upon

an RV x. The variance in g(x) resulting from the variance in x is, to first order:

(
dg

dx
)σ2

x(
dg

dx
). (6.12)

Equation 6.13 shares this structure in expressing the predicted covariance as

follows:

Σ̂k = FkΣk−1F
T
k +Rk, (6.13)

where Fk = ∂f
∂xk−1

is the Jacobian of the function f with respect to the state

from the previous time step xk−1. The covariance of the process noise Rk is also

added at this stage which signifies that the prediction induces uncertainty into

the estimate of the state - this is shown by the prior in Figure 6.3.

6.2.3.3 Update

The Kalman gain matrix, Kk, can be viewed as minimising he sum of the diagonal

entries of Σ̂k [111] and is given as follows:

Kk = Σ̂kH
T
k (HkΣ̂kH

T
k +Q)−1, (6.14)
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where Hk = ∂h
∂xk−1

is the measurement Jacobian. The gain matrix is used to

weight the contribution of the information provided by the sensor measurement

to the state estimate as follows:

xk = x̂k +Kk(zk − h(x̂k)). (6.15)

The covariance matrix in light of the measurement is computed by:

Σk = (I −KkHk)Σ̂k, (6.16)

where I is the identity matrix with dimension N x N . The addition of the mea-

surement information has the effect of reducing the covariance of the distribution.

Equations 6.11 - 6.16 implement the EKF. For fixed size of state vector, these

equations can be computed within a fixed time period.

6.2.4 Particle Filter

A Particle Filter (PF) is a recursive Monte Carlo technique that uses a sample

based representation of the probability distribution associated with the system

state. The constraint introduced by the PF is one of predicting and updating

only a finite set of samples in the state space rather than manipulating the set

of all possible states. The PF does not enforce the Gaussian assumption made

by the EKF. This means that both the Gaussian noise and function linearity

constraints to be relaxed [108]. A simple example demonstrates the differences

between two the PF and EKF.

The multi-modal PDF shown in Figure 6.6(a) displays a distribution that could

arise from the state passing through a non-linear transform. With reference to

Figure 6.6(b), it is apparent that there exists two states with relatively high

probability: an accurate representation of such a PDF in the EKF would not be
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possible. A PF representation of this distribution in terms of a Probability Mass

Function (PMF) (a discrete distribution) is shown in Figures 6.7(a) and (b) in

which a finite set of samples are used to capture the shape of the distribution.
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Figure 6.6: (a) Example of a multi-modal PDF that could result from model non-
linearity or non-Gaussian noise sources (b) Corresponding non-elliptical contour
plot of PDF showing 2 areas of large probability
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Figure 6.7: (a) PF sample based representation (b) Sample in the XY plane of
the distribution
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The distribution associated with the state is represented as a discrete set of state,

weight pairs as follows:

{xik, wik}Ni=1, (6.17)

where N is the number of samples taken to approximate the true distribution,

as N → ∞ the better the approximation becomes and greater the computation

is required. The term, xik corresponds to the ith sample while wik is its weight

which is proportional to the probability of being the true state of the system.

Since the weights represent probability they sum to unity as follows:

∑
i

wik = 1. (6.18)

The pair, {xik, wik}, is referred to as a particle. The distribution over the state is

then represented as a weighted shifted sum of impulse functions [114] as follows:

p(xk|Zk) ≈
N∑
i=1

wikδ(xk − xik), (6.19)

where Zk is the set of all measurements received up until time k. The output

of the PF can be extracted in a number of ways from the underlying PMF. This

is usually taken to be the state coinciding with maximum probability or the

expected value of distribution calculated by:

x̂k =
N∑
i=1

xikw
i
k. (6.20)

The task of the PF is then to predict and update the samples and weights repre-

senting the state PDF over time.
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6.2.4.1 Importance Sampling

A central problem in the PF concerns the method used to draw samples from the

posterior distribution, p(xk|Zk), to propagate through the filter over time. In

general an analytic expression for the posterior is not readily available and it has

been shown that for high-dimensional state vectors the associated distribution

is concentrated in a small region of the state space [115]. Uniformly sampling

from this space, therefore, is very likely to result in many samples representing

improbable states.

To mitigate this problem the concept of importance sampling is used [108]. In-

stead of sampling from the posterior distribution, importance sampling samples

from a different distribution that shares the same domain as the posterior; this

distribution is referred to as the importance or proposal density. The key to the

method is that is easier to sample from the importance density than it is from

the posterior. The conventional choice of proposal is the transitional distribution

p(xk|xk−1) [108].

6.2.4.2 Prediction

The prediction step of the PF is implemented through drawing samples from

p(xk|xk−1). This corresponds to sampling N times from Equation 6.3 where in

the framework of the PF, εk can be a non-Gaussian PDF and the (non-linear)

function f is used directly.
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6.2.4.3 Update

Given the choice of the transitional density as the proposal, the resultant update

step of the PF in which a measurement zk is integrated can be shown to have

the following form [114]:

wik = wik−1

p(zk|xik)∑N
i=1w

i
k

(6.21)

where the likelihood, p(zk|xik), is implemented through sampling from the (non-

linear) measurement model in Equation 6.4 where the noise vector, δk, can be

drawn from a potentially non-Gaussian PDF.

6.2.4.4 Resampling

After a small number of cycles of the filter a problem known as degeneracy can

arise - this is due to the variance of particle weights increasing with time [114].

Degeneracy is the condition in which all but one particle has negligible weight.

Practically, this means that the filter is updating particles which have negligible

contribution to the filter output. Resampling is a technique used to combat

degeneracy which involves discarding particles with low weight and replicating

those particles with higher weights due to their higher probability of being the

true state. The number of effective particles, NEFF , can be used as a measure of

the degeneracy and may be computed as follows:

NEFF =
1∑N

i=1(wik)
2
. (6.22)

A resampling procedure can then be invoked every timeNEFF falls below a thresh-

old, NTHR.
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The objective of the resampling procedure is to generate a new set of particles,

{xi∗k , wi∗k }Ni=1, from the old set, {xik, wik}Ni=1, such that Pr(xi∗k = xjk) = wjk where

the new weights are set to 1
N

. Resampling with replacement is used, therefore, and

particles with high weight can be selected multiple times during the procedure.

There exist numerous algorithms for resampling including systematic, stratified

and residual sampling.

6.2.4.5 Sample Impoverishment

The possibility for multiple copies of the same particle in the resampled set can

lead to a loss of diversity in the set of samples. This condition is mitigated in

part through the process noise which adds a random offset to the samples such

that they are spread in the state space; in practice this may not be enough. A

technique known as roughening can be used which artificially increases the process

noise in order to further spread the samples in the state space [116].

6.2.5 Filter Tuning

6.2.5.1 Filter Consistency

A filter is said to be consistent if it produces state estimates which converge to the

true system state as the number of measurements increases. Consistency implies

that the estimate is unbiased meaning that the filter output is as close as possible

to the true system mean [113]:

x̂k ≈ E[xk]. (6.23)
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It also requires that the difference between the filter estimated covariance and the

true covariance is minimised, this is known as efficiency and may be expressed

as follows:

Σk − E
[
(x− x̂)(x− x̂))T

]
≥ 0. (6.24)

The approximations employed by the EKF and PF can result in estimates which

are inconsistent thus violating Equations 6.23 and 6.24. Inconsistency can lead

to the filter diverging from the true state.

Inconsistency in the EKF results from the linearisation of the process and mea-

surement models. Julier and Ulhmann [113] demonstrate EKF inconsistency

through a simple example in which a range, bearing measurement with respec-

tive standard deviations of σr = 2 cm and σθ = 15◦ is converted to Cartesian

form. The covariance resulting from the linearisation is compared to a Monte

Carlo estimate of covariance which uses 3.5 × 106 samples. It is found that the

mean of the linearised estimate is 96.7 cm while the true value is 1m and the ellipse

representing the linearised covariance is smaller than the true value. This shows

the problem of bias in the mean and an over optimistic MSE associated with the

EKF. The authors indicate that the issue of bias cannot be removed although

the covariance under-estimation can be mitigated through the introduction of

stabilisation noise which artificially inflates the acekf covariance estimate such

that Equation 6.24 is satisfied.

Heijden [117] outlines the reasons for inconsistency in PFs. The first reason con-

cerns the number of particles employed: the number of samples used may be

too small to represent the state PDF with sufficient statistical significance. The

second reason concerns the complexity of the process and measurement models.

For detailed models containing many variables in the state vector it is difficult

to generate a representative set of samples for the reasons mentioned in Section

6.2.4.1 - the problem of an accurate representation is then problematic. An addi-
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tional problem of using detailed models is that variation in the model parameters

can have a large effect upon the output of the model. In the case of using a model

with too few parameters the filter estimate is likely to contain bias.

6.2.5.2 Process and Measurement Covariances

The accuracy of a state estimator is a function of the accuracy with which the

process and measurement covariances have been characterised [118]. The mat-

ter is complicated by the previously mentioned issues of EKF stabilisation noise

and roughening in the PF. Measured values of covariance obtained through ex-

perimentation then do not necessarily correspond with those needed to achieve

optimal filter performance.

6.2.6 Literature Review

Tong and Barfoot [119] carried out a comparison of an EKF and sigma point

Kalman filters for fusing encoder and LIDAR measurements acquired from a 4-

wheeled skid steer vehicle. The performance metric comprises root mean square

error with respect to ground truth provided by a Vicon motion capture system.

A PF using a very large number of particles is used to simulate the theoretical

best performance of the Bayes Filter. The PF outperforms both filters while the

sigma point variant of the Kalman filter was found to be more robust to noise

and provided higher overall accuracy in comparison to the EKF.

Peralta-Cabezas [120] et al provide a comparison of ten filtering techniques com-

prising of KF based filters, Monte Carlo filters and hybrid filters which are formed

from combining elements of the preceding two approaches. Filter performance is

compared for the problem of estimating the location of a three-wheel omnidirec-

tional vehicle using data from a video camera. The main performance criteria

are the size of the estimation error, the required computational effort and the
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robustness of these techniques to non-Gaussian noise. The results obtained indi-

cate that, generally, the EKF and PF yield accurate predictions with the latter

requiring significant computational effort.

Bellotto and Hu [121] examined the use of PF and Kalman filter based techniques

for tracking people using a camera and laser range finder mounted on a robot.

The authors showed that the Unscented Kalman filter performs approximately

to the level of the PF at less computational cost.

6.3 Process Model

The location of a robot in 2D space, defined in Figure 6.8, is determined by 3

variables: the (x, y) position of the drive axis midpoint and θ the angle of rotation

with respect to the world coordinate frame.

Figure 6.8: Definition of robot model parameters. The (x, y) location of the
robot (drive axis midpoint) in the plane of motion and the angle of the centre
with respect to the x-axis define the pose of the robot. Note that positive angles
result from counterclockwise measurement relative to the x-axis
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The state vector, x ∈ <3, to be estimated by the EKF and PF is then defined to

be the pose of the robot as follows:

x = [x, y, θ]. (6.25)

The error covariance matrix, Σ ∈ <3×3, associated with the state estimate x̂ has

the following form:

Σ =

 σ2
x σxσy σxσθ

σyσx σ2
y σyσθ

σθσx σθσy σ2
θ

 , (6.26)

where the diagonal entries express the variance in the corresponding state ele-

ments and the off-diagonal terms express the extent to which the state elements

vary together; note the covariance may be viewed as a correlation matrix as shown

in Section 2.3.6. The state transition function, f , from Equation 6.3 models the

transformation of pose between successive time steps.

State transition is described by the robot kinematic model, f(xk−1,uk), that is

driven between states by the control vector uk−1 comprising of encoder pulse

counts, ∆r and ∆l, accrued by the left and right wheels respectively between

sampling times. The differential drive robot shown in Figure 6.9 was used during

the comparison experiments; the encoders are directly coupled to the drive wheels

to provide a onboard relative source of position data.

Counting the number of pulses accrued between sampling time instants enables

prediction pose change which can then be used to update the absolute pose esti-

mate through the following set of equations [24] for a differential drive robot:

xk = xk−1 +

 r cos(θk−1 + ∆θ)

r sin(θk−1 + ∆θ)

∆θ

 , (6.27)
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where xk−1 is the pose of the robot at the previous time step:

∆θ =
c(∆r −∆l)

b
, (6.28)

and

r =
c(∆r + ∆l)

2
, (6.29)

are the change in angle and the arc length traversed by the wheels between time

steps k and k−1, c is the conversion factor between pulses and linear displacement

and b is wheelbase of the robot. As with any relative system there exists a

cumulative build of error as illustrated in Figure 6.2; the error in the estimate

grows with distance and can lead to gross error between the actual pose and the

encoder reported pose. The estimate, derived from the encoders, is susceptible

to wheel slip and any unmodeled influences that could perturb the course of the

vehicle.

Unmodeled effects that could influence the state vector are collected into the ran-

dom noise vector ε (assumed to be independent of time, hence the subscript k is

dropped). It was assumed that the vector was drawn from a Gaussian distribu-

tion.
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CILS TX Transducer  

rx

ry

rz

Encoders 

Figure 6.9: Differential drive RSA used in the experiment. The transmitting
transducer was precisely aligned with the midpoint of the wheel base to coincide
with the odometry tracked point.

6.3.1 Implementation

In the EKF the Jacobian matrix is implemented as follows:

Fk =
∂f

∂xk−1

=

1 0 r cos(θk−1 + ∆θ)− r cos(θk−1)

0 1 r sin(θk−1 + ∆θ)− r sin(θk−1)

0 0 1

 , (6.30)

The prediction stage of the PF involves drawing N samples from:

xk = f(xk−1,uk) + ε. (6.31)
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6.4 Measurement Model - Acoustic Beacon Lo-

cation System

The measurement prediction of Equation 6.4 is implemented by Equations 5.4

repeated here for convenience:

 xtx

ytx

ztx

 =


1
2r

(d2
1 − d2

2 + r2)
1
2r

(d2
1 − d2

3 + r2)

±
√

(d2
1 − x2 − y2)

 (6.32)

6.4.1 Implementation

In the EKF, the measurement Jacobian Hk ∈ <3×3 is given as follows:

Hk =
∂h

∂xk−1

=

(x1 − x̄k−1)/d1 (y1 − ȳk−1)/d1 0

(x2 − x̄k−1)/d2 (y2 − ȳk−1)/d2 0

(x3 − x̄k−1)/d3 (y3 − ȳk−1)/d3 0

 , (6.33)

where db =
√

(x̄− xb)2 + (ȳ − yb)2 for beacons b ∈ {1, 2, 3}.

In the PF the incorporation of measurement information is implemented through

the likelihood function, p(zk|xk). In section 5.3.1.1, it was shown through exper-

imentation that the noise corrupting distance measurements could be modelled

as Gaussian with a variance of σbeacon = 23 mm2. Assuming that the distance

measurements are Independent and Identically Distributed (IID), the joint like-

lihood for each particle, xik, becomes a product of the marginals distributions for

each component of, zk, as follows:

p(zk|xik) =
3∏
b=1

1√
2πσ2

beacon

exp

(
(
√

(xi−xb)2+(yi−yb)2+z
2
b
−db)

2

−2σ2
beacon

)
, (6.34)
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where (xi, yi) is the predicted location of the robot by the ith particle. The

likelihood function in effect assigns more weight to those particles closer to an

incoming beacon measurement, where the size of the weight is a function of the

variance of the distance measurements. The weight assignment function of the

Equation 6.34 is demonstrated in Figure 6.10. In Figure 6.10 (a) the subset of

particles in the upper right area of the arrangement receive greater weighting in

accordance with their shorter distance to the ultrasonic reading. In Figure 6.10

(b) the ultrasonic measurement lies close to the predicted location of the robot

and thus the centre of the particle cloud is assigned relatively high weighting.
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Figure 6.10: Example of particle weight assignment by the likelihood function.
The black square indicate the location of the ultrasound reported robot location,
while the red square shows the mean of the particle positions. The colour of the
particles indicate weight according to the colourbar. (a) Ultrasonic reading far
from the predicted location (b) Ultrasonic reading close to the predicted location

6.5 Experimental Evaluation of Bayesian Filters

Efficient C++ implementations of the EKF and PF were written for execution

on-board the RSA. To comply with best practice, the UMBMark [97] procedure

was carried out to fine tune the wheel base and wheel diameters to ensure optimal

encoder odometry estimation. Ground truth was provided by the VMCS. The
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following sections describe the method used to align the coordinate frames of the

different tracking systems used in the experiment followed by the evaluation of

the implemented algorithms on real world data representative of NDE scanning.

The experiment was conducted in the centre of the volume where previously it

was shown that the ground truth system had the best accuracy (Section 3.3.11.1).

6.5.1 Coordinate Frame Alignment

Three coordinate frames had to be aligned during the experiment to ensure all

systems involved were tracking the same point in space; the ultrasonic transmitter

transducer and VMCS markers were rigidly aligned to track the midpoint of the

axis defined by the drive wheels as shown in Figure 6.9. In order to ensure

the constant radius, r, of the ring of three receiving transducers in Equation

5.4, markers were also placed on the ultrasonic receiver modules where marker

placement was carefully chosen to avoid perturbing the received ultrasonic pulse.

The modules were then aligned using the positions reported by the VMCS.

The systems were configured to track the same physical point on the robot

through acquisition of 300 measurements at five grid locations yielding the point

sets pv and pc for the Vicon and Cricket systems respectively. The locations used

to compute the transform spanned the working area as shown in Figure 6.11,

the system coordinate frames are shown. The procedure described in Section

4.7.1 was used to obtain a least squares estimate of the translation and rotation

parameters relating the two frames; the transform is applied in results analysis

to enable comparison between systems.. The average residual error between the

transformed VMCS points and the ultrasonic measurements was −3.7 mm: this

was the best error that could be achieved in practice and manifests as an offset

in the errors calculated in the following section.
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Figure 6.11: Diagram showing the five points used to align the coordinate frames
of the VMCS and the ultrasonic system. The raster scan path used during the
experiment is plotted on the grid.

6.5.2 Raster Scan Experiment

To simulate a typical course employed in a real NDE scan a robot was instructed

to execute a raster scan consisting of 600 mm horizontal sweeps and 100 mm

vertical sweeps contained in the rectangle of dimension 600 mm x 500 mm start-

ing with the pose pstart = [300 mm,−300 mm, 180◦]T in the plane - the path is

illustrated in Figure 6.11. This scan was repeated five times to generate multiple

datasets for analysis.
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6.5.3 Results Analysis

The trajectory estimates from all estimation sources for dataset 1 are shown in

the graph of Figures 6.12 and 6.15.
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Figure 6.12: The trajectory estimates from all positional sources
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Figure 6.13: Estimate of robot orientation

The EKF and PF (using 200 particles) curves have a stronger correlation with

the VMCS curve than odometry which becomes increasingly erroneous. The

estimation errors of each source with respect to the VMCS is shown in Figures

6.14 and 6.15 while the numerical MSE errors are tabulated in Table 6.1.
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Figure 6.14: Error in (x, y) position of trajectory estimates with respect to Vicon
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Figure 6.15: Error of robot orientation
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Dataset Estimation XY MSE (mm2) θ MSE (◦2)

1

EKF 66.53 36.06

PF 67.86 33.17

Cricket 146.58 N/A

Odometry 774.51 51.07

2

EKF 119.18 8.76

PF 138.94 15.74

Cricket 178.61 N/A

Odometry 1537.55 20.94

3

EKF 50.36 20.99

PF 53.41 21.58

Cricket 111.90 N/A

Odometry 1320.73 42.68

4

EKF 69.29 17.95

PF 71.84 19.37

Cricket 133.69 N/A

Odometry 2072.62 45.91

5

EKF 57.75 27.55

PF 60.79 27.40

Cricket 114.77 N/A

Odometry 1379.57 56.43

Table 6.1: Pose error for each estimation source with respect to ground truth for
each dataset

It is clear from the graphs that the error in odometry grows with path length. The

oscillatory behaviour of the curve is due to the robot turning back to ground truth

on corner rotations thus reducing the accumulating error. The filter estimates

are essentially a smoothed version of the Cricket data where the odometry fulfils

the smoothing function. It is clear from Table 6.1 that the error of both the PF

and EKF is less than that of the positional sources used in isolation. The MSE’s
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for all five datasets are shown in Table 6.1. The reduction of positional error due

to filtering with the EKF and PF for the different datasets is clearly shown by

the MSEs in comparison to the ultrasonic system and wheel encoders.

If filter error defined as MSE in only (x, y) is considered as function of the number

of particles, N , it is found that the PF error effectively saturates to the level of

the EKF, this is illustrated in Figure 6.17 for dataset 1. Each point on the PF

curve is calculated by averaging five runs of the code executed on the RSA which

was carried out offline on a PC. It may be concluded, from this result, that the

system is sufficiently linear within the system time-step defined by the odometry,

that the potential gains offered by the PF are not manifest in the MSE result.

This conclusion was tested by considering the scenario in which the odometry

arrives at a slower rate. The encoder data was decimated by a factor of 10 in

effect simulating a larger time-step, 10 times greater than the time-step associated

with the raw data. The resulting MSE vs N plot is shown in Figure 6.16.
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Figure 6.16: PF falls below the EKF line when data is decimated. Error bars
are plotted for each PF point showing range of values used to calculate the mean
point.
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The PF curve now intersects at approximately 50 particles and subsequently

saturates below the EKF curve where each PF point is again five runs averaged.

The larger time-step means that the EKF has to linearise a more non-linear region

of the state-space which gives rise to greater linearisation error and subsequently

higher MSE. The saturation of the PF error to the level of the EKF in Figure

6.17 suggests that the EKF is Bayes optimal as when N becomes large the PF

becomes Bayes optimal.
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Figure 6.17: PF saturates to the level of the EKF in processing raw data. Error
bars are plotted for each PF point showing range of values used to calculate the
mean point.

It may be said from Figure 6.16 that the PF is more efficient in the sense that it

produces an error in the decimated-data case comparable to the case processing

the raw data.
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6.5.4 Computational Cost

The computational cost of running the filters onboard the robot is an important

factor in practice since the robot has other processing tasks running during op-

eration. The EKF is less of a computational burden in comparison to the PF

in which execution time is a function of the number of particles N . Measuring

execution time resulting from running a single predict-update cycle for each filter

while varying N , yields Figure 6.18.

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

14

16

18

N

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 

 

PF

 EKF

Figure 6.18: On-board execution time for a single predict-update cycle. The
spikes at N = 2160 and N = 2410 result from increased CPU activity due to
other processes running concurrently and should be considered outliers (but rep-
resentative that computation time can increase)

The curve is valid for the particular implementation on the specific hardware

being used but gives an idea of the trend that would be true given another imple-

mentation/hardware combination. The PF curve displays a linear growth with

N , reaching a value of approximately 17 ms when using 3000 particles whereas

the EKF approximately stays constant with a value of 0.04 ms. The EKF is

more suited to real-time operation particularly when more functions are added

to extend the robots capabilities.
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6.6 Conclusion

This chapter focused upon methods to accurately localise a RSA using noisy

positional updates from onboard wheel encoders and an external acoustic based

positioning system at 100 Hz and 3 Hz respectively. The former is a relative

system that is subject to drift like all such methods of estimation, while for

many practical uses the latter provides absolute updates too infrequently for sole

use. The use of EKF and PF Bayesian filters was investigated for combining the

available positional estimates and an experimental comparison of the performance

of these filters was performed.

It was demonstrated that for a typical raster scan as used in NDE, both methods

yield lower path error than using either measurement source in isolation. For

example in dataset one in Table 6.1 the EKF and PF acheived similar MSEs of

66.53 mm2 and 67.86 mm2 respectively while the ultrasonic system gave 146.58

mm2 and optical encoders produced much higher error due to drift at 774.51

mm2. The errors corresponding to the remaining datasets follow a similar trend

with the EKF and PF having similar performance while the unfiltered sources

display much greater error.

The EKF was expected to produce greater path error than the PF due to its

requirement for process/measurement model linearisation, however, this was not

found to be the case in practice. It is considered that the models are sufficiently

linear within the system time step (dictated by the encoders) that the potential

benefits of the PF do not become apparent. Indeed it also shown that if the

rate of the encoder data is reduced the EKF estimation error increases as a

consequence of larger linearisation error. The graph of Figure 6.16 shows that

when the encoder data corresponding to dataset one is decimated by a factor of

ten that the MSE for the EKF increases from ≈ 66 to ≈ 82 mm2.

Within the constraints of the described system, the conclusion that can be drawn

from this experiment is that there is no benefit in using the PF. This, however, is

not true in general and shows that choice of filtering technique is dependent upon

both the system setup and the models employed in the algorithms. A practical
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aspect of importance for resource limited systems such as the presented system

is the computational cost of algorithms running onboard. An attractive benefit

of the EKF it is the ability to compute the update in a fixed time period while

the cost associated with the PF is proportional to the number of particles used

of which the optimal number is not always clear in advance.
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Chapter 7

Conclusions and Future Work

7.1 General Overview

Automated NDE where feasible, is highly attractive, and potentially allows in-

spection of operational plant. The safety, environmental and financial benefits for

automating NDE measurements are clear, and applicable across a broad range of

NDE technology. Robotic NDE systems can be categorised as systems that are

designed for a specific task and those based upon conventional robot work cells

such as pick and place type robots employed to carry out repetitive scanning of

components. With respect to the former, there exist a wide range of inspection

environments giving rise to the development of inspection devices for a broad

spread of engineering structures/components including storage tanks, pipe net-

works, ships’ hulls and offshore structures.

The development of a bespoke miniature NDE robot and the integration of NDE

payloads was previously investigated by Friedrich [9] and Dobie [14]. The overall

concept was to have many of theses robots working together to form a dynamic

scanning system providing a flexible and scalable inspection platform able to

negotiate complex geometry surfaces. This thesis has focused upon one of the

major problems in this concept, namely that of accurate positional estimation.

Registering defect information with the position at which the defect was detected
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on the structure under investigation is a fundamental requirement of manual and

automated NDE. The obvious benefit of such knowledge is in directing subsequent

repair/replacement of components. In real world NDE applications there is often

a need to monitor a defect to ensure it does not reach a critical state. While the

defect is non-critical the associated component/structure can still be used thus

averting the shutdown of important operations. The monitoring task requires

that the NDE measurements are taken at the same position. Positioning data is

also of importance to register NDE measurements from different sensors acquired

from multiple scans potentially conducted at different times.

This thesis has investigated a range of positioning strategies for a single RSA

unit. Throughout this research a photogrammetry system is used to evaluate

the performance of the developed algorithms. The accuracy and repeatability of

this system for use as a ground truth system is investigated in Chapter 3. An

onboard positioning system which extracts motion information from an image

stream is developed and evaluated in Chapter 4. A low cost ultrasonic positioning

system is characterised in terms of accuracy and repeatability for use in tracking

applications in Chapter 5. In addition, several algorithms for ultrasonic ranging

are investigated with a view to creating a high accuracy acoustic positioning

system. In a real inspection scenario multiple positioning systems would need to

be employed in order to deal with the failure modes of each individual system.

In Chapter 6, Bayesian filters are implemented for combining multiple sources of

noisy positional data to produce an overall estimate of the position of an RSA.

A review of the fundamental sensing techniques and state of the art algorithms

from the field of robotics that may be applied to estimate position was presented

in Chapter 2. The methods can be reduced to relative positioning, absolute

positioning and SLAM based methods. Relative positioning makes use of on-

robot sensors to estimate the change in position over a time increment, summing

these changes results in an absolute trajectory; the optical encoders and visual

odometry are examples of this type of estimation. The major issue with relative

positioning is that small errors in the estimate of change accumulate when gener-

ating the absolute path potentially leading to gross errors. Absolute positioning

requires external sensors with fixed location to be deployed into the operating
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environment to enable position tracking; the ultrasonic system, VMCS and LAT

are all systems of this type. SLAM methods remove the need to embed beacons

into the operating environment through automatically generating beacons from

the environment itself.

A photogrammetry system which is used as the ground truth system throughout

this thesis was characterised in Chapter 3. It was recognised through empirical

observations that the accuracy of positional measurements varied as a function

of location within the 6.8 m x 3.8 m x 3.8 m measurement volume. Using a high

accuracy/precision metrology instrument, a procedure was developed to evaluate

the accuracy and repeatability of the photogrammetry system . New targets for

the photogrammetry system were created allowing a common test object to be

tracked by both systems while being scanned in four planes of the measurement

volume. It was found that the central region of the measurement space contained

the most accurate measurements while the those at the edges were least accurate.

The error surface for each plane of measurements had a parabolic form. The

maximum error recorded in the experiment was approximately 6 mm while the

maximum standard deviation was approximately 74 µm. Importantly the results

indicate that the system is precise but inaccurate. This inaccuracy is a systematic

error that may be minimised through improving the calibration of the system.

In Chapter 4, a visual based relative positioning system was developed and evalu-

ated for vehicles designed for challenging surface conditions in which conventional

optical encoder base positioning is not feasible. A camera was mounted such that

it observed the surface over which the vehicle was travelling. Acquired images

were then transmitted over a wireless connection to a workstation for processing.

The aim of the system was to stitch successive surface images and estimate the

motion of the vehicle through computing the motion of image features. The mo-

saic resulting from the stitching process is a direct NDE output of the system in

that it could be used in performing visual NDE. The applicability of the feature

extraction technique was investigated for materials of the type encountered in

NDE. It was shown that the technique is suitable for matte texture rich surfaces

such as rusted steel and brick while problematic on surfaces such as glossy alu-
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minium. The system was evaluated on several image datasets and compared with

encoder based odometry. Across these datasets, the maximum distance error with

respect to ground truth was found to be approximately 60 mm.

In Chapter 5, an ultrasonic positioning system, one of the major systems employed

in this research was characterised. In contrast to the photogrammetry and laser

system, this ultrasonic system is relatively low cost and has a small physical size.

In a multi-robot inspection scenario where access limitations preclude use of the

laser, the modularity of such a system gives rise to the possibility of utilising a

subset of vehicles equipped with ultrasonic positioning modules as the nodes of

a positioning system. A calibration procedure carried out over a working linear

range of 2000 mm was implemented. After calibration the maximum error was

-4.79 mm with a maximumm standard deviation 1.45 mm. Following on, a cali-

bration procedure in two dimensions was developed to remove an observed radial

type distortion in positional measurements in the operating plane of the system.

In the two dimensional setting the maximum absolute error was approximately

10 mm. With a view to creating a high accuracy version of the ultrasonic system,

an experimental comparison of several methods for through air ultrasonic ranging

was carried out. The methods comprised of the cross correlation, phase based

methods and BIRA, a novel bio-inspired algorithm. The evaluation consisted of

testing distance accuracy over a linear range from 100 mm to 900 mm. It was

found that the cross-correlation and cross-spectrum methods displayed similar

levels of accuracy and repeatability. However, the BIRA yielded greater standard

deviation for ranges greater than 300 mm.

In Chapter 6, Bayesian filtering was investigated for combining noisy positional

estimates from the ultrasonic positioning system Characterised in Chapter 5 and

on-robot encoders. The motivation for this work arose from the fact that all

sensors have limited perception capabilities imposed by the underlying measure-

ment principle resulting in different accuracies, uncertainties and failure modes.

In robot tracking, data fusion is required to allow continuous estimation of lo-

cation. A detailed experimental evaluation of an Extended Kalman and Particle

Filter was implemented to fuse noisy optical encoders estimates available at 100

Hz and the ultrasonic positioning measurements available at 3 Hz to track the
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planar motion of a vehicle. It was demonstrated that for a typical raster scan as

used in NDE, both methods yield lower path error than using each measurement

source in isolation. It was demonstrated that for a typical raster scan as used

in NDE, both methods yield lower path error than using either measurement

source in isolation. For example in dataset one of the experiments the EKF and

PF acheived similar MSEs of 66.53 mm2 and 67.86 mm2 respectively while the

ultrasonic system gave 146.58 mm2 and optical encoders produced much higher

error due to drift at 774.51 mm2. The errors corresponding to the remaining

datasets follow a similar trend with the EKF and PF having similar performance

while the unfiltered sources display much greater error. The Extended Kalman

Filter was expected to produce greater path error than the Particle Filter due to

its requirement for process/measurement model linearisation however, this was

not found to be the case in practice. It is considered that the models are suf-

ficiently linear within the system time step (dictated by the encoders) that the

potential benefits of the Particle Filter do not become apparent. A practical as-

pect of importance for resource limited systems such as the presented system is

the computational cost of algorithms running onboard. An attractive benefit of

the Extended Kalman Filter it is the ability to compute the update in a fixed

time period while the cost associated with the Particle Filter is proportional to

the number of particles used of which the optimal number is not always clear in

advance.

7.2 Suggestions for Further Work

The use of SLAM techniques that provide absolute positioning without the need

to modify the environment is a very desirable property given the potential for

access restrictions in NDE inspections. The environment in which the robots are

intended to be used can be particularly testing for the sensors. For example,

unpredictable lighting make visual methods unfavourable and slippery surfaces

could yield poor encoder estimates. Future work should consider methods for

the extraction of robust and distinctive features from different sensors in NDE
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environments. A novel approach would be to use defects within the environment

itself as the features used in the algorithm for navigation. For example, sub-

surface defects from an Eddy current probe could be tracked as the robot moves

over the surface. Taking this further, map building due to mulitple robots that

share and contribute to a global map of the environment could result in rapid

inspections. Future work should also consider the use of previously generated

maps to enable a robot to return to a previously visited location which is often a

requirement in real world inspections.
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