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Abstract

In the areas of low-density aerodynamics, vacuum industry, and micro-electromechanical

systems, the Navier-Stokes-Fourier equations fail to describe the gas dynamics when the

molecular mean free path is not negligible compared to the characteristic flow length.

Instead, the Boltzmann equation is used to account for the non-continuum nature of

the rarefied gas. Although many efforts have been made to derive the macroscopic

equations from the Boltzmann equation, the numerical simulation of the Boltzmann

equation is indispensable in the study of moderately and highly rarefied gas.

We aim to develop an accurate and efficient deterministic numerical method to solve

the Boltzmann equation. The fast spectral method [1], originally developed by Mouhot

and Pareschi for the numerical approximation of the collision operator, is extended to

deal with other collision kernels, such as those corresponding to the soft, Lennard-Jones,

and rigid attracting potentials. The accuracy of the fast spectral method is checked

by comparing our numerical results with the exact Bobylev-Krook-Wu solutions of the

space-homogeneous Boltzmann equation for a gas of Maxwell molecules. It is found

that the accuracy is improved by replacing the trapezoidal rule with Gauss-Legendre

quadrature in the calculation of the kernel mode, and the conservation of momentum

and energy are ensured by the Lagrangian multiplier method without loss of spec-

tral accuracy. The relax-to-equilibrium processes of different collision kernels with the

same value of shear viscosity are then compared and the use of special collision kernels

is justified. An iteration scheme, where the numerical errors decay exponentially, is

employed to obtain stationary solutions of the space-inhomogeneous Boltzmann equa-

tion. Sever classical benchmarking problems (the normal shock wave, and the pla-

nar Fourier/Couette/force-driven Poiseuille flows) are investigated. For normal shock

waves, our numerical results are compared with the finite-difference solution of the
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Boltzmann equation for hard sphere molecules, the experimental data, and the molec-

ular dynamics simulation of argon using the realistic Lennard-Jones potential. For the

planar Fourier/Couette/force-driven Poiseuille flows, our results are compared with the

Direct Simulation Monte Carlo method. Excellent agreements are observed in all test

cases.

The fast spectral method is then applied to the linearised Boltzmann equation.

With appropriate velocity discretization, the classical Poiseuille and thermal creep flows

are solved up to Kn ∼ 106, where the accuracy in the mass and heat flow rates is

comparable to those from the finite-difference method and the efficiency is much better

than the low-noise Direct Simulation Monte Carlo method. The fast spectral method

is also extended to solve the Boltzmann equation for binary gas mixtures, both in the

framework of classical and quantum mechanics.

With the accurate numerical solution provided by the fast spectral method, we

check the accuracy of kinetic model equations to find out at what flow regime can the

complicated Boltzmann collision kernel be replaced by the simple kinetic ones. We also

solve the collective oscillation of quantum gas confined in external trap and compare the

numerical solutions with the experimental data, indicating the applicability of quantum

kinetic model.
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Chapter 1

Introduction

1.1 Background

A macroscopic volume of gas is a system of a very large number of molecules moving

constantly in a rather irregular way. This huge number of degrees of freedom makes

the trace of motion of each molecular impossible. The fundamental and practical task

in the study of gas dynamics is hence to obtain the evolution of macroscopic quantities

such as the mass density ρ, bulk velocity V, temperature T , pressure tensor P, and the

heat flux q. The evolution of these macroscopic quantities may be modelled at either

the macroscopic or the microscopic level.

1.1.1 Analytical treatments

Traditionally, when the molecular mean free path λ (average distance between two

subsequent collisions of a molecular) is negligible in comparison with a typical length

of the flow structure `, the gas is treated as a continuous medium and the famous Navier-

Stokes-Fourier (NSF) equations are established in terms of the mass, momentum, and

energy conservation
∂ρ

∂t
+
∂(ρVj)

∂xj
= 0, (1.1)

∂(ρVi)

∂t
+
∂(ρViVj + Pij)

∂xj
= ρai, (1.2)

∂
[
ρ
(

3kBT
2m +

V 2
i
2

)]

∂t
+
∂
[
ρVj

(
3kBT
2m +

V 2
i
2

)
+ ViPij + qj

]

∂xj
= ρVjaj , (1.3)

1
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together with the Newton’s law for the shear stress

Pij =
ρkBT

m
δij − µ

(
∂Vi
∂xj

+
∂Vj
∂xi
− 2

3

∂Vk
∂xk

δij

)
, (1.4)

and the Fourier’s law for the thermal conduction

qi = −Kt
∂T

∂xi
, (1.5)

where t is the time, x is the spatial coordinate, a is the external acceleration, kB is the

Boltzmann constant, m is the molecular mass, δ is Dirac’s delta function, µ is the shear

viscosity, and Kt is the thermal conductivity. Note that the Einstein’s summation rule

is used throughout the thesis.

Kn = 0.0001 0.001 0.01 0.1 1 10 100

Continuum flow
Slip flow regime

Transition regime

Free molecule flow
(normal density levels)

(slightly rarefied)

(moderately rarefied)

(highly rarefied)

Figure 1.1: Flow regimes in terms of the Knudsen number. The figure is adapted from Ref. [2].

An important parameter in the study of gas dynamics is the Knudsen number:

Kn =
λ

`
, (1.6)

which is defined as the ratio of the molecular mean free path to the characteristic

flow length. Different flow regimes in terms of the Knudsen number are shown in Fig-

ure 1.1. Usually, the NSF equations can be used to describe the gas dynamics1, up

to Kn < 0.001. When the Knudsen number becomes large, the continuum hypothesis

breaks down and the NSF equations fail to capture the non-conventional behaviour

of rarefied gas flows. This situation is frequently encountered in the areas of low-

density aerodynamics and vacuum industry (where the mean free path is large) and

micro/nano-electromechanical systems (where the characteristic flow length is small).

At 0.001 < Kn < 0.1, however, the non-intuitive rarefied effects (such as velocity slip

1 There are some exceptions, where the NSF equations do not describe the gas dynamic accurately
even when Kn → 0. For example, the ghost effect induced by the periodical variation of the wall
temperature [3].
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and temperature jump) only exist in a small region close to the wall. With appropri-

ate velocity and temperature wall boundary conditions, the NSF equations may still

produce accurate velocity profiles for flows in a micro-channel [2].

To describe the non-continuous nature of the rarefied gas, a fundamental theory at

the microscopic level is needed. In statistical physics, the velocity distribution function

(VDF) f(t,x,v) is introduced to describe the system state, where v is the molecular

velocity. The VDF is defined in such a way that the quantity f(t,x,v)dxdv is the

particle number in the phase-space volume dxdv. All macroscopic quantities can be

calculated via the moments of the VDF: the molecular number density n, bulk velocity,

temperature, pressure tensor, and heat flux are given by

n(t,x) =

∫

R3

f(t,x,v)dv, (1.7)

V(t,x) =
1

n(t, x)

∫

R3

vf(t,x,v)dv, (1.8)

T (t,x) =
m

3kBn(t, x)

∫

R3

|v−V|2f(t,x,v)dv, (1.9)

Pij(t,x) = m

∫

R3

(vi − Vi)(vj − Vj)f(t,x,v)dv, (1.10)

qi(t,x) =
m

2

∫

R3

|v−V|2(vi − Vi)f(t,x,v)dv. (1.11)

The governing equation for the evolution of VDF is derived by Ludwig Boltzmann.

In his description, all molecules move in straight lines with fixed velocities until they

encounter elastic collisions with other molecules. Under the assumptions of molecu-

lar chaos and binary collisions (dilute gas), a nonlinear collision operator is proposed

to model the collision, where the intermolecular interaction is incorporated into the

collision kernel. The celebrated Boltzmann equation (BE) takes the form of [4]:

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= Q(f, f∗), (1.12)

where the first term on the left hand side describes the change of f with time, the second

term is the convective change of f , the third term represents the change of f induced by

the external acceleration (assume it is independent of the molecular velocity). Finally,

the term on the right hand side is the quadratic collision operator Q(f, f∗), which
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consists of the gain term Q+ and the loss term Q−. The collision operator is local in

time and space. For simplicity t and x will be omitted in writing the collision operator2:

Q(f, f∗) =

∫

R3

∫

S2
B(cos θ, |v− v∗|)f(v′∗)f(v′)dΩdv∗

︸ ︷︷ ︸
Q+

− ν(v)f(v)︸ ︷︷ ︸
Q−

, (1.13)

ν(v) =

∫

R3

∫

S2
B(cos θ, |v− v∗|)f(v∗)dΩdv∗, (1.14)

where ν(v) is the collision frequency, v,v∗ are the pre-collision particle velocities, while

v′,v′∗ are the corresponding post-collision velocities. Conservation of momentum and

energy yield the following relations

v′ =
v + v∗

2
+
|v− v∗|

2
Ω = v +

|u|Ω− u

2
,

v′∗ =
v + v∗

2
− |v− v∗|

2
Ω = v∗ −

|u|Ω− u

2
,

(1.15)

where u = v−v∗ is the relative pre-collision velocity and Ω is a vector in the unit sphere

S2 along the relative post-collision velocity v′−v′∗. The deflection angle θ between the

pre- and post-collision relative velocities satisfies cos θ = Ω · u/|u|, 0 ≤ θ ≤ π. Finally,

the collision kernel B can be calculated when the intermolecular potential is known,

see details in §2.1.

The BE is more complicated than the NSF equations, not only because the VDF

is defined in six-dimensional phase-space (three dimensional spatial space and three

dimensional velocity space), but also because of its high dimensional collision operator

(fivefold integral with three dimensions in velocity space and two dimensions in a unit

sphere). Therefore, it is highly desirable to have macroscopic equations like the NSF

ones. To eliminate the microscopic velocity variables, moment equations from the BE

should be considered. Multiplying Eq. (1.12) by 1, v, and |v|2, and integrating the

resulting equations with respect to the molecular velocity v, one gets Eqs. (1.1)–(1.3).

However, these equations are not closed because expressions for shear stress and heat

flux are not known.

2 The quantum statistics is not considered. The classical mechanics works when the mean distance
between molecules is much larger than the thermal de Broglie wavelength λB = ~/

√
mkBT/2π, i.e.,

nλ3
B � 1, with ~ being the Planck constant divided by 2π. For molecules, the thermal de Broglie

wavelength is very small at room temperature. The quantum BE will be presented and solved in
Chapter 6.
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A traditional way to obtain expressions for the shear stress and heat flux is the

Chapman-Enskog (CE) method [5], where the VDF is obtained by successive approx-

imation, i.e., f = f (0) + f (1) + f (2) + · · · . The VDF obtained from the zeroth order

expansion is the equilibrium (Maxwellian) distribution function feq,

f = feq ≡ n
(

m

2πkBT

)3/2

exp

[
−m(v−V)2

2kBT

]
, (1.16)

and the corresponding set of macroscopic equations are the Euler equations ( Eqs. (1.1)–

(1.3) with Pij = nkBTδij and q = 0). The VDF from the first order expansion is

f = feq

[
1− 2mKt

5nk2
BT

(
mv2

r

2kBT
− 5

2

)
vri
∂ lnT

∂xi
− mµ

nk2
BT

2

∂Vi
∂xj

(
vrivrj −

v2
r

3

)
δij

]
,

where vr = v −V is the peculiar velocity. The corresponding macroscopic equations

are the NSF equations Eqs. (1.1)–(1.5), where the shear viscosity is given by3

µ =
5
√
πmkBT

8D
, D =

(
m

4kBT

)4 ∫ ∞

0
u7σµ exp

(
− mu2

4kBT

)
du, (1.17)

with σµ = 2π
∫ π

0 B sin3 θdθ/|u| being the viscosity cross-section, and the thermal con-

ductivity is given by

Kt =
15

4

kB
m
µ. (1.18)

The key success of the CE expansion is the recovery of the NSF equations from the

first principle. The second and third expansions lead to the Burnett and super-Burnett

equations [5, 6], respectively. In the slip flow regime, the Burnett equations are more

accurate than the NSF equations [7, 8]. However, due to its intrinsic instability at large

Knudsen numbers [9], it seems that the Burnett and super-Burnett equations are not

widely used nowadays.

Another way to obtain the closed macroscopic equations is proposed by Grad [10].

In his method, the state of a gas is described by a set of moments (for instance, ρ, V,

T , P, and q are used in Grad 13 method) and the corresponding moment equations are

closed by expanding f in Hermite polynomials and assuming this VDF only depends

3 Only the first-order term of the Sonine-polynomials is used to calculate the shear viscosity [5], as
the rest of the terms are negligible. For example, they make zero contribution to the shear viscosity
for Maxwell molecules, and only make a 2% contribution for hard sphere molecules.
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on these moments. Generally speaking, when the rarefied effects becomes significant,

the number of moments should be increased. For example, for normal shock waves with

Mach number up to 1.65 and 1.887, at least 13 and 21 moments are needed to capture

the shock profiles [11]. Contrary to the Burnett and super-Burnett equations, research

into the Grad moment equations remains active and significant progress has been made.

For instance, the regularised 13 moment equations have been successfully applied to

the lid-driven flow up to Kn ∼ 0.7 [12] and the regularised 26 moment equations are

applied to micro-channel flows in the transition regime [13].

1.1.2 Numerical methods for the Boltzmann equation

For moderately or highly rarefied gases, a numerical solution of the BE is necessary.

However, the multidimensional structure of the collision operator poses a real challenge

to solve the BE numerically. From a historical point of view, realistic numerical com-

putations are based on probabilistic methods. Well-known examples are the direct sim-

ulation Monte Carlo (DSMC) methods developed by Bird and Nanbu [14, 15]. Despite

their stochastic nature, DSMC solutions converge to those of the BE for monatomic

gases in the limit of vanishing discretization and stochastic errors [16]. The main ad-

vantages of the DSMC method are: (i) the simulated particles in DSMC represent a

large number of real molecules so that the number of operations is greatly reduced; (ii)

it does not need artificial boundaries in the velocity space; (iii) particles concentrate

in regions where the VDF is not small so that computer memory is not wasted. These

properties make the DSMC very efficient for high-speed rarefied gas flows. However,

DSMC becomes time-consuming if the flow is in the continuum-fluid regime, especially

when the Mach number is small. Note that recently developed information-preservation

(IP) DSMC method [17–19], hybrid continuum/particle approaches [20–22], and the

low-noise DSMC method [23–25] have partly eased these difficulties.

Contrasting with DSMC, there are numerical methods that solve the Boltzmann

collision operator deterministically, including the discrete velocity model (DVM), the

finite-difference method, and the Fourier spectral method. A brief introduction to these

methods is given below.

In 1989, Goldstein, Sturtevant, and Broadwell developed the first version of DVM [26].
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They used a fixed set of discrete velocities to approximate the continuous velocity space,

and constructed a discrete collision mechanics on the velocity nodes in order to pre-

serve the main physical properties of the collision operator. However, a large amount of

computational resources are wasted since the post-collision velocities must lie on the ve-

locity nodes. Bobylev, Palczewski, and Schneider considered the direct approximation

of the collision operator and demonstrated that the computational cost is of the order

O(N7), while the formal accuracy is less than first order in velocity, where N is the

number of grid points in each velocity direction [27]. The high computational cost drove

researchers to consider mixed deterministic and stochastic methods [28–30]. Recently,

Morris, Varghese, and Goldstein used an interpolation shceme to map the post-collision

velocities back onto the velocity nodes and adopted the Monte-Carlo scheme to pick up

the collision pairs; they found that the performance of DVM is comparable to (or even

faster than) DSMC in normal shock wave simulations [31]. To improve the accuracy,

Tcheremissine [32–34] replaced the Monte-Carlo scheme by the integration method from

the number theory, where 8-dimensional integrating grids were generated on the basis

of Korobov sequence. Also note that Mouhot, Pareschi, and Rey constructed a DVM

for hard sphere molecules with computational cost O(N
3
N3 logN), N � N [35].

The kinetic theory group in Kyoto University has developed a family of finite dif-

ference methods for the BE. In 1989, Sone, Ohwada, and Aoki proposed an accurate

numerical kernel method for computing the linearized collision operator for hard sphere

molecules [36]. Four years later, Ohwada extended the numerical kernel method to cal-

culate the full nonlinear collision operator for hard sphere molecules [37, 38]. In 2001,

the numerical kernel method was applied by Kosuge, Aoki, and Takata to the BE for a

binary gas mixture of hard sphere molecules [39]. This method seems to be restricted to

the hard sphere molecules, and usually only one-dimensional problems such as normal

shock flow and Fourier heat flow between two parallel plates where the VDF has a cylin-

drical symmetry are considered. In this way, the VDF is a function of the longitudinal

and transversal velocities and the number of velocity nodes and the computational cost

are dramatically reduced. Recently, this method has been applied to the Poiseuille and

thermal creep flows in two-dimensional spatial space [40].

In 1996, inspired by the pioneering work of Bobylev using Fourier transform tech-
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niques in the analysis of the BE for Maxwell molecules [41], Pareschi and Perthame

proposed a spectral method to approximate the collision operator for a class of col-

lision kernels, where the computational cost is of the order O(N6) [42]. One year

later, Bobylev and Rjasanow developed a numerical method to solve the collision op-

erator for Maxwell molecules with computational cost of the order O(N4) [43]. This

is in general the fastest algorithm to date. However, its formal accuracy is only of

the order O(N−1/2). For one-dimensional problems such as Fourier heat flow and nor-

mal shock flow, Watchararuangwita, Grigoriev, and Meleshko observed that cylindrical

symmetry allows a reduction of the computational cost to the order O(N2 logN) by

employing the fast Fourier transform (FFT) in the longitudinal velocity direction and

Hankel transform in the transverse direction [44]. In 1999, based on the Carleman-

like representation, Bobylev and Rjasanow were able to solve the collision operator

for hard sphere molecules with a computational cost O(N6 logN) and formal accu-

racy O(N−2), using generalized Radon and X-ray transforms [45]. A faster numerical

method with a computational cost O(N6) and formal accuracy O(N−2) has also been

proposed for the variable hard sphere (VHS) model by Ibragimov and Rjasanow [46].

Based on these Fourier spectral methods, Gamba and Tharkabhushanam developed a

spectral-Lagrangian method both for elastic and inelastic collision operators and in-

vestigated space-inhomogeneous problems, i.e., one-dimensional Fourier heat flow and

shock flow [47, 48].

In 2000, Pareschi and Russo developed an algorithm to solve the collision operator

for the VHS model with a computational cost of O(N6) [49]. The approximation of the

collision operator is spectrally accurate for smooth VDFs, where the error decay rate

is faster than any polynomial, i.e., faster than O(N−r) for any r > 0. The method has

been applied to space-inhomogeneous problems in two-dimensional velocity space [50].

Six years later, by means of the Carleman-like representation, Mouhot and Pareschi

developed a faster spectral method (FSM) with a computational cost O(M2N3 logN)

and spectral accuracy, where M is the number of grid points in the discretizations of

polar and azimuthal angles [1]. In practical calculations, M � N , say, M = 4 ∼ 6 [1,

51]. The FSM has been applied to space-inhomogeneous problems in two-dimensional

(2D) velocity space as well as quantum collision operators [51–54].
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1.2 Objectives

The direct numerical simulation of the BE is indispensable in the study of rarefied gas

dynamics. In this thesis, we aim to develop an accurate and efficient deterministic nu-

merical scheme to solve the BE. Specifically, we focus on the fast algorithm to calculate

the Boltzmann collision operator. From the introduction in the previous section, it

seems that the FSM is the best one among all the deterministic numerical methods,

in terms of the accuracy and computational cost. Compared to the VHS model where

the collision kernel is isotropic (independent of the deflection angle), this method works

only for hard sphere molecules. Therefore, one of the key objective here is to design

new collision kernels which will extend the applicability of the FSM.

Since the FSM has only been applied to BE with single-species molecules, we try

to extend it to a binary mixture of monoatomic gases. We will also extend the FSM to

solve the quantum BE, which has applications in ultra-cold dilute quantum gases.

Even with FSM, the computational cost of the BE is high. Therefore, we will check

the accuracy of kinetic models by comparing their solutions with the BE, aiming to

identifying the flow regimes where the kinetic collision operators can be used to replace

the complicated Boltzmann collision operator.

1.3 Thesis Outline and Key Developments

In Chapter 2, we solve the BE for single-species monoatomic gas by the FSM. The

algorithm for the implementation of FSM is presented in details, and the accuracy of the

FSM is evaluated by comparing numerical solutions with analytical results for Maxwell

molecules. Good agreements with the experiment and other numerical schemes are also

observed in space-inhomogeneous problems such as the shock waves, planar Couette,

Fourier, and force-driven Poiseuille flows. The key developments are:

• Novel anisotropic collision kernels are designed, extending the applicability of the

FSM to all inverse power-law potentials except the Coulomb potential. Also, spe-

cial collision kernels are designed for molecules interacting through the Lennard-

Jones (LJ) and rigid attracting potentials, by observing that the corresponding

cross-sections can be well approximated by superpositions of several single-term
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cross-sections. Nevertheless, the numerical simulations are as fast as that for a

single-term collision kernel.

• In the calculation of the kernel mode, the integration in a unit sphere is approxi-

mated by the Gauss-Legendre quadrature, instead of the trapezoidal rule. Better

accuracy is achieved for the same number of discrete polar and azimuthal angles.

• Since the FSM conserves mass and approximates momentum and energy with

spectral accuracy, we use the method of Lagrangian multipliers to correct the

momentum and energy. While it ensures conservation, the Lagrangian multiplier

method does not affect accuracy of the FSM.

In Chapter 3, we apply the FSM to the linearised BE and solves the Poiseuille and

thermal creep flows in both one- and two-dimensional space with the Knudsen number

up to 106. At large Kn, the singular behaviour in the VDF poses a big challenge

for the numerical solution of the BE. This problem is solved by introducing special

forms of velocity discretisation and multi-resolution scheme in the frequency space,

which makes the accuracy of FSM comparable to those from the Kyoto Kinetic Group

and the efficiency much better than the low-noise DSMC (which is the fastest DSMC

method for flows with small velocities).

As the application of FSM, various interesting problems are solved in Chapter 4.

A new kinetic model, which has the ability to reduce its difference to the Boltzmann

collision operator, is introduced. The accuracy of the kinetic model equations is checked

by comparing their solutions with those from the BE.

The FSM is extended to solve the BE for two-species monoatomic gases in Chapter 5

and the quantum BE for Fermi gases in Chapter 6.

In Chapter 7, we consider the collective oscillation of quantum gases confined by

external harmonic and Gaussian potentials. We compare the numerical results with the

experiments, demonstrating the applicability of quantum BE in describing the collective

behaviour of quantum Fermi gas.

The key findings of this research presented in this thesis and discussion of future

work based on it, is summerised in Chapter 8.
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Chapter 2

Fast spectral method for

monoatomic gas

In this Chapter, we first show how to recover the shear viscosity when special forms of

collision kernels are used. Second, we present the detailed calculation of the spectral

approximation of the collision operator and check the accuracy of the FSM by compar-

ing the numerical results with analytical solutions for Maxwell molecules. Third, the

relax-to-equilibrium process of different collision kernels with the same value of shear

viscosity is compared and the use of special collision kernels is justified. Fourth, an

iteration scheme is used to find steady solutions of the space-inhomogeneous problems.

2.1 Collision kernel suitable for the fast spectral method

The collision kernel B(cos θ, |u|) in Eq. (1.13) is at the heart of the collision operator.

It is always non-negative, and depends on the modulus of the relative velocity and the

deflection angle. For hard sphere molecules, the deflection angle is determined through

ba = d cos(θ/2), where ba is the aiming distance and d is the molecular diameter. Hence

the differential cross-section, defined as

σ =
ba|dba|

sin θ|dθ| , (2.1)

12
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is d2/4. The collision kernel, which is a product of the relative collision velocity and the

differential cross-section, is B = |u|σ = |u|d2/4. For a general spherically symmetrical

intermolecular potential φ(r), the deflection angle is ([5], p.170; [14], p.37)

θ(b, |u|) = π − 2

∫ W1

0

[
1−W 2 − 4φ(r)

m|u|2
]−1/2

dW, (2.2)

where W = ba/r and W1 is the positive root of the term in the brackets.

2.1.1 Power-law potentials

The inverse power-law potential is φ(r) = κ/(η − 1)rη−1, which is called hard and soft

potentials when η > 5 and η < 5, respectively. Maxwell molecules have the potential

with η = 5 and the Coulomb potential has η = 2. The collision kernel is a power-law

function of the relative velocity:

B =
ba|dba|

sin θ|dθ| |u| ≡ cα(θ)|u|α, α =
η − 5

η − 1
. (2.3)

It can be shown that cα(θ) approaches to θ(α−5)/2 at the grazing collision limit

θ → 0. This indicates that the total cross-section
∫
σdΩ is infinite. Although the global

existence and rapid relax-to-equilibrium of the classical solutions has been proven [55],

a finite cutoff is introduced in numerical simulations using particle methods. One way

to eliminate the infinity is to cut off cα(θ), i.e., set cα(θ) = 0 when θ is smaller than

a fixed value of angle, or equivalently, when ba is larger than a fixed value of distance.

This is justified by the fact that grazing collisions only lead to small changes of the

system state. Another prevalent way to simplify the collision kernel is to replace cα(θ)

with the constant Cα, yielding the well-known VHS model in DSMC [14]:

B = Cα|u|α, (2.4)

where the constant Cα is empirically determined by equating the shear viscosities of

the BE when the collision kernels are given by Eq. (2.3) and Eq. (2.4), respectively.

Accordingly, we have

Cα =
3

4

(
2κ

m

)2/(η−1)

A2(η), (2.5)
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with the numerical factor A2(η) =
∫∞

0 sin2 θW0dW0 and W0 = ba(m|u|2/2κ)1/(η−1) [14].

Note that in the VHS model, the shear viscosity and temperature have the following

relation:

µ ∝ Tω, ω =
η + 3

2(η − 1)
. (2.6)

In the VHS model, the differential cross-section σ = Cα|u|α−1 is independent of

the deflection angle. This model is widely used in DSMC, and the isotropic cross-

section makes DSMC easy and effective to implement when α ≥ 0. For other numerical

methods to solve the collision operator efficiently, it may be easier to include the θ-

dependent collision kernel and the total cross-section does not have to be finite.

To achieve the maximum efficiency in the numerical approximation of the Boltz-

mann collision operator, special forms of the collision kernel are needed. For example,

Mouhot and Pareschi [1] suggested the following anisotropic collision kernel:

B = C ′α sinα−1

(
θ

2

)
|u|α, (2.7)

where C ′α is a constant. This special θ-dependent collision kernel not only enables the

development of the FSM for computing the collision operator deterministically, but also

mimics the growth trend of the collision kernel when decreasing the deflection angle.

Like the VHS model in DSMC, the constant C ′α should be determined by equating

the shear viscosities of the BE when the collision kernels are given by Eq. (2.3) and

Eq. (2.7), respectively, yielding

C ′α =
(α+ 3)(α+ 5)

24
Cα. (2.8)

Note that for hard sphere molecules (α = 1), the VHS collision kernel and the collision

kernel (2.7) are exactly the same.

We find that the collision kernel (2.7) can be extended to the following general form:

B = C
′′
α,γ sinα+γ−1

(
θ

2

)
cos−γ

(
θ

2

)
|u|α,

C
′′
α,γ =

Γ[(7 + α)/2]

6Γ[(3 + α+ γ)/2]Γ(2− γ/2)
Cα,

(2.9)

where Γ is the gamma function. The additional parameter γ introduces plenty of
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flexibility, not only to extend the applicability of the FSM to all inverse power-law

potentials except the Coulomb potential, but also to recover the correct ratio between

coefficients of shear viscosity and diffusion.

It will be interesting to compare our collision kernel with that of the VSS model.

For the VSS model in DSMC, the aiming distance ba and the molecular diameter d

have the relation ba = d cosγ
′
(θ/2) (when γ′ = 1 it turns to the VHS model), so that

the VSS collision kernel is related to the deflection angle as cos2γ′−2(θ/2), i.e., it is B

a function of the deflection angle. Therefore, one may call the collision kernels (2.7)

and (2.9) as the generalized VSS collision kernel.

2.1.2 Lennard-Jones potential

The power-law intermolecular potential is a phenomenological model. In reality, the

potential between monatomic gas molecules is better described by the LJ potential.

Here we consider argon, where the LJ potential is

φ(r) = 4ε

[(
dLJ
r

)12

−
(
dLJ
r

)6
]
, (2.10)

with a potential depth ε = 119.18kB, dLJ = 3.42 × 10−10m, and r being the distance

between two molecules. For other molecules, the values of ε and dLJ may be different.

However, the following analysis applies to all LJ potentials of the form in Eq. (2.10).

When the potential is known, the shear viscosity can be calculated by Eq. (1.17)

with the help of Eqs. (2.1) and (2.2). The numerical results for the parameter D are

shown in Figure 2.1. A more accurate calculation may be found in Ref. [56].

Unlike the power-law potential, the shear viscosity is not a single power-law function

of the temperature over the whole temperature range [5]. Only when the temperature

does not vary too much could D be a single power-law function of T . For instance, when

kBT/ε is large (or small), the repulsive (or attractive) part of the force is dominant,

and D ∝ T−1/6 (or D ∝ T−1/3). Also, when 2 < kBT/ε < 3, we have D ∝ T−0.31, see

Figure 2.1. In these regions, the VHS model can be successfully implemented in DSMC,

producing satisfactory results. However, a single power-law fit is not adequate over a

wider temperature range. To tackle this problem, the generalized VHS model of Hassan
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Figure 2.1: D/d2LJ vs kBT/ε for the LJ potential, see Eq. (1.17). The solid line is a nonlinear
least squares fit (with 95% confidence bounds) of D/d2LJ as a function of kBT/ε by the sum
of three power-law functions: D/d2LJ = b1(kBT/ε)

−0.4 + b2(kBT/ε)
−0.45 + b3(kBT/ε)

−0.5, with
b1 = 407.4, b2 = −811.9, and b3 = 414.4.

and Hash [57], the variable sphere model of Matsumoto [58], and the generalized soft

sphere model of Fan [59], have been proposed and tested in DSMC.

Here we employ the concept of the generalized VHS model to construct the colli-

sion kernel that is suitable for the FSM to solve the collision operator. According to

Eq. (1.17), we observe that the special form of D given by the fit function in Figure 2.1

can be recovered if the collision kernel takes the form of

B =
d2
LJ

32π

3∑

j=1

(m/4ε)(αj−1)/2bj

Γ(
3+αj

2 )
sinαj−1

(
θ

2

)
|u|αj , (2.11)

where α1 = 0.2, α2 = 0.1, α3 = 0, and the values of bj are shown in Figure 2.1.

For argon with ε = 119.18kB, the fit in Figure 2.1 covers the temperature range

from 120K to 3000K, while the VHS model with µ ∝ T 0.81 (dotted line) works only

when 240K< T <360K. For wider temperature range, more terms with different values

of αj and bj may be needed. We note that, no matter how many terms are added (as

long as αj > −1), the computational time of the corresponding collision operator will

not increase. The reason for this will be discussed at the end of §2.3.2. In the following,

if the LJ potential is not specified, the shear viscosity of argon is proportional to T 0.81,

that is, the collision kernel is given by Eq. (2.7) or Eq. (2.9) with α = 0.38.
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2.1.3 Sutherland’s molecular model

For a gas whose molecules are rigid attracting spheres, its shear viscosity is given by

the Sutherland formula:

µ =
5
√
πmkBT

16σT,∞

T

T + Tr
, (2.12)

where Tr is a reference temperature and σT,∞ is the total cross-section in the limiting

case of infinite relative velocity |u|. This formula reproduces the experimental data for

many real gases over a considerable range of temperature [5, 14].

The Sutherland formula for shear viscosity can be recovered if we use the following

superposition of the modified collision kernels

B = C
′′
1,γ1 sinγ1

(
θ

2

)
cos−γ1

(
θ

2

)
|u|+ C

′′
−1,γ2 sinγ2−2

(
θ

2

)
cos−γ2

(
θ

2

)
|u|−1, (2.13)

with

8πC
′′
1,γ1Γ

(
2− γ1

2

)
Γ
(

2 +
γ1

2

)
= 2σT,∞,

8πC
′′
−1,γ1Γ

(
2− γ2

2

)
Γ
(

1 +
γ2

2

)
= 2σT,∞Tr

4kB
m

,
(2.14)

where special values of γ1 and γ2, i.e., 2 > γ1 = γ2 > 0, can make the FSM as fast

as that for the single-term collision kernel (2.7) or (2.9). Detailed discussions will be

given at the end of §2.3.2.

2.2 Normalization

For practical calculations, it is convenient and useful to introduce dimensionless vari-

ables. The following dimensionless variables are introduced:

f̃ =
v3
m

n0
f, x̃ =

x

`
, (ṽ, Ṽ) =

(v,V)

vm
, t̃ =

vm
`
t, ã =

`

v2
m

a,

ñ =
n

n0
, T̃ =

T

T0
, P̃ =

P

n0kBT0
, q̃ =

q

n0kBT0vm
, (2.15)

where n0 is the average molecular number density, ` is the characteristic length, vm =
√

2kBT0/m is the most probable molecular speed with T0 being the reference temper-

ature.
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Under these normalizations, the BE with the collision kernel (2.9) takes the following

form

∂f̃

∂t̃
+ ṽ · ∂f̃

∂x̃
+ ã · ∂f̃

∂ṽ
=

1

Kn′

∫ ∫
sinα+γ−1

(
θ

2

)
cos−γ

(
θ

2

)
|ũ|α

×[f̃(ṽ′∗)f̃(ṽ′)− f̃(ṽ∗)f̃(ṽ)]dΩdṽ∗,

(2.16)

where the normalized Knudsen number is

Kn′ =
64
√

2
α

5
Γ

(
α+ γ + 3

2

)
Γ
(

2− γ

2

)
Kn, (2.17)

with

Kn =
µ

n0`

√
π

2mkBT0
(2.18)

being the unconfined Knudsen number. Here, (µ/n0)
√
π/2mkBT0 is the unconfined

mean free path at the reference temperature T0 and molecular number density n0, which

is 15π/2(7 − 2ω)(5 − 2ω) times larger than the equilibrium mean free path defined in

Eq. (4.52) in Ref. [14].

For the LJ potential, when the collision kernel takes the form of Eq. (2.11), the

term sinα+γ−1(θ/2) cos−γ(θ/2)|ũ|α/Kn′ in Eq. (2.16) should be replaced by

5
∑3

j=1 bj(kBT0/2ε)
(αj−1)/2 sinαj−1(θ/2)|ũ|αj/Γ(

αj+3
2 )

64
√

2Kn
∑3

j=1 bj(kBT0/ε)(αj−1)/2
. (2.19)

A similar expression can be given for the rigid attracting potential.

Considering the above normalization scheme, the normalized macroscopic quantities

are related to the normalized VDF as follows:

ñ =

∫
f̃dṽ, Ṽ =

1

ñ

∫
ṽf̃dṽ, T̃ =

2

3ñ

∫
|ṽ− Ṽ|2f̃dṽ,

P̃ij = 2

∫
(ṽi − Ṽi)(ṽj − Ṽj)f̃dṽ, q̃i =

∫
|ṽ− Ṽ|2(ṽi − Ṽi)f̃dṽ.

(2.20)

2.3 Fast spectral method for the collision operator

The numerical approximation of the Boltzmann collision operator by the FSM is now

introduced and discussed. For its main properties we refer to the original paper [1].
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Some detailed calculations are presented below because different sources in the liter-

ature give different results for the kernel mode [1, 51, 54]. For simplicity, the tildes

on normalized quantities will be omitted hereafter. We first consider the simple case

where the collision kernel is given by Eq. (2.9).

2.3.1 Carleman-like representation

We rewrite the collision operator using the Carleman-like representation. With the

basic identity 2
∫
R3 δ(2y ·u+ |y|2)f(y)dy = |u|

∫
S2 f(|u|Ω−u)dΩ, the collision operator

on the right hand side of Eq. (2.16) can be rewritten as

Q(f, f∗) =
1

Kn′

∫

R3

∫

S2
Θ|u|[f(v′∗)f(v′)− f(v∗)f(v)]dΩdv∗

=
1

Kn′

∫

R3

∫

S2
Θ|u|

[
f

(
v∗ −

|u|Ω− u

2

)
f

(
v +
|u|Ω− u

2

)
− f(v∗)f(v)

]
dΩdv∗

=
2

Kn′

∫

R3

∫

R3

Θδ(2y · u + |y|2)
[
f
(
v∗ −

y

2

)
f
(
v +

y

2

)
− f(v∗)f(v)

]
dydv∗

=
4

Kn′

∫

R3

∫

R3

Θδ(y · u + |y|2)[f(v∗ − y)f(v + y)− f(v∗)f(v)]dydv∗

=
4

Kn′

∫

R3

∫

R3

Θδ(y · z )[f(v + z)f(v + y)− f(v + y + z)f(v)]dydz,

where Θ = sinα+γ−1 (θ/2) cos−γ (θ/2) |u|α−1.

Notice that in the above calculations we have used the transformations y = (|u|Ω−
u)/2 and z = v∗ − v− y = −u− y. Therefore, the deflection angle θ satisfies

cos θ =
Ω · u
|u| =

−(y− z) · (y + z)

|y + z|2
y⊥z
=
|z|2 − |y|2
|y|2 + |z|2 ,

which results in

sin

(
θ

2

)
=

|y|√
|y|2 + |z|2

, cos

(
θ

2

)
=

|z|√
|y|2 + |z|2

. (2.21)

Hence Θ = |y|α+γ−1|z|−γ and the collision operator is simplified to

Q(f, f∗) =
4

Kn′

∫

R3

∫

R3

δ(y · z)|y|α+γ−1|z|−γ

× [f(v + z)f(v + y)− f(v + y + z)f(v)]dydz.

(2.22)
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2.3.2 Fourier-Galerkin spectral method

In the FSM, the VDF is periodised on the domain DL = [−L,L]3. We adopt uniform

grid points in the velocity space: vk(jk) = 2jkL/Nk with k = 1, 2, 3, where jk ∈
[−Nk/2,−Nk/2 + 1, · · · , Nk/2− 1] and Nk is the number of velocity grid points in the

k-th velocity direction1. Suppose BS , a sphere of radius S centered at the origin, is the

support of the VDF. Usually the minimum value L = (3 +
√

2)S/2 is chosen to avoid

the aliasing error caused by the periodicity of the velocity VDF [49]. The VDF is then

approximated by a truncated Fourier series,

f(v) =

(N1,N2,N3)/2−1∑

j=−(N1,N2,N3)/2

f̂j exp(iξj · v), (2.23)

f̂j =
1

(2L)3

∫

DL
f(v) exp(−iξj · v)dv, (2.24)

where j = (j1, j2, j3), i is the imaginary unit, and ξj = jπ/L are the frequency compo-

nents.

The collision operator (2.22) is also truncated, with the infinite region R3 replaced

by the finite one BR, where the truncation radius R satisfies R ≥
√

2S [1, 51]. Numerical

analysis in Figure 2.4 reveals that, however, R cannot be larger than L.

Expanding the truncated collision operator in the truncated Fourier series, we find

that the j-th mode of the truncated collision operator is related to the Fourier coefficient

f̂ of the VDF:

Q̂j =

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

f̂lf̂m[β(l,m)− β(m,m)], (2.25)

1 For space-inhomogeneous problems, however, we use symmetrical velocity grids which does not
pass zero, since this kind of velocity grids generally have better accuracy than the velocity girds passing
zero when the grid numbers are the same, for example see [60].
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e

x'

y'

e'

m

θ1

θ2

Figure 2.2: Demonstration of the integral with respect to e′ used in the calculation of the kernel
mode (2.26). When the vector e is fixed, e′ is in the x′y′ plane perpendicular to e. That is, it
degenerates to a two-dimensional vector characterized by the polar angle θ2 varying from 0 to 2π.
Because of symmetry, we only consider the region 0 ≤ θ2 ≤ π.

where l = (l1, l2, l3), m = (m1,m2,m3), and the kernel mode β(l,m) is simplified to

β(l,m) =
4

Kn′

∫

BR

∫

BR
δ(y · z)|y|α+γ−1|z|−γ exp(iξl · y + iξm · z)dydz

=
1

Kn′

∫ ∫
δ(e · e′)

[∫ R

−R
|ρ|α+γ exp(iρξl · e)dρ

]

×
[∫ R

−R
|ρ′|1−γ exp(iρ′ξm · e′)dρ′

]
de′de

=
1

Kn′

∫

S2
φα+γ(ξl · e)

[∫

S2
δ(e · e′)φ1−γ(ξm · e′)de′

]
de, (2.26)

with e, e′ being the unit vectors in the sphere S2, and

φδ(s) = 2

∫ R

0
ρδ cos (ρs) dρ. (2.27)

Equation (2.26) can be simplified further. We construct a new Cartesian coordinate

system, where the z′ axis is parallel to e, the y′ axis is just the projection of vector

m into the plane e⊥ perpendicular to the z′ axis, and the x′ axis is in the plane e⊥

and perpendicular to the y′ axis, see Figure 2.2. Suppose the polar and azimuthal

angles of e′ in the new coordinate system are θ and π/2 − θ2, respectively, and the

angle between the vector m and y′-axis is θ1. Then, we have δ(e · e′) = δ(cos θ) so that
∫ π

0 g(θ)δ(cos θ)dθ = g(π/2) for arbitrary function g(θ), ξm · e′ = |ξm| cos θ1 cos θ2, and
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the kernel mode becomes

β(l,m) =
1

Kn′

∫

S2
φα+γ(ξl · e)

[∫ 2π

0

∫ π

0
δ(cos θ)φ1−γ(|ξm| cos θ1 cos θ2)dθdθ2

]
de

=
1

Kn′

∫

S2
φα+γ(ξl · e)

[∫ 2π

0
φ1−γ(|ξm| cos θ1 cos θ2)dθ2

]
de

=
2

Kn′

∫

S2
φα+γ(ξl · e) · ψγ(|ξm| cos θ1)de,

(2.28)

where

ψγ(s) =

∫ π

0
φ1−γ(s cos θ2)dθ2 = 2π

∫ R

0
ρ1−γJ0(ρs)dρ, (2.29)

with J0 being the zeroth-order Bessel function.

Note that ξl(= lπ/L) and ξm(= mπ/L) in the integration (2.28) appear in two

functions. If they also appear in two different functions in the final form of β(l,m),

Eq. (2.25) can be calculated effectively by the FFT-based convolution. The separation

of l and m can be realised by calculating (2.28) approximately using the numerical

quadrature method. Two different methods will be employed and compared:

• in the first method, β(l,m) is calculated numerically in spherical coordinates by

the trapezoidal rule. Suppose the polar and azimuthal angles of the unit vector

e are θ and ϕ, respectively. We divide each region 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ π

(for symmetry) into M sections, i.e., θp = pπ/M and ϕq = qπ/M with p, q =

1, 2, · · · ,M . Then the kernel mode (2.28) is approximated by

β(l,m) ' 4π2

Kn′M2

M−1,M∑

p,q=1

φα+γ(ξl · eθp,ϕq) · ψγ
{√
|ξm|2 − (ξm · eθp,ϕq)2

}
· sin θp.

(2.30)

• in the second method, β(l,m) is approximated by a Gauss-Legendre quadrature

of order M :

β(l,m) ' 4

Kn′

M∑

p,q=1

ωpωqφα+γ(ξl · eθp,ϕq) · ψγ
{√
|ξm|2 − (ξm · eθp,ϕq)2

}
· sin θp,

(2.31)

where θp (ϕq) and ωp (ωq) are the p (q)-th point and weight in the Gauss-Legendre

quadrature with θ, ϕ ∈ [0, π], and eθp,ϕq = (sin θp cosϕq, sin θp sinϕq, cos θp).
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Figure 2.3: Profiles of φα+γ when γ = 0 and ψγ according to Eqs. (2.27) and (2.29) when R = 4.
Because of symmetry, the region s < 0 is not plotted. For the soft potential, we use α = −0.4 and
the shear viscosity is proportional to T 1.2.

For the LJ potential, when the normalised collision kernel is given by Eq. (2.19), γ in

the function ψγ is zero. Meanwhile, one needs to replace the term φα+γ(ξl ·eθp,ϕq)/Kn′

in Eq. (2.30) or Eq. (2.31) by

5
∑3

j=1 bj(kBT0/2ε)
(αj−1)/2φαj (ξl · eθp,ϕq)/Γ(

αj+3
2 )

64
√

2Kn
∑3

j=1 aj(kBT0/ε)(αj−1)/2
. (2.32)

The analytical form of φα+γ(s) can be obtained when α + γ is an integer. For

instance, when γ = 0, for Maxwell molecules (α = 0) and hard sphere molecules, we

have

φ0(s) =
2 sin(Rs)

s
, φ1(s) =

2R sin(Rs)

s
− 4 sin2(Rs/2)

s2
, (2.33)

while in the other cases, φα+γ(s) and ψγ(s) can be accurately calculated by Gauss-

Legendre quadrature numerically. Figure 2.3 shows typical decaying-oscillating profiles

of the two functions φα+γ and ψγ , where the quasi-period of oscillation is about 2π/R.

Note that in the VHS model, −3 < α ≤ 1. From Eq. (2.27) it follows that δ is

restricted to the region (−1,+∞). Therefore, α + γ > −1 and 1 − γ > −1. In the

original collision kernel proposed by Mouhot and Pareschi [1], γ = 0, so that α is

restricted in the region (−1, 1]. This means that the original collision kernel cannot

deal with general forms of soft potentials. In our modified collision kernel (2.9), if we
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let γ → 2, α can cover the whole region (−3, 1], thus extending the applicability of the

FSM to all inverse power-law potentials except the Coulomb potential.

2.3.3 Conservation enforcement

One of the drawbacks of the FSM, as with any spectral method for the approximation

of the collision operator, is that it does not exactly conserve momentum and energy. To

ensure the conservation of momentum and energy, we employ the method of Lagrangian

multipliers [47, 48].

The procedure is simple and straightforward: after the collision operator Q is ap-

proximated, we construct Qnew by minimising the function
∑

j(Qj −Qnewj )2 under the

constraints
∑

jQ
new
j =

∑
j vQ

new
j =

∑
j |v|2Qnewj = 0, yielding

Qnew = Q− (λn + λv · v + λe|v|2), (2.34)

where the five Lagrangian multipliers satisfy

∑

j

Q =
∑

j

(λn + λv · v + λe|v|2),

∑

j

vQ =
∑

j

v(λn + λv · v + λe|v|2),

∑

j

|v|2Q =
∑

j

|v|2(λn + λv · v + λe|v|2). (2.35)

Since the errors for the momentum and energy in the FSM are spectrally small [1],

the Lagrangian multipliers are very small. This is indeed confirmed in our numerical

simulations. We also find that the Lagrangian multiplier method does not affect the

accuracy of the FSM, while it ensures conservation of mass, momentum, and energy.

2.3.4 Detailed implementation

The detailed procedure to approximate the collision operator is now outlined. In the

following, we assume Eq. (2.28) is approximated by the trapezoidal rule. First, the

kernel modes should be pre-computed and stored. The storage of φα+γ(ξl, θp, ϕq) and

ψγ(ξm, θp, ϕq) requires 2M(M − 1)N1N2N3 units of compute memory. We also need
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N1N2N3 units of storage for

φloss =

M−1,M∑

p,q=1

φα+γ(ξm, θp, ϕq)ψγ(ξm, θp, ϕq) sin θp, (2.36)

which will be used to calculate the loss part of the collision operator. For space-

homogeneous problems, such storage is relatively large when compared to the storage

of the VDF. However, when it comes to space-inhomogeneous problems, the storage

will be relatively small because different spatial grids could use the same kernel modes.

Second, we get f̂ by applying the inverse FFT to f , see Step 1 in algorithm 1 in the

Appendix. Third, with Eq. (2.30), Eq. (2.25) becomes

Q̂j ≈
4π2

Kn′M2

M−1,M∑

p,q=1

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

[f̂lφα+γ(ξl, θp, ϕq)] · [f̂mψγ(ξm, θp, ϕq)]

︸ ︷︷ ︸
gain

· sin θp

− 4π2

Kn′M2

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

f̂l · [f̂mφloss]

︸ ︷︷ ︸
loss

.

(2.37)

The loss term can be effectively calculated by FFT-based convolution, using the

zero-padding technique [61]. For the gain term, one has to do an FFT-based convolution

for each pair of (p, q), that is, M(M − 1) times. The implementation is listed in Steps

2, 3, and 4 in algorithm 1 [Appendix A]. Finally, the collision operator Q is calculated

by applying FFT to Q̂ (Step 5).

Note that in algorithm 1, the zero-padding technique is employed to eliminate the

aliasing error in the FFT-based convolution. This process is accurate for arbitrary

values of t1 and t2 (defined in Appendix A) when the padding size in each direction is

larger than one half of the velocity grid number. Considering the fact that the spectrum

f̂ is non-zero only in the central region of the frequency domain, we can expedite the

calculation by ignoring the zero-padding. This leads to the simpler and faster algorithm

2. Numerical simulations on Test 1 below show that both algorithms produce identical

results, but algorithm 2 is about 4 times faster than algorithm 1.

Now we see that the computational cost of the FSM is O(M2N3 logN), where
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N is the same order as N1, N2 and N3. Note that l and m are not separable in

classical spectral methods, and the computational cost of Eq. (2.25) is O(N6) [47, 49].

A rough estimate of the speed-up can be given. In algorithm 2, one needs to do

2M(M − 1) + 2 times FFT (the array size is N1 ×N2 ×N3), while in classical spectral

methods the computational cost is the same with one direct convolution of one complex

and one real array of size N1 × N2 × N3. For comparison, we take M = 7 and run

our Matlab (version 2012a) programs on a PC with an Intel Xeon 3.3 GHz CPU. For

N = 32 (or 64), algorithm 2 is about 18 (or 62) times faster than the classical spectral

methods. Further speed-up can be achieved by reducing the value of M (say, to 5) and

considering possible symmetry in the VDF. As will shown in Chapters 3 and 4, for the

flows with large Knudsen number there are discontinuities in the VDF; to capture the

discontinuities, one needs large number of velocity grids. In this case, the FSM could

be faster than the classical spectral methods by two orders of magnitude.

Note that for the LJ potential, the storage of the kernel modes and computational

cost of the collision operator is exactly the same as that for the single-term collision

kernel (2.7) or (2.9). For the collision kernel (2.13), if we let γ1 = γ2, the storage and

computational cost will also be the same as the single-term collision kernel. For the

existence of φ1+γ1 , ψ1−γ1 , φ−1+γ2 , and ψ1−γ2 , one should choose −2 < γ1 < 2 and

0 < γ2 < 2. Therefore, we choose 0 < γ1 = γ2 < 2. Note, if γ1 6= γ2, the storage and

computational cost will be twice of that of the single-term collision kernel.

2.4 Accuracy of the fast spectral method

To check the accuracy of the FSM, the relax-to-equilibrium process of Maxwell molecules

(α, γ = 0) is considered. This is a spatial-homogeneous problem, where the BE becomes

∂f

∂t
=

1

Kn′

∫

R3

∫

S2
sin−1

(
θ

2

)
[f(v′∗)f(v′)− f(v∗)f(v)]dΩdv∗. (2.38)

Without loss of generality, we choose Kn′ = 32π/5.

Test 1. The BE (2.38) possesses the exact Bobylev-Krook-Wu (BKW) solution [62]:

f(v, t) =
1

2(2πK)3/2
exp

(
−|v|

2

2K

)(
5K − 3

K
+

1−K
K2

|v|2
)
, (2.39)
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where the “effective temperature” is K = 1 − 0.4 exp (−t/6), t ≥ 0. According to the

exact solution, the evolution of the fourth- and sixth-order moments is given by

M4 =

∫
fv4

1dv = 6K − 3K2, M6 =

∫
fv6

1dv = 45K2 − 30K3. (2.40)

The integration of Eq. (2.38) with respect to t will introduce some numerical error.

In order to check how accurately the FSM can approximate the collision operator,

we compare Qnu, the numerical approximation of Q, to the analytical solution Qan,

which is calculated by Qan = [f(t = ∆t)− f(t = 0)]/∆t with ∆t=1.0E-5 (which is far

smaller than the characteristic relaxation time). The following two factors affect the

accuracy: the value of N , which decides the accuracy of the spectrum f̂ of the VDF,

and the value of M , which determines how accurately we approximate the integral in

Eq. (2.28). The latter is qualitatively analysed as follows. For simplicity, let us ignore

ξm and ϕ in Eq. (2.28). Notice that φα+γ is a decaying-oscillating function with the

quasi-period 2π/R (see Eq. (2.33) and Figure 2.3). Then, for a fixed value of ξl, the

integral kernel in Eq. (2.28) oscillates R|ξl|/π times as θ varies from 0 to π. In the

worst cases (ξl → Nπ/2L), it oscillates O(N) times. This implies that M should be

O(N). In practical calculations, however, M can be far less than N because, if the

VDF has a support S, its spectrum has a support proportional to 1/S ∼ 1/R. Within

this support, the integral kernel in Eq. (2.28) oscillates only a few times, and hence a

small value of M can lead to accurate results.

We vary values of N and M to see their influence on the numerical accuracy; the

results are tabulated in Table 2.1. When N = 16, the relative error is large because the

resolution of the VDF is not high enough so that a large error exists in the spectrum

f̂ . As N increases to 24, the error is reduced by one order of magnitude. When the

trapezoidal rule is used, the error mainly comes from the approximation of Eq. (2.28),

which decays at O(1/M2) when N is fixed. When M is fixed, the numerical accuracy

does not improve when N ≥ 32. If we increase the value of M by a factor of 2 when

the value of N is increased by a factor of 2, we find that the spectral accuracy of the

FSM is roughly maintained. When Eq. (2.28) is approximated by the Gauss-Legendre

quadrature, the spectral accuracy is clear for N ≤ 32 and M ≥ 6. For N > 32, if

M is increased linearly with N , spectral accuracy is maintained. For example, if we
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Table 2.1: Relative error
∑

j |Q
nu
j − Qanj |/

∑
j |Q

an
j | in the approximation of the Boltzmann

collision operator. T (G) stands for the trapezoidal rule (Gauss-Legendre quadrature) used in the
approximation of Eq. (2.28). Parameters are L = 8 and R = 6.

N M = 5 6 7 8 12 16

16 T 4.58E-1 4.73E-1 4.55E-1 4.52E-1 4.78E-1 4.83E-1
G 2.10E-1 3.35E-1 2.48E-1 2.77E-1 2.74E-1 2.69E-1

24 T 7.94E-2 5.20E-2 4.73E-2 3.93E-2 2.92E-2 2.59E-2
G 4.61E-2 2.09E-2 9.16E-3 2.10E-2 1.72E-2 1.37E-2

32 T 5.54E-2 3.51E-2 2.57E-2 1.93E-2 8.39E-3 4.75E-3
G 4.26E-2 6.18E-3 6.49E-4 2.11E-4 1.86E-4 1.57E-4

48 T 4.26E-2 3.88E-2 2.77E-2 2.08E-2 8.99E-3 5.01E-3
G 4.31E-2 6.17E-3 6.09E-4 4.56E-5 4.94E-6 3.85E-6

64 T 5.90E-2 3.87E-2 2.77E-2 2.08E-2 8.99E-3 5.02E-3
G 4.30E-2 6.16E-3 6.10E-4 4.70E-5 3.87E-6 4.31E-6

choose the minimum error between 6 ≤ M ≤ 12 for each N , the order of accuracy is

8.1 when N increases from 16 to 24; 13.5 when N increases from 24 to 32; and 8.9

when N increases from 32 to 48. Thus, in general, the approximation of Eq. (2.28) by

Gauss-Legendre quadrature is better than that by the trapezoidal rule.
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Figure 2.4: The relative error
∑

j |Q
nu
j −Qanj |/

∑
j |Q

an
j | vs the truncation radius R. Parameters

are L = 8, N = 48, and M = 7. Gauss-Legendre quadrature is used in the approximation of the
kernel mode.

We now fix values ofN andM to check the influence ofR on the accuracy. Figure 2.4

indicates that R cannot be smaller than 2
√

2L/(3+
√

2), which is roughly
√

2 times the

support of the VDF; otherwise, some collisions will be ignored in the truncated collision
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operator. Also, R cannot be larger than the size of the velocity domain, otherwise the

aliasing error may destroy accuracy.

Next, we demonstrate the accuracy of the FSM as a function of time, where

Eq. (2.38) is solved by the Euler forward method with a time step of 0.001. Fig-

ure 2.5 depicts the evolution of the VDF, and the fourth- and sixth-order moments.

Excellent agreement is found between the numerical and BKW solutions, even when

Eq. (2.28) is approximated by the trapezoidal rule with M = 5. Figure 2.6 shows the

numerical errors in the VDF, the fourth- and sixth-order moments, and energy as func-

tions of time. It can be seen that when Eq. (2.28) is approximated by Gauss-Legendre

quadrature, the numerical error with N = 32 is one order of magnitude smaller than

that with N = 24. Also, the accuracy of the results with N = 24 is even better than

that with N = 32 when Eq. (2.28) is approximated by the trapezoidal rule. These

results agree with what we found in Table 2.1.

Furthermore, we find that the use of the Lagrangian multiplier method does not

affect the numerical accuracy. This could be explained as follows: from Figure 2.6(a)

and (d) we see that the error in energy is far smaller than the error in the VDF.

Therefore, the correction in Eq. (2.34) is negligible, which ensures conservation.

Comparing the kernel mode (2.30) with those in Refs. [1, 51, 54], the term sin θp is

missed in Refs. [1, 51] and an additional term sin θ2 is added in Eq. (2.29) in Ref. [54].

We have carried out numerical simulations using these kernel modes and found that

none of them can accurately capture the evolution of the VDF.

Test 2. For general forms of the initial condition, we cannot get the exact evolution

of VDFs. However, we know the exact evolution of its velocity moments. For example,

when the initial VDF takes the form

f(v, t = 0) =
1

2(2π)3/2
exp

(
−|v−V1|2

2

)
+

1

2(2π)3/2
exp

(
−|v−V2|2

2

)
, (2.41)

with V1 = (−2, 2, 0) and V2 = (2, 0, 0), the exact evolution of the pressure tensor is
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Figure 2.5: (a) Evolution of the VDF f(v1, 0, 0) of space-homogeneous Maxwell molecules,
where the initial condition is given by Eq. (2.39). From bottom to top (near v1 = 0), the time
corresponding to each line is 0, 0.5, 1, 1.5, 2, 3, 4, and 5. (b) and (c) Evolution of the fourth-
and sixth-order moments, respectively. The solid lines represent the numerical results, while the
dots are analytical predictions. The following parameters are used in the numerical simulation:
L = 8, R = 6, N = 64, and M = 5 with Eq. (2.30).
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Figure 2.6: (a) Error (
∑
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nu − f |2/

∑
j |f |

2)1/2 in the VDF, (b) error in the fourth-order
moment |Mnu

4 −M4|/M4, (c) error in the sixth-order moment |Mnu
6 −M6|/M6, and (d) error in

the energy |(Pnuxx + Pnuyy + Pnuzz )/6 − 1| vs time. The solid and dashed lines are the results using
Eq. (2.31) with N = 24 and N = 32, respectively, while the dotted lines are the results using
Eq. (2.30) with N = 32. Other parameters are L = 8, R = 6, and M = 7.
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given by [47, 62]

Pxx =
14

3
exp

(
− t

2

)
+

16

3
, Pyy = −4

3
exp

(
− t

2

)
+

16

3
,

Pzz = −10

3
exp

(
− t

2

)
+

16

3
, Pxy = −4 exp

(
− t

2

)
, (2.42)

and the exact evolution of the third-order moments is given by

rx =

∫
fv1|v|2dv = −4 exp

(
− t

2

)
,

ry =

∫
fv2|v|2dv = −4

3
exp

(
− t

2

)
+

43

3
. (2.43)

Figure 2.7 compares the evolution of the second- and third-order moments. It

demonstrates that our numerical simulation produces accurate results when compared

to the analytical ones given by Eqs. (2.42) and (2.43). From Figure 2.8 we see that,

the relative errors in Pxx, Pyy, and ry are about 10−4, while the errors are about 10−5

when Eq. (2.28) is approximated by Gauss-Legendre quadrature.

It is worthwhile to note that the spectral-Lagrangian method [47] cannot recover the

third-order moments even when N = 40. Does this mean that the spectral-Lagrangian

method is not spectrally accurate? We think that this is due to the integration region

given in Eq. (2.29) of Ref. [47] (which is related to the parameter R in the FSM) being

too large, so a significant aliasing error is introduced (see Figure 2.4). Indeed, we find in

our simulations that rx and ry deviate from the analytical solutions when R is outside

of the velocity domain.

Test 3. Notice that the initial VDFs used in the two test cases above are smooth,

and the spectral accuracy of the FSM method has been proven [1]. Now we consider

the case where the initial VDF is not smooth;, but has an abrupt jump at v1 = 0:

f(v, t = 0) =
1

3(2π)3/2





4 exp
(
− |v|22

)
, v1 ≥ 0,

exp
(
−v21

8 −
v22+v23

2

)
, v1 < 0.

(2.44)

It can be shown analytically that the evolution of the second- and fourth-order moments
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Figure 2.7: Evolution of the second- and third-order moments for space-homogeneous Maxwell
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|rnuy −ry|/ry, and (d) error in the energy |(Pnuxx +Pnuyy +Pnuzz )/16−1| vs time. The solid and dashed
lines are the results using Eq. (2.31) when N = 24 and N = 32, respectively, while the dotted
lines are the results using Eq. (2.30) when N = 32. The other parameters are L = 12, R = 10,
and M = 7.
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Figure 2.9: (a) Evolution of the VDF when the initial VDF at v1 = +0 is four times larger
than at v1 = −0. From top to bottom (at v1 > 0), the times corresponding to the lines are t =
0, 0.5, 1, 1.5, 2, 3, 5, and 9, respectively. (b-d) Evolution of the second- and fourth-order moments.

Relative error (e) |Pnuxx − Pxx|/Pxx and (f) |M
′nu
4 −M

′
4|/M

′
4 when N = 42. The dots are the

numerical results when N = 42, the solid lines in (a), (e), and (f) are the numerical results with
N1 = 256, N2, N3 = 42, while the solid lines in (b-d) are analytical results. The other parameters
are L = 11, R = 2

√
2L/(3 +

√
2), and M = 5 with Eq. (2.30).

is given by

Pxx =
4

3
exp

(
− t

2

)
+

8

3
, Pyy = −2

3
exp

(
− t

2

)
+

8

3
,

M ′4 =

∫
f |v|4dv =

22

3
exp

(
− t

3

)
+

80

3
. (2.45)

Figure 2.9 demonstrates that the FSM can accurately capture the evolution of the

second- and fourth-order moments, even when the initial VDF has a large jump at

v1 = 0. Also, no Gibbs oscillation has been observed in the central region of the VDF

where the abrupt jump exists; only in the tails do we find small Gibbs oscillations.

This is because the convolution in the Boltzmann collision operator can smear out the

discontinuities.
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Figure 2.10: Relative error
∑

j |Q
nu
j −Qrefj |/

∑
j |Q

ref
j | in the approximation of the Boltzmann

collision operator vs γ, where Qref is the collision term with γ = 0 for hard sphere, argon, and
soft-potential molecules, while for Maxwell molecules, Qref is calculated according to the exact
BKW solution (as done in Test 1). The other parameters are L = 8, R = 6, N = 48, and M = 16.

2.5 Comparison between different collision kernels

It is commonly thought that the solution of the BE is determined by the shear viscosity,

rather than the details of the θ-dependence of the collision kernel. For instance, the VHS

and variable soft sphere (VSS) models are used in DSMC and it is believed that as long

as they recover the shear viscosity of a real gas, they produce the same results [14]. This

is true to some extent; one example is the exact BKW solution for Maxwell molecules:

different θ-dependence of the collision kernels with the same value of shear viscosity

have the same BKW solution. However, this assumption has never been accurately

checked for other potentials. Since the FSM can generate accurate numerical results,

it is interesting to examine this assumption.

We take the hard sphere (α = 1), argon (α = 0.38), and soft-potential (α = −0.4)

molecules as examples. To be specific, we consider the BE (2.16) with Kn =
√
π.

The VDF is given by Eq. (2.39) with t = 0. We vary the value of γ and compare the

relative error of the collision operator Q. Figure 2.10 shows that the value of γ has

almost no influence on the solution of the collision operator, as the relative errors are at

the order of the numerical accuracy (when compared to Maxwell molecules) and seem

to be random.
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Next we compare the relax-to-equilibrium processes between hard sphere, argon,

Maxwell, and soft-potential molecules with γ = 0. Again, the initial VDF is given by

Eq. (2.39). We choose Kn = 21−ω√π, meaning different collision kernels have the same

value of shear viscosity at T = 2. The evolution of the VDFs are shown in Figure 2.11.

It is seen that for hard-potential molecules (α > 0), in the central velocity region

[−1, 1]3, the relax-to-equilibrium process is slower than that for Maxwell molecules,

and the larger the α, the slower the decay. In the outer velocity region, however,

the decay is faster (although not clearly shown, this can be inferred according to the

conservation of mass). For soft-potential molecules (α < 0), however, the decay is

faster than that for Maxwell molecules in the central velocity region. This may be

qualitatively explained in terms of the collision frequency ν(v). Figure 2.12 shows

that the collision frequency of hard sphere molecules is smaller (or larger) than that

of Maxwell molecules when |v| < 4 (or |v| > 4). Therefore, in the central (outer)

velocity region, there are less (more) effective collisions between hard sphere molecules

than between Maxwell molecules, and hence the decay is slower (faster). Overall, from

Figure 2.13 we see that, as compared to Maxwell molecules, the competition between

the slower and faster decay results in the slower (faster) decay of the fourth- and sixth-

order moments for hard-potential (soft-potential) molecules.

The different decay rates between different inverse power-law potential models with

the same value of shear viscosity (see Figure 2.13) poses a question in the simulation of

the LJ potential: since the shear viscosity can be recovered by different combinations

of αj and bj , we can ask whether different values of αj and bj in Eq. (2.11) lead to dif-

ferent results? To answer this question, we compare the relax-to-equilibrium processes

between argon with µ ∝ T 0.81 and the LJ potential with the collision kernel (2.11).

The initial VDF is given by Eq. (2.39) with t = 0. For argon, we choose Kn = 20.19√π,

while for the LJ potential we choose Kn = 1.0758
√
π and kBT0/ε = 1.1, so that the

two models have the same value of shear viscosity and for the LJ potential the shear

viscosity can be approximated by T 0.81 at T/T0 = 2. The relative differences in the

fourth- and sixth-order moments between the two models are depicted in Figure 2.14,

where we see that the differences are very small. This example and the example shown

in Figure 2.10 indicate that one can use different θ-dependence of the collision kernels
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Figure 2.13: Evolution of the fourth- and sixth-order moments for different molecular models.

as long as the shear viscosity (not only its value, but also its temperature dependence)

is recovered.

2.6 Solutions for space-inhomogeneous problems

2.6.1 Stationary solutions

To get stationary solutions of the BE, the time-dependent term is omitted, resulting

in v∂f/∂x + a∂f/∂v = Q(f, f∗). We then employ the iteration method to solve this

equation: given the value of f at the k-th step, its value at the next iteration step is

calculated by the following equation

νfk+1 + v
∂fk+1

∂x
= νfk − a∂f

k

∂v
+Q(fk, fk∗ ), (2.46)

where the spatial derivative ∂fk+1/∂x is approximated by the second-order upwind

scheme, and the acceleration term a∂f/∂v is calculated according to the Fourier trans-

form derivative theorem, when the VDF is smooth. The parameter ν is the mean

collision frequency.

The choice of the value of ν is ad-hoc for space-inhomogeneous problems since
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Figure 2.14: The relative differences in the fourth- and sixth-order moments between argon with
µ ∝ T 0.81 and the LJ potential with collision kernel (2.11).

different locations have different mean collision frequency, and too large (small) a value

of ν results in slow convergence (numerical instability). A better way is to replace the

mean collision frequency by the local collision frequency in the k-th iteration step, and

change fk(v) in the loss term Q− to fk+1(v), yielding

ν(fk)fk+1 + v
∂fk+1

∂x
= −a∂f

k

∂v
+Q+(fk, fk∗ ). (2.47)

Note that a similar scheme has been used in the study of the structure of shock

waves [37, 39]. Also note that in the continuum regime Kn → 0 and ν → ∞, the

convergence rate to the stationary solutions is very slow. In this case, it may be better

to solve the time-dependent BE by the asymptotic preserving scheme using relevant

larger time step; see the recent review paper [63].

The iteration scheme to find the stationary solution is described in §2.6.1. The iter-

ation process is terminated when the maximum L1 norm of the macroscopic quantities

(such as n,V, T,P, and q) at two consecutive iteration steps is less than a fixed small

value, say, 10−7. Since there is only a small difference in macroscopic quantities for

different values of M , a trick can be used to reduce the computational cost: we first

choose a relatively small value of M ; when the numerical solution is not far away from

the true one we then switch to larger values of M . In the following calculations, it is

found that the use of M = 5 generates satisfactory results. We use the trapezoidal rule
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to approximate the kernel mode (2.28), since for M = 5 it has almost the same accuracy

as that of Gauss-Legendre quadrature but with about 25% increase in computational

efficiency.

A remaining issue is to determine the local collision frequency ν(v), see Eq. (2.47).

We proposed a method in algorithm 2. In numerical simulations, we find that this

method does not give accurate results over the whole velocity range [−L,L]3, but only

in the region with |v| ≤ R/
√

2, i.e., the results are accurate within the support of the

VDF. If one is not interested in the VDF when |v| > S, the value of ν can be fixed for

|v| > S at, say, the same value of ν at |v| = S. On the other hand, one can get an

accurate collision frequency through enlarging the velocity domain by a factor of two.

The details are given in algorithm 3 in Appendix A.

Figure 2.12 depicts the collision frequency ν for various kinds of collision kernels

when Kn =
√
π, and good agreements between the numerical and analytical results are

observed. It is seen that the collision frequency of the soft potential is finite at |v| → 0.

2.6.2 Normal shock waves

The normal shock wave is ideal for testing the accuracy of the FSM in capturing highly

nonequilibrium effects, since this is a spatially one-dimensional problem where the

boundary effects are absent. We first consider the shock wave in a gas of hard sphere

molecules. The structure of the planar shock wave varies in the x2 direction. The flow

is uniform at the upstream (x2 = −∞) and downstream (x2 =∞) ends. The upstream

molecule number density, temperature, and Mach number are denoted by n0, T0, and

Ma, respectively, while those of the downstream end can be determined through the

Rankine-Hugoniot relations: the normalized VDF at the upstream end is

f =
1

π3/2
exp

[
−v2

1 − (v2 −
√

5

6
Ma)2 − v2

3

]
, (2.48)

and that at the downstream end is

f =
nd

(πTd)3/2
exp

[
−v

2
1 + (v2 − Vd)2 + v2

3

Td

]
, (2.49)
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Figure 2.15: The normal shock wave for Ma = 3, where the reduced molecular number density is
n′ = (n−1)/(nr−1); temperature T ′ = (T−1)/(Tr−1); bulk velocity, V ′2 = (V2−Vr)/(

√
5/6Ma−

Vr); shear stress τ22 = P22 − nT ; and heat flux q2. The solid lines are the results from Ref. [37],
while the symbols are our results from the FSM. The position of the shock wave is adjusted to
n′(0) = 1/2. The velocity domain [−10, 10]3 is uniformly divided into 42 × 42 × 42 grid points,
and M = 5.

where

nd =
4Ma2

Ma2 + 3
, Vd =

√
5

96

Ma2 + 3

Ma
, Td =

(5Ma2 − 1)(Ma2 + 3)

16Ma2
. (2.50)

Ohwada solved this problem by means of the numerical kernel method [37]. For

comparison, we set ` to be
√
π/2 times the mean free path of the hard sphere molecules

(λ0 = (
√

2πd2n0)−1, d is the diameter of the molecule) and the normalized Knudsen

number Kn′ = 8
√

2π. Figure 2.15 shows the shock wave structure for a Mach number

of 3. It can be seen that the two deterministic numerical methods for the BE give

identical results.

We then consider argon with the LJ potential. To compare with experimental

data [64], we set the upstream temperature to be T0 = 298 K, ` to be the mean free path

in the upstream part (λ0 = (16/5π)
√
π/2mkBT0µ/n0) and Kn = 5π/16 in Eq. (2.19).

Good agreement between the numerical and experimental density profiles is seen in

Figure 2.16. The agreement is due to the fact that we have correctly incorporated the

shear viscosity of argon into the collision kernel, shown in Eq. (2.11).

Finally, we solve the BE for argon with the LJ potential and compare our results

with that of MD simulation [65]. For comparison, we set the upstream temperature to

be T0 = 300 K, ` to be the mean free path in the upstream part and Kn = 5π/16.
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Figure 2.16: Reduced number density, temperature, and bulk velocity for the normal shock wave
for Ma = 2.80. The experimental density is obtained from Ref. [64]. Numerical parameters are
the same as those in Figure 2.15.
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Figure 2.17: (a) Reduced molecular number density, temperature, and bulk velocity for the
normal shock with Ma = 5 in argon gas (LJ potential). The marginal VDF

∫ ∫
fdv1dv3/n vs

v2 is presented in (b) n′ = 0.151, (c) n′ = 0.350, (d) n′ = 0.511, and (e) n′ = 0.759. The solid
lines are the results from Ref. [65], while the symbols are our results from the FSM. The velocity
domain [−18, 18]3 is divided into 42× 84× 42 grid points.
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Figure 2.17 shows the shock wave structure for Mach number of 5, as well as the parallel

VDFs (the perpendicular VDFs in Ref. [65] are actually parallel VDFs). As can be

seen from this figure, the FSM produces nearly the same results as the MD simulation,

not only in macroscopic quantities, but also in microscopic VDFs. Note that in this

case the downstream temperature is about 2600K. The excellent agreement with MD

data illustrates that the collision kernel (2.19) for the LJ potential works well in this

temperature range.

2.6.3 Planar Fourier/Couette/force-driven Poiseuille flows

T0

T > T0

q2

x1

x2

(a)

ℓ

Vw

−Vw

(b)

a1

(c)

Figure 2.18: Sketch of (a) Fourier, (b) Couette, and (c) force-driven Poiseuille flows between
parallel plates.

Consider a rarefied monatomic gas between two parallel infinite plates located at

x2 = `/2 and x2 = −`/2. In Couette flow, the upper and lower plates move with

velocity Vw and −Vw in the direction parallel to the plates (the x1 direction), while in

Fourier and Poiseuille flows the plates are stationary (see Figure 2.18). No pressure

gradient exists in the x1 and x3 directions. No external force is exerted in the Couette

and Fourier flows, but in the Poiseuille flow the gas is subject to a uniform external force

in the x1 direction (the acceleration is denoted by a1). In the Couette and Poiseuille
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flows, the wall temperatures are kept at T0, while in the Fourier flow the temperature

of the upper wall is higher than that of the lower wall T0. Maxwellian diffuse boundary

condition is employed to account for the wall effects. When the average molecular

number density n0 and the intermolecular potential are known, the stationary state

will be uniquely determined. We then analyse the density, velocity, temperature, shear

stress, and heat flux profiles of the steady Fourier/Couette/force-driven Poiseuille flows.

In the planar Couette and Poiseuille flows, the symmetry of the problems with

respect to the x2 axis allows us to consider only half of the spatial region −1/2 ≤ x2 ≤ 0.

At the lower plate, according to Maxwellian diffuse boundary condition, the VDF for

the reflected molecules is given by:

f =
n

π3/2
exp[−(v1 + Vw)2 − v2

2 − v2
3], for v2 ≤ 0,

n =2
√
π

∫

v2<0
v2f(x2 = −0.5, v)dv, (2.51)

while in the middle between the two plates, we have f(v1, v2, v3) = f(−v1,−v2, v3) for

Couette flow and f(v1, v2, v3) = f(v1,−v2, v3) for Poiseuille flow.

For planar Fourier flow, however, we do not have this kind of symmetry. The

boundary condition at the lower plate is the same as Eq. (2.51) with Vw = 0, while

that at the upper plate is

f =
n

(πTr)
3/2

exp

(
−v

2
1 + v2

2 + v2
3

Tr

)
, for v2 < 0,

n =2

√
π

Tr

∫

v2>0
v2f(x2 = 0.5, v)dv, (2.52)

where Tr is the temperature ratio of the upper and lower plates.

In planar Couette flow of Kn = 1, we use argon with a shear viscosity proportional

to T 0.81. The wall temperature is T0=273K, and the wall velocity is Vw =
√

2vm in

the first test case and Vw = vm/
√

2 in the second one. The spatial region (halved due

to the symmetry) is divided into 50 unequally spaced cells, with more cells near the

boundary. The maximum velocity is at L = 8, and there are 42 velocity mesh points in

each direction. Our numerical results are shown in Figure 2.19. In Figure 2.20 we show

that, when using the iteration scheme given by Eq. (2.47), the relative error decays
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Figure 2.19: Profiles of the normalised velocity and temperature for planar Couette flow of argon
gas at Kn = 1. (a, b) Vw =

√
2vm and (c, d) Vw = vm/

√
2. The solid lines are numerical results

from the FSM, while the dots are DSMC results.

exponentially, where, roughly speaking, the characteristic time of decay is inversely

proportional to the Knudsen number. The FSM is very efficient when the Mach number

is not very large, for instance, in the Couette flow shown in Figure 2.19(a) for which

Ma ≈ 1.5, the macroscopic quantities are obtained within 40 seconds (40 iterations,

symmetry in the v3 direction is considered) using our Matlab programme on a PC with

an Intel Xeon 3.3 GHz CPU. Note that a corresponding Fortran program using one

CPU is twice faster.
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Figure 2.20: Decay of the relative error in the iteration process. The abscissa is the iteration
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Figure 2.21: Density and temperature profiles for the planar Fourier flow of hard sphere molecules
for unconfined Knudsen numbers of 0.5, 1, and 5. The solid lines are our numerical results from
the FSM, while the dots are DSMC results.

In Fourier flow, the temperatures of the lower and upper plates are chosen to be

T0=273K and 373K, respectively. We consider hard sphere molecules, and Kn = 0.5, 1,

and 5. The spatial region is divided into 100 equally spaced cells. The maximum

velocity is at L = 6, and there are 32 velocity mesh points in each direction. Nice

agreements between the FSM and DSMC are shown in Figure 2.21.

In force-driven Poiseuille flow, we use hard sphere molecules and Kn = 0.1 and 0.5,

respectively. The normalised acceleration is 0.11 and the wall temperature is T0=273K.

The spatial region (halved due to the symmetry) is divided into 50 unequally spaced

cells with more cells near the boundary. The maximum velocity is at L = 6, and there

are 32 velocity mesh points in each direction. The numerical results are depicted in

Figure 2.22, where good agreements can be found.

2.7 Summary

The FSM for the approximation of the Boltzmann collision operator has been extended.

A modified collision kernel, Eq. (2.9), is proposed, which enables the FSM to be appli-

cable for all inverse power-law potentials except the Coulomb potential. By appropriate

superposition of the modified collision kernels, we recovered the shear viscosity of the

Lennard-Jones and rigid attracting potentials. Although many single-term collision

kernels are added together, the computational efficiency of the Boltzmann collision

operator is still the same as that for the single-term collision kernel. This unique prop-
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Figure 2.22: Profiles of the normalised number density, velocity, temperature, and heat flux for
force-driven Poiseuille flow of hard sphere molecules when Kn = 0.1 (dots) and Kn = 0.5 (open
circles). The solid lines are our results from the FSM, the symbols are DSMC results.

erty has advantages over the DSMC technique, where the simulation of soft potential

molecules becomes inefficient because a large number of possible collision pairs are

selected but each of which has only a small probability of actually participating in

a collision [66]. For the simulation of particle systems interacting with the Coulomb

potential, the following two solutions might be used. The first is to adopt the Fokker-

Planck-Landau equation instead of the BE when all the collisions become grazing. For

this case, the FSM has already been developed [67]. The second way is to use the

Sutherland formula for shear viscosity, where the BE with the collision kernel (2.13)

can be solved by the FSM.

The trapezoidal rule and Gauss-Legendre quadrature has been used to approximate

the kernel mode. By comparing the numerical solutions with the analytical BKW

solutions, we found that the latter is more accurate when M > 5. When M = 5,

the accuracy is almost the same. We have also found that the spectrally small errors

in conservation of momentum and energy in the FSM can be eliminated by using the

Lagrangian multiplier method, while spectral accuracy is retained.

With accurate solutions provided by the FSM, we checked whether the solution
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of the BE is affected by the θ-dependence of the collision kernel or not. Within the

numerical accuracy (relative error is about 10−6) we found that, for the same inverse

power-law potential with the same value of shear viscosity but different forms of the

θ-dependence of the collision kernel, solutions to the BE are the same. This justifies

the fact that one can use different forms of the collision kernel provided that the shear

viscosity (not only its value, but also its temperature dependence) is recovered.

The method has also been applied to space-inhomogeneous problems, including

the normal shock wave and planar Fourier/Couette/force-driven Poiseuille flows. The

numerical results of the FSM are found to agree well with those of the finite-difference

solution to the BE, the experimental data, and the MD and DSMC solutions.

Since the FSM solves the BE deterministically, it is useful for developing a hybrid

solver, where in the continuum regime kinetic model (or NS) equations are used, while

in the rarefied regime the BE is solved. The open question remains as how to determine

the location of the continuum/rarefied interface.

The dealiasing condition requires the velocity domain to be about two times larger

than the support of the VDF, which wastes more than half of the compute memory

and time in three-dimensional velocity space. A better way to do this is to introduce

the non-uniform FFT [68], where the velocity space is non-uniformly discretised but

the frequency space is equally divided. The only change we need is to get the spectrum

f̂ from f and the collision operator Q from Q̂ by non-uniform FFTs, while the FFT-

based convolution remains unchanged. Since the main computational effort is devoted

to the calculation of FFT-based convolution, the non-uniform FFT will not increase the

computation time much, especially when many efficient non-uniform FFT algorithms

are available. Therefore, the use of fewer non-uniform velocity mesh points (with most

of the points lying in the support of the VDF) will need less computation memory and

time, without sacrificing accuracy.



Chapter 3

Fast spectral method for

linearised Boltzmann equation

In this Chapter, the FSM is applied to the linearised BE. Two classical problems are

solved, namely, the Poiseuille flow and thermal transpiration between parallel plates

and rectangular tubes. Because of the singular (over-concentration) behaviour in the

VDF [69], the numerical simulation of a highly rarefied gas is a difficult task; for a

long time the accurate numerical results have been limited to hard sphere molecules

when Kn ≤ 20 [40, 70]. Recently, some progresses have been achieved both analytically

and numerically, where the results are obtained at large Knudsen numbers [69, 71–73].

Here the linearised BE for various types of molecular models is solved accurately and

efficiently by the FSM, up to Kn ∼ 106.

3.1 The linearised Boltzmann equation and FSM

If the state of gas is weakly nonequilibrium, the BE may be linearised. The standard

method is to write the VDF as f(t,x,v) = feq[1+h(t,x,v)], where |h| � 1, so that the

collision operator [say, in Eq. (2.16)] is linearised to
∫ ∫

B(θ, |u|)feq(v′∗)[h(v′∗)+h(v′)−
h(v∗) − h(v)]dΩdv∗ with B(θ, |u|) = sinα+γ−1 (θ/2) cos−γ (θ/2) |u|α/Kn′. The FSM

developed in the previous Chapter, however, cannot be directly applied to this version

of the linearised collision operator, because of the term feq(v
′
∗)h(v∗). Instead, we seek

another form of linearisation. We express the VDF as f(t,x,v) = feq + h(t,x,v), so

48
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that the collision operator in Eq. (2.16) can be linearised to Lg(h)− ν(v)h, where

Lg(h) =

∫ ∫
B(θ, |u|)[feq(v′)h(v′∗) + feq(v

′
∗)h(v′)− feq(v)h(v∗)]dΩdv∗, (3.1)

can be viewed as a linear gain term and ν(v) =
∫ ∫

B(θ, |u|)feq(v∗)dΩdv∗ is the equi-

librium collision frequency.

The equilibrium collision frequency can be calculated analytically, or approximated

by algorithm 2 (see Appendix A), if f̂ is replaced by f̂eq, the spectrum of the equilibrium

distribution function. This term only needs to be calculated once, since each spatial

cell uses the same equilibrium collision frequency. For the linearised gain term Lg, if

Eq. (2.28) is approximated by the Gauss-Legendre quadrature for a higher accuracy

(compared to the trapezoidal rule), its jth Fourier mode is

L̂gj ≈
4

Kn′

M∑

p,q=1

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

ωpωq[f̂eq(l)φα+γ(ξl, θp, ϕq)] · [ĥmψγ(ξm, θp, ϕq)] · sin θp

+
4

Kn′

M∑

p,q=1

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

ωpωq[ĥlφα+γ(ξl, θp, ϕq)] · [f̂eq(m)ψγ(ξm, θp, ϕq)] · sin θp

− 4

Kn′

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

f̂eq(l) · [ĥmφloss],

(3.2)

where φloss =
∑M

p,q=1 ωpωqφα+γ(ξm, θp, ϕq)ψγ(ξm, θp, ϕq) sin θp and ĥ is the spectrum

of the VDF h.

Obviously, the gain term Lg can be calculated in a way similar to algorithm 2.

Since the Fourier transform of the terms f̂eq(l)φα+γ(ξl, θp, ϕq)and f̂eq(m)ψγ(ξm, θp, ϕq)

can be precomputed and stored, the computational time of the linearised collision

operator is nearly the same as that of the full Boltzmann collision operator. Therefore,

it seems that there is no need to consider the BE in a linearized form. However,

special values of γ can be used to reduce the computational cost by half1: choosing

γ = (1−α)/2, the linearised gain term
∫ ∫

B(θ, |u|)[feq(v′)h(v′∗) + feq(v
′
∗)h(v′)]dΩdv∗

becomes 4
Kn′

∫
R3

∫
R3 δ(y ·z)(|y||z|)−γ [feq(v+z)h(v+y)+h(v+z)feq(v+y)]dydz after

1 The use of special collision kernels has been justified in the previous Chapter.
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the Carleman-like representation. Since the interchange of y and z does not change the

linearised gain term, Eq. (3.2) can be simplified to the following form

L̂gj ≈
8

Kn′

M∑

p,q=1

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

ωpωq[f̂eq(l)φα+γ(ξl, θp, ϕq)] · [ĥmψγ(ξm, θp, ϕq)] · sin θp

− 4

Kn′

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

f̂eq(l) · [ĥmφloss],

or

L̂gj ≈
8

Kn′

M∑

p,q=1

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

ωpωq[ĥlφα+γ(ξl, θp, ϕq)] · [f̂eq(m)ψγ(ξm, θp, ϕq)] · sin θp

− 4

Kn′

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

f̂eq(l) · [ĥmφloss].

(3.3)

Note that Eq. (3.3) works for all the power-law potentials except for the Coulomb

potential. For LJ potential, however, the half reduction in the computational time

cannot be achieved. In this case, one may directly use the full BE instead of the

linearised one.

3.2 Poiseuille flow between infinite parallel plates

The configuration is similar to that in Figure 2.18(c). Instead of the external acceler-

ation a1, a uniform pressure gradient is imposed on the gas in the x1 direction: the

pressure is given by n0kBT0(1 + βPx1/`), where |βP | � 1. The BE can be linearised

around the reference equilibrium state at rest with number density n0 and temperature

T0, i.e., the VDF is expressed as f = feq+βP (x1feq+h). The normalisation is presented

in Eq. (2.15); the normalised flow velocity is V1 =
∫
v1hdv, the normalized heat flux is

q1 =
∫ (
|v|2 − 5

2

)
v1hdv, and the linearised BE in the dimensionless form reads

v2
∂h

∂x2
= Lg(h)− ν(v)h− v1

π3/2
exp(−|v|2)

︸ ︷︷ ︸
source

, (3.4)

where the source term comes from the pressure gradient.
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Because of symmetry, we only consider the half spatial region −1/2 ≤ x2 ≤ 0

with the specular-reflection boundary condition being imposed at x2 = 0. The diffuse

boundary condition is adopted at the wall, i.e., h(x2 = −1/2, v2 > 0) = 0. The spatial

region is divided into 100 uniform cells.

The maximum molecular velocity is at L = 6. Because of the symmetry and

smoothness of the VDF in the v1(> 0) and v3(> 0) directions, 12 × 12 uniform grids

are used. In the discretisation of v2, N2 = 256 uniform grids are used when Kn < 1

and 128 nonuniform velocity grids are used (because of the over-concentration in the

VDF) when Kn ≥ 1. Let i = −N2/2 + 1/2,−N2/2 + 3/2, · · · , N2/2− 1/2, the velocity

is discretised as v2 = inL/(N2/2− 1/2)n. For Kn < 1, 1 ≤ Kn ≤ 104, and Kn > 104,

we choose n = 1, 3, and 7, respectively.

The number of the frequency components in the ξ1 and ξ3 directions are 24. For

uniform velocity discretisation, the multi-resolution scheme [50] is used in the ξ2 direc-

tion: in the evolution of the collision operator, only N ′2 = 32 ∼ 64 central frequency

components are used. For nonuniform velocity discretisation, the corresponding fre-

quency domain is still divided into 32 ∼ 64 equidistant points. The FFT is used

in the v1 and v3 directions, while in the v2 direction, the direct sum is employed to

implement the Fourier transformation, resulting in the computational cost at the or-

der of O[N2N
′
2N1N3 ln(N1N3)], which becomes comparable to the convolution sum of

Eq. (2.25). In the approximation of the kernel mode (2.28), the Gauss-Legendre quadra-

ture with M = 6 ∼ 8 is used. The symmetry in the v3 direction and the antisymmetry

in the v1 direction allow us to use p, q = 1, 2, · · · ,M/2 in Eq. (3.3).

To obtain the stationary solution, the following implicit iteration scheme is used:

νhk+1 + v2
∂hk+1

∂x2
= Lg(hk)−

v1

π3/2
exp(−|v|2). (3.5)

where ∂h/∂x2 is approximated by the second-order up-wind finite difference method.

The iteration is terminated when the net massflow rate M [hP ] = 2
∫ 0
−1/2 V1dx2 and

heat flow rate Q[hP ] = 2
∫ 0
−1/2 q1dx2 between two consecutive iteration step are less

than 10−8. As shown in Figure 2.20, the number of iterations is roughly in inverse

proportion to the Kundsen number. At large Kn, the results are obtained within 1

minute because several iterations are enough. Typical profiles of VDFs demonstrating
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Figure 3.1: VDFs hP at v1, v3 = 6/31 in the Poiseuille flow when Kn = 104.
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Figure 3.2: Comparison of the velocity profiles obtained from the FSM and IP-DSMC in a gas
of hard sphere molecules when KnVHS = 100.
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Table 3.1: Comparisons between the mass and heat flow rates in the Poiseuille flow between
parallel plates in a gas of hard sphere molecules. The heat flow rate in the last column is obtained
by the Onsager-Casimir relation. Note that for hard sphere molecules, we have k = 8Kn/5

√
π.

FSM Ref. [70] Ref. [69]

k −M [hP ] Q[hP ] −M [hP ] Q[hP ] −M [hP ] Q[hP ]
0.1 1.1957 0.0550 1.1930 0.0553 - -
0.15 0.9948 0.0759 0.9938 0.0761 - -
0.2 0.9003 0.0933 0.8999 0.0935 - -
0.3 0.8152 0.1207 0.8152 0.1209 - -
0.4 0.7802 0.1418 0.7801 0.1419 - -
0.6 0.7563 0.1730 0.7562 0.1730 - -
0.8 0.7533 0.1959 0.7533 0.1958 - -
1 0.7575 0.2140 0.7574 0.2140 - -

1.5 0.7771 0.2477 0.7771 0.2477 - -
2 0.7991 0.2724 0.7991 0.2724 - -
3 0.8399 0.3083 0.8398 0.3082 - -
4 0.8750 0.3346 0.8749 0.3345 - -
6 0.9322 0.3731 0.9321 0.3730 - -
8 0.9779 0.4016 0.9778 0.4015 - -
10 1.0160 0.4242 1.0159 0.4242 1.0159 0.4241
15 1.0908 0.4669 1.0908 0.4669 - -
20 1.1478 0.4984 1.1479 0.4984 1.1477 0.4982
102 1.5143 0.6901 - - 1.5143 0.6900
103 2.1210 0.9960 - - 2.1210 0.9960
104 2.7614 1.3165 - - 2.7615 1.3166
105 3.4094 1.6405 - - 3.4094 1.6406
106 4.0587 1.9652 - - 4.0587 1.9652

the over-concentration phenomena are shown in Figure 3.1. For larger Kn, the width

and height of the VDFs scale linearly with Kn, that is, the width is proportional

to 1/Kn, while the height is proportional to Kn (see also the first order soltuion in

Ref. [69]).

To validate the FSM for the linearised BE, our numerical results are compared to

those in Refs. [69, 70] for a gas of hard sphere molecules. It is seen from Table 3.1 that

for k ≥ 0.3, the absolute errors between the two methods in the mass and heat flow

rates are less than 2× 10−4 (the errors are less than 2× 10−3 when M = 6). When k

is small, the maximum absolute errors between the mass flow rate and heat flow rate

are 2.7× 10−3 and 3× 10−4, respectively. This demonstrates the high accuracy of our

method. We also compare our numerical results with those from the IP-DSMC [17].

Figure 3.2 demonstrates that the IP-DSMC are not so accurate at large Kn, where the
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Table 3.2: Comparisons between the mass and heat flow rates in the Poiseuille flow between
parallel plates for different molecular models.

Hard Sphere Helium Argon Maxwell

Kn −M [hP ] Q[hP ] −M [hP ] Q[hP ] −M [hP ] Q[hP ] −M [hP ] Q[hP ]
0.3 0.8331 0.1135 0.8375 0.1144 0.8419 0.1155 0.8477 0.1175
0.4 0.7909 0.1341 0.7938 0.1343 0.7969 0.1349 0.8013 0.1362
0.6 0.7599 0.1649 0.7606 0.1636 0.7618 0.1630 0.7641 0.1629
0.8 0.7531 0.1875 0.7522 0.1850 0.7520 0.1832 0.7526 0.1818
1 0.7550 0.2056 0.7527 0.2018 0.7513 0.1989 0.7505 0.1963
2 0.7908 0.2636 0.7840 0.2553 0.7785 0.2485 0.7727 0.2413
3 0.8287 0.2992 0.8191 0.2879 0.8109 0.2784 0.8018 0.2680
4 0.8620 0.3252 0.8502 0.3117 0.8399 0.3002 0.8282 0.2873
6 0.9168 0.3632 0.9019 0.3465 0.8885 0.3320 0.8727 0.3155
8 0.9609 0.3912 0.9437 0.3722 0.9280 0.3554 0.9091 0.3362
10 0.9979 0.4134 0.9789 0.3927 0.9613 0.3742 0.9398 0.3527
20 1.1264 0.4863 1.1019 0.4602 1.0784 0.4361 1.0480 0.4072
102 1.4883 0.6762 1.4532 0.6398 1.4168 0.6042 1.3643 0.5570
103 2.0927 0.9815 2.0502 0.9381 2.0035 0.8934 1.9299 0.8287
104 2.7284 1.2964 2.6860 1.2537 2.6382 1.2084 2.5589 1.1394
105 3.3806 1.6261 3.3356 1.5804 3.2853 1.5324 3.2031 1.4607
106 4.0299 1.9508 3.9849 1.9050 3.9345 1.8569 3.8520 1.7849

maximum error in the velocity profile reaches about 7%.

Next we compare the mass and heat flow rates between the hard sphere molecules,

helium (ω = 0.66), argon (ω = 0.81), and the Maxwell molecules. Different behaviours

between the four molecular models are observed in Table 3.2. These differences, al-

though small, can be seen when the Knudsen number is large, see Figure 3.3. Denoting

Knc (≈ 0.9) the Knudsen number where the Knudsen minimum in the mass flow rate

exists. When Kn > Knc (Kn < Knc), the mass flow rate decreases (increases) when

ω increases, for fixed value of Kn. For instance, at Kn = 10, the mass flow rate of the

Maxwell molecules is 94% of the hard sphere molecules. The underlying mechanism

can be explained as follows: from Figure 2.12 we see that, for the same value of shear

viscosity, the average collision frequency
∫
ν(v)feqdv/

∫
feqdv increases as ω increases.

Therefore, the Maxwell molecules have larger average collision frequency than the hard

sphere molecules. Since at large Kn the mass flow rate increases with Kn (the collision

frequency decreases), the Maxwell molecules have less mass flow rate than the hard

sphere molecules. On contrary, when Kn < Knc, the Maxwell molecules have more

mass flow rate than the hard sphere molecules. The heat flow rate behaves similarly to
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the mass flow rate; that is, when Kn > 0.5 (or Kn < 0.5), the heat flow rate decreases

(or increases) as increases, for a fixed value of Kn. Similar behaviours have been

observed when the LJ potential is considered [74].
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Figure 3.3: Comparisons in mass and heat flow rates for different molecular models in the
Poiseuille gas flow between parallel plates. For clarity, the flow rates for helium is not plotted.

3.3 Thermal transpiration between parallel plates

In thermal transpiration, the wall temperature is T = T0(1 + βTx1/`), where |βT | � 1.

The VDF is expressed as f = feq + βP [x1feq(|v|2 − 5
2) + h] and the linearised BE is

given by Eq. (3.4) except the source term now becomes v1
π3/2

(
|v|2 − 5

2

)
exp(−|v|2).

The spatial and velocity discretisations as well as the iteration scheme are the same

as these in the Poiseuille flow. The mass and heat flow rates are tabulated in Table 3.3.

When the molecular model is fixed, the mass and heat flow rates increase monotonically

with Kn. Like the Poiseuille flow, different molecular model has different flow rates:

for Kn ≥ 0.5 (Kn ≤ 0.5), the mass flow rate decreases (increases) when the value of ω

increases; the heat flow rate, however, always decreases when ω increases.

The Onsager-Casimir relation states that the mass flow rate in the thermal tran-

spiration is equal to the heat flow rate in the Poiseuille flow. Comparisons in Ta-

bles 3.2 and 3.3 show that this relation is held with the absolute error smaller than

10−4. Recently, Takata and Funagane [69] made the important observation that at

large Kn, V1[hT ] and q1[hP ] are even identical at the level of spatial profile, i.e.,
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Table 3.3: Comparisons between the mass flow rate and heat flow in the thermal transpiration
between parallel plates for different molecular models.

Hard Sphere Helium Argon Maxwell

Kn −Q[hT ] M [hT ] −Q[hT ] M [hT ] −Q[hT ] M [hT ] −Q[hT ] M [hT ]
0.3 0.4767 0.1136 0.4700 0.1144 0.4651 0.1156 0.4607 0.1175
0.4 0.5781 0.1342 0.5700 0.1344 0.5640 0.1350 0.5583 0.1362
0.6 0.7354 0.1649 0.7253 0.1636 0.7175 0.1630 0.7099 0.1629
0.8 0.8546 0.1875 0.8429 0.1849 0.8337 0.1832 0.8245 0.1817
1 0.9501 0.2056 0.9370 0.2018 0.9266 0.1989 0.9160 0.1963
2 1.2575 0.2636 1.2389 0.2553 1.2237 0.2485 1.2073 0.2413
3 1.4429 0.2992 1.4202 0.2879 1.4011 0.2784 1.3799 0.2680
4 1.5769 0.3252 1.5508 0.3117 1.5284 0.3002 1.5031 0.2873
6 1.7696 0.3632 1.7382 0.3465 1.7106 0.3320 1.6784 0.3155
8 1.9095 0.3911 1.8741 0.3722 1.8423 0.3554 1.8044 0.3362
10 2.0200 0.4134 1.9813 0.3927 1.9460 0.3742 1.9034 0.3527
20 2.3755 0.4863 2.3263 0.4601 2.2793 0.4361 2.2192 0.4072
102 3.2709 0.6762 3.2003 0.6398 3.1266 0.6041 3.0198 0.5570
103 4.6666 0.9815 4.5806 0.9381 4.4851 0.8934 4.3321 0.8287
104 6.1043 1.2964 6.0189 1.2537 5.9211 1.2084 5.7557 1.1394
105 7.5728 1.6261 7.4817 1.5804 7.3783 1.5324 7.2067 1.4606
106 9.0339 1.9508 8.9426 1.9050 8.8390 1.8569 8.6668 1.7849

V1[hT ] = q1[hP ] +O(Kn−1(lnKn)2). Our numerical results in Figure 3.4 further show

that the agreement is even at the microscopic level, where hT ≈ (|v|2 − 5
2)hP .

The asymptotic mass flow rates at large Kn in the Poiseuille flow and thermal tran-

spiration have also been obtained [69]. It has been found that they increase logarithmi-

cally with respect to Kn. For the heat flow rate in the thermal transpiration, we find it

can also be well fitted by the logarithmic function of Kn: Q[hT ] = −0.6345 ln(Kn)−Q0

in the region 105 < Kn < 2 × 106, where the constant Q0 is 0.2679, 0.1762, 0.07371,

and -0.09903 for the hard sphere molecules, helium, argon, and the Maxwell molecules,

respectively.

3.4 Poiseuille flow through a rectangular channel

Consider a rarefied gas in a long straight channel along the x3 axis. The cross section

is uniform and rectangle, so that −`/2 < x1 < `/2 and −A`/2 < x1 < A`/2, where A
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Figure 3.4: The Onsager-Casimir relation at the microscopic level. Dots: VDFs hT in the thermal
transpiration with Kn = 104. Lines: (|v|2 − 5

2
)hP , where hP are the VDFs in the Poiseuille flow

shown in Figure 3.1. Here v1, v3 = 6/31.

is the aspect ratio. The linearised BE in the dimensionless form reads

v1
∂h

∂x1
+ v2

∂h

∂x2
= Lg(h)− ν(v)h− v3

π3/2
exp(−|v|2). (3.6)

The normalised mass and heat flow rates are M [hP ] = (4/A)
∫ 0
−A/2

∫ 0
−1/2 V3dx1dx2

and M [hP ] = (4/A)
∫ 0
−A/2

∫ 0
−1/2 q3dx1dx2, respectively, where V3 =

∫
v3hdv and q3 =

∫ (
|v|2 − 5

2

)
v3hdv. Unlike the Poiseuille flow between parallel plates where the mass

and heat flow rates increase logarithmically with Kn, here they saturate when Kn→
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Table 3.4: Comparisons between the mass and heat flow rates in the Poiseuille flow through a
rectangular channel for hard sphere molecules. The last row: the analytical solutions at k = ∞.
Note that Kn = 5πk′/16.

A = 1 A = 2
FSM Ref. [40] FSM Ref. [40]

k′ −M [hP ] Q[hP ] −M [hP ] Q[hP ] −M [hP ] Q[hP ] −M [hP ] Q[hP ]
0.1 0.6116 0.0445 0.613 0.045 0.9009 0.0476 0.905 0.048
0.2 0.4691 0.0716 0.470 0.072 0.6676 0.0790 0.668 0.079
0.3 0.4260 0.0889 0.426 0.089 0.5950 0.1013 0.595 0.101
0.4 0.4066 0.1010 0.407 0.101 0.5616 0.1175 0.562 0.118
0.5 0.3960 0.1103 0.396 0.110 0.5433 0.1301 0.544 0.130
0.6 0.3898 0.1174 0.390 0.117 0.5322 0.1401 0.532 0.140
0.8 0.3833 0.1280 0.383 0.128 0.5203 0.1554 0.520 0.156
1 0.3811 0.1356 0.381 0.136 0.5141 0.1664 0.515 0.167
2 0.3806 0.1558 0.380 0.156 0.5108 0.1977 0.512 0.198
3 0.3835 0.1656 0.383 0.166 0.5148 0.2131 0.516 0.214
4 0.3862 0.1717 0.386 0.172 0.5191 0.2230 0.520 0.223
5 0.3886 0.1760 0.388 0.176 0.5228 0.2300 0.523 0.230
6 0.3906 0.1792 0.390 0.179 0.5261 0.2352 0.527 0.236
8 0.3938 0.1837 0.394 0.184 0.5314 0.2428 0.532 0.243
10 0.3963 0.1869 0.396 0.187 0.5354 0.2481 0.536 0.248
20 0.4033 0.1948 - - 0.5479 0.2613 - -
50 0.4102 0.2016 - - 0.5596 0.2734 - -
102 0.4136 0.2048 - - 0.5657 0.2791 - -
103 0.4183 0.2089 - - 0.5742 0.2865 - -
104 0.4191 0.2095 - - 0.5758 0.2878 - -
∞ 0.4194 0.2097 0.4194 0.2097 0.5762 0.2881 0.5762 0.2881

∞: the mass flow rate is

MP =
−1

4
√
π

[
2(A3 + 1)

3A
− 2(A2 + 1)3/2

3A
+ ln

(A2 + 1)1/2 +A

(A2 + 1)1/2 −A +A ln
(A2 + 1)1/2 + 1

(A2 + 1)1/2 − 1

]
,

(3.7)

and the heat flow rate is QP = −MP /2, which are only functions of the aspect ratio of

the rectangular channel and independent of the molecular model [75].

This problem was first solved by the numerical kernel method [40] and then by the

low-noise DSMC [25] for hard sphere molecules. It is reported that the agreement in

the mass flow rate between the two methods is better than 1%. We solve this problem

in a 80×80 spatial-uniform cells for A = 1 and 2. In the discretisation of velocity space,

we set v1, v2 = inL/(N2/2−1/2)n with i = −N2/2+1/2,−N2/2+3/2, · · · , N2/2−1/2.

We choose L = 4, N2 = 48 and i = 3 for Kn ≤ 10 and N2 = 64 and i = 5 otherwise.
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Due to symmetry, v3 is uniformly discretised in the region of [0, 6] by 12 cells. Nice

agreement in the mass and heat flow rates with Doi’s are shown in Table 3.4.

To compare the numerical efficiency with the low-noise DSMC, we consider the

hard sphere gas inside a square channels; with a 25× 25 spatial cell mesh, 32× 32× 24

frequency components, and M = 6, we obtainM = 0.3808 and 0.3966, Q = 0.1365 and

0.1874 for Knvhs = 1 and 10, respectively, compared to Doi’s 0.381 and 0.396 for M,

and 0.136 and 0.187 forQ. The computational time is 100 and 40 seconds2, respectively,

compared to the low-noise DSMC that takes 66 and 12 minutes3, respectively. These

comparisons indicate that the FSM is an accurate and efficient new numerical method.

For smaller Kn, the efficiency of FSM over low-variance DSMC increases more.

We then compare our numerical results with the recent experiment [76], where the

aspect ratio is A = 52.45 and the working gas is helium (ω = 0.66). Several methods

are proposed to explain the experiment [77–79], but none of them is based on the

solutions of the BE. In the discretisation of spatial space, 50 and 200 nonuniform grids

are used in the x1 and x2 directions, respectively, while the same velocity grids are used

as that of A = 1. To gain better agreement with the experiment, different values of

accommodation coefficient α are used4. The obtained mass flow rate Q[hp] has to be

transformed to the reduce mass flow rate G by the following equation

G(δin, δout) =
1

δout − δin

∫ δout

δin

Q[hp](δ)dδ, (3.8)

where δ =
√
π/2Kn is a rarefaction parameter, and the subscripts in and out stand for

the inlet and outlet, respectively. The reduced mass flow rate no longer depends on the

local pressure gradient, but only on the mean value of pressure. Hence the rarefaction

parameter δm at the mean pressure of the channel is introduced. We consider the

experiment data where the inlet to outlet pressure ratio is five, so that δin = 5δm/3

and δout = δm/3.

2Our Fortran program runs on a computer with an Intel Xeon 3.3 GHz CPU, where only one core
is used)

3The Fortran program runs on a single core of an Intel Q9650 (3.0 GHz Core 2 Quad processor).
The time is obtained when there is 0.1% statistical uncertainty in the mass flow rate. To achieve the
same level of uncertainty in the velocity field, the low-noise DSMC would need 240 and 120 minutes,
respectively

4 The wall boundary condition is h(v1, v2, v3, x1, x2 = −A/2) = (1−α)h(−v1, v2, v3, x1, x2 = −A/2)
for v1 > 0 and h(v1, v2, v3, x1 = −1/2, x2) = (1− α)h(v1,−v2, v3, x1 = −1/2, x2) for v2 > 0.
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Figure 3.5: Comparison of the mass flow rate in the Poiseuille flow in rectangular tube with the
experiment by Ewart et al [76] for various values of the accommodation coefficient.

In numerical simulations, the mass flow rate Q[hp] is obtained at discrete values of

the rarefaction parameter. Then the reduced mass flow rate is calculated by Eq. (3.8),

where Q[hp] is obtained by cubic interpolation. Results of the reduced mass flow rate

are visualised in Figure 3.5. In the near continuum regime (δ ≥ 6), the experimental

mass flow rates can be well fitted by the numerical results from the BE with the

accommodation coefficient α = 0.92. In the region 1 ≤ δ < 6, the experimental data

can be fitted by the numerical results α = 0.92 ∼ 1. For 0.2 ≤ δ ≤ 1, the mass flow

rates from the BE with α = 0.92 agree with the experimental measurements. When

δ ≤ 0.1, the BE with α = 0.95 ∼ 1 agrees well with the experiment.

3.5 Thermal transpiration through a rectangular channel

In the thermal transpiration through a rectangular tube, the source term in Eq. (3.6)

is replaced by v3

(
|v|2 − 5

2

)
exp(−|v|2)/π3/2. At the highly rarefied limit [75], the mass

flow rate is MT = −MP /2 and the heat flow rate is QT = 9MP /4, where MP is given

by Eq. (3.7). The comparison in the mass and heat flow rates with Doi’s results are
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Table 3.5: Comparisons between the mass and heat flow rates in the thermal transpiration
through a channel with rectangular cross section for hard sphere molecules. Note that Kn =
5πk′/16.

A = 1 A = 2
FSM Ref. [40] FSM Ref. [40]

k′ −M [hT ] Q[hT ] −M [hT ] Q[hT ] −M [hT ] Q[hT ] −M [hT ] Q[hT ]
0.1 0.0450 0.1759 0.045 0.176 0.0479 0.1842 0.048 0.185
0.2 0.0719 0.2936 0.072 0.294 0.0793 0.3199 0.079 0.320
0.3 0.0891 0.3748 0.089 0.375 0.1014 0.4205 0.101 0.421
0.4 0.1012 0.4341 0.102 0.434 0.1176 0.4976 0.118 0.498
0.5 0.1103 0.4794 0.110 0.479 0.1302 0.5587 0.130 0.560
0.6 0.1174 0.5153 0.118 0.514 0.1403 0.6085 0.140 0.609
0.8 0.1279 0.5690 0.128 0.568 0.1556 0.6852 0.155 0.686
1 0.1356 0.6077 0.136 0.606 0.1668 0.7433 0.167 0.743
2 0.1560 0.7098 0.156 0.708 0.1980 0.9003 0.198 0.900
3 0.1658 0.7571 0.166 0.756 0.2135 0.9762 0.214 0.976
4 0.1719 0.7856 0.172 0.784 0.2233 1.0229 0.223 1.023
5 0.1761 0.8052 0.176 0.804 0.2303 1.0553 0.230 1.055
6 0.1793 0.8197 0.179 0.818 0.2355 1.0795 0.236 1.079
8 0.1839 0.8399 0.184 0.839 0.2431 1.1136 0.243 1.113
10 0.1870 0.8536 0.187 0.852 0.2484 1.1370 0.248 1.136
20 0.1950 0.8867 - - 0.2618 1.1942 - -
50 0.2017 0.9138 - - 0.2736 1.2420 - -
102 0.2048 0.9258 - - 0.2792 1.2636 - -
103 0.2089 0.9406 - - 0.2866 1.2909 - -
104 0.2095 0.9430 - - 0.2878 1.2954 - -
∞ 0.2097 0.9436 0.2097 0.9436 0.2881 1.2965 0.2881 1.2965

shown in Table 3.5, where very good agreements can be found.

3.6 Summary

The FSM has been extended to solve the linearised BE for the Poiseuille flow and

thermal transpiration in both one- and two-dimensional geometry. Comparison with

the existing experimental data and numerical method demonstrates that the FSM is

an efficient and accurate method.



Chapter 4

Kinetic model equations for

classical gases

The complicated nature of the Boltzmann collision operator has stimulated the search

for several kinetic models. The general idea of kinetic modelling is to replace the

Boltzmann collision operator by simpler expressions, not only making the problems

tractable analytically, but also reducing the computational cost to the order of O(N3)

or even less (by introducing reduced VDFs). In this Chapter, as an application of

the FSM, we check the accuracy of the well-known kinetic models by comparing their

solutions to these of the BE. A new kinetic model, which can minimise the difference

between its collision operator to that of the BE, is proposed.

4.1 Kinetic modelling

Several considerations are suggested to simplify the Boltzmann collision operator [6].

First, the simplified collision operator must guarantee conservation of mass, momentum

and energy. Second, the VDF must reduce to the equilibrium distribution function

when the system is in equilibrium. Third, the transport coefficients (such as the shear

viscosity and thermal conductivity) derived from the kinetic model equation by the

Chapman-Enskog expansion should coincide with those obtained from the BE. Fourth,

the H-theorem, which states that production of entropy is always positive and vanishes

only if the system is in equilibrium, should be satisfied. Note that while the first and

62
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second requirements are fundamental, and the third one yields consistent solutions

with the NSF equations in the continuum flow regime, the fourth one is just a physical

requirement which does not guarantee accurate numerical results.

There are two categories of kinetic models, classified by whether the collision fre-

quency is a function of the molecular velocity [80–84] or not. Here we focus on kinetic

models with velocity-independent collision frequencies, since they are frequently used in

rarefied gas dynamics, although the collision frequency is generally velocity-dependent

(except for the ideal Maxwell molecules).

The general form of the kinetic modelled collision operator is

Q(f, f∗) = ν(fr − f), (4.1)

where ν is the collision frequency independent of the molecular velocity and fr is the

reference VDF. The collision frequency is always positive, so the loss term νf shows

that molecules are lost at a constant rate, irrespective of their velocities. Different

kinetic models have different gain terms (reference VDFs).

4.1.1 BGK model

This model was proposed by Bhatnagar, Gross and Krook [85] and independently by

Welander in 1950s [86]. It is the simplest kinetic model ever known, since the reference

VDF is the local equilibrium distribution function feq, defined in Eq. (1.16). The

collision frequency is determined in various ways. One of them is to choose

ν =
p

µ
, (4.2)

so that by solving the BGK equation using the Chapman-Enskog expansion the expres-

sion of the shear viscosity µ is the same as that given in the BE.

On the other hand, to recover the correct expression of the thermal conductivity,

one chooses

ν =
2p

3µ
. (4.3)

A shortcoming of the BGK equation is that the correct expressions of the shear
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viscosity and thermal conductivity cannot be given simultaneously. As a result, the

Prandtl number of the BGK model is unity, instead of 2/3 for monoatomic gases.

Nevertheless, the BGK model has been widely used and intensively studied. Usually,

for shear-dominated problems, Eq. (4.2) is selected, while for heat-dominated ones,

Eq. (4.3) is used. In the following, if without specification, the collision frequency of

the BGK model is given by Eq. (4.2).

4.1.2 Ellipsoidal-statistical model

To correct the Prandtl number in the BGK model, Holway proposed a kinetic model by

means of the H-theorem in 1966 [87]: he constructed the reference VDF by minimising

the entropy function under the conservation of mass, momentum, and energy, and the

assumption that the pressure tensor P is known:

fESr =
n√

det[πλij ]
exp(−λ−1

ij vrivrj ),

λij =
2kBT (1− b)

m
δij +

2bPij
nm

,

(4.4)

where b is directly related to the Prandtl number, Pr = 1/(1− b).
The resulting model is known as the ellipsoidal-statistical (ES) model. To recover

the correct value of shear viscosity, the collision frequency is chosen as

ν =
p

µ(1− b) . (4.5)

Clearly, b should be smaller than unity. There are, however, low bound for b: for

fESr to have a finite norm, one must choose b ≥ −1/2. Therefore, the Prandtl number

of the ES model varies from 2/3 to positive infinity as b increases from −1/2 to 1.

Fortunately, to get the correct Prandtl number for monoatomic gas, one chooses the

minimum available value b = −1/2. In this case, Eq. (4.5) is the same as Eq. (4.3). If

b = 0, the BGK model can be recovered.

The H-theorem has been proved in 2000, making this model the only kinetic model

satisfying the H-theorem and having the correct value of transport coefficients [88].

Since then, the ES model has attracted great attentions.
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4.1.3 Shakhov model

The Shakhov (S) model proposed by Shakhov [89–91] is another modification of the

BGK model giving the correct Prandtl number, where the reference VDF is

fSr = feq

[
1 +

2(1− Pr)m

5n(kBT )2
q · vr

(
mv2

r

2kBT
− 5

2

)]
, (4.6)

and the collision frequency is given by Eq. (4.2).

Although it has the correct Prandtl number, this model has two shortcomings.

First, the H-theorem can be proved only for the linearised S model. In the nonlinear

form one can neither prove nor disprove the H-theorem. Second, the VDF may become

negative, which is not physical. Despite the two deficiencies, the S model has also been

widely used. In most of cases, this model gives quite satisfactory results.

4.1.4 Liu model

A general method for constructing the kinetic model was proposed by Liu in 1990. The

reference VDF takes the form of [92]

fLr = feq + feq

(
1

ν
− µ

nkBT

)
m

kBT

(
vrivrj −

1

3
v2
rδij

)
∇jVi

+ feq

(
1

ν
− 3µ

2nkBT

)(
mv2

r

2kBT
− 5

2

)
vri∇i lnT.

(4.7)

The shortcomings of the Liu model is exactly the same as the S model. The advan-

tage of the Liu model is that, unlike the ES and S models, here ν is a free parameter,

due to the fact that the shear stress and heat flux are incorporated simultaneously in

a unique way. This freedom allows the possibility to get nice agreements with the BE

by adjusting the value of the collision frequency. For instance, for Kramers’ problem,

choosing 0 ≤ 1 − νµ/p ≤ 1/5 can produce accurate slip velocities for hard sphere

gases [93].

The Liu model, however, has been rarely used in real applications [93, 94]. The

critical reason is that, one just does not know how to choose the collision frequency.

In addition, the spatial derivatives make the collision operator nonlocal, whereas the

Boltzmann collision operator is localised in space.
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4.1.5 Combined ES and S model

Since the ES and S models have explicitly treated the shear stress and heat flux, one

may use the combined ES and S model, where the collision frequency can also be

arbitrarily chosen. We consider the following reference VDF:

fCr = νESf
ES
r + (1− νES)feq

[
1 +

1− Pr(1− bνES)

1− νES
2m

5n(kBT )2
q · vr

(
mv2

r

2kBT
− 5

2

)]
.

(4.8)

In order to recover the expressions for shear viscosity and thermal conductivity, we

have to choose the collision frequency as

ν =
p

µ(1− bνES)
. (4.9)

The new kinetic model can be viewed as a linear combination of the ES and S

models. It reduces to the ES model when νES = 1 and to the S model when νES = 0.

Note that we have two free parameters b and νES . Again, b is restricted over the region

[−1/2,+∞) for the finite norm of fESr , but νES can be an arbitrary value as long as

the collision frequency ν is positive. Numerical simulations reveal that, however, the

solutions are only sensitive to the product of b and νES , instead of the separated values.

This may be qualitatively explained as follows. When the traceless shear stress σij is

small, fESr is linearized to ≈ feq[1 + mbσijvrivrj/2nk
2
BT

2]. Hence the reference VDF

becomes

fCr ≈ feq + feq
mbνES

2n(kBT )2
σijvrivrj + feq[1− Pr(1− bνES)]

2m

5n(kBT )2
q · vr

(
mv2

r

2kBT
− 5

2

)
,

(4.10)

which is solely determined by the product of b and νES .

It should be noted that, if the first-order Chapman-Enskog expressions for σij and

q are used, Eq. (4.10) can be casted into Eq. (4.7) by setting Pr = 2/3. Thus, the

combined ES and S model is more general and accurate than the Liu model due to the

fact that σij and q contain not only the first-order informations, but also other orders.

The open problem in the Liu model and the combined model is how to determine

the collision frequency ν. Physically, one should choose the collision frequency so that

the collision operator approaches to that of BE as closely as possible.
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Figure 4.1: Comparison between different collision operators in the spatial-homogeneous relax-
ation problem. The circles show the collision operator from the combined ES and S model, with
νES = 0.5 and the value of b being indicated by the arrow.

4.2 Accuracy of the kinetic collision operators

It is interesting to show how accurately the collision operators Q(f, f∗) in various kinetic

models approximate the Boltzmann collision operator. Let us first consider a gas of hard

sphere molecules. The VDF is f = π−3/2 exp[−(v1− 2)2− v2
2 − v2

3] + 4π−3/2 exp[−(v1 +

0.5)2 − v2
2 − v2

3]. Profiles of the collision operators are shown in Figure 4.1(a), while

deviations of the kinetic collision operators from the Boltzmann collision operator,

simply defined as
∑ |Qmodel−QBE |, are shown in Figure 4.1(b). It is seen that, among

the BGK, ES, and S models, the deviation is largest for the BGK model and smallest
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for the S model. For the combined ES and S model, the deviation is tuned by the

values of νES and b. Here we set νES = 0.5 and vary the value of b. The minimum

deviation is achieved at b ≈ 0.56.

The accuracy of the kinetic collision operators is strongly related to the VDF. We

then consider another VDF: f = π−3/2 exp[−(v1−2)2−v2
2−v2

3]+π−3/2 exp[−(v1 +2)2−
v2

2−v2
3]. Due to symmetry, profiles of the collision operators are shown in Figure 4.1(c),

with v1 ≤ 0. In this case, the S model is the same as the BGK model as the heat flux is

zero. The BGK and S models are better than the ES model in terms of the deviation,

shown in Figure 4.1(d). For the combined ES and S model, the minimum deviation is

achieved at b ≈ −0.2.

Different behaviours of the kinetic collision operators may be related to the different

collision frequencies (relaxation rates of VDFs). Here we only consider the ES, S, and

the combined models, since the BGK model does not have the correct Prandtl number.

Among the three models, we find that the relaxation of the second- and third-order

moments are the same, i.e.,
∂σij
∂t = − p

µσij and ∂qi
∂t = −2

3
p
µqi, while the relaxation of the

VDF is generally different:

∂f

∂t
=− 2

3

p

µ
(f − fESr ),

∂f

∂t
=− p

µ
(f − fSr ),

∂f

∂t
=− 1

1− bνES
p

µ
(f − fCr ).

(4.11)

While the collision frequencies of the VDF in the ES and S models are fixed, the

collision frequency in the combined ES and S model varies as the product of b and

νES changes. Thus, adjusting the values of b and νES , one may get different colli-

sion frequencies (hence different relaxation rates of high-order moments which may be

important in specific problems). This flexibility allows us to get closer results to the

Boltzmann collision operator if we let the relaxation rates in the combined ES and S

model approach to the “true” ones.

One example is in a gas of hard sphere molecules, where the initial VDF is given

by Eq. (2.39) with t = 0. Figures 4.2(a) and (b) show that the fourth- and sixth-order

moments in S and ES models increase faster than the BE’s, and these moments in
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Figure 4.2: Relaxation of the fourth- and sixth-order moments in a gas of (a, b) hard sphere
molecules and (c, d) Maxwell molecules.

the S model grow faster than the ES’s. From Eq. (4.11) it can be inferred that one

should choose bνES < −0.5 in the combined model. Indeed, by choosing νES = 2.5

and bνES = −1, the fourth- and sixth-order moments of the combined ES and S model

almost increase in the same rates as those of the BE.

Another example is in a gas of Maxwell molecules. Figure 4.2(c) shows the fourth-

order moments of the S model increases faster than these of the BE, while that in

the ES model increases in the same rate with the BE. Figure 4.2(d) shows that the

sixth-order moments of the S and ES models grow faster than the BE. By choosing

νES = 2.5 and bνES = −0.8, the sixth-order moment in the combined model grows

almost in the same rate with the BE’s. Unfortunately, the fourth-order moment in the

combined model increases slower than the BE.
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4.3 Accuracy of the kinetic models

In this section, we will check the accuracy of the kinetic model equations by comparing

solutions of the BGK, ES, S, and the combined model equations with the BE in spatial-

inhomogeneous problems, both in 1D and 2D geometries.
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Figure 4.3: Velocity profiles (see also Figure 2.19) in the Couette flow and values of bνES used
in the combined ES and S model (νES is fixed to be 0.5). The first row: Maxwell molecules. The
second row: argon. Note that velocities have been normalised by the wall velocity.

4.3.1 Planar Couette flow

The configuration is shown in Figure 2.18(b). We consider the case where the wall

velocity is very small, say, Vw = 0.01vm, so that the system is essentially isothermal.

Figures 4.3(a) and (c) show that both ES and S models over-predict velocity slips.

From Eq. (4.11) we find that the collision frequency of the ES model is smaller than
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the S model. Since the S model has better accuracy than the ES model, we may get

close results to the BE by choosing appropriate positive values of bνES in the combined

ES and S model, to make the collision frequency larger than that of the S model. For

example, for Maxwell gas with Kn = 10, 5, and 3, bνES ≈ 0.46, 0.44, and 0.42 yield

very close results to the BE; for argon gas with Kn = 10, 5, and 3, bνES ≈ 0.395, 0.38,

and 0.37 yield nice agreements with the BE. It should be noted that, if we increase the

collision frequency in the S model or the ES model, the results can be improved, but

we cannot get nice velocity profiles in the whole spatial domain.
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Figure 4.4: Comparison of the collision operator between the kinetic models and BE for Maxwell
gas, where the distribution function is chosen at the down plate, obtained by use of the S model
when Kn = 10. The solid lines, BE; the dashed lines: S model; the dash-dotted lines: ES model;
the dotted lines: combined model.
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The nice agreements between the combined model and BE are attributed to the

fact that, the collision operator of the combined model is close to that of BE in average

sense, as clearly illustrated in Figure 4.4. To be specific, the ES model is the worst here

because the difference between its collision operator and that of BE is the largest. The

combined model is better than the S model because its collision operator is closer to

that of BE. This suggests that, in order to get accurate results by use of the combined

model, one should minimise the difference between collision operators of the combined

model and BE, by varying the value of bνES . From many numerical tests, we find that

the following parameter

D =

∫
|QC −QBE |v2

rdv (4.12)

is a nine measure of the difference between Boltzmann collision operator and the colli-

sion operator QC of the combined ES and S model.

The procedure in obtaining solutions of the combined ES and S model is: first, we

solve the problem by one of the kinetic models (BGK, S, or ES model) and get a nearly

converged solutions; second, using the obtained VDFs we calculate the Boltzmann

collision operator by the FSM; third, we fixed the value of νES (say, 0.5) and vary the

value of b to minimize the parameter D. For the planar Couette flow, the obtained

values of b are shown in Figure 4.3(b) and (d); finally, we solve the same problem

by the combined ES and S model with the obtained b and νES , until the stationary

state is reached. In this way, the time-consuming FSM is applied only once, hence the

computational time can be greatly reduced.

4.3.2 Poiseuille flow

The comparison between the model equations and BE is summarised in Figure 4.5(a)

when 0.1 ≤ Kn ≤ 100. The Knudsen minimum in the mass flow rate is clearly seen.

The BGK and S models produce almost the same results so that only the results of

BGK model are shown. For a gas of hard sphere molecules, the ES model overpredicts

the mass flow rate by about 10% when the Knudsen number is large, whereas the BGK

model only overpredicts it by about 5%. For a gas of Maxwell molecules, the deviations

between model equations (BGK and ES models) and the BE are even larger.

Figure 4.5 shows that, when the combined ES and S model is used, we get very
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Figure 4.5: Comparisons of mass flow rates and velocity profiles between the model equations
and BE in the Poiseuille flow. Dashed line: ES; Dash-dotted line: BGK; Circles: BE for hard
sphere molecules; Dots: BE for helium; Stars: BE for argon; Squares: BE for Maxwell molecules.
Solid lines: the combined ES and S model (bνES are shown in Figure 4.6).
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Figure 4.6: Values of bνES used in the combined ES and S model in the Poiseuille flow for
different molecular models.

close mass flow rate and velocity profiles to the BE for Kn ≥ 2, when the distance

D =
∫
|QC − QBE |v2dv is minimised1. Interestingly, from Figure 4.6 we see that

for large Knudsen numbers, the value of bνES approaches to a constant value. This

property has great applications. If we use the combined ES and S model and introduce

the reduced VDFs [95], we can get very accurate results for large Knudsen numbers,

where bνES is a fixed constant independent of the Knudsen numbers. Furthermore, the

computation time is much less than that of BE solvers.

1 Since it is a linearised problem, the flow velocity is very small. Therefore, vr in Eq. (4.12) is
replaced by v.
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4.3.3 Normal shock waves

This case has also been solved by the FSM and the numerical accuracy has been checked

by comparisons with DSMC, MD, and experimental data in §2.6.3. Figure 4.7 compares

the shock wave structures obtained from the kinetic model equations with the BE in

hard sphere gas. It is found that the solution of S model equation is closest to the

BE, although there are great deviations in temperature at the upstreaming parts. The

BGK model, however, is the worst. When different molecular models are used, the S

model is still better than the BGK and ES models. As ω increases from 0.5 to 1, the

agreement between the S model and BE gets better and better. For Maxwell molecules,

there is almost no difference in the shock structures between the S model and BE (not

shown). When the combined ES and S model is used, the results can be improved [96].

However, it is hard to find the appropriate values of b and νES .

4.3.4 Rayleigh problem

Sudden change of wall temperature

Consider a semi-infinite expanse of a rarefied Maxwell gas in contact with a stationary

plane wall (at x1 = 0, parallel to the x2 axis, temperature T0) and in a uniform equi-

librium state at rest (temperature T0, pressure p0). Suppose that the wall temperature

changes discontinuously to another uniform temperature T1 = 2T0 at time t = 0 and is

kept at T1 for all t > 0. In order to compare with the results from the BGK model [97],

we set Kn = π/4, so the the BGK model and BE have the same value of shear viscosity.

The gas molecules are reflected diffusely on the wall. The BE and kinetic equations are

solved by the operator-splitting method.

We are interested in the transition regime, since at early times (compared with the

mean collision time) the transport is ballistic, while at late times the NSF equations

become appropriate [98, 99]. The results are shown in Figure 4.8. Among all the kinetic

models, the BGK model performs the worst, while the S and ES models produce very

close results to the BE. Between the S and ES models, in a relative short period of time

t < 10, it can be found that near the peaks of the velocity profiles, the ES model is

better than the S mode, while at the fronts of shocks, the S model is better. For long
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Figure 4.9: Comparison between solutions of the kinetic models and BE for the Rayleigh problem.
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times, both ES and S models yield the identical results with BE.

Sudden change of wall velocity

This case studies the gas flow in the semi-infinite space, where the wall suddenly ac-

quires a velocity Vw = 2vm in the x2 direction. Figure 4.9 compares the solutions

between the ES, S model, and BE, where it can be found that the S model performs

better than the ES model, in contrast to the case where the wall temperature suddenly

changes. For long time behaviours, both kinetic models have the same results (not

shown).

4.3.5 Lid-driven flow

Consider the lid-driven flow in a square cavity, as was firstly studied using DSMC by

John, Gu, and Emerson [100, 101]. Since the velocity near the bottom wall is very

small, the computational time of DSMC is extremely high. Even when the velocity of

the upper wall is small so that the BE can be linearized, the low-noise DSMC developed

by Radtke, Hadjiconstantinou, and Wagner [25] takes more than 1 day to get a resolved

result for Knvhs = 0.1. We solve the problem (wall velocity Vwall = 50m/s, T0 = 273K)

in a 51 × 51 non-uniform spatial grids, with 32 × 32 × 12 grids in the velocity space

for Knvhs = 0.1 and 1, and 64 × 64 × 12 for Knvhs = 10. For Kn = 0.1, our method

needs only 90 minutes to produce a converged solution, where the error between the two

consecutive iteration steps
√∫
|V k+1 − V k|2dx1dx2/

∫
|V k|2dx1dx2 is less than 10−7.

Figure 4.10 shows the temperature contours, velocity and heat flux streamlines in

the lid-driven flow of argon gas with the diffuse boundary condition. We have also

simulated the same problem using the hard sphere molecules. Comparisons in the

velocity, temperature, and heat flux profiles between the two molecular models with

the same value of shear viscosity are shown in Figure 4.11. The numerical results

suggest that the molecular model has little influence on the flow pattern. This may

explain why the BGK model with the correct value of shear viscosity can give nice

agreements with the DSMC [102].
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Figure 4.10: Temperature contours and streamlines (velocity: first column; heat flux: second
column) in the lid-driven flow of argon gas. From top to bottom, the Knudsen number of each
row is Knvhs = 0.1, 1, and 10, respectively.
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Figure 4.11: Comparisions in velocity, temperature, and heat flux profiles between the argon
and hard sphere molecules. The solid (or dashed) lines, results of argon when Knvhs = 0.1 (or
10). The circles (or pentagram), results of hard sphere molecules when Knvhs = 0.132 (or 13.2).
The opened (or closed) markers are the results along the central horizontal (vertical) lines.

Figure 4.12: Velocity and temperature profiles along the symmetric line through the slit cen-
tre. The red solid lines: BE solutions by the FSM. The stars: BE solutions by Tcheremissine’s
method [33]. The circles, solutions of the S model equations.
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Figure 4.13: Contour of the Mach number
√

6(V 2
1 + V 2

2 )/5 in the slit flow for (a) Kn =
√
π/2

and (b) Kn =
√
π/20. The region x2 > 0 is the solution of the S model equation, while the region

x2 < 0 is that of the BE by the FSM.

4.3.6 Slit flow

This case is exactly the same as the one reported in Ref. [103], where solutions of the S

model and the BE were compared. The BE was solved by Tcheremissine’s method [33]

with 24× 24× 12 velocity nodes, and the authors claimed that double the grid points

number in the velocity space led to the relative error less then 1%. This contradicts with

our previous observation that, for large Knudsen number, the velocity grids should be

increased to capture the discontinuity in VDFs. Here, we simulate the case where the

pressure ratio between the left and right reservoirs is 10. The Knudsen numbers Kn are
√
π/2 and

√
π/20, respectively, corresponding to δ = 1 and δ = 10 in Ref. [103]. Flow

distributions along the symmetric line through the slit centre are shown in Figure 4.12,

where solutions of the S model and the BE (obtained from the FSM) agree very well,

while the solutions from Tcheremissine’s method deviate a lot from our BE solutions.
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These deviations are due to the fact that 24 × 24 × 12 velocity nodes are not enough

(for δ = 1 we used 48× 96× 12 velocity grids) when the Knudsen number is large.

Figure 4.13 compares the Mach contours between the results of the S model and the

BE, where one can find that the two solutions are very close to each other. We have

also simulated the ES model and found that the S model is much better. Therefore,

the BE can be replaced by the S model equation, to greatly reduce the computational

time and memory (since the VDF can be integrated in the v3 direction in the S model).

4.3.7 Flows arising from temperature variations/discontinuities

Response to spatial-periodic boundary temperature

Consider the response of argon gas to a boundary temperature with a sinusoidal spatial

variation. The upper x2 = L and lower boundary x2 = 0 is diffusely reflecting with a

temperature given by Tw = T0(1−ε cos 2πx1/L). The unconfined Knudsen number Kn

is 1.3 when the spatial length is normalised by L so that the Knudsen number based on

the VHS model is 1. Due to the symmetries in the x1 and x2 directions, the simulation

domain is chosen as 0 < x1, x2 < L/2. The reflecting boundary condition is chosen

for the left, upper, and right walls, while the diffuse boundary condition is used in the

bottom wall.

The temperature and velocity profiles are shown in Figure 4.14. When the tem-

perature variation in the wall is small (ε = 0.05), the BGK, S, and ES models give

close results to the BE, with the ES model being the closest (see at x1 ≈ 0, 1 and

x2 ≈ 0.5). However, when the temperature variation is huge (ε = 0.5), the BGK and

S models do not give accurate results, while the ES model gives almost identical result

with the BE for the temperature field. The reduced VDFs are also shown when ε = 0.5,

demonstrating the necessity of using 128 velocity grids in the v1 and v2 directions.

Thermal creep flows with closed walls

Consider the thermal creep flow in a two-dimensional closed rectangular channel with

a length-to-width ratio of 5. The temperature at the right side is set to be twice

that of the left side, while the temperature of the top and bottom walls varies linearly

along the channel. Using the mean density, the temperature of the left wall, and the
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Figure 4.14: Upper: Comparison between solutions of the kinetic models and BE. The solid
lines are the temperature contours (T − 1)/ε, while the arrows are the velocity vectors. Down:
Contours of the reduced VDF

∫
fdv3 when ε = 0.5. The vertical axis is v2 and the horizontal axis

is v1. The titles in each figure show the locations (x1, x2). The velocity grid numbers are huge:
128× 128× 12 in [−7.5, 7.5]× [−7.5, 7.5]× [−7.5, 0].
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Figure 4.15: Temperature contours and velocity streamlines in the thermal creep flow of argon
gas within a closed channel. From top to bottom, the Knudsen number is Kn = 0.08, 0.2, 0.25,
0.6, 2, and 10, respectively. In each figure, from left to right, the temperature of each contour is
1 + 0.1i, i = 1, 2, · · · , 9.
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channel width, Kn is set to be 0.08, 0.2, 0.25, 0.6, 2, and 10 in the cases we investigate.

Figure 4.15 presents the resulting streamlines and the temperature distributions inside

the channel for the flow of argon gas. The S model can predicts nice temperature field.

The ES model is not as good as the S model.
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Figure 4.16: Velocity profiles for thermal creep flow within a closed channel. Kn = 0.08 (10) is
represented for the red (blue) lines.

Unlike thermal creep in an open channel, where the flow moves towards the hot

region, the thermal creep flow in a closed channel exhibits richer phenomena. At

Kn = 0.08, the gas flows from the cold region to the hot region along the boundary,

and returns in the central region. At Kn = 0.2, the flow still moves from hot to cold in

the central region, however, near the lower wall the flow moves towards the hot region

when x1 < 2 and towards the cold region for at x1 > 2, i.e., a circulation emerges near

the lower corner of the domain. At Kn = 0.25, the circulation near the lower wall

expands, which divides the flow in the central region into two circulation zones. The

lower circulation zone keeps expanding, and pushes the other two circulations in the

central region towards the left and right boundaries as Kn increases. At Kn = 0.6,

the flow direction is reversed (as compared to that when Kn = 0.08) and only one

circulation zone remains near the left wall. The reversal of the flow direction continues

but the circulations near the left wall gradually disappear as the Knudsen number

increases further, for instance, to Kn = 2. Finally, at larger Kn, the gas near the lower

surface moves from hot to cold, and two clockwise circulations emerge near the left and

right sides. The streamline profiles stay the same as when Kn is further increased, but
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(a) S model and BE (b) ES model and BE

(c) Combined model and BE

Figure 4.17: Comparison between the kinetic models and the BE. In each figure, the upper
(down) half region shows the results of the kinetic models (BE). The Knudsen number is Kn =
π/20. In the combined ES and S model, we have νES = 0.5 and the values of b are shown in
Figure 4.18(a).

the flow velocity decreases almost linearly with the Knudsen number. Comparison of

the velocity profiles for different molecular models are shown in figure 4.16; it can be

seen that the molecular models greatly affect the results.

Flows arising from temperature discontinuity

We consider a rarefied argon gas confined in the 2D square container, where the left wall

of the container is kept at a temperature of Tl, while the other three walls are kept at a

temperature of Tr. Figure 4.17(a) shows the temperature and streamline profiles when

Tr = 2Tl and Kn = π/20. Only slight differences in the temperature and streamline
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Figure 4.18: (a) Values of bνES used in the combined ES and S model, where νES = 0.5; (b)
Velocities in the central line; (c) Relative error of temperature in the central line. The Knudsen
number is Kn = π/20.

profiles are observed between the S model and the BE. When the ES model is used, the

temperature profile is slightly improved [Figures 4.17(b) and 4.18(c)], but the velocity

profiles deviate significantly from the these of BE [Figures 4.17(b) and 4.18(b)]. The

combined ES and S model is also applied to this case. From Figures 4.17(c) and 4.18(b)

we see that the agreements in the velocity profiles are improved, while the error in

the temperature profile slightly grows, with the maximum error being less than one

percentage.
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4.4 Summary

The accuracy of various existing kinetic models with velocity-independent collision

frequency (the BGK, ES, and S models) are checked by comparing their solutions with

these of the BE. It is found that it is difficult to conclude which kinetic model is the

best, since the accuracy depends on individual flow problem.

A new kinetic model, which is a linear combination of the ES and S models, is

proposed. Since the shear stress and heat flux terms are added simultaneously in

a unique way, the velocity-independent collision frequency can be arbitrarily chosen.

Based on a significant number of numerical simulations, we have empirically proposed

a criterion to determine the collision frequency of the combined model, which can make

the collision operator approach to that of the BE as closely as possible. The new

model has been successfully applied to the problems with small velocities such as the

planar Couette flow, force driven Poiseuille flow, and the flow arising from temperature

discontinuities. An open question remains as how to determine the value of bνES for

other kind of flows. This deservers further analytical and numerical investigations.



Chapter 5

Fast spectral method for gas

mixtures

5.1 The Boltzmann equation for binary gas mixture

Consider the binary gas mixture of monoatomic gases, where the mass of a molecular

of the first component c1 is m1, while that of the second component c2 is m2. Let

f c1(t,x,v) and f c2(t,x,v) be respectively the VDFs of the first and second components.

The macroscopic quantities, such as the molecular number density, bulk velocity, and

temperature of each component (ı is the species index), are defined as

nı =

∫
f ıdv, Vı =

1

nı

∫
vf ıdv, T ı =

mı

3nıkB

∫
|v−Vı|2f ıdv, (5.1)

while the molecular number density, bulk velocity, and temperature of the mixture are

defined as

n =
∑

ı

nı, V =

∑
ımın

ıVı

∑
ımını

, T =
1

3nkB

∑

ı

∫
mı|v−Vı|2f ıdv. (5.2)

In the absence of external force, the BE for the binary gas mixture of monatomic

molecules takes the form of

∂f ı

∂t
+ v · ∂f

ı

∂x
=
∑

=1,2

Qı, (5.3)

90
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where collision operators Qı(f ı, f ∗) consist of the gain parts Qı+ and loss parts Qı−.

They are self-collision operators when ı =  and cross-collision operators when ı 6= .

The collision operators are local in time and spatial space. For simplicity, t and x will

be omitted in writing the collision operators

Qı(f ı, f ∗) =

∫

R3

∫

S2
Bı(cos θ, |u|)f (′vı∗ )f ı(′vı)dΩdv∗

︸ ︷︷ ︸
Qı+

− νıf ı(v)︸ ︷︷ ︸
Qı−

, (5.4)

where

νı(v) =

∫

R3

∫

S2
Bı(cos θ, |u|)f (v∗)dΩdv∗ (5.5)

are the collision frequencies, and the relation between the post- and pre-collision veloc-

ities becomes

′vı = v +
m

mı +m
(|u|Ω− u), ′vı∗ = v∗ −

mı

mı +m
(|u|Ω− u). (5.6)

The cross-collision operators conserve the mass (
∫
Qıdv = 0), total momentum

(
∫
mıvQ

ıdv+
∫
mvQ

ıdv = 0), and total energy (
∫
mı|v|2Qıdv+

∫
m|v|2Qıdv = 0),

instead of the momentum and energy of each species. For Maxwell molecules, however,

we have the following exact relations for each cross-collision operators:

∫
mıvQ

ıdv = −ν̃ı mım

mı +m
nın(Vı −V), (5.7)

∫
mı

2
|v−Vı|2Qıdv = −ν̃ı mım

(mı +m)2
nın[3kB(T ı − T )−m|Vı −V|2], (5.8)

where ν̃ı = 2π
∫ π

0 (1− cos θ) sin θB(cos θ)dθ.

5.2 Cross-collision kernels

Detailed forms of the self-collision kernels Bıı(cos θ, |u|) suitable for the FSM have been

discussed and given in §2.1, where the use of simpler collision kernels is justified by the

observation that solutions of the BE are determined by the coefficient of shear viscosity

(not only its value, but also its temperature dependence), instead of the detailed θ-

dependence of the collision kernel, see §2.5.
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The situation becomes more complicated for gas mixtures. In addition to the shear

viscosity and thermal conductivity, there are mass diffusion and thermal diffusion, and

the inverse effect to thermal diffusion. Two kinds of cross-collision kernels will be

considered separately.

5.2.1 Collision kernels for power-law potentials

The simplest form of the cross-collision kernel is for a gas of hard sphere molecules,

where Bı = (dc1 +dc2)2|u|/4, with dı being the molecular diameters. For other type of

intermolecular interactions, it is a difficult task to recover all the transport coefficients

by a simple collision kernel. In DSMC, it is usually assumed that solutions of the BE

are determined by both of the coefficients of shear viscosity and mass diffusion. For

instance, the VSS model which gives the correct coefficients of shear viscosity and mass

diffusion is widely adopted by DSMC in the simulation of gas mixtures [14].

Therefore, if we recover the coefficients of shear viscosity and mass diffusion, our

deterministic solutions are compatible with those of DSMC. To do this, we choose the

following cross-collision kernels [see also Eq. (2.9)]:

Bı(cos θ, |u|) = Bı
0 sinα

ı+γı−1

(
θ

2

)
cos−γ

ı

(
θ

2

)
|u|αı , (5.9)

where the symmetry requires Bı
0 = Bı

0 , αı = αı, and γı = γı.

According to the Chapman-Enskog expansion [5], the coefficient of the mass diffu-

sion is given by

Dı
m =

3
√

2πkBT/m
ı
r

16(mı
r /2kBT )3n

∫∞
0 u5σıM exp (−mı

r u2/2kBT ) du

=
3
√

(mı
r )αı22−αı/π

64Bı
0 Γ(α

ı+γı+3
2 )Γ(1− γı

2 )

(kBT )ω
ı

nmı
r

, (5.10)

where ωı is given by Eq. (2.6), mı
r = mım/(mı + m) is the reduced mass, n is the

total mass density, i.e., n = nc1 + nc2 when ı 6= , and σıM is the momentum transfer

cross-section defined below.

In the practical calculations, when the mass diffusion Dı
m (not only its value, but

its temperature dependence) is known, the value of αı can be determined from the
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value of ωı according to Eq. (2.6), while the value of γı is determined by the ratio of

the viscosity cross-section σıµ

σıµ =2π|u|αı−1Bı
0

∫ π

0
sinα

ı+γı−1

(
θ

2

)
cos−γ

ı

(
θ

2

)
sin3 θdθ

=16π|u|αı−1Bı
0 Γ

(
αı + γı + 3

2

)
Γ

(
2− γı

2

)
/Γ

(
αı + 7

2

)
, (5.11)

to the momentum transfer cross-section σıM

σıM =2π|u|αı−1Bı
0

∫ π

0
sinα

ı+γı−1

(
θ

2

)
cos−γ

ı

(
θ

2

)
(1− cos θ) sin θdθ

=8π|u|αı−1Bı
0 Γ

(
αı + γı + 3

2

)
Γ

(
1− γı

2

)
/Γ

(
αı + 5

2

)
. (5.12)

That is, γı is obtained from the following equation

σıµ
σıM

=
4− 2γı

αı + 5
. (5.13)

After αı and γı are determined, one can determine the vale of Bı
0 by Eq. (5.10).

For example, for the He-Ar mixture [14], since ωı = 0.725, from Eq. (2.6) we choose

αı = 0.55; since the ratio of the viscosity cross-section to the momentum transfer cross-

section is about 0.9, we choose γı = −0.5.

5.2.2 Collision kernel for the Lennard-Jones potential

To recover all the transport coefficients, it is better to take into account the realistic

LJ potential and consider the original collision kernel given by Eqs. (2.1)-(2.2). For

simplicity, we assume the collision kernel can be written as

Bı = Bı
LJ(θ, |u|)u, (5.14)

where the function Bı
LJ(θ, |u|) can always be constructed from the relation between the

aiming distance ba, relative velocity |u|, and the deflection angle θ, for instance, using

the method and data in Refs. [56, 104].
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5.3 Fast spectral method for cross-collision operators

As in the approximation of the self-collision operators presented in §2.3, we rewrite the

cross-collision operator Qı(f ı, f ∗) using the Carleman-like representation. We intro-

duce Θ = Bı
0 sinα

ı+γı−1(θ/2) cos−γ
ı

(θ/2)|u|αı−1 when the collision integral is given

by Eq. (5.9) and Θ = Bı
LJ(θ, |u|) when the collision integral is given by Eq. (5.14). With

the basic identity 2
∫
R3 δ(2y ·u+ |y|2)f(y)dy = |u|

∫
S2 f(|u|Ω−u)dΩ, the cross-collision

operator can be rewritten as

Qı =

∫

R3

∫

S2
Θ|u|[f (′vı∗ )f ı(′vı)− f (v∗)f ı(v)]dΩdv∗

=

∫ ∫
Θ|u|

[
f 
(

v∗ − (1− b) |u|Ω− u

2

)
f ı
(

v + a
|u|Ω− u

2

)
− f (v∗)f ı(v)

]
dΩdv∗

=2

∫

R3

∫

R3

Θδ(2y · u + |y|2)

[
f 
(

v∗ −
(1− b)y

2

)
f ı
(
v +

ay

2

)
− f (v∗)f ı(v)

]
dydv∗

=4

∫

R3

∫

R3

Θδ(y · u + |y|2)[f (v∗ − (1− b)y)f ı(v + ay)− f (v∗)f ı(v)]dydv∗

=4

∫

R3

∫

R3

Θδ(y · z)[f (v + z + by)f ı(v + ay)− f (v + y + z)f ı(v)]dydz,

where

a =
2m

mı +m
, b =

m −mı

mı +m
. (5.15)

According to Eq. (2.21), the deflection angle θ and relative velocity |u| can be

expressed as functions of |y| and |z|. We therefore denote 4Θ by B(|y|, |z|). For

example, we have B(|y|, |z|) = 4Bı
0 |y|α

ı+γı−1|z|−γı when the collision integral is

given by Eq. (5.9). The cross-collision operator is simplified to

Qı =

∫

R3

∫

R3

δ(y · z)B(|y|, |z|)[f (v + z + by)f ı(v + ay)− f (v + y + z)f ı(v)]dydz.

(5.16)

Suppose both VDFs have the support S, the relative velocity is then |u| ≤ 2S,

and the infinite integration region R3 in Eq. (5.16) can also be reduced to BR, i.e.,

|x|, |y| ≤ R with R =
√

2S. Expanding the truncated collision operator in the truncated

Fourier series, we find that the j-th mode of the truncated cross-collision operator is
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related to the Fourier coefficients f̂ ı and f̂  as

Q̂ıj =

(N1,N2,N3)/2−1∑

l+m=j
l,m=−(N1,N2,N3)/2

f̂ ıl f̂

mβ(al + bm,m)− f̂ ıl f̂ mβ(m,m), (5.17)

where the kernel mode β(l,m) is

β(l,m) =

∫

BR

∫

BR
B(|x|, |y|)δ(y · z) exp(iξl · y + iξm · z)dydz. (5.18)

Note that the second term in Eq. (5.17) can be calculated by the FFT-based con-

volution with the computational cost O(N3 logN). For the first term, however, the

direct calculation requires the computational cost to be O(N6). The main goal here

is to separate ξl and ξm in β(al + bm,m) so that Eq. (5.17) can be calculated effec-

tively by the FFT-based convolution, maintaining the computational cost at the order

of O(N3 logN). If b 6= 0, the separation is different from that in §2.3.2.

Similar to Eq. (2.26), Eq. (5.18) can be transformed to

1

2

∫ [∫ R

0
ρB(ρ, |ρ′|) cos(ρξl · e)dρ

]{∫
δ(e · e′)

[∫ R

−R
|ρ′| exp(iρ′ξm · e′)dρ′

]
de′
}
de,

where the integration with respect to ρ can be approximated by Gauss-Legendre quadra-

ture of order M2 (ρr and ωr (r = 1, 2, · · · ,M2) are the abscissas and weights of the

Gauss-Legendre quadrature for ρ ∈ [0, R]), yielding

1

2

∫ M2∑

r=1

ωrρr cos(ρrξl · e)

{∫
δ(e · e′)

[∫ R

−R
|ρ′|B(ρr, |ρ′|) exp(iρ′ξm · e′)dρ′

]
de′
}
de.

According to the calculation adopted in Eq. (2.28), we have

β(l,m) =

∫ M2∑

r=1

ωrρr cos(ρrξl · e)ψ(ρr, |ξm| cos θ1)de, (5.19)

where

ψ(ρr, s) = 2π

∫ R

0
|ρ′|B(ρr, |ρ′|)J0(ρ′s)dρ′. (5.20)

The integration with respect to e in Eq. (5.19) can be approximated either by the
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trapezoidal rule [see Eq. (2.30)] or by the Gauss-Legendre quadrature [see Eq. (2.31)].

For clarity, we only give the result when using the Gauss-Legendre quadrature, i.e.,

β(l,m) ≈∑M,M,M2
p,q,r=1 ωpωqωrρr cos(ρrξl·eθp,φq)ψ(ρr, |ξm| cos θ1) sin θp, where |ξm| cos θ1 =√

|ξm|2 − (ξm · eθp,ϕq)2.

Finally, we expand the kernel mode into the following form:

β(al + bm,m) ≈
M,M,M2∑

p,q,r=1

ωpωqωrρrψ(ρr, |ξm| cos θ1) · sin θp

× [cos(ρraξl · eθp,ϕq) · cos(ρrbξm · eθp,ϕq)

− sin(ρraξl · eθp,ϕq) · sin(ρrbξm · eθp,ϕq)].

(5.21)

Now we see ξl and ξm are completely separated, hence Eq. (5.17) can be com-

puted by the FFF-based convolution, with the computational cost at the order of

O(M2M
2N3 log2N).

Special forms of the kernel mode

When the cross-collision kernel is given by Eq. (5.9), we have

β(al + bm,m) ≈4Bı
0

M∑

p,q=1

ωpωqI(ξl, ξm) · ψγı
{√
|ξm|2 − (ξm · eθp,ϕq)2

}
sin θp,

(5.22)

where

I(ξl, ξm) = 2

∫ R

0
ρα

ı+γı cos[ρ(aξl + bξm) · e]dρ, (5.23)

and the function ψγ(s) is defined in Eq. (2.29).

Due to the presence of b in Eq. (5.23), three different cases will be considered for

the calculation of I(ξl, ξm):

• When the two types of molecules have identical mass, we have a = 1 and b = 0.

Thus,

I(ξl) = 2

∫ R

0
ρα

ı+γı cos(ρaξl · eθp,ϕq)dρ, (5.24)

which can be calculated accurately by Gauss-Legendre quadrature. In this case,

ξl and ξm appear in two different functions. Hence Eq. (5.17) can be calculated
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effectively by the FFT-based convolution. The computational cost of the cross-

collision operators is exactly the same as that of the self-collision operators, which

is O(M2N3 log2N).

• For cross-collision operators when the two types of molecules have nearly identical

mass, i.e., |mA − mB| � mA +mB, we have |b| � 1. Then, according to the

Taylor expansion, we have cos[ρ(aξl + bξm) · eθp,ϕq ] ≈
∑M1−1

r=0 cos(ρaξl · eθp,ϕq +

rπ/2)(bρξm · eθp,ϕq)r/r!, where ’ !’ stands for the factorial. Hence we have

I(ξl, ξm) ≈ 2

M1−1∑

r=0

(bξm · eθp,ϕq)r
r!

∫ R

0
ρα

ı+γı+r cos
(
ρaξl · eθp,ϕq +

rπ

2

)
dρ,

(5.25)

where each term in the summation can be calculated accurately by Gauss-Legendre

quadrature. From Eqs. (5.22) and (5.25) we find that ξl and ξm appear in two

different functions. Hence Eq. (5.17) can be calculated effectively by the FFT-

based convolution, with the computational cost O(M1M
2N3 log2N), which is M1

times larger than the self-collision operators.

• For general cases, Eq. (5.22) can be approximated by the Gauss-Legendre quadra-

ture so that ξl and ξm are separated by the property of the cosine function

I(ξl, ξm) ≈ 2

M2∑

r=1

ωrρ
αı+γı

r · [ cos(ρraξl · eθp,ϕq) · cos(ρrbξm · eθp,ϕq)

− sin(ρraξl · eθp,ϕq) · sin(ρrbξm · eθp,ϕq)]. (5.26)

Then, Eq. (5.17) can be calculated with the computation costO(M2M
2N3 log2N),

which is 2M2 times larger than the self-collision operators.

5.4 Conservation enforcement

The procedure in deriving the FSM for gas mixtures is essentially the same as that for

single species [1]. Therefore, it can be proved that the present FSM conserves the mass

and satisfies the H-theorem, while the approximation errors of momentum and energy

are spectrally small. These errors, however, can be eliminated using the method of
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Lagrangian multiplier.

For Maxwell molecules, the Lagrangian method is similar to that of self-collision

operators (see §2.3.3). After Qı is obtained, we minimise
∑

j(Q
ı
j − Q̃

ı
j )2 under the

constraints of mass conservation, Eqs. (5.7) and (5.8), yielding

Q̃ı = Qı − (λın + λıv · v + λıe |v|2), (5.27)

where the Lagrangian multipliers satisfy

∑

j

Qı =
∑

j

(λın + λıv · v + λıe |v|2),

∑

j

mıvQ
ı =

∑

j

mıv(λın + λıv · v + λıe |v|2)

−
∑

j

ν̃ı
mım

mı +m
nın(Vı −V),

∑

j

mı

2
|v|2Qı =

∑

j

mı

2
|v|2(λın + λıv · v + λıe |v|2)

−
∑

j

ν̃ı
mım

(mı +m)2
nın[3kB(T ı − T )−m|Vı −V|2].

(5.28)

For other types of intermolecular interactions, we minimise the function
∑

j(Q
c1c2
j −

Q̃c1c2j )2 + (Qc2c1j − Q̃c2c1j )2 under the conservation of mass, total momentum, and total

energy, yielding Q̃ı = Qı−(λın+mıλv·v+mıλe|v|2), where the 6 Lagrangian multipliers

satisfy

∑

j

Qc1c2 =
∑

j

(λc1c2n +m1λv · v +m1λe|v|2),

∑

j

Qc2c1 =
∑

j

(λc2c1n +m2λv · v +m2λe|v|2),

∑

j

(m1Q
c1c2 +m2Q

c2c1)v =
∑

j

m1(λc1c2n +m1λv · v +m1λe|v|2)v

+
∑

j

m2(λc2c1n +m1λv · v +m1λe|v|2)v,

∑

j

(m1Q
c1c2 +m2Q

c2c1)|v|2 =
∑

j

m1(λc1c2n +m1λv · v +m1λe|v|2)|v|2

+
∑

j

m2(λc2c1n +m1λv · v +m1λe|v|2)|v|2.

(5.29)
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5.5 Comparison with exact BKW solutions

We check accuracy of the FSM by comparing the numerical solutions with the analytical

BKW solutions for Maxwell molecules (αı = 0). Without loss of generality, we take

γı = 0 in Eq. (5.9) and consider the spatial-homogeneous BE. The exact BKW solutions

can be written as follows [105]:

f ıBKW (v, t) = nı
( mı

2πK

)3/2
exp

(
−mı|v|2

2K

)(
1− 3rpı +

rpı
K
mı|v|2

)
, (5.30)

where

p1 =
4nc2

5
[2Bc2c2

0 −m0B
c1c2
0 (5− 3m0)],

p2 =
4nc1

5
[2Bc1c1

0 −m0B
c1c2
0 (5− 3m0)],

r =
Ã

Ã exp[4πÃ(t+ t0)]− B̃
,

K =
nc1 + nc2

nc1 + nc2 + 2(nc1p1 + nc2p2)r
,

(5.31)

with

Ã =
4nc1Bc1c1

0 + 2nc2m0B
c1c2
0 (5− 3m0p2/p1)

15
,

B̃ =
8nc1Bc1c1

0 p1 + 4nc2m0B
c1c2
0 (5− 3m0)p2

15
,

(5.32)

and m0 = 4m1m2/(m1 +m2)2.

The additional conditions below should be satisfied for the existence of exact solu-

tions:

• Exact solution of type I exists when p1 is equal to p2, i.e., this solution exists only

for special values of relative density

nc2

nc1
=

2Bc1c1
0 −m0(5− 3m0)Bc1c2

0

2Bc2c2
0 −m0(5− 3m0)Bc1c2

0

. (5.33)

• Exact solution of type II exists for arbitrary values of nc1 and nc2 when the

following relation is satisfied

1

2Bc1c1
0 /Bc1c2

0 −m0(5− 3m0)
+

1

2Bc2c2
0 /Bc1c2

0 −m0(5− 3m0)
=

1

3m2
0

. (5.34)
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We first consider the case where the two types of molecules have the mass ratio

of m1/m2 = 4. In our numerical simulations, we use Eq. (5.26) with M2 = 7 to

approximate Eq. (5.23). In the angular discretisation, we take M = 6. Figure 5.1

shows the relax-to-equilibrium process of the two types of solutions. One can see that

the numerical obtained VDFs agree well with the BKW solutions, and the relative

errors in the fourth-order moments are about 10−4. This demonstrates accuracy of the

FSM.

We then consider the case that the two types of molecules have nearly identical

mass, i.e., m1/m2 = 1.25. We use Eq. (5.25) with M1 = 7 to approximate Eq. (5.23),

while in the angular discretisation we take M = 6. Figure 5.2 compares the evolution

of the VDFs and the fourth-order moments. Again, they agree with the BKW solutions

very well.

5.6 Space-inhomogeneous problems

We employ the iteration method to get the stationary solutions of the BE for space-

inhomogeneous problems. Given the VDFs f c1k and f c2k at the k-th iteration step, their

values at the next iteration step is calculated by the following equations

[νc1c1(f c1k ) + νc1c2(f c2k )]fC1
k+1 + v ·

∂f c1k+1

∂x
= Qc1c1+

k +Qc1c2+
k ,

[νc2c2(f c2k ) + νc2c1(f c1k )]f c2k+1 + v ·
∂f c2k+1

∂x
= Qc2c2+

k +Qc2c1+
k .

5.6.1 Normal shock waves

We compare our numerical solutions for normal shock waves with those obtained from

a finite-difference method [39]. The mixture is composed of hard sphere molecules

with the diameters of the molecular c1 and c2 being dc1 and dc2 , respectively. For

comparison, we set Bc1c1 = (dc1)2/4, Bc2c2 = (dc2)2/4, and Bc1c2 = (dc1 + dc2)2/16.

Figures 5.3 and 5.4 show the shock wave structures with different concentrations. It is

seen that our numerical results compare well with those of a finite-difference method.
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Figure 5.1: (a-d) Evolution of VDFs in the spatial-homogeneous Maxwell molecules. The solid
lines are the BKW solutions of type I (a,b) and type II (c,d), while the dots are the numerical
ones. (a,c): fc1(v1, 0, 0) and (b,d): fc2(v1, 0, 0). In each figure, from bottom to top (near v1 =
0), the time in (a,c) is (0, 1, 2, · · · , 24) × 0.25, while in (b,d) is (0, 1, 2, · · · , 20) × 0.1. (e) The
relative errors of the fourth-order moments vs time for type I solutions. Solid line:

∫
(fc1 −

fc1BKW )v41dv/
∫
fc1BKW v

4
1dv, dashed line:

∫
(fc2−fc2BKW )v41dv/

∫
fc2BKW v

4
1dv. (f) The relative errors

of the fourth-order moments vs time for type II solutions. The parameters are m1 = 4m2 = 4.
(a,b,e): Bc2c20 = Bc1c10 = 4Bc1c20 = 1/4π, nc1 = nc2 = 1, and t0 = log[(B + 3Ap1)/A]/4Aπ
so that at the initial time t = 0, 1 − 3rp1 = 1 − 3rp2 = 0. (c,d,f): Bc1c20 = 1/16π, Bc2c20 =

Bc1c10 = Bc1c20 (3m2
0 + 5m0)/2, nc1 = 0.95, nc2 = 1, and t0 = max{log[(B̃ + 3Ãp1)/Ã], log[(B̃ +

3Ãp2)/Ã]}/4Ãπ. The velocity bound L is 8 for the distribution function fc1 and 16 for the
distribution function fc2 . The other parameters are N = 64, M = 6, and M2 = 7.
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Figure 5.2: (a-d) Evolution of VDFs in the spatial-homogeneous Maxwell molecules. The solid
lines in (a,b) and (c,d) are respectively the BKW solutions of type I and II, while the dots are
the numerical ones. (a,c): fc1(v1, 0, 0) and (b,d): fc2(v1, 0, 0). In each figure, from bottom
to top (near v1 = 0), the time is (0, 1, 2, · · · , 19) × 0.1. (e) and (f) The relative errors of the
fourth-order moments in the simulation of exact solutions of types I and II, respectively. The
parameters are m1 = 1,m2 = 0.8, (a,b,e) Bc2c20 = Bc1c10 = 4Bc1c20 = 1/4π, nc1 = nc2 = 1,

and t0 = log[(B̃ + 3Ãp1)/Ã]/4Ãπ, (c,d,f) Bc1c20 = 1/16π, Bc2c20 = Bc1c10 = Bc1c20 (3m2
0 + 5m0)/2,

nc1 = 0.9, nc2 = 1, and t0 = max{log[(B̃+3Ãp1)/Ã], log[(B̃+3Ãp2)/Ã]}/4Ãπ. We choose N = 32,
M = 6, and M1 = 7.
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Figure 5.3: Profiles of molecular number densities (dots), flow velocities (circles), and temper-
ature (triangles) for upstream Mach number 3, mc2/mc1 = 0.5, and dc2/dc1 = 1: (a) χc2 = 0.1,
(b) χc2 = 0.5, and (c) χc2 = 0.9. Here χc2 is the concentration of the c2-component at the up-
stream infinity and l1 is the mean free path of the molecules of the c1-component at the upstream
infinity. The markers are our numerical results, while the lines (solid: c1-component, dashed:
c2-component) are the results of the finite-difference method (note that components c1 and c2 are
correspondingly the A and B components in Ref. [39]).

5.6.2 Heat transfer between two parallel plates

We further compare our numerical results for the Fourier heat transfer problem between

two parallel plates with that of a finite-difference method [106]. The mixture is again

composed of hard sphere molecules, confined in the domain 0 ≤ x1 ≤ `. The diffuse

boundary condition is adopted, where the wall temperature at x1 = 0 is TI and that

at x1 = d is 2TI . The Knudsen number is defined as Kn = l0/`, where the mean-free

path l0 = [
√

2π(dc1)2(nc1av + nc2av)]
−1.

Figure 5.5 shows the temperature profiles with Kn = 1, m2/m1 = 0.25, dc2/dc1 =

0.5, and nc2av/n
c1
av = 0.1, 1, and 10. In our numerical simulations, we have used 128 ×

48× 48 velocity grids. The agreements with those from a finite-difference method are
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(a) (b)

(c)

Figure 5.4: Same as Figure 5.3, expect here mc2/mc1 = 0.25 and the Mach number is 2.

quite satisfactory. Note that the smaller molecules (c2 component) have a larger mean

free path. Therefore, the density profile of the component c2 is flatter than that of the

component c1. Also note that the effective Knudsen number at the same Kn increases

with the value of nc2av/n
c1
av, since Kn is based on the average number density of the

total mixture and on the diameter of the larger molecules. Therefore, the temperature

profiles become flatter as nc2av/n
c1
av increases.

5.6.3 Thermal creep flow in closed channel

Finally we consider the thermal creep flow of binary gas mixture in a 2D closed channel

with the length-to-width ratio being 5. The temperature in the right end of the channel

is 1.5 times higher than that in the left end. The temperature in the top and bottom
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Figure 5.5: Normalized molecular number densities (at nc2av/n
c1
av = 10) and temperature profiles

of Fourier heat flow between two parallel plates. Solid lines: our numerical results; Markers: results
from the finite-difference method (components c1 and c2 are correspondingly the components A
and B in Ref. [106]).

walls varies linearly. We consider the hard sphere molecules with m1 = m2, dc2/dc1 =

0.25, and nc2av/n
c1
av = 0.1. The mean free path is defined as that in the Fourier flow

and the channel width is chosen as the character length. Figures 5.6 and 5.7 show the

temperature and streamline profiles. The flows gradually reverse their directions, as

happened in a single species (see §4.3.7). Since the component c2 has a larger Kn, its

flow pattern changes earlier than that of the component c1.

5.7 Summary

We have extended the FSM to the binary gas mixture of monoatomic gases. The

accuracy of the FSM has been checked by comparing the numerical solutions with the

analytical BKW solutions as well as the numerical results of the finite-difference method

from the Kyoto kinetic theory group. The present method can be straightforwardly

applied to multiple gas mixtures.

The mass difference between the two kinds of molecules makes the FSM less efficient

as that for the single component gas, however, it is still faster than the conventional

spectral methods where the computational complexity is at the order of O(N6), espe-

cially when a large number of velocity grids are needed.

In the current implementation, we have used the same number of grids for the veloc-

ity discretisation, and L is chosen as the support of the VDF of the lighter molecules.
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(a) Kn = 0.1

(b) Kn = 0.15

(c) Kn = 0.2

(d) Kn = 0.25

Figure 5.6: The temperature and streamline profiles in the thermal creep flow of a binary
gas mixture. Near the bottom wall, from x2 = 0.5 to x2 = 4.5, the isothermal lines have the
temperature ranging from 1.05 to 1.45. In each sub figure, the first one is the results of the
component c1, while the second one is that of the component c2.
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(a) Kn = 0.3

(b) Kn = 0.5

(c) Kn = 0.7

(d) Kn = 1

Figure 5.7: Same as Figure 5.6 but for different Kn.
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As a consequence, the velocity grid number are 8 and 27 times larger than that for

single component gas when the mass ratio are 4 and 9, respectively. This wastes not

only the computer memory, but also the computational time. Further efforts will be

needed to optimise the algorithm, for example, to use a non-uniform velocity grids.



Chapter 6

Fast spectral method for

quantum Fermi gases

6.1 The quantum Boltzmann equation for Fermi gases

Consider a system of two-component fermions with the atom mass m1 and m2 in the

normal phase, so that it can be described semiclassically by the VDFs f c1(t,x,v) and

f c2(t,x,v). The component c1 has up spin while the component c2 has down spin. We

take into account only the interaction between opposite spins via the s-wave scattering.

In the three-dimensional geometry (dv = 3), the differential cross-section is given by

(in the units where ~ = kB = 1)

dσ

dΩ
=

a2
s

1 + a2
sm

2
r |u|2

, (6.1)

while in the 2D geometry (dv = 2), the differential cross-section is given by

dσ

dΩ
=

2π

mr|u|
1

log2(a2
sm

2
r |u|2) + π2

, (6.2)

where as is the s-wave scattering length, which can be tunnelled by the external mag-

netic field according to the Feshbach resonance. Note that mr is the reduced mass.

The quantum Boltzmann equations are derived from a heuristic argument of the

109
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classical BE [107]. For Fermi gas, it takes the form of

∂f ı

∂t
+ v · ∂f

ı

∂x
− ∂U ı

∂x
· ∂f

ı

∂v
= Qı(f ı, f ∗), (6.3)

where U ı(x, t) are the effective potentials, and Qı are quantum collision operators:

Qı(f ı, f ∗) =

∫

Rdv

∫

Sdv−1

|u| dσ
dΩ
{f (′vı∗ )f ı(′vı)[1− f (v∗)][1− f ı(v)]

− f (v∗)f ı(v)[1− f (′vı∗ )][1− f ı(′vı)]}dΩdv∗,

(6.4)

with the relation between the post- and pre-collision velocities given by Eq. (5.6).

When the VDFs are known, one can obtain the macroscopic quantities. For ex-

ample, the atom number density, bulk velocity, shear stress, and heat flux of each

component can be obtained as below (vr = v−V):

nı =
(mı

2π

)dv ∫
f ıdv, Vı =

(mı

2π

)dv 1

nı

∫
vf ıdv,

P ıij =
(mı

2π

)dv
mı

∫
vrivrjf

ıdv, qi =
(mı

2π

)dv mı

2

∫
vri|vr|2f ıdv.

(6.5)

Introducing the entropy function H = −∑ı

∫
dv[f ı ln f ı + (1 − f ı) ln(1 − f ı)] to

Eq. (6.3), one gets the equilibrium distribution function

feq ≡
{
Z−1 exp

[
m(v−V)2

2kBT

]
+ 1

}−1

, (6.6)

where Z(x, t) is the local fugacity satisfying lnZ = (µ′ − U)/kBT , with µ′ being the

chemical potential.

When the quantum system is in equilibrium, we have

n =

(
mkBT

2π

)dv/2
Gdv/2(Z), Pαβ = nkBT

Gdv/2+1(Z)

Gdv/2(Z)
δαβ, (6.7)

whereGn(Z) = 1
Γ(n)

∫∞
0

xn−1

Z−1ex−θdx is the Fermi-Dirac function. When Z → 0, Gn(Z)→
Z, the quantum gas is in the near classical limit, where the equilibrium VDF is very

close to the Maxwellian equilibrium VDF for classical gases and the behaviour of quan-

tum gases is similar to the classical ones.
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6.2 Fast spectral method

Following Refs. [53, 54], we separate the quantum collision operator to Qı(f ı, f ∗) =

Qıc − Qı1 − Qı2 + Qı3 + Qı4 , where Qıc (f ı, f ∗) =
∫
Rdv

∫
Sdv−1 |u| dσdΩ [f (′vı∗ )f ı(′vı) −

f (v∗)f
ı(v)]dΩdv∗ is the classical quadratic collision operator, and

Qı1 =

∫

Rdv

∫

Sdv−1

|u| dσ
dΩ

f (′vı∗ )f ı(′vı)f (v∗)dΩdv∗,

Qı2 =

∫

Rdv

∫

Sdv−1

|u| dσ
dΩ

f (′vı∗ )f ı(′vı)f ı(v)dΩdv∗,

Qı3 =

∫

Rdv

∫

Sdv−1

|u| dσ
dΩ

f (v∗)f
ı(v)f (′vı∗ )dΩdv∗,

Qı4 =

∫

Rdv

∫

Sdv−1

|u| dσ
dΩ

f (v∗)f
ı(v)f ı(′vı)dΩdv∗,

(6.8)

are the cubic collision operators.

We rewrite these collision operators using the Carleman-like representation. With

the basic identity 2
∫
Rdv δ(2y · u + |y|2)f(y)dy = |u|dv−2

∫
Sdv−1 f(|u|Ω − u)dΩ, the

classical collision operator becomes Qıc = 2dv−1
∫
Rdv

∫
Rdv

dσ
dΩ |u|3−dvδ(y · z)[f (v + z +

by)f ı(v + ay)− f (v + y + z)f ı(v)]dydz, where a and b are defined in Eq. (5.15). Note

that the delta function poses the condition that z should be perpendicular to y, which

leads to |u|2 = |y|2 + |z|2. Hence for dv = 3 we define the collision kernel as

B(|y|, |z|) = 4
dσ

dΩ
=

4a2
s

1 + a2
sm

2
r(|y|2 + |z|2)

, (6.9)

while for dv = 2 we have

B(|y|, |z|) = 2
dσ

dΩ
|u| = 4π

mr

1

log2[a2
sm

2
r(|y|2 + |z|2)] + π2

. (6.10)

Since the distribution functions have the support S, the relative velocity |u| ≤ 2S.

Therefore, the infinite integration region in the collision operator is reduced to BR, i.e.,

|y|, |z| ≤ R with R =
√

2S, which results in the truncated collision operator

Qıc =

∫

BR

∫

BR
B(|y|, |z|)δ(y·z)[f (v+z+by)f ı(v+ay)−f (v+y+z)f ı(v)]dydz. (6.11)
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Similarly, the cubic collision operators can be rewritten as

Qı1 =

∫

BR

∫

BR
B(|y|, |z|)δ(y · z)f (v + z + by)f ı(v + ay)f (v + y + z)dydz,

Qı2 =

∫

BR

∫

BR
B(|y|, |z|)δ(y · z)f (v + z + by)f ı(v + ay)f ı(v)dydz,

Qı3 =

∫

BR

∫

BR
B(|y|, |z|)δ(y · z)f (v + z + by)f (v + y + z)f ı(v)dydz,

Qı4 =

∫

BR

∫

BR
B(|y|, |z|)δ(y · z)f ı(v + ay)f (v + y + z)f ı(v)dydz.

(6.12)

Expanding the truncated collision operators in the truncated Fourier series, we find

that, for the classical collision operator, the j-th model Q̂ıc (ξj) is given by Eq. (5.17).

Similarly, the j-th mode of the truncated cubic collision operators can be expressed as

Q̂ı1 (ξj) =

N/2−1∑

l+m+n=j
l,m,n=−N/2

f̂ ıl f̂

mf̂


nβ(al + bm + n,m + n),

Q̂ı2 (ξj) =

N/2−1∑

l+m+n=j
l,m,n=−N/2

f̂ ıl f̂

mf̂

ı
nβ(al + bm,m),

Q̂ı3 (ξj) =

N/2−1∑

l+m+n=j
l,m,n=−N/2

f̂ ıl f̂

mf̂

ı
nβ(m + an,m),

Q̂ı4 (ξj) =

N/2−1∑

l+m+n=j
l,m,n=−N/2

f̂ ıl f̂

mf̂


nβ(m + bn,m + n),

(6.13)

where the kernel mode β(l,m) is given by Eq. (5.18).

When dv = 3, the kernel mode is simplified to (suppose here the integral with

respect to the unit vector e in Eq. (5.19) is approximated by the trapezoidal rule)

β(l,m) ' π2

M2

M2,M−1,M∑

r,p,q=1

ωr|ρr| exp(iρrξl · eθp,ϕq)ψ(ρr, |ξm| cos θ1) sin θp, (6.14)

where

ψ(ρr, s) = 8πa2
s

∫ R

0

ρ′J0(ρ′s)dρ′

1 + a2
sm

2
r(ρ
′2 + ρ2

r)
, (6.15)

and ρr and ωr (r = 1, 2, · · · ,M2) are the abscissas and weights of the Gauss-Legendre

quadrature in the region [−R,R].
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Analogously, for dv = 2, the kernel mode is simplified to

β(l,m) ' π

M

M2,M∑

r,p=1

ωr exp(iρrξl · eθp)ψ(ξm · eθp+π
2
), (6.16)

where eθp = (cos θp, sin θp) with θp = pπ/M , and

ψ(ρr, s) =
8π

mr

∫ R

0

cos(ρ′s)dρ′

log2[a2
sm

2
r(ρ
′2 + ρ2

r)] + π2
. (6.17)

Notice that the procedure in deriving the FSM for quantum BE is essentially the

same as that for classical BE, therefore, it can be proved that the present fast spec-

tral method conserves the mass and satisfies the H-theorem, while the error on the

approximation of momentum and energy is spectrally small.

6.3 Detailed implementation

We take the 2D case as an example. With Eq. (6.16), we have

Q̂ıc (ξj) '
π

M

M2,M∑

g,p=1

N/2−1∑

l+m=j
l,m=−N/2

ωr exp(iaρrξl · eθp)f̂ ıl × exp(ibρrξm · eθp)ψ(ξm · eθp+π
2
)f̂ m︸ ︷︷ ︸

Cgp1 (l+m)

− π

M

N/2−1∑

l+m=j
l,m=−N/2

f̂ ıl ×
M2,M∑

g,p=1

ωrexp(iρrξm · eθp)ψ(ξm · eθp+π
2
)f̂ m.

(6.18)

It is clearly seen that, if using the FFT-based convolution, the computational cost

of the classical collision operator Qc is at the order of O(MM2N
2 logN). In real

computations, we take M = 4 ∼ 8 and M2 = 10 ∼ 20. It should be noted that, if

y and z are separable in the collision kernel B(|y|, |z|), the cost can be reduced to

O(MN2 logN) and our scheme is exactly the same as that in Refs. [54].

Similarly, the cubic collision operators Q1 and Q3 can also be computed at the cost
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of O(MM2N
2 logN):

Q̂ı1 (ξj) '
π

M

M2,M∑

g,p=1

N/2−1∑

l=−N/2

exp(iaρrξl · eθp)f̂ ıl

×
N/2−1∑

m+n=j−l
m,n=−N/2

[
ωr exp(ibρrξm · eθp)f̂ m × exp(iρrξn · eθp)f̂ n

]
ψ(ξm+n · eθp+π

2
)

︸ ︷︷ ︸
Cgp2 (m+n)

,

Q̂ı3 (ξj) '
π

M

N/2−1∑

l=−N/2

f̂ ıl

×
M2,M∑

g,p=1

N/2−1∑

m+n=j−l
m,n=−N/2

ωrexp(iaρrξn · eθp)f̂ ın × exp(iρrξm · eθp)f̂ mψ(ξm · eθp+π
2
),

while for the cubic collision operators Q2 and Q4, based on the computed Cgp1 and Cgp2 ,

the computational costs can be reduced to O(N2 logN):

Q̂ı2 (ξj) '
π

M

N/2−1∑

n=−N/2

f̂ ın ×
M2,M∑

g,p=1

Cgp1 (j− n), Q̂ı4 (ξj) '
π

M

N/2−1∑

l=−N/2

f̂ ıl ×
M2,M∑

g,p=1

Cgp2 (j− l).

Therefore, for dv = 2, the overall computational cost is O(MM2N
3 logN), while

for dv = 3, the computational cost is O(M2M2N
3 logN).

6.4 Spin diffusion in a harmonic potential

As an application of the FSM for the quantum Fermi equation, we consider the spin

diffusion in a harmonic potential. Initially, the spin-up component locates at x = −1

(centre-of-mass), while the spin-down component is at x = 1. The two components

have the same atom number and small mass. If there is no interaction between the

two components, the two components will pass through each other repeatedly and the

centre-of-mass each component will oscillate sinusoidally, due to the harmonic potential.

If there exists strong interaction between the two components, however, each component

would rather be scattered away than goes to the trap centre.

To quantitatively show the centre-of-mass evolution, we carry out the direct numer-
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Figure 6.1: Centre-of-mass evolution of the spin down component.

ical simulations at various value of s-wave scattering length. The results are shown in

Figure 6.1. The reflection dynamics is observed when the collision frequencies are high,

at as = 0.1, 1, and 10. The approaching dynamic is observed at as = 0.01, while the

pass through effects are observed at as = 0.0001, 0.001, 100, and 1000. This is because

the differential cross-section in 2D geometry first increases with as and then decreases,

with its maximum value achieved at a2
smrT ≈ 1.

6.5 Summary

The FSM is applied to the BE for quantum Fermi gases with realistic collision kernels.

The interesting spin-diffusion problem in harmonic potential is considered. The method

may be used to explain the recent experiments [108–110]. The method can be directly

applied to quantum Bose gases, where (1−f) in Eq. (6.4) should be replaced by (1+f).



Chapter 7

Collective oscillations in dilute

quantum gas

7.1 Background

The realisation of quantum degeneracy in the ultracold atomic gases has attracted

intensive research efforts to understand the interacting quantum systems [111, 112].

The experimental controllability of the interactions, energy, and spin population makes

these systems ideal to study the crossover from a Bose-Einstein condensation (BEC) to

a Bardeen-Cooper-Schrieffer (BCS) superfluid, which is ubiquitous in high-temperature

superconductivity, neutron stars, nuclear matter, and quark-gluon plasma [113].

In the zero-temperature limit, the superfluid behaviour of the Fermi gases is well

understood [112, 114, 115]. At high temperatures, the dilute quantum gases are in the

normal phase and their dynamics can be described by the quantum BE [107]. On the

other hand, when the temperature is below the critical temperature for superfluidity,

the superfluid and normal phases coexist. In this case, the BE for the dynamics of

the quasiparticle distribution function and the Euler equations for the superfluid order

parameter can be combined to describe the quantum gas dynamics [116, 117].

The study of the low-lying excitation modes (see Figure 7.1) is important for prob-

ing the properties of strongly correlated systems, revealing the underlying mechanics

of BEC-BCS crossover. So far, the effects of temperature on the collective mode re-

main unclear. For instance, experimentally, in the same temperature range, Kinast et

116
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Sloshing mode Breathing mode

Quadrupole mode Scissors mode

Figure 7.1: Sketch of the four typical collective oscillations in the external harmonic potential.
The solid lines: density shapes of the quantum gas at equilibrium. The dashed and dash-dotted
lines: intermediate states. For the excitation of the breathing mode, the strength of the external
potential is suddenly decreased and held at its new value hereafter, so that the density shape
goes from the solid circle to the dashed one, and then back to the solid again, forming half of the
oscillation period. Later on, the density shape changes to the dash-dotted circle and return to the
solid-line shape, completing another half period of oscillation.

al. demonstrated that the frequency of the radial breathing mode stayed close to the

hydrodynamic value [118], while Wright et al. measured the scissors mode and found a

clear transition from the hydrodynamic to collisionless behavior [119]. This discrepancy

motivated Riedl et al. to measure the frequency and damping of the radial compres-

sion (breathing), quadrupole, and scissors modes in a similar experimental condition

and to compare the experimental data with the analytical prediction of the moment

method [120]. However, there are discrepancies between the experimental and theoret-

ical results, especially for the radial quadrupole mode.

The analytical expressions for the mode frequency and damping were obtained

by applying the method of moments to the linearised BE [120–124]. However, this

method may not provide accurate predictions for the quantum gas in the transition

regime [120, 125], which is caused by i) the spatially-dependent relaxation time is

replaced by the spatially-average one and/or ii) only low orders of moments are included

in the analytical method, which may not be adequate for capturing the important
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features of the collective oscillations. For example, one needs to consider high-order

terms for the cloud surface deformation at large radii in the quadrupole mode if using

average relaxation time [125]. The other major drawback of the analytical method

is that it is only limited to the external harmonic potentials, while experimentally

anharmonic effects emerge at high temperatures where the external potential has a

Gaussian profile [119, 120]. Therefore, it is necessary to solve the BE numerically to

get the accurate mode frequency and damping. Only in this way can we know the

applicability of the Boltzmann description in quantum gases.

Here we put forward a deterministic method to numerically solve the Boltzmann

model equation in the hydrodynamic, transition, and collisionless regimes. This Chap-

ter is divided into two parts. First, we solve the classical BGK model. We extract the

frequency and damping of the radial quadrupole and scissors modes and compare them

with the analytical and experimental data [119–121, 124]. With the numerical results,

we find that the difference between the experimental data and the analytical results of

the BE in Refs. [119, 120] is reduced. Second, we solve the quantum BGK model and

indicates the applicability of this model in describing the quadrupole oscillations in 2D

Fermi gases.

7.2 Classical BGK model

We consider two-component balanced Fermi gases well above the degeneracy temper-

ature, where the gases are statistically classical but the collisions are quantum. The

dilute Fermi gas is in the normal phase and the up-spin and down-spin components

have the same atom mass m. Due to the Pauli’s exclusion principle, collision happens

between atoms with different spins. For most of the experiments the two components

move together and one needs only consider one VDF. Furthermore, the experiments of

Wright et al. and Riedl et al. are conducted in elongated traps so that one can focus

only on the radial collective oscillations, neglecting the axial motion [119, 120, 126].

Thus, the problem is effectively 2D. In general, due to the presence of the Gaussian
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laser beam, the gas is trapped in the two-dimensional Gaussian potential

U(x, y) = U0

[
1− exp

(
− x2

W 2
a

− y2

W 2
b

)]
, (7.1)

where U0 is trap depth and Wa, Wb are the trap widths. At low temperatures, the

atom cloud is far smaller than the trap widths, so that the potential is nearly harmonic

U(x, y) =
m

2
(ω2
xx

2 + ω2
yy

2), (7.2)

where the trap frequencies satisfy ωx =
√

2U0/m/Wa and ωy =
√

2U0/m/Wb.

Instead of the quantum BE, we first begin with the classical BGK model; this model

can capture the essential physics of the problem and has been widely used to describe

rarefied gas dynamics. It reads

∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
+ ax

∂f

∂vx
+ ay

∂f

∂vy
=
fle − f
τ(x, y)

, (7.3)

where (ax, ay) = −(∂/∂x, ∂/∂y)U(x, y)/m are the accelerations, τ(x, y) is the local

relaxation time, and fle is the local equilibrium distribution function

fle =
mn

2πkBT
exp

[
−m(vx − Vx)2 + (vy − Vy)2

2kBT

]
, (7.4)

which is defined in terms of the local particle density n(x, y), local temperature T (x, y),

and local macroscopic velocities Vx(x, y) and Vy(x, y). When the system is in global

thermal equilibrium, n = n0 exp[−U(x, y)/kBT0], with n0 being the particle density at

the trap centre and T0 the global equilibrium temperature.

The shear viscosity plays a dominant role in the collective oscillations; the atom

cloud remains nearly isothermal and the experiments [127, 128] are not sensitive to

the thermal conductivity. Therefore, the local relaxation time can be determined by

equating the shear viscosity of the quantum BE with that derived from the BGK

model (7.3), yielding τ = µ/nkBT . When the vacuum expression for the cross-section is

used [123], we have τ(x, y) = 15
√
mπ/kBT/16σn

∫∞
0 dξξ7e−ξ

2
(1 + ξ2T/TB)−1, where

σ = 4πa2
s is the total energy-independent cross-section and TB = ~2/mkBa

2
s is the

binding temperature of the dimer state. Two limiting cases will be considered. When
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the scattering length as is small, the differential cross-section is energy-independent,

and atoms behave like hard spheres. The local relaxation timeis given by [123, 129, 130]

τ(x, y) =
5

16σn(x, y)

√
mπ

kBT (x, y)
. (7.5)

On the contrary, in the unitarity limit where as → ∞ (atoms interact through soft

potentials), we have

τ(x, y) =
15m3/2

64~2n(x, y)

√
kBT (x, y)

π
. (7.6)

7.2.1 Asymptomatic preserving numerical scheme

The relaxation time is a crucial parameter in the collective oscillations. A spatially

uniform gas is in the hydrodynamic regime when ω0τ � 1. Here ω0 is the external trap

frequency (the mode frequency is of the same order). In this circumstance, the Euler and

NS equations can be derived from the BE by the Chapman-Enskog expansion [129]. On

the contrary, the gas is collisionless when ω0τ � 1. When the gas is trapped, however, it

could be in the hydrodynamic, transition (ω0τ ∼ 1), or collisionless regime in the central

region of the trap, whereas in the surface region it is always collisionless. The different

order-of-magnitude of τ across the trap poses difficulty in numerical simulations: if one

wants to resolve the details of the collision, the time step ∆t should be smaller than τ ,

which is not practical for the long time behaviour when the gas is in the hydrodynamic

regime (τ → 0). Therefore, in a practical calculation, it is desirable to use a numerical

scheme that can have practical time step across hydrodynamic and collisionless regimes

as we are interested in the macroscopic behaviour of the gas.

In order to have practical time step in hydrodynamic regime, we adopt the asymp-

totic preserving scheme to solve the BGK model numerically [131, 132]. The virtue of

this scheme is that it can capture the macroscopic gas dynamics in the hydrodynamic

limit even if the small scale determined by the relaxation time τ is not numerically

resolved. The computational accuracy in the hydrodynamic regime is guaranteed by

the fact that, using the Chapman-Enskog expansion [5], this numerical scheme yields

the correct Euler equations when holding the spatial steps and time step fixed and

letting τ goes to zero. Therefore, the computation of a hydrodynamic flow can be as
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fast and accurate as that of the transition and collisionless flows. This unique feature

cannot be implemented by the probabilistic methods such as DSMC and MD.

The transport part of the BGK model is treated explicitly, while the collision is

treated implicitly to overcome its stiffness in the hydrodynamic regime, resulting

f j+1 − f j
∆t

+ Tr[f j ] =
1

τ j+1(x, y)
(f j+1
le − f j+1), (7.7)

where the variables with superscript j denote the values of these variables at the j-th

time step and Tr[f j ] represents the spatial and velocity discretisation of the transport

term. If the spatial and velocity ranges are wide enough such that f is negligible

small at the boundaries, Tr[f j ] can be handled by the fast Fourier transformation to

achieve the spectral accuracy. By using the conservative properties of the collision term,

the nonlinear implicit equation (7.7) can be solved explicitly. That is, given f j , one

can get nj+1, uj+1
x , uj+1

y , and T j+1 from the following equations: nj+1 =
∫
Fdvxdvy,

(V j+1
x , V j+1

y ) =
∫

(vx, vy)Fdvxdvy/n
j+1, and T j+1 = m[

∫
(v2
x + v2

y)Fdvxdvy/n
j+1 −

(V j+1
x )2− (V j+1

y )2]/2kB, where F = f j−∆tT [f j ] and the numerical integration can be

carried out by direct discrete sum or by the Simpson’s rule. The above four macroscopic

quantities at the (j + 1)-th time step determine f j+1
le according to Eq. (7.4) and τ j+1

according to Eq. (7.5) or (7.6). Therefore, f j+1 can be solved explicitly.

In practice, since n(x, y) is very small near the boundary, numerical error emerges

when calculating the macroscopic velocity. Hence it is possible to get negative temper-

ature, which is not physical. To tackle this problem, the collision term in Eq. (7.7) is

neglected near the spatial boundary. This is justified by the fact that far from the trap

centre the gas is in the collisionless limit so the collision term is negligible. Another

point one should pay attention to is that, the maximum CourantFriedrichsLewy num-

ber ∆t ·max{|vx|/∆x+ |vy|/∆y + |ax|/∆vx + |ay|/∆vy} with ∆x,∆y the spatial steps

and ∆vx,∆vy the velocity steps, must be smaller than 1.

7.2.2 Numerical validations

To validate the numerical scheme, we simulate the radial sloshing and breathing modes

in the isotropic harmonic trap with ωx, ωy = ω0. The local relaxation time is given by

Eq. (7.5). However, the use of Eq. (7.6) will give the same result because the cloud is
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Figure 7.2: Numerical simulation of the (a) sloshing mode and (b) breathing mode. The initial
distribution function is f = exp{−[ω2

0(x− 0.3lho)
2 + ω2

0y
2 + v2x + v2y]/2}/2π for the sloshing mode

and f = exp{−[ω2
0(x2 + y2) + (vx − 0.8x)2 + (vy − 0.8y)2]/2}/2π for the breathing mode. In both

simulations, m = kB = T0 = 1, ω0 = σ = 4, so that the characteristic length lho is 0.25 and the
system is in the transition regime. The spatial region [−1.5, 1.5]2 and the velocity region [−8, 8]2

are uniformly discretized into 64×64 and 32×32 meshes, respectively. The time step is ∆t = 0.002
and the maximum CFL number is 0.875. Here <> means the spatial average.

nearly isothermal, i.e., after normalisation, only n(x, y) affects τ(x, y). The numerical

results in Figure 7.2 show that, as expected, the sloshing and breathing modes oscillate

with the frequency ω0 and 2ω0, respectively [122, 125]. Note that the simulations were

carried out in the transition regime, where damped modes decay rapidly. The two

perfectly undamped modes prove the accuracy of the numerical scheme.

7.2.3 Results for the harmonic potential

Now we simulate the radial quadrupole mode and compare the results with the ana-

lytical and experimental ones. Analytically, replacing the local relaxation time τ(x, y)

by the average relaxation time τ̃ = 2
√

2τ(0, 0) and applying the method of moments

up to the second-order, one finds that the mode frequency ωr and damping rate ωi

satisfy [121, 133]

ω2 − 2ω2
0 − iωτ̃(ω2 − 4ω2

0) = 0, (7.8)

where ω = ωr− iωi. This equation clearly shows that in the hydrodynamic regime, the

mode frequency is ωr =
√

2ω0, while in the collisionless regime, it is ωr = 2ω0.
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Figure 7.3: (a) The normalised collective frequency and (b) damping of the radial quadrupole
mode vs the nondimensional variable ω0τ̃ . The results are obtained by fitting the quadrupole
moment Q = 〈x2 − y2〉 through the equation Q(t) = A exp(−ωit) sin(ωrt+ φ) +B exp(−Ct). The
quadrupole mode is excited by initial distribution function exp{−[ω2

0(x2+y2)+(vx−0.8x)2+(vy+
0.8y)2]/2}/2π. The value of cross-section σ is varied to change the system from the hydrodynamic
limit to the collisionless limit. Other parameters are the same as those in Figure 7.2. (c) Damping
ωi versus collective frequency ωr of the radial quadrupole mode. For the experimental data (solid
circles), ω0 represents the frequency of the sloshing mode when the gas is trapped in the Gaussian
potential [120].
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As mentioned above, the analytical solution (7.8) are not accurate due to the local

relaxation time is replaced by the average one and/or only the second-order moments

are included. Thus, in the numerical simulations, we use both the local and average

relaxation times to see which factor affects the accuracy of the analytical results. Nu-

merically extracted mode frequency and damping are depicted in Figure 7.3. When

the average relaxation time is used, the numerical obtained mode frequency, damping,

and their relations (stars) agree with the analytical results very well, so it is sufficient

to include up to the second-order moments. The inaccuracy of the analytical results

is therefore caused solely by replacing the local relaxation time with the average one.

Comparing the analytical results with the numerical (squares, when the local relaxation

time is used) and experimental ones (solid circles), one finds that the analytical mode

frequency coincides with the numerical one [Figure 7.3(a)], while the analytical method

underestimates the damping, especially in the transition regime [Figure 7.3(b) and (c)].

With the numerical results (squares), the difference between the experimental data and

that of the BE in Ref. [120] is greatly reduced.

Finally, we simulate the radial scissors mode in the elliptical harmonic potential

with ωx = 2ωy = 4. Analytically, the method of moments up to second-order predicts

the following relation between the mode frequency and damping [124]

iω(ω2 − ω2
h) + τ̃(ω2 − ω2

c1)(ω2 − ω2
c2) = 0, (7.9)

where ωh = (ω2
x+ω2

y)
1/2 is the frequency in the hydrodynamic limit and ωc1 = ωx+ωy,

ωc2 = |ωx − ωy| are the frequencies at the collisionless limit.

Typical oscillation sceneries of the radial scissors mode are shown in Figure 7.4.

In the collisionless limit (
√
ωxωy τ̃ = 28), the angle of atom cloud oscillates with two

frequencies of 5.999 and 2, and the damping rate of 0.036. As the value of
√
ωxωy τ̃

decreases, both of the frequencies decrease, with the larger one gradually reducing

to 2
√

2 [Figure 7.5(a)] and the smaller one quickly approaching to zero. For example,

when
√
ωxωy τ̃ = 0.316, ωr = 4.609 and the smaller frequency is already 0.012; however,

the damping corresponding to the larger frequency decreases with an initial increase

[Figure 7.5(b)]. The largest damping is achieved when
√
ωxωy τ̃ = 0.72, where the

scissors mode damps out within 2 oscillations. When the average relaxation time is used
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Figure 7.4: The angle (in degrees) of atom cloud vs the normalized time. The scissors mode is
excited by sudden rotation of the trap angle θ(0) by 5o. The trap frequencies are ωx = 2ωy = 4.
The time step is ∆t = 0.0025 and the maximum CFL number is 0.82. Other parameters are the
same as those in Fiure 7.2, except the spatial region in the y direction is now [−3, 3]. The angle
is obtained by θ(t) = 90 atan[〈xy〉/〈x2 − y2〉]/π.

in the numerical simulation, the mode frequency (stars) overlaps with the analytical

prediction [Figure 7.5(a)], while the damping agrees with the analytical prediction

only in the hydrodynamic and collisionless regimes [Figure 7.5(b)]; in the transition

regime the damping is slightly larger than that of the analytical prediction. This

implies that, unlike the radial quadrupole mode, the analytical ansatz (see Eq. (4) in

Ref. [124]) is not accurate enough. When the local relaxation time is used, both the

mode frequency and damping do not agree with the analytical prediction, especially

in the transition regime: the mode frequency is always larger than the analytical one,

while the damping could be smaller or larger than the analytical one, depending on

the value of
√
ωxωy τ̃ . For the relation between mode frequency and damping, the

numerical results are always larger than the analytical one, see Figure 7.5(c). Like the
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Figure 7.5: The normalized (a) collective frequency and (b) damping of the radial scissors mode
vs the average relaxation time. The results are obtained by fitting the cloud angle to a sum of
two damped sine functions each with their own free parameters. Only the higher frequency and
the corresponding damping rate is plotted. (c) Damping ωi versus collective frequency ωr of the
radial scissors mode. The experimental data (solid circles) are collected from Ref. [119].

radial quadrupole, the numerical results are closer to the experimental data than the

analytical results at low temperatures. At higher temperatures, the anharmonic effect

of the external Gaussian potential becomes important, and there are large errors in the

frequency and damping, see the last three experimental data in Figure 7.5(c).

7.2.4 Numerical results for the Gaussian potential

Instead of the harmonic potential, the gases are trapped in the Gaussian potential

at higher temperatures. The moment method fails to provide analytical solution for

the Gaussian potential, so we have to rely on numerical simulations. To calculate

the collective frequency and damping of the radial quadrupole mode, the following

experimental data are used [120]: U0 = 50kB(µK), Wa,Wb = 32.8µm, with the corre-
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sponding trap frequency ωx, ωy = 1800×2π(Hz). The trap frequency in the z direction

is ωz = 32 × 2πHz, and the total number of atoms is Na = 6 × 105. In the numerical

simulations, the time, spatial coordinates, velocity, and temperature are respectively

normalised by a
√
m/kBTF , a,

√
kBTF /m, and the Fermi temperature TF = 2.73µK.

The distribution function is also normalised by the particle density at the trap cen-

tre. Therefore, the normalized accelerations in the x and y directions are respectively

−36.6x exp(−x2 − y2) and −36.6y exp(−x2 − y2), and at the unitarity limit, the nor-

malised local relaxation time is τ(x, y) = 0.09(T/TF )2/n(x, y).

Figure 7.6(a) shows the frequency of the sloshing mode decreases as the temperature

increases, which coincides with the experimental observations. This can be explained

by the fact that the anharmonicity becomes stronger and stronger as the cloud size

increases due to the temperature rise. Also, we find that the frequency decreases as the

cloud’s initial centre x0 increases. Note that the sloshing mode is excited by shifting

the Gaussian potential by x0 in the x direction.

Figure 7.6(b) demonstrates the relation between the mode frequency and damping,

where the local relaxation time is τ(x, y) = αT̃ 2/n(x, y), the initial distribution function

is f = exp{−18.3[1 − e−x2/1.052−1.052y2 ]/T̃} exp[−(v2
x + v2

y)/2T̃ ]/2πT̃ , and T̃ = T/TF .

In the numerical simulation we use two values of α, because if the repulsive mean-

field potential is presented in the experiment, the atom density at the trap center

will decrease and hence the coefficient will be lager than 0.09. When α = 0.09, as

the temperature increases (corresponding to the data from left to right), the mode

frequency first increases, remains almost unchanged at ωr/ωx ≈ 1.8, and then slightly

decreases. The constant frequency is due to the balance between the anharmonic and

collisionless effects: the anharmonic effect reduces the effective trap frequency (and

hence the mode frequency) while the collisionless effect tends to increase the mode

frequency. When α = 0.18, the trend of the relation between the mode frequency

and damping agrees with the experimental finding reasonably well. That is, from the

hydrodynamic regime to the collisionless regime, the mode frequency first increases

and then decreases. These results indicate that our numerical scheme can provide

reasonable predictions for the collective oscillations in the Gaussian potentials. Also,

it indicates that the difference between the numerical and experiment results may be



CHAPTER 7 COLLECTIVE OSCILLATIONS IN DILUTE QUANTUM GAS 128

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ωr/ωx

ω
i/
ω
x

(b)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.89

0.91

0.93

0.95

0.97

0.99

1

ω
s
/
ω
x

(a)

 

 

T/TF

x
0
=(T/T

F
)
0.5

/12

x
0
=(T/T

F
)
0.5

/6

x
0
=(T/T

F
)
0.5

/3

experimental data

α=0.09

α=0.18

experimental data

Figure 7.6: (a) The sloshing mode frequency versus the temperature in the Gaussian potential.
(b) Damping rate ωi versus collective frequency ωr of the radial quadrupole mode. The spa-

tial region [−
√
T̃ ,

√
T̃ ] × [−

√
T̃ ,

√
T̃ ] and the velocity region [−8

√
T̃ , 8

√
T̃ ] × [−8

√
T̃ , 8

√
T̃ ]are

uniformly discretized into 64× 64 and 32× 32 meshes, respectively. The time step is ∆t = 0.0013.

a consequence of the approximation of the relaxation rate or the neglected mean-field

potential term in Eq. (7.3), rather than the anharmonic effect [120].

7.3 Quantum BGK model

Recently, the damping of the collective modes in the 2D Fermi gas has been investi-

gated experimentally [134]: the constant oscillation frequency (two times of the trap

frequency) and small damping rate (the same order as that of the dipole mode, which

is mainly caused by the anharmonicity of the external trap) of the breathing mode

suggested the classical dynamic scaling symmetry of the 2D Fermi gas. In addition, the

damping of the 2D quadrupole oscillations was also measured and the shear viscosity

was extracted as a function of the temperature and the coupling strength. Theoret-

ically, the shear viscosity has been calculated using the kinetic theory [135, 136] and
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the damping rates of the quadrupole mode were obtained [135], which agreed with the

experimental data qualitatively. Generally speaking, kinetic theory is applicable at

high temperature and weak coupling limits. However, for 3D Fermi gas at the unitary

limit, it was shown qualitatively that the applicability can be down to T ∼ 0.4TF [123],

where TF is the Fermi temperature. Numerically, the damping of the radial quadrupole

and scissors modes extracted from the numerical solution of the BE [125, 137] agrees

with the experiment data [120] qualitatively. Also, regarding the spin transport in the

strong collision of two spin-polarized fermionic clouds [108, 109], the numerical simula-

tion shows that the BE can reproduce the passing through, approaching, and bouncing

off dynamics [138], although no comparison to the experimental data was made.

Here we numerically solve the quantum BGK model and check its applicability

range by comparing the damping of the quadrupole oscillations with the experimental

data [134]. Unlike the probabilistic method [138], we solve the Boltzmann model equa-

tion deterministically and observe the quantitative agreement between the numerical

and experimental data in certain parameter regions. These parameter regions demon-

strate the applicability range of the BE.

Again, we consider the two-component Fermi gas in the normal fluid phase, where

the up-spin and down-spin components have the same atom mass m and atom numbers

Na/2. As experiment, the gas is tightly confined in the z direction, so that the system

is effectively 2D. The quantum BE is given by Eq. (6.3) with the differential cross-

section given by Eq. (6.2). The form of quantum BGK model is like Eq. (7.3), but

the local equilibrium VDF fle is replaced by the quantum one, given by Eq. (6.6).

For isothermal problems, the local relaxation time τ is determined by equating the

shear viscosity obtained from the quantum BGK model with that derived from the

quantum BE, i.e., τ = µG1(Z)/nkBTG2(Z). The expression for the shear viscosity of

the quantum BE has been calculated in [135, 136]. It can be rewritten as

µ = − πmkBT
8~IB(Z)

G2
2(Z), (7.10)

where IB =
∫
dξ(ξxξy)L[ξxξy] and the linearized collision integral is

L[ψ] =

∫
dξ2

∫ 2π

0
dΩ

F

K
∆ψ, (7.11)
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with ∆ψ = ψ4+ψ3−ψ2−ψ, F = f0f0
2 (1− f0

3 )(1− f0
4 ), K = log2(|ξ − ξ2|2T/2TB) + π2.

Note that here f0(ξ) = (Z−1eξ
2

+ 1)−1 with the dimensionless quantity ξ = m(v −
V)/
√

2mkBT . In the near-classical limit (z → 0), the shear viscosity is [136]

µcl =
mkBT

2π2~

[
log2

(
5T

2TB

)
+ π2

]
. (7.12)

We study the quadrupole oscillations of the 2D Fermi gas in the isotropic harmonic

potential with the trapping frequency ω⊥ = 2π × 125Hz [134]. We normalise the time

by 1/ω⊥, the velocity by vF , spatial length by vF /ω⊥, the chemical potential by the

Fermi energy EF = ~2k2
F /2m, the temperature by the Fermi temperature TF = EF /kB,

the acceleration by vFω⊥, and the particle density by n0/π, where vF = ~kF /m with

kF =
√

2πn0 being the Fermi wave vector. Note that n0 is the particle density at

the trap centre when the system is in equilibrium. Then, the quantum BGK model

becomes
∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
− x ∂f

∂vx
− y ∂f

∂vy
= −f − fle

τ(x, y)
, (7.13)

where fle = {Z−1 exp[−(v −V)2/T ] + 1}−1 is the normalised local equilibrium VDF,

and

τ(x, y) = −π
3G1(Z)G2(Z)

8IB

~ω⊥
EF

1

n(x, y)
, (7.14)

is the normalised relaxation time. The normalised particle density is n(x, y) =
∫
dvf

and the normalised bulk velocity is v(x, y) =
∫
dvvf/n(x, y).

Unlike the 3D Fermi gas in the unitary limit, the collision frequency 1/τ here is not

a linear function of the particle density n [123]. Since the fugacity is a function of the

particle density (see Eq. (6.7), the larger the particle density the larger the fugacity),

the collision frequency, increases more slowly than n [Figure 7.7].

We use the asymptomatic preserving scheme to solve Eq. (7.13). The initial chemical

potential µ′ satisfies N = 2E2
FT

2G2(eµ
′/T )/~2ω2

⊥, and the initial fugacity corresponding

to the excitation of quadrupole mode is Z = exp[(µ′ − 1.1x2 − 0.91y2)/T ].

We first investigate the damping of the quadrupole modes as a function of the

interaction strength for a fixed temperature T = 0.47TF and the Fermi energy EF =

2π~ × 8.2kHz, corresponding to the experimental condition described in Figure 1 in

Ref. [134]. The particle number is estimated to be 3500 ∼ 4300 [135]. Note that the
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Figure 7.7: The collision frequency vs the particle density for different values of interaction
strength ln(kF a2) at T = 0.47TF , EF = 2π~ × 8.2kHz, and Na = 4300. The system is in the
hydrodynamic regime (ω⊥τmin � 1) at ln(kF a2) = 0, in the transition regime (ω⊥τmin ∼ 1) at
ln(kF a2) = 2.7, 5.3, and in the collisionless regime (ω⊥τmin � 1) at ln(kF a2) = 9.7. Here a2 is
the s-wave scattering length in 2D velocity space.

experiments are conducted in the presence of slightly anharmonic potential, where even

the dipole modes decay at rate of ΓD = (0.04±0.01)ω⊥ and the breathing modes decay

near the average value ΓB ' 0.05ω⊥. In order to eliminate the effects of anharmonicity,

the numerical and analytical damping rates will be added by 0.05ω⊥. Also note that

the analytical results, i.e., Eq. (12) in Ref. [135], are based on the hydrodynamics, so

it should be accurate in the hydrodynamic regime. From Figure 7.7 we can see that

the hydrodynamic regime is realised in the strong coupling regime when ln(kFa2) ∼ 0.

Indeed, from Figure 7.8 we see that, the analytical (the dashed line) and numerical

(the lines with crosses) damping rates agree with each other at ln(kFa2) ≤ 1.5. This

demonstrates the accuracy of our numerical scheme. As the value of ln(kFa2) increases,

the system first enters into the transition regime and then the collisionless regime, where

the hydrodynamic method breaks down. When ln(kFa2) ≥ 1.5, one can see the large

deviation of the analytical results from the experimental data. However, our numerical

results are in quantitative agreement with the experimental data. This indicates that

the semi-classical BE can describe the damping of the quadrupole mode well, up to the

strong interaction limit, i.e., ln(kFa2) ' 1.5.

For the oscillation frequency of the quadrupole mode, however, there are some
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Figure 1(a) and (b) of Ref. [134], the analytical results are obtained from Figure 3 in Ref. [135]
using Na = 4300, while the solid lines are the numerical results of Eq. (7.13) for different particle
number Na. Note that N in the legend is the atom number Na.

discrepancies between the numerical and experimental data, see Figure 7.8(a). This

may be caused by the anharmonicity of the effective potential, which includes the

external potential and additional potential caused by the mean-field or beyond mean-

filed effects. Due to the anharmonicity of the external trap, the normalised quadrupole

frequency should be increased by multiplying a prefactor which is larger than 1 [126].

Since the detailed trap anharmonicity is not given in the experiment, it is hard to

estimate the value of the prefactor. On the other hand, the ellipticity of the trap,

i.e., e = |ωx − ωy|/ω⊥, increases the normalised frequency by a factor of the order

e2. However, this incensement is negligible because of the small value of e (e ≤ 0.04).

As for the mean-field effect, when the gas is confined in harmonic trap, it has been

shown that at the zero temperature the normalised frequency at the collisionless regime

is 2
√

(1− g̃/2)/(1− g̃), where g̃ = 1/ ln(kFa2) [134, 139]. That is, the normalised

frequency is 2.12 at ln(kFa2) = 5 and 2.05 at ln(kFa2) = 10. Thus in the numerical
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Figure 7.9: The damping vs the interaction strength in the quadrupole oscillations of 2D Fermi
gas at (a) T = 0.65TF , EF = 2π~ × 9.0kHz, (b) T = 0.89TF , EF = 2π~ × 9.1kHz, and (c)
T = 0.30TF , EF = 2π~× 6.4kHz. The particle number is Na = 3500. The experimental data are
from Figure 1(a) and (b) of Ref. [134].

simulations, it is equivalent to set the effective harmonic trap frequency to be ∼ 1.05ω⊥.

If we magnify the numerically extracted normalised frequency in Figure 7.3(a) by a

factor of 1.05, the results agree with the experimental date very well (not shown).

With this kind of magnification, the numerically extracted damping in Figure 7.8(b)

agrees with the experimental data slightly better.

The good prediction of the BE on the damping of quadrupole oscillation continues

to hold at higher temperatures, see Figure 7.9 (a) and (b). However, at a lower tem-

perature (T = 0.3TF ), the BE ceases to give the correct prediction for the damping of

quadrupole mode in the entire region of interaction strength, see Figure 7.9(c).
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7.4 Summary

To improve the accuracy and overcome the limitation of the method of moments, we

have demonstrated a computationally efficient numerical scheme to solve the Boltzmann

model equation. The advantage of the asymptotic preserving scheme is that it can deal

with the harmonic and Gaussian potentials, as well as other forms of the potential,

including the mean-field and other self-energy terms, which will help us to understand

the properties of strongly interacting particles. In particular, the asymptotic preserving

nature of the numerical scheme makes the computation of a hydrodynamic flow as

fast and accurate as that of the transition and collisionless flows, which cannot be

implemented by the probabilistic methods.

The extracted mode frequency and damping of the radial quadrupole and scissors

modes provide better agreement with the experimental data than the analytical solu-

tions obtained from the method of moments. We have solved the quantum BGK model

numerically. Eliminating the effect of the anharmonicity of the external potential, we

have observed quantitative agreements between the numerically extracted damping of

the 2D quadrupole oscillation and the experimental data. This indicates that the quan-

tum BGK model can describe the collective oscillations of 2D Fermi gas at least in the

parameter regions T/TF ≥ 0.47 and ln(kFa2) ≥ 1.5.

In addition to the study of collective oscillations, the present method can be useful

for investigation of many other problems. For example, one can use it to study the

expansion of the atom cloud after the trap being switched off; to examine the collision of

two initially separated atom clouds to see the formation of quantum shock waves [140];

to determine the effective transport coefficients such as the heat conductivity in very

elongated traps [141]. Also, the deterministic nature of the numerical scheme makes it

suitable to solve the two-fluid equations (one for the normal phase and the other for the

superfluid phase [116]), where the numerical simulations will help us to understand the

coupled dynamics of the superfluid and normal phases, i.e., the damping of superfluid

flow by a thermal cloud [142]. Furthermore, it can help us to analyse the value spin

drag coefficients in recent experiments [108, 109].



Chapter 8

Conclusions

8.1 Summary

We have presented an accurate and efficient deterministic numerical method to solve

the BE for monoatomic gases. Specifically, we focused on the numerical approximation

of the Boltzmann collision operator by the FSM. Instead of the velocity space, the

FSM handles the complicated collision in a corresponding frequency space. If the

direct sum is applied to calculate the spectrum of the Boltzmann collision operator,

the computational cost is at the order of O(N6
ξ ), where Nξ is the number of frequency

components which is not necessary equal to the number of velocity grids N . The

main idea of the FSM is to approximate the kernel mode Eq. (2.28) by the numerical

quadrature to separate the frequency components ξl and ξm, so that the spectrum

of the Boltzmann collision operator Eq. (2.25) can be calculated by the FFT-based

convolution, resulting in the computational cost at the order of O(M2N3
ξ logNξ). The

separation of the frequency components in the kernel mode needs special forms of the

collision kernel. One of the main contribution of this thesis is that we constructed

special forms of the collision kernel, making the FSM applicable to all inverse-power

law potentials (except for the Coulomb potential) and the realistic LJ potential. The

original FSM conserves the mass, while the error in the conservation of momentum and

energy is spectrally small. By use of the Lagrangian multiplier method, momentum

and energy conservation can be easily satisfied while the spectral accuracy is retained.

Thus, in terms of accuracy and efficiency, the FSM is the best method for deterministic

135
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approximation of Boltzmann collision operator. The accuracy of the FSM has been

evaluated by comparing the numerical solutions with the analytical BKW solutions.

The factors affecting the accuracy of FSM have been analysed in depth. With the

accurate numerical results provided by FSM, we have also justified the use of special

collision kernels.

The FSM has been successfully applied to the linearised BE, where the symmetry

can reduce the computational cost by half. Also, the FSM has been extended to the BE

for monoatomic gas mixtures, both in the classical and quantum mechanics regimes.

The velocity distribution functions have discontinuities when the Knudsen number

is large. To capture these discontinuities one needs relatively large number of velocity

grids. Since the FSM works in the frequency space, however, the number of frequency

components do not have to be very large. The reason is that, in the calculation of

Eq. (2.25), the spectrum of the VDF is multiplied by a weight function (kernel mode)

which is very small when the frequency is large. Therefore, very high frequency compo-

nents can be safely ignored. In real calculations, 32 ∼ 64 frequency components in each

direction are enough, for examples see Chapter 3. This is one of the main advantage

of the spectral method over other deterministic methods like DVM.

The number of the discrete angles M in the approximation of kernel model by

the quadrature also affects accuracy. In the most cases, the kernel mode can be ap-

proximated by the trapezoidal rule with M = 5. In some extreme (highly rarefied)

cases where Nξ ∼ 64, the kernel mode can be approximated by the Gauss-Legendre

quadrature with M ∼ 8, in order to obtain highly accurate results.

An implicit iteration scheme has been adopted to find the stationary solutions in

the space-inhomogeneous problems, where the convergence to the steady state has been

found to be exponential, with the typical number of iterations being inversely propor-

tional to the Knudsen number. In the transition and free molecular regimes, the iter-

ation scheme is very efficient. The accuracy of the numerical method (FSM+iteration

scheme) has been benchmarked through the comparison with the numerical kernel

method from the Kyoto Kinetic Group, the experimental data, DSMC, and the MD.

Very good agreements are observed in all tested cases. The computational time of our

method has also been compared to the low-noise DSMC. Comparisons demonstrate the
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merit of our method as a computationally accurate and efficient (for lid-driven flow,

our method is at least 10 times faster than the low-noise DSMC) method for rarefied

gas dynamics. The only drawback of the FSM, like all other deterministic numerical

methods, is that a large amount of compute memory is required (relative to that of the

DSMC method).

The complicated nature of the Boltzmann collision operator has stimulated the

search of kinetic models. We have proposed a kinetic model which can be viewed as

a linear combination of the ES and S models. By adjusting the free parameter in

the combined ES and S model, we can minimise the difference between its collision

operator to that of the BE. With the accurate numerical solution provided by the fast

spectral method, we have checked accuracy of kinetic model equations and found out

the flow regimes where the complicated Boltzmann collision kernel can be replaced by

the simple kinetic models. We have also solved the collective oscillation of quantum gas

confined in external trap and compare the numerical solutions with the experimental

data, indicating applicability of the quantum kinetic model.

8.2 Future works

The work developed in this thesis leads to new opportunities:

1. The accurate and efficient method proposed in this thesis can be used to produce

some benchmarking data, e.g. to calculate the mass and heat flow rates in the

Poiseuille flow through the rectangular tube with arbitrary aspect ratio.

2. The comparison between numerical solutions of the Boltzmann and kinetic model

equations may help us to establish a criterion to judge flow conditions that the

BE can be replaced by the kinetic model equations. This criterion may help to

develop a hybrid scheme (near the boundary the BE solver is used, while in the

bulk the kinetic model equations are adopted) to solve big problems.

3. The fast spectral method for the approximation of BE can be straightforwardly

applied to solve the granular BE where the inelastic binary collisions are taken

into account. For this purpose, the collision operator in granular BE should be

written in the weak form.
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Appendix A

Implementation of FSM

Algorithm 1: calculation of the collision operator by the zero-padding technique

step 1. f̂ = FFTSHIFT{IFFT[FFTSHIFT(f)]}

step 2. Q̂+ = 0

For θp = (1, 2, · · · ,M − 1)π/M and ϕq = (1, 2, · · · ,M)π/M

t1 = f̂ · φα+γ(ξl, θp, ϕq); t2 = f̂ · ψγ(ξm, θp, ϕq)

zero-padding t1, t2 to the dimension ≥ 3N1
2 × 3N2

2 × 3N3
2

Q̂+ = Q̂+ + FFT(t1) · FFT(t2) · sin θp

End

step 3. t1 = f̂ ; t2 = f̂ · φloss

zero-padding t1, t2 to the dimension ≥ 3N1
2 × 3N2

2 × 3N3
2

Q̂− = FFT(t1) · FFT(t2)

step 4. Q̂ = IFFT(Q̂+ − Q̂−); delete the redundant data in Q̂

step 5. Q = (4π2/Kn′M2) FFTSHIFT{<[FFT[FFTSHIFT(Q̂)]]}

149
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Algorithm 2: simpler and faster calculation of the collision operator

step 1. f̂ = FFTSHIFT{IFFT[FFTSHIFT(f)]}

step 2. Q+ = 0

For θp = (1, 2, · · · ,M − 1)π/M and ϕq = (1, 2, · · · ,M)π/M

Q+ = Q++FFT[f̂ ·φα+γ(ξl, θp, ϕq)]·FFT[f̂ ·ψγ(ξm, θp, ϕq)]·sin θp

End

Q+ = (4π2/Kn′M2) FFTSHIFT[<(Q+)]

step 3. ν = (4π2/Kn′M2) FFTSHIFT{<[FFT[FFTSHIFT(̂f · φloss)]]}

Q− = νf

step 4. Q = Q+ −Q−

Algorithm 3: accurate calculation of the collision frequency technique

step 1. get φexloss from Eq. (2.36) with Lex = 2L and Rex =
√

2L

step 2. create a zero-value array fex of size 2N1 × 2N2 × 2N3

step 3. copy the value of f to the middle of fex

step 4. f̂ex = FFTSHIFT{FFT[FFTSHIFT(fex)]}

step 5. νex = (4π2/Kn′M2) FFTSHIFT{<[IFFT[FFTSHIFT(̂fex · φex
loss)]]}

step 6. copy the middle region value of νex to ν.

Note: FFTSHIFT represents the Matlab function that shifts the zero-frequency

component to the center of spectrum, IFFT is the inverse FFT, and the function <
gets the real parts of complex numbers.
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