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Abstract

The progress and practicality of quantum technologies, such as rotation sensing, are

contingent on the portability of existing ultracold atom technologies and the explo-

ration of new alternative techniques. In response to this, we integrate existing knowl-

edge with new Fresnel zone plate (FZP) holograms to begin the development of a com-

pact Bose-Einstein condensate (BEC) interferometry device. Utilising high precision

microfabrication, FZPs are exciting candidates for the production of static trapping

potentials useful to atomtronics, interferometry, and fundamental physics. They are

particularly useful for quantum technologies due to their simplicity and the potential

for low cost mass-production.

We detail the build status of a new 87Rb BEC experiment, designed for prototyping

new waveguide technologies for atom interferometry. The experiment is deliberately

modular to enable smooth upgrades. This is complemented by brief reporting of results

from an existing BEC experiment. Density fluctuations indicating underlying phase

fluctuations were observed in an elongated cigar shaped BEC.

The suitability of FZPs has been demonstrated with computational simulations

comparing FZPs to spatial light modulators. Experimental imaging of various man-

ufactured ring patterns gives an average RMS error in the brightest 10% of 3% with

respect to trap depth. Typical optical profiles have residual limitations due to the imag-

ing system, beam shape and alignment. The axial propagation of the potentials is

presented experimentally and through numerical simulations; weak axial trapping is

expected, though this is insufficient to support against gravity. A novel method by
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which the azimuthal optical potential at the FZP can be simply mapped into the im-

aged ring is also presented.

The outlook for a second generation of kinoforms has been studied, with a view to

allow for sub-wavelength spatial resolution and larger kinoforms. We detail a dark ring

potential suitable for production with an FZP kinoform and map the parameter space

possible for rings produced using FZPs.
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Chapter 1

Introduction

1.1 Rotation and Inertial Sensing

Inertial and rotation sensing are ubiquitous and important parts of our everyday lives,
from MEMs based sensors in our mobile phones, to ring laser gyroscopes in aero-
planes. High precision and accuracy devices with high stability are of particular in-
terest for inertial navigation, geodesy, geophysics, and tests of general relativity [1, 2].
Georges Sagnac published, in 1913, the first observation of a phase shift in an interfer-
ometer fringe due to rotation [3], with many of today’s interferometers being based on
this crucial result. Interestingly, Sagnac was more motivated with attempting to mea-
sure the ‘whirling of the ether’ than the seminal result about rotation [4] (much like
other scientists of his time).

The Sagnac phase shift for an interferometer enclosing area A, rotating with rate
Ω, using particles of relativistic energy E, is given by:

ΦSagnac =
4πE

hc2
~A · ~Ω . (1.1)

Here the direction of the area vector ~A is normal to the plane of the interferometer.
This equation applies both to photon and atom based interferometers. If we want to
measure rotation more precisely, we need the ratio between the measured phase shift
and the rotation rate (δφ/δΩ) to be as large as possible. Thus we can either increase the
size of the interferometer or increase the energy of the particles interfering. Naı̈vely,
this means that by swapping the photons (E = ~ω) for atoms (E = mc2) we can
increase the sensitivity of an interferometer by mc2/~ω. For alkali atoms and visible

1



1.2. ULTRA-COLD ATOMS AS MATTERWAVES

photons this is a factor of approximately 1011 [2].
Unfortunately, as for most things in life and a physics lab, it isn’t really as easy

as simply using atoms instead. Firstly, the factor 1011 is a per particle increase in
sensitivity, meaning that the reduced flux of an atom interferometer compared to a
light interferometer erodes the advantages of using atoms when integrating over time
(i.e. the number of measurements is much greater for light interferometers). Error of
an interferometer measurement when integrated over time scales as 1/

√
Nτ for atom

number N and integration time τ , thus the precision improves with increasing flux and
integration time [5]. Secondly, atom interferometry is a hard problem and requires a
large amount of space (with experiments typically being the size of a room or even
being a 10 m atomic fountain!). Despite this, because of the potential sensitivity and
stability gains, atomic inertial measurement is a technology that could revolutionise
metrology.

Our long-term challenge is to develop a prototype atom interferometer that could be
used to measure rotation either in isolation or in a hybrid system alongside a classical
light interferometer. To build an atom interferometer, we need five components [6]:

1. State selection (equivalent to the single mode of a laser)
2. Coherent splitting (the beam splitter)
3. Propagation - with low decoherence (the mirrors or wave-guide/fibre)
4. Coherent recombination (second beam splitter)
5. Read-out method (measure interference fringes)

In this thesis, we are largely concerned with items one and three in the above list
(i.e. preparation and propagation), with the other components being investigated in
another experiment in the group [7–10]. The rest of the introduction will set the scene,
presenting background information and the current state of the art experiments relating
to ultra-cold atoms, interferometry and optical potentials; concluding with an outline
of the thesis.

1.2 Ultra-cold Atoms as Matterwaves

Quantum mechanics and wave-particle duality are crucial to our ability to perform
atom interferometry and in fact for most other quantum sensors.
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1.2. ULTRA-COLD ATOMS AS MATTERWAVES

Following on from Einstein’s discovery of wave-particle duality between light and
photons through the photoelectric effect [11], de Broglie suggested that the same du-
ality should occur for ordinary matter as well. He described this duality with what is
now known as the de Broglie wavelength (λ) [12],

λ =
h

p
, (1.2)

where h is the Planck constant, and p is the momentum of the particle. Its counterpart
for energy and frequency (f ) is E = hf . The simplest experiments demonstrating
wave-particle duality are ‘Young’s slit’ type experiments. These examples start with
the original light-based experiment by Young in 1801 [13], moving to electron diffrac-
tion [14], and more recently to ultra-cold atoms [15–20] and large molecules [21, 22].

As is evident from Eq. 1.2, the larger a particle’s momentum, the smaller its de
Broglie wavelength. This explains why our perceived experience is classical: every-
thing is too massive and too hot.

As we can describe atoms using wave-functions and create superposition states,
we are able to interfere atoms just like coherent light in a classical interferometer. By
placing atoms (or photons) into a superposition state, it is impossible to know which
of two paths it takes (in fact one could say it takes both paths) and so we observe
interference, with fringes in time and/or space.

In order to create these superposition states, we first have to prepare them in such
a way that we can observe wave-like behaviour. This initial state selection part of an
interferometer (or indeed almost any quantum sensor) is probably the most important
element, and the part that has taken the longest to perfect (and has won a lot of people
Nobel prizes!).

In the preparation stage of an interferometer, we perform state or momentum selec-
tion (or both), putting the atoms into a particular energy level or selecting a small subset
of the momentum distribution. This can be as simple as sending atoms through a slit
to select atoms of a similar momentum, or as complicated as cooling to degeneracy so
that almost every atom occupies the same energy level (and the same wave-function).

In cold-atom experiments, we cool atoms to reduce the momentum spread and
improve coherence. The methods used to do this are explained in Chap. 2. Here we
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1.3. ATOM INTERFEROMETRY

consider the size of the atom as the thermal de Broglie wavelength (λdB), the extent of
the atom’s wave-packet. For an atom of mass m, and temperature T , this is given by

λdB =
h√

2πmkBT
, (1.3)

where kB is the Boltzmann constant. As we cool atoms and their thermal de Broglie
wavelength increases, we can reach the point at which λdB is comparable to the mean
separation of the atoms and the individual wave-packets begin to overlap. At this point
we can begin calling the cloud of cold atoms a condensate.

To reach condensation, we need to reduce the temperature at the same time as
maintaining or increasing the atomic density. The relevant relation between density
and temperature is described by a handy parameter called phase space density (PSD):

PSD = nλ3
dB = n

(
h√

2πmkBT

)3

, (1.4)

where n is the atomic density. We reach quantum degeneracy when PSD > 2.62 for
a box-shaped potential or at the centre of harmonic trap [23] or an average 1.20 for a
harmonic trap [24].

Bose-Einstein condensates (BEC) are frequently used to study of quantum phe-
nomena. Condensation was first proposed for photons by Bose in a letter to Einstein
(who then translated and published the work in 1924) [25]. Bose applied the un-
certainty principle to the Maxwell-Boltzmann distribution in order to describe micro-
scopic particles for which fluctuations due to uncertainty would be significant. Work
between Einstein and Bose resulted in the inception of Bose-Einstein statistics [26]
as a description of identical particles with integer spin – Bosons. One can use Bose-
Einstein statistics to show that, for a Bosonic ensemble at low temperatures (and high
densities), there will be macroscopic occupation of the ground state.

The first experimental observations of a BEC [27, 28] heralded a new era of quan-
tum mechanical experiments.

1.3 Atom Interferometry

At Strathclyde, we have performed interferometry in two different BEC experiments,
with a new experiment (the one described in this thesis) currently being built. The
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Figure 1.1: The fringes from the first Strathclyde interferometer, taken from Ref. [20],
on the left, and a schematic of the second Strathclyde interferometer on the right, taken
from Ref. [8].

first experiment performs Young’s slits type interference by creating two BECs in a
double well potential and allowing the two clouds to expand to overlap with one an-
other and interfere [18–20, 29–31]. In this case the read-out is absorption imaging of
spatial fringes in the final cloud. The second experiment is a three arm Mach-Zender
interferometer using composite optical pulses (of a Kapitza-Dirac type) to split and
recombine atoms in momentum space [7–10]. Here the read-out of phase is via mo-
mentum state populations which are measured using contrast interferometry. The two
interferometers are shown in Fig. 1.1.

In general, there are many ways of doing interferometry. Superposition/splitting
can be performed using the internal states of atoms [32, 33], the momentum states of
atoms [9, 34], or by spatially separating parts of the cloud [35]. Each of these options
are possible in the time or space domain (i.e. pulsed light beams versus spatially sep-
arate light beams). Between pulses, the atoms can either propagate freely in space, be
confined in a trap (e.g. a double-well potential), or be guided (like light is guided in
a fibre). Various configurations of such atom interferometers can be used to measure
many other things apart from rotation. For example a gravimeter [36] using free-falling
atoms, or a gravity gradiometer [37] using two clouds of atoms falling in a common
laser beam. Constants such as Newton’s constant G [38] and the fine structure con-
stant [39–41] can be measured to high precision and cosmological phenomena can
be investigated [42]. They can also be used to test the equivalence principle, and so
test general relativity – a function which motivates putting cold atom experiments into
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1.3. ATOM INTERFEROMETRY

space [43–45].
Although BECs seem like the holy grail for atom interferometry as they have a very

small momentum spread and have a large coherence length (compared to uncondensed
cold atoms), mean field interactions can cause problems. These mean field interactions
cause a BEC to expand after release from a trap, regardless of how little momentum
the atoms had when in the trap. This increase in momentum can ‘wash out’ fringe
contrast.

1.3.1 Inertial Sensor Sensitivity

In this thesis we are concerned with trying to build an inertial sensor, so we should
understand existing state of the art technologies, for both quantum and classical inter-
ferometers. We compare these technologies in table 1.1. The first thing we notice in
this table is that the best light interferometer [46, 47] has a better sensitivity than the
best atom interferometer [33, 48]. We also see that results from the best atom interfer-
ometer were first published in 2000 [48] and improved upon in 2006 [33]. This time
scale demonstrates how difficult the problem of rotation sensing is. We note that only
one of the atom interferometers presented in the table uses a BEC, with this being a
proof of concept experiment rather than demonstrating competitive sensitivity.

For navigation applications, it is estimated that short term stabilities of < 0.1 ° h−1

(480 nrad s−1) are required but demands increase greatly with< 0.0005 ° h−1 (2.42 nrad s−1)
needed for strategic military applications [55]. In comparison, for tests of relativ-
ity (such as the Lense-Thirring effect), one would need to measure rotation rates of
the order of 5× 10−3 prad s−1 [48]. For geophysical studies, one needs to measure

Type Experiment Sensitivity Details Size
nrad/s/

√
Hz

Commercial ring laser gyro Typical [1] 500 Drift: 0.0001 ° h−1

Honeywell GG1320AN [49] Bias Stability: 0.0035 ° h−1 454 g; 4.4 × 8.8 cm
Strategic (L-3 Space) [1, 50] 72 Bias Stability: 0.0001 ° h−1 8.2 kg; 12 600 cm3

Large ring laser gyro G-ring [46, 47] 12× 10−3 Drift: 0.164 prad/s/day 16 m2

Atom Interferometry Thermal beam [33, 48] 0.6 Stimulated Raman Transitions 2 m
Drift < 96 µ° h−1

Atomic Fountain [51] 140 Point-Source AI 10 m
Exchanged MOTs [52] 1100 Stimulated Raman Transitions 5000 cm3 head

Continuous Atomic Fountain [53] 100 Stimulated Raman Transitions 11 cm2 enclosed
Drift: 1 nrad s−1 (tint = 104)

Toroidal BEC [54] 109 Collective Excitations 16 µm radius ring

Table 1.1: A summary of interferometer sensitivities
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1.4. WAVEGUIDES FOR ATOMTRONICS AND INTERFEROMETRY

the Earth’s rotation rate of ΩE = 72.92 µrad s−1 to record variation of order 10−8 ΩE

(0.7 prad s−1) [48].

One can estimate the shot-noise-limited resolution (∆Ω) of a interferometer using
the following Eq. [6, 56]:

∆Ω = SNR−1
shot

η

2πMA
=

1

2πMA
√
N
, (1.5)

where the shot-noise-limited signal-to-noise is SNRshot = η
√

2N , η is the contrast of
the interferometry fringes, N is the number of atoms, A is the area of the interferom-
eter, and M is the atomic mass. For a 100 µm radius ring, as proposed in Chaps. 5
and 6, one would anticipate a short term sensitivity of 9.1 µrad/s/Hz1/2 [56] for a 26 ms
interrogation time. This is not competitive with the state of the art listed in Tab. 1.1,
however this is limited by the small enclosed area and is acceptable as a proof of con-
cept experiment.

1.4 Waveguides for Atomtronics and Interferometry

One of the limiting factors for atom interferometers compared to light interferometers
is the difference in area enclosed [46]. A light interferometer such as a ring laser gyro
can enclose an area of many orders of magnitude larger than existing atom interfer-
ometers (16 m2 in Refs. [46, 47] compared to 30 mm2 in Refs. [33, 48] and 11 cm2 in
Ref. [53]). Atom interferometers are limited due to experiment size, the practicalities
of optical beam sizes, and by atoms falling under gravity, all of which are problems due
to requiring ultra-high vacuum. We can avoid some of these problems by confining or
guiding the BEC or atoms, allowing much longer experiment times and potentially, if a
ring guide is used, multiple revolutions that could be exploited to increase the area en-
closed [57]. However, we note that when splitting confined BECs, uncertainty between
atom number and relative phase resulting in unequal mean-field interactions can cause
the superposition states to evolve at different rates and so dephasing would occur. This
dephasing can limit the coherence time, for example in Ref. [6] it was limited to 50 ms.

The guiding of atoms and BECs for interferometry has been studied in detail [58,
59]. It was first demonstrated in Refs. [35,60] and has been used in many experiments
since then [30, 54, 61]. There are many uses for atom waveguides apart from interfer-
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1.4. WAVEGUIDES FOR ATOMTRONICS AND INTERFEROMETRY

ometry [62]. For example, ring shaped potentials can be used to study various prop-
erties of BECs, from persistent currents [63–71] and non-equilibrium dynamics [72]
to low dimensional atom systems [73]. Ring shaped traps can even be used to model
effects such as the inflation of the universe [74]. Throughout the physics community
there is also great interest in atomtronics – the ability to guide atoms in an analogue
of a circuit (as can be done with light in optical waveguide arrangements known at
integrated photonic circuits [75]). This would be a step change for interferometry,
quantum computing and many other fields [62, 76].

1.4.1 Waveguides at Strathclyde

There are a great many ways to produce waveguides and ring potentials for atoms, in
fact it has been a consistent focus of the Experimental Quantum Optics and Photonics
(EQOP) group in Strathclyde, with each of the BEC experiments being conceived as a
prototype ring system before changing focus.

In the first BEC experiment, a large diameter (10 cm) magnetic ring was created in
combination with a Ioffe-Pritchard trap [18, 19, 29, 30]. The coils used to create this
potential are shown on the left of Fig. 1.2. In this experiment atoms were successfully
guided around the ring [30], however, interference fringes were not seen on recombi-
nation. The experiment has since changed to perform interferometry using two BECs
in a double-well potential created by a Ioffe-Pritchard magnetic harmonic potential

10 mm

Figure 1.2: The coils for the two existing ring experiments at Strathclyde. The left
image shows the 10 cm diameter ring (from Ref. [30]), and the right shows the AC
coupled ring (from Ref. [8]).
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and an optical dipole beam (which splits the trap into two wells) [18–20, 31]. In this
arrangement, we perform a Young’s slits type experiment allowing the atoms to ex-
pand into one another and interfere to produce fringes. Some of the results from this
experiment are discussed in Sec. 4.2.

The second BEC experiment proposed the use of an AC coupled ring in which
an induced current generates the trapping magnetic field (this coil structure is shown
on the right of Fig. 1.2). Here, the use of induction removes ‘edge effects’ seen in
conventional coils. This ring was proposed in Ref. [77] and realised in Refs. [7, 8, 61].
Since the AC ring work, the experiment has developed into a contrast interferometer
with recent results published in Refs. [8–10], and further publications planned.

1.4.2 Waveguide Creation Methods

In the rest of the physics community, a variety of experiments have created or proposed
waveguides for atoms and BECs, using a mixture of optical dipole or magnetic based
traps. The three basic elements or building blocks needed to create a circuit are a planar
waveguide, a toroidal (ring) trap, and a beam splitter; with these three components one
could in principle create an arbitrary circuit. There a few general approaches taken to
create these components: either magnetic or optical and either static or time-averaged
(also known as painted potentials) with hybrid systems of these being possible.

We first consider the use of magnetic field based potentials (as used in the two exist-
ing BEC experiments at Strathclyde). The Zeeman interactions described in Sec. 2.2.2
create this form of potential. For linear waveguides or beam splitters, these potentials
tend to be created using shaped conductors, i.e. wires or micro-wires on an atom chip
or another substrate. Examples of this form of guiding for thermal atoms appear in
Refs. [78, 79]. Electromagnetic coils have also been used to successfully guide BECs,
for example the static 10 cm ring in Ref. [30], the few-mm diameter time-averaged ring
in Ref. [80], and the linear, two armed interferometer in Refs. [35,57,81]. Other similar
approaches use rf-dressed time-averaged traps to create ring potentials Refs. [82–86],
and induction (or rf-induction) based traps have been proposed in Refs. [77, 87–90]
and implemented in Refs. [7, 61]. Out of these examples, only one system has been
successfully used for interferometry [35,57], in which optical pulses were used to per-
form coherent splitting rather than the waveguide itself.
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For the case of optical traps, early attempts to guide atoms using the dipole force
steered atoms through the centre of hollow-core optical fibres [91,92], a method which
limits some applications due to the atoms being inside a fibre. Development since then
can be roughly split into three approximate, informal categories: composite potentials
which are built from several component fields; painted potentials, which are the time-
average of a moving dipole beam; and holographic traps which use an optical element
or an array of elements to tailor the propagating electric field.

Examples of composite potentials include crossed dipole beams used to make a
beam splitter [93, 94], planar waveguides using magneto-optical surface traps [95],
and guiding with a collimated laser beam (working like the push beam in the magneto-
optical trap discussed later) [96,97]. These techniques have been particularly success-
ful for the creation of rings used for studying persistent currents in BECs [64, 98].
For example, optical ring traps in the group of Gretchen Campbell are produced using
a combination of a Laguerre-Gauss beam (for radial confinement) produced using a
DMD and light sheets (for axial confinement) [65–69,74]. Boxes and other interesting
potentials have also been created in a similar way [99–101].

Painted potentials are generally made using a rapidly scanned laser beam which is
deflected by either two 1D acousto-optical deflectors (AODs) or one 2D AOD. This ap-
proach is typically combined with at least one light sheet to provide axial confinement.
It has been successfully used to produce ring-traps in the group of Halina Rubinsztein-
Dunlop [102, 103], various atomtronic circuit elements in Refs. [104, 105] and other
optical potentials such as boxes [106, 107]. Painted potentials are typically used in
combination with other potentials such as a light sheet or a patterns derived using
holography.

Finally, we have holographic and beam shaping traps, in which the whole elec-
tric field is shaped such that the required potential comes to a focus in the desired
plane. This technique has the possible capability of being able to produce an optical
trap using only a single laser beam [100]. For holography, we have four main options:
composite micro-optical arrays [108], spatial light modulators (SLMs) [99, 109], dig-
ital mirror devices (DMDs), and diffractive optical elements like Fresnel zone plates.
The final three of these provide beam shaping through holography, where phase (or
intensity) modulation modifies an electric field such that the desired pattern is repro-
duced down-stream. Examples of experiments using holographic techniques include
Refs. [110–120].
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Group Status Type Radius νr νz Trap Depth
µm Hz Hz nK

Strathclyde [29, 90] BEC Magnetic Coils 50 000
Strathclyde [61, 77] Cold atoms Induced Magnetic 2600 16 60 10 000

Garraway/Perrin/Arnold [87] Proposed Inductive dressed 300 750 180 31 000
Foot [83] BEC Time-Averaged RF 50 to 262 90 to 120 50 to 80

Mompart [101] BEC Conically refracted ring 170 300 170 280
+ light sheet

Perrin/Garraway [84] Proposed RF-dressed Magnetic Trap 100 1100 43 000
(Realized in Refs. [121, 122]) BEC + Standing Wave Adjustable

Rubinsztein-Dunlop [103] BEC Time-Averaged Dipole 82 50 140
(bi-directional scan)

Rubinsztein-Dunlop [102] BEC Time-Averaged Dipole 70 47 110 190
Campbell [67] BEC Composite Optical 40 110 550 700

Stamper-Kurn [54] BEC Composite Optical 16 86 260

Table 1.2: A summary of parameters for rings discussed in the literature. νr,z refer to
the radial and axial trap frequency of the rings. This list is by no means exhaustive and
is ordered by ring radius, from largest to smallest.

As discussed above, there is a wealth of literature comprising proposals and demon-
strations of ring/toroidal potentials for various different purposes. The parameters of
a selection of these rings are summarised in Tab. 1.2. We are particularly interested
in the radius and radial and axial trap frequencies (νr,z), as these parameters will help
inform design choices later in this thesis.

1.5 Thesis Outline

In this thesis I will begin by describing the techniques used to trap and manipulate
atoms in Chapter 2, beginning with optics (Section 2.1), before moving on to trapping
and cooling techniques (Section 2.2), followed by absorption imaging (Section 2.3).

Following this, in Chapter 3, the design and build process for a new BEC experi-
ment will be detailed. At the time of writing this thesis, a 3D magneto-optical trap has
been obtained in the experiment.

Chapter 4 explains the theory of BECs, beginning with general theory before dis-
cussing ring geometries in Section 4.1.3 (as preparation for later chapters) and phase
and coherence in Sections 4.1.4 and 4.1.5. After this the chapter moves on to discuss
some results obtained using the older Strathclyde BEC experiment in Section 4.2.

At this point in the thesis, the subject turns to the use of Fresnel zone plates (FZPs)
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for creating ring shaped potentials to confine BECs during interferometry. Chapter 5
covers the theory surrounding FZPs, numerical simulations to compare them to ex-
isting technology (SLMs), designs for manufacture, and finally simulations pertain-
ing to a hybrid FZP-SLM system. This chapter is based on our paper published in
2016: ‘Comparative simulations of Fresnel holography methods for atomic waveg-
uides’ [123].

Following on from this, Chapter 6 discusses testing the manufactured zone plates
through optical imaging of the potentials (without loading atoms into the trap).

Finally, Chapter 7 covers the theory necessary to design a second generation of
zone plates. We first discuss alternative ring potentials in Section 7.3, then describe
improvements to our simulation algorithm in Section 7.2.2, before finally completing
numerical simulations to help chose ring parameters for the next generation of zone
plates.

1.6 Research Outputs

1.6.1 Publications

• Y. Zhai, C. H. Carson, V. A. Henderson, P. F. Griffin, E. Riis, and A. S. Arnold,
“Talbot-enhanced, maximum-visibility imaging of condensate interference,” Op-

tica 5, 80-85 (2018)

• V. A. Henderson, P. F. Griffin, E. Riis, and A. S. Arnold, “Comparative simula-
tions of Fresnel holography methods for atomic waveguides,” New J. Phys. 18,
025007 (2016)

• V. A. Henderson, M. Y. H. Johnson, Y. B. Kale, P. F. Griffin, E. Riis, and A. S.
Arnold, “Optical Characterisation of Fresnel Holograms for Atomic Waveg-
uides,” In advanced prep.

1.6.2 Conferences and Presentations

• Talk title: “Fresnel Holography for Atomic Waveguides,” (April, 2018)

– Invited talk, Humboldt-Universität zu Berlin

• Poster title: “Fresnel Holography for Atomic Waveguides,” (2017)
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– QuAMP, Glasgow. Awarded EPJ poster prize.

– ICOLS, Arcachon, France.

• Poster title: “Fresnel Holography for Atomic Waveguides and Miniaturised Ro-
tation Sensing,” (2016)

– Workshop on Many-body Dynamics and Open Quantum Systems (DOQS),
Glasgow.

– Multicomponent Atomic Condensates and Rotational Dynamics (MACRO),
Newcastle.

• Poster title “Maximum Contrast Interferometry and Coherence in Bose-Einstein
Condensates,” (2015)

– Non-Equilibrium Quantum Dynamics in Low Dimensions, Durham.

– CLEO/EQEC, Munich, Germany.

– Scottish Universities Summer Schools in Physics (SUSSP71): Frontiers in
Quantum Dynamics and Quantum Optics, Glasgow.
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Chapter 2

An Ultra-Cold Atom Recipe Book

Within this chapter, I will present the theory of techniques and tools used to trap, cool
and manipulate atoms within our particular atom interferometry experiment, proceed-
ing chronologically through the various stages that the atoms experience.

I like to think of the process of making a Bose-Einstein Condensate (BEC) as a
recipe: you mix ‘ingredients’ (atoms, vacuum, light and magnetic fields) using certain
‘methods’ (following the example of groups that have come before you). By careful
engineering of the vacuum chamber and precise control of magnetic fields, we can
implement ‘methods’ for cooling and controlling atoms such as magneto-optical traps
(MOT), dipole trapping, evaporative cooling; the list is almost endless.

The most common atom used in ultra-cold atom experiments is Rubidium (in either
its 85 or 87 isotopes). It’s an almost ideal atom for laser cooling due to its simple
energy level structure - the transitions are easy to reach with cheap lasers and only two
frequencies are required to produce a closed cooling cycle. Rubidium is also easy to
vaporise without using an oven and extra pre-cooling steps (like the Zeeman slowers
needed for atoms like Strontium [124–126] and Lithium [127]). For BEC creation
Rubidium is particularly favourable due to its scattering length.

There are 2 main types of traps and cooling mechanisms for ultra-cold atoms: dis-
sipative potentials or structures, such as molasses and magneto-optical traps, used for
cooling; and conservative potentials, such as dipole potentials and purely magnetic
traps, used for holding and guiding atoms.
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2.1. GAUSSIAN OPTICS

2.1 Gaussian Optics

When creating trapping potentials and aligning optics, one needs to have strong under-
standing of Gaussian optics, from basic beams and Gaussian propagation, to higher-
order solutions to wave-equations such as Laguerre-Gaussian (LG), Hermite-Gaussian
(HG), or Bessel beams. In this section, I’ll begin by defining the basic Gaussian beam
equation, discuss its propagation and then define higher-order beams.

The electric field (E(r, z)) of a Gaussian beam at longitudinal position z and radial
position r is given by,

E(r, z) = E0
w0

w(z)
exp

(
−r2

w(z)2

)
exp

[
−i
(
kz + k

r2

2R(z)
− ψ(z)

)]
, (2.1)

where E0 is the electric field magnitude at the origin, w0 is the 1/e2 radius of the
waist (the narrowest point of the beam), w(z) is the waist at position z, k is the wave-
vector as defined by k = 2π/λ for a wavelength λ, R(z) = z

[
1 + (zR/z)2] is the

radius of curvature of the wavefront at position z, zR = πw2
0/λ is the Rayleigh length,

and ψ(z) = arctan(z/zR) is the Gouy phase at position z. The radius of curvature
of a collimated beam tends to infinity but any real Gaussian beam with not be fully
collimated and will still have a Rayleigh length.

When observing a cylindrically symmetric beam, we measure the intensity I(r, z),
as given by,

I(r, z) =
ε0c

2
|E(r, z)|2 = I0

(
w0

w(z)

)2

exp

(
−2r2

w(z)2

)
, (2.2)

where, for a beam with power P0, the peak intensity is given by I0 = 2P0/πw
2
0.

The width of a propagating beam (w(z)) evolves as,

w(z)2 = w2
0

(
1 +

(
z

zR

)2
)
. (2.3)

The Rayleigh length (zR) is the point at which w(zR) =
√

2w0. This equation only
holds for a beam which is diffraction limited.

If a beam is diffraction limited, its beam parameter product, the product of the
divergence angle (θ) and waist, is λ/π. The ratio between this ideal and the measured
value gives the M2 value, so M2 = πw0θ/λ. It is noted that the Rayleigh length
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decreases with increasing M2. The waist of a diffraction limited beam propagating in
free space from a lens of diameter D and focal length f , and numerical aperture NA

is,

w0 =
λ

2NA
=

λ

2 sin θ
=
λf

D
. (2.4)

2.1.1 Higher Order Modes

Although basic Gaussian beams are the most widely used beam shapes for atomic
trapping, LG, HG and Bessel beams are of great interest for trapping schemes for
many reasons including the presence of intensity zeros and thus the potential for dark
traps [120] (dark traps are discussed in more detail in Secs. 2.2.8 and 7.3).

Laguerre-Gaussian and Hermite-Gaussian Beams

Upon propagation most beam profiles change due to diffraction, however certain modes
of the electric field have a constant shape. The simplest of these modes is a Gaussian.

Figure 2.1: The electric fields corresponding to various Hermite-Gaussian modes as
defined by Eq. 2.5, with the left of each column showing the normalised intensity
(|E|2) and the right showing the phase (plotted on a scale between −π and π). The
columns (rows) show different m (n). All plots show a 5× 5 mm area with the waist
of the beam being 1 mm.
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This means that, for example in a cavity, one can decompose a beam into a series of
these modes. LG and HG modes are two different, complete sets of these orthogonal
modes, with LG beams providing circularly symmetric solutions and the HG modes
being separable in Cartesian co-ordinates and so looking square.

The equation for a HG beam is shown below, with the first eight modes shown in
Fig. 2.1,

EH
m,n(r, z) =

E0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
e−r

2/w(z)2

exp

[
−i
(
kz + k

r2

2R(z)
− ψm,n(z)

)]
, (2.5)

where Hm and Hn are mth and nth Hermite polynomials, and the modified Gouy phase
is ψm,n(z) = (1 +m+ n) arctan (z/zR).

For an LG beam, the equation takes the following form, with the first eight modes

Figure 2.2: The electric fields corresponding to various Laguerre-Gaussian modes as
defined by Eq. 2.6. The columns (rows) show different ` (p), with the left of each col-
umn showing the intensity and the right showing the phase (plotted on a scale between
−π and π). All plots show a 5× 5 mm area with the waist of the beam being 1 mm.
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shown in Fig. 2.2,

EL
`,p(r, z) = E0

ei`φ

w(z)

(
r

w(z)

)|`|
L|`|p

(
2r2

w(z)2

)
e−r

2/w(z)2

exp

[
−i
(
kz + k

r2

2R(z)
− ψL`,p(z)

)]
, (2.6)

where ` and p refer to the number of phase windings (integer multiples of ~ orbital
angular momentum (OAM) per photon) and number of intensity rings (e.g. p = 0 is a
Gaussian) respectively. L`p is an associated Laguerre polynomial, and ψL`,p(z) is the the
Gouy phase for such a beam: ψL`,p(z) = (|`|+ 2p+ 1) arctan (z/zR).

When we use LG beams in an atomtronic context, it’s important that we note that
the intensity maximum of a beam with p = 0 lies at radius [128]

r` = w
√
|`| /2 , (2.7)

and the electric field in the radial direction has a full-width-half-maximum of
√

2 ln 2w

[120]. The relations for p > 0 are much more complicated as p corresponds to the
number of radial intensity minima (for |`| > 0). Both these identities will be used in
Sec. 5.2.

Bessel Beams

Although the overall profile of a LG and HG beam stays constant, its size changes
due to diffraction. Bessel beams however, fall into a category of (theoretically) non-
diffracting beams, and are self-healing [129, 130]. Bessel beams have an electric field
proportional to a Bessel function of the first kind (J0) and a Gaussian envelope. For
example, we can describe a Bessel-Gauss beam with the following equation:

E(r, z = 0) ∝ J0(krr) exp

(
− r

2

w2
0

)
, (2.8)

where kr =
√
k2 − k2

z is the size of the component of the wave-vector orthogonal to
the z-axis [129]. A Bessel beam which is an exact solution of the Helmholtz equation
has infinite energy, therefore it is impossible to reproduce one experimentally, but there
are many ways to approximate them, such as using axicons [131,132] and Spatial Light
Modulators [133].
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2.2. COOLING AND TRAPPING

Within the investigations presented in this thesis, Bessel beams are of interest due to
the zero crossing in the electric field equation. This makes them particularly interesting
for producing dark rings [134] as the zero-crossing will always have a true intensity
zero (rather than a minimum). The first four Bessel functions of the first kind are
shown in Fig. 2.3, alongside the corresponding Bessel-Gauss (like Eq. 2.8) function.

2.2 Cooling and Trapping

With the advent of narrow line-width lasers one can exert significant forces on atoms [135]
and use them for cooling [136–138]. Initially, such work was limited to Sodium atoms
due to the availability of suitable (expensive dye) lasers, however, once cheap diode
laser became accessible, other alkali atoms could be focused on.

Before considering the various potentials which can be used to trap, cool and ma-
nipulate atoms, it is useful to consider the (time-independent) Hamiltonian of an atom,

Ĥ |ψ〉 = E |ψ〉 =

(
− ~2

2m
∇2 + U

)
|ψ〉 , (2.9)

0 5 10 15 20
-1

0

1

E
 (

n
o
rm

.)

0 0.5 1 1.5 2
-1

0

1

0 5 10 15 20

 x

0

0.5

1

I 
(n

o
rm

.)

0 0.5 1 1.5 2

Position ( x / w
0
)

0

0.5

1

a) b)

c) d)

Figure 2.3: In a and b we show the electric field amplitude for a Bessel beam of
the first kind (Jα(x)) and a Bessel-Gauss beam (see Eq. 2.8) respectively, both with
kr = 1, for α = 0, 1, 2, 3 (blue, red, yellow, purple). In c and d we show the intensity
equivalent of a and b respectively.
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2.2. COOLING AND TRAPPING

which describes the atom’s wavefunction (ψ) as the eigenvectors of the Hamiltonian
with eigenvalues of the energy E. The basic Hamiltonian is split into contributions
from kinetic energy (the− (~2/2m)∇2 term) and the potential U (which in the context
of our experiment is the contribution of the trapping potential). Additional terms can be
added to describe the effects of field interactions (such as Zeeman splitting and Stark
shifts), atom-atom interactions, and internal interactions (like hyperfine splitting). In
Chap. 4, this formalism will be applied to introduce Bose-Einstein condensation.

2.2.1 Dissipative Light Forces

When a photon of angular frequency ω is absorbed by an atom, its momentum of ~k is
transferred to the atom. Conversely, when a photon is emitted by an atom, its momen-
tum is transferred away from the atom, giving a recoil in the direction inverse to the
photon direction. As the spontaneous emission of photons is inherently random (over
the dipole radiation pattern of the atom), over many cycles of absorption and emission,
emission recoils average to zero, and absorption recoil, resulting in an acceleration or
force in the direction of the laser. Such scattering processes are the fundamental build-
ing blocks upon which all laser cooling techniques are built.

We can derive the force imparted by a laser beam to an atom by considering the rate
of change of momentum, this means: ~Fscatt = photon momentum×scattering rate.
We can describe the scattering rate using the optical Bloch equations for a two-level
atom: the scattering rate is given by Rscatt = Γρ22, where Γ is the decay rate of the
state (the linewidth), and ρ22 is the excited state population, this means that we can
represent the scattering force in term of the Rabi frequency Ω or the intensity and
saturation intensity (I/Isat = 2Ω2/Γ2) [23, 139]:

~Fscatt = ~~k
Γ

2

Ω2/2

∆2 + Ω2/2 + Γ2/4
= ~~k

Γ

2

I/Isat

1 + I/Isat + 4∆2/Γ2
, (2.10)

where ∆ = ω − ω0 is the detuning of the laser from resonance.
When an atom is moving, we need to account for the Doppler shift in the frequency

of light that the atom ‘sees’: ω′ = ω±~k ·~v. The Doppler shift experienced by a moving
atom leads us to introduce optical molasses, a damping or frictional force for atoms
in light (if the detuning ∆ < 0). If an atom is placed in a pair of counter-propagating
beams, it will experience light of a frequency shifted up (down) from the frequency of
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2.2. COOLING AND TRAPPING

the laser beam it is travelling towards (away from), this results in a molasses force:

Fmolasses = Fscatt(∆− kv)− Fscatt(∆ + kv) ≈ −2
∂F

∂ω
(∆) kv , (2.11)

which means that we have a restoring force proportional to the velocity, just like fric-
tion or damping. Applying six counter-propagating beams (or three retroreflected
beams) to a cloud of atoms, allows us to cool in 3D (as first demonstrated in [137]),
assuming that the laser is red detuned (∆ < 0). Although, to cool in N dimensions,
one only strictly needs N + 1 beams rather than 2N [140]. We note that recently,
blue-detuned MOTs have been demonstrated which cool using dark ground states and
are anticipated to be used to produce molecular MOTs [141].

The temperatures reached by cooling with optical molasses are limited by the
stochastic nature of the absorption-emission cycles used, leading us to the Doppler
temperature TDoppler which is typically of the order 0.1 mK [23], though lower temper-
atures are in practice reached through mechanisms described in Sec. 2.2.6.

When working with multi-level atoms, such as alkali atoms like 87Rb, rather than
the absorption-emission cycle operating between only two levels, it is generally pos-
sible for the atom to fall to a different hyperfine ground state. Thus it is necessary
to ‘close’ the transition with an additional light of a different frequency, pumping the
atoms out of the other ground state. This additional light is referred to as the ‘repump’
and can either be derived from a separate laser and overlapped with the cooling light
or be introduced as a side-band on the cooling light. The energy level diagram of 87Rb
is shown in Fig. 3.1, which also includes the frequencies of light used for cooling and
repumping in our experiment.

2.2.2 Atoms in Magnetic Fields

Neutral atoms with magnetic moments (~µ) feel a force when in an inhomogeneous
magnetic field ( ~B):

~F = ~∇(~µ · ~B) , (2.12)

21



2.2. COOLING AND TRAPPING

as was demonstrated in the Stern-Gerlach experiment [142–144]. The Zeeman effect
results in an additional term in the atom’s Hamiltonian of,

HZE = −~µ · ~B . (2.13)

The total magnetic moment of an atom is

~µatom = −gJµB ~J + gIµN ~I = −gFµB ~F , (2.14)

where µB is the Bohr magneton, ~J is the total electron angular momentum, ~I is the
nuclear spin, ~F is the total atomic angular momentum, gJ,I,F is the Landé g-factor, and
µN is the nuclear magneton, which is much smaller than the Bohr magneton. The total
angular momentum of the electron is the sum of angular momentum ~L and spin ~S, and
equivalently, ~F is the sum of the nuclear spin and the electron angular momentum:
~F = ~L+ ~S + ~I = ~J + ~I . This results in the Zeeman energy shift of

∆EZE = gFµBmF | ~B| . (2.15)

Using this equation, we can start to talk about weak and strong field seeking atoms.
If gFmF > 0, then ∆EZE is minimised when the field is minimised, i.e. the atoms
experience a weak field. Conversely, if gFmF < 0 the opposite is true and we have a
strong field seeking state.

2.2.3 Magnetic Field Creation

There are two basic coil combinations which are used in cold atom experiments -
Helmholtz and Anti-Helmholtz coils, as shown in Fig. 2.4. Two sets of coils are placed
co-axially with a separation between them, in the Helmholtz (anti-Helmholtz) orienta-
tion, current flows through the wires in the same (opposite) directions, and at the cen-
tre of the coils a line (point) of magnetic field minimum is produced. True Helmholtz
coils, which minimise the non-uniformity of the field at the centre of the coils have a
separation equal to the coil radius. Anti-Helmholtz coils are often called quadrupole
coils, due to the quadrupole field close to the centre of the coils, that has the form:

~B(~r) = B1

(
−x

2
,−y

2
, z
)
, (2.16)
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with B1 dependent on coil diameter, separation, number of turns, and current through
the wire; it is derived using the Biot-Savart Law [145]. The resulting potential is:

U(x, y, z) = µBgFmFB1

√
x2

4
+
y2

4
+ z2 . (2.17)

The first demonstration of magnetic trapping used a quadrupole trap to collect
atoms from a slowed atomic beam [146]. Although quadrupole coils are well suited for
use within MOTs, at much lower temperatures (i.e. when evaporative cooling to BEC)
the presence of a magnetic field zero means that spin flips can occur, causing atoms to
be lost from the trap. These Majorana flips [147–150] occur when the thermal fluctu-
ations are sufficient to ‘flip’ atoms from a confined to an unconfined hyperfine level.
Close to a point of zero field, the Zeeman splitting on the hyperfine levels becomes
small and so the rate of this flipping (i.e. losses) becomes higher. However in scenar-
ios such as evaporative cooling, the losses prevent runaway evaporative cooling, so the
point of zero field must be removed. There are various approaches to solve this prob-
lem in magnetic traps, from optically ‘plugging’ the hole [151], using a time-averaged,
orbiting potential (TOP) [152], an adiabatic dressed potential [153], or using a Ioffe-

I

I

B

I

I

B

Figure 2.4: The left and right sets of coils show an anti-Helmholtz and Helmholtz
arrangement respectively. The anti-Helmholtz coil forms a quadrupole field, as is used
in MOTs; and Helmholtz coils are used to create bias fields or to shift the centre of a
MOT.
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Figure 2.5: Ioffe-Pritchard coil configuration. The wires generate an elongated
quadrupole field in the transverse direction (as shown by the blue field lines in b)).
The Helmholtz coils at either end provide axial confinement.

Pritchard (IP) trap [154]. A typical form of IP coils are shown in Fig. 2.5, where four
equidistant, straight wires produce a 2D, transverse, quadrupole magnetic field, and
the Helmholtz coils at either end provide confinement in the axial direction. The re-
sulting field is generally hyperbolic in the radial direction (parabolic (linear) close to
(far from) the centre) [155].

2.2.4 Magneto-Optical Traps

Although molasses provides a cooling mechanism, eventually, atoms will diffuse out
of the centre of the potential as the force is velocity dependent rather than position
dependent. One can introduce a position dependence to the restoring force by adding a
quadrupole magnetic field which provides this dependence through the Zeeman shift-
ing of magnetic sub-levels [156].

We can begin describing a magneto-optic trap (MOT) by considering the Zeeman
shifts of the (hypothetical) F = 0 → F ′ = 1 transitions. In a quadrupole field,
the magnetic field is approximately linear close to the centre of the trap, so that the
hyperfine energy-levels of the F ′ = 1 state will be linearly dependent on position from
the trap centre. Selection rules mean that left (right) circularly polarised light drive
σ− (σ+) transitions with ∆mF = −(+)1. If we have counter-propagating beams of
opposite circular polarisation, as in Fig. 2.6, atoms with a positive position will have
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mF = −1 closer to resonance than the mF = +1 level and thus will absorb more
photons from the σ− beam than the σ+ and feel a net force towards the centre of the
trap. Likewise, atoms with negative position, will have the mF = +1 shifted closer to
resonance and so will absorb more light from the σ+ beam (the beam travelling in the
positive z direction), resulting in a net force towards the centre of the trap.

We can calculate the forces on atoms in the trap in the same way as we did for
molasses in Eq. 2.11

FMOT ≈ −2
∂F

∂ω
kv + 2

∂F

∂ω0

βz , (2.18)

where β = gFµB
~

dB
dz

, and the equipartition theorem can be applied to deduce the size
and temperature of the cloud of atoms in the MOT [157]:

kBT = mv2
rms = βz2

rms . (2.19)

Eq. 2.18 is an approximation which only holds for atoms close to the centre of the trap
(i.e. where Doppler and Zeeman shifts are small compared to detuning). The size and
temperature relation of Eq. 2.19 does not apply for large atom number MOTs where re-
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Figure 2.6: A schematic of atom-light interactions modified by a linear magnetic
field in the centre of a MOT (B ∝ z). The magnetic field causes a linear shift in the
mF = ±1, the green and blue line show the positive and negative sublevels respec-
tively. This shift brings the sublevels into resonance with different cooling beams in
different positions.

25



2.2. COOLING AND TRAPPING

absorption of emitted photons results in an additional outward radiation pressure [23].

Properties of MOTs

Many of the properties of MOTs have been studied in detail, particularly with reference
to loading rates and the dependence of atom number on trap parameters [158–162]. I
will briefly summarise some of the results that are useful for the experiments discussed
in this thesis, namely load rate, equilibrium atom number, and capture velocity, which
will allow me to motivate the use of a double MOT arrangement. The loading rate
(dN/dt) for a MOT is given by [23, 160, 161]

dN

dt
= R− γN(t) , (2.20)

where R is the loading rate from the background vapour, γN(t) describes losses due
to collisions with background gas, and we neglect losses due to two-body collisions.
This is solved by

N(t) =
R

γ

(
1− e−γt

)
, R =

nbackV
2/3v4

c

2vback

, (2.21)
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Figure 2.7: The loading of a MOT shown for 3 different loss rates γ (a) and 3 different
loading rates R (b). In a), N(t)/R is plotted to allow for comparison of behaviour
caused by the loss rate rather than loading rate. In b), the loss rate is 1, as is given by
the red line in a).
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where nback and vback, are the density and average velocity of the background gas
respectively, V is the trapping volume, and vc is the capture velocity of the trap (which
is related to the trap depth) [23, 160]. The filling of the trap is shown in Fig. 2.7. The
dependence of capture rate on the density of the background gas means that MOTs can
be used to measure background pressures [161].

In our experiment, we wish to operate with a high repetition rate (i.e. to have a
high capture rate) and high atom number (as the evaporation techniques used to reach
BEC are inherently lossy). However, we must balance increasing the loading rate R
with background losses, both of which scale with nback [160]. We also note, more
importantly, that the lifetime of a BEC scales inversely with background gas density.
This leads us to use a double-MOT set-up [163], meaning that we can have a high load
rate MOT in a high pressure (HP) section of a vacuum chamber, which then feeds a
2nd MOT in a low pressure chamber (LP), striking a balance between load rate and
loss rate in a way suitable for BEC production.

Double MOT Systems

At Strathclyde we have experiments which use the following three forms of double-
MOT systems: 3D pushed to 3D, 2D (pushed) to 3D, and 2D+ to 3D. Each consists
of a fast loading MOT in a high background pressure cell, atoms are then transferred
through a differential pumping tube (DPT) into a low background pressure chamber

Figure 2.8: Four different double-MOT arrangements, with light being coloured red
and atoms blue. Each of the two MOTs are separated by a differential pumping tube
(labelled DPT). See text for descriptions.
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Experiment Name Double MOT Type Load rate Atom Number Load Time
Big Ring (JA3.05b) [20] 3D - PUSH - 3D ≈107 s−1 109 20 s

Interferometer (JA3.07) [8] 2D - PUSH - 3D 5× 107 s−1 5× 108 15 s
Boson Lattice (JA3.08) [168] 2D+ - 3D 5× 109 s−1 1× 1010 5 s

Table 2.1: Double-MOT parameters in Strathclyde experiments

where they can be collected in a 3D-MOT. There are other methods of atom trans-
fer and cold atom sources but they will not be discussed here (for example the LVIS
scheme [164]). Schematics of 4 different double MOT set-ups are shown in Fig. 2.8.
Fig. 2.8a) shows a 3D to 3D set-up, where a weak push beam is used to push atoms
through the DPT to the LP MOT; the push beam and HP MOT are pulsed such that
the HP MOT is turned off when the push beam is on to push atoms through the DPT.
Fig. 2.8c) shows a 2D to 3D arrangement, in this case, in the HP cell, the atoms are
only cooled in 2 dimensions so freely expand along the third axis through the DPT into
the LP 3D MOT. Figs. 2.8b) and d) show modifications of the 2D to 3D arrangement,
with a push beam being introduced in d) and a retro-reflecting mirror stuck to the end
of the DPT in b) allowing for simultaneous pushing and cooling on the third axis (this
retroreflection being the plus part of a 2D+ MOT). As one can see from the figures in
table 2.1 and existing experiments [163, 165–167], loading an LP MOT from a 2D+ is
more efficient than pushed 2D, which again is more efficient than a pushed 3D. Though
we must note that the loading scheme is of secondary importance to the isolation of
the HP and LP sides of the vacuum chamber.

Grating MOTs

Single input beam MOTs offer an obvious way to simplify a wide range of very com-
plex ultra-cold atom experiments, alongside moving cold-atom based sensors closer to
portability. Various methods have been demonstrated such as pyramid MOTs [169] and
Tetrahedral mirror MOTs [170]. In a pyramid MOT, the capture volume is located in-
side the mirror structure (in the inverted pyramidal gap between mirrors) meaning that
optical access is very poor. Tetrahedral mirror MOTs provided an obvious solution to
this problem, with the reflected beams overlapping above the mirrors. The tetrahedral
MOT demonstrated in [170] was extended from a mirror-based to diffraction grating
based system in Ref. [171] before being integrated into a single microfabricated grat-
ing chip [172]. An example of one of the grating chips is shown in Fig. 2.9 (taken
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Figure 2.9: A schematic of two grating MOT set-ups detailed in Ref. [172] (a more
detailed description can be found in the original paper). To summarise, a single input
beam diffracts from the microfabricated grating chip into additional beams (shown by
small red arrows) which overlap and create a trapping region. a) Shows a linear-tri
grating which produces a 4 beam MOT; b) shows a grating formed of a square array of
cylindrical indentations, this produces a 5 beam MOT.

from Ref. [172]). Within the Strathclyde EQOP group, as pioneers of this technique,
GMOTs have become a standard technology, with detailed characterisation and opti-
misation being performed [162, 173–176] with particular focus on their inclusion in
clock experiments [177].

As the aim of the experiment discussed in this thesis is to build a relatively com-
pact and scalable system, we originally intended to use GMOTs rather than traditional
six-beam MOTs. At the beginning of the design process, an existing experiment in the
group (prior results from which are discussed in Sec. 4.3) was being upgraded to in-
corporate a in-vacuum GMOT (with a drilled hole acting as a DPT), the atom loading
rates, given the available laser power constraints, currently rule out this option (details
will be included the thesis of Johnathan Conway). This meant that, for ease, it was
decided that the new BEC experiment should use a traditional free-space MOT beam
configuration (but should be designed in such a way that one could easily upgrade
to use gratings). Since this decision, there have been several demonstrations of 3D
GMOTs loaded from a 2D GMOT: Ref. [178] uses a composite grating arrangement
to replace both a traditional 2D+ and 3D arrangement; within the EQOP group, the
QUDOS II project has created a microfabrication based 3D GMOT loaded by a 2D
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GMOT [179]. We note that the experiment detailed in Ref. [178] created a 3D GMOT
of (2.46± 0.07)× 108 atoms, with a 3D loading rate of (1.12± 0.03)× 108 atoms/s

and a flux from the 2D+ of > 4× 108 atoms/s.

2.2.5 Optical Pumping

In order to trap atoms in a solely magnetic trap, we need to use weak field seeking
states. However, after cooling (either via a MOT or molasses) atoms are equally dis-
tributed between the magnetic sub-levels of the ground state. Thus, we use a process
called optical pumping to redistribute atoms into a particular magnetic quantum state.

To explain how this works we will use the example of 87Rb cooled on the D2 line,
where the weak field seeking state is |F = 2,mF = 2〉. Circularly polarised light (σ+)
pumps atoms between the |F = 2〉 and |F ′ = 2〉 states through ∆mF = +1 transitions.
Once in the excited state, atoms can decay back down to the ground state with ∆mF =

+1, 0,−1, meaning that atoms will amass in the |F = 2,mF = 2〉 state which is dark
to the optical pumping light. This process is shown in Fig. 2.10. We note that there
must be a magnetic field on during optical pumping in order to define the quantisation
axis.

2.2.6 Sub-Doppler Cooling

The Doppler-based mechanisms for cooling listed above are limited by the Doppler
temperature TDoppler [180,181]. This is the temperature at which the heating and damp-

Figure 2.10: Optical pumping using circularly polarised light which drives ∆mF =
+1 transitions (red arrows). Grey arrows show spontaneous emission. Atoms are
pumped into the dark state |F = 2,mF = 2〉.
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ing of an atom in counter-propagating beams balance each other. It is given by

TD =
~Γ

2kB
. (2.22)

For 87Rb cooled on the 52S1/2 F = 2→ 52P3/2 F
′ = 3 transition, TD = 146 µK [182].

Optical cooling is fundamentally limited by the recoil temperature TR which corre-
sponds to the recoil energy of one spontaneously emitted photon (with wavenumber
k) [180, 181]

TR =
~2k2

2kBM
, (2.23)

which for the same transition as above is Trecoil = 181nK [182].
In some of the first demonstrations of Doppler cooling, it was found that tem-

peratures below the Doppler limit and close to the recoil limit were being reached
[183, 184]. This led to polarisation gradient cooling being proposed by Dalibard and
Cohen-Tannoudji in 1989 [181], verified independently in the same journal issue by
Chu et. al. [185], and confirmed experimentally by the same experimental teams that
found the temperature discrepancy [186, 187]. In this section we will explain two
forms of polarisation gradient cooling and then move on to other dissipative methods
for reaching lower temperatures than standard MOTs.

Polarisation Gradient Cooling

Polarisation gradient cooling mechanisms arise due to changes in optical pumping be-
tween the hyperfine levels of alkali atoms due to spatially varying light shifts. In a 1D
system with two counter-propagating beams of orthogonal polarisation, the beams will
interfere to create a polarisation gradient. To understand this in more detail, we will
consider the case of linear polarisation and circular polarisation separately, following
the formalisms detailed in [139, 157, 181].

Linear-linear configuration: When the counter-propagating beams are orthogo-
nal and linear, they interfere to create a standing wave of polarisation that varies over
half a wavelength as: linear (45° to the input) → right hand circular (σ+) → linear
(perpendicular to 1st direction)→ left hand circular (σ−)→ linear (45° to the input),
this occurs cyclically. The standing wave of polarisation induces an oscillating (in po-
sition) a.c Stark shift in the ground state energies. This is analogous to an atom in a
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standing wave of intensity. The a.c. Stark shift is an energy level change induced by
the presence of an electric field (with detuning ∆); the frequency shift of energy levels
is of the form [139]:

∆ωstark =
Ω2

4∆
=

Γ2

8∆

I

Isat

. (2.24)

This is shown in Fig. 2.11, where the a.c. Stark shift of the mF = ±1
2

ground states
is shown for a J = 1

2
→ J = 3

2
transition. If we follow an atom in the mF = −1

2

ground state, it will travel up that Stark shifted potential gradient to position λ
8

at which
point the light will have σ+ polarisation, which will (on average) pump it into the
mF = +1

2
ground state. This optical pumping results in, on average, a change in the

ground state mF of ∆mF = +1 because the σ+ selects a ∆mF = +1 absorption
and the spontaneous emission can occur with ∆mF = 0, ± 1, thus averaging to a
total ∆mF = +1 over the pumping cycle. The equivalent happens for an atom in the
mF = +1

2
ground state, which ‘travels uphill’ until it is optically pumped by σ− light

back to the mF = −1
2

state.
As the atom travels uphill, kinetic energy is transferred to potential energy, which

is then in turn transferred to the spontaneously emitted photon as it is optically pumped
to the other ground state level. This process is commonly known as Sisyphus cooling
due to its similarity to the Greek legend of the same name.

Vertical Horizontal+ +-

+½

mF

-½

�mF = +1 �mF = -1 �mF = +1

�/8 �/4 3�/8 �/2 5�/80 3�/4

Figure 2.11: Linear-linear polarisation gradient cooling (Sisyphus). Atoms lose ki-
netic energy as they travel up the stark shifted hill, they are then pumped to the other
ground state level, before travelling uphill again.
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Sisyphus cooling is most efficient for atoms with a velocity equivalent to travelling
a distance of λ/2 per optical pumping cycle (hotter atoms would begin to travel down
hill before optical pumping occurs, and colder atoms would not reach top of the hill
in time). This dependence on velocity is the source of the damping force generated by
the polarisation gradient.

Circular (σ+) - circular (σ−) configuration: When the counter-propagating beams
are both circularly polarized (but again orthogonal to one another), the electric field
magnitude is constant and the polarisation is linear everywhere, rotating through 2π

once per half optical wavelength [157]. Obviously, since there isn’t a variation in elec-
tric field magnitude, Sisyphus cooling cannot occur in the same way as detailed above.
Instead, damping occurs due to the atoms’ motion through a region of rotating quan-
tisation axis. As an atom is moving through a laser field with rotating polarisation,
its dipole will try to orient along the polarisation (or quantisation axis). This rotation
induces a light shift, changing the transition probabilities according to the direction
and speed of travel [181].

The lower half of Fig. 2.12 shows the rotating polarisation, with the upper half
showing the light shifts caused by the rotating field, as experienced by a stationary

Figure 2.12: Circular-circular polarisation gradient cooling. Interfering propagating
beams create a field of rotating linear polarisation, which induces a light shift in mov-
ing atoms as their dipoles try align with the polarisation direction of the light.
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atom and moving atoms (in both directions). As one can see, for an atom moving to-
wards the σ+ (σ−), the light shifts mean that there is an asymmetric ground state pop-
ulation, with more atoms in the positive (negative) mF levels, this is because optical
pumping preferentially pumps atoms towards states with larger light shift [157]. Even
a small population imbalance can result in a large damping force as the mF = +1(−1)

level scatters light from the σ+ (σ−) several times more efficiently than the light from
the σ− (σ+) (15 times more for the mf = 2 level in Na [23]). This means that there is
a velocity dependent radiation pressure imbalance between the two beams - a damping
force.

The final temperature (Tmolasses) achieved in polarisation gradient cooling is pro-
portional to the light shift, for both polarisation scenarios described above [157]. In
both cases, the light shift scales in a similar way (for large detuning) [23], such that,

kBTmolasses ∝ ∆Elight ∝
~Γ2

|∆|
I

Isat

. (2.25)

This means that, in an experiment, one can reduce the molasses temperature by
increasing the detuning and/or reducing the intensity of the cooling beams (Tmolasses ∝
I/|∆|). Semi-classical analysis breaks down for temperatures where the atomic de
Broglie wavelength is of the order of the wavelength of the light, with a fully quantum
model predicting a minimum momentum of ≈ 6~k [23].

We note that at high atom number, polarisation gradient cooling is only effective
over a central volume of radius ri ∝ Ibeam/∆Ḃ, outside which Doppler cooling dom-
inates [188, 189], this leads to the a two-component structure with a diffuse Gaussian
ball at large radii and smaller, denser component at the centre.

For Rubidium, this sub-Doppler cooling works well. However for a range of
species (particularly fermionic species), such as potassium (40K) and lithium (6Li),
the smaller excited state hyperfine-splittings lead to less efficient sub-Doppler cooling
as transitions other than those used for cooling are more probable. Gray molasses is
another sub-Doppler cooling technique which has been successfully used on a wide
range of atoms. It involves a Sisyphus-like mechanism between light and dark states,
where the coupling between light and dark states are velocity selective such that colder
atoms are trapped in dark states where they interact less with light. Some recent exam-
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ples of this technique can be found in [190–195].

2.2.7 Compression Techniques

As the goal of laser cooling in our experiment is to both reduce temperature and in-
crease phase space density (so as to get closer to degeneracy), one not only needs to
reach cold temperatures, but also to increase phase space density as much as possible
before using evaporative cooling [188]. By reducing temperature and increasing phase
space density, we can increase the ‘useful’ collision rate, and so improve evaporative
cooling (see Sec. 2.2.9).

There are several ways in which one can quickly increase phase space density, the
most common of which is to compress the MOT, as is done in some existing experi-
ments in the group, though the increase in density comes at the cost of higher temper-
atures [8] (collision rate is a balancing act between high density and low temperature).
The density of a MOT is dependent on the spring constant of the trap (directly pro-
portional in the limit of high atom number) and thus is dependent on the magnetic
field gradient [196]. There is a lower MOT loading rate with higher magnetic field
gradient, so in a typical experiment, one would load a low gradient MOT before com-
pressing it to achieve the fastest load rates possible. In [189, 196] and many other ex-
periments, transient (i.e. rapidly peaking before decay) compression has been achieved
by suddenly increasing detuning, ramping up magnetic field gradient and (in the case
of [189]) reducing beam intensity, resulting in an increase in atom density of over an
order of magnitude.

Dark SPOT Traps

At higher atom density, the contribution of re-absorption becomes more significant.
Scattered photons, which are then absorbed by other atoms, are not coherent with the
cooling light (i.e. they have a spread of wave-vectors rather than having the same value
as the cooling light) and so they act to lower the spring constant (i.e. restoring force) of
the trap [189]. One can minimise this re-scattering process by using a technique such
as dark SPOT (spontaneous force optical trap) [197–201], or by using a form of laser
cooling without spontaneous emission [202].

In dark SPOT traps, atoms are pumped into off-resonant states, thus avoiding re-
scattering and allowing higher densities to be achieved. In an 87Rb dark SPOT, the

35



2.2. COOLING AND TRAPPING

same laser transitions as in a standard MOT are used, but when the repump light is
switched off, atoms accumulate in the F = 1 ground state, which does not interact
with the trapping light (tuned to the F = 2 → F ′ = 3 transition). Early experiments
spatially separated areas with and without repump light such that an outer annulus was
repumped and an inner region was not pumped out of F = 1 (or was even depumped).
However this was technically challenging. With beam shaping techniques such as
SLMs becoming commonplace in labs, the experimental set-up required for a dark
SPOT trap has been simplified significantly, with these technologies giving the added
benefit of dynamic transfer from MOT to dark SPOT [201]. Such a technique recorded
densities of up to 1.3× 10−12 cm−3 and phase space densities of up to 8.5× 10−6,
compared to (1.5± 0.5) × 10−5 achieved transiently in [188].

2.2.8 Dipole Trapping

Unlike the other optical traps described above, optical dipole traps can be independent
of the internal (electrical) states and charge of an atom (or a particle), so long as the trap
is operated far from an atomic resonance. This means that they are a conservative po-
tential and can reach lower temperatures compared to the other optical traps discussed
above. The first optical dipole trap for neutral atoms was demonstrated in [138].

The optical dipole force is derived from dispersive interactions between the induced
atomic dipole moment and the intensity gradient of light, resulting in a conservative
potential with a minimum (and thus trapping) at the point of maximum intensity. The
dipole potential and force is typically derived [203] using the oscillator model of an
atom placed in an electric field ( ~E) which drives the atomic dipole moment (~d) at
frequency ω, giving,

Udip = −1

2

〈
~d · ~E

〉
= − 1

2ε0c
Re(α)I , (2.26)

where α is the complex polarisability and is related to ~d and ~E by ~d = α~E. As force
is the gradient of a potential, we can write it as,

Fdip(~r) = −∇Udip(~r) =
1

2ε0c
Re(α)∇I(~r) . (2.27)

The residual photon scattering in the trap is calculated from the power absorbed (Pabs)
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from the electric field,

Γsc(~r) =
Pabs

~ω
=

1

~ε0c
Im(α)I(~r) . (2.28)

In the rotating wave approximation (detuning obeys |∆| � ω0 and Rabi frequency
obeys Ω� ω0) the above expressions can be approximated as

Udip(~r) =
3πc2

2ω3
0

Γ

∆
I(~r) , Γsc(~r) =

3πc2

2~ω3
0

(
Γ

∆

)2

I(~r) . (2.29)

Although these equations describe the situation for an atom or particle which can be
approximated to be a two-level atom, due to the more complex state structure of 87Rb,
one must consider potentials which are state-dependent as laid out in Refs. [203, 204],
i.e. the states are dressed by the a.c. Stark shift caused by the light. In this case, if one
had an atom with total angular momentum F and magnetic quantum number mF , the
dipole potential becomes,

Udip(~r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
I(~r) , (2.30)

where P is the laser polarisation (= 0 (linear), ±1 (σ± circular)), gF is the Landé g-
factor, and ∆1(2),F refers to the energy splitting between the ground state 2S1/2, F and
the centre of the hyperfine levels 2P1/2 (2P3/2), i.e. the D1 (D2) lines.

Placing these equations for dipole trapping in the context of atomtronics, it is useful
to consider the heating rates of a trap or waveguide (noting that the temperature of
atoms in the trap is limited by the trap depth and their temperature upon loading).
The heating rates for a red or blue detuned dipole traps are given by Ṫred and Ṫblue
respectively [203]:

Ṫred =
2/3

1 + κ
Trec

Γ

~|∆|
Û , Ṫblue =

κ

1 + κ
Trec

Γ

~∆
kBT , (2.31)

where κ is the ratio between potential and kinetic energy, and Û is the trap depth.
From this we see that heating rates in blue-detuned traps are lower than the red-detuned
equivalent, with a substantial advantage occurring for very deep potentials [203].
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Potential Parameters

When putting atoms into a dipole potential, in order to model their behaviour (partic-
ularly that of a BEC) we need to know several parameters of the potential - the trap
depth and the trap frequency.

For a tightly focussing Gaussian, we can combine Eq. 2.2 and Eq. 2.30 to give:

Udip(r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
2P0

πw2
0

exp

(
−2r2

w2
0

)
= U0 exp

(
−2r2

w2
0

)
,

(2.32)

at the focus of the beam. The depth of the potential is given by the prefactors before
the exponential and can be expressed as a temperature by equating it to kBT .

To calculate the trap frequency of the potential for ∆ < 0, we can use a Taylor
expansion of U(r) around the trap minimum and equating the 2nd-order term (in r2)
to a parabolic potential:

ωr =

√
1

m

d2U(r)

dr2

∣∣∣
r=rmin

. (2.33)

For a simple focused Gaussian, this gives:

ωr =
√

4 |U0| /mw2
0 , (2.34)

in the radial direction. In the direction of propagation, the trap is shallower and less
tight.

2.2.9 Evaporation Cooling

Although one can reach impressively low temperatures with the laser cooling tech-
niques described above, the phase space density reached is still many orders of mag-
nitude below the quantum degeneracy limit of nλ3

dB > 2.62 for a box potential or 1.2
for the centre of a harmonic trap [24]. Evaporative cooling allows us to beat the recoil
limit but at the cost of high atom losses.

Evaporative cooling constantly removes the high-energy atoms from a distribution,
then allows the cloud to re-thermalise before repeating the process; just as evaporation
occurs in everyday life with cups of tea and sweaty people. A schematic of this is
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shown in Fig. 2.13.
There are several ways to perform evaporation cooling, and I will outline the basics

of two of these techniques here: radio frequency (rf) evaporation and optical (dipole)
evaporation, which are both used within experiments in the EQOP group of Strath-
clyde. Further information can be found in many review articles including [205,206].

Radio Frequency Evaporation

Radio frequency evaporation uses an oscillating AC magnetic field to drive atomic
transitions, performing both state and position selective removal of atoms from a cloud.

For magnetically trapped atoms, we can describe this process by considering the
rf magnetic field (applied perpendicularly to the magnetic trap field vector) as a super-
position of σ+ and σ− polarised magnetic fields which can drive ∆mF = ±1 ground
state transitions, thus the transitions between weak and strong field seeking states. By
using the equation for energy splitting in a magnetic field (Eq. 2.15) we find that state
transfer occurs when the frequency of the oscillating magnetic field (νrf) is equal to:

hνrf = |gF |µBB(r) . (2.35)

E

P(E)

E

P(E)

Figure 2.13: Evaporation cooling removes hot atoms from a trap (as shown in the
top images). The remaining atoms (shown in the population graph in the bottom left)
rethermalise to a lower average temperature (bottom right population distribution)
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From this we can see that the spin-flips caused by the magnetic field are position de-
pendent, creating an ‘evaporation surface’ at high (trap) magnetic field. As only the
hotter atoms have enough energy to reach the evaporation surface, this makes the field
interactions energy dependent as well as position dependent. In summary, the atoms
which are hot enough to reach the evaporation surface are removed to an anti-trapping
(high-field-seeking) state, leaving behind cooler atoms which can then re-thermalise.
This means that we are effectively cutting the hot atoms off with an ‘rf knife’ - by
slowly ramping the frequency of the rf knife down, we can reduce the energy cutoff,
systematically lowering the temperature. It is worth noting that since the evaporation
surface is not necessarily the equipotential surface, gravitational sag can cause asym-
metric evaporation.

Optical Evaporation

In optical evaporation, the trap depth of the potential which traps the atom is gradually
lowered allowing the hotter atoms to escape.

Following from the description of dipole potentials in Sec. 2.2.8 and Gaussian op-
tics in Sec. 2.1, a tightly focused beam creates a Gaussian potential, with tight confine-
ment perpendicular to the direction of propagation and a wider potential in the direction
of propagation. Crossing two such traps gives us a crossed-dipole trap which was first
demonstrated in Ref. [207], it was used in the first all-optical route to BEC [208], and
there has been a wide variety of other demonstrations since [209–212].

In a crossed dipole trap, as one lowers the trap depth by reducing the beam power,
the trap frequency (the confinement) also reduces. This decreases the density and the
collision rate of the trapped atoms [211]. This means that, unlike in rf evaporation,
one cannot typically (without system changes) reach ‘runaway’ evaporation, where
rethermalisation occurs quickly. It is important to note, that the two dipole beams
should be detuned with respect to each other (for example by 80 MHz in Ref. [208]) or
the polarisations crossed in order to avoid interference effects.

There are several ways to achieve runaway evaporation using optical evaporation,
thus alleviating the need for either long evaporation times or very high atom losses.
For example, one can add a magnetic field to create a hybrid trap [8, 213, 214], use a
misaligned cross-beam far off-resonant dipole trap (MACRO-FORT) [211] in which
one dipole beam is tightly focused, while the other stays relatively wide, or opt for
a more complex compression system [210]. In Sec. 3.6 we will discuss the relative
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benefits some of these systems with reference to the design of the new experiment.
We note that recent developments in laser cooling has given rise to other all-optical

methods of reaching degeneracy which avoid the need for evaporation. For example
in Ref. [215] a strontium BEC is reached through a combination of Doppler cooling,
light-shift induced transparency and a dipole dimple trap. In Ref. [216] a Rb BEC is
created through compression in an optical lattice and Raman side-band cooling.

Evaporation Efficiency

It is important to be able to quantify a figure of merit for evaporative cooling: we
want to be able to increase the phase space density of an ensemble without losing too
many atoms. Thus this figure of merit (the evaporation efficiency γ) can be defined
as the ratio between the change in phase space density (PSD) and the change in atom
number [206, 217]:

γ = −dln(PSD)

dln(N)
. (2.36)

In a system where the truncation parameter (which for example describes the evap-
oration surface (or cut-off energy) in r.f. evaporation) can be chosen, the efficiency
(γ) can be reduced to a ratio between different types of collisions. Good collisions
are those which contribute to rethermalisation, such as elastic collisions (with rate
Γel). Bad or unwanted collisions are those that cause atom losses, which are inelas-
tic collisions: collisions with the background gas (Γbg), and three body collisions
(Γ3−body) [218]. This gives:

γ ∝ Γelastic

Γinelastic

=
Γel

Γbg + Γ3−body

. (2.37)

Practically, this relation means that, to achieve good evaporative cooling, one should
have as high an elastic collision rate as possible whilst maintaining a dilute enough en-
semble for three-body collisions to be minimised. It also means that the lower the
vacuum pressure (and so the lower the background collision rate) the better the evapo-
rative cooling efficiency.
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2.3 Imaging

There are two main (destructive) imaging techniques used in atomic physics experi-
ments: fluorescence and absorption imaging. There are also a variety of non-destructive
imaging techniques such as Faraday imaging [219, 220] and phase contrast imag-
ing [221] which can be used to image BECs. In our experiment, we initially plan to use
absorption imaging to image the BEC and fluorescence imaging to monitor the loading
of the MOTs, following the example of imaging systems in previous experiments in
the group.

2.3.1 Absorption Imaging

Absorption imaging effectively images the shadow of an atomic cloud - its name orig-
inates from the absorption of light by atoms which yields this shadow [206]. The ab-
sorption of light passing through the cloud is proportional to the density of the atoms
via the optical depth (OD). We can use the Beer-Lambert law to relate the OD of the
cloud to the intensity distribution:

I = I0e
−OD ∝ e−σ

∫
n(x,y,z)dz , (2.38)

where I0 is the incident intensity, σ is the optical absorption cross-section (at the fre-
quency of the incident probe light), and n(x, y, z) is the density of atoms. The integral∫
n(x, y, z)dz represents the column density of cloud, that is the density integrated

along the imaging axis.

Figure 2.14: The three images needed for absorption imaging. From left to right:
Iatoms is the probe light travelling through the atoms (showing the shadow of the
atoms); Iprobe is purely the probe light; Ibackground is taken without any light or atoms
present.
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Since OD is proportional to atom density, it is this that we want to calculate from
our imaging routine. This requires the taking of three separate images using a CCD
camera, as shown in Fig. 2.14. The three images give us the atomic cloud shadow
Iatoms, the raw imaging beam Iprobe, and a background image Ibackground. As each of
these images are taken under identical conditions, before being combined using the
following equation:

OD = ln

(
Iprobe − Ibackground

Iatoms − Ibackground

)
. (2.39)

This holds as long as the intensity is below the saturation intensity.
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Chapter 3

Building a New BEC

In the following section, the experimental set-up of the new BEC experiment will be
outlined; starting from the lasers and frequency control, moving towards the vacuum
chamber, before discussing the trapping layouts and procedures. In each of the indi-
vidual sections, the design process will be discussed before detailing the relevant ex-
perimental procedures. We note that at the stage of writing this thesis, the experiment
has been implemented up to the point of a temporary 3D-MOT.

3.1 Laser and Atom Frequencies

As laid out in chapter 2, to be able to trap, cool and image atoms we need to accurately
and precisely produce and control light at specific frequencies. To address particular
transitions, one needs a small laser linewidth (far less than the splitting between levels)
locked to the relevant transition. In our system we cool on the D2 line of 87Rb, the
structure of which is shown in Fig. 3.1. In this figure, we show each of the different
frequencies required, the points at which the lasers are locked, and the detunings from
the atom transitions that we expect to use.

Our initial requirements are light for cooling/trapping and imaging, with dipole
lasers being used for evaporative cooling and dipole trapping later in the experiment.

For cooling/trapping, we need three different, independently controlled, light sources:
cooling, push/plus, and repump. To create a basic MOT, we simply need the cool-
ing and repump light. The cooling light is red-detuned (by approximately 18 MHz)
from the F = 2 → F ′ = 3 transition, and needs at least 140 mW (based on pre-
vious experimental experience) for the 2D and 3D MOTs combined. This light must
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Figure 3.1: The energy level diagram for the D2 line of 87Rb, showing the laser fre-
quencies used to trap, cool and image. On the diagram, the dot-dashed lines indi-
cate cross-over peaks. We use two lasers, a trap (blue shading) and a repump (green
shading) laser to achieve all the required frequencies. The lock point of each laser is
shown with a dashed arrow (noting that the trap laser sits below the lock transition
and is shown by the adjacent solid blue arrow). Frequency splitting values are taken
from [182, 222, 223].
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be circularly polarised when incident on the atoms. The repump light addresses the
F = 1 → F ′ = 2 transition and closes the cooling transition, such that an efficient
cooling cycle exists. The repumper needs to be spatially overlapped with the cooling
light, but much less power is required as it does not drive the cooling processes.

The push/plus light provides either a push from a 2D MOT through a differen-
tial pumping tube to a 3D MOT, or provides the ‘plus’ partial cooling beam to make
a 2D MOT into a 2D+ MOT. These two arrangements were previously discussed
in Sec. 2.2.4 and will be further discussed in Sec. 3.5.1. As it acts as a cooling
beam, the plus/push light needs to be close to the same transition as the cooling light
(F = 2 → F ′ = 3) but needs much less power, for example, the push beam used
in Ref. [8] is 500 µW. The plus beam can be either circularly or linearly polarised
depending on which optimises the 3D MOT fill rate (in our experiment, linear light is
used). In Fig. 3.1 the cooling/MOT, push and repump corresponds to the turquoise, red
and teal arrows respectively.

For imaging or probing the atoms (assuming the use of absorption imaging), we
need two different frequencies of light, spatially overlapped and with the same polari-
sation. We probe the atoms on the F = 2 → F ′ = 3 (with minimal detuning), with
the overlapped optical pumping light (labelled as OP in Fig. 3.1) serving to pump all
of the atoms in the F = 2 state (as described in Sec. 2.2.5). This probe light allows
us to do absorption imaging of our atoms (see Sec. 2.3.1), with the optical pumping
increasing the optical depth (and atom number) of the cloud by ensuring all atoms are
in the probe-able (F = 2) ground state.

3.2 Controlling Light

In our experiment, the objective is to build a modular system with a small footprint.
This modularity will ensure that future upgrades are relatively easy to do, and will
mean that the experiment can be reconfigured on the table with minimal realignment.
To minimise the experimental footprint, we derive the frequencies detailed above using
only two lasers - a trap laser (blue shading in Fig. 3.1), which is locked to the 2→ 1−3

crossover, and a repump laser (green shading in Fig. 3.1) which is locked to the 1 →
1−2 crossover. Fast switching and frequency control is provided by a series of acousto-
optical modulators (AOMs) and amplification is done with a tampered amplifier (TA).
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Figure 3.2: The Strathclyde ECDL design, adapted from [7, 8]. From left to right, the
body segments referred to in the text are the main body, the feedback mount, and the
front plate.

The frequency control, amplification and locking is done across three 450 × 450 mm
optical bread boards which are mounted on a float-able optical table. We will describe
the lasers and the optical layouts in following section.

3.2.1 The External Cavity Diode Laser

We use two home-built extended cavity diode lasers (ECDL), the design of which
has been perfected over the course of many experiments in Strathclyde. ECDLs are
a relatively inexpensive, compact and tunable way of producing light with a narrow
linewidth at 780 nm suitable for an atomic physics experiment [224–226].

The home-built ECDLs follow the initial design detailed in [226] with further mod-
ifications and details described in [7]. The design is shown in Fig. 3.2 [7].

The bulk of the laser consists of a machined aluminium block which is mounted to a
Peltier thermoelectric cooler creating a temperature stabilised environment, where the
diode and optics are shielded from atmospheric turbulence. The main body holds the
laser diode, a thermistor (for temperature feedback), and a collimating lens (mounted
and adjusted using a gear arrangement). The remaining parts of the laser are the front
plate and the feedback mount.
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The feedback mount holds the silver mirror (Thorlabs ME055-P01) and grating
(Thorlabs GH25-18V, 1800 lines/mm). The first order reflection of the grating forms
a cavity with the laser diode (the external cavity of the ECDL name) and the zeroth
order is coupled out of the laser with the mirror. The use of the mirror ensures that
the direction of the output light does not change as frequency is tuned. The angle
of the grating provides wavelength tunability as the angle of reflection/diffraction is
determined by the wavelength of light incident upon it. The use of an external cavity
creates the narrow linewidth as lasing is only possible on one of the cavity modes,
which are narrow due to the relatively high finesse of the cavity.

The feedback mount is attached to the front plate via tensioned springs. The front
plate is then itself attached to the main body via another set of tensioned springs.
Rough tuning of the laser is done via two adjustment screws for which the pivot points
are the 4 bars shown on the front plate. A screw on the front of the laser provides
vertical angular adjustment (which optimises the cavity feedback, known as ‘flashing’
the laser), and a screw on the back provides horizontal angular control (which gives
wavelength tunability). There is also a piezoelectric stack which provides fine adjust-
ment for wavelength and allows us to the lock the lasers to a particular frequency via
feedback.

Each laser is controlled by a commercial MOGLabs diode laser controller (MOG-
box DLC-202 and MOGbox DLC-252) which provides temperature stabilisation through
the Peltier element and frequency modulation to the laser via the diode drive current,
which allows us to lock to the hyperfine structure of a saturated absorption signal.
The noise spectrum and linewidth of lasers of this design are detailed in [7], with a
linewidth of a locked laser being reported as 380 kHz. The lasers used in this experi-
ment have comparable linewidths, with mode-hop free scanning ranges of over 5 GHz
achievable. A section of the saturated absorption spectroscopy signal (and the corre-
sponding error signal - the first derivative) obtained from one of our lasers is shown in
Fig. 3.3.

3.2.2 Optical Layouts

Our optical layouts for cooling and probing light are split between three 450× 450 mm
bread boards and fibred to the experiment, making the system as modular and movable
as possible. The three boards are: the trap laser board; the repump and tampered am-
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Figure 3.3: Saturated absorption spectroscopy signal (blue line) and the corresponding
error signal (red line). Both signals are shown with an arbitrary vertical axis, with lines
artificially offset from one another for clarity.

plifier (TA) board; and the push, optical pumping and push (POPP) board. They are
shown in Fig. 3.4. For each laser, we have two mirrors close to the laser output which
allow us to make the light completely horizontal and steer it through an optical isola-
tor which prevents feedback affecting the laser outputs. Both lasers are locked using
saturated absorption spectroscopy and shifted in frequency by AOMs.

Trap Laser: After transmission through an optical isolator, the laser is split into
three parts using half waveplates and polarising beam splitters (PBS). The first PBS
separates out light which is then sent to the ‘POPP’ board via a standard Thorlabs
polarisation maintaining fibre. The input polarisation is corrected and adjusted with a
quarter waveplate and a half waveplate. Fibre coupling is achieved using an aspheric
lens (Thorlabs C560TME-B) mounted in lens tube such that its distance from the fibre
can be easily adjusted. By fibre coupling in this way we are able to achieve efficiencies
of approximately 80 %.

The second PBS splits off light which is directed to the tapered amplifier (TA).
Here an additional isolator is used to ensure that back-reflections do not introduce
additional noise to the spectroscopy set-up. After the isolator, polarisation is cleaned
using a quarter waveplate, a half waveplate, and a PBS, and is precisely set for coupling
into another optical fibre (using the same optics as before). Polarisation cleaning is
necessary due to the sensitivity of the TA input to polarisation drifts.

The third PBS directs all the remaining light through a double-passed 110 MHz
AOM which shifts the frequency of the light up before it is sent into the spectroscopy
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Figure 3.4: Optical layouts for cooling and probing light. Half wave-plates are shown
in blue and quarter wave-plates in green.

50



3.2. CONTROLLING LIGHT

cell. The AOM sits at the focus of a one-to-one telescope formed by two 150 mm focal
length lenses. A pinhole blocks the unwanted diffracted orders (in this case we use the
first positive order) before the light passes through a quarter waveplate and is retro-
reflected back through the AOM. The use of the quarter waveplate means that output
light is separated from the input by being orthogonally polarised. The output light then
passes through the spectroscopy cell and is incident on a photodiode. Here we lock to
the 2 → 1 − 3 crossover absorption peak. Having the AOM within the spectroscopy
section of the optic layout means that the laser (and the light sent to other boards) is
locked 200 MHz below the 2→ 1−3 crossover, and so is a total of 412 MHz below the
cooling transition (F = 2 to F ′ = 3). The details of the frequency control is discussed
in Sec. 3.2.3.

We note that this spectroscopy set-up includes an option to use a difference photo-
diode to minimise noise on the locking signal, though this is not currently necessary.
To use this arrangement, one would direct half of the spectroscopy light through the
cell, and half onto a mirror, these two signals would then be measured by two different
photodiodes (on the same sensor head in the position labelled as PD in Fig. 3.4) and
the signal subtracted.

Repump Laser: The repump laser follows a similar arrangement, with light being
split between the spectroscopy and experiment set-ups with a PBS after the isolator.
The spectroscopy arrangement is as before, but without the option for recording a
difference signal. Here, as discussed previously, we lock to the F = 1 → 1 − 2

crossover. Some magnetic shielding of the cell was required for the spectroscopy cell
due to Zeeman shifts in transitions caused by the residual field of the isolator.

The light used for the experiment is passed through a reducing telescope (using
lens of focal lengths f = 100 mm and f = 35 mm) which creates a beam of the correct
size to be passed through a single-pass AOM. This AOM shifts the light by +78.5 MHz,
bringing the frequency of the light close to the F = 1→ F ′ = 2 repump transition.

After the AOM, the repump light is then overlapped with the trap light at two dif-
ferent PBSs and coupled into optical fibres to the experiment. We can also use repump
light which is not overlapped with the trap light by coupling it out of the ‘waste’ port
of the final PBS (this is shown with an arrow at the bottom of the optical layout in
Fig. 3.4).
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Amplified Trap Light: On the repump and TA board, in addition to creating and
controlling the repump light we also amplify the trap light and control the frequency
of light for each MOT separately. Light from the trap laser board is coupled into a
fibre which acts as an input for the tapered amplifier (New Focus TA-7613, which has
a maximum power output of 1 W at 780 nm). The technical specifications of the TA
indicate that minimum seed power of 10 mW [227] is required. In our system this
corresponds to a minimum input power of 19 mW before the input fibre, which in turn
yields a seed of approximately 15 mW.

The TA output is raised to the correct beam height and made parallel to the table
using a periscope, before being directed through an isolator which protects the TA from
back reflections. The light is then split into two separate paths for the two MOTs with
two PBSs. On the first PBS, the reflected light goes through a double-passed 200 MHz
AOM at the centre of a one-to-one telescope formed of two 100 mm focal length lenses.
The output beam is then transmitted through the PBS into the overlapping and fibre
coupling section of the board. The light transmitted through the first PBS is transmitted
through a second PBS into a separate double-passed AOM arrangement, which uses
optics of the same specification. The output of this second AOM set-up is reflected
from the PBS into the overlapping and fibre coupling section of the board.

After frequency controls each of the two MOT beams are overlapped with the re-
pump light on their own PBS, before being coupled into optical fibres. There are
two mirrors before and after each PBS (a total of four), allowing the trap and repump
beams to be precisely (and separately) steered for coupling into the fibres. Rather than
using off-the-shelf optical fibres for the MOT light, we use two different Laser2000
fused fibre splitters: a one input → two outputs fibre for the 2D MOT, and a one in-
put→ three outputs fibre for the 3D MOT. As before we couple into the fibres using
position-adjustable aspheric lenses. However, due to the use of a fibre with a different
mode-field-area, we use different lenses (Thorlabs C240TME-B). Due to the fusion
method used to create the splitter fibres, it is more difficult to optimise the injection
polarisation of the fibres as the polarisation axes are not perfectly aligned at the fuse
point. This means that one has to minimise the overall drift in polarisation of the fibre
outputs, rather than optimising a single output. We are also unable to couple light into
the fibres as efficiently as desired due in part to poorer mode matching. The fibres are
not perfectly balanced in intensity output, but this can be remedied later in the exper-
iment. For example, through the 1→ 3 fibre we have a total efficiency of 52.8 % and
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the three output ports contain 35.4 %, 31.7 % and 32.9 % of that output light.

‘POPP’ board: The ‘POPP’ board is seeded by light coupled out of the trap laser
on the trap laser board. It is collimated using a fixed focus collimator. We split this
light using PBSs to direct the light through three different double-passed AOMs, thus
producing the push/plus beam, the probe (or imaging) light, and the optical pumping
(OP) light (this ordering corresponds to the ordering of the relevant PBSs). In each
of these cases, the AOM is at the centre of a one-to-one telescope formed by two
f = 150 mm lenses. For the push beam we use a 200 MHz AOM set at 195.5 MHz,
resulting in light which is 21 MHz below the F = 2 → F ′ = 3 transition. Similarly,
for the probe light, another 200 MHz AOM is used, which is set at 205.9 MHz, giving
light which is 0.2 MHz below the F = 2 → F ′ = 3 transition. Finally, the optical
pumping light uses a 80 MHz AOM which is tuned to 72.55 MHz, giving a detuning of
0.1 MHz above the F = 2→ F ′ = 2 transition.

The push/plus light is sent to the experiment using a standard Thorlabs optical
fibre, coupled using a fixed focus collimator. The probe and optical pumping light
will be overlapped on a non-polarising beam-splitter, to ensure that they have the same
polarisation, before being coupled into another standard optical fibre.

3.2.3 Frequency Control

As discussed above, we use AOMs to provide precise and tunable frequency control
as well as fast switching. We use AA Opto Electronic AOMs, with the MT80-B30A1-
IR, MT110-B50A1-IR, and MT200-B100A0,5-800 models used to produce frequency
shifts of the order of 80 MHz, 110 MHz and 200 MHz respectively. AOMs shift and
angularly deflect beams through rf-induced Bragg diffraction in a crystal (in this case
TeO2). The frequency shift of the AOM is given by ∆ν = nf where f is the frequency
of the rf signal applied to the crystal and n is a positive or negative integer. We use
the ±1 diffractive orders and block all unwanted modes. In addition to controlling the
frequency shift of the light, the rf frequency determines the angular deflection of the
diffractive orders (though this angular shift can be cancelled by operating in a double-
passed arrangement). The diffraction efficiency depends on the power of the rf signal
and the alignment of the crystal - the AOMs used here have a maximum rf input of 2 W.

We control our AOMs with two home-built driver boxes, which give us eight 2 W
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radio frequency (rf) signals which are switchable and tunable both in power and fre-
quency, with this controllability being mediated by LabView software. Following ex-
isting group knowledge we have implemented an adaptation of the controllers used in
previous experiments [7,8,20,176] refined by Jonathan Pritchard into an easy to popu-
late PCB set-up which controls (and limits) the voltages sent to the driver components.

The basic AOM driver (as used in [19, 20]) consists of a voltage-controlled os-
cillator (VCO), a mixer, an rf switch, and an amplifier attached in series. The VCO
provides an oscillating signal, the frequency of which is controlled via a tuning voltage
of 1 V–7 V. Its output is coupled into the local oscillator (LO) port of a double balanced
mixer, providing amplitude control via a DC signal in the intermediate frequency (IF)
port, with the resulting amplitude controlled signal being output through the rf-output
port. We use Mini-Circuits VCOs ZX95-100-S+ and ZX95-200-S+, with frequency
tuning over the ranges 50 MHz–100 MHz and 100 MHz–200 MHz respectively. Our
mixers are again from Mini-Circuits and have model number ZX05-1-S+, they operate
over a frequency range of 0.5 MHz–500 MHz. After frequency and amplitude control,
switching is added with a high isolation rf-switch (Mini-circuits ZASWA-2-50DR+)
which is controlled using a 5 V TTL signal. Finally, an AA Opto Electronics amplifier
(AMPA-B-34-20.425) is used to amplify the signal to a maximum of 2 W.

3.3 Vacuum

Our vacuum chamber is an iteration on the design used in previous experiments [7, 8,
10].

Originally, as previously discussed (Sec. 2.2.4), we planned to use the grating MOT
technology pioneered within the group [162,172,174–177], using a 2D GMOT pushed
into a 3D GMOT. However, due to unforeseen problems during the upgrade of a the
original BEC experiment at Strathclyde (see details in the thesis of Johnathan Con-
way), we returned to using the known technique of a standard 4 (6) beam 2D (3D)
MOT in a glass cell. This change of tactic did not require significant changes to our
laser system design. In fact we could simply use splitter fibres to create the extra beams
needed.

In brief (and ignoring pumps etc.), the vacuum chamber consists of two glass cells
separated by a differential pumping tube with a mirror attached to one end, a schematic
of this is shown in Fig. 3.5. This gives us a high pressure chamber in which we can
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Figure 3.5: The basic schematic of the ‘science’ section of the vacuum chamber. De-
tails are given in the text. The dashed line indicates a section of the body which is
not shown. This is not to scale and is shown in more detail in later figures (Figs. 3.15
and 3.17).

collect atoms in a 2D+ MOT from a relatively rubidium rich atmosphere before the
imbalance in intensity of the plus beam pushes atoms through a hole in the mirror,
through differential pumping tube and into a low pressure cell at the other end. Here
in the low pressure chamber, we can collect and further cool atoms in a 3D MOT with
molasses, before magnetically transporting them to a crossed dipole trap for evapora-
tion. The evaporative dipole trap will be overlapped with a dipole potential created by
a Fresnel zone plate, allowing the zone plate trap to be loaded as easily as possible.

The vacuum chamber with magnetic field coils is shown in Fig. 3.6 from various
view points.

The two glass cells used within our experiment were made by Precision Glass
Blowing from Pyrex (also known as Schott glass or N-BK7). The cells have dimen-
sions 30 mm × 30 mm and are 100 mm long; the glass has a thickness of 2.5 mm. The
cell is attached to a 2-3/4” rotatable CF flange made of 316L/LN stainless steel, with
the linking section having a 1.25” outer diameter (OD). The low pressure (a.k.a the 3D
or science cell) is anti-reflection (AR) coated for 780 nm–795 nm. However the coat-
ing process had a low success rate resulting in Precision Glass Blowing being unable
to supply a second coated cell. The two cells are shown attached the vacuum chamber
in Fig. 3.7.

In order strike a balance between fast MOT load times (which requires a high
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Figure 3.6: The vacuum chamber and coils. a) false colour view of the chamber (the
false colour aids visibility), b,c) Alternative views.

Figure 3.7: The two glasses cells. The low pressure (3D/science) cell is shown in the
left image and the high pressure cell is shown on the right. We can see the gold mirror
attached to the differential pumping tube in the high pressure cell.
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background pressure of rubidium) and reaching temperatures and phase space densities
compatible with BEC production (which requires a low background pressure), we need
to separate the two halves of our vacuum chamber with a differential pumping tube. As
suggested by its name, a differential pumping tube allows the two chambers it separates
to have different pressures. This is done having a small diameter which restricts gas
flow via its low conduction thus creating a situation where a lower pressure can be
reached on one side. The tube also acts as an transverse velocity selector (that is for
velocity perpendicular to the propagation of the push/plus beam) by virtue of its small
aperture meaning that atoms with higher transverse velocity will collide with the sides
of the tube, thus being lost between the two MOT stages. The design of the tube was
informed by modelling of the expected velocity distribution of atoms in the MOT.

The design of the differential pumping tube is shown in Fig. 3.8, alongside a photo
of the machined tube. Here we see that the tube initially has an inner 2 mm diameter,
with this increasing in two steps along the length (156 mm) of the tube to 5.85 mm
and 7.20 mm; the graduation in internal diameter, accounts for the thermal expansion
of a jet of atoms travelling through the tube and the drop of the atoms under gravity.
The tube was machined from 316L/LN stainless steel. Due to the tube’s similarity to
that used in [7], we expect it to have a similar conductance (0.022 L s−1) and be able to
maintain a pressure ratio of 10−4 between the two sides of the chamber.

At one end of the DPT, the tube is cut at a 45° angle. We attached a mirror to this
surface using vacuum compatible epoxy. The mirror, a 25.4 mm diameter, protected-
gold coated, aluminium substrate mirror from Edmund Optics (part number 47-114),
was cut to size and a 2 mm hole drilled to match the end of the DPT.

All of the vacuum components were attached to a custom machine rectangular
block of the same design as used in [7, 8, 10]. Its 316L/LN design has 10 2.75” CF
ports and a plate in the centre onto which we mount the DPT. We use all but 2 ports
for various vacuum components, with the unused ports sealed with blanks. The ports
on the top of the chamber are home to two valves (MAV-150-V right angle valves),
which allow us to attach a roughing pump to the chamber during the initial evacuation
and baking process. The valves will also allow us to modify the chamber in the future
(i.e. add additional dispensers) without breaking vacuum.

In order to achieve and maintain vacuum, we use three different vacuum pumps: a
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Figure 3.8: The differential pumping tube and its dimensions, with the technical draw-
ing showing the shape and size of the inner tube.

45 L s−1 ion pump, a 20 L s−1 ion pump, and a non-evaporable getter (NEG). The lower
rate pump is attached to the 2D cell side of the chamber (high pressure) and is an Agi-
lent VacIon Plus 20. We use a custom-made mu-metal shield to reduce the influence of
the pump’s magnetic field on the experiment. The higher rate pump is attached to the
3D cell side (low pressure or science cell). In this case the pump is a Gamma Vacuum
TiTan 45S ion pump, it has its own integrated magnetic shields. We control both these
ion pumps with controllers from the corresponding manufactures (Agilent’s MiniVac
controller and Gamma Vacuum’s SPC ion pump controller). The NEG is a SEAS Ca-
paciTorr D 400-2 which is attached to the low pressure side of the vacuum chamber.
Once activated this pump provides passive pumping, meaning that should low pressure
chamber pump fail, we have back-up pumping. In Fig. 3.6 (a, c), the 45 L/s Gamma
Vacuum pump is on the far side of the chamber, the 20 L/s Agilent pump is the black
pump on the near side of the chamber, and the SEAS NEG is the tube on the near side
of the chamber which is attached to the bottom of the vacuum block.

As an atom source, we attach four SEAS 87Rb dispensers to copper feed-throughs
in a ring layout. In Fig. 3.9, we show two of the four dispensers having been attached.
Once all four dispensers are attached, they form a ring of dispensers. We can operate
the dispensers in one of 3 arrangements (Fig. 3.9(b)), either using the dispensers in-
dividually (diagram A), or all together (B or C). If we wish to operate all dispensers
simultaneously, schematic B requires a lower total operating current than C. The dis-
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Figure 3.9: The attachment of dispensers in our system. The photo shows two of the
four dispensers attached to feed-throughs. The right hand schematic shows three differ-
ent arrangements for connecting the dispensers, allowing us to operate one dispenser
at a time (A), or all at once (B and C).

pensers were activated while wired in the arrangement shown in B, but during normal
operation, we utilise arrangement A so that we can use each dispenser in turn. The
normal operating current for a single dispenser is 6.5 A.

We note that some compact high repetition rate BEC machines (namely the QUAN-
TUS collaboration [218, 228]) have been unable to form a 2D+ MOT when using dis-
pensers as their atom source due to contamination from other atomic species. They
now use ovens instead (though still do not use a Zeeman or another precooler). Using
an oven takes up a larger footprint but would operate in a similar manner (i.e. by heat-
ing the sample - here an ampoule). As we have been able to form a 2D+ MOT using
dispenser, this is not a problem in our experiment.

3.3.1 Bake Out

In order to operate in ultra-high vacuum (UHV), we needed to bake the vacuum system.
This out-gasses residual water in the vacuum components, and allows lower pressures
to be reached. While the system is still hot, and before the ion pumps are fully turned
on, we also need to activate the NEG, the ion pumps (known as ‘burping’ the ion
pump), and the dispensers. This process allows any impurities in the components to
be removed from the chamber by the roughing station pump rather than damaging the
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Figure 3.10: A photo of the chamber during the baking process. The chamber is insu-
lated using foil, and heated using variac controlled heating tapes. The turbomolecular
pump can also be seen.

ion pumps (such damage is known as poisoning). This is particularly important for
the dispensers, as we need to coat the metal interior of the chamber with rubidium
such that a useful vapour pressure is present, but this amount of rubidium may poison
the ion pumps and reduce their life spans. A photo of the chamber during the baking
process is shown in Fig. 3.10.

A time-line showing the temperature and pressure of the chamber during the baking
process is shown in Fig. 3.11. We gradually heated the chamber up to 200 ◦C over
a period of 6 days (with this period being determined by a bank holiday weekend),
the chamber was kept at this temperature for 7 days, before being cooled gradually.
We activated each component individually once the chamber had reached 40 ◦C. We
record a pressure of 1× 10−9 mbar in the high pressure side and 1× 10−11 mbar in the
low pressure side, with these values being at the lower limit of measurable range of the
ion pump controllers.
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Figure 3.11: The baking process for our chamber. The solid lines correspond to tem-
perature measurements at various positions around the chamber (their positions are
shown in the legend). The orange dotted line (right axis) shows the pressure of the
chamber throughout the bake, measured using an ion gauge on the roughing station.

3.4 Magnetic Fields

As discussed in Sec. 2.2, magnetic fields are a crucial part of any laser cooling set-up.
In our experiment, we require three sets of trapping coils, plus two sets of compensa-
tion coils (also know as shim coils). The coils are designed to be easy to mount, with
them being mounted on the vacuum chamber (by attachment to the flanges) as far as
possible. This means that we can slip the coils on and off easily.

2D coils: For the 2D+ MOT, we require a 2D quadrupole field (i.e. a quadrupole
field in the axes perpendicular to the MOT centre, such that a line of magnetic field
minimum is present along the centre of the MOT, see Sec. 2.2.2 for details). A diagram
and photo of the 2D coils are shown in Fig. 3.12. They are rectangular quadrupole coils
in an anti-Helmholtz arrangement. The MOT coils yield the following gradients at
their centre in the x, y, and z direction: 5.22 G/cm/A, 4.06 G/cm/A, and 1.17 G/cm/A.
When operating at 4.5 A, the temperature increase of the coils is approximately 17 ◦C
with continuous operation for over 1 h, with a negligible change in length of the coil
wires. The shim coils (rectangular Helmholtz coils) give a suitably uniform magnetic
field of 1.1 G/A at the centre.

3D MOT coils: For the 3D MOT we have a pair of circular coils in an anti-
Helmholtz arrangement, giving us a 3D quadrupole field. Here the coils have an inner
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Figure 3.12: Magnetic field coils for the 2D+ MOT (2D quadrupole and shim coils).
a) is a CAD drawing of the coils and b) shows the coils before being mounted on the
chamber.

radius of 15 mm, a coil separation of 35 mm, and 180 turns. This yields an expected
gradient of 18.6 G/cm/A and can be operated at a current of up to 3.5 A. The expected
power dissipated by the coils during normal usage is less than 9.5 W, meaning that air
cooling will be sufficient for their operation.

Magnetic quadrupole coils: We use a second set of circular coils in an anti-
Helmholtz arrangement to create a quadrupole field which can be used for magnetic
transport, hybrid evaporation cooling or as a levitation field. Due to the spatial con-
straints of the experiment (i.e. other coils and optical access), these coils must be fur-
ther from the cell, and so require many more coil turns and run at a higher current
(when compared to the MOT coils). In this case we have 289 turn coils with an inner
radius of 18.5 mm and separation of 67 mm. This results in an expected gradient of
9.24 G/cm/A and required operating current of below 22 A. Due to this high current
requirements, the coils dissipate a large amount of power (650 W) and so water cool-
ing is needed. This cooling is provided by the white, 3D printed, Nylon (SLS Nylon
PA2200) cups, which can be seen in Fig. 3.13, which hold the coils in turbulent flow
of recirculating water.

3D shim coils: We use shim coils to cancel background magnetic fields in the lab.
Being able to cancel magnetic fields is crucial for experiments with ultra-cold atoms
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Figure 3.13: The magnetic field coils for the low pressure side of the chamber. In the
CAD drawing (a), the square shim coils, 3D MOT coils (smaller circular coils), and
the holder for the quadrupole coils (white mounts) can be seen. In the photo (b), the
shim and 3D MOT coils have been attached, but the quadrupole coils are still being
tested so are not present in the photo.

so as to avoid distortion of atom clouds, meaning that the shim coils on this side of
the experiment are much more important than those used on the 2D side. On this side,
we have three square pairs of coils, each in a Helmholtz-style configuration (i.e. with
currents flowing in the same direction), allowing us to compensate for fields in all
directions.

These square shim coils are designed to give similar magnetic fields at the cen-
tre of the coil: (Bx, By, Bz) = (2.2, 2.2, 2.4) G/A. The coils have the following
dimensions (where r is the coil side length, D is the coil separation, and N is the num-
ber turns): (rx, ry, rz) = (180, 210, 230) mm; (Dx, Dy, Dz) = (180, 210, 230) mm;
(Nx, Ny, Nz) = (25, 30, 35). The x, y, and z directions correspond to the inner, middle
and outer shim coils in Fig. 3.13.

3.5 Magneto-Optical Traps

Prior to creating a MOT in the new vacuum chamber, we tested the lasers in an ex-
isting atomic clock experiment [176], which we share a lab with. This experiment
uses a grating to create a MOT (see Sec. 2.2.4), with the required light fibred to the
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Figure 3.14: A fluorescence image of a GMOT created using our laser system.

vacuum chamber. This means we could simply replace their fibre input with ours and
optimise polarisation to achieve a MOT. The MOT obtained is shown in Fig. 3.14. The
frequency of the light was not optimised at this stage as the atomic clock experiment
uses a different MOT scheme (GMOT) and experimental controls.

3.5.1 2D+ MOT

As is the repeated theme when designing this experiment, we have tried to make every-
thing as compact and modular as possible. For the 2D+ MOT, this means that we have
designed and created ‘plug-and-play’ output couplers where, once they’re aligned, we
can unplug or swap fibres without needing to realign the system.

Previous BEC experiments in the group have used either a standard 3D or 2D
MOT with a push beam to load atoms through the differential pumping tube to the
low pressure cell and a 3D MOT [7, 8, 10, 19, 20]. However, a 2D+ MOT can pro-
vide higher atom flux and lower temperatures without a more complex optical set-
up [165, 167, 229–231]. In a 2D+ MOT, the push beam is larger than the DPT hole
and is retro-reflected back through the MOT, giving molasses cooling along the axial
direction and creating an intensity imbalance which gives atom flux through the DPT.

Typically, a 2D MOT will be produced using four elliptical beams, giving a long
thin trapping volume. The elliptical beams are generally created with large cylindrical
lenses, however, one can obtain similar results by using a series of smaller circular
beams, which reduces the complexity and size of the optical set-up [229, 230, 232].
We use a similar arrangement to that used in Refs. [229, 232], using polarising beam-
splitters to create a series of three individual circular beams.
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Figure 3.15: The optical layout of the 2D+ MOT (Not to scale). The layout is de-
scribed in detail in the text.

A schematic of our 2D+ MOT optics is shown in Fig. 3.15. Here we show the
glass vacuum cell (light blue) with the differential pumping tube and its mirror inside
the cell (mirror is shown in yellow), the CAD line drawings above and below the cell
show the designed couplers used to create the MOT - these are not to scale and are for
illustration purposes rather than exact replicas of those actually manufactured (this is
due to minor changes in the design occurring during manufacture).

2D MOT beams: To generate the MOT light, we use a cage-mounted telescope
to expand and collimate each diverging fibre output. The telescopes use −50 mm and
75 mm lenses, with 30 mm between the fibre output and the first (−50 mm) lens, and
58 mm between the two lenses. This yields a collimated beam with 9.38 mm (9.13 mm)
1/e2 radius for the horizontal (vertical) coupler. The positions of the lenses are opti-
mised for collimation and size using a shearing interferometer.

After the expanding telescope, the light is distributed through three PBSs using
half-waveplates. The waveplates are set such that the three reflected beams have
equal power (i.e. a third of the total power in this arm), and no light is transmitted
through the final PBS. The half-waveplates are mounted in between the PBSs and are
adjustable. After each PBS, the polarisation of each reflected beam is made circular
using a quarter-waveplate. The quarter-waveplate positions are indicated by the small
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Figure 3.16: Images of the 2D+ MOT. a) Shows an optimised 2D+ MOT - the atoms
are visible as a thin line in the centre of the chamber. In b) the MOT is optimised for
florescence (maximum visibility) rather than for loading rate; here we can see two 2D
MOTs forming at the overlap of two of the 2D beams.

circles at the output ports of the mount in the schematic. After the light passes through
the cell, it is retro-reflected by mirrors with quarter-waveplates glued to them.

Plus beam: The plus beam is collimated out of its (standard Thorlabs) optical fi-
bre with a fixed focus collimator (Thorlabs F280APC-780), giving a 1/e2 radius of
1.5 mm. This is then expanded using a telescope with lenses of focal length −50 mm
and 100 mm, giving a final 1/e2 radius of 3.13 mm. The light then passes through a
half-waveplate which allows the orientation of this linearly polarised light to be opti-
mised. Light is then reflected out of the cell by the DPT mirror and retro-retroreflected
back through the cell by a d-shaped mirror.

To align and optimise the 2D+ MOT, a temporary 3D MOT on the low pressure
side was used to collect atoms. It is a temporary set-up used to optimise the 2D+ MOT
in advance of the low pressure side coils being completed. The optics system used
is the same as will be used in the final 3D MOT, though the exact positioning of the
optics may be modified to enable optical access for later experimental stages.

Images of the 2D MOT are shown in Fig. 3.16, with (a) showing the optimised
2D+ MOT (a line of atoms can be seen in the centre of the cell and is particularly
visible in the right half of the image). In (b) the MOT is optimised for fluorescence
rather than loading rate, allowing us to see the positions of the individual 2D MOTs.
Here we can only see two MOTs rather than the three expected, this is due to two
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3.5. MAGNETO-OPTICAL TRAPS

Figure 3.17: The optical layout of the temporary 3D MOT (Not to scale). The layout
is described in detail within the text.

problems encountered when combining the designs of the beam splitter mount and
the magnetic field coils. Firstly, during the manufacturing process, the width of the
half-waveplate mounts between PBSs increased, meaning that the total length of the
mount and the separation between successive MOTs would be larger. This meant that
the beam furthest from the DPT is clipped by the coil former. Although the clipping
means that a third MOT does not form, it should still result in extra cooling. However,
the magnetic field at this end point is no longer shaped as a quadrupole due to edge
effects from the coils and so a MOT cannot be formed in this region.

3.5.2 3D MOT

The 3D MOT consists of three retro-reflected MOT beams which give us a traditional
six beam MOT. Light is sourced from the one-to-three splitter fibre, with each fibre
having identical expansion telescopes and polarisation optics.

The light is expanded to the same beam radius as for the 2D MOT using the same
telescope arrangement. It then passes through a quarter-waveplate to set the polarisa-
tion to circular. After passing through the cell and atoms, the light is retro-reflected
from a mirror with a quarter-waveplate attached. This set-up is repeated for each of
the three dimensions, with Fig. 3.17 showing the 2 horizontal beams (the circle in the
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Figure 3.18: A photo of the temporary 3D MOT.

centre shows the vertical MOT beam).

We can use the 3D MOT to characterise and optimise the 2D+ MOT by recording
and optimising loading rates. We see a maximum load rate of (5.32± 0.09)× 108 atoms/s
which is comparable to the 2D-push MOT shown in table 2.1, but lower than the 2D+
loading rate shown. This loading rate is measured via pulsed loading of the MOT. With
a 15 s load time, we achieve an atom number of >5× 109 in the 3D MOT, 10 times
higher than in Ref. [8]. The optimisation and characterisation of the MOTs will be
discussed in detail in future work. A picture of the 3D MOT is shown in Fig. 3.18.

3.6 Evaporation Cooling

A variety of evaporative cooling techniques were mentioned in Sec. 2.2.9. Here we
will discuss which of these techniques are expected to be used with this experiment.
We summarise a small subset of existing BEC experiments in Fig. 3.19, showing a
range of atom chip, hybrid, all-optical and laser cooling based BEC machines, which
(in general) are designed for fast BEC creation.

Here we see that the smallest and fastest BEC machines use atom chip traps with rf
evaporation [218, 233–235]. Atom chips allow fast creation of BECs due to their size
and proximity to the atoms, this means that tight, flexible magnetic traps can be made
in a very small space.

All-optical evaporation is a relatively new technique (compared to rf evaporation)
with fast evaporation being challenging due to the difficulties of reaching the runaway
regime in a standard dipole trap. A variety of techniques have been used to mediate
this problem, such as MACROFORT [211], compressible (or double-compressible)
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Figure 3.19: Comparison of a variety of evaporative cooling methods, with final BEC
atom number being plotted against total cooling time (including precooling steps).
Compact experiments are shown with unfilled symbols as opposed to filled markers.
Atom chip [218, 233–235], hybrid (optical and magnetic) [8, 9, 213], all optical [210,
211,236,237], and laser cooling [215] techniques are shown by the blue square, orange
circle, yellow diamond, and purple star respectively. We note that the all optical route
with the smallest cooling time uses Yb rather than Rb in the other cases.

crossed-dipole traps [210, 236], or dynamically shaped optical traps [237]. These all-
optical techniques can reach similar total cooling times and atom numbers as atom
chips, though they are not yet commonly implemented in compact/portable set-ups.

An earlier optical evaporation technique is that of hybrid traps, where a crossed
dipole beam and a quadrupole magnetic field are used. This is used in an existing ex-
periment at Strathclyde [8, 9], which achieves 1× 105 atoms in under 20 s, where the
first 15 of those seconds are dedicated to MOT loading.

By comparing the optical access, footprint and complexity, we can assess the suit-
ability of the above techniques for our experiment.

We need very good optical access in order to use the zone plates and we want to
be able to easily overlap and load the zone-plate generated potential, so atom chips are
not suitable for our experiment. An atom chip would block optical access from at least
one direction, and we would not be able to overlap the trap centre with a zone plate
easily due to the small distance from the trap to the chip. We also note that the zone
plates are designed to produce a potential approximately in the centre of the chamber,
a position which is not achievable with an atom chip.
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This leaves either an all-optical trap (with its associated complexity) or a hybrid
trap (which requires a magnetic field as well as dipole beams). As both scenarios
require the use of two crossed dipole beams, it makes sense to make the experiment
as flexible as possible, by creating a situation where either technique could be used.
We also note, that if we wish to use a ring in vertical orientation (that is to place the
zone-plate glass at the end face of the cell), we would need to be able to evaporate in
this position as well as in an arbitrary position along the centre of the cell, requiring
magnetic transport. We also know that hybrid evaporation works in a chamber very
similar to ours as it has already been done in this group [8].

Therefore, since we need to use magnetic transport to allow for overlapping of po-
tentials, we should initially build the experiment with the view of using hybrid evapo-
ration, for which we already have a suitable quadrupole coil (as discussed in Sec. 3.4).
We would then be able to possibly upgrade the experiment to use a simple all-optical
evaporative process after magnetic transport to increase the repetition rate.

3.7 Imaging

Within the experiment, we will use a variety of imaging techniques to analyse the
atomic ensemble. Mainly, we will use fluorescence imaging to achieve in-situ imaging
of the MOTs during loading and optimisation phases, and use absorption imaging to
image the BEC. In order to perform an interferometric read-out, we plan to use the
contrast interferometry scheme used and outlined in [8–10]. The methods by which
one can use absorption imaging to characterise a BEC are described in Sec. 4.2.1.
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Chapter 4

Understanding and Analysing
Ultra-cold Atoms and Bose-Einstein
Condensates

In all the experiments discussed in this thesis we use or plan to use a BEC to perform
precise measurements. A thorough understanding of how BECs behave is crucial to
being able to use them for metrology and for predicting how BECs will behave in the
ring traps covered later in the thesis (Chaps. 5, 6, and 7).

This chapter is split into two parts, in the first I will discuss some of the theoretical
description of BECs which are most relevant to our experiments. This will start by
explaining the Gross-Pitaevskii equation (a form of the non-linear Schrödinger used to
describe BECs), then move on to discussing properties such as temperature, density,
phase and coherence, and various excitations which can lead to phase fluctuations.

The second part will be concerned with the practicalities of making measurements
using BECs. This will begin with introducing how BECs can be measured using ab-
sorption imaging, to find out atom numbers and temperatures. This will then be used
to briefly discuss results pertaining to the existence of phase fluctuations in elongated,
cigar-shaped condensates. The imaging system modifications and experimental results
presented in this section were obtained early in my PhD. Further details of this experi-
ment are covered in Refs. [18–20, 29–31].
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4.1. PROPERTIES OF BOSE-EINSTEIN CONDENSATES

4.1 Properties of Bose-Einstein Condensates

As presented in the introduction (Sec. 1.2) and the experimental theory chapter
(Chap. 2.2.9), a Bose-Einstein condensate (BEC) is a quantum degenerate state in
which an atomic cloud condenses such that the ground state is macroscopically oc-
cupied. This condensation occurs when the de Broglie wavelength of the atoms be-
comes larger than the interatomic spacing. At this point the atoms behave as a single,
observable, quantum mechanical object.

As the ground state of a BEC has macroscopic occupation, it can be described by
a single wavefunction. Naı̈vely, we can say that the cloud of atoms are completely
coherent that so it provides a perfect analogue for a laser in an atom interferometer.
However, this perfect behaviour only occurs at zero temperature, an ideal we cannot
hope to reach. So we need to understand how typical experimental conditions, like
finite temperature and various trapping geometries, affect a condensate.

4.1.1 The Gross-Pitaevskii Equation

To build a quantum mechanical description of BEC we can begin with the Hamiltonian
for an atom in a potential in Eq. 2.9 and add in inter-atomic interactions as we’re now
looking at an ensemble of atoms, this approach follows that laid out in Refs. [238,239].

BECs are very dilute as well as being low temperature, this means that atoms in-
teract via s-wave, 2-body collisions. In this scenario, the interaction potential (U ) of a
single pair-wise interaction between two atoms can be modelled by

U
(
~r − ~r′

)
≈ g δ

(
~r − ~r′

)
, (4.1)

where the interaction is completely described by the s-wave scattering length as:

g =
4πas~2

m
, (4.2)

If one sums over all particles then this contact interaction becomes a mean field poten-
tial proportional to the atomic density (n(~r)), Ueff(~r) = g n(~r), giving us an effective
Schrödinger equation for an atom ψ(~r) with energy ε in a trapping potential Vtrap

Heffψ(~r) =

[
− ~2

2m
∇2 + Utrap(~r) + Ueff(~r)

]
ψ(~r) = εψ(~r) . (4.3)
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In the thermodynamic limit (i.e. N → ∞), at T = 0, this equation reduces to the
equation below. This semi-classical approach is called the time-independent Gross-
Pitaevskii Equation (GPE) [238,239], which describes the ground state wave-function
(ψ0(~r)) for N atoms with an eigenvalue of µ, the chemical potential:[

− ~2

2m
∇2 + Utrap(~r) + gN |ψ0(~r)|2

]
ψ0(~r) = µ ψ0(~r) . (4.4)

The ground state wave-function can also be thought of an order parameter, which is
a useful description when considering the coherence of a BEC (Sec. 4.1.4). In these
descriptions it is important to note that |ψ0(~r)|2 = n(~(r)).

Thomas-Fermi Limit

When analysing a BEC, we tend to operate under conditions that satisfy the Thomas-
Fermi limit, the limit of large atom number. In this case, the interaction term dominates
over the kinetic energy, so the GPE reduces to:

Utrap(~r) + gN |ψ0(~r)|2 = µ , (4.5)

which, recalling that n(~r) = N |ψ0(~r)|2, has the following solution [239]:

n(~r) =

{
µ−Utrap(~r)

g
: µ > Utrap(~r)

0 : µ < Utrap(~r)
(4.6)

This solution leads us to the concept of a Thomas-Fermi radius, which is the radial
position in a harmonic trap at which the trapping potential and the chemical potential
are equal. Outside of this radius, in the Thomas-Fermi approximation, the condensate
density is zero.

Eq. 4.6 can be used to calculate the chemical potential of the condensate in a
particular trapping potential through normalisation, that is by realising the condition
N =

∫
dV n(~r) (an integral over all volume V ).

In an anisotropic harmonic trap, as used in experiments presented at the end of this
chapter, a potential of the form

Utrap(x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (4.7)
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has a chemical potential of the form [239],

µ =
~ω̄
2

(
15Nas

√
mω̄

~

)2/5

, (4.8)

where ω̄ = (ωxωyωz)
1/3, is the geometric mean of the trap angular frequencies in each

direction (ωx,y,z). An equivalent chemical potential will be described in Sec. 4.1.3.
For a spherical harmonic trap with ωr = ωx,y,z (i.e. ω̄ = ωr) the Thomas-Fermi

radius (RTF) is given by,

RTF =

√
~
ωr

(
15Nas

√
mω̄

~

)1/5

. (4.9)

4.1.2 Temperature and Density

To understand condensation at finite temperature, i.e. that the ground state is macro-
scopically occupied but there is still finite occupation of the excited states, we can look
to a statistical model of condensation.

By adopting the 2-fluid model of superfluidity, we can describe a condensate at
non-zero temperature by the density decomposition n = nn + n0, where nn is the
normal thermal fraction which occupies the excited states of a trapping potential, and
n0 is the condensate (ground-state) fraction [238,239]. The condensate fraction is well
described by the Thomas-Fermi limit of density (Eq. 4.6), whereas the normal fraction
is well described by the Bose-Einstein distribution.

The Bose-Einstein distribution gives the mean occupation number of an energy
state εi in terms of the chemical potential µ and the temperature T :

f(εi) =
1

e(εi−µ)/kBT − 1
. (4.10)

We can use this and the density of states (per unit volume) to write the particle den-
sity as a function of temperature and chemical potential, which in turn means that the
chemical potential can be written in terms of the temperature and particle density. This
is a standard derivation and is presented in Refs. [238, 239]. Condensation occurs at
the transition temperature TC , which is defined as the point at which the chemical po-
tential of a non-interacting Bose gas is zero. At this point of condensation, the excited
states are saturated and any particles added to the system must populate the ground
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state rather than the excited states. For a harmonic trapping potential, the critical tem-
perature is given by,

TC =

(
N

ζ(3)

) 1
3 ~ω̄
kB

, (4.11)

where ζ(3) = 1.202 is the Riemann zeta function evaluated at 3.
The derivations above give us a way to the write the relative ground state occupa-

tion (i.e. the condensate fraction) in terms of the ratio between the temperature and the
critical temperature:

N0

N
=
n0

n
= 1−

(
T

TC

)3

, (4.12)

though, as with all the statistical derivation mentioned above, this is approximate as it
does not account for finite particle number and assumes a perfectly harmonic trap (the
exponent 3 is dependent on the trap geometry so, for example, is 3/2 for a box in 3D).

When measuring a BEC or any cloud of atoms, our observable is the density dis-
tribution (as is discussed in Sec. 2.3.1), which for the normal, thermal, fraction is
approximated by

n(~r) =
N

(2π)3/2σxσyσz
exp

(
−
(
x2

2σ2
x

+
y2

2σ2
y

+
z2

2σ2
z

))
, (4.13)

where σ2
i = kBT/(m ω2

i ) are the widths of the cloud in each direction [239]. This as-
sumes that thermal atoms mainly occupy the low-density, weakly interacting edges of
the cloud and so the Bose-Einstein distribution is well approximated by the Maxwell-
Boltzmann distribution [155]. The density distribution of thermal atoms and the con-
densate fraction are shown for a harmonic, cigar-shaped trap in Fig. 4.1.

The condensate fraction as written above, assumes that the condensate and the
thermal atoms are well separated, whereas in reality the condensate acts to modify
the potential in which the thermal atoms reside – raising the bottom of the effective
potential felt by the thermal atoms [240]. This correction does not play a significant
part in the analysis of data with our experiment as we do not operate close enough to
T = 0 or the transition temperature. A first order correction (as derived in [240]) is
shown in Fig. 4.1 in addition to the relation given by Eq. 4.12.
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Figure 4.1: a) and b) show the theoretical particle density (radially) for a condensate
with 107 atoms at 200 nK in a cigar shaped trap with frequencies ωr/2π = 92.3 Hz
and ωz/2π = 9.11 Hz, as is used in the experiment discussed later in the chapter [20].
In b) the black solid line is the total atom density (n = nn + n0), the dotted red line
is the thermal fraction (Eq. 4.13), and the blue dashed line is the condensate density
(Eq. 4.6). c) shows the approximate relationship between the condensate fraction and
temperature, with the blue curve showing Eq. 4.12 and the red curve showing a first
order correction detailed in Ref. [240].

4.1.3 Ring Geometries

A wide variety of ring geometry BECs have been demonstrated for a wide range of ex-
periments, with many groups theoretically modelling dynamics as discussed in Sec. 1.4
with further modelling in Refs. [241–243].

In Ref. [84], the density distribution and chemical potential for an equilibrium BEC
in a ring trap is derived. This is done by first considering the trapping potential to be
of the form:

U(r, z) = U0 +
1

2
mω2

r(r − r0)2 +
1

2
mω2

zz
2 , (4.14)

where U0 is a background potential, r0 is the radius of the ring, and ωr and ωz are
the radial and axial trapping frequencies respectively. By substituting this potential in
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Eq. 4.6 and normalising this density, the following chemical potential is derived:

µ = ~ω̄
√

2Nas
πr0

, (4.15)

where ω̄ =
√
ωrωz is the geometric mean of the trap frequencies. This is only mean-

ingful for a 3D system so µ > ~ωz (i.e. the chemical potential is bigger than the energy
scales associated with axial harmonic potential) or equivalentlyN > (πr0/2a) (ωz/ωr).

The critical temperature of a ring (or any power-law potential) can be calculated
following derivations detailed in Ref. [24], whereby,

N

2πr0

λdB = g5/2(1)
kBTC
~ωρ

kBTC
~ωz

= g5/2(1)

(
kBTC
~ω̄

)2

, (4.16)

where g5/2 is a polylog function and g5/2(1) ' 1.3415. This can then be expressed
equivalently with the following relations [84, 102]

kBTC =

(
N

2πr0

~2ωρωz
g5/2(1)

h√
2πm

)2/5

, (4.17)

N0

N
= 1−

(
T

TC

) 2
5

. (4.18)

4.1.4 Coherence

In Eq. 4.4, the wave function or order parameter is a complex function with an ampli-
tude Ψ0 and phase θ [244]:

ψ0(~r) = |ψ0(~r)|eiθ(~r) =
√
n0(~r)eiθ(~r) . (4.19)

As, in normal circumstances, the phase of the condensate is global, it does not con-
tribute to the density profile and in a normal BEC, the ‘choice’ of phase can be con-
sidered as spontaneous symmetry breaking – it doesn’t matter what the phase is, but it
needs to exist. In a hydrodynamic model of a BEC (that is considering it as a superfluid
with flow – a description common when describing superfluid helium and supercon-
ductors) the phase fixes the velocity (field) of the fluid. BECs can be described by
hydrodynamic equations of superfluids when the effects of the thermal background is
small. We also note that this description is valid if physical quantities vary slowly over
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distances longer than the healing length [244].
The healing length (ξ) is defined as the minimum distance over which the order

parameter can heal [244]. It is derived by balancing the quantum pressure and interac-
tion energy of a condensate when the density of a condensate grows from nothing to a
density n [239, 244, 245]:

ξ =
1√

8πnas
. (4.20)

The healing length is typically of the order of a fraction of a micrometer [246]. Typi-
cally in a BEC, the scattering length is smaller than the healing length which is in turn
smaller than the size of the condensate (as < ξ < L).

4.1.5 Simple Excitations

Typically the first excitations we learn about in condensates are quantised vortices,
which occur as a consequence of a net circulation in an irrotational field (which is a
condition of superfluid flow) [238]. For vortices, the flow must by quantised, mean-
ing that the phase of the order parameter must only change by an integer multiple of
2π, this integer is called the winding number. As vortices involve a change in order
parameter phase, the size of their cores is determined by the healing length [244,245].
Vortices have been observed using many experimental techniques, a review of which
can be found in Ref. [246]. The concept of quantised superflow has also been demon-
strated in ring geometries, where, in general, stirring is used to introduce a flow [63–
65, 67–72, 247, 248].

Although the appearance of vortices is conceptually easy to understand, they aren’t
the most elementary excitations of a BEC. These are periodic solutions to the time-
dependent GPE and can be described as travelling wave density fluctuations in a hy-
drodynamic formulation [239]. The energy spectrum of the travelling wave solutions
consists of: phonons at low momentum (i.e. length scales (inverse of the wave number)
longer than the healing length ξ) which means collective motion with sound-like prop-
erties; and high momentum free particles. At small phonon wavevector ~q the phonon
energy εq is [239]

εq ≈ s~q ; s =
√
ng/m , (4.21)

where s is the velocity. Phonon based excitations are associated with phase fluctua-

78



4.1. PROPERTIES OF BOSE-EINSTEIN CONDENSATES

tions [239].

Low-Dimensionality and Phase Fluctuations

The effective dimensionality of a BEC can be altered by modifying the shape of its
trapping potential. If the trapping frequency in a particular direction is high enough
that the excited level spacing is much greater than the thermal fluctuations (on the
order kBT ), then excitations in this direction are in effect ‘frozen’ out. This can be
formalised by considering the relative sizes of trapping frequencies and the chemical
potential to define the dimensionality of the system [84]:

3D : ~ωz,r < µ

2D : ~ωz < µ < ~ωr
1D : µ < ~ωz,r

, (4.22)

One can in effect move between the 3D and a quasi-1D regime by modifying the
trapping frequencies of an elongated, cigar-shaped BEC where the BEC is tightly con-
fined in the radial direction (ωr), but more loosely confined in a transverse direction
(ωz), with aspect ratio Λ = ωr/ωz. This also holds for a toroidal potential, though the
relative ordering of ωz and ωr can be different.

The condensate has a range of length scales: the physical size (determined by
trapping frequencies ωi ), the healing length (ξ, as detailed in Eq. 4.20), the thermal
de Broglie wavelength (λdB, given by Eq. 1.2) and the coherence length (lφ). The
coherence length characterises the exponential decay of the single-particle correlation
function g1(~r) =

〈
ψ†(0)ψ(~r)

〉
[249]. When the coherence length is of similar size or

shorter than the condensate itself then the condensate is said to be in a phase fluctuating
regime [249].

Experimental Observations

Phase fluctuations have been observed in a variety of scenarios previously, in sev-
eral geometries such as cigar-shaped and ring-shaped traps [102, 103, 250–252], all of
which operate in a quasi-condensation regime.

In a system very similar to the experiment discussed in the next section of this
chapter (Sec. 4.2), pronounced stripes were observed across a BEC, which appeared
stronger at lower atom numbers and higher temperatures [250]. Following previ-
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ous theoretical work [253–255], they were able to confirm that the density variations
(σBEC) associated with random (thermal) phase fluctuations are strongly dependent on
temperature, according to:

(
σBEC

n0

)2

=
T

ΛTφ

√
ln τ

π


√√√√

1 +

√
1 +

(
~ωrτ
µ ln τ

)2

−
√

2

 , (4.23)

where τ is related to the droptime/evolution time t by τ = ωrt, and Tφ is a charac-
teristic temperature: kBTφ = 15 (~ωz)2N0/32µ. This suggests that phase fluctuations
could be used to determine the temperature of condensate at temperatures where the
background thermal fraction is negligible [256, 257].

The momentum distribution of phase fluctuations is expected to be Lorentzian, a
characteristic which was confirmed in Ref. [252], with the width of this momentum
distribution determined by the temperature of the cloud.

Phase fluctuations are important for the non-equilibrium dynamics of elongated
BECs, particularly for understanding how equilibrium states are formed [251]. The
elongation of a cigar shaped atom ensemble means that the formation of a BEC occurs
locally, meaning that oversized, oscillating BECs can form.

In contrast to the thermal fluctuation based (random) phase fluctuations presented
above, it is possible to drive a BEC system to induce similar density fluctuations, such
as Faraday waves [258]. In this paper, they modulate transverse confinement potential
of a cigar shaped BEC (with the transverse direction referring to the tightly confined
ωr axis) and observe the resulting longitudinal Faraday waves. The periods of the
excited waves decrease with increasing driving frequency. This dependence on driv-
ing frequency could yield a method to differentiate between driven and spontaneous
(thermal) phase fluctuations, i.e. if one is able to change the period of the observed
fluctuations by changing an experimental parameter, then this is likely to be the source
of the fluctuations.

4.2 Measurements

A variety of interesting effects have been measured in the Strathclyde JA3.05B BEC
experiment detailed in [18–20, 29, 31]. In the following section we will briefly present
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Figure 4.2: A schematic of absorption imaging. The incident light is shown in red,
and the shadow of the atoms in blue.

some of the results which have been contributed to during the course of this thesis.

4.2.1 Imaging

In the BEC experiment described in [18–20, 29, 31], we can now image the BEC from
2 directions, giving 3D information about the cloud. The experimental set-up is shown
in Fig. 4.2, with the vertical imaging system that I made whilst working on the experi-
ment.

In Fig. 4.2, we show probe light incident on a BEC from two directions, it is then
magnified by approximately 2×, before being imaged on a CCD – in the horizontal di-
rection this is a Andor lucaEM DL658M with pixel size 10 µm, in the vertical direction
a FLIR USB2.0 Chameleon camera is used (CMLN-13S2M-CS) which has a pixel size
of 3.75 µm.

Images of the BEC taken from both directions are shown alongside the schematic,
with these photos being taken separately as imaging on multiple axes simultaneously
complicates the optical depth equations and requires modifications to optical pumping
arrangements (due to quantisation axes). In the images we can see a ‘lobe’ containing
atoms in a different mF level which is split from the rest of the BEC by the magnetic
field which acts as a quantisation axis for the optical pumping light which spatially
overlaps with the probe light.

The vertical imaging system gave us the ability to monitor the motion of the BEC
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parallel to the main imaging light. If a BEC is released away from the centre of a
harmonic trap, then oscillations or ‘sloshing’ is observed. By monitoring BEC position
over a range of drop times, this motion can be characterised and minimised. The
minimisation of sloshing in the direction of the main probe beam was essential to the
results shown in Ref. [31] which demonstrate the observation of the Talbot effect in
light passing through a matter-wave grating created by two interfering BECs. This is
because the Talbot effect means that the contrast of our interference fringes are strongly
dependant on the distance between the camera and the atoms.

4.2.2 Time of Flight Expansion – Atom Number and Temperature

It is a common result to use Eq. 4.13 to describe the thermal fraction of a BEC (or a
thermal cloud of atoms). But in time of flight expansion (used to calculate temperature)
it is necessary to convolve this initial Gaussian (width σ0) with the expanding one (the
velocity distribution) such that the resulting width is given by σ2(t) = σ2

0 +σ2
0t

2. From
this we can derive an expression for the temperature in terms of the width after a certain
time of flight. In a cylindrically symmetric, cigar-shaped, harmonic trap with axial and
radial frequencies νz and νr, the temperature (in direction i = r, z) is given by

Ti =
m

kB

σ2
i (t)

t2 + 1
(2πνi)2

, (4.24)

where σi(t) is the thermal cloud width in the ith direction at drop time t , and m is the
mass of the cold atom used [155].

From a single image of a BEC, by fitting the thermal and condensate fraction,
we can derive information about the BEC purity (i.e. the ratio between thermal and
condensate fractions) the temperature and the critical temperature.

4.3 Observations of Phase Fluctuations

In our BEC experiment [20], by changing the shape of our trap between the condensate
and quasi-condensate regime, we were able to observe the appearance of phase fluctu-
ation in the cloud. A selection of images of the BEC exhibiting phase fluctuations are
shown in Fig. 4.3.

Contrary to previous observations of phase fluctuations [250–252], rather than see-
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Figure 4.3: Three absorption images of BECs displaying phase fluctuations. The
integrated profiles are shown below the images. All of these images are taken with the
same droptime (58 ms) and the same aspect ratio (40).

ing the BEC phase fragment randomly, thus creating non-periodic density fluctuations
in time-of-flight images, we see strongly periodic density fluctuations in our time-of-
flight images. Regular phase fluctuations have only been observed prior to this in
systems with deliberate modulation of the trap [258]. However we were not able to
modify the periodicity of our phase fluctuations, suggesting we are not observing this
particular phenomenon. The phase fluctuations in our experiment have been previously
discussed in Ref. [20], with subsequent work being beyond the scope of this thesis.
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Chapter 5

The Theory and Simulation of Fresnel
Zone Plates

As discussed in the introduction (Sec. 1.4.2) there are many methods which can be
used to produce tailored optical potentials, ranging from acousto-optic beam deflection
techniques (‘painted potentials’) [106, 107] and composite potentials [65, 66, 68, 69,
98–101, 259] to holographic phase manipulation using a phase adjustable spatial light
modulator (SLM) [99, 111, 112, 260] or micro-mirror devices (DMD) [261, 262].

All of these methods have yielded interesting results allowing for to study of phe-
nomena such as persistent currents [63–71], non-equilibrium dynamics [72], and low
dimensional atom systems [73]. The holographic method has proved to be very adapt-
able, paving the way for the production of novel optical lattices for quantum simu-
lation [263], dark spontaneous-force optical traps [201] and exotic Laguerre-Gauss
modes [120, 264, 265].

When discussing how to create traps, it is important that we consider the system
requirements. Trapping ultra-cold atoms requires a very smooth trap, as the presence
of very small perturbations in a potential can result in heating of a cold atom cloud or
fragmentation of a trapped Bose-Einstein condensate [266]. Within previous demon-
strations of all-optical ring trapped BECs, the azimuthal variation of the ring minimum
was far below the chemical potential of the BEC. To successfully produce trapping
potentials for BEC, we must aim to match or surpass the above limit on azimuthal
variation, thus aiming to produce traps of µK depth with a roughness of below 1 %.
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5.1. WHAT IS A FRESNEL ZONE PLATE?

Much of the work contained within this chapter is an extension of previously pub-
lished work [123]. In this chapter the work begins by introducing holography and zone
plates with physical comparisons to other techniques. In Sec. 5.2 the creation and sim-
ulation methods are detailed, with this theory being used for numerical comparisons of
Zone Plates and SLMs. We then apply the simulations to the problem of atom trapping
in Sec. 5.3.1 and design prototype plates for manufacture in Sec. 5.4. The chapter fin-
ishes by considering the potential for creating exotic toroidal potentials in a FZP-SLM
hybrid system. Secs. 5.4 and 5.5 contain work completed subsequent to the numerical
comparison paper [123].

5.1 What is a Fresnel Zone Plate?

Fresnel Zone Plates (FZPs) and other holography techniques work by spatially mod-
ulating either the amplitude or phase of a light beam, resulting in interference of the
optical field after propagation; by design of this modulated region one can in principle
then produce an arbitrary optical pattern, or trapping potential for atomtronics.

The prototypical FZP is one that acts as a lens, resulting in a focused spot in the
selected focal plane (z = f ). While the operation of such an FZP is standard in the

Figure 5.1: a) Spherical light wave phasefronts (separated in phase by steps of π)
emanating from a focused light beam form a distinctive Fresnel phase pattern when
intersecting a plane. b), c) Binary transmission holograms with equivalent phase char-
acteristics are made from refractive index n material, with half-wavelength steps in
optical depth (n−1)d. Higher bit-depths of phase resolution enable hologram blazing.
Figure taken from Ref. [123].
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5.1. WHAT IS A FRESNEL ZONE PLATE?

teaching literature of diffraction [267], we find it intuitive to briefly consider the FZP
required to generate a single focus, shown diagrammatically in Fig. 5.1 a). We make
use of the time/direction symmetry of linear optics by starting from the desired result
and finding the full electric field pattern at a defined plane. Our goal is now to create
an optical element, the FZP, that matches an input beam, for example an idealised
plane wave, to the field pattern that we produced in the plane. The FZP can then be
considered the hologram generated by a plane wave and the backward-propagating
field from the focus. For a binary FZP, we obtain a two–level map of the phases of the
electric field in the plane of the FZP required to generate the desired focus.

This type of plate (Fig. 5.1) consists of alternating Fresnel zones forming concen-
tric rings that alternate between the chosen binary heights at radii,

rj =

√
jλf +

j2λ2

4
, (5.1)

where j can take any integer value, and λ is the wavelength of the incident light. Suc-
cessive rings can be blocked, allowing only those that constructively interfere at the
target plane to propagate. Alternatively, a phase shift of π can be added to otherwise
‘destructive’ zones, increasing the useful power at the focal plane. Figs. 5.1 b), c)
demonstrate an envisaged transmissive binary FZP etched into a substrate, with con-
secutive zones that would be completely out of phase experiencing an increased optical
path length.

A similar approach can be used to make straight waveguides with a linear (rather
than circular) symmetric FZP pattern, or to create arbitrary FZP-like patterns by record-
ing the phase of a near-field diffraction pattern. In the next section we discuss in detail
the theory and numerical methods to implement this.

Physical Comparison of Zone Plates to other Holography Techniques

DMDs and SLMs are commonly used updatable holography techniques. DMDs are 2D
arrays of micro-mirrors which can be programmed to apply binary (on/off) intensity
modulation to an incident electric field. Rather than mechanically modulating light,
SLMs are arrays of liquid crystal pixels which impart an adjustable (via an applied
voltage) phase modulation on reflected light.

State of the art SLMs can have pixel sizes as small as 12 µm, effective areas of
approximately 2 cm2, typically operate with 8-bit precision and are updatable. To op-
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5.1. WHAT IS A FRESNEL ZONE PLATE?

erate an SLM, a computer with a suitable monitor port is needed, alongside the large
controller. Relatively complex optical systems are required for optimised use [268],
increasing the complexity of using such a technology. In comparison, DMDs are bi-
nary updatable systems with relatively small controllers. A typical off-the-shelf DMD
(the Texas Instruments DLP4500NIR) has an array of 912 × 1140 7.6 µm mirrors.
The FZPs discussed in this thesis can be manufactured with pixel size as small as
10 nm and with large total areas of up to 25 cm2 [172]. Despite these obvious spatial
advantages, FZPs are by their very nature static, with only two levels of phase con-
trol. These technologies are already being utilised for trapping, in the form of optical
tweezers [269, 270].

Despite the successes outlined previously, SLM holography for atom trapping still
remains an imperfect and computationally intensive technique, notwithstanding signif-
icant improvement in the iterative algorithms used [99,260,271]. This is due to a com-
bination of system aberrations, low spatial resolution, dead space between pixels, and
the difficulty of creating an algorithm that converges on a solution suitable for atom
trapping (i.e. smooth and without background light which could cause low loading
rates or tunnelling out of the trap [99]) without lowering light usage efficiency. Some
of the spatial resolution disadvantages of SLMs compared to FZPs can be mitigated
through appropriate demagnification. However additional optics introduce additional
aberrations and immediately increase experimental complexity.

We anticipate that microfabricated FZPs will overcome many of the limitations
posed by the use of SLMs in atom trapping experiments. The higher spatial resolution
and sharper edges between pixels offer the ability to reach higher spatial frequency
and thus produce a wider range of more accurate holograms. Additionally, due to their
size and transmissive operation, we expect that FZPs could be placed inside a vacuum
chamber (as with the grating MOTs shown in [162,172]), thus immediately addressing
the major system aberration of propagation through a vacuum chamber window. SLMs
also have considerable size, weight and power (SWaP) overheads associated with their
operation. Therefore, if we can sacrifice updatability, FZPs offer a passive, low SWaP
alternative to other holography techniques.
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5.2. DESIGNING FRESNEL ZONE PLATES

5.1.1 Light Forces

In order to use a FZP-only system, we need to be able to produce potentials which
will support against gravity without any additional applied potential. This requirement
results in the condition that gravitational force (Fgrav = mg) is less than the force
resulting from the optical potential. As shown by Eq. 2.27, the dipole force is the
negative gradient of the potential, thus we can apply this condition by calculating the
maximum component of the light force in the direction of gravity at the same radial
position as the focus (here we assume that propagation is aligned with gravity, and we
call this direction z). For a Gaussian focus, we can calculate this condition to be:

mg <
32

9
√

3

U0

zR
. (5.2)

It also important for us to consider the requirements for the roughness of a trap.
Various papers approach this in different manners for example, in Ref. [105] they state
that “it is necessary to flatten the time-averaged potential to better than 10% of its
depth”. In in order to generalise this, we should consider the energy scales involved
with a BEC propagating around a ring. We have a chemical potential, a kinetic energy,
and the potential energy of the trap. Thus we should to aim to have variation in the
potential energy less than the chemical potential and kinetic energy combined.

5.2 Designing Fresnel Zone Plates

Within our initial, comparative, work [123], we calculated and simulated phase plate
patterns (known as kinoforms) for single foci, rings, and beamsplitters, as shown in
Fig. 5.2. These target intensity distribution were chosen due to their applicability
to cold-atom trapping and atomtronics. The single focus allows both the calculation
and propagation methods to be evaluated and compared to the simplest FZP model,
whereas the ring allows for comparison of this method to existing toroidal traps which
are the simplest closed-loop circuits. In order to extend the simulations to consider
complex elements for atom optics we finally considered a beam splitter, as such an
element is essential as a building block to create a circuit type interferometer. Later in
our investigations, prior to manufacture, we adopted a slightly different beam splitter
model, emulating the y-shaped junctions demonstrated in Ref. [105] due to anticipated
heating effects and the symmetry linked limitations of the zone plates.
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5.2. DESIGNING FRESNEL ZONE PLATES

5.2.1 Simulations

The phase patterns required for production of the optical traps shown in Fig. 5.2 are
calculated using a Fourier–optics method of modelling the propagation of an initial
electric field E (0) = E(x′, y′, z = 0) to a distance z. This uses the angular spectrum of
the field, (A(0)), and the Helmholtz propagator,H, such that,

E (z) = F−1
[
H(z)A(0)

]
= F−1

[
eikzzF

[
E (0)
]]
, (5.3)

where F denotes the 2D Fourier transform [267] over x and y, the z-component
of the wave vector is kz =

√
k2 − k2

x − k2
y for an electric field with wave vector

|k| = 2π/λ [272, 273]. We use this method, following the details in Ref. [272], and
references therein, to complete the design algorithm shown in Fig. 5.3.

Firstly, a target intensity is calculated and then propagated backwards, using Eq. 5.3,
by the focal length. The phase of the resulting electric field in this plane is rounded to
the desired bit depth, as discussed later in the text. This routine acts to calculate the
required kinoform, and the performance of the result is tested numerically by simulat-
ing a desired input beam (either a plane wave or a Gaussian beam with defined width)
that is then propagated forward by the focal length. This is achieved using a MAT-
LAB scripts written by me based on previous code written by Paul Griffin [272]. The
code uses the fast Fourier transform algorithm to perform the propagation. It also uses

c)a) b)

Figure 5.2: The target intensity distributions used to simulate a range of potentials
useful for atomtronics and interferometry; a), b), and c) show a focused spot, a ring and
a beam-splitter, respectively. These simulation distributions are formed of Gaussians
with 1/e2 widths of 2 µm (or 5 µm for the focus) and ring radii of 200 µm. However,
for visibility, the distributions shown above have a larger width and are cropped to
show only the 600 µm × 600 µm area around the non-zero intensity. We note that
these parameters are not necessarily used in the manufactured zone plates presented in
Chap. 6. Figure taken from Ref. [123].
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P

P

Round 
ϕ

z=0→-f

z=0→f

I ϕ0

T ϕ-f
I-f

Figure 5.3: Schematic of the kinoform, or phase plate pattern, design process used.
The target (T) electric field distribution is propagated (denoted by P) backwards a
distance f using Fourier techniques and maximum spatial resolution (4096 × 4096).
The electric field is spatially averaged over a variable size grid of pixels, then separated
into phase (φ−f) and amplitude (I−f) components, with the phase rounded to 1-8 bit
resolution. The kinoform is then illuminated to create an image. Figure taken from
Ref. [123].

a nearest-neighbour interpolation algorithm to resize matrices in order to have lower
pixel size optical element in a higher resolution simulation area. Simulation accuracy
is limited in part by the accuracy of double-precision floats in the specific MATLAB
distribution used (of the order 1× 10−16) and the propagation of this numerical noise.

Our method of simulation means that the pixel sizes of the kinoform and simulation
(the electric field) are independent. Although we set the input beam and target plane
to have flat phase fronts, we allow for phase freedom in the resultant distribution. As
we are not utilising a feedback algorithm, our method intrinsically avoids the presence
of optical vortices, which can be confirmed through observations of simulation results.
We consider the case in which the kinoform acts as a transmissive element and the
incident light only illuminates the patterned area. We extend the simulation in later
work to consider a scenario closer to that achieved experimentally (see Chap. 7). It
should also be noted that no optimisation is used to improve the kinoform. This full
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5.2. DESIGNING FRESNEL ZONE PLATES

Helmholtz propagation method is computationally efficient and accurate, reducing the
possibility of fringing artefacts in comparison to the paraxial approximation utilised in
many hologram calculations as also highlighted in Ref. [99].

To evaluate the success of each kinoform, we calculate the root mean squared
(RMS) error for the normalised two dimensional final and target intensities,

ε =

√
1

N

∑(
Ĩ − T̃

)2

, (5.4)

whereN is the number of pixels (in the simulation), Ĩ is the final intensity, and T̃ is the
target intensity distribution, both intensity distributions are normalised by the mean of
the pixels in T that are brighter than 50% of the maximum value [112].

The target distributions we have chosen to simulate are shown in Fig. 5.2: a) a
focus with 1/e−2 intensity radius of w0 = 5 µm; b) a ring of radius r = 200 µm and
radial Gaussian waist wr = 2 µm; c) a beam splitter formed from straight segments and
radii as given in b), again with waist wb = 2 µm.

In the simulations, we anticipated that laser powers of 2 mW for the focus and
30 mW for the ring/beam-splitter at a wavelength of 1070 nm would be used in or-
der to give trap depths of a few µK, which would be comparable with potentials dis-
cussed in the literature. Moreover, this would yield trap frequencies of the order kHz
in the direction of tightest confinement, which is higher than most existing ring shaped
dipole potentials [54,65,66,70,104,247,248] and permits access to lower dimensional
regimes. The ring radius is larger than these previous demonstrations to increase its
applicability to interferometry where sensitivity scales with the area enclosed. We
note that larger rings have been successfully used for interferometry, with the rings
being rf-dressed time averaged adiabatic potentials rather than light-based dipole po-
tentials [86].

Throughout the simulation process, the electric field propagation is calculated to a
resolution of a wavelength with a simulation area of 4.38 × 4.38 mm2 (212 λ× 212 λ),
limited solely by the reverse propagation technique and computation memory require-
ments. For foci kinoforms illumination by Gaussian beams, the choice of input beam
1/e2 radius, w(z), is determined by the desired focal length and the Gaussian width,
w0 of the desired features by w(z) = w0

√
1 + (z/zR)2, with Rayleigh length zR =
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π w2
0/λ. However, for rings and beam splitters, an optimum 1/e2 radius is found to be

1 mm, determined through careful iterative simulations. We do note that these com-
putation limitations mean that the active area is smaller than, if comparable to, typical
SLM active areas of & 1 cm2.

Examples of the calculated kinoforms for FZPs illuminated by a Gaussian and pro-
ducing a ring and beam splitter are shown in Fig. 5.4.

We are also able to simulate the electric fields which would result from more com-
plex incident beams, thus simulating an effective hybrid FZP-SLM system in which
potentials could be dynamic. This is discussed in further detail in Sec. 5.5.

5.3 Comparisons Between Zone Plates and Spatial Light
Modulators

For the simulations shown in the paper, we executed the calculations for a wide range
of kinoform pixel sizes and phase resolution (which is referred to here as bit depth).
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Figure 5.4: Fresnel Zone Plates calculated for producing a ring and a beam splitter
using Gaussian beam illumination (as highlighted by the 5-point star in Fig. 5.6). The
inset shows the central section of the kinoform, magnified to allow the zone plates
features to be easily seen. Note that the outer regions of the zone plates appear grey
due to pixel dithering where the Fresnel zones would be smaller than a pixel. The pure
black area at the edges denotes the masked area, where the plate is non-transmissive
or light is blocked (in the simulations). The off-centre appearance of rings in the ring
kinoform are artefacts of the finite simulation pixel size. Figure taken from Ref. [123].
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This allowed comparisons to be drawn between binary FZP-type kinoforms with a
simulated pixel size of 1 µm and 8-bit SLM type kinoforms with simulated pixel sizes
of 12 µm or more (with 12 µm corresponding to the state of the art for SLMs at the
time of publication [274]). This effectively amounts to a comparison of whether better
phase resolution (i.e. the higher bit depth of an SLM) or better spatial resolution (i.e.
the smaller pixel sizes provided by a FZP) is more important for hologram generation.
We assume that phase resolution (δφ) is related to the bit depth (n) of a kinoform via
δφ = 2π/2n. In a real SLM, the phase range may cover more than 2π resulting in
some redundancy and reduction of phase resolution due to overlap of the high and low
value pixels.

Maps of RMS error, calculated in the simulations using Eq. 5.4, are shown in
Figs. 5.5 and 5.6. For all three target patterns and illumination beams (except the plane
focus), there is a clear increase in RMS error with increasing pixel size and decreasing
bit depth, as expected. The simulations also show that a two level FZP consistently
has an RMS error lower than that of a kinoform comparable to an SLM. In addition,
we can note that, at low pixel size, increasing the bit depth from 2 to 4 level phase
resolution significantly reduces the RMS error, thus improvements in microfabrica-
tion techniques would significantly increase the accuracy of FZP-type kinoforms by
allowing for non-binary phase. We also note that the ability to blaze the FZP kinoform
would permit much higher hologram efficiency [275, 276].

When considering the RMS error maps, we expected RMS error to increase as more
information about the ideal field in the kinoform plane ( E−f , see Fig. 5.3) is lost. Our
comparison between the two methods (FZP and SLM) is effectively a comparison of
the magnitude and significance of phase information loss for differing spatial and depth
resolution; couching the problem in these terms will help us to understand our findings.

The RMS error map, shown in Fig. 5.5, for a focus kinoform illuminated by a plane
wave clearly shows an unexpected increase in RMS error at high phase (high bit depth)
and spatial resolution (small pixel size), contrary to the expected result. In this area of
higher RMS error, we observe that the optical power is concentrated in a tighter focus
than the target 5 µm 1/e2 radius. This is shown in Fig. 5.7. We can understand this
as each pixel of the kinoform is illuminated equally, unlike Gaussian optics where a
concomitant Gaussian illumination of the optical element is required.
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Figure 5.5: Plot of RMS error for kinoforms of varying spatial and phase resolution,
illuminated by plane waves. The target intensity distributions, labelled T and with a
scale bar, are to the right of the corresponding RMS error plot. The obtained intensity
distributions for the lowest RMS error, typical FZP, and typical SLM are labelled by
the triangle, 5-point star and 7-point star respectively. Figure taken from Ref. [123].
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Figure 5.6: Plot of RMS error for kinoforms of varying spatial and phase resolution,
illuminated by collimated Gaussian beams of optimised widths. The obtained intensity
distributions for the lowest RMS error, typical FZP, and typical SLM are labelled by
the triangle, 5-point star and 7-point star respectively, shown logarithmically. Line
graphs of intensity versus radial position are shown below the full intensity plots. For
the focus and ring, the area around the (symmetrical) brightest region is shown at an
appropriate scale. The equivalent for the beam splitter shows the intensity distribution
along the vertical line of symmetry, with the peak offset from the distribution centre
indicating the position of split. Figure taken from Ref. [123].
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The consequences of this observation can be explored by considering three of the
contributors to the RMS error (two of which are introduced above): phase resolu-
tion error, (phase) spatial resolution error, and illumination error. In our routine (see
Fig. 5.3) all spatial intensity information from back-propagation is lost and replaced by
the intensity information of the illumination beam, whereas the phase information loss
is only limited by the pixel size and phase resolution. At large pixel size and low phase
resolution, these sources of error dominate over the intensity error, but at high resolu-
tions, the lost intensity information becomes dominant. Thus we need to consider the
clear mismatch between the illumination beam and its ideal profile. It is a standard
result of diffraction in Gaussian optics that a smaller focus diverges more rapidly than
a larger focus, meaning that the tighter the focus desired, the larger a kinoform or lens
should be used (or, in the case of a large lens, a larger incident beam), such that the
numerical aperture can be increased. Conversely, this means that the size of the illu-
minated area of the kinoform, as well as the phase across it, can affect the size of the
focus produced. So, for the plane wave case, the illumination is more similar to that
required for a smaller focus than 5 µm. We do not see this in the Gaussian illumination
simulations, Fig. 5.6, due to the Gaussian weighting of the intensity at the kinoform,
which more closely matches the ideal illumination.

As one can see from the RMS errors shown in Figs. 5.5 and 5.6, accuracy of in-
tensity reproduction is reduced with pattern complexity and for distributions with less
obvious symmetries. Reproduction of the beam splitter is much less accurate than for
either the focus and the ring. We can understand the impact of symmetry on the suit-
ability of patterns for this technique by considering the basic FZP for a focus shown in
Fig. 5.1. In the description shown in the figure, the electric field is considered as a train
of spherical wavefronts emanating from a focus which we can easily adapt as a thought
experiment for other patterns. In the case of the focus, limited information is lost, as
the phasefronts do not overlap, meaning that we can reproduce it very well. If we com-
pare this to a ring, we can imagine the phasefronts emanating from the ring in a way
analogous to field lines around a current carrying wire – now we imagine cylindrical
phase fronts with the wave guide at the centre (i.e. concentric toroids). These cylindri-
cal phase fronts retain the circular symmetry of the ring, like the Gaussian input beam.
This symmetry matching creates a smooth ring.

Conversely, if we imagine this for the beam splitter shown in Fig. 5.2c, we en-
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Figure 5.7: Foci produced by a 0.5 mm 1/e2 radius Gaussian (a) and a plane wave
(b) incident on a binary zone plate designed to produce a 5 µm 1/e2 width at a focal
length of 4 mm (with a pixel size of λ). Cross-sections at the foci are shown in c), the
Gaussian (plane wave) illuminated focus has a 1/e2 width of 2.9 µm (1.8 µm) to 1 s.f..
Intensities are normalised.

counter difficulties due to the lack of symmetry. The phasefronts will overlap in such
a way that more phase-information is lost for points along the waveguide that lie close
to the split point, simply because they overlap sooner than for points far from the split.
This means that for non-circularly-symmetric patterns, phase-information loss is not
equal for every point along the waveguide, leading to much more aberration. We note
that talking about phase information ‘loss’ is an oversimplification of the system, as in-
terference means that information is still retained even when the imagined phasefronts
overlap. However, the beam splitter remains rough due the lack of symmetry match-
ing of the incident beam and because the phase pattern could become too complex to
be resolved in our system (i.e. variation in phase could occur on smaller length-scales
than the pixel size).

One way to take advantage of the inherent symmetry of some patterns is through
using masking to modify the shape of the illuminated area simulated. Both the ring
and the focus have been masked to form circularly symmetric kinoforms, meaning
that artefacts caused by the square shape of the active area are reduced. However, the
reduced symmetry of the beam splitter makes this process more complex. The masking
makes pixels outside of a desired area completely dark, thus creating an active ‘area’ of
illuminated pixels and excluding pixels which cause aberrations. In the beam-splitter
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case, we were able to use the symmetry properties of a straight waveguide Fresnel
zone plate to shape the active area appropriately, thus blocking light incident more
than a certain distance from the centre of the intensity lines. This technique improved
accuracy, but required further fine-tuning to allow the approach to be applied to an
arbitrary intensity pattern. We also note that it would be difficult to implement it in a
physical (rather than simulated) scenario.

Due to symmetry considerations, in further work (Chap. 5.4) we adopt a y-shaped
junction as a more symmetric alternative to the curved beam splitter simulated here.

We can also discuss the suitability of targets for this holographic method by con-
sidering discontinuities in profiles. During the simulation work, we noted that the
discontinuous nature of the example beam splitter was an additional source of error in
its production, this led to us using a target that reached the edges of the simulation area
to avoid such issues. In a useful intensity distribution for atomtronics, one would want
to produce a target intensity with no discontinuities (i.e. a closed-loop circuit), such as
a ring with a beam splitter at either end for use in interferometry; hence, the disconti-
nuity based artefacts and errors are not critical to the success of these simulations.

In all the error maps, particularly for the Gaussian illumination, we see non-monotonic
variations in the errors between consecutive pixel sizes. This is due to aliasing between
the three length scales involved in the kinoform design calculations: the length scale
of phase change, the simulation pixel size (λ), and the kinoform pixel size. Due to
the involvement of three length scales we were not able to reduce this roughness with
suitable choice of any of these values. It may be possible to reduce the aliasing with
numerical techniques or filtering but this was not explored as important trends in the
data are clearly visible without additional analysis. The roughness in RMS error is less
pronounced for plane wave illumination as the overall RMS error is higher and so this
aliasing is less prominent.

As an extension to the simulations above, we noted that if the appropriate spatial
distribution of the incident field, with a flat phase front, can be produced at the kino-
form, then the errors would rapidly tend to zero, as for the single focus in the upper
plots of Fig. 5.6. Indeed, producing such a large scale pattern is well suited to the
coarser resolution of an SLM, suggesting that SLMs and FZPs can be used together
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synergistically. This will be further discussed in Sec. 5.5.

5.3.1 Expectations for Atom Trapping with FZPs

In order to demonstrate the applications of the hologram method of optical trap gener-
ation (particularly the potential for three dimensional trapping), we have demonstrated
propagation through the focus of the ring distribution in Fig. 5.8. This is shown both
for the best kinoform and for an FZP, with the average intensity of the ring minimum
at each distance shown as a scatter plot alongside the full intensity distributions. Both
cases demonstrate a full-width-half-maximum (FWHM) in the propagation direction
of 20 µm, similar to that expected for a focussed Gaussian beam (for which the FWHM
is equal to 2zR ≈ 24 µm). Radial plots of intensity are shown as line graphs in Fig. 5.6,
allowing for intensity noise to be seen. We can note that the intensity distribution in
the case of the focus and ring are too narrow to show any noise due to the pixel size
of the simulation. However, we can see significant noise along the vertical waveguide
section of the beam splitter. The beam splitter’s noise is largely due to beating between
the vertical and horizontal sections of the waveguides and could be reduced with more
careful target distribution design.

In the simulations of RMS errors in Figs. 5.5 and 5.6, we adopted a compromise po-
sition whereby we compared both target and image distributions across the whole grid
size. This means that even the background wings (i.e. non-target zone) of the intensity
distribution - which could affect the atomtronic circuit loading efficiency - contribute
to the error. However, for a given application one may be mainly interested in a subset
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Figure 5.8: Propagation through the focus for a ring hologram generated using an FZP
(left) and the best kinoform (right). The intensity at the ring radius (200 µm) is shown
in the cross-section plots on the right of each image. Figure taken from Ref. [123].
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of the image and target, e.g. the pixel region where the top 50 % of the target intensity
distribution. This region is where the coldest atoms would be trapped and in this case
it makes sense to modify Eq. 5.4 to only consider pixels in this zone. Moreover, one
should then adapt Ĩ the final intensity, and T̃ the target intensity distribution, so that
the intensity distributions are independently normalised by their maximum value over
the pixels in T which are brighter than 50 % of the maximum value. This gives a more
realistic estimate of the in-situ trap roughness, which can be seen in Fig. 5.9. The left
figure shows the results for a ring shaped potential and the right hand one shows the
results for a complex target ‘OR’ gate which was used in [99, 260] and is included for
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Figure 5.9: For the ring-shaped target, image (a) is a demonstration of how the rms
error is modified if one considers only the grid points in which the target is within 50%
of the maximum intensity. The target is normalised to its maximum value within this
pixel range, and the image is scaled by a constant which minimises the rms error. Note
the much higher overall error, as the large background content of the image can give a
false impression of pattern smoothness. The lowest rms error, typical FZP, and typical
SLM are labelled by a triangle, five-point star and seven-point star, with corresponding
errors of 0.0%, 3.7%and 32.7%, respectively. In image (b), for benchmarking, we
consider a complex target ‘OR’ gate which was used in [99, 260]. Note that in this
case the lowest rms error, typical FZP, and typical SLM are labelled by a triangle, five-
point star and seven-point star, with corresponding errors of 0.0%, 17.4% and 19.0%,
respectively. Such values appear high, however it is important to consider the small
target size, and that there is no additional hologram optimisation. The phase profile
across the target is flat in all cases, with no observable vortices. The holograms are
illuminated by its ideal spatial intensity distribution. Figure taken from Ref. [123].
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benchmarking purposes. The lowest RMS error, typical FZP, and typical SLM have
corresponding errors of 0.0 %, 3.3 % and 13 % respectively for a ring shaped target
(rounded to two significant figures, hence the zero value). In this situation, rather than
the plane wave/Gaussian illumination considered in Figs. 5.5 and 5.6, the hologram is
illuminated by its ideal spatial intensity distribution.

5.4 Design of Kinoforms for Manufacture

After completing the simulations detailed above, we needed to choose a range of 24
different kinoforms to be manufactured as detailed in Sec. 6.1, which will allow us to
map as large a range of parameter space as possible, whilst also being useful within our
experimental system. In the following section we will discuss the range of parameters
investigated, how each parameter should affect the potentials and finish by explaining
how the final 24 patterns were chosen.

The first decision required is what shaped patterns should one use. Following on
from our simulations shown above and in Ref. [123], it is obvious that we should
test some foci and rings as they will allow us to confirm that the zone plates work as
expected and will produce potentials that are useful for atom trapping. The beam split-
ters simulated, however, were not so successful, and so needed further development
before the kinoforms were manufactured. As briefly mentioned above, an alternative
beam splitter candidate is that of a y-shaped junction, it is demonstrated as a successful
painted optical potential in Ref. [105]. We also note from the findings in Ref. [105]
that propagation through bent waveguides can cause excitation of a BEC away from
the ground state. The solution to this problem is to make careful choices about curve
types or the use of discontinuities (such solutions are suggested in Ref. [277]). This
makes curved waveguides impractical for production using a permanent kinoform like
a zone plate. The y-junction type of beam splitter is a more promising candidate as it
can be designed in a manner with a higher degree of rotational symmetry.

In summary, we chose to test potentials of the following shapes: Gaussian of var-
ious sizes; rings of various widths and radii; y-junctions with varying angles between
output ports and different widths; a linear wave-guide; a ring with input and output
ports (referred to as a ‘ring-track’) ; and the beam splitter shown in the above simula-
tions, with a variety of different kinoform shapes.
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5.5. SIMULATIONS OF A HYBRID FZP-SLM SYSTEM FOR PHASE WINDING

As discussed in Sec. 3.3, our vacuum cell has interior dimensions 25× 25×97.5 mm
and the glass has a thickness of 2.5 mm, thus, one can calculate the effective optical
path length to the centre of the cell to be 18.185 mm (assuming the zone plate is po-
sitioned approximately 2 mm from the outside edge of the cell). In order to investi-
gate the impact of focal length (and hence numerical aperture) on the potentials, four
prospective focal lengths were simulated, 4 mm, 7 mm, 10 mm and 18.185 mm, with
the shortest focal length being for use inside the vacuum chamber as opposed to out-
side for the others. It is a standard result in Gaussian optics, that the minimum spot
size (1/e2 width w0) of a beam focused by a lens of focal length f is given by this
diffraction limited formula shown in Eq. 2.4. This equation should apply to the simple
focus patterns simulated, but is unlikely to apply in the case of the rings due to sub-
tle interference from all parts of the incident intensity profile. We also used this and
typical trap frequencies in other experiments to inform our choices of 1/e2 intensity
widths for the patterns, considering 5 µm, 10 µm and 15 µm.

In order to decide which of the 24 patterns to have etched, we simulated each shape
of potential for a range of focal lengths and 1/e2 widths, then calculated the RMS error
prediction for each simulated output field. From these RMS error measurements and
examination of each of the resulting potentials, we were able to choose 24 patterns
which would represent both the best candidates in terms of suitability and interest. A
table of the parameters for the chosen patterns is shown in Tab. 5.1

5.5 Simulations of a Hybrid FZP-SLM System for Phase
Winding

One of the exciting potential uses for Fresnel Zone Plates is to use them in combi-
nation with SLMs to create potentials that combine the benefits and mediate some of
the disadvantages of both systems. In this set-up, the SLM acts to tailor an electric
field profile incident on the zone plate, giving freedom to either improve the patterns
generated or modify them dynamically.

We are able to propose and simulate two possible approaches to this system: the
simplest is to predict what happens when known incident fields (like Laguerre-Gauss
beams) are applied, and the more complex, but potentially more powerful is to cal-
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Focus Focus Focus Focus Ring Ring
r0 = 100 µm r0 = 100 µm

f = 18.185 mm f = 10 mm f = 7 mm f = 4 mm f = 18.185 mm f = 18.185 mm
w0 = 5 µm w0 = 5 µm w0 = 5 µm w0 = 5 µm w0 = 5 µm w0 = 10 µm
Ring Ring Ring Ring Ring Ring
r0 = 100 µm r0 = 100 µm r0 = 200 µm r0 = 200 µm r0 = 200 µm r0 = 200 µm
f = 10 mm f = 7 mm f = 18.185 mm f = 18.185 mm f = 18.185 mm f = 10 mm
w0 = 5 µm w0 = 5 µm w0 = 5 µm w0 = 10 µm w0 = 15 µm w0 = 5 µm
Ring Ring Y-Junction Y-Junction Y-Junction Y-Junction
r0 = 200 µm r0 = 200 µm θ = 2π/3 θ = 2π/3 θ = 2π/3 θ = 15◦

f = 10 mm f = 7 mm f = 18.185 mm f = 18.185 mm f = 10 mm f = 18.185 mm
w0 = 10 µm w0 = 5 µm w0 = 5 µm w0 = 10 µm w0 = 5 µm w0 = 5 µm
Y-Junction Ring Track Line Curved BS Curved BS Curved BS
θ = 15◦ r0 = 200 µm Circular Mask Square Mask Circular Mask Loci Mask
f = 10 mm f = 10 mm f = 10 mm f = 18.185 mm f = 18.185 mm f = 18.185 mm
w0 = 10 µm w0 = 5 µm w0 = 5 µm w0 = 5 µm w0 = 5 µm w0 = 5 µm

Table 5.1: Parameters corresponding to the selected for manufacture. In the table, r0

is the radius of a ring, f is the focal length, w0 is the 1/e2 intensity radius (or width),
θ is the angle between output ports of a y-junction, and mask refers to the shape of the
kinoform. If the mask shape is unspecified, it is circular with radius 1 mm.

culate the incident E-field requirements for a particular target E-field considering the
zone plate used. Here we assume the use of zone plates manufactured for this thesis
(Secs. 5.4 and 6.1).

Case 1 - Applying known incident fields: In the first case, one uses Eq. 5.3 so the
resultant field is calculated by taking the chosen incident field, multiplying it by the
phase imprinted by the zone plate (this is it propagating through the kinoform), before
propagating forward by the required (focal) distance.

Case 2 - Tailoring the incident beam: In the second case, one begins with a target
E-field and follows a similar routine to that shown in Fig. 5.3. Starting with the target,
we propagate this to the plane of the zone plate, but rather than calculating the zone
plate as before, the phase imprinted by the zone plate is divided from the E-field and
the remaining field is the incident beam required to produce a pattern using the zone
plate. A schematic for this design process is shown in Fig. 5.10 for a 100 µm radius
ring (focal length 18.185 mm and 1/e2 width of 5 µm) with a 0 to 2π phase winding.

The use of both approaches described above can produce rings with phase wind-
ing, with varying levels of success. Here we will detail the simulations showing this
potential, and this will then be experimentally investigated in Sec. 6.3.

In Fig. 5.11 we show example of case 1 where a range of Lageurre-Gauss beams are

103



5.5. SIMULATIONS OF A HYBRID FZP-SLM SYSTEM FOR PHASE WINDING

P
z=0→-f

ϕ-f

I-fIT

ϕT

÷ϕFZP
ϕinc

Iinc

Figure 5.10: Schematic of the incident beam design process used. The target (T) elec-
tric field distribution is propagated backwards a distance f using Fourier techniques
(giving phase φ−f and amplitude I−f). The phase shift of the zone plate (φFZP) is then
removed via division to yield the required incident beam with phase (φinc) and ampli-
tude (Iinc). In the plots shown, the field plots are 0.3mm×0.3mm, whereas the FZP is
2mm×2mm.

applied to several of our ring zone plates. Then in Fig. 5.12 we show examples of case
2 where we aim to produce rings with a variety of phase windings by calculating the
appropriate incident beam. Here both the illumination fields required and the expected
results are shown. In each of these cases, we show the results for three different rings
to demonstrate how changing the radius, and focal length affect the results.

Case 1: Applying Known Incident Beams

Fig. 5.11 shows the simulated results of applying different LG beams to three differ-
ent ring FZPs (case 1). Here we apply the LG beams to rings: (radius/width/focal
length) 100 µm/5 µm/18.185 mm; 100 µm/5 µm/7 mm; 200 µm/5 µm/18.185 mm. The
LG beams are applied with different phase windings (p = 0 and ` = 1, 2 and 10) and
different ratios between ring (r0) and LG radius (R): r0/R. We use the ratio between
the two ring radii to allow accurate comparisons between the 100 µm and 200 µm ra-
dius rings.

The resultant fields shown in Fig. 5.11 show that the phase of an incident LG-beam
is converted from winding into a spiral pattern (this is most easily seen in the ` = 10
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case for each ring), the radii and widths of the resultant rings are not independent of
LG beam radius and a double (or even triple) ring structure (in intensity) is seen when
the LG beam is larger than the ring radius. We can also note that the amount of light
contained in the ring (rather than in background artefacts) increases with increasing
LG-beam radius, but that this is limited by the size of the zone plate (i.e. if the LG-
beam is too large it does not illuminate the centre of zone-plate sufficiently, as in the
cases of high ` and r0/R). The multi-ring structure is mainly seen for r/R > 2 in the
first ring – this ring has the smallest numerical aperture (longest focal length, smallest
radius and smallest width)

Comparing the rings of focal lengths 18.185 mm and 7 mm and the rings of radii
100 µm and 200 µm in Fig. 5.11 (i.e. comparing the first and second or first and third
kinoforms) allows us to see the effects of changing numerical aperture. This shows
that for a high numerical aperture (i.e. smaller focal length or larger radius) a tighter
ring is produced, with more defined phase winding. This is particularly seen when
comparing the ` = 2, r0/R = 2 of these three rings – for the first kinoform (lower
NA), the resultant output field doesn’t display a clear ring of phase winding, but the
two higher NA kinoforms do.

Case 2: Calculating a Tailored Incident Beam

These results contrast with those demonstrated in Fig. 5.12 where we define the target
field by adding phase winding to the original Gaussian target rings, then calculate the
field that must be incident on the kinoform to produce these. Again this is done for
` = 1, 2 and 10 and for rings: (radius/width/focal length) 100 µm/5 µm/18.185 mm;
100 µm/5 µm/7 mm; 200 µm/5 µm/18.185 mm.

The results seem to show that this method is more successful for narrow rings than
wide ones (comparingw0 = 5 µm and 10 µm) as a greater percentage of light is directed
into the ring as opposed to the background area. We also see that the ring potentials
seem to be better reproduced for higher `. We note however, that creating the incident
patterns calculated here would require very precise recreation of the beam, which may
not be practically reproducible experimentally, particularly as these incident fields vary
on the µm scale.

Experimental realisations of some of these simulations are presented in Sec. 6.3.
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Figure 5.11: Resultant fields for kinoforms illuminated by Laguerre-Gauss beams.
We illuminate with LG beams of p = 0, ` = 1, 2, 10 and ring radii equal to
0.5, 1, 2, and 10 times the radius of the ring produced by a manufactured zone plates.
Figures show an area of six times the radius along each axis, centred on the ring. Each
intensity plot is normalised and the transparency of the phase plot is dependent on
the intensity. The LG beams are applied to three different ring zone plates, from top
to bottom: (radius/width/focal length) 100 µm/5 µm/18.185 mm; 100 µm/5 µm/7 mm;
200 µm/5 µm/18.185 mm. 106
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Figure 5.12: The modelling of rings with phase winding (` = 1, 2, 10). The tar-
get ring (on a square of 4r0 + 200µm), calculated require illumination field (on a
square of 12r0 + 600µm) and resultant pattern (on a square of 4r0 + 200µm) are
shown for three ring zone plates. From top to bottom: (radius/width/focal length)
100 µm/5 µm/18.185 mm; 100 µm/5 µm/7 mm; 200 µm/5 µm/18.185 mm.
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Chapter 6

Testing of Fresnel Zone Plates

In this chapter, we present the optical testing of the manufactured Fresnel Zone Plates.
Manufacturing is detailed in Sec. 6.1.

We image each of the potentials produced by the zone plates, with the methods
detailed in Sec. 6.2.1 and preliminary results shown at the beginning of Sec. 6.2.2. We
then analyse the ring potentials in detail. This begins with basic characterisation of the
shapes, axial focusing, and efficiency in Sec. 6.2.3. The roughness of the rings is then
analysed in more detail in Sec. 6.2.4, using an RMS error approach initially, followed
by Fourier analysis of the potentials to determine the dominant lengths scales involved.

After converting the measured ring parameters into trapping parameters in Sec. 6.2.5,
preliminary results from an FZP-SLM hybrid system are presented in Sec. 6.3. These
results are a proof of principle demonstration of the creation of dynamic potentials and
intensity correction.

6.1 Zone Plate Manufacture

A selection of 24 patterns have been etched onto a 18 × 26× 3 mm fused silica sub-
strate by Holo/Or specified by a csv file detailing the digital depth patterns to be etched
(an image of this csv file is shown in Fig. 6.1 a). The etching process is a combina-
tion of photolithography and then dry plasma etching steps [278]. We note that some
of their etching techniques are listed in US patents [275, 276]. The substrate used is
specified to have a surface flatness (before etching) of λ/20, with a tolerance depth of
approximately ±3 % on an etch depth of 1200 nm and wall slopes of better than 80°
(resulting in sub-wavelength differences in feature size at the top and bottom of the
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Figure 6.1: a) The csv file sent to be etched showing 24 different kinoforms. b) is a
photograph of one of the three identical plates etched.

etch). The minimum feature achievable in the etching process is 0.7 µm. However, due
to computing limitations files of pixel size 1 µm were used to design the etch pattern
(this has subsequently improved within the work detailed in chapter 7). We note that
the substrate is not coated in order to minimise complexity and cost. Only a single
layer of anti-reflection coating would be possible and uniform coating would be very
difficult to achieve. A photograph of one of the three etched plates is shown in Fig. 6.1
b.

6.2 Optical Testing

6.2.1 Testing Procedures

We have optically measured the patterns generated by the etched kinoforms using the
imaging layout detailed in Fig. 6.2. This system consists of three main parts, incident
beam preparation, mounting of the zone plate, and the imaging section.

Within the preparation section a fibre laser (NP-Photonics RockTM Module) is
launched using a triplet collimation package (using Thorlabs: TC12APC-1064) which
results in a beam of approximately 1 mm 1/e2 radius and an M2 close to 1 (as shown
in Figs. 6.3 and 6.4). This is followed by the option of inclusion of a Dove Prism
(with flip mirrors allowing for its relatively seamless inclusion and removal from the
system), which permits the incident beam to be rotated. A series of mirrors allow for
the incident beam to be precisely aligned with the imaging system. We note that polar-
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Figure 6.2: A schematic of the optical layout used to image the zone plates further
information can be found in the text. The more transparent section is an optional path
accessed via flip mirrors which allows the Dove prism to be used to rotate the incident
beam.

isation optics are not necessary as the orientation or purity of polarisation do not affect
the produced holograms.

The imaging section of the system consists of a × 10 microscope objective (with
a numerical aperture of 0.25 and working distance of 160 mm) and a CMOS-sensor
camera. Both of these components are mounted on translation stages and kinematic
mounts to allow for the very precise alignment required to minimise system aberra-
tions. When aligning the imaging system, the camera is mounted first, with its tilt and
position adjusted such that the sensor is perpendicular to and centred on the incident
beam (using a series of pinholes to which the incident beam is aligned). We can then
use the camera to confirm the alignment of the objective lens. The objective can be
roughly aligned using a power meter and two pinholes - one before the lens to align
lens position and a second after the lens to align tilt. After this rough alignment, the
back reflection of the lens can be used to adjust tilt, and the transmission through a
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Figure 6.3: The M2 measurement for the incident beam (calculated to be close to 1
in both directions), using a 100 mm focal length lens. The blue (red) crosses show the
width of the beam in the horizontal (vertical) x (y) direction, the corresponding lines
(solid blue and dashed red respectively) show Gaussian propagation fits to these data
points.

pinhole close to the camera can be used to optimise position. At this point, the diffrac-
tion patterns from all pinholes should be centred on the sensor as was the case before
insertion of the lens. Despite very careful alignment at this stage additional lens and
zone plate adjustment may be needed: the tilt of the objective can be minutely adjusted
to optimise the smoothness of ring patterns later in the acquisition procedure.

The camera used for measurements is a Cinogy CMOS1201 which is a modifica-
tion of the IDS UI-1540LE-M camera. Due to the wavelength used for the zone plates
(1071 nm), most cameras are unsuitable either due to negligible quantum efficiency at
that wavelength or fringing and woodgraining occurring as a result of etaloning within
the camera. As the sensor coverglass of the Cinogy beam profiler has been removed (a
process which has a high risk of sensor damage), it is less affected by etaloning than
other cameras available to us. Side by side comparisons of the Cinogy beam profiler
the UI-1540LE-M-NO (which has the filter removed), and the UI-3240LE-NIR-GL (a
similar IDS camera with a boosted NIR response and glass filter) confirm that the sen-
sor glass is the most dominant contributor to fringing. We have attempted to mitigate
the etaloning by clever alignment and by attaching a glass wedge to the sensor glass
with index matching gel, but these approaches have not yielded any positive results.

Before we can begin imaging the zone plate patterns in this set-up we must cali-
brate it in order to determine the magnification and hence resolution of the system. To
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Figure 6.4: The incident beam used to illuminate the zone plate is shown in a. Fitting
to a two-dimensional Gaussian gives a 1/e2 waist of wx, wy = 1048 µm, 1073 µm
(quoted to 4 s.f.). The residuals for this fit are shown in b.

do this we use a 1951 USAF resolution test target (Thorlabs R1DS1P) mounted on the
same translation stage as the zone plate will be. We then use the largest feature which
can fit on the sensor to calculate the pixel size. This method yields an image pixel
size of (0.5207± 0.0005) µm. This method can also be used to calculate the actual
magnification of the system and so the correct position of the camera with respect to
the objective can be determined by matching this calculated value to the stated mag-
nification of the objective. Despite careful calibration at this stage, we find that this
measurement becomes inaccurate when imaging the zone plate potentials (this is likely
to be due to the different optical thickness of the two elements), this is confirmed by
imaging the zone plates without a magnifying lens. Therefore, we recalibrate resolu-
tion later in the analysis process. This is outlined further in Sec. 6.2.3. In the future,
this calibration will be completed using time-of-flight imaging of atoms falling under
gravity.

The zone plate is mounted in a standard prism mount and attached to a three dimen-
sional translation stage, giving us five degrees of freedom in alignment. This means
that we can align the zone plate to be perpendicular to the incident beam and scan the
imaging plane through the focus of the pattern. In order to align the zone plate, we first
use xy translation to approximately centre the incident beam on the chosen kinoform.
We then use the back reflection to align the tilt of the plate with respect to the input
beam. Once these parameters are approximately aligned, we can adjust the z-position
of the zone plate to bring the pattern into focus on the camera or to scan through the
focus and obtained a map of intensity. The transverse position and tilt of the zone
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0 0.5 1

Figure 6.5: Raw data experimental images of zone plate patterns excluding single foci.
Acquisition conditions are discussed in the text. Each plot is 1280 × 1024 pixels (or
6.6560 mm×5.3248 mm). The colour map represents normalised intensity.

plate can then be iteratively adjusted to generate the most central and smooth image
recorded on the beam profiler.

6.2.2 Results

Following the methods detailed above, we image each of the potentials produced by the
zone plates. The focus patterns are reproduced exactly but are unlikely to be used for
atom trapping purposes, having been manufactured for optical benchmarking There-
fore their results are not presented here. We show the raw data for each of the complex
patterns in Fig. 6.5, with the ordering following that shown in Tab. 5.1. For each of
these images, data is captured at the focus of the electric field and with the maximum
camera exposure possible without over-exposure. An exception to this is the line,
which is over-exposed so that detail in the middle of the line can be seen, as disconti-
nuity at the ends of the line create very bright spots which overwhelm the rest of the
pattern. Each of the plots show an area of 1280×1024 pixels (of 5.2 µm), and has been
magnified 10 times by the objective lens in the system before imaging.
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0.5 0.75 1

Figure 6.6: Raw data experimental images of zone plate patterns (excluding sin-
gle foci) with colour bar rescaled so only show the top 50% of the intensity. Ac-
quisition conditions are discussed in the text. Each plot is 1280 × 1024 pixels (or
6.656 mm×5.3248 mm). The colour map represents normalised intensity.

The patterns shown in Fig. 6.5 show that general shapes of the potentials are repro-
duced, even for the complex case of the ‘ring-track’ (the bottom left image). However
it is obvious that many of the potentials do not have the smooth maxima that would be
required to operate successfully as a waveguide. We can more easily see this rough-
ness in the potentials by looking at the top 50 % of the potential as is shown in Fig. 6.6
through the rescaling of the colour map such that it begins at Imax/2. In this rescaled
plot, we see that the rings look very smooth, but all the other, less symmetric patterns
have significant intensity variations along the bottoms of the traps, where the atoms
are meant to reside. For example, the addition of the input/output coupler to a ring to
make a ring track creates a discontinuity at the junction between the lines and the ring
and removes the circular symmetry present in one of the ordinary ring traps. For the
beam splitters, we see that the curved beam splitters (final 3 patterns) and the narrower
Y-junctions (last two patterns on the 3rd line from the top) do not successfully produce
all the ports of the splitter even far from the junction, with the input port being much
less intense than the output ports of the curved beam splitter and the opposite being
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true of the narrow Y-junction. This compares to the symmetric Y-junction where each
of the ports is equally separated by 2π/3; here we see the input/output waveguides
are well defined and self-similar. Even here we see that there is an intensity gradi-
ent centred on the junction meaning that atoms would not be able to travel toward the
junction, although there are some simple techniques which could potentially be used to
make the Y-junction useful for atomtronics, such as introducing a compensatory beam
overlapping the potential.

In order to establish the suitability of our holograms for atom trapping and guiding,
we need to characterise the potentials in terms of geometry and smoothness. In general,
in the quasi-1D systems such as rings and straight waveguides, trap geometry will
determine the trap confinement and depth, whereas the smoothness of the pattern will
affect the coherence and propagation of any atoms or matter-waves placed within it.
In more complex patterns, such as beam splitters, geometry is expected to contribute
to heating as atoms travel through sections such as corners [105]. In the following
sections, we will focus on the analysis of the ring traps as they are both the most useful
(e.g. for guided interferometry) and the most promising selection of patterns due to
their apparent smoothness.

6.2.3 Basic Characterisation

With the following analysis, we characterise rings using the following routine: first
‘unfold’ the ring, going from Cartesian to polar co-ordinates; then individually fit radial
slices to a Gaussian; then finally fit the full 2-dimensional ring. Though conceptually
simple, the process of fitting rings can be nuanced and computationally intensive due
to the dimensionality of the system, meaning that each stage much be completed with
care.

The ‘unfolding’ of the rings is completed using nearest neighbour interpolation
(specifically using the MATLAB inbuilt function scatteredInterpolant) to transform
from the Cartesian, camera co-ordinate system to a more intuitive polar co-ordinate
system which allows us the view the ring in the frame of the atoms (i.e. as a line with
periodic boundary conditions). Although this process yields good results, it is reliant
on accurate determination of the centre of the rings – a non-trivial process in itself. The
centre of the ring is initially estimated as the centre of mass of the image and improved
iteratively by conversion to progressively larger polar co-ordinate systems where its
centrality can be confirmed by plotting each radial intensity maximum against its an-
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gular position. For perfect centre choice, this should be a straight line of zero gradient
equal to the radius; otherwise it is a sinusoidal curve with amplitude equivalent to the
centre offset and phase indicating the direction of the offset, which allows rapid iter-
ation to zero offset. In the polar co-ordinate system, the radial resolution is kept as a
single pixel, and the angular resolution is determined by calculating the angle which
corresponds to a single camera pixel at a radial position of the radius. This means
dr = dx and dφ = 2 sin−1(dr/r).

Once in polar co-ordinates, we can fit each radial slice (these slices each corre-
spond to an individual angular position) to a Gaussian to obtain the value of the width,
intensity, background and radius. The fits are carried out on the top 70 % of the inten-
sity as this is the area which can be well approximated by a Gaussian. Here the initial
parameters of the fit are estimated from a knife-edge type sum across the Gaussian
(error function). We can then average the slice fit parameters and either use these num-
bers and their associated errors or use them as initial guess parameters for a global,
2-dimensional fit of the original Cartesian ring. The errors obtained are kept in terms
of the standard deviation to allow for consistent comparison between data-sets.

Radial Trap Parameters

It is relatively easy to characterise the shape of potentials (in the plane of the focus) us-
ing the fitting procedures described above. On first observation we see well reproduced
rings with no perceivable ellipticity. However, initial analysis indicated that the radii
obtained did not match the designed radii (with each ring having a radius of approxi-
mately 10 % higher than expected), suggesting that either the rings are not reproduced
accurately or that the resolution of the system is not calculated appropriately using the
test target. By imaging a selection of the rings without any magnification (this could
only be done for the longer focal length zone plates due to spatial constraints), as is
shown in Fig. 6.7, we were able to measure the radius of the rings independently of
magnification. In these images, the radii of the rings matched the designed radius,
allowing us to use the radius to recalibrate the rings imaged using the objective lens.
This recalibration process gives us a mean resolution of (0.464± 0.007) µm compared
to (0.5207± 0.0005) µm calculated with the test target. We believe that the discrep-
ancy between these two values is due to difficulties in the positioning of the test target
with respect to the imaging system (both in terms of physical position and the relative
angle of the pattern) and to the difference in optical thickness of the test target and the
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Figure 6.7: Experimental imaging of 18.185 mm focal length rings without any mag-
nification. Rings are (a-e) (radius/width): 100 µm/5 µm; 100 µm/10 µm; 200 µm/5 µm;
200 µm/10 µm; 200 µm/15 µm. For each ring, (i) shows the raw image of the ring, and
(ii) shows the residuals of the fits as described in the text, the respective colour scales
are shown by e.

zone plate.
The trap parameters obtained for magnified rings potentials with resolution cali-

brated by the radius are shown in Tab. 6.1, with the images of all rings and their re-
spective fitted residuals shown in Fig. 6.8. We obtained the measured trap parameters
shown in Tab. 6.1 by taking the mean and standard deviation of the slice fits for each
ring (rather than the global fit, as this approach allows for sensible error estimation –
the best fit parameters are very similar).

When comparing the designed and measured trap width, it is immediately obvious
that the focal length of the kinoform (and so the numerical aperture) greatly influence
the trap width, meaning that a width of 5 µm is not obtainable with a 18.185 mm focal
length. We can naı̈vely estimate the diffraction limit of the system using Eq. 2.4 and
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estimating the diameter of the lens to be between the diameter of the ring (which cor-
responds to the case where wavefronts do not overlap at the centre of the rings) and the
diameter of the kinoform. Using this back of the envelope calculation gives a diffrac-
tion limited ring width of between 100 µm and 10 µm for a 100 µm radius 18.185 mm
focal length ring. The smaller estimate (for NA corresponding to the whole kinoform
rather than a subsection) is of the order of the ring widths achieved, suggesting that
the rings are diffraction limited. However, this does not explain why the same widths
((14.8± 0.2) µm and (14.9± 0.2) µm) are observed for two rings of different designed
widths (10 µm and 15 µm respectively – the 4th and 5th lines of Tab. 6.1). To determine
the actual diffraction limit and whether our system is diffraction limited we need to
examine the relationship between the designed and observed widths, the focal length
and the radius of the ring. The data shown in Tab. 6.1 suggest that the observed ring
width is influenced by all the other parameters listed. Initial exploration suggests that
the diffraction limit may be close to 15 µm, but it will be explored further in Chap. 7.

From the fit residuals shown in Figs. 6.8 and 6.7 we can gain a qualitative impres-
sion of the smoothness of the traps that the rings provide. In the region of the trap
bottom, the magnitude of the residuals are all below 10 % and the majority of the er-
rors lie outside of the trapping region. The residuals themselves are neither smooth nor
regular in both the radial and azimuthal directions. In some places, we see a checker-
board effect related to the readout of the camera, in others we see dust on the sensor

Design Observed
Focal Length (mm) Radius (µm) Width (µm) Radius (µm) Width (µm)

18.185

100 5 100± 1 9.1± 0.1
100 10 100± 1 14.1± 0.2
200 5 199± 3 11.9± 0.2
200 10 203± 3 14.8± 0.2
200 15 205± 3 14.9± 0.2

10
100 5 100± 1 7.0± 0.1
200 5 199± 3 8.8± 0.2
200 10 195± 3 9.0± 0.2

7
100 5 102± 1 5.77± 0.09
200 5 197± 3 6.15± 0.09

Table 6.1: Parameters corresponding to the rings designed and manufactured. The
errors quoted correspond to the fitted standard deviation.
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(though this does not affect the quantitative roughness calculated later). In some places
the residuals seem to ‘pulse’ irregularly, this can be seen most clearly in aii). It is prac-
tically impossible to disentangle the origin of the errors between those that are from
the kinoform design and those that are artefacts of the imaging system. Though in prin-

Figure 6.8: Experimental imaging of all rings using a 10× magnification microscope
objective. Rings are shown in the same order as in Tab. 6.1, following the ordering (a-
h, k, L). For each ring, (i) shows the raw image of the ring, and (ii) shows the residuals
of the fits as described in the text.
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ciple one could begin to study this if we had full control of the phase and intensity of
the incident field. We have, in part been able to isolate and minimise the imperfections
caused by the incident beam through alignment and collimation. Due to the relative
size of the roughness around the ring compared to the total intensity, it is very hard to
minimise the residuals by careful alignment, though this has been carried out as much
as possible.

The influence of incident beam imperfections has been characterised and then min-
imised. The characterisation was completed by rotating the incident beam with a Dove
prism and monitoring the location of imperfections in the ring. Despite alignment is-
sues, we were able to show that the roughness tends to move with the incident beam
as it is rotated, meaning that the quality of the incident beam is important for the zone
plates. We were then able to improve theM2 of the beam to close to 1, with a circularly
symmetric profile (as demonstrated in Figs. 6.3 and 6.4), and so improve the rings.

Axial Trap Parameters

In order to determine trapping parameters in the direction of beam propagation (axi-
ally), we can map out the average radial profile of the potential as one scans through
the focal plane (with this scanning achieved by moving the zone plate). This process
yields maps of the propagation as shown in Fig. 6.9 for a 100 µm radius, 5 µm width
ring, with a focal length of 18.185 mm, and in Fig. 6.10 for a ring of the same param-
eters except for a increased width of 10 µm. By taking the maximum of each radial

Figure 6.9: Propagation of the radial profile of a 100 µm radius, 5 µm width ring,
with a focal length of 18.185 mm through its focus (the focal plane is located at axial
position 0).
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Figure 6.10: Propagation of the radial profile of a 100 µm radius, 10 µm width ring,
with a focal length of 18.185 mm through its focus (the focal plane is located at axial
position 0).

slice shown in the maps, we can plot out the intensity variation and change in width
with position. This information is shown in Figs. 6.11 and 6.12 for the 5 µm and 10 µm
rings respectively, with subplot (a) showing width variation, and (b) showing intensity
information (the peak intensity of each slice).

As one can see from both the map and the plotted data, close to the focus of the
beam (i.e. close to the trap bottom) the ring focuses in a similar way to an ordinary
focused Gaussian, whereas, further from the focus, additional components can be seen
which derive from the binary and diffractive nature of the zone plate. The most obvi-
ous of these diffraction effects are the appearance of ‘shoulders’ on either side of the
focus (radially). The shape and behaviour of the foci are reproduced in the theoretical
modelling shown in Sec. 7.1 (Figs. 7.1 and 7.2), including the diagonal nature of the
focussing.

From a) in Figs. 6.11 and 6.12 we can calculate the 1/e2 waists as (8.76± 0.06) µm
and (13.6± 0.1) µm respectively. This then allows us to fit the Rayleigh length using
the fit in b) as (417± 3) µm and (980± 20) µm respectively (this is fitted by setting the
waist and allowing zR to vary). Alternatively, if we calculate the Rayleigh length using
the definition w(zR) =

√
2w0, we obtain 170 µm and 740 µm respectively. These val-

ues are of a similar order of magnitude but are different due to the varying dominance
of diffractive patterns in propagation. The values yield an axial trap frequency below
50 Hz if illuminated by a 10 W laser considering the efficiency information which is
discussed later in this section. Comparing these values to those calculated in Sec. 5.1.1,
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Figure 6.11: Propagation of the radial profile of a 100 µm radius, 5 µm width ring,
with a focal length of 18.185 mm. (a) shows the variation in 1/e2 width of the focusing
beam, with data shown in blue and a fit to Eq. 2.3 in the yellow dashed line (only the
data showing this trend close to the centre is fitted). (b) shows the peak intensity of
each radial slice, with data shown again in blue, and a dashed red line showing a fit to
Eq. 2.2 using the waist calculated in a.
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Figure 6.12: Propagation of the radial profile of a 100 µm radius, 10 µm width ring,
with a focal length of 18.185 mm. (a) shows the variation in 1/e2 width of the focusing
beam, with data shown in blue and a fit to Eq. 2.3 in the yellow dashed line (only the
data showing this trend close to the centre is fitted). (b) shows the peak intensity of
each radial slice, with data shown again in blue, and a dashed red line showing a fit to
Eq. 2.2 using the waist calculated in a.
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Figure 6.13: Efficiency of power transfer from the incident beam into an area of
interest determined by the ring parameters. This is for rings imaged using the ×10
magnification objective lens.

we can see that the potentials could not support against gravity if the plane of the ring
was horizontal. We would thus propose to combine the traps with either a magnetic
levitation field [18,30,31], or a light sheet [66]. The difference in axial Rayleigh length
for these two rings suggests that the design width has a greater influence on the trap
parameters in this direction than in the radial direction.

It is interesting to note that a repeated, nodal pattern, similar to that seen in the
Talbot effect [31], can be observed close to the centre of the ring in Figs. 6.10 and 6.9.
This is thought to occur because the zone plate effectively works as a grating in this
area.

Ring Efficiency

Finally, we can measure the efficiency of the zone plates at directing incident light into
the ring potentials. This is done by calibrating the camera’s response to intensity at
various exposures and then recording the exposure of each image and the power of
the incident beam for each individual data point. For ease of analysis this meta-data
was placed in the filenames. Then we determine the power contained within an area
of interest on the image of a potential by integrating the measured intensity across this
area. For rings, the area of interest is chosen to be where the intensity of an ring is
non-zero. This is defined by an ideal ring of the same parameters as the measured ring.

The calculated efficiencies for all the magnified rings are shown in Fig. 6.13, the
equivalent information for a system without magnification is shown in Fig. 6.14. As
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Figure 6.14: Efficiency of power transfer from the incident beam into an area of
interest determined by the ring parameters. This is for rings imaged without any mag-
nification, therefore only long focal length patterns could be practically measured.

can be easily seen by comparing the above figures, the addition of the objective lens
reduces the efficiency of the system, as would be expected considering the imperfect
alignment and wavelength mismatch between the design of the lens and illumination
beam. Thus, the efficiency measured when using the lens can be used as a lower limit.
We have a typical efficiency of 30%, which is likely to be closer to 40% when used
in a cold atom system (i.e. a system without magnification). The absolute maximum
efficiency that can be achieved in a binary diffractive optics system is 50 %, which
is limited by the presence of a virtual focus. Higher efficiencies are obtainable using
blazed and multi-level diffractive optics [275, 276, 278].

6.2.4 Roughness Characterisation

When using these traps as waveguides, the coherence time and dynamics of the atom
cloud will be affected by the roughness of the bottom of the trap. In order to understand
the various forms of roughness we need to analyse both the magnitude of the roughness
compared to trap depth and the length scales of this roughness. There are two ways to
approach this which are outlined below.

A simpler method of measuring trap ‘goodness’ uses the root mean squared (RMS)
error between an ideal trap and the observed trap. This is an established method used in
SLM holography as an optimisation parameter for design algorithms [99,111,112,260]
or to compare design methods [123]. It is discussed in the previous chapter. For our
traps, we calculate the RMS error of the top 10 % of the potential, this is shown in
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Figure 6.15: RMS error between measurements and the top 10% of an ideal ring of
the same width, radius and average depth. This calculation is for rings imaged using
the ×10 magnification objective lens.

Fig. 6.15. We calculate the ‘ideal’ ring through the fitting routines detailed previously,
rather than comparing it to the designed pattern.

The RMS errors presented in Figs. 6.15 and 6.16 give an upper bound on the RMS
error, suggesting that all rings have an RMS error below 5 % (and could be below 3 %),
which is compatible with atom guiding. The RMS errors in the non-magnified system
are similar. As discussed in the previous section, we are unable to disentangle imaging
aberrations and kinoform aberrations as possible sources of the RMS error.

A more thorough and complex method of analysis is through Fourier analysis of
azimuthal potentials. The methods used to calculate the azimuthal potential and ob-
tain trap parameters are detailed in Sec. 6.2.3. By analysing the variation of these
parameters, we can isolate the information most important to the atoms.

All of the rings analysed using this method are shown in Appendix. A, with two
examples (a 100 µm radius, 5 µm width ring with focal length 18.185 mm, and the
equivalent 200 µm radius ring) shown in this chapter within Fig. 6.17. In this figure,
on the first line we can see the ‘unfolded’ ring on a normalised intensity scale. Below
this, the variation in trap depth (left axis, in blue) and trap width (right axis, in red)
is shown as a percentage variation from the mean. No errors are shown on this plot
as the errors obtained from the slice fitting routine are smaller than the slice-to-slice
variation in obtained parameters. The dominant frequency components of these trap
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Figure 6.16: RMS error between measurements and the top 10% of an ideal ring
of the same width, radius and average depth. This is for rings imaged without any
magnification, therefore only long focal length patterns could be practically measured.

parameters are then shown on the bottom line, this is shown as a bar chart of dominant
frequency components so that relevant lengths scales can be highlighted. The first eight
harmonics are labelled numerically (the 1st harmonic corresponds to variation over the
whole circumference, the second is over half the circumference, and so on), with the
final two boxes labelled as ‘A’ for the length scales larger than the trap width, and ‘B’
for lengths scales smaller than the trap width. For the ‘A’ and ‘B’ bars, the bar chart
shows the mean amplitude of components in this length range.

In the ring examples shown in this chapter and in the appendix, we can see that
the trap parameters vary by between 5 % and 10 % from their mean value, this is a
promising result as it is close to the 5 % to 10 % variation limit suggested in previous
literature [65, 99, 112] and so they are expected to be suitable for atom trapping if the
trap depth is scaled appropriately to match the chemical potential (further details can
be found in Secs. 5.1.1 and 6.2.5). From the Fourier transform information, we can see
that dominant length scales in the trap depth variation are on the order of the ring cir-
cumference (i.e. low frequency), with much lower contributions at length scales of the
order of the trap width and even lower contributions at even higher frequencies. The
low frequency components may affect the expansion dynamics causing uneven speed
around the two arms of an interferometer but are expected to be easy to correct for with
the use of an SLM. Many of these defects may be artefacts of the imaging system as
they vary with alignment or artefacts of the ‘unwrapping’ process. This means that our
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Figure 6.17: Analysis of variation in ring parameters for a 100 µm radius, 5 µm width
ring with focal length 18.185 mm focal length, and the equivalent 200 µm radius ring.
For each ring, the first line of data shows the unfolded ring, the second is the variation
in trap depth (blue, left axis) and width (red, right axis) as a percentage of the average
value, finally a bar chart of the dominant frequency components of trap depth and
width is shown. More details are given in the text.
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Figure 6.18: Map of gradient magnitude of the normalised intensity around the un-
folded rings for a 100 µm radius, 5 µm width ring with focal length 18.185 mm, and
the equivalent 200 µm radius ring. We note that the force experienced by the atoms is
directly proportional to this gradient.

measurements constitute a worst-case scenario.

We can also show the roughness as a force by presenting the gradient of the mea-
sured intensity. This is shown in Fig. 6.18 for the same rings as presented in the Fourier
analysis (with analysis for all rings being shown in the appendix in Fig. A.2). Here the
gradient presented is the gradient of the normalised intensity as shown in the Fourier
analysis, and thus demonstrates the relative force. The transparency of the gradient
plot indicates the potential landscape. We can see that, close to the centre of the trap,
the radial force felt by the atoms is close to zero with small fluctuations around the
ring. However, we also notice some dislocations in the angular direction (if one iso-
lates the angular contribution (dU/dφ) to the gradient, these points show as vertical
lines), these are thought to arise due to imperfections in the ‘unfolding’ routine used
but it has not yet been possible to confirm this.
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6.3. COMBINATION WITH A SPATIAL LIGHT MODULATOR

Design Observed Depth (µK) νr (kHz)
f (mm) r (µm) w (µm) r (µm) w (µm) 10 W 5 W 2 W 10 W 5 W 2 W

18.185

100 5 100 9.1 65.5 32.7 13.1 5.0 3.6 2.3
100 10 100 14.1 42.3 21.1 8.5 2.0 1.4 0.9
200 5 199 11.9 25.2 12.6 5.0 3.1 2.2 1.4
200 10 203 14.8 19.8 9.9 4.0 1.4 1.0 0.6
200 15 205 14.9 19.5 9.8 3.9 0.9 0.6 0.4

10
100 5 100 7.0 85.2 42.6 17.0 5.7 4.1 2.6
200 5 199 8.8 34.0 17.0 6.8 3.6 2.6 1.6
200 10 195 9.0 34.0 17.0 6.8 1.8 1.3 0.8

7
100 5 102 5.77 101.3 50.7 20.3 6.3 4.4 2.8
200 5 197 6.15 49.2 24.6 9.8 4.4 3.1 2.0

Table 6.2: Trap parameters estimated from the measured ring dimensions (see table 6.1
for errors on the measured parameters). An efficiency of 30 % is used.

6.2.5 Expected Atom Behaviour in a Fresnel Hologram

From the characterisation detailed above we can use trap parameters and efficiency to
estimate the trap frequency and depth of a ring achievable with various laser powers
(2 W, 5 W and 10 W), using Eq. 2.32. The trapping parameters for the rings tested in
this generation are shown in Tab. 6.2. An efficiency of 30 % is used as this is the lower
bound established through observations (see Fig. 6.13).

In the ring potentials we expected scattering rates of the order 10−1 photons/s for
illumination with 5 W. This is estimated using Eq. 2.29, with I0 calculated using 30 %
power efficiency and Eq. 7.6. The scattering rate scales as 1/(w0r0).

6.3 Combination with a Spatial Light Modulator

Following simulated investigations into the possibility of hybrid FZP-SLM systems in
Sec. 5.5, here we present preliminary results from the experimental implementation of
such a system.

The optical layout used for the tests is shown in Fig. 6.19, with the SLM being
accessed by flip-mirrors so that the original, basic zone plate imaging set up is undis-
turbed. We use a modified version of the optical set-up shown in [268] and the same
algorithms for producing the incident beams generated by the SLM. The technique has
been tested extensively within this and other publications.
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Figure 6.19: A schematic of the optical layout used to apply an SLM generated inci-
dent beam to a kinoform and then image it. Flip mirrors (shown as semi-transparent
mirrors in the schematic) are used to switch between the hybrid and standard sys-
tem and to include imaging of the SLM-modified beam without changing the system’s
alignment. Not to scale.

130



6.3. COMBINATION WITH A SPATIAL LIGHT MODULATOR

The optical system is modified to include an SLM by deflecting the beam from the
main path with a flip mirror, then a series of mirrors align the beam with the SLM.
Before reaching the SLM, the light’s polarisation is cleaned and rotated (with a polar-
ising beam splitter and a half waveplate) such that the correct orientation (horizontal)
is incident on the active area of the SLM. The beam reflected off the SLM is passed
through a 1-to-1 telescope formed by two 250 mm lenses with a pinhole at the focus
(i.e. Fourier plane) to filter out additional diffraction orders. The light from the SLM
is then incident on the zone plate a few Rayleigh lengths from the image plane of the
SLM, meaning that less higher order noise should be present in the illuminating beams
than if the zone plate was in the imaging plane [268]. The SLM used is a Hama-
matsu X13138-03, which is a liquid crystal on silicon (LCOS) SLM. The screen has
1280×1024 pixels of size 12.5 µm, giving an effective area of 16 mm×12.8 mm. We
use the deformation correction pattern supplied by the manufacturers.

In order to demonstrate that we can use incident beams tailored by an SLM to
modify the generated potentials, we applied a range of LG and HG modes to the
100 µm radius, 10 µm width, 18.185 mm focal length ring. The results of this are
shown in Figs. 6.20 (for the full (normalised) intensity range) and 6.21 (showing the
top 25 % of the intensity distribution). The patterns applied are as follows from (a-
g): LG(` = 1, p = 0) with a 400 µm waist, LG(` = 1, p = 0) with a 500 µm waist,
LG(` = 1, p = 0) with a 700 µm waist, LG(` = 1, p = 0) with a 900 µm waist,
LG(` = 1, p = 0) with a 1 mm waist, 300 µm waist Ferris wheel [120, 268] (the same
superposition state used in Ref. [268]), and HG(m = 1, n = 1) with a 600 µm waist.
These waists were chosen so as to span the interval of rLG/rring = 2 to 8 (where rLG
is the radius of the LG mode, see Eq. 2.7). Fig. 6.21e) shows the onset of the double
ring features seen in Fig. 5.11 when the LG beam was larger than the ring radius (e.g.
in first kinoform in Fig. 5.11 illuminated with an LG beam of ` = 1 and r0/R = 10).

We find that the use of an LG beam as an illuminator does not significantly modify
the profile of the ring until the radius of the LG beam (Eq. 2.7) is significantly big-
ger than the radius of the ring (d and e in Figs. 6.20 and 6.21) at which point a faint
double ring structure appears (this is most easily seen with the modified colour map in
Fig. 6.21). The behaviour at smaller radius was expected as LG modes (p = 0) are sim-
ilar in shape to ideal illumination. We note that these rings display significantly more
roughness than the Gaussian illuminated rings, this is likely to be due to imperfect LG

131



6.3. COMBINATION WITH A SPATIAL LIGHT MODULATOR

Figure 6.20: Images of the potentials resulting from the use of tailored incident po-
tentials. Each pattern is normalised by its maximum value and is the central 900×900
pixels. The incident beams from a-g) are: 400 µm radius LG10, 500 µm radius LG10,
700 µm radius LG10, 900 µm radius LG10, 1 mm radius LG10, 300 µm radius Ferris
wheel [120, 268], and 600 µm radius HG11.

mode creation with the SLM and the reduce amount of system optimisation completed.
As expected, the Ferris wheel pattern (f) does not immediately translate into the ring
structure. This is likely to be due to the larger radial width of the Ferris wheel (w.r.t.
the other LG modes) and its complexity along with poor incident beam creation as we
are using a small area of the SLM for experimental simplicity. The application of an
HG(m = 1, n = 1) beam (g) also shows some double-ring type structure, but more
importantly, it allows us to examine the angular mapping of a modified incident beam.
By rotating the HG beam (with the SLM), we can observe the lobes of the pattern also
rotating with the same angular dependence, showing a 1-to-1 mapping in that sense.
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Figure 6.21: The same ring images as in Fig. 6.20 but with a modified colour map,
showing the top 25 % of the intensity. This allows the emerging double ring structure
to be seen more clearly in d) and e).
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Chapter 7

Designing Second Generation Zone
Plates

In this chapter, we present the theoretical and numerical details necessary to inform
the design of the next generation of zone plates. This extends the numerical simula-
tions presented in Chap. 5 using the lessons learnt from the optical characterisation in
Chap. 6.

We begin, in Sec. 7.1, by numerically recreating some of the experimental results
present in Chap. 6, concentrating on how trapping parameters change with design pa-
rameters (particularly the trap frequency/width in both the radial and axial directions).
This allows us to determine which parameters we should change for a second genera-
tion of patterns.

Following this, we propose a different method for zone plate simulation which
should allow us to simulate bigger areas with better resolution when considering limits
to computing power. Sec. 7.2 begins by considering the role of evanescent waves in our
simulations (an understanding of this is necessary to be able to design kinoforms with
sub-wavelength resolution). We then discuss the use of Hankel transforms to model
propagation in a cylindrically symmetric co-ordinate system in Sec. 7.2.2. This re-
duces the memory requirements of our design algorithm by reducing the 2D Cartesian
system to a 1D cylindrical system.

At this point we can turn our attention to the decision of which potentials we would
want to create with a new set of zone plates.
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7.1. UNDERSTANDING EXPERIMENTAL RESULTS

We propose a dark ring potential in Sec. 7.3 which would operate using light which
is blue-detuned from the atomic transition, enabling trapping at a minimum of inten-
sity, and so reducing photon scattering (see Sec. 2.2.8 for information about the benefits
of blue-detuned dipole traps).

Finally, in Sec. 7.4, we build a numerical theoretical description for determining
the best ring parameters to use considering the use of a Gaussian illumination beam.

7.1 Understanding Experimental Results

Within Chap. 6 (particularly Sec. 6.2.3), we discussed some ways in which the zone
plates deviate from the design parameters, namely the mismatch between designed
width and the achieved width. Using our existing simulation algorithms, we are able
to produce a theoretical map of ring propagation – a numerical version of Figs. 6.9
and 6.10. These simulated maps are shown in Figs. 7.1 and 7.2 (the figures for all
rings are shown in Fig. A.3). From the simulated intensity maps, we can estimate an
expected ring width and radius. This is shown in Tab. 7.1.

From these figures and the table of simulated parameters, we can see the following:

• Experimental (Tab. 6.1) and simulated (Tab. 7.1) radial widths generally agree
within experimental errors. The experimentally measured ring widths are slightly
larger than their simulated equivalents. This is to be expected considering the ex-
perimental set-up constitutes a real-world scenario. For example, in the simula-
tions, the kinoforms are illuminated with a perfect Gaussian beam of flat phase;

Figure 7.1: Simulated propagation of the radial profile of a 100 µm radius, 5 µm width
ring, with a focal length of 18.185 mm through its focus.
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7.1. UNDERSTANDING EXPERIMENTAL RESULTS

Figure 7.2: Propagation of the radial profile of a 100 µm radius, 10 µm width ring,
with a focal length of 18.185 mm through its focus.

whereas, in the physical experiments, one cannot produce a completely colli-
mated Gaussian beam and optics within the set-up will always introduce some
sort of aberrations. Both data-sets show the same behaviour in comparison with
the designed width.

• Experimental and simulation radii agree well.

• The position of the focal plane in the simulated data does not match the design.
It was not possible to measure the position of the focal plane experimentally
to a sufficient level of precision to compare these results. We note that we ex-
perimentally determine the position of the focal plane by the point of highest
intensity.

• The wider the designed ring, the longer the simulated focal length appears to
be, regardless of the measured simulation/experimental ring width. This is most
clearly seen for the three 200 µm radius, 18.185 mm focal length rings, where
ring widths of 5 µm, 10 µm and 15 µm yield focal lengths of 18.23 mm, 18.33 mm
and 18.52 mm respectively. This is despite both the 10 µm and 15 µm widths hav-
ing the same observed widths (14.8 µm experimentally and 13.5 µm numerically)

The resultant parameters of the rings are a balancing act between maintaining
tighter axial focussing, achieving the desired focal length, and producing a ring of
similar parameters to those desired. The ring radius and focal position have an obvi-
ous effect on the nature of the resultant potential, but the effects of the width are less
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Design Simulation
Focal Length (mm) Radius (µm) Width (µm) Radius (µm) Width (µm) f (mm)

18.185

100 5 101 7.5 18.170
100 10 100 13.8 18.360
200 5 201 8.7 18.230
200 10 201 13.5 18.325
200 15 203 13.5 18.515

10
100 5 100 6.1 10.060
200 5 198 7.3 10.105
200 10 199 7.3 10.220

7
100 5 100 5.2 7.030
200 5 198 5.4 7.065

Table 7.1: Simulated parameters corresponding to the rings designed and manufac-
tured. No errors are included for the width and radius as the data is simulated, however
the error on focal plane position is estimated as 5 µm, which corresponds to a single
step size in the axial direction.

easy to describe. Above a threshold width (which we assume to be equivalent to a
diffraction limit, which is discussed in Sec. 6.2.3), the design width acts to increase
the focal length of the ring rather than to change the width of the resultant potential.
The higher the width, the looser the trap in the axial direction and the longer the fo-
cal length appears to be. Below the threshold width, the smaller design width acts to
make the resultant width smaller but does not necessarily create a width matching that
designed. At this point focal lengths are comparable with the designed value and the
pattern has a tighter axial focus.

We could summarise by saying that, at large widths, the focal length of the pattern
defines the actual width, whereas at small designed widths, a combination of the design
width and focal length sets the actual ring width. This leads us to believe that the
numerical aperture is defined by both the designed width and designed focal length.

7.2 Improving the Simulation Algorithm

To produce better zone plates, we want to be able to simulate with smaller pixel sizes
(and with bigger areas to minimise aliasing originating from the finite simulation area).
Decreasing the pixel size causes us two problems: very large arrays (the biggest array
storable with 8 GB of RAM is 212 × 212); and the handling of complex wave-vectors
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7.2. IMPROVING THE SIMULATION ALGORITHM

(evanescent waves). In this section, we will discuss solutions to both of these problems.

7.2.1 Evanescent Waves

In order to simulate zone plates with pixel or feature size smaller than a wavelength,
we need to be able to handle evanescent waves with our simulations.

An evanescent wave has a complex wave-vector. In the literature, this is typically
encountered when light propagates through an medium in which the refractive index
is complex or for light incident on a surface at an angle greater than the critical an-
gle [279]. In both these cases, the wave can be considered as a combination of a
propagating beam and an exponentially decaying, evanescent term. For the case of
light incident on a surface, the propagating term travels along the interface, whereas
the evanescent term is the electric field within the medium – i.e. it doesn’t propagate
in the medium.

In our vacuum propagation scenario, when the component of the wave-vector in the
propagation direction (kz) is complex, that part of the beam behaves as an evanescent
wave. If we recall the equations for calculating propagation, Eq. 5.3, the propagation
term (in k-space) is:

eikzz = ei
√
k2−k2x−k2y z = ei

√
k2−k2r z , (7.1)

for propagation of the beam by distance z in Cartesian or cylindrical co-ordinates. As
one can easily see, kz becomes imaginary when k2 < (k2

x + k2
y) or equivalently k < kr

(assuming that k, kx, and ky are real). The fast exponential decay of these evanescent
waves means that they do not carry energy and so we can in effect remove them from
our simulations by calculating only the real portion of kz, and setting any complex
components to zero. This approach works if we assume that our propagation distances
are in the far-field.

7.2.2 Propagation of Cylindrically Symmetric Electric Fields

When creating and simulating zone plates, our computation power is limited by the
size of the array which can be stored in the computer’s RAM (and computation time).
However, as we are now only considering potentials with cylindrical symmetry, we
can significantly reduce the information stored by working in cylindrical co-ordinates,
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7.2. IMPROVING THE SIMULATION ALGORITHM

allowing us to describe a ring using a vector of positions r rather than an array of
positions x and y. This change of basis requires a modification of transforms and
propagation techniques; the use of a Hankel transform rather than a Fourier Transform.

Hankel transforms and the quasi-discrete Hankel transform (the equivalent of the
fast Fourier transform (FFT) that we use in Cartesian co-ordinates) has been treated
in detail in literature [280–282]. They are the result of changing from the Cartesian
co-ordinate system of the Fourier transform, to cylindrically symmetric co-ordinates,
where r2 = x2 + y2 and the pattern is independent of θ where x = r cos(θ), y =

r sin(θ). As the function we’re transforming (a ring or another cylindrically symmetric
function) is not dependent on the angle, we can immediately integrate over it, resulting
in the following equations for transforming between the electric field E(r) and the
angular spectrum A(kr):

A(kr) = 2π

∫ ∞
0

E(r)J0(2πkrr)rdr , (7.2)

E(r) = 2π

∫ ∞
0

A(kr)J0(2πkrr)krdkr , (7.3)

where J0 is the 0-th order Bessel function of the first kind. These integrals are diffi-
cult to calculate due to the behaviour of Bessel functions and so are commonly com-
puted through a quasi-discrete method as laid out in Ref. [280] and implemented in
Ref. [281]. This approach simplifies the calculation by turning it from an integral over
all space into matrix multiplication which uses an N × N transformation matrix to
transform between position and spatial frequency N-dimensional bases. It effectively
calculates the integral over the interval 0 ≤ r ≤ Rmax, assuming that the electric field
is zero outside of this interval.

Our simulations are based on MATLAB code sourced from Ref. [283] which uses
the algorithm detailed in Ref. [281] with various modifications to improve computation
speed and relevancy to our problems.

When using Hankel transforms (H ), Eq. 5.3 becomes:

E (z) = H −1
[
H(z)A(0)

]
= H −1

[
eikzzH

[
E (0)
]]
, (7.4)

where kz =
√
k2 − k2

r for k > kr and 0 otherwise. A comparison of this propagation
method to Fourier propagation (Eq. 5.3) and the analytic solution for a Gaussian beam
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Figure 7.3: a) shows a comparison of the analytic result (lines) and the results of
a Hankel transform calculation (crosses) of the propagation of a 25 µm 1/e2 waist
Gaussian at a variety of distances. b) and c) show the intensity and phase of the same
beam at a distance of 18 mm propagated using the Hankel transform. d) and e) show
the same results calculated in Cartesian co-ordinates with Fourier transforms. The
colour bar on the left shows intensity (W m−2) for a beam with initial peak intensity of
1 W m−2. Each plot in b-e) has an area of 1 mm2.

(Eq. 2.2) is shown in Fig. 7.3. We note that when creating this figure, the Hankel
method was 40 times faster than the Fourier method. In terms of memory usage, we
are still limited by the computer RAM available. However, due to circular symmetry,
the largest array used to generate a zone plate of N × N pixels will now only be
N/2×N/2 as we only need to consider r > 0 rather than the full −xmax ≤ x ≤ xmax,
hence increasing the maximum possible simulation size four-fold (to 214 pixels, at the
limit of our computing power). We only need to store one of these large matrices (the
transform matrix) rather than multiples of it as in the Cartesian algorithm.

We note that the energy conservation of the transformation is dependent on the
transformation matrix being unitary (that is T T = T −1). In our simulation code, the
matrix is always unitary to within a tolerance (the tolerance being Σ

∣∣T T −T −1
∣∣),

with this tolerance increasing with increasing number of pixels, the tolerance for:
N = 214 is 4.7218× 10−4, N = 213 is 4.2377× 10−5, N = 212 is 3.7925× 10−6,
N = 211 is 3.2565× 10−7. This leads us to carrying out additional benchmarking the
Hankel transforms by monitoring optical power loss during propagation for a variety
of different pixel sizes. This is shown in Fig. 7.4. We find that more power is lost for
larger pixel sizes, but that this loss is of the order of the double-precision accuracy of
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Figure 7.4: Power lost on propagation using the Hankel transform algorithm for differ-
ent pixel sizes (with the legend showing the pixel sizes at multiples of the wavelength).

our MATLAB installation squared. We note that (for our particular installation) the ac-
curacy of double-precision floats in MATLAB is limited to 2.2204× 10−16 for values
close to 1.

7.3 FZPs for Dark Rings

If we wish to create a dark ring potential, a ring in which atoms are trapped in a min-
imum of intensity, we must use blue-detuned light. This approach reduces photon
scattering (and so increases trap lifetimes) as atoms are trapped in areas of low inten-
sity. In this section, we will discuss a theoretical description of dark-ring potentials
that we will use in the future for a second generation of zone plates.

In principle, a dark ring could be created using two concentric Gaussian rings,
as used in previous chapters. However, here we would have a minimum of intensity
rather than a zero of intensity. If we can create an electric field with a zero-crossing,
this will give us a true zero of intensity by definition. Thus, we can write a potential
for this shape by simply using the (normalised) derivative of the Gaussian rings used
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Figure 7.5: A comparison of dark and bright ring potentials. The top line shows the
overall intensity distributions of two rings with equivalent widths and the same radii.
Electric field close the radius of each ring is shown in the bottom left for light (solid
red) and dark (dashed blue) rings. The equivalent potentials are shown on the bottom
right, with a red-detuned light ring (solid red), red-detuned dark ring (dashed blue),
and blue-detuned dark ring (dotted yellow).

previously:

E(r) = −E0

√
2(r − r0)

wD
exp

(
1

2
− (r − r0)2

w2
D

)
, (7.5)

where wD = w0

√
e is the modified 1/e2 width. This modification allows direct com-

parison with light rings by generating rings with the same radial trapping angular fre-
quency (i.e. that a dark ring with wD = w0

√
e has the same radial trap frequency as

a light ring with w0). We note that the
√

2 factor at the front of Eq. 7.5 and the 1/2

inside the exponential act to normalise electric field. The fields for dark and light rings
are shown in Fig. 7.5, showing a zero-crossing in electric field for the dark ring.

To be able to draw useful comparisons between dark and light potentials, the trap
parameters must be equivalent. We also must be able to make traps that are useful
when using a reasonable illuminating power. To calculate the relevant trap depth and
frequency, we must first calculate the maximum intensity (I0 = |E0|2) in terms of the
total power in a ring (P0). For a light ring (P0,light−ring), integrating the intensity across
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all space gives us:
P0,light−ring =

√
2π3I0r0w0 , (7.6)

assuming that r0/w0 >> 1 such that the contributions to power from erf(
√

2r0/w0) ≈
1 and exp(−2r2

0/w
2
0) ≈ 0. Equivalently, and under the same assumptions (and using

the same method), the total power in a dark ring P0,dark−ring is given by,

P0,dark−ring =

√
π3

2
eI0r0wD , (7.7)

We can then use Eq. 7.5, Eq. 7.6, Eq. 7.7, and Eq. 2.30 to determine the trap depth,
as we did for a tightly focused Gaussian in Eq. 2.32:

Udip,light-ring(r) = − ŪP0,ring√
2π3r0w0

exp

(
−2(r − r0)2

w2
0

)
, (7.8)

Udip,dark-ring(r) =
4ŪP0,dark−ring(r − r0)2

√
2π3r0w3

D

exp

(
−2(r − r0)2

w2
0

)
, (7.9)

where Ū is the prefactor to I(r) in Eq. 2.30. For both rings, the trap depth easily
follows as the prefactors to the r dependent terms, ignoring the normalisation terms
included in the dark ring electric field (Eq. 7.5):

U0,light =
ŪP0√

2π3r0w0

, U0,dark =
2ŪP0

e
√

2π3r0wD
. (7.10)

Trap frequency can then be calculated by inserting Eq. 7.10 into Eq. 2.34. A light
ring has the same relation between trap width/depth and trap frequency as a focussing
Gaussian, but the dark ring has the following trap frequency:

ωr =

√
4U0e

mw2
0

. (7.11)

Clearly the trap depths (and frequencies) of a dark or light ring would be different if
we used the same width and radius. However, we can set them to be the same, by
solving the simultaneous equations and equating trap depth and frequency between the
two types of rings. To create a dark ring equivalent to a light ring, we would require
wD = w0

√
e and P0,dark−ring = P0,light−ring

√
e/2.
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7.4 Selecting Ideal Zone Plate Parameters

In addition to improving our design algorithms and considering new potentials, we
also want to create some patterns similar to existing rings, but with more well cho-
sen parameters (focal length, trap width and ring radius). Carefully considering trap
parameters may allow us to correct or better understand some problems outlined in
Chap. 6 such as diffractive effects reducing the axial trap frequency and the mismatch
of design and experimental potential width.

To do this we split the investigation into two parts. The first focusses on the focal
length and how it changes the propagation behaviour, and the second investigates how
well the design parameters are reproduced in the resulting potential.

7.4.1 Focal Length

In Tab. 1.2, Tab. 7.1 and the corresponding propagation maps in Figs. 6.9, 6.10, 7.1,
and 7.2 we see that changing the focal length of the zone plate effects the radial and
axial trap widths, and changes the qualitative shape of the focus.

To try to understand how and why this is happening, we’ll approximate the system
in different ways. First we approximate the ring as a circle of individual Gaussian
foci which each propagate as typically expected. This gives us an intuitive, but very
naı̈ve way of picturing the system as overlapping wavefronts where phase ‘informa-
tion’ is lost at the overlap. We add complexity to this model by comparing the ideal
illumination intensity distribution to the actual illumination and consider the intensity
‘information’ loss by using non-ideal illumination. We then create a full theoretical
description by considering the ‘information’ loss by calculating the full overlap (or
correlation) integral for the ideal and experimental electric fields.

Avoiding Overlap - a ring approximated by many Gaussian spots

When we design zone plates, we take the desired electric field and propagate is back
to where the zone plate will be located, and use the phase information here to cre-
ate the zone plate. In Sec. 5.3, to intuitively understand some results, we imagined
wavefronts emanating from waveguides like the magnetic field lines around a wire to
describe phase fronts ‘emanating’ from a waveguide. This approach can be extended
and made more physical by considering behaviour we already know about the propa-
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Figure 7.6: (a) The overlap of the wavefronts from each side of the ring determines the
maximum focal length of zone plate which obeys Gaussian optics. (b) The maximum
focal lengths for different potential waists are shown for rings of radius 100 µm (blue),
200 µm (red), 500 µm (yellow), 1 mm (purple), and 2 mm (green).

gation of light. We could approximate a ring-shaped waveguide as a line of individual
Gaussian foci which superimpose with one another such that the propagation behaves
according to Eqs. 2.2 and 2.3 in the radial direction, and is cylindrically symmetric.
A 2D schematic of this for a ring with width w0 and diameter D = 2r0, is shown in
Fig. 7.6.

By considering the size of the beam to be the 1/e2 radius (w(z)), the focal length at
which light from either side of the ring begins to overlap is given byw(f) = r0 = D/2.
Rearranging this gives a maximum focal length (without overlap) in terms of the ring
radius and 1/e2 waist:

fmax =
πw2

0

λ

√
r2

0

w2
0

− 1 . (7.12)

The dependence of this maximum focal length on the width of the ring is plotted for
a variety of different radii in Fig. 7.6b. We can see that the 100 µm and 200 µm radius
rings used in Chap. 6 have focal lengths much larger than this requirement. Since the
zone plates have been shown to work well in this regime, it’s clear that this extremely
simplistic model doesn’t accurately describe what is happening, this is unsurprising
considering the assumptions made.

We also note that this method also allows us to define a minimum zone plate size
(edge length L), such that the field from the ring is not larger than the plate. In
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general, this means that the zone plate must have L > D + 2w(f) or equivalently
L/2 > r0 + w(f). At the the maximum focal length, defined above, this gives is
L > 4r0.

Approximating phase knowledge loss - a ring approximated by many Gaussian
spots

In Sec. 5.3, we talked about the aberrations in patterns being due to information loss.
We call this information loss as we are losing knowledge about the electric field when
we illuminate with a Gaussian and when we round phase.

Using the approximation detailed above, if we consider the information lost through
beam overlap to be proportional to the power contained in the overlapping region, we
can attempt to quantify this information loss. In a simplistic approximation, the pro-
portion of the power which crosses the centre of zone plate can be assumed to be
proportional to the knowledge lost. The integral defining the power contained between
two points (ra and rb) on a 1D Gaussian centred on the origin is given by

∫ rb

ra

Idr = I0

(
w0

w(z)

)2
w(z)

2

√
π

2

[
erf

(√
2r

w(z)

)]rb
ra

. (7.13)

For the overlap region, we calculate P0 −
∫ L/2

0
Idr and divide this by the total power

P0. This is shown in Fig. 7.7 for the rings demonstrated in generation 1. We can see
that the information loss plateaus at 50 % as we are assuming that the overlap does not
reduce information outside of the radius of the ring. So, as long as the zone plate has
L > 4w(f), at least half of the information always remains. In reality, interference
means that information is not completely ‘lost’ from light ‘crossing’ the centre line,
but it does make the resulting diffraction less efficient and can lead to the centrally
peaked aberration we see in the experimental rings produced.

Intensity Overlap

In the model that describes Fig. 7.7, the so-called information loss is imagined as being
due to the washing out of phase information when beams overlap. It doesn’t take into
account the mismatch between the field used to illuminate the zone plates and the ideal
illumination intensity.
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Figure 7.7: Information lost into the overlapping region as a function of focal length.
This done for rings of varying widths: 5 µm blue, 10 µm red, and 15 µm yellow; and
varying radii: 100 µm solid lines, 200 µm dashed lines, and 500 µm dashed-dot lines.
The vertical dotted lines denoted the focal length utilised.

We can calculate this by calculating the overlap between the power normalised in-
tensity distributions: 2π

∫∞
0

min(Ĩideal, Ĩillum.)rdr, these results are shown in Fig. 7.8.
These results suggest that, for short focal lengths, a Gaussian isn’t a good approx-

imation for the ring’s intensity distribution at the zone plate. However, as one would
expect, the Gaussian becomes a better approximation at longer focal lengths. This im-
provement plateaus at certain focal length (which is shorter for smaller w0/r0). The
reasoning for this plateauing is difficult to understand and may not be important once
we include phase in our calculations, as is done the following section.

Electric Field Overlap

Figs. 7.7 and 7.8 give us a way to intuitively see the mechanisms for knowledge loss in
the system, but to determine the most appropriate focal lengths, we need to combine
these two methods.

We do this by computing the overlaps of electric fields, which can then be decom-
posed into real and complex parts to represent to the intensity and phase mismatch.
The overlap power (Poverlap) of two power normalised electric fields, Ẽ1 and Ẽ2 is
given by

Poverlap = 2π

∫ ∞
0

Ẽ∗1Ẽ2rdr . (7.14)
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Figure 7.8: The mismatch between the illumination intensity distribution and the ideal
intensity distribution as a function of focal length. This done for rings of varying
widths: 5 µm blue, 10 µm red, and 15 µm yellow; and varying radii: 100 µm solid lines,
200 µm dashed lines, and 500 µm dashed-dot lines. The vertical dotted lines denoted
the focal length utilised.

Before calculation of the integral, we normalise each electric field by power, such
that we only examine the similarity of the shapes rather than considering the actual
efficiency of the hologram. We can use this integral to compare two sets of electric
fields, the input beams and the output beams. The overlap of the input beams, is the
overlap between the illumination field multiplied by the phase contribution of the zone
plate, and the ideal field (as calculated by back-propagating the ring). This could be
represented by Eillum. exp(−iφZP) and Eideal. The overlap of the output beams, is the
overlap between the target potential and the simulated expected potential (Etarg. and
Esim.). We find that the input and output overlaps are the same. This is unsurprising
as there is no additional field modification down stream of the zone plate. The input
overlap is shown in Fig. 7.9, with the equivalent for a higher (10-bit) depth zone plate
shown in Fig. 7.10.

The first thing we notice in the overlap plots is that, in the case of a binary zone
plate, we see regular oscillations that disappear when the bit-depth of the zone plate
is increased. On further investigation, we find that this disappearance is gradual. A
Fourier transform of the oscillations is shown in Fig. 7.11. The oscillations occur with
a dominant frequency (period) of 833.3 m−1 (1.2 mm). The frequency components are
independent of trap parameters and the period of the oscillations are not obviously
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Figure 7.9: Overlap between the ideal and actual electric fields in the plane of a binary
zone plate plotted as a function of focal length. The overlap is split into intensity (top)
and phase components (bottom plot oscillating about zero). This done for rings of
varying widths: 5 µm blue, 10 µm red, and 15 µm yellow; and varying radii: 100 µm
solid lines, 200 µm dashed lines, and 500 µm dashed-dot lines. The vertical dotted lines
denoted the focal length utilised in Gen1.
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Figure 7.10: Overlap between the ideal and actual electric fields in the plane of the
zone plate plotted as a function of focal length for a zone plate with 10-bit phase
resolution. The colours and styles are as previously described.
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Figure 7.11: Fourier analysis of oscillations in overlap as focal length is increased.
This done for rings of varying widths: 5 µm blue, 10 µm red, and 15 µm yellow; and
varying radii: 100 µm solid lines, 200 µm dashed lines, and 500 µm dashed-dot lines.

related to the simulation size (8 mm) or wavelength. This leads us to believe that its
origin relates to the phase rounding process, but as of yet we are unsure of its exact
source. This may explain some of the aliasing between adjacent pixels in the RMS
error plots of Figs. 5.5 and 5.6.

The general trend of the overlap is consistent between the binary and 10-bit phase
depth scenarios, meaning that we can assume it results from intensity mismatch and
possibly long scale phase mismatch. Overall trends are most clearly seen in the high
phase depth plot, with the overlap either peaking at a medium focal length (as is the
case for the 5 µm width rings) or slowly increasing before plateauing for the larger
width rings. These general trends mean that we wouldn’t expect to gain a significant
amount of information by choosing focal lengths more carefully, but we should exam-
ine the effect of focal length on the accuracy of the top of the trap in order to determine
usefulness for atom traps. This is shown in Fig. 7.12.

In the case of examining the shape overlap of electric fields located in the bright-
est 20% of the target pattern (Fig. 7.12), we first notice that the oscillation for binary
patterns are less pronounced. When comparing the general trends in overlap between
Fig. 7.10 and Fig. 7.12 we see that, rather than the smooth plateauing seen when look-
ing at the full field overlap, we see a rapid increase in overlap at small focal length,
which then drops for medium focal lengths and increases to a plateaued value at longer
focal lengths (typically plateauing either above or at the same value as the original
peak). The rate of change of overlap, location of the initial peak and the distance over
which the overlap plateaus is mainly dependent on trap width but is also influenced to
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Figure 7.12: Overlap between the brightest 20% of the ideal and actual electric fields
in the plane of the potential plotted as a function of focal length for a zone plate with
binary (10-bit) phase resolution at the top (bottom). The overlap is split into intensity
(top) and phase components (bottom plot oscillating about zero). This done for rings
of varying widths: 5 µm blue, 10 µm red, and 15 µm yellow; and varying radii: 100 µm
solid lines, 200 µm dashed lines, and 500 µm dashed-dot lines. The vertical dotted lines
denoted the focal length utilised in Gen1.

151



7.4. SELECTING IDEAL ZONE PLATE PARAMETERS

a lesser extent by the radius of the ring. The initial peaks in overlap percentage are
of similar values to the ideal maximum focal length in linear propagation predicted
in Fig. 7.6, suggesting that these initial peaks are the ideal focal length for propaga-
tion without extra diffractive features (i.e. propagation that most resembles an ordinary
focussing Gaussian). These diffractive features (such as the ‘shoulders’ seen in exper-
imental results in Chap. 6) become more dominant at focal lengths in the plateaued
region. To summarise these trends, we can see that our choice of a focal length of
18.185 mm sits at a point where narrow rings are expected to be well reproduced in
terms of shape.
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Figure 7.13: The absolute difference between the design (rdes and wdes) and pre-
dicted (rsim and wsim) trap parameters presented as a function of focal length and de-
signed trap width (1st row) or designed trap radius (2nd row) for radii (widths) 100 µm,
200 µm and 500 µm (5 µm, 10 µm and 15 µm) in the columns from left to right. Here
we simulate a zone plate with binary phase.
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Figure 7.14: The absolute difference between the design (rdes and wdes) and predicted
(rsim and wsim) trap parameters presented as a function of focal length and trap width
(1st row) or trap radius (2nd row) for radii (widths) 100 µm, 200 µm and 500 µm (5 µm,
10 µm and 15 µm) in the columns from left to right. Here we simulate a zone plate with
10-bit phase.

7.4.2 Parameter Reproduction

We can simulate the expected output patterns for the zone plates designed to the same
parameters as shown in Figs. 7.7 and 7.8 for illumination with a 1 mm 1/e2 waist Gaus-
sian. These can then be fitted to a Gaussian ring (as done in the analysis of Chap. 6) in
order to determine the difference between input and output parameters when design-
ing different rings at different focal lengths. The results of this process are shown in
Figs. 7.13 and 7.14.

In Figs. 7.13 and 7.14, we can see that, in the case of w0 � r0, the ability of a zone
plate to produce a ring of a particular radius is independent of the focal length of the
zone plate. This can be seen in the areas close to zero in the upper right corner of the
plots of focal length against radius (bottom rows of both figures). On the other hand,
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the ability to reproduce a width is clearly very dependent on the choice of focal length.
We see that for a 10-bit zone plate, the mismatch is minimised for a focal length

of the order of a few Rayleigh lengths, and again at longer focal lengths. The benefits
of choosing a longer focal length are particularly strong for a binary zone plate as the
initial minima (seen as a dark stripe in the top line of Fig. 7.13 compared to white areas
in Fig. 7.13) is often obscured by poor shape matching (the missing data corresponds
to points which could not be fitted).

It is of note that, for shorter focal lengths, the simulation does not yield reliable
and consistently characterisable rings (as shown by missing data corresponding to nan
results in the fitting algorithm). This could occur for a combination of reasons. Firstly,
at short focal lengths, the numerical aperture of the system is such that a very narrow
focus is produced (of only a few simulation pixels in size), meaning that the peak is
hard to fit. This observation is backed up by noting that the simulated width is much
smaller than the designed width at smaller focal lengths. Secondly, in order to repro-
duce the target pattern, there needs to be sufficient distance for light to diffract/interfere
such that the illumination intensity changes from a Gaussian beam to the ring shape
desired. We can also see this as poor intensity overlap, as was seen in Figs. 7.9, 7.10,
and 7.12

We can also see that we should be able to create a much larger radius rings (here we
have shown up to 500 µm radius) at realistic focal lengths. Wider rings should also be
possible if the focal length of the ring is carefully chosen (we can see this in the dark
diagonal stripe in the bottom left of the width plots of Figs. 7.13 and 7.14. We expect
it to be easier to load atoms into the wider traps and note that existing successful ring
traps (Sec. 1.4.2) are much wider than those tested in Chap. 6.

7.4.3 Summary of Parameter Choice

In summary, the investigations above show that the choice of focal length depends
mainly on the desired trap width and the axial confinement required. In reality, exper-
imental practicality is likely to be a more dominant factor in choices, as we can select
a kinoform based on the simulated output width.

If one wants to operate outside of a vacuum chamber (so with a long focal length),
then the longer the focal length the better. For narrow width traps, the regime of linear
propagation is too small to be practical and may be too close to the zone plate for use
with non-ideal illumination. Therefore one should use a longer focal length. If linear
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propagation of the ring is required (rather than it only occurring close to the focus),
then one should use the maximum ideal focal length detailed in Fig. 7.6. A value close
to this maximum ideal focal length should be used for all patterns if the focal length
obtained is practical.

We expect to be able to produce wider width rings successfully. Though this will
need fine-tuned selection of zone plate parameters to ensure suitable reproduction. For
these wider rings, we have simulated that the choice of focal length is much more
important than for narrow widths (Figs. 7.13 and 7.14).

Sec. 7.1 shows that, if tight axial confinement is required, then one should aim to
use a narrow ring width and as short a focal length as is practical. This would also
yield tight radial confinement, so is not necessarily compatible with typical BEC sizes.
Therefore, we expect a light sheet or other axial confinement tool to be used with the
next generation of zone plates generated rings.
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Chapter 8

Conclusion and Outlook

8.1 Summary

In chapter 1 we began by introducing the motivations of the work within this thesis:
improving inertial sensing via the use of a compact atom interferometer. Atom inter-
ferometers have the potential to revolutionise inertial measurements by offering high
per particle sensitivity in a system with far greater stability than existing light interfer-
ometers. This is a hard problem, particularly with a view towards creating a compact
sensor which would be practical for field use. One way to reduce the size of an atom
interferometry experiment is to guide the atoms. We propose and investigate Fresnel
holography as a method to produced ring-shaped optical waveguides.

8.1.1 Building a BEC Machine

The biggest step towards creating an atom interferometer is building a cold atom or
BEC machine. The theory of the cooling and control techniques needed to create one of
these machines was presented in chapter 2. In chapter 3, the current progress towards
designing and building this new experiment was detailed. At the time of writing, we
have successfully created a 2D+ MOT which loads a 3D MOT.

A thorough understanding of BEC behaviour is crucial to creating a BEC-based
atom interferometer and to successfully designing a waveguide. In chapter 4 this
behaviour was theoretically described, beginning generally with the Gross-Pitaevskii
equation, before applying the Thomas-Fermi limit to approximate a BEC in a harmonic
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potential. This theory was then utilised for scenarios relevant to our experiment, such
as behaviour in ring potentials and how density measurements can be used to calcu-
late temperature and infer the existence of phase fluctuations. This chapter ended with
the presentation of investigations from an existing BEC experiment, where I started
my PhD. We observed density fluctuations which result from phase fluctuations in a
quasi-1D BEC. We have not yet been able to explain the strongly periodic nature of
the fluctuations observed using existing fluctuation models.

8.1.2 Fresnel Zone Plate Holographic Waveguides

The second half of the thesis dealt with holographic waveguides intended for use in
conjunction with the ultracold atom experiment.

The theory pertaining to Fresnel zone plates was presented in chapter 5 alongside
the comparative simulations contained within Ref. [123]. Our numerical simulations
compared Fresnel zone plates (binary phase depth and wavelength pixel size) to typ-
ical SLM kinoforms (8-bit phase and a typical pixel size of 12 µm). This effectively
determines whether spatial or phase resolution is more important for kinoforms when
operated in a lensless Fresnel regime.

We confirmed that spatial resolution is much more critical than bit-depth, partic-
ularly in situations where Gaussian or plane-wave illumination is used rather than a
tailored beam intensity profile. We note that a small increase of bit-depth for a zone
plate would improve the holograms significantly. FZPs consistently showed an im-
proved root mean square error compared to an SLM style kinoform, with this advan-
tage increasing for more complex target intensity distributions. The simulations also
demonstrated 3D mapping of the focus of these patterns, showing the potential for
(weak) axial trapping.

Significantly extending upon published results [123], we also demonstrated that
one could theoretically produce rings with phase winding, by either illuminating a ring
zone plate with an LG beam, or by other tailoring of the incident electric field.

Twenty four Fresnel zone plates, in a variety of geometries, were manufactured
and optically tested in chapter 6. We used a variety of rings and other atomtronic-type
potentials (such as Y-junctions), with the ring potentials showing the most promising
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results.
The rings were then analysed to determine their trapping parameters and the smooth-

ness of the trap. The rings were reproduced without observable ellipticity, and radii
corresponding to the design parameters. Imperfect illumination (a 1 mm 1/e2 radius
Gaussian) and numerical aperture limits the widths of the rings produced, though these
are of an order expected when estimating the numerical aperture of the system.

We were able to make benchmarking measurements of the quality (smoothness)
of the rings. All rings had a root mean squared error of between 3 % and 5 %, corre-
sponding to an upper limit on the roughness we expect to be experienced by atoms in
the potential. This is expected to be compatible with atom trapping and guiding. Trap
parameters (1/e2 radius, trap depth and radii of the rings) varied by a maximum of 10 %
peak-to-peak, with the dominant variation occurring in the first few azimuthal modes,
meaning that they are slowly varying. The benchmarking is limited by aberrations
inherent to the imaging system and by the analysis algorithms involved in converting
from Cartesian to polar co-ordinates.

The illuminating electric field was modulated using a SLM as an experimental
proof-of-principle demonstration of a hybrid SLM-FZP system.

In chapter 7 we detailed the theoretical considerations for designing a second gen-
eration of zone plate kinoforms. Here we further investigated the axial propagation of
our existing kinoforms through numerical simulations. This confirmed our observa-
tions about the limits on ring width related to numerical aperture.

We then improved our design and simulation algorithm by extending it to sub-
wavelength pixel sizes and larger simulation areas. This required an understanding of
the role of evanescent waves for this type of kinoform. For cylindrically symmetric
target distributions such as rings, the use of a Hankel transform was demonstrated to
reduce the computation power required for kinoform design.

A dark ring, which in an experiment would utilise blue-detuned light to trap atoms
in intensity minima, was investigated theoretically and the corresponding trap param-
eters were calculated. The numerical analysis will allow these potentials to be directly
compared to bright rings (red-detuned) in future experiments.

In the final section, we explored the parameter space of rings that are producible
using Fresnel zone plate kinoforms. Here we concluded that, for the narrow ring widths
used in the first FZPs, long focal lengths reproduce the designed width most accurately,
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though a narrow range of small focal length could also reproduce these rings well. We
also showed that wider rings would be possible if the focal length is carefully selected.
This increases the range of possible applications of these kinoforms by allowing us to
obtain a range of radial trap frequencies.

8.2 Outlook

The future of the experiment is very promising. We hope to reach BEC within the
next months. Work pertaining to the use of zone plates for atom trapping is ongoing.
Current work is focussed on methods to operate a zone plate potentials and imaging
co-axially; this is likely to require relaying of the potentials with a low-aberration lens.

Once BEC is reached, work will turn to loading atoms into the ring potentials
and studying the trapping parameters. We can then implement interferometry beams
equivalent to those used in Refs. [8–10].

It is hoped that a second generation of kinoforms will be manufactured shortly.
We plan to expand on our capabilities by generating larger radius rings, larger width
rings, and kinoforms suitable for creating blue-detuned dark rings (using a different
wavelength).
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[135] T. W. Hänsch and A. L. Schawlow, Cooling of gases by laser radiation, Optics
Communications 13, 68 (1975).

[136] W. D. Phillips and H. Metcalf, Laser Deceleration of an Atomic Beam, Physical
Review Letters 48, 596 (1982).

169



BIBLIOGRAPHY

[137] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-
dimensional viscous confinement and cooling of atoms by resonance radiation
pressure, Physical Review Letters 55, 48 (1985).

[138] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Experimental Observation
of Optically Trapped Atoms, Physical Review Letters 57, 314 (1986).

[139] C. J. Foot, Atomic physics (Oxford University Press, 2005).

[140] D. Boiron, C. Triché, D. R. Meacher, P. Verkerk, and G. Grynberg, Three-
dimensional cooling of cesium atoms in four-beam gray optical molasses, Phys-
ical Review A 52, R3425 (1995).

[141] K. N. Jarvis, J. A. Devlin, T. E. Wall, B. E. Sauer, and M. R. Tarbutt, Blue-
Detuned Magneto-Optical Trap, Physical Review Letters 120, 083201 (2018).

[142] W. Gerlach and O. Stern, Der experimentelle Nachweis der Richtungsquan-
telung im Magnetfeld, Zeitschrift für Physik 9, 349 (1922).

[143] W. Gerlach and O. Stern, Das magnetische Moment des Silberatoms, Zeitschrift
für Physik 9, 353 (1922).

[144] W. Gerlach and O. Stern, Der experimentelle Nachweis des magnetischen Mo-
ments des Silberatoms, Zeitschrift für Physik 8, 110 (1922).

[145] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentic Hall, 1999).

[146] A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf,
First Observation of Magnetically Trapped Neutral Atoms, Physical Review
Letters 54, 2596 (1985).

[147] D. M. Brink and C. V. Sukumar, Majorana spin-flip transitions in a magnetic
trap, Physical Review A 74, 035401 (2006).

[148] E. Majorana, Atomi orientati in campo magnetico variabile, Il Nuovo Cimento
9, 43 (1932).

[149] P. O. Schmidt et al., Continuous loading of cold atoms into a Ioffe Pritchard
magnetic trap, Journal of Optics B: Quantum and Semiclassical Optics 5, S170
(2003).

[150] H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Bose-
Einstein Condensation in a Surface Microtrap, Physical Review Letters 87,
230401 (2001).

[151] D. S. Naik and C. Raman, Optically plugged quadrupole trap for Bose-Einstein
condensates, Physical Review A 71, 033617 (2005).

170



BIBLIOGRAPHY

[152] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly
Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms, Physical
Review Letters 74, 3352 (1995).

[153] B. M. Garraway and H. Perrin, Recent developments in trapping and manipula-
tion of atoms with adiabatic potentials, Journal of Physics B: Atomic, Molecular
and Optical Physics 49, 172001 (2016).

[154] D. E. Pritchard, Cooling Neutral Atoms in a Magnetic Trap for Precision Spec-
troscopy, Physical Review Letters 51, 1336 (1983).

[155] A. Arnold, Preparation and Manipulation of an Rb Bose-Einstein Condensate,
Phd thesis, University of Sussex, 1999.

[156] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of
Neutral Sodium Atoms with Radiation Pressure, Physical Review Letters 59,
2631 (1987).

[157] H. J. Metcalf and P. van der Straten, Laser Cooling and TrappingGraduate Texts
in Contemporary Physics (Springer New York, 1999).

[158] K. Lindquist, M. Stephens, and C. Wieman, Experimental and theoretical study
of the vapor-cell Zeeman optical trap, Physical Review A 46, 4082 (1992).

[159] S. Gensemer, V. Sanchez-Villicana, K. Tan, T. Grove, and P. Gould, Trap-loss
collisions of Rb85 and Rb87: Dependence on trap parameters, Physical Review
A 56, 4055 (1997).

[160] M. Haw et al., Magneto-optical trap loading rate dependence on trap depth and
vapor density, Journal of the Optical Society of America B 29, 475 (2012).

[161] T. Arpornthip, C. A. Sackett, and K. J. Hughes, Vacuum-pressure measurement
using a magneto-optical trap, Physical Review A 85, 033420 (2012).

[162] J. P. McGilligan, P. F. Griffin, E. Riis, and a. S. Arnold, Phase-space properties
of magneto-optical traps utilising micro-fabricated gratings, Optics Express 23,
8948 (2015).

[163] C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman,
Multiply loaded magneto-optical trap., Optics letters 21, 290 (1996).

[164] Z. T. Lu et al., Low-velocity intense source of atoms from a magneto-optical
trap, Physical Review Letters 77, 3331 (1996).

[165] S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, Realization of an intense cold Rb
atomic beam based on a two-dimensional magneto-optical trap: Experiments
and comparison with simulations, Physical Review A 74, 1 (2006).

171



BIBLIOGRAPHY

[166] J. Schoser et al., Intense source of cold Rb atoms from a pure two-dimensional
magneto-optical trap, Physical Review A 66, 023410 (2002).

[167] K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Two-
dimensional magneto-optical trap as a source of slow atoms, Physical Review
A 58, 3891 (1998).

[168] A. Di Carli, C. Colquhoun, and E. Haller, Private Communication, 2017.

[169] K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Single-beam atom trap in a
pyramidal and conical hollow mirror, Optics Letters 21, 1177 (1996).

[170] M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, Single-laser, one beam,
tetrahedral magneto-optical trap, Optics Express 17, 13601 (2009).

[171] M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, Laser cooling with a
single laser beam and a planar diffractor, Optics Letters 35, 3453 (2010).

[172] C. C. Nshii et al., A surface-patterned chip as a strong source of ultracold atoms
for quantum technologies, Nature Nanotechnology 8, 321 (2013).

[173] J. P. Cotter et al., Design and fabrication of diffractive atom chips for laser
cooling and trapping, Applied Physics B 122, 172 (2016).

[174] J. P. McGilligan, P. F. Griffin, E. Riis, and A. S. Arnold, Diffraction-grating
characterization for cold-atom experiments, Journal of the Optical Society of
America B 33, 1271 (2016), 1601.07431.

[175] J. P. McGilligan et al., Grating chips for quantum technologies, Scientific
Reports 7, 384 (2017).

[176] J. P. Mcgilligan, Micro-fabricated Diffractive Optics for Quantum Sensors and
Atomic Clocks, Phd, University of Strathclyde, 2017.

[177] J. P. McGilligan, R. Elvin, P. F. Griffin, E. Riis, and A. S. Arnold, Utilising
diffractive optics towards a compact, cold atom clock, in 2016 European Fre-
quency and Time Forum (EFTF), pp. 1–2, IEEE, 2016.

[178] E. Imhof et al., Two-dimensional grating magneto-optical trap, Physical Re-
view A 96, 033636 (2017).

[179] O. Burrow and P. F. Griffin, Private communication, 2017.

[180] Y. Castin, H. Wallis, and J. Dalibard, Limit of Doppler cooling, Journal of the
Optical Society of America B 6, 2046 (1989).

172



BIBLIOGRAPHY

[181] J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit
by polarization gradients: simple theoretical models, Journal of the Optical
Society of America B 6, 2023 (1989).

[182] D. A. Steck, Rubidium 87 D Line Data, available online at
http://steck.us/alkalidata (2015).

[183] P. D. Lett et al., Observation of atoms laser cooled below the doppler limit,
Physical Review Letters 61, 169 (1988).

[184] Y. Shevy, D. S. Weiss, P. J. Ungar, and S. Chu, Bimodal speed distributions in
laser-cooled atoms, Physical Review Letters 62, 1118 (1989).

[185] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel
atoms: theory, Journal of the Optical Society of America B 6, 2058 (1989).

[186] P. D. Lett et al., Optical molasses, Journal of the Optical Society of America B
6, 2084 (1989).

[187] D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, Optical molasses and
multilevel atoms: experiment, Journal of the Optical Society of America B 6,
2072 (1989).

[188] C. G. Townsend et al., Phase-space density in the magneto-optical trap, Physi-
cal Review A 52, 1423 (1995).

[189] M. T. DePue, S. Lukman Winoto, D. Han, and D. S. Weiss, Transient compres-
sion of a MOT and high intensity fluorescent imaging of optically thick clouds
of atoms, Optics Communications 180, 73 (2000).

[190] D. Boiron et al., Laser cooling of cesium atoms in gray optical molasses down
to 1.1 µK, Physical Review A 53, R3734 (1996).

[191] D. Rio Fernandes et al., Sub-Doppler laser cooling of fermionic 40 K atoms
in three-dimensional gray optical molasses, Europhysics Letters 100, 63001
(2012).

[192] A. T. Grier et al., Λ-enhanced sub-Doppler cooling of lithium atoms in D1 gray
molasses, Physical Review A 87, 063411 (2013).

[193] G. Salomon et al., Gray-molasses cooling of 39 K to a high phase-space density,
EPL (Europhysics Letters) 104, 63002 (2013).

[194] G. D. Bruce et al., Sub-Doppler laser cooling of 40 K with Raman gray molasses
on the D2 line, Journal of Physics B: Atomic, Molecular and Optical Physics
50, 095002 (2017).

173



BIBLIOGRAPHY

[195] S. Rosi et al., Λ-enhanced grey molasses on the D2 transition of Rubidium-87
atoms, Scientific Reports 8, 1301 (2018).

[196] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Behavior of
atoms in a compressed magneto-optical trap, Journal of the Optical Society of
America B 11, 1332 (1994).

[197] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, High den-
sities of cold atoms in a dark spontaneous-force optical trap, Physical Review
Letters 70, 2253 (1993).

[198] A. G. Sinclair, E. Riis, and M. J. Snadden, Improved trapping in a vapor-cell
magneto-optical trap with multiple laser frequencies, Journal of the Optical
Society of America B 11, 2333 (1994).

[199] M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, Reduction of
light-assisted collisional loss rate from a low-pressure vapor-cell trap, Physical
Review A 50, 3597 (1994).

[200] C. G. Townsend et al., High-density trapping of cesium atoms in a dark
magneto-optical trap, Physical Review A 53, 1702 (1996).

[201] N. Radwell, G. Walker, and S. Franke-Arnold, Cold-atom densities of more
than 1012 cm−3 in a holographically shaped dark spontaneous-force, Physical
Review A 88, 043409 (2013).

[202] C. Corder, B. Arnold, and H. Metcalf, Laser Cooling without Spontaneous
Emission, Physical Review Letters 114, 043002 (2015).

[203] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Optical Dipole Traps for
Neutral Atoms, Advances in Atomic, Molecular and Optical Physics 42, 95
(2000).

[204] J. Dalibard and C. Cohen-Tannoudji, Dressed-atom approach to atomic mo-
tion in laser light: the dipole force revisited, Journal of the Optical Society of
America B 2, 1707 (1985).

[205] W. Ketterle and N. V. Druten, Evaporative Cooling of Trapped Atoms, in Ad-
vances In Atomic, Molecular, and Optical Physics, volume 37, pp. 181–236,
Elsevier, 1996.

[206] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, Making, probing and
understanding Bose-Einstein condensates, Proceedings of the 1998 Enrico
Fermi summer school on Bose-Einstein condensation in Varenna, Italy. (1999),
arXiv:9904034.

174



BIBLIOGRAPHY

[207] A. Kuhn, H. Perrin, W. Hänsel, and C. Salomon, Three Dimensional Raman
Cooling using Velocity Selective Rapid Adiabatic Passage, in in OSA TOPS on
Ultracold Atoms and BEC, volume 7, p. 58, Optical Society of America, 1997.

[208] M. D. Barrett, J. A. Sauer, and M. S. Chapman, All-Optical Formation of an
Atomic Bose-Einstein Condensate, Physical Review Letters 87, 010404 (2001).

[209] S. Kumar et al., Simple and Fast Production of Bose–Einstein Condensate in
a 1 µm Cross-Beam Dipole Trap, Journal of the Physical Society of Japan 81,
084004 (2012).

[210] K. Yamashita, K. Hanasaki, A. Ando, M. Takahama, and T. Kinoshita, All-
optical production of a large Bose-Einstein condensate in a double compressible
crossed dipole trap, Physical Review A 95, 013609 (2017).

[211] J.-F. Clément et al., All-optical runaway evaporation to Bose-Einstein conden-
sation, Physical Review A 79, 061406 (2009).

[212] A. B. Deb, T. McKellar, and N. Kjærgaard, Optical runaway evaporation for
the parallel production of multiple Bose-Einstein condensates, Physical Review
A 90, 051401 (2014).

[213] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, Rapid pro-
duction of 87Rb Bose-Einstein condensates in a combined magnetic and optical
potential, Physical Review A 79, 063631 (2009).

[214] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic,
Bose-Einstein Condensation of Atoms in a Uniform Potential, Physical Review
Letters 110, 200406 (2013).

[215] S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Laser Cooling to Quantum
Degeneracy, Physical Review Letters 110, 263003 (2013).

[216] L. Hu, N. Poli, L. Salvi, and G. M. Tino, Atom Interferometry with the Sr
Optical Clock Transition, Physical Review Letters 119, 263601 (2017).

[217] O. J. Luiten, M. W. Reynolds, and J. T. M. Walraven, Kinetic theory of the
evaporative cooling of a trapped gas, Physical Review A 53, 381 (1996).

[218] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New
Journal of Physics 17, 065001 (2015).

[219] M. Gajdacz et al., Non-destructive Faraday imaging of dynamically controlled
ultracold atoms, Review of Scientific Instruments 84, 083105 (2013).

[220] M. Gajdacz et al., Preparation of Ultracold Atom Clouds at the Shot Noise
Level, Physical Review Letters 117, 073604 (2016).

175



BIBLIOGRAPHY

[221] M. R. Andrews et al., Direct, Nondestructive Observation of a Bose Conden-
sate, Science 273, 84 (1996).

[222] J. Ye, S. Swartz, P. Jungner, and J. L. Hall, Hyperfine structure and absolute
frequency of the 87Rb 5P3/2 state, Optics Letters 21, 1280 (1996).

[223] S. Bize et al., High-accuracy measurement of the 87 Rb ground-state hyperfine
splitting in an atomic fountain, Europhysics Letters (EPL) 45, 558 (1999).

[224] C. E. Wieman and L. Hollberg, Using diode lasers for atomic physics, Review
of Scientific Instruments 62, 1 (1991).

[225] L. Ricci et al., A compact grating-stabilized diode laser system for atomic
physics, Optics Communications 117, 541 (1995).

[226] A. S. Arnold, J. S. Wilson, and M. G. Boshier, A simple extended-cavity diode
laser, Review of Scientific Instruments 69, 1236 (1998).

[227] Newport Corporation, TA-7600-Series Tapered Amplifier Model Manual, 2013.

[228] S. T. Seidel, Eine Quelle für die Interferometrie mit Bose-Einstein-Kondensaten
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Appendix A

Additional Zone Plate Data
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Figure A.1: Fourier roughness analysis for all rings. See Fig. 6.17 and Sec. 6.2.4 for
further details.
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Figure A.1: A continuation of the above figure
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Figure A.2: All the azimuthal force plots, see Fig. 6.18 and Sec. 6.2.4.
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Figure A.3: Simulated propagation of all the rings, displayed in the same order as ring
parameter tables.
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Appendix B

Knitting Pattern for a Kinoform Shawl

As a knitter, the Fresnel zone plate kinoforms are an exciting candidate for a quirky
stripe pattern on a shawl. As a result of this, I designed (and am close to finishing) a
semi circular π-shawl which approximates the kinoform for a ring with a radius equal
to half the radius of the shawl. The stripe pattern was calculated using MATLAB and
optimised for aesthetics. The main and contract colours (MC and CC respectively)
were inspired by the parula colourmap used in figures within this thesis, but with yel-
low replaced with a more tonal grey.

The following instructions are not for a beginner as familiarity with shawl knitting
is assumed. One should begin with a garter tab, then begin in stocking stitch with 3
stitch garter border either side. Tab. B.1 details the locations of colour changes and
increase rows, with all intermediate rows being stocking stitch. The increase rows are
K3, kfb until 3 stitches before end, K3, or the equivalent in the wrongside. One could
use the increase rows as a log base 2 axis by replacing kfb with *k1, yo*. The original
schematic is shown in Fig. B.1. Photos and further details of the finished item can be
found on Ravelry.
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Row Colour Instruction Number of Stitches
(excluding border)

1 MC begin 3
2 MC inc. 6
5 CC inc. and change colour 12
9 MC change colour 12

10 MC inc. 24
13 CC change colour 24
18 MC change colour 24
19 MC inc. 48
23 CC change colour 48
28 MC change colour 48
34 CC change colour 48
36 CC inc. 96
41 MC change colour 96
50 CC change colour 96
60 MC change colour 96
69 MC inc. 192
112 CC change colour 192
122 MC change colour 192
131 CC change colour 192
134 CC inc. 384
138 MC change colour 384
144 CC change colour 384
149 MC change colour 384
154 CC change colour 384
159 MC change colour 384
163 CC change colour 384
167 MC change colour 384
171 CC change colour 384
175 MC change colour 384

and start edging

Table B.1: A zone plate knitting pattern
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Figure B.1: A sketched pattern for the shawl. This is the pattern version which has
been followed to make the shawl.
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