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Abstract

In recent years, considerable developments have been made in controlling quantum sys-

tems through a combination of measurement and feedback. All measurements naturally

disturb the system in question, as they necessitate some level of interaction in order to ex-

tract information. However, if we can characterise the resulting disturbance and correctly

interpret the information - especially in the case of weak measurements - then we can

determine how to feed back the measurement in such a way as to drive desired evolution,

preparing potentially highly non-classical states.

In this thesis, we investigate using feedback to prepare and manipulate quantum states of

motion of levitated nano-particles, as well as for the preparation of many-body squeezed

states in atomic ensembles. We first consider a possible route to ground state cooling

with a levitated nanoparticle, magnetically trapped by a strong permanent magnet. The

trap frequency of this system is much lower than those involving trapped ions or in many

other nano-mechanical resonators. Minimisation of environmental heating is therefore

challenging as it requires control of the system on a timescale comparable to the inverse

of the trap frequency. We show that these traps are an excellent platform for performing

optimal feedback control via real-time state estimation, and that they may also be an ideal

testing ground for quantum collapse models when operating in the free particle limit. We

go on to explore a separate system, considering applications of feedback for preparing

collective pseudo-spin states in a dilute cloud of atoms. We model how information in

typically discarded measurement channels can be used to stabilise noise in order to produce

enhanced levels of spin squeezing.

In these projects we make use of quantum trajectory techniques alongside analytical mod-

els, to explore and simulate realistic parameter regimes for current or near-future experi-

ments. Throughout, we develop ideas for creating non-classical states in a new generation

of quantum technologies.
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1 Introduction 1

1 Introduction

Technologies that rely on the properties of quantum systems are becoming increasingly

relevant in order to outperform more conventional tools. Perhaps the most cited example is

the promise of quantum computers and simulators, which will be capable of computations

far beyond the reach of classically designed machines[1, 2]. Quantum metrology is another

highly active field of research which already impacts many aspects of day to day life. From

atomic clocks[3] which make possible the global positioning system, to gravitational wave

detectors[4] which provide a new lens through which to make astronomical observations.

Several platforms exist where quantum technologies are being developed. Historically,

optical systems have provided a remarkably controlled environment to study quantum

effects. Today quantum states are readily prepared in cold atomic gases[5], cryogenically

cooled superconducting circuits[6], and in the motion of microscopic oscillators[7]. It is of

growing importance to understand how to measure and control quantum systems, in order

to continue to advance these technologies and to probe the edges of quantum theory.

In measurement theory ideas such as conditional state distributions and stochastic pro-

cesses, have long been necessary in the description of purely classical systems where quan-

tum effects are not apparent. Outside of idealised models, the state of a classical system

can be represented by a probability distribution over a configuration space, for example,

the position and momentum of particles. This distribution should reflect the knowledge

gained through measurement. Realistic observations are made indirectly through some

apparatus and always contain a finite level of uncertainty. This is also true for quantum

systems, but there is an additional fundamental level of uncertainty where non-commuting

observables cannot both be known with arbitrary precision, regardless of how well mea-

surements are made. Quantum measurement theory already plays an essential roll in

metrology[8, 9], computing[10, 11], and in exploring the boundary between quantum and

classical physics[12, 13]. Furthermore, measurements can be incorporated in feedback

loops to provide stabilisation, and drive desired evolution. Feedback has many poten-
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tial applications in quantum systems, including in fault tolerant quantum computing[14],

for stabilising spin-squeezed states in atomic gases[15], and for damping mechanical mo-

tion[16]. In this thesis we explore methods of measurement and feedback for producing

non-classical states in nano-mechanical systems and in atomic spin-ensembles.

In the following section a brief background of open quantum systems is presented. This

leads onto a discussion of quantum states conditioned on measurements, known as quan-

tum trajectories. The development of measurement theory is discussed, as well as the

usefulness of the trajectory technique for numerical simulations. Lastly, methods of feed-

back are touched upon in the context of controlling the evolution of quantum systems,

alongside a few examples. This chapter ends with an outline of the structure of the rest

of this thesis.

1.1 Open quantum systems

To reach a working description of a quantum measurement it is first necessary to know

how the system in question interacts with its surroundings. It will be through this inter-

action that information is ultimately transferred to a measuring device. Moreover, before

considering measurement, treating a system in isolation is often not sufficient outside of

special cases. In the energy structure of an atom for example, spectral lines are not sharply

defined. The linewidth arises due to coupling with the infinitely many degrees of freedom

in the electromagnetic field. This infinite complexity requires a statistical treatment in

addition to the already intrinsic probabilistic nature of quantum mechanics. Coupling to

even modestly large many-body reservoirs requires an exponentially growing number of

degrees of freedom as the number of components in the reservoir increases, and again a

statistical description is often necessary. Open quantum systems are those that interact

with their surroundings, and in this sense all real systems are open to some extent. If a

sub-system is simple enough and sufficiently isolated, it can still have a tractable solution

whilst being allowed to dissipate energy and information into its much larger environ-
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ment. For macroscopic objects the environmental coupling will usually quickly destroy

the peculiar features associated with quantum physics such as superposition states and

entanglement. Unlike a system described solely by the Schrödinger equation this process

is irreversible and goes some way to explaining the emergence of classical physics.

In the field of quantum optics the coupling to the environment is well enough understood

that it can be used to drive the system dynamics rather than just account for losses[17]. In

particular, systems with a resonant optical frequency which is separated by several orders

of magnitude from the frequency of the coupling induced dynamics, have very tractable

theoretical descriptions. As such many methods used to describe open systems were de-

veloped for use in quantum optics but have since gone on to become widely applicable

in other areas of physics. Advances in cold atom physics have lead to incredible levels of

control over Bose-Einstein condensates[18, 19, 20] and Fermi gases suspended in optical

lattices[21, 22]. This has provided a versatile setting in which to explore open many-body

physics and provide insights into condensed matter theory[2]. There has also been signif-

icant progress in creating a range of nano-mechanical quantum systems, which naturally

couple strongly to their environment[23, 24, 25, 26]. These systems largely rely on our

excellent control of light which is then interfaced with matter. The initial sections of this

thesis will focus on advances in preparing levitated nanoscopic and microscopic particles

in motional quantum states.

1.2 Quantum trajectories

Much of early quantum theory did not require a description of the measurement process

beyond von Neumann’s projection postulate. In von Neumann’s approach, the state trans-

formation due to measurement happens distinctly from the time evolution described by

Schrödinger’s equation. This was generally good enough to describe experimental mea-

surements which would effectively destroy the state of the system being observed anyway.

However, projective measurements are not sufficient to describe a system that is contin-
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uously monitored. In these cases, the evolution of a quantum state should be modified

to reflect the information continuously being transferred to the environment. One of the

first experiments to highlight this was the observation of photons emitted from a single

trapped ion[27, 28, 29]. This drew attention to the fact that the measurement theory of

the time was incomplete and would lead on to the development of a stochastic dynamical

equations for quantum states.

To move beyond simple projective measurements, we can consider open quantum systems

which are explicitly coupled to some measurement apparatus. However, if we then go on to

make projective measurements of the apparatus, it initially feels like we have only shifted

the problem. In a sense this is true, to move forward there must be some point where a

definite result is drawn from the probabilistic quantum description. This point is termed

Heisenberg’s cut and one way of stating the so-called measurement problem in quantum

mechanics is that there is no physical basis for when to do this. It is sometimes possible to

find a subsystem for which the dynamics are effectively Markovian, where the environment

has no memory of the system state. In some of these cases it is possible to define a point

where we know that treating the measurement apparatus classically will not influence

the dynamics of the system. This is due to decoherence, which roughly amounts to the

conversion of a quantum superposition into a classical mixture due to interactions with

the environment. Detectors are designed to have certain classical observable properties

that correlate with the state of the system we want to know about. If the apparatus

is left in a classical mixture of these observable states, after decoherence we can make

projective measurements of the apparatus without disregarding information contained in

possible quantum correlations. This does not solve the measurement problem, there is

still a discontinuity in the theory where the measurement is made, but it does alleviate

the problem.

Considering again photo-detection from a single ion, each detection at a definite time can

be associated with a sudden change of the ion state. In the formulation of continuous

quantum measurement these “quantum jumps” are treated explicitly as part of the time
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evolution of the system. The methodology is now widely known as the quantum trajec-

tories approach[30]. The theory extends to measurements of more general observables

such as the position of a particle and other observables of infinite-dimensional systems

described by quantum diffusion equations. Even when measurements are intended to be

instantaneous it can be helpful to understand the continuous effects of measuring the sys-

tem. A single pulsed measurement will still take some finite time and if the dynamics of

the measured system are fast enough continuous measurement theory can be useful. We

later explore an example of this when considering repeated pulsed measurements of a free

levitated particle.

Quantum trajectories are not only a useful predictive model but also a powerful com-

putational tool. A practical algorithm was developed in the 1990s, in parallel by three

independent groups[31, 32, 30], where quantum jumps are simulated and averaging over

many stochastic trajectories yields measured quantities. Stochastic simulation methods

offer advantages due to their scaling with system size. The deterministic evolution of an

open quantum system described by a master equation is encoded in N2 coupled differ-

ential equations where N is the dimension of the Hilbert space. Stochastic wavefunction

simulations on the other hand scale as N . When simulating large system sizes this can

provide a substantial speed up and more practical storage. The trade off is the need for

stochastic sampling. Several trajectories are required to build up a picture of the ensem-

ble average behaviour described by a master equation. Averaging n trajectories typically

converges slowly as 1/
√
n, and although these can be executed efficiently in parallel, this is

only worthwhile if N is very large and small statistical errors are not an issue. Individual

trajectories can be useful in their own right, given the correct circumstances they can be

interpreted as realisations of what would be measured in an experiment.
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1.3 Feedback and control

Feedback control generally involves making measurements and using the information

gained to modify the system Hamiltonian in real time. For example, in optics, feedback

can be used to stabilise the phase or intensity of a laser. Some systems can be designed so

that they have intrinsic stabilisation mechanisms that function as a sort of naturally occur-

ring feedback. The first optical systems that reached the noise constraints of Heisenberg’s

uncertainty principle were achieved using intrinsic non-linearities[33, 34], with techniques

such as four wave mixing and parametric down conversion. It was Wiseman and Milburn

who first developed a theory for using active feedback of a photo-current[35]. Feedback of

this sort offers versatile control over quantum systems. In this thesis we look at a prac-

tical feedback scheme for cooling the motion of levitated nanoparticles as well a method

for preparing squeezed spin states of an atomic ensemble.

Wiseman and Milburn derived a master equation which followed a diffusive measurement

process. They initially considered monitoring a homodyne current, but the theory could

be applied generally to any measurement that effectively sampled from a Gaussian dis-

tribution, such as continually measuring the position of a quantum object. These types

of measurement introduce noise into the system dynamics, which is associated with the

fundamental uncertainty inherent in quantum mechanics. This noise then propagates

throughout the feedback process. The result is analogous to the fluctuation-dissipation

theorem where the measurement causes diffusion and the feedback can have a damping

effect. An example of this type of feedback procedure was demonstrated in damping the

motion of a trapped ion [16, 36]. The slowly varying quadrature components of an ion’s

motion in a harmonic trap can be measured in a similar manner to measuring the phase

quadratures of an optical field. A signal proportional to the momentum quadrature can

then be fed back to damp the harmonic motion. Photon shot noise contributes to heating

in these traps, but feedback using information from the scattered light can be used to cool

below the standard Doppler limit. A similar procedure can be used to align the collective
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spin of an atomic ensemble[15]. Measurement can be used to reduce the uncertainty in a

given spin component but consequently causes stochastic drift in the mean spin direction.

Feedback can be used to stabilise against this.

In theoretical models and some well controlled systems, feedback proportional to the

instantaneous measurement record can be directly reintroduced to the system. However,

often experiments instead have access to some integral of the measurement. For example,

after the use of any kind of band-pass filter, the signal has effectively been averaged. This

can of course still be used for feedback but it is much more difficult to model the resulting

dynamics. This issue is not confined to quantum physics and there are cases where methods

from classical control theory can be borrowed to make the problem more tractable[37].

In some cases, integrals of the measurement record can provide continuous estimates of

certain dynamical variables. Feedback can then be applied based on the estimated state,

altering the system evolution in the usual way to obtain some desired behaviour. In the

approximate limit of instantaneous feedback, the integrated measurement signal can even

still produce Markovian evolution.

Ultimately, with relatively straightforward implementation feedback offers the ability to

turn on and off non-trivial terms in the system Hamiltonian, and the opportunity to make

use of information that is otherwise lost to the environment, to obtain desired behaviour.

1.4 Thesis outline

This thesis is comprised of six chapters. Following this introduction which serves to provide

context, the second chapter presents a technical overview of quantum measurement and

feedback which is the foundation for the research presented. What comes after is split into

two sections covering nano-mechanics and many-body spin systems respectively. Chapter 3

provides more specific background details of nano-mechanical systems as well as examples

of early calculations. Chapters 4 covers the main results from this topic. In turn, chapter

5 contains an overview of measurement and dissipation in many-body systems, followed
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by the results relating to preparing spin-squeezed states. Finally, in chapter six the key

results from the previous chapters are summarised and concluding remarks are presented.

More specifically, in chapter 2 the conditions required for a Markovian master equation

are investigated, followed by a detailed derivation of quantum jumps and diffusion mea-

surement models. In doing so, decoherence and some of the quirks of stochastic calculus

are discussed. The chapter ends with the details of Wiseman and Milburn’s formulation of

feedback alongside methods from classical control theory that map onto quantum systems.

In chapter 3 the discussion turns to nano-mechanical systems. A brief review of the back-

ground of the field is presented, followed by an overview of some recent developments

achieved with levitated nanoparticles, for which new feedback cooling schemes are pro-

posed and analysed in chapter 4. A general measurement model for a trapped particle

is constructed and then used to explore in detail various specific methods of measuring

levitated particles, in order to determine which are best suited when using magnetic con-

finement. This leads on to an evaluation of which feedback methods are most appropriate

for these systems, and an analysis of how to overcome the challenges of working with

relatively low-quality oscillators.

In chapter 4 an analysis for cooling magnetically confined particles is presented. A final

model is shown alongside measurement simulations and the outcomes of a proposed feed-

back procedure. The chapter concludes with discussion of an ongoing project to look for

diffusion of a free particle’s position that is expected in a continuous spontaneous local-

isation model. Predictions are made using the same models from the feedback analysis,

that are applicable to proposed future experiments.

In chapter 5 the focus shifts to many-body systems, opening with an overview of spin

squeezing in atomic ensembles. The research in this chapter is motivated by a proposed

experiment that would have access to typically discarded measurement channels, when

probing an atomic cloud in free space. An analysis of how these measurements can be

used to stabilise noise to produce enhanced levels of spin squeezing is presented. The
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chapter ends with details of an ongoing investigation into techniques to produce a steady

state of the feedback procedure that is useful for metrology.
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2 Measurement and feedback

In this chapter the conditions required for a Markovian master equation are investigated,

and a derivation is outlined. The resulting equation is used to give an example of deco-

herence and highlight its importance for understanding continuous measurement. This is

followed by a detailed derivation of quantum jumps for a two level system, and then a

derivation of more general diffusion measurement models. The rules of Ito calculus are

touched upon, along with a discussion of how it will be used in the rest of this thesis. The

chapter ends with the details of Wiseman and Milburn’s formulation of feedback alongside

a discussion of methods from classical control theory that map onto quantum systems.

2.1 Born-Markov master equation

The full dynamics of a quantum system coupled to its environment are contained in the

Schrödinger equation,

ρ̇tot = − i
~
[
Hs +HE + V, ρtot

]
, (2.1)

where ρtot is the combined state of the system and the environment. Hs is the system

Hamiltonian, HE is the Hamiltonian of the environment and V describes the interaction

between the two. We can derive a more tractable equation for the system dynamics alone

if the coupling to the environment is weak, causing slow evolution on the uncoupled time

scales of the system. A weak coupling ensures the environment is negligibly influenced by

the system, which is the assumption made in the Born approximation. The Markovian

approximation requires further restriction on the properties of the environment, assuming

it to have no memory of the system.

If the coupling Hamiltonian V is weak it can be treated as a perturbation, and as in many

cases, it is then useful to move to the interaction frame. In doing so we effectively split the

relatively simple evolution due to H0 = Hs + HE from the more complicated interaction
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term. We do this via the transformations

ρ̃tot(t) = ei(Hs+HE)t/~ ρtot(t) e
−i(Hs+HE)t/~, (2.2)

Ṽ (t) = ei(Hs+HE)t/~ V e−i(Hs+HE)t/~. (2.3)

This in effect hides the evolution due to H0 so as to focus on the slow dynamics induced

by V . In the interaction frame the state evolution becomes

˙̃ρtot(t) = − i
~
[
Ṽ , ρ̃tot(t)

]
. (2.4)

The evolution of the original state can be recovered with the inverse of transformation

(2.2). For the rest of this section we will drop the tilde and work exclusively in the

interaction frame.

To proceed we can implicitly integrate from 0 to t,

ρtot(t) = ρtot(0)− i
∫ t

0
dt1
[
V (t1), ρtot(t1)

]
, (2.5)

and we can begin an iterative expansion by substituting this solution back into (2.4),

ρ̇tot(t) = − i
~
[
V (t), ρtot(0)

]
− 1

~2

∫ t

0
dt1
[
V (t),

[
V (t1), ρtot(t1)

]]
. (2.6)

The reason for expanding to second order is that this leaves a non-vanishing contribution

to the evolution after making the Born and Markov approximations. We are interested

only in the evolution of the system so we can also trace over the environmental degrees of

freedom,

ρ̇(t) = − i
~

TrE
([
V (t), ρtot(0)

])
− 1

~2

∫ t

0
dt1 TrE

([
V (t),

[
V (t1), ρtot(t1)

]])
, (2.7)

where we have defined the state of the system alone ρ ≡ TrE(ρtot).
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So far we still have an exact equation, our first assumption will be that the states of the

system and environment approximately factorise,

ρtot(t) = ρ(t)⊗ ρE . (2.8)

This is the Born approximation. It is justified by noting that with weak coupling, pertur-

bations to the environment will be small and the induced correlations in the environment

should die away quickly. We will show later that making a coarse graining approxima-

tion of the time evolution smooths out the fast induced dynamics in the environment and

amounts to the same thing. Conversely however, the system is still heavily influenced by

the interaction. It becomes entangled with the environment which leads to the production

of mixed states after performing the trace. The approximation that they factorise is only

good within the equation of motion.

It follows from this approximation that TrE(V (t) ρ(0)⊗ ρE) = 0. This can be interpreted

as saying that the coupling consists of fluctuations about a zero mean, which can always be

enforced by absorbing any diagonal terms in V (t) into the choice of H0. We can therefore

eliminate the first term in (2.7).

The state equation is still non-local in time and difficult to solve. We can make some

further simplifying assumptions to reach a Markovian, or local in time, equation. We

first require ρ(t1) ≈ ρ(t), which is a reasonable approximation if the integrand is small

everywhere when t1 6= t. Secondly we need to extend the integral
∫ t

0 dt1 →
∫ t
−∞ dt1.

Extending the integral assures the equation does not have time dependent coefficients.

Again this is reasonable if the integrand is sharply peaked around t. For the integrand to

have this behaviour relies on the properties of the environment, specifically we need the

correlation functions for the environment to decay away quickly. This is often the case in

the context of quantum optics. The free space electromagnetic field has a dense energy

spectrum and the coupled system can always effectively interact with a new part of the

environment where any correlations have quickly dissipated.
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After making these changes we have arrived at the Born-Markov master equation,

ρ̇(t) = −
∫ t

−∞
dt1 TrE

([
V (t),

[
V (t1), ρ(t)⊗ ρE

]])
. (2.9)

One of the most simple physical examples of this master equation is for a two-level atom

coupled to the electromagnetic field. This allows us to see the Lindblad form of the master

equation and illustrate the idea of decoherence. The system and environment Hamiltonian

respectively are

Hsys = ω0σ
†σ, HE =

∑
k

ωkb
†
kbk, (2.10)

where σ = |e〉〈g| is the atomic lowering operator and |e〉 and |g〉 are the two internal

energy states. bk(b
†
k) are the electromagnetic annihilation and creation operators for a

given mode k. ω0 is the frequency of the atomic transition and ωk are the frequencies

of the electromagnetic modes. The interaction can be described by the dipole coupling

Hamiltonian,

V = −d.E =
∑
k

(
gkbk + g∗kb

†
k

)(
σ + σ†

)
. (2.11)

In the interaction frame following the transformation (2.3)

Ṽ =
∑
k

(
gkbke

−iωkt + g∗kb
†
ke
iωkt
)(
σe−iω0t + σ†eiω0t

)
=
∑
k

(
gkbkσ

†e−i(ωk−ω0)t + g∗kb
†
kσe

i(ωk−ω0)t
)
,

(2.12)

using the property of the phase-shifting operator U = e−iθn̂, U †aU = ae−iθ. In the last line

we made the rotating wave approximation. This system has a large dominant frequency

around the atomic transition where the light is also resonant. This allows us to eliminate

any terms at frequencies ωk + ω0 since they will average to zero in the timescale of the

other induced dynamics at ωk − ω0.

We can now substitute this interaction Hamiltonian into the exact state equation (2.7). If

we specify the initial state of the environment ρE to be the electromagnetic vacuum, after
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making the Born approximation we have,

ρ̇ = −
∫ t

0
dt1 Γ(t− t1)

(
σ†σρ(t1)− σρ(t1)σ†

)
+ Γ(t− t1)∗

(
ρ(t1)σ†σ − σρ(t1)σ†

)
, (2.13)

where we have defined

Γ(t− t1) =
∑
k

|gk|2e−i(ωk−ωa)(t−t1). (2.14)

In free space there are an infinite number of modes and the coupling coefficients gk are

infinitesimally small, so we can replace the sum over modes with an integral,

Γ(τ) =

∫ ∞
0

dωD(ω)g(ω)2e−i(ω−ωa)(τ), (2.15)

where we have introduced the density of states D(ω) and defined τ = t−t1. Putting in the

proper form of the coupling coefficient in the free space limit, it turns out that D(ω)g(ω)2

is a smoothly varying function in the vicinity of ω0. The integral in (2.15) is effectively

a Fourier transform and a smooth function will translate to a peaked function at τ = 0.

This can be seen with a toy model where D(ω)g(ω)2 is a top-hat function from 0 → 2ω,

which produces a sinc() function after integrating.

The sharpness of the integrand means we can make the Markov approximation. It works

out that the integral ∫ ∞
0

dτ Γ(τ) = i∆ω0 +
γ

2
, (2.16)

has a real and imaginary component. We have defined two new constants, the first term

proportional to ∆ is small and corresponds to a frequency shift in the system. This is

known as the Lamb shift, the exact value of which can be calculated with a full relativistic

treatment. The second term proportional to γ corresponds to radiative decay, and can be

equated to the Einstein A coefficient for spontaneous emission. Substituting this solution
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into the master equation gives

ρ̇ =
(
− i∆ω0 −

γ

2

)(
σ†σρ(t)− σρ(t)σ†

)
+
(
i∆ω0 −

γ

2

)(
ρ(t)σ†σ − σρ(t)σ†

)
= −i∆ω0

[
σ†σ, ρ

]
+ γD[σ]ρ.

(2.17)

This is the Lindblad form of the master equation for spontaneous emission from a two

level atom, where we have defined the Lindblad super-operator

D[c]ρ = cρc† − 1

2

(
c†cρ+ ρc†c

)
, (2.18)

for any arbitrary operator c.

2.1.1 Decoherence

The coherence terms ρeg = |e〉〈g| , (ρge = ρ†ge) in the density matrix can be seen to decay

following the evolution of the Lindblad master equation ˙ρeg = −γ/2 ρeg. Over time they

are damped to zero. Damping of the off diagonal elements in a reduced density matrix due

to interaction with the environment is typical in many systems. This process is known as

decoherence and has significance in alleviating the quantum measurement problem.

The measurement problem in quantum physics is that there is no known mechanism

for translating between a probabilistic quantum description to a deterministic outcome.

In classical physics it is assumed that a true state of the universe exists, where every

particle has a well defined position and momentum. Newtonian mechanics is entirely

deterministic, and probabilistic descriptions due to measurement imprecision are still in

reference to a true underlying state. On the other hand, in quantum theory the state of a

system is described by its wavefunction. Wavefunctions themselves evolve deterministically

according to Schrödinger’s equation, but they offer fundamentally probabilistic predictions

of observing particular properties of the system. Experiments that show evidence of

Bell’s inequalities, correlations between entangled systems that cannot be explained by any
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combination of local variables, suggest that there is no chance of locally-real underlying

quantum state.

Born’s rule tells us which classical observations we should expect to see from a quantum

description, and although the mechanism that brings about the deterministic outcome is

not understood, it provides remarkably accurate predictions. Early in quantum theory,

making deterministic measurements would coincide with the end of the quantum evolution

of the system, as the measurement effectively destroyed any quantum properties of the

state. In certain Markovian systems, the process of decoherence allows for this description

to be developed a step further. We can model the continuous measurement of some appa-

ratus coupled to a quantum system. Since the apparatus will be strongly coupled to its

environment it will decohere quickly and can be well approximated at all times to be in

a classical mixture of states. This means we can sample deterministic measurement out-

comes from the apparatus without throwing away any information contained in quantum

correlations.

A minimal model that illustrates this process consists of the states of a system |s〉, an

apparatus |a〉 and the environment |e〉. Part of the environment will usually be accessible

as part of the measurement and this can be included in the compound of system and

apparatus. If we imagine we want to measure an observable

X =
∑
n

xn |sn〉〈sn| , (2.19)

which we represent as a sum of projectors onto the state |sn〉 with eigenvalue xn. We can

also expand the system in eigenstates of X, |s〉 =
∑

cn |sn〉.

A measurement should correlate the apparatus with the system such that

|ψ〉 =

(∑
n

cn |sn〉
)
|a0〉 →

∑
n

cn |sn〉 |an〉 . (2.20)

Here we have sketched the idea of an the apparatus starting in some initial state |a0〉,
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transforming into a superposition state entangled with the system, where observing the

state |an〉 would tell us the system was in state |sn〉. Ideally an apparatus also would

have states that are distinct 〈an|am〉 = δnm. The problem with this simple model is that

since the outcome is a superposition of states, making a projective measurement onto a

single state destroys quantum correlations that could have otherwise influenced the future

evolution. We can see that this is not an issue if we include coupling to the environment

in a modified setup,

|ψ〉 =

(∑
n

cn |sn〉
)
|a0〉 |e0〉 →

∑
n

cn |sn〉 |an〉 |en〉 . (2.21)

We have assumed that correlations build with the environment in the same way as with

the apparatus, but in contrast the environment states do not form an orthonormal basis,

〈en|em〉 6= δnm. We also assume that an observer will not have access to the environment

states and so any correlations there are effectively lost. As with when deriving the master

equation we can trace out the environment,

ρSA = TrE |ψ〉〈ψ| =
∑
n,m

cnc
∗
m |sn〉 |an〉〈sm| |an〉

∑
k

〈ek|en〉 〈em|ek〉

=
∑
n,m

cnc
∗
m |sn〉 |an〉〈sm| |an〉 〈en|em〉 .

(2.22)

In the last line we have used a resolution of identity to simplify the term
∑

k 〈ek|en〉 〈em|ek〉 =

〈en|em〉. Now, if we work under the assumption that decoherence will drive the reduced

density matrix so that is left with only diagonal elements,

ρSA =
∑
n

|cn|2 |sn〉〈sn| ⊗ |an〉〈an| . (2.23)

We are left with a classical mixture of apparatus states correlated with the system. Finding

the state |an〉 would correspond to measuring the eigenvalue xn of the observable X. Any

quantum coherence that existed has been shifted to the unobservable environment. We

can then safely make projective measurements of the apparatus without destroying any
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information that wasn’t already lost. The decoherence in the joint system and apparatus

is assumed to occur due to the strong coupling of the apparatus to the environment. The

system will of course also interact with its surroundings (often necessarily so to couple to

the apparatus in the first place), but will typically be better isolated and not decohere

on the timescale of the measurement. In cases where there is a well defined separation

between the system and apparatus, it is then possible to develop a model of continuous

quantum measurement.

2.2 Quantum jumps

The evolution of a quantum system without dissipation can be fully described by the

Schrödinger equation. On the other hand non-coherent processes, such as spontaneous

emission or measurement collapse, can not be described by a unitary transformation of

the state. Usually we turn to the density matrix formalism where a statistical ensemble

of states is constructed to contain other probabilistic information beyond fundamental

quantum uncertainty. A master equation like the one derived in the previous section is

used to describe how on average the evolution will proceed.

However, it is also possible to model single quantum realisations for dissipative systems

using a stochastic form of the Schrödinger equation[38, 39]. The methodology, coined

by Howard Carmichael[30], is now widely known as the quantum trajectories approach.

A quantum state of interest can be considered to undergo normal time evolution (under

a carefully adjusted Hamiltonian) but with the chance of a stochastic jump occurring

at any point along it’s trajectory corresponding to say, absorption and emission events.

The equation of motion is constructed in such way that averaging over several of these

trajectories reproduces exactly the results of the density matrix approach. This can be

both physically insightful and computationally very efficient as a wavefunction occupying

a size N Hilbert space can be propagated with N equations, where as a density matrix

will contain N2. This avoids a bottleneck of computational power when the number of
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trajectories required is small compared the growing complexity of a mixed system.

Here we will derive an illustrative quantum jump model for a two level dipole interacting

with a classical optical driving field. The system and driving Hamiltonian are

Hsys = ~ω0 |e〉〈e| , (2.24)

HD =
~Ω

2

(
(eiωt + e−iωt) |e〉〈g|+ (eiωt + e−iωt) |g〉〈e|

)
, (2.25)

where ω0 is the atomic transition frequency, ω is the optical driving frequency, Ω is the

Rabi frequency and |g〉 and |e〉 are the atomic ground and excited states respectively. We

move to the interaction frame via the unitary transform

U = eiH̃syst/~ = |g〉〈g|+ eiω0t |e〉〈e| . (2.26)

Such that

H̃D = UHDU
† =

~Ω

2

(
(eiωt + e−iωt)eiω0t |e〉〈g|+ (eiωt + e−iωt)e−iω0t |g〉〈e|

)
. (2.27)

We can apply the rotating wave equation, where terms oscillating at ω + ω0 will rapidly

average to zero and can be neglected leaving

H̃D =
~Ω

2

(
e−i(ω−ω0)t |e〉〈g|+ ei(ω−ω0)t |g〉〈e|

)
. (2.28)

As in the previous section, the interaction Hamiltonian for coupling to the quantized

electric field takes a similar form,

V = ~
∫ ω0+θ

ω0−θ
dω

√
γ

2π

(
b†(ω)ei(ω−ω0)tσ − σ†b(ω)e−i(ω−ω0)t

)
. (2.29)

Where b(ω) and σ = |g〉〈e| are ladder operators for the bath and system respectively. The

bath operators create and annihilate photons of frequency ω over a range set by θ. We
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justify this restricted range by arguing that the system will dominantly couple near the

resonance frequency ω and note that we require θ � ω0 so that terms ω + ω0 can still be

neglected in the rotating wave approximation. We have also started with the Markovian

assumption that the coupling strength γ varies slowly enough to be considered constant

over the bounded range of relevant frequencies. Finally, it will be helpful going forward

to redefine the bath operators

b ≡ 1√
2π

∫ ω0+θ

ω0−θ
dω b†(ω)ei(ω−ω0)t, (2.30)

so that we can write

V = ~
√
γ (b†σ − σ†b). (2.31)

From here we will consider the evolution of the two-level system coupled to the electromag-

netic vacuum |ψ(0)〉 = |s〉⊗|evac〉. The methodology we use can be generalised to consider

couplings to other environments, but a vacuum state will make for a cleaner derivation.

Straight away we do not need to consider the environment Hamiltonian as HE |evac〉 = 0.

The Schrödinger equation for the coupled state in the interaction frame is then

d

dt
|ψ〉 =

(
− i

~
H̃sys +

√
γb†σ −√γσ†b

)
|ψ(t)〉 . (2.32)

We have included the effects of optical driving and detuning in H̃sys = H̃D which could

in principle include any other slowly varying dynamics.

2.2.1 Perturbative expansion

In what follows we will make use of the commutation relation between the newly defined

bath operators, [
b(t), b†(t′)

]
=

1

2π

∫ θ

−θ
dω e−iω(t−t′) ≈ δ(t− t′). (2.33)
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The commutator is a slowly varying delta function that can be approximated as a true

delta function if the timescale |t− t′| � 1/θ. This restricts us to considering dynamics on

times much longer than 1/θ whilst also making sure to keep θ � ω0 for the rotating wave

approximation. This resulting hierarchy of required timescales are happily well adhered

to in many quantum optical settings,

Ω,∆, γ � θ � ω0. (2.34)

It is possible here to pick a large enough cut off frequency θ, because the system and en-

vironment dynamical time scales are so small compared to that of the coupling dynamics.

Models are often constructed so that the boundary between the system is a weak point of

interaction, and enforcing the inequality amounts to us making the Born approximation in

our derivation. We will now perform a coarse grained integration of the Schrödinger equa-

tion, considering incremental use of the time evolution operator. Using the delta function

we just defined will allow us to neglect higher order terms arising from the interaction.

We choose to integrate in time steps ∆t such that

τsys � ∆t� 1/θ, (2.35)

where τsys are the timescales of the induced system dynamics. These increments are

chosen to be small on the scale of the interesting dynamics whilst long enough to allow

many optical cycles to occur in each time step, maintaining the validity of our previous

approximations. From here in order to perform perturbation theory we consider a Dyson

series like approach to expanding the time evolution operator U(t, t0). In the interaction

picture the operator itself evolves like

d

dt
U(t, t0) = − i

~
H(t)U(t, t0), (2.36)
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which has the formal integral solution

U(t, t0)− U(t0, t0) = − i
~

∫ t

t0

dt′H(t′)U(t′, t0), (2.37)

U(t, t0) = 1− i

~

∫ t

t0

dt′H(t′)U(t′, t0). (2.38)

From this solution we are able to perform an iterative expansion,

U(t, t0) = 1− i

~

∫ t

t0

dt1H(t1) +

(
− i

~

)2 ∫ t

t0

dt2

∫ t2

t0

dt1H(t2)H(t1) + ... . (2.39)

So that the evolution of our initial wavefunction |ψ(0)〉 over the interval ∆t, expanded to

second order looks like

U(∆t, 0) |ψ(0)〉 = |ψ(∆t)〉

≈
[
1− i

~
H̃sys∆t+

√
γσ

∫ ∆t

0
b†dt−√γσ†

∫ ∆t

0
b dt

+

(
− i

~

)2

γσ†σ

∫ ∆t

0
dt

∫ t2

0
dt′ b b†

]
|ψ(0)〉 .

(2.40)

Usually, if we only wanted to keep terms of first order in ∆t we would not need to keep any

of the second order expansion. However, due to the singular nature of the commutator

between the bath operators (they produce a delta function), the specific seemingly second

order term we have left works out to be of first order in ∆t. To illustrate this it is helpful

to examine the integral

∫ ∆t

0
dt

∫ t

0
dt′ b(t) b†(t′) |evac〉 =

∫ ∆t

0
dt

∫ t

0
dt′ [b(t), b†(t′)] |evac〉

=

∫ ∆t

0
dt

∫ t

0
dt′ δ(t− t′) |evac〉

=
1

2
∆t |evac〉 .

(2.41)
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where in the first line we have used the fact that an additional term b†b required to make

use of the commutation relation, amounts to adding zero when acting on the vacuum state.

The factor of a half appears in the last line because the range of our integral technically

only covers half of the defined delta function. All other terms involving these operators in

different configurations evaluate to zero; it is this single second order term that gives rise

to an effective Hamiltonian in our system evolution,

Heff = H̃sys −
i

2
~γσ†σ. (2.42)

With this expansion, we can write our resulting wavefunction after a single time step,

|ψ(∆t)〉 =U(∆t, 0) |ψ(0)〉

=

[
1− i

~
Heff∆t+

√
γσ∆B†(0) +

√
γσ†∆B(0)

]
|ψ(0)〉 .

(2.43)

where we have defined the incremental operator

∆B =

∫ t+∆t

t
b(s)ds. (2.44)

In our case the annihilation term acting on the vacuum state ∆B |evac〉 = 0 can immedi-

ately be dropped. These new operators represent creating excitations in the environment

within a specific time interval. We can also now see the manifestation of the second half

of the Markov approximation. The bath dynamics always quickly return to equilibrium

(on timescales ≈ 1/ω0) so excitations in different time intervals should be independent.

This is reflected in the commutation between these operators,

[
∆B(t),∆B†(t′)

]
=

∫ t+∆t

t

∫ t′+∆t

t′

[
b(s), b†(s′)

]
ds ds′

=

∫ t+∆t

t

∫ t′+∆t

t′
δ(s− s′)ds ds′

=

∆t t = t′

0 t 6= t′.

(2.45)
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Where the final integral is only non-zero when the two time intervals overlap (eg. t = t′),

implying independent excitations in separate intervals.

We can also use these operators to construct a coarse grained number operator that would

physically correspond to photo-detection in the increments ∆t,

N(t) =
∆B†(t)√

∆t

∆B(t)√
∆t

. (2.46)

The counting operator defined this way is normalised, in-keeping with the dimensional

analysis of the commutation relation (2.45) such that

N |0〉 = 0 and N |1〉 = 1 |1〉 . (2.47)

A normalised single wave packet can be written as

∆B†√
∆t
|evac〉 = |1〉 . (2.48)

2.2.2 Stochastic Schrödinger equation

Returning to the evolution equation (2.43), we can reason that all time steps in our descrip-

tion progress the same way since the operators ∆B(tn) for each time interval commute.

Our general wavefunction evolution looks like

|ψ(t+ ∆t)〉 =

[
1− i

~
Heff∆t+

√
γ σ∆B†(t)

]
|s(t)〉

= |evac〉 ⊗ (1− i

~
Heff∆t) |ψ(t)〉+ |1〉 ⊗

√
γ∆t σ |s(t)〉 .

(2.49)

The full coupled system could be considered to evolve this way, branching into a growing

superposition of states at each interval. Alternatively we could consider a conditional

evolution where we assume that a particular outcome of the entangled state was realised

at every step [40]. If we were to measure the environment state in each increment we would
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know which way the system evolved. Either under the effective Hamiltonian if there was no

photo-detection, or under the influence of the annihilation operator if there was. This type

of evolution could even be considered without any real detection process, simulating the

evolution based on a hypothetical stochastic record of the environment state. The resulting

system evolutions are quantum trajectories. Simulating quantum jumps (instantaneous

collapse of the system state) based on the number state of the environment is an example of

one of many possible stochastic unravellings, where the simulated wavefunction evolution

is conditioned on the environment.

In order to develop this technique further we will write down a stochastic Schrödinger

equation that can be used to generate trajectories computationally. We will re-label the

system state alone as |ψ〉 ≡ |s〉 and replace the annihilation operator σ with a general

jump operator c, which could represent a different coupling to the environment. The

system state will undergo evolution under the influence of the effective Hamiltonian but

with the chance of a randomly occurring jump at any time interval. If we had assumed

the environment to be in a thermal state the resulting stochastic master equation would

have contained a second stochastic term accounting for absorption events. In this case

though, in each time interval ∆t there is the possibility of either;

time evolution under Heff,

|ψ(t+ ∆t)〉 = exp

(
− i
~
Heff ∆t

)
|ψ(t)〉 , (2.50)

d |ψ〉 ≈ − i
~
H̃sys |ψ(t)〉 dt− γ

2
c†c |ψ(t)〉 dt. (2.51)

or a stochastic jump to a lower state,

d |ψ〉 = − |ψ〉+
c |ψ〉√
〈c†c〉

. (2.52)

Where the current state is replaced with an altered version of itself after the application of

the jump operator c. This non-unitary transformation requires the addition of the present
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re-normalisation factor.

The probability of a jump occurring can be found by taking the trace of the system acted

on by the jump operators,

Pjump = Tr
(√

γ∆t c |ψ〉〈ψ|
√
γ∆t c†

)
= γ∆tTr

(
c†cρ

)
= γ∆t〈c†c〉.

(2.53)

During intervals where the state is regularly evolving, explicit re-normalisation is also

required after the influence of the non-Hermitian effective Hamiltonian. If we consider the

state evolution after time ∆t,

〈ψ(t+ ∆t)|ψ(t+ ∆t)〉 ≈ 〈ψ(t)| (1 +
i

~
H†eff ∆t)(1− i

~
Heff ∆t) |ψ(t)〉

= 〈ψ(t)|ψ(t)〉 − i

~
∆t 〈ψ(t)|Heff −H†eff |ψ(t)〉+O(∆t)

≈ 1−∆t 〈ψ(t)| γ c†c |ψ(t)〉

= 1−∆t γ〈c†c〉

= 1−∆p.

(2.54)

In order to re-normalise the state after letting it evolve for a small amount of time, we

can include an additional factor of ∆p in the wavefunction. Adding a factor like this,

proportional to the current state vector, uniformly re-scales the wavefunction so that it

remains normalised. The effective Hamiltonian captures the idea that even when not

detecting any signal in the environment we are gaining information from the system which

in turn alters its evolution. For example, when measuring emission events no signal implies

that the system is more likely to be in the ground state.

The last step is to introduce the stochastic variable,

dN =

0 probability of no jump (1−∆p)

1 probability of jump ∆p
. (2.55)
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Combining all of these elements we can write,

d |ψ〉 = − i
~
H̃sys |ψ〉 dt+

γ

2
(〈c†c〉 − c†c) |ψ(t)〉 dt+ (

c |ψ〉√
〈c†c〉

− 1) |ψ〉 dN (2.56)

This is a general form of a stochastic Schrödinger equation with quantum jumps. The

wavefunction described by this equation by design remains normalised as it evolves. (It

was not necessary to include a pre-factor of (1−dN) with the terms describing the regular

evolution without jumps, since contributions of order dN dt are negligibly small).

The Lindblad equation (2.18) we arrived at in the previous section turns out to be a

very general description of dissipative quantum systems, and in fact we can see exact

equivalence with the stochastic Schrödinger equation we have written. We must first

note that when using the product rule here a higher order correction must be included.

Whilst usually neglected in normal calculus, the second order derivative makes first order

contributions since terms dN2 = dN . So we have

dρ

dt
=

(
(
d

dt
|ψ〉) 〈ψ|+ |ψ〉 ( d

dt
〈ψ|) + (

d

dt
|ψ〉)( d

dt
〈ψ|)

)
= − i

~

[
H̃sys, ρ

]
dt− γ

2

{
c†c, ρ

}
dt+ γ〈c†c〉ρdt+ (

c ρ c†√
〈c†c〉

− ρ)dN .

(2.57)

This is a conditional master equation which when averaged (using the fact that 〈dN〉 =

γ〈c†c〉dt) returns the usual Lindblad form,

d〈〈ρ〉〉
dt

= −i
[
H̃sys, 〈〈ρ〉〉

]
+
γ

2
(2c〈〈ρ〉〉c† − c†c〈〈ρ〉〉 − 〈〈ρ〉〉c†c). (2.58)

Here we use double angled brackets to denote the ensemble average over many trajectories,

as opposed to the expectation value of an observable associated with a given state or

ensemble of states.

We can again consider our specific example case, the driven two level atom provides a

good demonstration of implementing quantum jumps. Figure 2.1 shows the numerical
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Figure 2.1: Results of a numerical quantum jumps simulation for a driven two level atom.
Figure a) shows the excited state occupancy in a single trajectory, in the absence of
emission there are distorted oscillations due to the effective Hamiltonian, at the Rabi
frequency Ω. Figure b) shows an average of 1000 trajectories. The dashed line in both
plots shows the solution to the Lindblad master equation with the same parameters.

simulation of a single trajectory alongside an average of 1000 of these trajectories. The

averaged result is plotted in comparison with the results of numerically integrating the

Lindblad master equation describing the same system.

2.3 Quantum diffusion

The form of the stochastic Schrödinger equation we arrived at is quite versatile, but it is

not a unique unravelling of the master equation. It is possible to write diffusive equations

with white noise, rather than stochastic jumps, to reproduce the same statistical dynamics.
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These equations in turn can be related to a different conditional measurement theory, for

example based on balanced homodyne detection.

The stochastic jump equation can be associated with photo-detection, in a sense measuring

the field intensity b†b (in this section we relabel the annihilation operator associated with

a given time b(t) ≡ ∆B(t)). Although the complex field amplitude b is not directly

measurable the quadrature components of the light field are,

b =
1√
2

(q + ip), (2.59)

where we have defined the quadrature components

q =
1√
2

(b† + b) and p =
i√
2

(b† − b). (2.60)

The quadrature operators q and p behave like the position and momentum counterparts

for a trapped particle in a harmonic well. Their construction means they share a similar

commutation rule,

[q, p] = i. (2.61)

The quadrature states can also be used to represent wavefunctions of a light field in phase

space ψ(q) = 〈q|ψ〉, although q does not actually have any relation to the ‘position’ of any

part of the light field, and neither does p have any relation the the momentum of the field.

In order to derive a stochastic diffusion equation we will consider balanced homodyne

detection of the light quadratures, as sketched in Fig. 2.2.

If we first imagine that all of the light radiated from an atom is somehow collimated

into a directed beam, instead of using direct photo-detection, the light could first be

interfered with another coherent light source. Perfectly collecting all the light is not

actually necessary but will simplify the derivation, for simplicity we will also assume that

the interference occurs at a perfect 50/50 beam splitter. The extra input field α = |α|eiφ,

known as a local oscillator, will usually be intense enough to be treated classically and
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Figure 2.2: Simplified diagram of balanced homodyne detection. A quantum signal b to
be measured, passes through a 50/50 beam splitter mixed with a reference source α. The
reference beam serves to amplify the quantum signal so that the output beams (b′1, b′2)
can more easily be measured by photo-detectors.

is there to serve as a phase reference. The goal is through interference to amplify the

signal from the quantum light mode we are interested in [41]. From an experimental point

of view, this has the advantage of being able to bring a weak quantum signal above the

noise floor of photo-detectors. For homodyne detection both light beams must have a

fixed phase relationship, which is often the case when the quantum system of interest is

being illuminated by the same common laser source that generates the local oscillator.

The signals at the two outputs of the beam splitter will be in a superposition of both the

signal and the reference field,

b′1 =
1√
2

(b− α) and b′2 =
1√
2

(b+ α). (2.62)

Photo-detectors measuring these signals would then produce currents proportional to the

photon counts

N1 = b
′†
1 b
′
1 =

1

2
(b†b− b†α− bα∗ + |α|2)

N2 = b
′†
2 b
′
2 =

1

2
(b†b+ b†α+ bα∗ + |α|2).

(2.63)

The two generated currents can then be filtered and subtracted from each other, leaving
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a photo difference current proportional to a combination of the quadrature states,

I21 ∝ (N2 −N1) = |α|
(
e−iφb+ eiφb†

)
. (2.64)

The phase reference of the local oscillator can be varied to measure the full range of both

quadratures q and p. We can again associate measuring the state of the field with the

conditional evolution of the atomic system.

Previously we modelled discontinuous jumps in the system evolution whenever radiated

light was measured in the field. In a homodyne measurement the detected count rate

needs to be modified to include a contribution from the local oscillator,

Previous count rate: 〈dN〉 = γ〈c†c〉dt = Tr
[
γ c†c ρ

]
dt

Homodyne count rate : 〈dN〉 = Tr
[
(
√
γ c† + α∗)(

√
γ c+ α)ρ

]
dt.

(2.65)

We can transform the jump operators to reflect this extra contribution to the count rate.

We know that regardless of how the field is measured we should still see the same average

evolution of the atomic system, since the coupling Hamiltonian is unchanged. This would

be the evolution expected if we discarded all the information in the environment. The

master equation for the statistical ensemble (2.18) is invariant to a displacement of the

jump operators c, as long as we also add a term to the Hamiltonian. Displacement equal

to the amplitude of the local oscillator produces the desired count rate,

√
γ c→ √γ c+ α,

H̃sys → H̃sys −
i

2
~α
√
γ (c− c†),

(2.66)

Since these changes cancel each other out in the master equation, we can safely make the

same transformation in the stochastic Schrödinger equation (2.56) without changing the

statistical dynamics (ie. averaging over the trajectories of the transformed equation will
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still reproduce the same Lindblad equation),

d |ψ〉 =

(
− i

~
H − 1

2
(γc†c+ 2α

√
γc− γ〈c†c〉 − |α|√γ〈q̃〉)

)
|ψ〉 dt

+

( √
γc+ α√

〈(√γc† + α)(
√
γc+ α)〉

− 1

)
|ψ〉 dN ,

(2.67)

where we have defined the system quadrature

q̃ = (e−iφc† + eiφc). (2.68)

This updated equation has been normalised in the same manner as (2.56). Now, photo-

detection events correspond to applying the operator C =
√
γ c+ α to the system. There

are more frequent jumps than before but the collapse operator c is weighted less as α

increases. More of the old wavefunction state after each jump is kept due to the extra

local oscillator factor.

In a homodyne measurement the local oscillator amplitude will be very large compared

to the quantum signal, and we can consider the limit where α → ∞. In doing so we can

re-write the count rate

dN = (
√
γc† + α∗)(

√
γc+ α)dt

= (|α|2 + |α|√γq̃ + γc†c)dt

≈ (|α|2 + |α|√γq̃)dt

≡ |α|2dt+ |α| dQ(t).

(2.69)

In the third line we have dropped the term not proportional to the large oscillator strength

α. In the final line we have defined the stochastic operator dQ(t), similar to the increment

operators dN we defined for direct photo-detection. We can see that as α → ∞, Q(t)

takes on Gaussian properties. From our definition we can easily see the mean value

〈dQ〉 =
√
γ〈q̃〉dt (2.70)
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and by rearranging (2.69), and using the fact that dN2 = dN ,

dQ2 =
(dN − α2dt)2

α2
=
dN

α2
= dt+

dQ

α

lim
α→∞

dQ2 → dt.

(2.71)

And lastly we note that dQ(t)dt = 0, since it is of order dt2.

If we only measure dN over time intervals ∆t � 1/α, by the central limit theorem, we

may approximate the Poisson jump process (2.69) with a mean drift plus white noise.

Effectively regarding dQ as a Gaussian random variable of mean
√
γ〈q̃〉dt and variance dt,

dQ = 〈dQ〉+ dW =
√
γ〈q̃〉dt+ dW . (2.72)

Where dW is a Wiener increment with the properties dW 2 = dt, and 〈dW 〉 = 0. In the

same way that we associated dN with a physical count rate in direct photo-detection, we

can relate dQ to a stochastic homodyne current. The current from an idealised photo-

detector can be written in terms of the count rate,

I(t) = e
dN

dt
, (2.73)

where e is the total charge conducted at each detection event. For direct photo-detection

dN/dt =
∑

i δ(t − ti), so the current is made up of a sum of delta functions at different

times. In the case of a homodyne measurement we want to subtract the large constant

photo-current due to the local oscillator field from (2.69),

I(t) =
1

α

(
dN

dt
− |α|2

)
=
dQ

dt

=
√
γ〈q̃〉+ ξ(t),

(2.74)

where we have normalised the current by dividing through by e|α|. We also introduced

ξ(t) = dW/dt, which is a Gaussian white noise function.
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Taking the strong oscillator limit in (2.67) and re-writing the increment dN in terms of the

white noise increment dQ(t) finally gives us a diffusive stochastic Schrödinger equation,

d |ψ〉 =

(
− i

~
H̃sys |ψ〉 dt−

γ

2
(c†c− 〈q̃〉c+

1

4
〈q̃〉2)dt+

√
γ(c− 1

2
〈q̃〉)dW

)
|ψ(t)〉 . (2.75)

Where in order to normalise this wavefunction we made use of the Ito rule dW 2 = dt.

Writing

d |ψ〉 = (αdt+ βdW ) |ψ〉 , (2.76)

the square amplitude was calculated including higher order terms and then forced to equal

one,

〈ψ(t+ ∆t)|ψ(t+ ∆t)〉 = 〈ψ| (1 + α†dt+ β†dW )(1 + αdt+ βdW ) |ψ〉

= 〈ψ|ψ〉+ dt 〈ψ|α+ α† |ψ〉+ dW 〈ψ|β + β† |ψ〉+ dt 〈ψ|β† β |ψ〉

≡ 1.

(2.77)

An equation written in terms of these increments dW will have a diffusive evolution.

That is to say the paths of a Wiener process W (t) follow highly erratic trajectories with

probability distributions that diffuse outward from their origins as time increases. The

width of the distribution grows like
√
t and slowly tends to infinity. These are the same

paths that are used to describe the motion of Brownian particles [42]. In differential

equations the increments dW can be simulated by generating random numbers selected

from a Gaussian distribution of width dt.

Figure 2.3 shows an example of stochastic trajectory generated with equation (2.75).

Again, a driven two level system is considered and the evolution was solved using a Euler-

Maruyama style integrator for Ito stochastic equations. The conditional evolutions are of

notably different from those generated with quantum jumps but an average of 100 trajec-

tories approximates the same statistical evolution of the Lindblad master equation. This
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Figure 2.3: Results of a quantum diffusion simulation of a driven two-level atom with
Rabi frequency Ω. Figure a) shows a single trajectory which appears to be highly erratic
as the system quadrature is continuously measured forcing random wavefunction collapse.
Although seemingly very different from the jump model, figure b) shows that an average
over 100 of these trajectories converges to the same ensemble dynamics predicted by the
Lindblad equation, which is overlaid as a dashed line.

is ten times fewer trajectories than we averaged over when simulating quantum jumps but

produces a similar degree of accuracy. This is often the case when simulating a diffusive

master equation, however, there is a trade off in that integrating an equation with white

noise is more computationally intensive. As such simulating 100 diffusive trajectories was

only around twice as fast as simulating 1000 jump trajectories.

We have explored two quantum trajectory techniques that can be used to describe the

conditional evolution of open quantum systems under continuous measurement. Both

techniques provide insights into understanding quantum measurement whilst also provid-
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ing a tool to simulate statistical ensembles with computational efficiency. The apparent

ambiguity how the conditional evolution progresses for individual trajectories is mathe-

matically rooted in the fact that the Lindblad equation can be transformed and written

with an array of different jump operators to describe the same dynamical system. The

physical interpretation of this comes back to how we measure the environment, ultimately

dictating which is the appropriate method to use, beyond pure computational efficiency.

2.3.1 White noise

In this section we will briefly discuss some of the properties of white noise in more detail,

and the consequences of its use in differential calculus. Previously we defined white noise

as the derivative of a Wiener noise process W (t). This is the path followed by idealised

Brownian particles, it is a Markovian process and can be described by a Fokker Planck

equation (the time evolution of the path probability distribution),

P (W, t) =
1√
2πt

exp

(
− W 2

2t

)
. (2.78)

Although the mean value of this process is zero, individual sample paths are highly irreg-

ular, the variance growing as the square root of time and becoming infinite as t → ∞.

Each path is also fractal in nature, continuous but also nowhere differentiable.

A realistic portrayal of a physical pseudo-stochastic process would usually have some finite

correlation function,

〈ξ(t)ξ(t′)〉 =
D

2k
e−k|t−t

′| . (2.79)

However, it is mathematically convenient to consider idealised white noise in the limit

where k → ∞ and ξ(t) becomes delta correlated. This is a reasonable approximation to

make when the system dynamics occur on time-scales much larger than the correlation

time, as was the case in deriving the quantum diffusion equation. This function has a flat

power spectrum across all frequencies, and has sample paths
∫
ξ(t)dt which exactly share
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the properties of W (t). This implies a worrying definition of white noise as the derivative

of the non-differentiable function W (t). It is therefore good mathematical practice to

express differential equations involving white noise as integral equations,

dx =

∫
a(x, t) dt+

∫
b(x, t)ξ(t) dt,

=

∫
a(x, t) dt+

∫
b(x, t) dW .

(2.80)

Equations of this form are examples of Langevin equations.

The issue now lies in considering how to evaluate integrals of a stochastic process. Formally

an integral is defined as the limit of the Riemann sum,

∫ t

t0

f(t′) dt′ = lim
n→∞

n−1∑
k=0

f(t̃k)(tk+1 − tk). (2.81)

Usually the position of t̃k within the interval [tk, tk+1] does not matter when taking the

limit for smooth functions as the sum always converges to the same value. White noise

never becomes smooth and as such choosing a different position for t̃k gives rise to different

results. There are two main fields of thought as to the best way to define this integral.

The Stratonovich approach considers t̃k = (tk+1 + tk)/2. This integral definition initially

seems appealing as it preserves all the rules of normal calculus. If you want to manipulate

the Langevin equation defined this way you can safely use the usual product and chain

rules. This is a reassuring result when trying to write down a model for physical continuous

processes that should have no reason for straying from the rules of standard calculus.

This choice attempts to capture the physics of a noise process that has truly finite time

correlations that are short enough to be approximated as zero. However in this calculus

multiplicative processes with the noise term do not average to zero, 〈b(t)W (t)〉 6= 0. This

is a result of the fact that evaluating the Stratonovich integral amounts to averaging over

different instances of the noise. The way the integral was defined leads any function of

time multiplying the noise to be correlated with it in some way, with no easy analytic
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method for handling these terms. This does seem to reflect the idea of attempting to

model physical processes that would in fact have some non-zero correlation over short

time scales.

Ito’s interpretation of the integral is the other most widely used. This calculus embraces

idealised white noise describing truly random, independent events. The position of t̃k is

chosen (usually at the far left of the interval t̃k = tk) such that 〈b(t)W (t)〉 = 0, preserving

the Martingale property that the future of the two functions are not linked in any way. This

is often considered appropriate for statistical modelling, financial models for example are

often not the limit of some differential equation but constructed as a sequence of distinct

steps. A truly independent increment dW also makes it easier to better mathematically

define Ito calculus. It can be shown in this framework that terms dW 2 = dt, at least

loosely. A surprising result that means there now appear non-vanishing second order

terms that would have other wise been discarded under normal circumstances.

Both approaches have their advantages although Langevin equations that are meant to be

approximately describing continuous processes are usually considered to be of Stratonovich

form. It is helpfully possible to switch between the two calculi; if an equation written in

Stratonovich form is considered to be the correct physical representation of some process

it can be re-expressed in Ito form. The multiplicative function b(t) is thought of as being

adapted to some completely non-anticipating function of the noise (such that 〈b(t)W (t)〉 =

0) and with this occurs an extra term in the integral. Generally a Stratonovich (S) SDE,

dx = a(x, t) dt+ b(x, t)ξ(t) dt, (2.82)

is equivalent to an Ito (I) SDE,

dx = a(x, t) dt+
1

2
b(x, t) ∂x b(x, t) dt+ b(x, t)ξ(t) dt. (2.83)

This is a very useful transformation when wanting to use the often more adaptable Ito

calculus for performing analysis or numerical simulations. It also illustrates that the in
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the case of only additive noise, when b(x,t) is constant, both integral forms are identical.

The diffusion equation we derived followed from the discretized evolution of a quantum

state, where each time interval was approximated to be truly independent. We should

therefore treat it as an Ito equation even though it describes a physical process which

would certainly have finite time correlations. In fact the corrective term that appears in

switching from a Stratonovich equation is the same as the effective Hamiltonian term we

already included from the time-dependent perturbation theory.

2.3.2 General Gaussian measurements

A measurement that projects a system onto a single eigenstate is known as a von Neu-

mann measurement Pn = |n〉〈n|. More generally though, and perhaps more naturally,

a measurement will reduce the uncertainty regarding the state of an observable but not

define it completely. For example the measurement operator

Ωα =
∑
n

exp
(
− κ(xn − α)2/4

)
|xn〉〈xn| (2.84)

is a Gaussian weighted sum of projector operators onto single states. Acting on a state

that is initially completely mixed, these generalised measurements leave the system with a

peaked probability of having eigenvalue α, but this is not its definite value. The certainty

of this depends on the strength of the measurement, here characterised by κ. A weak

measurement with a small κ will proved less certainty and also cause less disturbance to

the system.

A continuous measurement can be defined as a sequence of weak measurements taken in

intervals ∆t,

A(α) =

(
4κ∆t

π

) 1
4
∫ ∞
−∞

exp
(
− 2κ∆t(x− α)2

)
|x〉〈x| dx. (2.85)

This set of operators has the same form as (2.84) but we are now looking at a continuous
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set of eigenstates |x〉 of some operator X, and a continuum of measurement results labelled

by α. We have also written A(α) such that it is normalised
∫
A†(α)A(α) dα = I. The

probability of obtaining a measurement result from some initial state is then P (α) =

Tr
(
A(α)†A(α)ρ

)
, and for small ∆t the probability density for α is approximately Gaussian

and centred about 〈X〉.

It can be useful to treat α as a stochastic quantity, representing one possible realisation

of the measurement record,

α = 〈X〉+
∆W√
8κ∆t

. (2.86)

Here ∆W is a Gaussian random variable with variance ∆t, which is a proper Wiener

increment in the limit ∆t → 0. Working with this stochastic representation, we can

expand A(α) to first order in dt

A(α) ∝ exp
(
− 2κ dt(X − α)2

)
≈ 1−

(
κX2 − 4κX〈X〉

)
dt+

√
2κXdW . (2.87)

This operator describes the incremental evolution of the system when making a measure-

ment in each time step dt, given that the observer obtains the measurement result α. We

can now use the form of (2.87) to derive a stochastic master equation with the physical

interpretation of a system that is being continuously measured. In order to consider the

most general possible evolution due to a stochastic operator, we can first re-write

A = 1− iH
~
dt+ b dt+ c dW , (2.88)

where we have explicitly included the unitary evolution of the Schrödinger equation, and

introduced the freely defined operators b and c. Under the constraint of preserving the

positive eigenvalues of ρ, the most general transformation of the density matrix is

ρ→
∑
n

AnρA
†
n. (2.89)

For A = 1 − iH~ dt, we get the usual Hamiltonian evolution. Putting (2.88) into the
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transformation we find

dρ = − i
~

[H, ρ]dt+ {b, ρ}dt+ cρc†dt+ (cρ+ ρc†)dW . (2.90)

This equation already has features reminiscent of the Lindblad equation (2.18). We can

put some constraints on the operators b and c by considering the trace of ρ. Since we

are modelling the discretised evolution of the state - where we assume the noise to be

independent in each increment - we can treat this as an Ito equation. Therefore, in the

ensemble average 〈〈ρ dW 〉〉 = 0, and so

d〈〈ρ〉〉 = − i
~

[H, 〈〈ρ〉〉]dt+ {b, 〈〈ρ〉〉}dt+ c〈〈ρ〉〉c†dt. (2.91)

Since the trace Tr
(
ρ
)

= 1, the derivative Tr
(
dρ
)

= 0, which gives the constraint

Tr
(
〈〈ρ〉〉(2b+ c†c)

)
≡ 0 → b = −c

†c

2
. (2.92)

The same argument for the conditional evolution implies

Tr
(
ρ(c+ c†)dW

)
≡ 0. (2.93)

We can enforce normalisation by subtracting a term proportional to (2.93) from (2.90).

This results in the final form of this stochastic master equation (SME),

dρ = − i
~
[
H, ρ

]
dt+D[c]ρ dt+H[c]ρ dW . (2.94)

where D[c] is the Lindblad super-operator and H[c] is the measurement super-operator,

D[c]ρ = cρc† − 1

2
(c†cρ+ ρc†c), (2.95)

H[c]ρ = cρ+ ρc† − 〈c+ c†〉ρ. (2.96)
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The first term in the master equation describes the usual evolution due to reversible

dynamics, and the Lindblad term describes the back-action or disturbance to a system due

to measurement. The final term represents the information gain due to the measurement

process and the induced fundamental noise due to the quantum state collapsing. We

can relate this stochastic state evolution back to the original measurement operator we

considered (2.87) by identifying c =
√

2κX. From (2.86), this implies a measurement

record

dI(t) =
〈c+ c†〉

2
dt+

dW

2
. (2.97)

This measurement record and the master equation (2.94) exactly maps onto the diffusive

stochastic Schrödinger equation we derived for homodyne measurement if we calculate

d(|ψ〉〈ψ|).

To consider multiple possible measurements we can introduce a sum over many of these

collective terms whilst also introducing an efficiency η for each channel,

dρ = − i
~
[
H, ρ

]
dt+

∑
n

(
D[cn]ρ dt+

√
ηnH[cn]ρ dW

)
. (2.98)

This stochastic master equation is suitable for describing most measurement processes

that result in Wiener noise.

2.4 Feedback

We end this chapter with the details of Wiseman and Milburn’s formulation of feedback

alongside methods from classical control theory that map onto quantum systems. Feedback

control in a general sense involves measuring a system and using the information gained

to influence the future dynamics. Wiseman and Milburn developed the first theory for

feeding back a photo-current obtained from a continuous quantum measurement. They

considered how the fundamental noise associated with measuring quantum systems would

correlate with the system dynamics when reintroduced in the form of feedback. The theory
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was implemented experimentally and accurately predicted how to reduce laser shot-noise

to its quantum limit.

Wiseman and Milburn derived a master equation which followed a diffusive measurement

process. They initially considered monitoring a homodyne current, but the theory can be

applied generally to any measurement that effectively samples from a Gaussian distribu-

tion. The measurement noise propagates throughout the feedback process which results

in analogous behaviour to the fluctuation-dissipation theorem, where the measurement

causes diffusion and the feedback can be designed to have a damping effect.

2.4.1 Direct feedback

Here we will derive a feedback master equation using the results and notation we built up

in the previous sections. We start with a diffusive measurement record of the form

I(t) = 〈x〉+
ξ(t)√
8 η κ

. (2.99)

In order to derive a Markovian master equation we will consider instantaneous feedback,

which is often reasonable when the operating speed of the electronics and optics used to

implement the feedback is much faster than the system dynamics. Idealised direct feedback

introduces a term proportional to the measurement record to the state evolution,

(S) dρfb = I(t)Kρ dt = 〈x〉Kρ dt+
1√

8 η κ
Kρ dW . (2.100)

Where the super-operator K describes the effect of some action on the system propor-

tional to the strength of the feedback current. We have introduced the annotation (S)

to mark this as a Stratonovich equation. In order to derive an evolution of the system

that remains physical, it will be important to keep track of when it is appropriate to be

using Stratonovich or Ito (I) forms. The measurement record (2.99) we have written only

approximately contains white noise. Over the timescales we are interested this will still
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be reasonable. However, since we are introducing (2.100) which will truly have some finite

time correlations, to the continuous evolution of the system, the induced dynamics from

should be approximated in Stratonovich form[35].

The subtleties of the noise come into play when combining the evolution due to feedback

with the measurement master equation (2.94). Since the master equation was constructed

as an Ito equation, we need to covert (2.100) to Ito form following the procedure (2.83)

(I) dρfb = 〈x〉Kρ dt+
1√

8 η κ
Kρ dW +

1

16 η κ
K2ρ dt. (2.101)

Even after this conversion however, if we include the feedback as an additive term we will

still find that the resulting master equation is not trace preserving. In fact if we tried

instead to convert our original master equation to Stratonovich form in order to correctly

combine the two terms, then a clear problem emerges where the feedback super-operator

sometimes acts before the measurement super-operator. We must take particular care to

ensure we write our equation so that it corresponds to the physical process of measurement

first and feedback second, rather than the two entering on an equal footing. To do this it

helps to consider that in essence we want to write

dρ→ dρ+ dρfb ≡ dAρ+ dBρ, (2.102)

where we define the operator dA to describe the state evolution due to measurement, and

the evolution due to feedback with the operator dB. With these newly defined operators,

we can alternatively write

ρ+ dρ+ dρfb = (1 + dB)(1 + dA)ρ. (2.103)

This construction ensures the measurement acts before the feedback, and is exactly equiv-

alent to (2.102) if the measurement and feedback noise are not correlated. However, we

have just approximated the noise from instantaneous feedback as being identical to the
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system noise. In this case dB dA is of order dW 2 and can not be neglected,

dB dAρ = KH[x]ρ dt = K(xρ+ ρx) dt−K〈x〉ρ dt. (2.104)

Therefore with feedback, our master equation takes the form

dρ = L0ρ dt+
√

2 η κ(H[x] + (4 η κ)−1K)ρ dW +
1

2
K(xρ+ ρx) dt+

1

16 η κ
K2ρ dt. (2.105)

where we have defined the Livoullian L0 which accounts for all of the Hamiltonian and

dissipative dynamics.

Equation (2.105) accurately describes a systems evolution whilst undergoing measurement

and feedback, and preserves all the physical properties of the density matrix. We can

further interpret the resulting dynamics if we make explicit the form of K,

Kρ = −iλ
[
F, ρ

]
, (2.106)

where F can be any arbitrary operator that corresponds to making some physical shift to

the system. We have also included λ as a scaling constant for the feedback strength that

could be controlled independently of the measurement record. It will be useful, and easier

to work with analytically, an equation that describes the average effects of this cooling

procedure. Being able to predict the average result of the feedback is usually more helpful

than generating individual trajectories based on a particular measurement realisations.

With the explicit form of K, the ensemble averaged evolution

〈〈ρ̇〉〉 = L0〈〈ρ〉〉 − i
λ

2

[
F, x〈〈ρ〉〉+ 〈〈ρ〉〉x

]
+

λ2

8 η κ
D[F ]〈〈ρ〉〉. (2.107)

The term proportional to λ describes the desired effect of the feedback, where as the term

proportional to λ2 corresponds to additional heating due to reintroducing noise from the

measurement. We can see from this equation that feedback offers the ability to turn on

and off non-trivial terms in the system Hamiltonian by making use of information that
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would otherwise be lost to the environment.

2.4.2 State estimation

The method discussed above considers feedback proportional to the instantaneous mea-

surement record being directly reintroduced to the system. However, often experiments

instead have access to some integral of the measurement, or may first need to filter the

measurement signal before using it for feedback. In this case it is usually much more

difficult to make an analytic model of the resulting dynamics, and if the signal processing

has significant delay this leads to non-Markovian evolution.

This issue is not confined to quantum physics and there are cases where methods from

classical control theory can be borrowed to make the problem more tractable. For example,

in some cases, integrals of the measurement record provide continuous estimates of certain

dynamical variables. If we consider a continuous position measurement of a Gaussian

state, the measurement signal can be integrated to provide estimates of the mean position

and momentum. We can then express the feedback Hamiltonian as a linear function of

the momentum and position operators scaled by functions of their estimates,

Hf = f(〈x〉, 〈p〉)x+ g(〈x〉, 〈p〉)p. (2.108)

Where f and g are functions of the estimated variables, and x and p are the position and

momentum operators respectively. In the limit of instantaneous feedback, the optimal

feedback strategy can be determined using classical control theory. We can define a cost

function for a parameter we want to minimise, for example the energy, C(x, p, f, g). The

cost function should depend on the system state and the feedback functions. Minimising C

then provides the optimal form of f and g, and the integral equations of the measurement

continue to provide an estimate of the state variables. There are many classical examples

of how to choose an appropriate cost function and how to minimise it.
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In classical systems noise is not fundamentally linked to the measurement strength, as

is the case with quantum measurement. Noise can however be artificially enforced, and

in some cases, classical models can be made to map exactly onto quantum systems. We

found that well developed control methods for cooling [43, 44, 45] were highly applicable

to the nano-mechanical systems we go on to discuss in the following chapter.
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3 Nano-mechanical systems

In this chapter the discussion turns to nano-mechanical systems, and a brief review of

the background of the field is presented. This is followed by an overview of some recent

developments achieved with levitated nanoparticles. Some key features of nano-mechanical

systems are presented, in both classical and quantum noise models. The research in this

and the following chapter, was inspired by advances in magnetically confined particles[46],

and which methods are best suited for measuring these systems is explored in detail.

This leads to an in depth evaluation of which feedback methods are most appropriate

for magnetically levitated particles, and how to overcome the challenges of working with

relatively low-quality oscillators.

3.1 Background

Quantum theory was first conceived to describe the behaviour of light, and the smallest

constituents of matter, namely atoms and molecules. However, no part of the theory

prohibited it from being applied to larger systems. As we discussed in chapter 2, the

transition from quantum to classical mechanics seems to manifest due to the interaction

between a system and its environment. Although large systems typically couple strongly

to their surroundings, there is no fundamental reason that they cannot be well isolated to

observe quantum behaviour. It is still a huge technical challenge, but over the last two

decades there have been many advances in our ability to engineer macroscopic quantum

systems.

To derive a quantum model of a macroscopic system it is common to start with a classical

description, and then to quantise the collective degrees of freedom. Solving the Schrödinger

equation for each of the individual constituents would be unfeasible, so we rely on the in-

ternal degrees of freedom being largely uncoupled from the macroscopic ones. One of the

first major successes of this approach was quantising classical current and flux to provide a
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theory of superconducting circuits[47]. The methodology can be applied generally to any

classical system with a continuum of modes. Quantum features have long been studied

in the collective excitations of superfluid helium[48], and more recently ground state cool-

ing has been achieved in the elastic deformation of silicon nanostructures[49] and in the

mechanical motion of breathing modes in optical microcavities[50]. Ground state cooling

of the vibrational modes of trapped nanoparticles is also being pursued and the field is

quickly progressing [51].

Advances in engineering these systems have relied heavily on the mechanical influence

of light. The effect of optical gradient forces was first demonstrated with microscopic

particles in 1970[52]. Optical control led to many breakthroughs including the realisation

of a Bose-Einstein condensates, and the ability to trap and manipulate individual ions[53].

Today the opto-mechanical control of trapped ions allows for ground state cooling[54], the

preparation of highly non-classical states[55, 56], and strings of interacting ions are used

at the forefront of quantum simulation[57]. Some of the same control techniques can be

applied to nanoscopic and macroscopic levitated particles, and there is an on-going push

to achieve ground state cooling in these systems. If realised they hold the promise of new

technologies, and would be a platform for many novel experiments.

3.1.1 Levitated particles

Levitated supra-atomic particles are of interest for metrology and for tests of fundamental

quantum physics[58]. Sufficiently large systems offer the exciting possibility to probe the

effects of gravity in a quantum mechanical setting. If interactions are strong enough there

are proposals to explore quantum gravitational phenomena[59, 60]. Once ground state

cooling has be achieved, experiments will be operating in a regime where incredibly sensi-

tive quantum states could be prepared to explore non-Newtonian gravitational effects[61],

and for gravitational wave detection[62]. Squeezed states of motion via back-action evad-

ing measurements can already be engineered in other opto-mechanical systems and can
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be used to overcome quantum limits on measurement precision. For sensing, quantum

interference effects can also be exploited to gain sensitivity to external forces and fields.

Nano-mechanical systems, such as optical microresonators[50] and photonic-crystals[49],

have been prepared in quantum states of motion. Control over these systems is excellent,

and state-of-the-art experiments have mechanical quality factors currently for exceeding

that of levitated systems[51]. Advances in levitated particles are being made quickly how-

ever, with the goal of catching or even surpassing tethered systems. One exciting feature

of levitated particles is that they are comparatively low mass, and therefore have the

potential to make superior force sensors. Alongside tethered systems, levitated particles

offer exciting new avenues to probe macroscopic quantum physics.

Optical and magnetic fields are the most commonly used for the confinement of large

levitated particles, although there is a growing interest in all-electric levitation[63, 64].

Arguably the most progress towards reaching ground state cooling with a nanoscopic

particle has been made in optical traps. Current experiments are capable of detecting, and

are limited by, photon shot-noise[65]. They have already been used to investigate highly

sensitive classical dynamics, and as detectors for ultra-weak forces[66, 67]. The main

obstacle to cooling further is due to intrinsic noise associated with the optical gradient

trapping fore. Scattered light causes diffusion of the particle’s motion, equivalent to the

measurement back-action described by the master equation (2.94). This can be interpreted

as photon recoil heating analogous to that which limits Doppler cooling of atoms. The

recoil energy scales inversely with a particle’s mass making it a negligibly weak effect at

high temperatures, but it becomes a significant source of heating after reaching a relatively

low phonon occupancy. The large laser intensities required to trap particles has posed a

substantial limit on these methods. A cavity surrounding the levitated particle can help

minimise the lost scattered light and in this context there are proposed methods for ground

state cooling[68].

Optically trapped particles have excellent quality factors, and there are proposed methods
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for overcoming their heating issues, however, there are alternatives which circumvent their

current limitations. Static magnetic traps are free from heating intrinsic to the confinement

of the particle, and have recently been demonstrated as suitable for trapping and cooling

nano-diamonds[46, 69]. Most materials are diamagnetic, and although much weaker than

ferromagnets, with an applied field they will have an induced magnetic moment. This

magnetic moment opposes the applied field, and causes a force towards the field strength

minima. With strong rare earth magnets it is possible to create a stable potential well for

particles weighing a few pico-grams. Nano-diamonds are of particular interest because of

the potential to couple their external motion with the internal state of a nitrogen-vacancy

(NV) centre. Magnetic traps are well suited for these experiments, as in high vacuums

impurities in diamonds burn due the laser intensities used in optical traps[70].

Magnetic traps are typically around three orders of magnitude larger than their optical

counterparts, spanning hundreds of micrometers across. Consequently they operate at

much lower frequencies, of around 100Hz as opposed to 100kHz for an optical trap. This

comes with the advantage of being able to hold and manipulate larger particles, but also

makes it unfeasible to cool on timescales much longer than the oscillation period because

of their relatively low quality factor. Although the oscillation frequency is significantly

lower than in an optical trap, magnetic confinement is subject to similar environmental

heating. Recent experiments[46, 65] have estimated the phonon reheating rate for these

systems in high vacuum (10−8 mbar) to be Γth ≈ 100Hz and it is expected that this

will be significantly reduced at lower pressures. In current experiments the motion of

magnetically confined particles has been cooled from room temperature to sub-Kelvin

temperatures axially and to only a few Kelvin vertically[71].

In the following sections we consider a possible route to ground state cooling of a levitated

nano-particle, magnetically trapped, using a combination of measurement and feedback.

One of the major considerations will be that the trap frequency in these systems is much

lower than those involving optically trapped particles or other nano-mechanical resonators.

Managing environmental heating in this regime currently requires control of the system on



3 Nano-mechanical systems 53

a timescale comparable to the inverse of the trap frequency. We find that these traps are an

excellent platform for performing optimal feedback control via real-time state estimation,

for the preparation of motional states with measurable quantum properties.

3.2 General model

We are not yet able to prepare quantum states of motion with levitated particles, how-

ever, shot noise is a visible quantum feature in current experiments. This is different from

classical heating sources, such as due to collisions with energetic air molecules, in that

quantum noise is a fundamental consequence of the interaction between the particle and

light. In the case of a probe light used for measurement, the corresponding noisy distur-

bance is called back-action. Although the source of the noise is intrinsically non-classical,

the motion of the particles can still be described by classical equations. As such, it will

be helpful to briefly consider a classical description of a mechanical oscillator coupled to

its environment. This classical model will later map onto a fully quantum description and

works as an illustrative example of stochastic differential equations.

3.2.1 Classical case

Initially we consider classical heating effects. When preparing a particle with a very low

velocity it becomes important to consider collisions with surrounding air molecules. Even

in a near vacuum these collisions are frequent over the timescale of an oscillation and

induce significant fluctuations. To describe this motion, it is common to use a Langevin

equation. As we discussed in the previous chapter, we can use a white noise process to

approximate the quasi-random force due to the collisions. The so called Brownian motion

of a free particle can be described by the stochastic differential equation

∂v

∂t
= −2γv +

√
f ξ(t) . (3.1)
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Where v = dx/dt is the particle velocity, and γ is a drag coefficient which depends on the

viscosity of the air and the particle size. The term
√
f ξ(t) represents the force arising from

the impacts with molecules, where f scales the size of the fluctuations and ξ(t) is a noise

process. The fluctuations in the particles motion are realistically expected to have some

finite temporal correlations, and can be approximated with an auto-correlation function

with the general form of a decaying exponential,

〈ξ(t)ξ(t′)〉 =
D

2k
e−k|t−t

′| . (3.2)

It is mathematically convenient to consider the idealised white noise limit where k → ∞

and ξ(t) becomes delta correlated. This is a reasonable approximation to make when the

system dynamics occur on timescales much larger than the correlation time. As the limit

of some physical process, (3.1) should be interpreted as a Stratonovich equation, but since

there is only an additive noise term, there is no correction to add if we want to treat it as

an Ito equation. This means we are free to use the Ito rules of calculus.

We can use the fluctuation-dissipation theorem to quantify the strength of the driving

noise. We first note that the formal solution to our Langevin equation is

v(t) = v(0) e−2γt +
√
f

∫ t

0
dt′ e−2γ(t−t′)ξ(t) . (3.3)

Since the expectation value of a white noise process is zero, 〈ξ(t)〉 = 0, we can see that

the mean velocity

〈v(t)〉 = v(0) e−2γt . (3.4)

The variance of the velocity can be found under the assumption that 〈ξ(t)ξ(t′)〉 = δ(t−t′),
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〈v2(t)〉 − 〈v(t)〉2 = f

∫ t

0
dt′
∫ t

0
dt′′ e−2γ(t−t′)e−2γ(t−t′′)〈ξ(t′)ξ(t′′)〉

= f

∫ t

0
dt′
∫ t

0
dt′′ e−2γ(2t−t′−t′′)δ(t′ − t′′)

=
f

4γ
(1− e−4γt).

(3.5)

The fluctuation dissipation theorem argues that the driving collisions and viscous drag

will compete and in thermal equilibrium the two forces should balance. We can see in the

long time limit that 〈v2(t)〉 = f/4γ, does reach a steady state. The equipartition theorem

then allows us to equate the particle’s energy to the environment’s temperature, which

gives us an expression for f in terms of measurable parameters,

〈1
2
mv2〉 =

1

2
kB T → f =

4γ kB T

m
. (3.6)

In early experiments with magnetic confinement, they operated in a room temperature

vacuum, and measured the time for a trapped particle to come to equilibrium to be of the

order of 100 seconds [46], corresponding to a damping coefficient of roughly γ ≈ 10−2s−1.

If we add a harmonic potential to (3.1) we can derive equations of motion for a trapped

brownian particle,
∂v

∂t
= −ω2x− 2γv +

√
f ξ(t) . (3.7)

It will be simpler to make a change of variables and solve for the mean square velocity.

A variable change usually relies on the standard form of the chain rule, but since this a

Stochastic equation we should use Ito’s lemma. If we have a stochastic process, such as

v(t), which can be expressed as the solution to an equation of the form

dX = a dt+ b dW , (3.8)
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then the derivative of a function f(X(t)) will have the form

df =
df

dX
dX +

d2f

dX2

dX2

2
+ ...

≈ a df

dX
dt+ b

df

dX
dW +

b2

2

d2f

dX2
dt .

(3.9)

The first line here is a Taylor expansion of df , and in the second line we have truncated

the expansion to first order in dt. The unusual extra term in the expansion remains since

it was proportional to dW 2 = dt, and the expression is made exact in the limit dt → 0.

This is Ito’s lemma, and if we identify dX = dv and f(v) = v2, we can transform (3.7),

d(v2) =
(
− 2v(ω2x+ 2γv) + f

)
dt−

(
2v
√
f
)

dW . (3.10)

If we then take the ensemble average,

d〈v2〉 = (−2(ω2〈xv〉+ 2γ〈v2〉) + f)dt. (3.11)

And following the same procedure for the position equation,

d〈x2〉 =
(
2(〈xv〉

)
dt . (3.12)

In steady state we have two simultaneous equations, immediately 〈xv〉 = 0 and conse-

quently we see 〈v2〉 = f/4γ, as was the case for a free particle. As a final step, we can

write equations for the position and momentum variance of the particle. These will be

useful equations that later directly map onto the quantum model,

dVx = d〈x2〉 − 2〈x〉 d〈x〉

= 2
(
〈xv〉 − 〈x〉〈v〉

)
=

2

m
Cxp,

(3.13)

dVp = −2mω2Cxp − 4γ
(
Vp +mkbT

)
, (3.14)

where we have defined the position and momentum covariance Cxp = 〈xv〉 − 〈x〉〈v〉. We
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can see in the momentum variance a balance of damping and diffusion proportional to the

coupling strength to the environment.

3.2.2 Quantum case

We can quantise the harmonic oscillator by promoting the position and momentum to

operators in the system Hamiltonian,

Hsys =
p2

2m
+
mω2x2

2
, (3.15)

where m is the particle mass, and ω is the trap frequency. It will be sufficient to continue

to model the motion of the particle in 1D, as although cooling is often applied along each

trap axis, the frequencies of each motional degree of freedom can be well separated and

safely decoupled.

The harmonic oscillator can also be naturally described by ladder operators
[
a, a†

]
= 1,

which act to add or subtract phonons from the system. For a state with n phonons

a |n〉 =
√
n |n− 1〉 a† |n〉 =

√
n+ 1 |n+ 1〉 , (3.16)

with the special case a |0〉 = 0 when acting on the ground state. The ladder operators

naturally define the number operator

a†a |n〉 = n |n〉 → n = a†a, (3.17)

and can be used to express the position and momentum operators,

x = x0(a† + a), p = ip0(a† − a), (3.18)

where x0 = (~/2mω)
1
2 and p0 = (~mω/2)

1
2 are the zero point position and momentum

respectively.
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As in chapter 2 we can consider coupling our system to a continuum of harmonic oscillators

that represents the environment,

V =
∑
k

(
gkbk + g∗kb

†
k

)(
a+ a†

)
. (3.19)

If the oscillator frequency is sufficiently large compared to the rate of dissipation due to

the coupling, then we can work under the rotating wave approximation. As with the two

level atom, the system evolution is then described by a Lindblad master equation,

ρ̇ = −i[Hsys, ρ] + γth(1 + n̄)D[a]ρ+ γth n̄D[a†]ρ, (3.20)

where γth is the system-bath coupling strength. We have transformed out of the in-

teraction frame here so as to directly observe the effects of Hsys, using the fact that

U †D[a]ρ̃ U = D[a]ρ, when U is a phase-shifting operator. The average phonon occupancy

n̄ is determined by the Bose-Einstein distribution function, and relates the rates of the

spontaneous emission and absorption to the reservoir temperature. Since the ladder op-

erators follow the bosonic commutation relation, Bose-Einstein statistics determine the

phonon occupancy probability at each energy level in thermal equilibrium,

p(n) = exp

(
− ~ωn
kBT

)[
1− exp

(
− ~ω
kBT

)]
, (3.21)

n̄ =

∞∑
n

n p(n) =

[
exp

(
~ω
kBT

)
− 1

]−1

≈ kBT/~ω (3.22)

In the last line we consider the limit of high temperatures, ~ω � kBT , and as expected the

average phonon occupancy is equal to the thermal energy of the environment divided by

the energy of a single phonon excitation. The last term in (3.20) accounts for spontaneous

absorption, and arises when treating the environment as if it has some finite temperature,

as opposed to a vacuum, when deriving the master equation.

Equation (3.20) describes dissipation and heating due to interactions with the environ-
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ment, just as in the classical model. We can compare the quantum system evolution with

the classical equations of motion, by considering the position and momentum observables.

In the density matrix formalism we can use the trace to find the equations of motion for

any observable 〈A〉 = Tr[ρA]. Using the fact that only ρ has time dependence in the

Schrödinger picture,

d〈A〉
dt

= −i〈
[
A,H

]
〉+ γth(1 + n̄)〈2a†Aa− aa†A−Aaa†〉

+ γth n̄〈2aAa† − a†aA−Aa†a〉.
(3.23)

The first order position and momentum work out to be

d〈x〉 =
1

m
〈p〉dt− 2γth〈x〉dt, (3.24)

d〈p〉 = −mω2〈x〉dt− 2γth〈p〉dt, (3.25)

and decoupling these two differential equations gives

dt2〈X〉+ 2γth〈X〉dt+ (ω2 + γ2
th)〈X〉 = 0, (3.26)

which has the same form as the mean of (3.7), but with a shifted oscillation frequency

ω2
γ = ω2 + γ2

th. Likewise, the second order moments work out to be

dVx
dt

=
2

m
Cxp − 4γth

(
Vx −

(
n̄+

1

2

) ~
mω

)
, (3.27)

dVp
dt

= −2mω2Cxp − 4γth

(
Vp −

(
n̄+

1

2

)
~mω

)
, (3.28)

dCxp
dt

= − 2

m
Vp + 2mω2Vx − 2γthCxp, (3.29)
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where Cxp is symmetrised covariance. These equations almost perfectly map onto their

classical counterparts (3.13,3.14) at high temperatures, as n̄ → kBT/~ω. However, in

these equations there is an explicit damping term for the position variance, which is a

consequence of having made the rotating wave approximation. In the equation for the

expected phonon occupancy

d〈n〉 = −γth〈n〉 dt+ γthn̄ dt , (3.30)

we can see that the system energy decays smoothly, where as for a typical damping force

we would expect the energy to be removed at a rate proportional to the current velocity.

The oscillations in the decay rate have been smoothed out by assuming the RWA, but this

is a reasonable approximation if the decay rate is slow compared to the oscillation period.

The second difference from the classical case is apparent at low temperatures, where in the

quantum case the variances never fall below the zero point limits. At room temperature

the average phonon occupancy for a ω = 2π× 100s−1 oscillator would be n̄ ≈ 1011, which

is safely described by the classical equations of motion. To reach the quantum ground

state n̄ = 0 equates to cooling to a temperature of the order of a few nano-Kelvin.

We will build on these equations in the following sections. For the particular case of a

quantum oscillator, the Gaussian position and momentum moments can describe the full

state. These are much easier equations to solve both analytically and numerically than the

full master equation. Thermal states are initially Gaussian and we will find that they stay

that way when undergoing linear measurements of x and p. Furthermore, the Gaussian

state equations later provide a useful approach for parameter estimation and feedback.
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3.2.3 Measurement and resolution

We next want to include the effect of measuring the quantum oscillator. We can consider

a general Gaussian measurement of the form discussed in chapter 2,

A(α) =

(
4κ∆t

π

) 1
4
∫ ∞
−∞

exp
(
− 2κ∆t(x− α)2

)
|x〉〈x| dx, (3.31)

and we can consider making a continuous string of measurements by applying this operator

in each time step ∆t, where the observer obtains the measurement result α. If we identify

x as the position operator, and if there is a measurement in each interval, as ∆t→ 0, the

system is described by the measurement master equation

dρ = − i
~
[
Hsys, ρ

]
dt+ 2κD[x]ρ dt+

√
2ηκH[x]ρ dW . (3.32)

Where we have let c =
√

2κx in (2.94). Since we have considered specifically a position

measurement we can be more quantitative about the nature of the measurement strength

κ. From (3.31) we can see that an individual measurement in a single time step will project

an initially delocalised particle onto a state with width of order

δα =
1√

2κ∆t
. (3.33)

From classical optics we know that light from a point dipole would have a profile width

of about an optical wavelength λ. For a single projective measurement then we might

expect δα ≈ λ. If we assume the measurements are coming from scattered light at a rate

γ = 1/∆t, we can estimate that the measurement strength κ ≈ γ/λ2.

Following the same procedure as before, we can compute the equations of motion for the

position and momentum moments. Since this time the equations contain white noise, we

should use Ito’s lemma when finding the variance equations, eg.

dVx = d〈x2〉 − 2〈x〉d〈x〉 − (d〈x〉)2. (3.34)
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By assuming a Gaussian state we can also re-express the expectation value of any arising

higher order moments, in terms of the first and second order position and momentum.

The resulting equations are,

d〈x〉 =
1

m
〈p〉dt− 2γth〈x〉dt+

√
8ηκVx dW , (3.35)

d〈p〉 = −mω2〈x〉dt− 2γth〈p〉dt+
√

8ηκCxp dW , (3.36)

dVx
dt

=
2

m
Cxp − 4γth

(
Vx −

(
n̄+

1

2

) ~
mω

)
− 8ηκV 2

x , (3.37)

dVp
dt

= −2mω2Cxp − 4γth

(
Vp −

(
n̄+

1

2

)
~mω

)
+ 2~2κ− 8ηκC2

xp, (3.38)

dCxp
dt

= − 2

m
Vp + 2mω2Vx − 2γthCxp − 8ηκVxCxp. (3.39)

We can see from these equations that the measurement causes extra diffusion in the mo-

mentum variance. This is the back-action associated with the measurement interaction.

We can argue that physically this diffusion should correspond to the total momentum

recoil imparted by the field,

2~2κ = γ~2k2
L → κ =

γk2
L

2
, (3.40)

where kL = 2π/λ is the optical wavenumber and we have considered diffusion only in one

dimension. This agrees with our estimate for the measurement strength based on the ideal

level of resolution. The information gained from the measurement manifests as damping

of the position variance. In turn, the momentum variance is also damped proportional

to the covaraince with the position. The expectation value of the first order position and

momentum now have a stochastic drift induced by the continuous measurement collapse.

This drift is conditioned on the specific realisation of the measurement record, and averag-



3 Nano-mechanical systems 63

ing over these realisations is exactly enough to hide the reduction in the position variance.

In which case this is equivalent to setting η = 0 and discarding any measurement infor-

mation. This leaves only the dissipative affect on the momentum variance, as is the case

when coupling to any environment we know nothing about.

In order to reach the quantum regime it will be necessary for environmental heating to be

made negligibly small on the time-scales required to achieve measurement resolution. A

reasonable goal in a magnetic trap would be to cool a particle in a time comparable to the

oscillation period of a ω = 2π× 100Hz. In this case the phonon reheating rate would need

to be reduced to around Γth = kBTγth/~ω ∼ 1Hz, where T represents the surrounding

gas temperature and γth is the thermal damping rate. Current typical reheating values

are around 100Hz, and below 10 mbar, thermal decoherence is expected to be linear in

gas pressure and in the temperature of the environment. By better isolating the particle,

or with the help of cryogenically cooling the trap chamber, reheating rates two orders of

magnitude lower could feasibly be reached.

It is helpful to consider the necessary measurement strength to reach a desired position

resolution in a given time. A simple estimate of the resolution achievable across an interval

∆t, can be found be integrating the measurement record [72],

∆I =

∫ t+∆t

t
dI ≈ 〈x〉∆t+

∫ t+∆t

t

dW√
8ηκ

. (3.41)

In this expression we have assumed that the expected value of the position of the particle

will not change much over the time interval. This is not a well justified assumption but

will allow us to determine an upper bound for the resolution. The integrated measurement

signal ∆I has a mean value of
√

8ηκ〈x〉∆t that grows linearly in time, and its width grows

as the square root, σ =
√

∆t. Continuous measurement over this interval could therefore

resolve at best

δx ≈ 1√
8∆t ηκ

, (3.42)

with a signal to noise ratio of one. We would like to achieve resolution comparable to the
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size of the quantum ground state x0 =
√
~/2mω, in some time interval which for now we

will consider to be on the order of a mechanical oscillation ∆t = 1/ω, to outpace a realistic

thermal heating rate,

δxω =

√
ω

8ηκ
≡ x0. (3.43)

From this, we can conclude in order to approach ground state cooling sufficiently quickly,

it is necessary for κx2
0 ∼ ω/8η. This places a lower bound on the necessary measurement

strength.

Attempting to cool on time-scales much shorter than the trap period has its own physical

limitations. Earlier we quantitatively established that the measurement strength should

be proportional to the scattering rate, which could always in principle be increased with

stronger laser illumination. The trade-off for higher scattering rates, is greater back-action

heating and stochastic drift. Even idealized measurements cause unavoidable heating

through momentum diffusion, which in the best case manifests as squeezing of the state

variances for any finite κ. Actively counteracting the disturbance caused by a probe light

relies on efficiently detecting as much of the scattered light as possible. This along with

the necessary resolution requirement, are the criteria for a suitable measurement. In

the following section we use this criteria to asses several potential physical measurement

schemes.

3.3 Methods for measuring levitated particles

We assessed the merits and shortcomings of various measurement techniques, and we

outline the results of our investigation here. The most suitable method we found involves

measuring the amplitude modulation of a standing wave due to a particle’s motion in

front of a single mirror. This technique has been successfully demonstrated with trapped

ions[16, 36] and has the potential to be very effective for monitoring magnetically levitated

nanoscopic particles, when combined with initial cooling of the oscillation amplitude to

around a single optical wavelength. To provide context as to why this method was chosen
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θ

Probe x

Figure 3.1: Sketch of a trapped particle, illuminated by a probe so that it can be imaged.
The lens and detection system must be situated perpendicular to the axis of the parti-
cle’s motion. Capturing light scattered at large angles θ translates to a poor quantum
measurement efficiency.

we outline the benefits and limitations of some other well established methods.

3.3.1 Imaging

Camera-like imaging has been used in previous experiments with particles in low frequency

traps. As sketched in Fig. 3.1, a camera follows a particle’s position in a plane perpendic-

ular to the direction of light being scattered from it. However, it is light scattered parallel

to this plane that imparts the most recoil to the visible motion of the particle. We will

see that this translates to a very low quantum efficiency.

We saw in the derivation of a stochastic Schrödinger equation that information in the

environment can be measured to infer the state of a quantum system. If we include the

spatial dependence of the field in the interaction Hamiltonian it is of the correct form to

allow for a position measurement,

HI = ~
∑
k

√
γ
(
bk exp(ik.r) + b†k exp(−ik.r)

)
, (3.44)

where γ is the scattering rate into each mode of the optical electric field, bk(b
†
k) is the
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usual quantised field mode amplitude, with wavenumber and angular frequency of k, ωk

respectively. The momentum recoil due to the scattered photons is represented by k.r,

where r is the particle’s position. This Hamiltonian could for example model a particle

interacting with an optical probe beam. Magnetic confinement provides large trapping

potentials capable of holding very massive particles, with the potential to explore truly

macroscopic quantum objects. We will however initially focus on smaller particles, tens

of nanometers in size, for their simple light scattering properties. Nanoparticles can be

treated as point dipoles and their motion is simpler to measure over distances shorter than

the optical wavelength of a probe beam. We will treat the internal dynamics of the light

scattering process adiabatically and model the particle as a point dipole in the Rayleigh

regime. We saw in the Lindblad master equation for a 2-level system that the internal

dynamics of a driven dipole are damped due to coupling with the environment. If this

damping is much faster than the dynamics of the external particle motion, in the adiabatic

limit the operators corresponding to the internal dipole transition can be replaced by their

steady state values and absorbed into the scattering rate.

If there is a large detuning of the probe beam from any resonant frequency of the particle,

then scattering would happen in the Rayleigh regime, where light scatters elastically at

the same frequency as the incoming probe. In this case we can consider a single dominant

frequency. If we write the joint state equation of the particle and field, as when we

considered photo-detection of a two-level system (2.49), after a single time-step

|ψ〉 =

∫
dpψ(p)

(
ce |p, 0〉+ cg |p− ~k, 1〉

)
, (3.45)

where ψ(p) is the momentum state of the particle and |ce|2, |cg|2, correspond to the

probabilities of free system evolution with a vacuum field state, or a momentum kick

after a photo-detection event. We can identify the corresponding jump operators for this

interaction,

c(θ, φ) =
√
f(θ, φ) eik.r, (3.46)
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such that ∫
dΩ c†(θ, φ)c(θ, φ) = 1. (3.47)

where we have explicitly included the angular dependence of the scattering, into the con-

tinuum of modes with wavevectors k. Detection in each mode tells us there has been a

momentum kick in a given direction.

An imaging process transforms these operators, trading the directional information about

the light for position information. A lens for example can effectively project the scattered

light, and consequently the jump operators, onto a plane

c(x) =

√
k

4π2

∫ 2π

0
dφ

∫ π

0
sin θdθ

√
f(θ, φ)eik(x−x0) cos θ, (3.48)

where x0 is the atomic position and x is the coordinate for the plane being imaged. We

have normalized the the operators in the same way so that when integrating over all modes

∫
c†(x)c(x) = c†(θ, φ)c(θ, φ). (3.49)

In the most simple case, we can consider isotropic scattering with f(θ, φ) = 1/4π. Carrying

out the integration we obtain the operators

c(x) =

√
k

π
sinc(k(x− x0)). (3.50)

We can relate these to the Gaussian operators we considered earlier (3.31), if we approx-

imate the function sinc(kx) as a Gaussian with width σ ≈ 3.8/k. This corresponds to

localising the particle within the order of an optical wavelength after each detection, as

expected for an ideal measurement system. We will continue with a qualitative description

of the imaging process, since we only wish to show why it is not best suited for highly

efficient measurement.

The position operators we have derived correspond to an idealised case where all the
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scattered light is collected and imaged. To calculate a more realistic collection efficiency,

we can find out the fraction of light radiated from the atoms that overlaps with a lens,

ηθ =

∫
dΩ f(θ, φ)T (θ, φ). (3.51)

We have introduced the aperture function T (θ, φ), which we will model as a mask, such

that light is only collected over some small angle δθ,

T (θ) =

0 if
∣∣θ − π

2

∣∣ > δθ

1 if
∣∣θ − π

2

∣∣ < δθ
. (3.52)

The angles here are shifted by π/2 so that the lens collects light perpendicular to the

particle’s motion as is necessary to produce an image, illustrated in Figure 3.1.

If we consider isotropic scattering, ηθ ≈ δθ. This however is not the collection efficiency

that should be used in the measurement master equation (3.32). This is the collection

efficiency of the scattered light, but it does not take into account that for each detection,

only a fraction of the recoil operator acts in the x direction. Only this component of the

scattered light carries information that is relevant to the particle’s position along x. To

account for this in the detection efficiency, we should let
√
f →

√
f cos(θ), which would

appropriately weight the jump operator’s contribution to recoil along the x-axis,

η = 2π

∫ π

0
dθ f(θ)T (θ) cos2(θ) ≈ δθ3

3
. (3.53)

The approximate value here, again corresponds to isotropic scattering, and qualitatively

matches up with the result of more rigorous treatment[73].

This is a very poor quantum efficiency and reflects the fact that an imaging system neces-

sarily collects light perpendicular to to the motion of the particle. The light scattered at

these angles contributes very little recoil along the x direction and correspondingly car-

ries very little information. This suggests that a method of measuring the light scattered
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parallel to the particle’s motion is necessary for an efficient position measurement. Even

so, imaging is simple to implement and for the purpose of initially damping the position

variance to around a fraction of a micron, low quantum efficiency will not be an issue. For

comparison, a 0.1µm diameter diamond in a trap ω = 2π × 100Hz, will only be quantum

limited when approaching the ground state variance of roughly x0 ≈ 0.1nm. Many high ef-

ficiency measurements, capable of resolving beyond optical-wavelength amplitude motion,

require the particle to already be tightly confined. In a large trap this necessitates some

initial cooling so that the particle does not move outside the range of these measurement

techniques.

3.3.2 Cavity phase shifts

Introducing a cavity around the suspended particle is often a reliable way to improve light

collection efficiency, and homodyning the light from a partially transparent mirror can

be used to efficiently track the position of a particle. In order to explore this effect it is

first useful to omit the particle, and briefly outline input-output theory for a cavity and

a single optical mode, coupled to its environment through a lossy mirror. The relevant

Hamiltonians for this system are,

HC = ~ω0a
†a, HE = ~

∫ ∞
−∞

dω ωb†(ω)b(ω), (3.54)

Hint =
~√
2π

∫ ∞
−∞

dω
√

Γ
(
ab†(ω) + a†b(ω)

)
, (3.55)

where a is the operator for the cavity mode, b(ω) are the environment modes, and we have

already assumed a continuous and extended frequency range of the environment modes,

with a constant coupling strength Γ. This relies on the Markov approximation, and the

rotating wave approximation (without the RWA the fast oscillating terms, ei(ω−ω
′)t, would

be resonant at negative frequencies under the extended range, leading to nonphysical

behaviour). The extended integral will allow for a much simpler treatment of the environ-
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ment. Previously we have considered stochastic state evolution, here we will use quantum

Langevin equations derived in the Heisenberg picture.

For an arbitrary operator, the Heisenberg equation of motion is Ȧ = −(i/~)[A,H]. For

the cavity annihilation operator and the environment operator,

ȧ =
i

~
[a,HC ]− i

~
[a,Hint] = −iω0a(t)− i√

2π

∫ ∞
−∞

dω
√

Γb(ω), (3.56)

ḃ(ω) =
i

~
[b,HE ]− i

~
[b,Hint] = −iωb(ω)− i

√
Γ

2π
a(t). (3.57)

To solve the evolution equation for the environment mode, it is helpful to transform into

a rotating frame such that

d

dt

[
b(ω)eiωt

]
=

[
d

dt
b(ω)

]
eiωt + iωb(ω)eiωt

= −i
√

Γ

2π
a(t)eiωt,

(3.58)

where in the first line we have applied the phase shift operator and expanded using the

product rule, and on the second line substituted in (3.57). We can try integrating this

equation over some arbitrary time period. For now we consider integrating from some

point in the past t0 to t,

∫ t

t0

d

dt

[
b(ω)eiωt

]
dt = b(ω)eiωt|t=t − b(ω)eiωt|t=t0

= b(ω)eiωt − b0(ω)eiωt0 ,

(3.59)

where we have defined b0(ω) as the environment operator at t = t0. We can re-write this

equation as

b(ω) = b0(ω)e−iω(t−t0) − i
√

Γ

2π

∫ t

t0

a(t)eiωt dt , (3.60)
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and then finally substitute this expression back into the equation for the cavity operator,

ȧ(t) = −iω0a(t)− i√
2π

∫ ∞
−∞

dω
√

Γ b0(ω)e−iω(t−t0) − Γ

2π

∫ t

t0

a(t′)

∫ ∞
−∞

dω eiω(t−t′) dt′ .

(3.61)

After making some assumptions about the statistical properties of the environment, this

can be interpreted as a quantum Langevin equation. In the last term of this expression

we can identify the frequency integral as a delta function, which in turn lets us evaluate

the integral over time. We can also define the input operator

ain(t) =
i√
2π

∫ ∞
−∞

dω b0(ω)eiω(t−t0). (3.62)

which we will argue represents noise introduced by the environment. With these adjust-

ments we can write

ȧ(t) = −iω0a(t)− Γ

2
a(t)−

√
Γ ain(t). (3.63)

This equation specifically describes the evolution of the cavity mode operator, however

similar Langevin equations can be derived for any other system operator coupled to the

cavity field.

We can interpret ain(t) as an input to the system, since it represents the influence of

the external modes b(ω) at time in the past, on the present system operator a(t). By

integrating (3.60) over all frequencies we can find another useful expression for the input

operator, ∫ ∞
−∞

dω b(ω) = −i
√

2π

(
Γ

2
a(t) +

√
Γ ain(t)

)
. (3.64)

We could have equally derived a similar expression, by choosing instead to integrate the

evolution equation for b(ω) to some point in the future. This would have resulted in a

reversed time equation, from which an output field operator can be defined. Using the

corresponding result (3.64) for the output field, the key input-output relation can be found,

aout(t)− ain(t) =
√

Γa(t) (3.65)
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Conversely to ain(t), the output operator aout(t) represents the coupling of the system to

future environment modes, and we can interpret this to be the system output through the

partially transparent cavity mirror. The operator aout then represents the field that would

be measured outside of the cavity, where as ain represents the vacuum fluctuations in the

environment that enter the system and mix with the cavity state. We can see that the

input operator introduces noise by tracing out the environment degrees of freedom and

considering the expectation values 〈a†in(t) ain(t)〉. If the environment is a vacuum state or

an ensemble in which the number of excitations per unit bandwidth is constant, we can

show in a similar way to treating the increment in homodyne detection, that ain(t) is well

approximated by white noise. These assumptions about the environment are certainly

an idealisation, but a useful one, and are what make the quantum Langevin equations

stochastic.

The general methodology for using the input-output formalism is to first specify the input

fields, solve the quantum Langevin equations for the operators of interest, and then use

the relation (3.65) to compute the output field. A useful example case is a cavity with a

resonant driving field specified by the Hamiltonian

HD = ~E0

(
aeiωt + a†e−iωt

)
, (3.66)

where E0 is the amplitude of the driving field. The quantum Langevin for the cavity field

is then

ȧ(t) = iE0 −
Γ

2
a(t)−

√
Γ ain(t). (3.67)

If we consider an ensemble average over the noise, where 〈ain〉 = 0, the evolution of the

expectation value of the cavity operator is the same as would be found using the Lindblad

equation. In steady state we can define the coherent state amplitude of the cavity field,

α ≡ 〈a(t→∞)〉 =
i2E0

Γ
(3.68)
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x
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Figure 3.2: Sketch of a standing wave cavity containing a single particle. The particle could
be suspended with an external field, or if the cavity field is strong enough, confinement
is possible with the optical dipole force alone. In the dispersive regime the particle’s
motion causes phase shifts in the cavity and output field, which can be measured to infer
information about the particle’s position.

In this case, using (3.65), the output field would be

aout = i
√

Γα+ ξ(t), (3.69)

where we have explicitly represented the input field with white noise ξ(t). The output

field as might be expected, is composed of a component of the classical driving field

proportional to the cavity decay rate, with the addition of noise from the environmental

vacuum fluctuations.

Returning to measurements of trapped particles, we can use the Jaynes-Cummings Hamil-

tonian to describe an atom coupled to a cavity mode,

Hatom =
p2

2m
+ ~ωσ†σ, (3.70)

Hint = ~g cos(kx)
(
σa† + σ†a

)
, (3.71)

where we are working in the interaction picture with the RWA. σ is the ladder operator for

the atomic transition and ∆ is the detuning from the cavity field frequency. The spatially
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varying coupling strength is due to the standing wave field in the cavity, as illustrated

in Figure 3.2. In the dispersive regime, the cavity output will contain useful position

information, so we will consider the limit of large detuning. As with the imaging example,

we can adiabatically eliminate the internal dynamics of the atom. We can trace out the

internal degrees of freedom, and replace them with their steady state values,

〈σ〉 ≈ g

∆
cos(kx)a(t). (3.72)

The quantum Langevin equation for the the cavity operator in this case is

ȧ = −iE0 − i
g2

∆
cos2(kx)a(t)− Γ

2
a(t)−

√
Γain(t). (3.73)

Assuming the cavity field amplitude also reaches steady state on the timescales of the

particle motion, we can then approximate

〈a〉 ≈ −iα
[
1− i2g

2

Γ∆
cos2(kx)

]
. (3.74)

And finally, using the input output relation

aout =
√

Γ〈a〉 − ain = α
2g2

∆
√

Γ
cos2(kx) + ξ(t), (3.75)

where we have omitted the drive and the cavity field component independent of x, since

these terms only contribute a constant shift in the output field. We can see that a homo-

dyne measurement of the output would provide a continuous measurement of the cosine

squared of the particle position. The input field noise unavoidably makes its way into this

measurement record, producing exactly the same form of measurement as in the master

equation for homodyne detection we derived in chapter 2.

In the dispersive regime the particle will see an effective potential due to the off-resonant
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cavity field. Following the previous approximations (3.70) becomes

Hatom ≈
p2

2m
− ~

g2α2

∆
cos2(kx). (3.76)

The cavity output field (3.75) reflects the particle’s position in this potential. Over small

distances the particle’s position can be well approximated as either simply quadratic at

a field anti-node, or even linear at a node. Suspending a particle at a node, however,

would require additional tight confinement, which is not the scenario we are interested

in when considering large magnetic traps. Sufficiently cooled, a particle would sit at an

anti-node without need for further confinement but parametric damping with quadratic

position information has its own associated challenges [43]. We were motivated initially to

include a cavity around a magnetically suspended particle in an attempt to improve light

collection efficiency. In the following sections we consider options which do this whilst

providing measurements linear in position or momentum.

3.3.3 Velocity measurement via electromagnetically induced transparency

Direct measurements of a particle’s velocity are difficult, since velocity does not usually

play a strong role in the coupling strength to a light field. For example, the effects of small

Doppler shifts due to a particle’s motion are not usually detectable, especially when the aim

is to cool the particle. One way to get around this is to use electromagnetically induced

transparency (EIT) as a very sensitive probe to small shifts in frequency. A velocity

measurement was proposed for ion cooling by exploiting EIT[74], to effectively amplify

the very small refractive properties of a single particle. Applying this technique to a nano-

particle is not straightforward since the interference effect needed for EIT cannot be seen in

a classical dipole. However, nano-diamonds with nitrogen vacancy centres are of particular

interest as nano-mechanical resonators specifically because they have a measurable internal

quantum structure. We investigated the possibility of such a measurement for a levitated

diamond in a travelling wave cavity.
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Δ
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Figure 3.3: Sketch of travelling wave cavity configured to measure small changes in a par-
ticle’s velocity. Two counter-propogating fields interact with two transitions in a lambda
configuration 3-level system, as shown in the inset. A trapped particle suspended within
the cavity mode will have a significantly increased refractive index in the regime of EIT. As
a result, there are phase shifts in the output field that are highly sensitive to the Doppler
shift in frequency caused by the particle’s motion.

EIT relies on an internal 3-level Λ structure, and appropriate driving of the available

transitions, as illustrated in Figure 3.3. For a particle in a travelling wave cavity, with two

fields to drive both transitions, the relevant Hamiltonians are,

H = ~∆1σ
†
1σ1 + ~∆2σ

†
2σ2, (3.77)

Hint = ~g
(
σ1a
† + σ†1a

)
+

~Ω

2

(
σ2 + σ†2

)
. (3.78)

We have used the classical limit for the drive field Ω acting on the transition σ2, where

as the probe field a is still quantised and interacts with the transition σ1, with coupling

strength g. ∆1 and ∆2 are the detunings of the fields from the respective transitions. In the

lambda configuration, if both fields are near resonant, and the probe only weakly excites

the second transition gα� Ω, there will be electromagnetically induced transparency. In

this limit, due to the usual damping via spontaneous emission, we can replace the probe
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driven transition by its steady state value,

〈σ1〉 ≈ 4g
(∆1 −∆2)

Ω2
a. (3.79)

It is common to also account for the decoherence between the two ground states due to

collisions with surrounding air molecules, for simplicity here we have assumed this effect

to be negligible. When the drive and probe field are exactly resonant for a particle at rest,

the only detuning is due to the Doppler shift in frequency caused by the particle’s motion.

If the drive and probe field counter-propagate ∆1 − ∆2 = 2kv, where v is the particle

velocity and we have made the simplifying approximation that the drive and probe field

have nearly the same wavenumber k. What is important, is that σ1, and correspondingly

the particle’s refractive index are now linear in the velocity. The slope of the dispersion

curve is incredibly steep and amplifies the probe’s sensitivity to small changes in detuning,

and hence velocity.

For a lossy cavity we know that the output field should obey the quantum Langevin

equation

ȧ = −iE0 − ig〈σ1〉 −
Γ

2
a−
√

Γain. (3.80)

And when the output field is approximately in steady state

aout ≈
4kαg2

√
ΓmΩ2

p+ ξ(t), if
4kg2

ΓmΩ2
p� 1, (3.81)

where p is the particle momentum, and we have again dropped any constant terms in

the output field. The expression for the output field is only accurate in the specified

limit, where effectively the Doppler detuning must be small compared to the width of the

transparency window. This is less restrictive for a massive particle since they will typically

have a much lower velocity than individual trapped atoms. The restrictions for a strong

pump however, severely limits the maximum value of the measurement strength. We can
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express a homodyne measurement of (3.81),

dI = 〈p〉+
dW√
8ηκp

, κp =
k2α2g2

2Γm2Ω4
. (3.82)

Using similar arguments as for the necessary position resolution in section 3.2, we can see

that the necessary measurement strength κp to damp on the timescales of a few oscillations

κpp
2
0/ω ≈ 1. For generous estimates of the drive field and the coupling strength for a small

cavity, with αg = Ω/10 the measurement strength is still several orders of magnitude

less than unity for a nanoscopic particle. This is an unfortunate consequence of the

measurement strength scaling inversely with the mass of the particle. Working in the limit

of weak probe also prevents simply increasing the measurement strength. The limitation

can be physically linked to the velocity information originating in the interference between

the probe and the spontaneously emitted radiation from a necessarily weakly excited state.

For single atoms, this is a feasible measurement to use for feedback cooling, but even then

this would typically require damping over several thousand oscillations.

Our analysis of measurements via coupling to a cavity field concluded that these methods

were not best suited to heavy particles in low frequency traps. Homodyning light from a

standing wave cavity can be used to efficiently track the position of a particle, however

the quadratic position measurement introduces further complications to cooling and does

not work in conjunction with a large magnetic trap. Direct velocity measurements might

be possible with a trapped nano-diamond, but the signal would be extremely weak and

unable to suitably resolve the particle for damping on short time-scales. Sideband cooling

with near resonance light within a cavity has also been proposed as a useful aid in nearing

ground state cooling[75]. However, with high measurement efficiencies η ∼ 0.2, cooling via

active feedback can go beyond the limits of sideband cooling and it ceases to have addi-

tional benefits. This is a significantly higher quantum efficiency than has been previously

been achieved in magnetic traps, but we propose that light collection with a single mirror

can surpass this in future experiments.
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x

Figure 3.4: Sketch of apparatus for measuring the intensity of light scattered into the
standing wave mode of a single mirror. The intensity is modulated by a particle’s motion
along its main trap axis x. The trap centre is marked a distance L from the mirror. The
range of motion over which this measurement would be valid is restricted about a node of
the standing light field, and has also been marked. A focused beam and a curved mirror
that maximises coupling into the reflected mode could reasonably produce light collection
efficiency > 15%.

3.3.4 Single mirror

The dispersive measurement techniques we explored do not seem well suited for mag-

netically trapped particles, but on-axis light collection is important for high quantum

efficiency. To this effect, measuring the modulation of light scattered into a standing wave

mode has been shown to be effective with trapped ions[16, 36]. The set-up we consider uses

a mirror to introduce a standing wave mode across the levitated particle, where some of

the scattered light from the illumination probe will be collected, as shown schematically in

Figure 3.4. The mirrors here can be quite large, capturing a significant fraction of the light

scattered along the primary trap axis. The particle motion adds side-bands to the spec-

trum of light scattered in the mirror mode, positioned at ±ω from the optical frequency.

Continuous measurement of these side-bands can be used to infer the particle’s current

position after filtering out the elastically scattered signal. This is a non-intrusive set-up

that could be implemented in magnetic traps to give a significant increase in measurement

efficiency and resulting position resolution, over current imaging schemes.
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Initially we will only consider emission into the standing wave mirror mode. In which case

the interaction Hamiltonian is

HI = ~γ sin(kL(L+ x̂))
(
b+ b†

)
, (3.83)

where γ is the scattering rate, kL is the optical wavenumber and b are the field operators.

If the position of the trap centre L is taken to be at a point where kLL = π/4, we can

define the jump operator

ĉ = sin
(
kL(L+ x̂)

)
≈ 1√

2

(
1 + kLx̂)

)
, (3.84)

which corresponds to the field that would be measured by a photo-detector in line with

the mirror mode. In the approximate form of this operator we have performed a Taylor

expansion in the Lamb-Dicke regime. This expansion is possible when the typical length

of the oscillation is small compared with the wavelength of incident light, kLx � 1.

The resulting operator has two separate components, one corresponding to the constant

amplitude elastically scattered light and the other to the position-dependent modulated

light. Some initial cooling would be required to reach this regime in a large trap, but this

could be achieved using lower resolution imaging measurements. Current experiments have

cooled a silicon micro-sphere in a magneto-gravitational trap to sub-mK temperatures[71].

Damping the position variance further, to within a micron, corresponds to a temperature

of about a microKelvin and will require improved isolation from classical heating sources.

Overcoming these classical noise challenges will bring experiments to the point where they

could operate in this strong measurement regime.

Under the usual Born and Markov approximations, we can think of the operator ĉ as being

applied to the system after photo-detection in a stochastic Shrodinger evolution. As in
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(2.67) we can define the stochastic increment

dN = γĉ†ĉdt

≈ γ

2
dt+ γkLxdt.

(3.85)

In the Lamb-Dicke regime, the first term corresponding to elastically scattered light is

comparatively large and can be treated like a local oscillator field in homodyne detection.

In fact dN in this case has the same form as (2.69). If we identify dX =
√

2γk2
L x dt,

as a new stochastic increment, it has the appropriate properties to make the diffusion

approximation, namely dX2 = dt. The measured photo-current can be expressed as

a renormalisation of the now continuous photon count, after subtracting the elastically

scattered signal

dI = 〈x〉dt+
1√
8ηκ

dW . (3.86)

In this form κ = γk2
L/4 which is the same measurement strength we estimated for an

idealised case in 1D (3.40) if we normalise the operators 〈c†c〉 = 1, as we had for the free

space modes. We have seen that the measurement strength reflects the rate of information

gained about the system and the corresponding disturbance this necessarily causes. This

exact expression for κ would be accurate if the scattering was exclusively along the x axis,

the true value will be less in any other case where we should only count the momentum

kicks projected along the x direction. κ otherwise scales with increasing scattering rate

off the particle, and can be adjusted by increasing the laser power. The parameter η is

the quantum efficiency, and accounts for the fraction of photons collected (after projection

along the measurement axis) and any further loss that occurs in the detector. It has

been suggested that light collection efficiency of η ≈ 0.15 could be reasonably expected

when monitoring an optically trapped ion in front of a mirror[36]. One of the significant

advantages of magnetic levitation is that the probe light is independent of the trapping

mechanism, which allows it to be shaped to optimize detection efficiency. This is of

crucial importance when relying on active feedback cooling in order to counteract the

random motion induced by the measurement itself. The shot-noise in optically trapped
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nano-particle experiments currently poses a major obstacle to reaching the ground state,

with typical collection efficiencies η < 0.01[65].

Having reviewed various measurement options we conclude that light collection with a

single mirror has the advantages of simple implementation and high return on increased

quantum efficiency. We will use η = 0.15 as a realistic baseline when evaluating various

feedback strategies, whilst keeping in mind that this value could be made significantly

higher with tailored directional scattering.

3.4 Feedback strategies

In chapter 2 we reviewed direct feedback of a general quantum measurement, following the

methodology of Wiseman and Milburn. We have now established how we might obtain

a suitably efficient measurement of a particle’s position, and we can consider the specific

form of the feedback Hamiltonian. We know that a classical oscillator will be damped

by a force proportional to its current velocity. Although we have established that direct

measurements of velocity are difficult, it will be enlightening to first consider a model

where we assume this is possible. Following this we will explore methods for optimally

using position information for cooling.

3.4.1 Velocity measurement and damping

We start by assuming we have access to a measurement record

I = 〈p〉+
1√
8ηκp

ξ(t), (3.87)

which has been scaled to be proportional to a particle’s momentum. Following the pro-

cedure outlined in section 2.4 we should specify a feedback operation proportional to the
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measurement record,

Kρ = − i
~
G
[
x, ρ
]
. (3.88)

This super-operator corresponds to simply introducing a linear position term into the

Hamiltonian, which if proportional to the measurement record, equates to a standard

damping force. Physically this could be achieved in many ways, either by adjusting the

trapping potential or, for example, by applying a force via radiation pressure. We have

also included a scaling factor G for the feedback strength, this gain parameter could be

controlled independently of the measurement record. We can now use equation (2.107) to

describe the average effects of the feedback,

ρ̇ = −iω
[
a†a, ρ

]
+ 2κpD[p]ρ− i G

2~
[
x, pρ+ ρp

]
+

G2

8 η κp~2
D[x]ρ. (3.89)

The term here proportional to G describes the damping effect of the feedback where as

the term proportional to G2 causes additional heating due to the fundamental noise in

the measurement. We have ignored the effects of of environmental heating here. This

will help simplify our analysis and is a valid approximation when operating in the back-

action dominated regime n̄γth � p2
0κp. In this case the terms in equations (3.35-3.39)

corresponding to the thermal coupling γth, produce negligible effects compared to the

measurement localisation and back-action over short timescales t� 1/(n̄γth).

Again making use of the fact that d〈A〉 = Tr[Adρ], we can see that the damping only

directly affects the first order momentum,

d〈x〉
dt

=
1

m
〈p〉, d〈p〉

dt
= mω2〈x〉 − 2G〈p〉. (3.90)

Over several oscillations, both the mean position and momentum would damp to zero.

The final energy of the state can be found by calculating the steady state variances,

〈n〉t→∞ =
1

2

(
〈x2〉
2x2

0

+
〈p2〉
2p2

0

− 1

)
=

1

2

(
G κ̃p
ω2

+
2κ̃p
G

+
G

8ηκ̃p
− 1

)
, (3.91)
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Figure 3.5: Steady state phonon occupation (3.91) after feedback cooling using a velocity
measurement with κ̃p = ω/100, for varying measurement efficiency η. For an optimal
choice of the gain parameter G, cooling with perfect efficiency approaches the quantum
ground state.

where we have defined κ̃p = p2
0κp. This is the steady state phonon occupancy for an

ensemble average of damped particles. We can see that to minimise 〈n〉, there is a balance

to strike between measurement and feedback strength, this is illustrated in Figure 3.5.

The first term in this expression also shows that cooling works best when G and κ̃p are

much smaller than the trap frequency ω. The physical reasoning for this is that only

the momentum is being directly damped by the feedback loop, but if the position and

momentum are rotating quickly they are both effectively cooled. When ω2 � κ̃pG the

minimum achievable phonon number is

〈n〉min ≈
1√
4η
− 1

2
. (3.92)

With unit efficiency, the particle can effectively be cooled to its quantum ground state

over many oscillation cycles.
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3.4.2 Slowly varying quadrature measurement

The results for damping using a velocity measurement will serve as a useful guide. If we

attempt to perform a similar damping procedure with a position measurement, we first

have to manipulate the signal so that it suitable for feedback. As an initial approach we

consider the case where ω � G, κ. We have shown this is not the ideal regime for low

frequency traps, as significant improvements would need to be made in thermal isolation

to cool to the ground state over many oscillations. However, there is no fundamental lim-

itation to reaching this regime and it is informative to explore the techniques used in this

case. When there is a dominant oscillation frequency, greater than any thermal damp-

ing or back-action contributions, a signal proportional to the slowly varying momentum

component can be obtained by demodulating the measured photo-current.

It will be helpful to define the slowly varying quadrature components,

X =
(a†eiωt + a e−iωt)√

2
, P = i

(a† eiωt − a e−iωt)√
2

. (3.93)

It would often be natural in an experiment to demodulate the measurement signal and

work with only these slowly varying quadratures. We know that X and P should slowly

vary since the frequency spectrum of a high quality oscillator is sharply peaked about the

resonance value ω, and this frequency component has been effectively been shifted to zero

in their definition. The process of demodulation is analogous to the mathematical proce-

dure of moving to an interaction picture, and making the rotating wave approximation.

We can expand the position operator in terms of the quadrature components,

x = x0(a+ a†) = x0

(
cos(ωt)X + sin(ωt)P

)
, (3.94)

such that the measurement signal becomes

dI = x0

(
cos(ωt)〈X〉+ sin(ωt)〈P 〉

)
dt+

1√
8ηκ

dW . (3.95)
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If the measurement is mixed with a local oscillator,
√

2 cos(ω0t+ φ), it can be split into

a combination of fast and slowly rotating terms. In the case where there is no detuning

between the local oscillator and the trap frequency δ = ω0 − ω = 0 and φ = 0,

√
2 cos(ωt) dI = x0

[(
1 + cos(2ωt)

)
〈X〉+ sin(2ωt)〈P 〉

]
dt+

1√
4ηκ

cos(ωt) dW . (3.96)

Demodulation is achieved by applying a high frequency filter. This can be interpreted as

effectively averaging the signal over some time ∆t that is long compared to 1/ω but short

compared to all other relevant timescales. The demodulated photo-current

∆IX =
√

2

∫ t+∆t

t
cos(ωt) dI ≈ x0〈X〉dt+

∆WX√
8ηκ

, (3.97)

where the newly defined stochastic increment

∆WX =
√

2

∫ t+∆t

t
cos(ωt)dW . (3.98)

Likewise for φ = π/2,

∆IP =
√

2

∫ t+∆t

t
sin(ωt) dI ≈ x0〈P 〉dt+

∆WP√
8ηκ

. (3.99)

These new noise increments usefully still obey Ito rules over timescales ∆t, and are or-

thogonal to each other,

∆W 2
X = 2

∫ t+∆t

t
cos2(ωt′)dt′ ≈ ∆t,

∆WX∆WP = 2

∫ ∆t

t
sin
(
ωt′
)

cos
(
ωt′
)
dt′ =

∫ t+∆t

t
sin(2ωt)dt ≈ 0.

(3.100)

For φ = π/2, the demodulated photo-current is proportional to the slowly varying mo-

mentum quadrature which is suitable for feedback cooling.

We can derive a measurement master equation of the usual form following a few approxi-
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mations in the interaction picture,

UD[x]ρU † ≈ x2
0

(
D[a] +D[a†]

)
ρ̃, (3.101)

UH[x]ρ dW U † ≈ x0

(
H[X̃] dWX +H[P̃ ] dWP

)
ρ̃. (3.102)

After transforming into the rotating frame there are effectively two measurement channels

corresponding to each quadrature X̃ = (a† + a) and P̃ = i(a† − a). By design the slowly

varying quadratures lose their time dependence in the interaction picture. To achieve

damping, the momentum quadrature cos(ωt)∆IP can be fed back, where we have shifted

the demodulated measurement signal to be in line with the system frequency again. If we

re-scale gain parameter in (3.88), for momentum damping using the demodulated position

measurement G→ G̃ = (p0/x0)G, then the resulting feedback master equation is

˙̃ρ = −iδ
[
a†a, ρ̃

]
+ 2κx2

0(D[a] +D[a†])ρ̃− i

~
G
[
x, pρ̃+ ρ̃p

]
+

G2

ηκ~2

(
p0

x0

)2

D[x]ρ̃. (3.103)

From the master equation, the steady state phonon occupancy can be found,

〈n〉 =
1

2

(
G κ̃

2δ2
+

2κ̃

G
+

G

2ηκ̃
− 1

)
, (3.104)

where κ̃ = x2
0κ. This is a similar expression to that found when making a direct velocity

measurement (3.91). The best cooling is achieved in the limit of high detuning δ so

that both quadrature components are damped. However, in this feedback procedure, the

information about the position quadrature is effectively discarded. As a result, even with

perfect measurement efficiency, the minimum phonon occupancy never falls to zero,

〈n〉min =
1
√
η
− 1

2
. (3.105)
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3.4.3 Measurement post-processing

Demodulation was an example of signal post-processing, that thanks to certain approxi-

mations, allowed us to extract momentum information about the particle with the bonus

of having an analytically tractable solution. The process relied on a large separation of

timescales and threw away some measurement information, reducing the quantum effi-

ciency. Rather than rely on a dominant frequency in the system, we could attempt to

more directly take the derivative of the a position measurement to estimate the momen-

tum. This requires smoothing out the noise in the signal, which can be achieved physically

with a band pass filter. This was the technique used in[46], whilst operating in a classical

cooling regime.

An RLC circuit consisting of a resistor, inductor and a capacitor, can be used to filter a

driving signal,

Idrive =
1

C
Q+R

dQ

dt
+ L

d2Q

dt2
. (3.106)

where Q is the charge in the circuit and R,L and C are the resistance, inductance and

capacitance of the circuit elements. The circuit functions as a damped harmonic oscillator

where the rapid change of impedance near the resonant frequency can be used to block

the high frequency noise components in the measurement signal. If we consider a single

component of the drive signal Ic = Ac cos(ωct), then below a cut-off range, the current in

the circuit will be proportional to the derivative of the drive,

dQ

dt
=

Ac√
(ω2
c − ω2

f )2 + ω2
c (R/L)2

ωc cos(ωct+ φ)

≈ CωcAc cos
(
ωct+

π

2

)
,

(3.107)

where ωf = 1/LC is the circuit resonant frequency. For values of ωc � ωf the current

amplitude is roughly proportional to the original signal multiplied by its frequency, and its

phase is shifted by around π/2. The filter can therefore be used to approximately take the

derivative of signal components lower than the cut of frequency. For a critically damped
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circuit, where R =
√

4L/C, if we use (3.86) as the drive signal, we can define a filtered

measurement current which should approximate the momentum,

If =
1

C

dQ

dt
. (3.108)

Since the noise in the measurement has been filtered, there are no issues as to whether to

use the Ito or Stratonovich interpretation when reintroducing the signal to influence the

system evolution. We simulated feedback damping with a stochastic Schrödinger equation

of the form (2.75), with the available energy levels in the system truncated to 100. We

used the feedback Hamiltonian

Hfb = GIfx, (3.109)

where again G is used as a gain factor for the damping strength. In the parameter regime

κ̃, G < ω we find similar cooling results to those with a demodulated position measurement.

Figure 3.6 shows the average steady state phonon occupancy for a range of gain factors,

with a best fit of a function following the form of (3.91,3.104),

〈n〉fit = a

(
κ̃

G

)
+ b

(
G

ηκ̃

)
− 1

2
, (3.110)

where a and b were used as free variables. The fit indicates similar behaviour in response to

damping. As in the case with a demodulated signal, ground state cooling is not achieved

even with perfect quantum efficiency. The numerical results for larger κ̃ and G with

respect to the trap frequency, also correspond to a rising minimum phonon number. This

is in keeping with the idea that the position and momentum variances are not rotating

quickly enough to be optimally cooled.

We have identified two difficulties in achieving ground state cooling using our proposed

position measurement scheme. Damping solely using a force proportional to the particle’s

velocity, requires many oscillation cycles to reach the quantum ground state, and damping

harder with the above methods is limited by reintroducing noise from the measurement
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Figure 3.6: Steady state phonon occupation for numerically simulated feedback cooling,
in the parameter regime κ̃ = ω/100. The state was simulated using a diffusive Schrödinger
equation and the position measurement information was filtered using the equations for
an RLC circuit (3.106). The time averaged steady state phonon occupancy, for single
trajectories, was found for a range of gain values. A single set of fit parameters were
obtained by fitting the function (3.110) to each set of points corresponding to different
measurement efficiencies η.

signal. Estimating the velocity from a position measurement using the above techniques

also effectively reduces the measurement efficiency. Damping directly with the position

information is possible but more difficult to physically implement, as we will later discuss

in detail. In this case there is still the problem of being reliant on cooling over timescales

t� 1/ω.

Both of these issues can be solved with a better approach to state estimation. The RLC

filter that we examined successfully estimates the particle’s momentum, but we did not

optimise the circuit parameters. Rather than try to optimise the circuit however, we

can use the equations of motion we already derived. Solving the master equation (3.32)

with the measurement signal as an input should give a best estimate of the full state.

Although solving the full master equation in real-time would be practically infeasible,

using the equations for a Gaussian state would not. The Gaussian state equations mimic

the effects of a band-pass filter for the measurement signal, but are already optimised to

best estimate the position and momentum. This technique has been suggested for cavity
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cooling [76], and variations of state estimation have been proposed for cooling different

configurations of trapped particles. We find that this method of state estimation is very

well suited to cooling in low frequency traps. The methodology can be exactly mapped

onto control theory for classical particles, and shows that simultaneous damping of position

and momentum can be used to achieve ground state cooling over short timescales. In the

following chapter we outline this approach alongside numerical simulations. We then go

on to consider alternative uses of state estimation in low frequency traps.
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4 Preparing quantum states of motion

In this chapter an analysis for cooling magnetically confined particles is presented. A final

model is shown together with measurement simulations and the outcomes of a proposed

feedback procedure. The chapter concludes with discussion of an ongoing project to look

for diffusion of a free particle’s position that is expected in a continuous spontaneous lo-

calisation model. Predictions are made using the same models from the feedback analysis,

that are applicable to proposed future experiments. The results for cooling magnetically

trapped particles were published in Ref. [77].

4.1 Cooling in low frequency traps

In the previous chapter we outlined a quantum model for a levitated particle, and explored

ways to effectively monitor its motion. The most suitable method we found involves

measuring the amplitude modulation of a standing wave due to the particle’s motion in

front of a single mirror, Fig. 3.4. The Hamiltonians for the freely oscillating particle, Hsys,

the optical field, HF , and the interaction Hamiltonian, HI , are given by

Hsys =
p2

2m
+
mω2x2

2
, (4.1)

HF =
∑
k

~ωkb†kbk, (4.2)

HI =
∑
k

~
√
γ
(
bk exp(ik.r) + b†k exp(−ik.r)

)
, (4.3)

where m is the particle mass, ω is the magnetic trap frequency, γ is the scattering rate into

each mode of the optical electric field, bk(b
†
k) is the usual quantised field mode amplitude,

with wavenumber and angular frequency of k, ωk respectively. The momentum recoil due

to the scattered photons is represented by k.r, where r is the particle’s position. It is
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sufficient to model the motion of the particle in 1D, as although some cooling is often

applied along each trap axis, the frequencies of each motional degree of freedom can be

well separated and safely decoupled, as is done in current experiments [46].

If the particle is initially damped using classical cooling techniques so that its motion is

confined to within a quarter of wavelength, then photo-detection of the standing wave

mirror mode yields a signal proportional to the particle’s position,

dI(t) = 〈x〉+
dW√
8ηκ

. (4.4)

The measurement strength κ scales proportionally with the scattering rate, which can

be physically adjusted by varying the intensity of a probe beam. We established that to

damp faster than the thermal heating rate, the measurement strength would have to be

large enough such that η x2
0κ ≈ Γth, where Γth = (kbT/~ω)γth is the phonon reheating

rate due to the environment. In large magnetic traps this requires control of the system

on a timescale comparable to the inverse of the trap frequency. This corresponds to

over-damping the particle, which limits the effectiveness of techniques otherwise suitable

for trapped ions and other nano-mechanical resonators. We find however, that these

traps are an excellent platform for performing optimal feedback control via real-time state

estimation, and we illustrate this in the following sections.

4.1.1 State estimation

The global positioning system (GPS) is a common example of classical state estimation.

A network of satellites can periodically measure the position of a receiver on the Earth’s

surface to within a few metres, however, much greater accuracy can be achieved by com-

bining these measurements with a physical model. Rather than take each measurement

and its associated uncertainty as the new position estimate, the measurement is compared

and averaged against the predictions of a physical model. The GPS estimate is likely to be

noisy but remain within the same level of error, whilst a model of an object’s velocity and
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acceleration can predict a smooth evolution, but its accuracy will drift over time as small

errors accumulate. In control theory, a Kalman filter is the name given to the operation of

combining the two predictions, along with their associated variances, to best estimate the

state of the system[78]. The Gaussian state equations we derived in chapter 3 do exactly

this, and are an example of a continuous Kalman filter. Using these equations of motion,

combined with a measurement record, the full system state can be continuously estimated.

From an initial guess this type of information processing can quickly converge on both the

mean position and momentum of the particle, whilst updating the expected error in the

estimation.

We will consider the back-action dominated regime, where thermal heating due to the envi-

ronment can be considered negligible. From the continuous measurement master equation

(3.32),

d〈x〉 =
1

m
〈p〉dt− 8ηκVx (〈x〉dt+ dI (t)) , (4.5)

d〈p〉 = −mω2〈x〉dt− 8ηκVx (〈x〉dt+ dI (t)) , (4.6)

∂tVx =
2

m
Cxp − 8ηκV 2

x , (4.7)

∂tVp = −2mω2Cxp + 2~2 κ− 8ηκC2
xp, (4.8)

∂tCxp =
1

m
Vp −mω2Vx − 8ηκVxCxp. (4.9)

where Vx and Vp are the position and momentum variances, and Cxp = (1/2)〈[x, p]+〉 −

〈x〉〈p〉 is the symmetrised covariance. We have written the stochastic increments dW

in terms of the measurement record dI, and the equations can be solved to estimate the

particle’s full motional state. The integration would need to be carried out in real time with

time-steps δt much shorter than the damping timescale e.g. δt� 1/x2
0κ. In principle, the
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state could be estimated by integrating the full SME using the measurement results, but

in practice this is too complex to compute in real time. The particle’s motion is expected

to look thermal when cooling starts and this provides a good guess for the particle’s initial

state variances. The measurement process itself also drives any state towards looking

Gaussian, ensuring the continued reliability of these state equations. These equations are

also exactly equivalent to Kalman equations for a noisy classical system, which we could

see by enforcing a diffusion term proportional to the rate of information gain in (3.5), to

simulate quantum back-action.

The effectiveness of estimating the state of a levitated particle over a single oscillation

cycle is illustrated in Fig. 4.1(a), for a general position measurement. The true state

is numerically modelled using the Gaussian moment equations (4.5 - 4.9), with an initial

temperature of 1µK, which might be realistically achieved with classical feedback damping.

The stochastic measurement record (4.4) is also numerically generated based on the the

current true state. To simulate the evolution of a pure quantum state with an imperfect

measurement, we split the measurement across two channels,

dρ = 2κD[x]ρdt+
√

2κηH[x]ρdW0 +
√

2κ(1− η)H[x]ρdW1 , (4.10)

where dW0 and dW1 are distinct Wiener increments. The simulated measurement record

has access to only one channel,

dI = 〈x〉dt+
dW0√

8ηκ
. (4.11)

This measurement record is then used to update a second set of the same Gaussian moment

equations to simulate the state estimation procedure. The state estimate is initiated with

thermal variances, where as the true state is modelled as a coherent state with thermal

energy. The estimator quickly converges on the true state of the system, until reaching the

resolution limit set by the measurement strength and quantum efficiency. This full state

model confirms the rough resolution limit (3.42). Quantum efficiency η = 0.02 was chosen
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Figure 4.1: (a) Simulation of a trapped particle undergoing measurement, using (4.5-4.9).
The normalised measurement strength, κx2

0/ω = 1, with 2% quantum efficiency, and an
initial particle energy corresponding to a temperature of T = 1µK. The top figure shows
a numerically generated example of a position measurement and the middle figure shows
the results of continuous state estimation using the same signal. The estimated mean
position plotted beside the true value, and the shaded region covers 2 standard deviations
in the estimate. The bottom figure shows the improvement in the standard deviation
in both position (light line) and momentum (dark line) due to the measurement. The
dashed line here indicates the width of the motional ground state.

(b) Simulation of particle heating due to measurement over several oscillation cy-
cles, using (4.5-4.9). The normalised measurement strength, κx2

0/ω = 1, with 2%
quantum efficiency. The particle is initially in its ground state with temperature T = 0K.
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for the figure to show more pronounced lag in the estimator following the true quantum

state.

The Gaussian state equations can also be used to illustrate the heating effects due to the

measurement itself Fig. 4.1(b). For the considered measurement strengths this is more

easily visible with a state initially prepared at T = 0K. Without any other sources of

environmental heating, the measurement will add energy into the system. The particle’s

temperature increases more quickly with more intense illumination, and presents a trade

off when trying to achieve a better resolution.

Full state estimation could be implemented from room temperature but is not initially

necessary. If the particle can be confined and stably cooled to micro-Kelvin temperatures

it makes sense to switch to full state estimation when attempting to effectively over-damp

the particle the rest of the way towards its quantum ground state. At higher temperatures

damping using the effective derivative of the position measurement via a more simple

band-pass filter should be sufficient.

4.1.2 Feedback damping

In chapter 2 we described two well established approaches to applying feedback that

take into account the effects of quantum noise; direct feedback of a force proportional

to the measurement signal[79], and feedback based on real time state estimation[76]. It is

important to consider how the feedback is implemented in order to correctly account for

how the noise in the measurement and in the system will be correlated. In the limit of

instantaneous feedback, shot noise can be reintroduced from the measurement that directly

correlates and interferes with the quantum noise driving the system evolution. Indirect

feedback always filters out this noise in an intermediate step. In chapter 3 we considered

possible direct feedback schemes, but found these techniques require cooling over at least

hundreds of oscillation cycles, which is not feasible in low frequency traps. In contrast

we find that with indirect feedback using a state estimate, the low trap frequencies will



4 Preparing quantum states of motion 98

in fact be beneficial. The optimal feedback strategy can be determined using classical

control theory. In a classical system there would not be noise fundamentally linked to

the measurement strength, but this can be artificially enforced. This is useful because it

allows well developed control methods to be adapted for cooling[43, 44, 45]. Our sketch

of the idea follows closely the work in Ref. [76].

For this system it turns out not to be optimal to include the estimated state variances

in the feedback function. They will be necessary to continuously solve for the mean

position and momentum but the feedback will not directly involve the variance values.

The feedback Hamiltonian should simply be some linear function of the momentum and

position operators scaled by functions of the estimated first order moments,

Hf = f(〈x〉, 〈p〉)x+ g(〈x〉, 〈p〉)p. (4.12)

To find the appropriate form of the functions f and g we can define a cost function for

the parameter we want to minimise, in this case the energy,

C =

∫ t

0

[
Tr(xTPxρ) + q2uTQu

]
. (4.13)

Here x = {x, p} is the state vector, and u = −K〈x〉 is the feedback vector we want to

introduce in the dynamical equations for the mean moments (4.5,4.6); the optimal form

of the matrix K is what needs to be determined. The matrices P and Q are chosen so

that the cost function represents the system energy,

P = Q =

mω2 0

0 1/m

 . (4.14)

The matrix Q can be interpreted as accounting for an energy cost associated with the

feedback. Including it in this way reflects a restriction on the magnitude of the feedback

weighted by the parameter q, which will work out to be inversely proportional to the

system damping rate.
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Optimal feedback should attempt to localise both position and momentum simultaneously.

To achieve this, the Hamiltonian should be of the form

Hf = Γ0

(
〈p〉x+ 〈x〉p

)
, (4.15)

where we define Γ0 = 1/q to be the system damping rate, and the parameter q can

be interpreted as a bound on the feedback response time. This accounts for the physical

limitations of the feedback mechanism, and places an upper bound on the optimal damping

rate. For an infinitely broadband signal q → 0, and the damping rate could be arbitrarily

high. With feedback, the new equations for the damped position and momentum are

d〈x〉 =
1

m
〈p〉dt+

√
8ηκVx dW − Γ0〈x〉, (4.16)

d〈p〉 = −mω2〈x〉dt+
√

8ηκCxp dW − Γ0〈p〉. (4.17)

We have previously considered directly damping the particle’s velocity, and know a position

term in the Hamiltonian can be introduced simply by using an externally applied force.

When damping over many oscillation cycles this also damps the position variance. To

directly damp the position, however, requires a momentum term in the Hamiltonian.

One option to introduce this is with a time dependent shift in the origin of the position

coordinates, which in the rest frame of the trap manifests itself as a shift to the canonical

momentum. The harmonic trap could be displaced mechanically or by applying additional

fields. If the trap origin is shifted at a rate v, such that the displacement of the trap

s(t) =
∫
v dt, then

H ′ =
mẋ′ 2

2
+
mω2

(
x′ + s(t)

)2
2

, (4.18)

where we have defined H ′ to be the Hamiltonian in the lab frame. If we instead shift

coordinates to a frame of reference moving with the trap x = x′ − s(t), with the canon-

ical momentum p = m(ẋ + v), the displacement manifests as a momentum term in the
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Hamiltonian,

H ′ → H =
p2

2m
+
mω2x2

2
− vp. (4.19)

Identifying v = Γ0〈x〉 produces the desired position damping. Momentum damping could

then also then be implemented with respect to the trap frame coordinates,

H =
p2

2m
+
mω2x2

2
− Γ0〈x〉p− Γ0〈p〉x, (4.20)

where the estimates of 〈x〉 and 〈p〉 are obtained by solving the state estimator equations

(4.16,4.17) using the position measurement I shifted to the trap frame, eg. I →
(
I−s(t)

)
=(

〈x′〉 − s(t)
)

+ ξ(t)/
√

8κη.

This produces optimal damping in the rest frame of the trap. Transformed back to the

lab frame, with the momentum defined as p′ = mẋ′, the Hamiltonian now reads

H ′ =
p′ 2

2m
+
mω2

(
x′ − s(t)

)2
2

− Γ0〈p〉
(
x′ − s(t)

)
=
p′ 2

2m
+
mω2x′ 2

2
−mω2s(t)x′ − Γ0〈p〉x′.

(4.21)

The shifts made to the trap centre would have to be small, given the measurement’s

sensitivity to where the particle sits in the standing wave field, but a piezoelectric device

could be used to shake the trap in a controlled manner to achieve damping.

In this system the introduction of linear feedback has no effect on the estimated variances

conditioned on the measurement record. Their dynamics are governed by the measurement

alone and we can therefore find the steady state values for our feedback controlled state

from the original equations for the Gaussian moments (4.7,4.8,4.9),

Ṽx =
2mω

~
Vx =

(
2

η

1

ξ1/2 + 1

)1/2

, (4.22)

Ṽp =
2

~mω
Vp =

(
2

η

ξ

ξ1/2 + 1

)1/2

, (4.23)
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Figure 4.2: Final resolution of the normalised position (light line) and momentum (dark
line) variances of trapped particle, from the steady state solutions of a Guassian estimator
(4.22,4.23). Variance values less than 1 are squeezed compared to the harmonic oscillator
ground state. The solid lines correspond to a measurement with perfect efficiency η = 1
and the dashed lines η = 0.15, these values and the measurement strength would vary
depending on the nature of the measurement.

where ξ = 1 + 16η (κx2
0/ω)2. These normalised variances are equal to one for a minimum

uncertainty state. This is the case for unit efficiency and when the parameter ξ → 1, which

in turn is the case when the measurement strength κ→ 0. Relative to the trap frequency

in optical traps, κ is usually very small, but with a strong measurement κx2
0 > ω, the

steady state position variance is noticeably squeezed compared to the harmonic oscillator’s

natural ground state. Fig 4.2 shows how the conditional variances vary for the range of

measurement strengths accessible in low frequency magnetic traps.

The estimated variances are the best that could be resolved with a given measurement. We

can then average over the measurement record to account for the excess variance due to

the particle’s motion. The applied feedback should limit this as much as possible, keeping

the mean position and momentum values centred on zero. Using the equations for the

mean position and momentum (4.16,4.17), and following the rules of Ito calculus, we can
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calculate the excess variances, which we have distinguished with a superscript ‘E’,

∂tṼ
E
x = −2Γ0Ṽ

E
x + 2ωC̃Exp +

2ω

χ
Ṽ 2
x , (4.24)

∂tṼ
E
p = −2Γ0Ṽ

E
p − 2ωC̃Exp +

2ω

χ
C̃2
xp, (4.25)

∂tC̃
E
xp = −2Γ0C̃

E
xp − ω

(
Ṽ E
x − Ṽ E

p

)
+

2ω

χ
ṼxC̃xp. (4.26)

The final state is always improved with stronger damping which effectively counteracts

the measurement shot noise, as well as removing the initial thermal energy. The return for

increasing Γ0 quickly drops off, and for moderate damping rates Γ0 > ω the steady state

variances approach the ideal limits given by the measurement resolution. This is reassuring

since physically there would certainly be a bound to the feedback response time. Fig 4.3

shows a simulation of the feedback procedure for experimentally reasonable parameters

η = 0.15, κx2
0/ω = 1, Γ0/ω = 10, Tinitial = 1µK. The state is again modelled as a coherent

state with thermal energy and feedback is applied based on a numerically simulated state

estimator. The particle’s motion is almost completely damped after a single oscialltion

cycle and the excess variance in the mean position is highlighted, Ṽ E
x ∼ 0.1. The remaining

motion is small compared to the fundamental resolution limit due to the photon shot noise.

From the steady state expressions we can also find the purity of the final state[80],

Tr(ρ2) = (~/2)(VxVp − C2
xp)
−1/2. (4.27)

If the damping is strong, the steady state value is approximately that of a conditional

state without any excess. With perfect detection the final measured state looks pure, and

becomes increasingly mixed as the efficiency drops,

Pc = Tr(ρ2
c) =

√
η. (4.28)
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Figure 4.3: Simulation of a damped levitated particle, using (4.7,4.8,4.9,4.16,4.17). The
normalised measurement strength, κx2

0/ω = 1, with 15% quantum efficiency, and the
initial particle energy corresponds to a temperature of T = 1µK. The top figure shows
a numerically generated example of a position measurement. The bottom figure shows
the evolution of the mean position of the true state alongside the estimated position from
the measurement record. The estimated position is almost completely damped relative
to the fundamental shot noise in the original measurement signal. The shaded region
corresponds to the standard deviation of the true motion from t = π/2→ 2π and matches
the estimated variance (4.22).

To reach the lowest temperatures, κ would ideally be kept as low as possible to avoid

squeezing due to the measurement. There is a balance then between resolving the particle

fast enough to outpace environmental heating, and wanting a weak probe to minimise

squeezing. Notably however, state purity has no dependence on the measurement strength,

suggesting that the squeezed states with higher energy could reasonably be expected to

have quantum properties which are just as visible.

The final average phonon number can be calculated using the combined conditional vari-
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Figure 4.4: Average steady state phonon occupancy of a trapped nano-particle after un-
dergoing active feedback, calculated using the equations for a damped Gaussian state
with excess noise (4.29). The effective damping rate (feedback gain) was chosen to be
Γ0/ω = 10, strong enough to remove almost all stochastic drift due to the measurement
disturbance. The quantum efficiencies from the top line down are, η = 0.05, 0.1, 0.2, 0.5, 1.
The final occupancies range from 〈n〉 < 3, for currently feasible experimental parameters
(η = 0.15, κx2

0/ω = 1), and approach zero with perfect collection efficiency and a weaker
measurement.

ances based on a particular measurement, and the excess variance seen when averaging

over trajectories,

〈n〉 =
〈x̃2〉

4
+
〈p̃2〉

4
− 1

2
. (4.29)

Steady state phonon occupancy, calculated with (4.29), is shown in Fig 4.4, for a range of

measurement strengths and quantum efficiencies. These are the expected values that would

be observed after damping, taking into account the estimated variance in the measurement

signal (4.22,4.23), and the excess variance associated with the remaining particle motion

(4.24-4.26).
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4.1.3 Summary of proposed methods

We have analysed processes for state estimation and feedback cooling of a low-frequency,

magnetically levitated nano-particle. Having considered several options for tracking a

particle’s position and momentum, we suggest making measurements in two steps. At

first, scattered light from the particle can be imaged with a quadrant photo-diode, and

an externally applied damping force can be used for cooling. After damping the parti-

cle’s motion to sub-optical-wavelength amplitudes, significantly better resolution can be

achieved by measuring how the particle scatters light into the mode of an adjacent single

mirror. This should be relatively simple to integrate into current experiments, and would

allow for a high degree of variation in the measurement strength which would be primar-

ily dependent on the intensity of the probe beam. The need to damp both the particle

momentum and position independently is likely to be the largest experimental difficulty

after achieving sufficient isolation from environmental heating. The unique nature of the

static magnets that make up these traps may make it possible to control the particle by

dynamically shifting the trap centre, and alternate methods using a sequence of strong

controlled laser pulses are also possible. With advances in isolation from environmental

heating, and improvements in light collection efficiency, there are no fundamental limits

to these techniques being used to reach the quantum motional ground state.

We suggest that measurement efficiency comparable to or greater than that achievable in

ion traps, η = 0.15, could realistically be reached in an experiment. Optimal feedback

via state estimation with this level of efficiency could produce states competitively near

the quantum ground state with some additional degree of squeezing, 〈n〉 < 3, with purity

P ≈ 0.44, in only a few oscillation periods. In current experiments there are many factors

to consider in order to extend the system reheating time, which will be the main barrier

to achieving lower temperatures as it prevents the use of a less disruptive measurement

probe. As these values improve, and with the possibility of highly directional scattering

for better collection efficiency, it may soon be feasible to reach below single phonon occu-
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pancy using the methods we have outlined. Most related experiments have so far assessed

success based on a temperature associated with the measured motional power spectrum.

Alternatively, there are recent proposals for distinguishing quantum motion via dynamical

model selection using solely position measurements[81]. They look to identify quantum

statistics from a series of position measurements after introducing a small perturbation

to the trapping potential. The distinguishability is closely related to state purity, which

should be safely within reach of the proposed cooling methods.

All of the methods discussed are applicable to sub-micron sized Rayleigh scatterers that

can be effectively treated as point dipoles. High quality nano-diamonds of this size have

been produced for exactly the purpose of trapping and cooling[82]. These diamonds are of

interest due to access to internal nitrogen-vacancies (NV). This second quantum handle on

the particle is crucial for many proposed future experiments[58, 60] and may also provide a

route to having fine control over micron, as opposed to nanometer, sized particles. The sub-

wavelength measurements we have suggested could be applied to microscopic diamonds,

by tracking the position of point-like NV impurities within them. Additionally, strong

coupling between an NV spin and the mechanical oscillation of a nano-diamond can be

engineered using a strong magnetic field gradient. There are proposals for generating low

number Fock states and possible spatial superposition states, by manipulating a Jaynes-

Cummings type interaction Hamiltonian, in states prepared near the quantum ground

state[58].

In the following section we discuss other possible uses for cooled levitated particles. Rather

than attempting to prepare the ground state of the harmonic potential, it may be feasible

to produce minimum uncertainty position states effectively in free space. Our proposed

cooling strategy aims to work in a regime where thermal reheating is comparable to low

magnetic trap frequencies. Alternatively, these particles may be ideally suited to measure

with a series of strong pulses, and then observe free evolution over timescales much shorter

than the trap period. There are theories of measurement collapse that predict there should

be visible diffusion in this regime beyond what would be expected simply due to the
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standard quantum limit of measurement precision.

4.2 Tests of quantum collapse models

Due to the practical challenges of cooling, there has been interest in creating non-classical

states of levitated nanoscopic particles without first preparing the harmonic ground state.

Our proposed cooling methodology for low frequency traps looked to improve detection

efficiency and damp a particle’s motion on a timescale of less than an oscillation pe-

riod. However, previously we limited ourselves to considering only moderately strong

measurements since anything more powerful produced squeezed states further from the

trap ground state. We now consider this regime, where it may be possible to observe

quantum behaviour in what is essentially a quasi-free particle. What can be done with

a free quantum particle is distinctly different to the possibilities with a cooled harmonic

oscillator, but both systems have the potential to be used to probe exciting new physics.

The team of Dr. Brian D’Urso at the University of Montana have proposed using a

sequence of pulsed measurements that reach the standard quantum limit (SQL) of preci-

sion. This is appealing since it relies on changing the measurement process rather than

the trap itself and can be explored in tandem to improving cooling. Particles can already

be trapped and isolated such that the reheating rate is much slower than the operational

speed of the optics used for measurement. The fact that the optics are separate from the

trapping potential, means that the duration and intensity of pulses can be freely varied,

and the detection efficiency has the potential to be very high. Even if the motion of

the particle is still classical over long timescales, sub-millisecond pulses could be used to

observe quantum limited behaviour. Pulsed measurements schemes on timescales shorter

than the mechanical period have been proposed for realising quantum state tomography

and squeezing of massive mechanical oscillators[83]. With high measurement strengths

we expect to produce squeezed states of the harmonic trap, which over short times can

be considered free particles at the SQL. With the ability to prepare such states, there
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are proposals for tests of wavefunction collapse models[84, 85, 86]. In particular, there is

interest in using levitated particles to place limits on the parameters in these models[87].

Wavefucntion collapse models modify Schrödinger’s equation so that superposition states

naturally evolve towards being in one particular state over time. This modification is an

attempt to resolve the measurement problem in quantum mechanics, where in the Copen-

hagen interpretation collapse is brought about by an ill-defined measurement event. Im-

portantly for this proposal, collapse models have experimentally testable differences from

standard quantum theory. Currently, the most well-developed of these models is Contin-

uous Spontaneous Localization (CSL)[88, 89], which introduces a background fluctuating

field that causes collapse through interacting with particles. Through this mechanism,

wavefunction collapse effectively occurs randomly, and can happen at any time. In order

to preserve the usual Heisenberg uncertainty limits, the field must also impart momentum

to the particle. This is very similar to the back-action that arises in continuous mea-

surement theory. Crucially CSL predicts diffusion of particle’s motion without interaction

with its environment. This effect is very small, but scales with the system size. Every

individual quantum particle is proposed to interact with this new field, but wavefunction

collapse due to the interaction is only expected over astronomical time periods. However,

collapse of one particle in an ensemble, would result in the collapse of everything entangled

with it. Only in huge ensembles of fundamental particles does collapse become likely over

appreciable timescales. This mechanism aims to explain the discrepancy between classi-

cal and quantum physics. Experiments with massive levitated particles are ideally suited

for testing this theory. Specifically, the extra diffusion predicted by CSL should visibly

prevent measurements at the SQL.

4.2.1 Standard quantum limit

The standard quantum limit of measurement precision can be understood as a balance

between achievable resolution and associated back-action. A simple and relevant example
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is the case of 2 successive measurements of a free particle, where we try to minimise the

final spread in the particle’s position. We consider that after some initial measurement at

t = 0 the particle’s position and momentum are known to within some level of certainty,

x(0)±∆x(0) , p(0)±∆p(0), (4.30)

where ∆x(0), ∆p(0) are the standard deviations in the position and momentum. In an

ideal setup the particle will be in a minimum uncertainty state ∆x∆p = ~/2. The second

measurement takes place after some time τ , during which the particle undergoes free

evolution. In this time, the initial uncertainty in the particle’s state will propagate, and

this will dictate the final state variance,

∆x(τ)2 = ∆x(0)2 + ∆xadd(τ)2 + ∆xmeasure(τ)2. (4.31)

We have expressed the uncertainty in the final state position as a sum of the squares

of the contributing factors. The first term corresponds to the uncertainty in the initial

state position, where as the second term corresponds to the additional propagation of the

momentum uncertainty,

∆xadd(τ) =
∆p(0)τ

m
≥ ~τ

2m∆x(0)
. (4.32)

The final term in (4.31) corresponds to the uncertainty in the second measurement. In

considering the ideal limit of possible precision, we assume that this measurement has

effectively no associated uncertainty ∆xmeasure(τ) = 0. This is justifiable since the second

measurement can be made arbitrarily strong, as it no longer matters if the momentum

uncertainty is squeezed. In this case, we can see that the final state variance depends on

the initial position resolution and the propagation error due to not knowing the particle’s

true velocity. To minimise ∆x(τ) for a given τ , we can optimise ∆x(0),

d(∆x(τ)2)

d(∆x(0)2)
= 0 → ∆x(0) =

√
~τ
2m

. (4.33)
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Substituting this into (4.31) gives

∆x(τ)SQL =

√
~τ
m
. (4.34)

This result shows the minimum possible deviation in a particle’s expected position after

a period of free evolution. The limit is rooted in the uncertainty relation, and can be

physically interpreted using the state estimation equations (4.7 - 4.9). There is a com-

promise between position resolution, where measurement shot-noise is minimised with a

high κ, and the associated back-action, where the momentum disturbance is minimised

with a low κ. Notably, there is not an associated limitation with every state variable. In

this example, if the momentum was measured with arbitrary precision at t = 0, it would

still be known exactly at a later point τ , as it is uninfluenced by uncertainty in the parti-

cle’s position. For a free particle, the momentum is known as a quantum non-demolition

(QND) variable.

The growth of ∆xSQL is a special case for an optimal initial state, but in general the

position variance (4.31) grows as τ2, due the momentum uncertainty propagation. If we

consider again the case of the state estimation equations (4.7 - 4.9), with zero detection

efficiency η = 0,

∆x(τ)2 = ∆x(0)2 +

(
∆p(0)2

m2

)
τ2 +

(
~2κ

3m2

)
τ3. (4.35)

We can see that particle spread grows as τ3, due to the continuous measurement back-

action. This cubic growth term is the key to testing CSL. Diffusion processes usually have

an associated damping term which leads to a linear growth in the position variance over

long times, as would be the case for a Brownian particle (3.1). Cubic growth is a signature

of diffusion due to a driving noise without damping. In deriving a diffusive state equation

(2.75), we invoked projective measurements of an apparatus coupled to the system, which

introduced noise proportional to the coupling strength. In the framework of CSL, the

reason that the apparatus is repeatedly being projected onto a specific state, is due to
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the intrinsic stochastic collapse of one of its constituent particles. The apparatus is a

large ensemble of particles, and so undergoes collapse often, and in turn causes partial

collapse of the coupled system. This gives rise to the same back-action term as in (4.35).

In contrast however, the CSL theory also predicts that the same intrinsic collapse process

happens in the system alone, which carries with it a similar diffusion term [87],

∆x(τ)CSL =
~

mNrC

√
λτ3

6
, (4.36)

where mN is the mass of an atomic nucleon, rC is a correlation length for the noise field

which causes collapse, and λ is the coupling rate between the system and the field. More

specifically an isolated nucleon, in a superposition of two localized states separated by

a distance greater than rC , is expected to collapse to one of those states on a timescale

of λ−1. Since collapse narrows the wavefunction, the particle gains energy, and the CSL

model predicts diffusion at a rate (4.36). This expression is true for particles with diameter

< rC , and we will consider a possible value of rC = 1µm. There is a range of values for

rC and λ over which the theory might be viable. Past experiments have already been

used to put bounds on these parameters [90], and the aim of this proposal is to test an

extended range of values for the coupling strength. The unexplored CSL parameter regime

is still large, and for rC = 1µm, the possible values for the coupling rate span over several

orders of magnitude. Free particle tests of CSL induced diffusion are of interest because

of their long lifetime compared to other nano-mechanical systems. Since diffusion due to

CSL grows faster than the bound of the SQL, over long periods of diffusion, free particle

experiments have the potential to probe far deeper into the unexplored parameter regime.

Figure 4.5 shows the point where diffusion due to continuous spontaneous localisation is

predicted to be greater than what is visible due to the SQL. For the current upper bound

λ ≈ 10−11s−1, this cross over occurs τ ≈ 3ms for a free particle with mass m = 1.5pg.

If an experiment measures diffusion as predicted by standard quantum mechanics after

this time, then the CSL parameters must be lower. It has been proposed that in vacuum

at cryogenic temperatures, that massive levitated particles could test a large scope of the
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Figure 4.5: Expected diffusion of a free particle, due to measurements performed at the
standard quantum limit, shown in blue, and due to continuous spontaneous localisation,
shown in yellow. These curves correspond to values of λ = 10−11s−1, rC = 1µm, and mass
m = 1.5pg using equations (4.34, 4.36). The x-axis shows time in units of t0 = 10−2s and
the y-axis shows the normalised position deviation in units x0 =

√
~t0/m. A crossover

occurs t ≈ 3ms, at which point measuring diffusion at the SQL definitively reduces the
possible value of the CSL coupling strength λ.

CSL model [86].

4.2.2 Simulating measurements of diffusion

The proposed experiment is simple in nature. Trapped particles are already accessible

with long reheating times that could plausibly reach 1/Γth < τ = 3ms, which would give

access to the regime needed to test for CSL diffusion. However, measurements at exactly

the SQL are not possible without perfect measurement efficiency, and preparing idealised

minimum uncertainty states is non-trivial using position measurements alone. As such,

we use Guassian estimator equations to predict realistic measurable values, and at what

point bounds could be placed on CSL parameters. Since we expect greater uncertainty in

real measurements, we consider a time period τ = 30ms, which would push particles in

current magnetic traps ω = 2π × 7Hz, to the edge of the free-particle limit. In an initial

model this can be circumvented by setting ω = 0. More practically, the experiment lends



4 Preparing quantum states of motion 113

itself to a post-selection process, where particles seen to be at the edge of the trap or with

high thermal velocities could be removed from the final data-sets. This is necessary since

particle’s that see significant influence of the trap potential would be expected to have

suppressed diffusion.

As when modelling our proposed cooling procedure, we used the Gaussian estimator equa-

tions (4.5 - 4.9) to emulate a thermal state, this time of a free particle ω = 0. Higher

detection efficiency is expected in experiments by integrating light scattered from short

pulses off the particle. We emulate this procedure by integrating the continuous measure-

ment record (4.4) over a short pulse window δtp,

xmeasure(t) =

(∫ δtp/2

−δtp/2
dI(t)

)
δt−1
p . (4.37)

These numerically simulated values represent the experimentally accessible measurement.

We simulate two initial short pulses to estimate the particle’s starting position and mo-

mentum, and then allow for a period of free evolution before sampling the particle’s final

position. Over several trajectories we calculate the standard deviation in the particle’s

final position from its expected value, (4.31). This exactly mimics what could be measured

in a physical experiment.

In more detail, we simulate the two initial position measurements at times tA and tB,

which are then used to estimate the particle’s momentum,

p(tB) = m
x(tB)− x(tA)

δtAB
, (4.38)

where δtAB = tB − tA. The values {x(tB), p(tB)} ≡ {x(0), p(0)} are taken as the starting

state values (4.30), which are in turn used to predict the final position,

xpredict(τ) = x(0) + p(0)τ. (4.39)

These measurements have some level of associated uncertainty. With access to the full
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measurement record and perfect detection efficiency η = 1, the uncertainty predicted would

approach that of the true state ∆xtrue(0),∆ptrue(0). However, since we have simulated

integrating the measurement signal with an efficiency η < 1, we can expect additional

error in estimating the mean position,

∆xmeasure(0) = |xtrue(0)− xmeasure(0)| > 0, (4.40)

where xtrue is the mean position of the simulated Guassian state. To minimise this dif-

ference and to prepare a range of starting states, we can vary the pulse power, duration

δtp, and spacing δtAB. We can use our resolution estimate (3.42), to predict the necessary

pulse duration and power to produce a state with a position variance (4.33),

∆x(0) ≈

√
1

8δpηκ
≡
√

~τ
2m

. (4.41)

Since there is a finite window for these measurements to take place, the pulse duration δp

would ideally be short. It is expected to be reasonable to scatter µW of power off of a

magnetically confined nano-particle without heating it out of the trap. The measurement

strength can be related to this scattered power,

κ ≈
Pk2

L

~ωL
, (4.42)

where ωL is the frequency of scattered light. Optimistically the measurement efficiency

with directional scattering could reach η ≈ 0.3. Using these values as guides, we choose

δp = 0.5ms. Likewise, the momentum uncertainty is expected to decrease with a larger

interval δtAB between the two pulses, which can be seen in the state estimation equations

due to an increase in the position-momentum covariance. We find δtAB = 1ms is suitable

to produce near minimum uncertainty states. We show the results of varying the mea-

surement strength of the two pulses in Figure 4.6. We used the integrated measurement

xmeasure(0), as an estimate of the particle’s position at the middle of the second pulse.

The standard deviation in the measurements from the true mean position, for each κ, was
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Figure 4.6: The uncertainty in a simulated measurement of position (blue) and momentum
(yellow), of a free particle, is shown as a function of the normalised measurement strength
κ̃ = κx2

0t0. The measurement consists of two pulses, which directly measure the position
and are used to estimate the momentum. The solid circles correspond to the ‘true’ or
ideal quantum state uncertainty, where as the crosses include the uncertainty associated
with imperfect measurement (4.40). The position and momentum uncertainty are shown
in units x0 = (~t0/m)1/2, and p0 = (~m/t0)1/2 respectively.

calculated using 100 trajectories of a Gaussian state estimator. The range of κ corresponds

to scattering powers from 0.01µW → 0.2µW . We find that increasing the pulse power,

generally corresponds to producing a state with less total uncertainty. However, it is easier

to look for an ideal measurement strength by considering the position variance in the final

measurement. There is a small extra uncertainty due to estimating the particle’s state at

the centre of a pulse. The continued illumination means that during the second half of

the pulse the particle experiences extra momentum diffusion, and this effect is worse for

higher κ.

After the initial pulses, we simulate the free evolution of the particle with κ = 0. Initially

we looked at the case where the particle freely evolves for the full remaining time, up to

t = 30ms. As when we derived the standard quantum limit, we assume that the last

measurement can be made with arbitrary precision by scattering large amounts of light

κ → ∞. In this case, the final measurement will deviate from the predicted value (4.39)
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by

∆x(τ)2 =
〈(
xmeasure(τ)− xpredict(τ)

)2〉
=
〈(
xtrue(τ)− xpredict(τ)

)2〉
+ ∆xtrue(τ)2,

(4.43)

where the angled brackets denote an ensemble average. The standard deviation in the final

particle position can be found using many trajectories or experimental realisations. In our

simulations, ∆xtrue(τ) is determined by the deterministic variance equations, equivalent

to (4.31), and so doesn’t vary over trajectories. The total deviation is the value needed

for comparison against the diffusion predictions of CSL. Figure 4.7 shows how simulated

diffusion measurements compare with what is predicted by (4.36), for the current highest

possible value of λ = 10−11s−1, with rC = 1µm. We find that after this period of free

evolution, that an experiment should be able to measure diffusion less than that predicted

by CSL. This would lower the possible bound on the coupling strength λ, since if CSL is

true we would not expect to be able to make these measurements. We also find that for

the specific pulse duration, the optimal scattered power corresponds to around 0.1µW .

We can go on to use the optimal pulse power, found when allowing free evolution up to

t = 30ms, and calculate ∆x(τ) for shorter times τ . These results are shown in Figure 4.8.

We can see that with the estimated efficiency of η = 0.3, improvements on the parameter

bounds for CSL could be made with this setup after a free evolution of τ ≈ 15ms.

4.2.3 Outlook

In future iterations of this model it will be important to reintroduce the effect of the trap-

ping potential. Over timescales comparable to the trap period, the diffusion in the par-

ticle’s expected position due to initial measurement uncertainty or spontaneous collapse,

would be suppressed compared to the free particle case presented. A more extensive anal-

ysis of the optimal pulse duration and generally the state preparation procedure, would

also be useful. Although by design this experiment should operate in a regime where ther-
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Figure 4.7: The average deviation of a simulated particle from its predicted trajectory
after τ ≈ 30ms, shown as a function of the initial normalised measurement strength
κ̃ = κx2

0t0. An initial estimate of the state is made, and then the diffusion from a predicted
trajectory was calculated over 100 trajectories. The plot markers correspond to the total
average deviation of the particle, including its quantum state variance and measurement
imprecision (4.43), in units of x0 = (~t0/m)1/2. The dashed lines correspond to the
predicted diffusion by the CSL model (4.36) for the labeled coupling parameters λ.

mal heating is negligibly small, a more detailed calculation of exactly when this heating

becomes an issue could be included. A quantum Brownian master equation[40] shares the

same form as the ensemble averaged feedback damping equation (3.89). It could be used

to account for the effects of weak thermal coupling which would adjust the observable

limits on CSL.

To summarise the results presented in this section, we have explored the possibility of

measuring the small amount of diffusion predicted by the continuous spontaneous locali-

sation model. The uncertainty inherent in standard quantum mechanics predicts that this

diffusion would be hidden by the standard quantum limit of measurement precision, but

after a long enough period of free evolution, diffusion due to CSL is expected to become

more prominent. Current experiments with magnetically levitated nanoparticles are al-

ready close to the regime where measurement precision could approach the SQL. With

improvements in isolation and cryogenic cooling, it should then be feasible to wait long
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Figure 4.8: Expected diffusion of a free particle, due to the standard quantum limit
(blue), and due to continuous spontaneous localisation (yellow), alongside simulated mea-
surements of diffusion (blue markers). These curves correspond to values of λ = 10−11s−1,
rC = 1µm, and mass m = 1.5pg, using equations (4.34, 4.36). Time is shown in units
of t0 = 10−2s and the normalised position deviation in units x0 =

√
~t0/m. The simu-

lated diffusion measurements (4.43), fall below the predictions of the CSL model around
t = 15ms.

enough to test for the diffusion predicted by CSL. We have modelled a realistic proposed

measurement scheme and found in simulated results where bounds could be made on the

CSL model parameters.

Overall, in this chapter we have looked at two ways of preparing quantum states of motion

with magnetically levitated particles. We proposed a cooling procedure that could reach

single phonon occupancy levels, with no fundamental limit to reaching the ground state.

We also presented a detailed outline of how these systems might be prepared as free-

particle minimum uncertainty states, useful for tests of quantum collapse models. Both of

these procedures could be implemented in near-future experiments with improvements in

isolation from classical heating sources. In the following chapter we continue to focus on

methods of measurement and feedback in quantum systems, but applied to a many-body

atomic ensemble.
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5 Atomic spin ensembles

In this chapter the focus shifts to many-body systems, opening with an overview of spin

squeezing in atomic ensembles. In a spin squeezed state many-body entanglement is

engineered to reduce uncertainty in one component of the collective spin, allowing mea-

surement precision beyond the so-called standard quantum limit. The research in this

chapter is motivated by a proposed experiment that would have access to typically dis-

carded measurement channels, when probing an atomic cloud in free space. An analysis of

how these measurements can be used to stabilise noise to produce enhanced levels of spin

squeezing is presented. The imaging system is modelled in detail and the effects of the

proposed feedback procedure are also demonstrated in an analogous beam-splitter setup.

The chapter ends with details of an ongoing investigation into techniques to produce a

steady state of the feedback procedure that is useful for metrology.

5.1 Spin-squeezing in atomic ensembles

The previous chapters have focused on measurement and feedback with single particle

systems. A similar treatment, using quantum trajectories and the quantum feedback

formalism, can equally be applied to many-body systems[91], with the caveat that numer-

ical simulations can quickly become resource-heavy as the number of particles increases.

We will look at the preparation of spin-squeezed states in ensembles of atoms, a form of

many-body entanglement[92].

In this context spin refers to the z-component of angular momentum of atoms, associated

with two internal magnetic sub-levels. Such a two-level system, with density matrix ele-

ments ρij = |i〉〈j| (i, j = 1, 2), can be treated as a pseudo spin one-half system where the

spin operators are

j(n)
x =

1

2
(ρ

(n)
21 + ρ

(n)
12 ), (5.1)
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j(n)
y = − i

2
(ρ

(n)
21 − ρ

(n)
12 ), (5.2)

j(n)
z =

1

2
(ρ

(n)
22 − ρ

(n)
11 ), (5.3)

and the superscript n labels each atom. The z-spin operator jz measures the population

difference of the atomic sub-levels, where as jx and jy provide information about the coher-

ent superposition of the two states. The spin operators are also useful for visualising the

state evolution using an enlarged Bloch sphere representation. The collective properties

of the atoms can be described by a spin-J system[93], where J = N/2 in a system with N

atoms. The collective spin operators are,

Jα =
N∑
n=1

j(n)
α , (5.4)

where α = x, y, z. These operators obey the cyclic angular momentum algebra,

[Jx, Jy] = iεxyzJz, (5.5)

where εxys is the Levi-Civita tensor.

In a coherent spin state (CSS), each individual spin system points in the same direction

without any correlations between them. A CSS will have a minimum uncertainty relation.

For example, if each spin is orientated along x, this is an eigenstate of the Jx operator

with

(∆Jy)
2(∆Jz)

2 =
1

4
|〈Jx〉|2, (5.6)

where (∆Jα)2 = 〈J2
α〉 − 〈Jα〉2 is the standard deviation in the spin. A spin-squeezed state

has a smaller uncertainty associated with one spin component than in a CSS. By engi-

neering correlations between the atoms, fluctuations in one spin direction can be reduced

at the expense of the other. There are different metrics that can be used to characterise
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the degree of spin squeezing. Here we will use the parameter

ξ2
z =

N(∆Jz)
2

〈Jx〉2 + 〈Jy〉2
, (5.7)

which as written, measures squeezing in the z-spin component[94]. For a coherent spin

state this squeezing parameter equals one, and if ξ2 < 1 the state can be said to be

spin squeezed. Theoretically, the lower bound on ξ2 is of the order 1/N , however current

experiments are far from realising such maximally squeezed states. This parameter is

designed to be used with Gaussian states. Later in this chapter we will also consider the

Quantum Fisher Information as a useful metric for non-Gaussian squeezing.

There are applications for spin squeezing in quantum information[95] and in metrology[96].

In general, spin squeezed systems can outperform coherent states in the same manner as

squeezed optical fields. For example, high precision timekeeping with atomic clocks re-

lies on measuring the absorption frequency of an atomic transition to use as a frequency

reference. This can be achieved using Ramsey spectroscopy[97], which relies on making

measurements of the population difference Jz in an atomic ensemble after a period of free

evolution. The precision of this measurement can be improved by initially preparing a

spin squeezed state. There are several methods for producing squeezing, including en-

gineering controlled collisions in a BEC via non-linear spin interactions[98], transferring

non-classical light states onto atoms[99], and creating conditional squeezing by making

QND measurements[100, 101]. We will be interested in the latter, where a suitably po-

larised probe beam can be used to make dispersive measurements of Jz whilst preserving

the total atomic population[102].

5.2 Dispersive measurement model

We first outline a simple model of a dispersive measurement of the atomic population

difference, including the imaging process and the effects of decoherence due to scattering

light into different measurement channels. Following this, we will examine feedback of the
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Ω

∆

Figure 5.1: Sub-level diagram for a single atom. A far detuned probe field Ω measures the
collective population in |2〉, and can be used to infer Jz.

measurement to stabilise drift in the mean spin direction so as to produce unconditional

squeezing. We start by considering the dynamics of an ensemble of two-level atoms which

we will assume can be prepared in an equal superposition of the two internal states. For

consistency we will always assume the atoms are initially prepared in a CSS orientated

along x, unless stated otherwise. Light with the appropriate polarization and frequency

can then be used to probe a transition to an auxiliary level in these systems, effectively

making a non-destructive measurement of the two-level state.

We can model the interaction with a far-detuned probe using the standard form of the op-

tical Bloch equations. In the case where the probe interacts with the internal atomic level

|2〉 and an auxiliary level which we will label |3〉 (illustrated in Fig. 5.1), the Hamiltonians

for the atom and atom-field coupling in the rotating wave approximation are

HA = ~∆ |3〉〈3| , (5.8)

HAF =
~Ω

2
(σ† + σ), (5.9)

where σ = |2〉〈3|. The master equation for this system, including a Lindblad term for
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spontaneous emission into the electromagnetic vacuum at a rate Γ, is

ρ̇ = − i
~
[
HA +HAF , ρ

]
+ ΓD[σ]ρ. (5.10)

Written explicitly, the equations for the level occupancy and corresponding coherence

terms are

˙ρ22 = − i
2

Ω(ρ̃32 − ρ̃23) + Γρ33, (5.11)

˙ρ33 =
i

2
Ω(ρ̃32 − ρ̃23)− Γρ33, (5.12)

˙ρ23 = −(
Γ

2
+ i∆)ρ̃23 −

i

2
Ω(ρ33 − ρ22), (5.13)

˙ρ32 = −(
Γ

2
− i∆)ρ̃32 −

i

2
Ω(ρ22 − ρ33). (5.14)

The steady state of ρ33 will be small in the case where the detuning is large, on the order

of (Ω/∆)2 as opposed to (Ω/∆) for the coherence terms ρ23 and ρ32. We can therefore

find approximate steady state solutions by neglecting terms proportional to ρ33.

lim
t→∞

ρ23 ≈
i

2

Ωρ22

Γ/2 + i∆
≈ Ω

2∆
ρ22. (5.15)

If we assume that in this limit the atomic population is effectively split between the first

two levels, ρ11 + ρ22 = 1, then using the definition (5.3) we can approximate

σ = ρ23 ≈
Ω

2∆
(jz +

1

2
). (5.16)

We can now trace out the auxiliary level and write a master equation solely for the first

and second atomic levels,

ρ̇ = γD[jz]ρ. (5.17)

where we have defined γ = ΓΩ2/4∆2. In this limit we can also see by substituting (5.16)
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into (5.11) that we recover the general form of the interaction for a single atom in the

presence of a far detuned probe ρ̇ = (−i/~)[V, ρ] with the potential

V =
~Ω2

4∆
(jz −

1

2
). (5.18)

If we want to include the spatial dependence of the field modes we can let jz → jze
−ik.r,

where k is the scattered wave-vector and r is the fixed atomic position. For a single atom

this extra phase does not affect the dynamics, but if we have many atoms the relative

phases do matter. We can define a continuum of operators b(θ, φ), that describe the

combined field from N atoms,

b(θ, φ) =
√
γ
N−1∑
n=0

j(n)
z e−ik.r

(n)
, (5.19)

where r(n) is the position of the atom labelled n. In the master equation we can then

include an integral over the continuum of angle-dependent modes,

ρ̇ =

∫
dΩ f(θ, φ)D[b(θ, φ)]ρ, (5.20)

where we have introduced a normalized angular distribution function f(θ, φ). In the limit

that the spacing between the atoms relative to the optical wavelength tends to zero,

all the phases match and the jump operator simplifies to the collective z-spin operator

b(θ, φ) =
√
γ Jz.

We can numerically simulate the master equation at this stage by considering spontaneous

emission into discrete bins. The integral of a general function can be approximated with

a sum ∫ xb

xa

dx f(x) ≈
M∑
m

f(m∆x)∆x, (5.21)



5 Atomic spin ensembles 125

where ∆x = (xb − xa)/M . For (5.20) this translates to

ρ̇ =

∫ 2π

0
dφ

∫ π

0
dθ sin θ f(θ, φ)D[b(θ, φ)]ρ,

≈
A∑
α=1

∆φ
B∑
β=1

∆θ sin(θβ) f(θβ, φα)D[b(θβ, φα)]ρ.

(5.22)

In the first line we have explicitly written out the integral over the solid angle, and in the

second line we defined φα = α∆φ, θβ = β∆θ, where ∆φ = 2π/A, ∆θ = π/B and A, B are

the number of discrete bins in the approximation. Equivalently we can define a discrete

set of jump operators b(θ, φ)→ bα,β, where

bα,β =
√

∆φ∆θ sin(θβ)f(θβ, φα) b(θβ, φα), (5.23)

ρ̇ ≈
A∑
α=1

B∑
β=1

D[bα,β]ρ. (5.24)

We can see from the form of the jump operator (5.19) that when the atoms are close

together the scattered light carries away information predominantly about the collective

spin Jz. As the spacing increases, local information about the atoms can be measured. If

the spacing is greater than an optical wavelength, then in principle each individual atom is

resolvable. Numerical simulation of a small number of atoms (N=8) with uniform spacing

between them, shows faster decoherence as the spacing is increased. This effect can be

seen in the rate of decay of the total state purity of a coherent spin state, illustrated in

Fig. 5.2. The spacing, labelled a, is expressed in units of the optical wavelength λ used

for the scattered wave-vector.

5.2.1 Imaging

Using a Fourier transform we can relate the angle-dependent operators (5.19), to spatial

operators, which is the appropriate form for an imaging measurement. Since this is a
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Figure 5.2: State purity calculated via numerical integration of the master equation (5.24),
for a 1D chain of 8 atoms with equal spacing a = (0, 1, 10)λ.

unitary transformation it will intrinsically preserve normalization, and as we are taking

the Fourier transform over the bounded domain of θ and φ, we will obtain a discrete set

of operators. The transformed operators for a single atom confined to the x-axis are

b
(n)
α,β =

√
γ

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

√
f(θ, φ) eikx0 cos θe−iαπ cos θeiβφ j(n)

z . (5.25)

If we assume isotropic scattering, f(θ, φ) = 1/4π, we can eliminate the β dependence.

Making the substitution u = cos θ we find

b(n)
α =

√
γ π

∫ 1

−1
du

1√
4π

eikxue−iαπu j(n)
z

=
√
γ sinc

(
k

(
αλ

2
− x(n)

))
j(n)
z .

(5.26)

In practice the discrete spacing of the operators due to the bounded θ and φ domains

would not be resolvable in any individual measurement, and we can express the operators

in the continuum limit. In this case the combined field from each atom,

b(x) =
N−1∑
n=0

√
γk

π
sinc

(
k(x− x(n))

)
j(n)
z . (5.27)
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These operators can be interpreted as the atomic field projected onto the x-axis, and are

of the same form as the imaging operators we derived in chapter 3. The exact profile is

dependent on the true scattering function f(θ, φ) but in general will be peaked with a

width on the order of an optical wavelength.

Knowing the field in the plane of the atoms, we can consider how it propagates and how

it can be imaged. To do this we can use the framework of Fourier optics. For single

wavelength light we can use the Helmholtz equation,

∇2U(r) + k2U(r) = 0, (5.28)

where U(r) is a complex field amplitude, and k is the associated wave number. In rectan-

gular coordinates the solution to the Helmholtz equation can be expressed as a weighted

superposition of plane waves,

U(x, y, z) =

∫ ∫ ∞
−∞

dkxdkyK(kx, ky) e
i(kxx+kyy) eiz

√
k2−k2x−k2y , (5.29)

with the separation condition k2
x + k2

y + k2
z = k2. The coefficients of the exponential terms

are a function of the spatial wave numbers, and at z = 0, K(kx, ky) can be seen to be the

spatial Fourier transform of the field U(x, y, 0),

U(x, y, 0) =

∫ ∫ ∞
−∞

dkxdkyK(kx, ky) e
i(kxx+kyy)

= F−1(K(kx, ky)).

(5.30)

The full solution to the Helmholtz equation describes the field at any point. However,

this is a complicated integral to compute and can be greatly simplified with the paraxial

approximation,

k2
x + k2

y � k2
z . (5.31)

In this limit we only consider components of the field with small angles from the optical
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axis (z), and can arrive at a simpler expression for the field in a plane away from the

source. This is the Fresnel diffraction pattern

U(x0, y0) =

∫ ∫ ∞
−∞

dxdy h(x0 − x, y0 − y)U(x, y)
∣∣
z=0

, (5.32)

where,

h(x0, y0) =
−e−ikz

iλz
e−

ik
2z

(x20+y20), (5.33)

and (x0, y0) are the coordinates in the new plane at some fixed distance z. The equation for

the Fresnel diffraction pattern has a convolution structure and is still somewhat difficult

to evaluate. Under certain conditions it simplifies further.

The effect of a lens on a propagating monochromatic field can be described with a phase

transformation. If Ul(x, y) is the field incident on a lens, then the field directly after the

lens can be expressed as,

U ′l (x, y) = tl(x, y)Ul(x, y), (5.34)

For a thin lens, under the paraxial approximation

tl(x, y) = eikn∆0e
ik
2f

(x2+y2)
, (5.35)

where n is the refractive index of the lens, ∆0 is its width and f is the focal length.

Knowing this, the field equations simplify greatly in the special case when propagating

from an initial plane one focal length before the lens, to a detection plane one focal length

ahead of the lens. In this case, the quadratic phase introduced by the lens cancels out

the quadratic phase when propagating the field using the Fresnel equation. As a result

the field in the detection plane is proportional to the Fourier transform of the field in the

initial plane,

U(x0, y0) = − 1

iλf

∫ ∫ ∞
−∞

dxdy e
i 2π
λf

(x0x+y0y)
U(x, y). (5.36)

This is the form of a normalised Fourier transform, and so Parseval’s theorem ensures that

the field intensity is conserved and that transformed operators will remain consistently
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Figure 5.3: Sketch of optics for a imaging a 1D string of atoms. A probe illuminates the
atoms and the field U(x) propagates according to the Fresnel equation (5.32) through a
lens to the focal plane, where the Fourier transform of the field is formed U(x0).

normalised, ∫
dx0dy0 |U(x0, y0)|2 =

∫
dxdy |U(x, y)|2. (5.37)

As illustrated in Fig. 5.3, we can now propagate the atomic field (5.27) to the imaging

plane using (5.36). Identifying U(x) = b(x),

U(x0) =

√
1

λf

∫ ∞
∞

dx e
i 2π
λf
xx0b(x), (5.38)

where we have dropped the global phase and considered only the field along the x-axis.

Relabelling the field in the image plane, U(x0) = b̃(x) and evaluating the integral,

b̃(x) =

N−1∑
n=0

√
γ

2f
rect

(
x

2f

)
e
ix(n) 2πx

λf j(n)
z . (5.39)

Here the rect(x) function forms a window, outside of which the field is zero,

rect(x) =

0 if |x| > 1/2

1 if |x| ≤ 1/2
. (5.40)

The optical wavelength effectively determines how quickly the phase of the individual

atomic contributions varies, and the focal length acts as a scaling factor for the whole
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image. The imaged field will not always have hard boundaries. The rectangular window

here is a reflection of the particular choice of f(θ, φ), but in general the imaged field will

be windowed by a smoothly decaying function. Although these measurement operators

are a normalized set, they will not accurately represent the field outside of the range of

the paraxial approximation.

5.2.2 Discrete mode operators

If we define an equal spacing between the atoms x(n) = an, we can consider the limit of

a dense cloud aN/λ� 1. In this limit the complex exponential in the operators (5.39) is

approximately constant over the width of the window function, effectively eliminating the

spatial dependence and reducing the collapse operators to b̃(x) =
√
γ Jz. This is the same

limit we found with the angle-dependent operators (5.19).

We can also consider measuring the field across a discrete set of pixels, such as on a

charge-coupled device (CCD) imaging system. We can define a pixel size ∆x, and make

the transformation to a discrete set of operators that approximates the field at each pixel.

Returning first to the field in the plane of the atoms, with reasonably large spacing a = λ/2,

there is almost no overlap between the spatial modes (5.27). If we approximate this field

with a discrete set of modes bn =
√

∆x b(n∆x), where ∆x = a, then

bn =
√
γ

N∑
m

sinc
(
π(n−m)

)
j(m)
z

=
√
γ j(n)

z .

(5.41)

Each mode corresponds to the spin state of an individual atom. In this discrete operator

description the field in the Fourier plane can likewise be expressed as b̃k =
√

∆x̃ b̃(k∆x̃).

Here, and from now on, we will switch to using k as a mode index as opposed to a wavenum-

ber. k takes on integer values and corresponds to the spatial frequency components in the
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plane of the atoms. If we choose the pixel size in the Fourier plane ∆x̃ = λf/Na,

b̃k =

√
1

N

N−1∑
n=0

e−i
2π
N
nkbn. (5.42)

These operators correspond to the discrete Fourier coefficients of the atomic field. In

the continuous case the corresponding operators would exist at integer multiples of the

position ∆x̃, and as the atomic spacing is increased more of these Fourier coefficients

become visible. For a large number of atoms these modes are relatively well resolved, and

for the spacing a = λ/2, one Fourier mode is visible for each atom. This discrete mode

approximation helps to simplify the model and we will use it throughout the rest of the

chapter.

5.2.3 Spin squeezing via measurement and feedback

A uniform probe field across the atoms will largely be focused at the centre of the Fourier

plane. This acts like the reference field in a homodyne measurement for the atomic signal,

and measuring the phase shift to the probe tells us about the symmetric total z-spin

component of the atomic ensemble. We can also mix a reference field with the rest of

the scattered light before it reaches the Fourier plane, effectively performing a homodyne

measurement at each pixel. We can model this by transforming the jump operators for

pixels in the Fourier plane,

b̃k → b̃k + αl.o., (5.43)

where we have defined αl.o. = |α|eiφ as the classical reference field, including the probe

contribution. In this form, following the procedure in section 2.3, we can describe the

measurement process with a diffusive measurement master equation,

dρ =
N∑
k

(
D[b̃k]ρ dt+

√
ηkH[b̃k]ρ dW

)
. (5.44)
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Here we have introduced the measurement efficiency ηk for each mode.

As discussed previously, when exclusively measuring light imaged at the centre of the

plane b̃k=0, or in the limit of a dense cloud, the measurement operators approximate Jz.

Initially we will explore the effects of solely this measurement channel

dρ = γD[Jz]ρ dt+
√
γH[Jz]ρ dW , (5.45)

with the measurement record defined as

dI(t) =
√

4γ 〈Jz〉dt+ dW . (5.46)

Measurement causes the desired conditional squeezing of the total z-spin variance in a

single trajectory, but is washed out in an average ensemble by the stochastic drift of the

mean z-spin component. We can model the evolution of an operator using the master

equation d〈c〉 = Tr[c dρ]. The drift in Jz caused by the measurement is described by the

stochastic equation

d〈Jz〉 = 2
√
γ(∆Jz)

2 dW . (5.47)

This is analogous to that which we studied in the position of a nano-mechanical oscillator

(3.35), where the mean position also drifted at a rate proportional to its variance. In fact,

if we have a large number of atoms and the mean spin predominantly points along x, it

can be useful to introduce new canonical position and momentum operators,

Xspin =
Jy√
〈Jx〉

, Pspin =
Jz√
〈Jx〉

. (5.48)

When the mean x-spin is large and only weakly perturbed, we can approximate Jx ≈

〈Jx〉[103]. In this case the y and z spin components obey the usual position momentum

commutation relation [Xspin, Pspin] = i. Similarly to drift in mechanical momentum, the

drift in the z-spin can be counteracted by feedback of the measurement record proportional

to the orthogonal y-spin operator. Fig. 5.4 illustrates the conditional squeezing and drift
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Jz

Jy

Figure 5.4: Projection of the y and z quasi-probability distributions for the collective
spin state of an atomic ensemble. The central circle represents a CSS orientated along x
with diameter

√
J/2 satisfying the minimum uncertainty relation (5.6). The shaded oval

represents a squeezed state conditioned on measurement of Jz, where as the larger oval
represents an ensemble average where the visible squeezing is washed out by the drift in
the conditioned state.

induced by measurement.

Feedback can be applied using the averaged measurement signal after a short pulse, to

realign the mean spin allowing for non-conditional spin squeezed states useful for Ramsey

spectroscopy[104, 105]. This requires a simple form of state estimation. The system is

also well suited for control via direct continuous feedback [106, 15]. Both approaches rely

on the same principles, however, we will focus on the case of continuous feedback as it

provides a useful framework for analytical analysis and numerical simulation. Following

the details of the feedback procedure discussed in section 2.4, the feedback term that we

will add to the master equation should be of the form

dρf = −i dI(t)
[
F, ρ

]
, (5.49)

where F is an arbitrary operator corresponding to a physical shift to the system propor-

tional to the measurement record I(t). As previously discussed, correlations between the

measurement and system noise give rise to additional terms in the dynamics. If we write

the full master equation split into a deterministic and diffusive parts,

dρ = ρA dt+ ρB dW , (5.50)
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then,

ρA = −i
[
H, ρ

]
− i
[
F, cρ+ ρc†

]
+D[c]ρ+

1

η
D[F ]ρ

= −i
[
H +

1

2
(c†F + Fc), ρ

]
+D[c− iF ]ρ+

1− η
η
D[F ]ρ,

(5.51)

ρB =
√
ηH[c]ρ− i

√
η

[
F, ρ

]
. (5.52)

In the second line of (5.51) we have expressed the deterministic evolution in Lindblad

form. Following closely the analogy of damping a mechanical system, feedback can be

used to counteract the drift induced by measurement. The additional Ito term that arose

due to the noise introduces further heating, in this case causing diffusion of the y-spin

component.

To cancel the stochastic drift (5.47) requires a rotation of the mean spin about the y-axis,

which is achieved with a Hamiltonian of the form

Hf = λ(t)I(t)Jy/
√
γ, (5.53)

where λ(t) is a time dependent scaling factor. This can be implemented within the feedback

master equation by identifying c =
√
γJz and F = (λ(t)/

√
γ)Jy. We can then average

over the noise to obtain a non-conditional feedback master equation,

ρ̇ = γD[Jz]ρ− iλ(t)
[
Jy, Jzρ+ ρJz

]
+
λ(t)2

γ
D[Jy]ρ. (5.54)

We can see from the Lindblad form of (5.54) that along with heating terms, feedback

produces the effective Hamiltonian

Heff =
1

2

(
c†F + Fc

)
=
λ(t)

2

(
JzJy + JyJz

)
, (5.55)

which is known to generate transient spin squeezing [92]. Under the influence of this

Hamiltonian the squeezing parameter ξ2 will decrease to a minimum value, and then
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Figure 5.5: Sub-plot a) shows a single trajectory of 8 spins undergoing continuous mea-
surement of the collective spin component Jz. The dashed line shows the stochastic drift
of the mean z-spin without feedback (F = 0), whilst the solid line shows stable behaviour
with feedback turned on (F = Jy). Sub-plot b) shows the unconditional evolution of the
spin squeezing parameter ξ2

z with feedback.

begin to increase again. The time dependent coefficient λ(t) can be chosen to optimise

this transient squeezing by considering the affect of the feedback on the evolution of Jz,

d〈Jz〉f = −λ(t)
√
γ
〈Jx〉dW −

(
λ(t)2

2γ
〈Jz〉+ λ(t)〈JxJz + JzJx〉

)
dt

≈ −λ(t)
√
γ
〈Jx〉dW .

(5.56)

In the second line we drop the correlation term between Jx and Jz, as it is initially zero

due to the symmetry of the CSS and the feedback procedure does not change this. We

also assume that 〈Jz〉 = 0, which is true for the initial state and should be maintained by

successful feedback. The drift of 〈Jz〉 caused by the measurement (5.47) can be cancelled
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by (5.56), by choosing

λ(t) = 2γ〈J2
z 〉/〈Jx〉. (5.57)

This idealised feedback strength is a time dependent function depending on conditional

averages of the spin system parameters. This choice of feedback stabilises the orientation

of the mean spin whilst the measurement reduces the z-spin variance, initially resulting in

unconditional squeezing. However, as the state continues to evolve it becomes distorted

and the variance in Jz eventually increases again, destroying the squeezed state. A sub-

stantial benefit of engineering squeezing through measurement and feedback is that it can

be turned off after reaching the desired value, although later we will explore the possibility

of producing steady state squeezing. Under ideal conditions, in a large system, the mini-

mum value of ξ2 scales inversely with the system size N [15]. Fig. 5.5 (a) shows numerical

simulation of the conditional evolution (5.50) of 8 atoms with and without feedback to

stabilise 〈Jz〉. Sub-plot (b) shows the spin squeezing parameter fall to its optimal value

before increasing again in the unconditional evolution of an ensemble average of states

using the feedback equation (5.54).

5.3 Feedback of higher order modes

Having looked at the effects of measuring the collective spin Jz we can go back and add

in the effect of the other measurement channels. We saw when modelling the radiation

profile of the atoms, that when the spacing between them is small compared to the probe

wavelength, each atom is almost indistinguishable. As a result of this, most of the scattered

light contains only information about the collective spin. In the previous section we showed

that measuring Jz creates correlations between the atoms and produces squeezing. When

the atoms are spaced far apart the scattered light starts to carry away local information

about each individual atomic states. Measuring this local information will not correlate

the atoms and, in fact, will in time destroy any correlations that exist [107]. We saw

a manifestation of this in the increased rate of decoherence of a CSS as a function of
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Figure 5.6: Evolution of the z-spin components jz of 4 randomly orientated atoms across a
single trajectory, undergoing continuous measurement and feedback to align them along x.
Feedback was performed using information from the discrete measurement modes (5.42),
and each line corresponds to a single atomic spin.

atomic spacing. In this section we outline a combination of measurement and feedback to

counteract this effect.

If N modes are visible in the Fourier plane, measuring each of them can reveal the local

state of each atom. Measuring the Fourier modes (5.42) it is possible to reconstruct each

local spin j
(n)
z , by effectively performing the inverse Fourier transform. Fig. 5.6 shows a

numerical simulation of measuring the Fourier modes and using the information to align

each spin individually along x, in the same fashion as when rotating the collective spin Jz.

The collective z-spin variance in this case is not squeezed as correlations never accumulate

between the atoms. It is however possible to alter these measurements so as not to obtain

any local information.

Previously, when examining damping of the motion of an oscillator, or stabilising the

drift in a spin vector, we have seen that feedback can be used to counteract the effect

of measurement noise. In these cases a system observable is also measured, and in turn

the system is driven towards an eigenstate of the measured operator. This latter effect

is undesirable in the case of measuring the higher order modes of scattered light (5.42).

This can be circumvented using a homodyne measurement, where it is possible to choose
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the reference phase such that no information is gained about the state of the system. For

example, for an arbitrary Hermitian operator c = c† with a homodyne reference phase

φ = π/2, the measurement record (2.74) as defined in chapter 2, would be

dI(t) =
√
γ〈c eiφ + c†e−iφ〉 dt+ dW

= i
√
γ〈c− c†〉 dt+ dW

= dW .

(5.58)

This specific choice of homodyne phase is such that measuring the scattered light reveals

no information about the value of the system observable c, and only provides a record

of the noise. Feeding back the measurement signal can perfectly cancel the effect of this

noise, which in this special case eliminates any effect of the measurement channel. This

can be seen in the feedback master equation (5.51) if we choose the feedback operator

F = c,

dρ = −i[F, icρ− iρc]dt+D[F ]ρdt+D[c]ρ dt

= −2D[c]ρdt+ 2D[c]ρdt = 0.
(5.59)

We can see an illustrative example of this type of feedback in a beam splitter model. If

we imagine two fields b0, b1 originating from two atoms as the inputs to a 50/50 beam

splitter, we can treat the output fields as analogous to the Fourier transformed fields in

the optics setup,

b̃0 =
1√
2

(
b0 + b1

)
, b̃1 =

1√
2

(
b0 − b1

)
. (5.60)

This is sketched in Fig. 5.7. We can again imagine making homodyne measurements of

each of the output modes. With the homodyne reference phase φ = 0, measurement of the

mode b̃0 is equivalent to measuring the total spin Jz/
√
N . This will produce conditional

squeezing as desired. However, this measurement combined with that of b̃1 would reveal the

local state of the atoms, destroying the entanglement between them. Instead, measuring

the second mode b̃1 with a reference phase φ = π/2, reveals no information about the
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Figure 5.7: Sketch of a beam splitter configuration that mimics the effect of Fourier
imaging light from two discrete atomic sources. The inputs b0, b1 reflect the state of the
individual atoms where as the outputs contain collective information about the two states.

atomic states,

dI1 =
√
γ〈b̃1 eiφ + b̃†1e

−iφ〉dt+ dW

= dW .
(5.61)

Following the feedback procedure (5.59) the effect of the noise induced by this measurement

channel can be cancelled using the feedback operator F1 = b̃1. The resulting state evolution

is exactly equivalent to having only measured the uniform spin channel b̃0.

The beam splitter configuration outlined above has two key properties that allow it to

work. First, combining the individual atomic fields at the beam splitter is necessary to

measure the collective spin state b̃0. Secondly, there exists a choice of reference phase such

that the other output channel can be measured without gaining further information about

the spin states. This second quality is not generally true for the higher modes b̃k in the

optics setup. The complex phase differences between the individual atom contributions in

the Fourier coefficients mean that the operators are no longer Hermitian, and no choice of

reference phase can ensure dIk = dW . This can be rectified by undoing the optical Fourier

transform with a second lens. We have seen that the individual atomic fields will impart

a phase shift to a probe beam proportional to j
(n)
z . Since this a Hermitian observable,

with the appropriate reference phase as discussed above, a homodyne measurement can

be made blind to this. The optics setup sketched in Fig. 5.8 takes advantage of this fact
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~

Figure 5.8: Sketch of modified optics for imaging a 1D string of atoms, with an isolated
measurement of the uniform Fourier component b̃0. A probe illuminates the atoms and
the input field b(x) propagates according to the Fresnel equation (5.32). The field at b̃(x)
is the optical Fourier transform of b(x), and the output field c(x) is the inverted image of
b(x).

after measuring the uniform collective spin mode b̃k=0. As before, the field from the atoms

propagates to the Fourier plane, and in this setup the k = 0 mode is isolated and measured

separately. The rest of the field continues to propagate, passing through a second lens and

is finally imaged onto a CCD. Once again, we consider mixing the light in the output field

with a reference field so as to perform an effective homodyne measurement at each pixel.

In this setup the field operators undergo the following transformations. Initially each mode

bn =
√
γ j

(n)
z carries information about the individual spin states. In the Fourier plane the

central mode is isolated, and carries information about the collective spin b̃0 =
√
γ/N Jz.

Propagation through the second lens performs another optical Fourier transform, produc-

ing an inverted image of the original field. The measurement operators in this output

plane are

cn =
1√
N

(N−1∑
k=0

e−i
2π
N
nk b̃k − b̃0

)

= b−n −
1

N

N−1∑
m=0

bm.

(5.62)

In the first line here we have explicitly written out the transformation for the operators

b̃k, with the information from the b̃0 mode removed. In the second line we carry out
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the transformation, which leaves an inverted copy of the original atomic field operators,

minus the contribution of the uniform collective spin component. The operators b̃0 and

cn can then independently be measured. As in the beam splitter model the collective spin

measurement produces squeezing and the other modes can be measured with a reference

phase φ = π/2 so as to extract no information. For the collective spin channel the

corresponding feedback operator should be

Fk=0 =
λ(t)√
κ
Jy, (5.63)

where we have defined the measurement strength for this mode κ = γ/N , and the feedback

strength,

λ(t) = 2ηκ〈J2
z 〉/〈Jx〉. (5.64)

We have also explicitly included that the feedback operators should be re-scaled to reflect

the measurement efficiency η. For every other mode in the output plane there should be

a corresponding feedback operator,

Fn = ηcn = η
√
Nκ

(
j(−n)
z − 1

N
Jz

)
. (5.65)

where we can see that implementing feedback would involve rotations of individual spins.

The corresponding master equation in this case would be

ρ̇ = κD[Jz]ρ− iλ(t)
[
Jy, Jzρ+ ρJz

]
+
λ(t)2

ηκ
D[Jy]ρ+

N−1∑
n=0

(1− η)D[cn]ρ. (5.66)

With perfect detection efficiency η = 1, the last term in this equation vanishes as the

feedback perfectly cancels out the dissipation caused by the measurement channels cn.

Under ideal conditions, this combination of measurement and feedback is equivalent to

the best case squeezing from section 5.2.3, where only the Jz measurement channel was

considered. Perfect measurement efficiency across every mode is, of course, not a realistic

scenario. CCD pixels have operating noise and not all the scattered light will be collected
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Figure 5.9: Simulation of the average evolution of the spin squeezing parameter (5.7), in
a string of N = 8 atoms. The system evolution is driven by many mode feedback (5.66),
for a range of quantum measurement efficiencies η. The solid lines correspond to a system
with N measurement channels cn (5.62), as well as the collective spin channel Jz, whereas
the dashed lines show the evolution of a system with only the collective spin channel.

by the optics setup. Fig. 5.9 shows a simulation of the average squeezing that would be

produced in a string of 8 discrete atoms, for various η. The evolution of the squeezing

parameter ξ2 was simulated using (5.66) with a uniform detection efficiency η across all

modes. For comparison, the system evolution where only the Jz channel exists is included

to illustrate that the presence of the higher order modes makes the system more sensitive to

detection efficiency. This can be clearly seen in (5.66), where the last term, corresponding

to the additional measurement channels, only serves to cause extra dissipation when η < 1.

So far we have examined two limiting cases, one in which each atom is initially connected

to its own spatial mode, and another where every atom is connected to a single mode.

The intermediate regime will more closely approximate a real free space measurement of

an atomic cloud. We can model this by increasing the number of spins in each discrete

mode, effectively increasing the cloud density as opposed to worrying about varying the

spacing in the continuous mode description. If we allow each initial spatial mode to contain

Nm atoms, the individual spin measurements can be replaced with measurements of the



5 Atomic spin ensembles 143

1 2 3 4 5 6 7 8
M

0.2

0.4

0.6

0.8

1.0
m

in
(

2 z
)

= 1
= 0.8
= 0.6
= 0.9/0.5

Figure 5.10: Minimum ξ2 reached in a system of N = 8 atoms coupled to M spatial
modes, using a combination measurement and feedback. The different lines correspond to
different uniform detection efficiencies across each measurement channel. The yellow line
shows a special case where the detection efficiency is higher for the measurement of the
collective spin Jz, and lower for the other modes imaged onto the CCD.

collective sub-systems,

bn =
√
γ j(n)

z

→ bm =
√
γ J (m)

z =
√
γ

Nm∑
n

j(n)
z ,

(5.67)

where m is the mode index. The collective z-spin component of the full system is now

Jz =

M∑
m

J (m)
z , (5.68)

where M is the total number of input modes, and the total number of atoms in the

system is N = Nm ×M . The other spin operators can be transformed accordingly, and

otherwise the model remains unchanged. As in the case with a single input mode, in this

idealised setup the total spin of each sub-system is conserved since there are no operations

involving the individual atoms. This comes with the numerical advantage of good system

size scaling, as each sub-system can be represented by a Dicke states [93] (eigenstates of

J
(m)
z ), which have dimension Nm + 1 as opposed to 2Nm .
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Figure 5.11: Minimum ξ2 reached in a system of N atoms coupled to M spatial modes,
using a combination measurement and feedback. The different lines correspond to an
increasing number of modes M . The detection efficiency was kept constant at η = 0.9 for
the central measurement mode, and η = 0.5 for the modes imaged onto the CCD. The
dashed line shows a single example of how ξ2 scales with perfect detection efficiency, which
is independent of the number of modes M .

Figures 5.10 and 5.11 show how the maximum squeezing, using the outlined feedback

scheme, scales with the number of modes M and the total number of atoms N . The

point of maximum squeezing was taken to be the minimum values of ξ2
z in the time

evolution of a state starting as a coherent spin state, like those shown in Figure 5.9.

Figure 5.10 shows how the squeezing scales in a system of N = 8 atoms that are spread

over an increasing number of modes M . This leads to an increased sensitivity to detection

efficiency, which comes from the dependency on feedback to cancel out the noise from the

additional measurement channels. Physically this corresponds to making measurement

of an atomic cloud with a decreasing density. In this figure the detection efficiency was

varied uniformly alongside an example of a more realistic efficiency split. If the central

mode b̃0 is separated in the Fourier plane and measured with a photodiode, the detection

efficiency could be very high η ≈ 0.9. The other modes imaged onto a CCD would have

a significantly lower detection efficiency η ≈ 0.5. These slightly more realistic values

were also used in Figure 5.11. In this figure the total number of atoms is varied with

the detection efficiency held constant. As before, for the same detection efficiency, the
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achievable squeezing is less if the atoms are spread across more input modes. However, in

each case the maximum squeezing still scales with the total number of atoms, suggesting

this feedback scheme would continue to work well for large systems.

5.4 Steady state squeezing

So far, we have expanded upon a scheme for continuous measurement and feedback to

produce spin squeezing, that makes use of information scattered outside of the uniform

collective spin mode. An appropriate choice of feedback can be used to cancel out the noise

otherwise induced by these additional measurement channels. As previously mentioned,

this method of producing unconditional spin squeezing is transient, in the sense that a

maximally squeezed state is achieved and if the measurement continues, the squeezing is

undone. One solution to this issue is to simply stop the measurement, in practice however

this is often not a convenient solution. Having a squeezed state as the steady state of the

measurement procedure would be a much more useful resource. This would in principle

be more robust against noise and could be prepared and held without worrying about the

timing necessary to finish the measurement procedure at the point of maximum squeezing.

With the goal of producing steady state squeezing, we can initially try setting the feedback

strength λ(t) constant in the current model. In this case we can find the steady state

solution to the equations for Jx, Jy and Jz using the master equation (5.66). This in turn

can be used to find an expression for the steady state of the squeezing parameter ξ2
z ,

lim
t→∞

ξ2
z = N

(
κ+ λ2/κ

4λ

)
1

〈Jx〉

=
N

2

1

〈Jx〉
.

(5.69)

In the second line we have minimised the term in parenthesis which occurs when the

measurement strength equals the feedback strength κ = λ. This does not necessarily max-

imise the value of 〈Jx〉, but we know that its theoretical maximum is N/2, which implies
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in steady state that ξ2
z ≥ 1. There are many ways to alter aspects of the measurement or

feedback procedure that might improve upon this result. Before exploring this however,

we will introduce another metric that might better quantify the usefulness of the final

state, the Quantum Fisher Information (FQ).

The main goal of the feedback procedure is to produce a state useful for metrology. There

is a special class of entangled states that can provide sensitivity beyond the standard

quantum limit of measurement precision. Squeezed states are among these, but the full

class of states is identified by the Quantum Fisher Information [108]. For this reason we

look at calculating this property in states produced by our model. Classically, Fisher

Information is a measure of the information that some observable X carries about some

unknown parameter θ, upon which the probability of X depends. Formally it is defined

F (θ) =
∑
x

1

P (x|θ)

(
dP (x|θ)

dθ

)2

, (5.70)

where the sum covers over all possible results x of measuring X. P (x|θ) is a likelihood

function, which gives the conditional probability of seeing a particular result x, given a

value of θ. Good measurement observables are highly sensitive to changes in θ, and can

be used to accurately determine its value. Correspondingly these observables have a high

associated Fisher Information. The Quantum Fisher Information of a state ρ is defined as

the maximum value of (5.70) considering all possible measurements.

In the spin system we are concerned with, X would be an observable property of the quan-

tum state, and θ could be any phase shift arising from a unitary transformation e−iθGρ eiθG,

generated by some Hermitian operator G. For example, in Ramsey spectroscopy an initial

state is effectively rotated by some angle which cannot be measured directly but needs to

be estimated. Figure 5.12 shows a spin state rotated around the y axis, where the rotation

is described by the transformation e−iθJyρ eiθJy . The angle of this rotation can be esti-

mated by measuring the observable Jz, and the Quantum Fisher Information quantifies

how useful the initial state is for this. In this case a squeezed state would have a higher
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Figure 5.12: Projection of the y and z quasi-probability distributions for the collective
spin state of an atomic ensemble. In a Ramsey spectroscopy process, an initial state, rep-
resented by the dotted line, is rotated after a sequence of optical pulses and free evolution,
by some angle θ around the y axis. The variance of the final state dictates how well the
angle θ can be estimated by making measurements of Jz.

value of FQ because measurements of Jz would provide greater certainty as to the value

of θ.

For phase shifts arising from a unitary transformation, the Quantum Fisher Information

can be expressed as,

FQ(ρ,G) = 2
∑
k,k′

(αk − αk′)2

αk + αk′

∣∣ 〈k∣∣G∣∣k′〉∣∣2, (5.71)

where |k〉 are the eigenstates in the spectral decomposition ρ =
∑

k αk |k〉〈k|, and the sum

only covers terms where αk+αk′ > 0. In the example of Ramsey spectroscopy, with a state

initially orientated along the x-axis, G = Jy was a meaningful generating operator. With

some manipulation it can be seen that for a pure state (5.71) is equivalent to measuring

the variance of the generating operator FQ = 4(∆G)2. The squeezed states that we have

been considering have a large variance in Jy to accommodate a reduced variance in Jz, and

for pure states this has a clear correspondence with a high Quantum Fisher Information.

For a coherent spin state FQ = N , and in general a signature of states with enhanced

usefulness for metrology is that FQ increases better than linearly with system size, up to

FQ ≈ N2 at the so-called Heisenberg limit.
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Figure 5.13: Time evolution of an ensemble average of N = 10 atoms, calculated using
the feedback master equation (5.66), with a constant feedback strength λ. Sub-figure (a)
shows the evolution of the squeezing parameter ξ2

z , and sub-figure (b) shows the Quantum
Fisher Information FQ.

Figure 5.13 shows the time evolution of the squeezing paramater ξ2
z alongside FQ in an

ensemble average of N = 10 atoms, simulated using (5.66) with a constant feedback

strength and perfect detection efficiency. Initially FQ = N as expected for a CSS, it

increases as squeezing is established before dropping off again. This reflects the transient

squeezing. Figure 5.14 shows how the steady state FQ scales with system size, alongside

the maximum value FQ reaches in the earlier stages of the time evolution. The steady

state value scales linearly with system size, again indicating that the steady state has

no useful enhancement for metrology. By comparison the maximum Fisher information

reached in the time evolution, exhibits quadratic growth with system size.

We can look at single trajectories to gain insight into why the steady state does not exhibit

squeezing or a high Quantum Fisher Information. One visible factor in single trajectories is
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Figure 5.14: Scaling of the Quantum Fisher Information FQ with system size N in an
ensemble average of atoms undergoing measurement and feedback. The blue line ρss was
calculated from the steady state of the feedback procedure, whereas the orange line ρmax
corresponds to the highest point of FQ in time evolution simulations of the system.

that the mean value of 〈Jz〉 has significant noisy oscillations around zero. This reduces the

purity of the ensemble averaged state. This noisy drift might be alleviated by filtering the

measurement record to remove high frequency noise. An error signal ε(t) can be derived

from a temporal low-pass filter,

τ ε̇(t) + ε(t) = I(t), (5.72)

where I(t) is the measurement record (5.46). The measurement record drives the error

signal, but ε(t) is damped and only ends up retaining the low frequency < 1/τ components.

The high frequency components are dominated by the measurement noise, and removing

them should lead to less noise being reintroduced to the system via feedback. The error

signal can be used in place of I(t) in the feedback term of the master equation,

ρ̇fb = −iε(t)[F, ρ]. (5.73)

Since the error signal is no longer described by a Wiener process, (5.73) can be added

to the measurement master equation (5.45) without an Ito correction term. The result-
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Figure 5.15: Single trajectories from a system undergoing continuous measurement, with
feedback to try and stabilise the mean spin component Jz. The trajectories were simulated
using a stochastic master equation, where in sub-figure (a) the measurement of Jz is
directly reintroduced to the system via feedback. In figure (b) the measurement signal is
first put through a low-pass filter and then used for feedback.

ing master equation is difficult to work with analytically but single trajectories can be

simulated numerically. Figure 5.15 shows two trajectories following 〈Jz〉, using the direct

measurement signal for feedback, and the other using the filtered signal. There is visi-

bly less high frequency noise when using the filtered signal, however the mean spin still

drifts significantly. A small sampling of possible measurement strengths λ, and filter time

constants τ , suggest that a low-pass filter alone is not enough to successfully damp Jz.

Future work will be required, and is ongoing, to produce a stable steady state. In the limit

of large N semi-classical equations of motion can be used to describe the spin system,

which may give further insight into how to better damp Jz. It is also possible that the

information scattered into other measurement channels could be useful to this end.
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5.4.1 Outlook

In this chapter we have presented a free-space dispersive measurement model for a cloud

of atoms. We outlined an approach to spin squeezing using measurement and feedback

of the collective spin mode Jz, as well as examining the detrimental effects of scattering

into other modes. With the measurement model we showed how increasing the atomic

spacing created distinct modes where eventually local information about each atom could

be obtained. Through detailed examples we showed how measurements of scattered light

could be constructed so as to provide no information about the current state other than

the noise from that mode driving it. In the idealised case of perfect measurement and

direct feedback, the effect of this noise could be entirely negated. We illustrated how

such measurements could be engineered in an optical setup, where information from the

collective spin mode is extracted and measured independently. This makes non-conditional

squeezing viable in the case where the atoms are spread across several spatial modes, and

even when each individual atom is connected to its own spatial mode.

Following this, we looked at the steady state of the feedback procedure, motivated by

finding a more practical and stable resource for metrology. To better analyse the final

state we introduced the Quantum Fisher Information as a metric of useful entanglement.

Currently the steady state of the feedback procedure is not useful for metrology, however

we have begun exploring ways to improve this.
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6 Conclusions

We have shown examples of where measurement and feedback can be used to produce non-

classical states in nano-mechanical systems, and in an atomic spin ensemble. Measurement

is an important aspect of all real experiments, and a continuous description of measurement

can be used to construct powerful theoretical models, as well as practically provide a means

to drive and prepare quantum states. Combined with feedback, these tools have broad

application in both single-body and many-body systems, and this has been the foundation

of the research in this thesis. Below we summarise the key results from previous chapters

and discuss possible directions for future work.

In chapters 3 and 4, we focused on a single-body nano-mechanical resonator. Using a

combination of state estimation and feedback we demonstrated a route to ground state

cooling with a magnetically levitated particle. With measurement alone, we showed that

a near minimum uncertainty state of a free particle could be produced, suitable for tests

of a mechanism for wave-function collapse. The results presented offer plentiful scope for

further work. Both state preparation procedures are limited by quantum measurement

efficiency and we extensively explored methods for improving this. Physical implementa-

tion will rely on current experiments improving isolation from classical heating sources,

and steady progress is being made in this direction[46, 71]. With no fundamental limit

to reaching below single phonon-occupancy in these systems, theoretical models can pre-

pare for when they are experimentally realised. A ground state system on its own does

not exhibit novel quantum behaviour beyond achieving the minimum bound of the quan-

tum uncertainty limit. Assuming ground state cooling can be successfully implemented,

one way to observe quantum mechanical effects in the motion is to perturb the trapping

potential[81]. The states predicted by the feedback models presented, could be used in

further simulations of such a perturbation, to assess the visibility of quantum features as

a function of phonon occupancy, state purity and squeezing. It would also be interesting

to explore how the presence of a second quantum handle, such as the internal state of



6 Conclusions 153

a nitrogen vacancy centre, could be used to engineer novel states such as macroscopic

superposition[58]. In the case of preparing a minimum uncertainty free particle state,

there are clear directions for how to develop the current model, in order to bring it closer

still to experiments. The purpose of this model was to find the practical limits of an ex-

perimental realisation, and to provide guidance as to the optimal measurement sequence.

Including the effects of the weak trapping potential and classical heating sources would

provide further insight into these questions.

In chapter 5 we explored measurement and feedback in a many-body context. We looked

at preparing a form of many-body entanglement, a spin squeezed state of an atomic en-

semble. These systems have been studied extensively and have applications in quantum

information[95] and in metrology[96]. We examined how the detrimental effects of certain

light scattering, which destroys quantum correlations by revealing local information about

the atoms, can be suppressed with feedback. We showed that by careful choice of mea-

surement, decoherence due to coupling to the environment could be completely undone

under ideal conditions. The work presented initially considered the case of light scatter-

ing from the atoms into a single collective mode, and then the transition to where each

atom is effectively coupled to completely separate modes. In the latter case, a free-space

measurement of the atomic cloud is not expected to produce squeezing[107], however, this

is rectified by the proposed feedback procedure. The possibility of steady state squeezing

was then investigated, and there is ongoing work to this end. More generally, it would

also be interesting to apply this method of cancelling noise from undesirable measurement

channels, in other quantum systems.

In summary, the combination of measurement and feedback offers incredible flexibility in

application to both theorists and experimentalists. As well as naturally being useful for

gaining information and providing stabilisation, both measurement and feedback can be

applied locally or globally, allowing for effective long-range couplings. State engineering

via non-coherent processes is of growing interest[109], as control over quantum systems

continuous to improve. These tools are likely to play a key part in future experiments and
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in the next generation of quantum technologies.
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