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Abstract

In this thesis, we investigate the numerical solution of large-scale linear matrix

equations arising from the discretisation of diffusion and convection–diffusion par-

tial differential equations (PDEs). The matrix equations which arise can be Lya-

punov, Sylvester or generalised Sylvester equations. Both Lyapunov and Sylvester

equations can be solved using a rational Krylov approach, where orthonormal

bases of rational Krylov subspaces are used to project the matrix equations. The

projected matrix equation is then solved, and a low-rank solution is computed. As

part of the generation of the orthonormal basis, the rational Krylov subspace re-

quires a selection of poles, which, in this thesis, are chosen a priori. For Lyapunov

equations arising from the discretisation of diffusion PDEs, we derive an explicit

rational approximation for the solution for both 1- and 2-sided projections and

provide a comparison of the two approaches. For both Lyapunov and Sylvester

equations, we adapt the iterative rational Krylov algorithm (IRKA) from model

order reduction to generate efficient pole choices for rational Krylov subspaces,

which we then use in 2-sided projections. We perform thorough comparisons of

pole choice approaches to solve the matrix equations from the practical point

of view by considering convergence rates, computational costs and scalability.

As a result, we can see that the IRKA poles can be competitive choices for a

large set of realistic problems. For the generalised Sylvester equation we derive a

stationary iterative method, determine a convergence criterion, and evaluate the

performance via numerical results.
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Chapter 1

Introduction

Partial differential equations (PDEs) are widely used to model many real-world

phenomena such as climate and biological systems, as well as in material sciences,

and modern aircraft and spacecraft. The resulting models are often very complex

and difficult to solve analytically, thus, they require efficient numerical solutions

which can capture the characteristics of the physical system.

It is common to first discretise PDEs (using, for instance, finite differences, or

finite elements), which can often lead to large, sparse linear systems. Historically,

a lot of focus has been on developing methods for solving large scale systems of

linear equations Ax = b, with A ∈ Cn×n, b ∈ Cn in order to obtain computa-

tionally efficient and accurate numerical solutions. Such methods can be either

direct or iterative.

For coefficient matrices of moderate dimensions, direct methods, such as LU

or Cholesky factorisations, are often used. They can obtain accurate solutions in

a finite number of steps and can take advantage of the sparsity pattern and/or

structure of the coefficient matrix. For larger, sparse linear systems, iterative
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Chapter 1 – Introduction

methods may be more efficient. Simple stationary iterations such as the Jacobi,

Gauss–Seidel and SOR methods can be easily implemented, but they often are

very slow or fail to converge. Multigrid methods are an appealing alternative

that can solve some classes of linear systems by using mesh information from

different discretisations of the PDE. However, they can also diverge or exhibit

slow convergence.

A widespread approach for solving linear systems with large, sparse coefficient

matrices is to use Krylov subspace methods. These methods are split into two

main classes, based on whether the coefficient matrix is symmetric or not. For

the symmetric case, the conjugate gradient method for positive definite matrices

[42] and MINRES for indefinite matrices [62] are popular choices, while for non-

symmetric coefficient matrices, we consider GMRES [73] in this thesis, with many

competitive approaches developed, such as, for example, BiCGStab(`) [79, 87],

QMR [33] and IDR(s) [80]. Applying these Krylov subspace methods in their

simplest forms often results in very slow convergence, which is remedied by us-

ing preconditioners. Preconditioning aims to replace the original linear system

with one which is easier to solve. The development of good preconditioners is an

active area of research, with suitable preconditioners often developed to tackle

problem-specific issues.

The sizes of the coefficient matrices of linear systems have increased rapidly over

time and, for some extremely large problems, even storing A and b can be very

expensive. For some 2-dimensional PDEs, the problem can either be written as

a linear system or as a matrix equation.

Linear matrix equations of the form A1XB1 + · · ·+AkXBk = F , with Ai ∈ Rn×n,

Bi ∈ Rm×m, F ∈ Rn×m, can arise in many scientific areas, such as stability and

2



Chapter 1 – Introduction

control theory [1, 34], model order reduction of dynamical systems [8], PDE

constrained optimisation [81], and data assimilation [32]. In this thesis we con-

sider matrix equations arising from the discretisation of diffusion and convection-

diffusion PDEs. We study two main types of linear matrix equations. One is given

by Sylvester equations, AX+XB = F , which arise in, for instance, the discretisa-

tion of convection–diffusion PDEs [64], and block-diagonalisation of 2-by-2 block

triangular matrices [88, Ch. 7.1.4]. The Sylvester equation can be generalised to

a multi-term matrix equation AX +XB +
∑m

i=1 NiXMi = F , called generalised

Sylvester equations [64, 71]. The other set of common matrix equations is given by

Lyapunov equations, which take the form AX+XAT = F , and can be considered

a special case of Sylvester equations, with B = AT . Lyapunov equations have an

important role in, for example, control theory [1, 34], and the solution of algebraic

Riccati equations [10, 12]. As for Sylvester equations, a multi-term version of the

Lyapunov equation can be obtained, given by AX + XAT +
∑m

i=1NiXN
T
i = F

and called a generalised Lyapunov equation. These can arise in the context of

stochastic differential equations, see e.g. [5, 18, 75].

Numerous methods have been developed to work directly with the matrix equa-

tion formulation. As in the case of linear systems, there are multiple approaches

to solving Lyapunov and Sylvester equations. The Bartels–Stewart method [3] is

a direct method based on the Schur decomposition that is widely used for smaller

problems. For large problems involving sparse matrices, the ADI method [91] is

popular, as are methods based on projections into standard [45, 48, 50, 51, 65],

extended [20, 53, 64, 65, 76] and rational Krylov subspaces [4, 21–23]. We remark

that the ADI method and rational Krylov projections are equivalent when the

poles coincide with the Ritz values of the rational Krylov projection [21].

In order to solve large matrix equations, it is common in projection methods

3



Chapter 1 – Introduction

to exploit the small numerical rank of the solution, which can be ensured by con-

sidering low rank right-hand sides. The idea is that these iterative methods are

feasible when we do not require too many iterations. This is precisely the case

when the solution has low rank or is well approximated by a low rank matrix.

This phenomenon occurs because of the rapid decay to zero of the singular val-

ues of the solution matrix. Several theoretical results describe the singular value

decay of the solution and how it can be approximated, e.g. [2, 5, 37, 69]. Large

scale Sylvester and Lyapunov equations with right-hand sides which are not low

rank have only been briefly analysed and the literature lacks efficient numerical

methods in general, with banded right-hand sides being one of the exceptions [66].

Generalised Sylvester and Lyapunov equations are more difficult to analyse and

solve, and fewer solution methods are available, than for standard matrix equa-

tions. Note that the approaches mentioned for the standard Sylvester and Lya-

punov matrix equations cannot be straightforwardly extended. For generalised

Lyapunov equations, ADI-preconditioned solvers [5, 18], a greedy low rank ap-

proach [54], and a stationary iterative method [75] have been proposed. The solu-

tion of generalised Sylvester equations has also been studied, with [49] presenting

an approach for matrices with a low-rank commutativity property, and with [71]

discussing a projection-based approach in the context of stochastic Galerkin ma-

trix equations. For multi-term matrix equations arising from the discretisation of

convection–diffusion PDEs, an extended Krylov subspace method is mentioned

in [64].

4



Chapter 1 – Introduction

1.1 Thesis outline

In this thesis, we focus on solving Lyapunov, Sylvester and generalised Sylvester

equations arising from the discretisation of diffusion and convection-diffusion

PDEs. This thesis is structured as follows. In Chapter 2 we present some pre-

liminary results from linear algebra, as well as details about the discretisation of

our model problems. We then discuss common practices for solving both linear

systems and matrix equations. We conclude Chapter 2 by numerically solving

equivalent linear systems and matrix equations, highlighting the advantages of

solving matrix equation approaches over linear systems for our problems of inter-

est.

We dedicate Chapter 3 to the study of the Lyapunov equation arising from the

discretisation of the diffusion PDE. We begin by presenting an explicit ratio-

nal approximation for the solution of the Lyapunov equation, and present 1-

and 2-sided projections onto rational Krylov subspaces, as well as a numerical

comparison between the two approaches. The rest of the Chapter focuses on the

2-sided projection approach and first presents a numerical study of the attainable

accuracy for the projection method and a comparison with theoretical bounds.

In the final part of Chapter 3 we explore pole choices, including the commonly

used Zolotarev poles and the iterative rational Krylov algorithm (IRKA) poles

[39] adapted from model order reduction of dynamical systems. We numerically

compare our rational Krylov method with these a priori pole methods with the

adaptive pole algorithm from [23] for a variety of test problems with both rank-1

and higher rank choices of right-hand sides and discuss the scalability of the solver.

In Chapter 4 we focus on the discretised convection-diffusion PDE. Depending
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on the convection wind, the PDE can lead to three types of matrix equations,

a Lyapunov equation, a Sylvester equation, or a generalised Sylvester equation.

We consider each of these matrix equations in turn. For the Lyapunov equations,

we discuss the projection method and how it is influenced by the nonnormality of

the coefficient matrices, and derive eigenvector and field of values bounds on the

norm of the error. We then discuss a priori pole choices and present numerical

results with those. For the Sylvester equation, we present the rational projection

method, and compare pole choices in our numerical examples. The numerical ex-

periments we show for this equation span a range of convection winds which lead

to Sylvester equations. Finally, we discuss a stationary iterative method for the

generalised Sylvester equation, and describe the convergence of the fixed point

iteration. We finish by presenting numerical results for solving the generalised

Sylvester equation with this stationary iterative method.

In Chapter 5 we present concluding remarks and discuss routes for future work.

All numerical tests presented in this thesis were performed on a MacBook Air

(M1, 2020) macOS Monterey Version 12.0.1, 8-Core CPU, 7-Core GPU, 16 GB

RAM (LPDDR4), MATLAB Version 9.10.0.1710957 (R2021a) 64-bit (maci64).

1.2 Aims and contributions

The aim of this thesis is to obtain novel methods for efficiently solving Lya-

punov and Sylvester equations arising from the discretisation of diffusion and

convection–diffusion PDEs. Justifying and validating the matrix equation ap-

proach, as well as understanding the scalability of the method as the problem

size increases, will be two of the objectives of this thesis. Moreover, we are inter-

6



Chapter 1 – Introduction

ested in understanding the most appropriate projection approaches to reduce the

dimensions of the matrix equations described. To accomplish this, we consider

projections onto rational Krylov subspaces and compare our results with standard

and extended Krylov subspaces. Furthermore, we note that the rational Krylov

subspace requires us to choose a set of poles, usually a priori, which we then use

to construct the space. We wish to determine the most appropriate poles to use

while generating the rational Krylov subspace, both accurately and efficiently. To

do this, we provide both mathematical analysis and numerical studies. Finally,

we consider a generalised Sylvester equation, for which we aim to understand how

a stationary iterative approach can be used to solve the matrix equation. To this

end, we make the following contributions.

• For Lyapunov equations arising from the discretisation of diffusion PDEs,

in Section 3.2.2 and Section 3.2.3, we derive explicit rational approxima-

tions for the 1- and 2-sided projections, respectively. The 2-sided rational

function has also been derived in [21] by using the skeleton approximation.

Obtaining the rational function explicitly allows for better understanding of

the rational approximation and, as a result, the best poles for the rational

Krylov basis.

• To the best of our knowledge, a numerical comparison of the 1- and 2-sided

rational projections has not been performed in the literature. We present

in Section 3.2.4 such a comparison by considering the convergence curves

and number of iterations of the two methods in Figure 3.1, as well as CPU

times.

• In Section 3.3 we explore a very strict stopping tolerance in order to un-

derstand the attainable accuracy of our projection method for Lyapunov

equations arising from the discretisation of diffusion PDEs. We compare

7
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standard, extended and rational Krylov bases, and determine when the two

phases of the convergence (one corresponding to a reduction in the relative

residual and one corresponding to noise) occur.

• In Algorithm 5 we adapt the IRKA approach developed in the field of model

order reduction [39] to generate poles for the rational Krylov subspace for

Lyapunov equations arising from the discretisation of diffusion PDEs. The

IRKA poles have been used as ADI poles in [9, 31], and are mentioned in

the context of rational Krylov projections in [93]. Despite being considered

inefficient in these papers, we find in Section 3.6 that they can outperform

other a priori chosen poles, as well as the state-of-the-art adaptive approach

from [23] for a variety of test problems.

• For Lyapunov equations with nonsymmetric coefficient matrices, in Theo-

rem 4.2.1 we present an eigenvector bound for the norm of the error of the

rational approximation, while in Theorem 4.2.2 we present a field of values

bound for the error. A field of values bound is also obtained in [23], but we

note that this bound is looser than ours as the authors derive it with the

aim of comparing the rational Krylov and ADI solutions.

• In Section 4.2.5 and Section 4.3.3 we present numerical results for ratio-

nal projections with Zolotarev and IRKA poles for a wide variety of Lya-

punov and Sylvester equations arising from the discretisation of convection-

diffusion PDEs. We find that, as the problems become more convective,

solving the matrix equations with Zolotarev poles is often outperformed

by solving them with IRKA poles, highlighting their effectiveness for these

types of problems.

8
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• In Section 4.4 we adapt the stationary iterative method for generalised

Lyapunov equations from [75] to work with a generalised Sylvester equation

arising from the discretisation of convection–diffusion PDEs. We provide a

convergence criterion for this in Lemma 4.4.2 and present numerical results

in Table 4.5.

9



Chapter 2

Background material

Throughout this chapter we present background information related to the prob-

lems and methods which we will consider in this thesis. This chapter is split into

four main parts. We begin with some results from linear algebra, which will in-

clude topics such as eigenvalues and eigenvectors of matrices, nonnormality, and

Kronecker products. We then present the discretisation of our model problems

and relate the matrix equation formulations to equivalent linear system forms.

The last two sections of this chapter deal with linear systems and matrix equa-

tions, respectively, and include details about commonly used solvers. We finish

the chapter with a numerical comparison between linear system and matrix equa-

tion solvers for both our discretised model problems, highlighting the advantages

and disadvantages of both.

2.1 Linear algebra results

In this section we present some results from linear algebra that we will use

throughout this thesis.

10



Chapter 2 – Background material

Definition 2.1.1. λ ∈ C is an eigenvalue of A ∈ Rn×n (or Cn×n) if a nonzero

vector v ∈ Cn exists such that Av = λv. The vector v is an eigenvector of A

associated with λ. The set of all eigenvalues of A is called the spectrum of A and

is denoted by σ(A).

The eigenvalues λ of a matrix A are also roots of the characteristic polynomial

det(A − λI) = 0 and there are at most n distinct eigenvalues for a matrix A of

size n× n.

Furthermore, if matrix A is tridiagonal and Toeplitz, i.e.,

A =


a b 0

c a
. . .

0
. . . . . .

 ,

then the eigenvalues are known and can be determined by the formula [55, The-

orem 2.2]

λk = a− 2
√
bc cos

( kπ

n+ 1

)
, k = 1, 2, . . . , n (2.1)

where a is the entry on the main diagonal and b, c are the entries on the two

off-diagonals of A. Using this, it is clear that we have complex eigenvalues if and

only if bc < 0.

The modulus of the maximum eigenvalue is called the spectral radius and

is denoted by ρ(A), with

ρ(A) = max
λ∈σ(A)

|λ|. (2.2)

Definition 2.1.2 (see [44]). For A ∈ Rn×n (or Cn×n),

f(A) :=
1

2πi

∫
Γ

f(z)(zI − A)−1dz,

11



Chapter 2 – Background material

where f is analytic on and inside a closed contour Γ that encloses the spectrum

σ(A).

For equivalent definitions of matrix functions, see [44, Ch. 1.2].

Definition 2.1.3. A matrix A ∈ Rn×n (or Cn×n) is diagonalisable if there exists

an invertible matrix Z ∈ Cn×n containing n right eigenvectors as columns such

that

Z−1AZ = diag(λ1, . . . , λn) =: Λ.

Otherwise, A is nondiagonalisable.

Definition 2.1.4. A matrix A ∈ Rn×n (or Cn×n), can be expressed as

A = QUQ∗,

where Q is a unitary matrix, and U is an upper triangular matrix. This is called

the Schur form of A.

A matrix A ∈ Rn×n is said to be normal if there exists an orthonormal basis

for the eigenvectors. There are equivalent characterisations of normality. For

example, A ∈ Rn×n is normal if and only if

ATA = AAT .

Otherwise, A is nonnormal.

When dealing with convection–diffusion problems in Chapter 4, we will be inter-

ested in how nonnormal the involved matrices are. There are several quantities

that can be used to measure the degree of nonnormality and we discuss some of

the most common here.

12
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Given a diagonalisation of a matrix A = ZΛZ−1, then we say a matrix is highly

nonnormal if the eigenvector condition number, κ(Z) = ‖Z‖‖Z−1‖ � 1. Alterna-

tively, we can characterise nonnormality using the field of values or pseudospectra.

Definition 2.1.5. The field of values (or numerical range) of matrix A ∈ Cn×n

is given by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}. (2.3)

The field of values of a normal matrix is the convex hull of the eigenvalues [52].

Accordingly, a matrix is highly nonnormal if its field of values is much larger than

the convex hull of the eigenvalues.

Another concept used for characterising nonnormality is the ε-pseudospectrum,

which describes the region of the complex plane in which the eigenvalues may lie

if the matrix A was perturbed by ε.

Definition 2.1.6 (see [85]). Let A ∈ Cn×n and ε > 0 be arbitrary. The ε-

pseudospectrum σε(A) of A is the set of z ∈ C such that

‖(zI − A)−1‖ > ε−1.

The ε-pseudospectrum of a normal matrix is the union of discs of radius ε cen-

tred at the eigenvalues of A [85]. If A is highly nonnormal, we expect the ε-

pseudospectrum to enclose a much larger region of the complex plane.

We show in Figure 2.1 examples of the field of values and the pseudospectrum for

both normal and nonnormal matrices. Both images have been obtained using the

eigtool [94] package in MATLAB. We use small, 5×5 matrices, with equal eigenval-
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(a) Example of field of values and pseudospectrum of a normal matrix T , with condition
number 13.9282.

(b) Example of field of values and pseudospectrum of a nonnormal matrix G, with
condition number 812.9143.

Figure 2.1: Examples of fields of values and pseudospectra for normal and
nonnormal matrices.

ues to show this. The normal matrix is given by T = tridiag(1,−2, 1), while the

nonnormal matrix is given by G = MTM−1, where M is a mildly ill-conditioned
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matrix. As expected, we can see that for the normal matrix, the field of values is

represented by the convex hull of the eigenvalues (a straight line here), and the

pseudospectrum is given by disjoint sets around each eigenvalue. For the nonnor-

mal matrix, we see that the shapes cover a much larger area in the complex plane.

As this thesis focuses on solvers for matrix equations, it is important that we

describe some preliminary results on Kronecker products, that connect linear

systems and matrix equations.

Definition 2.1.7. Let A ∈ Rm×n and B ∈ Rp×q. Then the Kronecker product

(or tensor product) of A and B is the matrix

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 ∈ Rmp×nq.

The operator vec : Rm×n → Rmn is such that vec(A) is the vector obtained by

placing the columns of the matrix A on top of one another.

Proposition 2.1.1. (see [56]) For any matrices of appropriate dimensions A,

B, Ai, Bi, X, the following properties hold:

(BT ⊗ A) vec(X) = vec(AXB) (2.4)

(A1 ⊗B1)(A2 ⊗B2) · · · (Ak ⊗Bk) = (A1A2 · · ·Ak)⊗ (B1B2 · · ·Bk). (2.5)

For any function f(λ) defined on the spectrum of a square matrix A, we have

f(A⊗ I) = f(A)⊗ I,

f(I ⊗ A) = I ⊗ f(A).

(2.6)
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Furthermore,

f(I ⊗ A)f(A⊗ I) = f(A)⊗ f(A). (2.7)

The eigenvalues of a Kronecker product A⊗B are products of the eigenvalues of

the square matrices A and B [88]:

σ(A⊗B) = {αiβj : αi ∈ σ(A), βj ∈ σ(B)}.

2.2 Discretisation of model problems

In this section we describe the discretisation of diffusion and convection–diffusion

PDEs used in Chapters 3 and 4.

2.2.1 Diffusion PDE

A ubiquitous problem is the 2D Poisson PDE, which we will use as a model

throughout Chapter 3:

−∆u = f, in Ω = (0, 1)2, with u(x, y) = 0 on ∂Ω. (2.8)

We discretise the Poisson PDE (2.8) using second-order central finite differences

in a square domain Ω = (0, 1)2, as this discretisation leads to second-order local

truncation error. Note that other finite difference schemes are possible, as well as

other discretisation approaches. Throughout this section we follow the approach

presented in [64] and, for completeness, outline the steps of the discretisation.

The idea behind the finite difference method is that we want to find an approx-

imate numerical solution to a PDE. For simplicity of exposition, we use equally
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spaced grid points to present our discretisation, but we note that other meshes

will be considered in our numerical examples in Section 3.6. Let our uniformly-

spaced internal grid points be denoted by Ωh = {(xi, yj) : xi = ih, yj = jh; i, j =

1, 2, . . . , n}, where h = 1
n+1

is the grid spacing. Note that i, j = 0 and i, j = n+1

correspond to the boundary conditions, and since we consider only homogeneous

Dirichlet conditions, we can ignore them here. To approximate the solution of the

PDE, we use a grid function, X, which has the grid points as domain and which

approximates the values of u. The value of X at the grid point (xi, yj) is denoted

by Xi,j, with i, j = 0, . . . , n+1. Note that Xi,j now includes the boundary, unlike

Ωh, and that X0,j = Xn+1,j = Xi,0 = Xi,n+1 = 0. Therefore, for each combination

of i, j = 1, 2, . . . , n, we have the approximations

uxx(xi, yj) ≈
Xi−1,j − 2Xi,j +Xi+1,j

h2
=

1

h2

[
1,−2, 1

]
Xi−1,j

Xi,j

Xi+1,j

 ,

and

uyy(xi, yj) ≈
Xi,j−1 − 2Xi,j +Xi,j+1

h2
=

1

h2

[
Xi,j−1, Xi,j, Xi,j+1

]
1

−2

1

 .

We can let X be an n × n matrix of the grid function values Xi,j. Similarly, we

have a matrix F ∈ Rn×n containing all values of the function f in (2.8) evaluated

at each grid point. Note that here, and throughout, we assume that the resulting

right-hand side matrix F = CCT has low rank, where C ∈ Rn×r can be either a

vector or a tall skinny matrix. We can then write the matrix form of the finite

difference approximation [64], leading to the symmetric Lyapunov equation

AX +XAT = F, (2.9)
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where

A = − 1

h2


−2 1 0

1 −2
. . .

0
. . . . . .

 ∈ Rn×n. (2.10)

We will present more information about the Lyapunov equation, as well as other

matrix equations in Section 2.4. Note that we can write (2.9) as a linear system

A vec(X) = vec(F ), where A is given by the Kronecker formulation,

A = I ⊗ A+ A⊗ I. (2.11)

2.2.2 Convection–diffusion PDE

Another useful model problem is given by a convection–diffusion PDE. In this sec-

tion, we present the finite difference discretisation of this PDE in two dimensions.

It is given by

−ε∆u+ w · ∇u = f, on Ω = (0, 1)2, with u(x, y) = 0 on ∂Ω, (2.12)

where w = (w1, w2) is the convection wind, and ε is the positive and constant

diffusion parameter. We are mainly interested in the convection-dominant case,

where |w| � ε, and we assume that w is incompressible, i.e., div(w) = 0. Fur-

thermore, we assume that the components of w are separable functions of the

space variables, i.e., w1(x, y) = φ1(x)ψ1(y), w2(x, y) = φ2(x)ψ2(y), and that Ω is

a square domain, Ω = (0, 1)2. We will, once again, follow the derivation from [64].

Our set-up of the convection–diffusion problem is similar to that of the Pois-

son PDE in (2.8). In fact, note that the first term in (2.12) involves the Poisson

operator. Accordingly, we will use the discretisation of the Poisson problem
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from Section 2.2.1 to discretise the convection–diffusion PDE. In particular, we

will use the coefficient matrix for the Poisson problem given in (2.10). This

means that we only need to present the discretisation for the second term in

the convection–diffusion PDE: w · ∇u = w1ux + w2uy. Once again, we consider

the set of internal grid points used for the approximation, Ωh = {(xi, yj) : x =

ih, y = jh; i, j = 1, 2, . . . , n}, where h = 1
n+1

. As in the discretisation of the

diffusion problem, we use a finite difference scheme to discretise. Specifically,

we use first-order central differences, as this is the simplest approach leading to

second-order truncation error. Note that there exist other possible discretisations

of the convection-diffusiuon problem. Since the finite difference solution can be

obtained using the grid function X, we recall that Xij represents the value of the

grid function at a specific grid point (xi, yj), i, j = 0, . . . , n + 1. Using this, we

then have

ux(xi, yj) ≈
1

2h
(Xi+1,j −Xi−1,j) =

1

2h

[
−1 0 1

]
Xi−1,j

Xi,j

Xi+1,j

 ,

uy(xi, yj) ≈
1

2h
(Xi,j+1 −Xi,j−1) =

1

2h

[
Xi,j−1 Xi,j Xi,j+1

]
−1

0

1

 .

The matrix B represents all the coefficients of the convection term that appear

in the grid point approximation:

B =
1

2h


0 1 0

−1 0
. . .

0
. . . . . .

 ∈ Rn×n. (2.13)
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Then, we can write the approximation to the convection–diffusion PDE from

(2.12) as follows, using (2.9) to approximate the Poisson part of the PDE:

−ε(AX +XAT ) + Φ1BXΨ1 + Φ2XB
TΨ2 = F, (2.14)

where

Φk = diag(φk(x1), φk(x2), . . . , φk(xn)),

Ψk = diag(ψk(y1), ψk(y2), . . . , ψk(yn)),

k = 1, 2, and F = CCT , as before. Note that, again, using (2.4), we can write

(2.14) as a linear system A vec(X) = vec(F ), where A is given by Kronecker

formulation,

A = −ε(I ⊗ A+ A⊗ I) + ΨT
1 ⊗ (Φ1B) + (BTΨ2)T ⊗ Φ2. (2.15)

2.3 Linear systems

A central theme in the history of numerical analysis is the progress in solving

discretised PDEs efficiently. Depending on the size of the problem, different

techniques and methods can be used. In this section, we present a short survey of

the most commonly used methods for solving discretised PDEs as linear systems.

A linear system takes the form

Ax = b, (2.16)

where x and b are vectors and, in this thesis, A is a sparse, square, and invertible

matrix. In the following sections we will present approaches for solving linear

systems using direct, stationary iterative, and Krylov subspace methods.
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2.3.1 Direct methods

In many cases, particularly when the coefficient matrix is small, direct methods

based on LU or Cholesky factorisations are efficient as they can find the solution

x accurately in a finite number of steps. Often, direct methods are optimised to

exploit sparsity patterns and can be very fast [19, 25], however, if the matrices

are very large (for example when they are impossible to store directly) or dense,

then these approaches can be very costly.

We now briefly discuss one of the most straightforward direct methods for solv-

ing linear systems, the LU factorisation, based on Gaussian elimination. This

involves decomposing the matrix A into a product of two simpler matrices, L and

U , which are, respectively, lower and upper triangular. Once the factors are ob-

tained, the algorithm consists of performing forward and backward substitutions

[88]. If the matrix is Hermitian and positive definite, then the two factors, L and

U can be made so that they are transposes of each other, so that A = LLT . This

is called a Cholesky factorisation.

Often, the factors we obtain from an LU or a Cholesky factorisation are less

sparse than the coefficient matrix A, making these methods memory intensive for

solving large linear systems. In order to deal with this issue, we can discard some

of the elements that make our factor L denser than A [11]. These approaches

are called incomplete factorisations, and a commonly considered one for Hermi-

tian positive definite A is the incomplete Cholesky factorisation. Note that, even

though we do not use these methods to directly solve linear systems, they can

be useful when we discuss the development of preconditioners. We consider a

dropping strategy based on sparsity. We choose a set, J , of index pairs, usu-

ally including the indices corresponding to the diagonal entries, and restrict all
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non-zero entries to places specified by these pairs of indices [88]. The LLT de-

composition would then be carried out as normal, with the only difference in the

result that any unwanted entries whose indices are not in J are not included in L

and LT . This implies that we could store the entries in R, even though in practice

we do not build this matrix. It is common to choose J to be the set of index pairs

that correspond to non-zero entries in A, such that A = LLT +R, where L is as

sparse as the lower part of A and R is the residual matrix. Note that a similar ap-

proach is possible for LU factorisations of non-Hermitian or indefinite matrices A.

The memory requirements and computational costs associated with using direct

methods for solving large linear systems make these approaches expensive, and

possibly unfeasible, when compared to other methods that we will cover. How-

ever, they are worth mentioning as the factors obtained are commonly used as

preconditioners, as we will present in Section 2.3.4.

2.3.2 Stationary iterative methods

Iterative methods are a common approach for solving sparse linear systems of

varying dimensions. The simplest such techniques are stationary iterative meth-

ods, and they can form a basis for more sophisticated algorithms. These usually

require an initial guess which is then updated by performing a number of steps

of the stationary method.

Understanding stationary iterative methods will be useful for us in Chapter 4, so

we will briefly discuss the general case. We look to split the coefficient matrix

A into two different simpler matrices, M and N , such that A = M − N , with

M nonsingular and easier to invert than A. This means that a linear system of

the form (2.16) becomes (M −N)x = b, i.e., Mx = Nx+ b. Using this notation
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allows us to generate a sequence of iterates using Mxk = Nxk−1 + b, i.e., a fixed

point iteration:

xk = M−1Nxk−1 +M−1b. (2.17)

As M and N do not depend on k, we call these methods where we split matrix A,

stationary iterative methods, or stationary splittings. To develop some specific

iterative methods mentioned, we use the notation A = D+L+U , where D is the

matrix containing only the diagonal of A, L is the strictly lower triangular part

of A and U is the strictly upper triangular part. Choosing different combinations

of D, L and U for M and N gives different iterative methods.

One of the most common and simple to implement stationary iterative meth-

ods is the Jacobi method. For this, M = D and N = −(L + U). Computing

the approximate solution xk is simple as D is a diagonal matrix and straightfor-

ward to invert and so, having computed D−1, we only require some matrix-vector

multiplications at each Jacobi iteration. Note that, in practice, for large linear

systems, these products can be quite costly to perform, but very straightforward.

An extension to the Jacobi stationary splitting is obtained if we introduce a re-

laxation parameter, ω and solve ωAx = ωb instead. Then, the splitting is given

by ωA = M − N , with M = D and N = (1 − ω)D − ω(L + U), and it is called

the damped Jacobi method.

We next describe two Gauss–Seidel methods. For the forward Gauss–Seidel ap-

proach we traverse the finite difference grid from left to right, and so we choose

M = D+L and N = −U as the splitting for A. Similarly, the backward Gauss–

Seidel method uses the splitting M = D + U and N = −L. In this case, on the

finite difference grid, the values are updated from right to left. Both approaches

are still straighforward, as the matrices M are either lower or upper triangular.
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Another very common stationary splitting is the successive over-relaxation (SOR)

iteration. This is generated by introducing a relaxation parameter ω ∈ (0, 2) in

the Gauss–Seidel iteration. Specifically, we consider ωAx = ωb and introduce the

splitting ωA = M −N , with M = D+ωL and N = (1−ω)D−ωU . With ω = 1,

this is the equivalent of the forward Gauss–Seidel method [72, Ch. 4.1], and note

that in a similar manner, we can generate an SOR iteration using the backward

Gauss-Seidel method.

The convergence of a stationary iterative method (2.17) is strongly connected

to the iteration matrix G = M−1N . To be precise, since xk = Gxk−1 + M−1b,

the error at the kth iteration, ek = x − xk, is given by ek = Gke0. Thus, the

sequence of iterates, (xk)
∞
k=0 converges if Gk → 0 as k → ∞. Moreover, a suffi-

cient condition for convergence is that the spectral radius ρ(G) < 1 [72, Ch. 4.2].

Finally, the spectral radius also dictates the asymptotic speed of convergence of

these methods – the nearer it is to 1, the slower the convergence rate will be in

general. For PDE problems, the convergence of stationary iterative methods can

be very slow, and so, better methods for solving those linear systems have been

sought.

2.3.3 Multigrid methods

Another approach for solving linear systems is given by multigrid methods. The

description below follows that of [83]. The motivation for this class of methods

is that when the linear system arises from discretising a PDE, we can compute

the solution to a linear system (2.16) by using mesh information from different

discretisations of the PDE. This is done by approximating the coefficient matrix

and residuals on a coarser grid, solving the cheaper coarse grid problem, and then
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transforming the solution back to the initial fine grid. As a result, we replace the

n2 × n2 linear system with a N ×N one, where N < n2.

The first step of a multigrid method consists of relaxing, or smoothing, the ap-

proximation. Typical relaxation iterative processes include the Gauss–Seidel or

SOR methods mentioned above, or more sophisticated smoothers such as incom-

plete LU factorisations. On their own, these methods converge rather slowly

for large linear systems associated with PDEs, but here a few iterations before

moving between grids can improve the initial guess, as well as making the ini-

tial solution smoother so that the residual can be well approximated on a coarse

grid. If multigrid is used as a preconditioner, then it is common to also use a

post-smoothing step for symmetric problems to ensure that the multigrid precon-

ditioner is symmetric.

At the core of a multigrid iteration, we perform a number of intergrid operations.

We begin with the fine grid, where the problem size is n2× n2. We then perform

a restriction operation, denoted by R that transfers the matrix and residual from

the fine grid to a coarser one. If it is small enough, the coarse grid problem is

then solved directly, otherwise, further smoothing and restriction is performed

until a small enough problem is obtained. The problem is then transfered back

to the fine grid via a prolongation operator, P . For our purpose, R = P T . More

details about how multigrid methods can be generated and used in practice can

be found in e.g., [14, 72].

There are different ways to traverse the grid hierarchy. Common methods are

what is known as V-cycles and W-cycles. Note that in our numerical results we

use a V-cycle, which only moves from a fine grid down to a coarse one and back

up again, as in Figure 2.2, where h represents the finest grid, and all multiples of
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h represent coarser grids.

8h

4h

2h

h

Figure 2.2: V-cycle with 4 levels

Multigrid methods are an attractive solver for large linear systems, especially

those coming from discretised PDEs, with the computational work being pro-

portional to the dimension of the discrete system for many problems [28]. This

means that the convergence rate does not depend on the size of the mesh used.

This is called mesh independence and is a characteristic that makes multigrid

methods effective. Note that multigrid does not work for all problems, however.

For example, a V-cycle is actually a stationary iterative method, which means

that it can diverge or have slow convergence [28]. Despite the popularity and

efficiency of multigrid methods as solvers for the discretised PDEs we are inter-

ested in, in this thesis we use multigrid as a preconditioner within the conjugate

gradient and GMRES methods.

2.3.4 Krylov subspace methods and preconditioning

Another class of methods whose dominant cost is given by vector-matrix products

[46] are Krylov subspace methods. These are some of the most commonly used

methods for solving linear systems, and over time, a lot of research has focused

on these methods. The Krylov subspace of degree k generated with a matrix A
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and a vector b is given by

Kk(A, b) = span{b,Ab,A2b, . . . ,Ak−1b}. (2.18)

Clearly, the elements of Kk(A, b) are of the form pk−1(A)b, where pk−1(A) ∈ Pk−1

is a polynomial in A of degree at most k−1. When x = A−1b can be well approx-

imated by a low degree polynomial, then the Krylov subspace represents a good

space in which to seek an approximate solution of the linear system [46]. This

often is not the case for unpreconditioned PDE problems, hence the slow con-

vergence rates. Although x = A−1b can be expressed as a polynomial of degree

at most s, where s is the degree of the minimum polynomial of a matrix A, we

typically want a good approximation of A−1b in fewer iterations. This means we

want to minimise the number of iterations taken for Krylov subspace algorithms

to converge.

Starting from an initial guess x0, Krylov subspace methods work by generating

a sequence of approximate solutions xk of Ax = b such that xk ∈ x0 + Kk(A, r0),

where r0 = b − Ax0 is the initial residual. The iterative process ends when the

corresponding residual rk is small enough. We mentioned that the solution x can

be expressed as a polynomial of the same degree as the minimum polynomial of

A. This means that a Krylov subspace method has an opportunity to converge

fast if the minimal polynomial has low degree s [46], or is well-approximated by a

low degree polynomial. In Section 2.3.5 we will see in more detail some commonly

used Krylov subspace solvers.
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Preconditioning

The convergence of Krylov subspace methods can be very slow for large linear

systems, including those arising from discretised PDEs. In order to combat the

issue of slow convergence, preconditioning techniques can be implemented. Sup-

pose we are given a matrix P that approximates the original coefficient matrix A,

with the property that P is easier to invert than A. Then, Ax = b is equivalent

to P−1Ax = P−1b, but the convergence rate of a given Krylov subspace method

may be much faster for the latter system. This is known as left preconditioning.

Right or split preconditioning could be performed instead.

Developing good preconditioners is important for quick convergence of precondi-

tioned Krylov subspace methods. There are two things to take into consideration.

First, we needed to choose our preconditioner P such that P−1A gives a system

that is easier to solve than the initial one. Secondly, our preconditioner needs to

be easy to construct and apply [11].

A common situation in practice is given by the case when the preconditioner

is available in factored form P = P1P2, where P1 and P2 are, for example, trian-

gular factors of an incomplete LU decomposition. In these cases, we precondition

the linear system as follows

P−1
1 AP−1

2 y = P−1
1 b, (2.19)

where x = P−1
2 y [72]. This is often called split preconditioning. We often want

our preconditioned system to be symmetric. This can be achieved by split precon-

ditioning, as in (2.19), with P1 = P T
2 . We note that when using preconditioned

conjugate gradient or preconditioned MINRES, it is sufficient to have (a symmet-
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ric positive definite) P , i.e.,, P1 and P2 = P T
1 are not required.

We now mention three straightforward preconditioners which are commonly used

in practice.

• A simple and straighforward set of preconditioners is given by the stationary

splittings from Section 2.3.2. Recall that we wrote A = M −N , where M

and N were chosen to be different combinations of the diagonal, upper and

lower triangular parts of A. This allows for any M coming from stationary

splittings to be used as a preconditioner.

• In Section 2.3.1 we briefly discussed incomplete factorisations. Note that

these can be used as preconditioners. For example, for symmetric pos-

itive definite problems, the idea behind preconditioning with incomplete

Cholesky is to set our preconditioner to be P = LLT . Although A and P

are not the same matrix, we hope that P−1 will approximate A−1 well. Sim-

ilarly, for nonsymmetric problems, we can precondition with the incomplete

LU factorisation.

• A powerful preconditioner used for improving the convergence rate of Krylov

methods comes from multigrid methods as these are often good approxima-

tions of the action of A−1 on a vector. Depending on the multigrid imple-

mentation details, a variety of multigrid preconditioners can be obtained.

Details about multigrid preconditioners can be found in, for example, [83].
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2.3.5 The conjugate gradient method and GMRES

In this section we present two Krylov subspace solvers, the conjugate gradient

method, for linear systems with symmetric positive definite (SPD) coefficient

matrices, and GMRES for nonsymmetric systems. We will present the algorithms

and discuss the convergence of these methods.

Symmetric positive definite problems: the conjugate gradient method

For linear systems with SPD A arising from the discretisation of PDEs, a com-

monly used solver is the conjugate gradient (CG) method [42].

Solving the linear system Ax = b is equivalent to minimising the linear func-

tional Φ : Rn → R [88]

Φ(x) =
1

2
xTAx− xT b.

In CG, the iterates are given by

xk = xk−1 + αkpk,

where the search directions pk are such that the value of Φ(xk−1 + αpk) is min-

imised over all pk ∈ Rn. The CG method must terminate in exact arithmetic, i.e.,

it must reach the exact solution in a finite number of steps because x = A−1b lies

in the Krylov subspace Kn(A, b). This means that xn = x and so the conjugate

gradient algorithm in Algorithm 1 must stop at the nth step.

The conjugate gradient method minimises the A-norm of the error over the Krylov

subspace, so in the following we briefly discuss the accuracy and convergence of
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Algorithm 1 The conjugate gradient algorithm

1: Choose x0, and let r0 = b−Ax0

2: for k = 1, 2, . . . do
3: Check convergence and continue if necessary
4: if k=1 then
5: p1 = r0

6: else
7: βk = rTk−1rk−1/r

T
k−2rk−2

8: pk = rk−1 + βkpk−1

9: end if
10: αk = rTk−1rk−1/p

T
kApk

11: xk = xk−1 + αkpk
12: rk = rk−1 − αkApk
13: end for

the method. The error at step k is given by

ek = x− xk = qk(A)e0,

where qk(z) = 1− zqk−1(z), and it is bounded in the A-norm as follows:

‖ek‖A
‖e0‖A

≤ min
q∈Pk
q(0)=1

max
λ∈σ(A)

|q(λ)|.

We can see from this error bound that the convergence of CG is dependent on

the distribution of the eigenvalues of A.

The A-norm error at step k is minimised over the Krylov subspace and there

exists a characterisation of the polynomial that achieves the minimisation [28].

In practice, the method can lose accuracy due to rounding errors, and cancella-

tion error can cause the search vectors to lose A-orthogonality. As a result, the

conjugate gradient method on its own may still require a large number of itera-

tions to converge. Even in exact arithmetic, convergence of the unpreconditioned

algorithm is typically slow for PDE problems, and is not recommended for large

linear systems.
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The convergence rate of the conjugate gradient method can be improved by using

a preconditioner. We call the CG method which allows for a preconditioner the

preconditioned conjugate gradient method, or PCG. Because we must ensure that

the preconditioned coefficient matrix is symmetric, we apply the preconditioner

symmetrically as in (2.19), with P = P1P
T
1 . Each of the three types of precondi-

tioner mentioned in Section 2.3.4 can be used with the PCG solver. More details

including algorithms and convergence details can be found in, e.g., [72].

Nonsymmetric problems: GMRES

Nonsymmetric linear systems, such as those arising from the discretisation of

convection–diffusion PDEs, require different solvers than those mentioned above.

Recall that the conjugate gradient method minimises the error in the A-norm

over the Krylov subspace. However, when the coefficient matrix A is no longer

symmetric, it no longer defines a norm, which means that the same minimisation

strategy cannot be used. Furthermore, for nonsymmetric problems, we cannot

easily measure the error in any norm. Hence, it seems reasonable to consider

choosing x from the Krylov subspace in such a way that we minimise the residual

with respect to the 2-norm.

One of the most popular methods that allows us to solve nonsymmetric linear

systems is the generalised minimal residual (GMRES) method [73]. GMRES is

a projection method into the Krylov subspace Kk(A, r0), where r0 = b − Ax0.

We present the steps in Algorithm 2 as in [72, Algorithm 6.9]. Furthermore, note

that GMRES can be used on its own, as well as with a preconditioner.
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Algorithm 2 GMRES algorithm

1: Choose x0, and compute r0 = b−Ax0, β = ‖r0‖2, v1 = r0/β
2: for j = 1, 2, . . . ,m do
3: Compute wj = Avj
4: for i = 1, . . . , j do
5: hij = (wj, vi)
6: wj = wj − hijvi
7: end for
8: hj+1,j = ‖wj‖2. If hj+1,j = 0 set m = j and go to step 11
9: vj+1 = wj/hj+1,j

10: end for
11: Define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m1,1≤j≤m.
12: Compute ym, the minimiser of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.

The convergence of GMRES is often described using three distinct approaches:

eigenvalues and the eigenvector condition number, the field of values, and pseu-

dospectra [29].

• If matrix A is diagonalisable and not too far from normal, in the sense that

the eigenvector condition number, κ(Z), is not too large and if a polyno-

mial q whose size decreases quickly on the spectrum of A can be found,

then GMRES converges quickly [84] and the convergence rate can often be

described by the eigenvalues of A [60]. The eigenvector bound is given by

‖rk‖2

‖r0‖2

≤ min
q∈Pk
q(0)=1

‖Z‖2‖Z−1‖2‖q(Λ)‖2 = κ(Z) min
q∈Pk
q(0)=1

max
λ∈σ(A)

|q(λ)|.

• For matrices which have eigenvalues that are highly sensitive to small per-

turbations in the matrix entries, we can use the field of values, W (A), with

the bound given by [29]

‖rk‖2

‖r0‖2

≤ 2 min
q∈Pk
q(0)=1

max
z∈W (A)

|q(z)|.
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• The ε-pseudospectrum of A can also be used to derive a GMRES bound.

This, with L(Γε) as the contour length of the boundary of σε(A), is given

by [29]

‖rk‖2

‖r0‖2

≤ L(Γε)

2πε
min
q∈Pk
q(0)=1

max
z∈σε(A)

|q(z)|.

2.4 Matrix equations

For large problems, the high degree of sparsity means that the linear system

Ax = b from (2.16) can still be solved with good preconditioners and iterative

methods. Even so, this can require a significant amount of time and memory

for convergence. As a result, numerous methods have been developed to work

directly with the matrix equation formulations, e.g., (2.9) and (2.14). We describe

below the matrix equation framework and discuss some well-established methods

for solving matrix equations.

Definition 2.4.1 (General linear matrix equation). For Ai ∈ Rn×n, Bi ∈ Rm×m,

with i = 1, . . . , k and F ∈ Rn×m, a linear matrix equation is given by

A1XB1 + A2XB2 + · · ·+ AkXBk = F.

Any linear matrix equation can be written in Kronecker form to get a linear

system formulation. For the general linear matrix equation this is given by

A vec(X) = vec(F ), where A = BT
1 ⊗A1 + · · ·+BT

k ⊗Ak. We will mainly consider

matrix equations with k = 2, called Lyapunov or Sylvester equations, depending

on the characteristics of A1,2 and B1,2, as the PDEs described in Section 2.2 of-

ten result in these matrix equations. The Lyapunov and Sylvester equations are

presented below. There are, of course, other types of matrix equations, but these

are beyond the scope of this thesis.
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Definition 2.4.2 (Lyapunov equation). For A ∈ Rn×n and F ∈ Rn×n, a continuous-

time, algebraic Lyapunov equation is of the form

AX +XAT = F.

Definition 2.4.3 (Sylvester equation). For A ∈ Rn×n, B ∈ Rm×m and F ∈

Rn×m, a continuous-time, algebraic Sylvester equation is of the form

AX +XB = F. (2.20)

The solvability of the Lyapunov and Sylvester equations with right-hand side

F 6= 0 is described below.

Remark 2.4.1 (Solvability). For the Lyapunov equation to have a nontrivial

solution, it is sufficient to have an invertible coefficient matrix A.

The Sylvester equation has a nontrivial solution if the spectra of A and −B are

disjoint. Furthermore, the solution X of the Sylvester equation can be written in

closed form as an integral of exponentials [77]

X = −
∫ ∞

0

eAteBtdt,

where eMt is the matrix exponential of Mt.

Note that other representations of the solution can be found in [77].

In Section 2.2 we discretised both the Poisson and the standard convection–

diffusion PDEs. We note now that solving the discretised Poisson PDE

corresponds to solving a Lyapunov equation with SPD coefficient matrix A.

Solving the convection–diffusion PDE, however, can correspond to solving
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one of three matrix equations, depending on the separable convection wind,

w = (φ1(x)ψ1(y), φ2(x)ψ2(y)). If this is a constant, i.e., w = α(1, 1) then we have

to solve a Lyapunov equation with nonnormal coefficient matrix A. If the wind

looks like w = (φ1(x), ψ2(y)), then we have to solve a Sylvester equation, and if

we have wind w = (φ1(x)ψ1(y), φ2(x)ψ2(y)), then the matrix equation has four

terms, as in (2.14), with contributions from both the diffusion and convection

parts of the PDE.

We distinguish approaches for solving matrix equations based on the size

of the problem to which they are applied. For a small matrix A, there are well

established direct methods, while for matrix equations with large coefficient

matrices, the ADI method [68] and projection methods are often used. We will

briefly present each of these in the following and justify our choices for this

thesis.

2.4.1 Direct methods

When the size of Lyapunov or Sylvester equation is relatively small (say, n is up

to a thousand), they can be solved using a set of direct methods [3, 36] based

on Schur decompositions. The most well-known of these is the Bartels–Stewart

method [3], which is implemented in the built-in MATLAB function lyap. The

Bartels–Stewart method first reduces the coefficient matrices to real Schur form

using a QR transformation. The resulting upper triangular matrices are then

used to transform the matrix equation into one with upper triangular structure.

The new matrix equation is then solved element by element using backward sub-

stitution [58, 77]. The steps of the algorithm for a Sylvester equation are given

in Algorithm 3.
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Algorithm 3 Main steps of the Bartels–Stewart method for the Sylvester equa-
tion AX +XB = F [77]

1: Compute the Schur forms: AT = URUT , B = V SV T with R, S
upper triangular;

2: Solve by substitution RTY + Y S = UTFV for Y ;
3: Compute X = UY V T .

For large (n is greater than a few thousand) matrix equations, the Bartels–Stewart

method is not efficient because of the increased computational cost of generating

the Schur forms explicitly [77]. As a result, other methods, such as the ADI

method and projection-based approaches, need to be employed to deal with large

equations.

2.4.2 ADI

When the coefficient matrix A of a Lyapunov equation is large and sparse,

one can use the alternating direction implicit (ADI) method introduced by

Peaceman and Rachford [68] for solving elliptic linear systems. This method was

adapted to deal with matrix equations in [26], with many theoretical and prac-

tical advances obtained, especially by Ellner, Wachspress and Lu, e.g., [27, 58, 90].

The main steps of the ADI iteration for computing factored iterates Xj = ZjZ
T
j

of the solution of a Lyapunov equation AX +XAT = bbT with rank-1 right-hand

side are

X0 = 0

(A+ sjI)Xj− 1
2

= bbT −Xj−1(AT − sjI)

(A+ sjI)Xj = bbT − (Xj− 1
2
)T (AT − sjI), j = 1, . . . , k.
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The sj are poles which can be real or complex and which are implemented

cyclically, as we describe next. At each iteration, the algorithm uses one pole.

If the algorithm has used all the poles available, but has not converged yet,

then it continues using the original poles in the same order, repeating this until

convergence. For more details about this iteration, the selection of poles, as

well as the ADI method for Sylvester equations, see [77] and the references therein.

The ADI method is very well studied for matrix equations and pole choices are

extensively considered in the literature, see e.g., [9, 31, 74]. However, theoretical

comparisons between the ADI method and projection-based methods indicate

that projection-based aproaches can be better for a wider variety of pole choices

than ADI, with ADI giving much larger residuals than rational projections for

poor poles [77]. Therefore, in this thesis, we focus on solving matrix equations

with a rational projection which we will describe in future chapters. Note that,

in practice, good poles for the rational Krylov projection method are often good

poles for the ADI method, so although we are not explicitly considering the ADI

method, the pole choices we present could also be useful in the context of ADI.

2.4.3 Projection methods

As for linear systems, another effective approach for solving large matrix

equations is to project onto a smaller space, solve the reduced problem and then

to project back the solution into the original space [48, 51, 75, 82].

In order to present projection methods, we require knowledge of Krylov

subspaces. Recall that the standard (polynomial) Krylov subspace in (2.18)

is Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}. In this thesis, we derive results for

rational Krylov subspaces. For a given matrix A, right-hand side b and possibly

38



Chapter 2 – Background material

repeated poles S = {s1, s2, · · · , sk}, we define the k-dimensional rational Krylov

subspace as

RKk(A, b, S) =
{
b, (A+ s1I)−1b, . . . ,

k∏
i=1

(A+ siI)−1b
}

= Kk(A, q
−1
k (A)b),

(2.21)

where qk(z) = (z+ s1) · · · (z+ sk). Note that we can recover the standard Krylov

subspace from (2.21) by setting si = ∞, for i = 1, . . . , k. Furthermore, we can

also obtain the extended Krylov subspace [20]

EKk(A, b) = Kk(A, b) + Kk(A
−1, A−1b)

= span{b, A−1b, Ab,A−2b, A2b, . . . , A−kb, Ak−1b},
(2.22)

by using poles that alternate between 0 and ∞.

Besides these specific choices of poles which generate the standard and ex-

tended Krylov subspaces, it is common to use the so-called Zolotarev poles for

the rational Krylov subspace. These poles are considered near-optimal for many

methods that aim to solve matrix equations [74]. More details about Zolotarev

poles, as well as other methods for generating poles will be discussed in later

chapters.

The space used for projection methods for matrix equations can be one of

the three presented above, with the extended [64, 76, 82] and rational [21, 23, 71]

Krylov subspace methods being the most popular.

Solving discretised PDEs as matrix equations instead of linear systems is

strongly connected with the existence of low-rank factors of the solution. This
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property is known to have been exploited by numerous algorithms which output

approximate solutions that have singular values decaying rapidly to zero. Often,

this is ensured by right–hand sides which have low-rank. In the literature,

low-rank approximations are known to exist for many standard Lyapunov and

Sylvester equations [57, 59, 65, 89, 92], as well as multiterm matrix equations

[71, 75, 77]. For more details see, for example, [69]. Note that if this low-rank

property is not satisfied, then matrix equations might not be the most efficient

way to approximate the solution to discretised PDEs, and so solving linear

systems might be more appropriate. However, as we will see for a test problem

in the next section, solving matrix equations via projections into rational Krylov

subspaces provides a computationally superior approach to solving linear systems

for cases when the solution allows low-rank factors, and so, this motivates our

choice of studying matrix equations for this type of problem.

2.5 Linear systems vs matrix equations

In this section, we are interested in comparing the two main ways to solve discre-

tised PDEs discussed in this chapter, namely linear systems and matrix equations.

2.5.1 Diffusion problem

We begin by considering the Poisson PDE, which gives the discretised problem in

Section 2.2.1. We will solve the linear system with matrix given by (2.16) using

PCG with a multigrid preconditioner consisting of a single V-cycle, which has

three damped Jacobi iterations for both pre- and post–smoothing, with a damping

parameter ω = 2/3 and four grid levels. The matrix equation is solved using a

rational Krylov subspace with 12 Zolotarev poles, and a right-hand side given by
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ones. Details of the matrix equation solver are given in Chapter 3. The size of the

matrix equation coefficient matrix is n = 1023, so that the corresponding linear

system coefficient matrix is of size n2 = 10232. We choose this size for the problem

because it is convenient for the prolongation and restriction operators in our

multigrid preconditioner to have n = 2k − 1 for some integer k [83]. We compare

both the number of iterations and the time taken to solve these problems, and

note that we stop the solvers when ‖rk‖2/‖vec(F )‖2 < 10−8 for the linear system,

with rk = vec(F ) − Axk and ‖Rk‖F/‖F‖F < 10−8 for the matrix equations,

where Rk = F −AXk −XkA. Note that the stopping criteria for the two solvers

are equivalent, so that our comparison is relevant. In Figure 2.3 we see the

convergence curves of both methods.

0 5 10 15 20 25

Iterations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 r
e

s
id

u
a

l

matrix equation

linear system

Figure 2.3: Convergence curves for the discretised Poisson PDE from Sec-
tion 2.2.1 solved using the preconditioned conjugate gradient method and the
matrix equation solver described in Chapter 3.

We can clearly see that the number of iterations necessary for PCG to solve
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the linear system is about half of that necessary for the matrix equation solver.

It may seem like the linear system solver is superior, however, when we take

into consideration the computational time required, the matrix equation solver is

almost 13 times faster, taking 0.71 seconds, as compared to 8.92 seconds for

PCG. It shows that, for SPD problems, matrix equations can show superior

computational times, therefore, making them a preferable approach.

2.5.2 Convection–diffusion problem

Since we are interested in not only diffusion problems, but also convection–

diffusion PDEs, we will now compare the efficiency of solving such problems

via linear systems and matrix equations. We will consider the simplified

convection–diffusion PDE from (2.12), with wind given by w = (φ1(x), ψ2(y)) =

1 − (2x + 1)2, 1 − y2). The matrix equation corresponding to this has the form

−ε(AX + XAT ) + Φ1BX + XBTΨ1 = CCT , which is a Sylvester equation. We

will use ε = 0.0167 for these tests so that we are in a convection-dominated case.

We choose the right–hand side to be a vector of ones, and the size to be n = 1000.

This means that we will solve a linear system of size n2 = 106. For this, we will

use GMRES with the algebraic multigrid preconditioner MI20 from [13]. In the

setup of the MI20 preconditioner, we have made the following changes to the

default settings: control.smoother was set to 1, corresponding to the damped

Jacobi smoother, control.damping was set to 2/3 and control.v_iterations

was set to 2, meaning we perform 2 V-cycles. The initial guess throughout was set

to the zero vector, and the GMRES relative residual tolerance used was 10−8. For

the matrix equation formulation, we will use a rational Krylov subspace approach

with 12 Zolotarev poles generated using the left-hand side matrix −εA + Φ1B.

As for the diffusion problem in Section 2.5.1, we solve the problems at a relative

residual tolerance of 10−8. Note that the stopping criteria are equivalent, so that
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the two solvers have the same solution accuracy. The convergence curves are

shown in Figure 2.4.
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Figure 2.4: Convergence curves for the discretised convection–diffusion PDE
from Section 2.2.2 solved using GMRES and the Sylvester equation solver de-
scribed in Chapter 4.

As in the diffusion case, we can see in Figure 2.4 that the number of iterations

taken to solve the matrix equation is larger than that necessary to solve the lin-

ear system formulation. However, once again, it is the computational time that

makes the more compelling argument as to which approach is more efficient. The

matrix equation method took 1.5762 seconds, while the linear system took 5.0522

seconds. This means that the matrix equation approach was 3.2 times faster for

this problem. This is, indeed, a smaller ratio than when we looked at the diffusion

problem, but it still indicates that solving matrix equations can be superior to

solving the equivalent linear system.
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Diffusion problems

In this chapter we present theoretical and numerical results for matrix equations

arising from the discretisation of diffusion problems. The theoretical results we

discuss hold for all Lyapunov equations, however, our numerical results will focus

on two-dimensional diffusion equations on tensor product grids, with both rank-

1 and higher rank right-hand sides. The work described in Sections 3.2.3, 3.5

and 3.6 is also presented in the submitted paper [86].

3.1 Introduction

We have seen in the literature presented in Section 2.4.3 that Krylov and

extended Krylov subspaces can provide effective spaces to look for solutions,

but as we will see in Section 3.2, rational Krylov spaces are known to contain

rich spectral information [65, 77]. This makes them an appealing approach to

solve matrix equations. The idea of projecting onto a rational Krylov subspace

is the subject of much recent research such as [21–23, 59, 71]. Rational subspace

solvers are an attractive approach to solve matrix equations since, for a broad
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choice of poles [77], they have been shown to yield similar or better results than

the equivalent ADI method [26]. In this chapter we provide new insight into the

choice of poles. We note that, in practice, good pole choices for rational Krylov

methods are often good pole choices for ADI as well, so our results may also

prove useful for the latter method.

We start this chapter by deriving an explicit rational approximation for

the solution of (2.9) for both 1- and 2-sided projections. The 2-sided result was

also obtained by Druskin, Knizhnerman and Simoncini in [21] by means of the

skeleton approximation. Obtaining the rational function explicitly allows for a

better understanding of the rational approximation and, as a result, the best

poles for the rational Krylov subspace. In the literature, there are two common

approaches to choosing poles for rational Krylov subspaces: an a priori selection

of the poles [71], and an adaptive method which computes the poles “on-the-fly”

[23, 24]. Poles for rational Krylov methods for matrix functions have been

treated in [41] and the so-called Zolotarev [95] poles are a popular choice in the

literature [59, 71], but the ideal number of poles for rational Krylov methods

has not previously been studied in detail for rational Krylov projections. We

note, however, that the thesis by Sabino [74] presents a thorough assessment

of the number of poles in the context of the ADI method. We also discuss the

convergence of our approach by comparing it to the upper bound for Galerkin

approximations from [4], and look at the attainable accuracy of our method.

In the second part of this chapter, we explore pole choices, such as the

aforementioned Zolotarev ones and the IRKA poles [39], adapted from model

order reduction of dynamical systems. The IRKA poles have been previously

considered as poles for the ADI method [9, 31], and mentioned within rational

Krylov apporaches in [93]. Despite not being considered competitive in these
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papers, we show in Section 3.6 that for a range of discretised diffusion problems,

the IRKA poles are more efficient than other options. Furthermore, we compare

the solver with a priori poles with the adaptive poles algorithm from [23],

showing that the a priori computed IRKA poles can be as good, or better than

the adaptive ones for a wide variety of diffusion problems.

3.2 Rational approximation

Recall, the Lyapunov equation is given in (2.9) by

AX +XAT = F.

We solve this via a projection onto a rational Krylov subspace. For simplicity

of exposition, the results presented throughout this section are for a symmetric

rank-1 right-hand side given by bbT , where b ∈ Rn×1, but are readily generalisable

to the right-hand side F = CCT , with ∈ Rn×m, m� n. We will focus on both 1-

sided and 2-sided Galerkin projection methods, with more emphasis on the latter.

We first present the main steps of our projection method in very general terms.

3.2.1 Projection method

In this section we describe the 2-sided projection. Suppose we generate an or-

thonormal basis for an approximation space of dimension k in Rn, with k � n.

If we collect the k basis vectors into a matrix V of size n × k, then we can seek

an approximate solution to (2.9) of the form Xk = V YkV
T ≈ X. The matrix Yk

is found by insisting that the residual

R = AX +XAT − bbT (3.1)
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satisfies a Galerkin orthogonality condition given, for the 2-sided projection, by

V TRV = 0. (3.2)

Substituting Xk into R and applying (3.2) yields the reduced problem

AkYk + YkA
T
k = bkb

T
k , (3.3)

where Ak = V TAV ∈ Rk×k and bk = V T b ∈ Rk×1. We can solve this reduced

problem either by transforming it into a linear system, using (2.4), and solving

this, or by applying the built-in MATLAB function lyap, which is based on the

Bartels–Stewart method [3] from Algorithm 3. In this thesis, the resulting

reduced problem is small enough that we use the latter approach. Once we have

obtained the solution of the reduced matrix equation, we compute the eigenvalue

decomposition of Yk and generate the low rank factor X̃ of the approximate

solution Xk = X̃X̃T . This method is encapsulated in Algorithm 4.

Algorithm 4

1: INPUT: A, b, S = {s1, s2, . . . }, maximum iterations maxit.
2: Set V0 = b/‖b‖, j = 1.
3: while not converged and j < maxit do
4: Expand basis using the poles: Vj = getbasis(A, sj, Vj−1).
5: Project the matrix Aj = V T

j AVj and the right-hand side bj = V T
j b.

6: Solve AjYj + YjA
T
j = bjb

T
j .

7: Factorise Yj as Yj = WjW
T
j and set Xj = X̃X̃T , with X̃ = VjWj.

8: Check convergence and if satisfied set k = j and stop.
9: end while

10: OUTPUT: solution factor X̃, final residual.

In step 4 of Algorithm 4 we use the poles to expand the basis Vj. At each

iteration of the solver, a new pole sj is used to solve a shifted linear system

(A + sjI)x = vj−1, where vj−1 is the previously generated column of Vj.

The solution of each shifted linear system is then orthonormalised against all
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previously computed basis vectors and added on. We cycle through the poles, so

that we are not limited by the number of a priori selected poles.

The algorithm stops when the stopping criterion is satisfied, i.e., when the

relative residual is below a given tolerance:

‖Rj‖F
‖bbT‖F

< τ, (3.4)

where Rj = AXj +XjA
T − bbT is the residual at the jth iteration.

In step 6 of Algorithm 4, we apply the 2-sided projection—this means

that we impose the orthogonality condition on both sides of the residual. The

2-sided approach is normally used for discretised PDEs [63] since the projected

problem involves k × k matrices. The 1-sided approach was used in [71], where

the left matrix, i.e., the matrix situated on the left-hand side of the unknown X,

is of much larger dimension than the matrix on the right-hand side.

Although the 2-sided approach has a lower cost per iteration than the 1-

sided approach for PDE problems, we are still interested in the performance of

both approximations. As a first step, we will derive expressions for the rational

approximation in each case.

3.2.2 1-sided approach

In this section, we describe the 1-sided projection approach. Given a basis V , we

seek an approximate solution to (2.9) of the form Xk = V Yk ≈ X. Using this

approximation, the matrix Yk is found by insisting that the residual R in (3.1)
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satisfies the orthogonality condition,

V TR = 0. (3.5)

Substituting Xk into R and applying (3.5), now yields the reduced problem

AkYk + YkA
T = bkb

T , (3.6)

where Ak = V TAV and bk = V T b, as before. Since we only applied the projection

on the left, the right matrix remains unchanged (size n×n), while the left matrix

has reduced in size (from n× n to k × k, k � n).

We continue our discussion about the 1-sided approach by deriving an ex-

plicit expression for the rational function generated when the rational Krylov

method is used to solve the Lyapunov equation AX + XAT = bbT from (2.9)

via a 1-sided projection. We start by noting that the matrix A from (2.9) is

SPD. To simplify the exposition, we will first transform the Lyapunov equation

to one with diagonal coefficient matrices, by using an eigenvalue decomposition

of A. We can write the eigenvalue decomposition of A as A = ZΛZT , where Z

is the square n× n matrix whose ith column is the eigenvector zi of A, and Λ is

the diagonal matrix whose ith diagonal element is the corresponding eigenvalue

Λii = λi. Replacing A by its eigenvalue decomposition in (2.9) yields

ΛX̂ + X̂Λ = b̂b̂T , (3.7)
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where Λ = diag(λ1, . . . , λn), X̂ = ZTXZ and b̂ = ZT b. To understand the

rational approximation, consider the jth column of (3.7):

(Λ + λjI)x̂j = βj b̂,

i.e., x̂j = βj(Λ + λjI)−1b̂,

(3.8)

where βj is the jth entry of the vector b̂T .

Let V ∈ Rn×k have as its columns an orthonormal basis of dimension k

for an approximation space in Rn, with k � n. We want to apply an orthogonal-

ity condition on our residual. Accordingly, we let x̄j = V yj be an approximation

to x̂j such that

(Λ + λjI)x̄j − βj b̂ ⊥ V.

This is equivalent to

V T ((Λ + λjI)V yj − βj b̂) = 0,

which is clearly a 1-sided projection for (3.7).

We wish to obtain a rational approximation for the solution of (3.7). To

do this, we can use the rational FOM [72] (or the rational Arnoldi approx-

imation) to create an orthonormal basis of the rational Krylov subspace.

When building our basis V , we let v0 = b̂/‖b̂‖2 be the first column. Then

b̂ = ‖b̂‖2v0 = ‖b̂‖2V e1, where e1 is the first column of the identity matrix. Note,

we also have V TV = Ik, the identity matrix of dimension k. Then, using (3.8),

at the kth step, we have the jth column of the projected residual given by

V T ((Λ + λjI)V yj − βj‖b̂‖2V e1) = 0,

i.e., yj = βj‖b̂‖2(Λk + λjIk)
−1e1
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where Λk = V TΛV . This then gives the approximate solution to the jth column

of X̂, x̄j = V yj ≈ x̂j:

x̄j = βj‖b̂‖2V (Λk + λjIk)
−1e1.

The rational approximation to the Lyapunov equation (3.7) satisfies [40, Theorem

5.8]:

x̄
(k)
j = βj

pk−1

qk−1

(Λ)b̂ = βj r̂
[λj ]
k (Λ)b̂,

where pk−1 and qk−1 are polynomials of degree at most k−1, i.e., qk−1, pk−1 ∈ Pk−1

and r̂
[λj ]
k (z) must satisfy the following properties of the rational FOM approxi-

mation:

• It is in Qk−1,k−1, the set of rational functions with both numerator and

denominator of degree k − 1.

• It interpolates the function (z + λj)
−1 at the Ritz values, σ(Λk) =

{ρ1, · · · ρk}.

• The denominator qk−1(z) can be factored as qk−1(z) = (z−s1) · · · (z−sk−1),

where the si’s are the poles used to generate the basis V .

To study the effect of the choice of poles on the quality of the rational Krylov

approximation, it is helpful to have an explicit representation of r̂
[λj ]
k (z). Let

tk ∈ Qk,k−1, with roots σ(Λk) and denominator qk−1(z), i.e., tk(z) = det(zI−Λk)
qk−1(z)

.

Then, we postulate that

r̂
[λj ]
k (z) =

1− tk(z)
tk(−λj)

z + λj
. (3.9)

We will demonstrate that r̂
[λj ]
k (z) from (3.9) is indeed the rational FOM approx-

imation. In order to do this, we will consider each of the three properties from

above and prove that r̂
[λj ]
k (z) satisfies them.
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We begin by showing that r̂
[λj ]
k (z) ∈ Qk−1,k−1. Look at the numerator of

(3.9) and consider its roots. The expression 1 − tk(z)
tk(−λj) has k roots since

det(zI − Λk) is a degree k polynomial in z. Clearly these k roots satisfy

tk(z)
tk(−λj) = 1. One of the values of z that satisfies tk(z) = tk(−λj) is z = −λj,

which means that z = −λj is a root of 1− tk(z)
tk(−λj) , i.e.,

1− tk(z)

tk(−λj)
=
tk(−λj)− tk(z)

tk(−λj)

=
tk(−λj)qk−1(z)− det(zI − Λk)

tk(−λj)qk−1(z)

=
pk(z)

tk(−λj)qk−1(z)
=

(z + λj)pk−1(z)

tk(−λj)qk−1(z)
,

(3.10)

so that r̂
[λj ]
k (z) = pk−1(z)

tk(−λj)qk−1(z)
∈ Qk−1,k−1, which shows the first property.

Next, we want to check that r̂
[λj ]
k (z) interpolates (z + λj)

−1. This is very

straightforward to do. Consider r̂
[λj ]
k (z) evaluated at one of the Ritz values, say

ρ`:

r̂
[λj ]
k (ρ`) =

1− tk(ρ`)
tk(−λj)

ρ` + λj
.

Note that tk(ρ`) = det(ρ`I−Λk)
qk−1(ρ`)

= 0 since ρ` is a Ritz value. Hence

r̂
[λj ]
k (ρ`) = (ρ`+λj)

−1, i.e., r̂
[λj ]
k (z) interpolates (z+λj)

−1 at the eigenvalues of Λk.

Lastly, we show the third property of the FOM approximation, i.e., that

the denominator qk−1(z) = (z − s1) · · · (z − sk−1). This is easily seen from (3.10)

since by construction, we have created qk−1 to have as factors the poles used to

generate the basis V .

As we now have shown that r̂
[λj ]
k (z) in (3.9) is the rational FOM approxi-

mation of x̄j, we can evaluate the error. Recall that the error is given by
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ej = x̂j − x̄j, i.e.,

ej = βj(Λ + λjI)−1b̂− βj(Λ + λjI)−1
(
I − tk(Λ)

tk(−λj)

)
b̂

= βj(Λ + λjI)−1 tk(Λ)

tk(−λj)
b̂.

Note that this error is small when tk(Λ)
tk(−λj) is small. Thus, we seek poles s1, . . . , sk

that minimise tk(Λ), i.e.,

min
si∈S

max
z∈σ(Λ)

∣∣∣ tk(z)

tk(−λj)

∣∣∣.
To make the minimisation problem easier to deal with, it is common to replace

it by

min
si∈S

max
z∈[λmin,λmax]

∣∣∣ tk(z)

tk(−λj)

∣∣∣, (3.11)

which is the third Zolotarev problem [22, 47, 71]. Note that the small, projected

matrix equation (3.6) depends on the si through their role as poles of tk. The

negative Ritz values −ρj are necessarily distinct from these poles.

Transforming back to the original variables, we find that at step k, the

jth column of the rational approximation is given by x
(k)
j = βj r̂

[λj ]
k (A)b.

3.2.3 2-sided approach

Next, we consider a 2-sided projection for the Lyapunov equation in (2.9),

AX + XAT = bbT , as we will show in Section 3.2.4 that this is a more efficient

approach. In order to obtain the rational function that is implicitly constructed

by the 2-sided rational approximation, we will use a number of transformations

between the Kronecker form of the problem and the matrix equation form.

These useful properties were presented in Section 2.1.
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Using the 2-sided projection method, as described in Algorithm 4, we now

explicitly derive the rational approximation to the solution. Combining (3.2)

with (2.4) gives the corresponding Kronecker product form

(V T ⊗ V T ) vec(R) = 0. (3.12)

Next, before applying the Galerkin orthogonality condition from (3.12), we trans-

form R into the corresponding vector form using the Kronecker product,

vec(R) = vec(bbT )− (A⊗ I + I ⊗ A) vec(Xk).

Hence, the 2-sided orthogonality condition becomes

(V T ⊗ V T ) vec(R) = (V T ⊗ V T )(vec(bbT )− (A⊗ I + I ⊗ A) vec(Xk)) = 0,

so that

(V T ⊗ V T )(A⊗ I + I ⊗ A) vec(Xk) = (V T ⊗ V T ) vec(bbT ). (3.13)

Recall that vec(Xk) = vec(V YkV
T ) = (V ⊗ V ) vec(Yk) and since V TV = I, we

can write vec(Yk) = vec(V TXkV ) = (V T ⊗V T ) vec(Xk). So, the left-hand side of

(3.13) becomes

(V T ⊗ V T )(A⊗ I + I ⊗ A) vec(Xk) = (V T ⊗ V T )(A⊗ I + I ⊗ A)(V ⊗ V ) vec(Yk)

= (V T ⊗ V T )(A⊗ I + I ⊗ A)(V ⊗ V )(V T ⊗ V T ) vec(Xk)

= (Ak ⊗ I + I ⊗ Ak)(V T ⊗ V T ) vec(Xk),

where Ak = V TAV . Hence, we obtain

vec(Xk) = (V ⊗ V )(Ak ⊗ I + I ⊗ Ak)−1(V T ⊗ V T ) vec(bbT ). (3.14)
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This represents the approximate vectorised solution to the Lyapunov equation

from (2.9). It makes use of the basis V and of the Kronecker product.

Before we continue our derivation of the rational approximation, we re-

quire a useful result coming from the field of approximation of matrix functions,

which was proved in [40, Lemma 3.9].

Lemma 3.2.1. Suppose the columns of V form a basis for RKk(A, b, S), and

define q = qk−1(A)−1b, where qk−1 ∈ Pk−1 is a polynomial of degree at most k−1,

whose roots are the poles S. Then, the following holds

pk−1(A)q = V pk−1(Ak)V
T q,

for any polynomial pk−1 ∈ Pk−1.

We will use this together with (3.14) to obtain a new rational approximation, as

presented in our submitted paper [86].

Let f(Ak ⊗ I, I ⊗ Ak) = (Ak ⊗ I + I ⊗ Ak)
−1, q = qk−1(A)−1b and

pk−1(A)q = V pk−1(Ak)V
T q, where pk−1 and qk−1 are polynomials of degree

at most k − 1, i.e., qk−1, pk−1 ∈ Pk−1. We first look at vec(bbT ) in (3.14):

vec(bbT ) = vec((qk−1(A)q)(qk−1(A)q)T )

= vec(V qk−1(Ak)V
T qqTV qk−1(Ak)V

T )

= (V ⊗ V )qk−1(Ak ⊗ I)qk−1(I ⊗ Ak)(V T ⊗ V T ) vec(qqT ),

(3.15)

using (2.7). Next, we substitute (3.15) into (3.14) to obtain

vec(Xk) = (V ⊗ V )Pk(Ak ⊗ I, I ⊗ Ak)(V T ⊗ V T ) vec(qqT ), (3.16)
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where Pk(Ak⊗ I, I⊗Ak) = f(Ak⊗ I, I⊗Ak)qk−1(Ak⊗ I)qk−1(I⊗Ak). We begin

to simplify Pk by noting that f(Ak ⊗ I, I ⊗ Ak) can be written as a polynomial

of degree at most k − 1. We can write any polynomial as c(Ak)q(Ak) + r(Ak),

using the remainder theorem, where c(Ak) is the minimum polynomial of Ak,

with c(Ak) = 0 and q(Ak), r(Ak) are polynomials of smaller degrees. Note also

that Ak ⊗ I commutes with I ⊗ Ak. Then, we have

f(Ak ⊗ I, I ⊗ Ak) =
k2−1∑
i=0

αi(Ak ⊗ I + I ⊗ Ak)i

=
k2−1∑
i=0

αi

i∑
j=0

(
i

j

)
Ai−jk ⊗ Ajk, i > j

=
k2−1∑
i=0

i∑
j=0

βijA
i−j
k ⊗

k−1∑
`=0

γ`A
`
k

=
k2−1∑
i=0

i∑
j=0

βij

k−1∑
`=0

γ`A
i−j
k ⊗ A`k

=
k−1∑
s=0

δs[c(Ak)q(Ak) + r(Ak)]⊗ Ask

=
k−1∑
s,v=0

asvA
v
k ⊗ Ask,

(3.17)

where α, β, γ, δ are constant coefficients of the polynomials in Ak. Using q =

qk−1(A)−1b from Lemma 3.2.1 and (2.7), we have that (3.16) is

vec(Xk) = Pk(A⊗ I, I ⊗ A)qk−1(A⊗ I)−1qk−1(I ⊗ A)−1 vec(bbT )

= rk−1(A⊗ I, I ⊗ A) vec(bbT ),

(3.18)

where rk−1(x, y) = Pk(x,y)
qk−1(x)qk−1(y)

. Note that this is the same rational approxima-

tion obtained in Remark 3.5 of [21], by means of skeleton approximation, but

here instead we directly utilise properties of rational Krylov subspaces. Hence,

Pk(x, y) interpolates f(x, y)qk−1(x)qk−1(y) at the Ritz values σ(Ak) and so,

rk−1(x, y) interpolates f(x, y) at the Ritz values σ(Ak).
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As in the 1-sided case, we can see from the previous discussion that the

rational approximation rk−1(x, y) in (3.18) satisfies some specific properties. In

this case:

• It is in Qk−1,k−1, the set of rational functions with both numerator and

denominator of degree k − 1.

• It interpolates the function (x + y)−1 at the Ritz values, σ(Ak) =

{ρ1, . . . , ρk}.

• The denominator qk−1(x)qk−1(y) can be factored as qk−1(x)qk−1(y) = (x +

s1) · · · (x+ sk−1)(y + s1) · · · (y + sk−1), where the si’s are the poles used to

generate the basis V .

When si = ρi, i = 1, . . . , k, the rational function takes the form [61]:

rk−1(x, y) =
1

x+ y

(
1−

k−1∏
i=1

(x− ρi)(y − ρi)
(x+ ρi)(y + ρi)

)
. (3.19)

Having obtained the rational approximation, we are now interested in determining

suitable poles for the rational Krylov subspace. We begin by minimising the

largest error. This is given by vec(E(A⊗ I, I ⊗ A)) = vec(X)− vec(Xk), where

E(x, y) = (x+ y)−1 − (x+ y)−1
[
1−

k−1∏
i=1

(x− ρi)(y − ρi)
(x+ ρi)(y + ρi)

]
vec(bbT )

= (x+ y)−1

k−1∏
i=1

(x− ρi)(y − ρi)
(x+ ρi)(y + ρi)

vec(bbT ),

where x and y are A⊗ I and I ⊗A, respectively, with 1
x

to be interpreted as the

inverse x−1. The error is small when ‖
∏k−1

i=1
(x−ρi)(y−ρi)
(x+ρi)(y+ρi)

‖2 is small. Since we want

to minimise the largest error, note that ‖
∏k−1

i=1
(x−ρi)(y−ρi)
(x+ρi)(y+ρi)

‖2 is maximised over the
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spectral interval when x = y [61]. Therefore, we seek the poles s1, . . . , sk−1 that

minimise this largest error, and so, we must solve the following minimax problem

min
si∈S

max
x∈σ(A)

∣∣∣ k−1∏
i=1

(x− si)2

(x+ si)2

∣∣∣. (3.20)

Relaxing this so that we maximise the error over the spectral interval, [ρmin, ρmax]

yields the following minimax problem

min
si∈S

max
x∈[ρmin,ρmax]

∣∣∣ k−1∏
i=1

(x− si)2

(x+ si)2

∣∣∣. (3.21)

This corresponds to the third Zolotarev problem [47, 71], the solution of which

yields the poles used to generate the basis V .

3.2.4 Comparison

In Section 3.2.2 and Section 3.2.3 we presented the two ways in which we can

project the Lyapunov equation AX + XAT = bbT from (2.9). In this section we

compare the two projection approaches. We apply both methods to a diffusion

problem of the form (2.8), discretised as in Section 2.2.1. We solve the Lyapunov

equation of size n = 1000 using a projection into the rational Krylov subspace,

and use 12 Zolotarev poles. The right-hand side is given as b = [1, . . . , 1]T , i.e.,

F = bbT is a full matrix of all ones. We want to see if there is any difference in

convergence by considering the number of iterations and the computational time.

From Figure 3.1, we see that the two convergence curves follow a similar trajec-

tory and that both methods reach the desired residual norm reduction of 10−8

in the same number of iterations. This is perhaps unsurprising given that the

properties of the 2-sided and 1-sided rational approximations are very similar.
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Figure 3.1: Comparison of 1-sided and 2-sided projections for the rational
Krylov subspace approach.

However, these projections are not the same. In particular, the projected (re-

duced size) problem is different. As part of the 1-sided approach, we need to

solve a projected problem where one of the coefficient matrices has dimension

k× k, k � n, and one has size n× n. This implies that the 1-sided approach re-

quires more work to solve this projected matrix equation. On the other hand, the

projected problem in the 2-sided approach involves only k × k matrices. There-

fore, despite the number of iterations and convergence curves being the same, the

computational time of the two approaches differs significantly, with the 2-sided

approximation being approximately 5 times quicker than the 1-sided approach.

Therefore, in the rest of this thesis, we use the 2-sided approximation for our

numerical results. However, we note that the 1-sided approach might be more

appropriate for Sylvester equations where the discretisation leads to coefficient

matrices of different dimensions.
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3.3 Attainable accuracy

In this section we consider the attainable accuracy of Algorithm 4. Studying this

for our 2-sided method will allow us to determine an appropriate criterion to stop

the iterative process. After each iteration, we check the Frobenius norm of the

relative residual, i.e.,

‖Rk‖F
‖F‖F

< τ,

where Rk = AXk+XkA
T−F is the residual at the kth iteration, and τ is a chosen

tolerance. In order to determine the best stopping criterion for our method, we

will explore a very strict stopping tolerance and observe what happens to the

norm of the residual. The analysis in [43] shows that, for Sylvester equations,

“the relative residual is guaranteed to be bounded by a modest multiple of

the unit round-off” when the Bartels–Stewart algorithm is used, and indicates

a dependence in terms of the problem dimensions on this ‘modest multiple’.

In the context of linear systems, this ‘modest multiple’ is expressed as a low

degree polynomial in n (when the right-hand side is of dimensions n × 1). It

is reasonable to infer from the analysis that this also applies for the Sylvester

equation in [43]. We see in the following discussion, that this also appears to be

the case for our Krylov algorithm for solving Lyapunov equations.

As mentioned in Section 2.4, we can use any of the three Krylov sub-

spaces to generate the basis used in our 2-sided projection: standard, extended

and rational. We compare the attainable accuracy of our algorithm for all three.

In order to generate the rational Krylov subspace, we compute 8 Zolotarev poles

and cycle through them. To determine the attainable accuracy results presented

below, we have run Algorithm 4 in MATLAB with the tolerance on the residual

set to τ = 10−14 and the maximum number of possible iterations set to 100 for
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the rational Krylov basis, 200 for the extended Krylov basis, and 1000 for the

standard Krylov basis.

In Figure 3.2(a) we have plotted the minimum relative norm of the residual

that our method can reach for each of the three Krylov subspaces described,

depending on the size of the matrices used in the Lyapunov equation, on

a linear scale, and fitted cubic polynomials through this data in order to

determine the reliability of our method. Note that we had previously fitted

a quadratic through this data but this was not as descriptive as the cubic.

We can see that the size of the problem has an impact on how small the

residual can get. The fact that we lose some accuracy for large problems is

inevitable due to rounding errors, but acceptable since the linear scale graph

presents low-degree polynomial behaviour, which implies that our method will

converge to reasonably accurate solutions. This means that we do not expect

to lose too much accuracy if we increase the size of our Lyapunov equation.

Furthermore, we can see that the rational Krylov basis with 8 Zolotarev poles

attains the smallest residual norm out of the three bases tested for large problems.

Next, we have considered each of the three bases in order to study what

happens before and after the minimum residual is reached in Figure 3.2(a). In

Figure 3.2(b) we present the residual obtained by running Algorithm 4 for each

of our three bases for a larger size of the Lyapunov equation, n = 1600. Note

that on our plot, the circles correspond to the minimum relative norm of the

residual attained by each of the bases. For each of the methods, this minimum

residual is also presented in Figure 3.2(a).

Looking at Figure 3.2(b), we see that there are two main phases that ap-

pear in the iterative process. First, we notice a phase of convergence, i.e., a phase
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Figure 3.2: Attainable accuracy plots.
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where the residual decreases until it reaches a “certain value”. Upon reaching

this minimum attainable accuracy, it enters the second phase. This phase does

not hold useful information about the convergence of the method and basis we

use, as these oscillations, seen in Figure 3.2(c) for rational and extended Krylov

residuals, represent noise appearing because of rounding errors. It is the first

phase that we are interested in as this presents behaviour that is specific to the

Krylov subspace used. We can see clearly that the minimum norm of the residual

is usually reached after some stagnation for the polynomial basis, and also that

it requires the largest number of iterations to reach this minimum residual. This

is followed by the extended Krylov subspace, which also requires more iterations

to reach the minimum norm of the residual than the rational Krylov subspace,

showing the superiority of the rational Krylov subspace for our problem with

regards to how quickly the minimum residual is reached.

The attainable accuracy analysis presented in this section suggests that in

practice, it is inappropriate to consider such a strict tolerance on the residual

norm, as rounding errors prevent this from being attained. Of course, the

tolerance is chosen by the user, who decides the acceptable level of error in

the computed solution. When a very small residual error is required, we have

seen that the rational Krylov approach performs best. However, in practical

situations, where less strict tolerances might be used, the rational and extended

bases prove to be robust. The decision on which Krylov subspace to use should

also be guided by other properties of the approaches, such as speed.
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3.4 Upper bounds

In this section we consider two bounds to see if they are descriptive of actual

convergence rates for diffusion problems. One is an upper bound derived in [4,

Corollary 2.5] for the residual of a 2-sided rational projection. The other one [21,

Theorem 4.9] is asymptotic and holds for k →∞. We are interested to see if this

is also descriptive for small k.

3.4.1 Beckermann bound

For the case of the Lyapunov equation, the bound in [4, Corollary 2.5], which we

call the Beckermann bound, depends only on the condition number of matrix A

and the choice of poles used. Letting S = {s1, . . . , sk} be the poles we use and

λmin, λmax be the smallest and largest eigenvalues of matrix A, respectively, and

using the notation in [4, Corollary 2.5], the bound is given by

‖Rk‖F
‖b‖2

F

≤ (4 + 4
√

2κ(A))γ, (3.22)

where Rk = AXk +XkA
T − bbT is the residual at the kth iteration, κ(A) = λmax

λmin

is the condition number of A, and γ = maxz∈[λmin,λmax] uA,k(z), with

uA,k(z) =
k∏
j=1

∣∣∣∣∣
√

z−λmax

z−λmin

√
sj−λmin

sj−λmax
− 1√

z−λmax

z−λmin

√
s̄j−λmin

s̄j−λmax
+ 1

∣∣∣∣∣.
We have computed this bound for a choice of 8 Zolotarev poles, as this showcases

convergence curves that make the graph easier to understand. Since the bound

does not depend on the right-hand side, we are interested to see how descriptive

it is for our problem and to understand whether it can guide our choice of poles.
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In this test we have considered three different vectors b: a vector of ones, a vector

of alternating 1s and −1s, and a vector of normally distributed random numbers.

Our results are presented in Figure 3.3.
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Figure 3.3: Upper bound from (3.22) for different choices of right-hand side
vector b.

We notice from this figure that the bound is descriptive of our solver conver-

gence for most choices of right-hand side b, with an almost identical qualitative

behaviour to the residual in the case of the alternating 1s and −1s.

3.4.2 Asymptotic error bound

Let W = [d, 1], with 0 < d < 1, be the field of values of the self-adjoint matrix A.

The asymptotic error estimate for the rational Krylov error from [21, Theorem

4.9] is given by

lim
k→∞
‖X −Xk‖

1
k ≤ exp

(
− πK(c)

2K ′(c)

)
,
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where K and K ′ are the principal and complimentary elliptic integrals of modulus

c, with

c =

√
(δ − α)(γ − β)

(δ − β)(γ − α)
,

α = −3 + d

1− d
−

√√√√(3 + d

1− d

)2

− 1, δ =
1

α

β = −1 + 3d

1− d
−

√√√√(1 + 3d

1− d

)2

− 1, γ =
1

β
.

In Figure 3.4 we have plotted this asymptotic bound on the same figure as the

actual error and the convergence curves. The setup of the solver is given by 8

Zolotarev poles and right-hand side of ones for size n = 1000.
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Figure 3.4: Asymptotic upper bound from [21, Theorem 4.9] alongside the error
and residual for Lyapunov equation of size n = 1000.

From Figure 3.4, we notice that the residual and error convergence curves show
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similar trajectories, but the asymptotic bound does not follow this. We believe

this is because of the asymptotic nature of the bound, and the lack of influence

from the poles or right-hand side choice may also contribute.

3.5 Pole choices

In this section we discuss approaches for generating a priori and adaptive poles

for the rational Krylov projection method. Later in the chapter we compare these

for a number of diffusion problems.

3.5.1 Zolotarev poles

We claimed in Section 3.2.3 that relaxing equation (3.20) leads to the third

Zolotarev problem. To describe this problem, let E = {x ∈ R, |x| ≤ 1} and

F = {x ∈ R, |x| ≥ 1/m}, m < 1 and Qn,n be the collection of irreducible ordi-

nary rational functions whose numerator and denominator are polynomials with

degree at most n. Then the third Zolotarev problem is given by the following

[47, 95].

Problem. Find r∗n ∈ Qn,n that achieves the minimum

σn = min
rn∈Qn,n

max
z∈E
|rn(z)|

among all rational functions of degree n subject to

min
z∈F
|rn(z)| = 1.
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The denominator of the solution yields poles that we can use to generate the

rational basis V . In practice, we compute the Zolotarev poles by the approach

implemented by Sabino [74], which uses elliptic integrals, but we note that there

has been a lot of research into the Zolotarev problem, both with real and complex

E and F [91]. In his thesis, Sabino also mentions that the Zolotarev poles can be

well approximated by logarithmically spaced values in the spectral interval, and

we will also show results using these logarithmic poles.

3.5.2 IRKA poles

The pole choices discussed so far overlook the influence of the right-hand side

in the convergence of the Lyapunov solver. This can be addressed by using the

iterative rational Krylov algorithm (IRKA) [6, 7, 39], a well established approach

in the context of model order reduction of dynamical systems of the form

Eẋ(t) = Ax(t) + Cu(t),

y(t) = Cx(t),

where x(t),u(t), and y(t) are the state, control, and output of the system,

respectively. The stability properties of this dynamical system can be charac-

terised by a Lyapunov equation of the form AXET + EXAT = CCT [7]. Note

that in this thesis, we only consider Lyapunov equations where E = I. For more

details about dynamical systems and model order reduction, see [39].

In model order reduction, IRKA is used to produce reduced order models

that satisfy some interpolation-based first-order conditions. As part of this

procedure, a number of poles are used to construct the reduced order model.

By relating dynamical systems to corresponding matrix equations, we can use
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the IRKA method to generate a set of poles and then use them to solve (2.9)

by a rational Krylov method, similarly to [9, 93] for ADI. The algorithm for

generating the poles is presented in Algorithm 5 and has been adapted from [7,

Alg. 1]. The algorithm presented uses a block right-hand side C and requires

a set of tangential directions. The tangential directions are obtained from the

SVD of C and then updated as described in [7, Sec. 3.1]. Note that when we

work with a rank-1 right-hand side, tangential directions are superfluous.

Algorithm 5 IRKA poles for Lyapunov equation

1: INPUT: coefficient matrix A, right-hand side C, initial tangential directions
Ĉ = [ĉ1, . . . , ĉk], initial poles S = {s1, . . . , sk}, tolerance tol.

2: while relative change in si > tol do
3: Compute orthonormal V so that its columns form a basis for

spani=1,...,k{(siI + A)−1Cĉi}.
4: Project Ak = V TAV,Ck = V TC.
5: Compute eigenvalue decomposition AkZ = ZΛ.
6: Update si = diag(Λ) and Ĉ = CT

k Z.
7: end while
8: OUTPUT: new poles si.

The convergence of Algorithm 5 depends on the initial poles but we rarely see a

big difference in the number of iterations necessary for IRKA to converge whether

the initial poles are in the spectral interval or all zeros. The computational

cost is expected to be higher than for the Zolotarev poles, in particular if the

problem has a large condition number. This is because for k initial poles, at

each iteration we have to solve k shifted linear systems, and only make use of

the final set of poles computed. However, the shifted linear systems we work

with are tridiagonal and in most cases presented, the cost of generating the

IRKA poles is comparable with the cost of generating the Zolotarev poles, as

will be shown in Section 3.6. The steps of the algorithm are repeated until the

relative change in the poles is below a given tolerance. In our experience, the
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IRKA poles work well with a fairly loose stopping tolerance of 10−2. Having a

stricter tolerance does not improve the poles sufficiently to make a big difference

in solver convergence and so would not justify the increased cost.

3.5.3 Adaptive pole choices

In this section we mention another approach for computing the poles for the

rational Krylov subspace. In [23], the authors present an adaptive algorithm for

solving the Lyapunov equation using a rational Krylov subspace. In this method,

at each iteration, a new pole is computed “on-the-fly”. This method uses the

rational function, rk−1, from (3.19), which interpolates (x + y)−1 at the Ritz

values of A from (2.9). The algorithm in [23] obtains the next pole sk+1 so that

sk+1 = arg
(

max
s∈δvk

1

|rk−1(s)|

)
, (3.23)

where vk ⊂ C+ approximates the mirrored spectral region of A and δvk is its

boundary. Once this pole is computed a new column for the basis is generated

and used to project the matrix A until convergence, at each step discarding the

previous pole.

For our numerical tests, we slightly modify Algorithm 4 to incorporate

the adaptive pole choice technique from [23, Alg. 1]. We present a numer-

ical comparison between our algorithm with the a priori poles described in

Section 3.5.1 and Section 3.5.2 and with this adaptive approach in Section 3.6.
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3.6 Numerical results – pole choices

We begin investigating the effect of the poles on the convergence rate of our

method numerically by considering the Lyapunov equation AX + XAT = bbT

arising from the discretisation of the Poisson PDE (2.8). For this problem, we

consider three right-hand sides to showcase different behaviours. These are a

vector of ones; alternating 1s and −1s; and the right-hand side corresponding to

the choice of f(x, y) which leads to the solution u(x, y) = x2(1 − x)2y2(1 − y)2.

We call the latter right-hand side choice the polynomial right-hand side.

We solve the resulting Lyapunov equations by the rational Krylov method

in Algorithm 4 for these sets of poles: Zolotarev poles, logarithmically spaced

values in the spectral interval, IRKA poles, and poles obtained as part of the

adaptive method in [23, Alg. 1]. We cycle through each set of poles in descending

order, and the solver terminates when ‖R‖/‖bbT‖ < τ . So that the algebraic error

is commensurate with the discretisation error, we consider τ = 10−4 and τ = 10−8.

To better understand the behaviour induced by the different choices of

right-hand side, as well as how convergence is affected by the different types

of poles, we also consider two other classes of test problem. The first is a 2D

Poisson PDE with variable diffusion coefficient, while the second is the original

Poisson problem discretised using non-uniform meshes. We finish our discussion

about the poles by exploring the case of higher rank right-hand sides. These are

chosen by combining permutations of the three rank-1 variants.
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3.6.1 Rank-1

Poisson problem – uniform mesh

We begin our exploration by comparing different numbers of a priori poles in

order to identify those that offer faster convergence rates for the Poisson problem

with uniform mesh. We present our findings in Figure 3.5. In this case, the

logspace poles resemble the Zolotarev ones so closely that the convergence is

almost identical and we omit the results.

In general, we notice that most choices of poles and right-hand side combinations

show good convergence for 12 or 16 poles. More extensive testing confirms this

pattern more generally and for clarity, we limit subsequent results to 16 poles,

unless otherwise stated.

RHS Poles
Time τ = 10−4 Total τ = 10−8 Total
poles It. Time time It. Time time

Ones
Zolotarev 0.0322 16 0.3809 0.4131 25 0.6589 0.6911
Logspace 0.0063 16 0.3993 0.4056 25 0.5814 0.5877

IRKA 0.0373 16 0.3881 0.4254 23 0.5114 0.5487

Alt. 1,−1
Zolotarev 0.0342 1 0.0428 0.0770 17 0.4151 0.4493
Logspace 0.0060 1 0.0379 0.0439 17 0.4243 0.4303

IRKA 0.0340 1 0.0356 0.0696 11 0.2764 0.3104

Polynomial
Zolotarev 0.0316 15 0.3109 0.3425 16 0.3823 0.4139
Logspace 0.0026 15 0.3292 0.3318 16 0.3428 0.3454

IRKA 0.0361 16 0.3837 0.4198 16 0.3737 0.4098

Table 3.1: Summary of a priori pole choices for Poisson problems with rank-1
right-hand sides. Total time columns represents the pole time and solver time
added together at τ = 10−4 and τ = 10−8, respectively.

As well as the number of iterations, it is important to consider the time taken

to generate poles and to solve the Lyapunov equation. Results are given in

Table 3.1, from which we see that the three sets of poles denoted Zolotarev,
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(a) Zolotarev poles. RHS ones.
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(b) IRKA poles. RHS ones.
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(c) Zolotarev poles. RHS polynomial.
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(d) IRKA poles. RHS polynomial.
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(e) Zolotarev poles. Alternating RHS.
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(f) IRKA poles. Alternating RHS.

Figure 3.5: Convergence for the uniform mesh Poisson equation for different
types and numbers of poles and for different right-hand sides.

logspace, and IRKA perform similarly in terms of number of iterations of the

Lyapunov solver at τ = 10−4. The IRKA poles always outperform the Zolotarev
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poles at a residual tolerance of τ = 10−8: substantially so for the alternating

right-hand side, showing that faster convegence rates can be achieved for the

rational Krylov subspace for pole choices other than the Zolotarev poles.

RHS
τ = 10−4 τ = 10−8

It. Time It. Time
Ones 14 0.3557 23 0.5407

Alternating 1,−1 2 0.1967 11 0.3144
Polynomial 7 0.2718 14 0.3504

Table 3.2: Iteration counts and time (in seconds) to solve the Lyapunov equation
with the adaptive poles approach from [23].

We compare our a priori results for Zolotarev, logarithmically spaced, and IRKA

poles with the efficient and commonly used approach of adaptively computing

the poles as part of the solver, as described in [23, Alg. 1] and in Section 3.5.3.

We obtain in Table 3.2 iteration counts and time required to solve the Lyapunov

equation for our three choices of right-hand side at both τ = 10−4 and τ = 10−8.

We can see that, with the exception of the alternating right-hand side, the

adaptive approach outperforms our a priori one at τ = 10−4. However, at

τ = 10−8, the adaptive approach performs as well as our approach using the

IRKA poles both in terms of iteration counts and convergence times.

The iteration counts for the alternating right-hand side at τ = 10−4 suggest that

the ordering of the a priori poles might be an important factor in convergence.

This is perhaps unsurprising because, in contrast to the other two choices,

this right-hand side is highly oscillatory. In fact, Table 3.3 shows that the

alternating right-hand side is almost orthogonal to the eigenvector corresponding

to the smallest eigenvalue of A, but has a relatively small subspace angle with

the eigenvector corresponding to the largest eigenvalue. This motivates us to

examine the effect of ordering the poles in ascending and descending order.
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(a) Right-hand side alternating 1 and −1.
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(b) Right-hand side polynomial.

Figure 3.6: Comparison of convergence for the uniform mesh Poisson equation
with 8 Zolotarev poles and both ascending and descending poles orderings.
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The results are illustrated in Figure 3.6. We use 8 poles rather than 16 as the

behaviour is more clearly demonstrated, although a similar phenomenon occurs

for other numbers of poles.

RHS angle w/ small eigenvec angle w/ large eigenvec
alternating 1 and −1 90◦ 25◦

ones 25◦ 90◦

polynomial 9◦ 90◦

Table 3.3: Subspace angles between choices of right-hand sides and eigenvectors
corresponding to both smallest and largest eigenvalue for the Poisson PDE.

From Figure 3.6, we can see that convergence is indeed affected by the ordering of

the a priori poles, but we also note that once we complete a full cycle through the

poles, the residuals are the same. This is because once we iterate through all the

poles, the rational Krylov subspaces are the same, whichever ordering we consider.

Clearly, the ordering of the a priori poles can improve convergence results,

so, if possible, we recommend taking this into account when selecting the set of

poles to be used. Note that in [74], multiple orderings are considered for poles

in the context of ADI.

Variable diffusion coefficients

We now present results for the Poisson PDE with variable diffusion coefficients.

Similarly to the uniform problem, we discretise the PDE

−∇ · (a(x)a(y)∇u) = f,
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where a(·) is a bounded, positive function, using standard centred second-order

finite differences on a uniform mesh to obtain the matrix equation

TUD +DUT = F̃ ,

where D = diag(a(x1), a(x2), a(x3), · · · ), and

T =
1

h2



a(x1 − h
2
) + a(x1 + h

2
) −a(x1 + h

2
)

−a(x2 − h
2
) a(x2 − h

2
) + a(x2 + h

2
) −a(x2 + h

2
)

−a(x3 − h
2
) a(x3 − h

2
) + a(x3 + h

2
)

. . . . . .


.

Even though T is nonsymmetric, pre- and post-multiplying by D−1/2 gives the

symmetric matrix A which we use in the Lyapunov equation

AX +XAT = F,

where A = D−1/2TD−1/2, X = D−1/2UD−1/2 and F = D−1/2F̃D−1/2. We solve

this Lyapunov equation with the same right-hand side choices for F as before and

record timings and numbers of iterations in each case. The times and iteration

counts at the different τ , as well as the total poles and solver times for size

n = 1000 with 16 poles are presented in Table 3.4 for diffusion coefficients given

by the functions [35]

a1(x) = sin(x),

a2(x) = 1 + 50 exp(−5x2),

a3(x) =


1, for 0 < x < 1/2

104, for 1/2 < x < 1.
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Diff. coeff. RHS Poles
Time τ = 10−4 Total τ = 10−8 Total
poles It. Time time It. Time time

a1(x)

Ones
Zolotarev 0.0223 16 0.3591 0.3814 29 0.4174 0.4397
Logspace 0.0007 16 0.3324 0.3331 28 0.4131 0.4138

IRKA 0.0305 16 0.2962 0.3267 28 0.3973 0.4278

Alt.
Zolotarev 0.0348 5 0.0774 0.1122 20 0.2656 0.3004
Logspace 0.0064 5 0.0708 0.0772 20 0.2646 0.2710

IRKA 0.0226 6 0.1433 0.1659 18 0.2119 0.2345

Poly.
Zolotarev 0.0283 16 0.3053 0.3336 27 0.5616 0.5899
Logspace 0.0024 16 0.3542 0.0772 27 0.5281 0.5305

IRKA 0.0279 16 0.3137 0.3416 16 0.3137 0.3416

a2(x)

Ones
Zolotarev 0.0216 16 0.2430 0.2646 29 0.4751 0.4967
Logspace 0.0025 16 0.2318 0.2343 29 0.4360 0.4385

IRKA 0.0293 16 0.2203 0.2496 26 0.3700 0.3993

Alt.
Zolotarev 0.0195 2 0.0848 0.1043 17 0.2901 0.3096
Logspace 0.0032 1 0.0048 0.0080 17 0.3249 0.3281

IRKA 0.0219 1 0.0405 0.0624 12 0.1835 0.2054

Poly.
Zolotarev 0.0193 16 0.3747 0.3940 28 0.5700 0.5893
Logspace 0.0020 16 0.4001 0.4021 28 0.5717 0.5737

IRKA 0.0262 16 0.3119 0.3381 16 0.3119 0.3381

a3(x)

Ones
Zolotarev 0.0191 16 0.4051 0.4242 25 0.6615 0.6806
Logspace 0.0030 16 0.3909 0.3939 25 0.6154 0.6184

IRKA 0.0501 16 0.3307 0.3808 23 0.5526 0.6027

Alt.
Zolotarev 0.0190 6 0.2557 0.2747 18 0.4802 0.4992
Logspace 0.0029 5 0.2353 0.2382 17 0.4554 0.4583

IRKA 0.0452 6 0.2325 0.2777 16 0.4337 0.4789

Poly.
Zolotarev 0.0190 15 0.5054 0.5244 16 0.5334 0.5524
Logspace 0.0014 15 0.5213 0.5227 16 0.5475 0.5489

IRKA 0.0499 16 0.4707 0.5206 16 0.4707 0.5206

Table 3.4: Summary of a priori pole choices for variable diffusion coefficient
Poisson problems with uniform mesh spacing and rank-1 right-hand sides. Total
time column represents the pole time and solver time added together at τ = 10−4

and τ = 10−8, respectively.

From Table 3.4 we see that, as in the uniform Poisson case, all our tested

problems show very similar numbers of iterations at τ = 10−4. Furthermore, the

diffusion coefficients a1(x) = sin(x) and a2(x) = 1 + 50 exp(−5x2) show similar

performance to each other for all choices of right-hand side and a priori poles

even at τ = 10−8. In these cases, we notice that using 16 IRKA poles results

in fewer iterations. In the case of the piecewise diffusion coefficient, and the

polynomial right-hand side, the IRKA poles results are consistent with those

from the other two, while the Zolotarev and logspace poles seem to perform
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better than before.

Diff. coeff. RHS
τ = 10−4 τ = 10−8

It. Time It. Time

a1(x)
Ones 18 0.3849 29 0.4737

Alternating 1,−1 6 0.2834 20 0.3802
Polynomial 10 0.3202 20 0.4520

a2(x)
Ones 17 0.3853 28 0.4556

Alternating 1,−1 2 0.1841 13 0.3382
Polynomial 7 0.2875 17 0.4315

a3(x)
Ones 14 0.3749 23 0.4306

Alternating 1,−1 5 0.2688 19 0.4703
Polynomial 7 0.2952 14 0.4279

Table 3.5: Iteration counts and time (in seconds) required to solve the variable
diffusion Lyapunov equation using the adaptive poles approach from [23].

As in the uniform case, we compare our a priori pole choices with the adap-

tive approach from Section 3.5.3. Table 3.5 contains iteration counts and

computational times for the adaptive approach. We can see that the a priori

generated IRKA poles outperform the adaptively computed poles for two

out of the three diffusion coefficients we considered, with the piecewise setup

benefiting more from the adaptive approach. As in the uniform case, we are

interested in assessing how the solver with a priori poles compares with the

adaptive approach. These results reiterate the usefulness of the IRKA poles

for Lyapunov equation arising from the discretisation of some variable diffu-

sion PDEs, since they show great performance alongside the adaptive pole choice.

In the cases of the alternating right-hand side, we still notice that very

few iterations are required at τ = 10−4. As in the case of the uniform Poisson

problem, we have computed the subspace angle between the right-hand side

vector and the eigenvectors corresponding to the smallest and largest eigenvalues.

Our findings for diffusion coefficient a1(x) = sin(x) can be found in Table 3.6.

Note that the other diffusion coefficients show similar results, so we omit them
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here.

RHS angle w/ small eigenvec angle w/ large eigenvec
alternating 1 and −1 90◦ 54◦

ones 54◦ 90◦

polynomial 10◦ 90◦

Table 3.6: Subspace angles between choices of right-hand sides and eigenvectors
corresponding to both smallest and largest eigenvalue for the PDE with diffusion
coefficient a(x) = sin(x).

We notice from Table 3.6 that, as in the case of the Poisson problem, the highly

oscillatory right-hand side choice of alternating 1s and −1s has a smaller angle

with the eigenvector corresponding to the largest eigenvalue, explaining again

why there is an initial decrease in the norm of the residual when using a set of a

priori poles where the largest one is used first.

Poisson problem – nonuniform mesh

We now present results for the Poisson PDE generated with nonuniform meshes.

This first set of results uses the graded mesh generator in [70] with curve = 2

and weight = 0.1, where the curve adjusts the steepness in the change of spac-

ing, and the weight adjusts the ratio between the larger spacing at the boundaries

and the smaller spacing in the centre of the domain. The other set of results is

for a geometric mesh generated on [0, 1/2] using a geometric sequence with ratio

r = 0.99, which is mirrored on [1/2, 1]. In Figure 3.7 we present the two meshes

for 100 grid points. Furthermore, in Figure 3.7(b), we zoom in on the graded

mesh in order to show the change in spacing in the middle of the grid.

Note that the coefficient matrix obtained using the geometric mesh is more ill-

conditioned than the others presented (κ(A) = 7 × 108 for the geometric mesh,
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(a) Graded mesh with 100 grid points.
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(b) Closer look at the graded mesh with 100 grid points.
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(c) Geometric mesh with 100 grid points.

Figure 3.7: Nonuniform meshes.
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as compared to κ(A) = 8 × 106 for the graded mesh). This affects both con-

vergence rate and pole computation. To be precise, the Zolotarev poles require

high precision arithmetic in order to generate the poles, as the elliptic integral

computation cannot be obtained with sufficient accuracy in standard double pre-

cision. In order to overcome this, we use an asymptotic approximation of the

elliptic integral given by the formula [15] K = ln(4)− 0.5 ln((λmin/λmax)2), where

λmin and λmax are the smallest and largest eigenvalues of the coefficient matrix,

respectively. The results for geometric mesh with Zolotarev poles in Table 3.7

use this approximation for the elliptic integral of first kind.

Mesh RHS Poles
Time τ = 10−4 Total τ = 10−8 Total
poles It. Time time It. Time time

Graded

Ones
Zolotarev 0.0175 16 0.3488 0.3663 29 0.5328 0.5503
Logspace 0.0016 16 0.3253 0.3269 28 0.5052 0.5068

IRKA 0.0207 16 0.3070 0.3277 16 0.3070 0.3277

Alt.
Zolotarev 0.0173 7 0.1946 0.2119 26 0.3971 0.4144
Logspace 0.0013 7 0.1886 0.1899 33 0.4705 0.4718

IRKA 0.0187 9 0.1927 0.2114 21 0.3033 0.3220

Poly.
Zolotarev 0.0194 17 0.4435 0.4629 30 0.5989 0.6183
Logspace 0.0012 17 0.4567 0.4579 30 0.6394 0.6406

IRKA 0.0213 16 0.3002 0.3215 16 0.3002 0.3215

Geom.

Ones
Zolotarev 0.0165 29 0.5376 0.5541 43 0.6841 0.7006
Logspace 0.0028 29 0.5517 0.5545 43 0.6196 0.6224

IRKA 0.0793 33 0.5682 0.6475 139 4.2140 4.2933

Alt.
Zolotarev 0.0191 20 0.4030 0.4221 39 0.6244 0.6435
Logspace 0.0032 20 0.3873 0.3905 39 0.6149 0.6181

IRKA 0.0253 14 0.6747 0.7000 81 1.8331 1.8584

Poly.
Zolotarev 0.0192 29 0.5535 0.5727 33 0.7088 0.7280
Logspace 0.0030 29 0.5932 0.5962 33 0.7085 0.7115

IRKA 0.0684 16 0.2349 0.3033 16 0.2349 0.3033

Table 3.7: Summary of a priori pole choices for Poisson problems with nonuni-
form mesh spacing and rank-1 right-hand sides. Total time column represents the
pole time and solver time added together at τ = 10−4 and τ = 10−8, respectively.

We can clearly see from Table 3.7 that the IRKA poles outperform the other two

sets of poles for the graded mesh, for all choices of right-hand side at τ = 10−8,

while they all perform similarly at τ = 10−4. This shows that having information
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about the right-hand side can improve the convergence of the solver for this type

of problem. This is, however, not the case for the geometric mesh. In this case,

it is very likely that because of the ill-conditioning of the coefficient matrix, the

IRKA poles cannot improve solver convergence. In fact, they usually show much

worse iteration counts than the Zolotarev or logspace poles. An exception is the

polynomial right-hand side, in which case the IRKA poles result in solver con-

vergence similar to the other two sets of poles. We believe this happens because

of the existence of a low-rank solution of the Lyapunov problem in this case.

Furthermore, we note that in two cases, the time that the solution with IRKA

poles requires to converge to τ = 10−4 is smaller than for the other pole choices,

which means that at this tolerance, the IRKA poles are preferrable.

Mesh RHS
τ = 10−4 τ = 10−8

It. Time It. Time

Graded
Ones 13 0.4072 29 0.4737

Alternating 1,−1 12 0.3166 24 0.4257
Polynomial 9 0.2818 19 0.4320

Geometric
Ones 29 0.4726 19 0.6947

Alternating 1,−1 17 0.3472 37 0.5288
Polynomial 15 0.3811 26 0.5872

Table 3.8: Iteration counts and time (in seconds) to solve the nonuniform mesh
Lyapunov equation using the adaptive poles approach from [23].

Once again, as in the uniform and variable diffusion coefficient cases, we compare

the a priori pole approaches with the adaptive method from Section 3.5.3. The

adaptive pole generation results are presented in Table 3.8 for both graded and

geometric meshes. We see from Table 3.7 and Table 3.8 that the IRKA poles

outperform the adaptive approach at both τ = 10−4 and τ = 10−8 for the graded

mesh in terms of both iteration numbers and convergence times, with the only

exception appearing for the polynomial right-hand side at τ = 10−4. Meanwhile,
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for the geometric mesh, the adaptive poles show better convergence than the a

priori pole approaches in all but one case given by the polynomial right-hand

side, where the IRKA poles are superior.

3.6.2 Scalability

The numerical results for solving the Lyapunov equation we have presented so

far have been for coefficient matrices of dimension n = 1000. In this section we

show how our solver performs as we increase the size of the coefficient matrices.

We do this in order to be able to draw conclusions about the most suitable set

of poles. Before we present our results, we mention that we have changed our

residual computation for the results in this section. To be precise, we no longer

use the exact residual norm computation ‖R‖F = ‖AXk + XkA − bbT‖F as this

is very expensive for large n and should not be computed in practice. In its

place, we use a low cost residual norm computation of ‖Rk‖F as described in

[23, Proposition 4.1], which is mathematically equivalent, but slightly different

in practice. Our stopping criterion is still given by ‖Rk‖F/‖bbT‖F < 10−4.

In our tests, we show the behaviours for different pole choices for Lya-

punov equations of sizes of up to n = 100000, for three of the examples presented

before, i.e., the original Poisson problem on a uniform mesh, the variable diffusion

problem with a1(x) = sin(x) and the graded nonuniform mesh problem. We

consider the behaviour of Zolotarev, IRKA and adaptive poles for a right-hand

side vector of ones in order to make a recommendation about the most suitable

set of poles.
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Uniform mesh

We first present results for the uniform mesh. In Figure 3.8(a) we present the

times required for the a priori Zolotarev and IRKA poles to solve the Lyapunov

equation, as well as the adaptive approach times. We compare the times required

to generate the poles, the times required to solve the equation, as well as the total

times for both sets of a priori poles with the total adaptive times. We can clearly

see that despite the small pole generation time, the Zolotarev poles require a much

longer time to solve the Lyapunov equation than the IRKA poles, which have a

slightly higher pole generation time, but a cheaper solver time. As a result, the

total IRKA times are much smaller overall than the total Zolotarev times as we

increase the size of the problem. This is because, as we see in Figure 3.8(b), the

number of iterations required to solve the Lyapunov equation with IRKA poles

is constant, while with Zolotarev poles, this grows as we increase n. Therefore,

for uniform mesh Lyapunov equations, the IRKA poles are a much better choice

than the Zolotarev poles, as they seem to be optimal in terms of iteration counts.

Comparing the a priori poles with the adaptive approach, we can see that, as

we increase the problem size, the adaptive approach takes less time to solve the

Lyapunov equation, despite showing a slight increase in the number of iterations.

Variable diffusion coefficient

We now present the convergence behaviour as we increase the problem size for a

variable diffusion coefficient given by a1(x) = sin(x). As in the uniform case, we

show the times required to solve the Lyapunov equation with both a priori pole

choices, Zolotarev and IRKA poles, as well as with the adaptive approach. The

results are presented in Figure 3.9(a), in which we can see that, as in the uniform
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case, the cost of generating the IRKA poles is what drives the overall cost up with

these poles. In the case of the Zolotarev poles, it is the solver time that increases

drastically as we increase the size n, so much so, that we only show results up

to n = 40000. This solver time for Zolotarev poles is so high as a result of the

large number of iterations required. We see in Figure 3.9(b) that the solver with

Zolotarev poles requires 365 iterations for n = 40000, in contrast to the much

smaller number required by the solver with IRKA poles and by the adaptive

approach. The number of iterations for the IRKA solver are no longer constant,

as in the case of the uniform mesh, but slightly increase as we increase the size

of the problem. This might be due to the problem becoming more ill-conditioned

with the size. Despite this increase, as in the uniform case, in terms of a priori

poles, we consider the IRKA poles a much better choice than the Zolotarev ones

for the variable diffusion problem. However, when comparing the a priori results

with the adaptive approach, we can see that, as we increase the size, solving the

Lyapunov equation with the adaptive pole choice is less costly than solving with

the a priori poles.

Graded mesh

Finally, we show computational time and iteration counts results for the Lyapunov

equation with graded mesh for problems of size up to n = 100000. In Figure 3.10

we see the same curves that we saw for the uniform mesh and variable diffusion

coefficient cases, however these present different properties than before. For the a

priori poles, in the graded mesh case, we see that the total time required to solve

the Lyapunov equation with IRKA poles takes longer than with Zolotarev poles.

This is because of the time required to generate the IRKA poles, which grows

similarly to the time required to solve the problem with Zolotarev poles. If we

only compare solver times, then we see that using the IRKA poles gives smaller
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computational times. This results from the constant number of iterations required

by the solver to converge when using IRKA poles, as seen in Figure 3.10(b).

Therefore, as in the case of the uniform mesh, the IRKA poles seem to be optimal

in terms of the number of solver iterations. Furthermore, as we have seen in the

two previous problems, the adaptive poles approach outperforms both of the a

priori pole choices, being quicker than the solver with the IRKA poles. This makes

the adaptive poles more performant for solving large-scale Lyapunov equations

with graded mesh.

3.6.3 Higher rank right-hand sides

In this section we present some results which use a higher-rank right-hand side,

i.e., F = CCT , with rank(C) > 1, where the columns of C are formed from

combinations of the rank-1 choices. We are interested to see effects of the rank

of C on the convergence of the solver. We show our results for the Poisson

problem with uniform and nonuniform meshes, and the diffusion problem with

coefficient a(x) = sin(x). Note that the remaining two diffusion coefficient choices

behave similarly to the one presented. We also only consider the Zolotarev and

IRKA a priori poles (as the logarithmically spaced poles perform similarly to

the Zolotarev ones), as well as the adaptive pole approach from Section 3.5.3.

Furthermore, note that for the geometric mesh results, we have used the same

elliptic integral approximation for the Zolotarev poles as in the rank-1 case.

We can see from Table 3.9 that, despite being slightly more expensive to compute,

the IRKA poles perform somewhat better than the Zolotarev ones and than the

adaptive approach in most cases at τ = 10−8 for the uniform mesh, variable

diffusion coefficient and graded mesh cases. This means that they are a reliable

set of poles for more accurate results in these cases. However, for the geometric
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Setup RHS Poles
Time τ = 10−4 Total τ = 10−8 Total
poles It. Time time It. Time time

Uniform

Poly., Ones
Zolotarev 0.0146 13 0.5892 0.6038 23 0.9019 0.9165

IRKA 0.0352 14 0.5243 0.5595 19 0.6781 0.7133
Adaptive - 12 - 0.6978 22 - 1.0215

Poly., Alt.
Zolotarev 0.0171 14 0.6092 0.6263 17 0.6730 0.6901

IRKA 0.0242 15 0.5490 0.5732 16 0.5909 0.6151
Adaptive - 8 - 0.4754 17 - 0.8382

Ones, Alt.
Zolotarev 0.0158 15 0.6153 0.6311 25 0.9454 0.9612

IRKA 0.0308 16 0.6135 0.6443 26 0.9882 1.0190
Adaptive - 15 - 0.7241 25 - 1.0918

Diff. coeff.

Poly., Ones
Zolotarev 0.0170 15 0.3170 0.3340 25 0.5574 0.5744

IRKA 0.0329 15 0.3087 0.3416 23 0.4981 0.5310
Adaptive - 15 - 0.4612 25 - 0.6764

Poly., Alt.
Zolotarev 0.0165 14 0.3690 0.3855 18 0.4008 0.4173

IRKA 0.0323 14 0.3170 0.3493 18 0.3887 0.4210
Adaptive - 9 - 0.3564 21 - 0.6049

Ones, Alt.
Zolotarev 0.0163 15 0.3138 0.3301 25 0.5664 0.5827

IRKA 0.0338 16 0.3243 0.3581 25 0.5433 0.5771
Adaptive - 18 - 0.5289 28 - 0.7378

Graded

Poly., Ones
Zolotarev 0.0210 15 0.3314 0.3524 17 0.3681 0.3891

IRKA 0.0437 14 0.2912 0.3349 15 0.3223 0.3660
Adaptive - 11 - 0.4141 17 - 0.5378

Poly., Alt.
Zolotarev 0.0182 16 0.3508 0.3690 27 0.6136 0.6318

IRKA 0.0396 16 0.3535 0.3931 28 0.6120 0.6516
Adaptive - 24 - 0.6427 35 - 0.9728

Ones, Alt.
Zolotarev 0.0179 16 0.3546 0.3725 29 0.6580 0.6759

IRKA 0.0417 16 0.3395 0.3812 28 0.6090 0.6507
Adaptive - 16 - 0.4685 31 - 0.9659

Geometric

Poly., Ones
Zolotarev 0.0158 22 0.5244 0.5402 33 0.7688 0.7846

IRKA 0.0867 20 0.4212 0.5081 129 5.9077 5.9944
Adaptive - 18 - 0.5362 34 - 0.9259

Poly., Alt.
Zolotarev 0.0175 20 0.4861 0.5036 39 0.8820 0.8995

IRKA 0.0422 16 0.3299 0.3721 33 0.7225 0.7647
Adaptive - 21 - 0.7063 37 - 1.1531

Ones, Alt.
Zolotarev 0.0195 29 0.6240 0.6435 43 1.0056 1.0251

IRKA 0.0603 29 0.6197 0.6800 65 1.7396 1.7999
Adaptive - 32 - 0.7816 45 - 1.3052

Table 3.9: Summary of pole choices for Poisson problems with uniform mesh
spacing and rank-2 right-hand sides. Total time column represents the pole time
and solver time added together at τ = 10−4 and τ = 10−8, respectively.

mesh, they lead to slow solver convergence. We noticed similar behaviour in

the rank-1 choices of polynomial and ones. This happens because of the ill-

conditioning of the matrix A and so, the Zolotarev poles are more appropriate

for the geometric mesh spacing. Furthermore, note that unlike what is suggested

in the literature, the adaptive approach takes longer per iteration, and overall, in
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all cases, making them less advantageous than the a priori options.

Comparing the results in Table 3.9 with the results for the rank-1 right-hand sides

from Section 3.6.1, we notice that the iteration numbers for rank-2 right-hand

sides seem to match the results of one of the two columns more than the other.

To see if this is indeed the case, we have plotted the relative residual norms of the

rank-2 right-hand side problems on the same graph as the individual columns.

We have done this for three cases where the relationship between rank-1 and

rank-2 results are more clearly shown, but this behaviour can be seen in general.

We can see in Figure 3.11 that indeed, the behaviour of the higher-rank problems

follows that of the rank-1 right-hand side which takes longest to converge since

the “worse-off” column needs to be accounted for by the solver.

3.7 Conclusions

In this chapter, we have derived both 1- and 2-sided projections into rational

Krylov subspaces, as well as explicit representations of the rational functions

generated by these methods to approximately solve Lyapunov equations. We

have also adapted the IRKA algorithm to generate poles for the rational Krylov

subspace. We showed how the convergence of our solver compares to upper

bounds for rational Krylov solvers and described the attainable accuracy of our

approach. We also presented a numerical comparison between the 1-sided and

2-sided projections and concluded that the 2-sided approach is more appropriate

for our problems.

We studied the number of a priori poles and pole choices for a variety of

problems and we can recommend the number and set of poles which should
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(a) Uniform mesh convergence with IRKA poles and the ones and polynomial right-
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Figure 3.11: Convergence comparison for rank-1 right-hand sides and the cor-
responding rank-2 combinations.
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be used in practice for discretised diffusion problems. Let us first summarise

results for a priori pole choices. For problems with uniform mesh spacing, we

recommend the use of between 12 and 16 IRKA poles as these can improve the

convergence of the solver.

Additionally, we considered two types of nonuniform meshes, a graded one

and a geometric one. It is clear from our results that the IRKA poles outperform

the Zolotarev ones in the graded case. The ill-conditioning of the coefficient

matrix A arising from geometric meshes cause IRKA poles to perform poorly

when a strict tolerance is required. For the Zolotarev poles we can use an

asymptotic approximation instead and so, in the case of ill-conditioned systems

(condition number greater than 107, say), where a high accuracy is required,

then we recommend the use of Zolotarev poles with asymptotic approximation.

Moreover, we considered how the time required to solve the Lyapunov equations

changes as we increase the size of the problem. We have seen that the IRKA

poles are optimal in terms of iteration counts in the cases of uniform and graded

meshes, making them a favourable choice despite the higher computational cost

to generate them. For the variable diffusion coefficient case, we have seen that

the number of iterations increases slightly with n when the IRKA poles are used,

but the large number of iterations required to solve the Lyapunov equation with

the Zolotarev poles also increases greatly the solver time, making the IRKA

poles favourable in this case, too.

For all our problems, we compared the convergence of the Lyapunov solver

using a priori poles with the adaptive pole choice approach. For problems of

moderate size, we have seen that in most cases where the IRKA poles perform

better than Zolotarev, the convergence with adaptive pole choices is similar
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to this, meaning that the IRKA poles are, for these problems, comparable

with the state-of-the-art adaptive approach. For large problems, the adaptive

poles show quicker convergence, despite often needing more iterations that IRKA.

Furthermore, the ordering of the poles affects the speed of convergence.

The usual ordering we have used in our results has been descending. However,

there are some choices of right-hand side, such as the ones and polynomial cases,

which benefit from an ascending pole ordering. This is a consequence of the

angle between the right-hand side vector and the eigenvector corresponding to

either the smallest or largest eigenvalue. If possible, we recommend to check this

subspace angle and choose the pole ordering accordingly, and note that highly

oscillatory right-hand sides may benefit from descending order.

Lastly, we looked at a number of higher rank right-hand sides given by

combinations of the rank-1 right-hand sides. The results we obtained mimicked

those of the rank-1 problems and our recommendations from above still hold in

terms of number and sets of poles. One thing we recommend users note about

the higher rank right-hand side problems is that the convergence is usually

influenced by the “worse-off” of the right-hand side columns.
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Convection–diffusion problems

4.1 Introduction

The discretised convection–diffusion PDE can be written as the matrix equation

−ε(AX +XAT ) + Φ1BXΨ1 + Φ2XB
TΨ2 = F,

as we derived in (2.14). Recall that A is symmetric positive definite, B is non-

symmetric Toeplitz, and both are tridiagonal, while F is low rank, and Φ1,2 and

Ψ1,2 are diagonal matrices. This equation is formed by adding the symmetric

Poisson operator from Section 2.2.1, which is a Lyapunov operator, to terms cor-

responding to the convective component of the PDE in (2.12). Depending on

our choice of convection wind, without loss of generality, with the possibility to

interchange Φ1,Φ2,Ψ1,Ψ2, and up to a constant factor, the matrix equation can

be one of three types:

• a Lyapunov equation, i.e., Φ1,Φ2,Ψ1,Ψ2 = I;
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• a Sylvester equation, i.e., Φ1,Ψ2 = I, so that we have −ε(AX + XAT ) +

Φ1BX +XBTΨ2 = F [64];

• a four-term matrix equation like (2.14), also known as a generalized

Sylvester equation [49, 75].

In this chapter we consider each of these three types of matrix equations

arising from the discretisation of convection–diffusion PDEs and discuss solution

strategies, characteristics and limitations.

We begin this chapter by considering the Lyapunov equation, i.e., the first

type above. We solve this using a projection into a rational Krylov subspace

in a similar manner to the approach we used in Chapter 3. As the coefficient

matrices involved can be more nonnormal than those from Lyapunov equations

we have seen previously, we consider two upper bounds for the error of this

approach, one using the eigenvector condition number, and one using the field of

values. Note that a looser field of values bound is also presented in [21] in order

to show the relationship between the ADI and rational Krylov methods. We

then present suitable pole choices for the rational Krylov subspace and compare

the Lyapunov solver convergence with these sets of poles.

Section 4.3 presents observations about Sylvester equations which arise

from the discretisation of the convection–diffusion problem. We describe a

projection-based approach for solving the Sylvester equation and provide insights

into how we can use the Zolotarev and IRKA poles to form rational Krylov

subspaces. We then present numerical results covering three main types of

Sylvester equations that arise from convection–diffusion equations and make our

recommendation of suitable poles.
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Finally, we consider the four-term matrix equation and present a station-

ary iterative method for solving this. Such an approach is presented in [75]

for generalized Lyapunov equations. We extend these results to generalized

Sylvester equations, allowing us to solve the four-term matrix equation in (2.14).

Note that the generalized Sylvester equation is considered in [49] for matrices

that satisfy a commuting property, which is not the case for convection–diffusion

coefficient matrices. We provide a criterion for the convergence of the stationary

iteration. We then perform a series of numerical results to test our method, and

focus on the limitations of such an approach for matrix equations arising from

convection–diffusion PDEs.

4.2 Lyapunov equation

In this section we discuss the Lyapunov equation arising from the discretisation

of convection–diffusion PDEs. As in the case of diffusion problems, we are in-

terested in using projection methods to solve our matrix equations. When the

convection wind is constant, i.e., w = α(1, 1), then our matrix equation is given

by a Lyapunov equation given by

−ε(AX +XAT ) + α(BX +XBT ) = F,

which for simplicity we will write as

MX +XMT = F, M = −εA+ αB.

Note that here, the scalar α can be any non-zero number, and that in our nu-

merical examples, we will use α = 1. However, a more general wind direction,

w = (w1, w2) will lead to a Sylvester equation. The coefficient matrix M is a
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nonsymmetric tridiagonal real-valued Toeplitz matrix discretised on a uniform

mesh and so, depending on our choice of size n, the diffusion coefficient ε, and

the scalar α, the eigenvalues of the matrix M can be real or complex. Recall

that we can compute the exact eigenvalues for such a matrix using the formula

presented in (2.1),

λk = a− 2
√
bc cos

( kπ

n+ 1

)
, k = 1, 2, . . . , n,

where a is the entry on the main diagonal and b, c are the entries on the sub-

and super-diagonals of M . Then, using this, it is clear that for the eigenvalues to

be complex, we need the product bc < 0. For our convection–diffusion problem,

this product is given, in terms of n, α and ε, by n4ε2−α2n2/4. It is easy to show

that this is negative when nε < α/2. We require (2.1) in this section because

we will encounter matrices which are far from normal and for which, as a result,

we cannot compute the eigenvalues accurately using the built-in MATLAB functions.

When finite differences are used to discretise the convection-diffusion PDE

care must be taken to avoid unstable methods that cause spurious oscillations in

the solution [38]. As our problem is on a uniform grid, with mesh size h ≤ 1/n,

this can be quantified using the mesh Péclet number

Pe =
h|w|
2ε

,

where |w| = ‖w‖∞ = max(|w1|, |w2|) is a measure of how convective a grid point

is. Note that, in particular, non-physical oscillations will occur in the solution if

the Péclet number is greater than one.

The size n of the matrix, the diffusion parameter ε and the scalar α play an
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(a) ε = 0.3 corresponding to M with real eigenvalues, eigenvector condition
number 5.2857, and mesh Péclet number 0.0236.

(b) ε = 0.0167 corresponding to M with real eigenvalues, eigenvector condition
number 2.36× 1013, and mesh Péclet number 0.4234.

(c) ε = 0.002 corresponding to M with complex eigenvalues, eigenvector con-
dition number 3.62× 1016, and mesh Péclet number 3.5355.

Figure 4.1: Eigenvalues, field of values and pseudospectrum for convection–
diffusion coefficient matrix of size n = 100, with w = (1, 1).
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important role in the distribution of the eigenvalues and the conditioning of the

eigenvector matrices. When ε is large (close to 1), then M has real spectrum,

and it is also well conditioned. However, when ε is small, but bigger than α
2n

,

then M is far from normal, and so, it can influence the solvability of the matrix

equation. When ε drops below α
2n

, the problem becomes even harder to solve

since the spectrum of M includes complex eigenvalues, and the condition number

of the eigenvector matrix is large. These three different cases are shown below

for three values of ε, a fixed value of n, and α = 1. We plot in Figure 4.1 not

just the spectrum of M , but also the field of values and pseudospectrum using

eigtool [94]. Note that by computing the exact eigenvalues using (2.1), we

have seen that we obtain complex eigenvalues if 2nε < α. Furthermore, from

the definition of the Péclet number, we can also see that this is greater than one

if 2nε < |w|. Therefore, using the two inequalities, we can state that we have

complex eigenvalues, as well as Pe > 1 for cases where |w| = α. We see such

an example below, in Figure 4.1(c). This means that this problem is not only

more difficult to solve, but also susceptible to spurious oscillations in the solution.

We can see from Figure 4.1 (with α = 1) that, as expected, the choice of

ε affects the distribution of the eigenvalues. We are, in practice, interested in

cases where ε is small so that the coefficient matrix (with real spectrum) is

dominated more by the convection part of the PDE. This means that we will

find ourselves in cases similar to Figure 4.1(b), where our matrices are far from

normal. We will see in subsequent sections what this means in terms of pole

choices.
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4.2.1 Projection

Since we are interested in the convection-dominated case which leads to a

nonnormal matrix M with real spectrum, we cannot use the approach described

in Section 3.2.3 as presented. The changes required do not apply to the 2-sided

approximate solution derivation, but to the way in which we select the poles and

construct the rational function in (3.19), as we now are required to take into

account the possibility of using complex poles.

Recall, the rational approximation to the solution of the Lyapunov equa-

tion was given by (3.18),

vec(Xk) = rk−1(M ⊗ I, I ⊗M) vec(bbT ),

with the rational function given by rk−1(x, y) = P (x,y)
qk−1(x)qk−1(y)

, where P (x, y) is

a polynomial of degree at most k − 1 in both x and y, and qk−1(x) is a single

variable polynomial of degree at most k − 1, with the poles S as roots, so that

rk−1(x, y) interpolates f(x, y) = (x + y)−1 at the Ritz values σ(Mk), where Mk

is the projected coefficient matrix, Mk = V TMV . In the case when we have

a complex spectrum, this rational function interpolation is still valid, but our

chosen poles are complex. As in [21], we will choose poles in conjugate pairs, so

that S = {s1, . . . , sk} = {s1, . . . , sk} = S. When the poles and the Ritz values

coincide, the rational function can then be written as

rk−1(x, y) =
1

x+ y

(
1−

k−1∏
i=1

(x− si)(y − si)
(x+ si)(y + si)

)
,
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with x, y corresponding to M⊗I and I⊗M , respectively, and with 1
x

interpreted

as the inverse x−1. Therefore, the error is given by

E(x, y) =
1

x+ y

k−1∏
i=1

(x− si)(y − si)
(x+ si)(y + si)

vec(bbT )

=
1

x+ y
R̃(x, y) vec(bbT ),

(4.1)

with

R̃(x, y) =
k−1∏
i=1

(x− si)(y − si)
(x+ si)(y + si)

.

The error is large in norm when ‖R̃(x, y)‖2 is large. Note that R̃(x, y) =∏k−1
i=1

(x−si)
(x+si)

∏k−1
i=1

(y−si)
(y+si)

. Let [21]

r̃(z) =
k−1∏
i=1

z − si
z + si

=
k−1∏
i=1

z − si
z + si

= r̃(z). (4.2)

Then we have that

R̃(x, y) =
k−1∏
i=1

(x− si)
(x+ si)

k−1∏
i=1

(y − si)
(y + si)

= r̃(x)r̃(y), (4.3)

and the minimax problem corresponding to (3.20) is

min
si∈S

max
z∈σ(A)

∣∣∣r̃(z)r̃(z)
∣∣∣.

Assuming that ε and n are chosen so that the spectrum is real, then as in Sec-

tion 3.2.3, this can be relaxed so that the error is maximised over the spectral

interval, giving

min
si∈S

max
z∈[ρmin,ρmax]

∣∣∣r̃(z)r̃(z)
∣∣∣. (4.4)
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This relaxed minimisation problem corresponds to the third Zolotarev problem.

We are interested in bounding the error described above. Since for convection–

diffusion problems we can have both real and complex eigenvalues, we consider

two bounds for the rational error: one which bounds the error using eigenvectors,

and one which bounds it using the field of values. Note that the eigenvector

bound holds only for matrices with real eigenvalues, while the field of values

bound holds for matrices with both real and complex eigenvalues.

4.2.2 Eigenvector bound

In this subsection we consider an eigenvector bound for the error from (4.1). In

order to derive this bound, we require that the coefficient matrix has real and

positive eigenvalues, which is equivalent to satisfying the relationship ε > 1
2n

.

Theorem 4.2.1. Let A = ZΛZ−1 be a diagonalisable matrix, with real and pos-

itive eigenvalues, where Z is the matrix of eigenvectors and Λ is the diagonal

matrix of eigenvalues, let S = {s1, . . . , sk} be an a priori chosen set of poles, and

let κ(Z) = ‖Z‖2‖Z−1‖2 be the 2-norm eigenvector condition number. Then

‖E(A⊗ I, I ⊗ A)‖2 ≤
1

2λmin

κ(Z)2 min
si∈S

max
z∈σ(A)

|r̃(x)r̃(z)|‖b‖2
2.

Proof. Substituting A = ZΛZ−1 into the Kronecker product form of the error

expression (4.1), we have

E(A⊗ I, I ⊗A) = (Z ⊗ Z)(Λ⊗ I + I ⊗ Λ)−1R̃(Λ⊗ I, I ⊗ Λ)(Z ⊗ Z)−1 vec(bbT ).
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We want to bound the norm of E(A⊗ I, I ⊗A). With ‖·‖ = ‖·‖2, we have that

‖E(A⊗ I, I ⊗ A)‖ = ‖(Z ⊗ Z)(Λ⊗ I + I ⊗ Λ)−1R̃(Λ⊗ I, I ⊗ Λ)(Z ⊗ Z)−1 vec(bbT )‖

≤ ‖Z ⊗ Z‖‖(Λ⊗ I + I ⊗ Λ)−1‖‖R̃(Λ⊗ I, I ⊗ Λ)‖‖(Z ⊗ Z)−1‖‖bbT‖

= κ(Z)2‖(Λ⊗ I + I ⊗ Λ)−1‖‖R̃(Λ⊗ I, I ⊗ Λ)‖‖bbT‖.
(4.5)

Note that ‖(Λ⊗I+I⊗Λ)−1‖2 = 1
mini τi

, where τi is a singular value of Λ⊗I+I⊗Λ.

As this matrix is diagonal and contains sums of the real and positive eigenvalues

of A, then, in this case, mini τi = 2λmin and so

‖(Λ⊗ I + I ⊗ Λ)−1‖ =
1

2λmin

. (4.6)

Given that

‖R̃(Λ⊗ I, I ⊗ Λ)‖ = min
si∈S

max
z∈σ(A)

|r̃(z)r̃(z)|, (4.7)

the bound for the error follows from (4.5), (4.6), and (4.7).

It is clear that for highly nonnormal matrices, as in Figure 4.1(b), the eigenvector

bound is dominated by the condition number of the eigenvector matrix. Further-

more, note that even if we were to compute the eigenvalues and eigenvectors,

which is very expensive, this bound might not be descriptive if κ(Z)� 1.

4.2.3 Field of values bound

In this section we present a field of values bound. The field of values is not

as sensitive to perturbations as the eigenvectors and eigenvalues for nonnormal

matrices [29], making it more attractive in cases when the matrix is far from

normal.
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Theorem 4.2.2. Let W (A) be the field of values of A, let c1 =

(2 dist(0,W (A)))−1, and let c2 be the Crouzeix constant [16]. Then

‖E(A⊗ I, I ⊗ A)‖2 ≤ c1c
2
2 max
z∈W (A)

|r̃(z)|2‖b‖2
2.

Proof. From (4.1), with ‖·‖ = ‖·‖2,

‖E(A⊗ I, I ⊗ A)‖ = ‖(A⊗ I + I ⊗ A)−1R̃(A⊗ I, I ⊗ A) vec(bbT )‖

≤ ‖(A⊗ I + I ⊗ A)−1‖‖R̃(A⊗ I, I ⊗ A) vec(bbT )‖.

We look to bound the two terms on the right-hand side separately. We begin

with ‖(A ⊗ I + I ⊗ A)−1‖ and, for convenience, derive the bound in [21], where

the authors first show that W (A⊗ I) = W (A) = W (I ⊗A) by explicitly writing

the Rayleigh quotients for each term. Then, W (A ⊗ I + I ⊗ A) ⊆ W (A ⊗ I) +

W (I ⊗ A) = W (A) +W (A), and so,

dist(0,W (A⊗ I + I ⊗ A)) ≥ dist(0,W (A) +W (A)) = 2 dist(0,W (A)),

so that

‖A⊗ I + I ⊗ A‖ ≤ c1. (4.8)

Next, we look to bound ‖R̃(A⊗ I, I ⊗A) vec(bbT )‖. We have shown in (4.3) that

R̃(A⊗ I, I ⊗A) = r̃(A⊗ I)r̃(I ⊗ A) so, using (2.6) and noting that A is real, we

have

‖r̃(A⊗ I)r̃(I ⊗ A) vec(bbT )‖ = ‖r̃(A)⊗ r̃(A) vec(bbT )‖

= ‖vec([r̃(A)b][r̃(A)b]T )‖.

We use the results by Crouzeix from [16], i.e., for a matrix function f(A) which

is analytic, we have

‖f(A)‖ ≤ c2 max
z∈W (A)

|f(z)|.
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The most recently derived value of c2 is 1 +
√

2, as presented in [17]. We then

have that

‖r̃(A)b‖ ≤ c2 max
z∈W (A)

|r̃(z)|‖b‖,

so that

‖r̃(A⊗ I)r̃(I ⊗ A) vec(bbT )‖ ≤ c2
2 max
z∈W (A)

|r̃(z)|2‖b‖2. (4.9)

The bound follows by combining (4.8) and (4.9).

This bound has contributions from both c1 and the Crouzeix constant, and they

can provide a more realistic picture of the accuracy of the rational Krylov method,

especially when the coefficient matrices are far from normal.

4.2.4 Poles

In the previous sections, we bounded the error using both an eigenvector and

a field of values approach. Both these bounds use the rational function r̃(z) =∏k−1
i=1

z−si
z+si

from (4.2), which depends on the poles si. In this section we consider

appropriate pole choices for the convection–diffusion Lyapunov equation,

MX +XMT = F, M = −εA+B,

with A and B the Poisson and convection matrices described in Section 2.2. We

will look at the Zolotarev and IRKA pole choices, also presented in Section 3.5

for symmetric matrices, and discuss the changes we are required to make in order

to use those sets of poles to solve the nonsymmetric Lyapunov equation above.

We will then use those poles in practice and assess their suitability.
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Zolotarev

Recall that we are interested in solving Lyapunov equations arising from

convection–diffusion PDEs which are moderately convective (as in Figure 4.1(b)),

but which still have coefficient matrices with real spectrum. For such matrices,

we have seen that the rational approximation of the solution still leads to a re-

laxed minimax problem (4.4), corresponding to the third Zolotarev problem. This

means that the solution to this minimax problem is a set of poles which can be

computed using elliptic integrals, using the code by Sabino from [74]. Further-

more, the examples presented in [27] suggest that for coefficient matrices with

real spectra, a set of real poles is appropriate. This motivates the use of the solu-

tion to the real Zolotarev problem, as described in Section 3.5.1 for the diffusion

problem.

IRKA

The convection–diffusion problems we are interested in yield real-valued non-

normal coefficient matrices. Even though these matrices have real spectra,

the nonnormality of the matrix and the large eigenvector condition number

suggest that Zolotarev poles, which only use information about the spectral

interval might not be optimal in this case. Accordingly, we are interested in a

pole-generation approach which takes into account more information about the

problem at hand, such as the Ritz values and the right-hand side. This suggests

that the IRKA approach from Algorithm 5 might prove useful for this type of

Lyapunov equation.

When we presented the two upper bounds in Theorems 4.2.1 and 4.2.2, we stated

that for the nonnormal matrices that arise in the discretisation of convection-
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(a) IRKA pole distribution at each iteration.
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(b) Closer image of leftmost IRKA poles at each iteration.

Figure 4.2: IRKA pole distribution at each IRKA iteration, eigenvalues and
the field of values for a convection–diffusion problem of size n = 1000, with
ε = 0.0167, and right-hand side vector of ones.
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dominated PDEs, the field of values bound may be more appropriate than the

eigenvector bound, which depends on the large eigenvector condition number.

Moreover, we can show that the poles resulting from the IRKA algorithm lie in

the field of values of the coefficient matrix M , indicating that the IRKA poles

may be better suited to generate the appropriate rational Krylov subspace in

which to seek a solution to the convection–diffusion Lyapunov equation.

Recall from Definition 2.1.5 that the field of values is the set of all scalars

{x∗Mx : x ∈ Rn, x∗x = 1}. We will now show that the poles that we get from

Algorithm 5 lie in the field of values. Let Mk = V TMV , let qi be a normalised

eigenvector of Mk, i.e., ‖qi‖2 = 1, and let ρi be an eigenvalue of Mk. Furthermore,

recall that the IRKA poles are Ritz values, ρi. Then

ρi = qTi Mkqi = (V qi)
TM(V qi) = xTi Mxi,

with xi = V qi and ‖xi‖2 = ‖V qi‖2 = ‖qi‖2 = 1. Therefore,

ρi = xTi Mxi ∈ W (M). (4.10)

This shows that the poles that we get from Algorithm 5 lie in the field of values.

To see where the IRKA poles lie in practice, we can plot them at each it-

eration on the same graph as the field of values. This is presented in Figure 4.2

for a convection–diffusion problem of size n = 1000, with ε = 0.0167 and a

right-hand side vector of ones.

We can see from Figure 4.2 that the IRKA poles for this nonnormal ma-

trix are complex and lie in the field of values. Furthermore, we notice that the
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imaginary parts of the complex poles are relatively small. This is because they

are near the boundary of the field of values, so given that they have small real

part, they cannot have large imaginary part. Moreover, the IRKA poles are

clearly covering the entire spectrum of the matrix, hence providing a promising

approach. In the next section we will see how well the IRKA poles perform in

practice.

4.2.5 Numerical results

In this section we present numerial results focusing on iteration counts and

computation times for Lyapunov equations arising from the discretisation of

convection–diffusion problems. These will be given by MX + XMT = F , with

M = −εA + B, where A and B are as in (2.10) and (2.13), respectively. We

consider three small values of ε which will place us in similar scenarios to Fig-

ure 4.1(b), where we have real spectrum but fairly nonnormal matrices. We will

compare the IRKA poles (which are complex, as in Figure 4.2) and Zolotarev

poles (which are real since the spectrum of M is real). We compare our results

for problem size n = 1000 and a right-hand side choice of ones at relative residual

tolerances given by τ = 10−4 and τ = 10−8. Note that due to the nonnormality

of the matrices M , the spectral interval cannot be easily computed using built-in

MATLAB functions so, as the matrices are tridiagonal Toeplitz, then we use the

exact computation using (2.1). In Figure 4.3 we show the convergence based on

the number of poles used for a test problem with ε = 0.0167.

We can see clearly from Figure 4.3 that a large number of IRKA poles can give

better convergence than the Zolotarev poles, which, despite using different num-

bers of poles, tend to require similar number of iterations for convergence of the

solver. In order to perform a computational time comparison we choose to look
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(a) Convergence for different numbers of Zolotarev poles.
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(b) Convergence for different numbers of IRKA poles.

Figure 4.3: Convergence for different numbers of Zolotarev and IRKA poles for
ε = 0.0167.
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at 20 poles of each kind. We present our computation times, as well as iteration

numbers in Table 4.1.

ε Poles
Time τ = 10−4 Total τ = 10−8 Total
poles Iter. Time time Iter. Time time

0.0333
Zolotarev 0.0216 39 0.4935 0.5151 53 0.6059 0.6275

IRKA 0.1601 16 0.2786 0.4387 22 0.3182 0.4783

0.0167
Zolotarev 0.0248 58 0.7099 0.7347 61 0.7104 0.7352

IRKA 0.2130 15 0.2155 0.4285 24 0.3810 0.5940

0.0083
Zolotarev 0.0373 79 1.1176 1.1549 97 1.4718 1.5091

IRKA 0.2940 16 0.3228 0.6168 37 0.6846 0.9786

Table 4.1: Summary of pole choices for Lyapunov equations with nonnormal
coefficient matrices. Total time columns represents the pole time and solver time
added together at τ = 10−4 and τ = 10−8, respectively.

We can see in Table 4.1 that the complex IRKA poles perform much better than

the real Zolotarev ones in terms of both iteration numbers and convergence time,

at both 10−4 and 10−8 residual tolerances. Even though the time to generate

the IRKA poles is higher than that required to generate the Zolotarev poles, this

extra work is insignificant when we consider the overall time required to solve

the Lyapunov equations. Furthermore, as ε decreases, we can see that both the

Zolotarev and IRKA poles require more iterations to converge at τ = 10−8, while

at τ = 10−4, only the Zolotarev poles need more iterations, the IRKA poles

requiring a nearly constant number of iterations, making them optimal in this

sense. This makes the complex IRKA poles favourable over the Zolotarev ones

for problems of this type.
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4.3 Sylvester equation

When describing the types of matrix equations that arise from the discretisation

of convection–diffusion PDEs we said that when the convection wind is either

w = (w1, w2) = (φ1(x), ψ2(y)) or w = (w1, w2) = (ψ1(y), φ2(x)), we obtain a

Sylvester equation of the form

−ε(AX +XAT ) + Φ1BX +XBTΨ2 = F. (4.11)

In this section, we discuss the projection method, algorithm, pole choices and

numerical results for solving such Sylvester equations.

Similarly to the Lyapunov equation in Section 4.2, we combine the matri-

ces on the left-hand side of X into a matrix M and the matrices on the

right-hand side into a matrix N , so that our Sylvester equation is

MX +XN = F, (4.12)

with M = −εA+ Φ1B and N = −εAT +BTΨ2.

4.3.1 Projection

Our approach to solving the Sylvester equation in (4.11) uses projections

into rational Krylov subspaces. As we have two different matrices which are

very likely to have different characteristics, we will use two different bases

and a Petrov–Galerkin orthogonality condition to obtain a reduced problem.

Projection methods for the Sylvester equation are discussed in the literature in,

e.g., [67, 78]. For simplicity of exposition, we use a symmetric, rank-1 right-hand
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side given by F = bbT . Note that other rank-1 and higher-rank options are

possible here.

Suppose we have two orthonormal bases for approximation spaces of, for

simplicity of exposition, equal dimensions k, with k � n. Then, we can collect

all the basis vectors generated with coefficient matrix M into a matrix V of

size n × k, and all the basis vectors generated with coefficient matrix N into a

matrix W of size n× k. Then, we seek an approximate solution to the Sylvester

equation (4.12) of the form Xk = V YkW
T ≈ X, where Yk is found by insisting

the residual R = MX + XN − F satisfies the Petrov–Galerkin orthogonality

condition, given by

V TRW = 0. (4.13)

By replacing X by Xk in the residual and applying (4.13), we obtain the projected

Sylvester equation

MkYk + YkNk = bV b
T
W , (4.14)

where Mk = V TMV , Nk = W TNW , bV = V T b, and bW = W T b. Since both V

and W have orthonormal columns, V TV = W TW = I. The reduced problem is

small enough that it can be efficiently solved using the Bartels–Stewart MATLAB

function lyap. Having obtained Yk, we then compute low rank factors of the

solution Xk by using an SVD of Yk. We describe this projection method in

Algorithm 6.

Notice that in step 1 of Algorithm 6 we use as input two sets of poles which we

use to generate the two bases, together with the matrices M and N , respectively.

We mention here that, in practice, the two sets of poles can be the same, with

S1 = S2, so that the only influence in the basis is given by one of the coefficient

matrices. This approach of using the same set of poles for both bases is useful
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Algorithm 6 Sylvester equation projection

1: INPUT: M,N, b, S1 = {s1, s2, . . . }, S2 = {s̃1, s̃2, . . . },
maximum iterations maxit, tolerance tol.

2: Set V = b/‖b‖,W = b/‖b‖, i = 0.
3: while not converged and i < maxit do
4: Increase i = i+ 1

and expand bases using the poles: V = getbasis(M, si, V ),
W = getbasis(N, s̃i,W ).

5: Project the matrices Mk = V TMV,
Nk = W TNW, and the right-hand side terms
bV = V T b, bW = W T b.

6: Solve MkYk + YkNk = bV b
T
W .

7: Compute the factors X̃1, X̃2 from Yk so that Xk = X̃1X̃
T
2 .

8: Check convergence.
9: end while

10: OUTPUT: solution factors X̃1, X̃2, final residual.

when one of the coefficient matrices carries more influence than the other matrix.

An example of this appears in the context of stochastic Galerkin approximation

for a generalised Sylvester equation [71], where the authors multiply all terms in

the equation by the inverse of the Cholesky factor of the chosen dominant SPD

coefficient matrix. In our numerical tests, we will not use such a transformation to

obtain a dominant matrix, but in some cases we will check if one of the coefficient

matrices is more important by only using the poles associated with it. We will

present numerical results with both S1 = S2 and S1 6= S2, and compare the

performance of the solver with both. Note that the basis generation in step 4

uses a modified Gram–Schmidt process.

4.3.2 Poles

In this section we discuss some of the pole choices that can be used for S1 and

S2 in Algorithm 6. As in the case of Lyapunov equations, we focus on matrices

with real spectra, so it makes sense to consider poles which are the solution to

the Zolotarev problem on real intervals, as well as IRKA poles. We describe
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how we generate and use those poles in the following sections, and then present

some numerical results in order to understand how the pole choice affects the

convergence of the solver.

Zolotarev

In [71], the authors suggest that for a Sylvester equation, a set of poles given

by the solution to the third Zolotarev problem could still be effective. In that

paper, as described above, the authors transform the coefficient matrices so they

all contain information about a chosen SPD matrix, the spectrum of which is used

to find the Zolotarev poles. We do not perform such a transformation, and so,

we will be computing two sets of Zolotarev poles, one using the spectral interval

of M and one using the spectral interval of N . We then use each set of poles to

generate the corresponding basis. In our numerical results, we will solve Sylvester

equations with a single set of poles corresponding to M (S1 = S2), with a single

set corresponding to N (S1 = S2), and with both sets at the same time (S1 6= S2).

IRKA

As in the case of Lyapunov equations, we consider IRKA poles as we are interested

in addressing the influence of the right-hand side on the poles. In this section we

present the algorithm for generating IRKA poles for the Sylvester equation. The

algorithm has been adapted from [7, Alg. 1] and is presented in Algorithm 7 for

rank-1 symmetric right-hand side b.

Note that the IRKA algorithm for computing two sets of poles for the Sylvester

equation outputs poles which are related to one another. This is because of the

way in which we update the poles: for matrix M we use the eigenvalues of the
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Algorithm 7 IRKA poles for Sylvester equation

1: INPUT: coefficient matrices M,N, right-hand side factor b,
initial poles S1 = {s1, . . . , sk}, S2 = {s̃1, . . . , s̃k}, tolerance tol.

2: while relative change in si > tol and s̃i > tol do
3: Compute orthonormal V,W so that

span{V } = spani=1,...,k{(siI +M)−1b},
span{W} = spani=1,...,k{(s̃iI +N)−1b}.

4: Project Mk = V TMV,Nk = W TNW.
5: Compute eigenvalues of Mk : Λ, and Nk : Σ.
6: Update si = diag(Σ), s̃i = diag(Λ).
7: end while
8: OUTPUT: new poles si, s̃i.

projected matrix Nk, and similarly, for the poles corresponding to matrix N we

use the eigenvalues of the projected matrix Mk. This is then updated in step 6

of Algorithm 7. The convergence of Algorithm 6 will greatly benefit from these

sets of IRKA poles, as we will show in the numerical results. We will compare

the solver performance with IRKA poles generated with M only, N only, and the

approach in Algorithm 7 which uses information about both coefficient matrices.

4.3.3 Numerical results

In this section we present some numerical results which compare pole choices for

the Sylvester equation obtained by discretising the convection–diffusion equa-

tions. We will show results for three convection winds of the form w(φ1(x), 0),

w(φ1(x), 1) and w(φ1(x), ψ2(y)) and three different values of ε: 0.0333, 0.0167,

and 0.0083 [63]. In our numerical results, we will use the stopping criterion given

by ‖R‖F
‖bbT ‖F

< τ , where R = MXk + XkN − bbT , for the two tolerances τ = 10−4

and τ = 10−8.
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Example 4.1.

In this example, we show results for the convection–diffusion problem with

wind w = (1 + (x+ 1)2/4, 0). This leads to a Sylvester equation MX +XN = F

with M = −εA+ Φ1B, N = −εA, where Φ1 = diag(φ1(xi)), φ1(x) = 1 + (x+ 1)2,

and xi are linearly spaced values between 0 and 1. The right-hand side F = bbT

is rank-1, with b a vector of ones.

As in the Lyapunov equation case, we begin by comparing the convergence for

different numbers of Zolotarev and IRKA poles. Note that for both, we use two

sets of poles, one generated with M and one with N . These results are presented

in Figure 4.4.

From the convergence plots in Figure 4.4, we can clearly see that the number

of Zolotarev poles does not strongly influence the number of iterations required

by the solver to generate a solution, however, in the case of IRKA poles, it is

clear that 16 poles outperform the other choices. Therefore, in our remaining

numerical tests for this problem, we will use 16 poles to compare the iterations

and times required to solve the Sylvester equation.

We notice in Table 4.2 that both the Zolotarev poles and the IRKA poles

generated with N show similar solver convergence times and iteration counts

for ε = 0.0333 and ε = 0.0167, but that the IRKA poles allow for quicker

convergence than the Zolotarev poles when generated with only M or both

matrices M and N . However, for ε = 0.0083, the solver using IRKA poles

requires fewer iterations and time to converge than Zolotarev at both τ = 10−4

and τ = 10−8, indicating that for highly convective Sylvester equations of this

type, the IRKA poles might be favourable.
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(a) Convergence for different numbers of Zolotarev poles.
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(b) Convergence for different numbers of IRKA poles.

Figure 4.4: Convergence for different numbers of Zolotarev and IRKA poles for
ε = 0.0167, for the Sylvester equation MX + XN = F with M = −εA + Φ1B,
N = −εA, and w = (1 + (x+ 1)2/4, 0).

120



Chapter 4 – Convection–diffusion problems

ε Poles Matrices
Time τ = 10−4 Total τ = 10−8 Total
poles Iter. Time time Iter. Time time

0.0333

Zolotarev
M only 0.0146 48 1.2421 1.2567 62 1.6258 1.6404
N only 0.0156 16 0.4138 0.4294 28 0.7012 0.7168

both M, N 0.0166 48 1.2442 1.2608 62 1.7357 1.7523

IRKA
M only 0.1579 14 0.3234 0.4813 33 0.8417 0.9996
N only 0.0239 16 0.4087 0.4326 28 0.6436 0.6675

both M, N 0.1127 16 0.4589 0.5716 27 0.6517 0.7644

0.0167

Zolotarev
M only 0.0164 64 1.7474 1.7638 79 2.3067 2.3231
N only 0.0154 16 0.4279 0.4433 28 0.6732 0.6886

both M, N 0.0169 64 1.8382 1.8551 79 2.2578 2.2747

IRKA
M only 0.1975 13 0.3550 0.5525 40 1.1027 1.3002
N only 0.0248 16 0.3724 0.3972 28 0.6590 0.6838

both M, N 0.1464 16 0.4599 0.6063 27 0.6980 0.8444

0.0083

Zolotarev
M only 0.0178 73 2.2540 2.2718 88 2.9324 2.9502
N only 0.0158 20 0.6045 0.6203 29 0.8261 0.8419

both M, N 0.0183 73 2.6287 2.6470 88 2.9127 2.9310

IRKA
M only 0.2546 13 0.3851 0.6397 43 1.3726 1.6272
N only 0.0227 16 0.4004 0.4231 28 0.7493 0.7664

both M, N 0.1654 16 0.4582 0.6236 28 0.8538 1.0192

Table 4.2: Iterations and CPU time for Sylvester equations obtained with wind
w = (w1, w2) = (1 + (x + 1)2/4, 0). Total time columns represents the pole time
and solver time added together for τ = 10−4 and τ = 10−8, respectively.

From the numerical results in Table 4.2, we note that having poles related

to only one matrix is typically preferable to having poles associated with each

of the two coefficient matrices. What is particularly interesting here is that the

coefficient matrix that allows us to obtain superior numerical results is the scaled

Poisson matrix, N . This leads us to believe that in this particular case, there

exists a matrix which ‘dominates’ the Sylvester equation, i.e., A. This makes

sense here, as the Poisson matrix A appears in both M and N .

Example 4.2.

In this example, we show results for the convection–difusion problem with

wind given by w = (1 − x2, 1), i.e., a wind dictated by a function of x in one

direction, and constant wind in the other. Our Sylvester equation then takes
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the form MX + XN = F , with M = −εA + Φ1B, and N = −εA + BT , where,

as before, Φ1 = diag(φ1(xi)), φ1(x) = 1 − x2 and xi are linearly-spaced values

in the interval (0, 1). The right-hand side F = bbT is rank-1 symmetric, with b

given by a vector of ones.

In Figure 4.5, we again compare the convergence for different numbers of poles

for both the Zolotarev and IRKA approaches. Note that for both, we use two

sets of poles, one generated with M and one with N . We see that the number

of Zolotarev poles does not strongly influence the number of iterations required

by the solver to generate a solution, however, 20 IRKA poles show better

convergence than other numbers of poles. Therefore, for this problem we will

use 20 poles to compare the iterations and times required to solve the Sylvester

equation.

ε Poles Matrices
Time τ = 10−4 Total τ = 10−8 Total
poles Iter. Time time Iter. Time time

0.0333

Zolotarev
M only 0.0207 36 0.7377 0.7584 39 0.7764 0.7971
N only 0.0233 40 0.8116 0.8349 56 1.1089 1.1322

both M, N 0.0239 40 0.7563 0.7802 56 1.1018 1.1257

IRKA
M only 0.2616 16 0.4876 0.7492 18 0.5313 0.7929
N only 0.2983 16 0.4549 0.7532 18 0.4945 0.7940

both M, N 0.2848 16 0.3835 0.6683 22 0.4717 0.7565

0.0167

Zolotarev
M only 0.0173 38 0.7162 0.7335 55 1.0775 1.0948
N only 0.0201 59 1.2061 1.2262 76 1.6309 1.6510

both M, N 0.0224 59 1.2207 1.2431 76 1.6751 1.6975

IRKA
M only 0.3939 16 0.4721 0.8660 17 0.4774 0.8713
N only 0.3619 16 0.4642 0.8261 18 0.4842 0.8461

both M, N 0.3954 16 0.3921 0.7875 24 0.5334 0.9288

0.0083

Zolotarev
M only 0.0209 48 1.0102 1.0311 59 1.1664 1.1873
N only 0.0146 71 1.5189 1.5335 80 2.0628 2.0774

both M, N 0.0189 71 1.6311 1.6500 80 1.8719 1.8908

IRKA
M only 0.5355 15 0.4391 0.9746 22 0.6426 1.1781
N only 0.4760 16 0.4648 0.9408 21 0.5884 1.0644

both M, N 0.5020 16 0.4554 0.9574 40 1.0985 1.6005

Table 4.3: Iterations and CPU times for Sylvester equations obtained with wind
w = (w1, w2) = (1−x2, 1). Total time columns represents the pole time and solver
time added together for τ = 10−4 and τ = 10−8, respectively.
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(a) Convergence for different numbers of Zolotarev poles.
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(b) Convergence for different numbers of IRKA poles.

Figure 4.5: Convergence for different numbers of Zolotarev and IRKA poles for
ε = 0.0167, for the Sylvester equation MX + XN = F with M = −εA + Φ1B,
N = −εA+BT , and w = (1− x2, 1).
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We can see from Table 4.3 that despite the increased cost of generating the

IRKA poles, they perform better in the Sylvester solver than Zolotarev poles

both at residual tolerance levels of τ = 10−4 and τ = 10−8. In the case of

ε = 0.0333, having the poles generated with each of the two coefficient matrices

proves quicker than having only one set of poles corresponding to only one

coefficient matrix. In the remaining setups, this is not the case, with lower

iteration numbers and CPU times corresponding to the poles generated using the

matrix N . This, as before, may be because N is a combination of the matrices

A and B which both appear in M as well, but slightly modified.

Another observation we make from Table 4.3 is related to the effect of ε.

To be precise, we can see that as ε decreases and our problem becomes more

convection dominated, the time and number of iterations required to solve the

Sylvester equation grow.

Example 4.3.

In this example, we look at the matrix equation arising from the convection–

diffusion problem with wind w = (1 − (2x + 1)2, y). This leads to the Sylvester

equation MX +XN = F , where M = −εA+ Φ1B and N = −εA+BTΨ2, with

Φ1 = diag(φ1(xi)), Ψ2 = diag(ψ2(yi)), φ1(x) = 1 − (2x + 1)2, φ2(y) = y and xi,

yi are linearly-spaced values in (0, 1). As before, the right-hand side is given by

F = bbT , where b is a vector of ones.

We begin by comparing the convergence of our solver for different numbers of

Zolotarev and IRKA poles. We do this by testing our solver with poles generated

using both matrices M and N . Our convergence curves are presented in

Figure 4.6. From this we see that, as in our other examples, the Zolotarev poles
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(a) Convergence for different numbers of Zolotarev poles.
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Figure 4.6: Convergence for different numbers of Zolotarev and IRKA poles for
ε = 0.0167, for the Sylvester equation MX + XN = F with M = −εA + Φ1B,
N = −εA+BTΨ1, and w = (1− (2x+ 1)2, y).

125



Chapter 4 – Convection–diffusion problems

do not show big differences in the number of iterations required for convergence

of the solver, but the IRKA poles do, with 24 poles achieving the smallest

iteration count. As a result, we will use 24 poles in the numerical tests we

perform for this problem. These results are generated, as before, for three values

of ε, namely, 0.0333, 0.0167 and 0.0083, and we compare the convergence results

for poles generated with only M , only N and with both coefficient matrices.

ε Poles Matrices
Time τ = 10−4 Total τ = 10−8 Total
poles Iter. Time time Iter. Time time

0.0333

Zolotarev
M only 0.0252 45 2.0943 2.1195 48 2.2854 2.3106
N only 0.0249 23 0.9943 1.0192 41 1.7578 1.7827

both M, N 0.0215 45 2.0195 2.0410 48 2.0671 2.0886

IRKA
M only 0.6667 20 1.0900 1.7567 25 1.2977 1.9644
N only 0.2309 19 0.9512 1.1821 20 0.9764 1.2073

both M, N 0.4030 20 0.9436 1.3466 26 1.1972 1.6002

0.0167

Zolotarev
M only 0.0141 46 2.0874 2.1015 63 2.9741 2.9882
N only 0.0151 23 1.1511 1.1662 42 1.9910 2.0061

both M, N 0.0176 46 2.2410 2.2586 63 3.1595 3.1771

IRKA
M only 0.4379 21 1.0924 1.5303 54 3.0506 3.4885
N only 0.1068 18 0.8483 0.9551 29 1.3779 1.4847

both M, N 0.6055 21 1.0234 1.6289 30 1.4615 2.0670

0.0083

Zolotarev
M only 0.1756 23 1.2320 1.4076 39 2.1223 2.2979
N only 0.0157 23 0.9785 0.9942 42 1.8706 1.8863

both M, N 0.0192 23 1.0994 1.1186 42 2.0181 2.0373

IRKA
M only 0.7909 41 2.3239 3.1148 44 2.5830 3.3739
N only 0.2637 33 1.5640 1.8277 36 1.6267 1.8904

both M, N 1.0207 41 2.1744 3.1951 43 2.2421 3.2628

Table 4.4: Iterations and CPU times for Sylvester equations obtained with wind
w = (w1, w2) = (1 − (2x + 1)2, x). Total time columns represents the pole time
and solver time added together for τ = 10−4 and τ = 10−8, respectively.

We can see from Table 4.4 that, as in Examples 4.1 and 4.2, the times required

to generate the IRKA poles are higher than those for the Zolotarev poles, and

that in the cases of ε = 0.0333 and ε = 0.0167 the IRKA poles require fewer

solver iterations to converge. This means that our best solver times occur for the

IRKA poles generated with the matrix N . For ε = 0.0083, our most convective

126



Chapter 4 – Convection–diffusion problems

problem, we can see that both IRKA and Zolotarev poles require similar solver

times to converge, but that the IRKA poles lead to fewer solver iterations. This

means that the IRKA poles could still be considered superior.

We can see that in Examples 4.1–4.3, using two sets of poles is not as efficient in

terms of both iterations and times as using the poles generated with the matrix

N only. Based on the results we have seen in these three examples, we can

state that using IRKA poles with N only shows the best iteration counts and

convergence times. We notice that the matrix N has usually been chosen so that

the functions associated with the convection wind are easier to compute. Recall

that in Example 4.1, this was 0, in Example 4.2, this was a constant, 1, and that in

Example 4.3, it was y. Therefore, we are in a position to make a recommendation

as to which poles to use for Sylvester equations arising from convection–diffusion

problems. That is, the IRKA poles, generated with one matrix only (the one

associated with the convection wind function which resembles a constant), seems

to result in faster convergence rates in most cases.

4.4 Generalised Sylvester equation

We have seen that discretising the convection–diffusion PDE can lead to three

different matrix equations. In Section 4.2 we presented the resulting Lyapunov

equation, while in Section 4.3 we discussed the Sylvester equation. In this section,

we discuss solvers for (2.14), the last possible type of matrix equation arising

from the discretisation of the convection–diffusion PDE, which was presented in

Section 2.2.2. The equation (2.14) is a particular case of the following matrix

equation:

M0X +XM0 +M1XN1 +M2XN2 = F, (4.15)
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where, in our problem, M0 = −εA is SPD, M1 = Φ1B, M2 = Φ2, N1 = Ψ1 and

N2 = BTΨ2. We call (4.15) a generalised Sylvester equation and recall that it is

a special case of the more general multi-term matrix equation [49]

AX +XB +
m∑
i=1

MiXNi = F.

We introduce two linear operators, namely M : Rn×n → Rn×n, and N : Rn×n →

Rn×n such that

M(X) := M0X +XM0,

N(X) := −(M1XN1 +M2XN2),

(4.16)

with corresponding Kronecker forms given, respectively, by

M = I ⊗M0 +MT
0 ⊗ I,

N = −(NT
1 ⊗M1 +NT

2 ⊗M2).

(4.17)

Then, we can write (4.15) as

M(X)−N(X) = F. (4.18)

Note that in the context of PDE problems, matrix M0 is large, sparse and non-

singular, and the operator M is assumed to be invertible [49].

4.4.1 Stationary iterative method

We will now use a stationary iterative method for solving (4.15). Shank,

Simoncini and Szyld present such a stationary approach for the generalised

Lyapunov equation [75], but the method cannot be applied to our matrix

equation as is, since in our problem N is nonsymmetric. However, we can show

that many of the properties exploited in [75] still arise in our problem.
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As for linear systems, a fixed point (stationary) iterative method requires

a stationary splitting. In our matrix equation case, we use (4.18) to give the

splitting

M(X) = N(X) + F. (4.19)

It is straightforward to show that M and N are linear and furthermore, that

M(X) = Y is equivalent to

M vec(X) = (M0 ⊗ I + I ⊗M0) vec(X) = vec(Y ).

The fixed point iteration is then defined as

Xk+1 = T(Xk), where T(X) := M−1N(X) + M−1F. (4.20)

We want to determine when this fixed point iteration is asymptotically conver-

gent. To do this, let R0 = Rn×n−{0} and let B be the real Banach space of n×n

matrices, equipped with the matrix operator norm, defined by

‖M‖ =

√
sup
X∈R0

〈M(X),M(X)〉F
〈X,X〉F

. (4.21)

Lemma 4.4.1 ([30]). For the mapping M from (4.16), and its corresponding

Kronecker form M from (4.17), we have

‖M‖ = ‖M‖2.
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Proof. Using the definition of ‖M‖ from (4.21), we have that

‖M‖2 = sup
X∈R0

〈M(X),M(X)〉F
〈X,X〉F

= sup
X∈R0

‖vec(M(X))‖2
2

‖vec(X)‖2
2

= sup
X∈R0

‖M vec(X)‖2
2

‖vec(X)‖2
2

= ‖M‖2
2.

Similarly, we can show that the operator norm corresponding to the operator

N is equivalent to the 2-norm of the corresponding Kronecker formulation, i.e.,

‖N‖ = ‖N‖2. We can now describe the convergence of the fixed point iteration

from (4.20).

Lemma 4.4.2. Let M,N be as in (4.16) and M,N as in (4.17). Then, the fixed

point iteration from (4.20) converges for any initial guess X0 if

‖M−1N‖ = ‖M−1N‖2 < 1. (4.22)

Proof. In the Banach space, B, for all X, Y ∈ Rn×n we have that

‖T(X)− T(Y )‖ = ‖M−1(N(X − Y ))‖ ≤ ‖M−1N‖‖X − Y ‖, (4.23)

so that

‖Xk+1−Xk‖ = ‖T(Xk)−T(Xk−1)‖ ≤ ‖M−1N‖‖Xk−Xk−1‖ ≤ ‖M−1N‖k‖X1−X0‖.

(4.24)
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Then, by the Banach fixed point theorem, the iteration must converge for any

initial approximation X0 if ‖M−1N‖ < 1.

We now show that ‖M−1N‖ = ‖M−1N‖2. Consider the splitting in (4.19). Since

M is an invertible operator and since M is an invertible matrix, the solution of

this matrix equation at iteration k + 1 is given by

Xk+1 = M−1N(Xk) + M−1F,

which is equivalent to

M(Xk+1) = N(Xk) + F.

Vectorising this gives

vec(M(Xk+1)) = vec(N(Xk)) + vec(F ),

which is equivalent to

M vec(Xk+1) = N vec(Xk) + vec(F ).

Finally, we have the vectorised form of the solution given by

vec(Xk+1) = M−1N vec(Xk) +M−1 vec(F ),
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and so vec(M−1N(X)) = M−1N vec(X). We can now obtain the norm of

M−1N(X) as follows

‖M−1N‖2 = sup
X∈R0

〈M−1N(X),M−1N(X)〉F
〈X,X〉F

= sup
X∈R0

〈vec(M−1N(X)), vec(M−1N(X))〉2
〈vec(X), vec(X)〉2

= sup
X∈R0

‖vec(M−1N(X))‖2
2

‖vec(X)‖2
2

= sup
X∈R0

‖M−1N vec(X)‖2
2

‖vec(X)‖2
2

= ‖M−1N‖2
2.

Hence, we are guaranteed to converge if ‖M−1N‖ = ‖M−1N‖2 < 1.

In order to ensure our method is memory-efficient, we consider low-rank approx-

imations to X of the form Y ZT , with Y and Z of dimensions n× r, r � n. Using

a factorisation of the right-hand side F = C1C
T
2 , as in [75], we propose the fixed

point stationary algorithm for the generalised Sylvester equation in Algorithm 8.

Algorithm 8 Stationary Iterations for generalised Sylvester equations

1: Input: Problem data A,B,Mj, Nj, C1, C2 stopping tolerance
2: Output: Yk, Zk so that Xk = YkZ

T
k is an approximate solution of the

generalised Sylvester equation.
3: Solve AX1 +X1B + C1C

T
2 = 0 for X1 = Y1Z

T
1

4: for k = 2, 3, . . . do
5: Set C1k = [M1Yk−1, . . . ,MmYk−1, C1] and

C2k = [NT
1 Zk−1, . . . , N

T
mZk−1, C2]

6: Solve AXk +XkB + C1kC
T
2k = 0 for Xk = YkZ

T
k

7: If sufficiently accurate, stop
8: end for

In steps 3 and 6 of Algorithm 8 we are required to solve Sylvester equations. This

can be done using a projection approach or directly, such as with the Bartels–

Stewart method. Note that for our purposes, the latter is sufficient. We have
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tested Algorithm 8 for our matrix equation (ME), as well as a Kronecker formu-

lation linear system (LS) equivalent of our fixed point iteration algorithm, i.e., we

solve M vec(Xk+1) = N vec(Xk) + vec(F ) iteratively. We have used a right-hand

side given by the function f(x, y) = sin(πx) cos(πy), and have used the convec-

tion wind given by w = (2y(1 − x2),−2x(1 − y2)). The maximum number of

iterations was set to 300 and the relative residual convergence tolerance was set

to τ = 10−8. The results are presented in Table 4.5.

n ε it (LS) time (LS) it (ME) time (ME) ‖M−1N‖2

42

1 10 0.0059 10 0.0084 0.1645
0.5 14 0.0037 14 0.0062 0.3291
0.2 44 0.0036 44 0.0083 0.8227
0.1 diverges - diverges - 1.6455

162

1 10 0.0133 10 0.0089 0.1739
0.5 15 0.0224 14 0.0072 0.3478
0.2 46 0.0616 46 0.0103 0.8694
0.1 diverges - diverges - 1.7316

642

1 11 3.9619 11 0.0218 0.1732
0.5 16 5.7369 16 0.0025 0.3463
0.2 45 16.071 45 0.0103 0.8658
0.1 diverges - diverges - 1.7316

2562

1 - - 11 0.1976 -
0.2 - - 46 0.4634 -
0.1 - - diverges - -

Table 4.5: Convergence of the stationary iterative algorithm for the generalised
Sylvester equation (ME) and for the equivalent Kronecker product formulation
(LS).

In Table 4.5 we can see that the convergence of the fixed point iteration in terms

of number of iterations is the same for both the linear system and matrix equa-

tion. This is what we expected from Lemma 4.4.2. Note that for moderate to

large n, the stationary method for the Kronecker formulation takes longer than

for the matrix equation. This again highlights that solvers for matrix equations

formulations may be much more efficient than equivalent linear system solvers.

Recall that the stationary iterative schemes are only guaranteed to converge when
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‖M−1N‖2 < 1. When ε = 0.1, ‖M−1N‖2 > 1 for all considered n, so it is not

surprising that the methods diverge. Note that the problems corresponding to

‖M−1N‖2 > 1 result in oscillatory solutions, indicating that the chosen finite

difference method is not stable for these problems. Furthermore, note that the

number of iterations increase as ‖M−1N‖2 increases, as expected from (4.24).

Hence, we are interested in developing more powerful solvers in the future.

4.5 Conclusions

In this chapter we looked at solving matrix equations arising from discretised

convection–diffusion PDEs. We showed that these matrix equations are of three

main types. To be precise, we can have two-term equations in the form of

Lyapunov and Sylvester equations, and we can have four-term matrix equations,

depending on the choice of convection wind.

We first considered convection–diffusion problems with constant winds,

discretisations of which lead to Lyapunov equations. We showed that our matrix

equations can be ill-conditioned. As a result, we used projection methods

into rational Krylov subspaces to solve Lyapunov equations and derived two

upper bounds for the convergence of the Lyapunov solver. As in the case of

Lyapunov equations from Chapter 3, we considered the best pole choices for

generating these rational Krylov subspaces, and performed numerical tests which

showed the superiority of the IRKA poles for Lyapunov equations arising from

convection–diffusion PDEs.

We next considered discretised convection–diffusion PDEs which take the

form of Sylvester equations. These Sylvester equations result from linear and
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quadratic convection wind functions in only one direction, but note that they

could be any functions. We presented a rational Krylov subspace solver for

such matrix equations and considered Zolotarev and IRKA pole choices. In our

numerical tests, we found that having one set of IRKA poles generated using the

matrix corresponding to the simpler of the two wind functions led to the best

convergence results. While there is a cost associated with computing the IRKA

poles, the reduced iteration count required, as compared to the Zolotarev poles,

more than compensated for this.

Lastly, we considered convection–diffusion PDEs which led to four-term

matrix equations. These arise when the convection wind components are separa-

ble functions of both x and y. We considered a stationary iterative method and

provided a criterion for the convergence of this method. Our numerical results,

however, showed that as we decrease ε, making our PDEs more convective, it

is difficult to solve these problems. We believe that a projection method into a

rational Krylov subspace might prove to be a better fit for this type of problems,

and advise further research in this direction.
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Conclusions and future work

In this thesis we obtained novel methods for efficiently solving Lyapunov and

Sylvester equations arising from the discretisation of PDEs. Chapter 1 motivates

the work presented in this thesis by briefly discussing the advances of numerical

methods for PDEs in the literature. Chapter 2 presents some preliminary results,

necessary for the analysis presented in later chapters. We also present in this

chapter the discretisation of our model problems and discuss solving approaches

via linear systems and matrix equations, as well as presenting a comparison

of the two. We focused on two model problems: in Chapter 3 we considered

diffusion PDEs, which gave Lyapunov equations, and in Chapter 4 we looked

at convection–diffusion PDEs, which led to three types of matrix equations:

Lyapunov equations, Sylvester equations, and four-term generalised Sylvester

equations. We considered solutions to all these problems in this thesis.

In Chapter 3 we used 1- and 2-sided projections into rational Krylov sub-

spaces to solve Lyapunov equations arising from the discretisation of diffusion

PDEs. We derived explicit rational functions which describe the rational Krylov

solution of the Lyapunov equation, and compared the convergence results for
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the two projection approaches, determining that the 2-sided projection is more

suitable for the problems we solve. We then focused on the numerical study of

the attainable accuracy of the 2-sided approach and compared our convergence

curves with two theoretical bounds, finding that the bound in (3.22) from [4]

is more representative of our convergence than the asymptotic bound from [21,

Theorem 4.9].

The second part of Chapter 3 was dedicated to the study of suitable pole

choices for the rational Krylov subspace. We discussed the well-known Zolotarev

poles, and their logarithmic approximations, the state-of-the-art adaptive

approach from [23], as well as poles derived from the IRKA approach from

the field of model order reduction of dynamical systems. In Section 3.6 we

presented iteration counts and convergence times for a variety of diffusion

problems obtained using uniform meshes, variable diffusion coefficients, and

graded and geometric meshes. We have found that for uniform meshes, variable

diffusion coefficients and the graded mesh, 12 or 16 IRKA poles perform better

than other a priori pole options, while for the nonuniform mesh spacings, due

to the ill-conditioning of the matrices, the Zolotarev poles with asymptotic

approximation are more reliable. For all problems, we compared the convergence

of a priori poles with the adaptive pole choices approach and found that, in

the cases where the IRKA poles outperform the Zolotarev ones, they also show

similar convergence to the adaptive approach. Moreover, we considered the

influence of the ordering of the poles and found this is influenced by the choice

of the right-hand side, with the highly oscillatory alternating right-hand side

benefiting more from a descending pole ordering than other, smoothly varying

right-hand side choices.

Furthermore, we considered the scalability of our rational approach as we
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increase the size of the problems. We found that, as n increases, the IRKA poles

can be optimal in terms of iteration counts. However, the cost of generating

the IRKA poles drives the overall CPU time up. The Zolotarev poles, despite

being cheap to compute, can lead to long convergence times due to the increased

number of iterations required. In all cases, we have seen that the adaptive

approach can be faster than the a priori pole choices.

We finished Chapter 3 by looking at higher rank right-hand sides given by

combinations of the rank-1 right-hand side choices we considered previously. We

found that these results mimic those of the “worse-off” rank-1 right-hand sides

for all our problems and pole choices.

Chapter 4 focused on matrix equations arising from the discretisation of

convection–diffusion PDEs. The convection wind leads to three different classes

of matrix equation: Lyapunov, Sylvester, and four-term generalised Sylvester

equations. We considered each of these and presented solving strategies and

limitations.

In Section 4.2 we focused on Lyapunov equations. We considered a ratio-

nal Krylov projection method to solve them, and presented two upper bounds

for the relative error, one using the eigenvector condition number, and one using

the field of values. As for the Lyapunov equations from Chapter 3, we performed

numerical tests with Zolotarev and IRKA poles and, as before, we have shown

the superiority of the IRKA poles for Lyapunov equations arising from the

discretisation of convection–diffusion PDEs.

In Section 4.3 we considered Sylvester equations which arise from the dis-

cretisation of convection–diffusion PDEs. We focused on adapting the rational
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Krylov subspace approach used for Lyapunov equations, as well as the IRKA

method for generating poles. From our empirical study, we have found that the

IRKA poles generated from the coefficient matrix corresponding to the simpler

of the two convection wind functions, despite being more expensive to compute

than the Zolotarev poles, can result in lower iteration counts and total solver

times for these Sylvester equations.

We finished this thesis by looking at a stationary iterative approach for

solving a four-term generalised Sylvester equation. We have given a criterion

for the convergence of this method and performed numerical experiments. We

have found that, as we decrease the value of ε, hence making the problem more

convective, the stationary iterative method diverges. We have also noticed that

the solutions of the problems where ‖M−1N‖2 > 1 present oscillations, indicating

that the chosen finite difference method is not suitable for such problems.

Future work

In this thesis, we showed that using a priori computed IRKA poles can be

advantageous for matrix equations arising from the discretisation of diffusion and

convection–diffusion PDEs. We have seen, however, that the cost of generating

these poles can be higher than other pole options. We have made some advances

on how to reduce the cost of IRKA poles by exploring the differences in the poles

when the tolarence on the relative change in poles is both stricter and looser,

finding that a looser tolerance does not affect the poles, leading to our favourable

results. Furthermore, we considered an approximation to the IRKA poles which

has not been mentioned in this thesis since it was not as accurate as the current

implementation. This focused on using scaled IRKA poles obtained for problems

of smaller dimensions. Further work on how the IRKA poles are computed in
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practice can certainly be considered in order to reduce the cost. Approximating

the IRKA poles has not been discussed in this thesis, and this might also prove

to be less cost intensive than the current implementation of the pole generating

algorithm.

We have seen that poles which include information about the right-hand

side choice (IRKA and adaptive) seem to perform better in tests than the

Zolotarev poles, which are generated using only the spectral interval. A natural

continuation of these observations would be to establish them theoretically.

Understanding this could lead to better pole choices for both rational Krylov

projection methods and the ADI approach.

We have only touched on generalised Sylvester equations. To be precise,

we only described a stationary iterative method which diverges as the problem

becomes more convective. It would be interesting to develop a rational Krylov

approach, such as the ones described for Lyapunov and Sylvester equations, to

solve such matrix equations. Projection approaches and pole choices are two

important areas that need to be considered in order to make such an approach

work for generalised Sylvester equations.

Finally, we only looked at diffusion and convection–diffusion PDEs in two

spatial dimensions, with separable convection winds. Our results can be

extended from 2D to 3D (or higher dimensions) by considering tensors, which

would form an excellent basis for future work.
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[41] S. Güttel. Rational Krylov approximation of matrix functions: Numerical

methods and optimal pole selection. GAMM-Mitt., 36(1):8–31, 2013.

[42] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving

linear systems. J. Res. Nat. Bur. Standards, 49(6):409, 1952.

[43] N. J. Higham. Perturbation theory and backward error for AX- XB= C.

BIT Numerical Mathematics, 33(1):124–136, 1993.

[44] N. J. Higham. Functions of matrices: theory and computation. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[45] D. Y. Hu and L. Reichel. Krylov-subspace methods for the Sylvester

equation. Linear Algebra Appl., 172:283–313, 1992.

144



REFERENCES

[46] I. Ipsen and C. Meyer. The idea behind Krylov methods. The Amer. Math.

Monthly, 105, 11 1997.

[47] M.-P. Istace and J.-P. Thiran. On the third and fourth Zolotarev problems

in the complex plane. SIAM J. Numer. Anal., 32(1):249–259, 1995.

[48] I. M. Jaimoukha and E. M. Kasenally. Krylov subspace methods for solving

large Lyapunov equations. SIAM J. Numer. Anal., 31(1):227–251, 1994.

[49] E. Jarlebring, G. Mele, D. Palitta, and E. Ringh. Krylov methods for

low-rank commuting generalized Sylvester equations. Numer. Linear

Algebra Appl., 25(6):2176, 2018.

[50] K. Jbilou. Low rank approximate solutions to large Sylvester matrix

equations. Appl. Math. Comput., 177(1):365–376, 2006.

[51] K. Jbilou and A. Riquet. Projection methods for large Lyapunov matrix

equations. Linear Algebra Appl., 415(2-3):344–358, 2006.

[52] C. R. Johnson. Normality and the numerical range. Linear Algebra Appl.,

15(1):89–94, 1976.

[53] L. Knizhnerman and V. Simoncini. Convergence analysis of the extended

Krylov subspace method for the Lyapunov equation. Numer. Math.,

118(3):567–586, 2011.
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[64] D. Palitta and V. Simoncini. Matrix-equation-based strategies for

convection–diffusion equations. BIT, 56(2):751–776, 2016.

[65] D. Palitta and V. Simoncini. Computationally enhanced projection

methods for symmetric Sylvester and Lyapunov matrix equations. J.

Comput. Appl. Math., 330:648–659, 2018.

[66] D. Palitta and V. Simoncini. Numerical methods for large-scale Lyapunov

equations with symmetric banded data. SIAM J. Sci. Comput.,

40(5):A3581–A3608, 2018.

[67] D. Palitta and V. Simoncini. Optimality properties of Galerkin and

Petrov–Galerkin methods for linear matrix equations. Vietnam J. Math.,

48(4):791–807, 2020.

[68] D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of

parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math.,

3(1):28–41, 1955.

[69] T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations:

the symmetric case. Systems Control Lett., 40(2):139–144, 2000.

[70] B. Postlethwaite. Graded mesh. Version 1.5.0.0, [Accessed Online Feb.

2021].

[71] C. E. Powell, D. J. Silvester, and V. Simoncini. An efficient reduced basis

solver for stochastic Galerkin matrix equations. SIAM J. Sci. Comput.,

39(1), 2017.

146



REFERENCES

[72] Y. Saad. Iterative Methods for Sparse Linear Systems: Second Edition.

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

2003.

[73] Y. Saad and M. Schultz. GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. and Stat.

Comput., 7(3):856–869, 1986.

[74] J. Sabino. Solution of large-scale Lyapunov equations via the Block

Modified Smith Methods. PhD thesis, Rice University, 2006.

[75] S. D. Shank, V. Simoncini, and D. B. Szyld. Efficient low-rank solution of

generalized Lyapunov equations. Numer. Math., 134(2):327–342, 2016.

[76] V. Simoncini. A new iterative method for solving large-scale Lyapunov

matrix equations. SIAM J. Sci. Comput., 29:1268–1288, 01 2007.

[77] V. Simoncini. Computational methods for linear matrix equations. SIAM

Rev., 58:377–441, 01 2016.

[78] V. Simoncini and V. Druskin. Convergence analysis of projection methods

for the numerical solution of large Lyapunov equations. SIAM J. Numer.

Anal., 47(2):828–843, 2009.

[79] G. L. Sleijpen and D. R. Fokkema. BiCGstab (`) for linear equations

involving unsymmetric matrices with complex spectrum. Electron. Trans.

Numer. Anal., 1(11):2000, 1993.

[80] P. Sonneveld and M. B. Van Gijzen. IDR(s): A family of simple and fast

algorithms for solving large nonsymmetric systems of linear equations.

SIAM J. Sci. Comput., 31(2):1035–1062, 2009.

[81] M. Stoll and T. Breiten. A low-rank in time approach to PDE-constrained

optimization. SIAM J. Sci. Comput., 37(1):B1–B29, 2015.

[82] T. Stykel and V. Simoncini. Krylov subspace methods for projected

Lyapunov equations. Appl. Numer. Math., 62(1):35–50, 2012.

[83] O. Tatebe. The multigrid preconditioned conjugate gradient method. In

Proceedings of Sixth Copper Mountain Conference on Multigrid Methods,

pages 621–634, 1993.

147



REFERENCES

[84] L. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1997.

[85] L. N. Trefethen and M. Embree. Spectra and pseudospectra. Princeton

University Press, Princeton, 2005.

[86] I. T. Vaduva, P. A. Knight, and J. Pestana. An explicit rational

approximation and efficient pole choices for Lyapunov equations arising

from diffusion PDEs. Submitted for publication.

[87] H. A. Van der Vorst. BiCGStab: A fast and smoothly converging variant of

BiCG for the solution of nonsymmetric linear systems. SIAM J. Sci. and

Stat. Comput., 13(2):631–644, 1992.

[88] C. F. Van Loan and G. Golub. Matrix computations. The Johns Hopkins

University Press, Baltimore, MD, USA, 1996.

[89] B. Vandereycken and S. Vandewalle. A Riemannian optimization approach

for computing low-rank solutions of Lyapunov equations. SIAM J. Matrix

Anal. Appl., 31(5):2553–2579, 2010.

[90] E. Wachspress. The ADI model problem. Springer, East Windsor, NJ,

USA, 2013.

[91] E. L. Wachspress. The ADI minimax problem for complex spectra. In

Iterative methods for large linear systems, pages 251–271. Elsevier, 1990.

[92] E. L. Wachspress. Trail to a Lyapunov equation solver. Comput. Math.

Appl., 55(8):1653–1659, 2008.

[93] T. Wolf, H. K. Panzer, and B. Lohmann. Model order reduction by

approximate balanced truncation: A unifying framework.

at-Automatisierungstechnik, 61(8):545–556, 2013.

[94] T. G. Wright. Eigtool: a graphical tool for nonsymmetric eigenproblems.

Oxford University Computing Laboratory, 15(2):1, 2002.

[95] E. Zolotarev. Application of elliptic functions to questions of functions

deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg,

30(5):1–59, 1877.

148


	Acronyms and notation
	1 Introduction
	1.1 Thesis outline
	1.2 Aims and contributions

	2 Background material
	2.1 Linear algebra results
	2.2 Discretisation of model problems
	2.2.1 Diffusion PDE
	2.2.2 Convection–diffusion PDE

	2.3 Linear systems
	2.3.1 Direct methods
	2.3.2 Stationary iterative methods
	2.3.3 Multigrid methods
	2.3.4 Krylov subspace methods and preconditioning
	2.3.5 The conjugate gradient method and GMRES

	2.4 Matrix equations
	2.4.1 Direct methods
	2.4.2 ADI
	2.4.3 Projection methods

	2.5 Linear systems vs matrix equations
	2.5.1 Diffusion problem
	2.5.2 Convection–diffusion problem


	3 Diffusion problems
	3.1 Introduction
	3.2 Rational approximation
	3.2.1 Projection method
	3.2.2 1-sided approach
	3.2.3 2-sided approach
	3.2.4 Comparison

	3.3 Attainable accuracy
	3.4 Upper bounds
	3.4.1 Beckermann bound
	3.4.2 Asymptotic error bound

	3.5 Pole choices
	3.5.1 Zolotarev poles
	3.5.2 IRKA poles
	3.5.3 Adaptive pole choices

	3.6 Numerical results – pole choices
	3.6.1 Rank-1
	3.6.2 Scalability
	3.6.3 Higher rank right-hand sides

	3.7 Conclusions

	4 Convection–diffusion problems
	4.1 Introduction
	4.2 Lyapunov equation
	4.2.1 Projection
	4.2.2 Eigenvector bound
	4.2.3 Field of values bound
	4.2.4 Poles
	4.2.5 Numerical results

	4.3 Sylvester equation
	4.3.1 Projection
	4.3.2 Poles
	4.3.3 Numerical results

	4.4 Generalised Sylvester equation
	4.4.1 Stationary iterative method

	4.5 Conclusions

	5 Conclusions and future work
	References

