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“The first and greatest victory is to conquer yourself; to be conquered by yourself is of all things
most shameful and vile.”

Plato



Abstract

This thesis explores several aspects of econometric methods in time series forecasting

of both macroeconomic and financial variables. The contribution is provided in three

essays.

The first essay (Chapter 2) contributes to the econometric literature and develops mod-

els for regional nowcasting. We use Bayesian mixed frequency methods estimated at

the common lower frequency. Moreover, we propose a procedure which allows model

estimation with stochastic volatility and large datasets. We produce high frequency

state-level GDP nowcasts that will assist policymakers in understanding the impact

of greater regionalisation on economic growth in the U.S., and evaluate its impact on

present and future economic conditions in a more timely fashion. We evaluate the

accuracy of point and density forecasts, by making comparisons across models with

constant and stochastic volatility. We provide results on the accuracy of nowcasts of

real-time economic growth in the U.S. from 2006 to 2018. Empirical results suggest

that models with stochastic volatility outperform models with constant volatility at

nowcasting.

The second essay (Chapter 3) develops a Mixed Frequency Vector Autoregressive

model (MF-VAR) for producing timely monthly nowcasts and historical estimates of

GDP growth at the state level in the U.S. economy. The variables in the MF-VAR in-

clude GDP growth at the state and country level, as well as additional monthly vari-

ables at the state and country level. The variables are observed at different frequen-

cies, leading to a complicated high-dimensional MF-VAR. A computationally-fast ap-

proximate Bayesian Markov Chain Monte Carlo (MCMC) algorithm is proposed for

estimating the MF-VAR coefficients and nowcasting. Empirical results explore the na-

ture and magnitude of spillover effects among the U.S. states. Further, the proposed

model produces historical estimates at monthly frequency for both the U.S. economy

and U.S. states.

The third essay (Chapter 4) proposes a deep quantile estimator, using neural networks

and their universal approximation property to examine a non-linear association be-

tween the conditional quantiles of a dependent variable and predictors. The proposed

methodology is versatile and allows both the use of different penalty functions, as

well as high dimensional covariates. We present a Monte Carlo exercise where we



examine the finite sample properties of the proposed estimator and show that our ap-

proach delivers good finite sample performance. We use the deep quantile estimator

to forecast Value-at-Risk and find significant gains over linear quantile regression al-

ternatives, supported by various testing schemes. The Chapter also contributes to the

interpretability of neural networks output by making comparisons between the com-

monly used SHAP values and an alternative method based on partial derivatives.
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Chapter 1

Introduction

1.1 Background

Classical econometrics is based on the fact that a data generating process exists, for

instance Y1, . . . , YT ⇠ D (µ, 1), and the unknown parameter(s) can be estimated; in

this example the unknown parameter is the mean µ. This analysis can be generalised

for any distribution f (X; b) with some parameters b and a data generating process.

In this case, classical econometricians seek to estimate these parameters; b̂, retrieve

their distribution and perform some hypothesis testing.

In contrast, Bayesian econometricians are interested in the conditional distribution of

the unknown parameter(s), b|X, that is considered as a random variable given our

sample.

Normally, methods in the science of philosophy can also be used by the statistical

science, thus the identified research philosophy of this thesis belongs to the so-called

Bayesian Epistemology. Currently, econometrics is related to the study of causal re-

lationships among several variables and to the philosophical propositions that con-

stitute empirical modelling. The main objective of econometric science is to inter-

pret economic phenomena such as the relation between unemployment and inflation.

Bayesian econometrics fall under inductive logic principles, since inference is made

from observations to parameters, in other words our beliefs about future are bound

by past and present beliefs.

1



Chapter 1. Introduction 2

The concept of epistemology deals with the knowledge and the conclusions of that,

answer questions, which are based on the views about reality; this formulates the tra-

ditional epistemology. Bayesian epistemology uses tools from the probability theory

and studies the degrees of belief i.e. probabilities. On the other hand, epistemology

examines the non-probabilistic notion of knowledge that builds upon rational argu-

ments.

The origin of Bayesian epistemology records back to the Reverend Thomas Bayes (c.

1701 - 1761) who expressed an important probability theorem (regarding conditional

probabilities – Bayes Rule Theorem) that laid the foundation of Bayesian statistics

and further progress the Bayesian philosophy. In recent years, Bayesian Econometrics

found many applications to major fields of economics and related disciplines such as

macroeconomics. In Bayesian Econometrics, researchers combine a prior distribution

with the observed data and extract a posterior distribution. Any term that is not in-

cluded in the posterior is irrelevant and can’t be used for falsification. In a nutshell,

evidence is summarised by the posterior rather than employing confidence intervals

and hypothesis tests as frequentists do.

Hartmann and Sprenger (2010) indicate the three pillars of Bayesian Epistemology

namely, the Bayesian Conditionalization, the Dutch Book Argument and the Principal

Principle. Conditionalisation refers to the way beliefs (priors) can be updated with

more information. In Dutch Book there is a link between probabilities and betting. By

building upon this link, the Dutch Book Argument says that if the law of probabilities

does not hold, then in a bet can exist profits and losses; in other words the assumption

that a bet is fair is violated. Finally, the Principal principle states that if an agent has

a probability p for an event and there is no other information, then the probability

should be equal to p.

This thesis focuses on the Bayesian Conditionalization as it examines how different

types of prior elicitation can be used to improve the forecasting power for the quar-

terly U.S. states. Specifically, we use the various prior setups such the independent

prior (see e.g. Koop and Korobilis (2010)), the Stochastic Search Variable Selection

(SSVS) (see e.g. George, Sun, and Ni (2008b)) and the horseshoe prior (see e.g. Car-

valho, Polson, and Scott (2009), Carvalho, Polson, and Scott (2010)) and evaluate their

forecasting power, so that we can produce more timely and frequent quarterly U.S.

GDP by state forecasts.
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Bayesian epistemology is based on the Kolmogorov’s probability axioms, in which

a probability function should have the properties of non-negativity, normalization

(unity measure) and finite additivity. Based on these we use Bayes rule:

P (B|A) =
P (A|B) ⇤ P(A)

P(B)
(1.1)

P (b|Y) µ P (Y|b) ⇤ P(b), (1.2)

where P (b|Y) is the posterior function, P (Y|b) is the likelihood function and P(b)is

the prior distribution.

In 1992, Jeffrey, argued that Bayesian epistemology has two main advantages, the first

is the use of subjective probabilities i.e. prior beliefs may not be bound to rational

restrictions and secondly, observations generate a range of probabilities and not a cer-

tainty about an event. Firstly, in our empirical application in Chapter 2 we start with

the Minnesota (or Litterman) prior, namely the independent Normal – Wishart. The

specification for our priors follows the work of Dieppe, Legrand, and Van Roye (2016).

Finally, in order to avoid using a subjective prior we calculate the marginal likelihood

for the Minnesota prior and then we select the hyperparameters that maximise its

value. Giannone, Lenza, and Primiceri (2015) showed that this technique mitigates

the subjectiveness, while selecting the prior.

A key concept in Bayesian epistemology is evidence, which provides the tools for

confirming or not a theoretical model. Koop, McIntyre, and Mitchell (2019) used a

stacked Mixed frequency Vector Autoregression (MF-VAR) to produce more frequent

(quarterly instead of annual) and more timely regional gross value added (GVA) now-

casts for 10 UK regions (including UK continental shelf). They combine quarterly UK

GVA with annual GVA for the 10 UK regions and deploy both homoskedastic and

heteroskedastic MF-VAR models with entropic tilting. Their empirical application

produces quarterly GVA by region every quarter works fine and their nowcast esti-

mates indeed improve as they add new information each quarter. Arias, Gascon, and

Rapach (2016) deploy a dynamic factor model to produce a monthly economic indica-

tor for the 50 largest metropolitan statistical areas (MSA). U.S. population per area in

2014 was the selection criterion for the 50 MSA. Their dataset consists of 12 variables

and spans from 1990 to 2015. Their dynamic factor model embeds the maximum-

likelihood method proposed by Bańbura and Modugno (2014) to accommodate mixed
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frequency data and differences in data-publication lags. They find that in Great Re-

cession almost all MSA entered a recession.

Bayesian econometrics are relying on building a model and on statistical analysis; both

belonging to the empiricist philosophy. Empiricism refers to an epistemological stance

and its concept states that knowledge relates to past sense experiences and empirical

evidence. Some empiricists claim that sensory knowledge can be achieved by latent

data. As expected, unobserved evidence can create bias while interpreting results, so

empiricists proposed the use of a hypothetico-deductive approach, under which a hy-

pothesis (in our case the prior) is stated and is being tested (viz the way we update our

prior beliefs) in an empirical application. What is more, empiricism in econometrics

is interpreted as studies on causal identification and as the tools used to make infer-

ence on specific subpopulations. One critic of empiricism is the focus on identification

rather than building or developing an underlying theory. Besides, the focus on inter-

pretation and analysis of observed data only greatly restricts an empirical experiment,

as it prohibits a generalization.

1.2 Contribution

This thesis contributes to both the macroeconomic and financial forecasting literatures

using Big Data econometric methods in the following ways: first, we discuss possible

prior setups using a Mixed frequency Vector Autoregression (MF-VAR) written at the

common lower frequency. Second, we use ideas from recent work in estimating high

frequency MF -VAR models to discuss how monthly indicators offer more information

on producing one-step ahead U.S. GDP by state forecasts. Finally, we drop the linear-

ity assumption and using machine learning, we propose a deep quantile estimator

that is both non-linear and non-parametric estimator and forecast Value-at-Risk.

Chapter 2 contributes to the econometric literature and develops models for regional

nowcasting. We use Bayesian mixed frequency methods estimated at the common

lower frequency. Moreover, we propose a procedure which allows model estimation

with stochastic volatility and large datasets. We produce high frequency state-level

GDP nowcasts that will assist policymakers in understanding the impact of greater

regionalisation on economic growth in the U.S. and evaluate its impact on present

and future economic conditions in a more timely fashion. We evaluate the accuracy

of point and density forecasts, by making comparisons across models with constant
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and stochastic volatility. We provide results on the accuracy of nowcasts of realtime

economic growth in the U.S. from 2006 to 2018. Empirical results suggest that models

with stochastic volatility outperform models with constant volatility at nowcasting.

The second essay (Chapter 3) develops a Mixed Frequency Vector Autoregressive

model (MF-VAR) for producing timely monthly nowcasts and historical estimates of

GDP growth at the state level for the U.S. economy. The variables in the MF-VAR in-

clude GDP growth at the state and country level, as well as additional monthly vari-

ables at the state and country level. The variables are observed at different frequen-

cies, leading to a complicated high-dimensional MF-VAR. A computationally-fast ap-

proximate Bayesian Markov Chain Monte Carlo (MCMC) algorithm is proposed for

estimating the MF-VAR coefficients and nowcasting. Empirical results explore the na-

ture and magnitude of spillover effects among the U.S. states. Further, the proposed

model produces historical estimates at monthly frequency for both the U.S. economy

and U.S. states.

The third essay (Chapter 4) proposes a deep quantile estimator, using neural networks

and their universal approximation property to examine a non-linear association be-

tween the conditional quantiles of a dependent variable and predictors. The proposed

methodology is versatile and allows both the use of different penalty functions, as

well as high dimensional covariates. We present a Monte Carlo exercise where we

examine the finite sample properties of the proposed estimator and show that our

approach delivers good finite sample performance. We use the deep quantile estima-

tor to forecast Value-at-Risk and find significant gains over linear quantile regression

alternatives, supported by various testing schemes. The Chapter also contributes to

the interpretability of neural networks output by making comparisons between the

commonly used SHAP values and an alternative method based on partial derivatives.



Chapter 2

Regional nowcasting: Evidence
from the U.S.

2.1 Introduction

Regional policymakers’ decisions are based on evaluating present and future eco-

nomic conditions using incomplete information sets. Incomplete information arises

from the fact that real-time data is released with a considerable publication lag. This

research aims to develop models for improving regional nowcasting i.e. forecasting

the present and near future of the U.S. state-level economic variables, like Gross Do-

mestic Product (GDP), using mixed frequency ’Big Data’ techniques. These estimates

will ultimately assist economists at central banks, state governments, as well the finan-

cial sector in implementing policy decisions and in evaluating its impact by providing

state-level nowcasts in a more timely fashion.

Currently, GDP measures for the U.S. state-level is produced by the Bureau of Eco-

nomic Analysis (BEA) on an annual basis with a considerable publication lag of around

a year. As an example, this means that in November (e.g. 2019) each year, we are pro-

vided with estimates of state-level economic growth in the previous year (e.g. 2018).

Thus, for long periods, this ’ragged/jagged’ edge, as known in the literature, makes

the evaluation of the impact of policy interventions very difficult without an accu-

rate estimate of what current GDP is, much less what it will be in the near future.

This incomplete information impairs the ability of state policymakers to respond to

changing economic conditions. However, many potential predictors for U.S. GDP are

6
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released on a quarterly or monthly frequency. This frequency mismatch can be utilised

to update nowcasts or forecasts more regularly than the current practice of producing

state-level GDP at annual frequency. Precisely, U.S. state-level GDP forecasts can be

produced every quarter.

There exists a substantial literature on mixed frequency econometrics that we plan on

extending in this work. The U.S. growth nowcasting context differs from the existing

literature in several important ways. First, there are many more low frequency vari-

ables (the state-level GDP variables) than is usual in the literature. Second, the fact

that GDP for the U.S. states adds up to U.S. GDP provides an extra cross-sectional

restriction which should improve forecasting by producing conditional forecasts. To

be more precise, cross-sectional restriction is one way to move beyond unconditional

forecast and produce ”soft” conditional forecasts, see e.g. Krüger, Clark, and Ravaz-

zolo (2017) and Waggoner and Zha (1999). Finally, there is a huge range of variables

and various frequencies which could be used to improve GDP forecasts (e.g. regional

labour market variables at the annual frequency, U.S. macroeconomic variables at the

quarterly frequency and regional survey data at the monthly frequency). Although

we plan on starting small (i.e. working with 51 U.S. states and quarterly U.S. GDP),

adding other potentially useful predictors leads to an increase in the dimensionality

of the problem and introduce issues in the estimation of the model’s coefficients. We

plan on addressing all these issues in our research. To be more precise, we use, and

develop statistical models used in producing estimates of current and future values of

economic variables at a national level with the added provision that these models are

adapted to ensure that state estimates are consistent with national level forecasts.

We provide a brief review on methodology. Sims (1980) in his seminal work intro-

duced vector autoregressive (VAR) models, which provided a new statistical frame-

work that allows the examination of economic co-movements among several macroe-

conomic variables. Since then, VARs are used as the workhorse models in macroeco-

nomics mainly for their capacity in data summarizing, forecasting and in capturing

rich system dynamics. It is clear that VARs are not parsimonious models and their

identification is crucial. However, Bayesian techniques and innovations in the ma-

chine learning literature assisted in solving the problem of dimensionality. Further-

more, in their seminal work Bańbura, Giannone, and Reichlin (2010) show that the

estimation of fairly large Bayesian VARs (around 130 variables) is feasible and gives

sufficient forecasting performance. This work laid the foundations to use large BVARs
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in forecasting with many variables. As already noted, this research uses a large num-

ber of predictors and methods that allow for good estimation in high-dimensions are

essential. Lastly, we experiment with different model specifications in order to pro-

duce more accurate nowcasts and forecasts.

Since GDP growth is released at quarterly frequency it has been the norm to esti-

mate the parameters in a VAR model at quarterly basis, but due to the fact that many

macroeconomic variables are released at monthly (or even higher frequency) basis we

can mix high frequency variables with lower ones to allow for a faster updating of

nowcasts. To provide such estimates, we draw on and extend the growing literature

on mixed frequency Vector Autoregressions, henceforth MF-VARs. As proposed by

Ghysels and Marcellino (2018) there are two main families of MF-VARS used in the

literature. The first is called observation driven and consists of the stacked MF-VAR

approach, where we write the MF-VARs at the lowest frequency. Pioneering work in-

cludes McCracken, Owyang, and Sekhposyan (2019) and the MF-MIDAS, where we

write the VARs at low-frequency but we write high frequency indicators using par-

simonious distributed lag polynomials, see the seminal work of Ghysels (2016). The

latter is called parameter driven viz state space MF-VAR, we write the MF-VAR at the

high frequency and use state space methods to fill latent low frequency variables as in

the pioneering work of Schorfheide and Song (2015).

We extend the MF-VAR model and use entropic tilting to produce conditional fore-

casts for the U.S. state-level GDP in a more timely fashion by incorporating infor-

mation from the quarterly releases of nationwide GDP. The benefit of using entropic

tilting is twofold; first it improves the accuracy of point nowcast and second the den-

sity nowcast. Empirical results suggest that entropic tilting improves unconditional

forecasts, however the inclusion of stochastic volatility seems to have minor improve-

ments. Similar to our approach, Koop, McIntyre, and Mitchell (2019) used a stacked

MF-VAR to produce more frequent (quarterly instead of annual) and more timely re-

gional gross value added (GVA) nowcasts for 10 UK regions (including the UK con-

tinental shelf). They combine quarterly UK GVA with annual GVA for the 10 UK

regions and deploy both homoskedastic and heteroskedastic MF-VAR models with

entropic tilting. Their empirical application suggests that producing quarterly GVA

by region every quarter works relatively well and nowcast estimates indeed improve

as they add new information each quarter.
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Arias, Gascon, and Rapach (2016) use a dynamic factor model to produce a monthly

economic indicator for the 50 largest Metropolitan Statistical Areas (MSA). Their dataset

consists of the following 12 variables and spans from 1990 to 2015. Their dynamic fac-

tor model embeds the maximum-likelihood method proposed by Bańbura and Mod-

ugno (2014) that allows mixed frequency data and differences in data-publication lags.

They find that in the Great Recession almost all MSA entered a recession. In addition,

some MSA faced recessions in early 1990s and 2000s (associated with the so-called

dot-com bubble).

In summary, this work contributes to the econometric literature in developing models

for regional nowcasting and forecasting and in understanding the impact of greater

regionalisation of economic growth and productivity in the U.S.. In order to know

what the impact of this policy is in a timely fashion that is useful for policy makers,

investment in improving the economic data available is essential.

The plan of the remainder of this Chapter is as follows. Section 2.2 describes our

mixed frequency and entropic tilting methodology. Section 2.3 delineates our dataset,

empirical application and forecast evaluation. Conclusions are set out in Section 2.4.

2.2 Model Setup

In this Section we provide a brief explanation of the estimation method used and

model specifications, as well as information regarding the priors and the MCMC al-

gorithms. Initially, a homoskedastic Bayesian MF-VAR is used, but because of the

financial crisis many macroeconomic and financial variables depart from the classical

normality assumption, so we plan to enrich our model with stochastic volatility. Since

the pioneering work of Bańbura, Giannone, and Reichlin (2010) it is common to use

the Minnesota prior while working with large VARs, but our sample size is only 55

and initially the number of variables in each equation is 56 (i.e. we are in the K > T
world) our results may not be sensible as it considers the variance, S, known, so we

use the independent prior instead of the traditional Minnesota prior. We also use the

Stochastic Search Variable Selection (SSVS) prior proposed by George, Sun, and Ni

(2008a) and the horseshoe prior used by Carvalho, Polson, and Scott (2009).
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2.2.1 Homoskedastic MF-VAR

In their work McCracken, Owyang, and Sekhposyan (2019) based their forecasting

model on a stacked MF-VAR model estimated at the common lower frequency. This

approach has the advantage that it uses the traditional VAR estimating techniques

that generally work well. To be more precise, a MF-VAR written at the common lower

frequency is a traditional VAR, where all data is collected at a common low frequency

(i.e. there are not latent variables in this specification) e.g. at quarterly frequency,

and standard VAR estimation procedures are used, see e.g. McCracken, Owyang, and

Sekhposyan (2019) and Ghysels (2016).

Our model in reduced form is written as follows:

yt = B̃0 + B̃1yt�1 + ... + B̃pyt�p + #̃t (2.1)

where yt =
⇣

y1,t, y2,t, . . . , yn,t

⌘0
, is a n ⇥1 vector with endogenous variables at

time t, B̃0 a n ⇥1 vector of constants, B̃i n ⇥ n parameter matrices, p is the lag order of

VAR, and #̃t ⇠ N(0, S̃); S̃ is a full variance covariance matrix.

Chan (2019) and Carriero, Clark, and Marcellino (2019) proposed a reparameterisation

of (2.1) in which the VAR model is written in its structural form. Our MFBVAR in

structural form is denoted as follows:

Ayt = B0 + B1yt�1 + ... + Bpyt�p + #t, (2.2)

where #t ⇠ N(0, S), S = diag(s2
1 , s2

2 , . . . , s2
n) and Ai is n ⇥ n lower triangular impact

matrix with ones in the main diagonal. The parameterisation of S as diagonal allows

a recursive estimation of the model equation-by-equation without efficiency losses as

illustrated in Carriero, Clark, and Marcellino (2019).

For our forecasting exercise we need to recover the reduced form VAR coefficients as

follows. B̃0 = A�1B0, B̃i = A�1Bi and S̃ = A�1SA�10.

We provide some extra definitions, B0,i denotes the ith element of B0, Bj,i denotes the

ith row of Bj, bi =
⇣

B0,i, B1,i, . . . , Bp,i

⌘0
and ai is the ith row of A and is equal with

ai =
⇣

Ai,1, Ai,2, . . . , Ai,i�1

⌘0
.
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Finally our model is written as:

yi,t = wi,tai + xi,tbi + # i,t, (2.3)

where # i,t ⇠ N(0, s2
i ), wi,t =

⇣
�yi,t, . . . , �yi�1,t

⌘0
and xi,t =

⇣
1, yt�1, . . . , yt�p

⌘0
.

A more compact representation is:

yi,t = xi,tqi + # i,t, (2.4)

where # i,t ⇠ N(0, s2
i ), qi =

⇣
a0

i, b0

i

⌘0
and the dimension of qi is ki = np + i.

Finally, we stack over t and we get:

yi = xi✓i + # i, # i ⇠ N(0, s2
i IT ) (2.5)

Having specified our model we need to derive the corresponding likelihood function

of eq. (2.5)

f (y|✓,�2) =
n

’
i=1

f (yi|✓i,�2) =
n

’
i=1

(2ps2
i )

�T/2e
�

1
2s2

i
(yi�xiqi)0(yi�xiqi)

. (2.6)

2.2.2 MF-VAR with Stochastic Volatility

In their empirical application Clark and Ravazzolo (2012) find that modelling stochas-

tic volatility performs better than any alternative volatility specifications. To that end,

the general framework of a MFBVAR with stochastic volatility (SV) model can be de-

scribed by the following equations:

Yt = B0 + B1Yt�1 + ... + BpYt�p + et, et s N (0, S̃) (2.7)

ht = ht�1 + eh
t , eh

t s N (0, s2
h ), (2.8)

where et and eh
t are mutually and serially uncorrelated. State ht is the log-volatility

and var(Yt|ht) = eht . S̃ is set to diag(eh1,t , eh2,t , . . . , ehn,t).

In a similar way as in eq. (2.5) we rewrite our model as follows.

yi = xi✓i + # i, # i ⇠ N(0, ehi,t IT) (2.9)
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hi,t = hi,t�1 + eh
i,t, eh

i,t s N (0, W). (2.10)

The state equation for the latent log-volatilities hi,t follows a random walk process as

in Cogley and Sargent (2005). Moreover, the initial condition h0 is estimated through

the model. W is set to diag(s2
h1

, s2
h2

, . . . , s2
hn
), where contrary to Primiceri (2005) we do

not assume time variation in the variance matrix.

We describe the conditional posterior for the stochastic volatility term, which follows

the auxiliary mixture sampler proposed by Kim, Shephard, and Chib (1998). In their

paper, they estimate a non-linear stochastic volatility model with the following equa-

tions:

yt = exp(
1
2

ht)et, et s N (0, 1) (A.1)

var(yt|ht) = exp(ht)

ht = ht�1 + ut, ut s N (0, s2
h ). (A.2)

We take the logarithm of A.1 and get:

log y2
t = ht + log et (A.3)

y⇤t = ht + e⇤t , y⇤t = log(y2
t + c) and e⇤t s X2. (A.4)

Offset variable c is set to 0.001 to ensure that the quasi-maximum likelihood estima-

tor is very small. We then approximate the density of e⇤t by using the following n-

component Gaussian mixture:

f (e⇤t ) ⇡
n

Â
i=1

pif(et; µi, s2
i ), (A.5)

where f(x; µ, s2) represents a Gaussian density with mean µ and variance s2 and

pi the probability of ith mixture component. Let’s assume that st 2 [1, · · · , n] is an

auxiliary random variable, with the following mixture density: e⇤t |st = i s N (µi �

1.2704, s2
i ) and P(st = 1) = pi. Kim, Shephard, and Chib (1998) propose a seven

component Gaussian mixture as follows:

f (x) ⇡
7

Â
i=1

pif(x; µi � 1.2704, s2
i ) (A.6)
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To finalise the step for SV we select the mean, variance and component probability of

the mixing distribution to be logX 2 as in Table 4 p.371 in Kim, Shephard, and Chib

(1998) and run the Gibbs Sampler to get the posterior density. We draw the mixture

component indicator for the ith equation.

The algorithm we use for SV is in line with Kim, Shephard, and Chib (1998) and the

precision sampling methods described in Chan and Jeliazkov (2009) and Chan, Hsiao,

et al. (2014). To be in line with Koop, McIntyre, and Mitchell (2019), we set the lag

length to 1, despite the fact that this assumption is not in line with the literature, see

e.g. Koop (2013).

2.2.3 Priors

2.2.3.1 Independent Prior

For our empirical application we use the Independent Normal – Wishart prior. In this

framework the variance-covariance matrix S is assumed to be unknown. In total we

have to estimate n ⇤ (np + 1) = 55 ⇤ 56 parameters, which is a fairly large BVAR. We

assume qi ⇠ N (qi,0,Vqi).

The prior mean vector qi,0 is set to zero. We set to zero the first own lag coefficients as

we work with growth rates. The prior covariance matrix Vqi is a diagonal matrix with

elements specified as follows:

Vii =

✓
l1

ll3

◆2

Vij =

 
s2

i
s2

j

!✓
l1l2

ll3

◆2

Vci = s2
i (l1l4)

2

where l1 is the overall tightness parameter, l is the lag operator, and l3 is the scaling

coefficient controlling the speed at which coefficients for lags greater than 1 converge

to 0, l2 represents the cross-variable specific variance parameter and finally l4 con-

trols the tightness of constants. Lastly, s2
i , s2

j is the residual variance from a univariate

AR(1) for the ith, jth equation of the VAR, respectively.
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For the unknown S matrix we assume the following:

s2
i ⇠ IW(ni,0,Si,0).

We choose a relative uninformative prior for the shape and set ni,0 = n + 2 (minimum

possible degrees of freedom so that we obtain well-defined mean and variance for

s2
i ). The scale is selected to match E s2

i = (ni,0 � n � 1)Si,0, where Si,0 is a diagonal

matrix with its elements set to the residual variance from a univariate AR(1) for the ith

equation of the VAR.

The prior densities can be written as:

p(✓i) =
n

’
i=1

(2p)�ki/2
|Vqi |

�1/2e�
1
2 (qi�qi,0)0V�1

qi
(qi�qi,0) (2.11)

p(�i) =
n

’
i=1

|Si,0|
ni,0/2

2ni,0/2G(ni,0/2)
(s2

i )
�(ni,0+1+ki/2)e

�
1
2 tr(

Si,0
s2

i
)
. (2.12)

Our conditional posterior are formulated as follows:

p(✓i|yi, s2
i ) = f (yi|✓i,�2

i )p(✓i)

= (2ps2
i )

�T/2(2p)�ki/2
|Vqi |

�1/2e
�

1
2s2

i
(yi�xiqi)0(yi�xiqi)

e�
1
2 (qi�qi,0)0V�1

qi
(qi�qi,0)

µ e
�

1
2s2

i
(yi�xiqi)0(yi�xiqi)�

1
2 (qi�qi,0)0V�1

qi
(qi�qi,0)

= e�
1
2 q0i V

�1
qi

qi�2q0i V
�1
qi

qi,0+q0i,0V�1
qi

qi,0+y0iyi�2(s2
i )

�1q0i x
0

i yi+(s2
i )

�1q0i x
0

i xiqi

= e�
1
2 q0i (V

�1
qi

+(s2
i )

�1x0i xi)qi�2q0i (V
�1
qi

qi,0+(s2
i )

�1x0i yi)+q0i,0V�1
qi

qi,0+(s2
i )

�1y0iyi

= e�
1
2 q0i Kqi qi�2q0i Kqi q̂i+q0i,0V�1

qi
qi,0+(s2

i )
�1y0iyi

= e�
1
2 (qi�q̂i)0Kqi (qi�q̂i)�q̂i

0Kqi q̂i+q0i,0V�1
qi

qi,0+(s2
i )

�1y0iyi

µ e�
1
2 (qi�q̂i)0Kqi (qi�q̂i),

(2.13)
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where Kqi = V�1
qi

+ (s2
i )

�1x0i xi and q̂i = K�1
qi

(V�1
qi

qi,0 + (s2
i )

�1x0iyi).

p(�2
i |yi, qi) = f (yi|✓i,�2

i )p(�2
i )

= (2ps2
i )

�T/2(2p)�ki/2
|Vqi |

�1/2e
�

1
2s2

i
(yi�xiqi)0(yi�xiqi) |Si,0|

ni,0/2

2ni,0/2G(ni,0/2)

⇥ (s2
i )

�(ni,0+1+ki/2)e
�

1
2 tr(

Si,0
s2

i
)

µ (s2
i )

�(ni,0+1+ki/2+T/2)e
�

1
2s2

i
(yi�xiqi)0(yi�xiqi)

e
�

1
2 tr(

Si,0
s2

i
)

= (s2
i )

�(ni,0+1+ki/2+T/2)e
�

1
2 tr(

Si,0+(yi�xiqi)
0(yi�xiqi)

s2
i

)
.

(2.14)

Our posterior analysis is summarised as follows. We use a two-block Gibbs Sampler

to simulate draws from the posterior: p(qi, s2
i |y)

1. p(✓i|�2
i , y)

2. p(�2
i |✓i, y)

Steps 1-2 are summarised as follows.

qi ⇠ N (q̂i, K�1
qi

) (2.15)

s2
i ⇠ IW(ni,0 + T + ki, Si,0 + (yi � xiqi)

0(yi � xiqi)). (2.16)

Our econometric model faces the following challenges: i) the cross-sectional restric-

tion i.e. state-level GDP adds up to national GDP; this restriction is the basis to im-

prove our nowcasts, ii) we have many low frequency variables viz 51 annual GDP

by state and one high frequency variable, namely quarterly GDP (Koop, McIntyre,

and Mitchell (2019) faced the same issue in their nowcasting exercise and their model

works relatively well) and iii) the timing issue i.e. February, May, August and Novem-

ber are the months we chose to observe the quarterly GDP so we get our posterior

estimates these months and use the proposed methodology to get the unconditional

forecasts.
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2.2.3.2 Stochastic Volatility

We assume the following priors:

qi ⇠ N (qi,0, Vqi)

ht ⇠ AR(1)

h0 ⇠ N (ah, Vh)

s2
h ⇠ IG(nh, Sh).

Our posterior analysis is summarised as follows. We use a five-block Gibbs Sampler

to simulate draws from the posterior: p(✓i, hi, h0,�2
h|y), using the following steps:

1. p(✓i|hi, h0,�2
h, y)

2. p(hi|✓i, h0,�2
h, y)

3. p(h0|✓i, hi,�2
h, y)

4. p(�2
h|✓i, h0, hi, y).

Step 1 is summarised as follows:

qi ⇠ N (q̂i, K�1
qi

),

where Kqi = V�1
qi

+ (e�hi,t x0i xi) and q̂i = K�1
qi

(V�1
qi

qi,0 + e�hi,t x0iyi).

We describe step 2 in Section 2.2.2. Finally, for steps 3 and 4 their conditional distribu-

tions are standard and summarised as follows:

• (h0|✓i, hi,�2
h, y) ⇠ N (ĥ0, K�1

h0
)

• (�2
h|✓i, h0, hi, y) ⇠ IG(nh + T/2, Ŝh)

where Kh0 = 1/s2
h + 1/Vh, ĥ0 = K�1

h0
(V�1

h ah + h0/s2
h ) and Ŝh = Sh + [h2

0 + ÂT
t=2(ht �

ht�1)2]/2.

For SV we use the algorithm of Kim, Shephard, and Chib (1998) and the precision

sampling methods as described in Chan and Jeliazkov (2009) and Chan, Hsiao, et al.

(2014).



Chapter 2. Regional nowcasting: Evidence from the U.S. 17

2.2.4 Stochastic Search Variable Selection (SSVS)

A conventional SSVS prior, for a VAR coefficient, bi,j, is a mixture of two Normal

distributions:

qi|gi ⇠ (1 � gi) N
�
0, c ⇥ t2

i
�
+ giN

�
0, t2

i
�

, (2.17)

where gi,j 2 {0, 1} is an unknown parameter, c is a number close to zero, P(gi = 1) =

pi and P(gi = 0) = 1 � pi . Thus, gi serves as a variable selection indicator. If gi = 0

then the coefficient is shrunk to be very close to zero, whereas if gi = 1 it is not.

The prior we use in this Chapter takes a similar form, except that the mixture proba-

bility pi, and the variance t2
i are assumed to be the parameters to be estimated. We

follow Cross, Hou, and Poon (2020) and specify an uninformative prior pi ⇠ U (0, 1).

Finally, we set t2
i ⇠ IG (1, 1).

Our posterior analysis is summarised as follows:

1. p(✓i|�2
i , gi,⇡i, t2

i , y)

2. p(�2
i |✓i, gi,⇡i, t2

i , y)

3. p(gi|✓i,�2
i ,⇡i, t2

i , y)

4. p(⇡i|✓i,�2
i , gi, t2

i , y)

5. p(t2
i |✓i,�2

i , gi,⇡i, y).

2.2.5 Horseshoe

In this Section, we adopt the Global-Local Hierarchical Shrinkage Priors, specifically

we adopt the horseshoe prior proposed by Carvalho, Polson, and Scott (2010) as a

method for shrinkage in the presence of sparsity. The horseshoe prior belongs to

the family of global-local (GL) shrinkage procedure in which li determines the lo-

cal shrinkage, while the overall one is determined by t. The horseshoe prior has

the advantage of aggressively penalising small coefficients (i.e. noise) but applies no

shrinkage to large coefficients (i.e. signal). This property offers a non-uniform shrink-

age across all coefficients and contrast already existing penalisation methods such as

Bayesian LASSO, in which shrinkage is achieved uniformly across all coefficients. Fur-

ther, another interesting advantage is that it doesn’t require any hyperparameters.
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A conventional horseshoe prior, for the ith VAR equation, qi, is the following:

qi|L2
i , t2

i , s2
i ⇠ N

�
0, L2

i t2
i s2

i
�

, L2
i = diag(l2

i,1, . . . , l2
i,ki
) (2.18)

s2
i ⇠ IG(ni,0, Si,0), (2.19)

t2
i ⇠ C+ (0, 1) , (2.20)

l2
i,j ⇠ C+ (0, 1) , j = 1, ..., ki. (2.21)

Despite its advantages, this specification results in a non-standard conditional distri-

bution, which makes standard Gibbs sampler intractable. There are various specifi-

cations of the horseshoe prior and associated MCMC sampling schemes. Neal (2003)

and Polson, Scott, and Windle (2014) proposed the use of a slice sampler that allows

t2
i and l2

i,j to be updated efficiently in high-dimensions which we follow.

The above hierarchy makes Gibbs sampling from the posterior distribution straight-

forward.

1. The conditional posterior distribution of the regression coefficients qi is drawn

using the following steps:

qi|L2
i , t2

i , s2
i ⇠ N

⇣
A�1

i X
0

iyi, s2
i A�1

⌘
, (2.22)

where Ai =
⇣

X0

i Xi + L�1
?

⌘
, L? = t2

i L2
i . We use the efficient algorithm of Bhat-

tacharya, Chakraborty, and Mallick (2016) to sample them.

2. The conditional posterior distribution of s2
i is drawn using the following steps:

s2
i ⇠ IG( ¯ni,0, ¯Si,0), (2.23)

where ¯ni,0 = (T + Ki)/2 and ¯Si,0 = (yi � Xiqi)
0

(yi � Xiqi) /2 + Si,0.

3. The conditional posterior distribution of t2
i is drawn using the following steps:

• set hi = 1/t2
i

• sample u from

u|hi ⇠ U

✓
0,

1
1 + hi

◆
, (2.24)
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• sample hi from

hi ⇠ g

0

@(ki + T)/2, u
2s2

i

Â( qi
li,j

)2

1

A , (2.25)

where g is s the lower incomplete gamma function

• set ti =
1

p
hi

.

4. The conditional posterior distribution of l2
i,j is drawn using the following steps:

• set hi,j = 1/l2
i,j

• sample u from

u|hi,j ⇠ U

✓
0,

1
1 + hi,j

◆
, (2.26)

• sample hi,j from

hi,j ⇠ e
q2
i

2s2
i

hi,j
I
✓

u
1 � u

> hi,j

◆
(2.27)

• set li,j =
1

p
hi,j

.

2.2.6 Prior Elicitation

In this Subsection, we define the prior hyperparameters as follows. The values we se-

lect for the MFBVAR-SV model imply diffuse priors. To allow comparisons between

different forecast evaluations, we keep the hyperparameters the same, across all mod-

els.

For the independent prior we estimate the shrinkage parameters as in Giannone,

Lenza, and Primiceri (2015). We use the following grid for l1 in the interval [0.05,

0.3] with a step size of 0.01, for l2 we use [0.1, 3] with a step size of 0.05, l3 is in [1,

2] with step size 0.2 and finally for l4 we use a grid over the interval [100, 1000] with

step size 100. In this case the derivation of the marginal likelihood is not possible and

in order to calculate it we resort to the methodology proposed by Chib (1995), who

proposes a simple technique based on Gibbs sampling outputs.

For the SSVS we set qi,0 = 0, gi = 0.5, t2
i = 1 and c = 0.0001.

For the horseshoe we set s2
i = 1, li,j = 1 and ti = 1.

Finally for the BVAR with stochastic volatility we set ah = 0, Vh = 10, s2
h = 0.1,

nh0 = 5, Sh = 0.1 ⇤ (nh0 � 1), and h0 = log(var(yi) ⇤ 0.8).
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Our posterior estimates are based on 25,000 draws from the MCMC algorithm and we

discard 23,000. We select the lag length to be 1 for the homoskedastic BVAR1 and 6 for

the BVAR with stochastic volatility.

2.2.7 Curse of dimensionality

In this Subsection we present common challenges of the proposed estimators. Nor-

mally, BVARs using the independent prior are computationally complex. To be more

precise, we drop the i subscript in eq. (2.15) and compute the BVAR using traditional

techniques. The dimension of our variance covariance matrix Kq is n(np+ 1) and con-

sequently this involves the following operations: i) invert Kq , ii) calculate the Cholesky

factor of Kq , and iii) multiply matrices from i) and ii) i.e the calculation complexity is

3O(N6). However, if we estimate the model equation-by-equation the dimension of

Kqi , is (np + 1) which means that we have a complexity of O(N3)2. For instance,

suppose n= 10 the traditional algorithm needs 3 million calculations for each MCMC

draw, while the equation-by-equation algorithm only needs 1,000 per draw.

As noted above, the reparameterization of eq. (2.1) requires writing our model in its

structural form, which can lead to identification issues. Since we used the cholesky

decomposition as a means to estimate the model and not for identifying the structural

shocks. For this reason, the order of our variables does not matter and ultimately the

posterior would not be affected.

Lastly, we note that the proposed model has been estimated in an Intel i5-6500 @ 3.2

GHz with 8 GB of RAM. The computation time for 2,000 posterior draws with one lag

and 55 variables is about 30 seconds using the equation-by-equation method, contrary

to the traditional algorithm, which required about 7,000 seconds.

2.2.8 Entropic Tilting with quarterly national-level GDP releases

The proposed entropic tilting method is based on the work of Robertson, Tallman, and

Whiteman (2005). The way to incorporate new information in an existing predictive

1As in Koop, McIntyre, and Mitchell (2019)
2In Carriero, Clark, and Marcellino (2019) the complexity is O(N4), however we further improve our

computational gains by calculating Kqi = C0
Kqi

CKqi
; see Chan (2019) for more details.
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density is described in Altavilla, Giacomini, and Ragusa (2017). Furthermore, Giaco-

mini and Ragusa (2014) illustrate that entropic tilting improves (or at least it should

not deteriorate) conditional forecasts, when the moment condition is properly speci-

fied. We estimate the proposed models and produce current state-level nowcasts of

GDP with data available on the second release of nationwide GDP i.e. the predictive

density for our nowcasts is p(Yt+h|Y1:t). The entropic tilting methodology is sum-

marised as:

Suppose we have a predictive density with a sample with R unconditional forecast

draws yi and some weights, wi for each observation which ensure that each observa-

tion receives a weight in the sample according to the predictive distribution. Then

assume we have more information regarding p(Yt+h|Y1:t) that we call g(y) and im-

pose the following moment condition:

E g(y) = ḡ.

Then the following minimization problem is the so-called entropic tilting

min
wi

KLIC( f ?, f )

s.t. E g(y) = ḡ.

We find a set of wi representing the new predictive density p?(Yt+h|Y1:t). KLIC de-

notes the Kullback-Leibler information criterion.

In the empirical application we use a Gaussian approximation, so that we have to find

a new forecast density; f ? which is close to the old normal density and satisfies the

restrictions. To be more precise,

p(Yt+h|Y1:t) ⇠ N (µ, V) (2.28)

where µ =
⇣

µUS µS

⌘0
3 and V =

 
VUS VUS,S

VS,US VS

!
.

Since eq. (2.5) and (2.9) contain lags of the nationwide U.S. GDP (measured at quar-

terly frequency) and the contemporaneous effects of state-level GDP and U.S. GDP are

captured by the variance-covariance matrix, the state-level nowcasts are updated as

new quarterly GDP information for each quarter is released. To be more precise, the

3µUS denotes the U.S. mean and µS is the state-level mean
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way that quarterly U.S. GDP releases can be used to shed light on what is happening

in the U.S. states. We call this method cross-sectional restriction. To that end, the re-

striction that state-level GDP adds up to nationwide U.S. GDP should help improve

our nowcasts. Since we work with exact growth rates, our cross-sectional restriction

holds approximately. Thus, we have:

yUS
t =

YUS
t � YUS

t�1

YUS
t�1

=
4

Â
q=1

YUS
t�1,q

Â4
q=1 YUS

t�1,q
yUS

t,q

=
51

Â
s=1

Ys,A
t�1,q

Â51
s=1 Ys,A

t�1,q
ys,A

t

=
4

Â
q=1

wUS
q,t�1yUS

t,q =
51

Â
s=1

wUS
s,t�1ys,A

t

To add the cross-sectional restriction, we extend the aforementioned result by defining

a new variable z = Ayt+1. Matrix A shows how we use new quarterly information to

update our nowcasts. Since z is a linear transformation of yt, it holds:

p(z|Y1:t) ⇠ N (Aµ, AVA0).

We then tilt the multivariate predictive density eq. (2.28), so that the mean of YUS
t+h

is equal to µ?
US. As we add more information and move one quarter into the year,

new data on Yt+h,1 is released, thus the new mean i.e µ?
US reflects information that is

available at period t + h. In general we try to keep the predictive density to be as close

to p(Yt+h|Y1:t) as possible. It is proven in Altavilla, Giacomini, and Ragusa (2017) that

the new predictive density is:

p?(Yt+h|Y1:t) ⇠ N (µ?, V), µ? =

 
µ?

US

µ?
S

!
=

 
µ?

US

µS � VUS,SV�1
US (µUS � µ?

US)

!
.

Note that in Altavilla, Giacomini, and Ragusa (2017) tilting does not change the pre-

dictive variance. Furthermore, it may appear that entropic tilting does not directly

impact on the state-level growth nowcasts as U.S. nationwide variables are being re-

leased throughout the year. Since VUS,S = 0 and the quarterly U.S. nowcasts are un-

correlated with the state-level nowcasts, the updating of quarterly U.S. GDP nowcasts

spill over into the state-level nowcasts4.

4The cross-state dependences are captured via VS
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So the new predictive density is as follows:

p?(z|Y1:t) ⇠ N (µ̄, V̄), µ̄ =

 
µ?

US

µ̄S

!
=

 
µ?

US

µ̄S � ¯VUS,S
¯V�1
US ( ¯µUS � µ?

US)

!
,

V̄ =

 
¯VUS ¯VUS,S

¯VS,US V̄S

!
.

Note that V̄ is a singular matrix, but this causes no problem for our derivations as they

only involve inverting the non-singular ¯VUS and we use the again non-singular V̄S.

Following the release calendar of BEA, annual state-level GDP data for year t is not

available before the release of the fourth-quarter data for year at t + 1. To respect this

publication lag and to produce genuinely real-time nowcasts, we condition quarter

1 (Q1) up to quarter 3 (Q3) nowcasts on two-step ahead forecast rather than a one-

step-ahead forecasts from the VARs, so in the empirical application we have h = 2.

Lastly, suppose we are at t + 1 and the first quarterly GDP is released, we want to use

this information to entropically tilt our nowcasts, but quarter 2 (Q2) — quarter 4 (Q4)

are not released yet. We therefore assume, while using cross-sectional restriction, that

the values of U.S. GDP for quarter 2 — quarter 4 is the value of quarter 1 (Q1). This

assumption holds, since we have seasonally adjusted GDP growth rates.

Before closing this Subsection we show the form of matrix z, A, y and µ̄.

z = Ayt+1

z =

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 wt�1 01⇥S

1 0 0 0 0 0 0 0 01⇥S 01⇥S

0 1 0 0 0 0 0 0 01⇥S 01⇥S

0 0 1 0 0 0 0 0 01⇥S 01⇥S

0 0 0 1 0 0 0 0 01⇥S 01⇥S

0 0 0 0 0 0 0 0 01⇥S wt

0 0 0 0 1 0 0 0 01⇥S 01⇥S

0 0 0 0 0 1 0 0 01⇥S 01⇥S

0 0 0 0 0 0 1 0 01⇥S 01⇥S

0 0 0 0 0 0 0 1 01⇥S 01⇥S

0 0 0 0 0 0 0 0 IS 0S

0 0 0 0 0 0 0 0 0S IS

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBB@

yUS
t,1

yUS
t,2

yUS
t,3

yUS
t,4

yUS
t+1,1

yUS
t+1,2

yUS
t+1,3

yUS
t+1,4

yS
t,1

yS
t+1,1

1

CCCCCCCCCCCCCCCCCCCCCA

and µ̄ =

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

yUS
t

yUS
t,1

yUS
t,2

yUS
t,3

yUS
t,4

yUS
t+1

yUS
t+1,1

yUS
t+1,2

yUS
t+1,3

yUS
t+1,4

yS
t,1

yS
t+1,1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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The following summarise how we update our nowcasts using entropic tilting as new

national (i.e. the quarterly GDP) data (i.e. Q1 to Q4) is released:

1. After the release of Q1 U.S. GDP growth (in May of each year) set:

µ⇤
1 = (yUS

t+1,1, yUS
t+1,1)

2. After Q2 release (in August of each year) set:

µ⇤

1 = ((wUS
1,t yUS

t+1,1 + 3(wUS
2,t yUS

t+1,2), yUS
t+1,1, yUS

t+1,2)

3. After Q3 release (in November of each year) set:

µ⇤

1 = ((wUS
1,t yUS

t+1,1 + wUS
2,t yUS

t+1,2 + 2wUS
3,t yUS

t+1,3), yUS
t+1,1, yUS

t+1,2, yUS
t+1,3)

4. After Q4 release (in February of each year) set:

µ⇤
1 = (yUS

t+1, yUS
t+1,1, yUS

t+1,2, yUS
t+1,3, yUS

t+1,4)

2.3 Empirical application

2.3.1 Data

The dataset consists of the following U.S. nominal gross domestic product (GDP) at

quarterly frequency sampled from 1947Q1 to 2018Q4. U.S. Annual GDP by state for

50 states plus the District of Columbia is available at the U.S. Bureau of Economic

Analysis (BEA)5.

The Release Schedule for U.S. GDP can be found on https://www.bea.gov/news/

schedule and is summarized below:

• U.S. Quarterly GDP has 3 estimates for each quarter. Flash GDP is released one

month after the end of each quarter while the last one comes 3 months after the

end of each quarter

• U.S. Annual GDP by state is released twice per year. The preliminary release is 5

months after the end of each year, while the last one is released after 11 months.

Our sample spans from 1963 to 2018. We use the full sample 2018 vintage release,

which ensures U.S. Quarterly GDP includes its second release for the 4th quarter of

2018.
5https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1&acrdn=1

https://www.bea.gov/news/schedule
https://www.bea.gov/news/schedule
https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1&acrdn=1
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To delve deep in the ’Big data’ world and to perform a robustness check we enrich

our dataset with monthly Employment (series ID: CES0000000001) measured at na-

tional level available at the Bureau of Labor Statistics(BLS)6. All series are seasonally

adjusted and their transformation is delineated in the following Subsection.

2.3.2 Definitions

In this Subsection, we delineate the details of the econometric model that we use to

produce the new U.S. state-level estimates and explain its properties. We use the fol-

lowing notational conventions:

• t = 1, . . . , T runs at the annual frequency.

• Ys,A
t is annual GDP for state s, for s = 1, . . . 51.

• ys,A
t =

YS,a
t �YS,a

t�1

YS,a
t�1

is annual GDP growth in state s.

• YUS
t,i is US GDP in the ith quarter of the year for i = 1, . . . , 4.

• yUS
t,i =

YUS
t,i �YUS

t�1,i
YUS

t�1,i
is annual GDP growth relative to the same quarter in the previ-

ous year.

• yt =
⇣

yUS
t,1 yUS

t,2 yUS
t,3 yUS

t,4 yA
t

⌘0
, where yA

t = (y1,A
t , ..., yS,A

t )0. All the annual

variables are stacked into vectors.

• empUS
t,i =

EMPUS
t,i �EMPUS

t�1,i
EMPUS

t�1,i
is annual GDP growth relative to the same month in the

previous year.

• yt =
⇣

empUS
t,m yUS

t,1 yUS
t,2 yUS

t,3 yUS
t,4 yA

t

⌘0
,

where m = 1, . . . , 12

• Yt0:t1 denotes a sequence of observations, that is abbreviated as Y1:T.

Note that the dimension of the ’small’ model is 55, while the larger model (i.e. the

model with monthly employment) has 67 variables.

6https://data.bls.gov/timeseries/CES0000000001

https://data.bls.gov/timeseries/CES0000000001
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2.3.3 Forecast Evaluation

We perform a two-step-ahead recursive out-of-sample forecast exercise for 13 years.

Our estimation sample starts from 1964 to 2006 and ends to 1964 to 2018, thus we

estimate a total of 13 sets of two-steps-ahead forecasts. The reason why we use a two

year-ahead forecast is to address the two year publication lag of the annual GDP by

state.

We consider 6 models. The first three are a constant volatility MF-VAR with annual

state-level GDP and quarterly GDP and three different prior families, namely the in-

dependent prior, SSVS and HS. The last three have the same sets of variables, but have

stochastic volatility and the aforementioned prior families. Table 2.1 summarizes the

models we estimate.

In addition, we calculate the unconditional forecasts and use entropic tilting methods

as in Altavilla, Giacomini, and Ragusa (2017) to add new information. As already ex-

plained, the relative entropy method does not require new MCMC draws as it simply

re-weights an existing forecast distribution.

Root mean squared forecast error (RMSFE) is used to measure the accuracy of point

estimates, while log predictive score (logS) and continuous ranked probability score

(CRPS) evaluates the accuracy of the predictive density.

RMSFE is defined as follows:

RMSFEi,h =

s
ÂP

t=1(yi,t+h � ˆyi,t+h)2

P

logS is defined as follows:

log Si,h =
ÂP

t=1 log p( ˆyi,t+h = yi,t+h|Y1:T)
P

CRPS is defined as follows:

CRPSi,h =
Z •

�•
[Fi,t,h(y)� (yi,t+h 6 y)]2dy
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Since the predictive density is Gaussian with mean µ and variance s2, Gneiting and

Raftery (2007) show that CRPS can be approximated as follows:

CRPSi,h = s


1

p
p
� 2f(

x � µ

s
)�

x � µ

s
(2F(

x � µ

s
)� 1)

�
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0.5

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p

p
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where yi,t+h the realised value, ˆyi,t+h the unconditional or the entropically tilted fore-

cast, i the variable, h the forecast horizon, Fi,t,h(y) the cumulative distribution function,

f the probability density function and F the cumulative density function.

For RMSFE and CRPS the smaller the value the better the forecast, while for logS the

larger value the better. In general, our entropic tilting methodology follows the one

performed in Koop, McIntyre, and Mitchell (2019).

A priori, we expect the inclusion of stochastic volatility to improve density forecasts

see Clark (2011), while the use of a large dataset should improve point forecasts.

Tables 2.2 – 2.9 display the root mean squared forecast error (RMSFE) and the contin-

uous ranked probability score (CRPS) relative (ratio) to the benchmark AR(1) so that

a value below 1 denotes a model outperforming the benchmark. The log predictive

score (logS) relative (difference) to the benchmark AR(1) values are depicted on Ta-

bles 2.2 – 2.9 so that a value above 0 denotes a model outperforming the benchmark.

The large heteroskedastic model outperforms the large homoskedastic model for more

than half states at almost all horizons, suggesting that the inclusion of SV improves

the specification of the conditional means and consequently the point forecasts.

Koop, McIntyre, and Mitchell (2019) find little evidence on adding stochastic volatility,

but in their application they use UK data, while in our application we use U.S. data.

In Appendix A.1, the x-axes in Figures 2.1 – 2.3 measure the RMSFE obtained by the

large homoskedastic BVAR, while the y-axes measures the SV counterpart. Each point

corresponds to a different forecast horizon, and when a point is above the 45 degree

line it indicates that the inclusion of SV improves point forecasts.
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TABLE 2.1: Model Acronyms

Name Description
1 BVARIP Mixed Frequency Bayesian VAR with independent prior (IP)
2 BVARIP-SV Mixed Frequency Bayesian VAR with IP and Stochastic

Volatility (SV)
3 BVARSSVS Mixed Frequency Bayesian VAR with SSVS prior
4 BVARSSVS-SV Mixed Frequency Bayesian VAR with SSVS prior and SV
5 BVARHS Mixed Frequency Bayesian VAR with horseshoe(HS) prior
6 BVARHS-SV Mixed Frequency Bayesian VAR with HS prior and SV
7 BVARIP-M Mixed Frequency Bayesian VAR with IP prior and monthly

employment
8 BVARIP-SV-M Mixed Frequency Bayesian VAR with IP prior, SV

and monthly employment
9 Bench Autoregressive Model of order 1

2.3.4 Robustness check

To check the validity of our model we run the following robustness check, i.e. we

add monthly U.S. employment in our BVAR specification, and run the same forecast

evaluation. We estimate the following models i) a homoskedastic MF-VAR that also

includes monthly national-level employment and ii) its stochastic volatility counter-

part, in both models we use the independent prior.

We update the state-level GDP with monthly employment every quarter as follows:

1. After the release of Q1 U.S. GDP growth (in May of each year) set:

µ⇤

1 = (yUS
t+1,1, empUS,m1�m3

t+1,1 , yUS
t+1,1)

2. After Q2 release (in August of each year) set:

µ⇤
1 = ((wUS

1,t yUS
t+1,1 + 3(wUS

2,t yUS
t+1,2), yUS

t+1,1, empUS,m1�m3
t+1,1 , yUS

t+1,2, empUS,m4�m6
t+1,1 )

3. After Q3 release (in November of each year) set:

µ⇤

1 = ((wUS
1,t yUS

t+1,1 + wUS
2,t yUS

t+1,2 + 2wUS
3,t yUS

t+1,3), yUS
t+1,1, empUS,m1�m3

t+1,1 ,

yUS
t+1,2, empUS,m4�m6

t+1,1 , yUS
t+1,3, empUS,m7�m9

t+1,1 )

4. After Q4 release (in February of each year) set:

µ⇤

1 = (yUS
t+1, yUS

t+1,1, empUS,m1�m3
t+1,1 , yUS

t+1,2, empUS,m4�m6
t+1,1 , yUS

t+1,3, empUS,m7�m9
t+1,1 ,

yUS
t+1,4, empUS,m10�m12

t+1,1 )
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2.3.5 Empirical Results

In this Section we present the results of our nowcasting exercise from 1963 to 2018.

We start the evaluation period in 2006 and apply an iterated forecasting method that

re-estimates the parameters of our model. Specifically, we do a real-time out-of-the-

sample (OOS) nowcasting exercise from 2006 up 2018.

In order to evaluate the forecasting performance of the different methods, presented

in Table 2.1, we use two-year-ahead-forecast from each method and calculate three

different evaluation criteria, RMSFE, logS and CRPS where the benchmark model is

an AR(1) with normal errors.

In terms of point estimate forecasts we find that the proposed MF-VAR model out-

performs the benchmark in almost all states and at different horizons. There is a

small number of states for which the benchmark outperforms other models based

on RMSFE. These include (where the second placed model is noted in brackets after

the state name): Louisiana (BVARIP-M), North Carolina (BVARHS), Utah (BVARHS,

BVARSSVS), California (BVARSSVS), Nebraska (BVARIP-M), Alabama (BVARIP-SV-

M), Alaska (BVARIP-SV-M), Florida (BVARHS), Nevada (BVARHS), New Jersey

(BVARSSVS-SV) and New York (BVARIP).

Regarding the evaluation of density forecasts, we use the logS criterion, which illus-

trates that the competing models in Table 2.1 outperform the AR(1) benchmark in

almost all states and at almost all horizon. BVARSSVS-SV and BVARHS-SV mod-

els underperform relative to the benchmark in almost all 43 states. Finally, based on

CRPS we find that the AR(1) benchmark model outperforms the following models:

BVARIP-M, BVARIP-SV-M, BVARSSVS-SV, BVARHS, BVARHS-SV and BVARIP-SV in

Alaska, Hawaii, Illinois, Kansas, Missouri, Nebraska, New Jersey, New York, Ohio,

Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Utah, Vermont, Vir-

ginia, Washington, West Virginia and Wisconsin.

As we entropically tilt the new information from Q1, the following models: BVARIP-

M, BVARIP-SV-M, BVARSSVS-SV, BVARHS, BVARHS-SV and BVARIP-SV underper-

form relative to the benchmark in states: Alabama, Arkansas, Florida, Hawaii, Illinois,

Kansas, Kentucky, Maine, Maryland, Massachusetts, Minnesota, Mississippi, Mis-

souri, Nebraska, New Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania,

Rhode Island, South Carolina, Tennessee, exas, Utah, Vermont, Virginia, Washington,

West Virginia and Wisconsin.
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While tilting information in Q2, BVARIP-SV-M, BVARIP-M, BVARSSVS-SV, BVARHS,

BVARHS-SV, BVARIP-SV perform worse than the AR(1) in the following states Al-

abama, Alaska, Arkansas, Florida, Hawaii, Illinois, Kansas, Maine, Maryland, Mas-

sachusetts, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York,

North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee,

Texas, Utah, Vermont, Virginia, Washington, West Virginia and Wisconsin. The same

pattern is observed as we tilt new information in Q3.

Finally, as we use the information from Q4, the benchmark outperforms the following

models: BVARHS, BVARIP, BVARSSVS, BVARSSVS-SV, BVARHS-SV and BVARIP-SV

in Alabama, Arizona, Arkansas, California, Florida, Georgia, Hawaii, Illinois, Indiana,

Iowa, Kansas, Kentucky, Maryland, Mississippi, Montana, Nevada, New Jersey, New

York, North Carolina, Oregon, Pennsylvania, Rhode Island, Tennessee, Utah, Virginia,

Washington, West Virginia and Wisconsin.

In Appendix A.1 we report the best performing model for each criterion in bold.

To summarize, in the majority of the cases, the best model according the RMSFE is the

BVARHS-SV, while based on the forecast density evaluation metrics the best model

is the BVARIP. It is clear that the RMSFE favours models with stochastic volatility.

Further, the last row in Tables 2.2 – 2.9 shows a comparison between the BVARIP

and BVARIP-SV, in this case models with stochastic volatility prevail 27 times over

homoskedastic ones at all horizons, while 6 times models with homoskedasticity wins

over ones with stochastic volatility at all horizons. Finally, there are 18 times that

either models with homoskedasticity win at certain horizons or models with stochastic

volatility win at certain horizons.

2.4 Conclusion

In this Chapter, we start by using both a homoskedastic and stochastic volatility MF-

VAR with three different priors. We shift the real out-of-sample annual regional fore-

cast towards the quarterly U.S.-wide GDP and produce quarterly GDP by state. We

show out-of-sample forecasting gains and provide evidence towards a MF-VAR with

stochastic volatility.

Producing real-time U.S. state-level GDP in a more frequent and timely fashion is of

high importance for policymakers since it is a key metric to measure economic activity.
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In that spirit, the initiative of Federal Reserve Bank of Atlanta to produce GDPnow

and New York Federal Reserve Bank to publish a nowcast report and BEA to measure

quarterly GDP by state show the need to construct machinery to produce U.S.-wide

and state-level GDP nowcasts, respectively. We hope the output of this chapter is

found useful by economists and regional economic policymakers alike.
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A.1 Appendix (Chapter 2)
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Alabama
BVARIP 0.135 0.352 0.336 0.323 0.362 1.297 1.016 1.026 1.032 0.746 0.217 0.362 0.351 0.349 0.408
BVARIP-SV 0.176 0.197 0.188 0.175 0.400 0.650 0.449 0.436 0.439 0.445 0.399 0.534 0.547 0.546 0.508
BVARSSVS 0.334 0.394 0.420 0.412 0.604 0.865 0.702 0.689 0.691 -0.09 0.379 0.465 0.477 0.477 0.841
BVARSSVS-SV 0.210 0.298 0.311 0.296 0.467 0.152 -0.055 -0.071 -0.067 0.041 0.643 0.881 0.907 0.906 0.715
BVARHS 0.331 0.510 0.537 0.518 0.873 0.470 0.259 0.246 0.250 -0.370 0.501 0.694 0.711 0.708 1.140
BVARHS-SV 0.147 0.228 0.235 0.228 0.350 0.118 -0.091 -0.107 -0.104 -0.115 0.656 0.903 0.931 0.931 0.789
BVARIP-M 0.861 1.194 0.995 0.762 0.690 0.167 0.001 0.099 0.293 9.323 0.838 1.048 0.996 0.752 0.581
BVARIP-SV-M 0.792 1.393 1.151 0.937 0.643 -0.008 -0.728 -0.673 -0.547 11.420 0.883 1.664 1.631 1.320 0.460
BVARIP vs BVARIP-SV 0.767 1.786 1.789 1.838 0.904 0.647 0.567 0.590 0.593 0.301 0.545 0.678 0.642 0.638 0.802

Model vs bench Alaska
BVARIP 0.221 0.227 0.220 0.214 0.749 1.211 1.215 1.219 1.223 0.284 0.278 0.273 0.272 0.269 0.776
BVARIP-SV 0.316 0.262 0.267 0.273 0.259 0.536 0.556 0.556 0.557 0.832 0.525 0.493 0.497 0.495 0.342
BVARSSVS 0.269 0.223 0.222 0.222 0.371 1.428 1.459 1.460 1.461 0.600 0.249 0.228 0.229 0.228 0.449
BVARSSVS-SV 0.196 0.166 0.164 0.163 0.247 1.103 1.123 1.124 1.126 0.795 0.301 0.282 0.283 0.282 0.348
BVARHS 0.427 0.341 0.341 0.344 0.572 0.692 0.719 0.720 0.720 -0.140 0.480 0.441 0.443 0.442 0.868
BVARHS-SV 0.156 0.138 0.139 0.139 0.218 1.191 1.209 1.209 1.211 0.779 0.272 0.256 0.258 0.257 0.343
BVARIP-M 0.992 0.956 0.988 1.051 0.974 2.425 1.554 0.554 -0.323 3.097 1.053 0.974 1.003 1.047 0.962
BVARIP-SV-M 0.971 0.985 1.026 1.092 0.982 8.822 7.755 6.572 5.707 4.862 0.848 0.835 0.867 0.907 0.838
BVARIP vs BVARIP-SV 0.699 0.865 0.824 0.783 2.896 0.675 0.659 0.663 0.666 -0.548 0.529 0.554 0.548 0.543 2.267

Model vs bench Arizona
BVARIP 0.220 0.511 0.489 0.470 0.794 1.359 0.896 0.903 0.911 0.132 0.250 0.449 0.439 0.436 0.819
BVARIP-SV 0.156 0.375 0.370 0.352 0.687 0.759 0.367 0.374 0.379 0.357 0.379 0.599 0.588 0.586 0.671
BVARSSVS 0.179 0.231 0.210 0.191 0.296 1.028 0.668 0.679 0.685 -0.027 0.302 0.434 0.422 0.419 0.697
BVARSSVS-SV 0.197 0.379 0.365 0.350 0.611 0.461 0.080 0.089 0.094 0.167 0.508 0.778 0.760 0.759 0.688
BVARHS 0.322 0.618 0.573 0.562 0.838 0.477 0.094 0.106 0.109 -0.546 0.526 0.811 0.787 0.789 1.254
BVARHS-SV 0.224 0.426 0.399 0.387 0.652 0.558 0.177 0.187 0.191 0.142 0.467 0.717 0.698 0.698 0.717
BVARIP-M 0.414 0.636 0.616 0.594 0.888 0.910 0.529 0.552 0.597 -1.014 0.437 0.549 0.543 0.520 0.854
BVARIP-SV-M 0.477 0.514 0.487 0.471 0.905 0.285 0.014 0.028 0.055 0.101 0.651 0.744 0.738 0.708 0.868
BVARIP vs BVARIP-SV 1.409 1.363 1.321 1.337 1.157 0.600 0.529 0.529 0.531 -0.225 0.661 0.750 0.746 0.744 1.222

Model vs bench Arkansas
BVARIP 0.277 0.641 0.644 0.608 0.419 1.169 0.948 0.944 0.945 0.702 0.291 0.417 0.424 0.425 0.450
BVARIP-SV 0.294 0.724 0.678 0.625 0.579 0.597 0.346 0.352 0.356 0.389 0.449 0.693 0.689 0.687 0.637
BVARSSVS 0.377 0.862 0.82 0.764 0.65 0.838 0.615 0.621 0.625 -0.056 0.402 0.581 0.578 0.576 0.866
BVARSSVS-SV 0.378 0.979 0.939 0.879 0.753 0.198 -0.059 -0.054 -0.051 0.028 0.654 1.025 1.024 1.024 0.868
BVARHS 0.376 0.888 0.835 0.785 0.638 0.412 0.164 0.170 0.172 -0.379 0.543 0.830 0.826 0.826 1.108
BVARHS-SV 0.254 0.697 0.666 0.626 0.565 0.231 -0.029 -0.025 -0.022 0.050 0.611 0.966 0.965 0.965 0.771
BVARIP-M 0.258 0.445 0.508 0.517 0.558 1.210 0.763 0.593 0.565 -0.05 0.270 0.439 0.510 0.527 0.632
BVARIP-SV-M 0.324 0.277 0.300 0.306 0.590 0.248 0.341 0.229 0.204 0.362 0.581 0.486 0.542 0.559 0.652
BVARIP vs BVARIP-SV 0.941 0.886 0.950 0.973 0.723 0.572 0.602 0.592 0.589 0.313 0.648 0.603 0.616 0.618 0.706

Model vs bench California
BVARIP 0.113 0.564 0.618 0.676 0.852 1.468 0.884 0.847 0.811 -0.213 0.183 0.485 0.521 0.545 1.125
BVARIP-SV 0.211 0.282 0.284 0.276 0.235 0.641 0.328 0.313 0.307 0.891 0.407 0.610 0.626 0.623 0.407
BVARSSVS 0.367 0.874 0.956 1.021 1.045 0.765 0.349 0.322 0.307 0.037 0.424 0.790 0.835 0.849 1.212
BVARSSVS-SV 0.151 0.248 0.247 0.236 0.268 0.214 -0.111 -0.127 -0.133 0.453 0.594 0.925 0.952 0.950 0.604
BVARHS 0.277 0.555 0.672 0.717 0.803 0.466 0.133 0.105 0.096 -0.053 0.489 0.778 0.829 0.835 1.119
BVARHS-SV 0.088 0.453 0.450 0.415 0.334 0.266 -0.074 -0.089 -0.093 0.409 0.557 0.913 0.936 0.926 0.645
BVARIP-M 0.407 0.314 0.394 0.462 0.330 0.919 0.996 0.923 0.826 1.177 0.428 0.335 0.382 0.433 0.330
BVARIP-SV-M 0.397 0.427 0.365 0.405 0.375 0.352 0.020 0.081 0.029 0.845 0.574 0.749 0.686 0.741 0.425
BVARIP vs BVARIP-SV 0.533 2.002 2.179 2.445 3.630 0.827 0.555 0.534 0.504 -1.104 0.449 0.795 0.833 0.875 2.763

Model vs bench Colorado
BVARIP 0.214 0.235 0.235 0.233 0.268 1.465 1.359 1.357 1.362 1.852 0.224 0.249 0.249 0.247 0.264
BVARIP-SV 0.213 0.247 0.251 0.25 0.218 0.693 0.545 0.535 0.538 1.581 0.415 0.511 0.521 0.520 0.293
BVARSSVS 0.422 0.459 0.481 0.485 0.418 0.867 0.774 0.767 0.770 0.967 0.422 0.458 0.465 0.463 0.549
BVARSSVS-SV 0.172 0.183 0.188 0.181 0.202 0.311 0.159 0.148 0.151 1.185 0.589 0.736 0.753 0.752 0.406
BVARHS 0.354 0.362 0.369 0.375 0.389 0.510 0.376 0.367 0.369 0.667 0.517 0.613 0.624 0.624 0.692
BVARHS-SV 0.107 0.156 0.158 0.163 0.173 0.477 0.322 0.311 0.313 1.160 0.495 0.624 0.638 0.638 0.410
BVARIP-M 0.471 0.610 0.531 0.457 0.573 0.913 0.713 0.850 0.969 0.395 0.476 0.568 0.484 0.430 0.601
BVARIP-SV-M 0.403 0.374 0.302 0.268 0.597 0.438 0.377 0.447 0.520 0.476 0.570 0.592 0.527 0.484 0.625
BVARIP vs BVARIP-SV 1.004 0.952 0.935 0.933 1.232 0.773 0.814 0.821 0.823 0.271 0.540 0.487 0.478 0.475 0.900

Model vs bench Connecticut
BVARIP 0.289 0.325 0.324 0.323 0.213 1.243 1.18 1.182 1.186 2.772 0.278 0.304 0.302 0.298 0.183
BVARIP-SV 0.281 0.311 0.319 0.319 0.246 0.516 0.460 0.448 0.448 2.360 0.484 0.522 0.533 0.531 0.239
BVARSSVS 0.349 0.272 0.276 0.276 0.226 0.770 0.747 0.736 0.736 1.898 0.407 0.398 0.405 0.404 0.334
BVARSSVS-SV 0.341 0.349 0.351 0.35 0.292 0.048 -0.006 -0.019 -0.019 1.971 0.756 0.808 0.826 0.825 0.331
BVARHS 0.538 0.574 0.586 0.605 0.386 0.233 0.182 0.171 0.169 1.432 0.678 0.722 0.734 0.737 0.538
BVARHS-SV 0.285 0.340 0.358 0.362 0.281 0.343 0.285 0.271 0.270 1.993 0.565 0.613 0.629 0.629 0.322
BVARIP-M 0.312 0.304 0.224 0.199 0.481 1.237 1.202 1.386 1.475 0.743 0.304 0.297 0.222 0.201 0.466
BVARIP-SV-M 0.262 0.247 0.195 0.185 0.424 0.440 0.366 0.542 0.624 0.888 0.517 0.538 0.409 0.373 0.439
BVARIP vs BVARIP-SV 1.027 1.043 1.016 1.014 0.868 0.727 0.720 0.734 0.738 0.412 0.574 0.582 0.567 0.562 0.763

TABLE 2.2: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Delaware
BVARIP 0.368 0.125 0.122 0.122 0.351 1.062 1.419 1.445 1.446 1.265 0.349 0.193 0.188 0.189 0.351
BVARIP-SV 0.487 0.192 0.182 0.185 0.333 0.350 0.693 0.721 0.722 1.087 0.665 0.382 0.371 0.372 0.374
BVARSSVS 0.506 0.175 0.165 0.163 0.326 0.865 1.222 1.252 1.255 0.824 0.438 0.243 0.234 0.233 0.446
BVARSSVS-SV 0.491 0.190 0.182 0.182 0.383 0.067 0.412 0.439 0.441 0.786 0.867 0.496 0.482 0.482 0.476
BVARHS 0.618 0.205 0.192 0.192 0.416 0.330 0.683 0.712 0.714 0.385 0.696 0.388 0.375 0.376 0.663
BVARHS-SV 0.554 0.217 0.209 0.209 0.411 0.254 0.597 0.625 0.627 0.838 0.735 0.422 0.410 0.410 0.470
BVARIP-M 0.418 0.212 0.254 0.228 0.565 1.171 1.791 1.520 1.696 0.579 0.341 0.203 0.256 0.224 0.588
BVARIP-SV-M 0.373 0.209 0.256 0.235 0.379 0.288 1.214 0.977 1.140 1.060 0.684 0.273 0.335 0.297 0.379
BVARIP vs BVARIP-SV 0.756 0.654 0.671 0.660 1.053 0.712 0.725 0.724 0.724 0.178 0.524 0.506 0.508 0.508 0.939

Model vs bench District of Columbia
BVARIP 0.125 0.172 0.175 0.172 0.194 1.692 1.479 1.476 1.490 2.431 0.165 0.207 0.203 0.200 0.201
BVARIP-SV 0.083 0.113 0.117 0.116 0.186 0.799 0.604 0.604 0.619 1.902 0.355 0.424 0.415 0.406 0.291
BVARSSVS 0.355 0.418 0.421 0.41 0.565 0.916 0.733 0.731 0.747 1.292 0.398 0.462 0.453 0.443 0.612
BVARSSVS-SV 0.069 0.116 0.118 0.113 0.156 0.193 -0.002 -0.002 0.014 1.379 0.645 0.771 0.753 0.736 0.461
BVARHS 0.183 0.197 0.191 0.185 0.374 0.704 0.515 0.516 0.532 1.264 0.403 0.472 0.460 0.449 0.554
BVARHS-SV 0.077 0.111 0.115 0.111 0.159 0.341 0.147 0.147 0.163 1.508 0.555 0.662 0.647 0.633 0.408
BVARIP-M 0.305 0.331 0.347 0.347 0.764 1.156 1.181 1.123 1.127 -0.140 0.305 0.333 0.345 0.346 0.779
BVARIP-SV-M 0.275 0.261 0.292 0.290 0.646 0.282 0.525 0.415 0.422 0.378 0.585 0.463 0.511 0.511 0.645
BVARIP vs BVARIP-SV 1.503 1.528 1.492 1.477 1.042 0.893 0.875 0.872 0.871 0.529 0.466 0.487 0.490 0.492 0.692

Model vs bench Florida
BVARIP 0.140 0.237 0.223 0.230 0.400 1.509 1.152 1.169 1.162 0.816 0.182 0.273 0.260 0.262 0.404
BVARIP-SV 0.274 0.345 0.336 0.335 0.619 0.599 0.270 0.281 0.278 0.103 0.431 0.594 0.575 0.573 0.733
BVARSSVS 0.340 0.455 0.432 0.444 0.879 0.596 0.257 0.272 0.266 -0.668 0.449 0.629 0.605 0.607 1.422
BVARSSVS-SV 0.235 0.289 0.281 0.278 0.620 0.022 -0.313 -0.303 -0.307 -0.425 0.717 1.005 0.976 0.975 1.097
BVARHS 0.590 0.925 0.893 0.927 2.165 0.109 -0.247 -0.234 -0.243 -1.115 0.742 1.099 1.059 1.069 2.503
BVARHS-SV 0.078 0.161 0.168 0.163 0.422 0.163 -0.175 -0.165 -0.170 -0.311 0.609 0.865 0.841 0.840 0.950
BVARIP-M 0.425 0.266 0.277 0.248 0.843 1.029 1.212 1.180 1.212 -0.012 0.410 0.285 0.291 0.277 0.895
BVARIP-SV-M 0.430 0.447 0.486 0.413 0.844 0.432 0.276 0.232 0.269 0.104 0.565 0.664 0.698 0.656 0.935
BVARIP vs BVARIP-SV 0.510 0.688 0.664 0.685 0.646 0.910 0.882 0.888 0.885 0.714 0.422 0.459 0.453 0.457 0.551

Model vs bench Georgia
BVARIP 0.238 0.125 0.146 0.135 0.338 1.338 1.306 1.301 1.310 1.041 0.251 0.225 0.226 0.223 0.337
BVARIP-SV 0.288 0.331 0.332 0.316 0.487 0.536 0.370 0.375 0.381 0.428 0.464 0.580 0.564 0.561 0.560
BVARSSVS 0.375 0.253 0.241 0.225 0.399 0.621 0.509 0.516 0.523 -0.197 0.462 0.497 0.48 0.477 0.882
BVARSSVS-SV 0.240 0.273 0.265 0.250 0.397 -0.016 -0.190 -0.184 -0.179 -0.059 0.754 0.963 0.935 0.934 0.776
BVARHS 0.315 0.266 0.241 0.237 0.390 0.316 0.157 0.164 0.169 -0.415 0.565 0.688 0.664 0.664 1.076
BVARHS-SV 0.088 0.115 0.098 0.085 0.259 0.143 -0.033 -0.027 -0.022 0.059 0.631 0.812 0.788 0.787 0.673
BVARIP-M 0.171 0.333 0.323 0.332 0.440 1.503 1.145 1.168 1.153 0.849 0.198 0.334 0.318 0.327 0.426
BVARIP-SV-M 0.220 0.351 0.355 0.375 0.354 0.418 0.222 0.228 0.212 0.438 0.495 0.630 0.615 0.634 0.475
BVARIP vs BVARIP-SV 0.828 0.379 0.441 0.429 0.693 0.802 0.937 0.927 0.929 0.614 0.541 0.389 0.401 0.398 0.602

Model vs bench Hawaii
BVARIP 0.274 0.291 0.262 0.26 0.255 0.978 1.007 1.021 1.020 0.908 0.354 0.337 0.331 0.328 0.352
BVARIP-SV 0.282 0.244 0.232 0.246 0.316 0.166 0.225 0.231 0.227 0.353 0.759 0.664 0.664 0.665 0.568
BVARSSVS 0.734 0.43 0.413 0.419 0.584 0.357 0.441 0.448 0.445 -0.254 0.707 0.573 0.574 0.572 1.043
BVARSSVS-SV 0.319 0.252 0.233 0.234 0.350 -0.440 -0.380 -0.373 -0.377 -0.231 1.381 1.198 1.198 1.197 0.964
BVARHS 0.557 0.400 0.373 0.391 0.730 -0.081 -0.019 -0.012 -0.016 -0.614 0.988 0.855 0.853 0.855 1.461
BVARHS-SV 0.294 0.206 0.200 0.205 0.306 -0.123 -0.062 -0.055 -0.059 -0.027 1.005 0.870 0.871 0.871 0.789
BVARIP-M 0.183 0.173 0.156 0.143 0.244 1.527 1.901 2.021 2.137 2.309 0.207 0.147 0.135 0.124 0.209
BVARIP-SV-M 0.230 0.130 0.119 0.112 0.243 0.492 1.186 1.241 1.341 1.923 0.514 0.238 0.229 0.213 0.256
BVARIP vs BVARIP-SV 0.970 1.189 1.127 1.054 0.807 0.812 0.783 0.789 0.793 0.555 0.466 0.507 0.498 0.492 0.621

Model vs bench Idaho
BVARIP 0.269 0.551 0.538 0.537 0.196 1.163 0.944 0.965 0.970 1.597 0.297 0.454 0.444 0.437 0.233
BVARIP-SV 0.290 0.323 0.306 0.303 0.215 0.401 0.358 0.354 0.352 1.138 0.569 0.605 0.614 0.613 0.327
BVARSSVS 0.495 0.489 0.504 0.508 0.475 0.763 0.754 0.749 0.747 0.591 0.481 0.473 0.484 0.481 0.610
BVARSSVS-SV 0.306 0.331 0.328 0.326 0.297 0.042 -0.002 -0.007 -0.01 0.641 0.799 0.851 0.868 0.867 0.521
BVARHS 0.389 0.357 0.328 0.326 0.435 0.283 0.248 0.246 0.244 0.193 0.649 0.673 0.680 0.679 0.805
BVARHS-SV 0.165 0.196 0.196 0.195 0.164 0.286 0.241 0.235 0.232 0.823 0.616 0.659 0.674 0.673 0.414
BVARIP-M 0.460 0.308 0.301 0.265 0.412 0.934 1.122 1.145 1.266 1.294 0.432 0.313 0.308 0.266 0.407
BVARIP-SV-M 0.450 0.282 0.275 0.239 0.362 0.242 0.257 0.256 0.378 1.491 0.641 0.546 0.555 0.477 0.364
BVARIP vs BVARIP-SV 0.927 1.707 1.757 1.772 0.915 0.762 0.586 0.611 0.618 0.459 0.522 0.750 0.722 0.714 0.712

Model vs bench Illinois
BVARIP 0.481 0.333 0.301 0.315 0.487 0.935 1.119 1.139 1.132 0.683 0.445 0.326 0.311 0.313 0.508
BVARIP-SV 0.283 0.247 0.152 0.157 0.412 0.203 0.141 0.161 0.157 -0.010 0.647 0.754 0.718 0.718 0.786
BVARSSVS 0.564 0.357 0.304 0.305 0.661 0.529 0.573 0.593 0.590 -0.399 0.573 0.513 0.488 0.486 1.177
BVARSSVS-SV 0.194 0.301 0.251 0.268 0.499 -0.429 -0.500 -0.483 -0.487 -0.638 1.183 1.421 1.365 1.365 1.422
BVARHS 0.508 0.469 0.425 0.428 0.780 0.127 0.080 0.098 0.095 -0.656 0.737 0.822 0.789 0.787 1.501
BVARHS-SV 0.245 0.296 0.225 0.236 0.499 -0.186 -0.256 -0.238 -0.242 -0.437 0.932 1.114 1.067 1.067 1.177
BVARIP-M 0.996 0.278 0.295 0.283 0.807 0.934 1.303 1.239 1.275 -0.168 0.528 0.281 0.300 0.293 0.799
BVARIP-SV-M 0.564 0.181 0.204 0.202 0.445 0.142 0.546 0.531 0.555 0.489 0.841 0.428 0.435 0.431 0.506
BVARIP vs BVARIP-SV 1.703 1.351 1.976 2.008 1.184 0.732 0.978 0.978 0.975 0.693 0.687 0.432 0.433 0.435 0.646

TABLE 2.3: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Indiana
BVARIP 0.265 0.228 0.255 0.260 0.345 1.207 1.158 1.154 1.149 0.893 0.278 0.284 0.295 0.293 0.404
BVARIP-SV 0.182 0.209 0.190 0.201 0.364 0.5 0.306 0.325 0.318 0.359 0.438 0.612 0.597 0.597 0.571
BVARSSVS 0.344 0.454 0.407 0.413 0.657 0.952 0.834 0.858 0.855 0.005 0.361 0.435 0.419 0.415 0.872
BVARSSVS-SV 0.167 0.276 0.253 0.254 0.409 0.053 -0.148 -0.129 -0.136 -0.148 0.671 0.961 0.937 0.936 0.888
BVARHS 0.378 0.534 0.485 0.495 0.805 0.508 0.333 0.353 0.347 -0.392 0.488 0.651 0.633 0.631 1.225
BVARHS-SV 0.095 0.171 0.169 0.174 0.316 0.332 0.130 0.148 0.141 0.064 0.503 0.723 0.706 0.706 0.715
BVARIP-M 0.319 0.272 0.261 0.243 0.479 1.237 1.302 1.318 1.386 1.645 0.314 0.265 0.254 0.238 0.439
BVARIP-SV-M 0.336 0.266 0.252 0.244 0.462 0.594 0.518 0.479 0.511 2.187 0.497 0.435 0.436 0.427 0.410
BVARIP vs BVARIP-SV 1.458 1.088 1.343 1.294 0.948 0.707 0.852 0.828 0.83 0.534 0.636 0.463 0.494 0.491 0.706

Model vs bench Iowa
BVARIP 0.373 0.179 0.189 0.179 0.477 1.024 1.186 1.180 1.193 0.726 0.357 0.253 0.256 0.249 0.468
BVARIP-SV 0.237 0.161 0.161 0.155 0.488 0.306 0.386 0.385 0.394 0.399 0.602 0.517 0.517 0.507 0.560
BVARSSVS 0.499 0.377 0.381 0.369 0.636 0.821 0.914 0.913 0.925 0.120 0.462 0.388 0.388 0.379 0.741
BVARSSVS-SV 0.369 0.304 0.310 0.297 0.617 -0.037 0.039 0.037 0.047 -0.033 0.851 0.741 0.741 0.726 0.808
BVARHS 0.552 0.398 0.403 0.388 0.782 0.335 0.425 0.424 0.434 -0.317 0.650 0.546 0.546 0.533 1.060
BVARHS-SV 0.317 0.249 0.253 0.248 0.505 0.299 0.376 0.375 0.384 0.195 0.614 0.532 0.533 0.523 0.649
BVARIP-M 0.447 0.507 0.411 0.391 0.746 0.839 0.504 0.858 0.952 -1.453 0.448 0.519 0.418 0.393 0.878
BVARIP-SV-M 0.471 0.393 0.326 0.311 0.752 0.091 0.304 0.526 0.574 0.391 0.702 0.552 0.472 0.452 0.735
BVARIP vs BVARIP-SV 1.577 1.110 1.175 1.152 0.977 0.718 0.800 0.795 0.798 0.327 0.594 0.489 0.496 0.491 0.835

Model vs bench Kansas
BVARIP 0.269 0.585 0.441 0.418 0.369 1.241 1.080 1.129 1.133 0.961 0.276 0.391 0.353 0.341 0.386
BVARIP-SV 0.275 0.404 0.311 0.290 0.342 0.333 0.247 0.265 0.269 0.351 0.597 0.711 0.684 0.661 0.549
BVARSSVS 0.530 0.726 0.604 0.569 0.690 0.659 0.609 0.627 0.631 -0.108 0.515 0.566 0.544 0.525 0.923
BVARSSVS-SV 0.230 0.408 0.328 0.298 0.318 -0.246 -0.335 -0.319 -0.315 -0.221 1.038 1.249 1.207 1.168 0.905
BVARHS 0.362 0.553 0.460 0.436 0.477 0.287 0.201 0.218 0.221 -0.36 0.633 0.754 0.729 0.706 1.059
BVARHS-SV 0.229 0.425 0.351 0.335 0.371 0.062 -0.028 -0.012 -0.009 -0.005 0.766 0.924 0.893 0.865 0.752
BVARIP-M 0.568 0.593 0.568 0.552 0.785 0.772 0.302 0.398 0.454 -1.164 0.517 0.579 0.534 0.530 0.767
BVARIP-SV-M 0.434 0.386 0.365 0.356 0.656 0.202 0.267 0.278 0.270 0.333 0.686 0.587 0.567 0.576 0.663
BVARIP vs BVARIP-SV 0.978 1.447 1.418 1.442 1.078 0.907 0.833 0.863 0.864 0.610 0.463 0.550 0.517 0.515 0.703

Model vs bench Kentucky
BVARIP 0.417 0.772 0.713 0.719 0.537 0.944 0.813 0.792 0.797 0.622 0.424 0.587 0.585 0.595 0.566
BVARIP-SV 0.148 0.241 0.185 0.171 0.474 0.622 0.390 0.414 0.410 0.239 0.388 0.600 0.563 0.577 0.658
BVARSSVS 0.290 0.465 0.403 0.413 0.721 0.973 0.783 0.808 0.802 -0.161 0.329 0.460 0.432 0.445 0.989
BVARSSVS-SV 0.179 0.390 0.332 0.327 0.561 0.088 -0.151 -0.128 -0.133 -0.285 0.652 1.027 0.970 0.995 1.032
BVARHS 0.179 0.216 0.175 0.186 0.646 0.601 0.375 0.398 0.392 -0.428 0.399 0.604 0.570 0.586 1.189
BVARHS-SV 0.083 0.203 0.175 0.179 0.303 0.353 0.114 0.136 0.131 -0.068 0.494 0.779 0.736 0.757 0.799
BVARIP-M 0.689 0.397 0.38 0.368 0.429 0.869 0.983 1.053 1.094 0.897 0.508 0.416 0.395 0.386 0.488
BVARIP-SV-M 0.485 0.283 0.282 0.267 0.399 -0.019 0.431 0.426 0.464 0.598 0.917 0.530 0.539 0.524 0.558
BVARIP vs BVARIP-SV 2.807 3.202 3.852 4.205 1.133 0.322 0.422 0.377 0.387 0.383 1.093 0.979 1.038 1.031 0.860

Model vs bench Louisiana
BVARIP 0.193 0.196 0.196 0.193 0.286 1.456 1.346 1.35 1.352 1.318 0.213 0.224 0.224 0.223 0.277
BVARIP-SV 0.164 0.174 0.166 0.163 0.347 0.724 0.582 0.590 0.590 0.964 0.371 0.422 0.417 0.416 0.364
BVARSSVS 0.234 0.235 0.226 0.223 0.438 1.365 1.274 1.284 1.286 0.724 0.245 0.252 0.248 0.246 0.466
BVARSSVS-SV 0.203 0.239 0.233 0.231 0.424 0.611 0.465 0.473 0.472 0.656 0.419 0.481 0.476 0.475 0.478
BVARHS 0.257 0.302 0.283 0.283 0.548 0.770 0.627 0.638 0.637 0.166 0.376 0.430 0.422 0.422 0.731
BVARHS-SV 0.139 0.176 0.174 0.172 0.305 0.960 0.811 0.819 0.818 0.897 0.294 0.341 0.338 0.337 0.365
BVARIP-M 1.007 0.181 0.186 0.174 0.691 0.504 3.042 2.782 3.213 -1.391 0.747 0.149 0.157 0.143 0.702
BVARIP-SV-M 0.854 0.166 0.168 0.153 0.616 0.016 2.650 2.347 2.796 0.736 0.938 0.184 0.199 0.178 0.580
BVARIP vs BVARIP-SV 1.178 1.124 1.179 1.178 0.825 0.731 0.764 0.759 0.762 0.354 0.574 0.532 0.539 0.535 0.762

Model vs bench Maine
BVARIP 0.227 0.240 0.232 0.24 0.376 1.417 1.114 1.121 1.113 1.153 0.237 0.289 0.287 0.287 0.374
BVARIP-SV 0.116 0.125 0.117 0.128 0.152 0.484 0.073 0.078 0.068 0.713 0.456 0.710 0.710 0.710 0.398
BVARSSVS 0.277 0.387 0.372 0.392 0.476 0.779 0.384 0.390 0.381 0.205 0.380 0.566 0.564 0.565 0.711
BVARSSVS-SV 0.134 0.233 0.235 0.258 0.255 -0.201 -0.615 -0.61 -0.619 0.035 0.897 1.410 1.411 1.412 0.778
BVARHS 0.248 0.39 0.366 0.384 0.552 0.329 -0.083 -0.076 -0.086 -0.118 0.546 0.853 0.849 0.85 0.953
BVARHS-SV 0.135 0.231 0.23 0.239 0.264 0.147 -0.267 -0.262 -0.271 0.324 0.633 0.996 0.997 0.996 0.594
BVARIP-M 0.500 0.376 0.375 0.374 0.466 0.863 1.008 0.993 0.977 0.319 0.483 0.358 0.356 0.362 0.504
BVARIP-SV-M 0.357 0.195 0.181 0.179 0.426 -0.007 0.459 0.485 0.486 0.454 0.794 0.451 0.432 0.432 0.532
BVARIP vs BVARIP-SV 1.948 1.924 1.984 1.876 2.469 0.933 1.041 1.043 1.045 0.439 0.520 0.407 0.405 0.404 0.938

Model vs bench Maryland
BVARIP 0.154 0.202 0.207 0.213 0.450 1.709 1.247 1.242 1.241 0.848 0.166 0.255 0.258 0.256 0.454
BVARIP-SV 0.110 0.172 0.179 0.189 0.288 0.627 0.099 0.097 0.093 0.412 0.392 0.705 0.706 0.706 0.531
BVARSSVS 0.319 0.417 0.414 0.422 0.541 0.795 0.307 0.306 0.305 -0.106 0.386 0.623 0.623 0.618 0.905
BVARSSVS-SV 0.140 0.198 0.197 0.203 0.298 -0.136 -0.665 -0.666 -0.67 -0.298 0.832 1.499 1.499 1.499 1.027
BVARHS 0.137 0.242 0.228 0.24 0.350 0.471 -0.059 -0.059 -0.063 -0.339 0.457 0.826 0.824 0.824 1.074
BVARHS-SV 0.113 0.203 0.202 0.211 0.306 0.254 -0.276 -0.277 -0.281 0.073 0.563 1.018 1.017 1.017 0.724
BVARIP-M 0.460 0.269 0.338 0.335 0.476 0.875 1.272 1.160 1.163 0.487 0.460 0.271 0.329 0.325 0.450
BVARIP-SV-M 0.189 0.258 0.283 0.272 0.401 0.202 0.247 0.164 0.175 0.752 0.601 0.561 0.645 0.630 0.435
BVARIP vs BVARIP-SV 1.407 1.172 1.158 1.126 1.561 1.081 1.148 1.145 1.148 0.435 0.423 0.362 0.366 0.363 0.855

TABLE 2.4: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Massachusetts
BVARIP 0.232 0.242 0.238 0.241 0.236 1.355 1.259 1.259 1.257 1.910 0.243 0.269 0.268 0.268 0.217
BVARIP-SV 0.192 0.206 0.206 0.209 0.165 0.428 0.275 0.262 0.261 1.252 0.500 0.627 0.645 0.645 0.321
BVARSSVS 0.523 0.492 0.519 0.511 0.485 0.678 0.632 0.620 0.622 0.822 0.515 0.518 0.532 0.528 0.557
BVARSSVS-SV 0.156 0.181 0.171 0.19 0.140 -0.253 -0.410 -0.423 -0.424 0.583 0.964 1.224 1.261 1.262 0.604
BVARHS 0.322 0.317 0.329 0.327 0.256 0.338 0.194 0.181 0.180 0.571 0.564 0.689 0.709 0.708 0.623
BVARHS-SV 0.125 0.182 0.163 0.170 0.141 0.166 0.008 -0.004 -0.006 0.941 0.634 0.808 0.830 0.831 0.426
BVARIP-M 0.344 0.425 0.382 0.421 0.442 1.106 0.877 0.955 0.856 0.837 0.335 0.420 0.378 0.422 0.458
BVARIP-SV-M 0.217 0.341 0.287 0.308 0.443 0.075 0.243 0.316 0.232 0.282 0.745 0.586 0.524 0.576 0.600
BVARIP vs BVARIP-SV 1.208 1.176 1.159 1.152 1.435 0.927 0.984 0.996 0.996 0.658 0.487 0.429 0.416 0.416 0.674

Model vs bench Michigan
BVARIP 0.234 0.134 0.183 0.199 0.339 1.329 1.267 1.257 1.241 1.004 0.247 0.236 0.247 0.254 0.347
BVARIP-SV 0.130 0.136 0.135 0.136 0.411 0.629 0.410 0.427 0.416 0.462 0.383 0.534 0.517 0.525 0.518
BVARSSVS 0.229 0.255 0.226 0.232 0.407 1.292 1.155 1.180 1.170 0.299 0.250 0.292 0.276 0.279 0.580
BVARSSVS-SV 0.133 0.207 0.193 0.198 0.444 0.248 0.023 0.041 0.029 -0.076 0.554 0.786 0.759 0.772 0.799
BVARHS 0.232 0.235 0.214 0.219 0.397 0.700 0.499 0.518 0.507 -0.297 0.378 0.499 0.481 0.488 0.962
BVARHS-SV 0.085 0.122 0.121 0.126 0.303 0.682 0.458 0.475 0.463 0.317 0.358 0.506 0.490 0.498 0.538
BVARIP-M 0.605 0.372 0.421 0.348 0.757 0.638 0.853 0.783 1.093 -2.409 0.546 0.345 0.397 0.326 0.766
BVARIP-SV-M 0.629 0.300 0.351 0.287 0.648 0.122 0.782 0.485 0.779 0.718 0.758 0.412 0.514 0.426 0.584
BVARIP vs BVARIP-SV 1.804 0.99 1.356 1.461 0.824 0.700 0.857 0.83 0.826 0.542 0.646 0.442 0.478 0.484 0.670

Model vs bench Minnesota
BVARIP 0.318 0.197 0.190 0.164 0.481 1.186 1.223 1.218 1.226 0.736 0.312 0.266 0.269 0.263 0.472
BVARIP-SV 0.295 0.354 0.374 0.364 0.547 0.414 0.289 0.278 0.280 0.377 0.531 0.653 0.672 0.670 0.601
BVARSSVS 0.462 0.448 0.465 0.454 0.632 0.692 0.638 0.630 0.634 0.015 0.483 0.502 0.513 0.509 0.795
BVARSSVS-SV 0.361 0.501 0.525 0.519 0.625 -0.198 -0.330 -0.341 -0.340 -0.166 0.945 1.191 1.226 1.225 0.903
BVARHS 0.298 0.292 0.286 0.276 0.316 0.315 0.193 0.184 0.185 -0.256 0.578 0.704 0.721 0.72 0.905
BVARHS-SV 0.112 0.196 0.206 0.202 0.250 0.138 0.003 -0.008 -0.007 0.186 0.66 0.837 0.863 0.862 0.589
BVARIP-M 0.288 0.42 0.386 0.373 0.498 1.267 1.083 1.173 1.187 0.577 0.286 0.386 0.346 0.332 0.518
BVARIP-SV-M 0.289 0.236 0.256 0.260 0.462 0.176 0.258 0.233 0.252 0.280 0.672 0.630 0.647 0.618 0.583
BVARIP vs BVARIP-SV 1.078 0.555 0.508 0.451 0.879 0.773 0.934 0.939 0.946 0.359 0.587 0.407 0.400 0.392 0.786

Model vs bench Mississippi
BVARIP 0.175 0.219 0.198 0.198 0.536 1.240 1.004 1.012 1.008 0.661 0.234 0.321 0.318 0.317 0.555
BVARIP-SV 0.146 0.235 0.231 0.226 0.358 0.414 0.136 0.140 0.136 0.159 0.474 0.728 0.728 0.727 0.664
BVARSSVS 0.271 0.445 0.418 0.421 0.664 0.864 0.604 0.612 0.608 -0.204 0.347 0.509 0.505 0.503 0.997
BVARSSVS-SV 0.146 0.316 0.309 0.307 0.452 -0.17 -0.451 -0.446 -0.451 -0.480 0.838 1.300 1.300 1.299 1.210
BVARHS 0.167 0.204 0.204 0.204 0.478 0.381 0.107 0.112 0.107 -0.582 0.491 0.743 0.744 0.744 1.334
BVARHS-SV 0.128 0.274 0.269 0.269 0.386 0.239 -0.042 -0.037 -0.042 -0.061 0.558 0.865 0.866 0.865 0.812
BVARIP-M 0.199 0.428 0.534 0.531 0.195 1.257 0.728 -0.021 0.004 1.385 0.247 0.455 0.594 0.589 0.213
BVARIP-SV-M 0.186 0.142 0.174 0.175 0.210 0.137 1.920 1.055 1.078 0.284 0.645 0.273 0.367 0.368 0.519
BVARIP vs BVARIP-SV 1.200 0.929 0.856 0.874 1.497 0.826 0.868 0.871 0.872 0.502 0.494 0.442 0.437 0.436 0.836

Model vs bench Missouri
BVARIP 0.317 0.333 0.345 0.342 0.467 1.201 1.190 1.185 1.193 0.798 0.321 0.318 0.316 0.319 0.485
BVARIP-SV 0.184 0.165 0.170 0.171 0.228 0.415 0.321 0.314 0.314 0.715 0.516 0.593 0.593 0.610 0.400
BVARSSVS 0.378 0.331 0.34 0.342 0.413 0.82 0.79 0.784 0.786 0.414 0.419 0.412 0.411 0.421 0.568
BVARSSVS-SV 0.150 0.204 0.207 0.213 0.192 -0.321 -0.421 -0.428 -0.428 -0.001 1.055 1.236 1.236 1.272 0.774
BVARHS 0.339 0.386 0.391 0.393 0.500 0.428 0.337 0.332 0.332 0.110 0.54 0.615 0.612 0.629 0.753
BVARHS-SV 0.125 0.165 0.170 0.175 0.215 0.147 0.047 0.040 0.040 0.428 0.661 0.774 0.774 0.797 0.514
BVARIP-M 0.335 0.638 0.634 0.636 0.335 1.176 0.215 0.314 0.313 1.224 0.336 0.681 0.659 0.657 0.333
BVARIP-SV-M 0.242 0.178 0.191 0.206 0.214 0.15 0.283 0.250 0.251 0.560 0.678 0.576 0.591 0.594 0.446
BVARIP vs BVARIP-SV 1.719 2.022 2.028 2.006 2.043 0.786 0.869 0.871 0.879 0.083 0.621 0.535 0.532 0.523 1.212

Model vs bench Montana
BVARIP 0.187 0.291 0.276 0.270 0.420 1.407 1.214 1.241 1.247 0.830 0.227 0.297 0.285 0.282 0.445
BVARIP-SV 0.147 0.195 0.191 0.189 0.370 0.536 0.432 0.448 0.448 0.418 0.476 0.510 0.501 0.501 0.513
BVARSSVS 0.327 0.29 0.285 0.281 0.662 1.045 0.979 0.995 0.997 0.031 0.350 0.340 0.335 0.333 0.803
BVARSSVS-SV 0.259 0.257 0.251 0.247 0.505 0.060 -0.039 -0.023 -0.022 -0.186 0.768 0.808 0.793 0.793 0.883
BVARHS 0.311 0.308 0.302 0.304 0.697 0.561 0.466 0.482 0.482 -0.357 0.492 0.513 0.504 0.505 1.075
BVARHS-SV 0.153 0.156 0.156 0.158 0.368 0.510 0.411 0.427 0.427 0.191 0.487 0.513 0.504 0.504 0.611
BVARIP-M 0.179 0.373 0.413 0.402 0.222 1.426 1.027 0.983 1.013 1.400 0.218 0.368 0.393 0.388 0.227
BVARIP-SV-M 0.214 0.171 0.192 0.197 0.233 0.263 0.478 0.373 0.394 0.478 0.612 0.463 0.515 0.509 0.441
BVARIP vs BVARIP-SV 1.269 1.493 1.442 1.430 1.135 0.871 0.782 0.793 0.799 0.412 0.477 0.583 0.569 0.563 0.869

Model vs bench Nebraska
BVARIP 0.369 0.221 0.199 0.176 0.229 1.149 1.237 1.253 1.267 1.933 0.327 0.264 0.253 0.245 0.219
BVARIP-SV 0.307 0.320 0.270 0.248 0.198 0.363 0.368 0.387 0.397 1.431 0.600 0.599 0.57 0.557 0.280
BVARSSVS 0.456 0.439 0.389 0.358 0.299 0.766 0.784 0.801 0.812 1.042 0.452 0.436 0.417 0.407 0.414
BVARSSVS-SV 0.251 0.233 0.205 0.189 0.200 -0.202 -0.196 -0.179 -0.169 0.844 1.026 1.023 0.978 0.957 0.469
BVARHS 0.359 0.368 0.318 0.292 0.249 0.457 0.463 0.481 0.491 0.823 0.556 0.553 0.527 0.515 0.486
BVARHS-SV 0.260 0.289 0.255 0.236 0.225 0.285 0.289 0.306 0.316 1.197 0.637 0.639 0.611 0.597 0.346
BVARIP-M 0.394 0.732 0.825 1.021 0.145 1.133 0.821 0.821 0.803 2.595 0.340 0.551 0.563 0.595 0.140
BVARIP-SV-M 0.286 0.409 0.451 0.570 0.160 0.105 0.083 0.069 0.046 1.772 0.752 0.808 0.829 0.880 0.255
BVARIP vs BVARIP-SV 1.201 0.691 0.739 0.710 1.160 0.786 0.869 0.867 0.870 0.501 0.544 0.441 0.444 0.440 0.784

TABLE 2.5: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Nevada
BVARIP 0.200 0.155 0.156 0.155 0.551 1.548 1.498 1.517 1.510 0.599 0.21 0.192 0.19 0.188 0.548
BVARIP-SV 0.154 0.156 0.134 0.136 0.371 0.654 0.522 0.546 0.536 0.101 0.409 0.447 0.436 0.436 0.653
BVARSSVS 0.287 0.26 0.247 0.249 0.774 0.854 0.742 0.768 0.757 -0.588 0.372 0.385 0.375 0.375 1.311
BVARSSVS-SV 0.134 0.166 0.161 0.16 0.436 0.101 -0.034 -0.012 -0.022 -0.570 0.696 0.767 0.754 0.754 1.226
BVARHS 0.466 0.435 0.423 0.432 1.487 0.454 0.340 0.363 0.352 -0.918 0.565 0.589 0.577 0.579 1.945
BVARHS-SV 0.125 0.126 0.124 0.126 0.503 0.581 0.448 0.470 0.460 -0.143 0.433 0.474 0.466 0.467 0.842
BVARIP-M 0.183 0.138 0.127 0.122 0.267 1.514 3.183 3.545 3.598 1.231 0.198 0.117 0.110 0.107 0.275
BVARIP-SV-M 0.241 0.110 0.097 0.097 0.352 0.329 2.125 2.471 2.514 0.069 0.528 0.251 0.238 0.236 0.676
BVARIP vs BVARIP-SV 1.301 0.993 1.164 1.142 1.486 0.894 0.976 0.971 0.974 0.497 0.512 0.428 0.435 0.431 0.840

Model vs bench New Hampshire
BVARIP 0.271 0.209 0.262 0.268 0.259 1.498 1.480 1.443 1.440 2.128 0.246 0.218 0.238 0.239 0.240
BVARIP-SV 0.177 0.164 0.199 0.216 0.174 0.679 0.538 0.502 0.499 1.663 0.420 0.480 0.521 0.523 0.280
BVARSSVS 0.244 0.250 0.302 0.308 0.311 0.984 0.849 0.814 0.812 1.146 0.331 0.372 0.402 0.402 0.474
BVARSSVS-SV 0.297 0.318 0.385 0.396 0.311 -0.048 -0.193 -0.228 -0.231 0.912 0.861 0.995 1.080 1.081 0.581
BVARHS 0.275 0.299 0.358 0.370 0.296 0.515 0.373 0.338 0.335 0.825 0.504 0.578 0.626 0.627 0.626
BVARHS-SV 0.146 0.164 0.205 0.213 0.192 0.52 0.374 0.338 0.336 1.455 0.485 0.561 0.610 0.611 0.340
BVARIP-M 0.330 0.152 0.175 0.173 0.289 1.375 2.037 1.786 1.816 1.783 0.292 0.144 0.172 0.167 0.281
BVARIP-SV-M 0.211 0.100 0.125 0.127 0.175 0.465 1.147 0.864 0.896 1.308 0.504 0.239 0.297 0.289 0.325
BVARIP vs BVARIP-SV 1.527 1.273 1.316 1.24 1.492 0.818 0.942 0.941 0.94 0.464 0.586 0.454 0.456 0.457 0.859

Model vs bench New Jersey
BVARIP 0.335 0.631 0.548 0.515 0.875 1.093 0.963 1.004 1.019 0.120 0.347 0.453 0.417 0.404 0.904
BVARIP-SV 0.226 0.622 0.606 0.630 0.771 0.093 -0.175 -0.175 -0.175 -0.329 0.679 1.126 1.125 1.128 1.106
BVARSSVS 0.409 0.542 0.485 0.470 0.639 0.517 0.316 0.321 0.323 -0.607 0.515 0.709 0.698 0.695 1.366
BVARSSVS-SV 0.209 0.733 0.720 0.745 1.008 -0.679 -0.947 -0.948 -0.947 -1.087 1.442 2.392 2.391 2.393 2.204
BVARHS 0.326 0.480 0.464 0.454 0.674 0.161 -0.09 -0.090 -0.089 -0.830 0.654 1.025 1.023 1.022 1.684
BVARHS-SV 0.110 0.364 0.315 0.291 0.373 -0.124 -0.391 -0.391 -0.390 -0.550 0.825 1.366 1.363 1.361 1.255
BVARIP-M 0.379 0.514 0.412 0.427 0.520 1.062 0.792 0.947 0.936 0.524 0.380 0.507 0.407 0.419 0.571
BVARIP-SV-M 0.274 0.257 0.203 0.218 0.307 -0.080 -0.115 -0.054 -0.069 -0.094 0.830 0.854 0.744 0.769 0.777
BVARIP vs BVARIP-SV 1.483 1.016 0.904 0.817 1.135 1.000 1.137 1.179 1.194 0.449 0.512 0.402 0.371 0.358 0.818

Model vs bench New Mexico
BVARIP 0.230 0.206 0.210 0.207 0.303 1.353 1.419 1.399 1.400 1.326 0.235 0.211 0.216 0.215 0.298
BVARIP-SV 0.183 0.142 0.125 0.123 0.283 0.665 0.709 0.692 0.685 0.842 0.364 0.337 0.340 0.343 0.369
BVARSSVS 0.212 0.177 0.178 0.18 0.446 1.292 1.365 1.348 1.34 0.55 0.234 0.205 0.208 0.210 0.520
BVARSSVS-SV 0.144 0.15 0.152 0.151 0.335 0.282 0.316 0.295 0.289 0.274 0.514 0.490 0.500 0.505 0.605
BVARHS 0.201 0.149 0.144 0.145 0.465 0.760 0.809 0.790 0.783 0.045 0.338 0.308 0.312 0.315 0.77
BVARHS-SV 0.103 0.107 0.108 0.108 0.252 0.818 0.852 0.831 0.824 0.76 0.302 0.289 0.294 0.297 0.383
BVARIP-M 0.292 0.481 0.426 0.434 0.172 1.232 -0.489 -0.228 -0.347 1.902 0.288 0.574 0.496 0.508 0.183
BVARIP-SV-M 0.174 0.200 0.170 0.162 0.139 0.424 0.847 1.105 1.119 0.981 0.451 0.327 0.278 0.274 0.337
BVARIP vs BVARIP-SV 1.255 1.457 1.676 1.674 1.070 0.688 0.710 0.707 0.715 0.484 0.645 0.626 0.636 0.627 0.809

Model vs bench New York
BVARIP 0.544 0.446 0.404 0.451 1.018 0.909 1.080 1.137 1.110 -0.805 0.463 0.375 0.346 0.361 1.018
BVARIP-SV 0.343 0.365 0.325 0.366 0.866 0.157 0.129 0.127 0.105 -0.165 0.712 0.75 0.762 0.789 0.987
BVARSSVS 0.624 0.292 0.249 0.261 0.542 0.584 0.705 0.710 0.691 -0.272 0.593 0.434 0.433 0.445 0.943
BVARSSVS-SV 0.446 0.413 0.373 0.433 0.853 -0.526 -0.554 -0.559 -0.58 -0.782 1.379 1.45 1.489 1.539 1.562
BVARHS 0.498 0.378 0.373 0.374 0.65 0.286 0.283 0.281 0.263 -0.505 0.666 0.65 0.663 0.678 1.179
BVARHS-SV 0.492 0.514 0.451 0.497 0.967 -0.007 -0.033 -0.032 -0.053 -0.335 0.852 0.891 0.899 0.928 1.131
BVARIP-M 0.325 0.399 0.371 0.370 0.219 1.187 0.797 0.858 0.883 1.364 0.318 0.408 0.366 0.365 0.230
BVARIP-SV-M 0.366 0.294 0.299 0.291 0.676 -0.043 0.397 0.506 0.487 -0.034 0.849 0.507 0.457 0.459 0.826
BVARIP vs BVARIP-SV 1.587 1.221 1.241 1.23 1.175 0.752 0.951 1.010 1.004 -0.641 0.651 0.500 0.455 0.458 1.032

Model vs bench North Carolina
BVARIP 0.246 0.405 0.438 0.42 0.683 1.282 1.031 1.015 1.035 0.268 0.254 0.385 0.404 0.390 0.762
BVARIP-SV 0.164 0.236 0.250 0.230 0.299 0.427 0.189 0.169 0.171 0.048 0.444 0.655 0.691 0.688 0.714
BVARSSVS 0.380 0.394 0.413 0.401 0.733 0.812 0.687 0.673 0.678 -0.248 0.398 0.458 0.475 0.470 1.049
BVARSSVS-SV 0.189 0.305 0.305 0.276 0.393 -0.294 -0.535 -0.555 -0.553 -0.701 0.895 1.331 1.404 1.401 1.474
BVARHS 0.747 1.149 1.256 1.249 2.771 0.283 0.070 0.049 0.054 -0.989 0.758 1.087 1.150 1.143 3.020
BVARHS-SV 0.117 0.220 0.211 0.189 0.393 0.250 0.007 -0.012 -0.010 -0.113 0.519 0.776 0.816 0.814 0.846
BVARIP-M 0.293 0.235 0.237 0.235 0.367 1.207 1.308 1.298 1.301 1.024 0.293 0.250 0.253 0.254 0.369
BVARIP-SV-M 0.190 0.218 0.260 0.277 0.329 0.16 0.135 0.115 0.108 0.014 0.584 0.626 0.648 0.667 0.732
BVARIP vs BVARIP-SV 1.502 1.716 1.751 1.823 2.286 0.855 0.842 0.846 0.864 0.221 0.572 0.588 0.584 0.567 1.067

Model vs bench North Dakota
BVARIP 0.328 0.300 0.279 0.267 0.182 1.289 1.332 1.361 1.370 4.515 0.276 0.263 0.251 0.246 0.158
BVARIP-SV 0.326 0.235 0.223 0.216 0.154 0.637 0.736 0.758 0.763 4.348 0.465 0.393 0.38 0.375 0.162
BVARSSVS 0.548 0.382 0.363 0.352 0.324 1.185 1.329 1.355 1.358 4.027 0.39 0.313 0.301 0.298 0.286
BVARSSVS-SV 0.367 0.276 0.263 0.253 0.213 0.696 0.793 0.814 0.819 4.177 0.448 0.381 0.369 0.364 0.204
BVARHS 0.645 0.437 0.419 0.403 0.366 0.747 0.866 0.887 0.893 3.600 0.503 0.407 0.394 0.388 0.361
BVARHS-SV 0.189 0.133 0.126 0.122 0.120 1.105 1.206 1.227 1.232 4.445 0.288 0.243 0.235 0.232 0.140
BVARIP-M 0.354 0.333 0.306 0.273 0.183 1.205 1.244 1.343 1.514 4.174 0.312 0.306 0.279 0.251 0.150
BVARIP-SV-M 0.350 0.277 0.259 0.234 0.166 0.333 0.707 0.777 0.933 3.911 0.614 0.400 0.371 0.335 0.166
BVARIP vs BVARIP-SV 1.005 1.280 1.255 1.235 1.182 0.652 0.595 0.603 0.607 0.167 0.594 0.671 0.662 0.656 0.976

TABLE 2.6: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Ohio
BVARIP 0.456 0.571 0.558 0.546 0.455 0.975 0.936 0.93 0.958 0.778 0.443 0.503 0.497 0.486 0.475
BVARIP-SV 0.171 0.168 0.158 0.140 0.226 0.356 0.271 0.281 0.285 0.445 0.547 0.64 0.623 0.621 0.477
BVARSSVS 0.371 0.288 0.263 0.255 0.369 0.902 0.901 0.916 0.922 0.273 0.392 0.372 0.357 0.355 0.589
BVARSSVS-SV 0.159 0.221 0.199 0.19 0.272 -0.375 -0.464 -0.454 -0.451 -0.315 1.117 1.324 1.289 1.289 0.989
BVARHS 0.359 0.344 0.324 0.316 0.486 0.486 0.419 0.43 0.434 -0.059 0.518 0.576 0.559 0.557 0.815
BVARHS-SV 0.145 0.226 0.234 0.228 0.259 0.233 0.142 0.151 0.154 0.263 0.611 0.728 0.711 0.71 0.569
BVARIP-M 0.592 0.251 0.255 0.251 0.491 0.704 1.432 1.429 1.434 0.494 0.57 0.245 0.255 0.250 0.538
BVARIP-SV-M 0.382 0.295 0.254 0.243 0.245 0.065 0.148 0.153 0.148 0.164 0.786 0.658 0.663 0.661 0.594
BVARIP vs BVARIP-SV 2.664 3.402 3.543 3.9 2.011 0.62 0.665 0.649 0.673 0.333 0.811 0.786 0.798 0.782 0.997

Model vs bench Oklahoma
BVARIP 0.209 0.172 0.168 0.160 0.232 1.537 1.594 1.587 1.622 3.559 0.216 0.19 0.188 0.183 0.229
BVARIP-SV 0.199 0.185 0.189 0.182 0.26 0.733 0.776 0.76 0.79 3.175 0.399 0.365 0.369 0.361 0.289
BVARSSVS 0.299 0.222 0.224 0.215 0.35 1.291 1.381 1.368 1.4 2.954 0.293 0.242 0.243 0.237 0.376
BVARSSVS-SV 0.202 0.179 0.183 0.175 0.235 0.343 0.390 0.374 0.404 2.709 0.575 0.520 0.526 0.515 0.397
BVARHS 0.255 0.208 0.21 0.202 0.311 0.896 0.947 0.932 0.962 2.604 0.357 0.319 0.321 0.315 0.454
BVARHS-SV 0.173 0.154 0.16 0.153 0.224 0.866 0.912 0.895 0.925 3.177 0.348 0.316 0.32 0.313 0.271
BVARIP-M 0.292 0.151 0.148 0.127 0.197 1.427 2.164 2.039 2.313 3.804 0.276 0.147 0.149 0.128 0.191
BVARIP-SV-M 0.319 0.168 0.172 0.151 0.273 0.494 1.171 1.000 1.259 3.228 0.525 0.306 0.334 0.294 0.298
BVARIP vs BVARIP-SV 1.051 0.928 0.890 0.877 0.892 0.804 0.818 0.828 0.832 0.384 0.541 0.521 0.510 0.505 0.793

Model vs bench Oregon
BVARIP 0.335 0.618 0.571 0.55 0.491 1.171 0.977 1.024 1.031 0.647 0.321 0.447 0.414 0.41 0.495
BVARIP-SV 0.295 0.31 0.305 0.287 0.33 0.201 0.124 0.122 0.122 0.292 0.68 0.776 0.775 0.774 0.559
BVARSSVS 0.637 0.709 0.716 0.692 0.791 0.632 0.618 0.62 0.623 -0.047 0.586 0.593 0.589 0.584 0.917
BVARSSVS-SV 0.226 0.338 0.324 0.302 0.292 -0.465 -0.548 -0.549 -0.55 -0.449 1.288 1.499 1.497 1.496 1.098
BVARHS 0.496 0.585 0.587 0.574 0.716 0.291 0.219 0.218 0.217 -0.359 0.664 0.746 0.744 0.743 1.098
BVARHS-SV 0.207 0.308 0.309 0.294 0.294 0.216 0.132 0.13 0.13 0.258 0.657 0.767 0.766 0.765 0.566
BVARIP-M 0.325 0.201 0.16 0.154 0.268 1.203 1.669 1.977 2.037 1.222 0.31 0.193 0.151 0.145 0.266
BVARIP-SV-M 0.33 0.096 0.064 0.060 0.258 -0.035 0.647 0.915 0.977 0.171 0.866 0.395 0.322 0.309 0.563
BVARIP vs BVARIP-SV 1.137 1.992 1.87 1.918 1.489 0.97 0.853 0.902 0.91 0.355 0.472 0.576 0.534 0.53 0.885

Model vs bench Pennsylvania
BVARIP 0.424 0.533 0.508 0.494 0.777 0.982 0.926 0.955 0.966 0.069 0.405 0.454 0.438 0.428 0.794
BVARIP-SV 0.243 0.268 0.264 0.269 0.56 -0.181 -0.251 -0.245 -0.246 -0.345 0.935 1.064 1.064 1.064 1.002
BVARSSVS 0.731 0.493 0.478 0.463 0.866 0.256 0.29 0.297 0.298 -0.547 0.762 0.668 0.664 0.659 1.271
BVARSSVS-SV 0.223 0.39 0.431 0.442 0.566 -1.039 -1.112 -1.106 -1.107 -1.16 2.184 2.501 2.504 2.504 2.156
BVARHS 0.413 0.254 0.230 0.248 0.657 -0.031 -0.086 -0.079 -0.081 -0.674 0.832 0.902 0.899 0.901 1.368
BVARHS-SV 0.221 0.313 0.313 0.319 0.423 -0.364 -0.437 -0.431 -0.432 -0.463 1.114 1.276 1.276 1.277 1.090
BVARIP-M 0.527 0.532 0.401 0.403 0.605 0.933 0.944 1.083 1.082 0.274 0.471 0.448 0.364 0.376 0.666
BVARIP-SV-M 0.454 0.342 0.292 0.318 0.501 -0.399 -0.407 -0.352 -0.365 -0.265 1.224 1.206 1.1 1.153 0.948
BVARIP vs BVARIP-SV 1.745 1.991 1.923 1.835 1.389 1.163 1.177 1.2 1.212 0.413 0.433 0.427 0.412 0.403 0.792

Model vs bench Rhode Island
BVARIP 0.311 0.288 0.282 0.286 0.523 1.256 1.233 1.238 1.236 0.478 0.324 0.292 0.286 0.293 0.545
BVARIP-SV 0.163 0.207 0.201 0.212 0.257 0.439 0.186 0.18 0.177 0.472 0.49 0.609 0.608 0.625 0.496
BVARSSVS 0.221 0.258 0.25 0.251 0.475 0.967 0.724 0.72 0.719 0.231 0.318 0.385 0.381 0.39 0.667
BVARSSVS-SV 0.114 0.202 0.197 0.198 0.180 -0.357 -0.61 -0.617 -0.619 -0.328 1.063 1.327 1.326 1.359 1.055
BVARHS 0.203 0.247 0.241 0.246 0.503 0.536 0.284 0.278 0.276 -0.061 0.453 0.56 0.559 0.573 0.859
BVARHS-SV 0.128 0.151 0.146 0.147 0.302 0.334 0.082 0.076 0.074 0.326 0.536 0.665 0.665 0.681 0.575
BVARIP-M 0.339 0.426 0.403 0.414 0.273 1.156 0.554 0.601 0.574 1.555 0.346 0.48 0.457 0.467 0.253
BVARIP-SV-M 0.232 0.366 0.359 0.371 0.56 0.146 0.168 0.231 0.21 0.497 0.652 0.599 0.572 0.585 0.628
BVARIP vs BVARIP-SV 1.901 1.393 1.401 1.351 2.038 0.816 1.047 1.058 1.059 0.006 0.661 0.479 0.47 0.469 1.099

Model vs bench South Carolina
BVARIP 0.576 0.481 0.471 0.449 0.456 1.079 0.962 0.958 0.969 0.59 0.442 0.463 0.454 0.447 0.490
BVARIP-SV 0.26 0.115 0.106 0.104 0.179 0.3 0.407 0.428 0.446 0.86 0.652 0.528 0.505 0.495 0.373
BVARSSVS 0.649 0.34 0.323 0.299 0.472 0.654 0.806 0.828 0.851 0.480 0.559 0.407 0.388 0.376 0.599
BVARSSVS-SV 0.519 0.38 0.361 0.355 0.549 -0.609 -0.506 -0.486 -0.468 -0.039 1.606 1.324 1.267 1.243 0.937
BVARHS 0.701 0.458 0.439 0.414 0.729 0.336 0.444 0.464 0.484 0.246 0.708 0.574 0.55 0.537 0.808
BVARHS-SV 0.182 0.13 0.116 0.112 0.193 0.183 0.285 0.306 0.325 0.721 0.723 0.595 0.569 0.557 0.426
BVARIP-M 0.713 0.327 0.324 0.312 0.417 0.957 1.160 1.186 1.237 0.568 0.513 0.333 0.325 0.309 0.442
BVARIP-SV-M 0.38 0.156 0.157 0.159 0.137 0.041 0.291 0.275 0.278 0.866 0.849 0.526 0.536 0.536 0.365
BVARIP vs BVARIP-SV 2.215 4.188 4.45 4.306 2.553 0.779 0.555 0.53 0.522 -0.269 0.678 0.877 0.899 0.903 1.313

Model vs bench South Dakota
BVARIP 0.175 0.193 0.183 0.162 0.128 1.624 1.642 1.651 1.666 4.162 0.178 0.182 0.179 0.170 0.113
BVARIP-SV 0.158 0.154 0.153 0.138 0.144 0.705 0.778 0.774 0.785 3.618 0.413 0.368 0.371 0.357 0.169
BVARSSVS 0.323 0.234 0.236 0.213 0.209 1.371 1.448 1.445 1.457 3.388 0.252 0.221 0.223 0.214 0.221
BVARSSVS-SV 0.187 0.143 0.138 0.124 0.166 0.179 0.256 0.252 0.263 2.954 0.693 0.610 0.615 0.591 0.301
BVARHS 0.184 0.110 0.111 0.103 0.107 0.893 0.973 0.969 0.98 2.983 0.345 0.300 0.303 0.291 0.284
BVARHS-SV 0.205 0.165 0.165 0.149 0.143 0.885 0.959 0.955 0.966 3.604 0.349 0.31 0.313 0.300 0.169
BVARIP-M 0.205 0.332 0.393 0.372 0.152 1.585 1.157 1.078 1.133 3.883 0.195 0.324 0.362 0.348 0.122
BVARIP-SV-M 0.170 0.189 0.217 0.208 0.129 0.448 0.733 0.592 0.635 3.358 0.531 0.37 0.430 0.417 0.166
BVARIP vs BVARIP-SV 1.108 1.254 1.197 1.172 0.889 0.918 0.864 0.877 0.881 0.545 0.432 0.496 0.481 0.476 0.667

TABLE 2.7: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Tennessee
BVARIP 0.412 0.466 0.477 0.459 0.819 0.938 0.999 0.987 1.000 -0.652 0.418 0.442 0.442 0.439 0.927
BVARIP-SV 0.175 0.204 0.195 0.19 0.245 0.393 0.197 0.206 0.213 -0.02 0.481 0.654 0.637 0.637 0.68
BVARSSVS 0.328 0.239 0.224 0.214 0.641 0.79 0.666 0.678 0.685 -0.38 0.38 0.425 0.411 0.410 1.034
BVARSSVS-SV 0.189 0.204 0.184 0.17 0.391 -0.402 -0.601 -0.592 -0.584 -0.854 1.045 1.431 1.395 1.395 1.546
BVARHS 0.304 0.309 0.302 0.288 0.747 0.523 0.345 0.355 0.362 -0.526 0.452 0.582 0.566 0.565 1.197
BVARHS-SV 0.117 0.183 0.160 0.152 0.255 0.311 0.11 0.12 0.127 -0.068 0.513 0.707 0.687 0.687 0.713
BVARIP-M 0.512 0.521 0.553 0.525 0.623 0.637 0.274 0.277 0.41 -0.352 0.523 0.584 0.629 0.586 0.742
BVARIP-SV-M 0.229 0.199 0.22 0.22 0.237 0.167 0.175 0.103 0.104 0.090 0.628 0.589 0.655 0.655 0.621
BVARIP vs BVARIP-SV 2.361 2.278 2.44 2.422 3.348 0.545 0.802 0.781 0.786 -0.632 0.869 0.676 0.694 0.689 1.362

Model vs bench Texas
BVARIP 0.362 0.369 0.308 0.284 0.266 1.14 1.196 1.235 1.253 1.856 0.357 0.323 0.294 0.282 0.255
BVARIP-SV 0.264 0.358 0.292 0.263 0.273 0.425 0.214 0.209 0.22 1.254 0.518 0.709 0.712 0.693 0.369
BVARSSVS 0.427 0.571 0.607 0.624 0.576 0.762 0.598 0.586 0.585 0.774 0.454 0.555 0.573 0.576 0.653
BVARSSVS-SV 0.244 0.342 0.292 0.262 0.31 -0.243 -0.461 -0.471 -0.462 0.494 0.968 1.355 1.381 1.348 0.723
BVARHS 0.352 0.343 0.35 0.343 0.548 0.499 0.315 0.304 0.313 0.56 0.506 0.64 0.654 0.64 0.742
BVARHS-SV 0.088 0.228 0.196 0.177 0.143 0.491 0.268 0.258 0.268 1.186 0.46 0.656 0.667 0.651 0.360
BVARIP-M 0.403 0.358 0.373 0.325 0.305 1.076 1.229 1.188 1.281 1.435 0.395 0.310 0.334 0.295 0.309
BVARIP-SV-M 0.372 0.402 0.389 0.332 0.348 0.201 0.129 0.153 0.199 0.948 0.658 0.695 0.684 0.628 0.448
BVARIP vs BVARIP-SV 1.368 1.03 1.054 1.082 0.971 0.715 0.982 1.026 1.033 0.602 0.689 0.456 0.413 0.407 0.691

Model vs bench Utah
BVARIP 0.491 0.453 0.448 0.448 0.705 0.978 1.159 1.166 1.17 0.085 0.447 0.356 0.354 0.348 0.759
BVARIP-SV 0.2 0.229 0.233 0.217 0.324 0.127 0.05 0.052 0.049 -0.005 0.703 0.828 0.828 0.827 0.703
BVARSSVS 0.661 0.873 0.862 0.884 1.005 0.437 0.383 0.388 0.384 -0.434 0.655 0.734 0.729 0.729 1.229
BVARSSVS-SV 0.344 0.465 0.466 0.47 0.651 -0.664 -0.743 -0.741 -0.744 -0.846 1.54 1.826 1.826 1.826 1.614
BVARHS 0.807 1.049 1.06 1.079 1.54 0.166 0.111 0.111 0.108 -0.678 0.829 0.932 0.937 0.934 1.688
BVARHS-SV 0.135 0.162 0.167 0.174 0.35 0.069 -0.009 -0.007 -0.012 -0.089 0.735 0.871 0.871 0.871 0.764
BVARIP-M 0.572 0.3 0.314 0.304 0.525 0.821 1.374 1.299 1.330 0.313 0.524 0.293 0.314 0.298 0.591
BVARIP-SV-M 0.3 0.211 0.216 0.213 0.298 -0.054 0.533 0.457 0.467 0.104 0.855 0.5 0.533 0.515 0.651
BVARIP vs BVARIP-SV 2.46 1.984 1.923 2.062 2.172 0.851 1.109 1.114 1.121 0.09 0.637 0.43 0.427 0.421 1.081

Model vs bench Vermont
BVARIP 0.237 0.211 0.226 0.224 0.251 1.323 1.302 1.289 1.289 1.537 0.251 0.252 0.257 0.257 0.231
BVARIP-SV 0.137 0.196 0.207 0.21 0.199 0.449 0.363 0.357 0.357 0.781 0.486 0.571 0.573 0.573 0.377
BVARSSVS 0.184 0.198 0.188 0.18 0.273 0.887 0.81 0.808 0.809 0.447 0.328 0.376 0.372 0.371 0.526
BVARSSVS-SV 0.158 0.246 0.246 0.252 0.249 -0.366 -0.451 -0.456 -0.456 -0.067 1.085 1.271 1.27 1.271 0.845
BVARHS 0.215 0.239 0.241 0.246 0.412 0.431 0.35 0.345 0.345 0.098 0.502 0.582 0.582 0.583 0.748
BVARHS-SV 0.141 0.172 0.176 0.176 0.222 0.415 0.332 0.327 0.327 0.71 0.5 0.584 0.584 0.584 0.405
BVARIP-M 0.358 0.447 0.312 0.215 0.208 1.153 1.148 1.208 1.345 1.572 0.347 0.355 0.303 0.234 0.216
BVARIP-SV-M 0.12 0.443 0.354 0.25 0.165 0.144 -0.001 0.055 0.192 0.527 0.669 0.905 0.781 0.606 0.453
BVARIP vs BVARIP-SV 1.729 1.074 1.091 1.071 1.258 0.875 0.939 0.931 0.932 0.756 0.516 0.441 0.449 0.448 0.612

Model vs bench Virginia
BVARIP 0.15 0.255 0.218 0.233 0.525 1.542 1.144 1.179 1.163 0.425 0.186 0.289 0.270 0.275 0.542
BVARIP-SV 0.139 0.305 0.312 0.331 0.385 0.135 -0.264 -0.258 -0.267 0.015 0.646 1.007 1.008 1.01 0.699
BVARSSVS 0.316 0.345 0.353 0.36 0.472 0.503 0.136 0.142 0.133 -0.306 0.489 0.694 0.696 0.695 0.951
BVARSSVS-SV 0.128 0.378 0.354 0.375 0.47 -0.833 -1.229 -1.222 -1.231 -0.906 1.684 2.604 2.603 2.604 1.675
BVARHS 0.342 0.48 0.48 0.497 0.785 0.262 -0.123 -0.116 -0.126 -0.443 0.604 0.905 0.904 0.905 1.148
BVARHS-SV 0.09 0.117 0.098 0.107 0.17 0.019 -0.375 -0.368 -0.377 -0.056 0.718 1.104 1.103 1.104 0.712
BVARIP-M 0.199 0.509 0.529 0.49 0.324 1.393 0.814 0.783 0.824 1.223 0.23 0.41 0.45 0.419 0.319
BVARIP-SV-M 0.199 0.505 0.617 0.57 0.417 -0.196 -0.36 -0.456 -0.417 0.074 0.892 1.077 1.235 1.135 0.726
BVARIP vs BVARIP-SV 1.082 0.838 0.696 0.704 1.364 1.407 1.408 1.436 1.43 0.41 0.289 0.288 0.268 0.272 0.774

Model vs bench Washington
BVARIP 0.341 0.243 0.232 0.224 0.327 1.16 1.385 1.417 1.426 1.295 0.329 0.244 0.235 0.23 0.305
BVARIP-SV 0.228 0.211 0.201 0.206 0.35 0.335 0.496 0.515 0.51 0.605 0.554 0.458 0.45 0.451 0.46
BVARSSVS 0.506 0.282 0.274 0.27 0.552 0.728 1.02 1.042 1.041 0.353 0.505 0.32 0.313 0.311 0.629
BVARSSVS-SV 0.239 0.294 0.295 0.311 0.442 -0.664 -0.501 -0.483 -0.487 -0.4 1.464 1.204 1.187 1.189 1.144
BVARHS 0.294 0.145 0.136 0.129 0.27 0.51 0.698 0.718 0.715 0.157 0.485 0.369 0.362 0.361 0.657
BVARHS-SV 0.105 0.095 0.089 0.091 0.186 0.392 0.556 0.575 0.571 0.611 0.51 0.417 0.41 0.41 0.42
BVARIP-M 0.39 0.171 0.153 0.145 0.175 1.09 1.713 1.730 1.730 1.889 0.367 0.172 0.164 0.158 0.170
BVARIP-SV-M 0.233 0.23 0.231 0.225 0.243 0.141 0.52 0.486 0.469 0.747 0.66 0.446 0.462 0.46 0.421
BVARIP vs BVARIP-SV 1.491 1.153 1.15 1.086 0.932 0.825 0.89 0.902 0.916 0.689 0.593 0.532 0.523 0.509 0.664

Model vs bench West Virginia
BVARIP 0.673 0.907 0.913 0.953 0.748 0.562 0.454 0.471 0.47 -0.387 0.65 0.762 0.772 0.77 0.843
BVARIP-SV 0.456 0.563 0.563 0.588 0.478 0.004 -0.076 -0.08 -0.085 0.426 0.82 0.935 0.961 0.96 0.594
BVARSSVS 0.724 0.897 0.919 0.964 0.887 0.498 0.458 0.451 0.444 0.206 0.686 0.744 0.768 0.77 0.894
BVARSSVS-SV 0.371 0.509 0.516 0.543 0.461 -0.785 -0.868 -0.873 -0.878 -0.372 1.719 1.982 2.043 2.043 1.163
BVARHS 0.52 0.61 0.616 0.644 0.725 0.233 0.165 0.16 0.155 0.004 0.691 0.768 0.79 0.789 0.906
BVARHS-SV 0.415 0.543 0.558 0.583 0.554 0.185 0.104 0.098 0.093 0.381 0.69 0.792 0.818 0.818 0.643
BVARIP-M 0.396 0.588 0.608 0.568 0.422 1.081 0.739 0.727 0.769 0.890 0.366 0.534 0.550 0.510 0.437
BVARIP-SV-M 0.368 0.577 0.603 0.564 0.519 -0.134 -0.125 -0.138 -0.118 0.299 0.915 0.935 0.964 0.91 0.683
BVARIP vs BVARIP-SV 1.476 1.61 1.621 1.62 1.563 0.559 0.529 0.551 0.555 -0.812 0.793 0.815 0.803 0.802 1.418

TABLE 2.8: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Tilting using new information
Point Forecasting - MRSFE Density Forecasting - logS Density Forecasting - CRPS

UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4 UF Q1 Q2 Q3 Q4
Model vs bench Wisconsin
BVARIP 0.514 0.730 0.794 0.765 0.644 0.611 0.850 0.850 0.860 -0.724 0.538 0.569 0.588 0.582 0.781
BVARIP-SV 0.199 0.327 0.327 0.329 0.233 0.225 -0.068 -0.074 -0.073 0.281 0.608 0.927 0.959 0.96 0.567
BVARSSVS 0.390 0.516 0.558 0.535 0.484 0.826 0.599 0.593 0.596 0.172 0.411 0.532 0.550 0.548 0.683
BVARSSVS-SV 0.167 0.440 0.468 0.496 0.407 -0.715 -1.010 -1.017 -1.017 -0.674 1.528 2.352 2.438 2.441 1.447
BVARHS 0.491 0.842 0.914 0.881 0.953 0.495 0.220 0.214 0.216 -0.073 0.549 0.801 0.829 0.826 1.010
BVARHS-SV 0.155 0.245 0.251 0.251 0.241 0.161 -0.133 -0.139 -0.138 0.234 0.640 0.978 1.013 1.013 0.593
BVARIP-M 0.613 0.689 0.806 0.798 0.522 0.230 0.629 0.608 0.626 -0.429 0.655 0.615 0.660 0.652 0.611
BVARIP-SV-M 0.185 0.593 0.724 0.715 0.163 -0.02 -0.241 -0.272 -0.271 0.474 0.781 1.079 1.167 1.165 0.499
BVARIP vs BVARIP-SV 2.586 2.233 2.424 2.326 2.763 0.386 0.918 0.924 0.933 -1.005 0.885 0.614 0.613 0.607 1.378

Model vs bench Wyoming
BVARIP 0.242 0.185 0.182 0.180 0.328 1.348 1.522 1.514 1.531 1.965 0.253 0.205 0.204 0.202 0.338
BVARIP-SV 0.239 0.178 0.179 0.179 0.337 0.606 0.788 0.771 0.786 1.931 0.445 0.356 0.360 0.358 0.346
BVARSSVS 0.266 0.189 0.192 0.190 0.352 1.388 1.587 1.570 1.587 1.821 0.262 0.203 0.205 0.203 0.374
BVARSSVS-SV 0.281 0.207 0.208 0.207 0.389 0.318 0.501 0.484 0.499 1.445 0.587 0.468 0.474 0.470 0.487
BVARHS 0.258 0.190 0.190 0.189 0.359 1.112 1.296 1.281 1.296 1.561 0.301 0.239 0.241 0.239 0.436
BVARHS-SV 0.174 0.133 0.134 0.133 0.293 0.932 1.113 1.097 1.112 1.880 0.321 0.257 0.260 0.259 0.332
BVARIP-M 0.240 0.208 0.215 0.193 0.165 1.394 1.704 1.634 1.764 2.918 0.242 0.224 0.230 0.211 0.161
BVARIP-SV-M 0.291 0.197 0.201 0.197 0.233 0.389 0.809 0.739 0.843 2.236 0.551 0.412 0.422 0.405 0.261
BVARIP vs BVARIP-SV 1.014 1.041 1.016 1.005 0.975 0.741 0.734 0.743 0.744 0.034 0.568 0.577 0.566 0.565 0.977

TABLE 2.9: Nowcasting Performance (Results Relative to AR Benchmark). NOTE:
the RMSFE and CRPS values from our nowcasting model are presented relative to
(divided by) those from the benchmark AR model; the logS values from our now-
casting model are presented relative to (subtracted by) those from the benchmark AR

model.
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Chapter 3

Nowcasting Monthly GDP Growth
for U.S. States Using a Mixed
Frequency VAR

3.1 Introduction

The goal of this Chapter is to produce monthly nowcasts and historical estimates of

GDP growth at the state-level using a mixed frequency vector autoregression (MF-

VAR) in the U.S.. MF-VARs have enjoyed great popularity in policy circles since

they can provide timely, high frequency nowcasts of low frequency variables such

as GDP growth which is released with a delay. For instance, Schorfheide and Song

(2015), Brave, Butters, and Justiniano (2019), and McCracken, Owyang, and Sekh-

posyan (2019) are influential papers associated with the Federal Reserve Banks of

Minneapolis, Chicago, and St. Louis, respectively. A common set-up is to nowcast

a quarterly variable (e.g. U.S. GDP growth) using several monthly variables. Now-

casting U.S. state-level GDP growth is a challenge, since there are 51 variables1 to be

nowcasted and the frequency mismatch is more complicated since we have a three-

way frequency mismatch involving annual, quarterly and monthly variables which

changes over time. Specifically, state-level GDP growth is available at an annual

frequency only through 2004, before the U.S. Bureau of Economic Analysis (BEA)

1These are for the 50 states plus Washington DC. For simplicity, we will call the latter a state and refer
to 51 states in this Chapter.

44
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started producing quarterly estimates from 2005. U.S. GDP growth is available quar-

terly throughout the sample, and we include many monthly indicator variables in the

model to better capture within-quarter business cycle dynamics. To complicate the

data landscape further, the variables have a range of release delays and are available

over different historical sample periods.

In light of these data features, in this Chapter we work with MF-VARs that are much

larger than is conventional, and involve many more, and more complicated, latent

states. This modelling approach raises challenges in terms of over-parameterization

concerns and the computational burden. We develop a Bayesian modelling frame-

work which overcomes these challenges, and use it to produce monthly estimates of

state-level GDP. Notice that our estimates are ”consistent” with the BEA’s estimates

of both quarterly state and U.S.-level GDP. By imposing temporal and cross-sectional

aggregation constraints within our MF-VAR that link published data with our model-

based estimates and following Koop, McIntyre, Mitchell, and Poon (2022) consistency

is achieved.

Our monthly state-level estimates of GDP can be contrasted with the state-level coin-

cident indicators of Crone and Clayton-Matthews (2005), as published by the Federal

Reserve Bank of Philadelphia, and the weekly state-level indicators of Baumeister,

Leiva-León, and Sims (2021). While our estimates condition on the same state-level

indicators as Crone and Clayton-Matthews (2005), as well as a range of additional in-

dicators, their interpretation differs in that they are produced as direct estimates of

state-level GDP. This also means that our estimates can be evaluated ex post, on re-

ceipt of the BEA’s quarterly estimates of state-level GDP. Econometrically, in contrast

to both Crone and Clayton-Matthews (2005) and Baumeister, Leiva-León, and Sims

(2021), in order to impose the cross-sectional constraint where state-level GDP sums

to U.S. GDP, we estimate our model jointly across the 51 states. This implies that our

model accommodates cross-state spillovers and dependencies, enabling it to provide

a richer characterization of the higher-frequency effects of shocks on the U.S. states.

The remainder of the Chapter is organised as follows. Section 3.2 introduces the mixed

frequency VAR and the proposed efficient approximate MCMC algorithm. Section 3.3

contains the empirical application results. Conclusions are set out in Section 3.4.
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3.2 Econometric Methods

3.2.1 Notation and Data Observability

All our variables enter our model in growth rates using exact growth and are denoted

by y. We use the following notational convention: subscripts a, q, m denote annual,

quarterly and monthly frequencies, respectively. The first subscript on any variable

denotes the frequency at which a variable is observed.2 The second subscript de-

notes a different frequency than the observed one (e.g. prior to 2005 GDP growth in

a state was observed at the annual frequency and so, to denote monthly state level

GDP growth, we use subscripts a, m). If the first two subscripts are the same then

we suppress one of them (e.g. employment growth is observed at the monthly fre-

quency and thus, we simply use subscript m for this concept instead of m, m). The

third subscript t = 1, . . . , T denotes time at the monthly frequency. Superscripts US
and s = 1, . . . S distinguish between variables for U.S. as a whole and the individual

states. Our model involves the following variables:

• yUS
m,t is a vector of macroeconomic variables for the U.S., which are always ob-

served (e.g. employment growth).

• yUS
m,q,t is a vector of quarterly observations on the U.S. macroeconomic variables.

It is constructed from yUS
m,t and, thus, is always observed.

• yUS
q,m,t is monthly GDP growth in the U.S. and is never observed.

• yUS
q,t is quarterly GDP growth in the U.S.. It is observed for months 3, 6, 9 and 12,

but not in other months.

• ys
a,m,t is monthly GDP growth in state s. It is never observed.

• ys
a,q,t is quarterly GDP growth in state s. Prior to 2005 it is never observed. From

2005 onwards it is observed for months 3, 6, 9 and 12, but not in other months.

• ys
a,t is annual GDP growth in state s. Prior to 2005 it is observed for month 12 of

every year. From 2005 onwards it is observed for months 3, 6, 9 and 12, but not

in other months.
2We denote state level variables with an a even though they are observed quarterly from 2005 on-

wards.
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If the t subscript is suppressed, it denotes the vector of all observations on a variable.

Superscript S denotes the vector containing quantities for all 51 states.

The monthly macroeconomic variables at the U.S. level include industrial production,

personal consumption expenditure, hours worked, the unemployment rate, inflation,

the S&P500, the effective Federal Funds rate, ten-year treasury rate, real personal in-

come, and the employment rate. These are variables considered by Schorfheide and

Song (2015). We also consider quarterly fixed investment and government expendi-

ture. In addition to these U.S.-level variables, we have several monthly and quar-

terly predictors available at the state level. These are real personal income, wage and

salaries, initial claims, the unemployment rate, the employment rate, and average

weekly hours (for all sectors). In order to keep our large MF-VAR from becoming too

large, we include these as exogenous predictors in the MF-VAR, with no cross-state

spillovers. That is, a monthly exogenous variable for state i will appear as a right-

hand side variable in the equation for state i, but not in the equation for state j for

i 6= j. The exact definition, data sources, transformation and release schedule for each

variable is given in the Data Appendix A.1.

3.2.2 The MF-VAR

Similar to Chapter 2, we write the MF-VAR as

Ayt = B0 + B1yt�1 + . . . + Bpyt�p + et, et ⇠ N(0, S), (3.1)

for t = 1, . . . , T where yt is a vector of N ⇥ 1 dependent variables, p is the order

of the VAR, A is an N ⇥ N lower triangular matrix with ones on the diagonal , Bq,

q = 1, . . . , p is the N ⇥ N coefficient matrix and S = diag(s2
1 , s2

2 , . . . , s2
N)

34.

We re-write our model as:

yi,t = wi,tai + xi,tbi + # i,t, (3.2)

where # i,t ⇠ N(0, s2
i ), wi,t =

⇣
�yi,t, . . . , �yi�1,t

⌘0
, xi,t =

⇣
1, yt�1, . . . , yt�p

⌘0
,

bi =
⇣

B0,i, B1,i, . . . , Bp,i

⌘0
and ai is the ith row of A and is equal with ai =

3Writing the MF-VAR with S being diagonal greatly reduces the computational burden since it allows
for equation-by-equation estimation of the model (see, e.g., in Carriero, Clark, and Marcellino (2019))

4For simplicity, this specification does not include intercepts, more lags nor the state level exogenous
variables. In our empirical work we include all of these and set the lag length equal to 2.
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⇣
Ai,1, Ai,2, . . . , Ai,i�1

⌘0
, B0,i denotes the ith element of B0, Bj,i denotes the ith row

of Bj.

The model can be re-written as:

yi,t = Xi,tqi + # i,t (3.3)

where # i,t ⇠ N(0, s2
i ), Xi,t =

⇣
wi,t, xi,t

⌘
and qi =

⇣
a0

i, b0

i

⌘0
and the dimension of qi

is ki = Np + i for i = 1, . . . , N.

Since most of the values of yt are not observed and treated as latent states, the MF-

VAR is a state space model, where eq. (3.1) provides us with the state equations. The

measurement equations in the state space model specify the observability conditions

for every variable and link them to the unobserved latent states via inter-temporal re-

strictions. In our model we have a three-way frequency mismatch involving variables

which are observed at monthly, quarterly and annual frequencies. Different inter-

temporal restrictions apply for the various frequency mismatches.

Remember that quarterly state level GDP growth is available after 2005. To avoid a

non-linear measurement equation, we proxy the weights in the inter-temporal restric-

tion by 1/3. The inter-temporal restriction linking this to its monthly state counterpart

post-2005 can be shown to be:

ys
a,q,t =

1
3

ys
a,m,t +

2
3

ys
a,m,t�1 + ys

a,m,t�2 +
2
3

ys
a,m,t�3 +

1
3

ys
a,m,t�4, (3.4)

for s = 1, . . . , S. An inter-temporal restriction of the same form links monthly U.S.

GDP growth to its observed quarterly value:

yUS
q,t =

1
3

yUS
q,m,t +

2
3

yUS
q,m,t�1 + yUS

q,m,t�2 +
2
3

yUS
q,m,t�3 +

1
3

yUS
q,m,t�4. (3.5)

Prior to 2005, state level GDP growth was only observed annually and the inter-

temporal restriction linking the observed quantity to the desired monthly quantity
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is:

ys
a,t =

1
12

ys
a,m,t +

2
12

ys
a,m,t�1 +

3
12

ys
a,m,t�2 +

4
12

ys
a,m,t�3 +

5
12

ys
a,m,t�4 +

6
12

ys
a,m,t�5

+
7
12

ys
a,m,t�6 +

8
12

ys
a,m,t�7 +

9
12

ys
a,m,t�8 +

10
12

ys
a,m,t�9 +

11
12

ys
a,m,t�10 +

12
12

ys
a,m,t�11

+
11
12

ys
a,m,t�12 +

10
12

ys
a,m,t�13 +

9
12

ys
a,m,t�14 +

8
12

ys
a,m,t�15 +

7
12

ys
a,m,t�16 +

6
12

ys
a,m,t�17

+
5
12

ys
a,m,t�18 +

4
12

ys
a,m,t�19 +

3
12

ys
a,m,t�20 +

2
12

ys
a,m,t�21 +

1
12

ys
a,m,t�22, (3.6)

for s = 1, . . . , S. Note that Koop, McIntyre, Mitchell, and Poon (2022) are adding

errors to all of the inter-temporal restrictions, since they use the exact growth rates that

involves an approximation. In this case, we proxy the weights in the inter-temporal

restriction by 1/12.

A final measurement equation is obtained through a cross-sectional restriction which

arises from the fact that U.S. GDP is the sum of the GDP of all states. For exact growth

rate data, this can be show to be (see Koop, McIntyre, Mitchell, and Poon (2020b)):

yUS
q,t =

S

Â
s=1

ws
t y

s
a,q,t + ht, ws

t =
ys

a,q,t�1

ÂS
s=1 ys

a,q,t�1
, (3.7)

where ws
t is the share of regional output in aggregate output at quarter t and ht ⇠

N (0, cs2). We proxy ws
t by the observed annual shares, noting that we expect to see

little within-year variation in these weights. In the measurement equation we add an

error since the cross-sectional restriction involves an approximation, since state-level

GDP need not sum to U.S. GDP. We implement this using a method developed in

Doran (1992) that preserves the linear structure of the state space. This measurement

equation only applies prior to 2005. We find that the inclusion of this method improves

estimation precision; and of course the restriction ensures that our new quarterly re-

gional data are consistent with the observed quarterly U.S. totals.

In summary, our MF-VAR is a state space model with state equations given by eq.

(3.1) and measurement equations given by eq. (3.4) – (3.7). The first of the measure-

ment equations applies from 2005 onwards and the last two apply up to 2005. Given

a prior (see below), standard Bayesian MCMC methods for state space models exist

for carrying out posterior and predictive analysis with this MF-VAR. See, for instance,

Schorfheide and Song (2015) for a conventional MF-VAR, Koop, McIntyre, Mitchell,
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and Poon (2020b) for a MF-VAR with a regional structure similar to that in this Chap-

ter and Koop, McIntyre, Mitchell, and Poon (2020a) for a case where the frequency

mismatch changes over time.

3.2.3 The Prior

The MF-VARs estimated in this Chapter are relative high-dimensional, including more

than 50 covariates/states. When working with VARs of this dimension, there is a

strong need for prior shrinkage and many alternatives have been proposed in the

literature including forms inspired by the classic Minnesota prior such as Banbura,

Giannone, and Reichlin (2010), variable selection priors proposed by Korobilis (2013)

and global-local shrinkage priors developed in Kastner and Huber (2020). With MF-

VARs the need for prior shrinkage becomes even more important due to the need

to additionally estimate the high frequency values of the variables which are only

observed at a low frequency. In this Chapter, we adopt the global-local hierarchical

shrinkage priors. Specifically, we adopt the horseshoe prior proposed by Carvalho,

Polson, and Scott (2010) as a method for shrinkage in the presence of sparsity.

The horseshoe prior belongs to the family of global-local shrinkage priors. We im-

plement the horseshoe prior one equation at a time. That is, each equation in the

MF-VAR has its own prior, which allows for a different degree of shrinkage in each

equation. For equation i, we have a global shrinkage prior parameter, ti, and a local

shrinkage parameter, lij, which is specific to the jth coefficient. The horseshoe prior

has properties which are often found advantageous in sparse models. Specifically, it

aggressively penalises small coefficients, but applies minimal shrinkage to large co-

efficients. Thus, the noise provided by large numbers of irrelevant coefficients in the

MF-VAR is largely removed and the signal provided by the few non-zero coefficients

is more precisely estimated in a data-based fashion.

A conventional horseshoe prior, for the ith VAR equation, qi i = 1, . . . , N, is the follow-

ing:

qi|L2
i , t2

i , s2
i ⇠ N

�
0, L2

i t2
i s2

i
�

, L2
i = diag(l2

i,1, . . . , l2
i,ki
) (3.8)

s2
i ⇠ IG

�
ns, Ss

�
, (3.9)

t2
i ⇠ C+ (0, 1) , (3.10)

l2
i,j ⇠ C+ (0, 1) , j = 1, ..., ki. (3.11)
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We assume that ns = 10 and Ss = 0.04. These values imply that prior means of s2

is 0.001 which is roughly consistent with the magnitude of our growth rates data, but

relatively non-informative.

Despite its advantages, the horseshoe specification results in a non-standard condi-

tional distribution, thus making standard Gibbs sampler intractable. There are var-

ious specifications of the horseshoe prior and associated MCMC sampling schemes.

Neal (2003) and Polson, Scott, and Windle (2014) proposed the use of a slice sampler

that allows t2
i and l2

i,j to update efficiently in high-dimensions which we follow.

The above hierarchy makes Gibbs sampling from the posterior distribution straight-

forward:

1. The conditional posterior distribution of the regression coefficients qi is drawn

as follows:

qi|L2
i , t2

i , s2
i ⇠ N

⇣
A�1

i X
0

iyi, s2
i A�1

⌘
, (3.12)

where Ai =
⇣

X0

i Xi + L�1
?

⌘
, L? = t2

i L2
i . We use the efficient algorithm of Bhat-

tacharya, Chakraborty, and Mallick (2016) to sample them.

2. The conditional posterior distribution of s2
i is drawn as follows:

s2
i ⇠ IG (n̄s, S̄s) , (3.13)

where n̄s = (T + Ki)/2 and S̄s = (yi � Xiqi)
0

(yi � Xiqi) /2 + q
0

iL
�1
? qi/2.

3. The conditional posterior distribution of t2
i is drawn as follows:

• set hi = 1/t2
i

• sample u from

u|hi ⇠ U

✓
0,

1
1 + hi

◆
, (3.14)

• sample hi from

hi ⇠ g

0

@(ki + T)/2, u
2s2

i

Â( qi
li,j

)2

1

A , (3.15)

where g is s the lower incomplete gamma function

• set ti =
1

p
hi

.

4. The conditional posterior distribution of l2
i,j is drawn as follows:
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• set hi,j = 1/l2
i,j

• sample u from

u|hi,j ⇠ U

✓
0,

1
1 + hi,j

◆
, (3.16)

• sample hi,j from

hi,j ⇠ e
q2
i

2s2
i

hi,j
I
✓

u
1 � u

> hi,j

◆
(3.17)

• set li,j =
1

p
hi,j

.

The reader is referred to Bhattacharya, Chakraborty, and Mallick (2016) for precise

details about the efficient sampler for the Normal distribution, which makes full use

of the Woodbury identity in order to sample q efficiently.

3.2.4 State Space setup

Suppose yt is a N-dimensional series, in which not all of its variables will be observed

at every period under a mixed frequency setup. We consider yt = (yUS
m,t, yUS

q,t , yS
a )

0 ,

where Nm collects the monthly U.S. variables, yUS
m,t, such as inflation, Nq collects the

quarterly U.S. and state variables post-2005, yUS
q,t ,yS

q,t, respectively, that are observed

every quarter and finally Na collects the annual GDP by state, which is observed every

year pre-2005. It holds that N = Nm + Nq + Na.

To describe the monthly and quarterly dynamics, we denote yq,m,t, ya,m,t, ya,q,t as the

monthly and quarterly latent variables underlying the quarterly series and annual

series, yUS
q,t ,yS

q,t and yS
a , respectively. As we describe in Subsection 3.2.5 we run our

MCMC in two steps; the former considers the annual-quarterly mismatch, while the

latter depicts the monthly – the quarterly frequency. We combine these latent vari-

ables with the indicators observed at the quarterly and monthly frequency in Xk
t =

[XHF
t , XLF

t ], k = 1, 25. Clearly, when k = 1, HF is the quarterly data and LF is the an-

nual variables, while when k = 2, HF is the monthly indicator and LF is the quarterly

series.

To alleviate the computational burden of the state space MF-VAR we follow Schorfheide

and Song (2015) and Ankargren and Jonéus (2019). This suggests that monthly vari-

ables can be omitted from the state equation and instead enter the system through the
51 corresponds to quarterly indicators, while 2 depicts the monthly latent variables and HF stands for

high frequency data and LF for low frequency
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exogenous terms of the state-space model. However, this implies that the state and

measurement errors will be correlated, which requires the use of an algorithm based

on a state-space model with between-equation correlation. The companion form of

the monthly VAR specified in eq. (3.3) together with a measurement equation for yt

delivers the common two-equation state-space system given by

yt = Ct + ZtSt + Gtet (3.18)

St = Dt + TtSt�1 + Htet (3.19)

et ⇠ N (0, IN) , (3.20)

where

Zt =

 
0NHF⇥NLF FHF,LF

LLF 0NLF⇥NLF

!
, Tt =

 
FLF,LF 0NLF⇥NLF

IpNLF 0pNLF⇥NLF

!
, (3.21)

Ct =

 
FHF,HF FHF,0

0NLF⇥NHF 0NLF⇥1

! 
ym,t�1:t�p

1

!
+

 
bXHF,t�1:t�p

0NLF⇥1

!
, (3.22)

Dt =

 
FLF,HF FLF,0

0pNLF⇥pNHF 0pNLF⇥1

! 
ym,t�1:t�p

1

!
+

 
bXHF,t�1:t�p

0NLF⇥1

!
, (3.23)

Gt =

 
S1/2

HF

0NLF⇥N

!
, Ht =

 
S1/2

LF

0pNLF⇥N

!
, S1/2

t =

 
S1/2

HF

S1/2
LF

!
. (3.24)

We present the companion form of the VAR at the high frequency as:

0

BBBBB@

Xk
t

Xk
t�1
...

Xk
t�p+1

1

CCCCCA
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0

BBBBB@
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0
...

0

1

CCCCCA
+

0

BBBBB@

F1 F2 . . . Fp�1 Fp

IN 0 . . . 0 0
...

... . . . ...
...

0 0 . . . IN 0

1

CCCCCA

0

BBBBB@
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t�1

Xk
t�2
...

Xk
t�p

1

CCCCCA
+

0

BBBBB@

ut

0
...

0

1

CCCCCA
(3.25)

St =

0

BBBBB@

Xk
t

Xk
t�1
...

Xk
t�p+1

1

CCCCCA
, F0 =

 
FHF,0

FLF,0

!
, Fi =

 
FHF,HF FHF,LF

FLF,HF FLF,LF

!
. (3.26)

Finally, in eq. (3.21) we augment Zt with the cross sectional restriction. The term

bXHF,t�1:t�p collects the monthly state level indicators.
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We use algorithm 2 of Durbin and Koopman (2002) and generate draws for the poste-

rior distribution P(S|Q, Y) as follows:

1. Generate an artificial sample from eq. (3.18), (3.19) ; {s+t , y+t }T
t=1

2. Set y?t = yt � y+t and use Kalman smoothing to get ŝ?t

3. Take a draw {s+t ,+ŝ?t }T
t=1 from P(S|Q, Y).

Finally when smoothing y?t , we set the constant terms equal to zero as in Jarociński

(2015).

3.2.5 A Computationally Efficient Approximate MCMC Algorithm

Bayesian inference in MF-VARs is implemented using MCMC methods. For the con-

ventional MF-VAR with a single frequency mismatch and no cross-sectional restric-

tions, the algorithm of Schorfheide and Song (2015) is commonly used. Koop, McIn-

tyre, Mitchell, and Poon (2020b) extend this algorithm to a MF-VAR with a cross-

sectional restriction. Koop, McIntyre, Mitchell, and Poon (2020a) further extend the

algorithm for the case where the frequency mismatch changes over time. Small adap-

tations of these algorithms are required to handle the three-way frequency mismatch

involved in our U.S. state-level application. We have done such adaptations, but have

found that the MCMC algorithm is simply too slow6 to carry out extensive empiri-

cal work or a pseudo-real time forecasting exercise. The fact that MCMC methods

are not scalable to models with high-dimensional parameter spaces is well-known

to Bayesian econometricians. This lack of scalability is a particular problem in large

VARs and has led to the use of approximate methods. For instance, Gefang, Koop, and

Poon (2020) develop Variational Bayesian (VB) methods for the MF-VAR. VB methods

are computationally efficient but are approximations. It is well-known that, although

they provide accurate approximations to posterior means, they tend to under-estimate

posterior variances. In a forecasting exercise this leads to an under-estimation of pre-

dictive variances, see the discussion in Gefang, Koop, and Poon (2020). In this Chap-

ter, we propose an approximate method specifically designed for the MF-VAR with

a three-way frequency mismatch which does not rely on VB methods or similar. It is

6The empirical work in this Chapter would take months on a high quality personal computer.
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MCMC-based and allows for full exploration of the high-dimensional posterior and

accurate reflection of posterior and predictive uncertainty.

MCMC algorithms for drawing the parameters of an MF-VAR (conditional on draws

of latent states for the low frequency variables) are standard. Conditional on the la-

tent states, the model reduces to a VAR, for which Bayesian methods are available.

For instance, Gibbs samplers for Bayesian VARs with several global-local shrinkage

including the horseshoe are given in Gefang, Koop, and Poon (2020). Hence, we will

not describe them here nor explicitly list the VAR parameters as conditioning argu-

ments in this Subsection. Instead, we will develop methods for drawing monthly

GDP growth (conditional on draws of the parameters). As noted above, the proposed

model is a linear state space model and standard methods exist for drawing latent

states in such models. However, the exact MCMC algorithm is very computationally

burdensome in large dimensional MF-VARs (e.g. N > 50) such as the ones used in this

Chapter. In practice, we find that the main computational bottleneck lies in the parts

of the model involving the annual-monthly frequency mismatch and, in particular,

the fact that in the inter-temporal restriction, given in eq. (3.6), which involves over

20 lags. Accordingly, we develop an approximate MCMC algorithm which avoids the

use of the annual-monthly inter-temporal restriction. The idea underlying our algo-

rithm is that it is much faster to draw from two separate algorithms, one involving

a quarterly-monthly frequency mismatch and the other a quarterly-annual mismatch.

Below we describe the MCMC algorithm.

Consider an MCMC algorithm which produces draws of state level monthly and quar-

terly GDP growth rates given U.S. data and annual state level data. The posterior in

this case is p(yS
a,m, yS

a,q|yS
a , yUS

q , yUS
m ). A simple rule of probability implies:

p(yS
a,m, yS

a,q|y
S
a , yUS

q , yUS
m ) = p(yS

a,m|y
S
a,q, yS

a , yUS
q , yUS

m )p(yS
a,q|y

S
a , yUS

q , yUS
m ) (3.27)

The first of the term on the right-hand side of eq. (3.27) can be simplified to p(yS
a,m|yS

a,q, yUS
q , yUS

m )

since, conditional on knowing the quarterly growth rates (yS
a,q), the annual growth

rates yS
a provides no additional information. This is the posterior that arises in a con-

ventional MF-VAR involving a quarterly/monthly frequency mismatch, where an-

nual quantities are not considered. The MCMC algorithm for such a posterior is stan-

dard (see, e.g., Schorfheide and Song (2015)).
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The second term on the right-hand side of eq. (3.27) involves quarterly, monthly

and annual variables and thus requires an annual-monthly inter-temporal restriction.

Consider the posterior p(yS
a,q|yS

a , yUS
q , yUS

m,q), which is identical to p(yS
a,m|yS

a,q, yUS
q , yUS

m )

except for the fact that yUS
m is replaced by yUS

m,q (i.e. monthly employment growth rates

have been replaced by quarterly growth rates). The MCMC algorithm for this pos-

terior is also a conventional one for an MF-VAR involving an annual/quarterly fre-

quency mismatch as in, e.g., Koop, McIntyre, Mitchell, and Poon (2020b).

The reasoning above suggests the following strategy: use two conventional MF-VARs,

one with a quarterly/monthly frequency mismatch and another with an annual/quar-

terly frequency mismatch. Draws of yS
a,q produced by the algorithm of the second MF-

VAR are then conditioned on in the first MF-VAR model. We find that this strategy is

much more computationally efficient than drawing directly from the algorithm with

the three way frequency mismatch, since it avoids dealing with the computational

bottleneck caused by having annual and monthly variables in the same model.

This strategy is an approximate one since the algorithm which produces quarterly

draws of state level GDP growth is conditional on quarterly employment growth in-

stead of monthly. But the loss of information is likely to be small (i.e. to produce

quarterly estimates of state level GDP knowing the U.S. quarterly quantities will be

useful, but knowing them at the monthly frequency is likely to provide only minimal

improvements). We stress that this approximation is only used in one part of the al-

gorithm. The important part of the algorithm is p(yS
a,m|yS

a,q, yUS
q , yUS

m ), which produces

the draws of monthly GDP growth for each state. This does condition on the monthly

data and, thus, our monthly estimates of state level GDP growth do reflect the infor-

mation contained in monthly predictors. If we further consider that this approximate

algorithm is only used for producing pre-2005 draws of quarterly state level GDP

growth (since subsequently quarterly state level data is available), the argument in

favor of gaining large computational benefits by using this approximate algorithm is

strengthened.

Evidence on the accuracy of this algorithm is provided in the Monte Carlo Section

below.
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3.2.5.1 Monte Carlo

In this Section we use Monte Carlo experiments in order to study the finite proper-

ties of our MF-BVAR using the traditional slow algorithm, henceforth Model 1 (i.e.

monthly – quarterly – annual) and MF-BVAR using the efficient fast algorithm see eq.

(3.27), henceforth Model 2 (i.e. first estimate the model at quarterly – annual frequency

and get the historical estimates for the quarterly variable, then estimate the model at

quarterly – monthly and produce the monthly variable). We generate artificial data

{yt} with three regressors measured at monthly, quarterly and annual frequency. For

all experiments ut ⇠ iidN(0, s2), random variable independent of {Xt} and {st}.

We consider two Data Generating Processes (DGPs). The subscript denotes the fre-

quency each variable is being generated, where a, q, m stand for annual, quarterly and

monthly frequency, respectively.

We consider the following sample sizes, Nm 2 (120, 360, 600, 840), Nq 2 (40, 120, 200, 280)

and Na 2 (10, 30, 50, 70) with 10 replications. Each Gibbs sampler runs for 20,000

draws from which we discard 18,000.

In DGP II, the sample is adjusted to the max number of observations we can use i.e.

Nm 2 (120, 360, 600), Nq 2 (40, 120, 200) and Na 2 (10, 30, 50).

To evaluate the performance of the computationally efficient MCMC, we present (i)

the root mean squared error of Model 1, (ii) the root mean squared error of Model

2, (iii) the coverage ratio of lower bound 95% and (iv) the coverage ratio of upper

bound 95%. The coverage depicts how many times the mean posterior estimates of the

annual frequency variable of Model 2 lies inside the lower and upper 95th percentile

of Model 1 posterior mean.

We set the lag order of VAR p = 2 and assume the following:

btrue =

2
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DGP I: We consider the case of N (0, 1) simulated predictors that are simulated as

follows:

Yt = btrue ⇤ Yt�p + ut, ut ⇠ iidN(0, s2
true),

where Yt = [XNm , XNq , XNa ] is a Nm ⇥ 3 matrix, XNm ⇠ N(0, 1), is a Nm ⇥ 1 vector,

XNq ⇠ N(0, 1), is a Nq ⇥ 1 vector and XNa ⇠ N(0, 1), is a Na ⇥ 1 vector.

DGP II: We consider real data to simulate predictors as follows:

Yt = btrue ⇤ Yt�p + ut, ut ⇠ iidN(0, s2
true),

where Yt = [XNm , XNq , XNa ] is a Nm ⇥ 3 matrix, XNm = U.S. employment, is a Nm ⇥

1 vector, XNq = U.S. GDP, is a Nq ⇥ 1 vector and XNa = Alabama GDP, is a Na ⇥ 1

vector.

TABLE 3.1: DGP I: X is i.i.d.

MF-BVAR

Na Nq Nm [MSE Model 1 [MSE Model 2 Lower 95% coverage ratio Upper 95% coverage ratio

10 40 120 0.0139 0.0136 99.7500 99.4900
30 120 360 0.0120 0.0120 100.0000 99.9700
50 200 600 0.0118 0.0117 100.0000 100.0000
70 280 840 0.0129 0.0129 100.0000 100.0000

TABLE 3.2: DGP II: X is Real data

MF-BVAR

Na Nq Nm [MSE Model 1 [MSE Model 2 Lower 95% coverage ratio Upper 95% coverage ratio

10 40 120 0.0094 0.0094 100.0000 100.0000
30 120 360 0.0094 0.0094 100.0000 99.9700
50 200 600 0.0086 0.0086 99.9800 100.0000

Tables 3.1 and 3.2 show that the computationally efficient approximate MCMC al-

gorithm (Model 2) suggests results similar to the traditional slow MCMC algorithm

(Model 1) in terms of [MSE.
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3.3 Empirical Application

3.3.1 Data

Our underlying data are monthly, quarterly and annual U.S. macroeconomic vari-

ables, covering the period from January 1964 to December 2019, taken from Federal

Reserve Economic Data (FRED), Bureau of Economic Analysis (BEA) and Bureau of

Labor Statistics (BLS). Our dataset consists of the following monthly variables: civilian

unemployment rate, CPI, industrial production index, personal consumption expen-

diture, effective Federal Funds Rate, ten-year treasury rate, S&P500, average weekly

hours, real personal income, all employees (total non-farm), and oil prices. The fol-

lowing quarterly variables: real GDP, GDP by state (post 2005), fixed investment and

government expenditures. The annual frequency variables are: the GDP by state (pre-

2005). Further, we include the following state-level variables: real personal income,

wage and salary, initial claims, all employees (total non-farm), average weekly hours

and the unemployment rate. We relegate the rest of the information about the data to

the Data Appendix A.1.

3.3.2 Historical Estimates of monthly regional growth

We estimate the proposed MF-VAR-SV model on the 2019 vintage data, without a

ragged edge, to produce historical monthly estimates of real regional growth in the

U.S.. The full set of historical estimates are relegated to the end of this Chapter. In the

Appendix B.1, Figures 3.1 – 3.10 present the real estimates alongside the U.S. growth

rate from 1964 to 2019. In the next Section, we present how the historical estimates

can enrich our understanding of the U.S. economy. Before doing this we discuss some

features of the historical estimates. First, we inspect the 68% credible intervals around

our regional real GDP growth estimates and find that our regional estimates are quite

precise, as illustrated in Figure 3.1 – 3.10. Our credible intervals go to zero once per

year pre-2005 and once every quarter post 2005. The reason why we observe this

pattern is that we plot annualized quarterly and monthly estimates once a year and a

quarter, which impose the inter-temporal restriction in eq. (3.4) - (3.6), which is equal

to the actual observed annual regional growth rate.

Second, we repeat the analysis using the Minnesota prior as a further robustness

check. We find that, the estimates of regional monthly GDP growth produced by this
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prior are very similar to those produced using the Horseshoe prior. Results using the

Minnesota prior are available upon request.

Third, we re-estimated the MF-VAR-SV using growth rates in log differences (instead

of using the exact growth rate) and find results to show similar patterns. Results using

the log differences growth rate are available upon request.

3.3.3 Measuring the connectedness of U.S. states

We use the connectedness measures developed in Diebold and Yilmaz (2014) to com-

plement our historical estimates and examine the dynamic connections between the

U.S. states and U.S. macroeconomic variables.

To compute the connectedness measures we consider the generalised variance decom-

position following Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998) due

to its invariance to the ordering of the variables in the VAR. Each draw from our ap-

proximate MCMC algorithm provides the parameters in eq. (3.1) and we use these to

compute the variance decompositions. This provides us with draws of dh
n,j, that we

average to produce estimates, for n, j = 1, . . . , N.

We now define the forecast error at the hth horizon as

yN,t+h � yN,t(h) =
•

Â
i=1

Fiut+h�i, (3.28)

where Fi =
⇥
Fnj,i

⇤
NxN is the response of variable n to a unit shock uit, j = 1 . . . , N, i

periods ago. The forecast error variance decomposition is computed at horizon h = H
as

dH
nj =

s�1 ÂH�1
h=0

�
e0nFhSuej

�2

ÂH�1
h=0

�
e0nFhSuej

� , (3.29)

where en is the column nth of the In matrix. Due to the fact that forecast error variance

decompositions do not sum up to 1, we use the following normalization

cdH
nj =

dH
nj

ÂN
j=1 dH

nj
. (3.30)

It holds that ÂN
j=1
cdH

nj = 1 and ÂN
n,j=1

cdH
nj = N. Using these variance decompositions we

can define the total directional connectedness from other states to state n at horizon h
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as:

Connectedness from: Â
n 6=j

dh
nj. (3.31)

This is a measure of how information in other states impacts the forecast error variance

of region n (i.e. the summation is over j). Following Diebold and Yilmaz (2014) we call

this measure connectedness from. Then we define the total directional connectedness

to other regions from region j at horizon h is:

Connectedness to: Â
j 6=n

dh
nj. (3.32)

This is a measure of how information in state j impacts the forecast error variances of

other states (i.e. the summation is over n). This is called a connectedness to measure.

We emphasize that our connectedness measures are based on a monthly frequency

VAR. Thus, e.g., results for h = 1 measure connectedness in terms of the one month

ahead forecast error variances and results for h = 12 measure connectedness in terms

of the one year ahead forecast error variances. Since a key contribution of this Chapter

is to produce monthly estimates of state level GDP growth, in this Section we limit our

attention on the connectedness measures at h = 1 and h = 12. For ease of exposition

we split connectedness results into four blocks; the first three illustrate the connected-

ness from measures, while the last one depicts the connectedness to measures to other

variables. Specifically, the first block consists of the connectedness from results for the

U.S. macroeconomic variables, the second block depicts results for own state effects

and the third one consists of the impact from other states. Finally, the fourth block

shows the connectedness to measures.

Table 3.3 shows that in the short-run (h = 1) the degree of connectedness is high

and dominated by state-specific effects. This is seen by focusing on the own variable

block that illustrates the importance of state-specific effects. Across states, we see that

idiosyncratic or state-specific shocks explain up to 98% of short-run state growth dy-

namics. The connectedness from measure varies only slightly across states, but the

connectedness to measures vary more. For these, Alabama, Illinois and Pennsylva-

nia exhibit higher values than the other states indicating that these states have the

strongest effects on the others.

Table 3.4 contains the connectedness measures for h = 12 and shows a very different

picture. It indicates that the inter-connections between states are much higher at this
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longer forecast horizon. Across states, the idiosyncratic state-specific shocks typically7

now explain less, and the highest effect appears in North Dakota at 83%. These find-

ings show that state growth dynamics become much more important in explaining

state growth dynamics in the longer run.

7Koop, McIntyre, Mitchell, and Poon (2020b) observe similar behavior across the UK regions
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TABLE 3.3: Connectedness in percent (normalized to sum to 100) at h = 1 months

State Macroeconomic Variables Own State Other state To other

Alabama 4.33 93.92 1.76 5.29
Alaska 1.38 97.84 0.79 1.71
Arizona 1.44 97.88 0.69 1.66
Arkansas 2.39 96.57 1.04 2.77
California 2.03 97.38 0.60 2.20
Colorado 2.72 95.94 1.35 3.34
Connecticut 3.09 95.33 1.59 3.86
Delaware 1.41 97.75 0.85 1.81
District of Columbia 2.56 96.09 1.36 3.19
Florida 1.99 96.98 1.03 2.39
Georgia 3.58 94.45 1.98 4.72
Hawaii 1.85 96.98 1.17 2.40
Idaho 2.66 95.73 1.61 3.38
Illinois 3.78 94.12 2.11 5.00
Indiana 3.69 94.37 1.96 4.72
Iowa 2.98 95.41 1.62 3.80
Kansas 2.44 96.14 1.43 3.17
Kentucky 1.95 96.97 1.08 2.41
Louisiana 2.41 96.34 1.26 3.05
Maine 2.41 96.43 1.17 2.88
Maryland 2.55 96.16 1.30 3.16
Massachusetts 1.23 98.45 0.32 1.30
Michigan 1.30 98.20 0.50 1.44
Minnesota 2.04 96.98 0.99 2.41
Mississippi 2.07 96.90 1.03 2.48
Missouri 2.05 97.00 0.95 2.43
Montana 1.75 97.51 0.75 2.00
Nebraska 0.87 98.83 0.30 0.94
Nevada 1.55 97.69 0.77 1.83
New Hampshire 1.43 97.85 0.73 1.69
New Jersey 2.41 96.45 1.15 2.91
New Mexico 2.16 96.79 1.06 2.59
New York 2.40 96.51 1.10 2.84
North Carolina 2.60 96.30 1.11 3.07
North Dakota 1.35 98.00 0.65 1.58
Ohio 3.04 95.65 1.32 3.67
Oklahoma 1.43 97.73 0.85 1.81
Oregon 1.33 97.85 0.82 1.68
Pennsylvania 3.78 94.41 1.82 4.97
Rhode Island 2.63 96.09 1.28 3.22
South Carolina 2.06 96.94 1.00 2.48
South Dakota 2.11 96.89 1.00 2.54
Tennessee 2.54 95.87 1.60 3.52
Texas 1.83 97.05 1.12 2.39
Utah 2.85 95.58 1.57 3.64
Vermont 1.14 98.52 0.34 1.22
Virginia 1.51 97.83 0.66 1.73
Washington 2.37 96.28 1.36 3.04
West Virginia 2.73 95.67 1.60 3.52
Wisconsin 2.62 95.91 1.47 3.30
Wyoming 1.44 97.77 0.79 1.72
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TABLE 3.4: Connectedness in percent (normalized to sum to 100) at h = 12 months

State Macroeconomic Variables Own State Other states To other

Alabama 23.49 58.11 18.56 16.03
Alaska 13.84 76.63 9.75 48.26
Arizona 14.91 71.80 13.47 24.78
Arkansas 19.57 65.57 15.05 15.69
California 16.73 68.93 14.86 12.28
Colorado 17.27 70.07 13.05 15.44
Connecticut 18.22 66.71 15.36 15.97
Delaware 14.57 75.05 10.58 32.31
District of Columbia 18.80 69.19 12.22 11.17
Florida 15.44 67.02 17.84 10.18
Georgia 21.63 56.35 22.22 14.89
Hawaii 15.04 76.49 8.63 13.19
Idaho 15.07 72.78 12.43 18.05
Illinois 19.58 57.56 23.01 13.60
Indiana 21.24 47.21 31.73 17.39
Iowa 16.97 60.11 23.12 17.01
Kansas 16.85 64.29 19.05 10.13
Kentucky 16.51 65.24 18.61 9.25
Louisiana 14.10 74.42 11.67 14.54
Maine 18.03 65.55 16.63 10.93
Maryland 18.43 65.62 16.14 10.04
Massachusetts 15.30 65.57 19.81 9.66
Michigan 15.68 73.26 11.26 147.47
Minnesota 17.90 57.00 25.37 8.11
Mississippi 19.82 62.35 18.04 13.57
Missouri 18.60 59.63 21.94 10.55
Montana 17.87 67.84 14.48 19.43
Nebraska 15.08 63.74 21.36 9.28
Nevada 13.49 75.76 10.95 15.30
New Hampshire 14.33 73.36 12.65 32.29
New Jersey 18.10 64.09 17.99 9.38
New Mexico 14.94 74.13 11.12 22.21
New York 17.94 69.22 13.29 10.05
North Carolina 19.33 61.11 19.73 9.97
North Dakota 10.03 82.21 7.99 86.88
Ohio 19.04 45.23 35.89 10.57
Oklahoma 13.45 73.72 13.09 14.68
Oregon 16.12 70.58 13.78 18.01
Pennsylvania 20.17 62.59 17.39 12.20
Rhode Island 17.69 66.94 15.68 14.93
South Carolina 18.56 63.24 18.37 9.16
South Dakota 15.24 64.73 20.25 31.30
Tennessee 23.42 56.87 19.90 14.34
Texas 15.19 66.07 18.93 8.56
Utah 16.54 68.82 14.93 15.48
Vermont 12.85 74.57 12.80 17.46
Virginia 18.79 65.76 15.70 6.71
Washington 15.71 73.57 10.89 13.87
West Virginia 15.50 72.49 12.20 13.13
Wisconsin 18.73 59.67 21.75 11.18
Wyoming 13.00 76.38 10.81 30.61
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3.4 Conclusion

Specifically, the proposed model imposes inter-temporal and cross-sectional constraints

to ensure that the monthly estimates both ”add up” to published quarterly/annual

data and that the GDP estimates for the 50 states (plus DC) sum to published GDP

data for the U.S. as a whole. We develop a computationally-fast approximate Bayesian

Markov Chain Monte Carlo (MCMC) algorithm for estimating and nowcasting with

this large scale MF-VAR. The model is used to produce historical estimates of monthly

GDP for the 50 (plus DC) U.S. states back to the 1960s, and the utility of these esti-

mates is illustrated by using them to better understand business cycle dynamics and

cross-state dependencies. Further, we examine potential inter-connectedness among

the U.S. states and U.S. macroeconomic variables.
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A.1 Data Appendix (Chapter 3)

This appendix provides a discussion regarding the construction of the real-time data

set.

Our dataset consists of fourteen real-time macroeconomic U.S. nationwide data and

eight real-time macroeconomic U.S. state-level variables, which are available from the

ALFRED database maintained by the Federal Reserve Bank of St. Louis, from the

Bureau of Economic Analysis (BEA), from the Bureau of Labor Statistics (BLS) and the

Bloomberg database. Table 3.5 summarizes the series we use in this Chapter.

We use the same eleven real-time macroeconomic U.S. nationwide data as in the semi-

nal work of Schorfheide and Song (2015) and add the following three: All Employees,

Total non-farm, Personal Income and Crude Oil Prices. We added Personal income as

Arias, Gascon, and Rapach (2016) and Stock and Watson (1989) are using it to estimate

a monthly economic activity index for the United States.

Regarding the U.S. state level variables, normally, a range of economic indicators are

used to capture the U.S. state economies. Among them, the most comprehensive mea-

sure of economic activity in a state, is the real GDP by state, but is available at annual

frequency and with considerable publication lag, but the aim of this Chapter is to

shed light on this measure by providing a more timely and frequent monthly GDP by

state. As in Crone and Clayton-Matthews (2005) we add 3 monthly variables, namely

Nonagricultural payroll employment, Unemployment rate, Average hours worked

in manufacturing and one quarterly the real wage and salary disbursements. These

variables have been commonly used in the literature of constructing state level coin-

cident indexes, see Stock and Watson (1989) and Crone and Clayton-Matthews (2005).

Also, the Federal Reserve Bank of Philadelphia is using these variables to produce a

monthly coincident index for each state8.

Following Carlino, DeFina, and Sill (2001) and Arias, Gascon, and Rapach (2016), we

also use industry employment data specifically average hours worked at the Metropoli-

tan Statistical Areas (MSAs) level for seven industries: construction, manufacturing,

transportation and public utilities (TPU), wholesale and retail trade (Trade), finance,

insurance and real estate (FIRE), services, and government.

8State Coincident Indexes are available on https://www.philadelphiafed.org/surveys-and-data/
regional-economic-analysis/state-coincident-indexes

https://www.philadelphiafed.org/surveys-and-data/regional-economic-analysis/state-coincident-indexes
https://www.philadelphiafed.org/surveys-and-data/regional-economic-analysis/state-coincident-indexes
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As stated above, real GDP by state is available since 1977 only. For this reason we

use the nominal GDP by state which is available since 1963 and the GDP deflator

to produce real GDP by state from 1963 to 1976. Del Negro (2002) used U.S. GDP

deflator and CPI by state to produce real GDP, he finds that both deflators produce

similar results. For this reason we use the annual GDP by state (series ID: SAGDP2)

and the U.S. GDP deflator (series ID: Gross Domestic Product: Implicit Price Deflator

(A191RI1A225NBEA)). These two series IDs, namely SAGDP2 and A191RI1A225NBEA

are not included in Table 3.5. To produce real GDP by state we simply subtract the U.S.

GDP from the growth rate of nominal GDP by state.

We seasonally adjust the non-seasonal adjusted series using the X-13 ARIMA-SEATS

Seasonal Adjustment Program by the Census Bureau, in which we select the option for

X11 and we do this recursively. For the data transformation we use the ones proposed

by McCracken and Ng (2016), with the exception of U.S. GDP and GDP by state as we

want to use exact growth rate.
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B.1 Appendix (Chapter 3) – Exact Growth Rates

This appendix illustrates the historical estimates for the U.S. growth and the U.S.

growth by state.

FIGURE 3.1: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.2: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)



Appendix B. Appendix (Chapter 3) 71

FIGURE 3.3: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.4: Historical Estimates
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FIGURE 3.5: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.6: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.7: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.8: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.9: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)
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FIGURE 3.10: Historical Estimates of Monthly GDP in the U.S. and its 50 States (plus
Washington, DC)



Chapter 4

Deep Quantile Regression

4.1 Introduction

Since the seminal work of Koenker and Bassett Jr (1978) and Koenker and Hallock

(2001), quantile regression has grown in popularity and has found applications in

several disciplines both in academia and industry, see e.g. Chernozhukov and Umant-

sev (2001), Adams, Adrian, Boyarchenko, and Giannone (2021) and Koenker, Cher-

nozhukov, He, and Peng (2017). They generalize ordinary sample quantiles to the

regression setting, that give more extensive information on the conditional distribu-

tion of a dependent variable, given the covariates, relative to the classical regression

setting; i.e. estimation of the conditional mean. This extension can be of great im-

portance under extreme events, where the conditional distribution of variables such

as asset returns tends to exhibit skewness, or under the presence of outliers and/or

asymmetries, see e.g. Baur and Schulze (2005).

An assumption made in the early literature, was the linear association between the

conditional quantile of the target variable and predictors. This was predominately an

assumption that allowed for streamlined computation and theoretical inference, but

was clearly restrictive. A more recent strand of the literature, relaxed the linearity

assumption and considered non-parametric estimators for the conditional quantile,

that is based on different methods, see e.g. Belloni, Chernozhukov, Chetverikov, and

Fernández-Val (2019) and references therein. Recent advances in Machine Learning

(ML) literature, which is the focus of this Chapter, show how modelling frameworks

79
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such as neural networks can be used to estimate general, non-linear and potentially

highly complicated associations.

Specifically, a large number of studies have shown that feed-forward neural networks

can approximate arbitrarily well any continuous function of several real variables, see

e.g. Hornik (1991), Hornik, Stinchcombe, and White (1989), Galant and White (1992)

and Park and Sandberg (1991). Recent work by Liang and Srikant (2016) and Yarot-

sky (2017), extends this result for feed-forward neural networks with multiple layers,

provided sufficiently many hidden neurons and layers are available. Notice that, be-

sides neural networks, other non-parametric approaches, e.g. splines, wavelets, the

Fourier basis, as well as simple polynomial approximations, do have the universal

approximation property, based on the Stone-Weierstrass theorem.

There is considerable empirical work identifying non-linearities and asymmetries in

financial variables, see e.g. Gu, Kelly, and Xiu (2020a), Gu, Kelly, and Xiu (2020b),

He and Krishnamurthy (2013) and Pohl, Schmedders, and Wilms (2018), where they

illustrate that ML offers richer functional form specifications that can capture poten-

tial non-linearities between dependent and independent variables. Some examples

include Gu, Kelly, and Xiu (2020b) in which, they evaluate the forecast accuracy of

machine learning methods in measuring equity risk premia, and find that neural net-

works give substantial forecasting gains in asset pricing compared to linear models,

and Bucci (2020), where a recurrent neural network is proposed, that approximates

realised volatility well and outperforms other classic non-linear estimators in fore-

casting. In a similar fashion, Smalter Hall and Cook (2017) use several neural network

architectures to predict unemployment in the US and find that neural networks out-

perform forecasts from a linear benchmark model at short horizons. In addition, Gu,

Kelly, and Xiu (2020a) propose the use of a conditional Autoencoder1, and illustrate

its superior performance relative to linear unsupervised learning methods.

Before we discuss the contributions of this Chapter, we provide a succinct summary of

the current machine learning literature on non-linear quantile and Value-at-Risk (VaR)

estimation, but we note that the majority of this work, was not available during the

writing of this Chapter. Keilbar and Wang (2021) use neural networks to estimate a

non-linear conditional VaR model introduced by Tobias and Brunnermeier (2016) and

find that, it gives significant gains in modelling systemic risk. In addition, Tambwekar,

1Autoencoders are artificial neural networks that can be used as a dimensionality reduction tech-
nique.
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Maiya, Dhavala, and Saha (2021) estimate a non-linear binary quantile regression and

develop confidence scores to assess the reliability of prediction. Padilla, Tansey, and

Chen (2020) examine the performance of a quantile neural network using Rectified

Linear Unit (ReLU) as activation function. They derive a theoretical upper bound for

the mean squared error of a ReLU network and show that their non-linear quantile

estimator has strong performance of ReLU neural networks for quantile regression

across a broad range of function classes and error distributions. Chen, Liu, Ma, and

Zhang (2020) propose a unified non-linear framework, based on feed-forward neural

networks, that allows the estimation of treatment effects, for which they establish con-

sistency and asymptotic normality. Their framework includes the quantile estimator

and allows for high-dimensional covariates. ML based estimators for quantiles have

been proposed in other fields, see e.g. Meinshausen (2006), where quantile random

forests are introduced, and Zhang, Quan, and Srinivasan (2018) that propose a quan-

tile neural network estimator.

In this Chapter, we contribute to the expanding literature on the use of ML in Fi-

nance and propose a novel deep quantile estimator that can capture non-linear associa-

tions between asset returns and predictors and that also allows for high dimensional

data. We further consider an alternative architecture that allows the use of mixed fre-

quency data. We also contribute towards the explainable machine learning literature,

by proposing the use of partial derivatives as a means of ”peeking” inside the black

box.

We first explore the small sample properties of the proposed estimator via Monte

Carlo experiments, which show that the estimator delivers good finite sample perfor-

mance. Then we examine the performance of the proposed estimator, in the context

of one of the most widely examined problems in finance: that of measuring and sub-

sequently forecasting the risk of a portfolio adequately, via VaR modelling. VaR is a

popular model that was first introduced in the late 80s and since then, has become a

standard toolkit in measuring market risk. It measures how much value a portfolio

can lose within a given time period with some small probability, t. VaR and quantiles

are related in the following manner, let r = (r1, . . . , rT)
0 denote the returns of a portfo-

lio, then, the tth VaR is equivalent of computing the negative value of the tth quantile

of r, �qt(r).

In this Chapter, we argue, following the non-parametric literature, that the linear rela-

tionship between VaR and predictors can be restrictive and propose a quantile neural
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network estimator that allows a non-linear association between covariates and VaR.

This method appears particularly suitable for developing sound predictions for the

past stock return losses in the US over the sample period from September 1985 up

to August 2020, the importance of which has been brought to the forefront by the

recent COVID-19 pandemic. Specifically, our aim is to forecast ten-day ahead VaR
produced from daily VaR forecasts. We use daily frequency returns in a fixed fore-

casting framework that is outlined below. Under this forecasting framework, mixed

frequency models become relevant benchmarks to the non-linear quantile estimator,

see e.g. Ghysels, Plazzi, and Valkanov (2016). Hence, we also include a linear MIxed

DAta Sampling (MIDAS) model as a competitor and also a non-linear MIDAS model,

which is an extension to the deep quantile estimator. Further, we consider ten-day com-

pounded VaR forecasts that exhibit similar patterns, which we relegate to the Online

Appendix.

Shen, Jiao, Lin, Horowitz, and Huang (2021) use deep neural networks to examine the

convergence properties of a deep quantile Regression that can also mitigate the curse of

dimensionality under some assumptions. While their work focuses on the statistical

properties of deep quantile Regression, this Chapter uses ML based estimators to fore-

cast ten-day ahead VaR and examines whether deep neural networks have significant

gains over traditional forecasting methods. We are not the first to use ML methods

for VaR forecasting, see e.g. Du, Wang, and Xu (2019), where they propose a recurrent

neural network, as a novel forecasting methodology for the VaR model and exhibit

an improved forecast performance relative to traditional methods. To the best of our

knowledge though, there has been no application that uses a neural network quantile

estimator in finance for forecasting VaR. Note that in this Chapter we also consider a

large set of neural networks that also allow for mixed frequency estimation.

Our empirical analysis shows that the proposed deep quantile estimator outperforms

the linear , MIDAS and other non-parametric quantile models, in forecasting VaR. We

assess the forecasting accuracy between models based on two statistical tests. The

first is the Diebold and Mariano (1995) test with the Harvey, Leybourne, and New-

bold (1997) adjustment, and the second is the Giacomini and White (2006) test. Re-

sults from both tests suggest that our neural network estimator has higher accuracy in

forecasting VaR. We use the linear quantile method as a benchmark to assess whether

our proposed estimator has predictive gains or not. This measure illustrates gains up

to 74% relative to the linear one, for the deep quantile estimator and up to 76% for the
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non-linear MIDAS model. Further, we use the quantile score test that provides further

evidence in favour of our neural network estimator.

We further examine whether our proposed estimator nests forecasts produced from

the linear and other non-parametric models, using the encompassing test of Giacomini

and Komunjer (2005). Overall, we find that forecasts from the deep quantile estimator

encompass forecasts from competing models more times than vice versa. There are

some cases where the test is inconclusive, suggesting that a forecast combination from

a different pair of models would provide a better result, which is in line with the result

of Bates and Granger (1969).

While ML methods show a great capacity at both approximating highly complicated

non-linear functions and forecasting, they are routinely criticized as they lack inter-

pretability and are considered a ”black box”; in the sense that they do not offer simple

summaries of relationships in the data. Recently though, there has been a number of

studies that try to make ML output interpretable, see e.g. Athey and Imbens (2017),

Wager and Athey (2018), Belloni, Chernozhukov, and Hansen (2014), Joseph (2019). In

this Chapter we also try to understand in a semi-structural fashion, which variables

impact the forecasting performance of the deep quantile estimator more. To this end,

we first use Shapley Additive Explanation Values (SHAP) as proposed by Lundberg

and Lee (2017) and further developed in Joseph (2019), that have started to become a

standard tool for interpretability in ML methods. Further we use partial derivatives,

as a means of investigating the marginal contribution/influence of each variable to

the output. We compare the partial derivatives and SHAP values over time, and our

results can be summarised as follows. First, partial derivatives overall are more stable

than SHAP values, and are able to produce interpretable results, at a fraction of the

computational time of SHAP. Second, the partial derivatives of the deep quantile esti-

mator fluctuate around the estimate of the conditional linear quantile and i) exhibit

time variation and ii) can capture stressful events in the U.S. economy for instance the

COVID-19 pandemic and the 2008 financial crisis.

The remainder of the Chapter is organised as follows. Section 4.2 introduces the deep
quantile estimator. Section 4.3 contains the Monte Carlo exercise. Section 4.4 presents

our empirical application. Section 4.5 presents the semi-structural analysis. Conclu-

sions are set out in Section 4.6. We relegate to the Online Appendix the specifications

of the competing models, empirical results from one-step ahead VaR forecast, ten-day
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compounded VaR forecasts and results from the quantile score test and predictive

gains.

4.2 Theory

In this Section we start by summarising the underlying theory of a quantile regression

as outlined by Koenker and Bassett Jr (1978) and Koenker (2005) and argue that the

linear relationship of the conditional quantile between a dependent variable given

the covariates, can be restrictive. We illustrate how some fundamental results on the

universal approximation property of neural networks can be used to approximate a

non-linear relationship instead, and propose a deep quantile estimator. We conclude

with a discussion on how different penalisation schemes can be used and further how

hyper-parameters can be selected via Cross Validation (CV).

4.2.1 Linear Quantile Regression

The standard goal in econometric analysis is to infer a relationship between a depen-

dent variable and one or more covariates. Let {yt,xt}
T
t=1 be a random sample from

the following linear regression model

yt = x0
t�+ ut, (4.1)

where yt is the dependent variable at time t, � =
�

b1, . . . , bp
�0 is a vector of unob-

served slope parameters, xt =
�
xt1, . . . , xtp

�0 is a vector of known covariates, and ut is

the random error of the regression which satisfies E(ut|xt) = 0. Standard regression

analysis tries to come up with an estimate of the conditional mean of yt given xt, that

minimises the expected squared error loss:

b� = arg min
�

1
T

T

Â
t=1

�
yt � x0

t�
�2 . (4.2)

This can be restrictive though, when i) non-linearities and outliers exist and ii) since

it provides just an aspect of the conditional distribution of yt, given xt by construc-

tion. These potential limitations led to the development of quantile regression. In
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their seminal work, Koenker and Bassett Jr (1978) generalise ordinary sample quan-

tiles to the regression setting, that give more complete information on the conditional

distribution of yt given xt, for which we now provide a succinct description.

The quantile regression model can be defined as

Qy (t|xt) = x0
t� (t) , t 2 (0, 1), (4.3)

such that yt satisfies the quantile constraint Pr[yt  x0
t� (t) |xt] = t, where � (t) are

regression coefficients that depend on t. Quantile regression tries to come up with

an estimate for the tth conditional quantile, bQy (t,xt) := b�(t), by minimizing the

following function

b� (t) = arg min
�

1
T

T

Â
t=1

rt
�
yt � x0

t� (t)
�

, (4.4)

where rt (·) is the quantile loss function defined as

rt (ut) =

8
<

:
tut (t) , if ut (t) � 0

(1 � t) ut (t) , if ut (t) < 0

and ut (t) = yt � x0
t� (t). The quantile estimator in eq. (4.4), provides i) much richer

information on the whole conditional distribution of yt as a function of xt, and ii) more

robust estimates under the presence of outliers and non-linearities, when compared

to the ordinary least squares estimator.

Notice that the linear association assumption, Qy (t|xt) = x0
t� (t), can be generally

restrictive. Instead, we consider the case of the following non-linear association,

Qy (t|xt) = ht (xt) ,

where ht (·) is some unknown, (potentially highly) non-linear function. In this Chap-

ter we propose an estimation strategy to approximate ht (xt) with neural networks us-

ing their universal approximation property. Specifically, we assume that there exists a

neural network with a function Gt (xt,w), to be defined below, that can approximate

ht (xt) well. Before we illustrate how our methodology is implemented, we provide

a discussion on how neural networks can approximate ht (xt).
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4.2.2 Neural Networks

In this Chapter, we limit our attention to feed-forward neural networks, to approximate

ht(xt). This architecture consists of an input layer of covariates, the hidden layer(s)

where non-linear transformations of the covariates occur, and the output layer that

gives the final prediction. Each hidden layer has several interconnected neurons relat-

ing it to both the previous and the next one. Specifically, information flows from one

layer to the other, via neurons only in one direction, and the connections correspond

to weights. Optimising a loss function w.r.t these weights makes neural networks ca-

pable of learning.

Throughout our exposition, L denotes the total number of hidden layers, a measure

for the depth of a neural network, and J(l) denotes the total number of neurons at

layer l, a measure for its width. We start by presenting a general definition of a deep

(multi-layer) feed-forward neural network. Let sl(·), l = 0, . . . , L be the activation

function used at the lth layer, that is applied element-wise and induces non-linearity.

We use the ReLU activation function, sl (·) = max (·, 0), for l = 1, . . . , L � 1 and a

linear one for the output layer, l = L. We denote by g(l) the output of the lth layer

which is a vector of length equal to the number of the J(l) neurons in that layer, such

that g(0) = xt. Then, the overall structure of the network is equal to:

Gt (xt,w) = g(L)
⇣

g(L�1)
⇣

. . .
⇣

g(1) (·)
⌘⌘⌘

, (4.5)

where

g(l) (xt) = sl

⇣
W (l�1)g(l�1) + b(l)

⌘
, l = 1, . . . , L, (4.6)

W (l) is a J(l) ⇥ J(l�1) matrix of weights, b(l) is a J(l) ⇥ 1 vector of biases giving an over-

all vector w =
⇣

vec(W (0))0, . . . , vec(W (L))0, b(1)0 , . . . , b(L)0
⌘0

of trainable parameters of

dimensions J(l)(1 + J(l�1)) total number of parameters in each hidden layer l, J(0) = p
and J(L) = 1.

According to various universal approximation theorems (see e.g. the theoretical re-

sults in Hornik (1991), Hornik, Stinchcombe, and White (1989), Galant and White

(1992), Kapetanios and Blake (2010), Liang and Srikant (2016) and Yarotsky (2017)),

Gt(xt,w) can approximate arbitrarily well ht(xt), such that, for any e > 0,

sup
t

|Gt (xt,w)� ht(xt)| < e. (4.7)
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In this sense, the above (e)-approximation can be seen as a sieve type non-parametric

estimation bound, where e can become arbitrarily small by increasing the complexity

of Gt (xt,w).

The increase in complexity can occur, either by letting L ! •, which stands for deep
learning, or by letting J(l) ! •. While asymptotically, both ways deliver the same

results (see e.g. Farrell, Liang, and Misra (2021) and references therein), the approx-

imation error has been shown to decline exponentially with L, see e.g. Babii, Chen,

Ghysels, and Kumar (2020) but only polynomially with J(l), providing some evidence

for the prevalent use of deep learning. Notice that there also exists an alternative

approximation theory for sparse deep learning, see e.g. the work of Schmidt-Hieber

(2020). As an illustration, in the Online Appendix we depict a simple feed-forward neu-

ral network with two inputs, two hidden layers, a total of five neurons and one output

layer.

4.2.3 Non-linear Quantile Regression

We assume that the conditional quantile follows a non-linear relationship Qy(t|xt) =

ht(xt) and there exists a function Gt(xt,w), that can (e)-approximate ht(xt), see the

bound in eq. (4.7). Using this assumption, we can formally define the conditional

quantile function as the following approximation

Qy (t|xt) = Gt (xt,w) + O (#) ,

where Gt (xt,w) is the unknown non-linear function we want to estimate in order to

approximate ht(xt). We obtain the deep neural network conditional quantile estimate

from the solution of the following minimization problem:

Qy (t|xt) = arg min
w

1
T

T

Â
t=1

rt (yt � Gt(xt,w)) , (4.8)

where w = (vec(W (0))0, . . . , vec(W (L))0, b(1)0 , . . . , b(L)0)0 contains all model parame-

ters, and Gt(xt,w) denotes the overall non-linear mapping, described in eq. (4.5) and

(4.6). Notice that the choice of Gt (xt,w) will govern whether the model is para-

metric or non-parametric. If the number of neurons and layers is small, then the

model is parametric, if the above number becomes large, then the model becomes
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non-parametric, since the number of estimated parameters increases with the sample

size, similar to sieve non-parametric approximations.

To allow the use of mixed frequency data, we can make the following changes to the

structure of the network Gt(xt,w):

In the input layer, we implement frequency alignment on each input variable xt ac-

cording to the corresponding maximum lag order K. Thus, each high frequency pre-

dictor xt is transformed into a low frequency vector x?t = B(Lj;#)xt,

B(Lj;#) =
K

Â
k=0

B(k;#)Lk
j, B (k;#) =

exp(J1k + J2k2)

ÂK
k=1 exp(J1k + J2k2)

, (4.9)

where B (k;#) is the normalised Almon polynomial, Lk
j is a lag operator such that

Lk
jxj

t = xj
t�k; the lag coefficients in B(k;#) of the corresponding lag operator Lk are

parameterised as a function of a small dimensional vector of parameters #. We use this

weight function on the frequency alignment vector to reduce the number of param-

eters and ensure a parsimonious specification. As a consequence, the low frequency

variable x?
t which has the same frequency as the output yt is obtained. The rest of the

architecture of the deep MIDAS follows the architecture of the deep quantile estimator,

but instead of using xt in eq. (4.6), we use x?
t .

4.2.4 Regularized Non-Linear Quantile Regression

Neural networks have a great capacity to estimate non-linear relationships from the

data, but this comes at a cost, since they are prone to over-fitting. This can lead to a

severe drop in their forecasting performance, especially in small samples. There is a

variety of commonly used techniques in ML, see e.g. Gu, Kelly, and Xiu (2020a) for a

good summary, that can be used to ease this impact, originally coming from the high-

dimensional statistical literature. The reader is also referred to Goodfellow, Bengio,

and Courville (2016) for an excellent summary of different topics on the implementa-

tion of neural networks, including regularization.
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4.2.4.1 Regularization

A common solution to this caveat is regularization, where a penalty term is imposed

on the weights of the neural network and is appended in the loss function. Regulariza-

tion, generally improves the out-of-sample performance of the network by decreasing

the in-sample noise from over-parameterization, utilising the bias-variance trade-off.

Further, another benefit of regularization is that it provides computational gains in

the optimization algorithm. The penalised loss function, for a given quantile t, can be

written as:

L(Gt(xt,w), yt) =
1
T

T

Â
t=1

rt(yt � bGt(xt,w)) + f(w), (4.10)

where the penalty term is

f(w) =

8
>>>>>>><

>>>>>>>:

l kwk1, Lasso

l kwk2
2, Ridge

l(1 � a)kwk1 + lakwk2
2, Elastic Net

0, otherwise

,

and l and a are tuning parameters, for which we discuss their selection below. Gener-

ally, there is a plethora of loss functions, and the choice among them, depends mainly

on the task at hand. In this Chapter we use the quantile loss function. The different

penalisation schemes on f(w) work as follows: deep LASSO or l1-norm penalisation,

is a regularization method that shrinks uniformly all the weights to zero, and some

at exactly zero. The latter is referred to as the variable selection property of the deep
LASSO. Deep Ridge works in a similar manner to the deep LASSO, by shrinking the

weights, uniformly to zero, but not at exactly zero. Finally, the deep Elnet2 is a combi-

nation of deep LASSO and deep Ridge, that has been shown to retain good features from

both methods, see e.g. Zou and Hastie (2005).

4.2.4.2 Cross Validation

We use Cross Validation (CV) to calibrate all the different (hyper)-parameters outlined

above, and aim to maximise the out-of-sample (forecasting) performance of the net-

work.
2Deep Elastic net
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Our CV scheme consists of choices on: i) the total number of layers (L) and neurons

(J), ii) the learning rate (g) for the Stochastic Gradient Decent (SGD), iii) the batch size,

dropout rate and the level of regularization. Regarding the choice on the activation

function, we use ReLU for the hidden layers and a linear function for the output layer.

Overall, our aim is to build a neural network that has the best pseudo-out-of-sample

(POOS) performance. To achieve this, we need to evaluate the model, select the op-

timal parameters and hyper-parameters and test its POOS behaviour. It is clear that

tuning all these different architectures, parameters and hyper-parameters increases

the computational cost a lot.

For this reason we tune the learning rate for the optimiser, g, from five discrete values

in the interval [0.01, 0.001]. For the width and depth of the neural network we tune

the hyper-parameters from the following grids [1, 5, 10] and [10, 30, 50], respectively.

The batch size is selected via the following grid [10, 20].3 Furthermore, we tune the

regularization parameter, l, from five discrete values in the interval [0.01, 0.001], both

for deep LASSO and deep Ridge, and for the case of the elastic net we choose a from a

grid [0.1, 0.5, 0.9]. We also use dropout regularization, where the dropout probability

is up to 20%, see e.g. Gu, Kelly, and Xiu (2020b).

For the non-linear MIDAS , we also cross validate J1 from eight discrete values in the

interval [�1, 0.5] and for J2, we use six discrete values in [�0.5, 0.5].

We split the whole sample into three distinct subsamples, the training, validation and

test subsamples. These subsamples are consequential to maintain the time series struc-

ture of the data. The training subsample consists of the first 60% of the sample, the

validation is the next 20% of sample and the test is final 20% of sample. First, we use

the training sample to estimate (i.e. train) the network parameters. Then, the second

subsample or validation is used to tune hyper-parameters by constructing the fitted/-

forecasted values given the parameters from the training sample. We proceed with the

calculation of the quantile loss function as in eq. (4.10) and evaluate the models’ POOS

performance on this subset. We repeat the same process D number of times, where D

is the number of all possible combinations of points across quantiles. We store the

quantile loss values and select the parameters and hyper-parameters that minimise

the quantile loss based on the POOS forecasts. In the validation step we wish to find

3We have also considered batch normalisation and find that overall, results exhibit similar pattern
with and without it.
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the optimal parameters and hyper-parameters that capture complex non-linear rela-

tions and produce reliable POOS forecasts.

Finally, in the test subsample we use the optimal parameters and hyper-parameters

from the validation step and evaluate the out-of-sample performance of the network.

4.2.4.3 Optimisation

The estimation of neural networks is generally a computational cumbersome opti-

mization problem due to non-linearities and non-convexities. The most commonly

used solution utilises stochastic gradient descent (SGD) to train a neural network.

SGD uses a batch of a specific size, that is, a small subset of the data at each iteration

of the optimization to evaluate the gradient, to alleviate the computation hurdle. The

step of the derivative at each epoch is controlled by the learning rate, g. We use the

adaptive moment estimation algorithm (ADAM) proposed by Kingma and Ba (2014)4,

which is a more efficient version of SGD.

4.3 Monte Carlo

4.3.1 Setup

In this Section we present Monte Carlo (MC) experiments, in order to study the finite

sample performance of the deep quantile estimator proposed in Section 4.2, for the dif-

ferent penalisation schemes. We generate artificial data {yt} using a single predictor

{xt}, according to the following model

yt = ht(xt) + ut, (4.11)

where ut is the realisation of a random variable u distributed as, ut ⇠ iidN(�sF�1(t), s2),

s = 0.1 and F�1 is the quantile function of the standard normal distribution. ht(·)

is the general non-linear function that we wish to approximate via the deep quantile
estimator.

4ADAM is using estimates for the first and second moments of the gradient to calculate the learning
rate.
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All the experiments are based on the following values: t 2 (1%, 2.5%, 5%, 10%, 20%),

T 2 (100, 300, 500, 1000, 2000, 5000) and the number of MC replications is 100. We con-

sider the following four data generating mechanisms (DGM) to assess the finite sample

properties of the deep quantile estimator:

Case I: We consider the case of a N(0, 1) simulated single predictor that is generated

as

yt = ht(xt) + ut, ht(xt) = sin(2pxt), xt ⇠ N(0, 1).

This is the simplest design in our Monte Carlo experiments. We use this simple case to

showcase that linear methods, as expected, cannot produce reasonable performance

under a sigmoid type of a non-linear function ht(·).

Case II: We consider an AR(1) simulated single predictor as follows

yt = ht(xt) + ut, ht(xt) = sin(2pxt),

where xt is simulated as

xt = 0.8xt�1 + #t, #t ⇠ N(0, 1).

In this design we increase the complexity by introducing a correlated predictor.

Case III: We consider the case of a single predictor generated via a GARCH(1,1) model

yt = ht(xt) + ut, ht(xt) = sin(2pxt),

where xt is simulated as:

xt = st#t, s2
t = 1 + 0.7x2

t�1 + 0.2s2
t�1.

In this design, we wish to examine how the proposed estimator performs, when the re-

gressor is conditionally heteroskedastic, following a GARCH(1, 1) model. A GARCH
type of assumption on the distribution of asset returns is one commonly used in the

literature.
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Case IV: We consider the case of a single predictor that is generated as follows:

yt = ht(xt) + ut, ht(xt) = Gt(xt,w), xt ⇠ N(0, 1).

In this case we simulate ht(xt) to reflect a function composition, commonly used in

neural networks. We simulate it with 3 hidden layers and a specific number of neu-

rons, such as

Gt(xt,w) =
⇣
W (3)

⇣
sin
⇣
W (2)

⇣
sin
⇣
W (1)

⇣
sin
⇣
W (0)x0t + b(1)

⌘⌘
+ b(2)

⌘⌘
+ b(3)

⌘⌘⌘0
,

where w = (vec(W (0))0, . . . , vec(W (3))0, b(1)0 , . . . , b(3)0)0, W (0) is 50 ⇥ 1, W (1) is 10 ⇥

50, W (2) is 8 ⇥ 10 and W (3) is 1 ⇥ 8. Further, we simulate the weights, w, so that

every entry wi,j is simulated as, wi,j = di,j 1(di,j > 0.5), where di,j ⇠ U(0, 1), allowing

for some sparsity.

Across all cases, we estimate ht(xt) using our proposed estimator with different pe-

nalisation schemes. Let bht, pen = bGt ,pen(xt,w) denotes the estimate, where pen corre-

sponds to no regularization, deep LASSO, deep Ridge and deep Elnet. We use the fol-

lowing metrics in order to evaluate the small sample properties, of our deep quantile
estimator across R = 100, MC replications: i) the average mean squared error of the

true residuals, AMSEut =
1
R

1
T ÂR

i=1

⇣
ÂT

t=1 u2
t

⌘

i
, ii) the average mean squared error of

the estimated residuals, AMSEbut, pen = 1
R

1
T ÂR

i=1

⇣
ÂT

t=1(yt � byt,pen)2
⌘

i
and finally, iii)

the average absolute bias ABIASbht ,pen = 1
R

1
T ÂR

i=1

⇣
ÂT

t=1 |(ht(xt)� bGt,pen(xt,w))|
⌘

i
.

We report results only for AMSEbut, pen below, since results for the alternative metrics

exhibit similar patterns and are available upon request.

Figures 4.1 – 4.4 about here

4.3.2 Results

We present our Monte Carlo results for Cases I – IV in Figures 4.1 – 4.4 respectively.

In Figure 4.1, we can see that the linear quantile estimator, under a non-linear setup

doesn’t work as expected and the MSE remains constant as the sample size increases.

Next we present the asymptotic properties for our proposed estimator across differ-

ent penalization schemes, namely deep quantile, deep LASSO, deep Ridge and deep Elastic
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Net, and find that the proposed non-linear estimators have good finite sample prop-

erties.

When t = 1% it appear that our estimator works well for sample sizes larger than

T = 300, but in comparison with the linear one it generally works better. In Case II

our non-linear estimators depict fine finite sample properties and their performance is

better than the linear one. In this case the non-regularized estimator performs better

than the regularized ones. Next, similar behaviour appears in Case III. In Case IV,

where we allow for some sparsity in the weights, we find, as expected, that the linear

quantile regression estimator does not work under non-linearity, while the non-linear

one works as expected.

Overall, our Monte Carlo results suggest that the deep quantile estimator has good

finite sample properties, and can approximate non-linear functions. We further find,

as expected, that the linear quantile regression estimator does not work under non-

linearity. Finally, we find evidence in favour of the penalisation schemes proposed in

Section 4.2. Specifically, the penalised deep quantile estimators also have good finite

sample properties, and in some cases, perform better that the non-regularized one; a

finding in favour of weight regularization.

4.4 Empirical Setup

In this Section we outline our empirical application setup, where we use the proposed

deep quantile estimator to forecast VaR. We examine the predictive ability of the pro-

posed estimator and other non-parametric models, relative to the linear one, using the

quantile encompassing test of Giacomini and Komunjer (2005). We further examine

the predictive performance of the different methods by testing their forecasting accu-

racy, using the Diebold and Mariano (1995), Giacomini and White (2006) and quantile

score tests.

4.4.1 Deep Quantile VaR forecasting

The data used in our empirical application consist of around 36 years of daily prices

on the S&P500 index (source: Bloomberg), from September 1985 to August 2020 (T

= 9,053 observations). We use daily log returns, defined as rt = log (Pt/Pt�1) for
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our forecasting analysis. We use four different classes of VaR models and produce

forecasts for t = (1%, 5%, 10%) empirical conditional quantiles, using the deep quantile
estimator.

The first VaR specification we consider is the GARCH(1,1) model that has been pro-

posed by Bollerslev (1986), in which s2
1,t = w0 + w1s2

1,t�1 + w2r2
t�1, see eq. (4.12). The

second VaR specification we consider, is RiskMetrics, proposed by J.P. Morgan (1996),

which assumes s2
2,t = ls2

2,t�1 + (1 � l)r2
t�1, where for daily returns, l = 0.94, see eq.

(4.13).

The last two specifications we consider follow the Conditional Autoregressive Value-
at-Risk model (CAViaR), proposed by Engle and Manganelli (2004), where a specific

quantile is analysed, rather than the whole distribution. Specifically, the CAViaR

model corrects the past VaRj, t�1 estimates in the following way: it increases VaRj, t

when VaRj, t�1 is above the tth quantile, while, when the VaRj, t�1 is less than the tth

quantile, it reduces VaRj, t. Thus, the third VaR we examine is the Symmetric absolute

value (SV) that responds symmetrically to past returns, see eq. (4.14) and lastly, we

consider the Asymmetric slope value (ASV) as it offers a different response to positive

and negative returns, see eq. (4.15). For ease of exposition, we refer to the above spec-

ification as VaR1,t, . . . , VaR4,t, respectively. Below we summarise their specifications:

VaR1,t = b0 + b1s1,t (4.12)

VaR2,t = b0 + b1s2,t (4.13)

VaR3,t = b0 + b1VaR3,t�1 + b2|rt�1| (4.14)

VaR4,t = b0 + b1VaR4,t�1 + b2r+t�1 � b3r�t�1, (4.15)

where bi, i = 0, . . . , 3 are parameters to be estimated. We use these specifications

following Giacomini and Komunjer (2005). Under the mixed frequency setup, we

consider the following equation

VaR(MIDAS)
i,t = B(Lj;#)VaRi,t, (4.16)

where B(Lj;#) is defined in eq. (4.9) , i= 1, . . . , 4 and # are parameters to be estimated.

For a more detailed summary of MIDAS we refer the reader to Ghysels, Santa-Clara,

and Valkanov (2004). As discussed in Section 4.2, the linear association between VaR
and the covariates can be restrictive. Instead we assume that the relationship between

the response variable, VaR, and the covariates has an unknown non-linear form for a
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given t, that we wish to approximate with our proposed deep quantile estimator as

VaR1,t = Gt (s1,t,w) (4.17)

VaR2,t = Gt (s2,t,w) (4.18)

VaR3,t = Gt (VaR3,t�1, |rt�1|,w) (4.19)

VaR4,t = Gt
�
VaR4,t�1, r+t�1, r�t�1,w

�
, (4.20)

where VaRj,t, j = 1, . . . , 4 is indexed at (day) t = 1, . . . , T. The dimension p of covari-

ates that we use in our analysis depends on the specification chosen for VaR. Specifi-

cally, if j = 1, 2 then p = 1, if j = 3, p = 2 and finally if j = 4 then p = 3.

In the Online Appendix, we briefly delineate the model specifications for the quantile

B-splines, quantile polynomial and quantile MIDAS estimators.

4.4.2 Forecasting Exercise Design

This Section presents our forecasting exercise design. First we split our sample in three

distinct parts; the training sample, which is used for the estimation of the weights,

the validation sample which is used for tuning the hyperparamenters of the models,

and the test sample which is used for the evaluation of different models. We use a

60%, 20%, 20% split5, which corresponds to 5, 053 observations in the training sample,

2, 000 in the validation and 2, 000 in the test sample.

This specific split is used because we follow Giacomini and Komunjer (2005) and want

the power of the Conditional Quantile Forecast Encompassing (CQFE) test to be com-

parable with this exercise. We use the CV scheme described in Section 4.2 and tune the

width and depth of the neural network, the batch size, the learning rate, the dropout

rate and the regularization of hyper-parameters. Generally, a forecasting exercise is

performed either via a recursive or rolling window, see e.g. Ghysels, Plazzi, Valkanov,

Rubia, and Dossani (2019), yet in either setting to produce all one step ahead forecasts

for the last 2,000 observations and to tune the hyper-parameters can be computation-

ally challenging. Instead, we follow Giacomini and Komunjer (2005) and perform a

fixed forecast window exercise, in which we estimate our models once.
5The split is approximately equal to 60%, 20%, 20%. We have examined alternative training, validation

and test splits, which give similar patterns to the presented empirics and are available upon request.
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For our forecasting design we use a fixed forecast window exercise and predict the

ten-day-ahead VaR as:
dVaR1,t+10|Ft = Gt(s1,t,w⇤), (4.21)

where Ft denotes the information set up to time t, w⇤ denotes the optimal weights

obtained from the CV. Eq. (4.21) illustrates how forecasts for the first VaR specification

were obtained via the deep quantile estimator. In a similar manner forecasts can be

obtained for other VaR specifications and alternative models, using eq. (4.12) – (4.20).

We evaluate the forecasting performance of VaR models with the proposed deep quan-
tile estimator as in Section 4.2. Further, we consider ten-day compounded VaR fore-

casts, which we relegate to the Online Appendix.

4.4.3 Forecast Evaluation

In this Section we discuss the various tests we have considered, in order to evaluate

the predictive ability of the deep quantile estimator and present the testing results.

4.4.3.1 Diebold Mariano Test

We perform a quantitative forecast comparison across different methods and test their

statistical significance. To do so, we calculate the Root Mean Squared Forecast error
(RMSFE) for each method and perform the Diebold and Mariano (1995) (DM) test,

with the Harvey, Leybourne, and Newbold (1997) adjustment to gauge the statistical

significance of the forecasts. With the DM test, we assess the forecast accuracy of the

deep quantile estimator relative to the benchmark linear quantile regression model. In

this exercise we set t equal to 1%, 5% and 10%.

In general, RMSFE is used to measure the accuracy of point estimates and is defined

as

RMSFE =

s
ÂT

t=1(yt+h � bGt (xt+h,w))2

T
,

where h denotes the forecasting horizon and bGt (xt+h,w) is the solution to the eq. (4.8)

after selecting the optimal w via CV at the tth quantile. Results from the DM test are

reported in Table 4.1, where asterisks denote the statistical significance of rejecting the

null hypothesis of the test at 1%, 5% and 10% level of significance, for all quantiles and
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models we consider. These results suggest that forecasts produced from the non-linear

estimator outperform, for the majority of cases, forecasts obtained from the linear and

non-parametric quantile regression estimators.

4.4.3.2 Giacomini White Test

In a similar manner and to complement the DM test, we follow Carriero, Kapetan-

ios, and Marcellino (2009) and further calculate the Giacomini and White (2006) test

of equal forecasting accuracy, that can handle forecasts based on both nested and

non-nested models, regardless of the estimation procedures used for the derivation

of the forecasts, including our proposed deep quantile estimator. Table 4.1 illustrates

the results for Giacomini and White (2006) test, where daggers denote the statisti-

cal significance of rejecting the null hypothesis of the test at 1%, 5% and 10% level of

significance, for all quantiles and different models we consider. Similarly to the DM

forecasting accuracy test, the Giacomini and White (2006) test is again significant at

1% in most cases, with the following exceptions.

Quantile polynomial regression forecasts are only significant at the 10% level of sig-

nificance for SV model. In quantile splines, forecasts for the GARCH specification at

t = 5% and RM at t = 10% are not significant. Forecasts from the linear MIDAS,

under the GARCH specification, at t = 1% are insignificant and under the ASV spec-

ification, at t = 5%, are significant at the 5% significance level. Results for the ASV

with Deep Ridge estimator at t = 1% are significant only for the Giacomini and White

(2006) test. For the ASV deep MIDAS Ridge estimator and at t = 1%, the forecasts

are significant only based on the DM test. Forecasts from deep Elnet model under SV

specification and at t = 5% are significant at 5% level of significance. Finally, forecasts

from deep Elnet under SV specification and t = 5% are significant at the 5% level of

significance.

Overall, results from both the DM and Giacomini and White (2006) tests suggest that

the non-linear estimators outperform, for the majority of cases, competing linear and

non-parametric estimators in VaR forecasting.

Table 4.1 about here
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4.4.3.3 Conditional Quantile Forecast Encompassing (CQFE)

We present the implementation of the CQFE test as proposed by Giacomini and Ko-

munjer (2005) and the Generalized Method of Moments (GMM) estimation as pro-

posed by Hansen (1982). Let bq1,t be a vector of the tth quantile forecasts produced

from model 1 and bq2,t be the competing forecasts produced from model 2. The basic

principle of CQFE is to test whether bq1,t conditionally encompasses bq2,t. Encompass-

ing occurs when the second set of forecasts fails to add new information to the first set

of quantile forecasts (or vice versa) in which case the first (second) quantile forecast is

said to encompass the second (first).

The aim of the CQFE test is to test the null hypothesis, that bq1,t performs better that

any linear combination of bq1,t and bq2,t. Under the null hypothesis, it holds

Et (rt (yt+1 � bq1,t))  Et (rt (yt+1 � q0 � q1bq1,t � q2bq2,t)) , (4.22)

that is satisfied if and only if the weights (q1, q2) are equal to (1, 0). The objective

function of the GMM is:

JT = gT (✓)0 WT gT (✓) .

The optimal weights are computed as:

✓? = arg min
✓

gT (✓)0 WT gT (✓) , gT (✓) =
ÂT

t=1 (t � t{yt+1 � `0qt < 0}) zT

T
,

where WT is a positive definite matrix, gT(✓) is the sample moment condition, ✓ =

(q0, q1, q2)
0 is a set of weights, ✓? = (q?0 , q?1 , q?2 )

0 denotes the optimal weights, bqt =

(1, bq1,t, bq2,t)0 is a vector with the forecasted values based on the pairwise models 1, and 2

in the CQFE test, m denotes the out-of-sample size and zT is a vector of instruments.

Hansen (1982) showed that by setting WT = S�1
T i.e the inverse of an asymptotic

covariance matrix, is optimal as it estimates ✓? with as small as possible asymptotic

variance. S is also known as the spectral density matrix of gT. We follow Newey and

West (1987) and use a heteroskedasticity robust estimate bST, of S defined as:

bST = bS0 +
m

Â
j=1

✓
1 �

j
m + 1

◆⇣
bSj + bS 0

j

⌘
, where bSj =

1
T

T

Â
t=j+1

gt

⇣
b✓
⌘

gt�j

⇣
b✓
⌘

.

bS0 is the estimated spectral density matrix evaluated at frequency zero. The GMM

estimation is performed recursively, i.e. i) minimize JT using an identity weighting
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matrix to get ✓?, which gives WT via bST and ii) minimize JT using WT = bS�1
T from

step i).

Consequently, we consider two separate test H10 : (q?1 , q?2 ) = (1, 0) versus H1a :

(q?1 , q?2 ) 6= (1, 0) and H20 : (q?1 , q?2 ) = (0, 1) versus H2a : (q?1 , q?2 ) 6= (0, 1), which

correspond to testing whether forecast bq1,t encompasses bq2,t or bq2,t encompasses bq1,t.

Then the CQFE statistics are defined as:

ENC1 = T ((q?1 , q?2 )� (1, 0)) bW ((q?1 , q?2 )� (1, 0))0

ENC2 = T ((q?1 , q?2 )� (0, 1)) bW ((q?1 , q?2 )� (0, 1))0 ,

where bW = gT(✓)0S�1gT(✓). The asymptotic distribution of the GMM estimates of ✓

requires the moment conditions to be once differentiable. To satisfy this requirement,

we follow Giacomini and Komunjer (2005) and replace the moment condition with

the following smooth approximation:

gt(✓) =
ÂT

t=1 [t � (1 � exp((yt+1 � ✓0bqt)/h))] {yt+1 � `0bqt < 0})zT

T
,

where h is the smoothing parameter. We choose the critical values, ccrit of the test from

a c2
2 distribution, in which bqi,t encompasses bqj,t, if ENCi  ccrit 8i 6= j = 1, 2. In the

empirical application, the vector of instruments, zT, is (1, rt, VaRi,t, VaRj,t), 8 i 6= j =
1, 2 .

We select h to be 0.005, following the CQFE test rejection probabilities in Giacomini

and Komunjer (2005), since our POOS size is 2, 000 observations. We consider the fol-

lowing five blocks: i) the non-parametric, ii) the non-linear, iii) the non-linear MIDAS,

iv) the linear and v) the linear MIDAS blocks. The non-parametric block consists of the

quantile polynomial and quantile splines estimators, the non-linear block consists of

the deep quantile estimators for the different regularization schemes and the non-linear

MIDAS block consists of the deep MIDAS estimators for the different regularization

schemes. Finally, the linear and linear MIDAS blocks consist of the linear quantile and

linear quantile MIDAS estimators, respectively.

We examine each block of models across different quantiles. Specifically, we consider

how many times the models within a specific block outperform models from other

blocks and present these results in Table 4.2. Under this setting a win denotes that the

prevailing model encompasses the competing benchmark model, while a loss means
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that the competing model encompasses the prevailing one. Precisely, we consider a

win when the computed p-value of the CQFE test fails to reject the null hypothesis, i.e.

H10 or H20. On the contrary, in the case where the CQFE test suggests that there is no

encompassing between the forecasts, we consider this as a loss, i.e. the null hypothesis

is rejected. Furthermore, the CQFE test has a gray zone in which the test can fail to

reject both null hypotheses (H10 and H20), hence the test is inconclusive. Below we

summarise the CQFE testing results for the different quantiles when h = 0.005.

For the 10th quantile, the non-linear block encompasses 660 times the competing blocks,

in comparison to the linear block, which encompasses the competing blocks 165 times

and the non-parametric block that encompasses the others 320 times. The linear block

does not encompass other blocks less than 23 times and the non-linear block for 139

times. Additionally, the test is inconclusive 643 times for the non-linear block and

149 times for the linear one. Thus, the non-linear block is ranked first in terms of

how many times it encompasses the other blocks and the non-linear MIDAS block is

ranked second.

For the 5th quantile, the non-linear block encompasses 711 times other blocks, 333

times the non-parametric and the linear 177 times. Further, the linear block does not

encompass the other blocks 11 times and the non-linear 88 times. Finally, for the non-

linear block, the CQFE test is inconclusive 702 times and 167 times for the linear block.

The ranking of the first two blocks is the same as in the 10th quantile.

Finally, we examine the 1st quantile. In this case, the non-linear block encompasses 723

times the other blocks, 341 times the non-parametric and the linear block 171 times.

Furthermore, the linear block does not encompass 17 times the other blocks and the

non-linear 76 times. The test is inconclusive 715 times for the non-linear block and 165

times for the linear one. The ranking remains the same as above. Results for different

smoothing parameters h suggest similar patterns and are available upon request.

Table 4.2 about here

4.5 Semi-Structural analysis

A general issue in ML is the trade-off between accuracy and interpretability; where

the output of a highly complicated model, e.g. a deep neural network, can have great
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accuracy or forecasting performance, but cannot be easily interpreted. In this Section

we first discuss the details of two methods that can be used to make ML methods

interpretable. The first one is the Shapley Additive Explanation Values (SHAP), that

has received a lot of attention recently, and the second is partial derivatives. Further

we make a formal comparison on the output of both methods, based on the output of

the deep quantile estimator that illustrates, i) that both methods can be used to make

the impact of each covariate in neural networks interpretable and ii) perhaps surpris-

ingly that the use of partial derivatives, offers more stable results at a fraction of the

computational cost.

4.5.1 Shapley values

Shapley values (SHAP) are a general class of additive attribution methods, based on

the initial work of Shapley (1953) where the goal was to determine how to fairly split a

pay-off among players in a cooperative game. In the context of ML, the goal of SHAP

values is to explain the prediction of the dependent variable by estimating the contri-

bution of each covariate to the prediction. SHAP values, following the exposition in

Lundberg and Lee (2017) and Lundberg, Erion, and Lee (2018) can be constructed as

follows.

Let f (xt) = bG(xt,w) be the output of the estimated model we wish to interpret, given

a p ⇥ 1 vector of covariates xt, and bf the explanation model, to be defined below.

Further, let x†
t be the M ⇥ 1 subset (vector) of xt that contains simplified covariates.

These simplified covariates, can be mapped to the original through a mapping func-

tion hxt(·), such that xt = hxt(x
†
t ). Then under the local accuracy property of Lund-

berg and Lee (2017), if there exists a vector, z†
t , with binary inputs, such that z†

t ⇡ x†
t ,

then bf (z†
t ) ⇡ f (hxt(z

†
t )), where the explanation model (i.e. the additive attribution

function) is

bf (z†
t ) = f0 +

M

Â
i=1

fiz†
t,i, (4.23)

and bf (z†
t ) represents the linear decomposition of the original ML model, where f0 is

the intercept, fi 2 R is the effect to each dependent variable z†
t 2 (0, 1), that provides

local and global inference at the same time. If zt,i = 1 then the covariate is observed,

on the contrary, if zt,i = 0 then the covariate is unknown. Under the following three

properties: i) local accuracy i.e. the explanation function should match the original

model, ii) missingness, which ensures that input variable have no attributed effect
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and iii) consistency, under which, if an input variables is important, then the effect to

each dependent variable should not decline, the SHAP value is

fi = Â
M✓p\{i}

|M|! (p � |M|� 1)!
p!

⇥
fM[{i}

�
xM[{i}

�
� fM(xM)

⇤
, (4.24)

where p is the set of all predictors, |M| is the number of non-zero elements in x†
t ,

fM(xM) is the model’s output using except from the ith covariate, and fM[{i}
�
xM[{i}

�

is the output of the model, when {i} is included in the covariate set.

The calculation of SHAP values can be computationally expensive, as it requires 2N

possible permutations of the predictors. For the case of deep neural networks Lund-

berg and Lee (2017), and Shrikumar, Greenside, and Kundaje (2017), have shown that

DeepLIFT can be used as an approximation of the deep SHAP that is computation-

ally feasible 6, preserving the three properties above. DeepLIFT is a recursive predic-

tion explanation method for deep learning. The Additive feature attribution methods

analogy of DeepLIFT is called the summation-to-delta property is

p

Â
i=1

CDxt,iDo = Do. (4.25)

Then the SHAP values can be obtained as

fi = CDxt,iDo,

where CDxt,iDo, represents the impact of a covariate to a reference value relative to the

initial value, is assigned to each xt,i covariate, o = f (·) is the output of the model,

Do = f (x)� f (r), Dxt,i = f (xt,i)� rt,i and r the reference value. Eq. (4.25) matches eq.

(4.23), if in Do we set f0 = f (rt,i) and fi = CDxt,iDo.

4.5.2 Partial Derivatives

The use of partial derivatives for the interpretation of a model is straight forward in

econometrics, with various uses, ranging from the simple linear regression model to

6There are other methods that can be used to achieve this, such as Tree Explainer, Kernel Explainer,
Linear Explainer, Gradient Explainer.
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impulse response analysis. In this Section we show how partial derivatives can be

used even in highly non-linear deep neural networks. Before we start the analysis,

note that while the deep neural networks are highly non-linear, their solution/output

via SGD optimization methods, can be treated as differentiable function, as the major-

ity of activation functions are differentiable. Let’s consider the case of ReLU, that is

not differentiable at 0, whereas it is in every other point. From the point of gradient

descent, heuristically, it works well enough to treat it as a differentiable function. Fur-

ther, Goodfellow, Bengio, and Courville (2016) argue that this issue is negligible and

ML softwares are prone to rounding errors, which make it very unlikely to compute

the gradient at a singularity point. Note that even in this extreme case, both SGD and

ADAM, will use the right subgradient at 0.

For a general xt 2 Rp, let

dj, i, t =
∂ bGj, t(xt,w)

∂xj, i, t�1
, (4.26)

denote the partial derivative of covariate xi = xit, for i = 1, . . . , p at time t = 1, . . . , T,
bGj, t(xt,w) is the forecasted VaRj,t, across the j different VaR specifications we con-

sider. We assess the partial derivative in time, since, following Kapetanios (2007), we

expect it to vary in time, due to the inherent non-linearity of the neural network. Our

covariate(s) xt are the conditional volatility for GARCH and RM, VaR lagged values,

the absolute S&P500 daily return and the positive and negative S&P500 daily returns

for SV and ASV, respectively. It is evident that under the classic linear regression

problem, or linear quantile regression model, the effect of the covariates xt in the de-

pendent variable yt is constant, time invariant, and corresponds to b�(t).

4.5.3 Results

In this application we use the whole sample size i.e. around 36 years of daily returns

on the S&P500 index to provide an accurate interpretation of our deep quantile estima-

tor. Figures 4.5 – 4.8 illustrate the partial derivatives and SHAP values evaluated in

time on the output of our deep quantile7 estimator, for a specific quantile t. Further,

we compare the partial derivatives of the deep quantile estimator relative to the linear

quantile regression partial derivative, i.e. the �(t) coefficient. Both partial derivatives
7In this Section we limit our attention in the output of the best performing model, in terms of its

forecasting capacity, as reflected by the forecast gains measure in Section 4.4, for each model, based on
the different penalisation schemes. Results from all the different penalisation schemes suggest similar
patterns to the ones discussed above and are available upon request.
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and SHAP values seem to identify interesting patterns that can be linked to some well

known events. Below we discuss our results for all models we have considered in our

empirical application.

The results for the first two models, i.e. GARCH and RM can be summarised together,

since in both models there is only one covariate, that is the conditional volatility, but

with a different specification. The results from this model are illustrated in Figures

4.5. We find that the partial derivative appears to be more stable over time, fluctu-

ating around the constant partial derivative, �(t), of the linear quantile estimator.

When there is a crisis or a stressful event in the financial markets, they increase. As

an example, we see significant spikes in the partial derivatives, both in March 2020 as

well as in 2008, which stand for the onset of the COVID-19 pandemic and the Great
Recession respectively. We also find that the biggest increase occurs in 1987, the year

when Black Monday happened, and also significant variation during the U.S. govern-

ment shutdown in 2019. The values for the partial derivatives generally increase, as t

decreases. SHAP values have a similar behaviour with the partial derivatives, but are

more volatile across time. For the first two models, there are some events, e.g. during

the 1991, where the values for both SHAP and partial derivatives do not increase a lot.

We view this finding as an inability of these two models, to properly account for this

crisis.

In the last two models, the merit of SHAP values and partial derivatives becomes clear,

since in these models we have more than one covariates and both methods can provide

an indication on the effect of each covariate on the final output. Overall, we find

that increasing the number of covariates, allow these models to account for all crises

within the sample. For the case of the SV model, we find that the important covariate

is the lagged values of VaR, rather than the absolute values of S&P500. Similar to

the one covariate models, we find that the partial derivatives are more stable than

SHAP values, fluctuating closely around �(t) and picking up when there are crisis

or distress in the economy or financial markets. The SHAP values again appear to be

more volatile with a wider range. Similar to the findings of the one covariate models,

the higher the values for the partial derivative and SHAP, the lower the t quantile.

For the case of the ASV model, we find that again the lagged values of VaR is the most

significant covariate, the negative S&P500 returns have some impact and the positive

S&P500 returns are almost insignificant. Similar to the cases above, we find that the

partial derivative is more stable than SHAP values, fluctuating closely around �(t)
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and picking up when there is a crisis or distress in the economy or financial markets.

The SHAP values again appear to be more volatile with a wider range. Again and

same as before, lower quantiles have higher partial derivatives. The results for these

two models are illustrated in Figures 4.6, 4.7 and 4.8.

Different penalization schemes maintain the aforementioned results, with a lower

magnitude. Overall, we observe that the linear quantile regression shows a fixed pat-

tern across time and it is evident that this model does not anticipate shocks in the

economy. As Engle and Manganelli (2004) suggest, SV and ASV react more to neg-

ative shocks and in stressful events their spike is larger than the GARCH and RM
models. Finally, covariates with the minimum contribution on the forecasted values,

such as the positive S&P500 returns have negligible impact on both SHAP and partial

derivatives values.

Figures 4.5 – 4.8 about here

4.6 Conclusion

In this Chapter we contribute to the expanding literature on the use of ML in finance

and propose a deep quantile estimator that has the potential to capture the non-linear

association between asset returns and predictors. In Section 4.2, we lay out the exact

workings of our proposed estimator, and illustrate how it generalises linear quantile

regression.

In the Monte Carlo exercise in Section 4.3, we study the finite sample properties of the

deep quantile estimator, based on a number of data generating processes. We present

extensive evidence the estimator gives good finite sample performance, that is a func-

tion of T, uniformly across different regularization schemes.

We use the deep quantile estimator, with various penalization schemes, to forecast VaR.

We find that our estimator gives considerable predictive gains, up to 74%, relative to

the VaR forecasts produced by the linear quantile regression. This result is backed by

the forecasting accuracy tests, i.e. the Diebold and Mariano (1995), the Giacomini and

White (2006) and the quantile score tests. Further, results from the CQFE test of Gia-

comini and Komunjer (2005) suggest that forecasts obtained from the non-linear esti-

mators encompass forecasts from the linear and non-parametric models with a higher
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frequency. These findings are in support of the non-linear association between the

conditional quantile of asset returns and covariates, hence suggesting a new avenue

in forecasting in finance and in macroeconomics during extreme events.

In addition, we do a semi-structural analysis to examine the contribution of the pre-

dictors in VaR over time. We consider, following the ML literature, SHAP values and

further partial derivatives. Our findings suggests that our non-linear estimator reacts

more in stressful events and exhibits time-variation, while the linear quantile esti-

mator presents, as expected, a constant time invariant behaviour. We conclude that

financial variables are characterised by non-linearities, that our proposed deep quantile
estimator can approximate quite well.

Finally, we make a formal comparison between SHAP and partial derivatives, and in-

terestingly find that partial derivatives can be used to make ML methods interpretable,

are less volatile, easier to interpret and can be computed at a fraction of time used in

the calculation of SHAP values.
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FIGURE 4.5: Partial Derivative, SHAP and bb(t) for GARCH and RM models.

(A) GARCH without penalty (B) GARCH with Elnet penalty

(C) GARCH with Elnet penalty (D) RM without penalty

(E) RM without penalty (F) RM with Ridge penalty

:Partial Derivative, : SHAP values, : bb(t), shaded area presents NBER re-
cession indicators
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FIGURE 4.6: Partial Derivative, SHAP and bb(t) for SV model.

(A) SV without penalty (B) SV without penalty

(C) SV with LASSO penalty (D) VaR lagged values without penalty

(E) VaR lagged values without penalty
(F) VaR lagged values with LASSO

penalty

:Partial Derivative, : SHAP values, : bb(t), shaded area presents NBER re-
cession indicators
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FIGURE 4.7: Partial Derivative, SHAP and bb(t) for ASV model.

(A) ASV with Ridge penalty (B) ASV with Ridge penalty

(C) ASV without penalty
(D) S&P500 positive values with Ridge

penalty

(E) S&P500 positive values with Ridge
penalty

(F) S&P500 positive values without
penalty

:Partial Derivative, : SHAP values, : bb(t), shaded area presents NBER re-
cession indicators
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FIGURE 4.8: Partial Derivative, SHAP and bb(t) for ASV model.

(A) S&P500 negative values with Ridge
penalty

(B) S&P500 negative values with Ridge
penalty

(C) S&P500 negative values without
penalty

:Partial Derivative, : SHAP values, : bb(t), shaded area presents NBER re-
cession indicators



Chapter 5

Conclusion

This thesis contributes to both the macroeconomic and financial forecasting literatures

using Big Data econometric methods in the following ways: first, we discuss possible

prior setups using a Mixed frequency Vector Autoregression (MF-VAR) written at the

common lower frequency. Second, we use ideas from recent work in estimating high

frequency MF -VAR models to discuss how monthly indicators offer more information

on producing one-step ahead U.S. GDP by state forecasts. Finally, we drop the linear-

ity assumption and using machine learning, we propose a deep quantile estimator

that is both non-linear and non-parametric estimator and forecast Value-at-Risk.

Chapter 2 contributes to the econometric literature and develops models for regional

nowcasting. We use Bayesian mixed frequency methods estimated at the common

lower frequency. Moreover, we propose a procedure which allows model estimation

with stochastic volatility and large datasets. We produce high frequency state-level

GDP nowcasts that will assist policymakers in understanding the impact of greater

regionalisation on economic growth in the U.S. and evaluate its impact on present

and future economic conditions in a more timely fashion. We evaluate the accuracy

of point and density forecasts, by making comparisons across models with constant

and stochastic volatility. We provide results on the accuracy of nowcasts of realtime

economic growth in the U.S. from 2006 to 2018. Empirical results suggest that models

with stochastic volatility outperform models with constant volatility at nowcasting.

The second essay (Chapter 3) develops a Mixed Frequency Vector Autoregressive

model (MF-VAR) for producing timely monthly nowcasts and historical estimates of
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GDP growth at the state level for the U.S. economy. The variables in the MF-VAR in-

clude GDP growth at the state and country level, as well as additional monthly vari-

ables at the state and country level. The variables are observed at different frequen-

cies, leading to a complicated high-dimensional MF-VAR. A computationally-fast ap-

proximate Bayesian Markov Chain Monte Carlo (MCMC) algorithm is proposed for

estimating the MF-VAR coefficients and nowcasting. Empirical results explore the na-

ture and magnitude of spillover effects among the U.S. states. Further, the proposed

model produces historical estimates at monthly frequency for both the U.S. economy

and U.S. states.

The third essay (Chapter 4) proposes a deep quantile estimator, using neural networks

and their universal approximation property to examine a non-linear association be-

tween the conditional quantiles of a dependent variable and predictors. The proposed

methodology is versatile and allows both the use of different penalty functions, as

well as high dimensional covariates. We present a Monte Carlo exercise where we

examine the finite sample properties of the proposed estimator and show that our

approach delivers good finite sample performance. We use the deep quantile estima-

tor to forecast Value-at-Risk and find significant gains over linear quantile regression

alternatives, supported by various testing schemes. The Chapter also contributes to

the interpretability of neural networks output by making comparisons between the

commonly used SHAP values and an alternative method based on partial derivatives.
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