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Abstract

The trading of financial derivatives and products in financial markets has influ-

enced the development of the world economy. Over the last few decades, a rapid

growth in complex financial systems, which can generate unstable conditions in

financial markets, has been observed. Therefore models are being developed to

study and examine the uncertainty surrounding these financial systems in differ-

ent circumstances.

The important milestone of this work can be traced to the Black-Scholes for-

mula for option pricing which was published in 1973 and revolutionized the finan-

cial industry by introducing the no-arbitrage principle [8]. This model assumed

that the average rates of return and volatility are constant, however, this is not

realistic. Therefore, several models have been developed, based on pragmatic stud-

ies, which generalize the Black-Scholes formula to acquire more knowledge for these

financial systems.

In this project, we will focus on Stochastic Differential Equations (SDEs) mod-

els in finance which do not have explicit solutions so far. In particular, Lewis

[47] developed the mean-reverting-theta processes which can not only model the

volatility but also the asset price. Therefore, we will establish the Euler-Maruyama

(EM) numerical schemes to approximate the solution to this model and show that

the EM approximate solution will converge in probability to the true solution

iii



under certain conditions. The convergence property of the corresponding step

process will be examined under the same conditions to determine its application

in finance. In addition, the Markov-switching format of this model can be used to

explain some erratic situations observed in financial data. Under the same condi-

tions on parameters of mean-reverting-theta model, the Markov-switching model

will be examined to show that the EM approximate solution to this model will

converge in probability to the true solution.

Although previous models fit to a certain type of financial data, they can not

be used to explain behaviour of the unpredictable abrupt structural changes in

financial markets. However, the mean-reverting-theta stochastic volatility model

driven by a Poisson jump process explains some of this phenomenon. Therefore,

we will examine the analytical properties of EM approximate solutions to this

model for two conditions of the parameters theta and beta.

Since it is possible to obtain a more generalized formula for this stochastic

volatility jump process, by incorporating a hybrid concept into this SDE model,

we will consider the mean-reverting-theta volatility model with Poisson jumps

driven by two independent Markov processes. Existing financial instruments are

not strong enough to examine the convergence property of the approximate so-

lution to this model. Therefore, we will establish EM approximate solutions to

this model and examine their convergence property, when we assume similar pa-

rameter conditions to the mean-reverting-theta model. Finally, we will show that

these approximate solutions of the SDE models can be used to evaluate financial

quantities, options and bonds for example.
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General Notation

positive : > 0.

negative : < 0.

non-positive : ≤ 0.

non-negative : ≥ 0.

∅ : the empty set.

a.s. : almost surely or with probability 1.

IA : the indicator function of a set A

i.e IA(x) = 1 if x ∈ A or otherwise zero.

AC : the complement of A in Ω i.e AC = Ω− A.

A ⊆ B : A ∩Bc = ∅.

A ⊆ B a. s. : P(A ∩Bc = ∅) = 1.

σ(C) : the σ-algebra generated by C.

a ∧ b : min{a, b}.

a ∨ b : max{a, b}.

f : A→ B : the mapping f from A to B.

R = R1 : the real line.

R+ : the set of all nonnegative real numbers, i.e R+ = [0,∞).

B : the Borel σ-algebra on R.

|x| : the Euclidean norm of a vector x.

x



C(D;R) : the family of continuous R− valued functions defined on D.

Cm(D;R) : the family of continuously m-times differentiable

R− valued functions defined on D.

C2,1(D × R+;R) : the family of all real-valued functions

V (x, t) defined on D × R+ which are continuously twice

differentiable in x ∈ D and once differentiable in t ∈ R+.

∥x∥Lp :
(
|x|p
) 1

p
.

Lp(Ω;R) : the family of R-valued random variables X with

E|X|p <∞.

Lp
Ft
(Ω;R) : the family of R-valued Ft-measurable

random variables X with E|X|p <∞.

Lp([a, b];R) : the family of Borel measurable functions h : [a, b] → R

such that
∫ b

a
|h(t)|pdt <∞.

Lp([a, b];R) : the family of R-valued Ft-adapted processes {f(t)}a≤t≤b

such that
∫ b

a
|h(t)|pdt <∞ a. s..

Mp([a, b];R) : the family of R-valued Ft-adapted processes

{f(t)}a≤t≤b in Lp([a, b];R) such that E
∫ b

a
|h(t)|pdt <∞.

Other notation will be explained where it first appears.
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Chapter 1

Introduction

1.1 Background

In modern society the modelling of financial systems has gained significant atten-

tion due to rapid and complex behaviour in financial markets. More precisely,

it has been observed that random changes in these systems are dependent on an

unmeasurable distribution or an unknown system of parameters that are subject

to some uncertainty and several deterministic factors. However, without having

knowledge of these system distributions and their parameters, the prediction of

future events and the examination of their current status is impossible. Therefore,

the accurate modelling of financial systems can be very useful in understanding

the governing forces and their parameters. However, this has become a challenging

task because of briskly changing conditions. Consequently, relaxing some of the

conditions in these interesting systems, applying developing mathematical instru-

ments with knowledge of stochastic processes could achieve better predictions and

understanding of the driving forces behind the financial markets.

The knowledge of the Itô stochastic system and the stochastic process, that
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are widely used in the modelling of a vast number of dynamical systems in many

disciplines, plays a major role in mathematical finance. The main idea behind

this interesting subject was first examined by Scottish botanist, Robert Brown in

1827 [65]. While studying pollen grains of a plant suspended in water under a

microscope, Brown observed that tiny particles which were ejected by the pollen

grains performed jittery motions. However, T. N. Thiele was the first person who

explained the mathematical concept behind this Brownian motion. Thiele pub-

lished a paper on “The method of least squares” in 1880 [28]. In 1905, 70 years

after Brownian motion was discovered, Albert Einstein succeeded in explaining

the irregular movements of small particles suspended in a liquid as visible evi-

dence for the molecular motion [67]. It is therefore not surprising that Einstein’s

work on Brownian motion also became one of the pillars of modern statistical

thermodynamics, more generally, the physics of stochastic processes [66]. In 1923,

the existence of Brownian motion and construction of a continuous-time stochastic

process, which is often called standard Brownian motion, was clearly established

by Norbert Wiener. The Wiener process has become a synonym of Brownian

motion and the measure is called the Wiener measure1 in his honour [10].

The next generation of stochastic processes was laid out by Russian mathe-

matician, Andrey Kolmogorov. Kolmogorov contributed to the development of

the fundamental theory of Markov processes which motivated the beginning of

the theory of stochastic integration [44]. Most notably in this paper, Kolmogorov

proved that continuous-time Markov processes (diffusions) fundamentally depend

on only two parameters: the speed of the drift and the size of the purely random

part (the diffusive component). From studying the work of Kolmogorov, Kiyosi

Itô, the father of stochastic integration made an outstanding contribution to the

1Probability law on the space of continuous functions. See Chapter 2, Probability theory
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development of stochastic analysis. In his seminal work, he attempted to estab-

lish a true stochastic differential equation to be used in the study of Markov pro-

cesses, which was one of Itô’s primary motivations for studying stochastic integrals

[40, 37, 38, 39]. Although Wolfgang Doeblin was the first person who contributed

to the development of the theory of Markov processes, his exceptional research

work was secretly hidden away in the safe of the French Academy of Science un-

til 2000 [19]. Meanwhile, in the same year as Itô’s first paper was published, S.

Kakutani published his brief explanation on two-dimensional Brownian motion and

harmonic functions [41]. However, for the first time in stochastic research, Joseph

Leo Doob clearly explained and established the strong Markov property in 1941

[20]. A few years later Deny, E. Hille and K. Yosida contributed to the development

of stochastic processes, stochastic differential equations, stochastic integrals and

martingale properties [79]. All of this work helped to establish stochastic analysis

as a complete and interesting subject.

Both the history of stochastic integration and the modelling of risky asset prices

began with Brownian motion. L. Bachelier developed a model of the Paris stock

market while deriving the dynamic behaviour of Brownian motion in 1900. This

work can be treated as the earliest attempt of using Brownian motion in finance

[6, 11]. Preceding the work of Einstein, Bachelier attempted to model the market

noise of the Paris Bourse while exploiting the ideas of the Central Limit Theo-

rem. He also argued that increments of stock prices should be independent and

normally distributed but realized that market noise should be without memory.

He is now seen as the founder of modern mathematical finance by many people.

However, his research concept met with disfavour in the Paris mathematical com-

munity, mostly because Bachelier’s work was way ahead of that time, thus it was

ignored until it was re-discovered by the mathematical statistician L. J. Savage in
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1955. Paul Samuelson further developed Bachelier’s model to include stock prices

that evolved according to a geometric Brownian motion, following work by A.

Cowles, M. Kendall and M. F. M. Osborne and others [12, 43, 62, 63]. Moreover,

Samuelson focussed on the concept of a martingale2 rather than a random walk,

which was neatly summarized by the title of his article: “Proof that properly an-

ticipated prices fluctuate randomly” [68]. E. Fama worked on the same topic and

formed the basis of the efficient market hypothesis [22, 23]. This efficient market

concept caused a revolution in empirical finance though the debate and empirical

investigation of this hypothesis is still continuing [24].

The concept of a good model for stock price movements, which is today known

as geometric Brownian motion3, is explained in Samuelson’s companion paper [69]

together with H. P. McKean Jr.. Samuelson also showed that Bachelier’s model

failed to guarantee that stock prices will always be positive as his model leads to

inconsistencies with economic principles, where geometric Brownian motion avoids

these difficulties. Furthermore, this was the paper that first coined the terms of

European and American options and derived valuation formulas for both European

and American options. Thanks to his efforts, based on the profound insights of

the governing body of the asset price or continuous-time stock market, economists

postulated that the general stochastic differential equation has the form

dX(t) = αX(t)dt+ σX(t)dW (t), for all t ∈ [0, T ]. (1.1)

Here W (t) represents a Brownian motion which can ensure a positive value of the

asset price X(t), α is the estimated average rate or return of the asset price, σ

is the standard deviation of the asset price, which is often called volatility. In

2The expectation of the next value in the sequence is equal to the present observed value. See
Definition 2.3

3is a continuous-time stochastic process in which the logarithm of the randomly varying
quantity follows a Brownian motion. See (1.1).
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this process he again postulated the condition that the discounted options payoffs

follow a martingale, although the derivation of options was almost identical to the

Black-Scholes formula which was derived nearly a decade later [69].

The development of financial asset pricing theory over the 45 years since

Samuelson’s seminal work had been intertwined with the development of stochastic

analysis. However in the early 1970’s, Myron Scholes and Fisher Black made an im-

portant breakthrough in the pricing of complex financial tools by developing what

has today become known as the ”Black-Scholes formula”. In this process, geomet-

ric Brownian motion was applied as the key factor by invoking the no-arbitrage4

principle to derive their famous formula for pricing option via an explicit solution.

The seminal work of the paper [8] on the pricing and hedging of European call and

put options ushered in the modern era of derivative securities.

Robert C. Merton, who was influenced by Samuelson, clarified and improved

the option price problem which was derived by Myron Scholes and Fisher Black

[55, 56, 57, 58]. An option pricing formula is derived in his paper for the more

general case when the underlying stock returns are generated by a mixture of

both continuous and jump processes. However, this derived formula has most of

the attractive features of the original Black and Scholes formula [8] which does

not depend on investor preferences or knowledge of the expected return on the

underlying stock. In 1974, Merton made another major contribution to assess

the credit risk model while assuming that a company has a certain amount of

zero-coupon debt (no interest, and often issued at a price lower than the principal

amount) that will be due at a future time T [60]. Furthermore, the model can

be used to estimate either the risk-neutral-probability5 that the company will

4is a trade which does not require any initial funds, never loses money and produces strictly
positive cash flows with strictly positive probability.

5is probability of future outcome adjusted for risk which can be used to compute expected
asset values.
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default or the credit spread on the debt. However, Merton’s model requires the

current value of the company’s assets, the volatility of the company’s assets, the

outstanding debt and the debt maturity as inputs. In 1979, J. M. Harrison and D.

M. Kreps constructed a classical securities market model for the asset price which

is described by a real-valued process [29]. Under certain assumptions, their model

is arbitrage-free if and only if there exists an equivalent probability measure under

which the price process is a martingale.

By rapid development of the stochastic calculus and option pricing concept,

their contribution to the improvement of field of modern mathematical finance is

clear. In addition, these financial instruments can also be utilized to examine more

and more important applications in complex financial quantities. However, some

of these financial instruments are specific to solving certain types of problems and

their generalizations are capable of giving some extended results. Theoretically,

alternative methods for these findings have been investigated by several authors

but in applications most of these techniques can only be used under certain con-

ditions. Another milestone of this process has been examined by John C. Cox

and Stephen A. Ross [14]. In this paper, they developed several alternative jump

and diffusion processes and established solutions for the limiting diffusion cases.

However, explicit solutions presented in this paper have potential empirical appli-

cations, while a comparative study of them should give additional insight into the

structure of security valuation. A special limiting case of the famous Black-Scholes

model which has previously been derived only by much more difficult methods, was

discussed by C. Cox, A. Ross and M. Rubinstein [15]. Because of this generaliza-

tion it gives rise to a simple and efficient numerical procedure for valuing options

whose premature exercise price is optimal. On the other hand J. M. Harrison and

S. R. Pliska showed that the continuous limit of the model having a deterministic
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bond and two independent stocks following geometric Brownian motion is com-

pleted. This also demonstrates that the finite market is nearly complete, or each

contingent-claim (option pricing) is nearly computable [30].

With the rapid development of the theory of stochastic analysis and stochastic

modelling, a significant number of problems related to financial economics have

been unveiled in the last few decades. However, the extension of these existing fi-

nancial instruments is still continuing as a result of jittery and complex situations.

More precisely, continuous-time stochastic analysis still dominates the stochastic

modelling of asset price and novel ideas are employed to construct new financial in-

struments while generalizing the existing formulas. One of the renowned concepts

behind this development process is the behaviour of the asset price volatility. Ac-

cording to empirical studies it was revealed that volatility of the asset price does not

have the property to be a constant in different situations, which deviates from the

previous assumption of geometric Brownian motion. However, several alternative

techniques have been utilized to overcome modelling difficulties. The stochastic

volatility model is one such alternative method which explains in a self consistent

way as options with different strikes and expirations have different volatility. Fur-

thermore, this attractive feature was pointed out by John C. Hull and Alan White

in 1987 [34] that volatility follows a Itô process which is driven by another Brow-

nian motion. A few years later, in 1991, the structure of the stochastic volatility

model was also discussed by E. M. Stein and J. C. Stein under the topic of ”Stock

price distributions with stochastic volatility: an analytic approach” in 1993 [72].

Steven Heston extended the Hull-White volatility model which is known as the

mean-reverting stochastic volatility process [31].

However, due to the computational complexity of stochastic volatility mod-

els and the extreme difficulty of fitting parameters to the current option pricing,
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B. Dupire [21], E. Derman and I. Kani [17] proposed another concept which is

known as the unique state-dependent diffusion coefficient or clearly local volatil-

ity function. Moreover, they observed that there was a unique diffusion process

consistent with these distributions under risk-neutrality. In the meantime people

such as R.C. Morton [61], C. Aha and H. Thompson [1] discussed and gave an

outstanding contribution to the development of mathematical instruments when

unpredictable upsurges occurred in financial markets.

It is therefore clear that knowledge of stochastic modelling and stochastic anal-

ysis form a platform from which to study and understand the present financial

quantities and some of its related issues, while establishing a strong foundation in

mathematical finance that also gears up curiosity about the use of results in this

field.

1.2 Overview of the study

This thesis mainly concentrates on extended Black-Scholes type stochastic mod-

els, which can be seen in many situations of modern financial markets in practice.

However, these extended stochastic models which describe movements of the asset

price or portfolio data in financial markets, have no explicit solutions as expected

by the Black-Scholes formula. Numerical approximation techniques have become

a popular and powerful tool to study and understand behaviour of these compli-

cated systems, especially the consequences of their application in finance. In this

process, the Euler-Maruyama (EM) scheme will therefore be used to approximate

the solutions of these SDE models and effective techniques will be developed to

compute their analytical properties.

Chapter 2 introduces basic concepts in mathematical finance, especially knowl-
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edge of stochastic analysis. It begins with probability theory and evolves into

general structure of stochastic models while explaining the important features of

Brownian motion, stochastic analysis and stochastic differential equations. More-

over, uniform notation and concepts are also established while providing related

references in order to help readers gain required knowledge to understand the fol-

lowing chapters conveniently. In addition, some important mathematical tools like

the generalized Gronwall’s inequality are stated in the latter part of this chapter

for the reader’s convenience. The book written by X. Mao [52] contributes to the

development of this thesis as the main source of reference but readers can find

most of these mathematical concepts in many fine books that can also be used

to improve their knowledge in the fields of mathematical finance and stochastic

analysis [5, 25, 36, 42, 49, 46, 70].

In Chapter 3, we will concentrate on the mean-reverting-beta processes devel-

oped by Lewis [47], which can not only model the volatility but also the asset price.

Although this widely used stochastic volatility process fits to certain types of fi-

nancial data there is no explicit solution like the Black-Scholes formula. However,

when the parameters θ and β 6 are greater than 1, the diffusion coefficients only

satisfy the local Lipschitz condition and existing mathematical techniques can not

be used to determine convergence in second moment7 property of its approximate

solution. In this chapter, we will therefore establish the EM numerical approx-

imate solution and show convergence in probability of this approximation while

deriving related analytical properties.

According to the empirical studies, there is more and more evidence to suggest

that average rate of return has no significant reason to be a constant as assumed

by the Black-Scholes formula. Moreover, evidence suggests that the rate of return

6parameters of diffusion coefficients of the SDE model (3.6).
7see page (16), section (c)
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and volatility follows a jump-process known as a Markov chain. In Chapter 4, we

will therefore consider the mean-reverting-theta stochastic volatility model driven

by a Markov chain in which the parameters θ and β are greater than 1. Although

this highly sensitive volatility model plays a very important role in modern finan-

cial market, like the previous model, there is no information on its the solution

so far. Therefore, an approximate solution to this SDE model will be established

by applying the EM numerical scheme in order to examine and study this highly

sensitive volatility model of asset price. A strong error bound of this approxi-

mate solution can not be obtained since its diffusion coefficients only satisfy the

local Lipschitz condition. We will therefore compute an explicitly computable er-

ror bound over finite time and derive the convergence in probability of this EM

approximate solution by removing its stopping time.

However existing stochastic volatility models, which capture some dynamic

behaviour of the asset price in financial markets, do not explain unpredictable

abrupt structural changes that are independent of average rate return and volatil-

ity. Meanwhile, pragmatic studies show that some of these phenomena can be

examined using properties of the Poisson-jump process, so study of the mean-

reverting-theta stochastic volatility mode driven by the Poisson-jump process un-

veils some important features in financial markets. Furthermore, if θ and β vary

between 1
2
and 1, the mean-reverting-theta stochastic volatility model satisfies the

global Lipschitz condition as well as the linear growth condition. In Chapter 5,

a strong error bound of the EM approximate solution to this model will be ob-

tained over finite time intervals while deriving the other supportive mathematical

instruments. Finally, we will derive the convergence in second moment property

of the EM approximate solution by the strong error bound when the time step is

sufficiently small. However, we can not appeal to the strong error bound of the

10



EM approximate solution to this Poisson jump model over finite time, when the

parameters θ and β are greater than 1. In Chapter 6, we will therefore use the

stochastic convergence technique to show convergence in probability of this EM

approximate solution to the true solution by removing its stopping time.

In Chapters 7 and 8, we will discuss one of the generalized formulas of the

Poisson-jump stochastic volatility models already discussed in Chapter 5 and 6,

which can usually be seen in financial markets in practice. More precisely, the

mean-reverting-theta stochastic volatility Poisson-jump model driven by a Markov

process is more appropriate to describe the higher dimension of the asset price,

interest rate and stochastic volatility though there is so far no explicit solution.

In Chapter 7, we will therefore consider this stochastic jump model in the case

of 1
2
≤ θ, β ≤ 1, where diffusion coefficients satisfy the global Lipschitz condition

and the linear growth condition. Hence, we will establish an EM approximate

solution to this model and examine a strong error bound for this approximate

solution over finite time intervals which gives the convergence in second moment

property of this EM approximate solution when the time step is sufficiently small.

However, this hybrid stochastic volatility model using a Poisson-jump process,

when the parameters θ and β are greater than 1, satisfies the local Lipschitz

condition though it does not obey the linear growth condition. So we can not derive

the convergence in second moment property of the EM numerical approximate

solution to this highly sensitive volatility model. In Chapter 8, we will establish

an error bound for this EM approximate solution using the stopping time and the

property of the Markov chain. Convergence in probability of the EM approximate

solution will then be obtained by removing the stopping time.

Finally in Chapter 9, we will show that EM approximate solutions to general-

ized asset price models can be used to evaluate financial quantities in practice.

11



Chapter 2

Basic Stochastic Analysis

2.1 Introduction

In the modern financial world, knowledge of stochastic processes and stochastic

analysis play a major role where effects of random changes generate complex sit-

uations. It is therefore necessary to understand basic concepts which lie behind

these interesting systems in order to study and examine their behaviour.

In this chapter, definitions and theories of stochastic processes, stochastic anal-

ysis and stochastic differential equations are explained along with probability the-

ory, the global and the local Lipschitz conditions, and the linear growth condition.

In addition, the generalized Itô integral and its related properties are also men-

tioned here to lay out strong foundations. Furthermore, some important tools

like Gronwall’s inequality which contribute significantly throughout this thesis are

stated in the latter part of this chapter. Although this chapter introduces very im-

portant theorems, required proofs are omitted here. However, these related proofs

can be found from the textbooks written by X. Mao [50, 53], which contributed to

the development of this thesis as the main source of reference, but readers can find
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most of these basic mathematical concepts and their proofs in many text books

[42, 50, 46, 53, 70].

The mathematical theory of probability was first coined by two French math-

ematicians in 1654, Blaise Pascal and Pierre de Fermat, from the gambler’s argu-

ment occurred. This interesting phenomenon got great attention from researchers,

since more and more applications related to this concept can be found in the real

world when a situation is complicated. Since then, these concepts have formed a

complete new subject, in mathematical random-fields1.

2.2 Probability theory

Probability theory is a branch of mathematics which has relates to uncertainty.

The outcome of an experiment can not be precisely predicted though it can be

identified as an element in a set of possibilities. We call this set the sample space

and denote it by Ω. In addition, each element of this set, ω ∈ Ω, denotes only one

possible outcome of the experiment. However, generally not every subset of the

sample space, Ω, is an observable or interesting event. We therefore denote the

family of these observable or interesting events by F , which satisfies the following

properties:

(1) ∅ ∈ F , where ∅ denotes the empty set,

(2) if A ∈ F , then its complement Ac = Ω \ A ∈ F ,

(3) If ∀ i : a ≤ i <∞, Ai ∈ F , then ∪∞
i=1Ai ∈ F .

The family F with these three properties is called a σ−algebra. The pair (Ω,F)

is called a measurable space, the elements of F are hereafter called F−measurable

sets. Let us state another useful function as follows.

1is simply a stochastic process which takes values in a Euclidean space

13



A probability measure P on a measurable space (Ω,F) is a function P : F →

[0, 1] such that

(1) P(Ω) = 1;

(2) for any disjoint sequence {Ai}1≤i ⊂ F (i.e. Ai ∩ Aj = ∅ if i ̸= j),

P
( ∞∪

i=1

Ai

)
=

∞∑
i=1

P(Ai).

If C is a collection of subsets of Ω, then there exists a smallest σ−algebra σ(C)

on Ω which contains C. Hence, this σ(C) is called the σ−algebra generated by C.

If Ω = Rd and C is a collection of all open sets in Rd, then Bd = σ(C) is called the

Borel σ−algebra and the elements of Bd are called the Borel sets.

A real-valued function X : Ω → R is said to be F−measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

The function X is also called a real-valued (F -measurable) random variable. An

Rd-valued function X(ω) = (X1(ω), ..., Xd(ω))
T is said to be F -measurable if all

the elements Xi are F -measurable. The indicator function IA of a set A ∈ Ω is

defined by

IA(ω) =


1 ; if ω ∈ A,

0 ; if ω /∈ A.

(2.1)

If IA is F -measurable if and only if A is an F -measurable set (i.e. A ∈ F).

The triple (Ω,F ,P) is called a probability space. If (Ω,F ,P) is a probability

space, we set F̄ = {A ⊂ Ω : ∃B,C ∈ F such that B ⊂ A ⊂ C,P(B) = P(C)}.

Then F̄ is a σ−algebra and is called the completion of F . If F = F̄ , then the

probability space (Ω,F ,P) is said to be complete.

Then, for a real-valued random variable X on a probability space (Ω,F ,P), we

define the moment of random variable X that gives the integration of X by measure
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theory. A real-valued random variable X on (Ω,F ,P) is said to be P−integrable, if

the integral
∫
Ω
X(ω)dP(ω) is finite. Therefore, the expectation of this real valued

random variable can be given by

E(X) =

∫
Ω

X(ω)dP(ω).

Then, the variance of this real-valued variable X can be defined by V (X) =

E(X −E(X))2. Moreover, the number E|X|p is called the pth moment of X where

(p > 0) and E|X|p =
∫
Ω
|X(ω)|pdP(ω). Now we define Lp space:

Lp = Lp(Ω,F ,P) = {X : X is an R− valued random variable,E|X|p <∞}.

For every X in L1, we have |E(X)| ≤ E|(X)|. If Y is another random variable, the

covariance of these two variables X and Y can be given by

Cov(X, Y ) = E((X − E(X))(Y − E(Y ))).

If Cov(X, Y ) = 0, then variables X and Y said to be uncorrelated, in other words

the two variables are independent of each other. The following sections establish

very useful inequalities which are related to the integration or the moments.

(1) Hölder’s inequality (for p=2, this is known as Schwarz’s inequality)

|E(XTY )| ≤ (E|X|p)
1
p (E|X|q)

1
q where p > 1,

1

p
+
1

q
= 1, X ∈ Lp, Y ∈ Lq.

(2) Minkowski’s inequality

(E|X + Y |p)
1
p ≤ (E|X|p)

1
p + (E|Y |p)

1
p where p > 1, X, Y ∈ Lp.

(3) Chebyshev’s inequality

P{ω : |X(ω)| ≥ c} ≤ c−pE|X|p where c, p > 0, X ∈ Lp.

15



An application of Hölder’s inequality can be given by

(E|X|r)
1
r ≤ (E|X|p)

1
p where 0 < r < p <∞, X ∈ Lp.

Let X and Xn (n ≥ 1), be R-valued random variables defined on a probability

space (Ω,F ,P). The following four convergence concepts of the sequence play a

major role in mathematical modelling.

(a)Almost sure (or with probability 1) convergence:

If there exists a P−null set2 Ω0 ∈ F such that for every ω /∈ Ω0, the sequence

{Xn(ω)} converges to X(ω) in the usual in Rd, then {Xn} is said to converge

to X almost surely, and can be written as

lim
n→∞

Xn = X a.s.

(b) Stochastic (or in probability ) convergence:

if for any given ε > 0,

P(ω : |Xn(ω)−X(ω)| > ε) → 0 as n→ ∞.

(c) Convergence in the P th moment (or in Lp):

if X and Xn belong to Lp and E|Xn−X|p → 0. Then {Xn} is said to converge

to X in P th moment or Lp. This process is called convergence in mean square

or in quadratic mean, when p = 2.

(d) Convergence in distribution :

If for every real-valued continuous and bounded function g defined on Rd,

lim
n→∞

Eg(Xk) = Eg(X),

then {Xk} is said to converge to X in distribution.

2A set which has zero measure.

16



These convergence concepts have the following relationships:

convergence in the qth moment

⇓

convergence in the pth moment(p ≤ q)

⇓

almost surely ⇒ convergence in probability ⇒ convergence in distribution.

Furthermore, a sequence converges in probability if and only if every subsequence

of it contains an almost surely convergent subsequence.

Now, we establish the following theorems to explain two very important con-

vergence properties.

Theorem 2.1. (Monotonic convergence theorem)

If {Xn} is an increasing sequence3 of non-negative random variables, then

lim
n→∞

EXn = E
(
lim
n→∞

Xn

)
.

Theorem 2.2. (Dominated convergence theorem)

Let p ≥ 1, {Xn} ⊂ Lp(Ω,R) and Y ∈ Lp(Ω,R). Assume that |Xn| ≤ Y al-

most surely and {Xn} converges to X in probability. Then X ∈ Lp(Ω,R), {Xn}

converges to X in Lp, and

lim
n→∞

EXn = E (X) .

Let I be an index set and (Ω,F ,P) denote the probability space. A collection

of sets {Ai : i ∈ I} ⊂ F is said to be independent if

P
(
Ai1

∩
...
∩

Aik

)
= P (Ai1) ...P (Aik) ,

3Xn ≤ Xn+1 for all n.
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for all possible choice of indices i1, ...ik ∈ I. Then, a collection of sub-σ-algebras

{Fi : i ∈ I} is said to be independent if every possible choice of indices i1, ..., ik ∈ I,

P
(
Ai1

∩
...
∩

Aik

)
= P (Ai1) ...P (Aik)

holds for all Ai1 ∈ Fi1 , ..., Aik ∈ Fik . Then a family of random variables {Xi : i ∈

I} is said to be independent if the σ−algebra σ(Xi), i ∈ I generated by them are

independent.

Let {Ak} be a sequence of sets in F . The inferior limit of Ak is denoted by

lim inf
k→∞

Ak =
∞∪
i=1

∞∩
k=i

Ak,

which contains all finite points belonging to the almost all Ak (all but any finite

number). The set of all those points which belong to infinitely many Ak is called

the superior limit of Ak and is denoted by

lim sup
k→∞

Ak =
∞∩
i=1

∞∪
k=i

Ak.

On the other hand,

lim inf
k→∞

Ak ⊂ lim sup
k→∞

Ak.

The following lemma describes another useful property in probability.

Theorem 2.3. (Borel-Cantelli’s lemma)

(1) If {An} ⊂ F and
∞∑
n=1

P(An) <∞, then

P
(
lim sup
k→∞

Ak

)
= 0,

(2) If the sequence {An} ⊂ F is independent and
∞∑
n=1

P(An) = ∞, then

P
(
lim sup
k→∞

Ak

)
= 1.
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Let (Ω,F ,P) denote a probability space and A,B ∈ F with P(B) > 0. The

conditional probability of A under condition B is

P (A\B) =
P (A

∩
B)

P (B)
.

2.3 Basic concepts of stochastic processes

Let (Ω,F ,P) be a probability space. A filtration is a family {Ft}t≥1 of increasing

sub-σ-algebra of F(i.e. Ft ⊂ Fs ⊂ F for all 0 ≤ t < s <∞). The filtration is said

to be right continuous if Ft =
∩

s>tFs for all t ≥ 0. This means that the family

of events in t time point contains all the information of past up to tth time point.

Accordingly, this creates a platform to keep observed information and compare all

the knowledge of the present with past or even future events. When the probability

space is complete, the filtration is said to satisfy the usual conditions if it is right

continuous and F0 contains all null sets. From now on, we shall always work on a

given complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the

usual conditions (i.e. it is increasing and right continuous while F0 contains all

P-null sets).

A stochastic process is a family of real-valued random variables {Xt}t∈I with

parameter set I (or index set) and state space R. The parameter set I is usually the

half-line, R+ = [0,∞). For each fixed ω ∈ Ω we have a function I ∋ t→ Xt(ω) ∈ R

which is called a sample path of the process, and we shall write X.(ω) for the path.

These sample paths provide information on random effects of continuous random

experiments with time (e.g. random changes of trajectory in financial markets

driven by Brownian motions).

On the other hand, note that we have a random variable for each fixed time

t ∈ I, Ω ∋ ω → Xt(ω) ∈ R which provides possible outcomes of the random
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process at time t. When stochastic process Xt(ω) is considered as a function of

two variables (t, ω), then it can be written as X(t, ω) which is X : I × Ω → R.

Definition 2.1. An R-valued stochastic process X is said to be measurable if the

stochastic process regarded as a function of two variables (t, ω) from R+×Ω → R is

B(R+)× F-measurable, i.e. for every A ∈ B, the set {(t, ω) : Xt(ω) ∈ A} belongs

to the product σ−field R+ × Ω.

Definition 2.2. A stochastic process X is said to be Ft−adapted (or simply,

adapted) if for every t,Xt is Ft−measurable random variable.

The concept of stopping time plays a very important role in the following

chapters. We will therefore introduce that key result in the following way:

A random variable τ : Ω → [0,∞] is called a Ft−stopping time (or simply,

stopping time) if {ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0. The following two theorems

explain a few properties of this stopping time.

Theorem 2.4. If {Xt}t≥0 is a progressively measurable process and τ is a stopping

time, then XτI{τ<∞} is Fτ−measurable. In particular, if τ is finite, then Xτ is

Fτ−measurable.

Theorem 2.5. If {Xt}t≥0 be an R-valued càdlàg (right continuous with left limit)

Ft−adapted process, and D an open subset of R. Define τ = inf{t ≥ 0 : Xt /∈ D},

where we use the convention inf ∅ = ∞. Then τ is a Ft−stopping time and is

called the first exit time from D. Moreover, if ρ is a stopping time, then θ =

inf{t ≥ ρ : Xt /∈ D} is also an Ft−stopping time, and is called the first exit time

from D after ρ.
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Martingales

The martingale property explains a special case of stochastic processes that can

be defined based on knowledge of conditional expectation. Let {Mt}t≥0 denote an

R-valued integrable stochastic process on the probability space (Ω,F ,P), adapted

to a given filtration {Ft}t≥0.

Definition 2.3. A integrable process {Mt}t≥0 is said to be martingale if, for every

0 ≤ s < t <∞, we have,

E(Mt|Fs) =Ms a. s..

If we replace the equality sign in the above formula with ≤ or ≥, the process

is called a supermartingale or a submartingale respectively. Moreover, a right

continuous adapted process {Mt}t≥0 is called a local martingale if there exists a

nondecreasing sequence {τk}k≥1 of stopping time with limk→∞ τk → ∞ a.s. such

that every {Mτk∧t −M0}t≥0 is a martingales.

The martingale property is one of the most important tools in the theory

of stochastic processes and has been widely employed. Also the concept of this

martingale property can be explained as an abstract of a fair game where no

knowledge of past events can help to predict future winnings. It is therefore more

useful to discuss important properties of martingales.

A stochastic process X = {Xt}t≥0 is called square-integrable if E|Xt|2 < ∞

for every t ≥ 0. So if M = {Mt}t≥0 is a real valued square-integrable continuous

martingale, then there exists a unique continuous integrable adapted increasing

process denoted by {< M,M >t} such that {M2
t − < M,M >t} is a continuous

martingale vanishing at t = 0. The process {< M,M >t} is called the quadratic

variation of M . The property of this process can be given by
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Theorem 2.6. (Strong law of large numbers)

Let M = {Mt}t≥0 be a real-valued martingale vanishing at t = 0. Then

lim sup
t→∞

< Mt,Mt >

t
<∞ a.s. ⇒ lim

t→∞

Mt

t
= 0 a.s.,

and also

lim
t→∞

< Mt,Mt >= ∞ a.s. ⇒ lim
t→∞

Mt

< Mt,Mt >
= 0 a.s..

Very useful inequalities of a martingale can be expressed as the following theorem:

Theorem 2.7. (Doob’s Martingale inequality )

Let M = {Mt}t≥0 be a R-valued martingale. Let [a, b] be a bounded interval in R+.

(1) If p ≥ 1 and Mt ∈ Lp(Ω;R), then

P{ω : sup
a≤t≤b

|Mt(ω)| ≥ c} ≤ E|Mb|p

cp
holds for all c > 0.

(2) If p > 1 and Mt ∈ Lp(Ω;R), then

E
(

sup
a≤t≤b

|Mt|p
)

≤
(

p

p− 1

)p

E|Mb|p.

2.4 Brownian motion

Brownian motion is one of the standard examples of the continuous-time mar-

tingale. However, due to its very interesting properties, this process gains quite

significant attention. The Scottish botanist Robert Brown observed this important

property and described irregular movement of pollen suspended in water, in 1828.

However, T. N. Thiele was the first person to describe the mathematics behind the

Brownian motion, in a paper published in 1880. Meanwhile, this was examined

independently by Louis Bachelier in 1900. A. Einstein derived another property

of Brownian motion, i.e. the transition density in 1905. Then, the mathematical
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foundation for Brownian motion as a stochastic process was strongly laid out by N.

Wiener in 1931, and this process is also called the Wiener process. Now, Brownian

motion has become the basic theory of stochastic analysis. In this section, let us

discuss its basic mathematical concepts.

Definition 2.4. Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. A

(standard) one-dimensional Brownian motion is a real valued continuous function

{Ft}−adapted process {Wt}t≥0 with the following properties:

(i) W0 = 0 a.s.;

(ii) for 0 ≤ s < t <∞, the increment Wt−Ws is normally distributed with mean

zero and variance t− s;

(iii) for 0 ≤ s < t <∞, the increment Wt −Ws is independent of Fs.

Moreover, 0 ≤ t0 < t1 < t2 < ... < tk <∞, then the incrementsWti−Wti−1
, 1 ≤

i ≤ k are independent, and we say that Brownian motion has independent in-

crements and we also say it has stationary increments since the distribution of

Wti −Wti−1
depends only on the difference ti − ti−1.

Brownian motion has many important properties. Some of them are summa-

rized below:

(a) {−Wt} is a Brownian motion with respect to the same filtration {Ft}t≥0.

(b) Let c > 0. Define

Xt =
Wct√
c
for t ≥ 0.

Then {Xt} is a Brownian motion with respect to the filtration {Fct}.

(c) {Wt} is a continuous square-integrable martingale and its quadratic variation

< W,W >t= t for all t ≥ 1.
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(d) The strong law of large numbers states that

lim
t→∞

Wt

t
= 0 a.s..

(e) For almost every4 ω ∈ Ω, the Brownian sample path W.(ω) is nowhere-

differentiable5.

(f) For almost every ω ∈ Ω, the Brownian sample path W.(ω) is locally Hölder

continuous with exponent δ if δ ∈ (0, 1
2
). However, for almost every ω ∈ Ω,

the Brownian sample path W.(ω) is nowhere Hölder continuous with expo-

nent δ > 1
2
.

2.5 Stochastic integrals

Since for almost all ω ∈ Ω, the Brownian sample path Wt(ω) is nowhere differen-

tiable, the integral can not be defined in the ordinary way. K. Itô was the first

person to define this stochastic integral for a large class of stochastic processes by

making use of the stochastic nature of Brownian motion and now it is known as

the Itô stochastic integral.

Let (Ω,F ,P) denote a complete probability space with a filtration {Ft}t≥0 sat-

isfying the usual conditions. Let {Wt}t≥0 be a one-dimensional Brownian motion

defined on the probability space adapted to the filtration {Ft}t≥0. Then the space

of all R-valued, {Ft}−adapted stochastic process {f(t, ω)}a≤t≤b such that:∫ b

a

|f(t)|pdt <∞ a.s. for all 0 ≤ a < b <∞

is denoted by Lp ([a, b];R). The Mp ([a, b];R) denotes the space of all processes

4except {ω : P(ω) = 0}
5A function f : Ω → R is said to be nowhere differentiable if it is not differentiable at any

point in the domain Ω of f

24



{f(t, ω)}a≤t≤b ∈ Lp ([a, b];R) such that:

E
∫ b

a

|f(t)|pdt <∞ for all 0 ≤ a < b <∞.

Accordingly, a real-valued stochastic process g ∈ Lp ([a, b];R) is called a step

process if there exists a partition a = t0 < t1 < ... < tk = b of [a, b] and bounded

random variable ξi, 0 ≤ i ≤ k − 1 such that ξi is {Fti}− measurable and

g(t) = ξ0I[t0,t1](t) +
k−1∑
i=1

ξiI(ti,t1+i](t),

where I is an indicator function (see (2.1)). The Itô stochastic integral driven by

such a step process of g with respect to Wt is defined as∫ b

a

g(t)dWt =
k−1∑
i=1

ξi
(
Wti+1

−Wti

)
.

Definition 2.5. Let f ∈ L2 ([a, b];R). The Itô stochastic integral of f with respect

Wt is defined by ∫ b

a

f(t)dWt = lim
n→∞

∫ b

a

gn(t)dWt in L2 (Ω,R)

where {gn} is a sequence of step process such that

lim
n→∞

E
∫ b

a

|f(t)− gn(t)|2dt = 0.

The stochastic integral has nice properties. We first observe the following:

Theorem 2.8. Let f, g ∈ M2 ([a, b];R), and let α, β be two real numbers, Then

(1)
∫ b

a
f(t)dWt is {Fb}− measurable;

(2) E
(∫ b

a
f(t)dWt|Fb

)
= 0;

(3) E
(
|
∫ b

a
f(t)dWt|2|Fb

)
= E

(∫ b

a
|f(t)|2dt|Fb

)
;

(4)
∫ b

a
[αf(t) + βg(t)]dWt = α

∫ b

a
f(t)dWt + β

∫ b

a
g(t)dWt.
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Definition 2.6. Let f ∈ L2 ([a, b];R). Define

I(t) =

∫ t

0

f(s)dWs for 0 ≤ t ≤ T

where, by definition I(0) = 0. We call I(t) the indefinite Itô integral of f .

Clearly, {I(t)} is {Ft}-adapted. The following theorem shows the very important

martingale property of Itô integral.

Theorem 2.9. If f ∈ M2 ([a, b];R), then the indefinite integral {I(t)}0≤t≤T is a

square-integrable martingale with respect to the filtration {Ft}. Then,

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

f(s)dWs

∣∣∣∣2
)

≤ 4E
(∫ T

0

|f(s)|2
)
ds.

2.6 Itô’s formula

The basic definition of the Itô’s integral which was defined in the previous section

is not useful when we attempt to evaluate a given integrals. This is similar to

the situation for classical Lebesgue integrals. We do not use the basic definition

but rather the fundamental theorem of calculus plus the chain rule in the explicit

calculation. On the other hand, we do not have differential theories though we have

its integration concept. In this section, we therefore establish a stochastic version

of chain rule for the Itô’s integral which is known as Itô’s formula. This concept

has become the most fundamental theorem in the area of stochastic analysis and

this chain rule can be explained in the following way.

Let X(t) be a continuous {Ft}−adapted process on t ≥ 0 and have the form

Xt = X0 +

∫ t

0

f(u)du+

∫ t

0

g(u)dWu (2.2)

where f ∈ L1 (R+;R) and g ∈ L2 (R+;R). Then, the differential form of this
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process can be given by

dXt = f(t)dt+ g(t)dWt. (2.3)

Then, a one-dimensional Itô’s formula can be established by the following theorem.

Theorem 2.10. (1-dimensional Itô’s formula)

Let Xt be an Itô process given by (2.3). Let V (t,Xt) ∈ C2,1 (R+ × R;R). Then

Yt = V (t,Xt) has the form of (2.2) and

dYt =

[
∂V (t,Xt)

∂t
+
∂V (t,Xt)

∂x
f(t) +

1

2

∂2V (t,Xt)

∂2x
g(t)

]
dt+

∂V (t,Xt)

∂x
g(t)dWt a.s..

Moreover, in this section, we concentrate on properties of Itô stochastic integral

which are very useful for examining financial models, established in the following

chapters. These properties are called moment inequalities and we have already

discussed the 1st and 2nd moment in Theorem 2.8. Now, the problem is what

would be the pth moment inequality when p ≥ 2.

Theorem 2.11. Let p ≥ 2, let g ∈ M2 ([0, T ];R) such that

E
∫ T

0

|g(s)|pds <∞.

Then

E
∣∣∣∣∫ T

0

g(s)dW (s)

∣∣∣∣p ≤ [p(p− 1)

2

] p
2

T
p−2
2 E

∫ T

0

|g(s)|pds.

In particular, for p = 2, there is equality.

Theorem 2.12. (Burkholder-Davis-Gundy Inequality)

Let g ∈ L2 (R+;R). For t ≥ 0, define,

x(t) =

∫ t

0

g(s)dW (s) and A(t) =

∫ t

0

|g(s)|2ds,

then for every p > 0, there exists a universal positive constant cp, Cp (depending
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only on p), such that

cpE|A(t)|
p
2 ≤ E

(
sup
0≤s≤t

|x(s)|p
)

≤ CpE|A(t)|
p
2

for all t ≥ 0. In particular one may take

cp = (p
2
)p, Cp = (32

p
)
p
2 if 0 < p < 2;

cp = 1 Cp = 4, if p = 2;

cp = (2p)−2p, Cp = ( pp+1

2(p−1)p−1 )
p
2 if p > 2.

2.7 Stochastic differential equations

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions and let W (t), t ≥ 0 be a 1-dimensional Brownian motion defined

on the same probability space adapted to the filtration. Let f : R × [t0, T ] → R

and g : R × [t0, T ] → R both be Borel measurable. Also let 0 ≤ t < T < ∞ and

x0 be an {Ft0}−measurable, R-valued random variable such that E|X0|2 < ∞.

Then, consider the 1-dimensional stochastic differential equation of Itô type for

the R-valued stochastic process {Xt}t∈[t0,T ] and with initial value Xt0 = X0. It has

the following form:

dXt = f(t,Xt)dt+ g(t,Xt)dWt, on t0 ≤ t ≤ T. (2.4)

A definition of the solution to this SDE can be given by:

Definition 2.7. An R-valued stochastic process {Xt}t0≤t≤T is called a solution of

the SDE (2.4) if it has the following properties with initial value Xt0 = X0:

(1) {X(t)} is continuous and {Ft}−adapted;

(2) P{Xt0 = X0} = 1;

(3) {f(X(t), t)} ∈ L1 ([t0, T ];R) and {g(X(t), t)} ∈ L2 ([t0, T ];R);
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(4) the integral version of (2.4) holds for every t ∈ [t0, T ] with probability 1.

A solution {Xt} is said to be unique if any other solution {X̄t} indistinguishable

from {Xt}, that is

P{X(t) = X̄t for all t0 ≤ t ≤ T} = 1.

Now, we turn to discuss the condition that guarantees existence and uniqueness

of the solution to the SDE model (2.4).

Theorem 2.13. Assume that there exist two positive constants K and K̄ such

that

(1) (Lipschitz condition) for all x, y ∈ R and t ∈ [t0, T ],

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K̄ |x− y|2 ; (2.5)

(2) (Linear growth condition) for all (x, t) ∈ R× [t0, T ],

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K(1 + |x|2); (2.6)

then there exists a unique solution X(t) to equation (2.4) with initial value Xt0 =

X0 and solution belongs to M2 ([t0, T ];R).

Theorem 2.14. Assume that the linear growth condition (2.6) holds. But the

Lipschitz condition (2.5) is replaced by the following condition:

(1)(local Lipschitz condition) for every integer R ≥ 1, there exists a positive

constant KR such that, for all t ∈ [t0, T ] and all x, y ∈ R with |x| ∨ |y| ≤ R,

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ KR |x− y|2 , (2.7)

then there exists a unique local solution X(t) to equation (2.4) with initial value

Xt0 = X0 and the solution belongs to M2 ([t0, T ];R).
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Let us now focus on another useful and important property of the models in

the following chapters.

2.8 Poisson process

The Poisson process N(t) counts the number of jumps that occur at or before time

t. Namely

N(t) =



0 ; if 0 ≤ t < S1,

1 ; if S1 ≤ t < S2,

...
...

n ; if Sn ≤ t < Sn+1,

...
...

(2.8)

where Sn =
n∑

k=1

τk is called the arrival time (i.e Sn is the time of the nth jump) and

the exponential random variables τk are called the interarrival times. The jump

time N(t) is a right continuous function which gives N(t) = s↓tN(s) and F the

σ−algebra containing the observed information on N(t) for 0 ≤ s ≤ t. Moreover,

since the expected time between jumps is 1
λ
, the Poisson process has intensity λ.

The following section gives more useful information about this Poisson process.

Theorem 2.15. For n ≥ 1, the random variable Sn =
n∑

k=1

τk has the gamma

density

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0. (2.9)

Theorem 2.16. The Poisson process N(t) with intensity λ has the distribution

P{N(t) = k} =
(λt)k

k!
e−λt, k = 0, 2, 3, .... (2.10)

Theorem 2.17. Let N(t) be the Poisson process with intensity λ. Then we define
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the compensated Poisson process,

N̄(t) = N(t)− λt. (2.11)

Then N̄(t) is a martingale.

2.9 Stochastic differential equations with a Pois-

son jump process

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions andW (t) be a Brownian motion relative to this filtration. We

say that a Poisson process N(.) is a Poisson process relative to filtration, if N(t)

is {Ft}−measurable for every t and for every u > t the increment N(u)−N(t) is

independent of {Ft}.

Then, let f : R × [t0, T ] → R, g : R × [t0, T ] → R and h : R × [t0, T ] → R

are all Borel measurable. Consider a Poisson jump stochastic differential equation

of Itô type for the R-valued stochastic process {Xt}t∈[t0,T ] and with initial value

Xt0 = X0, which the following form:

dXt = f(t,Xt)dt+ g(t,Xt)dWt + h(t,Xt)dN̄t on t0 ≤ t ≤ T, (2.12)

where N̄(t) = N(t)−λt, λ ∈ R+ and N(t) is a stationary Ft−Poisson point process

with intensity λ.

2.10 Continuous-time Markov process

In this section, we will recall some basic facts about a continuous-time Markov

process which is known as the continuous-time version of a Markov chain. Let

X = {X(t)}t≥0 be a d-dimensional stochastic process defined on the probability
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space (Ω,F ,P) while taking values in a countable space Ξ, which is called the state

space of the process.

Definition 2.8. The d-dimensional {Ft}-adapted process X = {X(t)}t≥1 is called

a continuous-time Markov process if it satisfies P{X(t) = j|Xt1 = i1, ..., Xtk =

ik} = P{X(t) = j|Xtk = ik}, for all 0 < t1, ..., < tk < t <∞ and all j, ix ∈ Ξ such

that 1 ≤ x ≤ k.

Definition 2.9. A function p(s, i : t, j) = pij(s, t) defined on 0 ≤ s ≤ t < ∞

and i, j ∈ Ξ is said to be the transition probability of the continuous-time Markov

process X = {X(t)}t≥0 and P (s, t) = (pij(s, t))i,j∈Ξ is said to be the transition

probability matrix of X if the following properties are satisfied:

(i) pij(s, t) = P{Xt = j|Xs = i} for all 0 ≤ s ≤ t and i, j ∈ Ξ;

(ii) pij(s, s) = κij for all 0 ≤ s and i, j ∈ Ξ;

(iii)
∑
j∈Ξ

pij(s, t) = 1 for all 0 ≤ s ≤ t and i, j ∈ Ξ;

(iv) the Chapman-Kolmogorov equation

pij(s, t) =
∑
k∈Ξ

pik(s, u)pkj(u, t)

or in matrix form

P (s, t) = P (s, u)P (u, t)

holds for all 0 ≤ s ≤ u ≤ t.

The continuous-time Markov process X = {X(t)}t≥0 is said to be homoge-

nous if its transition probability pij(s, t) is stationary, which depends only on the

difference t− s for all 0 ≤ s ≤ t <∞ and i, j ∈ Ξ, namely

P (s, s+ u) = P (u),
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for all s ≥ 0 and u ≥ 0. Furthermore, the corresponding transition probability

and transition probability matrix can be given by pij(t) and P (t) for all t ≥ 0

respectively. If lim
t→0

pii = 1 for all i ∈ Ξ then the transition probability matrix

P (t) = (pij(t))ij∈Ξ is called standard.

Theorem 2.18. [3] Let pij(t) be a standard transition function. Then

κi = lim
t→0

1− pii(t)

t

exists (but may be ∞) for all i ∈ Ξ.

A state i ∈ Ξ is said to be stable if κi <∞.

Theorem 2.19. [3] Let pij(t) be a stranded transition function and j be a stable

state. Then

κij = p
′

ij(0) = lim
h→0

pij(t+ h)− pij(t)

h

exists and is finite for every i ∈ Ξ.

On the other hand, let κij = −κi and Γ = (κij)ij∈Ξ is called the generator of

the Markov chain. If this process is said to be a continuous time Markov process

then it has a finite state space and we can take to S = {1, 2, ..., N}. Hereafter we

assume that all Markov chains are finite and states are stable. Moreover, almost

every sample path of these Markov chains is a right continuous step function.

Theorem 2.20. [3] Let P (t) = (pij(t))N×N be the stranded transition matrix and

Γ = (κij) be the generator of the finite continuous-time Markov process. Then

P (t) = etΓ for all t ≥ 0.

It is useful to see that a continuous-time Markov process X = {X(t)}t≥0 with

the generater Γ = (κij)ij∈Ξ can be represented as a stochastic integral with respect
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to a Poisson random measure [4, 71]. Let ∆ij be consecutive, left closed, right

open intervals of the real line each having length κij such that

∆12 =
[
0, κ12

)
,

∆13 =
[
κ12, κ12 + κ13

)
,

...

∆1N =
[N−1∑

j=2

κ1j,
N∑
j=2

κ1j

)
,

∆21 =
[ N∑

j=2

κ1j,
N∑
j=2

κ1j + κ21

)
,

∆23 =
[ N∑

j=2

κ1j + κ21,

N∑
j=2

κ1j + κ21 + κ23

)
,

...

∆2N =
[ N∑

j=2

κ1j,
N−1∑

j=1,j ̸=2

κ2j,
N∑
j=2

κ1j +
N∑

j=1,j ̸=2

κ2j

)

(2.13)

and so on. Define a function h : S× R → R by

h(i, y) =


j − i ; if y ∈ ∆ij,

0 ; otherwise.

(2.14)

Then

dXt =

∫
R
h(Xt−, y)v(dt, dy),

with initial condition X0 = i0 ∈ S, where v(dt, dy) is a Poisson measure with

intensity dt×m(dy), in which m is the Lebesgue measure on R.

Now, we introduce the following important SDE which can be seen in practice.
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2.11 Stochastic differential equation with Markov-

swiching

Let r(t), t ≥ 0, be a right-continuous Markov chain on the complete probability

space (Ω,F ,Ft≥0,P) taking values in a finite state space S = {1, 2, ..., N} with

generator Γ = (κij)N×N given by

P{r(t+∆) = j|r(t) = i} =


κij∆+ 0(∆) ; if i ̸= j,

1 + κij∆+ 0(∆) ; if i = j,

where ∆ > 0 and κij ≥ 0 is the transition rate from i to j if i ̸= j, while κii =

−
∑
i̸=j

κij. It is also known that almost all sample paths of r(t) are right-continuous

step functions with a finite number of simple jumps in any finite subinterval of

R+ = [0,∞). Then, we assume that W (t) is the m-dimensional Brownian motion

defined on the same probability space which is independent of the Markov chain

r(t).

Now, consider the 1-dimensional stochastic differential equation with Marko-

vian switching

dX(t) = f(X(t), t, r(t))dt+ g(X(t), t, r(t))dW (t) (2.15)

on t ≥ 0 with initial values X(t0) = X0 ∈ L2
Ft0

(Ω;R) and r(t0) = r0, where r0 is

an S−valued Ft0-measurable random variable and

f : R× R+ × S → R and g : R× R+ × S → R.

On the other hand, let C2,1(R×R+×S; R) denote the family of all real-valued

functions V (X, t, i) on R × R+ × S which are continuously twice differentiable in

X and once in t. If V (X, t, i) ∈ C2,1(R×R+ × S; R), define an operator LV from
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R× R+ × S to R by

LV (X, t, i) =Vt(X, t, i) + VX(X, t, i)f(X(t), t, r(t))

+
1

2

[
g2(X(t), t, r(t))VXX(X, t, i)

]
+

N∑
j=1

κijV (X, t, j),
(2.16)

where Vt(X, t, i) =
∂V (X,t,i)

∂t
, VX(X, t, i) =

∂V (X,t,i)
∂X

and VXX(X, t, i) =
(

∂2V (X,t,i)
∂X2

)
.

The following Theorem shows the transformation of the paired process (X(t), r(t))

into a new process V (X(t), t, r(t)) which is known as the generalized Itô formula.

Theorem 2.21. If V (X, t, i) ∈ C2,1(R× R+ × S;R), then

V (X(t), t, r(t))

=V (X(0), 0, r(0)) +

∫ t

0

LV (X(s), s, r(s))ds

+

∫ t

0

VX(X(s), s, r(s))f(X(t), t, r(t))dW (s)

+

∫ t

0

∫
R
(V (X(s), s, r(0) + h(r(s), l))− V (X(s), s, r(s)))µ(ds, dl)

(2.17)

for any t ≥ 0, where function h(., .) is defined by (2.14) and µ(ds, dl) = v(ds, dl)−

µ(dl)ds is a martingale measure (see also [53], [4]).

2.12 Approximate solutions

The criteria which were established in the previous section show the property of

uniqueness and existence of the solution of SDEs. However, most of the SDEs do

not have explicit solutions. Study of the numerical method is therefore more useful

to find the approximate solution of these SDEs. In this section, we will therefore

concentrate on the Euler-Maruyama method, one of the most powerful numerical

schemes.

To define the Euler-Maruyama approximate solution, first recall the discrete-

time Markov chain: Given time step ∆ > 0, let r∆k = r(k∆) for k > 0. Then
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{r∆k , k = 0, 1, 2, 3, ....} is a discrete time Markov-chain with one step transition

probability matrix:

P (∆) = (pij(∆))N×N = e∆Γ.

Given a step size ∆ > 0, the discrete-time Markov chain {r∆k , k = 0, 1, 2, 3, ....}

can be simulated as follows: Compute the one step transition probability matrix

P (∆) = (pij(∆))N×N = e∆Γ.

Let r∆0 = r0 and generate a random number ξ1 which is uniformly distributed in

[0,1]. Define

r∆1 =



i1 ; if i1 ∈ S− {N}

is such that

i1−1∑
j=1

P (∆)i0j(∆) ≤ ξ1 <

i1∑
j=1

P (∆)i0j(∆),

N ; if
N−1∑
j=1

P (∆)i0j(∆) ≤ ξ1,

and let r∆1 = r1, where we set
0∑

i=1

P (∆)i0j(∆) = 0 as usual. Generate a indepen-

dently new random number ξ2 which is again uniformly distributed in [0, 1] and

define

r∆2 =



i2 ; if i2 ∈ S− {N}

is such that

i2−1∑
j=1

P (∆)i1j(∆) ≤ ξ2 <

i2∑
j=1

P (∆)i1j(∆),

N ; if
N−1∑
j=1

P (∆)i1j(∆) ≤ ξ2,

Repeating this procedure, a trajectory of {r∆k , k = 0, 1, 2, 3, ....} can be generated.

This procedure can be carried out independently to obtain more trajectories. Now

based on this discrete-time Markov-chain r∆k , we can define the Euler-Maruyama

approximate solution to equation (2.15). Given time step ∆ > 0, let tk = k∆ for
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k ≥ 0, compute the discrete approximation xk ≈ X(tk) by setting x0 = X0 and r
∆
0

and forming

xk+1 = xk + f(xk, tk, r
∆
k )∆ + g(xk, tk, r

∆
k )∆Wk, (2.18)

where ∆Wk = W (tk+1) −W (tk). Let x̄(t) = xk, r̄(t) = r∆k for t ∈ [tk, tk+1) and

define the continuous EM approximate solution

x(t) = x0 +

∫ t

0

f(x̄(s), s, r̄(s))ds+

∫ t

0

g(x̄(s), s, r̄(s))dW (s). (2.19)

Note that x(tk) = x̄(tk) = xk, that is x(t) and x̄ coincide with the discrete solution

at the grid points. Moreover, applying similar techniques, the EM approximate

solution to the SDE (2.4) and (2.12) can easily be obtained.

Let us now present useful techniques for the following chapters.

Theorem 2.22. Assume that f and g satisfy the linear growth condition (2.6).

Then for any p ≥ 2, there is a constant H, which is dependent on only p, T,K,X0

but independent of ∆, such that the true solution and the continuous EM approx-

imate solution to equation (2.15) have the property that

E
(

sup
0≤t≤T

|X(t)|p
)
∨ E

(
sup

0≤t≤T
|x(t)|p

)
≤ H. (2.20)

Together with this lemma, we can discuss the convergence in second moment

of the EM approximate solution to the true solution of equation (2.15) under the

global Lipschitz condition (2.5).

Theorem 2.23. Under the global Lipschitz condition (2.5),

lim
∆→0

E
(

sup
0≤t≤T

[X(t)− x(t)]2
)

= 0. (2.21)

Now, we concentrate on the local Lipschitz condition (2.7), without linear

growth condition (2.6). The following theorem describes the convergence in prob-

ability of the EM approximate solution under some additional conditions.
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Theorem 2.24. Let the local Lipschitz condition (2.7) hold. Assume that there

exists a C2 function V : R× S → R+ satisfying the following three conditions:

(i) lim
|X|→∞

V (X, i) = ∞ for any i ∈ S;

(ii) for some h > 0, LV (X, i) ≤ h(1 + V (X, i)) for all (X, i) ∈ R× S, where

LV (X, i) = VXf(X, i) +
1

2
g2(X, i)VXX +

N∑
j=1

κijV (X, j);

(iii) for each R > 0 there exists a positive constant KR such that for all i ∈ S

and those X, Y ∈ R with |X| ∨ |Y | ≤ R,

|V (X, i)−V (Y, i)|∨|VX(X, i)−VY (Y, i)|∨|VXX(X, i)−VXX(Y, i)| ≤ KR|X−Y |.

Then

lim
∆→0

(
sup

0≤t≤T
|X(t)− x(t)|2

)
= 0 in probability. (2.22)

2.13 Gronwall-type integral inequalities

The Gronwall-type integral inequalities have been widely used in many branches

of ordinary differential equations (ODEs) and stochastic differential equations to

prove the required theorems and results on existence, uniqueness, boundlessness,

etc. Also this concept is useful to prove theorems in the following chapters. There-

fore, this useful tool with other inequalities can be expressed in the following way.

Theorem 2.25. (Gronwall’s inequality)

Let T > 0, and c > 0. Let u(.) be a Borel measurable bounded nonnegative function

on [0,T], and let v(.) be a nonnegative integrable function on [0,T]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T,
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then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.

Theorem 2.26. (Bihari’s inequality)

Let T > 0, and c > 0. Let K : R+ → R+ be a continuous nondecreasing function

such that K(t) > 0 for all t > 0. Let u(.) be a Borel measurable bounded nonneg-

ative function on [0,T], and let v(.) be a nonnegative integrable function on [0,T].

If

u(t) ≤ c+

∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1

(
G(c) +

∫ t

0

v(s)ds

)
holds for all 0 ≤ t ≤ T such that

G(c) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where

G(r) =

∫ 1

r

ds

K(s)
on r > 0,

and G−1 is the inverse function of G.
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Chapter 3

Euler-Maruyama Approximation

for Mean-Reverting-Theta

Stochastic Volatility Model

3.1 Introduction

In general, the rate of the change of an asset price X(t) consists of random

changes and deterministic changes. The well-known Black-Scholes [8] model of the

asset price is described by the linear SDE

dX(t) = α1X(t)dt+ σ1X(t)dW1(t), (3.1)

where W1 is a scalar Brownian motion and the rate of return α1 and the volatility

σ1 are assumed to be constants. Later, Vasicek [74] developed the mean-reverting

model and Cox, Ingersoll and Ross (CIR) [13] modified it into the mean-reverting

square root process which has the SDE form

dX(t) = α1(µ1 −X(t))dt+ σ1
√
X(t)dW1(t). (3.2)
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According to empirical studies, many authors have shown that the volatility is a

stochastic process and it can be modelled by an SDE in many situations [31, 34, 13,

59, 7]. In particular, Hull and White [34] observed that the instantaneous variance

V = σ2
1 is governed by another Brownian motion W2 and can be described by the

SDE

dV (t) = α2V (t)dt+ σ2V (t)dW2(t), (3.3)

where α2, σ2 are constants. Heston [31] proposed to model the variance by the

mean reverting square root process

dV (t) = α2(µ2 − V (t))dt+ σ2
√
V (t)dW2(t). (3.4)

Lewis [47] developed this into the more general mean-reverting-theta process

dV (t) = α2(µ2 − V (t))dt+ σ2V (t)θdW2(t), (3.5)

which can not only model the volatility but also the asset price, where θ ≥ 1/2.

Accordingly, we will, in this chapter, consider the following mean-reverting-theta

stochastic volatility model

dX(t) = α1(µ1 −X(t))dt+ σ1
√
V (t)X(t)θdW1(t),

dV (t) = α2(µ2 − V (t))dt+ σ2V (t)βdW2(t),

(3.6)

where W1 and W2 are scalar Brownian motions with correlation coefficient ρ, de-

fined on the same probability space. This SDE model has no explicit solutions.

Hence numerical techniques have become one of the most popular and powerful

tools to find the approximate solution [51, 54, 2, 32, 33, 64]. In the case when

1/2 ≤ β, θ ≤ 1, the convergence (in L2) of the Euler-Maruyama (EM) approxi-

mate solution has been established by Mao et al [52]. In this paper, the expected

upper bound for the EM approximate solution and the true solution to this SDE

model (3.6) have been obtained under the linear growth condition. Moreover, the
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diffusion coefficients of this model satisfy the global Lipschitz condition. There-

fore, the convergence in second moment property of the EM approximate solution

to the volatility has been obtained by applying Itô formula. Finally, they proved

the convergence in second moment property of the EM approximate solution to

the asset price when the time step is sufficiently small. However, there is so far

no result on the numerical solutions for the SDE model (3.6) when θ, β > 1. The

aim of this chapter is to close this gap.

It is essential for the SDE model (3.6) to have its non-negative solution. Given

that the SDEs do not obey the linear growth condition though it satisfies the

local Lipschitz condition, there is so far no result on the non-negative solution.

We will therefore in the following section develop a technique to prove the non-

negativity of the solution to the model. We will then define the EM approximate

solutions to the volatility process V (t) and the underlying asset price process X(t).

To guarantee the non-negativity of the EM solutions, we will use the technique of

stopping times. We will finally show that the EM numerical solutions will converge

in probability to the true solution.

3.2 Non-negative solution

The SDE model (3.6) describes the asset price and its volatility in the financial

market. It is therefore essential to prove that the solution of (3.6) is non-negative

with probability 1. The following lemmas in fact show that the solution is positive

with probability 1.

Lemma 3.1. Let β > 1. Then, for any given initial value V (0) = V0 > 0, the

solution V (t) of the SDE model (3.6) will be positive for all t ∈ [0, T ] almost surely.

Proof. Treat the second SDE in (3.6) as an SDE in the whole real space R =
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(−∞,∞) by setting its coefficients be 0 when V (t) < 0. Clearly, the coeffi-

cients obey the local Lipschitz condition. Hence, there exists a unique maximal

local solution V (t) on t ∈ [0, ρe), where ρe is the explosion time1 . We also

set inf ∅ = ∞ (as usual, ∅ denotes the empty set). For any sufficiently large

positive number M , namely 1
M

< V (0) < M , define a stopping time ρM=ρe ∧

inf
{
t ∈ [0, ρe) : |V (t)| /∈ [ 1

M
,M ]

}
and set ρ∞ = lim

M→∞
ρM .

Now, define a C2-function H : (0,∞) → (0,∞) by

H(V ) = V
1
2 − 1− 1

2
lnV, V > 0.

Applying the Itô formula 2.10 yields

E[H(V (T ∧ ρM))] =H(V0) + E
∫ T∧ρM

0

H
′
(V (u))α2[µ2 − V (u)]du

+
1

2
E
∫ T∧ρM

0

H
′′
(V (u))σ2

2|V (u)|2βdu

≤H(V0) + E
∫ T∧ρM

0

1

2

[
(V (u))−

1
2 − (V (u))−1

]
α2

[
µ2 − V (u)

]
du

+
1

4
E
∫ T∧ρM

0

σ2
2

[
(V (u))−2 − (V (u))−

3
2

2

]
|V (u)|2βdu

≤H(V0) +
α2µ2T

2
+
α2T

2

+
σ2
2

4
E
∫ T∧ρM

0

[
1− (V (u))

1
2

2

]
|V (u)|2β−2du.

(3.7)

Since [
1− y

1
2

2

]
=


< 0 ; if 4 < y;

< 1 ; if 0 ≤ y ≤ 4,

(3.8)

we then have

E[H(V (T ∧ ρM))] ≤ H(V0) +
α2µ2T

2
+
α2T

2
+ σ2

24
2β−3T. (3.9)

1ρe = inf{t ≥ 0 : V (t) /∈ R}

44



Noting

E[H(V (T ∧ ρM))] ≥ E[H(V (T ∧ ρM))1[ρM≤T ]]

≥ [H(M−1) ∧H(M)]P(ρM ≤ T ),

(3.10)

we see from (3.9) that

[H(M−1) ∧H(M)]P(ρM ≤ T ) ≤ H(V0) +
α2µ2T

2
+
α2T

2
+ σ2

24
2β−3T, (3.11)

namely

P(ρM ≤ T ) ≤
H(V0) +

α2µ2T
2

+ α2T
2

+ σ2
24

2β−3T

H(M−1) ∧H(M)
. (3.12)

Now letting M → ∞ we have P(ρ∞ ≤ T ) = 0. This implies that P(ρ∞ > T ) = 1,

which means P (0 < V (t) <∞ for all t ∈ [0, T ]) = 1 as required.

Lemma 3.2. Let θ > 1 and β > 1. Then, for any given initial values V (0) = V0 >

0 and X(0) = X0 > 0, the solution X(t) of (3.6) will be positive for all t ∈ [0, T ]

almost surely.

Proof. Once again, treat the SDE model (3.6) as an SDE in R2 by setting its

coefficients to 0 whenever V (t) < 0 or X(t) < 0. Clearly, the coefficients obey

the local Lipschitz condition. Hence, there exists a unique maximal local solution

(X(t), V (t)) on t ∈ [0, ρe), where ρe is defined as before.

For any sufficiently large positive valuesM and N , namely 1
M
< V (0) < M and

1
N
< X(0) < N , define stopping times ρM=ρe ∧ inf{t ∈ [0, ρe] : V (t) /∈ [ 1

M
,M ]}

and τN = ρe ∧ inf{t ∈ [0, ρe] : |X(t)| /∈ [ 1
N
, N ]} and let η = ρM ∧ τN . Then set

ρ∞ = lim
M→∞

ρM (as before) and τ∞ = lim
N→∞

τN . Let the C
2-function H be the same

as before. Applying the Itô formula yields

E[H(X(T ∧ η))] =H(X0) + E
∫ T∧η

0

H
′
(X(u))α1[µ1 −X(u)]du

+
1

2
E
∫ T∧η

0

H
′′
(X(u))σ2

1V (u)|X(u)|2θdu
(3.13)
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E[H(X(T ∧ η))]

≤H(X0) + E
∫ T∧η

0

1

2
[(X(u))−

1
2 − (X(u))−1]α1[µ1 −X(u)]du

+
1

4
E
∫ T∧η

0

σ2
1[(X(u))−2 − (X(u))−

3
2

2
]V (u)|X(u)|2θdu

≤H(X0) +
α1µ1T

2
+
α1T

2
+
σ2
1

4
E
∫ T∧η

0

[1− (X(u))
1
2

2
]|X(u)|2θ−2V (u)du.

(3.14)

By (3.8), we have

E[H(X(T ∧ η))] ≤H(X0) +
α1µ1T

2
+
α1T

2
+ σ2

14
2β−3MT. (3.15)

Since

E[H(X(T ∧ η))] = E[H(X(T ∧ ρM ∧ τN))] ≥ E[H(X(τN))1[τN≤T∧ρM ]]

≥ [H(N−1) ∧H(N)]P(τN ≤ T ∧ ρM),

(3.16)

we have

[H(N−1) ∧H(N)]P(τN ≤ T ∧ ρM) ≤ H(X0) +
α1µ1T

2
+
α1T

2
+ σ2

14
2β−3MT,

(3.17)

that is

P(τN ≤ T ∧ ρM) ≤
H(X0) +

α2µ2T
2

+ α2T
2

+ σ2
24

2β−3MT

H(N−1) ∧H(N)
. (3.18)

Now letting N → ∞ we have P(τ∞ ≤ T ∧ ρM) = 0. Then letting M → ∞ and

using Lemma 3.1, we can get P(τ∞ ≤ T ) = 0. This gives that P(τ∞ > T ) = 1

which implies our assertion easily.

3.3 Convergence in probability

The SDE model (3.6) has no explicit solution, hence the study of its numerical

approximate solutions has become more and more useful. In this section we will
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investigate the EM numerical approximate solutions to the SDE model (3.6).

Euler-Maruyama approximation

Given the time step ∆ ∈ (0, 1), we let tk = k∆ for k = 0, 1, 2, 3, ...,
[
T
∆

]
, where

[
T
∆

]
denotes the integer part of T

∆
. The discrete time EM approximate solution to the

SDE model (3.6) can be defined by setting x0 = X(0), v0 = V (0) and forming

xk+1 = xk + α1(µ1 − xk)∆ + σ1
√
|vk||xk|θ∆W1k,

vk+1 = vk + α2(µ2 − vk)∆ + σ2|vk|β∆W2k,

(3.19)

where ∆W1k = [W1(tk+1)−W1(tk)] and ∆W2k = [W2(tk+1)−W2(tk)]. The corre-

sponding continuous EM approximate solution to this model is defined by

x(t) = x0 +

∫ t

0

α1(µ1 − x̄(u))du+

∫ t

0

σ1
√
|v̄(u)||x̄(u)|θdW1(u),

v(t) = v0 +

∫ t

0

α2(µ2 − v̄(u))du+

∫ t

0

σ2|v̄(u)|βdW2(u),

(3.20)

where x̄(t) =

[ T
∆
]∑

k=0

xk1[tk,tk+1)(t) and v̄(t) =

[ T
∆
]∑

k=0

vk1[tk,tk+1)(t) are step processes.

That is, x̄(t) = xk and v̄ = vk for t ∈ [tk, tk+1) when k = 0, 1, 2, 3, ...,
[
T
∆

]
.

Convergence of v(t) in probability

In this chapter we are concerned with the case when both parameters θ and β

are greater than 1, as the case 1
2
≤ θ, β ≤ 1 is proven by Mao et al [52]. So

the diffusion coefficients of the SDE model (3.6) do not follow the linear growth

condition although they obey the local Lipschitz condition. The existing results on

the finite-time convergence of the EM approximate solutions can not be applied.

It is therefore necessary to establish a new theory on the convergence property of

the EM approximate solution to the SDE model (3.6). For this purpose, let us

first discuss the convergence property for the volatility process.
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Theorem 3.1. Let V (t) be the solution and v(t) be continuous EM approximate

solution to the second SDE of (3.6). For any positive number M , define the stop-

ping time q = ρM ∧ γM ∧ T , where ρM = inf{t ∈ [0, T ];V (t) /∈ [ 1
M
,M ]} and

γM = inf{t ∈ [0, T ]; |v(t)| /∈ [ 1
M
,M ]}. Then, for any integer p ≥ 2,

E
(

sup
0≤t≤T

[V (t ∧ q)− v(t ∧ q)]2
)

≤ C1,2(M, p)∆1− 1
p , (3.21)

where C1,2 = C1,2(M, p) is a constant independent of ∆.

To prove this theorem, we need to establish a useful lemma which shows that the

continuous EM approximate solution v(t) and its step process v̄(t) are close to

each other.

Lemma 3.3. There exists a constant C1,1(M, p) dependent on M and p but inde-

pendent of ∆ such that

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤ C1,1(M, p)∆1− 1
p . (3.22)

Proof. For t ∈ [0, T ], let
[

t
∆

]
be the integer part of t

∆
. Then we have

v(t ∧ q)− v̄(t ∧ q) =
∫ t∧q

[ t∧q
∆ ]∆

[α2(µ2 − v̄(u))] du+

∫ t∧q

[ t∧q
∆ ]∆

σ2|v̄(u)|βdW2(u), (3.23)

which gives

[v(t ∧ q)− v̄(t ∧ q)]2 ≤ 4α2
2(µ

2
2 +M2)∆2 + 2σ2

2M
2β

[
W2(t ∧ q)−W2([

t ∧ q
∆

]∆)

]2
.

We hence have

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤ 4α2
2(µ

2
2 +M2)∆2 + 2σ2

2M
2βE

(
sup

0≤t≤T∧q

[
W2(t)−W2([

t

∆
]∆)

]2)

≤ 4α2
2(µ

2
2 +M2)∆2 + 2σ2

2M
2βE

(
sup

0≤t≤T

[
W2(t)−W2([

t

∆
]∆)

]2)
.

(3.24)
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By the Hölder inequality,

E

(
sup

0≤t≤T

[
W2(t)−W2(∆[

t

∆
])

]2)
≤

(
E

(
sup

0≤t≤T

[
W2(t)−W2(∆[

t

∆
])

]2p)) 1
p

.

(3.25)

Using the Doob martingale inequality, we get

E

(
sup

0≤t≤T

[
W2(t)−W2(∆[

t

∆
])

]2p)
=E

(
sup

0≤k≤[ T
∆
]

sup
k∆≤r≤∆(k+1)

[W2(r)−W2(∆k)]
2p

)

≤
[ T
∆
]∑

k=0

E

[
sup

k∆≤r≤∆(k+1)

|W2(r)−W2(∆k)|2p
]

≤
(

2p

2p− 1

)2p [ T
∆
]∑

k=0

E |W2(∆(k + 1))−W2(∆k)|2p

≤
(

2p

2p− 1

)2p [ T
∆
]∑

k=0

(2p− 1)!!∆p

≤
(

2p

2p− 1

)2p

(2p− 1)!!∆p−1(T + 1),

(3.26)

where (2p− 1)!! = (2p− 1)× (2p− 3)× · · · 3× 1. Substituting (3.26) with (3.25)

into (3.24) yields

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤4α2(µ
2
2 +M2)∆2 + 2σ2

2M
2β

[(
2p

2p− 1

)2p

(2p− 1)!!∆p−1(T + 1)

] 1
p

≤C1,1(M, p)∆1− 1
p ,

(3.27)

as required. The proof of Lemma 3.3 is complete.

Proof. (of Theorem 3.1)

For any 0 ≤ t ≤ T , we clearly have that

[V (t ∧ q)− v(t ∧ q)]2 ≤2α2
2

[∫ t∧q

0

(V (u)− v̄(u))du

]2
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+ 2σ2
2

[∫ t∧q

0

(|V (u)|β − |v̄(u)|β)dW2(u)

]2
.

For any t1 ∈ [0, T ], by the Doob martingale inequality and the Hölder inequality,

we then compute

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤2α2
2TE

∫ t1∧q

0

[V (u)− v̄(u)]2 du

+ 2σ2
2E

(
sup

0≤t≤t1

[∫ t∧q

0

(|V (u)|β − |v̄(u)|β)dW2(u)

]2)

≤2α2
2TE

∫ t1∧q

0

[V (u)− v̄(u)]2 du+ 8σ2
2E
∫ t1∧q

0

[
|V (u)|β − |v̄(u)|β

]2
du

≤4α2
2TE

∫ t1∧q

0

[V (u)− v(u)]2 + [v(u)− v̄(u)]2 du

+ 16σ2
2E
∫ t1∧q

0

[
|V (u)|β − |v(u)|β

]2
du+

[
|v(u)|β − |v̄(u)|β

]2
du.

(3.28)

Applying the well-known mean value theorem gives

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤4α2
2TE

∫ t1

0

[V (u ∧ q)− v(u ∧ q)]2 du

+ 4α2
2TE

∫ t1

0

[v(u ∧ q)− v̄(u ∧ q)]2 du

+ 16σ2
2E
∫ t1

0

β2M2β−2 [V (u ∧ q)− v(u ∧ q)]2 du

+ 16σ2
2E
∫ t1

0

β2M2β−2 [v(u ∧ q)− v̄(u ∧ q)]2 du.

(3.29)

By Lemma 3.3, we have

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤
(
16σ2

2β
2M2β−2 + 4α2

2T
)
TC1,1(M, p)∆1− 1

p

+
(
4α2

2T + 16σ2
2β

2M2β−2
) ∫ t1

0

E [V (u ∧ q)− v(u ∧ q)]2 du.

(3.30)

An application of Gronwall’s inequality (see Theorem 2.25) will complete the proof.
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Now we remove the stopping time of volatility and establish the following

theorem to show that the EM approximate solution will converge in probability to

the true solution.

Theorem 3.2. Let V (t) be the true solution to the second SDE of (3.6) and v(t)

be its continuous EM approximate solution. Then

lim
∆→0

(
sup

0≤t≤T
[V (t)− v(t)]2

)
= 0 in probability. (3.31)

Proof. The proof is rather technical so we divide the whole proof into three steps.

Step 1. Using the technique to prove Lemma 3.1, but with the stopping time ρM ,

we derive that, for t1 ∈ [0, T ],

P(ρM ≤ T ) ≤
H(V0) +

α2µ2

2
T + α2

2
T + σ2

24
2β−3T

H(M−1) ∧H(M)
, (3.32)

where function H(.) has been defined in Lemma 3.1.

Step 2. Applying the Itô formula for continuous EM approximate solution v(t)

with stopping time γM , we derive that, for t1 ∈ [0, T ],

E [H(v(t1 ∧ γM))]

=H(V0) + E
∫ t1∧γM

0

H
′
(v(u))α2[µ2 − v̄(u)]du

+
σ2
2

2
E
∫ t1∧γM

0

H
′′
(v(u))|v̄(u)|2βdu

≤H(V0) + E
∫ t1∧γM

0

1

2
[v(u)−

1
2 − v(u)−1]α2[µ2 − v̄(u)]du

+
σ2
2

2
E
∫ t1∧γM

0

1

2
[v(u)−2 − 1

2
v(u)−

3
2 ]|v̄(u)|2βdu.

(3.33)

Rearranging the terms on the right hand side,

≤H(V0) +
α2µ2

2
E
∫ t1∧γM

0

[v(u)−
1
2 − v(u)−1]du+

α2

2
E
∫ t1∧γM

0

[1− v(u)
1
2 ]du

+
σ2
2

4
E
∫ t1∧γM

0

[1− 1

2
v(u)

1
2 ]|v(u)|2β−2du
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+
α2

2
E
∫ t1∧γM

0

[v(u)−
1
2 − v(u)−1][v(u)− v̄(u)]du

+
σ2
2

4
E
∫ t1∧γM

0

[v(u)−2 − 1

2
v(u)−

3
2 ][|v̄(u)|2β − |v(u)|2β]du.

By (3.8) and the well-known mean value theorem, we further get

E [H(v(t1 ∧ γM))]

≤H(V0) +
α2µ2T

2
+
α2T

2
+
σ2
24

2β−2T

4

+
α2

2
E
∫ t1∧γM

0

[v(u)−
1
2 − v(u)−1][v(u)− v̄(u)]du

+
σ2
2

4
E
∫ t1∧γM

0

2β sup[u]2β−1[v(u)−2 − 1

2
v(u)−

3
2 ]
∣∣∣v̄(u)− v(u)

∣∣∣du.
(3.34)

Note that v̄(u) ∈ [M−1,M ] whenever v(u) ∈ [M−1,M ]. We can then compute

E [H(v(t1 ∧ γM))]

≤H(V0) +
α2µ2T

2
+
α2T

2
+
σ2
24

2β−2T

4

+
α2

2
E
∫ t1

0

[v(u ∧ γM)−
1
2 − v(u ∧ γM)−1][v(u ∧ γM)− v̄(u ∧ γM)]du

+
2βM2β−1σ2

2

4
E
∫ t1

0

[v(u ∧ γM)−2 − 1

2
v(u ∧ γM)−

3
2 ]

×
∣∣∣v̄(u ∧ γM)− v(u ∧ γM)

∣∣∣du,

(3.35)

which has the form

E [H(v(t1 ∧ γM))]

≤H(V0) +
α2µ2T

2
+
α2T

2
+
σ2
24

2β−2T

4

+

[
[M

1
2 +M ]α2

2

]∫ t1

0

E|v(u ∧ γM)− v̄(u ∧ γM)|du

+

[
[M2 + 1

2
M

3
2 ]βM2β−1σ2

2

2

]∫ t1

0

E|v(u ∧ γM)− v̄(u ∧ γM)|du.

(3.36)

In the meantime, in the same way as Lemma 3.3 was proved, we can compute

E
(

sup
0≤t≤T

[v(u ∧ γM)− v̄(u ∧ γM)]2
)

≤ C∗
1,1(M, p)∆1− 1

p , (3.37)
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where C∗
1,1(M, p) is dependent on M and p but independent of ∆.

Substituting this (3.37) into (3.36) yields

E [H(v(t1 ∧ γM))]

≤H(V0) +
α2µ2T

2
+
α2T

2
+
σ2
24

2β−2T

4

+

[
[M

1
2 +M ]α2

2

] [
C∗

1,1(M, p)∆1− 1
p

] 1
2
T

+

[
[M2 + 1

2
M

3
2 ]βM2β−1σ2

2

2

] [
C∗

1,1(M, p)∆1− 1
p

] 1
2
T

≤H(V0) +
α2µ2T

2
+
α2T

2
+
σ2
24

2β−2T

4
+ C̄1,1(M, p)∆

1
2
[1− 1

p
].

(3.38)

If (γM ≤ T ), by a similar technique used to compute (3.12), we can derive

P(γM ≤ T ) ≤
H(V0) +

α2µ2T
2

+ α2T
2

+
σ2
24

2β−2T

4
+ C̄1,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
. (3.39)

Step 3. For arbitrarily small constants ε > 0 and δ ∈ (0, 1), set

Ω̄1 =

[
ω; sup

0≤t≤T
[V (t)− v(t)]2 ≥ δ

]
. (3.40)

Then, we have

δP(Ω̄1 ∩ (q ≥ T )) =δE
[
I(Ω̄1∩(q≥T ))

]
≤E

[
I(q≥T ) sup

0≤t≤T
[V (t)− v(t)]2

]
≤E

[
sup

0≤t≤T∧q
[V (t)− v(t)]2

]
.

(3.41)

By Theorem 3.1,

P(Ω̄1 ∩ (q ≥ T )) ≤ C1,2(M, p)∆[1− 1
p
]

δ
. (3.42)

On the other hand, we can compute

P(Ω̄1) ≤ P(Ω̄1 ∩ (q ≥ T )) + P(q ≤ T )

≤ P(Ω̄1 ∩ (q ≥ T )) + P(ρM ≤ T ) + P(γM ≤ T ).

(3.43)
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Substituting results of (3.32), (3.39) and (3.42) into (3.43) yields

P(Ω̄1) ≤
C1,2(M, p)∆[1− 1

p
]

δ

+
2[H(V0) +

α2µ2

2
T + α2

2
T + σ2

24
2β−3T ] + C̄1,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
.

(3.44)

Now, choose M sufficiently large for

2[H(V0) +
α2µ2

2
T + α2

2
T + σ2

24
2β−3T ]

H(M−1) ∧H(M)
<
ε

2
(3.45)

and then choose ∆ sufficiently small for

C1,2(M, p)∆[1− 1
p
]

δ
+
C̄1,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
<
ε

2
. (3.46)

Hence, we have

P
(

sup
0≤t≤T

[
V (t)− v(t)

]2
≥ δ

)
< ε, (3.47)

which completes the proof of our theorem.

Convergence of x(t) in probability

We can now proceed to establish our key results which show the finite-time con-

vergence property of the EM approximate solution to the true solution of the

underlying asset price.

Theorem 3.3. Let X(t) be the solution and x(t) be continuous EM approximate

solution to the asset price. For any positive numbers N and M , define stopping

time s = q ∧ τN ∧ ζN ∧ T , where q is the same as before while τN = inf{t ∈ [0, T ] :

X(t) /∈ [ 1
N
, N ]}, ζN = inf{t ∈ [0, T ] : |x(t)| /∈ [ 1

N
, N ]}. Then, for any integer

p ≥ 2,

E
(

sup
0≤t≤T

[X(t ∧ s)− x(t ∧ s)]2
)

≤ C1,3(M,N, p)∆
1
2
[1− 1

p
], (3.48)
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where C1,3(M,N, p) is a constant independent of ∆.

The proof needs the following Lemma which can be proved in the same way as

Lemma 3.3 was proved.

Lemma 3.4. There exists a constant C1,4(M,N, p) dependent on M , N and p but

independent of ∆, such that

E
(

sup
0≤t≤T

[x(t ∧ s)− x̄(t ∧ s)]2
)

≤ C1,4(M,N, p)∆1− 1
p . (3.49)

Proof. (of Theorem 3.3)

For any t ∈ [0, T ], we have[
X(t ∧ s)− x(t ∧ s)

]2
≤2α2

1

[∫ t∧s

0

(X(u)− x̄(u))du

]2
+ 2σ2

1

[∫ t∧s

0

(|X(u)|θ
√
V (u)− |x̄(u)|θ

√
|v̄(u)|)dW1(u)

]2
≤2α2

1T

∫ t∧s

0

[X(u)− x̄(u)]2 du

+ 2σ2
1

[∫ t∧s

0

(|X(u)|θ
√
V (u)− |x̄(u)|θ

√
|v̄(u)|)dW1(u)

]2
.

(3.50)

Hence, for any t1 ∈ [0, T ], we further have

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤2α2
1TE

∫ t1∧s

0

[X(u)− x̄(u)]2 du

+ 2σ2
1E

(
sup

0≤t≤t1

[∫ t∧s

0

(
|X(u)|θ

√
V (u)− |x̄(u)|θ

√
|v̄(u)|

)
dW1(u)

]2)
.

(3.51)

By the Doob martingale inequality,

≤2α2
1TE

∫ t1∧s

0

[X(u)− x̄(u)]2 du

+ 8σ2
1E
∫ t1∧s

0

[
|X(u)|θ

√
V (u)− |x̄(u)|θ

√
|v̄(u)|

]2
du,

(3.52)
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which gives

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤2α2
1TE

∫ t1∧s

0

[X(u)− x̄(u)]2 du

+ 16σ2
1ME

∫ t1∧s

0

[
|X(u)|θ − |x̄(u)|θ

]2
du

+ 16σ2
1N

2θE
∫ t1∧s

0

[√
V (u)−

√
|v̄(u)|

]2
du.

(3.53)

Using the mean value theorem, we then compute

≤4α2
1T

∫ t1

0

E [X(u ∧ s)− x(u ∧ s)]2 du

+ 4α2
1T

∫ t1

0

E [x(u ∧ s)− x̄(u ∧ s)]2 du

+ 32σ2
1θ

2N2θ−2M

∫ t1

0

E [X(u ∧ s)− x(u ∧ s)]2 du

+ 32σ2
1θ

2N2θ−2M

∫ t1

0

E [x(u ∧ s)− x̄(u ∧ s)]2 du

+ 16σ2
1N

2θ

∫ t1

0

E |V (u ∧ s)− v(u ∧ s)| du

+ 16σ2
1N

2θ

∫ t1

0

E |v(u ∧ s)− v̄(u ∧ s)| du.

(3.54)

Substituting Lemma 3.3, Lemma 3.4 and Theorem 3.1 into (3.54) yields

≤[4α2
1T + 32σ2

1θ
2N2θ−2M ]C1,4(M,N, p)∆1− 1

pT

+ 16σ2
1N

2θT
[
C1,2(M, p)

1
2 + C1,1(M, p)

1
2

]
∆

1
2
[1− 1

p
]

+ (4α2
1T + 32σ2

1θ
2N2θ−2M)

∫ t1

0

E [X(u ∧ s)− x(u ∧ s)]2 du.

(3.55)

By the Gronwall inequality, we have

≤
(
[4α2

1T + 32σ2
1θ

2N2θ−2M ]C1,4(M,N, p)∆1− 1
pT

+ 16σ2
1N

2θT [C1,2(M, p)
1
2 + C1,1(M, p)

1
2 ]∆

1
2
[1− 1

p
]
)
e[(4α

2
1T+32σ2

1θ
2N2θ−2M)T ]

≤C1,3(M,N, p)∆
1
2
[1− 1

p
],

(3.56)

as desired. The proof of Theorem 3.3 is therefore complete.
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In the following theorem we will remove the stopping time and show that

the continuous EM approximate solution will converge in probability to the true

solution.

Theorem 3.4. Let X(t) be the true solution of the SDE model (3.6) and x(t) be

the continuous EM approximate solution. Then

lim
∆→0

(
sup

0≤t≤T
|X(t)− x(t)|2

)
= 0 in probability. (3.57)

Proof. Here we will also apply a similar technique to how Theorem 3.2 was proved.

Thus, we divide the whole proof into three steps.

Step 1. By the same way as computation of (3.15), but with stopping time s1 =

τN ∧ ρM , we compute that, for t1 ∈ [0, T ],

E [H(X(t1 ∧ s1))] ≤ H(X0) +
α1µ1

2
T +

α1

2
T +Mσ2

14
2θ−3T, (3.58)

where function H(.) is same as before defined in Lemma 3.1.

If (s1 ≤ T ), we further get

H(X0) +
α1µ1T

2
+
α1T

2
+Mσ2

14
2θ−3T ≥ E [H(X(T ∧ s1))]

≥ E
[
H(X(τN))I(τN<ρM )I(τN∧ρM≤T )

]
≥
[
H(N−1) ∧H(N)

]
P(τN ≤ T ),

which gives

P(τN ≤ T ) ≤
H(X0) +

α1µ1T
2

+ α1T
2

+Mσ2
14

2θ−3T

H(N−1) ∧H(N)
. (3.59)

Step 2. Repeating the same procedure which is used in ( Step 2.) of Theorem 3.2

but with the stopping time s2 = ζN ∧ γM , we further get that

E [H(x(t1 ∧ s2))]

≤ H(X0) +
α1µ1T

2
+
α1T

2
+
σ2
1M42θ−2T

4
+ C̄1,4(M,N, p)∆

1
2
[1− 1

p
].

(3.60)
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where C̄1,4(M,N, p) is dependent on M , N and p but independent of ∆.

If (s2 ≤ T ), the same way as (3.59) was obtained, we can easily compute

P(ζN ≤ T ) ≤
H(X0) +

α1µ1T
2

+ α1T
2

+
σ2
1M42θ−2T

4
+ C̄1,4(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
. (3.61)

Step 3. For arbitrarily small constants ε > 0 and δ ∈ (0, 1), set

Ω1 =

[
ω; sup

0≤t≤T
[X(t)− x(t)]2 ≥ δ

]
. (3.62)

By Theorem 3.3, we then easily get

P(Ω1 ∩ (s ≥ T )) ≤1

δ
E
(

sup
0≤t≤T∧s

[X(t)− x(t)]2
)

≤C1,3(M,N, p)∆
1
2
[1− 1

p
]

δ
.

(3.63)

Now, we compute

P(Ω1) ≤P(Ω1 ∩ (s ≥ T )) + P(s ≤ T )

≤P(Ω1 ∩ (s ≥ T )) + P(ρM ≤ T ) + P(τN ≤ T )

+ P(γM ≤ T ) + P(ζN ≤ T ).

(3.64)

Substituting (3.63),(3.32),(3.39),(3.59) and (3.61) into (3.64), we further get

P(Ω1) ≤
C1,3(M,N, p)∆

1
2
[1− 1

p
]

δ
+
H(V0) +

α2µ2

2
T + α2

2
T + σ2

24
2β−3T

H(M−1) ∧H(M)

+
H(V0) +

α2µ2T
2

+ α2T
2

+
σ2
24

2β−2T

4
+ C̄1,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
H(X0) +

α1µ1

2
T + α1

2
T +Mσ2

14
2θ−3T

H(N−1) ∧H(N)

+
H(X0) +

α1µ1T
2

+ α1T
2

+
σ2
1M42θ−2T

4
+ C̄1,4(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.

(3.65)

Now, choose M sufficiently large for

2

[
H(V0) +

α2µ2

2
T + α2

2
T + σ2

24
2β−3T

H(M−1) ∧H(M)

]
<
ε

3
, (3.66)
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then choose N sufficiently large for

2

[
H(X0) +

α1µ1

2
T + α1

2
T +Mσ2

14
2θ−3T

H(N−1) ∧H(N)

]
<
ε

3
(3.67)

and further choose ∆ sufficiently small for[
C1,3(M,N, p)

δ
+

C̄1,1(M, p)

H(M−1) ∧H(M)
+

C̄1,4(M,N, p)

H(N−1) ∧H(N)

]
∆

1
2
[1− 1

p
] <

ε

3
. (3.68)

We then have

P
(

sup
0≤t≤T

[X(t)− x(t)]2 ≥ δ

)
< ε, (3.69)

which completes the proof of Theorem 3.4.

Theorem 3.4 shows that the continuous EM approximate solution x(t) will

converge in probability to the true solution X(t). However, the continuous EM

approximate solution is in general not computable in practice but the EM step

process x̄(t) is computable. It is therefore more useful to show that the EM step

process x̄(t) will converge in probability to the true solution X(t).

Theorem 3.5. Let X(t) be the true solution of the SDE model (3.6) and x̄(t) be

the EM step process. Then

lim
∆→0

(
sup

0≤t≤T
|X(t)− x̄(t)|

)
= 0 in probability. (3.70)

The proof of this theorem is based on the following lemma which shows that

the continuous EM approximate solution x(t) and the EM step process x̄(t) will

converge in probability to each other.

Lemma 3.5. Let x(t) be the continuous EM approximate solution and x̄(t) be the

EM step process. Then

lim
∆→0

(
sup

0≤t≤T
|x(t)− x̄(t)|

)
= 0 in probability. (3.71)

59



Proof. In the same way as Lemma 3.3 was proved, we can show that

E
(

sup
0≤t≤T

[x(t ∧ s2)− x̄(t ∧ s2)]2
)

≤ C1,5(M,N, p)∆1− 1
p . (3.72)

For any arbitrarily small ε > 0 and δ ∈ (0, 1), set

Ω∗
1 =

[
ω; sup

0≤t≤T
[x(t)− x̄(t)]2 ≥ δ

]
. (3.73)

It is easy to show that

P(Ω∗
1 ∩ (s2 ≥ T )) ≤ C1,5(M,N, p)∆1− 1

p

δ
. (3.74)

But

P(Ω∗
1) ≤ P(Ω∗

1 ∩ (s2 ≥ T )) + P(s2 ≤ T )

≤ P(Ω∗
1 ∩ (s2 ≥ T )) + P(ζN ≤ T ) + P(γM ≤ T ).

(3.75)

Now, substituting (3.39), (3.61) and (3.74) into (3.75) yields that

P(Ω∗
1) ≤

C1,5(M,N, p)∆[1− 1
p
]

δ

+
H(X0) +

α1µ1T
2

+ α1T
2

+
σ2
1M42θ−2T

4
+ C̄1,4(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)

+
H(V0) +

α2µ2T
2

+ α2T
2

+
σ2
24

2β−2T

4
+ C̄1,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
.

(3.76)

Choose M sufficiently large such that

H(V0) +
α2µ2T

2
+ α2T

2
+

σ2
24

2β−2T

4

H(M−1) ∧H(M)
<
ε

3
, (3.77)

then choose N sufficiently large such that

H(X0) +
α1µ1T

2
+ α1T

2
+

σ2
1M42θ−2T

4

H(N−1) ∧H(N)
<
ε

3
(3.78)

and further choose ∆ sufficiently small such that[
C1,5(M,N, p)∆[1− 1

p
]

δ
+
C̄1,4(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
+
C̄1,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

]
<
ε

3
. (3.79)
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We then have

P
(

sup
0≤t≤T

[x(t)− x̄(t)]2 ≥ δ

)
< ε, (3.80)

which gives the desired assertion of Lemma 3.5.

Proof. (of Theorem 3.5)

Let ε > 0 and δ ∈ (0, 1) be arbitrarily small. By Lemma 3.5 and Theorem 3.4, we

see that for any sufficiently small step size ∆, we have

P
(

sup
0≤t≤T

|x(t)− x̄(t)| ≥ δ

2

)
<
ε

2
and P

(
sup

0≤t≤T
|X(t)− x(t)| ≥ δ

2

)
<
ε

2
.

We then compute

P
(

sup
0≤t≤T

|X(t)− x̄(t)| ≥ δ

)
≤P
(

sup
0≤t≤T

|X(t)− x(t)|+ sup
0≤t≤T

|x(t)− x̄(t)| ≥ δ

)
≤P
(

sup
0≤t≤T

|X(t)− x(t)|+ sup
0≤t≤T

|x(t)− x̄(t)| ≥ δ, sup
0≤t≤T

|x(t)− x̄(t)| ≥ δ

2

)
+ P

(
sup

0≤t≤T
|X(t)− x(t)|+ sup

0≤t≤T
|x(t)− x̄(t)| ≥ δ, sup

0≤t≤T
|x(t)− x̄(t)| ≤ δ

2

)
≤P
(

sup
0≤t≤T

|x(t)− x̄(t)| ≥ δ

2

)
+ P

(
sup

0≤t≤T
|X(t)− x(t)| ≥ δ

2

)
< ε.

(3.81)

The proof is therefore complete.

According to Theorem 3.5, it is now clear that the step process of the EM ap-

proximate solution to SDE model (3.6) will converge to the true solution when

the time step is sufficiently small. Thus, let us choose initial condition (X(0) =

10.5, V (0) = 3.25), (θ = 1.2, β = 1.1), coefficients of the SDE model (3.6) (see

Table 3.1) and ρ = 0.5, and apply MATLAB R⃝ software (see Appendix A for code)

to illustrate the behaviour of the EM approximate solution in practice (see Figure

3.1).
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Table 3.1: Coefficients of the SDE model (3.6)

Case Parameters

SDE 1 θ = 1.2 X(0) = 10.5 α1 = 1.21 µ1 = 10.4 σ1 = 0.05
SDE 2 β = 1.1 V (0) = 3.25 α2 = 2.3 µ2 = 2.13 σ2 = 0.054
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Figure 3.1: A sample path of the asset price X(t) which is generated by the EM
approximate solution to the mean-reverting-theta stochastic volatility model over
finite time, where θ = 1.2 and β = 1.1.

3.4 Summary

In this chapter, we have focussed on the EM approximate solution to the mean-

reverting-theta stochastic volatility model for the asset price, which has no explicit

solution so far. Thus, we have first proved that the unique local solution to SDE

model (3.6) is positive with probability 1. However, we can not appeal to the

convergence in second moment property of the EM approximate solution to this

model under the local Lipschitz condition. Therefore, the convergence property

of the EM approximate solution to this model has been examined in probability.
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Finally, we have obtained the convergence in probability of the corresponding step

process to show that it can be used to evaluate applications in finance.
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Chapter 4

Hybrid Mean-Reverting-Theta

Stochastic Volatility and Its

Euler-Maruyama Approximation

4.1 Introduction

The mean-reverting-theta stochastic volatility model which was examined in the

previous chapter gives a significant contribution to the evaluation of financial se-

curities. However, many people have seen several deviations from this concept

when upsurges have occurred. The empirical studies show that some of these

fluctuations are dependent on the average rate of return and volatility of asset

price. In the meantime, many authors have revealed that rate of return can not

be a constant as is assumed by the Black-Scholes formula [8]. There is strong

evidence to show that the rate of return obeys the property of a Markov-jump

process and volatility follows this as well [16, 18, 27, 78, 9, 73, 75]. Therefore, the

mean-reverting-theta stochastic volatility model driven by a Markov-jump process
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can be used to explain some of these phenomena in financial markets which have

the SDE form:

dX(t) = α1(r(t))(µ1(r(t))−X(t))dt+ σ1(r(t))
√
V (t)X(t)θdW1(t),

dV (t) = α2(r(t))(µ2(r(t))− V (t))dt+ σ2(r(t))V (t)βdW2(t),

(4.1)

where W1 and W2 are defined as before in the previous chapter, and r(t) is a

right-continuous Markov chain on the same probability space taking values in a

finite state space S = {1, 2, ..., N}. The diffusion coefficients of the SDE model

(4.1), when the parameters θ and β are between 1
2
and 1, obey the global Lipschitz

condition (2.5) as well as satisfying the linear growth condition (2.6). Therefore,

the convergence in second moment (in L2) of Euler-Maruyama (EM) approximate

solution to the SDE model (4.1) has been examined by X. Mao et al [52]. However,

there is no information so far on the convergence property of the EM approximate

solution to the SDE model (4.1), when the parameters θ and β are greater than

1. So we will fill this gap in this chapter.

The highly sensitive SDE model (4.1) describes the asset price, volatility and

interest rate in financial markets. It is therefore necessary to have a non-negative

solution in practice. Accordingly, we will first prove that the solution to the SDE

model (4.1) will be positive with probability 1. Provided that the coefficients

of SDE model (4.1) satisfy the local Lipschitz condition though do not obey the

linear growth condition, an error bound for the EM approximate solution can

be obtained under stopping time technique. Therefore, we will define the EM

approximate solution to this SDE model and show convergence in probability of

the EM approximate solution to the true solution when the time step is sufficiently

small. However, the continuous EM approximate solution to this SDE model is not

computable but its corresponding step process is computable in practice. Thus,

the corresponding step process can be used to evaluate its applications in finance.
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Therefore, we will finally show that the step process will converge in probability

to the true solution of SDE model (4.1).

4.2 Non-negative solution

As the SDE model (4.1) mainly describes behaviour of the asset price and its

volatility in financial markets, a natural requirement is to have non-negative so-

lution (V (t), X(t)). The following lemmas in fact show that the solution will be

positive with probability 1.

Lemma 4.1. Assume β > 1, Then, for any given initial values V (0) = V0 > 0

and r(0) = i0 ∈ S, the solution V (t) to the second SDE of (4.1) will be positive for

all t ∈ [0, T ] almost surely.

Proof. Assume that the solution to the second SDE of (4.1) is in the real space

R2 while setting coefficients in the second SDE of (4.1) to be 0 when V (t) < 0. In

addition, the coefficients obey the local Lipschitz condition. Hence, there exists a

unique maximal local solution V (t) on t ∈ [0, ρe], where ρe defined as before. For

a sufficiently large positive value M, namely 1
M
< V (0) < M , define a stopping

time ρM = ρe ∧ inf{t ∈ [0, ρe] : |V (t)| /∈ [ 1
M
,M ]} and set ρ∞ = lim

M→∞
ρM . Applying

the Itô formula with C2 function H which has been defined in Lemma 3.1 yields

E[H(V (T ∧ ρM))]

=H(V0) + E
∫ T∧ρM

0

H
′
(V (u))α2(r(u))[µ2(r(u))− V (u)]du

+
1

2
E
∫ T∧ρM

0

H
′′
(V (u))σ2

2(r(u))|V (u)|2βdu

≤H(V0) + E
∫ T∧ρM

0

1

2

[
(V (u))−

1
2 − (V (u))−1

]
α2(r(u))[µ2(r(u))− V (u)]du

+
1

4
E
∫ T∧ρM

0

σ2
2(r(u))

[
(V (u))−2 − (V (u))−

3
2

2

]
|V (u)|2βdu
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≤H(V0) +
ᾱ2µ̄2T

2
+
ᾱ2T

2
+
σ̄2
2

4
E
∫ T∧ρM

0

[
1− (V (u))

1
2

2

]
|V (u)|2β−2du,

where ᾱj = max
i∈S

αi, µ̄j = max
i∈S

µi and σ̄j = max
i∈S

σi.

By (3.8), we further get

E[H(V (T ∧ ρM))] ≤ H(V0) +
ᾱ2µ̄2T

2
+
ᾱ2T

2
+ σ̄2

24
2β−3T. (4.2)

Finally, applying the technique used to compute (3.12), we compute that

P(ρM ≤ T ) ≤
H(V0) +

ᾱ2µ̄2T
2

+ ᾱ2T
2

+ σ̄2
24

2β−3T

H(M−1) ∧H(M)
. (4.3)

Now letting M → ∞ we have P(ρ∞ ≤ T ) = 0. This implies that P(ρ∞ > T ) = 1,

which means P (0 < V (t) <∞ ∀ t ∈ [0, T ]) = 1 as required.

Lemma 4.2. Assume θ > 1 and β > 1. Then, for any given initial values

V (0) = V0 > 0, X(0) = X0 > 0 and r(0) = i0 ∈ S, the solution X(t) to the SDE

of (4.1) will be positive for all t ∈ [0, T ] almost surely.

Proof. In the same way, the SDE model of (4.1) is treated as an SDE in the real

space R2 by setting its coefficients to be 0, when V (t) < 0 and X(t) < 0. Since

the coefficients obey the local Lipschitz condition, there exists a unique maximal

local solution (X(t), V (t)) on t ∈ [0, ρe], where ρe defined as before.

For sufficiently large positive values M and N , namely 1
M
< V (0) < M and

1
N
< X(0) < N , define stopping times ρM=ρe ∧ inf{t ∈ [0, ρe] : V (t) /∈ [ 1

M
,M ]}

and τN = ρe ∧ inf{t ∈ [0, ρe] : |X(t)| /∈ [ 1
N
, N ]} and let η = ρM ∧ τN . Then set

ρ∞ = lim
M→∞

ρM (as before) and τ∞ = lim
N→∞

τN .

Applying the Itô formula with C2 function H (same as before), we get that

E[H(X(T ∧ η))]

=H(X0) + E
∫ T∧η

0

H
′
(X(u))α1(r(u))[µ1(r(u))−X(u)]du
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+
1

2
E
∫ T∧η

0

H
′′
(X(u))σ2

1(r(u))V (u)|X(u)|2θdu

≤H(X0) + E
∫ T∧η

0

1

2

[
(X(u))−

1
2 − (X(u))−1

]
α1(r(u))[µ1(r(u))−X(u)]du

+
1

4
E
∫ T∧η

0

σ2
1(r(u))

[
(X(u))−2 − (X(u))−

3
2

2

]
V (u)|X(u)|2θdu,

which gives

E[H(X(T ∧ η))]

≤H(X0) +
ᾱ1µ̄1T

2
+
ᾱ1T

2
+
σ̄2
1

4
E
∫ T∧η

0

[
1− (X(u))

1
2

2

]
|X(u)|2θ−2V (u)du.

(4.4)

By (3.8), we then have

E[H(X(T ∧ η))] ≤H(X0) +
ᾱ1µ̄1T

2
+
ᾱ1T

2
+ σ̄2

14
2β−3MT. (4.5)

As the same way (3.18) was obtained, we further get that

P(τN ≤ T ∧ ρM) ≤
H(X0) +

ᾱ2µ̄2T
2

+ ᾱ2T
2

+ σ̄2
24

2β−3MT

H(N−1) ∧H(N)
. (4.6)

Now letting N → ∞ we have P(τ∞ ≤ T ∧ ρM) = 0. Then letting M → ∞ and

Lemma 4.1, we can get P(τ∞ ≤ T ) = 0. This gives that P(τ∞ > T ) = 1 which

follows our desired assertion.

4.3 Convergence in probability

As we demonstrated, the unique solution (V (t), X(t)) to the SDE model is pos-

itive with probability 1. However, an explicit solution to the SDE model (4.1)

can not be obtained within the existing theory. Therefore, we will establish an

Euler-Maruyama numerical approximation to the SDE model (4.1) and examine

its convergence property in the following section.
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Euler-Maruyama approximation

Given time step ∆ ∈ (0, 1), we let tk = k∆ and r∆k = r(k∆) for k = 0, 1, 2, ...[ T
∆
],

where [ T
∆
] denotes the integer part of T

∆
. Then set x0 = X(0), v0 = V (0) and

r∆0 = r̄(0) = i0 ∈ S. The discrete time EM approximation to the SDE model (4.1)

can be defined by

xk+1 = xk + α1(r
∆
k )(µ1(r

∆
k )− xk)∆ + σ1(r

∆
k )
√

|vk||xk|θ∆W1,k,

vk+1 = vk + α2(r
∆
k )(µ2(r

∆
k )− vk)∆ + σ2(r

∆
k )|vk|β∆W2,k,

(4.7)

where ∆ = (tk+1 − tk) and ∆Wi,k = (Wi(tk+1) −Wi(tk)) for i = 1, 2. Then, the

corresponding continuous EM approximate solution can be defined by

x(t) = x0 +

∫ t

0

α1(r̄(u))(µ1(r̄(u))− x̄(u))du+

∫ t

0

σ1(r̄(u))
√

|v̄(u)||x̄(u)|θdW1(u),

v(t) = v0 +

∫ t

0

α2(r̄(u))(µ2(r̄(u))− v̄(u))du+

∫ t

0

σ2(r̄(u))|v̄(u)|βdW2(u),

(4.8)

where x̄(t) =

[ T
∆
]∑

k=0

xk1[tk,tk+1)(t) and v̄(t) =

[ T
∆
]∑

k=0

vk1[tk,tk+1)(t) are step functions.

That is x̄(t) = xk, v̄(t) = vk and r̄(t) = r∆k for t ∈ [tk, tk+1), k = 0, 1, 2, 3, ..., [ T
∆
].

Convergence of v(t) in probability

In this work, we concentrate on the SDE model (4.1) for underlying asset price

where θ and β are greater than 1. The coefficients of this SDE model obey the

local Lipschitz condition though do not satisfy the linear growth condition, and

we can not appeal to finite time convergence within the existing results. Thus, we

need new techniques to examine the convergence property of the EM approximate

solution. Accordingly, the following theorem will establish a strong error bound of

the EM approximate solution to the volatility under stopping time.
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Theorem 4.1. Let V (t) be the solution and v(t) be continuous EM approximate

solution to the second SDE of (4.1). For any positive number M , define the stop-

ping time q = ρM ∧ γM ∧ T , where ρM = inf{t ∈ [0, T ];V (t) /∈ [ 1
M
,M ]} and

γM = inf{t ∈ [0, T ]; |v(t)| /∈ [ 1
M
,M ]}. Then, for any integer p ≥ 2,

E
(

sup
0≤t≤T

[V (t ∧ q)− v(t ∧ q)]2
)

≤ C2,6(M, p)∆1− 1
p , (4.9)

where C2,6 = C2,6(M, p) is a constant independent of ∆.

To prove Theorem 4.1, we need the following lemma that shows the property for

closeness of v(t) and its step process v̄(t) when the time step is sufficiently small.

Lemma 4.3. There is a constant C1(M, p) dependent onM and p but independent

of ∆ such that

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤ C2,1(M, p)∆1− 1
p . (4.10)

Proof. For any t ∈ [0, T ], let
[

t
∆

]
be the integer part of t

∆
. We then have

v(t ∧ q)− v̄(t ∧ q)

=

∫ t∧q

[ t∧q
∆

]∆

α2(r̄(u))[µ2(r̄(u))− v̄(u)]du+

∫ t∧q

[ t∧q
∆

]∆

σ2(r̄(u))|v̄(u)|βdW2(u),
(4.11)

which gives[
v(t ∧ q)− v̄(t ∧ q)

]2
≤4ᾱ2

2(µ̄
2
2 +M2)∆2 + 2σ̄2

2M
2β

[
W2(t ∧ q)−W2([

t ∧ q
∆

]∆)

]2
.

(4.12)

Taking expectation, we get

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤4ᾱ2
2(µ̄

2
2 +M2)∆2 + 2σ̄2

2M
2βE

(
sup

0≤t≤T

[
W2(t ∧ q)−W2([

t ∧ q
∆

]∆)

]2)
,

(4.13)
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Applying the technique used to compute (3.25) and (3.26), we further get that

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤ C2,1(M, p)∆1− 1
p , (4.14)

as expected. The proof of Lemma 4.3 is therefore complete.

Proof. (of Theorem 4.1) For any 0 ≤ t ≤ T , we compute[
V (t ∧ q)− v(t ∧ q)

]2
≤3

[∫ t∧q

0

α2(r(u))µ2(r(u))− α2(r̄(u))µ2(r̄(u))du

]2
+ 3

[∫ t∧q

0

α2(r(u))V (r)− α2(r̄(u))v̄(r)du

]2
+ 3

[∫ t∧q

0

σ2(r(u))|V (r)|β − σ2(r̄(u))|v̄(r)|βdW2(u)

]2
.

(4.15)

Taking expectation for t1 ∈ [0, T ], we then have

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤3E

(
sup

0≤t≤t1

[∫ t∧q

0

α2(r(u))µ2(r(u))− α2(r̄(u))µ2(r̄(u))du

]2)

+ 3E

(
sup

0≤t≤t1

[∫ t∧q

0

α2(r(u))V (r)− α2(r̄(u))v̄(r)du

]2)

+ 3E

(
sup

0≤t≤t1

[∫ t∧q

0

σ2(r(u))|V (r)|β − σ2(r̄(u))|v̄(r)|βdW2(u)

]2)
.

(4.16)

By Hölder’s inequality, we further get that

≤3TE
∫ t1∧q

0

[α2(r(u))µ2(r(u))− α2(r̄(u))µ2(r̄(u))]
2 du

+ 3TE
∫ t1∧q

0

[α2(r(u))V (r)− α2(r̄(u))v̄(r)]
2 du

+ 3E

(
sup

0≤t≤t1

[∫ t∧q

0

σ2(r(u))|V (r)|β − σ2(r̄(u))|v̄(r)|βdW2(u)

]2)
.

(4.17)

Applying properties of the Markov-chain defined in Chapter 2 yields

A(t) =3TE
∫ t1∧q

0

[α2(r(u))µ2(r(u))− α2(r̄(u))µ2(r̄(u))]
2 du
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≤3TE
[ T
∆
]∑

d=0

∫ td+1

td

4ᾱ2
2µ̄

2
2(Ir(u)̸=r(td))du ≤ 12ᾱ2

2µ̄
2
2T

[ T
∆
]∑

d=0

∫ td+1

td

E(Ir(u)̸=r(td))du,

which has the form

A(t) ≤12ᾱ2
2µ̄

2
2T

[ T
∆
]∑

d=0

∫ td+1

td

P(r(u) ̸= r(td))du

≤12ᾱ2
2µ̄

2
2T

[ T
∆
]∑

d=0

∫ td+1

td

∑
i∈S

P(r(td) = i)P(r(u) ̸= i/r(td) = i)du

≤12ᾱ2
2µ̄

2
2T

[ T
∆
]∑

d=0

∫ td+1

td

∑
i∈S

P(r(td) = i)
∑
i ̸=j

(κij(u− td) + 0(u− td))du

≤12ᾱ2
2µ̄

2
2T

[ T
∆
]∑

d=0

∫ td+1

td

[ max
0≤i≤N

(−κii)∆ + 0(∆)]du ≤ [C2,2∆+ 0(∆)].

(4.18)

Similarly, we compute

B(t) =3TE
∫ t1∧q

0

[α2(r(u))V (r)− α2(r̄(u))v̄(r)]
2 du

≤6TE
∫ t1∧q

0

[α2(r(u))− α2(r̄(u))]
2 V 2(u)du

+ 6TE
∫ t1∧q

0

α2
2(r̄(u)) [V (r)− v̄(r)]2 du

≤6TM2E
∫ t1

0

[α2(r(u ∧ q))− α2(r̄(u ∧ q))]2du

+ 12T ᾱ2
2E
∫ t1

0

[V (u ∧ q)− v(u ∧ q)]2 + [v(u ∧ q)− v̄(u ∧ q)]2du

≤24T ᾱ2
2M

2[ max
0≤i≤N

(−κii)∆ + 0(∆)](T + 1)

+ 12T ᾱ2
2

∫ t1

0

E[V (u ∧ q)− v(u ∧ q)]2 + E[v(u ∧ q)− v̄(u ∧ q)]2du.

(4.19)

By Lemma 4.3, we further get that

B(t) ≤[C2,3∆+ 0(∆)] + 12T 2ᾱ2
2C2,1(M, p)∆1− 1

p

+ 12T ᾱ2
2

∫ t1

0

E[V (u ∧ q)− v(u ∧ q)]2du

≤[C2,4(M, p)∆1− 1
p + 0(∆)] + 12T ᾱ2

2

∫ t1

0

E[V (u ∧ q)− v(u ∧ q)]2du.

(4.20)
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Applying the Doob martingale inequality and the well-known mean value theorem,

we then have

D(t) =3E

(
sup

0≤t≤t1

[∫ t∧q

0

σ2(r(u))|V (u)|β − σ2(r̄(u))|v̄(u)|βdW2(u)

]2)

≤12E
∫ t1∧q

0

[
σ2(r(u))|V (u)|β − σ2(r̄(u))|v̄(u)|β

]2
du

≤24E
∫ t1∧q

0

σ2
2(r̄(u))[|V (u)|β − |v̄(u)|β]2du

+ 24E
∫ t1∧q

0

V 2β(u)[σ2(r(u))− σ2(r̄(u))]
2du

≤48E
∫ t1∧q

0

σ2
2(r̄(u))

(
[|V (u)|β − |v(u)|β]2 + [|v(u)|β − |v̄(u)|β]2

)
du

+ 24E
∫ t1∧q

0

V 2β(u)[σ2(r(u))− σ2(r̄(u))]
2du

≤48β2σ̄2
2M (2β−2)

∫ t1∧q

0

E[V (u)− v(u)]2 + E[v(u)− v̄(u)]2du

+ 24E
∫ t1∧q

0

V 2β(u)[σ2(r(u)− σ2(r̄(u))]
2du.

(4.21)

By Lemma 4.3, applying the technique used to compute (4.18), we further get that

D(t) ≤48β2σ̄2
2M (2β−2)

∫ t1

0

E[V (u ∧ q)− v(u ∧ q)]2du

+ 48β2σ̄2
2M (2β−2)TC2,1(M, p)∆1− 1

p

+ 96σ̄2
2M2β

[
max
0≤i≤N

(−κii)∆ + 0(∆)
]
(T + 1)

=[C2,5(M, p)∆1− 1
p + 0(∆)]

+ 48β2σ̄2
2M (2β−2)

∫ t1

0

E[V (u ∧ q)− v(u ∧ q)]2du.

(4.22)

Now, substituting (4.18),(4.20) and (4.22) into (4.17), we have

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤
[
C2,2∆+ C2,4(M, p)∆1− 1

p + C2,5(M, p)∆1− 1
p + 0(∆)

]
+
[
12T ᾱ2

2 + 48β2σ̄2
2M (2β−2)

] ∫ t1

0

E[V (u ∧ q)− v(u ∧ q)]2du.

(4.23)
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as required. An application of Gronwall’s inequality will therefore complete the

proof of Theorem 4.1.

Now, we will remove the stopping time and establish the following theorem to

show that the EM approximate solution v(t) will converge in probability to the

true solution .

Theorem 4.2. Let V (t) be the true solution of the second SDE model (4.1) and

v(t) be the continuous EM approximate solution. Then

lim
∆→0

(
sup

0≤t≤T
[V (t)− v(t)]2

)
= 0 in probability. (4.24)

Proof. The proof can be obtained the same way as Theorem 3.2 was proved, but

with the conditions of r(t). Thus, we will divide the whole proof into three steps.

Step 1. The same way as in computation of (4.3), we obtain

P(ρM ≤ T ) ≤
H(V0) +

ᾱ2µ̄2

2
T + ᾱ2

2
T + σ̄2

24
2β−3T

H(M−1) ∧H(M)
, (4.25)

where the function H(.) is same as before.

Step 2. For any 0 ≤ t1 ≤ T , applying the Itô formula for continuous EM approxi-

mate solution of volatility process with stopping time γM , we compute that

E [H(v(t1 ∧ γM))]

=H(V0) + E
∫ t1∧γM

0

H
′
(v(u))α2(r(u))[µ2(r(u))− v̄(u)]du

+
1

2
E
∫ t1∧γM

0

H
′′
(v(u))σ2

2(r(u))|v̄(u)|2βdu

≤H(V0) + E
∫ t1∧γM

0

1

2

[
v(u)−

1
2 − v(u)−1

]
α2(r(u)) [µ2(r(u))− v̄(u)] du

+
1

2
E
∫ t1∧γM

0

1

2

[
v(u)−2 − 1

2
v(u)−

3
2

]
σ2
2(r(u))|v̄(u)|2βdu.

(4.26)

Rearranging the terms in right hand side, we then have

≤H(V0) +
ᾱ2µ̄2

2
E
∫ t1∧γM

0

[
v(u)−

1
2 − v(u)−1

]
du+

ᾱ2

2
E
∫ t1∧γM

0

[
1− v(u)

1
2

]
du
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+
σ̄2
2

4
E
∫ t1∧γM

0

[
1− 1

2
v(u)

1
2

]
|v(u)|2β−2du

+
ᾱ2

2
E
∫ t1∧γM

0

[
v(u)−

1
2 − v(u)−1

]
(v(u)− v̄(u))du

+
σ̄2
2

4
E
∫ t1∧γM

0

[
v(u)−2 − 1

2
v(u)−

3
2

]
[|v̄(u)|2β − |v(u)|2β]du.

By similar techniques which were used to obtain (3.34) to (3.39), we get that

P(γM ≤ T ) ≤
H(V0) +

ᾱ2µ̄2T
2

+ ᾱ2T
2

+
σ̄2
24

2β−2T

4
+ C̄2,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
(4.27)

where constant C̄2,1(M, p) is dependent on M and p but independent of ∆.

Step 3. For arbitrarily small constants ε > 0 and δ ∈ (0, 1), set

Ω̄2 =

[
ω; sup

0≤t≤T
[V (t)− v(t)]2 ≥ δ

]
. (4.28)

The same way as in computation of (3.42), but with Theorem 4.1, we obtain

P(Ω̄2 ∩ (q ≥ T )) ≤C2,6(M, p)∆1− 1
p

δ
. (4.29)

On the other hand, we can derive

P(Ω̄2) ≤ P(Ω̄2 ∩ (q ≥ T )) + P(ρM ≤ T ) + P(γM ≤ T ). (4.30)

Now, substituting (4.25), (4.29) and (4.27) into (4.30) yields

P(Ω̄2) ≤
C2,6(M, p)∆1− 1

p

δ
+
H(V0) +

ᾱ2µ̄2T
2

+ ᾱ2T
2

+
σ̄2
24

2β−2T

4
+ C̄2,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
H(V0) +

ᾱ2µ̄2

2
T + ᾱ2

2
T + σ̄2

24
2β−3T

H(M−1) ∧H(M)
,

namely

P(Ω̄2) ≤
C2,6(M, p)∆1− 1

p

δ
+
C̄2,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
+

2[H(V0) +
ᾱ2µ̄2T

2
+ ᾱ2T

2
+

σ̄2
24

2β−2T

4
]

H(M−1) ∧H(M)
.

Now, choose M sufficiently large for

2

[
H(V0) +

ᾱ2µ̄2

2
T + ᾱ2

2
T + σ̄2

24
2β−3T

H(M−1) ∧H(M)

]
<
ε

2
, (4.31)
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then further choose ∆ sufficiently small for

C2,6(M, p)∆1− 1
p

δ
+
C̄2,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
<
ε

2
. (4.32)

We then have

P
(

sup
0≤t≤T

[V (t)− v(t)]2 ≥ δ

)
< ε (4.33)

as required. The proof is therefore complete.

Convergence of x(t) in probability

In this section, we proceed with these obtained results to compute the key result of

this chapter, which gives convergence of the approximate solution to the underlying

asset price. The following theorem first shows the strong error bound of the EM

approximate solution of asset price with stopping time.

Theorem 4.3. Let X(t) be the true solution and x(t) be continuous EM approxi-

mate solution of asset price. For any positive numbers N and M , define stopping

time s = q ∧ τN ∧ ζN ∧ T , where q is same as before, τN = inf{t ∈ [0, T ] : X(t) /∈

[ 1
N
, N ]} and ζN = inf{t ∈ [0, T ] : |x(t)| /∈ [ 1

N
, N ]}. Then, for any integer p ≥ 2,

E
(

sup
0≤t≤T

[X(t ∧ s)− x(t ∧ s)]2
)

≤ C2,11(M,N, p)∆
1
2
[1− 1

p
], (4.34)

where C2,11(M,N, p) is a constant independent of ∆.

To prove Theorem 4.3, we establish the following lemma that can be obtained in

the same way as Lemma 4.3 was proved.

Lemma 4.4. There is a constant C2,7(M,N, p) dependent on M , N and p but

independent of ∆ such that

E
(

sup
0≤t≤T

[x(t ∧ s)− x̄(t ∧ s)]2
)

≤ C2,7(M,N, p)∆1− 1
p . (4.35)
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Proof. (of Theorem 4.3) For any 0 ≤ t ≤ T , we compute

[X(t ∧ s)− x(t ∧ s)]2

≤ 3

[∫ t∧s

0

α1(r(u))µ1(r(u))− α1(r̄(u))µ1(r̄(u))du

]2
+ 3

[∫ t∧s

0

α1(r(u))X(u)− α1(r̄(u))x̄(u)du

]2
+ 3

[∫ t∧s

0

σ1(r(u))
√
V (u)|X(u)|θ − σ1(r̄(u))

√
|v̄(u)|x̄(u)|θdW1(u)

]2
.

(4.36)

Taking the expectation for any t1 ∈ [0, T ], by the Hölder inequality and the Doob

martingale inequality, we further compute

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤ 3TE
∫ t1∧s

0

[α1(r(u))µ1(r(u))− α1(r̄(u))µ1(r̄(u))]
2 du

+ 3TE
∫ t1∧s

0

[α1(r(u))X(u)− α1(r̄(u))x̄(u)]
2 du

+ 12E
∫ t1∧s

0

[
σ1(r(u))

√
V (u)|X(u)|θ − σ1(r̄(u))

√
|v̄(u)|x̄(u)|θ

]2
du

= K(t) + F (t) +G(t).

(4.37)

The same way as in computation of (4.18), we have

K(t) =3TE
∫ t1∧s

0

[α1(r(u))µ1(r(u))− α1(r̄(u))µ1(r̄(u))]
2 du

≤[C2,8∆+ 0(∆)].

(4.38)

Similarly, we compute

F (t) =3TE
∫ t1∧s

0

[α2(r(u))X(u)− α1(r̄(u))x̄(u)]
2du

≤6TE
∫ t1∧s

0

[α1(r(u))− α1(r̄(u))]
2X2(u) + α2

1(r̄(u))[X(u)− x̄(u)]2du

≤24T ᾱ2
1M

2[ max
0≤i≤N

(−κii)∆ + 0(∆)](T + 1)

+ 12T ᾱ2
1

∫ t1

0

E[X(u ∧ s)− x(u ∧ s)]2 + E[x(u ∧ s)− x̄(u ∧ s)]2du.
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Applying Lemma 4.4 yields

F (t) ≤24T ᾱ2
1M

2[ max
0≤i≤N

(−κii)∆ + 0(∆)](T + 1)

+ 12ᾱ2
1

[
T 2C2,7(M,N, p)∆1− 1

p + T

∫ t1

0

E[X(u ∧ s)− x(u ∧ s)]2du
]

≤[C2,9(M,N, p)∆1− 1
p + 0(∆)]

+ 12T ᾱ2
1

∫ t1

0

E[X(u ∧ s)− x(u ∧ s)]2du.

(4.39)

Now, consider

G(t) =12E
∫ t1∧s

0

[
σ1(r(u))

√
V (u)|X(u)|θ − σ1(r̄(u))

√
|v̄(u)|x̄(u)|θ

]2
du

≤36E
∫ t1∧s

0

V (u)X(u)2θ[σ1(r(u))− σ1(r̄(u))]
2du

+ 36E
∫ t1∧s

0

σ2
1(r̄(u))X(u)2θ

[√
V (u)−

√
|v̄(u)|

]2
du

+ 36E
∫ t1∧s

0

σ2
1(r̄(u))|v̄(u)|

[
|X(u)|θ − |x̄(u)|θ

]2
du.

(4.40)

By the mean value theorem, applying the technique used to compute (4.18), we

then have

G(t) ≤36MN2θ[ max
0≤i≤N

(−κii)∆ + 0(∆)]T

+ 36σ̄2
1N

2θE
∫ t1

0

|V (u ∧ s)− v(u ∧ s)|+ |v(u ∧ s)− v̄(u ∧ s)|du

+ 36σ̄2
1ME

∫ t1

0

[
|X(u ∧ s)|θ − |x̄(u ∧ s)|θ

]2
du

≤36MN2θ[ max
0≤i≤N

(−κii)∆ + 0(∆)]T

+ 36σ̄2
1N

2θ

∫ t1

0

(
E[v(u ∧ s)− v̄(u ∧ s)]2

) 1
2 du

+ 36σ̄2
1N

2θ

∫ t1

0

(
E[V (u ∧ s)− v(u ∧ s)]2

) 1
2 du

+ 72σ̄2
1Mθ2N2θ−2

∫ t1

0

E[X(u ∧ s)− x(u ∧ s)]2du

+ 72σ̄2
1Mθ2N2θ−2

∫ t1

0

E[x(u ∧ s)− x̄(u ∧ s)]2du.

(4.41)
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Substituting Lemma 4.3, Lemma 4.4 and Theorem 4.1 into (4.41) yields

G(t) ≤36MN2θ[ max
0≤i≤N

(−κii)∆ + 0(∆)]T + 36σ̄2
1N

2θ[C2,1(M, p)∆1− 1
p ]

1
2T

+ 72σ̄2
1Mθ2N2θ−2C2,7(M,N, p)∆1− 1

pT + 36σ̄2
1N

2θ[C2,6(M, p)∆1− 1
p ]

1
2T

+ 72σ̄2
1Mθ2N2θ−2E

∫ t1∧s

0

E[X(u)− x(u)]2du

≤[C2,10(M,N, p)∆
1
2
[1− 1

p
] + 0(∆)]

+ 72σ̄2
1Mθ2N2θ−2E

∫ t1

0

E[X(u ∧ s)− x(u ∧ s)]2du.

(4.42)

Now, substituting F (t), G(t) and K(t) into (4.37) we get

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤ [C2,8∆+ 0(∆)] +
[
C2,9(M,N, p)∆1− 1

p + C2,10(M,N, p)∆
1
2
[1− 1

p
] + 0(∆)

]
+ [12T ᾱ2

1 + 72σ̄2
1Mθ2N2θ−2]

∫ T

0

E[X(u ∧ s)− x(u ∧ s)]2du.

(4.43)

as desired. The proof of our theorem follows finally from Gronwall’s inequality.

The following theorem will be established to show that the continuous EM

approximation will converge in probability to the true solution of asset price. In

this process, we will remove the stopping time condition.

Theorem 4.4. Let X(t) be the true solution of asset price and x(t) be the its

continuous EM approximate solution. Then,

lim
∆→0

(
sup

0≤t≤T
[X(t)− x(t)]2

)
= 0 in probability. (4.44)

Proof. In this process, we also divide the whole proof into three steps.

Step 1. In the same way as in computation of (4.5), by a similar technique as was

used to compute (3.59), we have

P(τN ≤ T ) ≤
H(X0) +

ᾱ1µ̄1

2
T + ᾱ1

2
T +Mσ̄2

14
2θ−3T

H(N−1) ∧H(N)
. (4.45)
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Step 2. By a similar technique used to compute (4.27) but with the EM approxi-

mate solution to the asset price, we obtain

P(ζN ≤ T ) ≤
H(X0) +

ᾱ1µ̄1T
2

+ ᾱ1T
2

+
σ̄2
1M42θ−2T

4
+ C̄2,7(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
. (4.46)

where C̄2,7(M,N, p) is a constant dependent on M,N and p but independent of

∆.

Step 3. For arbitrarily small ε > 0 and δ ∈ (0, 1), set

Ω2 =

(
ω; sup

0≤t≤T
[X(t)− x(t)]2 ≥ δ

)
. (4.47)

By Theorem 4.3, in the same way as in computation of (3.42), we further get that

P(Ω2 ∩ (s ≥ T )) ≤C2,11(M,N, p)∆
1
2
[1− 1

p
]

δ
. (4.48)

In the meantime, we have

P(Ω2) ≤P(Ω2 ∩ (s ≥ T ))

+ P(ρM ≤ T ) + P(γM ≤ T ) + P(τN ≤ T ) + P(ζN ≤ T ).

(4.49)

Substituting (4.25), (4.27), (4.45), (4.46) and (4.48) into (4.49), yields

P(Ω2) ≤
C2,11(M,N, p)∆

1
2
[1− 1

p
]

δ
+
H(V0) +

ᾱ2µ̄2

2
T + ᾱ2

2
T + σ̄2

24
2β−3T

H(M−1) ∧H(M)

+
H(V0) +

ᾱ2µ̄2T
2

+ ᾱ2T
2

+
σ̄2
24

2β−2T

4
+ C̄2,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
H(X0) +

ᾱ1µ̄1

2
T + ᾱ1

2
T +Mσ̄2

14
2θ−3T

H(N−1) ∧H(N)

+
H(X0) +

ᾱ1µ̄1T
2

+ ᾱ1T
2

+
σ̄2
1M42θ−2T

4
+ C̄2,7(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.

(4.50)

Now, choose M sufficiently large for

2

[
H(V0) +

ᾱ2µ̄2

2
T + ᾱ2

2
T + σ̄2

24
2β−3T

H(M−1) ∧H(M)

]
<
ε

3
, (4.51)
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then choose N sufficiently large for

2

[
H(X0) +

ᾱ1µ̄1

2
T + ᾱ1

2
T +Mσ̄2

14
2θ−3T

H(N−1) ∧H(N)

]
<
ε

3
(4.52)

and further choose ∆ sufficiently small for[
C2,11(M,N, p)

δ
+

C̄2,1(M, p)

H(M−1) ∧H(M)
+

C̄2,7(M,N, p)

H(N−1) ∧H(N)

]
∆

1
2
[1− 1

p
] <

ε

3
. (4.53)

We then have

P
(

sup
0≤t≤t1

[X(t)− x(t)]2 ≥ δ

)
< ε. (4.54)

This completes the required proof of our Theorem.

In practice, the EM approximate solution to the asset price is not computable

though its corresponding step process is computable. Therefore we will establish

the following theorem to show that the step process will converge to the real

solution when the time step is sufficiently small.

Theorem 4.5. Let X(t) be the true solution of the SDE model (4.1) and x̄(t) be

the EM step process. Then

lim
∆→0

(
sup

0≤t≤T
|X(t)− x̄(t)|

)
= 0 in probability. (4.55)

Repeating the same technique which was used to prove Theorem 3.5, a proof of

Theorem 4.5 can be obtained.

Theorem 4.4 shows that the EM approximate solution will converge to the true

solution of SDE model (4.1) when the time step is sufficiently small. Therefore, we

will choose initial condition (X(0) = 1.4, V (0) = 0.24), (θ = 1.2, β = 1.1), ρ = 0.8,

generator of Markov chain Γ3,3 and coefficients of the SDE model (4.1) (see Table

4.1) to demonstrate its behaviour in practice. Accordingly, we apply MATLABR⃝

software (see Appendix A for code) to obtain the following graph (see Figure 4.1).
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Figure 4.1: A sample path of the asset price X(t) which is generated by the
EM approximate solution to the hybrid mean-reverting-theta stochastic volatility
model over finite time, where θ = 1.2 and β = 1.1.

Table 4.1: Coefficients of the SDE model (4.1)

State (α1, α2) (µ1, µ2) (σ1, σ2)

1 (1.2, 1) (1, 0.2) (0.6, 0.84)
2 (4, 4) (2, 0.7) (0.9, 0.6)
3 (7, 1.6) (1, 0.3) (0.24, 0.56)
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4.4 Summary

The mean-reverting-theta stochastic volatility model driven by a Markov chain for

asset price gives a more generalized formula of the SDE model (3.6). Even though

it can be seen in financial markets, an explicit solution can not be obtained within

the existing theories. Therefore, we have first proved that the SDE model has

a local unique positive solution with probability 1. Then, an EM approximate

solution to this mode has been established and we obtained a strong error bound

on this approximate solution under the local Lipschitz condition. Finally, we have

shown that the EM approximate solution will converge in probability to the true

solution and obtained the convergence in probability of its corresponding step

process to examine its applications in finance.
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Chapter 5

Mean-Reverting-Theta Stochastic

Volatility Model with Poisson

Jump

5.1 Introduction

The values of financial securities affected by some unpredictable random distur-

bances gain quite a lot of attention due to their jittery movements in financial

markets. Empirical studies show that these financial quantities which give abrupt

structural changes do not perform as assumed by the Black-Scholes type formulas.

However, mean-reverting-theta stochastic volatility models which were discussed

in previous chapters can not be used to examine these jumpy situations. On the

other hand, pragmatic studies of asset price modelling reveal that jump processes

can be used to explain some of these phenomena [1, 45, 48]. Thus, generalization

of existing financial models along with jump processes helps to make appropriate

stochastic models which describe the behaviour of the underlying asset price when
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unpredictable disturbances are present. In other words, a mean-reverting-theta

stochastic volatility model driven by a Poisson jump process can be considered as

one such model that has the SDE form:

dX(t) = α1(µ1 −X(t−))dt+ σ1
√
V (t−)X(t−)θdW1(t) + δ1X(t−)dN̄1(t),

dV (t) = α2(µ2 − V (t−))dt+ σ2V (t−)βdW2(t) + δ2V (t−)dN̄2(t),

(5.1)

where V (t−) = limu↑t V (t) and X(t−) = limu↑tX(t), W1 and W2 are two scalar

Brownian motions (as before). Moreover αi, µi, σi and (δi > −1) are assumed to

be constants, while (αi + λiδi) > 0 for i = 1, 2. Further, we let N̄i(t) to be a

compensated Poisson process which has the form N̄i(t) = Ni(t)− λit, where Ni(t)

is a Poisson process with intensity λi and N̄i and Wi are independent for i = 1, 2.

Since this SDE model has no explicit solution like the Black-Scholes formula

[8], numerical techniques have become a more popular and powerful tool to find

its approximate solution. More precisely, the Euler-Maruyama (EM) numerical

scheme can be used to approximate a solution to the SDE model (5.1).

In the case of θ = 1, convergence of the EM approximate solution to the

SDE model (5.1) has been established by F. Wu et al [76] for constant volatility.

However, there is no information so far for numerical approximate solution to the

SDE model (5.1) when 1
2
≤ θ, β ≤ 1. In this chapter we will fill this gap.

As the SDE model (5.1) describes asset price, interest rate and volatility in the

financial markets, its solution should be non-negative in practice. Therefore, we

will first prove that the solution to the SDE model (5.1) will be non-negative with

probability 1. Given that the diffusion coefficients of the SDE model (5.1) not

only satisfy the global Lipschitz condition but also the linear growth condition,

strong error bounds of the approximate solution to this model can be obtained.

Thus, we will define the EM approximate solution to this SDE model and establish

upper bounds for the expected value of volatility and asset price by applying the
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generalized Itô-Doeblin formula. We will then establish a strong error bound (in

L2) for this EM approximate solution and show that the EM approximate solution

will converge to the true solution as the time step goes to zero. In general, the

continuous EM approximate solution is not computable though its corresponding

step process is computable. Therefore, we will finally establish the convergence

property of the corresponding step process to show that it can be used to examine

applications of the EM approximate solution in finance.

5.2 Non-negative solution

The SDE model (5.1) describes underlying asset price, volatility and interest rate

in financial markets, so a natural requirement is that the solution (X(t), V (t)) to

this SDE model should be non-negative. Hence, the following lemmas show that

the solution to this SDE model will be non-negative with probability 1.

Lemma 5.1. Assume 1
2
≤ β ≤ 1. Then, given any initial value V (0) = V0 > 0,

the second SDE of (5.1) has unique global solution V (t) which will be non-negative

for all t ∈ [0, T ] almost surely.

Proof. It is sufficient to show that SDE, dV (t) = α2(µ2−V (t−))dt+σ2|V (t−)|βdW2(t)+

δ2V (t−)dN̄2(t), which has unique global solution ∀ t ≥ 0, is non-negative with

probability 1.

To show this, let a0 = 1 and for each integer k = 1, 2, 3, ...,

ak =


e−

k(k+1)
2 ; if β = 1

2
,[

(2β−1)k(k+1)
2

] 1
(1−2β)

; if 1
2
< β ≤ 1,

so that ∫ ak−1

ak

1

u2β
du = k.
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For each k = 0, 1, 2, 3, ..., there exists a continuous function ψk(u) with support in

(ak, ak−1) such that 0 ≤ ψk(u) ≤ 2
ku2β for ak < u < ak−1 and

∫ ak−1

ak

1
ku2β du = 1.

Define φk(d) = 0 for d ≥ 0 and

φk(d) =

∫ −d

0

dy

∫ y

0

ψk(u)du for d < 0.

Then it is very easy to observe that φk(d) ∈ C2(R,R) has the following properties:

(i) −1 ≤ φ
′

k(d) ≤ 0 for ak < |d| < ak−1 or otherwise φ
′

k(d) = 0;

(ii) |φ′′

k(d)| ≤ 2
k|d|2β for ak < |d| < ak−1 or otherwise φ

′

k(d) = 0;

(iii) d− − ak−1 ≤ φk(d) ≤ d− for all d ∈ R, where d− = −d if d < 0 or

otherwise d− = 0.

Now for any t ∈ [0, T ], by the Itô-Doeblin formula for one jump process [70], we

have

E[φk(V (t))] =φk(V0) + E
∫ t

0

φ
′

k(V (u−))[α2µ2 − (α2 + λ2δ2)V (u−)]du

+
1

2
E
∫ t

0

φ
′′

k(V (u−))σ2
2|V (u−)|2βdu

+ E
∫ t

0

φk[(1 + δ2)V (u−)]− φk[V (u−)]dN2(u).

(5.2)

Here, we have replaced V (u−) by V (u), because this will not have any effect on the

Lebesgue integrals involved. This property will be called throughout this thesis

where necessary. Applying the mean value theorem and properties of the function

φk(.) yields

E[φk(V (t))] ≤σ
2
2T

k
+ λ2E

∫ t

0

sup
s∈R

|φ′

k(s)||δ2V (u)|du

≤σ
2
2T

k
+ λ2|δ2|E

∫ t

0

φk(V (u)) + ak−1du

≤σ
2
2T

k
+ λ2|δ2|E

∫ t

0

φk(V (u))du+ λ2|δ2|ak−1T.

(5.3)
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By Gronwall’s inequality, we further get that

E[φk(V (t))] ≤
[
σ2
2T

k
+ λ2|δ2|ak−1T

]
exp (λ2|δ2|T ). (5.4)

Using the (iii) property of φk(.), it is very easy to observe that

E[V −(t)]− ak−1 ≤
[
σ2
2T

k
+ λ2|δ2|ak−1T

]
exp (λ2|δ2|T ), (5.5)

namely

E[V −(t)] ≤
[
σ2
2T

k
+ λ2|δ2|ak−1T

]
exp (λ2|δ2|T ) + ak−1. (5.6)

Now letting k → ∞ we have E[V −(t)] = 0 for all t ≥ 0, that implies P(V (t) <

0) = 0 for all t ∈ [0, T ], which means P (V (t) ≥ 0 ∀ t ∈ [0, T ]) = 1 as required.

Lemma 5.2. Assume 1
2
≤ θ ≤ 1 and 1

2
≤ β ≤ 1. Then, given any initial values

V (0) = V0 > 0 and X(0) = X0 > 0, the SDE model (5.1) has unique global solution

X(t) which will be non-negative for all t ∈ [0, T ] almost surely.

Proof. For any 0 ≤ t ≤ T , we can easily compute

E[V (t)] = V0 + E
∫ t

0

α2[µ2 − V (u−)]du ≤ V0 + E
∫ t

0

α2[µ2 + V (u)]du. (5.7)

By Gronwall’s inequality,

E[V (t)] ≤ R, (5.8)

where R = [V0 + µ2α2T ]e
α2T . Applying similar conditions and techniques used in

Lemma 5.1 but with parameter θ, we can define a new function ϕk(b) ∈ C2(R,R)

for b < 0 having the same properties as before. For any 0 ≤ t ≤ T , by the

Itô-Doeblin formula for one jump process, we have

E[ϕk(X(t))] =ϕk(X0) + E
∫ t

0

ϕ
′

k(X(r))[α1µ1 − (α1 + λ1δ1)X(u−)]du

+
1

2
E
∫ t

0

ϕ
′′

k(X(u))σ2
1|V (u−)||X(u−)|2θdu
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+ E
∫ t

0

ϕk[(1 + δ1)X(u−)]− ϕk[X(u−)]dN2(u).

Applying the mean value theorem, (5.8), properties of the function ϕk(.) and the

technique used to compute (5.6), we can easily obtain

E[X−(t)] ≤
[
σ2
1RT

k
+ λ1|δ1|ak−1T

]
exp {λ1|δ1|T}+ ak−1. (5.9)

Then letting k → ∞ we have E[X−(t)] = 0 for all t ≥ 0. That implies P(X(t) <

0) = 0 for all t ∈ [0, T ], which gives our required assertion, P(X(t) ≥ 0 ∀ t ∈

[0, T ]) = 1.

5.3 Convergence in second moment

As the jump-diffusion SDE model (5.1) has no explicit solution so far, let us

establish the Euler-Maruyama numerical approximate solution and examine its

convergence in second moment.

Euler-Maruyama approximation

Given time step ∆ ∈ (0, 1), let tk = k∆ for k = 0, 1, 2, ...[ T
∆
] while set v0 = V (0) and

x0 = X(0), where [ T
∆
] is integer part of T

∆
. The discrete time EM approximation

of the model is defined by

xk+1 = xk + α1(µ1 − xk)∆ + σ1
√

|vk||xk|θ∆W1 + δ1xk∆N̄1,

vk+1 = vk + α2(µ2 − vk)∆ + σ2|vk|β∆W2 + δ2xk∆N̄2,

where ∆Wi = [Wi(tk+1)−Wi(tk)] and ∆N̄i = [N̄i(tk+1)− N̄i(tk)] for i = 1, 2. The

corresponding continuous EM approximate solution is defined by

x(t) =x0 +

∫ t

0

α1(µ1 − |x̄(u)|)du+
∫ t

0

σ1
√
|v̄(u)||x̄(u)|θdW1(u) +

∫ t

0

δ1|x̄(u)|dN̄1(u),

89



v(t) =v0 +

∫ t

0

α2(µ2 − |v̄(u)|)du+
∫ t

0

σ2|v̄(u)|βdW2(u) +

∫ t

0

δ2|v̄(u)|dN̄2(u),

where x̄(t) =

[ T
∆
]∑

k=0

xk1[tk,tk+1)(t) and v̄(t) =

[ T
∆
]∑

k=0

vk1[tk,tk+1)(t) are step processes.

That is x̄(t) = xk and v̄ = vk for t ∈ [tk, tk+1), k = 0, 1, 2, ...[ T
∆
].

Upper bound

The coefficients of the SDE model (5.1), when 1
2
≤ θ, β ≤ 1, satisfy not only the

global Lipschitz condition but also the linear growth condition. Therefore, we will

establish an important property by the following theorems, i.e. the convergence in

second moment (in L2) of the EM approximate solution.

Theorem 5.1. Let V (t) be the true solution and v(t) be the EM approximate

solution to the second SDE of model (5.1). Then, for any p ≥ 2, there is a

constant R1(p) dependent on p, T , V0 but independent of ∆, such that

E
(

sup
0≤t≤T

|V (t)|p
)
∨ E

(
sup

0≤t≤T
|v(t)|p

)
≤ R1(p). (5.10)

Proof. For any 0 ≤ t ≤ T , compute

|V (t)|p ≤4p−1|V0|p + 4p−1

∣∣∣∣∫ t

0

α2(µ2 − V (u−))du

∣∣∣∣p
+ 4p−1

∣∣∣∣∫ t

0

σ2|V (u−)|βdW2(u)

∣∣∣∣p + 4p−1

∣∣∣∣∫ t

0

δ2|V (u−)|dN̄2(u)

∣∣∣∣p . (5.11)

Taking the expectation for any t1 ∈ [0, T ], we then have

E
(

sup
0≤t≤t1

|V (t)|p
)

≤4p−1|V0|p + 4p−1E
(

sup
0≤t≤t1

∣∣∣∣∫ t

0

α2(µ2 − V (u−))du

∣∣∣∣p)
+ 4p−1E

(
sup

0≤t≤t1

∣∣∣∣∫ t

0

σ2|V (u−)|βdW2(u)

∣∣∣∣p)
+ 4p−1E

(
sup

0≤t≤t1

∣∣∣∣∫ t

0

δ2|V (u−)|dN̄2(u)

∣∣∣∣p) .
(5.12)

By Burkholder-Davis-Gundy’s inequality and Höder’s inequality. we further get
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that

≤4p−1|V0|p + 4p−1T p2p−1αp
2µ

p
2 + 4p−1T p−12p−1αp

2E
∫ t1

0

|V (u)|pdu

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

σp
2|V (u)|pβdu

+ λ24
p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

|δ2|p|V (u)|pdu,

(5.13)

which takes the form

≤4p−1|V0|p + 4p−1T p2p−1αp
2µ

p
2 + 4p−1T p−12p−1αp

2E
∫ t1

0

|V (u)|pdu

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 σp

2E
∫ t1

0

|V (u)|
p
2 + |V (u)|pdu

+ λ24
p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

|δ2|p|V (u)|pdu

≤4p−1|V0|p + 4p−1T p2p−1αp
2µ

p
2 + 4p−1T p−12p−1αp

2E
∫ t1

0

|V (u)|pdu

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 σp

2T

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 (2σp

2 + λ2|δ2|p)E
∫ t1

0

|V (u)|pdu.

(5.14)

By Gronwall’s inequality, we then compute

E
(

sup
0≤t≤T

|V (t)|p
)

≤ A1e
A2T , (5.15)

where A1 =

[
4p−1|V0|p + 4p−1T p2p−1αp

2µ
p
2 + 4p−1

[
pp+1

2(p−1)p−1

] p
2
T

p−2
2 σp

2T

]
and

A2 =

[
4p−1T p−12p−1αp

2 + 4p−1
[

pp+1

2(p−1)p−1

] p
2
T

p−2
2 (2σp

2 + λ2|δ2|p)
]
.

Analogously, we can derive

E
(

sup
0≤t≤T

|v(t)|p
)

≤ A3e
A4T . (5.16)

By (5.15) and (5.16), we have

E
(

sup
0≤t≤T

|V (t)|p
)
∨ E

(
sup

0≤t≤T
|v(t)|p

)
≤ A1e

A2T ∨ A3e
A4T = R1(p), (5.17)
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as required. The proof of Theorem 5.1 is therefore complete.

Theorem 5.2. Let X(t) be the true solution and x(t) be the EM approximate so-

lution to the asset price. Then, for any p ≥ 2, there is a constant R2(p), dependent

on p, T , X0, R1(p) but independent of ∆, such that

E
(

sup
0≤t≤T

|X(t)|p
)
∨ E

(
sup

0≤t≤T
|x(t)|p

)
≤ R2(p). (5.18)

Proof. In the same way as in computation of (5.13), we can easily compute

E
(

sup
0≤t≤t1

|X(t)|p
)

≤4p−1|X0|p + 4p−1T p2p−1αp
1µ

p
1 + 4p−1T p−12p−1αp

1E
∫ t1

0

|X(u−)|pdu

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

σp
1|V (u−)|

p
2 |X(u−)|pθdu

+ λ14
p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

|δ1|p|X(u−)|pdu.

(5.19)

By Höder’s inequality, we then have

≤4p−1|X0|p + 4p−1T p2p−1αp
1µ

p
1 + 4p−1T p−12p−1αp

1E
∫ t1

0

|X(u−)|pdu

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

σp
1|V (u−)|p + σp

1|X(u−)|2pθdu

+ λ14
p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 E

∫ t1

0

|δ1|p|X(u−)|pdu.

(5.20)

Applying Theorem 5.1, we further get that

≤4p−1|X0|p + 4p−1T p2p−1αp
1µ

p
1 + 4p−1T p−12p−1αp

1E
∫ t1

0

|X(u)|pdu

+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2

[
R1(p)T + E

∫ t1

0

σp
1|X(u)|2pdu

]
+ 4p−1

[
pp+1

2(p− 1)p−1

] p
2

T
p−2
2 (λ1|δ1|p + σp

1)E
∫ t1

0

|X(u)|pdu

≤B1 +B2

∫ t1

0

E|X(u)|pdu+B3

∫ t1

0

E|X(u)|2pdu,

(5.21)

where B1 =

[
4p−1|X0|p + 4p−1T p2p−1αp

1µ
p
1 + 4p−1

[
pp+1

2(p−1)p−1

] p
2
T

p−2
2 R1(p)T

]
,

92



B2 =

[
4p−1T p−12p−1αp

1 + 4p−1
[

pp+1

2(p−1)p−1

] p
2
T

p−2
2 (λ1|δ1|p + σp

1)

]
and

B3 = 4p−1
[

pp+1

2(p−1)p−1

] p
2
T

p−2
2 σp

1 .

On the other hand for any 0 ≤ t ≤ T , applying the Itô-Doeblin formula of one

jump process to the asset price yields

E[Γ(X)] =Γ(X0) + E
∫ t

0

p|X(u)|(p−1)
[
α1µ1 − (α1 + δ1λ1)X(u−)

]
du

+
1

2
E
∫ t

0

σ2
1p(p− 1)|X(u)|p−2|V (u−)||X(u−)|2θdu

+ E
∫ t

0

λ1
[
[(1 + δ1)X(u−)]p − [X(u−)]p

]
du

≤Γ(X0) + E
∫ t

0

p|X(u)|(p−1)[α1µ1 − (α1 + δ1λ1)X(u)]du

+
1

2
E
∫ t

0

σ2
1p(p− 1)|X(u)|p−2|V (u)||X(u)|2θdu

+ E
∫ t

0

λ1(1 + δ1)
p|X(u)|pdu

≤Γ(X0) + E
∫ t

0

p|X(u)|(p−1)α1µ1

[
1− (α1 + δ1λ1)

2α1µ1

X(u)

]
du

+
σ2
1p(p− 1)

2
E
∫ t

0

|X(u)|p+2θ−2V (u)

[
1− (α1 + δ1λ1)

V (u)σ2
1(p− 1)

|X(u)|2−2θ

]
du

+ E
∫ t

0

λ1(1 + δ1)
pX(u)pdu.

By [
1− X(t)2−2θ

M

]
< 0 ; if M < X(t);

< 1 ; if 0 ≤ X(t) ≤M,

(5.22)

we further get that

E[Γ(X)] ≤Γ(X0) + pα1µ1

∫ t

0

[
2α1µ1

(α1 + δ1λ1)

](p−1)

du+ E
∫ t

0

λ1(1 + δ1)
p|X(u)|pdu

+
σ2
1p(p− 1)

2
E
∫ t

0

[
V (u)σ2

1(p− 1)

(α1 + δ1λ1)

] p+2θ−2
2−2θ

V (u)du
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≤Γ(X0) + pα1µ1

[
2α1µ1

(α1 + δ1λ1)

](p−1)

T + λ1(1 + δ1)
p

∫ t

0

E|X(u)|pdu

+
σ2
1p(p− 1)

2

[
σ2
1(p− 1)

(α1 + δ1λ1)

] p+2θ−2
2−2θ

E
∫ t

0

|V (u)|
p

2−2θ du

≤Γ(X0) + pα1µ1

[
2α1µ1

(α1 + δ1λ1)

](p−1)

T + λ1(1 + δ1)
pE
∫ t

0

|X(u)|pdu

+
σ2
1p(p− 1)

2

[
σ2
1(p− 1)

(α1 + δ1λ1)

] p+2θ−2
2−2θ

T [R1(p)]
p

(2−2θ)p1 ,

where p1 ≥ p
2−2θ

. By Gronwall’s inequality, we then have

E|X(t)|p ≤ D(p)1e
D(p)2T , (5.23)

where D(p)2 =
[
λ1(1 + δ1)

p
]
and

D(p)1 =
[
Γ(X0)+pα1µ1

[
2α1µ1

(α1+δ1λ1)

](p−1)
T +

σ2
1p(p−1)

2

[
σ2
1(p−1)

(α1+δ1λ1)

] p+2θ−2
2−2θ

T
[
R1(p)

] p
(2−2θ)p1

]
.

Now, substituting (5.23) into (5.21) yields

E
(

sup
0≤t≤t1

|X(t)|p
)

≤ B1 +B3D(2p)1e
D(2p)2TT +B2

∫ t1

0

E
(

sup
0≤u1≤u

|X(u1)|p
)
du.

Applying Gronwall’s inequality, we further get that

E
(

sup
0≤t≤T

|X(t)|p
)

≤
(
B1 +B3D(2p)1e

D(2p)2TT
)
eB2T = B4. (5.24)

Analogously, we obtain

E
(

sup
0≤t≤T

|x(t)|p
)

≤ B5. (5.25)

By (5.24) and (5.25), we then have

E
(

sup
0≤t≤T

|X(t)|p
)
∨ E

(
sup

0≤t≤T
|x(t)|p

)
≤ B4 ∨B5 = R2(p), (5.26)
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as required. The proof is therefore complete.

Convergence in second moment of v(t)

The solution to SDE model (5.1) is non-negative with probability 1, and an upper

bound for the expected value of the solution to this SDE model can be obtained

under the linear growth condition. Let us establish the following theorem to show

that the EM approximate solution to the volatility will converge to the true solution

in L1.

Theorem 5.3. Let V (t) be the true solution and v(t) be the EM approximate

solution to the second SDE of (5.1). Then,

lim
∆→0

(
sup

0≤t≤T
E |V (t)− v(t)|

)
= 0. (5.27)

To prove Theorem 5.3, we need the following Lemma that shows the closenesses

of v(t) and v̄(t) when ∆ is sufficiently small.

Lemma 5.3. There exists a constant C3,1 independent of ∆ such that

E [v(t)− v̄(t)]2 ≤ C3,1∆. (5.28)

Proof. For any 0 ≤ t ≤ T , let
[

t
∆

]
be the integer part of t

∆
. We have

v(t)− v̄(t)

=

∫ t

[ t
∆ ]∆

α2 [µ2 − v̄(u)] du+

∫ t

[ t
∆ ]∆

σ2|v̄(u)|βdW2(u) +

∫ t

[ t
∆ ]∆

δ2v̄(u)dN̄2(u),

which gives

E [v(t)− v̄(t)]2

≤3E
[
α2(µ2 − |v[ t

∆ ]
|)
]2

(t− [
t

∆
]∆)2 + 3σ2

2E|v[ t
∆ ]
|2β
[
W2(t)−W2([

t

∆
]∆)

]2
+ 3Eδ22|v[ t

∆ ]
|2
[
N̄2(t)− N̄2([

t

∆
]∆)

]2
.

(5.29)
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Applying the Hölder inequality and Theorem 5.1 yields

E [v(t)− v̄(t)]2

≤6α2
2(µ

2
2 +R1(2))∆

2 + 3σ2
2[E|v[ t

∆ ]
|4β]

1
2

[
E
[
W2(t)−W2([

t

∆
]∆)

]4] 1
2

+ 3δ22[E|v[ t
∆ ]
|4]

1
2

[
E
[
N̄2(t)− N̄2([

t

∆
]∆)

]4] 1
2

≤6α2
2(µ

2
2 +R1(2))∆

2 + 3σ2
2[R1(4)]

β
2

[
3∆2

] 1
2 + 3δ22[R1(4)]

1
2

[
3λ22∆

2
] 1

2 ≤ C3,1∆,

(5.30)

as required. The proof of Lemma 5.3 is therefore complete.

Proof. (of Theorem 5.3) For any 0 ≤ t ≤ T , compute(
V (t)− v(t)

)
=− (α2 + λ2δ2)

∫ t

0

(
V (u−)− v̄(u)

)
du+

∫ t

0

σ2
(
V (u−)β − |v̄(u)|β

)
dW2(u)

+ δ2

∫ t

0

(
V (u−)− v̄(u)

)
dN2(u).

Now, set e(u) = (V (u)− v(u)) and e(u−) = (V (u−)− v(u)). Then, applying

Itô-Doeblin’s formula for one jump process yields

E(φk(e(t))) ≤E
∫ t

0

|φ′

k(e(u
−))|(α2 + λ2δ2)

∣∣V (u−)− v̄(u)
∣∣ du

+
σ2
2

2
E
∫ t

0

|φ′′

k(e(u
−))|

∣∣V (u−)β − |v̄(u)|β
∣∣2 du

+ λ2E
∫ t

0

∣∣φk((1 + δ2)e(u
−))− φk(e(u

−))
∣∣ du.

(5.31)

By the well-known mean value theorem, we have

E(φk(e(t))) ≤E
∫ t

0

(α2 + λ2δ2) |V (u)− v̄(u)| du

+
σ2
2

2
E
∫ t

0

|φ′′

k(e(u))|
∣∣V (u)β − |v̄(u)|β

∣∣2 du
+ λ2|δ2|E

∫ t

0

| sup
s∈R

φ
′

k(s)| |V (u)− v(u)| du.

(5.32)
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Substituting the properties of φk(.) and Lemma 5.3, we obtain

E(φk(e(t))) ≤
∫ t

0

E(α2 + 2λ2|δ2|) |V (u)− v(u)| du

+

∫ t

0

E(α2 + λ2δ2) |v(u)− v̄(u)| du

+ σ2
2E
∫ t

0

|φ′′

k(e(t))|
[
V (u)β − |v(u)|β

]2
du

+ σ2
2E
∫ t

0

|φ′′

k(e(t))|
[
|v(u)|β − |v̄(u)|β

]2
du

≤
∫ t

0

E(α2 + 2λ2|δ2|) |V (u)− v(u)| du+ (α2 + λ2δ2)C
1
2
3,1∆

1
2T

+
2σ2

2T

k
+
σ2
2TC

β
3,1∆

β

ka2βk
.

(5.33)

This, together with (iii) property of the function φk(.), gives

E(e−(t)) ≤
∫ t

0

E(α2 + 2λ2|δ2|) |V (u)− v(u)| du+ (α2 + λ2δ2)C
1
2
3,1∆

1
2T

+
2σ2

2T

k
+
σ2
2TC

β
3,1∆

β

ka2βk
+ ak−1.

(5.34)

By Gronwall’s inequality, we have

sup
0≤t≤T

E |V (t)− v(t)|

≤

[
(α2 + λ2δ2)C

1
2
3,1∆

1
2T +

σ2
2

ka2βk
TCβ

3,1∆
β +

2σ2
2T

k
+ ak−1

]
e(α2+2λ2|δ2|)T .

(5.35)

Now, choose k sufficiently large for[
2σ2

2T

k
+ ak−1

]
e(α2+2λ2|δ2|)T <

ε

2
(5.36)

and further choose ∆ sufficiently small for[
(α2 + λ2δ2)C

1
2
3,1∆

1
2T +

σ2
2

ka2βk
TCβ

3,1∆
β

]
e(α2+2λ2|δ2|)T <

ε

2
. (5.37)

We then have

sup
0≤t≤T

E |V (t)− v(t)| < ε, (5.38)
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which complete the proof of Theorem 5.3.

The following theorem shows that the EM approximate solution to the volatility

will converge to the true solution in L2, with the support of Theorem 5.3.

Theorem 5.4. Let V (t) be the true solution and v(t) be the EM approximate

solution of the second SDE of (5.1). Then,

lim
∆→0

E
(

sup
0≤t≤T

[V (t)− v(t)]2
)

= 0. (5.39)

Proof. For any 0 ≤ t ≤ T , we compute

[V (t)− v(t)]2

≤3α2
2

[∫ t

0

(
V (u−)− v̄(u)

)
du

]2
+ 3σ2

2

[∫ t

0

(
V (u−)β − |v̄(u)|β

)
dW2(u)

]2
+ 3δ22

[∫ t

0

(
V (u−)− v̄(u)

)
dN̄2(u)

]2
.

(5.40)

Taking the expectation for any t1 ∈ [0, T ], and applying the Burkholder-Davis-

Gundy inequality and the Hölder inequality, we then have

E
(

sup
0≤t≤t1

[V (t)− v(t)]2
)

≤
[
3α2

2T + 12λ2δ
2
2

]
E
∫ t1

0

[
V (u−)− v̄(u)

]2
du+ 12σ2

2E
∫ t1

0

[
V (u−)β − |v̄(u)|β

]2
du.

(5.41)

Rearranging the terms on the left hand side, we further get that

≤
[
3α2

2T + 12λ2δ
2
2

]
E
∫ t1

0

[
V (u−)− v̄(u)

]2
du+ 12σ2

2E
∫ t1

0

[
V (u−)− v̄(u)

]2β
du

≤
[
3α2

2T + 12λ2δ
2
2 + 12σ2

2

]
E
∫ t1

0

[V (u)− v̄(u)]2 du+ 12σ2
2E
∫ t1

0

|V (u)− v̄(u)| du.

By Lemma 5.3, we then compute

≤2[3α2
2T + 12λ2δ

2
2 + 12σ2

2]

∫ t1

0

E [V (u)− v(u)]2 du+ 12σ2
2

∫ t1

0

E |V (u)− v(u)| du

+ C3,2∆
1
2 .
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Now, applying Gronwall’s inequality, we have

E
(

sup
0≤t≤T

[V (t)− v(t)]2
)

≤
[
12σ2

2T

(
sup

0≤t≤T
E |V (t)− v(t)|

)
+ C3,2∆

1
2

]
e[6α

2
2T+24λ2δ22+24σ2

2 ]T .

(5.42)

The proof of Theorem 5.4 finally is completed by Theorem 5.3 and letting ∆ →

0.

Convergence in second moment of x(t)

Now, we will establish a necessary condition for convergence in second moment of

the asset price by the following theorem.

Theorem 5.5. Let X(t) be the true solution and x(t) be the EM approximate

solution to the asset price: Then,

lim
∆→0

(
sup

0≤t≤T
E |X(t)− x(t)|

)
= 0. (5.43)

To prove Theorem 5.5, we need the following lemma which gives the close form of

x(t) and x̄(t) to each other when the time step ∆ is small enough.

Lemma 5.4. There exists a constant C3,3 independent of ∆ such that

E [x(t)− x̄(t)]4 ≤ C3,3∆
2. (5.44)

The proof can be obtained by the same way as Lemma 5.3 was proved.

Proof. (of Theorem 5.5) For any 0 ≤ t ≤ T , compute

(X(t)− x(t)) =− (α1 + λ1δ1)

∫ t

0

(
X(u−)− x̄(u)

)
du

+

∫ t

0

σ1

(
X(u−)θ

√
|V (u−)| − |x̄(u)|θ

√
|v̄(u)|

)
dW1(u)

+ δ1

∫ t

0

(
X(u−)− x̄(u)

)
dN̄1(u).

(5.45)
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Now, set e(u) = (X(u)− x(u)) and e(u−) = (X(u−)− x(u)).

Applying the Itô-Doeblin formula for one jump process yields

E(ϕk(e(t))) ≤E
∫ t

0

|ϕ′

k(e(u
−))|[α1 + λ1δ1]

∣∣X(u−)− x̄(u)
∣∣ du

+
σ2
1

2
E
∫ t

0

|ϕ′′

k(e(u
−))|

∣∣∣X(u−)θ
√

|V (u−)| − |x̄(u)|θ
√

|v̄(u)|
∣∣∣2 du

+ λ1E
∫ t

0

∣∣ϕk((1 + δ1)e(u
−))− ϕk(e(t

−))
∣∣ du.

By the mean value theorem, we then have

E(ϕk(e(t)))

≤E
∫ t

0

[α1 + λ1δ1]
∣∣X(u−)− x̄(u)

∣∣ du
+ σ2

1E
∫ t

0

|ϕ′′

k(e(u
−))|X(u−)2θ

[√
|V (u−)| −

√
|v̄(u)|

]2
du

+ σ2
1E
∫ t

0

|ϕ′′

k(e(u
−))||v̄(u)|

[
X(u−)θ − |x̄(u)|θ

]2
du

+ λ1|δ1|E
∫ t

0

sup
b∈R

|ϕ′

k(b)|
∣∣X(u−)− x(u)

∣∣ du,
≤E

∫ t

0

[α1 + λ1δ1] |X(u)− x̄(u)| du+ λ1|δ1|E
∫ t

0

|X(u)− x(u)| du

+ σ2
1E
∫ t

0

|ϕ′′

k(e(u))|X(u)2θ |V (u)− v̄(u)| du

+ σ2
1E
∫ t

0

|ϕ′′

k(e(u))||v̄(u)| [X(u)− x̄(u)]2θ du.

(5.46)

Applying the property of φk(.) we further compute

≤E
∫ t

0

[α1 + 2λ1|δ1|] |X(u)− x(u)| du+ E
∫ t

0

[α1 + λ1δ1] |x(u)− x̄(u)| du

+
2σ2

1

ka2θk
E
∫ t

0

X(u)2θ |V (u)− v(u)| du+ 2σ2
1

ka2θk
E
∫ t

0

X(u)2θ |v(u)− v̄(u)| du

+
4σ2

1

k
E
∫ t

0

|v̄(u)|du+ 4σ2
1

ka2θk
E
∫ t

0

|v̄(u)|
[
|x(u)− x̄(u)|+ |x(u)− x̄(u)|2

]
du.

Using Hölder’s inequality, we further get that

≤[α1 + 2λ1|δ1|]
∫ t

0

E |X(u)− x(u)| du+ [α1 + λ1δ1]

∫ t

0

(
E |x(u)− x̄(u)|2

) 1
2 du
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+
2σ2

1

ka2θk

∫ t

0

(
EX(u)4θ

) 1
2
(
E |V (u)− v(u)|2

) 1
2 du

+
2σ2

1

ka2θk

∫ t

0

(
EX(u)4θ

) 1
2
(
E |v(u)− v̄(u)|2

) 1
2 du

+
4σ2

1

k

∫ t

0

(
E|v̄(u)|2

) 1
2 du+

4σ2
1

ka2θk

∫ t

0

(
E|v̄(u)|2

) 1
2
(
E |x(u)− x̄(u)|2

) 1
2 du

+
4σ2

1

ka2θk

∫ t

0

(
E|v̄(u)|2

) 1
2
(
E |x(u)− x̄(u)|4

) 1
2 du.

Applying the natural relationship

sup
0≤t≤T

|v̄(u)|2 ≤ sup
0≤t≤T

|v(u)|2, (5.47)

by Theorem 5.1, Theorem 5.2, Lemma 5.3 and Lemma 5.4, we then compute

≤ [α1 + 2λ1|δ1|]
∫ t

0

E |X(u)− x(u)| du+ [α1 + λ1δ1]
(
C3,3∆

2
) 1

4 T

+
2σ2

1 (R2(4))
θ
2

ka2θk

∫ t

0

(
E |V (u)− v(u)|2

) 1
2 du +

2σ2
1 (R2(4))

θ
2

ka2θk
(C3,1∆)

1
2 T

+
4σ2

1 (R1(2))
1
2 T

k
+

4σ2
1 (R1(2))

1
2 (C3,3∆

2)
1
4 T

ka2θk
+

4σ2
1 (R1(2))

1
2 (C3,3∆

2)
1
2 T

ka2θk
.

Now, substituting Theorem 5.4,

E
(

sup
0≤t≤T

[V (t)− v(t)]2
)

≤
[
12σ2

2T

(
sup

0≤t≤T
E |V (t)− v(t)|

)
+ C3,2∆

1
2

]
e[6α

2
2T+24λ2δ22+24σ2

2 ]T

= Λ(∆) + Υ(k∆) + Θ(k),

(5.48)

yields

E(ϕk(e(t)))

≤[α1 + 2λ1|δ1|]
∫ t

0

E |X(u)− x(u)| du+ [α1 + λ1δ1]
(
C3,3∆

2
) 1

4 T

+
2σ2

1 (R2(4))
θ
2 (Λ(∆) + Υ(k∆) + Θ(k))

1
2 T

ka2θk
+

2σ2
1 (R2(4))

θ
2

ka2θk
(C3,1∆)

1
2 T

+
4σ2

1 (R1(2))
1
2 T

k
+

4σ2
1 (R1(2))

1
2 T
[
(C3,3∆

2)
1
4 + (C3,3∆

2)
1
2

]
ka2θk

.

(5.49)
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Noting e−(t)− ak−1 ≤ ϕk(e(t)) ≤ e−(t), we further get that

E(e−(t))

≤ak−1 + [α1 + 2λ1|δ1|]
∫ t

0

E |X(u)− x(u)| du+ [α1 + λ1δ1]
(
C3,3∆

2
) 1

4 T

+
2σ2

1 (R2(4))
θ
2 (Λ(∆) + Υ(k∆) + Θ(k))

1
2 T

ka2θk
+

2σ2
1 (R2(4))

θ
2

ka2θk
(C3,1∆)

1
2 T

+
4σ2

1 (R1(2))
1
2 T

k
+

4σ2
1 (R1(2))

1
2 T
[
(C3,3∆

2)
1
4 + (C3,3∆

2)
1
2

]
ka2θk

.

(5.50)

By Gronwall’s inequality, we then have

sup
0≤t≤T

E |X(u)− x(u)|

≤

[
ak−1 +

2σ2
1 (R2(4))

θ
2 Θ(k)

1
2T

ka2θk
+

4σ2
1 (R1(2))

1
2 T

k

+
2σ2

1 (R2(4))
θ
2 (Λ(∆) + Υ(k∆))

1
2 T

ka2θk
+ [α1 + λ1δ1]

(
C3,3∆

2
) 1

4 T

+
4σ2

1 (R1(2))
1
2

[
(C3,3∆

2)
1
4 + (C3,3∆

2)
1
2

]
T

ka2θk

+
2σ2

1 (R2(4))
θ
2

ka2θk
(C3,1∆)

1
2 T

]
e[α1+2λ1|δ1|]T .

(5.51)

Now choose k sufficiently large such that[
2σ2

1 (R2(4))
θ
2 Θ(k)

1
2T

ka2θk
+

4σ2
1 (R1(2))

1
2 T

k
+ ak−1

]
e[α1+2λ1|δ1|]T <

ε

2
(5.52)

and further choose ∆ sufficiently small such that[
2σ2

1 (R2(4))
θ
2 (Λ(∆) + Υ(k∆))

1
2 T

ka2θk
+ [α1 + λ1δ1]

(
C3,3∆

2
) 1

4 T

+
2σ2

1 (R2(4))
θ
2

ka2θk
(C3,1∆)

1
2 T

+
4σ2

1 (R1(2))
1
2

[
(C3,3∆

2)
1
4 + (C3,3∆

2)
1
2

]
T

ka2θk

 e[α1+2λ1|δ1|]T <
ε

2
.

(5.53)
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Hence, we have

sup
0≤t≤T

E |X(u)− x(u)| < ε (5.54)

as required. The proof of Theorem 5.5 is therefore complete.

Now, we will establish the following theorem to show convergence in second mo-

ment of the EM approximate solution to the asset price.

Theorem 5.6. Let X(t) be the true solution and x(t) be the EM approximate

solution to the asset price. Then,

lim
∆→0

E
(

sup
0≤t≤T

[X(t)− x(t)]2
)

= 0. (5.55)

Proof. For any 0 ≤ t1 ≤ T , we compute

E
(

sup
0≤t≤t1

[X(t)− x(t)]2
)

≤3α2
1TE

∫ t1

0

[
X(u−)− x̄(u)

]2
du

+ 12σ2
1E
∫ t1

0

[√
V (u−)X(u−)θ −

√
|v̄(u)|x̄(u)θ

]2
du

+ 12λ1δ
2
1E
∫ t1

0

[
X(u−)− x̄(u)

]2
du

≤[3α2
1T + 12λ1δ

2
1]E
∫ t1

0

[
X(u−)− x̄(u)

]2
du

+ 12σ2
1E
∫ t1

0

[√
V (u−)X(u−)θ −

√
|v̄(u)||x̄(u)|θ

]2
du

≤[3α2
1T + 12λ1δ

2
1]E
∫ t1

0

[X(u)− x̄(u)]2 du

+ 48σ2
1E
∫ t1

0

|X(u)|2θ
[√

V (u)−
√

|v(u)|
]2
du

+ 48σ2
1E
∫ t1

0

|x(u)|2θ
[√

|v(u)| −
√
|v̄(u)|

]2
du

+ 48σ2
1E
∫ t1

0

|v(u)|
[
X(u)θ − |x(u)|θ

]2
du

+ 48σ2
1E
∫ t1

0

|v̄(u)|
[
|x(u)|θ − |x̄(u)|θ

]2
du.

(5.56)
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Rearranging the terms on the right hand side, we then have

≤2[3α2
1T + 12λ1δ

2
1]E
∫ t1

0

[X(u)− x(u)]2 + [x(u)− x̄(u)]2 du

+ 48σ2
1E
∫ t1

0

|X(u)|2θ |V (u)− v(u)|+ |x(u)|2θ |v(u)− v̄(u)| du

+ 48σ2
1E
∫ t1

0

|v(u)| |X(u)− x(u)|2 + |v(u)| |X(u)− x(u)| du

+ 48σ2
1E
∫ t1

0

|v̄(u)| |x(u)− x̄(u)|2 + |v̄(u)| |x(u)− x̄(u)| du.

(5.57)

By Theorem 5.1, Theorem 5.2, Lemma 5.3 and Lemma 5.4, this yields

E
(

sup
0≤t≤t1

[X(t)− x(t)]2
)

≤2[3α2
1T + 12λ1δ

2
1]

(∫ t1

0

E [X(u)− x(u)]2 du+ [C3,3∆
2]

1
2T

)
+ 48σ2

1[R2(4)]
θ
2

∫ t1

0

[
E
(

sup
0≤u1≤u

[V (u1)− v(u1)]
2

)] 1
2

du

+ 48σ2
1[R2(4)]

θ
2 [C3,1∆]

1
2T + 48σ2

1[R1(2)]
1
2T
(
[C3,3∆

2]
1
2 + [C3,3∆

2]
1
4

)
+ 48σ2

1[R1(2)]
1
2

∫ t1

0

(E |X(u)− x(u)|)
1
4
(
E |X(u)− x(u)|3

) 1
4 du

+ 48σ2
1[R1(2)]

1
2

∫ t1

0

(E |X(u)− x(u)|)
1
4
(
E |X(u)− x(u)|7

) 1
4 du

≤2[3α2
1T + 12λ1δ

2
1]

∫ t1

0

E |X(u)− x(u)|2 du+ C3,4∆
1
2

+ 48σ2
1[R2(4)]

θ
2

∫ t1

0

[
E
(

sup
0≤u1≤u

[V (u1)− v(u1)]
2

)] 1
2

du

+ 48σ2
1[R1(2)]

1
2 [8R2(3)]

1
4

∫ t1

0

(
sup

0≤u1≤u
E |X(u1)− x(u1)|

) 1
4

du

+ 48σ2
1[R1(2)]

1
2 [27R2(7)]

1
4

∫ t1

0

(
sup

0≤u1≤u
E |X(u1)− x(u1)|

) 1
4

du

≤C3,4∆
1
2 + 2[3α2

1T + 12λ1δ
2
1]

∫ t1

0

(
E sup

0≤u1≤u
[X(u1)− x(u1)]

2

)
du

+ 48σ2
1[R2(4)]

θ
2

(
E sup

0≤u≤T
[V (u)− v(u)]2

) 1
2

T + C3,5

(
sup

0≤u≤T
E |X(u)− x(u)|

) 1
4

T.

(5.58)
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Applying Gronwall’s inequality, we have

E
(

sup
0≤t≤T

[X(t)− x(t)]2
)

≤

[
C3,4∆

1
2 + 48σ2

1T [R2(4)]
θ
2

(
E sup

0≤u≤T
[V (u)− v(u)]2

) 1
2

+ C3,5

(
sup

0≤u≤T
E |X(u)− x(u)|

) 1
4

T

]
e2(3α

2
1T+12λ1δ21)T .

(5.59)

The proof is therefore completed by Theorem 5.4, Theorem 5.5 and letting ∆ →

0.

Theorem 5.6 shows that the continuous EM approximate solution will converge

to the true solution though it is not computable in practice. Therefore, it is

required to show that the corresponding step process, which is computable, will

converge to the true solution of the asset price when the time step is sufficiently

small. Thus, the following theorem will establish the convergence property of this

step process which can also be used to examine applications of the EM approximate

solution in finance.

Theorem 5.7. Let X(t) be the true solution and x̄(t) be the step process of the

EM approximate solution to the asset price. Then,

lim
∆→0

(
sup

0≤t≤T
E
∣∣∣X(t)− x̄(t)

∣∣∣) = 0. (5.60)

Proof. We can easily compute(
sup

0≤t≤T
E |X(t)− x̄(t)|

)
≤
(

sup
0≤t≤T

E |X(t)− x(t)|
)
+

(
sup

0≤t≤T
E |x(t)− x̄(t)|

)
.

(5.61)

Then, the required proof of Theorem 5.7 will be completed by Lemma 5.4, Theorem

5.6 and letting ∆ → 0.

Theorem 5.7 shows that the step process of the EM approximate solution will

converge to the true solution. We will apply MATLABR⃝ software (see Appendix A
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for code) with initial condition (X(0) = 0.3, V (0) = 0.5), ρ = 0.1, (θ = 1, β = 0.5),

λ1 = 1, λ2 = 2 and coefficients of the SDE model (5.1)(see Table 5.1) to illustrate

its behaviour in practice (see Figure 5.1).

Table 5.1: Coefficients of the SDE model (5.1)

Case Parameters

SDE 1 θ = 1.0 X(0) = 0.3 α1 = 2 µ1 = 2 σ1 = 2 δ1 = 2
SDE 2 β = 0.5 V (0) = 0.5 α1 = 1 µ2 = 0.5 σ2 = 1 δ2 = 1
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Figure 5.1: A sample path of the asset price X(t) which is generated by the EM
approximate solution to the mean-reverting-theta stochastic volatility model with
Poisson jump over finite time, where θ = 1 and β = 0.5.

5.4 Summary

The convergence property of the EM approximate solution to the mean-reverting-

theta stochastic volatility model driven by a Poisson jump process has been ex-

amined in this chapter, for parameters 1
2
≤ θ, β ≤ 1. In this process, we have
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first proved that the unique global solution to SDE model (5.1) is non-negative

with probability 1. Then, we have obtained convergence in second moment of the

EM approximate solution to this SDE model when the time step is sufficiently

small. Finally, the convergence property of the corresponding step process has

been obtained to show that it can be used to evaluate applications in finance.
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Chapter 6

Jump-Diffusion Stochastic

Volatility Model for Asset Price

6.1 Introduction

In contrast to the SDE model (5.1) examined in the previous chapter for parame-

ters 1
2
< θ, β < 1, we will examine the same SDE model in this chapter but with

parameters θ and β greater than 1. Even though many applications of this highly

sensitive SDE model can be seen in financial markets where random disturbances

occurred, explicit solution to this model can not be obtained within the existing

theory. Thus, the Euler-Maruyama (EM) numerical scheme has become a more

appropriate way to study and examine its behaviour in practice. In this process,

the convergence property of the EM approximate solution to the true solution plays

a very important role though existing techniques are not strong enough to show

this important task. Thus, we will develop the necessary financial instruments to

fill this gap in this chapter,.

The SDE model (5.1) was mainly developed to examine behaviour of the un-
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derlying asset price and volatility, even though there is no information on the

non-negative solution when 1 < θ, β <∞. Therefore, we will first prove that solu-

tion to this SDE model is non-negative with probability 1. We will then consider

the EM approximate solution to this model which has been defined in Chapter 5

but with parameters θ and β are greater than 1. Since this model satisfies the local

Lipschitz condition, the strong error bound of this EM approximate solution can

be obtained with stopping time. Therefore, we will show that the continuous EM

approximate solution to the SDE model (5.1) when 1 < θ, β < ∞ will converge

in probability to the true solution. However, this continuous EM approximate

solution is not computable in practice, but its corresponding step process is com-

putable. Hence, we will finally show that the step process of the EM approximate

solution will converge in probability to the true solution when the parameters θ

and β are greater than 1 and this property can also be used to examine applications

of this EM approximate solution in finance.

6.2 Non-negative solution

As the SDE model (5.1) mainly describes behaviour of the underlying asset price

and its volatility in financial markets, a natural requirement is to have a non-

negative solution (X(t), V (t)) in practice. Thus, we will establish the following

lemmas to show that the solution to the SDE model (5.1) will be non-negative

with probability 1 when parameters θ and β are greater than 1. However, we will

omit the proofs of these lemmas since they can be obtained in the same way as

Lemma 5.1 and Lemma 5.2 were proved but with

ak =

[
(2A− 1)k(k + 1)

2

] 1
(1−2A)

for k = 1, 2, 3, ... and 1 < A where A ∈ {β, θ}.
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Non-negative V (t)

Lemma 6.1. Assume 1 < β < ∞. Then, given any initial value V (0) = V0 > 0,

the second SDE of the model (5.1) has unique local solution V (t) which will be

non-negative for all t ∈ [0, T ] almost surely.

Non-negative X(t)

Lemma 6.2. Assume 1 < θ <∞ and 1 < β <∞. Then, given any initial values

V (0) = V0 > 0 and X(0) = X0 > 0, the SDE model (5.1) has unique local solution

X(t) which will be non-negative for all t ∈ [0, T ] almost surely.

6.3 Convergence in probability

In general, SDE models have no explicit solutions, hence study of numerical ap-

proximate solutions is useful to understand the behaviour of systems. In this sec-

tion, we will examine the EM numerical approximate solution to the SDE model

(5.1) defined in Chapter 5 but with the parameters θ and β greater than 1.

Convergence of v(t) in probability

The diffusion coefficients of SDE model obey the local Lipschitz condition though

do not satisfy the linear growth conditions. We can not appeal to convergence

in second moment of its approximate solution within the existing theory. Thus,

the following theorem will establish a strong error bound of the EM continuous

approximate solution to volatility with stopping time.

Theorem 6.1. Let V (t) be the true solution and v(t) be continuous EM approx-

imate solution to the second SDE of (5.1) when 1 < β < ∞. For any positive
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number M , define the stopping time q = ρM ∧ γM ∧ T , where ρM = inf{t ∈ [0, T ] :

V (t) /∈ [ 1
M
,M ]} and γM = inf{t ∈ [0, T ] : |v(t)| /∈ [ 1

M
,M ]}. Then, for any integer

p ≥ 2,

E
(

sup
0≤t≤T

[V (t ∧ q)− v(t ∧ q)]2
)

≤ C4,2(M, p)∆1− 1
p , (6.1)

where C4,2 = C4,2(M, p) is a constant independent of ∆.

To prove Theorem 6.1, we need the following lemma that shows the closeness of

the x(t) and x̄(t) when time step is so small.

Lemma 6.3. There exists a constant C4,1(M, p) dependent on M and p but inde-

pendent of ∆ such that

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤ C4,1(M, p)∆1− 1
p . (6.2)

Proof. For 0 ≤ t ≤ T , let
[

t
∆

]
be the integer part of t

∆
. We then have

v(t ∧ q)− v̄(t ∧ q)

=

∫ t∧q

[ t∧q
∆ ]∆

[α2(µ2 − v̄(u))] du+

∫ t∧q

[ t∧q
∆ ]∆

σ2|v̄(u)|βdW2(u) +

∫ t∧q

[ t∧q
∆ ]∆

δ2v̄(u)dN̄2(u),

(6.3)

which gives[
v(t ∧ q)− v̄(t ∧ q)

]2
≤6α2

2(µ
2
2 +M)∆2 + 3σ2

2M
2β

[
W2(t ∧ q)−W2([

t ∧ q
∆

]∆)

]2
+ 3δ22M

[
N̄2(t ∧ q)− N̄2([

t ∧ q
∆

]∆)

]2
.

(6.4)

Taking the expectation, we further get that

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤6α2
2(µ

2
2 +M)∆2 + 3σ2

2M
2βE

(
sup

0≤t≤T∧q

[
W2(t)−W2([

t

∆
]∆)

]2)
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+ 3δ22ME

(
sup

0≤t≤T∧q

[
N̄2(t)− N̄2([

t

∆
]∆)

]2)

≤6α2
2(µ

2
2 +M)∆2 + 3σ2

2M
2βE

(
sup

0≤t≤T

[
W2(t)−W2([

t

∆
]∆)

]2)

+ 3δ22ME

(
sup

0≤t≤T

[
N̄2(t)− N̄2([

t

∆
]∆)

]2)
.

Applying the technique used to compute (3.27) yields

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤6α2(µ
2
2 +M2)∆2 + 3σ2

2M
2β

[(
2p

2p− 1

)2p

(2p− 1)!!∆p−1(T + 1)

] 1
p

+ 3δ22M

[
λp2

(
2p

2p− 1

)2p

(2p− 1)!!∆p−1(T + 1)

] 1
p

≤C4,1(M, p)∆1− 1
p .

(6.5)

as required. The proof of Lemma 6.3 is therefore complete.

Proof. (of Theorem 6.1) For any 0 ≤ t ≤ T , compute[
V (t ∧ q)− v(t ∧ q)

]2
≤3

[∫ t∧q

0

α2[V (u−)− v̄(u)]du

]2
+ 3

[∫ t∧q

0

σ2[|V (u−)|β − |v̄(u)|β]dW2(u)

]2
+ 3

[∫ t∧q

0

δ2[V (u−)− v̄(u)]dN̄2(u)

]2
.

(6.6)

Taking the expectation for t1 ∈ [0, T ], we then have

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤3E

(
sup

0≤t≤t1

[∫ t∧q

0

α2[V (u−)− v̄(u)]d(u)

]2)

+ 3E

(
sup

0≤t≤t1

[∫ t∧q

0

σ2
[
|V (u−)|β − |v̄(u)|β

]
dW2(u)

]2)

112



+ 3E

(
sup

0≤t≤t1

[∫ t∧q

0

δ2[V (u−)− v̄(u)]dN̄2(u)

]2)
.

By the Burkholder-Davis-Gundy inequality and the Hölder inequality, we further

get that

≤3α2
2TE

∫ t1∧q

0

[
V (u−)− v̄(u)

]2
du+ 12σ2

2E
∫ t1∧q

0

[
|V (u−)|β − |v̄(u)|β

]2
du

+ 12δ22λ2E
∫ t1∧q

0

[
V (u−)− v̄(u)

]2
du.

(6.7)

Applying the mean value theorem yields

≤
[
3α2

2T + 12δ22λ2
]
E
∫ t1

0

[V (u ∧ q)− v̄(u ∧ q)]2 du

+ 12σ2
2β

2M2β−2E
∫ t1

0

[V (u ∧ q)− v̄(u ∧ q)]2du

≤
[
6α2

2T + 24δ22λ2 + 24σ2
2β

2M2β−2
]
E
∫ t1

0

[V (u ∧ q)− v(u ∧ q)]2 du

+
[
6α2

2T + 24δ22λ2 + 24σ2
2β

2M2β−2
]
E
∫ t1

0

[v(u ∧ q)− v̄(u ∧ q)]2 du.

(6.8)

By Lemma 6.3, we then have

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤
[
6α2

2T + 24δ22λ2 + 24σ2
2β

2M2β−2
] ∫ t1

0

E [V (u ∧ q)− v(u ∧ q)]2 du

+
[
6α2

2T + 24δ22λ2 + 24σ2
2β

2M2β−2
]
C4,1(M, p)∆1− 1

pT,

(6.9)

An application of Gronwall’s inequality will therefore complete the proof.

Now, we will remove the stopping time of volatility by the following theorem

and show that the EM continuous approximate solution of the volatility will con-

verge in probability to the true solution.

Theorem 6.2. Let V (t) be the true solution and v(t) be the approximate solution

to second SDE of (5.1) when 1 < β <∞. Then,

lim
∆→0

(
sup

0≤t≤T
[V (t)− v(t)]2

)
= 0 in probability. (6.10)
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To prove Theorem 6.2, we need the following lemma which gives the upper bound

for expected value of the continuous EM approximate solution to the volatility.

Lemma 6.4. There exists a constant C4,4(M, p) which dependent on M and p, but

independent of ∆ such that

E(v(t ∧ γM)) ≤ Z + C4,4(M, p)∆
1
2
[1− 1

p
], (6.11)

where Z is a constant independent of ∆.

Proof. For any 0 ≤ t ≤ T , we compute

E(v(t ∧ γM)) ≤ V0 + α2µ2T + α2

∫ t∧γM

0

E|v̄(u)|du. (6.12)

Rearranging the terms in right hand side, we further get that

E(v(t ∧ γM))

≤V0 + α2µ2T + α2

∫ t∧γM

0

E[|v̄(u)| − v(u)]du+ α2

∫ t∧γM

0

Ev(u)du

≤V0 + α2µ2T + α2

∫ t∧γM

0

E|v(u)− v̄(u)|du+ α2

∫ t∧γM

0

E(v(u))du.

(6.13)

On the other hand, in the same way as in computation of Lemma 6.3, we obtain

E
(

sup
0≤t≤T

[v(t ∧ γM)− v̄(t ∧ γM)]2
)

≤ C4,3(M, p)∆1− 1
p , (6.14)

where C4,3(M, p) is a constant independent of ∆. Now substituting (6.14) in (6.13),

we further get that

E(v(u ∧ γM))

≤V0 + α2µ2T + α2

(
C4,3(M, p)∆1− 1

p

) 1
2
T + α2

∫ t∧γM

0

E(v(u))du.
(6.15)

By Gronwall’s inequality, we have

E(v(u ∧ γM)) ≤
[
V0 + α2µ2T + α2

(
C4,3(M, p)∆1− 1

p

) 1
2
T

]
eα2T

=Z + C4,4(M, p)∆
1
2
[1− 1

p
],

(6.16)
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as required. The proof of Lemma 6.4 is therefore complete.

Proof. (of Theorem 6.2)

The proof is rather complex, so we will therefore divide the whole proof into 3

steps.

Step 1: Applying the Itö-Doeblin formula for one jump process for t1 ∈ [0, T ] yields

E [H(V (t1 ∧ ρM))]

=H(V0) + E
∫ t1∧ρM

0

H
′
(V (u−))

[
α2µ2 − (α2 + λ2δ2)V (u−)

]
du

+
1

2
E
∫ t1∧ρM

0

H
′′
(V (u−))σ2

2V (u−)2βdu

+ E
∫ t1∧ρM

0

H([1 + δ2]V (u−))−H(V (u−))dN2(u),

(6.17)

where function H(.) has been defined in Lemma 3.1. By the mean value theorem,

we then have

E [H(V (t1 ∧ ρM))]

≤H(V0) + E
∫ t1∧ρM

0

1

2
[V (u)−

1
2 − V (u)−1][α2µ2 − (α2 + λ2δ2)V (u)]du

+
1

4
E
∫ t1∧ρM

0

[V (u)−2 − 1

2
V (u)−

3
2 ]σ2

2|V (u)|2βdu

+ λ2E
∫ t1∧ρM

0

sup
s∈R

[s−
1
2 − s−1]|δ2|V (u)du

≤H(V0) +
α2µ2

2
E
∫ t1∧ρM

0

[V (u)−
1
2 − V (u)−1]du

+
(α2 + λ2δ2)

2
E
∫ t1∧ρM

0

[1− V (u)
1
2 ]du

+
σ2
2

4
E
∫ t1∧ρM

0

[1− 1

2
V (u)

1
2 ]|V (u)|2β−2du+ λ2|δ2|

∫ T

0

EV (u)du.

(6.18)

Applying (3.8), we further get that

E [H(V (t1 ∧ ρM))]

≤H(V0) +
α2µ2

2
T +

(α2 + λ2δ2)

2
T +

σ2
24

2β−2T

4
+ λ2|δ2|

∫ T

0

EV (u)du.
(6.19)
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On the other hand, in the same way as in the computation of (5.8), we derive

E[V (t)] ≤ R. (6.20)

This together with (6.19) yields

E [H(V (t1 ∧ ρM))]

≤H(V0) +
α2µ2

2
T +

(α2 + λ2δ2)

2
T +

σ2
24

2β−2T

4
+ λ2|δ2|RT.

(6.21)

Now, repeating the technique which was used to compute (3.12), we have

P(ρM ≤ T ) ≤
H(V0) +

α2µ2

2
T + (α2+λ2δ2)

2
T +

σ2
24

2β−2T

4
+ λ2|δ2|RT

H(M−1) ∧H(M)
. (6.22)

Step 2: Then, applying a similar technique as used in ( Step 1 ) for the EM

continuous approximate solution to the volatility, we get

E [H(v(t1 ∧ γM))]

=H(V0) + E
∫ t1∧γM

0

H
′
(v(u)) [α2µ2 − (α2 + λ2δ2)v̄(u)] du

+
1

2
E
∫ t1∧γM

0

H
′′
(v(u))σ2

2|v̄(u)|2βdu

+ E
∫ t1∧ρM

0

H([1 + δ2]v̄(u))−H(v̄(u))dN2(u).

(6.23)

By the mean value theorem, we then obtain

≤H(V0) + E
∫ t1∧γM

0

1

2

[
v(u)−

1
2 − v(u)−1

]
[α2µ2 − (α2 + λ2δ2)v̄(u)] du

+
1

2
E
∫ t1∧γM

0

1

2

[
v(u)−2 − 1

2
v(u)−

3
2

]
σ2
2|v̄(u)|2βdu

+ |δ2|λ2E
∫ t1∧γM

0

sup
s∈R

[
s−

1
2 − s−1

]
v̄(u)du.

(6.24)

Rearranging the terms on the righthand side, we further get that

≤H(V0) +
α2µ2T

2
+

(α2 + λ2δ2)

2
E
∫ t1∧γM

0

[
1− v(u)

1
2

]
du

+
σ2
2

4
E
∫ t1∧γM

0

[
1− 1

2
v(u)

1
2

]
|v(u)|2β−2du+ |δ2|λ2E

∫ t1∧γM

0

v(u)du
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+
(α2 + λ2δ2)

2
E
∫ t1∧γM

0

[
v(u)−

1
2 − v(u)−1

]
(v(u)− v̄(u))du

+
σ2
2

4
E
∫ t1∧γM

0

[
v(u)−2 − 1

2
v(u)−

3
2

] [
|v̄(u)|2β − |v(u)|2β

]
du

+ |δ2|λ2E
∫ t1∧γM

0

[v̄(u)− v(u)] du.

By (3.8), Lemma 6.4 and the well-known mean value theorem, we compute

≤H(V0) +
α2µ2T

2
+

(α2 + δ2λ2)T

2
+
σ2
24

2β−2T

4
+ |δ2|λ2TZ

+
(α2 + λ2δ2)

2
E
∫ t1∧γM

0

[
v(u)−

1
2 − v(u)−1

]
(v(u)− v̄(u))du

+ |δ2|λ2E
∫ t1∧γM

0

[v̄(u)− v(u)] du++|δ2|λ2C4,4(M, p)∆
1
2
[1− 1

p
]T

+
σ̄2
2

4
E
∫ t1∧γM

0

2β sup[u]2β−1

[
v(u)−2 − 1

2
v(u)−

3
2

]
|v̄(u)− v(u)|du.

(6.25)

Note that v̄(u) ∈ [M−1,M ] whereas v(u) ∈ [M−1,M ]. we then have

≤H(V0) +
α2µ2T

2
+

(α2 + δ2λ2)T

2
+
σ2
24

2β−2T

4
+ |δ2|λ2TZ

+ |δ2|λ2C4,4(M, p)∆
1
2
[1− 1

p
]T + |δ2|λ2E

∫ t1

0

|v̄(u ∧ γM)− v(u ∧ γM)|du

+

[
|M 1

2 +M |(α2 + λ2δ2)

2

]∫ t1

0

E|v(u ∧ γM)− v̄(u ∧ γM)|du

+

[
|M2 + 1

2
M

3
2 |βM2β−1σ2

2

2

]∫ t1

0

E|v(u ∧ γM)− v̄(u ∧ γM)|du.

(6.26)

By Lemma (6.14), we get

≤H(V0) +
α2µ2T

2
+

(α2 + δ2λ2)T

2
+
σ2
24

2β−2T

4
+ |δ2|λ2TZ

+ |δ2|λ2C4,4(M, p)∆
1
2
[1− 1

p
]T + |δ2|λ2(C4,3(M, p)∆1− 1

p )
1
2T

+

[
|M 1

2 +M |(α2 + λ2δ2)

2

]
(C4,3(M, p)∆1− 1

p )
1
2T

+

[
|M2 + 1

2
M

3
2 |βM2β−1σ2

2

2

]
(C4,3(M, p)∆1− 1

p )
1
2T,

(6.27)

117



which is

E [H(v(t1 ∧ γM))] ≤H(V0) +
α2µ2T

2
+

(α2 + δ2λ2)T

2
+
σ2
24

2β−2T

4

+ |δ2|λ2TZ + C̄4,1(M, p)∆
1
2
[1− 1

p
].

(6.28)

Recalling the technique which was used to obtain (3.12), we further get that

P(γM ≤ T )

≤
H(V0) +

α2µ2T
2

+ (α2+δ2λ2)T
2

+
σ2
24

2β−2T

4
+ |δ2|λ2TZ + C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
.

(6.29)

Step 3: Let ε > 0 and δ ∈ (0, 1) be arbitrarily small, then define

Ω̄4 =

[
ω; sup

0≤t≤T
[V (t)− v(t)]2 ≥ δ

]
. (6.30)

In the same way as in the computation of (3.42) but with Theorem 6.1, we obtain

P(Ω̄4 ∩ (q ≥ T )) ≤ C4,2(M, p)∆1− 1
p

δ
. (6.31)

On the other hand, we compute

P(Ω̄4) ≤ P (Ω̄4 ∩ (q ≥ T )) + P(q ≤ T )

≤ P (Ω̄4 ∩ (q ≥ T )) + P(γM ≤ T ) + P(ρM ≤ T ).

(6.32)

Substituting (6.22), (6.29) and (6.31) into (6.32) yields

P(Ω̄4) ≤
C4,2(M, p)∆1− 1

p

δ

+
H(V0) +

α2µ2T
2

+ [α2+δ2λ2]T
2

+
σ2
24

2β−2T

4
+ |δ2|λ2TZ + C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
H(V0) +

α2µ2

2
T + (α2+λ2δ2)

2
T +

σ2
24

2β−2T

4
+ λ2|δ2|RT

H(M−1) ∧H(M)
.

Now, choose M sufficiently large for

2
[
H(V0) +

α2µ2

2
T + (α2+λ2δ2)

2
T +

σ2
24

2β−2T

4

]
+ λ2|δ2|RT + λ2|δ2|ZT

H(M−1) ∧H(M)
<
ε

2
(6.33)
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and further choose ∆ sufficiently small for

C4,2(M, p)∆1− 1
p

δ
+
C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
<
ε

2
. (6.34)

Hence, we have

P
(

sup
0≤t≤T

[V (t)− v(t)]2 ≥ δ

)
< ε, (6.35)

as required. The proof of Theorem 6.2 is therefore complete.

Convergence of x(t) in probability

The main result of this chapter, which gives convergence of the continuous EM

approximate solution to the asset price, will be examined in this section. Therefore,

we will first establish the following theorem which shows the strong error bound

for this EM approximate solution with stopping time.

Theorem 6.3. Let X(t) be the true solution and x(t) be the continuous EM ap-

proximate solution to the SDE of (5.1) when 1 < θ, β <∞. For any positive num-

bers N andM , define stopping time s = q∧τN∧ζN∧T , where q is the same as before

while τN = inf{t ∈ [0, T ] : X(t) /∈ [ 1
N
, N ]}, ζN = inf{t ∈ [0, T ] : |x(t)| /∈ [ 1

N
, N ]}.

Then, for any p ≥ 2,

E
(

sup
0≤t≤T

[
X(t ∧ s)− x(t ∧ s)

]2)
≤ C4,7(M,N, p)∆

1
2
[1− 1

p
], (6.36)

where C4,7(M,N, p) is a constant independent of ∆.

The proof of Theorem 6.3 needs the following lemma which can be obtained in the

same way as Lemma 6.3 was proved.

Lemma 6.5. There exists a constant C4,5(M,N, p) dependent on M,N and p but

independent of ∆ such that
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E
(

sup
0≤t≤T

[
x(t ∧ s)− x̄(t ∧ s)

]2)
≤ C4,5(M,N, p)∆1− 1

p . (6.37)

Proof. (of Theorem 6.3) For any 0 ≤ t ≤ T , we compute[
X(t ∧ s)− x(t ∧ s)

]2
≤3

[∫ t∧s

0

α1

[
X(u)− x̄(u)

]
du

]2
+ 3

[∫ t∧s

0

δ1 [X(u)− x̄(u)] dN̄1(u)

]2
+ 3

[∫ t∧s

0

σ1

[√
V (u)|X(u)|θ −

√
|v̄(u)||x̄(u)|θ

]
dW1(u)

]2
.

(6.38)

Taking the expectation for any t1 ∈ [0, T ], we then have

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤3E

(
sup

0≤t≤t1

[∫ t∧s

0

α1

[
X(u−)− x̄(u)

]
du

]2)

+ 3E

(
sup

0≤t≤t1

[∫ t∧s

0

σ1

[√
V (u−)|X(u−)|θ −

√
|v̄(u)||x̄(u)|θ

]
dW1(u)

]2)

+ 3E

(
sup

0≤t≤t1

[∫ t∧s

0

δ1[X(u−)− x̄(u)]dN̄1(u)

]2)
.

(6.39)

By the Burkholder-Davis-Gundy inequality and Hölder’s inequality, we get that

≤3α2
1TE

∫ t1∧s

0

[
X(u−)− x̄(u)

]2
du

+ 12σ2
1E
∫ t1∧s

0

[√
V (u−)|X(u−)|θ −

√
|v̄(u)||x̄(u)|θ

]2
du

+ 12δ21λ1E
∫ t1∧s

0

[
X(u−)− x̄(u)

]2
du.

(6.40)

Rearranging the terms on the right hand side, we obtain

≤
[
3α2

1T + 12δ21λ1
]
E
∫ t1

0

[X(u ∧ s)− x̄(u ∧ s)]2 du

+ 24σ2
1ME

∫ t1

0

[
|X(u ∧ s)|θ − |x̄(u ∧ s)|θ

]2
du

+ 24σ2
1N

2θE
∫ t1

0

|V (u ∧ s)− v̄(u ∧ s)| du.

(6.41)
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By Theorem 6.1, Lemma 6.3, Lemma 6.5 and the mean value theorem, we get

≤2
[
3α2

1T + 12δ21λ1
]
E
∫ t1

0

[X(u ∧ s)− x(u ∧ s)]2 du

+ 2
[
3α2

1T + 12δ21λ1
]
E
∫ t1

0

[x(u ∧ s)− x̄(u ∧ s)]2 du

+ 48σ2
1ME

∫ t1

0

[
|X(u ∧ s)|θ − |x(u ∧ s)|θ

]2
+
[
|x(u ∧ s)|θ − |x̄(u ∧ s)|θ

]2
du

+ 24σ2
1N

2θE
∫ t1

0

|V (u ∧ s)− v(u ∧ s)|+ |v(u ∧ s)− v̄(u ∧ s)| du,

which gives

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤
[
6α2

1T + 24δ21λ1
]
E
∫ t1

0

[X(u ∧ s)− x(u ∧ s)]2 du

+ 48σ2
1θ

2MN2θ−2E
∫ t1

0

[X(u ∧ s)− x(u ∧ s)]2 du

+ [6α2
1T + 24δ21λ1]C4,5(M,N, p)∆1− 1

pT + 24σ2
1N

2θ[C4,2(M, p)∆1− 1
p ]

1
2T

+ 24σ2
1N

2θ[C4,1(M, p)∆1− 1
p ]

1
2T + 48σ2

1MN2θ−2θ2C4,5(M,N, p)∆1− 1
pT.

(6.42)

The proof of Theorem 6.3 is finally completed by application of Gronwall’s in-

equality.

Now, we remove the condition of stopping time and establish the following theorem

to show that the continuous EM approximate solution will converge in probability

to the true solution.

Theorem 6.4. Let X(t) be the true solution and x(t) be the approximate solution

to the SDE of (5.1) when 1 < θ, β <∞. Then,

lim
∆→0

(
sup

0≤t≤T
[X(t)− x(t)]2

)
= 0 in probability. (6.43)

To prove Theorem 6.4, we will establish the following lemma that gives an upper

bound for the expected value of the EM approximate solution to the asset price.
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Lemma 6.6. There exists a constant C4,9(M, p) which is dependent on M,N and

p, but independent of ∆ such that

E(x(t ∧ h)) ≤ L+ C4,9(N,M, p)∆
1
2
[1− 1

p
], (6.44)

where h = γM ∧ ζN and constant L is independent of ∆.

The required proof of Lemma 6.6 can be obtained in the same way as Lemma 6.4

was proved.

Proof. ( Theorem 6.4)

In this process, we also divide the whole proof into 3 steps.

Step 1: In the same way as in computation of (6.21) but stopping time g = τN∧ρM ,

we have

E [H(X(t1 ∧ g))] ≤ H(X0) +
α1µ1T

2
+

(α1 + λ1δ1)T

2
+
σ2
1R4

2θ−2T

4
+ λ1|δ1|R̄T,

(6.45)

where R̄ is the upper bound for the expected value of the asset price that can be

obtained by applying a similar technique as used in (5.8). Now, in the same way

as in computation of (3.59), we further get that

P(τN ≤ T ) ≤
H(X0) +

α1µ1T
2

+ (α1+λ1δ1)T
2

+
σ2
1R42θ−2T

4
+ λ1|δ1|R̄T

H(N−1) ∧H(N)
. (6.46)

Step 2: Repeating the similar technique used to compute (6.28) but with Lemma

6.6 and

E
(

sup
0≤t≤T

[x(t ∧ h)− x̄(t ∧ h)]2
)

≤ C4,8(M,N, p)∆1− 1
p , (6.47)

which can be obtained in the same way as Lemma 6.3 was proved, we get

E [H(x(t1 ∧ h))] ≤H(X0) +
α1µ1T

2
+

(α1 + λ1δ1)T

2

+
σ2
1

4
M42θ−2T + |δ1|λ1LT + C̄4,2(M,N, p)∆

1
2
[1− 1

p
].

(6.48)
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By the technique which was used to compute (3.59), we then have

P(ζN ≤ T )

≤
H(X0) +

α1µ1T
2

+ (α1+λ1δ1)T
2

+
σ2
1M42θ−2T

4
+ |δ1|λ1LT + C̄4,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.

(6.49)

Step 3: Let ε > 0 and δ ∈ (0, 1) be arbitrarily small, then define

Ω4 =

[
ω; sup

0≤t≤T
[X(t)− x(t)]2 ≥ δ

]
. (6.50)

Therefore, repeating the technique used in (3.42), but with Theorem 6.3, we get

that

P(Ω4 ∩ (s ≥ T )) ≤ C4,7(M,N, p)∆
1
2
[1− 1

p
]

δ
. (6.51)

On the other hand, we compute

P(Ω4) ≤ P(Ω4 ∩ (s ≥ T )) + P(s ≤ T )

≤ P(Ω4 ∩ (s ≥ T )) + P(γM ≤ T ) + P(ρM ≤ T ) + P(ζN ≤ T ) + P(τN ≤ T ).

(6.52)

Now, substituting (6.22), (6.29), (6.46), (6.49) and (6.51) into (6.52) yields

P(Ω4)

≤C4,7(M,N, p)∆
1
2
[1− 1

p
]

δ

+
H(V0) +

α2µ2

2
T + (α2+λ2δ2)

2
T +

σ2
24

2β−2T

4
+ λ2|δ2|RT

H(M−1) ∧H(M)

+
H(V0) +

α2µ2T
2

+ (α2+δ2λ2)T
2

+
σ2
24

2β−2T

4
+ |δ2|λ2TZ + C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
H(X0) +

α1µ1T
2

+ (α1+λ1δ1)T
2

+
σ2
1R42θ−2T

4
+ λ1|δ1|R̄T

H(N−1) ∧H(N)

+
H(X0) +

α1µ1T
2

+ (α1+λ1δ1)T
2

+
σ2
1M42θ−2T

4
+ |δ1|λ1LT + C̄4,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.
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Choose M sufficiently large for

2
[
H(V0) +

α2µ2T
2

+ [α2+δ2λ2]T
2

+
σ2
24

2β−2T

4

]
+ |δ2|λ2TZ + λ2|δ2|RT

H(M−1) ∧H(M)
<
ε

3
,

then choose N sufficiently large for

2
[
H(X0) +

α1µ1T
2

+ (α1+λ1δ1)T
2

]
+

σ2
1R42θ−2T

4
+

σ2
1M42θ−2T

4
+ λ1|δ1|R̄T + |δ1|λ1LT

H(N−1) ∧H(N)
<
ε

3

and further choose ∆ sufficiently small for

C4,7(M,N, p)∆
1
2
[1− 1

p
]

δ
+
C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
+
C̄4,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
<
ε

3
. (6.53)

We then have

P
(

sup
0≤t≤T

[X(t)− x(t)]2 ≥ δ

)
< ε, (6.54)

as required. The proof is therefore complete.

Theorem 6.4 shows that the continuous EM approximate solution of the asset

price will converge in probability to the true solution, though this continuous

EM approximation is not computable in practice. It is therefore necessary to show

that this step process, which is computable, will converge to the true solution when

time step is sufficiently small. The following theorem will show the convergence in

probability of this step process .

Theorem 6.5. Let X(t) be the true solution and x̄(t) be the step process of EM

approximate solution x(t). Then,

lim
∆→0

(
sup

0≤t≤T
|X(t)− x̄(t)|

)
= 0 in probability. (6.55)

To prove Theorem 6.5, we need the following Lemma.

Lemma 6.7. Let x(t) be the continuous EM approximate solution and x̄(t) be the
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corresponding step process of x(t). Then

lim
∆→0

(
sup

0≤t≤T
[x(t)− x̄(t)]2

)
= 0 in probability. (6.56)

Proof. Let ε > 0 and δ ∈ (0, 1) be arbitrarily small, then define

Ω∗
4 =

[
ω; sup

0≤t≤T
[x(t)− x̄(t)]2 ≥ δ

]
. (6.57)

In the same way as in computation of (3.42), together with (6.57) and (6.47), we

have

P(Ω∗
4 ∩ (h ≥ T )) ≤ C4,8(M,N, p)∆1− 1

p

δ
. (6.58)

Note that

P(Ω∗
4) ≤ P(Ω∗

4 ∩ (h ≥ T )) + P(γM ≤ T ) + P(ζN ≤ T ). (6.59)

Substituting (6.29), (6.46) and (6.58) yields

P(Ω∗
4)

≤C4,8(M,N, p)∆1− 1
p

δ

+
H(V0) +

α2µ2T
2

+ (α2+δ2λ2)T
2

+
σ2
24

2β−2T

4
+ |δ2|λ2TZ + C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
H(X0) +

α1µ1T
2

+ (α1+λ1δ1)T
2

+
σ2
1M42θ−2T

4
+ |δ1|λ1LT + C̄4,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.

Choose M sufficiently large such that

H(V0) +
α2µ2T

2
+ (α2+δ2λ2)T

2
+

σ2
24

2β−2T

4
+ |δ2|λ2TZ

H(M−1) ∧H(M)
<
ε

3
, (6.60)

then choose N sufficiently large such that

H(X0) +
α1µ1T

2
+ (α1+λ1δ1)T

2
+

σ2
1

4
M42θ−2T + |δ1|λ1LT

H(N−1) ∧H(N)
<
ε

3
(6.61)
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and choose ∆ sufficiently small such that

C4,8(M,N, p)∆1− 1
p

δ
+
C̄4,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
+
C̄4,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
<
ε

3
. (6.62)

Hence, we have

P
(

sup
0≤t≤T

[x(t)− x̄(t)]2 ≥ δ

)
< ε, (6.63)

as required. The proof is therefore complete.

The proof of Theorem 6.5 therefore can be obtained in the same way as Theorem

3.5 was proved but with Lemma 6.7 and Theorem 6.4.

Theorem 6.5 shows that the step process will converge to the true solution

when the time step is sufficiently small. Therefore, let us choose initial condition

(X0 = 0.5, V0 = 0.04), ρ = 0.1, parameters (θ = 1.2, β = 1.5), λ1 = 1, λ2 = 2 with

coefficients of the SDE model (5.1) (see Table 6.1) to illustrate the behaviour of the

approximate solution to the SDE model (5.1) when 1 < β, θ <∞. In this process,

we use MATLAB R⃝ software (see Appendix A for code) to obtain the following

graph (see Figure 3.1).

Table 6.1: Coefficients of the SDE model (5.1) when β, θ > 1

Case Parameters

SDE 1 θ = 1.2 X(0) = 0.5 α1 = 4.21 µ1 = 3.4 σ1 = 1.05 δ1 = 2
SDE 2 β = 1.1 V (0) = 0.04 α1 = 1.3 µ2 = 1.03 σ2 = 1.054 δ2 = 1
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Figure 6.1: A sample path of the asset price X(t) which is generated by the EM
approximate solution to the mean-reverting-theta stochastic volatility model with
Poisson jump over finite time, where θ = 1.2 and β = 1.5.

6.4 Summary

In this chapter, we have focussed on the SDE model (5.1) in Chapter 5 but with

parameters θ and β greater than 1. Since this model satisfies the local Lipschitz

condition but does not obey the linear growth condition, we have examined the

convergence in probability of the EM approximate solution to this model. In

addition, the convergence property of the step process has been examined to show

that it can be used to evaluate applications of this EM approximate solution in

finance.
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Chapter 7

Hybrid Poisson-Jump Stochastic

Volatility Model for Asset Price

7.1 Introduction

In the financial world, Black-Scholes type market models which are driven by dif-

fusion processes are widely used to evaluate various financial quantities. However,

real market data show some deviations from this concept where unpredictable

abrupt structural changes are present. Meanwhile, more and more empirical stud-

ies reveal that some of these extra properties can be modelled by a Poisson process.

Thus, a mean-reverting-theta stochastic volatility model driven by a Poisson-jump

process can be treated as one such processes that explains some of these phe-

nomena. In the meantime, there is strong evidence to show that rate of return

obeys the property of a Markov jump process and volatility jumps accordingly

[16, 18, 27, 78, 9, 73, 75]. Therefore, a hybrid mean-reverting-theta stochastic

volatility model with jumps can be transformed into a generalized financial mar-

ket model by Markov jump processes. Thus, this hybrid stochastic volatility model
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has the SDE form:

dX(t) =α1(r1(u))(µ1(r1(u))−X(t−))dt+ σ1(r1(u))
√
V (t−)X(t−)θdW1(t)

+ δ1(r2(u))X(t−)dN̄1(t),

dV (t) =α2(r1(u))(µ2(r1(u))− V (t−))dt+ σ2(r1(u))V (t−)βdW2(t)

+ δ2(r2(u))V (t−)dN̄2(t),

(7.1)

where V (t), X(t), W1, W2, N̄1(t) and N̄1(t) are the same as defined in Chapter

5 with parameters θ and β greater than 1
2
. It is well known that almost every

sample path of r1(.) and r2(.) is a right-continuous step function with finite number

of sample jumps in any finite subinterval of R+ := [0,∞) and R+ := (−1,∞)

respectively. We further assume that r1(.) and r2(.) are independent Markov chains

that are also independent from the Brownian motionsW1(.) andW2(.). In addition,

the SDEmodel (7.1) has the parameters αi(r1(.)), µi(r1(.)), σi(r1(.)) and δi(r1(.))(>

−1) with the condition of (αi(r1(t)) + λiδi(r2(t))) > 0 for i = 1, 2.

Unlike deterministic models such as ordinary differential equation models,

which have an explicit unique solution for each initial condition, SDEs have no

explicit solutions. Therefore, the method of finding computational solutions to

SDEs models have become a more and more popular and powerful topic in math-

ematical finance. Thus, analytical properties of Euler-Maruyama (EM) numerical

approximate solution to the SDE model (7.1) when 1
2
≤ θ, β ≤ 1 will be examined

in this chapter.

As the SDE model (7.1) describes the asset price, interest rate and volatility,

a natural requirement is to have a non-negative solution in practice. Provided

that the diffusion coefficients of the SDE model (7.1) satisfy the global Lipschitz

condition and the linear growth condition, we will first prove that the solution

to the SDE model (7.1) will be non-negative with probability 1. We will then

define the EM approximate solution to this SDE model and establish an upper
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bound for the expected value of the solution under the linear growth condition.

On the other hand, a strong error bound for the EM approximate solution can

be obtained over a finite time interval. Hence, we will show that the continuous

EM approximate solution will converge to the true solution under the convergence

in second moment (in L2) property. However, this continuous EM approximate

solution is not computable in practice. Therefore, the corresponding step process,

which is computable, can be used to examine financial quantities. Thus, we will

finally show that this step process will converge to the true solution of SDE model

(7.1) when 1
2
≤ θ, β ≤ 1.

7.2 Non-negative solution

The natural requirement is that the solution to the asset price model should be

non-negative in practice. The following lemmas state that the solution to the SDE

model (7.1) will be non-negative with probability 1 when 1
2
≤ θ, β ≤ 1. In this

process, we set ᾱj = max
i∈S1

αi, µ̄j = max
i∈S1

µi, σ̄j = max
i∈S1

σi and δ̄j = max
i∈S2

|δi| for

j = 1, 2.

Non-negative V (t)

Lemma 7.1. Assume 1
2
≤ β ≤ 1. Then, given any initial values V (0) = V0 > 0 ,

r1(0) = i0 ∈ S1 and r2(0) = j0 ∈ S2, the second SDE of the model (7.1) has unique

global solution V (t) which will be non-negative for all t ∈ [0, T ] almost surely.

Non-negative X(t)

Lemma 7.2. Assume 1
2
≤ β ≤ 1 and 1

2
≤ θ ≤ 1. Then, for given any initial

values V (0) = V0 > 0, X(0) = X0 > 0, r1(0) = i0 ∈ S1 and r2(0) = j0 ∈ S2,
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the SDE of (7.1) has unique global solution X(t) which will be non-negative for all

t ∈ [0, T ] almost surely.

The proofs of the above lemmas can be obtained in the same way as Lemma

5.1 and Lemma 5.2 were proved.

7.3 Convergence in second moment

The SDE model (7.1) has no explicit solution, so examination of its numerical

approximate solution is helpful to understand its behaviour in financial systems.

Accordingly, we will establish the EM approximate solution to this SDE model to

examine its analytical properties.

Euler-Maruyama approximation

Given time step ∆ ∈ (0, 1), let tk = k∆ and r∆ak = ra(k∆) for k = 0, 1, ...[ T
∆
] and

a = 1, 2, where [ T
∆
] is the same as before, while setting x0 = X(0) and v0 = V (0),

and r∆a0 = ra(0) ∈ Sa for a = 1, 2. The discrete time EM approximate solution is

defined by

xk+1(t) =xk + α1(r
∆
1k)(µ1(r

∆
1k)− xk)∆ + σ1(r

∆
1k)
√

|vk||xk|θ∆W1,k + δ1(r
∆
2k)|xk|∆N̄1,k,

vk+1(t) =vk + α2(r
∆
1k)(µ2(r

∆
1k)− vk)∆ + σ2(r

∆
1k)|vk|β∆W2,k + δ2(r

∆
2k)|vk|∆N̄2,k,

where ∆ = (tk+1 − tk) , ∆Wi,k = (Wi(tk+1) −Wi(tk)) and ∆N̄i,k = (N̄i(tk+1) −

N̄i(tk)) for i = 1, 2. The corresponding continuous EM approximate solution is

defined by

x(t) =x0 +

∫ t

0

α1(r̄1(u))(µ1(r̄1(u))− x̄(u))du+

∫ t

0

σ1(r̄1(u))
√

|v̄(u)||x̄(u)|θdW1(u)

+

∫ t

0

δ1(r̄2(u))|x̄(u)|dN̄1(u),
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v(t) =v0 +

∫ t

0

α2(r̄1(u))(µ2(r̄1(u))− v̄(u))du+

∫ t

0

σ2(r̄1(u))|v̄(u)|βdW2(u)

+

∫ t

0

δ2(r̄2(u))|v̄(u)|dN̄2(u),

where x̄(t) =

[ T
∆
]∑

k=0

xk1[tk,tk+1)(t) and v̄(t) =

[ T
∆
]∑

k=0

vk1[tk,tk+1)(t) are step processes.

That is x̄(t) = xk, v̄(t) = vk and r̄(t) = r∆k for t ∈ [tk, tk+1), k = 0, 1, 2, 3, ...[ T
∆
].

Upper bound

In the case of 1
2
≤ β, θ,≤ 1, the diffusion coefficients of the SDE model (7.1) satisfy

the linear growth condition. Therefore, the following theorems will establish an

upper bound for the expected value of asset price and volatility which also help

to compute the strong error bound of the continuous EM approximate solution to

the SDE model (7.1) when 1
2
≤ θ, β ≤ 1.

Theorem 7.1. Let V (t) be the true solution and v(t) be the continuous EM ap-

proximate solution to the second SDE in model (7.1). Then, for any p ≥ 2, there

is a constant R1(p) dependent on p, T , V0 but independent of ∆ such that

E
(

sup
0≤t≤T

|V (t)|p
)
∨ E

(
sup

0≤t≤T
|v(t)|p

)
≤ R1(p). (7.2)

The proof of Theorem 7.1 can be obtained in the same way as Theorem 5.1 was

proved.

Theorem 7.2. Let X(t) be the true solution and x(t) be the continuous EM ap-

proximate solution to the asset price. Then, for any p ≥ 2, there is a constant

R2(p) dependent on p, T , X0, R1(p) but independent of ∆ such that

E
(

sup
0≤t≤T

|X(t)|p
)
∨ E

(
sup

0≤t≤T
|x(t)|p

)
≤ R2(p). (7.3)

In the same way as in computation of Lemma 5.2, we will get the required proof.
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Convergence in second moment of v(t)

The solution to SDE model (7.1) when 1
2
≤ θ, β ≤ 1 is non-negative with prob-

ability 1. The diffusion coefficients of this SDE model satisfy the linear growth

condition, and the upper bound for the expected value of asset price and volatility

have been established by Theorem 7.1 and Theorem 7.2. Thus, the following theo-

rem will establish an error bound for the EM approximate solution to the volatility

which gives one of the necessary conditions for convergence in second moment (in

L2) of the EM approximate solution to asset price.

Theorem 7.3. Let V (t) be the true solution and v(t) be the EM approximate

solution to the second SDE of (7.1). Then,

lim
∆→0

(
sup

0≤t≤T
E
∣∣∣V (t)− v(t)

∣∣∣) = 0. (7.4)

To prove Theorem 7.3, we need the following lemma that shows the closeness of

v(t) and v̄(t) when the time step ∆ is sufficiently small.

Lemma 7.3. There is a constant C5,1 independent of ∆ such that

E
∣∣∣v(t)− v̄(t)

∣∣∣2 ≤ C5,1∆. (7.5)

The proof can be obtained in the same way as Lemma 5.3 was proved.

Proof. For any 0 ≤ t ≤ T , we easily compute

V (t)− v(t) =

∫ t

0

[
α2(r1(u))µ2(r1(u))− (α2(r1(u)) + λ2δ2(r2(u)))V (u−)

]
−
[
α2(r̄1(u))µ2(r̄1(u))− (α2(r̄1(u)) + λ2δ2(r̄2(u)))v̄(u)

]
du

+

∫ t

0

[
σ2(r1(u))V (u−)β − σ2(r̄1(u))v̄(u)

β
]
dW2(u)

+

∫ t

0

[
δ2(r2(u))V (u−)− δ2(r̄2(u))v̄(u)

]
dN2(u).

(7.6)

133



Now, set e(u) = (V (u)− v(u)) and e(u−) = (V (u−)− v(u)). Applying the itö-

Doeblin formula for one jump process, we have

E (φk(e(t)))

≤E
∫ t

0

|φ′

k(e(u
−))| |α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))| du

+ E
∫ t

0

|φ′

k(e(u
−))|

∣∣∣(α2(r̄1(u)) + λ2δ2(r̄2(u)))v̄(u)

− (α2(r1(u)) + λ2δ2(r2(u)))V (u−)
∣∣∣du

+
1

2
E
∫ t

0

|φ′′

k(e(u
−)|
(
σ2(r1(u))V (u−)β − σ2(r̄1(u))|v̄(u)|β

)2
du

+ λ2E
∫ t

0

∣∣φk(e(u))− φk(e(u
−))
∣∣ du,

where φk(.) has been defined in Lemma 5.1,

≤E
∫ t

0

|φ′

k(e(u
−))| |α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))| du

+ E
∫ t

0

|φ′

k(e(u
−))|

∣∣(α2(r̄1(u)))v̄(u)− (α2(r1(u)))V (u−)
∣∣ du

+ λ2E
∫ t

0

|φ′

k(e(u
−))|

∣∣δ2(r̄2(u))v̄(u)− δ2(r2(u))V (u−)
∣∣ du

+ E
∫ t

0

|φ′′

k(e(u
−))||v̄(u)|2β (σ2(r1(u))− σ2(r̄1(u)))

2 du

+ E
∫ t

0

|φ′′

k(e(u
−))|σ2(r1(u))2

(
V (u−)β − |v̄(u)|β

)2
du

+ λ2E
∫ t

0

∣∣φk([1 + δ2(r2(u))]e(u
−))− φk(e(u

−))
∣∣ du.

(7.7)

By the property of φk(u) and the mean value theorem, we then have

≤E
∫ t

0

|α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))| du

+ E
∫ t

0

|v̄(u)| |α2(r̄1(u))− α2(r1(u))| du+ E
∫ t

0

|α2(r1(u))| |v̄(u)− V (u)| du

+ λ2E
∫ t

0

|v̄(u)| |δ2(r̄2(u))− δ2(r2(u))| du+ λ2E
∫ t

0

|δ2(r2(u))| |v̄(u)− V (u)| du

+ E
∫ t

0

2

ka2βk
|v̄(u)|2β (σ2(r1(u))− σ2(r̄1(u)))

2 du
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+ E
∫ t

0

2

ke2β(u)
σ2(r1(u))

2
∣∣∣V (u)β − |v̄(u)|β

∣∣∣2du
+ λ2δ̄2E

∫ t

0

|max
q∈ℜ

φ
′

k(q)||V (u)− v(u)|du.

Rearranging the terms on the right hand side, we further get that

≤E
∫ t

0

|α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))| du

+ [ᾱ2 + λ2δ̄2]E
∫ t

0

|v̄(u)− V (u)| du+ λ2δ̄2

∫ t

0

E|V (u)− v(u)|du

+ E
∫ t

0

|v̄(u)|
[
|α2(r1(u))− α2(r̄1(u))|+ λ2 |δ2(r2(u))− δ2(r̄2(u))|

]
du

+
2

ka2βk
E
∫ t

0

|v̄(u)|2β (σ2(r1(u))− σ2(r̄1(u)))
2 du

+ E
∫ t

0

4σ̄2
2

ke2β(u)
|V (u)− v(u)|2β du+ E

∫ t

0

4σ̄2
2

ka2βk
|v(u)− v̄(u)|2β du

≤E
∫ t

0

|α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))| du

+ [ᾱ2 + 2λ2δ̄2]E
∫ t

0

|V (u)− v(u)| du+ [ᾱ2 + λ2δ̄2]

∫ t

0

[
E |v(u)− v̄(u)|2

] 1
2 du

+ E
∫ t

0

|v̄(u)|
[
|α2(r1(u))− α2(r̄1(u))|+ λ2 |δ2(r2(u))− δ2(r̄2(u))|

]
du

+
2

ka2βk
E
∫ t

0

|v̄(u)|2β (σ2(r1(u))− σ2(r̄1(u)))
2 du

+
4σ̄2

2T

k
+

∫ t

0

4σ̄2
2

ka2βk

(
E |v(u)− v̄(u)|2

)β
du.

By Lemma (7.3), we obtain

≤E
∫ t

0

|α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))| du+
4σ̄2

2T

k

+ [ᾱ2 + 2λ2δ̄2]

∫ t

0

E |V (u)− v(u)| du+ [ᾱ2 + λ2δ̄2] [C5,1∆]
1
2 T

+ E
∫ t

0

|v̄(u)|
[
|α2(r1(u))− α2(r̄1(u))|+ λ2 |δ2(r2(u))− δ2(r̄2(u))|

]
du

+
4σ̄2

2

ka2βk
[C5,1∆]βT +

2

ka2βk
E
∫ t

0

|v̄(u)|2β (σ2(r1(u))− σ2(r̄1(u)))
2 du,

(7.8)
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which gives

E (φk(e(t)))

=
4σ̄2

2T

k
+

4σ̄2
2

ka2βk
[C5,1∆]βT + [ᾱ2 + 2λ2δ̄2]

∫ t

0

E |V (u)− v(u)| du

+ [ᾱ2 + λ2δ̄2] [C5,1∆]
1
2 T + A(t) +B(t) + λ2D(t) +

2

ka2βk
E(t).

(7.9)

By a similar technique as used to compute (4.18), we get

A(t) =E
∫ t

0

|α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))|du

≤E
∫ T

0

|α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))|du ≤ (C5,2∆+ 0∆).

(7.10)

Let

B(t) =E
∫ t

0

|v̄(u)| |α2(r1(u))− α2(r̄1(u))| du

≤
[ T
∆
]∑

d=0

∫ td+1

td

E
[
E
[
|α2(r1(u))− α2(r̄1(u))||vd|\(Ir1(u)̸=r1(td))

]]
du

=

[ T
∆
]∑

d=0

∫ td+1

td

E
[
E
[
|α2(r1(u))− α2(r̄1(u))|\(Ir1(u)̸=r1(td))

]
E
[
|vd|\(Ir1(u)̸=r1(td))

]]
du.

where vk and (Ir1(u)̸=r1(td)) are conditionally independent with respect to the σ-

algebra generated by r1(td). Applying as similar technique as was used to obtain

(4.18) and (5.47), together with Theorem 7.1 yields

B(t) ≤ 2ᾱ2[ max
0≤i≤N1

(−κ1ii)∆ + 0∆]

∫ T

0

E|v̄(u)|du

≤ 2ᾱ2[ max
0≤i≤N1

(−κ1ii)∆ + 0∆](R1(2))
1
2T ≤ (C5,3∆+ 0∆).

(7.11)

Similarly, we compute

D(t) =E
∫ t

0

|v̄(u)| |δ2(r2(u))− δ2(r̄2(u))| du

≤2δ̄2[ max
0≤i≤N2

(−κ2ii)∆ + 0∆]

∫ T

0

E|v̄(u)|du

≤2δ̄2[ max
0≤i≤N2

(−κ2ii)∆ + 0∆]
√
R1(2)T ≤ (C5,4∆+ 0∆)

(7.12)
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and

E(t) =E
∫ t

0

|v̄(u)|2β (σ2(r1(u))− σ2(r̄1(u)))
2

≤4σ2
2[ max

0≤i≤N1

(−κ1ii)∆ + 0∆]R(2)βT = (C5,5∆+ 0∆).

(7.13)

Substituting A(t), B(t), D(t) and F (t) into (7.9), we then have

E (φk(e(t))) ≤
4σ̄2

2T

k
+

4σ̄2
2[C5,1∆]βT

ka2βk
+ [ᾱ2 + λ2δ̄2] [C5,1∆]

1
2 T

+ (C5,2∆+ 0∆) + (C5,3∆+ 0∆) + λ2(C5,4∆+ 0∆)

+
2

ka2βk
(C5,5∆+ 0∆) + [ᾱ2 + 2λ2δ̄2]

∫ t

0

E |V (u)− v(u)| du.

(7.14)

By (iii) properties of the function φk defined in Lemma 5.1 and Gronwall’s in-

equality, we further get that

sup
0≤t≤T

E |V (u)− v(u)| ≤
[
(C5,6∆+ C5,7∆

1
2 + 0∆) +

4[C5,1∆]βT σ̄2
2

ka2βk

+
2(C5,5∆+ 0∆)

ka2βk
+

4σ̄2
2T

k
+ ak−1

]
e(ᾱ2+2λ2δ̄2)T .

(7.15)

Now, choose k sufficiently large for[
4σ̄2

2T

k
+ ak−1

]
e(ᾱ2+2λ2δ̄2)T <

ε

2
(7.16)

and then choose ∆ sufficiently small for[
(C5,6∆+ C5,7∆

1
2 + 0∆) +

4[C5,1∆]βT σ̄2
2

ka2βk
+

2(C5,5∆+ 0∆)

ka2βk

]
e(ᾱ2+2λ2δ̄2)T <

ε

2
.

(7.17)

Hence, we have

sup
0≤t≤T

E |V (u)− v(u)| < ε, (7.18)

as required. The proof of our theorem is therefore complete.

Let us establish the following theorem which shows convergence in second moment
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(in L2) of the EM approximate solution to the volatility when the time step is small

enough.

Theorem 7.4. Let V (t) be the true solution and v(t) be the continuous EM ap-

proximate solution to the second SDE of (7.1). Then,

lim
∆→0

E
(

sup
0≤t≤T

[V (t)− v(t)]2
)

= 0. (7.19)

Proof. For any t ∈ [0, T ], we compute

[V (t)− v(t)]2 ≤4

[∫ t

0

α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))du

]2
+ 4

[∫ t

0

(
α2(r1(u))V (u−)− α2(r̄1(u))v̄(u)

)
du

]2
+ 4

[∫ t

0

(
σ2(r1(u))V (u−)β − σ2(r̄1(u))|v̄(u)|β

)
dW2(u)

]2
+ 4

[∫ t

0

(
δ2(r2(u))V (u−)− δ2(r̄2(u))v̄(u)

)
dN̄2(u)

]2
.

(7.20)

Taking the expectation for any t1 ∈ [0, T ], by the Burkholder-Davis-Gundy in-

equality and the Hölder inequality, we then have

E
(

sup
0≤t≤t1

[V (t)− v(t)]2
)

≤4T

∫ t1

0

E [α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))]
2 du

+ 4T

∫ t1

0

E
[
α2(r1(u))V (u−)− α2(r̄1(u))v̄(u)

]2
du

+ 16

∫ t1

0

E
[
σ2(r1(u))V (u−)β − σ2(r̄1(u))|v̄(u)|β

]2
du

+ 16λ2

∫ t1

0

E
[
δ2(r2(u))V (u−)− δ2(r̄2(u))v̄(u)

]2
du.

(7.21)

Rearranging the terms on the right hand side, we further get that

≤4T

∫ t1

0

E [α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))]
2 du

+ 8T

∫ t1

0

E|v̄(u)|2 [α2(r1(u))− α2(r̄1(u))]
2 + ᾱ2

2E [V (u)− v̄(u)]2 du
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+ 32λ2

∫ t1

0

E|v̄(u)|2 [δ2(r2(u))− δ2(r̄2(u))]
2 + δ̄22E [V (u)− v̄(u)]2 du

+ 32

∫ t1

0

E|v̄(u)|2β [σ2(r1(u))− σ2(r̄1(u))]
2 + Eσ̄2

2 [V (u)− v̄(u)]2β du

≤4T

∫ t1

0

E [α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))]
2 du

+ 8T

∫ t1

0

E|v̄(u)|2 [α2(r1(u))− α2(r̄1(u))]
2 du

+ 32λ2

∫ t1

0

E|v̄(u)|2 [δ2(r2(u))− δ2(r̄2(u))]
2 du

+ 32

∫ t1

0

E|v̄(u)|2β [σ2(r1(u))− σ2(r̄1(u))]
2 du

+ [8T ᾱ2
2 + 32λ2δ̄

2
2 + 32σ̄2]

∫ t1

0

E [V (u)− v(u)]2 + E [v(u)− v̄(u)]2 du

+ 32σ̄2
2

∫ t1

0

E |V (u)− v(u)|+ E |v(u)− v̄(u)| du.

Applying the techniques used to compute (4.18) and (7.11), by Lemma 7.3, we

then obtain

≤16T ᾱ2
2µ̄

2
2(C5,8∆+ 0(∆)) + 32TR1(2)ᾱ

2
2(C5,9∆+ 0(∆))

+ 128λ2δ̄
2
2TR1(2)(C5,10∆+ 0(∆)) + 128σ̄2

2T [R1(2)]
β(C5,11∆+ 0(∆))

+ [8T ᾱ2
2 + 32λ2δ̄

2
2 + 32σ̄2]

∫ t1

0

E [V (u)− v(u)]2 du

+ 32σ̄2
2

∫ t1

0

E |V (u)− v(u)| du+ [8T ᾱ2
2 + 32λ2δ̄

2
2 + 32σ̄2]C5,1∆T + 32σ̄2

2[C5,1∆]
1
2T

≤
[
C5,12∆+ 32σ̄2

2[C5,1∆]
1
2T + 0(∆)

]
+ 32σ̄2

2

∫ t1

0

(
sup

0≤u1≤u
E |V (u1)− v(u1)|

)
du

+ [8T ᾱ2
2 + 32λ2δ̄

2
2 + 32σ̄2]

∫ t1

0

E
(

sup
0≤u1≤u

[V (u)− v(u)]2
)
du.

By Gronwall’s inequality, we have

E
(

sup
0≤t≤t1

[V (t)− v(t)]2
)

≤
[(

sup
0≤t≤T

E |V (t)− v(t)|
)
32σ̄2

2T + C5,12∆

+ 32σ̄2
2[C5,1∆]

1
2T + 0(∆)

]
e[8T ᾱ2

2+32λ2δ̄22+32σ̄2]T ,

(7.22)

as required. The proof of our theorem will therefore be completed by Theorem 7.3
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and letting ∆ → 0.

Convergence in second moment of x(t)

Let us focus on our main result which gives convergence in second moment (in

L2) of the continuous EM approximate solution to the true solution of SDE model

(7.1). Thus, we will first establish convergence (in L1) of the EM approximate

value to the asset price by the following theorem.

Theorem 7.5. Let X(t) be the true solution and x(t) be the continuous EM ap-

proximate solution to the SDE model (7.1). Then,

lim
∆→0

(
sup

0≤t≤T
E |X(t)− x(t)|

)
= 0. (7.23)

To prove Theorem 7.5, we need the following Lemma that can be obtained in the

same way as Lemma 5.3 was proved.

Lemma 7.4. There exists a constant C5,13 independent of ∆ such that

E [x(t)− x̄(t)]4 ≤ C5,13∆
2. (7.24)

Proof. (of Theorem 7.5) For any 0 ≤ t ≤ T , we have

(X(t)− x(t))

=

∫ t

0

[
α1(r1(u))µ1(r1(u))− (α1(r1(u)) + λ1δ1(r1(u)))X(u−)

]
−
[
α1(r̄1(u))µ1(r̄1(u))− (α1(r̄1(u)) + λ1δ1(r̄1(u)))x̄(u)

]
du

+

∫ t

0

[
σ1(r1(u))

√
V (u−)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]
dW1(u)

+

∫ t

0

[
δ1(r2(u))X(u−)− δ1(r̄2(u))x̄(u)

]
dN1(u).

(7.25)

Then, set e(u) = (X(u)− x(u)) and e(u−) = (X(u−)− x(u)). Now, applying Itô-

Doeblin’s formula for one jump process with function ϕk(.) which has been defined
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in Lemma 5.2, we obtain

E (ϕk(e(t))

=E
∫ t

0

ϕ
′

k(e(u
−))
[
α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))

]
du

+ E
∫ t

0

ϕ
′

k(e(u
−))
[
(α1(r̄1(u)) + λ1δ1(r̄2(u)))x̄(u)

− (α1(r1(u)) + λ1δ1(r2(u)))X(u−)
]
du

+
1

2
E
∫ t

0

ϕ
′′

k(e(u
−))
[
σ1(r1(u))

√
V (u−)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du

+ λ1E
∫ t

0

[
ϕk(e(u))− ϕk(e(u

−))
]
du.

Rearranging the terms on right hand side, we further compute that

≤E
∫ t

0

|ϕ′

k(e(u
−))| |α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))| du

+ E
∫ t

0

|ϕ′

k(e(u
−))|

∣∣α1(r̄1(u)))|x̄(u)| − α1(r1(u))X(u−)
∣∣ du

+ λ1E
∫ t

0

|ϕ′

k(e(u
−))|

∣∣δ1(r̄2(u))|x̄(u)| − δ1(r2(u))X(u−)
∣∣ du

+
1

2
E
∫ t

0

|ϕ′′

k(e(u
−))|

[
σ1(r1(u))

√
V (u−)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du

+ λ1E
∫ t

0

[
ϕk([1 + δ1(r2(u))]e(u

−))− ϕk(e(u
−))
]
du.

By the mean value theorem and properties of ϕk(u), we then have

≤E
∫ t

0

∣∣∣α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))
∣∣∣du

+ E
∫ t

0

∣∣∣α1(r̄1(u)))x̄(u)− α1(r1(u))X(u)
∣∣∣du

+ λ1E
∫ t

0

∣∣∣δ1(r̄2(u))x̄(u)− δ1(r2(u))X(u)
∣∣∣du

+
1

2
E
∫ t

0

2

ke(u)2θ

[
σ1(r1(u))

√
V (u)X(u)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du

+ λ1E
∫ t

0

∣∣∣ sup
q∈R

ϕ
′

k(q)
∣∣∣∣∣∣δ1(r2(u))∣∣∣∣∣∣X(u−)− x(u)

∣∣∣du
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≤E
∫ t

0

∣∣∣α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))
∣∣∣du

+ [ᾱ1 + 2λ1δ̄1]E
∫ t

0

∣∣∣X(u)− x(u)
∣∣∣du+ E

∫ t

0

|x̄(u)|
∣∣∣α1(r̄1(u)))− α1(r1(u))

∣∣∣du
+ λ1E

∫ t

0

|x̄(u)|
∣∣∣δ1(r̄2(u))− δ1(r2(u))

∣∣∣du+ [ᾱ1 + λ1δ̄1]E
∫ t

0

∣∣∣x(u)− x̄(u)
∣∣∣du

+
1

2
E
∫ t

0

2

ke(u)2θ

[
σ1(r1(u))

√
V (u)X(u)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du.

In the same way as in computation of (7.10) and (7.11) but with Lemma 7.4, we

further get that

E (ϕk(e(t))

≤2ᾱµ̄1[C5,14∆+∆(0)]T + 2ᾱ1[R2(2)]
1
2 [C5,15∆+∆(0)]T + [ᾱ1 + λ1δ̄1][C5,13∆

2]
1
4T

+ λ1δ̄1[R2(2)]
1
2 [C5,16∆+∆(0)]T + [ᾱ1 + 2λ1δ̄1]E

∫ t

0

∣∣∣X(u)− x(u)
∣∣∣du

+ E
∫ t

0

1

ke(u)2θ

[
σ1(r1(u))

√
V (u)X(u)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du.

(7.26)

Let us consider

Q(t) =
1

2
E
∫ t

0

2

ke(u)2θ

[
σ1(r1(u))

√
V (u)X(u)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du

≤5

2
E
∫ t

0

2

ke(u)2θ
|v̄(u)||x̄(u)|2θ |σ1(r̄1(u))− σ1(r1(u))|2 du

+
5

2
E
∫ t

0

2

ke(u)2θ
|σ1(r1(u))|2|x̄(u)|2θ

∣∣∣√V (u)−
√
|v(u)|

∣∣∣2 du
+

5

2
E
∫ t

0

2

ke(u)2θ
|σ1(r1(u))|2|x̄(u)|2θ

∣∣∣√|v(u)| −
√
|v̄(u)|

∣∣∣2 du
+

5

2
E
∫ t

0

2

ke(u)2θ
|σ1(r1(u))|2|V (u)|

∣∣X(u)θ − |x(u)|θ
∣∣2 du

+
5

2
E
∫ t

0

2

ke(u)2θ
|σ1(r1(u))|2|V (u)|

∣∣|x(u)|θ − |x̄(u)|θ
∣∣2 du.

In the same way as in computation of (7.11) and Lemma 7.4, Lemma 7.3, we have

≤20σ̄2
1R

1
2
1 (2)R

θ
2
2 (4)

ka2θk
[C5,17∆+∆(0)]T +

5σ̄2
1R

θ
2(4)T

ka2θk
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+
5σ̄2

1R
θ
2(4)T

ka2θk
+

5σ̄2
1

ka2θk
[C5,1∆]T +

∫ t

0

E
5σ̄2

1

ke(u)2θ
|v̄(u)| [X(u)− x(u)]2θ du

+
5σ̄2

1

ka2θk

∫ t

0

E|v̄(u)| [x(u)− x̄(u)]2θ du+
5σ̄2

1

ka2θk

∫ t

0

E [V (u)− v(u)]2 du

≤20σ̄2
1R

1
2
1 (2)R

θ
2
2 (4)

ka2θk
[C5,17∆+∆(0)]T +

10σ̄2
1R

θ
2(4)T

ka2θk
+

5σ̄2
1

ka2θk
[C5,1∆]T

+
5σ̄2

1[R1(2)]
1
2T

k
+

5σ̄2
1[R1(2)]

1
2

ka2θk

∫ t

0

(
E [x(u)− x̄(u)]2

) 1
2 du

+
5σ̄2

1[R1(2)]
1
2

ka2θk

∫ t

0

(
E [x(u)− x̄(u)]4

) 1
2 du+

5σ̄2
1

ka2θk

∫ t

0

E [V (u)− v(u)]2 du,

which gives

≤20σ̄2
1R

1
2
1 (2)R

θ
2
2 (4)

ka2θk
[C5,17∆+∆(0)]T +

10σ̄2
1R

θ
2(4)T

ka2θk
+

5σ̄2
1

ka2θk
[C5,1∆]T

+
5σ̄2

1[R1(2)]
1
2T

k
+

5σ̄2
1[R1(2)]

1
2

ka2θk

(
C5,13∆

2
) 1

4 T +
5σ̄2

1[R1(2)]
1
2

ka2θk

(
C5,13∆

2
) 1

2 T

+
5σ̄2

1

ka2θk

∫ t

0

E [V (u)− v(u)]2 du

=
10σ̄2

1R
θ
2(4)T

ka2θk
+

5σ̄2
1[R1(2)]

1
2T

k
+

[C5,18∆+ C5,19∆
1
2 +∆(0)]

ka2θk

+
5σ̄2

1

ka2θk

∫ t

0

E [V (u)− v(u)]2 du.

(7.27)

Substituting (7.27) into (7.26) yields

E (ϕk(e(t)) ≤2ᾱµ̄1[C5,14∆+∆(0)]T + 2ᾱ1[R2(2)]
1
2 [C5,15∆+∆(0)]T

+ λ1δ̄1[R2(2)]
1
2 [C5,16∆+∆(0)]T + [ᾱ1 + λ1δ̄1][C5,13∆

2]
1
4T

+
10σ̄2

1R
θ
2(4)T

ka2θk
+

5σ̄2
1[R1(2)]

1
2T

k
+

[C5,18∆+ C5,19∆
1
2 +∆(0)]

ka2θk

+
5σ̄2

1

ka2θk

∫ t

0

E [V (u)− v(u)]2 du+ [ᾱ1 + λ1δ̄1]E
∫ t

0

|X(u)− x(u)| du

≤[C5,20∆+ C5,21∆
1
2 +∆(0)]T +

10σ̄2
1R

θ
2(4)T

ka2θk
+

5σ̄2
1[R1(2)]

1
2T

k

+
[C5,18∆+ C5,19∆

1
2 +∆(0)]

ka2θk
+

5σ̄2
1

ka2θk
E
(

sup
0≤t≤T

[V (u)− v(u)]2
)
T
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+ [ᾱ1 + λ1δ̄1]E
∫ t

0

|X(u)− x(u)| du.

Applying (iii) property of function ϕk, by Gronwall’s inequality, we then have

sup
0≤t≤T

E |X(u)− x(u)| ≤

[
[C5,20∆+ C5,21∆

1
2 +∆(0)]T +

[C5,18∆+ C5,19∆
1
2 +∆(0)]

ka2θk

+
5σ̄2

1

ka2θk
E
(

sup
0≤t≤T

[V (u)− v(u)]2
)
T

]
e[ᾱ1+2λ1δ̄1]T

+

[
ak−1 +

10σ̄2
1R

θ
2(4)T

ka2θk
+

5σ̄2
1[R1(2)]

1
2T

k

]
e[ᾱ1+2λ1δ̄1]T .

Now, choose k sufficiently large such that[
ak−1 +

10σ̄2
1R

θ
2(4)T

ka2θk
+

5σ̄2
1[R1(2)]

1
2T

k

]
e[ᾱ1+2λ1δ̄1]T <

ε

2
(7.28)

and then choose ∆ sufficiently small such that[
[C5,20∆+ C5,21∆

1
2 +∆(0)]T +

[C5,18∆+ C5,19∆
1
2 +∆(0)]

ka2θk

+
5σ̄2

1

ka2θk
E
(

sup
0≤t≤T

[V (u)− v(u)]2
)
T

]
e[ᾱ1+2λ1δ̄1]T <

ε

2
.

(7.29)

We then have

sup
0≤t≤T

E |X(u)− x(u)| < ε, (7.30)

as required. The proof of Theorem 7.5 is therefore complete.

The following theorem will establish convergence in second moment of the contin-

uous EM approximate solution to the model (7.1) which gives the main result of

this chapter.

Theorem 7.6. Let X(t) be the true solution and x(t) be the continuous EM ap-

proximate solution to the asset price. Then

lim
∆→0

E
(

sup
0≤t≤T

[X(t)− x(t)]2
)

= 0. (7.31)

144



Proof. For any 0 ≤ t ≤ T , we compute[
X(t)− x(t)

]2
≤4

[∫ t

0

α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))du

]2
+ 4

[∫ t

0

(
α1(r1(u))X(u−)− α1(r̄1(u))x̄(u)

)
du

]2
+ 4
[ ∫ t

0

(
σ1(r1(u))

√
V (u−)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

)
dW1(u)

]2
+ 4
[ ∫ t

0

(
δ1(r2(u))X(u−)− δ1(r̄2(u))x̄(u)

)
dN̄1(u)

]2
.

Taking expectation for any 0 ≤ t1 ≤ T , by the Burkholder-Davis-Gundy inequality

and the Hölder inequality, we then have

E
(

sup
0≤t≤t1

[X(t)− x(t)]2
)

≤4T

∫ t1

0

E
[
α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))

]2
du

+ 4T

∫ t1

0

E
[
α1(r1(u))X(u−)− α1(r̄1(u))x̄(u)

]2
du

+ 16

∫ t1

0

E
[
σ1(r1(u))

√
V (u−)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du

+ 16λ1

∫ t1

0

E
[
δ1(r2(u))X(u−)− δ1(r̄2(u))x̄(u)

]2
du

≤4T

∫ t1

0

E [α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))]
2 du

+ 8T

∫ t1

0

E|x̄(u)|2 [α1(r1(u))− α1(r̄1(u))]
2 + ᾱ2

1E [X(u)− x̄(u)]2 du

+ 32λ1

∫ t1

0

δ̄21E [X(u)− x̄(u)]2 + E|x̄(u)|2
[
δ1(r2(u))− δ1(r̄2(u))

]2
du

+ 16

∫ t1

0

E
∣∣∣σ1(r2(u))√V (u)X(u−)θ − σ1(r̄2(u))

√
|v̄(u)||x̄(u)|θ

∣∣∣2du.

(7.32)

Applying the techniques used to compute (7.10) and (7.11), we further get that

≤16T 2ᾱ2
1µ̄

2
1(C5,22∆+ 0(∆)) + 32T 2R2(2)ᾱ

2
1[C5,23∆+ 0(∆)]
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+ 16T ᾱ2
1

∫ t1

0

E [X(u)− x(u)]2 + E [x(u)− x̄(u)]2 du

+ 128λ1[R2(2)]δ̄
2
1[C5,24∆+ 0(∆)]

+ 64λ1δ̄
2
1

∫ t1

0

E [X(u)− x(u)]2 + E [x(u)− x̄(u)]2 du

+ 16

∫ t1

0

E
[
σ1(r1(u))

√
V (u)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du.

Applying Lemma 7.4 yields

E
(

sup
0≤t≤t1

[X(t)− x(t)]2
)

≤[C5,25∆+ 0(∆)] + [16T ᾱ2
1 + 64λ1δ̄

2
1]
(
C5,13∆

2
) 1

2 T

+ [16T ᾱ2
1 + 64λ1δ̄

2
1]

∫ t1

0

E [X(u)− x(u)]2 du

+ 16

∫ t1

0

E
[
σ1(r1(u))

√
V (u)X(u−)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du.

(7.33)

Then, consider

Z(t) =16

∫ t1

0

E
∣∣∣σ1(r1(u))√V (u)X(u)θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

∣∣∣2 du
≤80

∫ t1

0

E|v̄(u)|x̄(u)2θ [σ1(r1(u))− σ1(r̄1(u))]
2 du

+ 80

∫ t1

0

E|σ1(r1(u))|2|x(u)|2θ
[√

V (u)−
√
|v(u)|

]2
du

+ 80

∫ t1

0

E|σ1(r1(u))|2|x(u)|2θ
[√

|v(u)| −
√
|v̄(u)|

]2
du

+ 80

∫ t1

0

E|σ1(r1(u))|2V (u)
[
X(u)θ − |x(u)|θ

]2
du

+ 80

∫ t1

0

E|σ1(r1(u))|2V (u)
[
|x(u)|θ − |x̄(u)|θ

]2
du.

(7.34)

Repeating similar technique used in (7.10), we have

Z(t) ≤320[R1(2)]
1
2 [R2(4)]

θ
2 σ̄2

1[C5,26∆+ 0(∆)]

+ 80[R2(4)]
θ
2 σ̄2

1

∫ t1

0

(
E [V (u)− v(u)]2

) 1
2 +

(
E [v(u)− v̄(u)]2

) 1
2 du

+ 80σ̄2
1

∫ t1

0

E|v̄(u)||X(u)− x(u)|+ E|v̄(u)| [X(u)− x(u)]2 du
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+ 80σ̄2
1

∫ t1

0

E|v̄(u)| [x(u)− x̄(u)] + E|v̄(u)| [x(u)− x̄(u)]2 du.

By Theorem 7.1, Theorem 7.2, Lemma 7.3 and Lemma 7.4 this yields

Z(t) ≤320[R1(2)]
1
2 [R2(4)]

θ
2 σ̄2

1[C5,26∆+ 0(∆)] + 80[R2(4)]
θ
2 σ̄2

1 (C5,1∆)
1
2 T

+ 80[R2(4)]
θ
2 σ̄2

1

∫ t1

0

(
E [V (u)− v(u)]2

) 1
2 du

+ 80σ̄2
1

∫ t1

0

(
E|v̄(u)|2|X(u) + x(u)|

) 1
2 (E|X(u)− x(u)|)

1
2 du

+ 80σ̄2
1

∫ t1

0

(
E|v̄(u)|2|X(u) + x(u)|3

) 1
2 (E|X(u)− x(u)|)

1
2 du

+ 80[R1(2)]
1
2 σ̄2

1

[
C5,13∆

2
] 1

4 T + 80[R1(2)]
1
2 σ̄2

1

[
C5,13∆

2
] 1

2 T

≤[C5,27∆+ C5,28∆
1
2 + 0(∆)] + 80[R2(4)]

θ
2 σ̄2

1

(
E sup

0≤t≤T
[V (t)− v(t)]2

) 1
2

T

+ 80σ̄2
1(R1(4))

1
4

[
(2R2(6))

1
4 + (2R2(2))

1
4

](
sup

0≤t≤T
E|X(t)− x(t)|

) 1
2

T.

(7.35)

Substituting (7.35) into (7.33), we further get that

E
(

sup
0≤t≤t1

[X(t)− x(t)]2
)

≤[C5,25∆+ 0(∆)] + [16T ᾱ2
1 + 64λ1δ̄

2
1]
( (
C5,13∆

2
) 1

2 T +

∫ t1

0

E [X(u)− x(u)]2 du
)

+ [C5,27∆+ C5,28∆
1
2 + 0(∆)] + 80[R2(4)]

θ
2 σ̄2

1

(
E sup

0≤t≤T
[V (t)− v(t)]2

) 1
2

T

+ 80σ̄2
1

[
(R1(4))

1
4 (2R2(2))

1
4 + (R1(4))

1
4 (2R2(6))

1
4

](
sup

0≤t≤T
E|X(t)− x(t)|

) 1
2

T

=[16T ᾱ2
1 + 64λ1δ̄

2
1]

∫ t1

0

E [X(u)− x(u)]2 du

+ [C5,29∆+ C5,28∆
1
2 + 0(∆)] + 80[R2(4)]

θ
2 σ̄2

1

(
E sup

0≤t≤T
[V (t)− v(t)]2

) 1
2

T

+ 80σ̄2
1(R1(4))

1
4

[
(2R2(2))

1
4 + (2R2(6))

1
4

](
sup

0≤t≤T
E|X(t)− x(t)|

) 1
2

T.
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By Gronwall’s inequality, we then have

E
(

sup
0≤t≤t1

[X(t)− x(t)]2
)

≤
[
80σ̄2

1(R1(4))
1
4

[
(2R2(2))

1
4 + (2R2(6))

1
4

](
sup

0≤t≤T
E|X(t)− x(t)|

) 1
2

T

+ 80[R2(4)]
θ
2 σ̄2

1

(
E sup

0≤t≤T

[
V (t)− v(t)

]2) 1
2
T + [C5,29∆+ C5,28∆

1
2 + 0(∆)]

]
e(16T ᾱ2

1+64λ1δ̄21)T .

The proof of our theorem is finally completed by Theorem 7.4, Theorem 7.5 and

letting ∆ → 0.

In practice, the continuous EM approximate solution x(t) to the asset price,

which has the convergence in second moment described by Theorem 7.6, is not

computable. However, its corresponding step process x̄(t) is computable. There-

fore, we will establish the following theorem to show that the step process will

converge to the true solution when the time step is sufficiently small.

Theorem 7.7. Let X(t) be the true solution and x̄(t) be the step process of the

continuous EM approximate solution to the SDE model (7.1). Then,

lim
∆→0

(
sup

0≤t≤T
E
∣∣∣X(t)− x̄(t)

∣∣∣) = 0. (7.36)

The proof can be obtained in the same way as Theorem 5.7 was proved.

Theorem 7.7 shows that the step process will converge to the true solution of

the SDE model (7.1). Let us choose initial condition (X(0) = 0.5, V (0) = 0.2) ,

ρ = 0.2, parameters (θ = 1, β = 0.5), λ1 = 1, λ2 = 2 and coefficients of SDE model

(7.1) (see Table 7.1) to illustrate its behaviour in practice. In addition, we use

MATLAB R⃝ software (see Appendix A for code) with generators of Markov chains

Γr1 and Γr2 to obtain the following graph (see Figure 7.1).
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Γr1 =


−4 3 1

1 −2 1

1 3 −4

 and Γr2 =


−2 1 1

3 −5 2

1 1 −2

 .

Table 7.1: Coefficients of SDE model (7.1)

State (α1, α2) (µ1, µ2) (σ1, σ2) (δ1, δ2)

1 (1.2, 1) (1, 0.2) (0.6, 0.84) (0.5, 2)
2 (4, 4) (2, 0.7) (0.9, 0.6) (2, 2)
3 (7, 1.6) (1, 0.3) (0.24, 0.56) (1,−0.9)
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Figure 7.1: A sample path of the asset price X(t) which is generated by the
EM approximate solution to the hybrid mean-reverting-theta stochastic volatility
model with Poisson jump over finite time, where θ = 1 and β = 0.5.

7.4 Summary

In this chapter, we have focussed on the Markov switching form of the SDE model

examined in Chapter 5. Thus, we have first proved that the solution to this model
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is non-negative with probability 1. Since this generalized model has no explicit

solution, convergence in second moment of the EM approximate solution to this

SDE model has been examined when the time step is sufficiently small. In addition,

we have proved that the convergence property of the corresponding step process

which can also be used to evaluate application to financial quantities.
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Chapter 8

A Highly Sensitive Hybrid,

Poisson Jump Stochastic

Volatility Model

8.1 Introduction

In contrast to the SDE model examined in Chapter 7 which not only obeys the

global Lipschitz condition but also the linear growth condition, the SDE model

(7.1), when parameters θ and β greater than 1, will be examined in this chapter.

Although many applications of this highly sensitive SDE model can be seen in

financial markets, explicit solution to this model can not be obtained within the

existing theory. Therefore, the Euler-Maruyama (EM) approximation method is

more appropriate to study and examine its behaviour in practice. However, some

techniques which have been developed in previous chapters are not strong enough

to obtain analytical properties of the EM approximate solution to this SDE model.

Thus, we will proceed to develop the required tools in this chapter.
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In the SDE model (7.1) when the parameters θ, β > 1 describe the asset price

and interest rate in financial markets, the diffusion coefficients of the model obey

the local Lipschitz condition though do not satisfy the linear growth condition. So

there is no information about the non-negative solution so far. Therefore, we will

prove that the solution to this SDE model will be non-negative with probability 1.

We will then show that the continuous EM approximate solution to this model will

converge in probability to the true solution when the time step is sufficiently small.

On the other hand, the continuous EM approximate solution is not computable but

its corresponding step process is computable in practice. Thus, we will show that

this corresponding step process will converge in probability to the true solution,

which can be used to evaluate applications of this SDE model in finance.

8.2 Non-negative solution

The SDE model (7.1) mainly describes the asset price and volatility in financial

markets, so a natural requirement is that the solution (V (t), X(t)) to this model

is non-negative. The following lemma in fact shows that the solution to this SDE

model will be non-negative with probability 1.

Non-negative V (t)

Lemma 8.1. Assume β > 1. Then, given any initial values V (0) = V0 > 0 ,

r1(0) = i0 ∈ S1 and r2(0) = j0 ∈ S2, the second SDE of the model (7.1) has unique

local solution V (t) which will be non-negative for all t ∈ [0, T ] a.s..
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Non-negative X(t)

Lemma 8.2. Assume θ > 1 and β > 1. Then, given any initial values V (0) =

V0 > 0, X(0) = X0 > 0, r1(0) = i0 ∈ S1 and r2(0) = j0 ∈ S2, the SDE of (7.1) has

unique local solution X(t) which will be non-negative for all t ∈ [0, T ] a.s..

The proofs of Lemma 8.1 and Lemma 8.2 can easily be obtained in the same way

as Lemma 6.1 and Lemma 6.2 were proved but with ᾱj = max
i∈S1

αi, µ̄j = max
i∈S1

µi,

σ̄j = max
i∈S1

σi and δ̄j = max
i∈S2

|δi| for j = 1, 2.

8.3 Convergence in probability

The SDE model (7.1) has no explicit solution, so study of an numerical approx-

imate solution is appropriate to understand its behaviour in financial markets.

Therefore, we will consider the EM numerical approximate solution to this SDE

model defined in Chapter 7, but with parameters θ and β greater than 1.

Convergence of v(t) in probability

The unique solution (V(t), X(t)) to the SDE model (7.1) is non-negative with

probability 1. We will examine convergence of the continuous EM approximate

solution to this SDE model in the following section. Thus, we will first establish

the following theorem which gives a strong error bound to the EM approximate

solution of volatility. In addition, this can also be used to examine convergence in

probability of this EM approximate solution.

Theorem 8.1. Let V (t) be the true solution and v(t) be the continuous EM approx-

imate solution to the second SDE of (7.1) when β > 1. For any positive number

M , define the stopping time q = ρM ∧ γM ∧ T , where ρM = inf{t ∈ [0, T ];V (t) /∈
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[ 1
M
,M ]} and γM = inf{t ∈ [0, T ]; |v(t)| /∈ [ 1

M
,M ]}. Then, for any integer p ≥ 2,

E
(

sup
0≤t≤T

[V (t ∧ q)− v(t ∧ q)]2
)

≤ C6,7(M, p)∆1− 1
p , (8.1)

where C6,7(M, p) is a constant independent of ∆.

To prove Theorem 8.1, we need the following lemma which can be obtained in the

same way as Lemma 6.3 was proved.

Lemma 8.3. There exists a constant C6,1(M, p) dependent on M and p but inde-

pendent of ∆ such that

E
(

sup
0≤t≤T

[v(t ∧ q)− v̄(t ∧ q)]2
)

≤ C6,1(M, p)∆1− 1
p . (8.2)

Proof. (of Theorem 8.1) For any 0 ≤ t ≤ T , compute[
V (t ∧ q)− v(t ∧ q)

]2
≤4

[∫ t∧q

0

α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))du

]2
+ 4

[∫ t∧q

0

α2(r1(u))V (u−)− α2(r̄1(u))v̄(u)du

]2
+ 4

[∫ t∧q

0

σ2(r1(u))|V (u−)|β − σ2(r̄1(u))|v̄(u)|βdW2(u)

]2
+ 4

[∫ t∧q

0

δ2(r2(u))V (u−)− δ2(r̄2(u))v̄(u)dN̄2(u)

]2
.

(8.3)

Taking the expectation for t1 ∈ [0, T ], by the Burkholder-Davis-Gundy inequality

and the Hölder inequality, we then have

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤4TE
∫ t1∧q

0

[
α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))

]2
du

+ 4TE
∫ t1∧q

0

[
α2(r1(u))V (u)− α2(r̄1(u))v̄(u)

]2
du

+ 16E
∫ t1∧q

0

[
σ2(r1(u))|V (u)|β − σ2(r̄1(u))|v̄(u)|β

]2
du
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+ 16λ2E
∫ t1∧q

0

[
δ2(r2(u))V (u)− δ2(r̄2(u))v̄(u)

]2
du.

Rearranging the terms on the right hand side, we further get that

≤4TE
∫ t1∧q

0

[α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))]
2 du

+ 12TE
∫ t1∧q

0

|v̄(u)|2 [α2(r1(u))− α2(r̄1(u))]
2 du

+ [12T ᾱ2
2 + 48λ2δ̄

2
2]E
∫ t1∧q

0

[V (u)− v(u)]2 + [v(u)− v̄(u)]2 du

+ 48E
∫ t1∧q

0

|v̄(u)|2β [σ2(r1(u))− σ2(r̄1(u))]
2 du

+ 48σ̄2
2E
∫ t1∧q

0

[
|V (u)|β − |v(u)|β

]2
+
[
|v(u)|β − |v̄(u)|β

]2
du

+ 48λ2E
∫ t1∧q

0

|v̄(u)|2 [δ2(r2(u))− δ2(r̄2(u))]
2 du.

(8.4)

Applying Lemma 8.3 and the mean value theorem yields

≤4TE
∫ t1∧q

0

[α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))]
2 du

+ 12M2TE
∫ t1∧q

0

[α2(r1(u))− α2(r̄1(u))]
2 du

+ 48M2βE
∫ t1∧q

0

[σ2(r1(u))− σ2(r̄1(u))]
2 du

+ 48M2λ2E
∫ t1∧q

0

[δ2(r2(u))− δ2(r̄2(u))]
2 du

+
[
12ᾱ2

2T + 48σ̄2
2β

2M2β−2 + 48δ̄22λ2
]
E
∫ t1∧q

0

[V (u)− v(u)]2 du

+
[
12ᾱ2

2T + 48σ̄2
2β

2M2β−2 + 48δ̄22λ2
]
TC6,1(M, p)∆1− 1

p .

(8.5)

On the other hand, in the same way as in computation of (4.18), we get

A(T ) =E
∫ t1∧q

0

[α2(r1(u))µ2(r1(u))− α2(r̄1(u))µ2(r̄1(u))]
2 du

≤(C6,2∆+ 0∆),

(8.6)

B(T ) =E
∫ t1∧q

0

[α2(r1(u))− α2(r̄1(u))]
2 du ≤ (C6,3∆+ 0(∆)) (8.7)
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and

D(T ) =E
∫ t1∧q

0

[σ2(r1(u))− σ2(r̄1(u))]
2 du ≤ (C6,4∆+ 0(∆)). (8.8)

Similarly, but by the properties of the Markov chain r2(.), we further get that

E(T ) = E
∫ t1∧q

0

[δ2(r2(u))− δ2(r̄2(u))]
2 du ≤ (C6,5∆+ 0(∆)). (8.9)

Substituting (8.6), (8.7), (8.8), (8.9) into (8.5) gives

E
(

sup
0≤t≤t1

[V (t ∧ q)− v(t ∧ q)]2
)

≤ 4T (C6,2∆+ 0(∆)) + 12M2T (C6,3∆+ 0(∆))

+ 48M2β(C6,4∆+ 0(∆)) + 48M2λ2(C6,5∆+ 0(∆))

+
[
12ᾱ2

2T + 48σ̄2
2β

2M2β−2 + 48δ̄22λ2
]
E
∫ t1∧q

0

[V (u)− v(u)]2 du

+
[
12ᾱ2

2T + 48σ̄2
2β

2M2β−2 + 48δ̄22λ2
]
TC6,1(M, p)∆1− 1

p

≤ [C6,6(M, p)∆1− 1
p + 0(∆)]

+ C̄6,6(M)

∫ t1

0

E
(

sup
0≤u1≤u

[V (u1 ∧ q)− v(u1 ∧ q)]2
)
du,

(8.10)

as required. Therefore, an application of the Gronwall’s inequality will complete

the proof of our theorem.

Now, we will remove the stopping time of volatility and establish the following

theorem to show that the continuous EM approximate solution of volatility will

converge to the true solution in probability.

Theorem 8.2. Let V (t) be the true solution and v(t) be the continuous EM ap-

proximate solution to the second SDE of (7.1) when β > 1. Then,

lim
∆→0

(
sup

0≤t≤T
[V (t)− v(t)]2

)
= 0 in probability. (8.11)

To prove Theorem 8.2, we establish the following lemma which gives an upper

bound for the expected value of the EM approximate solution to volatility.
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Lemma 8.4. There exists a constant C6,1(M, p)∗∗ which is dependent on M and

p, but independent of ∆ such that

E(v(t ∧ γM)) ≤ Z + C∗∗
6,1(M, p)∆

1
2
[1− 1

p
], (8.12)

where Z is a constant independent of ∆.

The proof can be obtained by applying the technique with which Lemma 6.4 was

proved.

Proof. (of Theorem 8.2)

The proof of the theorem is rather difficult. We will therefore divide the whole

proof into 3 steps.

Step 1: Applying a similar technique as used in ( Step 1 :) Theorem 6.2, we have

P(ρM ≤ T ) ≤
H(V0) +

ᾱ2µ̄2

2
T + (ᾱ2+λ2δ̄2)

2
T +

σ̄2
24

2β−2T

4
+ λ2δ̄2RT

H(M−1) ∧H(M)
. (8.13)

Step 2: In the same way as in computation of ( Step 2 :) of Theorem 6.2, we

further get that

P(γM ≤ T ) ≤
H(V0) +

ᾱ2µ̄2T
2

+ (ᾱ2+δ̄2λ2)T
2

+
σ̄2
24

2β−2T

4
+ δ̄2λ2TZ + C̄6,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
.

(8.14)

Step 3: Let ε > 0 and δ ∈ (0, 1) be arbitrarily small, then define

Ω̄6 =

[
ω; sup

0≤t≤T
[V (t)− v(t)]2 ≥ δ

]
. (8.15)

In the same way as computation of (3.42) but with Theorem 8.1, we then compute

P(Ω̄6 ∩ (q ≥ T )) ≤ C6,7(M, p)∆1− 1
p

δ
. (8.16)

On the other hand, we easily obtain

P(Ω̄6) ≤ P(Ω̄6 ∩ (q ≥ T )) + P(γM ≤ T ) + P(ρM ≤ T ). (8.17)
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Substituting (8.13), (8.14) and (8.16) into (8.17) yields

P(Ω̄6)

≤C6,7(M, p)∆1− 1
p

δ

+
ϕ(V0) +

ᾱ2µ̄2T
2

+ (ᾱ2+δ̄2λ2)T
2

+
σ̄2
24

2β−2T

4
+ δ̄2λ2TZ + C̄6,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

+
ϕ(V0) +

ᾱ2µ̄2T
2

+ (ᾱ2+λ2δ̄2)T
2

+
σ̄2
24

2β−2T

4
+ λ2δ̄2RT

H(M−1) ∧H(M)
.

(8.18)

Now, choose M sufficiently large for

2
[
ϕ(V0) +

ᾱ2µ̄2T
2

+ (ᾱ2+λ2δ̄2)T
2

+
σ̄2
24

2β−2T

4

]
+ λ2δ̄2RT + λ2δ̄2ZT

H(M−1) ∧H(M)
<
ε

2
(8.19)

and then choose ∆ sufficiently small for

C6,7(M, p)∆1− 1
p

δ
+
C̄6,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
<
ε

2
. (8.20)

Hence we have

P
(

sup
0≤t≤T

[V (t)− v(t)]2 ≥ δ

)
< ε, (8.21)

as required. The proof is therefore complete.

Convergence of x(t) in probability

Theorem 8.2 shows that the EM approximate solution of volatility will converge in

probability to the true solution. In this section, we will therefore examine the main

result of this chapter, which gives the convergence in probability of the continuous

EM approximate solution to the asset price . Accordingly, we will first establish

the following theorem which shows the strong error bound on the continuous EM

approximate solution with stopping time.
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Theorem 8.3. Let X(t) be the true solution and x(t) be the continuous EM ap-

proximate solution to the SDE model (7.1) when θ > 1 and β > 1. For any

positive numbers N and M , define stopping time s = q ∧ τN ∧ ζN ∧ T , where

q is the same as before, while τN = inf{t ∈ [0, T ] : X(t) /∈ [ 1
N
, N ]} and ζN =

inf{t ∈ [0, T ] : |x(t)| /∈ [ 1
N
, N ]}. Then, for any p ≥ 2,

E
(

sup
0≤t≤T

[X(t ∧ s)− x(t ∧ s)]2
)

≤ C6,13(M,N, p)∆
1
2
[1− 1

p
], (8.22)

where C6,13(M,N, p) is a constant independent of ∆.

To prove Theorem 8.3, we need the following lemma, which can be obtained the

same way as Lemma 6.1 was proved.

Lemma 8.5. There exists a constant C6,8(M,N, p) dependent on M,N and p but

independent of ∆ such that

E
(

sup
0≤t≤T

[x(t ∧ s)− x̄(t ∧ s)]2
)

≤ C6,8(M,N, p)∆1− 1
p . (8.23)

Proof. (of Theorem 8.3)

For any 0 ≤ t ≤ T , compute[
X(t ∧ s)− x(t ∧ s)

]2
≤4
[ ∫ t∧s

0

α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))du
]2

+ 4
[ ∫ t∧s

0

[α1(r1(u))X(u−)− α1(r̄1(u))x̄(u)]du
]2

+ 4
[ ∫ t∧s

0

[
σ1(r1(u))

√
V (u−)|X(u−)|θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]
dW1(u)

]2
+ 4
[ ∫ t∧s

0

[δ1(r2(u))X(u−)− δ1(r̄2(u))x̄(u)]dN̄1(u)
]2
.

(8.24)

Taking the expectation for any t1 ∈ [0, T ], by the Burkholder-Davis-Gundy in-
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equality and the Hölder inequality, we then have

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤4TE
∫ t1∧s

0

[
α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))

]2
du

+ 4TE
∫ t1∧s

0

[
α1(r1(u))X(u−)− α1(r̄1(u))x̄(u)

]2
du

+ 16E
∫ t1∧s

0

[
σ1(r1(u))

√
V (u−)|X(u−)|θ

− σ1(r̄1(u))
√

|v̄(u)||x̄(u)|θ
]2
du

+ 4λ1E
∫ t1∧s

0

[
δ1(r2(u))X(u−)− δ1(r̄2(u))x̄(u)

]2
du.

(8.25)

Now, in the same way as in computation of (4.18), we compute

G =4TE
∫ t1∧s

0

[
α1(r1(u))µ1(r1(u))− α1(r̄1(u))µ1(r̄1(u))

]2
du

≤4T (C6,9 + 0(∆)).

(8.26)

Similarly, but applying Lemma 8.5, we get that

H =4TE
∫ t1∧s

0

[α1(r1(u))X(u)− α1(r̄1(u))x̄(u)]
2 du

≤12TE
∫ t1∧s

0

X(u)2 [α1(r1(u))− α1(r̄1(u))]
2 du

+ 12T ᾱ2
1E
∫ t1∧s

0

[X(u)− x(u)]2 + [x(u)− x̄(u)]2 du

≤12TN2(C6,10 + 0(∆)) + 12T ᾱ2
1C6,8(M,N, p)∆1− 1

pT

+ 12T ᾱ2
1E
∫ t1∧s

0

[X(u)− x(u)]2 du.

(8.27)

Analogously, but with the property of r2(u), we have

I =4λ1E
∫ t1∧s

0

[δ1(r2(u))X(u)− δ1(r̄2(u))x̄(u)]
2 du

≤12λ1N
2(C6,11∆+ 0(∆)) + 12δ̄21λ1C6,8(M,N, p)∆1− 1

pT

+ 12δ̄21λ1E
∫ t1∧s

0

[X(u)− x(u)]2 du.

(8.28)
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Now, compute

J =16E
∫ t1∧s

0

[
σ1(r1(u))

√
V (u−)|X(u−)|θ − σ1(r̄1(u))

√
|v̄(u)||x̄(u)|θ

]2
du

≤80E
∫ t1∧s

0

|V (u)|X(u)2θ [σ1(r1(u))− σ1(r̄1(u))]
2 du

+ 80σ̄2
1E
∫ t1∧s

0

X(u)2θ
[√

V (u)−
√
|v(u)|

]2
+X(u)2θ

[√
|v(u)| −

√
|v̄(u)|

]2
du

+ 80σ̄2
1E
∫ t1∧s

0

|v̄(u)|
[
|X(u)|θ − |x(u)|θ

]2
+ |v̄(u)|

[
|x(u)|θ − |x̄(u)|θ

]2
du.

Applying the technique used to compute (4.18), the mean value theorem yields

J ≤80NM2θ(C6,12 + 0(∆)) + 80σ̄2
1N

2θE
∫ t1∧s

0

|V (u)− v(u)|+ |v(u)− v̄(u)| du

+ 80σ̄2
1Mθ2N2θ−2E

∫ t1∧s

0

[X(u)− x(u)]2 + [x(u)− x̄(u)]2 du.

Substituting Theorem 8.1, Lemma 8.3 and Lemma 8.5 gives

J ≤80NM2θ(C6,12 + 0(∆)) + 80σ̄2
1N

2θ
[
C6,7(M, p)∆1− 1

p

] 1
2
T

+ 80σ̄2
1N

2θ
[
C6,1(M, p)∆1− 1

p

] 1
2
T

+ 80σ̄2
1Mθ2N2θ−2

[
E
∫ t1∧s

0

[X(u)− x(u)]2 du+ C6,8(M,N, p)∆1− 1
pT
]
.

(8.29)

Applying (8.26), (8.27), (8.28) and (8.29) into (8.25), we then have

E
(

sup
0≤t≤t1

[X(t ∧ s)− x(t ∧ s)]2
)

≤4T (C6,9 + 0(∆)) + 12TN2(C6,10 + 0(∆)) + 12T ᾱ2
1C6,8(M,N, p)∆1− 1

pT

+ 12T ᾱ2
1E
∫ t1∧s

0

[X(u)− x(u)]2 du+ 12δ̄21λ1E
∫ t1∧s

0

[X(u)− x(u)]2 du

+ 12λ1N
2(C6,11∆+ 0(∆)) + 12δ̄21λ1C6,8(M,N, p)∆1− 1

pT

+ 80NM2θ(C6,12 + 0(∆)) + 80σ̄2
1N

2θ
[
C6,7(M, p)∆1− 1

p

] 1
2
T

+ 80σ̄2
1N

2θ
[
C6,1(M, p)∆1− 1

p

] 1
2
T + 80σ̄2

1Mθ2N2θ−2C6,8(M,N, p)∆1− 1
pT

+ 80σ̄2
1Mθ2N2θ−2E

∫ t1∧s

0

[X(u)− x(u)]2 du,

(8.30)
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as desired. The proof of our theorem finally will follow by the application of

Gronwall’s inequality.

Next, we will establish the following theorem to show convergence in probability

of the continuous EM approximate solution to the true solution.

Theorem 8.4. Let X(t) be the true solution and x(t) be the continuous approxi-

mate solution to the SDE model (7.1) when θ > 1 and β > 1. Then,

lim
∆→0

(
sup

0≤t≤T
[X(t)− x(t)]2

)
= 0 in probability. (8.31)

To prove Theorem 8.4, we need the following lemma which can be obtained in the

same way as computation of Lemma 6.4.

Lemma 8.6. There exists a constant C6,2(M, p)∗∗ which is dependent on M,N

and p, but independent of ∆ such that

E(x(t ∧ h)) ≤ L+ C∗∗
6,2(N,M, p)∆

1
2
[1− 1

p
], (8.32)

where constant L is independent of ∆, and h = γM ∧ ζN .

Proof. (of Theorem 8.4)

In this process, we also divide the whole proof into 3 steps.

Step 1: In the same way as in computation of (6.21) but with stopping time

g = τN ∧ ρM , we have

E [H(X(T ∧ g))] ≤H(X0) +
ᾱ1µ̄1T

2
+

(ᾱ1 + λ1δ̄1)T

2
+
σ̄2
1R4

2θ−2T

4
+ λ1δ̄1R̄T,

where R̄ is the upper bound for the expected value of the asset price that can be

obtained by applying a similar technique as used in (5.8). Now, in the same way

as in computation of (3.59), we further get that

P(τN ≤ T ) ≤
H(X0) +

ᾱ1µ̄1T
2

+ (ᾱ1+λ1δ̄1)T
2

+
σ̄2
1R42θ−2T

4
+ λ1δ̄1R̄T

H(N−1) ∧H(N)
. (8.33)
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Step 2: Repeating the technique used in ( Step 2:) of Theorem 8.2, Lemma 8.6

and

E
(

sup
0≤t≤T

[x(t ∧ h)− x̄(t ∧ h)]2
)

≤ C∗
6,2(M,N, p)∆1− 1

p , (8.34)

which can be proved in the same way as Lemma 8.3 was proved, we obtain

P(ζN ≤ T ) ≤
H(X0) +

ᾱ1µ̄1T
2

+ (ᾱ1+λ1δ̄1)T
2

H(N−1) ∧H(N)

+

σ̄2
1

4
M42θ−2T + δ̄1λ1LT + C̄6,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.

(8.35)

Step 3: For any arbitrarily small constants ε > 0 and δ ∈ (0, 1), then define

Ω6 =

[
t ∈ [0, T ]; sup

0≤t≤T
[X(t)− x(t)]2 ≥ δ

]
. (8.36)

Repeating the technique used in (3.42), but with Theorem 8.3, we further get that

P(Ω6 ∩ (s ≥ t1)) ≤
C6,13(M,N, p)∆

1
2
[1− 1

p
]

δ
. (8.37)

On the other hand, we can compute

P(Ω6) ≤P(Ω6 ∩ (s ≥ T )) + P(γM ≤ T )

+ P(ρM ≤ T ) + P(ζN ≤ T ) + P(τN ≤ T ).

(8.38)

Substituting (8.13), (8.14), (8.33) and (8.35) into (8.38) yields

P(Ω6) ≤
C6,13(M,N, p)∆

1
2
[1− 1

p
]

δ

H(V0) +
ᾱ2µ̄2

2
T + (ᾱ2+λ2δ̄2)

2
T +

σ̄2
24

2β−2T

4
+ λ2δ̄2RT

H(M−1) ∧H(M)

H(V0) +
ᾱ2µ̄2T

2
+ (ᾱ2+δ̄2λ2)T

2
+

σ̄2
24

2β−2T

4
+ δ̄2λ2TZ + C̄6,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)

H(X0) +
ᾱ1µ̄1T

2
+ (ᾱ1+λ1δ̄1)T

2
+

σ̄2
1R42θ−2T

4
+ λ1δ̄1R̄T

H(N−1) ∧H(N)

H(X0) +
ᾱ1µ̄1T

2
+ (ᾱ1+λ1δ̄1)T

2
+

σ̄2
1M42θ−2T

4
+ δ̄1λ1LT + C̄6,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
.
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Choose M sufficiently large for

2
[
H(V0) +

ᾱ2µ̄2T
2

+ (ᾱ2+δ̄2λ2)T
2

+
σ̄2
24

2β−2T

4

]
+ δ̄2λ2TZ + λ2δ̄2RT

H(M−1) ∧H(M)
<
ε

3
, (8.39)

then choose N sufficiently large for

2
[
H(X0) +

ᾱ1µ̄1T
2

+ (ᾱ1+λ1δ̄1)T
2

]
+

σ̄2
1R42θ−2T

4
+

σ̄2
1M42θ−2T

4
+ λ1δ̄1R̄T + δ̄1λ1LT

H(N−1) ∧H(N)
<
ε

3

(8.40)

and further choose ∆ sufficiently small for

C6,13(M,N, p)∆
1
2
[1− 1

p
]

δ
+
C̄6,1(M, p)∆

1
2
[1− 1

p
]

H(M−1) ∧H(M)
+
C̄6,2(M,N, p)∆

1
2
[1− 1

p
]

H(N−1) ∧H(N)
<
ε

3
. (8.41)

Hence, we have

P
(

sup
0≤t≤T

[X(t)− x(t)]2 ≥ δ

)
< ε, (8.42)

as required. The proof is therefore complete now.

Even though the continuous EM approximate solution will converge to the true

solution, it is not computable in practice. Therefore, we will establish the following

theorem to show that the corresponding step process will converge in probability

to the true solution X(t) .

Theorem 8.5. For any t ∈ [0, T ] , there exists a step function x̄(t) of the EM

approximate solution to the X(t) such that

lim
∆→0

(
sup

0≤t≤T
|X(t)− x̄(t)|

)
= 0 in probability. (8.43)

The proof of Theorem 8.4 can be obtained in the same way as in computation of

Theorem 6.5.

Clearly, the computable step process will converge to the true solution of the

SDE model (7.1) when parameters θ and β are greater than 1. Therefore, let us

choose initial condition (X(0) = 0.5, V (0) = 0.04), correlation coefficient of two
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Brownian motions ρ = 0.6 , (θ = 1.5, β = 1.6) and λ1 = 1, λ2 = 2 with coefficients

of the SDE model (see Table 7.1) to illustrate its behaviour in practice. Thus,

we apply MATLAB R⃝ software (see Appendix A for code) and generators of two

Markov chains Γr1 and Γr2 to obtain the following graph (see Figure 8.1).

Γr1 =


−4 1 3

5 −7 2

2 1 −3

 Γr2 =


−3 1 2

3 −9 6

2 1 −3


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Figure 8.1: A sample path of the asset price X(t) which is generated by the
EM approximate solution to the hybrid mean-reverting-theta stochastic volatility
model with Poisson jump over finite time, where θ = 1.5 and β = 1.6.

8.4 Summary

The convergence property of the EM approximate solution to the SDE model

(7.1) has been examined in this chapter when θ, β > 1. In this process, we have
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first proved that the unique local solution to this SDE model is non-negative

with probability 1. Then, we have obtained the convergence property of the EM

approximate solution to this SDE model in probability when the time step is

sufficiently small. However, this EM approximate solution is not computable in

practice. Therefore, the convergence property of the corresponding step process

has been obtained to examine its application in finance.
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Chapter 9

Applications in Finance

The generalized Black-Scholes type formulas which were examined in previous

chapters give a significant contribution to understanding behaviour of the under-

lying asset prices in financial markets even though they have no explicit solutions.

However, the final result of the each previous chapters shows that the EM ap-

proximate solution to the each SDE model will converge to the corresponding true

solution when the time step is sufficiently small.

In this chapter, we will therefore show that these EM solutions can be used to

evaluate financial quantities. However, we will omit some information that can be

found in several research papers under the same conditions on parameters θ and

β. Furthermore, details of these financial quantities are omitted here, as these can

also be found in textbooks [35, 50].
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9.1 Bonds

Assume that the SDE model (5.1) when 1
2
≤ θ, β ≤ 1 describes the short-term

interest rate dynamics. Then the price of a bond at the end of period is given by

B(T ) = E
[
exp(−

∫ T

0

X(t)dt)

]
.

Given that the step process x̄(t) is computable and it converges to the true solution

X(t) in probability, we would naturally compute B(T ) approximately by

B̄∆(T ) = E
[
exp(−

∫ T

0

|x̄(t)|dt)
]
.

The question is: does B̄∆(T ) approximate B(T ) well whenever the step size ∆

is sufficiently small? The following theorem confirms this.

Theorem 9.1. In the notation above, we have

lim
∆→0

|B(T )− B̄∆(T )| = 0. (9.1)

The proof of our theorem can be obtained in the same way as in computation

of Theorem 4.1 in [32] but with Theorem 5.7.

On the other hand, when short-term interest rate dynamics follows the SDE

model (3.6) which was examined in chapter 3, we will get the required proof for

Theorem 9.1 in the same way as in computation of Theorem 5.1 in [77], but

applying our new Theorem 3.5.

9.2 Path dependent options

Let us now consider a barrier option under the SDE model (4.1) when parameters

θ and β are greater than 1. That is, consider a down-and-out European put

option, which, at expiry time T , pays the European put value (E − X(T ))+ if

X(t) never decreases below the fixed barrier B, and pays zero otherwise, where
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E is the exercise price. We suppose that the expected payoff is computed from a

Monte Carlo simulation (see [26]) based on the EM step process x̄(t). The following

theorem uses our new convergence theorem to show that the expected payoff from

the numerical method converges to the correct expected payoff as ∆ → 0.

Theorem 9.2. Let X(t) be the solution of the SDE model (4.1) when parameters

θ and β are greater than 1 and x̄(t) be the EM step process. Consider a down-

and-out European put option with the exercise price E, the fixed barrier B and the

expiry date T . The expected payoff of the down-and-out call option is

O = E

(E −X(T ))+ 1(
B≤ inf

0≤t≤T
X(t)

)
,

while the estimated expected payoff based on the EM step process x̄(t) is

Ô∆ = E

(E − |x̄(T )|)+ 1(
B≤ inf

0≤t≤T
|x̄(t)|

)
 .

Then

lim
∆→0

∣∣∣O − Ô∆

∣∣∣ = 0. (9.2)

Proof. Let

A =

(
B ≤ inf

0≤t≤T
X(t)

)
and B =

(
B ≤ inf

0≤t≤T
|x̄(t)|

)
.

We will complete the proof, if we can prove that

lim
∆→0

∣∣(E −X(T ))+1A − (E − |x̄(T )|)+1B
∣∣ = 0 in probability.

In other words, the theorem holds as long as we can show that for any small

constants ε > 0 and δ ∈ (0, 1), the following

P
(∣∣(E −X(T ))+1A − (E − |x̄(T )|)+1B

∣∣ ≥ δ
)
< ε (9.3)

holds for all sufficiently small ∆. To prove this, we set A
′
= Ω−A and B

′
= Ω−B.
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It is easy to verify that

|(E −X(T ))+ − (E − |x̄(T )|)+| ≤ |X(T )− |x̄(T )|| ≤ |X(T )− x̄(T )|.

We then compute

P
(
|(E −X(T ))+1A − (E − |x̄(T )|)+1B| ≥ δ

)
≤P
[
(|(E −X(T ))+1A − (E − |x̄(T )|)+1B| ≥ δ) ∩ (A ∩B)

]
+ P

[
(|(E −X(T ))+1A − (E − |x̄(T )|)+1B| ≥ δ) ∩ (A

′ ∩B)
]

+ P
[
(|(E −X(T ))+1A − (E − |x̄(T )|)+1B| ≥ δ) ∩ (A ∩B

′
)
]

≤P (|X(T )− x̄(T )| ≥ δ) + P
(
A

′ ∩B
)
+ P

(
A ∩B

′
)
.

(9.4)

By Theorem 4.5, for all sufficiently small ∆, we have

P (|X(T )− x̄(T )| ≥ δ) <
ε

3
. (9.5)

Now, let z ∈ (0, B) be any sufficiently small number. Write

A
′
=

[
inf

0≤t≤T
X(t) < B

]
=

[
inf

0≤t≤T
X(t) < B − z

]
∪
[
B − z ≤ inf

0≤t≤T
X(t) < B

]
:= A

′

1 ∪ A
′

2.

(9.6)

We hence compute

P
(
A

′ ∩B
)
= P

(
A

′

1 ∩B
)
+ P

(
A

′

2 ∩B
)

≤ P
(
| inf
0≤t≤T

X(t)− inf
0≤t≤T

|x̄(t)|| ≥ z

)
+ P

(
A

′

2

)
≤ P

(
sup

0≤t≤T
|X(t)− |x̄(t)|| ≥ z

)
+ P

(
A

′

2

)
≤ P

(
sup

0≤t≤T
|X(t)− x̄(t)| ≥ z

)
+ P

(
A

′

2

)
.

(9.7)

Since inf
0≤t≤T

X(t) is a continuously distributed random variable, we can choose z so
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small that

P
(
A

′

2

)
<
ε

6
,

while by Theorem 4.5, we can choose ∆ so small for

P
(

sup
0≤t≤T

|X(t)− x̄(t)| ≥ z

)
<
ε

6
.

We hence see that for all sufficiently small ∆,

P
(
A

′ ∩B
)
<
ε

3
. (9.8)

Similarly, we can show that for all sufficiently small ∆,

P
(
A ∩B

′
)
<
ε

3
. (9.9)

Substituting (9.5), (9.8) and (9.9) into (9.4) yields

P
(∣∣(E −X(T ))+1A − (E − |x̄(T )|)+1B

∣∣ ≥ δ
)
< ε, (9.10)

as required. The proof is therefore complete.

9.3 Lookback put options

The fixed strike lookback put option differs from the standard European put option

in that when we compute the payoff, the price at the expiry date is replaced by the

smallest asset price observed. So the expected payoff of the fixed strike lookback

put is given by

L = E
[(
E − inf

0≤t≤T
X(t)

)+]
,

where E is the exercise prise. Analogously, our numerical approximation to this

payoff is

L̂∆ = E
[(
E − inf

0≤t≤T
|x̄(t)|

)+]
.
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Theorem 9.3. In the notation above, we have

lim
∆→0

|L− L̂∆| = 0.

Here, we proceed with the asset price model examined in Chapter 8. Thus,

we will assume that the lookback put option follows the SDE model (7.1) when

parameters θ and β are greater than 1.

Proof. Clearly, it is sufficient to prove

lim
∆→0

∣∣∣∣(E − inf
0≤t≤T

X(t)
)+

−
(
E − inf

0≤t≤T
|x̄(t)|

)+∣∣∣∣ = 0 in probability.

In other words, the theorem holds as long as we can show that for any small

constants ε > 0 and δ ∈ (0, 1), the following

P
(∣∣∣∣(E − inf

0≤t≤T
X(t)

)+
−
(
E − inf

0≤t≤T
|x̄(t)|

)+∣∣∣∣ ≥ δ

)
< ε (9.11)

holds for all sufficiently small ∆. On the other hand, it is easy to show that∣∣∣∣(E − inf
0≤t≤T

X(t)
)+

−
(
E − inf

0≤t≤T
|x̄(t)|

)+∣∣∣∣
≤
∣∣∣∣ inf
0≤t≤T

X(t)− inf
0≤t≤T

|x̄(t)|
∣∣∣∣

≤ sup
0≤t≤T

∣∣X(t)− |x̄(t)|
∣∣

≤ sup
0≤t≤T

∣∣X(t)− x̄(t)
∣∣.

(9.12)

We therefore have that

P
(∣∣∣∣(E − inf

0≤t≤T
X(t)

)+
−
(
E − inf

0≤t≤T
|x̄(t)|

)+∣∣∣∣ ≥ δ

)
≤ P

(
sup

0≤t≤T

∣∣X(t)− x̄(t)
∣∣ ≥ δ

)
.

(9.13)

But, by Theorem 8.5, we have

P
(

sup
0≤t≤T

∣∣X(t)− x̄(t)
∣∣ ≥ δ

)
< ε (9.14)

for all sufficiently small ∆. Combining (9.13) and (9.14) we obtain the required
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(9.11). The proof is therefore complete.

9.4 Summary

In this chapter, we have proved that the step processes of the corresponding EM

approximate solutions to the SDE models which were discussed in previous chap-

ters can be used to evaluate financial quantities. In this process, SDE models have

been divided into two categories, with 1/2 ≤ β, θ ≤ 1 and with 1 < θ, β. How-

ever, each SDE model in one category needs similar techniques to investigate its

corresponding application in finance. Therefore, we have examined a few models

to complete this process.
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Chapter 10

Conclusions

This research program focussed on several SDE models which are widely used to

examine asset price or portfolio data but so far have no explicit solutions. In this

process, we have established Euler-Maruyama (EM) numerical approximations to

these highly sensitive volatility models which help to study and understand effects

and movements of financial markets. However, existing financial instruments are

not strong enough to derive analytical properties of more generalized Black-Scholes

formulas. Therefore, necessary effective theories have been developed under certain

assumptions. Clearly, these newly developed financial tools can also be used to

scrutinize some other financial quantities.

The first model can be treated as having constant coefficients with parameters

θ and β are greater than 1. Since this model satisfies the local Lipschitz condition,

the expected error bound of the continuous EM approximation has been used to

show that convergence in probability of the EM approximate solution. In practice,

the continuous EM approximate solution to this model is not computable. Thus,

the convergence in probability of the step process has also been established.

The Markov switching concept changes the direction of the first model to ex-
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plain the higher dimension of some financial quantities. The coefficients of this

model also satisfy the local Lipschitz condition. Therefore, we have obtained con-

vergence in probability of the EM approximate solution to the true value. In

addition, convergence of the corresponding step process has also been established

to examine application of this approximate solution in finance.

The mean-reverting-theta stochastic volatility model driven by a Poisson-jump

process with constant coefficients and its Markov switching form created more

generalized Black-Scholes formulas which can also be seen in financial markets. In

the case of 1
2
≤ θ, β ≤ 1, the convergence in second moment of the EM approxi-

mate values to these SDE models have been examined under the global Lipschitz

condition and the linear growth conditions. In order to show applications of these

EM approximate solutions in finance, convergence properties of corresponding step

processes have been obtained.

In contrast to the stochastic volatility model discussed in Chapter 5 and 7,

when the parameters θ and β are greater than 1, these hybrid SDE models obey

the local Lipschitz condition. Therefore, we can not appeal to convergence in

second moment of the EM approximate solutions to these SDE models. Thus,

new techniques have been developed and we have examined analytical properties

of the EM approximate solutions in probability. Then, we extended this process

to show convergence in probability of the corresponding step processes which give

the necessary condition to evaluate their applications in finance.

These developed techniques have proved that the approximate values generate

the expected result of the true solutions to the SDE models when the time step

is sufficiently small. In Chapter 9, several applications of these financial models

have been discussed to show that their solutions can be used to evaluate financial

quantities in practice.
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In addition, these EM approximate solutions can be used to evaluate investment

risk of financial quantities in financial markets. If the short-term interest rate of

a bond is high then the bond price becomes low, and if short-term interest rate

is low then bond price becomes high. Therefore, the risk of bond price can be

examined by taking the variance of the short-term interest rate which gives the

dispersion of the short-term interest rate throughout the mean.

On the other hand, implied volatility gives the significant effect for the decision

of the option price. If the implied volatility of the asset price is high then it

gives the higher option price, and if it is low then gives the lower option price.

Therefore, investors can evaluate the risk of the option by examining the variance

of the implied volatility.

176



Appendix A

MATLAB R⃝ Codes

Model 1

function [ x , v]= s vm c c o f f i c i e n t s t ime ( x0 , v0 ,T, n ,M,N, rho ,NS)

%x0 : I n i t i a l va lue o f a s s e t p r i c e
%v0 : I n i t i a l va lue o f v o l a t i l i t y
%T:Time per iod
%n :Number o f s t e p s
%NS:Number o f s imu la t i on s
%M: Upper bound o f x
%N: Upper bound o f v
%rho : c o r r e l a t i o n c o e f f i c i e n t o f w1 and w2

theta =1.2 ; beta=1.1;
alpha1 =0.21; alpha2 =0.3 ;
miyu1=10.4 ; miyu2=0.13;
sigma1=0.05; sigma2=0.054;

d e l t a=T/n ;
x=zeros (NS, n+1); v=zeros (NS, n+1);
v ( : , 1 )= v0∗ ones (NS , 1 ) ; x ( : , 1 )= x0∗ ones (NS , 1 ) ;

for i =2:1 :n+1

normrand1=randn(NS , 1 ) ; normrand2=randn(NS , 1 ) ;

x ( : , i )=x ( : , i−1)+alpha1 ∗(miyu1−x ( : , i −1))∗ de l t a + . . .
sigma1 ∗( x ( : , i −1).ˆ theta ) . ∗ sqrt ( v ( : , i − 1 ) ) . ∗ . . .
normrand1∗sqrt ( d e l t a ) ;

i f (abs ( x ( : , i ))< N)
x ( : , i )=abs ( x ( : , i ) ) ;

else
x ( : , i )=N;

end
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v ( : , i )=v ( : , i−1)+alpha2 ∗(miyu2−v ( : , i −1))∗ de l t a + . . .
sigma2 ∗( v ( : , i −1).ˆbeta ) . ∗ . . .
( rho∗normrand1+sqrt(1−rho ˆ2)∗normrand2 )∗ sqrt ( d e l t a ) ;

i f (abs ( v ( : , i ))<M)
v ( : , i )=abs ( v ( : , i ) ) ;

else
v ( : , i )=M;

end

end

Model 2

function [ x , v]=svm makove stime ( x0 , v0 ,T, n ,C1 ,Q1, s ,M,N, rho ,NS)

%x0 : I n i t i a l va lue o f a s s e t pr ice ,
%v0 : I n i t i a l va lue o f v o l a t i l i t y
%T:Time per iod
%n :Number o f s t e p s
%NS:Number o f s imu la t i on s
%M: Upper bound o f x
%N: Upper bound o f v
%rho : c o r r e l a t i o n c o e f f i c i e n t w1 and w2
%C1 : s t a t e s va lue matrix ;
%Q1: genera tor o f Markov−chain ;
%s : I n i t i a l s t a t e ;
theta =1.2 ; beta=1.1;

d e l t a=T/n ;
x=zeros (NS, n+1); v=zeros (NS, n+1);
v ( : , 1 )= v0∗ ones (NS , 1 ) ; x ( : , 1 )= x0∗ ones (NS , 1 ) ;

for i =2:1 :n+1

s=markovs (Q1,T, n , s ) ;

alpha1=C1( s , 1 ) ; alpha2=C1( s , 4 ) ;
miyu1 =C1( s , 2 ) ; miyu2 =C1( s , 5 ) ;
sigma1=C1( s , 3 ) ; sigma2=C1( s , 6 ) ;

normrand1=randn(NS , 1 ) ; normrand2=randn(NS , 1 ) ;

x ( : , i )=x ( : , i−1)+alpha1 ∗(miyu1−x ( : , i −1))∗ de l t a + . . .
sigma1 ∗( x ( : , i −1).ˆ theta ) . ∗ sqrt ( v ( : , i − 1 ) ) . ∗ . . .
normrand1∗sqrt ( d e l t a ) ;

i f (abs ( x ( : , i ))< N)
x ( : , i )=abs ( x ( : , i ) ) ;

else
x ( : , i )=N;

end
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v ( : , i )=v ( : , i−1)+alpha2 ∗(miyu2−v ( : , i −1))∗ de l t a + . . .
sigma2 ∗( v ( : , i −1).ˆbeta ) . ∗ . . .
( rho∗normrand1+sqrt(1−rho ˆ2)∗normrand2 )∗ sqrt ( d e l t a ) ;

i f (abs ( v ( : , i ))<M)
v ( : , i )=abs ( v ( : , i ) ) ;

else
v ( : , i )=M;

end

end

Model 3

function [ x , v]= svm cco f f i c i en t jump (x0 , v0 ,T, n , rho ,NS)

%x0 : I n i t i a l va lue o f a s s e t p r i c e
%v0 : I n i t i a l va lue o f v o l a t i l i t y
%T:Time per iod
%n :Number o f s t e p s
%NS: Number o f s imu la t i on s
%rho : c o r r e l a t i o n c o e f f i c i e n t w1 and w2

theta =0.5 ; beta=0.6;
alpha1 =0.21; alpha2 =0.3 ;
miyu1=0.4; miyu2=0.03;
sigma1=0.05; sigma2=0.054;
de l t a1 =0.09; de l t a2 =0.07;
lambda1=1; lambda2=2;

de l t a=T/n ;
x=zeros (NS, n+1);
v=zeros (NS, n+1);
v ( : , 1 )= v0∗ ones (NS , 1 ) ; x ( : , 1 )= x0∗ ones (NS , 1 ) ;

for i =2:1 :n+1

normrand1=randn(NS , 1 ) ; normrand2=randn(NS , 1 ) ;

x ( : , i )=x ( : , i−1)+alpha1 ∗(miyu1−x ( : , i −1))∗ de l t a + . . .
sigma1 ∗( x ( : , i −1).ˆ theta ) . ∗ sqrt ( v ( : , i − 1 ) ) . ∗ . . .
normrand1∗sqrt ( d e l t a ) . . .
+de l ta1 ∗x ( : , i −1)∗( po i s s rnd ( lambda1∗ de l t a )−lambda1∗ de l t a ) ;
x ( : , i )=abs ( x ( : , i ) ) ;

v ( : , i )=v ( : , i−1)+alpha2 ∗(miyu2−v ( : , i −1))∗ de l t a + . . .
sigma2 ∗( v ( : , i −1).ˆbeta ) . ∗ . . .
( rho∗normrand1+sqrt(1−rho ˆ2)∗normrand2 )∗ sqrt ( d e l t a ) . . .
+de l ta2 ∗v ( : , i −1)∗( po i s s rnd ( lambda2∗ de l t a )−lambda1∗ de l t a ) ;
v ( : , i )=abs ( v ( : , i ) ) ;
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end

Model 4

function [ x , v]= svm cco f f i c i en t j ump s t ime ( x0 , v0 ,T, n ,M,N, rho ,NS)

%x0 : I n i t i a l va lue o f a s s e t pr ice ,
%v0 : I n i t i a l va lue o f v o l a t i l i t y
%T:Time per iod
%n :Number o f s t e p s
%NS:Number o f s imu la t i on s
%M: Upper bound o f x
%N: Upper bound o f v
%rho : c o r r e l a t i o n c o e f f i c i e n t w1 and w2

theta =1.2 ; beta=1.1;
alpha1 =0.21; alpha2 =0.3 ;
miyu1=0.4; miyu2=0.13;
sigma1=0.05; sigma2=0.054;
de l t a1 =0.09; de l t a2 =0.07;
lambda1=1; lambda2=2;

de l t a=T/n ;
x=zeros (NS, n+1); v=zeros (NS, n+1);
v ( : , 1 )= v0∗ ones (NS , 1 ) ; x ( : , 1 )= x0∗ ones (NS , 1 ) ;

for i =2:1 :n+1

normrand1=randn(NS , 1 ) ; normrand2=randn(NS , 1 ) ;

x ( : , i )=x ( : , i−1)+alpha1 ∗(miyu1−x ( : , i −1))∗ de l t a + . . .
sigma1 ∗( x ( : , i −1).ˆ theta ) . ∗ sqrt ( v ( : , i − 1 ) ) . ∗ . . .
normrand1∗sqrt ( d e l t a ) . . .
+de l ta1 ∗x ( : , i −1)∗( po i s s rnd ( lambda1∗ de l t a )−lambda1∗ de l t a ) ;

i f (abs ( x ( : , i ))< N)
x ( : , i )=abs ( x ( : , i ) ) ;

else
x ( : , i )=N;

end

v ( : , i )=v ( : , i−1)+alpha2 ∗(miyu2−v ( : , i −1))∗ de l t a + . . .
sigma2 ∗( v ( : , i −1).ˆbeta ) . ∗ . . .
( rho∗normrand1+sqrt(1−rho ˆ2)∗normrand2 )∗ sqrt ( d e l t a ) . . .
+de l ta2 ∗v ( : , i −1)∗( po i s s rnd ( lambda2∗ de l t a )−lambda1∗ de l t a ) ;

i f (abs ( v ( : , i ))<M)
v ( : , i )=abs ( v ( : , i ) ) ;

else
v ( : , i )=M;

end
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end

Model 5

function
[ x , v]=svm makove jump (x0 , v0 ,T, n ,C1 ,C2 ,Q1,Q2, s1 , s2 , l1 , l2 , rho ,NS)

%x0 : I n i t i a l va lue o f a s s e t pr ice ,
%v0 : I n i t i a l va lue o f v o l a t i l i t y
%T:Time per iod
%n :Number o f s t e p s
%NS:Number o f s imu la t i on s
%rho : c o r r e l a t i o n c o e f f i c i e n t w1 and w2
%C1,C2 : s t a t e s va lue matrix ;
%Q1,Q2: genera tor o f Markov−chain ;
%s : I n i t i a l s t a t e ;
%l 1 : lamda1 ;
%l 2 : lamda2 ;

theta=1; beta=0.5;

d e l t a=T/n ;
x=zeros (NS, n+1); v=zeros (NS, n+1);
v ( : , 1 )= v0∗ ones (NS , 1 ) ; x ( : , 1 )= x0∗ ones (NS , 1 ) ;

for i =2:1 :n+1

s1=markovs (Q1,T, n , s1 ) ; s2=markovs (Q2,T, n , s2 ) ;

alpha1=C1( s1 , 1 ) ; alpha2=C1( s1 , 4 ) ;
miyu1 =C1( s1 , 2 ) ; miyu2 =C1( s1 , 5 ) ;
sigma1=C1( s1 , 3 ) ; sigma2=C1( s1 , 6 ) ;
de l t a1=C2( s2 , 1 ) ; de l t a2=C2( s2 , 2 ) ;

normrand1=randn(NS , 1 ) ; normrand2=randn(NS , 1 ) ;

x ( : , i )=x ( : , i−1)+alpha1 ∗(miyu1−x ( : , i −1))∗ de l t a + . . .
sigma1 ∗( x ( : , i −1).ˆ theta ) . ∗ sqrt ( v ( : , i − 1 ) ) . ∗ . . .
normrand1∗sqrt ( d e l t a ) . . .
+de l ta1 ∗x ( : , i −1)∗( po i s s rnd ( l 1 ∗ de l t a )− l 1 ∗ de l t a ) ;

x ( : , i )=abs ( x ( : , i ) ) ;

v ( : , i )=v ( : , i−1)+alpha2 ∗(miyu2−v ( : , i −1))∗ de l t a + . . .
sigma2 ∗( v ( : , i −1).ˆbeta ) . ∗ . . .
( rho∗normrand1+sqrt(1−rho ˆ2)∗normrand2 )∗ sqrt ( d e l t a ) . . .
+de l ta2 ∗v ( : , i −1)∗( po i s s rnd ( l 2 ∗ de l t a )− l 2 ∗ de l t a ) ;

v ( : , i )=abs ( v ( : , i ) ) ;

end
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Model 6

function [ x , v]=svm makove jump stime
( x0 , v0 ,T, n ,C1 ,C2 ,Q1,Q2, s1 , s2 , l1 , l2 ,M,N, rho ,NS)

%x0 : I n i t i a l va lue o f a s s e t pr ice ,
%v0 : I n i t i a l va lue o f v o l a t i l i t y
%T:Time per iod
%n :Number o f s t e p s
%NS:Number o f s imu la t i on s
%M: Upper bound o f x
%N: Upper bound o f v
%rho : c o r r e l a t i o n c o e f f i c i e n t w1 and w2
%C1,C2 : s t a t e s va lue matr ixs ;
%Q1,Q2: genera tor o f Markov−chains ;
%s : I n i t i a l s t a t e ;
%l 1 : lamda1 ;
%l 2 : lamda2 ;

theta =1.5 ; beta=1.2;

d e l t a=T/n ;
x=zeros (NS, n+1); v=zeros (NS, n+1);
v ( : , 1 )= v0∗ ones (NS , 1 ) ; x ( : , 1 )= x0∗ ones (NS , 1 ) ;

for i =2:1 :n+1

s1=markovs (Q1,T, n , s1 ) ; s2=markovs (Q2,T, n , s2 ) ;

alpha1=C1( s1 , 1 ) ; alpha2=C1( s1 , 4 ) ;
miyu1 =C1( s1 , 2 ) ; miyu2 =C1( s1 , 5 ) ;
sigma1=C1( s1 , 3 ) ; sigma2=C1( s1 , 6 ) ;
de l t a1=C2( s2 , 1 ) ; de l t a2=C2( s2 , 2 ) ;

normrand1=randn(NS , 1 ) ; normrand2=randn(NS , 1 ) ;

x ( : , i )=x ( : , i−1)+alpha1 ∗(miyu1−x ( : , i −1))∗ de l t a + . . .
sigma1 ∗( x ( : , i −1).ˆ theta ) . ∗ sqrt ( v ( : , i − 1 ) ) . ∗ . . .
normrand1∗sqrt ( d e l t a ) . . .
+de l ta1 ∗x ( : , i −1)∗( po i s s rnd ( l 1 ∗ de l t a )− l 1 ∗ de l t a ) ;

i f (abs ( x ( : , i ))< N)
x ( : , i )=abs ( x ( : , i ) ) ;

else
x ( : , i )=N;

end

v ( : , i )=v ( : , i−1)+alpha2 ∗(miyu2−v ( : , i −1))∗ de l t a + . . .
sigma2 ∗( v ( : , i −1).ˆbeta ) . ∗ . . .
( rho∗normrand1+sqrt(1−rho ˆ2)∗normrand2 )∗ sqrt ( d e l t a ) . . .
+de l ta2 ∗v ( : , i −1)∗( po i s s rnd ( l 2 ∗ de l t a )− l 2 ∗ de l t a ) ;
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i f (abs ( v ( : , i ))<M)
v ( : , i )=abs ( v ( : , i ) ) ;

else
v ( : , i )=M;

end

end

Markov-chain

function [ s ]=markovs (Q,T, n , s )

%Q = Trans i t ion ra t e matrix ;
%u = va lue s o f s t a t e s matrix ;
%T = Time
%n = No of s t e p s ;
%s = Present s t a t e ;
%R = Randam number ;
%L = Numbrer o f s t a t e s ;

i =1;
R=rand ( 1 ) ;
p r obab i l i t y =10;
p=expm( (T/n)∗Q) ;
L=length (p ) ;

while (R<p r obab i l i t y )
i f (R <sum(p( s , 1 : i ) ) )

s=i ;
p r obab i l i t y =R;

e l s e i f ( i<L−1)
i=i +1;

else
s=L ;

p r obab i l i t y =R;
end

end
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