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Abstract

This thesis develops a novel set of Machine Learning (ML)-based techniques for fre-

quency stability management in modern power systems with high penetration of Converter-

Interfaced Generation (CIG). Specifically, the techniques aim to enhance situational

awareness by capturing detailed frequency dynamics, which conventional approaches

struggle to do, and ensure frequency stability through preventive actions —by intro-

ducing ML-based constraints into optimisation models to account for the detailed dy-

namics —and corrective actions —by implementing agentic ML-based adaptive load

shedding, focusing on locational aspects and optimising where, when and how much

load to shed. Adapted for both online and offline applications, these techniques equip

operators with advanced decision-making tools.

Traditionally, system operators use detailed analytical expressions to manage and

ensure secure operation. This approach captures and represents the frequency dynam-

ics of the system by solving the Differential Algebraic Equations (DAEs) of the network.

Furthermore, operators usually perform offline or time domain simulations (TDS) anal-

yses on a selected set of scenarios, including expected worst-case scenarios. However,

these approaches have significant computational requirements, making them typically

suitable only for offline applications with a limited number of scenarios. Even when

evaluating such a limited set of scenarios, identifying the most critical ones a priori

has become increasingly difficult. As power systems become increasingly complex and

uncertain, the challenge intensifies, with the growing number of candidate scenarios

creating a significant computational hindrance. Consequently, operators often need to

over-secure the system, which comes at a cost and hinders widespread adoption of clean

energy to achieve net-zero targets. Moreover, numerical approaches —simplified alter-
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native models for fast screening —are increasingly facing accuracy issues due to the

increasing complexity of the system, potentially introducing significant errors, which

can lead to unforeseen instability.

In response to these challenges, this research proposes an ML-based approach to

ensure frequency stability in modern low-inertia networks. ML models are capable of

accurately learning complex system relationships using simulation or observational data

used during training. As a result, they can predict the system response almost instantly,

because solving the network’s DAEs is no longer required to make predictions. Such an

approach is especially suitable for real-time or near-real-time applications, providing

quick scenario screenings of detailed dynamics, where TDS would be computationally

prohibitive. Ultimately, operators are provided with advanced decision-making tools,

enabling them to more accurately and efficiently manage frequency stability while im-

posing minimal computational overhead.
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Chapter 1

Introduction

1.1 Background and Motivation

The data on the world’s primary energy consumption shows that energy consumption

from renewables has steadily increased since the early 2000s [1]. This shift is driven

by the need to fight climate change and achieve net-zero goals by reducing greenhouse

gas emissions from electricity generation. As a result, fossil fuel-based generation has

decreased significantly, while renewable energy technologies, mainly wind and solar PV,

have expanded. Fig. 1.1 illustrates the world’s primary energy consumption from 2000

to 2022, showing a sharp increase in energy consumption from renewables. Over this

period, the share of renewables in the global primary energy mix rose from nearly 0% to

8%, whereas the consumption from fossil fuel sources generally declined. Notably, oil’s

contribution dropped from approximately 40% to 30%. The UK is among the most

ambitious countries pursuing this transition, with a net-zero target set for 2050 [8].

As of July 2024, 47% of the electricity generated in the country came from renewable

sources [9]. Recently, the UK government accelerated its net-zero ambitions to achieve

full decarbonisation of the electricity system by 2035. However, in December 2024,

this target was further revised to 2030 by introducing the Clean Power 2030 Action

Plan [10]. Additionally, the transition will be supported by the electrification of heating

and transportation, which will significantly increase electricity demand and, in turn,

necessitate higher levels of renewable generation capacity and grid infrastructure.
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Chapter 1. Introduction

Figure 1.1: World primary energy consumption from 2000 to 2022 [1]

However, while these ambitions are noble, renewable energy technologies, also known

as Converter Interfaced Generation (CIG), are different from conventional SG sources

concerning their operational characteristics, introducing uncertainties and complexities

into the system. Specifically, power systems rely on the availability of sufficient inertia,

primarily supplied by the SG’s rotating masses, to withstand disturbances such as loss

of load or generation. However, renewables cannot inherently provide this inertia, as

they are coupled to the grid through power electronic converters. Despite the ability

of CIGs to provide synthetic inertia, which is achieved through fast control actions

given a continuous energy supply, this inertia differs from the response of SGs’ rotating

masses, leading to increased system sensitivity and vulnerability to disturbances. This,

along with other technical differences, increases the system’s vulnerability to distur-

bances [2]. As a result, this shift presents new challenges for operators to ensure the

safe operation of the power system. One of the key security concerns for system oper-

ators is frequency stability, that is, the system’s ability to maintain a stable frequency

by balancing generation and demand. This task becomes increasingly difficult as CIGs
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Figure 1.2: Basic structure of a converter interfaced generation with a stationary ref-
erence frame control [2]

are often weather-dependent with unpredictable generation.

The frequency behaviour of a power network is typically modelled using the Centre

of Inertia (COI) approach, where all online SGs are combined into a single rotating

mass coupled to an infinite bus. This method enables a global perspective on the

frequency response, informing various critical security measures such as the allocation

of frequency control resources. For example, the Electric Reliability Council of Texas

(ERCOT) used the COI to determine the inertia floor for its network to be greater

than 100 GW.s [11]. Other systems worldwide have set inertial floors as well, using this

technique, with 135 GW.s for Great Britain, 23 GW.s for Ireland, 125 GW.s for the

Nordic interconnect, and 6.2 GW.s for Australia [12, 13]. Furthermore, in preventive

security-constrained optimisation models such as Unit Commitment (UC) and Optimal

Power Flow (OPF), security constraints are typically founded on this concept [12].

Similarly, in real-time control techniques, the COI is utilised to determine the control

strategy under emergencies. Yet, while this approach is reliable in grids dominated by

SGs where the frequency response is more centralised, high integration of CIG poses a

3
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new challenge as the frequency dynamics are increasingly becoming localised [14–16].

As a result, even if the system-wide frequency response, based on the COI model,

appears stable, locational frequency response violations can still occur. This is due to

reduced dynamic coupling between areas with high local CIG penetration and the rest

of the system, which limits the inertia support from other regions. Consequently, this

can lead to unforeseen blackouts because of frequency-related events, such as Rate of

Change of Frequency (RoCoF) and under-frequency relay activations [12,14,15].

To account for the frequency dynamics in detail and avoid these challenges, time

domain simulations (TDS) are required. This approach involves the use of a full, de-

tailed phasor domain power system simulator, such as PowerFactory [17], to simulate

the power system. However, TDS is a computationally intensive process due to the

solving of the network’s Differential Algebraic Equations (DAEs). This issue becomes

particularly problematic in modern systems where there are growing CIG-related uncer-

tainties, leading to an increased number of scenarios that need to be assessed. This, in

turn, renders such applications computationally prohibitive for applications in real-time

or close-to-real-time settings, that is, during operational timescales. Analytical and/or

numerical approaches have been proposed to address these challenges, offering improved

accuracy than the traditional COI-based methods. However, these approaches often

encounter accuracy limitations due to significant complexities being introduced, and as

more details are considered, they become computationally intensive. This highlights the

need for more reliable methods capable of accurately accounting for these complexities

without imposing a significant computational overhead.

Data-driven or Machine Learning (ML) techniques have gained traction in various

power systems applications [3, 18, 19]. These methods can establish complex relation-

ships with high accuracy based on simulation or observed data during training. They

do not rely on directly solving the DAEs to make a prediction. As a result, they are

computationally efficient and suitable for real and close-to-time applications. There-

fore, in response to the challenges faced by conventional methods in the face of the

increasing displacement of SGs with CIGs to achieve net zero ambitions, this thesis

takes a different approach by developing a novel set of ML-based models to efficiently
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and accurately account for the detailed frequency dynamics necessary to ensure the

frequency stability of modern power networks.

1.2 Contributions

This thesis tackles the increasing complexity of modern power systems, driven by the

high integration of CIGs, using an ML-based approach. Specifically, it addresses fre-

quency stability challenges related to situational awareness, as well as preventive and

corrective frequency stability management. The proposed approach aims to improve

both accuracy and computational efficiency in frequency stability applications, chal-

lenging conventional approaches. The key contributions of this thesis are summarised

as follows:

i. Accurately capturing and representing detailed locational frequency dynamics of

the network : We propose an ML-based method to predict the detailed locational

frequency dynamics of the network, which would otherwise be hard and compu-

tationally intensive to represent using existing analytical methods —which relies

on the explicit formulation of power system equations — and where TDS would

be computationally prohibitive. The proposed method is a data-driven technique

capable of learning the complex relationships of the system based on observa-

tional data. Unlike the conventional analytical approaches, this eliminates the

need to solve DAEs to predict the dynamics. As a result, the proposed approach

can predict almost instantaneously (under 100 milliseconds), while maintaining a

high enough accuracy similar to that of TDS.

ii. Enhancing the understanding of frequency dynamics in the network amid the

growing complexity and numerous interacting devices: As systems become more

complex and grow in scale with numerous interacting devices, understanding var-

ious dynamics at play becomes crucial for maintaining stability. We propose an

explainable ML-based approach —a technique that enhances the understanding

of ML algorithms by explaining the logic behind their predictions — to generate

concise system stability rules, providing insights into the system’s dynamics. We
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implement a game-theoretic approach using additive feature-attribution meth-

ods to explain the behaviour of highly accurate black-box ML models used to

capture detailed dynamics of the system. This allows planners and operators

to pinpoint important system variables shaping the system’s stability boundary,

without entirely relying on the computationally intensive TDS for insights. Such

an approach could also inform system optimisation models to enhance secure

system operation, by leveraging such insights as optimisation rules or preventive

interventions in stability-aware generator dispatch or unit commitment.

iii. Accounting for the system’s increasing complexity by directly representing detailed

frequency dynamics within security-constrained optimisation models: Deriving ac-

curate analytical expressions of detailed locational frequency responses in systems

with high CIG integration is a challenging task. These expressions, later inte-

grated into security-constrained models, i.e., optimisation models with stability-

oriented constraints, such as in Security-Constrained Unit Commitment (SCUC),

are necessary to prevent locational frequency violations. However, they can incur

significant computational budgets, especially since they are part of an optimisa-

tion routine, and typically require solving algebraic equations numerically equiv-

alent to DAEs. As a result, necessary simplifications, such as those offered by

COI-based methods, are often employed. We propose to overcome these limita-

tions by directly representing the detailed frequency dynamics within security-

constrained optimisation models using a reformulated ML model as constraint(s).

Since ML models are trained to capture such detailed dynamics, the optimisa-

tion model no longer requires solving DAEs to converge to a frequency-stable

solution. As a result, the optimisation process becomes more efficient, achieving

faster convergence, thereby facilitating near-real-time applications. Furthermore,

in analytical-based constraints such as the Piecewise Linear (PWL) approxima-

tion of differential equations, the number of constraints significantly increases

with each introduction of new devices such as SGs, thereby increasing complexity

and further prolonging solver convergence due to the corresponding DAEs intro-

duced. In contrast, the number of constraints imposed by the proposed approach
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remains constant regardless of the introduced changes.

iv. Developing an efficiently adaptive frequency control scheme for emergencies: Real-

time frequency control actions are integral to maintaining the integrity of power

systems. The conventional under-frequency load-shedding scheme (UFLS) is inef-

ficient as it operates based on the violation of pre-set frequency thresholds, trigger-

ing predefined shedding of a certain load percentage at various steps. We propose

an adaptive reinforcement learning (RL) agent-based emergency frequency control

approach, capable of determining an efficient load-shedding strategy in real-time

by adaptively optimising when, where and how much load to shed to maintain sta-

bility. The proposed approach employs a two-layered protection scheme, retaining

the conventional emergency control technique as the last resort to safeguard the

agent’s actions for robustness. Furthermore, we introduce the physics governing

the dynamic system within the RL agent’s training process, enabling more effi-

cient and optimal performance over conventional purely data-driven agents that

are trained through excessive sampling. The benefits offered by this approach

address the common challenges faced by conventional RL methods in modern

large-scale power systems as follows: i) reduced reliance on extensive training

data, ii) enhanced sampling and solution optimality by eliminating non-essential

actions, through a Physics Shield (PS) —post-action filtering through the swing

equation to constrain the search space, iii) faster convergence by limiting RL

agents’ non-beneficial exploration, iv) better extrapolation capabilities resulting

from the system’s physics accounted for during the model’s training and, iv) less

vulnerability to dimensionality through a physics-informed dimensionality reduc-

tion technique.

1.3 List of Publications
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Chapter 2

Literature Review

In this chapter, we present the literature review that motivates the research conducted

in this thesis. We provide a technical introduction to the frequency dynamics of the

power system, the main focus of this thesis. Then, we subdivide the literature dis-

cussion into three key aspects of frequency stability management as follows: First, we

focus on understanding and representing the detailed frequency dynamics in systems

with high CIG integration; second, we explore preventive techniques aimed at accu-

rately addressing frequency stability issues in near-real time and planning timescales;

and third, we move into corrective techniques for real-time applications, focusing on

advanced adaptive frequency control during emergencies.

2.1 Power System Frequency Dynamics

Frequency stability refers to the ability of the system to maintain a steady and ac-

ceptable frequency after a disturbance. An illustration of this concept is shown in

Fig. 2.1. To maintain nominal frequency, fnom, the system generation and demand

must remain balanced. If the system generation exceeds demand, the system exhibits

over-frequency, and vice versa. If the demand exceeds generation, under-frequency oc-

curs. The available inertial response in the system can be quantified as the available

immediate energy, Esys, that is injected into the power system before the activation of

reserves [12,20]. This is the total contribution from N online SGs, stated as:
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Figure 2.1: Active power balance and frequency stability in power systems

Esys =
N∑
i=1

1

2
Jiω

2
i (2.1)

where Ji is the moment of inertia of the shaft in kg.m2.s and ωi is the angular velocity

in rad/s. Power systems maintain a balance between generation and demand (including

losses) for a steady frequency of the system. Immediately following a disturbance, such

as a loss of generation, the RoCoF of the system frequency can be estimated according

to an equivalent swing equation [21, 22] of a single machine (or an aggregated system

response) stated as follows:

df(t)

dt
=
Pm(t)− Pe(t)−D∆f(t)

MH
(2.2)

where Pe(t) represents the electric power demanded by the load (including losses) in

the system, while Pm(t) represents the mechanical power of the generator(s). MH is

the inertia coefficient of the system, while D is the damping coefficient. At the onset of

the disturbance, where ∆Pm = 0 and damping coefficient component, D∆f(t) = 0, the

11



Chapter 2. Literature Review

system response is due to the disturbance magnitude, ∆Pe(t), and the available inertia

coefficient, MH .

The overall imbalance in the system following the disturbance can be represented

as ∆P . To capture the system’s frequency nadir following the disturbance, the energy

lost must be equal to or less than the energy injected into the system; otherwise, the

frequency decline is perpetual [14]. This relationship can be stated as follows:

∫ tNadir

t=0
∆P (t)dt ≤

(
2Ht∆fmax

fnom

)
+D

∫ tNadir

t=0
∆f(t)dt

+

∫ tActiv.+t′

tActiv.

FR(τ)dτ (2.3)

where tNadir is the time the frequency nadir occurs, t = 0 is the time of disturbance, fnom

is the nominal frequency, tActiv. is the response activation time, fmax is the maximum

permissible deviation, Ht is the aggregated system synchronous inertia in MWs, and t′

is the delivery period (t′ ≤ tNadir − tActiv.) of the frequency response service (in sec.).

The first part corresponds to the energy lost as a result of the disturbance. The first

term on the right-hand side of the equation corresponds to the energy injection due

to inertia; the second term is the energy ‘contribution’ from damping, while the last

term, FR, is the energy contribution from frequency control resources due to governor

response, fast frequency control, and/or energy imports.

2.2 Understanding and Representing Complex Frequency

Dynamics of Power Systems

The proliferation of CIGs introduces new challenges to the safe and reliable operation of

the power system. Unlike SGs, which provide inertia —the kinetic energy stored in their

rotating mass —CIGs are coupled to the grid through power electronics, preventing

their ability to directly contribute to system inertia [21, 23]. Whenever the system

experiences an imbalance resulting from a disturbance, such as a loss of generation,

inertia acts as the immediately available energy released into the power network. This,
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Figure 2.2: Sample frequency oscillations following the loss of a generator in the Texas
2000-bus system
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in turn, helps the system to resist rapid frequency declines until the frequency response

and control systems restore balance [12].

Typically, in frequency response studies and the allocation of minimum frequency

control resources, the COI-based approach is used —where all SGs in a system are

combined into a single rotating mass coupled to an infinite bus, thus modelling the

network frequency response as a global phenomenon [12, 24]. In a network with N

buses and n SGs, this function is expressed as, ∀i ∈ {1, ..., N}:

fCOI(t) =

∑n
i=1Hif

g
i (t)∑n

i=1Hi
(2.4)

where fCOI(t) is the average frequency response of the system, which is weighted by

the inertia contribution, Hi, of n online SGs and fgi (t) is the rotor speed of the ith

generator. Employing COI-based methods in frequency studies is a widespread ap-

proach; for instance, the Electric Reliability Council of Texas determined its minimum

network inertia as 100 GW.s, while Great Britain determined 135 GW.s for its network

through this approach. However, systems with high CIG integration are experiencing

increasing locational frequency variations (similar to that shown in Fig. 2.3) compared

to SG-dominated systems [12, 14]. Consequently, the conventional approach of repre-

senting the frequency dynamics of the network using COI-based methods is becoming

increasingly unreliable, as it puts the network at risk of unforeseen protection relay ac-

tivation, capable of causing large-scale blackouts [15]. Moreover, the cost of generation

increases when the system is overly secured to mitigate such risks, which undermines

sustainability efforts to make clean energy more accessible.

The frequency divider (FD) is an analytical method proposed in [25,26] to address

the limitation of conventional COI-based approaches. It uses an augmented system

admittance matrix to estimate the local bus frequency, including systems with CIG

integration. Given a steady-state model where SG frequencies determine the boundary

conditions, the FD operates on the principle that the frequency at a particular bus is

affected by power flows —by defining the quota of active power that contributes to fre-

quency variations of buses —and the dynamics of SGs connected to it, weighted by elec-

trical distances. [12] also demonstrated this phenomenon on the Texas7000 model [5,27]
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Figure 2.3: Sample frequency oscillations following the loss of a generator in the IEEE
39-bus network with a nominal frequency of 60 Hz
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by examining locational frequency response variations under different operating condi-

tions (OCs), showing that various parts of the system crossing the stability boundary

(such as RoCoF and nadir) may remain undetected by COI-based methods, potentially

leading to unforeseen relay activation. To address this challenge, the paper proposes

utilising the numerical derivative of the voltage phase angle to model locational fre-

quency dynamics. [14, 15] demonstrated that in a CIG-dominated power system com-

posed of two areas with significantly different inertia levels, the lower inertia area is

the most sensitive to disturbances. This can result in instances of locational frequency

violations when using a single COI-based response to represent the entire system. An-

alytical approaches, complemented by conservative regression —whose weights are cal-

culated through a linear regression on training samples generated by RMS-TDS —were

proposed in the paper [14] to accurately determine area-specific-COI-based responses

to minimise such risks of locational violations. However, effectively defining such areas

in a network is challenging, as they are OC-specific (in terms of the number of areas

and composition), rather than static (two areas considered), as done in this study.

Despite the potential demonstrated by analytical methods [12,16,25,28] in address-

ing the challenges associated with the increasingly locational frequency dynamics of

modern networks, these methods, including the frequency divider [26] and the deriva-

tive of voltage phase angles [12], continue to face accuracy issues due to the growing

system complexity, and can be computationally intensive in high-dimensional settings

involving detailed solving of the network’s DAEs —making them less suitable where

fast assessment is necessary. Measurement or data-driven approaches have been pro-

posed in the literature to address these limitations. Data-driven techniques use Machine

Learning (ML) models to make predictions based on the learned relationships from the

training data —leading to fast estimation time and the learning of ‘hard-to-model’ rela-

tionships. The Kalman filter was employed for online estimation of the COI frequency

response in the IEEE 39 bus network by [29]. A model decoupling strategy was applied,

utilising generator active power outputs as the swing equation input for adaptive COI

frequency estimation in real-time applications. [30] employs locational Nonlinear Auto-

Regressive (NAR) models based on an Artificial Neural Network (ANN) to predict the
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locational frequency nadir and the time the nadir occurs in the Nordic 32 Test System,

using post-disturbance bus frequency samples as inputs. [29, 31] applied data-driven

techniques for a better online estimation of the COI frequency response using Phasor

Measurement Units (PMUs) data. Similarly, [24, 32] used data-driven techniques to

enhance the accuracy of the COI-based model in power systems with increased com-

plexity due to interconnections and CIG penetration. However, despite the numerous

data-driven applications in the literature, existing methods focus only on improving the

accuracy of the COI model, without addressing the emerging challenge of locational

frequency dynamics, driven by the high integration of CIGs. Moreover, such ML-based

methods consider predictive accuracy more than model interpretability, hindering the

necessary trust required for adoption among practitioners in the safety-critical power

system infrastructure [33].

In [3,34,35], the authors proposed using Interpretable ML (IML) techniques to en-

hance understanding of the entire transient stability boundary. IML aims to reveal the

decision-making processes of ML models by making them understandable, rather than

simply focusing on the ML model’s predictive accuracy. Both methods propose loca-

tional ML models trained to predict the Critical Clearing Time (CCT) —the maximum

allowable time after a fault occurs within which the fault must be cleared to ensure that

the power system remains stable—at each busbar in the network. Thereafter, IML is

used to uncover underlying system relationships and variables influencing such stability

boundaries at each fault location. These insights could inform various interventions to

enhance the system’s transient stability. [3] achieves this using Decision Trees (DTs)

and Permutation Feature Importance (PFI). However, DTs may not always be able

to achieve high accuracy in more complex scenarios, and PFI is only able to provide

information regarding feature importance and not feature effect. [35] goes further to

address this limitation by using SHapley Additive exPlanations (SHAP), which can ex-

tract both the importance of features and the effect on high-accuracy black-box models

like ANNs. SHAP values are therefore used to derive a detailed location-specific un-

derstanding of what affects the transient stability of the system. Similarly, in [36], a

SHAP-value-based approach is proposed to uncover the underlying frequency stability
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relationships in the system. Insights are derived using SHAP values to explain the ef-

fects of various features on the system frequency stability. By combining these insights

with domain knowledge, the approach aims to explain essential aspects of power system

operation by identifying the main drivers and stability risks. Based on the literature

above, three main challenges are observed: i) explicit representation of the emerging

locational frequency dynamics to prevent unforeseen local frequency violations remains

underexplored, ii) current IML and explainable methods often focus on getting insights

related to dynamics by explaining the behaviour of the black-box models, and iii) while

the methods aim to uncover the underlying system relationships, they do not suffi-

ciently go beyond statistically explaining the insights into verifying them by defining

rules such as through preventive actions, to quantify their effectiveness. In our work, we

go beyond gaining insights by formulating SHAP-informed interventions in the form

of constraints to enhance system stability through targeted preventive actions, with

their final effectiveness validated via RMS-TDS —making their potential in practical

application uncertain.

2.3 Security Constrained Optimisation for Preventive Fre-

quency Stability

Security-constrained optimisation involves incorporating stability-oriented constraints

within the model to ensure secure system operation [16,37]. Traditionally, these meth-

ods rely on static constraints, such as minimum system inertia [12], to ensure frequency

stability. This approach, which often employs COI-based constraints, is insufficient for

application in modern power systems with high CIG penetration. This is because in

such systems, the frequency dynamics are increasingly localised, and relying on the

COI to represent these responses poses risks of undetectable local frequency violations,

potentially causing blackouts [12,14–16].

Addressing the limitations of COI-based frequency constraints within security-

constrained optimisation models has been investigated in established works [14–16,37].

A Piece-Wise Linearisation (PWL) technique in [22] is applied to linearise a modified
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frequency response model in multi-machine systems dominated by conventional syn-

chronous machine generators. While this approach was demonstrated to be effective in

synchronous machine-dominated systems, systems with high CIG penetration, where

the frequency dynamics are more complex, were not tested. A linearisation method

while considering CIGs was implemented by [37–39]. The method uses the linearised

and modified COI as a constraint to consider the influence of CIGs in the network.

In [14, 15], it was demonstrated that the use of the COI, instead of the actual loca-

tional frequency responses, is not always reliable and may, at times, lead to econom-

ically inefficient optimisation decisions. However, capturing in detail the locational

frequency responses of the network involves solving high-order differential equations

(such as employing the 6th-order swing equation) [14, 40], which are analytically hard

to derive. Consequently, numerical approaches (conservative regression) were proposed

to describe the frequency responses in an N region network, using the COI plus an

additional term to describe regional frequency differences —two regions demonstrated

in this paper. However, while this is better than the system-wide COI approach, the

definition of such regions remains a challenge, as they are operating condition (OC)-

specific [41]. Furthermore, using conservative regression to model locational responses

may lead to tighter frequency-security regions, especially if the security boundary is

highly nonlinear, potentially leading to convergence issues or over-securing the system.

In [40], the detailed frequency behaviour of each SG in the system is captured us-

ing the Trapezoidal rule, a numerical integration method applied to convert the DAEs

into numerically equivalent algebraic equations. These algebraic equations are then

implemented within the optimisation model to capture the locational frequency char-

acteristics of the system. However, solving DAEs in an optimisation model substantially

increases the computational requirements, particularly due to the large set of algebraic

equations introduced as constraints. As each additional SG increases the number of

DAEs proportionally, so does the computational time, potentially leading to scalability

issues in real-world, large-scale power systems [40]. A similar approach is proposed

by [16] in a security-constrained unit commitment problem. The work introduces a

function that models locational frequency dynamics in the network, parameterized by
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the Frequency Forming Coefficient (FFC) and Synchronising Power Coefficient (SPC).

This function is expressed as the sum of the product of FFC and SPC, divided by the

generator’s inertia contribution. While both coefficients depend on the system’s topol-

ogy and operational variables, FFC primarily reflects the contribution of individual

generator dynamics, i.e., rotor speeds to the frequency at a specific bus. In contrast,

SPC is calculated based on the electrical distances between the SGs and buses.

To address the challenges associated with analytical approaches, ML techniques

are applied for frequency stability assessment and control in [24]. A neural network

is integrated with model-based COI frequency estimations to enhance accuracy. The

neural network is employed as an error correction for the COI-based frequency estima-

tions to account for the growing complexities of frequency dynamics. In [42], an ML-

based approach, without relying on COI-based frequency estimations, is also applied for

adaptive estimation of the maximum frequency deviation, steady-state frequency and

time at maximum frequency deviation. A model inheritance technique is adopted for

real-time updates of the prediction model. The proposed approach provides accurate

transient frequency predictions, enabling the timely application of control measures.

Furthermore, embedding ML models as constraints within optimisation models in a

preventive security-constrained optimal dispatch has also been investigated [33,43,44].

This approach is more computationally efficient compared to optimisation models con-

strained by detailed analytical formulations of the network, and more accurate when

compared to COI-based optimisation models. Thus, the ML approach strikes a balance

between these two methods. An iterative approach to incorporate neural network-based

stability constraints within the optimisation model is proposed in [43]. In [44], security-

constrained unit commitment using neural networks to ensure frequency stability is pro-

posed. A linearised neural network, incorporated as optimisation constraints, is used

for transient stability in [33]. However, explicitly accounting for detailed frequency

dynamics in security-constrained optimisation models remains limited; as a result, the

challenge of securing against local frequency stability in converter-dominated systems

has not been fully addressed.
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2.4 Corrective Power System Frequency Stability Man-

agement Using Advanced Frequency Control Tech-

niques

The unprecedented transition of modern power systems from being SG-dominated to

heterogeneous systems with high CIG integration introduces significant challenges in

power balancing, which is essential for maintaining a steady system frequency. Since

CIGs are often weather-dependent and non-dispatchable, balancing tasks have become

increasingly complex.

The Under-Frequency Load Shedding (UFLS) scheme is a widespread emergency

frequency control strategy that involves automated load shedding to maintain power

balance and frequency stability. Its operation is based on the violation of pre-set

frequency thresholds, triggering pre-defined shedding of a certain load percentage at

various steps [45]. However, the assumptions and operational principles underlying

this technique are increasingly being challenged in many ways amidst the increasing

adoption of CIGs. For instance, relying on pre-set thresholds assumes relatively pre-

dictable load and generation characteristics, which is no longer the case considering

that most CIGs are stochastic, whose generation capacity cannot be determined with

full certainty. Moreover, the rapidly varying load further introduces more uncertain-

ties, challenging the reliability of such pre-set load-shedding percentages. Additionally,

bi-directional power flows in CIG-dominated systems can lead to unintentional shed-

ding of the downstream generation, exacerbating power mismatches. Furthermore, the

operation of UFLS neglects to account for the possibility of frequency services offered

by controllable loads [46,47].

Adaptive UFLS (AUFLS) has been proposed in the literature to address the limi-

tations of conventional UFLS [45, 48–50]. This technique is designed to use real-time

system data to provide a load-shedding strategy or scheme in the network, rather than

relying on pre-set static settings, which might otherwise be detrimental towards sta-

bility under previously unconsidered scenarios. An AUFLS scheme is designed using a

Koopman Model Predictive Control (KMPC) to handle local frequency variations by
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availing the benefits of collective balancing from large clusters of flexible loads in the

network by [48]. KMPC is a data-driven control strategy that uses Koopman operator

theory to transform nonlinear system dynamics into a linear representation in a higher-

dimensional space. This enables the use of efficient linear MPC techniques on systems

that are inherently nonlinear, hence preserving convexity in optimisation. By arming

each controllable load with a local frequency measurement device, power modulation of

the load is achieved, ensuring the system’s frequency remains within acceptable limits.

The method, however, requires knowledge of the minimum amount of load at which

the system can safely operate following any extreme event. In [49], an AUFLS is im-

plemented by numerically developing a more accurate power deficit derivation model

consisting of two main parts: i) the power deficit using the COI swing equation plus

effects of system voltage-dependent loads, and ii) considering the effect of synthetic in-

ertia, and contribution from inverter-based resources. While model-driven approaches

perform better than UFLS due to their capability to offer real-time calculations of the

load shedding strategy, their accuracy is increasingly challenged by the complexity and

uncertainty of modern power systems, including the dynamic CIG responses —lead-

ing to excessive simplifications [51]. Moreover, the complexity of weather-dependent

CIGs complicates the uncertainties of these approaches, and accurately modelling all

the dynamics at play in real-time would require significant computational resources.

Consequently, accurate analytical AUFLS becomes difficult to implement, particularly

where real-time or close-to-real-time applications are concerned.

To overcome these limitations, data-driven approaches, mainly Reinforcement Learn-

ing (RL)-based methods, have demonstrated potential for AUFLS applications. Unlike

analytical approaches, RL does not rely on solving the network’s DAEs to establish

an optimal policy from observed or simulation data during training. Instead, through

continuous interactions with the environment, i.e., the power system simulator, RL

agents can capture even complex frequency dynamics, without relying on the explicit

formulation of system equations. An RL approach with continuous load-shedding ac-

tion space for voltage control using the Deep Deterministic Policy Gradient algorithm

(DDPG) is proposed in [52]. [53] adopts an emergency frequency control using the same
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algorithm to restore system frequency in the event-driven load-shedding mismatch sce-

nario, considering multiple faults. A double-Q learning approach is applied by [54] in an

islanded micro-grid for recovering frequency based on ON and OFF actions of different

categories of loads while considering load importance. Despite achieving high accu-

racy in these applications, training such models requires excessive sampling through

a trial-and-error learning process, resulting in inefficient training. Consequently, this

introduces significant computational inefficiency and suboptimal performance. This is

particularly a challenge for applications in large-scale systems with high dimensional-

ity. [55] attempts to address this by adopting a transfer learning approach —where an

emulator Multi-Layer Perceptron (MLP) model was pre-trained on a frequency con-

trol database based on a fine-tuned Proportional Integral Derivative (PID) controller

—resulting in faster and more stable training. Additionally, [56] addresses the problem

using a multi-agent RL-based approach governed by data-enabled predictive control

(DeePC) guided policy search. In this technique, the control actions of the RL agent

are guided by the historical control data of the dynamical system, and there is no

explicit system modelling. The actions combine the RL policy and the data-enabled

predictive control algorithm, adjusted by some weighting parameters, which enhances

the sampling efficiency and solution optimality of traditional RL. However, in all these

methods, it is observed that the physics governing the dynamic system is not consid-

ered, making them heavily reliant on extensive datasets. In addition, without guidance

from the system’s underlying physics, the agent is prone to converging on suboptimal

solutions and requires longer training times, as it may spend a considerable amount of

time exploring non-essential actions.

2.5 Discussion of Current Challenges

From the literature review presented above, it is noted that the challenges associated

with conventional approaches stem from the increased complexity of the system and the

high computational requirements of highly accurate methods, such as TDS (a phasor

domain simulation environment) or detailed analytical methods (mathematical equa-

tions to estimate system behaviour). The growing complexity of frequency dynamics
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in modern power systems, driven by increased CIG integration, remains a challenge yet

to be fully addressed. This is because most of the proposed approaches are analytical

and rely on solving DAEs to make their predictions. This makes it difficult to balance

complexity and computational efficiency, hindering their practical applications. This

thesis addresses these challenges by taking a different direction, employing ML-based

techniques as a suitable alternative. Unlike the existing analytical approaches, ML

models are data-driven techniques that rely on training datasets, rather than explicit

solutions from system equations, to establish highly accurate complex mapping func-

tions between inputs to outputs. These models do not require solving DAE to make

predictions, making them more computationally efficient, regardless of the system’s

scale. In contrast, as the system scale increases, such as through the introduction of

an SG, the number of corresponding DAEs to be solved also increases significantly,

thereby intensifying computational demands. This explains why ML methods have

gained traction in power systems by capturing the level of detail needed while being

computationally fast, making them suitable for close-to-real-time applications. Accord-

ingly, this thesis proposes an ML-based approach to enhance situational awareness in

power systems and improve the efficiency of security-constrained optimisation mod-

els, all while introducing minimal additional complexity —an area where traditional

methods fall short.

It is worth noting that despite the notable contributions in the literature applying

ML-based methods, they mostly focus on improving the accuracy of the COI model

and not on capturing the emerging locational dynamics in the network. Moreover,

despite the reported high accuracies, they normally employ black-box models, that is,

models whose internal workings are not transparent to their users, without provisions

to explain them. This makes it hard for their internal workings to be understood by

potential users, hindering the necessary trust required for adoption. This thesis, there-

fore, addresses this dual problem by explicitly focusing on the locational frequency

dynamics and implementing interpretability and/or explainability tools to explain the

workings of such high-accuracy black-box models. This offers significant potential to

build the necessary trust in ML models and foster adoption among power system prac-
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titioners. An added advantage is that this allows operators to uncover the underlying

relationships in the network —where there is a pool of numerous interacting devices

—helping them pinpoint critical system variables or aspects influencing the stability

boundary. As a data-driven approach, once the ML model(s) undergo a one-time offline

training, they can generate predictions and explanations almost instantaneously. This

significantly enhances accurate real-time system visibility and equips operators with

advanced decision-making tools, enabling more timely and informed decision-making

as well as control.

Furthermore, considering that real-time frequency control is an integral aspect of

maintaining system stability, existing methods still present opportunities for improve-

ment. First, analytical adaptive load-shedding schemes cannot accurately estimate the

amount of load shedding required to maintain stability as the complexity grows, lead-

ing to inefficient actions. Second, while ML-based methods, specifically AUFLS RL,

have been demonstrated as promising alternatives to fill this gap, they heavily rely

on extensive datasets and often struggle in high-dimensional applications due to their

trial-and-error training. This is especially a problem in modern power systems, which

are growing in scale due to interconnections and/or the introduction of new devices.

Consequently, the feasibility of such methods means that necessary assumptions are

introduced. For instance, existing AUFLS RL often limits analysis to a few randomly

selected loads or clusters an arbitrary number of loads to achieve collective benefits

for the load-shedding strategy. This affects the quality and practical applicability of

such RL policies developed. Moreover, to the best of our knowledge, no work has

demonstrated how such AUFLS RL integrates with the traditional under-frequency

load-shedding scheme. As such, this thesis addresses these challenges by developing

a physics-informed AUFLS RL, trained to account for the physical laws and relation-

ships governing the dynamic behaviour of the system —which traditional approaches

ignore. Although it can be claimed that training datasets may capture some of these

physics, their absence leads to reliance on extensive datasets, sub-optimal performance,

computational inefficiency leading to long training time and difficulty in extrapolating

beyond the training domain —potentially leading to detrimental actions in those sce-
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narios. Additionally, the proposed AUFLS RL is integrated with the conventional

UFLS as a two-layered protection scheme, effectively making it more robust and reli-

able. Therefore, the research in this thesis enhances the effectiveness of these AUFLS

RL techniques by improving the optimality of solutions while enhancing computational

efficiency —a crucial aspect where practical applicability in modern high-dimensional

power systems is concerned.
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Chapter 3

Enhancing Power Systems

Situational Awareness for

Frequency Stability

In Chapter 3, we propose an ML-based method to enhance situational awareness of

power systems, focusing on locational frequency dynamics. The proposed method has

the advantage of offering preferable qualities of computational speed while exhibit-

ing high accuracy —comparable to approaches relying on much more computationally

demanding iterative TDS. This contribution was presented at the 59th International

Universities Power Engineering Conference (UPEC), Wales, Cardiff, UK, based on the

award-winning paper [Pub. A]. As an initial step, we highlight the complexity of the

underlying problem and the need for a detailed representation of locational frequency

dynamics. We then quantify the potential locational frequency response variations

under varying CIG penetrations, demonstrating how COI-based methods may fail to

capture these variations. While COI-based simplifications are necessary due to the

prohibitive system complexity and significant computational overhead associated with

modelling all the dynamics in detail, they could lead to unforeseen locational frequency

violations. This arises because the COI model, being a simplified representation based

on the average system response, is inherently unable to capture the full extent of spa-

tially distributed dynamic behaviours. To address this limitation, we implement and
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test several ML algorithms to rapidly predict locational frequency response dynamics

—striking a balance in overcoming the drawbacks of the fast and yet overly simplistic

COI-based approach and the accurate and yet computationally intensive RMS-TDS.

The contributions of this work are as follows:

i. Explicit representation of the emerging locational frequency dynamics, which are

increasingly critical in modern power systems with high renewable penetration,

demonstrating how COI-based methods may fail to model such locational viola-

tions.

ii. Capturing and representing these locational dynamics through fast and yet accu-

rate ML models, while providing quantitative performance comparisons with the

traditional COI-based method —overcoming the drawbacks of the overly simplis-

tic COI-based methods and the detailed but time-consuming TDS.

3.1 Frequency Response Dynamics and Locational As-

pects in Power Systems

In this chapter, the foundational understanding related to power frequency dynamics

is provided, building up on the content introduced in Chapter 2.1, mostly to highlight

the complexity of the underlying problem and the need for a detailed representation of

locational frequency dynamics.

3.1.1 Representing Locational Frequency Dynamics in Power Systems

In systems with high penetration of CIGs, frequency dynamics are becoming increas-

ingly localised (exhibiting locations similar to Fig. 2.2). This eventually reduces the

reliability of COI-based methods (described by (2.4)) for representing the system’s fre-

quency, due to unforeseen locational violations risks. As a result, more granularity in

frequency studies to account for such locational variations is required. [25,26] proposed

the Frequency Divider (FD) to estimate local bus frequency, using an augmented sys-

tem admittance matrix. This method operates on the principle that local frequencies
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are affected by power flows and the dynamics of nearby generators. It defines a quota of

active power that contributes to frequency variations of buses, weighting it by electrical

distances. [12] proposed using the numerical derivative of the voltage phase angle to

model locational frequency dynamics. A similar approach is proposed by [16], where

a function that models locational frequency dynamics in the network is introduced.

The function is parameterised by two coefficients: the Frequency Forming Coefficient

(FFC) and the Synchronising Power Coefficient (SPC). The frequency at any bus in

the network is estimated by summing the product of FFC and SPC across all online

SGs and dividing this sum by their total inertia contribution. Both coefficients are op-

eration condition-specific and are influenced by the system’s topology. However, FFC

primarily captures the dynamic contribution of individual SGs at a given bus, while

SPC reflects the electrical proximity between SGs and buses, derived from network

impedance characteristics. However, despite the potential of these methods, they share

a common drawback: they are computationally intensive, since they rely on solving

the system’s DAEs to make predictions. Furthermore, their accuracy is challenged as

system complexity grows, increasing the scale of assumptions required to make them

hold. Such limitations reduce their suitability for applications requiring fast or real-time

frequency stability assessments. Accurately accounting for the locational frequency dy-

namics means that given a network with N buses and n SGs, the frequency response

for bus i can be estimated as described in [14,15], ∀i ∈ {1, ..., N}:

dfi(t)

dt
=

dfCOI(t)

dt
+Aiωi(t) (3.1)

where fCOI(t) is the average frequency response of the system, which is weighted by the

inertia contribution of n online SGs (described by (2.4)). The factor Aiωi(t) represents

locational oscillations or deviations from the COI of the frequency response at every ith

location of the network. This factor depends on the operating condition of the system,

that is, a function parametrised by variables such as inertia distribution, disturbance

size and location, reserves, etc. As such, high enough deviations, captured by Aiωi(t),

can significantly deteriorate the accuracy of COI-based methods (Chapter 2.1) —po-

tentially leading to the risk of unforeseen relay activations or the need to over-secure
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to avoid this from happening. However, analytically deriving Aiωi(t) is very hard, as

it would require finding the global minimum of a nonconvex function —justifying the

continued use of the simplified COI model. Alternatively, if more details are required,

such as accurately accounting for the spatial distribution of the dynamics, RMS-TDS

are used despite their intensive computational requirements. Similarly, for nadir, this

would again involve deducing locational tNadir,i, ∀i ∈ {1, ..., N}, which is hard to do for

the same reasons analytically proved in [14]. Therefore, to address this challenge, we

propose using ML-based techniques to capture such N locational frequency stability

dynamics associated with the factor Aiωi(t). The ML model is trained using a detailed

RMS-TDS dataset and consequently captures the detailed local frequency variations.

Once trained, the model can achieve accuracy levels comparable to using RMS-TDS

while requiring only a fraction of the time.

3.2 Machine Learning Approach for Capturing and Mon-

itoring of Locational Frequency Dynamics

ML models are universal approximators capable of establishing accurate mappings be-

tween given inputs and outputs. In the context of power system applications, the inputs

may include system state variables, while the output can be a stability classification

or regression target. Given that these are data-driven approaches, this effectively cre-

ates a fast and efficient surrogate model —a simplified approximation of the complex

system. Moreover, such an approach becomes even more valuable for applications in

large-scale grids where real-time TDS is impractical, or when numerous scenarios must

be screened. To achieve this, we use RMS-TDS data generated offline for a one-time

ML model training. The RMS-TDS dataset contains the system’s operational and

characteristic variables, which act as the ML model’s input features. In addition, the

dataset contains frequency stability variables as the ML model’s regression targets.

During training, the ML model aims to accurately learn the complex function mapping

the inputs (the characteristic features) to the outputs (regression targets or the fre-

quency dynamic response of the system). Note that while Phasor Measurement Units
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(PMUs) are sensors capable of providing locational frequency measurements across the

system, they simply allow for real-time monitoring of the system’s current state and

postmortem analysis; as such, they are incapable of predicting the post-disturbance

dynamic response of the system, like the proposed method. This limitation leaves no

room for preventive actions. Moreover, their high cost often limits widespread deploy-

ment, reducing system visibility. In contrast, our models can effectively predict the

system’s responses to disturbances.

3.2.1 Machine Learning Models for Locational Frequency Dynamics

Prediction

ML models are proposed and used as surrogate models to predict locational frequency

stability metrics in a power system, specifically, nadir and RoCoF. To this end, four re-

gression algorithms, namely Decision Trees (DT), K-Nearest Neighbours (KNN), Multi-

Layer Perceptron (MLP), and a Hybrid model, an MLP algorithm whose vector of input

features consists of both the variables from the power system, and COI-based frequency

response predictions, are trained and tested to provide a comparison against the COI-

based method.

i) Decision Trees (DT)

Decision Trees (DT) are among the supervised learning classes used for classifi-

cation (predicting labels) and regression (predicting continuous values). The tree is

constructed after splitting the dataset, starting from the root node (source set) into

subsets (known as successor children) based on the predefined rules derived from the

available features [57, 58]. This process is repeated recursively on each derived subset

until further splitting no longer improves the predictive power. The leaves of the tree

represent the final predicted labels or regression values, while the branches are the

decision rules leading to these predictions [57].

ii) K-Nearest Neighbours (KNN) Regression

KNN algorithm makes a prediction using proximity, operating under the assumption

that similar points are found near one another [57,59]. Given a query point, the model

identifies a predefined number of nearest neighbours from the training dataset and
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Figure 3.1: Artificial Neural Network (ANN) architecture

determines the predicted value based on their votes, weighted by a specific metric [58].

For example, in uniform voting, all points in each neighbourhood are weighted equally,

whereas in distance-weighted voting, closer neighbours have a greater influence. We

use the Euclidean distance as defined by (3.2) to determine proximity. Given two

feature vectors xtest (a vector from the testing dataset) and xtrain (a vector from the

training dataset), the distance between a query point xi and a training point xk in a

D-dimensional space is computed as follows:

d(xi, xk)
def
=

√√√√ D∑
j=1

(x
(j)
i − x

(j)
k )2 (3.2)

iii Multilayer Perceptron (MLP)

MLP is a class of feed-forward Artificial Neural Network (ANN) that contains at

least three layers, that is, the input layer, the hidden layer with σv neurons each, and

the output layer, as shown in Fig. 3.1. The input layer receives the input feature

vector from the dataset, while the hidden layer performs computation to optimise the

weights and biases necessary to minimise the model prediction errors. The output layer

is the final layer that contains the model prediction, whose size depends on the number
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of targets. Given an input feature vector x and a V hidden layers MLP model with

Wv weights matrix of size (σv, σv+1), and bv bias vector of size (σv, 1), the model’s

prediction is computed using (3.3-5.6) as follows:

z1 = WT
1 x+ b1 (3.3)

zv+1 = WT
v+1zv + bv+1, ∀v = [1, .., V − 1] (3.4)

where z1 is the initial output vector of layer one without any transformations. In the

subsequent v layers, activation functions, Θv, are applied to introduce non-linearities,

enabling the model to learn complex nonlinear relationships in the data. The trans-

formed output of layer v is then passed to the subsequent layer v+n, ∀n = [1, ..., V −1],

that is ẑv = Θ(zv+1). The ReLU activation function expressed as max(0, zv), is adopted

as it can overcome numerical issues associated with other activation functions. The pre-

dicted output vector of the model, y, is then given as:

y = WT
V+1ẑV + bV+1 (3.5)

The process of optimising the model parameters involves the initial passing of the

input data from the input layer to the output layer, with randomised weights and

biases, a step known as forward propagation. Thereafter, back-propagation, which is

the reverse process by passing the dataset from the output layer to the input layer, is

applied to compute the error gradient, e, concerning the initially randomised parameters

[57, 58, 60, 61]. The weights, wi, and biases, bi, are optimised or updated at a specified

learning rate, η, until the overall error is minimised as follows (3.6)-(3.7):

wi ← wi − η∇e, wi ∈W (3.6)

bi ← bi − η∇e, bi ∈ b (3.7)

Finally, these steps are repeated several times over epochs, that is, one complete
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pass through the entire training dataset, to establish the best model parameters.

iv) Hybrid Model

The hybrid model, proposed in this work, is shown in Fig. 3.2. It integrates pre-

diction based on COI-based and ML-based prediction methods to benefit from the

strengths of both approaches. COI-based prediction, calculated using Equation (2.4),

preserves key physical aspects governing the dynamic system, which a purely data-

driven ML model may miss. Meanwhile, the ML model acts as an error corrector,

accounting for the locational frequency dynamics to enhance overall accuracy. Specifi-

cally, this is achieved by transforming the COI-based prediction (the system’s weighted

frequency response) into N -locational frequency response predictions. Thus, the input

vector of this model, x = [x1, ..., xn]
T , remains the same as the other ML models used

in this work, with the addition of the COI-based predictions. A similar approach was

adopted in [24, 32] using the Extreme Learning Machine (ELM) algorithm, where the

data-driven model corrected the prediction errors of the COI-transfer function for con-

trol. However, unlike the previous work, our approach explicitly accounts for locational

frequency dynamics, effectively enhancing the situational awareness of the system.

Figure 3.2: The Hybrid integrated COI-MLP Model architecture

Therefore, the final prediction of the Hybrid model, accounting for the locational

frequency dynamics, RoCoF,
ˆ̇
finst,i, and frequency nadir, f̂Nadir,i, across N locations in

the network is as follows:
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 ˆ̇
finst,i

f̂Nadir,i

 =

 ḟCOI,inst

fCOI,Nadir

+

 e1,i

e2,i

 (3.8)

where ḟCOI,inst and fCOI,Nadir are the COI-based frequency RoCoF and nadir predictions

respectively. The error(s) or individual locational deviations from the COI model, e1,i

and e2,i for RoCoF and nadir, respectively, may be ascribed to ‘hard-to-model’ aspects

of the system such as disturbance location, the impact of reactive power injections, and

network topology, among others as described earlier in this chapter.

3.3 Methodology for Capturing and Representing Loca-

tional Frequency Dynamics

3.3.1 Dataset Generation and Dynamic Simulations

The generation of scenarios or OCs for the ML frequency stability database involves a

variation of three factors: the number of SGs connected, CIG output, and the system

demand. Each SG is considered to comprise four equal-sized units, u ∈ (1, 2, 3, 4),

and its displacement by CIG output is in four stages. The new rating of the SG, i.e.,

SGMVAnew, is based on the number of remaining units and is then rated to SGMVAold

as represented by (6.15). Accordingly, increasing generation capacity corresponds to

bringing more units online rather than resizing individual units. This, in practice, may

reflect the commitment of additional generators during operation. Similarly, the CIG

output is scaled inversely based on u and SGMVAold. Variables r ∈ (1, 1.4) (representing

low and high CIG penetration scenarios, respectively) and s ∈ (−0.05, 0.05), which are

sampled uniformly, are introduced to decouple the direct relationship between CIG

penetration and SG displacement as follows [3].
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SGMVA,new = u(SGMVA,old/4), u = [1, ..., 4] (3.9)

CIGMVA = r

(
(5− u)SGMVA,old

4
+ s(SGMVA,old)

)
(3.10)

Consequently, based on the number of SGs in the system displaced by the CIGs,

the total CIG penetration level is up to 40% of the overall system generation. The

system demand ranges from 0.6 to 1.025 p.u. in steps of 0.025 p.u. All CIGs oper-

ate at fixed active power dispatch based on (6.16). The AC-OPF model is used for

generation dispatch. This approach ensures that the generated scenarios are opera-

tionally feasible and consistent with the actual network’s limits, including the voltages,

which better reflects the practice by system operators. Moreover, the AC-OPF-based

sampling helps us prevent including physically infeasible scenarios that could degrade

the performance and generalisability of our trained ML model. Finally, OPF reflects

market-based dispatch that minimises cost, leading to more realistic scenarios in this

aspect too. To initialise the initial operating conditions of the power system in our

RMS-TDS environment, the Newton-Raphson load flow is utilised. Thereafter, we ap-

ply N − 1 contingency of the highest generation in the low inertia area (Area 2), SG-6

contributing between 20% and 50% of the total area generation. Note that our method

is not contingency-specific; as such, any other contingency can be adopted without

loss of generality. The system stability limits are considered to be 59.3 Hz and -0.5

Hz/s for nadir and RoCoF, respectively [12]. The simulation window is 60 seconds

(see Fig. 2.2) to capture both the system’s inertia response and primary responses to

disturbances. RoCoF is calculated as an average frequency response change over a typ-

ical measurement window of 500 milliseconds post-disturbance to mitigate simulation

or measurement noise errors. Frequency response predictions by the COI model are

calculated using (2.4).

3.3.2 Data Pre-processing and Training

From the generated dataset of operational scenarios, a 70-30% train-test split is adopted,

utilising the 5-fold Cross-Validation technique —which randomly splits the training set
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into k-folds, whereby each k− 1 set is used for training. Feature standardisation of the

dataset is achieved by using the StandardScaler [57], which is a pre-processing technique

that rescales every feature so that the mean is zero with a unit variance. Following

training, the stored mean and standard deviation, through Inverse-Transform, are used

to rescale the data for testing and evaluation. The scaling process is represented as:

zi,j = si
xi,j − µi

σi
, ∀i = [1, ..., 2×N +M ] (3.11)

where zi,j is the standard score, xi,j is the input value, µi is the mean, σi is the standard

deviation and si is the scaling factor of the j
th sample. N represents the number of buses

—multiplied by two metrics (RoCoF and nadir) per bus, while M are the operational

and physical variables of the network, as input features. Therefore, given a trained

ML model, ρ, and a feature input vector x of size (M × 1), the locational frequency

dynamics of the system are captured as follows:

[
ˆ̇
finst,i, f̂Nadir,i] = ρ([l, g, d, h, o]), ∀i = [1, ..., N ] (3.12)

where, in a network with N (monitored) buses,
ˆ̇
finst,i and f̂Nadir,i are the predicted

RoCoF and nadir at the ith bus, respectively. The feature input vector of the model, x,

consists of l, the system loading; g, the CIG active power output; d, the active power

dispatch of SGs; h, the inertia of SGs in MVA.s; and o, the generator MVA ratings.

To identify a suitable combination of hyperparameters giving the best performance

from the ML model’s training, we apply the sklearn-GridSearchCV. This is a tool that

automates the process of finding the best combination of hyperparameters for a given

ML model by exhaustively searching over a user-defined parameter grid [57,58]. Sequel

to model training, the stored mean and standard deviation, through Inverse-Transform,

are used to rescale the data back to their original values for testing and evaluation.

3.3.3 Model Evaluation

The predictive performance of all the models, including the COI-based method, is

evaluated by two main metrics: the Mean Absolute Error (MAE) (3.13) and the Root
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Mean Squared Error (RMSE) (3.14), which are calculated by:

MAEj =
1

Ne

Ne∑
i=1

|yi,j − ŷi,j |, ∀j = [1, ..., N ] (3.13)

RMSEj =

√∑Ne
i=1(yi,j − ŷi,j)2

Ne
,∀j = [1, ..., N ] (3.14)

where Ne is the total number of OCs, yi,j and ŷi,j are the true and predicted regres-

sion targets (RoCoF and/or nadir in this case) at the j-th location of the network,

respectively, while N is the total number of monitored locations. The MAE is used

to assess how the model would perform on critical cases, that is, those close to the

stability margin. Errors in critical cases impact key decisions, such as ancillary service

procurement, such as inertia, multi-speed frequency response, load damping, etc. [15].

An overestimate of RoCoF and/or nadir may result in system operators over-procuring

costly ancillary services. Conversely, an underestimate may result in a SO procuring

insufficient ancillary services, leaving the system potentially vulnerable. For locational

predictions, we focus on the maximum, mean and minimum errors of the inference

model as follows:

Max. RMSE = max
j=1,...,N

RMSEj (3.15)

Mean RMSE =
1

N

N∑
j=1

RMSEj (3.16)

Min. RMSE = min
j=1,...,N

RMSEj (3.17)

3.4 Case Studies and Results

This chapter presents the results of the proposed method, along with a quantitative

comparison with the conventional COI-based approach.
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3.4.1 Test Network and Case study

In this study, a modified version of the IEEE 39-bus network, as shown in Fig. 3.3, is

used [3]. We modify the network by subdividing it into two areas, Area 1 and Area

2, whereby Area 2 is a low-inertia region due to the penetration of CIG. This con-

figuration has been intentionally selected to create two distinct regions: high and low

inertia, allowing a clear demonstration of the impact of high CIG integration on loca-

tional frequency dynamics. This is similar to the GB network, with England being the

high-inertia region and Scotland the low-inertia region [15]. CIG is modelled using the

Western Electricity Coordinating Council (WECC) Type IV Wind Turbine Generator

(WTG) control model [62], which is integrated into the grid through a fully rated con-

verter at Bus 16. We determine the number of online SG units using (6.15) and use the

AC-OPF for generator dispatch as described in Chapter 3.3.1 through MATPOWER.

The polynomial cost function coefficients of the SGs are as shown in Table 3.1, while

the cost of CIGs is considered to be zero. RMS-TDS are conducted in DIgSILENT

PowerFactory, and the instantaneous CIG penetration was between 50 MW to 1200

MW, representing around 40% and 95% of system and area generation, respectively.

The applied contingency is N −1 of the highest generation in the low inertia Area 2 (G

06), contributing between 20% and 50% of the total area generation. This is done to

effectively demonstrate the locational frequency stability aspects due to the high local

penetration of CIGs [14]. The whole dataset consists of 1,728 samples from varying

system loading, the number of online SGs units in Area 2, and the CIG output as

described in Chapter 3.3.1. The stability limits are considered to be 59.3 Hz and −0.5

Hz/s for nadir and RoCoF, respectively [12]. All RMS-TDS were carried out on an

11th Gen Intel (R) Core (TM) i7-11700 @ 2.50 GHz with 16 GB installed RAM, which

took about 80 minutes.

3.4.2 Locational Frequency Response (RoCoF) Variations

To illustrate the inherent risks associated with COI-based methods —which cannot

capture spatially distributed dynamics —RMS-TDS are conducted on all the solutions

generated by the AC-OPF. Shown in Fig. 3.4 is RoCoF from sample locations across
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Figure 3.3: The modified IEEE 39-Bus network highlighting Area 2 where CIG is
connected at Bus 16 and location of the disturbance SG-6 (G06)
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Table 3.1: Cost function coefficient values for Synchronous Generator (SG) polynomial
cost-function [3, 6]

G 01 G 02 G 03 G 04 G 05 G 06 G 07 G 08 G 09 G 10 CIG

C2 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
C1 2.5 6.9 4.7 2.8 3.6 2.8 3.7 4.8 3.7 3.9 0
C0 0 0 0 0 0 0 0 0 0 0 0

the network, and the COI-based RoCoF predictions, plotted against CIG penetration

between 50 MW to 1,200 MW. This represents a maximum CIG penetration of up to

40% of the entire system generation. While it is expected for the system to exhibit

some locational dynamics variations, the increasing intensity of such variations with

respect to the increasing CIG penetration is obvious. Specifically, for CIG penetration

less than 250 MW, locational frequency variations are not significant enough to cross

the -0.5 Hz/s threshold. In such cases, the COI-based approach does not bear any risks

of unforeseen frequency violations. In contrast, for penetration levels above 250 MW,

the variations become significant enough to allow some locations to cross the -0.5 Hz/s

threshold. As a result, due to the widening margin between COI-based predictions

and the spatially distributed extremes, the frequency violations are undetectable to

the COI —up to 70 cases observed in this case. Consequently, this could lead to

unforeseen activation of locational relays, potentially causing widespread blackouts.

This highlights the risks; the COI-based method is becoming increasingly unreliable as

more CIGs are integrated into power systems, necessitating new approaches to ensure

secure operation.

3.4.3 Quantification of Locational Frequency Response (RoCoF) Vari-

ations

The locational frequency response variations are analysed and quantified to underscore

the impact of significant CIG penetrations. We focus on the RoCoF metric as this is

the most vulnerable metric to locational variations [12,14]. Given a set of buses ξArea 1,

ξArea 2 in Area 1 and Area 2 respectively (see Fig. 3.3), the maximum RoCoF variation,

DRoCoF, is given by (3.18) as follows:
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Figure 3.4: Locational RoCoFs at selected buses in the network compared with COI-
based predictions

DRoCoF = max(| ˆ̇finst,i − ˆ̇
finst,j |), ∀i ∈ ξArea 1, ∀j ∈ ξArea 2, ξArea 1 ∩ ξArea 2 = {} (3.18)

The maximum difference/variations seen in the network based on DRoCoF are plotted

in Fig. 3.5 against the loading of the system, with respect to the inertia (in MVA.s)

in Area 2. Two scenarios, that is, the ‘No CIG ’ scenario with 0% CIG penetration

and the ‘Area 2 CIG Location’ where there is a varying penetration level of the CIG

(up to 40% of system generation) located at Bus 16 in Area 2, are presented. Without

the CIGs, there is a maximum RoCoF variation from 0.1450 Hz/s to 0.2505 Hz/s

observed in the ‘No CIG ’ scenario between 0.6 p.u. and 1.025 p.u. system loading,

respectively. In contrast, the Area 2 CIG Location scenario increases these variations

to range between 0.1550 Hz/s and 0.3487 Hz/s between 0.6 p.u. to 1.025 p.u. loading

conditions, respectively. Specifically, locational RoCoF variations grow at every system

loading as the inertia in Area 2 reduces, from high to medium levels —due to CIGs

displacing SGs. When inertia is highest in the system, around the ‘No CIG ’ scenario
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where all SGs are connected, DRoCoF, is not as significant as when the inertia is lower

at a medium level, as highlighted in green.

Figure 3.5: Maximum locational RoCoF variations following the outage of SG-6

It is worth noting in Fig. 3.5 that the varying disturbance size, fixed at SG-6, is

responsible for the reduced locational RoCoF variations of some OCs in the Area 2

CIG Location scenario. This variation results from changes in the number of online SG

units, including at this power plant, as stated by (6.15) in Chapter 3.3.1. Consequently,

a smaller disturbance leads to lower system RoCoFs, causing a corresponding reduction

in locational variations. In contrast, the No CIG scenario involves no displacement of

SGs, retaining the highest number of online SGs, and therefore, the highest possible

disturbance —and highest possible RoCoF variations. Similarly, changes in the dis-

turbance size are also influenced by system loading. For instance, at a higher loading

of 1.025 p.u., machines experience greater loading, leading to larger disturbances with

more pronounced system impacts, as shown by the figure.

3.4.4 Predictive Accuracy of the Machine Learning Models

The predictive accuracy of ML models and the COI-based method is evaluated in this

chapter for both RoCoF and nadir, based on the evaluation metrics given in Chapter
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Figure 3.6: A distribution of locational RoCoF prediction errors by different models

3.3.3. RoCoF errors are given in Fig. 3.6, where the COI-based method incurs the

widest range of under- and over-estimations (since it is simply a weighted sum of the

metric across the network), ranging between -0.25 Hz/s to 0.18 Hz/s. The Hybrid

method has the least RoCoF error variation, seconded by the MLP and then the KNN

model. Similarly, the nadir errors in Fig. 3.7 show that the COI-based method also has

the widest error range between -1 Hz and 1 Hz. The Hybrid model has the narrowest

error range, almost zero. This results from the additional information from COI-based

predictions, which preserves key physical aspects governing the dynamic system, po-

tentially missed by the purely data-driven ML models. Positive errors mean the model

gives a false alarm, while negative errors mean the model gives a false sense of security

for OCs close to stability margins. Both are undesirable as false alarms lead to exces-

sive allocation of costly control resources, while false security risks unforeseen system

blackouts. Consequently, an ideal model has the narrowest shape of distribution errors,

which, according to the charts, is achieved by the Hybrid model, followed by the MLP.

The predictive accuracy is quantified in Table 3.2. The Hybrid model has the mean

RoCoF MAE and RMSE of 0.0022 Hz/s and 0.0031 Hz/s, respectively, outperforming

the rest of the models, seconded by MLP and then KNN. The COI-based method bears
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Figure 3.7: A distribution of locational nadirs prediction errors by different models

the largest mean RoCoF MAE and RMSE of 0.0631 Hz/s and 0.0587 Hz/s, respectively.

The nadir errors also show that the Hybrid model consistently outperforms the rest of

the ML models by bearing a mean MAE and RMSE of 0.0001 Hz and 0.0002 Hz,

respectively. The COI’s mean MAE remains high at 0.2980 Hz. This is because nadir

is greatly influenced by larger-scale system characteristics such as load and generation

balance, etc., and occurs much later after the initial condition dynamics have settled.

In contrast, RoCoF is calculated right after the disturbance, before the activation

of control resources necessary to maintain stability, resulting in high vulnerability to

complex dynamics, which the COI struggles to model accurately. Nevertheless, while

the ML models portray significant accuracy, specifically the Hybrid and MLP models,

overall performance can also be improved through several ways such as implementing

locational inference models, rather than an all-in-one model, as suggested in [3], and

exploring a wider range of hyper-parameters, model architecture and/or algorithms,

among others [61].

45



Chapter 3. Enhancing Power Systems Situational Awareness for Frequency Stability

Table 3.2: Mean Prediction Errors for RoCoF and Frequency Nadir

Model
RoCoF Nadir

MAE RMSE MAE RMSE

DT 0.0107 0.0164 0.0584 0.1387
KNN 0.0031 0.0070 0.0321 0.0822
MLP 0.0030 0.0048 0.0191 0.0589
COI 0.0630 0.0587 0.2980 0.0343
Hybrid 0.0022 0.0031 0.0001 0.0002

3.4.5 Computational Aspects

Concerning computational requirements, inference time is a crucial aspect necessary for

real-time or near real-time applications to enable sufficient time for preventive/corrective

actions. Moreover, if there are numerous scenarios to be assessed, a fast-screening model

can excel in situations where conventional methods make it computationally prohibitive.

The proposed method employs ML to capture the system’s locational frequency dynam-

ics, offering a computationally attractive alternative that enables near-instant predic-

tions since solving the system’s DAE is no longer required to make predictions. We

assess the prediction time of each method, including RMS-TDS used to capture network

dynamics in detail, on a subset of 500 OCs. As summarised in Table 3.3, results show

that an assessment of up to 300 seconds is required by RMS-TDS, while, for the whole

set, 0.0808 seconds, 0.0361 seconds, 0.00203 seconds, and 0.001 seconds are required by

Hybrid, MLP, KNN and DTs, respectively. The algorithms training —an offline and

a once-off task —required 155.047 seconds, 74.853 seconds, 0.030 seconds, and 0.006

seconds for Hybrid, MLP, KNN, and DT, respectively. These results demonstrate how

ML models can balance accuracy and computational efficiency, achieving over 3,000

times faster than the RMS-TDS in this case. This enables high-granularity frequency

response assessments with minimal computational overhead.

3.5 Conclusion

We have demonstrated that the penetration of Converter Interfaced Generation (CIG)

increases locational variations in the system frequency response due to changes in iner-
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Table 3.3: Comparison of Computational Requirements for Different Models

Model Assessment Time (s) Training Time (s)

RMS-TDS 300 -
DT 0.0010 0.006
KNN 0.0020 0.030
MLP 0.0361 74.853
Hybrid 0.0808 155.047

tia distribution. Consequently, conventional Centre of Inertia (COI)-based approaches,

which assume a global frequency response, fail to capture these locational variations,

leading to unforeseen protection relay activations. To address this, we propose a Ma-

chine Learning (ML) approach to capture and represent the system’s locational fre-

quency stability metrics, specifically frequency nadir and Rate of Change of Frequency

(RoCoF). ML models can establish complex system relationships based on observa-

tional data more quickly and without the need for computationally intensive time do-

main simulations, making them advantageous for online settings. Several algorithms

were tested on the modified IEEE 39-bus test network. The Hybrid approach, which

integrates the COI model and a neural network, achieved the highest predictive accu-

racy, closely followed by the MLP model. Both models demonstrated a high degree of

accuracy and computational efficiency, achieving speedups of over 3,000× faster than

traditional methods. However, since both models perform well, we apply the MLP

model in subsequent chapters due to its simplicity and practical considerations. Un-

like the Hybrid model, which relies on COI-based calculations, it is less vulnerable to

practical challenges such as sensor deployment limitations, effective inertia estimations,

among others [29].
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Chapter 4

Enhancing Understanding of

Frequency Dynamics and

Preventive Stability Management

Power system operators often face challenges in understanding the evolving frequency

dynamics landscape driven by rising CIG penetration —even when detailed modelling

methods, such as those presented in Chapter 3, are available. This, in turn, affects

their ability to implement effective preventive and corrective actions to maintain system

stability. We address this aspect in Chapter 4, by proposing an ML-based method that

utilises the wealth of available system data to uncover underlying system relationships.

Specifically, we apply explainable ML techniques that use a game-theoretic approach

to quantify the contributions of system features towards influencing a given stability

metric of interest —We focus on RoCoF and frequency nadir. This contribution is

published in the International Journal of Electrical Power & Energy Systems (IJEPES)

[Pub. B]. The contributions of this chapter are, therefore, summarised as follows:

i. Enhancing operators’ understanding of what drives/affects the system frequency

dynamics by uncovering potential system variables that might impact the fre-

quency stability boundary at both local and global levels.

ii. Introducing high-level constraints into optimisation models by formulating in-
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sights from explainable ML models into actionable preventive control actions for

improving system stability.

4.1 Explainable Machine Learning: A SHAP Value-Based

Approach to Locational Frequency Stability

Modern power systems are growing in complexity due to the increasing penetration of

CIGs. This technology is leading to increased locational frequency responses in power

systems as discussed in Chapter 3.4.2. This is because CIGs introduce varying types

of controls and system interactions different from the conventional SG technology. As

a result, conventional analytical approaches used to extract insights into system be-

haviour struggle in terms of accuracy and computation overhead, leading to instability

risks and a diminished understanding of these dynamics. To address this challenge

of complexity leading to diminished system understanding, we propose enhancing the

operator’s understanding of the system’s frequency dynamics through an ML-based

approach. This approach integrates neural networks from Chapter 3.2.1 and SHAP,

an additive feature attribution method that quantifies features’ contribution to model

predictions, thereby enabling operators to identify critical aspects of the system influ-

encing the stability. A key contribution is that we go beyond the notion of ML as being

just a powerful black-box predictor into explainability, thereby building the necessary

trust towards real-world applications. The ML model is used to predict the dynamic

frequency response of the system to disturbance, while SHAP uncovers the underlying

system relationships as captured by the ML inference model.

The literature in Chapter 2.2 indicates that existing explainable ML methods focus

on the accuracy of the black-box models used for inference, and do not go beyond to

demonstrate how such insights can be validated as practical system interventions. They

simply provide explanations from the explainable ML models without further validating

them within the power system stability context, making their effectiveness uncertain. In

contrast, we propose going beyond such explanations by: i) integrating ML and SHAP

for enhanced situational awareness related to frequency stability of the system and
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ii) introducing a SHAP-informed optimisation formulation. This integration enables

the use of insights from the SHAP model as actionable optimisation constraints for

preventive actions for enhancing system stability —or as a starting point for further

system analyses. Consequently, we validate and quantify the practical effectiveness of

the explainable ML models within power system operations.

4.2 ML Explainability for Understanding Locational Fre-

quency Dynamics through SHapley Additive exPla-

nations (SHAP)

We use SHAP to enhance the understanding of frequency dynamics based on locational

ML models trained to predict frequency stability metrics at each bus. This enables op-

erators to uncover location-wise variables influencing the stability boundary, enabling

more informed decisions. SHAP is a model-agnostic game-theoretic approach for ex-

plaining the output of parametric ML models (often black-box models). It seeks to

provide a linear explanation based on additive feature attribution methods [63]. The

explanation can be in the form of a Local Explanation, which is based on a single sam-

ple, or a global explanation, which is the global measure of feature effect computed

by averaging Local Explanations. Concerning this work on frequency stability, SHAP

values can be interpreted as a change in the expected model prediction (an average

from the training dataset) of the stability metric of interest, in Hz for nadir or Hz/s

for RoCoF. Therefore, the sum of all SHAP values equals the difference between the

mean (expected model) prediction and the actual prediction of the inference model.

The process of deriving SHAP values is as follows: first, a SHAP explainer creates

a ‘dummy model’ (a model without any feature inputs) whose prediction is the mean

of predictions from the training dataset. This prediction is essentially known as the

Expected value E[f(xi)]. Given an input feature set F , the effect of each xi input

feature is computed by retraining the model on all feature subsets S, i.e., S ⊆ F . An

importance value for each feature is based on the difference in predictions between the

model with and without the feature, i.e., fS∪{xi} and fS , respectively. The effect of
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each feature, ϕxi , i.e., the SHAP value, is then computed based on an average weighting

of all the combinatorial differences as follows (4.1):

ϕxi =
∑

S⊆F\{xi}

S!(|F | − |S| − 1)!

|F |!
[f(S ∪ {xi})− f(S)] (4.1)

where S is the number of coalitions excluding the feature xi, F is the total number of

coalitions, while the expressions f(S∪{xi}) and f(S) are the coalitions predictions with

and without the feature xi respectively. Therefore, ϕxi is interpreted as the average

marginal contribution from all coalitions that contain xi feature, representing the effect

of the feature on model predictions. The sum of all the effects of the M input features

in set F is equivalent to the difference between the Expected value, E[f(xi)], and the

prediction by the original ML model f(xi), i.e, f(xi) = E[f(xi)] +
∑M

i=1 ϕxi ,∀xi ∈ F .

The process of fitting the SHAP explainer is computationally intensive and time-

consuming due to the exponential increase in feature coalitions —theoretically a total of

2n. This is particularly problematic for the power system, which has numerous devices

and associated monitored variables. To expedite the fitting process, some authors have

proposed sampling-based approximations [64]. However, there are still some compu-

tational challenges and inefficiencies associated with these methods when conducting

detailed SHAP analysis on large datasets [64]. Alternatively, explainers can adopt dif-

ferent algorithms, such as KernelExplainer, DeepExplainer, TreeExplainer, etc., which

focus on the most impactful coalitions to compute SHAP values. For instance, the

DeepExplainer, which is used in this chapter and is specific to deep neural networks,

leverages neural networks (such as MLPs) to approximate ϕxi , enabling it to handle

high-dimensional spaces [65]. Specifically, it uses the already trained neural network’s

weights and activations to efficiently compute feature attributions. Overall, these ap-

proaches ease the computational burden imposed by the brute-force computation of

SHAP values, which considers all coalitions. Nevertheless, this process is conducted

offline and only once, so that thereafter, the computation of SHAP values for any

previously unseen OC is done almost instantaneously.
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4.3 Methodology for Enhancing Understanding of Fre-

quency Dynamics

This chapter presents the methodology for understanding local frequency characteristics

using ML. This allows system operators and planners to predict locational frequency

metrics and identify important system variables shaping the frequency stability bound-

ary at any location in close to real-time without requiring computationally intensive

RMS-TDS. Such an approach could also be useful in planning timescales (days, weeks

or months), where real-time is not as important, but when the number of scenarios be-

comes too large to handle. Moreover, system optimisation models can leverage simple

rules extracted by insights based on SHAP values regarding important variables defin-

ing security boundaries to generate more secure and reliable solutions, particularly

useful during operational and planning timescales.

4.3.1 Proposed ML-based approach to understanding Local Frequency

Characteristics

The proposed methodology is summarised in two stages in Fig. 4.1. The first stage is

the Offline Training stage, which is for data generation, ML algorithms training, and

the generation of the SHAP explainer. In this stage, the AC Optimal Power Flow (OPF)

model is used to generate operational scenarios. The scenarios are then relayed to a

dynamic simulation environment for frequency stability assessment under the largest

generation outage contingency. Frequency stability metrics (i.e., nadir and RoCoF) are

calculated for each location in the network to compile the frequency stability dataset.

Locational ML algorithms are implemented and trained for each metric and location in a

regression task. The ML models are thereafter explained with SHAP, which is a game-

theoretic approach for feature attribution. In the second stage, i.e., the Application

stage, the trained ML models are used to predict locational frequency stability metrics

across the network of previously unseen scenarios, and their respective SHAP explainers

are used to discover important system variables defining the stability boundaries of

respective locations. Based on these insights, a formal guide is provided to the system
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Figure 4.1: A SHAP values-based understanding of system dynamics with concise
security rules

optimisation model for secure dispatch, referred to as SHAP-informed optimisation.

4.3.2 SHAP-Informed System Optimisation for Secure System Dis-

patch

This chapter proposes the use of SHAP as a means to enhance the understanding and

management of locational frequency issues, which are becoming important in systems

with high penetration of CIGs. By uncovering the effect of various power system vari-

ables on the predictions of locational ML models and their shaping of the frequency

stability boundary, power system operators and planners, combined with domain knowl-

edge, can minimise the risks of instability through SHAP-informed decision-making and

optimisation strategies —leading to more secure and reliable system operation. To em-

bed the SHAP-derived insights into the OPF, let L be the set of loads, B the set of

buses, and G the set of generators indexed by i. The active-power output of generator i

is denoted by PG,i and Ci(PG,i) is its generation cost. We can therefore write the OPF
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problem as:

min
∑
i∈G

Ci(PG,i) (4.2a)

subject to: g0(xs, u) = 0 (4.2b)

h0(xs, u) ≤ 0 (4.2c)

Φxi(u) ≤ 0 (4.2d)

where: xs and u are the state and control variables under steady-state conditions, re-

spectively. (4.2b) enforces power balance, (4.2c) enforces limits in the network such

as line-flows, generator output, etc., and (4.2d) is the additional inequality constraint

based on the proposed SHAP-informed stability constraints —for operational and plan-

ning timescales. A more detailed formulation of the OPF problem can be found in [66].

This work leverages the actionable insights derived from SHAP values by incorpo-

rating a set of one-sided constraint inequalities, Φxi , within the optimisation model to

provide frequency stability-related security constraints. This is achieved by identifying

the most significant variable and determining the direction of its impact on the stability

metric of interest. If the most significant feature has a negative direction, minimising

it would result in a positive effect on the stability metric of interest (i.e., stability gain)

and vice versa. Regardless of the direction, the goal is to bring a positive effect on the

model prediction as shown below:

ϕ̄xi =
1

N

N∑
j=1

ϕxi,j , ∀xi ∈ F (4.3)

ϕ′xi = max(|ϕ̄xi |), ∀xi ∈ F (4.4)

Φxi =


xi >

ϕ′xix
max
i

ϕmax
xi

−ϕmin
xi

, if ϕ̄xi > 0, ϕ′xi = |ϕ̄xi |

xi <
ϕ′xix

max
i

ϕmax
xi

−ϕmin
xi

, otherwise, ϕ′xi = |ϕ̄xi |
(4.5)

where the superscripts: min and max, represent the minimum and maximum value of
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a variable (SHAP value or input feature), respectively. This set of constraints is specif-

ically applicable to continuous variables, such as generator dispatch. We first compute

the mean SHAP value for each ith feature across N samples. Next, we identify the

feature with the largest absolute mean SHAP value, as it is the most critical to the

stability metric of interest. Based on the computed SHAP value, we then implement

a feature-wise constraint: if the mean SHAP value is negative, the constraint aims to

minimise the feature’s value; if positive, it aims to maximise it. For generator ratings,

typically determined by the number of units of a specific size connected, the optimisa-

tion process considers only the extremes as dictated by the SHAP values, i.e. minimum

capacity for negative SHAP values and maximum capacity for positive SHAP values.

This ensures that the constraints are applied in the appropriate direction, aligning with

SHAP-derived insights to enhance system stability. This approach enables the optimi-

sation model to dispatch generators more securely by pushing the frequency stability

metric of interest farther away from the stability boundary. For instance, actionable

insights from SHAP values can be used to manage and improve the stability of vul-

nerable locations by identifying important variables shaping the stability boundary of

those locations.

The domain knowledge and data-informed decisions can be integrated within the

frequency control resource allocation framework to enhance efficiency. RMS-TDS sim-

ulations on the solutions from the SHAP-informed optimisation model are applied to

evaluate the constraint’s impact. The constraints in this study implement the first and

most significant actionable SHAP insight to i) avoid potential optimisation convergence

issues and ii) to accurately evaluate the effectiveness of individual insights. Note that

while analytical stability-constrained optimisation can also improve the system’s sta-

bility, it often fails to account for the locational frequency dynamics due to increased

complexity and/or significant computational resources required, as noted by [40]. This

can result in either over-securing the system, which comes at a cost or exposing the

system to risks of locational frequency violations. In contrast, our data-driven method

balances accuracy and computational efficiency while identifying critical features that

influence a stability metric (and even location) of interest.
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4.3.3 Caveats of Using SHAP Explanations for Extracting Stability

Constraints

Although explainability models such as SHAP can uncover the correlations that predic-

tive ML models use to make accurate predictions, these relationships are not necessarily

causal [65]. Consequently, the constraints derived from the proposed approach, imple-

mented within an optimisation model, provide general guidance for overall improve-

ment but do not guarantee a consistent impact across specific operating conditions. In

some cases, they may even lead to deterioration under particular operating conditions.

However, predictive models can sometimes capture causal effects if key features have

a strong independent component, meaning that their predictive power is not redun-

dant with other measured features or influenced by unmeasured confounders [65, 67].

Confounders are variables that influence both the independent and dependent vari-

able(s), potentially leading to misleading conclusions [67]. Therefore, if implementing

the SHAP-derived constraint does not alter other unconstrained system features in a

way that cumulatively creates antagonistic effects, stability metrics tend to improve.

Consequently, the extraction and utilisation of constraints following the process de-

scribed is expected to yield an average improvement in stability metrics rather than a

guaranteed improvement for every single case. This is further discussed and highlighted

in subsequent sections.

4.3.4 Estimating Locational Frequency Dynamics with Machine Learn-

ing

Locational ML models are adopted as surrogate models to predict the frequency at ev-

ery location or bus in the network, and SHAP explainers to identify important system

variables defining stability boundaries. We adopt this locational ML model approach to

derive locational- and metric-specific SHAP explanations. Following the performance

results of different ML models in Chapter 3.4.4, we therefore adopt the MLP neural

network (Chapter 3.2.1) in this chapter. We adapt the model to utilise M input fea-

tures comprising physical and operational characteristic variables of the network, that

is, system demand/loading, CIG output, SG active power set points, Tripped SG —an
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index indicating the location of the disturbance, that is, the generator being discon-

nected —and SG ratings, to make a prediction of nadir and/or RoCoF at each of the

N network buses.

Given a power system with N monitored buses, a total of N locational MLPs are

required to capture the locational frequency dynamics metric associated with each lo-

cation. In this chapter, the frequency nadir and RoCoF are used to represent the

locational dynamics; consequently, up to 2 × N MLPs were trained. To enhance the

understanding of system frequency characteristics, each MLP has an associated SHAP

explainer model implemented for additive feature attribution through SHAP values.

Moreover, an additional MLP is also implemented to capture the worst-case frequency

stability metric (nadir and RoCoF) at the system level to identify associated interac-

tions, thereby demonstrating how operators can identify actionable insights at both

local and global scales.

4.4 Case Studies and Results

In this chapter, the results of the proposed method are presented. Section 4.4.1 pro-

vides details of the case study and the modelling of CIG. Section 4.4.2 evaluates the

accuracy of the proposed method’s ability to track locational frequency stability met-

rics. SHAP is then implemented in Chapter 4.4.3 to enhance the understanding of the

system’s frequency dynamics by uncovering the important variables that shape stability

boundaries. Section 4.4.4 aims to enhance the locational and global system stability by

applying actionable SHAP insights through targeted interventions, i.e., one-sided opti-

misation constraints, whose effectiveness is evaluated using RMS-TDS. Lastly, Section

4.4.5 discusses the application of the proposed methodology by power system operators

to enhance system security. Details on the computational speed of the methodology

are also provided in Chapter 4.4.6.
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4.4.1 Test Network and Case Study

• IEEE 39-bus Test Network: In this chapter, the modified IEEE 39-bus net-

work (Fig. 3.3) is used, and the details are as described in Chapter 3.4.1.

• Generator Dispatch via AC Optimal Power Flow: In this chapter, the

polynomial cost function of the SGs utilises the same coefficients as specified in

Table 3.1 in Chapter 3.4.1, while the cost of CIG is considered to be zero.

• Operational Scenarios: In this chapter, we generate the dataset using the

same approach as defined in Chapter 3.3.1. We vary the number of online SGs

by considering every SG to be an equivalent of four equal-sized units; the system

loading ranges between 0.6 p.u. to 1.025 p.u. in steps of 0.025 p.u., and the CIG

penetration alternates between high and low penetration levels. The AC-OPF

is employed for generation dispatch. The AC-OPF model is used for generation

dispatch. This approach ensures that the generated scenarios are operationally

feasible and consistent with the actual network’s limits, which better reflects the

practice by system operators.

• Dynamic Simulations using RMS-TDS: In this chapter, the considered dis-

turbance is the disconnection of the largest SG dispatch, excluding G 01, which

represents a large equivalent generation. This approach differs from that in Chap-

ter 3.4.1, where the disturbance is fixed at a single generator. By varying the dis-

turbance according to the SG dispatch, we implement a more realistic worst-case

contingency each time. Additionally, if multiple SGs have the same active power

set points, the same number of simulations is performed, considering each SG as

a separate contingency.

• Frequency Stability Datasets and ML Model Training: In this chapter, we

maintain the approach detailed in Chapter 3.3.2 for data handling. The datasets

are standardised using the StandardScaler (which rescales every feature so that

its mean is zero and its variance is one) [57] as a pre-processing step to ensure

optimal training. Following the standardisation, we adopt a dataset split of 70-
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Table 4.1: Frequency Stability Metric (RoCoF (Hz/s) and Nadir (Hz)) Estimation
Performance by Different Models

Evaluation Max Max Mean Mean
Model Metric RoCoF Nadir RoCoF Nadir

MU 0.0374 0.0005 0.0311 0.0002
MLP MAE 0.0374 0.0005 0.0311 0.0003

RMSE 0.0077 0.0001 0.0067 0.0000

30% for model training and testing, respectively. Hyperparameter tuning of the

ML models is done using the 5-fold Cross-Validation technique —randomly splits

the training set into k-folds, whereby each k-1 set is used for training, while the

remaining one is used for validation.

4.4.2 Accuracy of the Locational MLModels for Predicting Frequency

Stability Metrics

In this chapter, the accuracy of the locational ML models to predict frequency stability

metrics is presented. It is noted that it is important to have high prediction accuracy

for the ML models for the SHAP explainers to extract meaningful insights. A single

ML model is required per location per stability metric (frequency nadir and RoCoF are

used in this chapter). As a result, the 39 buses in the network required 78 MLPs. .

Using the two evaluation metrics discussed in Chapter 3.3.3 to assess the performance

of the ML models, that is, RMSE and MAE, in this chapter, we also introduce the

Maximum Underestimate, MU, metric to quantify the model’s vulnerability to giving

false negatives, which leads to unforeseen violations. Table 4.1. It can be seen that the

locational models have the RoCoF maximum and mean MU of 0.0374 Hz/s and 0.0311

Hz/s, respectively, demonstrating the ability to effectively capture the complexities

in frequency dynamics. The trend remains consistent for the nadir stability metric,

though with less significant differences. This is attributed to the specific case but still

demonstrates the general applicability of the MLP method as being more robust than

the COI-based method, locational-wise, without any loss of generality.
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4.4.3 Understanding the System-wide Minimum RoCoF with SHAP

Values

In this chapter, we use results from the SHAP DeepExplainer [65] to enhance un-

derstanding of frequency dynamics. The system-wide minimum RoCoF is used as an

example to demonstrate how SHAP can uncover important variables defining the sys-

tem’s stability boundary.

i) Local SHAP Explanation - Revealing Effects Around a Specific Oper-

ating Condition

Local SHAP explanations enable the characterisation of variables or features af-

fecting a stability metric (RoCoF in this case), specifically for a particular OC. Local

SHAP explanations enable the characterisation of variables or features affecting a sta-

bility metric (RoCoF in this case), specifically for a particular OC. By calculating SHAP

values that are scenario-specific, contributions from the variables toward the stability

metric are uncovered, enabling the identification of the most influential features shaping

the system’s stability boundary. Shown in Fig. 4.2 is a waterfall plot of the local SHAP

values, where the horizontal axis represents SHAP values (the difference between the

expected value, E[f(x)], and the model prediction, f(x) in Hz/s) whilst the vertical axis

contains a sorted list of variables starting with the most significant. The bars in red

indicate a positive effect where an increase in the magnitude of the variable leads to

an increase in the model’s prediction (compared to the expectation), while the bars in

blue represent the inverse, i.e., an increase in the prediction of the model is achieved

by decreasing the magnitude of the variable.

For the sampled scenario shown in Fig. 4.2, the expected value, E[f(x)], is −0.327

Hz/s. In this plot, the most significant variable affecting the model’s prediction is the

297 MW dispatch of G 07 (G 07 MW). It reduces the model’s prediction by −0.24

Hz/s. This is followed by the 800 MVA rating of G 04 (G4 MVA), which increases

the prediction by +0.16 Hz/s. The sum of all the SHAP values moves the prediction

of the ML model from E[f(x)] to the left towards the final prediction, f(x), of −0.353

Hz/s. Thus, for the sampled scenario, minimising the dispatch of G 07 suggests an

improvement in the system-wide minimum RoCoF. This may occur because the N − 1
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Figure 4.2: Local SHAP explanation of a randomly sampled scenario for the system-
wide minimum RoCoF. SHAP values (horizontal axis) are plotted against system fea-
tures (vertical axis)

SG candidate is likely shifted outside of this critical low-inertia region, or the actual

disturbance is reduced, thereby leading to a more stable response. It can also be noted

that the most significant variables for this OC belong to the group of SGs situated in

the low inertia region, Area 2, i.e., G 04 to G 07, which aligns with the findings by [15].

It is important to note that driving the model’s prediction towards a desired direc-

tion by altering a variable can lead to unintended results due to the combined effect of

the remaining unconstrained variables, which can counteract the former. For instance,

variables related to generator dispatch are more dependent on the system loading con-

dition than on generator rating, although the rating of the generator determines the

maximum dispatch. Therefore, varying the dispatch of a particular generator while

maintaining the system loading means that several other generators alter their dis-

patch as well, whose combined effect may lead to negative effects.
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Figure 4.3: Global SHAP explanation for the system-wide minimum RoCoF. Colour
represents the magnitude of the feature

ii) Global SHAP Explanation - Revealing Overall System Trends

A global perspective of SHAP values can also be used to get a holistic understanding

of how various variables affect particular aspects of a metric across multiple OCs.

This is generated based on the scenarios dataset as an average of Local Explanations.

Global SHAP explanation provides a summary of the most significant variables across

a specific dataset, affecting the model’s prediction of the regression target. In Fig.

4.3, a beeswarm summary plot shows the system variables (vertical axis) against the

global explanation SHAP values (horizontal axis) of the test dataset. The colour bar

represents the normalised magnitude of features, from low (blue) to high (red), and the

rating of G 04 (G4 MVA) is the most significant variable, followed by the dispatch of

G 03 (G 03 MW ) and G 02 (G 02 MW ).

The plot gives an insight into the most significant variables in the system, which

dominate in defining the system-wide minimum RoCoF. The explainer indicates that

by increasing the rating of G 04, the RoCoF of the system can potentially be improved

by up to +0.25 Hz/s. G 04 is located in the low inertia region, Area 2, and its in-
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creased rating improves the inertial response available in this vulnerable region. In

modern large and interconnected power systems, this kind of insight can inform fre-

quency control resource allocation decisions, thereby enhancing efficient resource utili-

sation. Additionally, the plot also indicates that minimising the dispatches of the two

generators, G 03 and G 02, can potentially improve the stability metric by +0.50 Hz/s

and +0.44 Hz/s, respectively. This is because the two are among the largest SG units

in the system, whereby minimising their dispatch improves their response to system

imbalances following a disturbance due to the freed higher ramp rates as demonstrated

in [21] —demonstrating that the initial operating point of an SG largely influences the

generator response following a disturbance, i.e., heavily loaded SGs exhibit a damped

response as compared to lightly loaded SGs.

Following the above, SHAP attributions can effectively act as a good starting point

to provide guidance/insights to system operators and planners related to variables af-

fecting complex power system dynamics without having to conduct brute force analyses

through the computationally demanding RMS-TDS. In addition, other than local and

global plots, SHAP explainers can also enable the inspection of a specific variable of

interest to analyse its influence on stability metrics through Feature Dependency Anal-

ysis. This knowledge can be beneficial as well, for instance, where operators would like

to investigate the impact of a CIG plant on the stability boundary. This is discussed

in the next section.

iii) Feature Dependence Analysis - A Focus on Particular Feature Effects

SHAP explainers can analyse the effect of a variable or feature on the stability

metric for additional insights. For example, system operators may want to understand

the impact of CIGs on frequency stability. Shown in Fig. 4.4 is a feature dependence

plot for the CIG in the system, where the vertical axis represents SHAP values and the

horizontal axis represents the CIG output in MW. The colour bar represents a closely

related variable identified in the system, which is the dispatch of G 04 (G 04 MW ).

This plot demonstrates how integrating domain knowledge with SHAP insights can

enhance decision-making for system operators and planners. A moderate CIG pene-

tration of up to 400 MW, combined with high generation output from G 04, suggests
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Figure 4.4: System-wide minimum RoCoF Dependence plot for CIG MW penetration.
Colour represents G 04 dispatch in MW

a positive effect on the system-wide minimum RoCoF, with a potential improvement

of up to +0.035 Hz/s. Furthermore, the CIG Dependence Analysis plot indicates that

at higher CIG penetration levels (beyond 400 MW), the RoCoF can potentially de-

teriorate by up to −0.150 Hz/s (especially when combined with high G 04 loading).

This insight aligns with existing literature on the impact of CIG and inertia reduction,

which validates the SHAP explanations. However, our proposed method can provide

specific details for specific units and thresholds as well as provide quantifiable indica-

tions of potential impacts, something that is not straightforward to do otherwise. By

uncovering these interactions, system operators and planners can gain more confidence

in SHAP-derived insights for improved system stability.
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4.4.4 SHAP-Informed Optimisation - enhancing frequency stability

through actionable SHAP insights

The proposed method uses SHAP values to identify key variables that define the fre-

quency response of the power system. This can be useful for implementing targeted

interventions within unit commitment and/or dispatch models to enhance system se-

curity. In this chapter, we demonstrate how our method utilises SHAP explanations

to provide a simple guide, in the form of one-sided SHAP-informed constraints, to the

system optimisation model as discussed in Chapter 4.3.2 using (4.5). The RoCoF of

the system is used as the stability metric to evaluate the performance of the proposed

approach as follows:

i) Case Study 1 - Localised Stability Improvement: Improve the local RoCoF

at the most vulnerable location in the network, using the most significant feature from

the corresponding global SHAP explanation. RMS-TDS results show that Bus 34, in the

low inertia region (Area 2), is the most vulnerable, contributing over 45% of the lowest

RoCoF metric values. Bus 38 follows this, contributing 32%, while the remaining 22%

is shared among the remaining buses.

Localised stability improvements can be achieved by applying insights from global

SHAP explanations at the location of interest. Fig. 4.5 shows a global SHAP expla-

nation for RoCoF at the vulnerable location of interest, Bus 34. The most significant

feature is Tripped SG, which determines the location of the disturbance. Since this

chapter looks at the system-wide N − 1 SG outage, this feature is considered uncon-

trollable. Consequently, the subsequent feature, i.e., G4 MVA, which concerns the

rating of G 04, is chosen. The SHAP-informed constraint on this feature ensures that

the rating of G 04 is minimised. We, therefore, limit the rating to the minimum pos-

sible value of 200 MVA. Results obtained from RMS-TDS following incorporation of

this constraint within the AC-OPF are shown in Fig. 4.6 and are compared to Base

Case —involving the AC-OPF without any SHAP-related constraints. The Base Case

indicates that the RoCoF at Bus 34 ranges from −0.4122 Hz/s to −0.1491 Hz/s and has

a mean of −0.2676 Hz/s. The 1st SHAP Feature case incorporates the SHAP-informed

constraint, and this improves the initial RoCoF range at the bus to between −0.2938
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Figure 4.5: Global SHAP explanation for localised RoCoF at Bus 34. Colour represents
the magnitude of the feature

Hz/s and −0.1403 Hz/s, with a mean of −0.2112 Hz/s. Thus, 21% and 29% improve-

ment in the mean value and worst-case scenario, respectively. In addition, even when

considering outliers, the lowest RoCoF is −0.3369 Hz/s, which remains an improvement

over the lowest RoCoF observed in the Base Case by 15%.

ii) Case Study 2 - System-wide Stability Improvement: Using a separate ML

model trained to predict the minimum RoCoF across the system, improve the system-

wide RoCoF using the most significant feature from the system-wide global SHAP ex-

planation. We use a dedicated ML model for this task to reduce the complexity of

handling constraints resulting from deriving the system-wide minimum RoCoF from all

the previously trained locational models, which could also introduce convergence issues.

Improvement in the minimum RoCoF observed in any system bus can be achieved

using insights from the global SHAP explanation of the system-wide stability metric as

described in Chapter 4.4.3. Therefore, the MLP model applied for this task is trained to

capture the system-wide worst-case RoCoF (global minimum), and the SHAP explainer

is used to identify associated global interactions. This allows system operators and

planners to improve the system stability, i.e., RoCoF, across the entire network. In
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Figure 4.6: Case Study 1: RMS-TDS results of the RoCoF at Bus 34. The Base Case
is where the standard AC-OPF includes no SHAP insights as constraints

Fig. 4.3, the global SHAP Explanation plot for the system-wide minimum RoCoF

shows that the most significant feature is the rating of G 04, i.e., G4 MVA. The SHAP-

informed constraint is implemented using this feature, which aims to maximise the

generator’s rating. We, therefore, constrain the limit to an available maximum rating of

800 MVA. RMS-TDS results following this implementation are shown in Fig. 4.7. The

Base Case indicates that the system-wide minimum RoCoF ranges between −0.4123

Hz/s to −0.2350 Hz/s, and the mean is −0.3236 Hz/s. However, this is improved in 1st

SHAP Feature: System-wide by the SHAP-informed constraint on G 04 rating, which

increases this range to between −0.3784 Hz/s and −0.1892, with a mean of −0.2700

Hz/s. This represents a 15% improvement in the mean value and a 10% improvement

in the worst-case scenario. Note that this insight is in the opposite direction of the

SHAP insight for Case 1 (Subsection 4.4.4) on the same feature, highlighting SHAP’s

ability to accurately identify the direction of impact.

iii) Case Study 3 - Localised and System-wide Stability Improvement:

Improve both local and system-wide minimum RoCoF by identifying the first common

feature between global SHAP explanations for the RoCoF at a specific location (Bus 34,

identified as the most vulnerable) and the system-wide minimum RoCoF.

Combined stability improvements can be achieved by applying common features

from respective global SHAP explanation insights. This is demonstrated using lo-
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Figure 4.7: Case Study 2: RMS-TDS results of the system-wide minimum RoCoF. The
Base Case shows a scenario where the standard AC-OPF includes no SHAP insights
as constraints

calised RoCoF (at Bus 34, which is identified as most vulnerable) and the system-wide

minimum RoCoF, whose global SHAP explanations are shown by Fig. 4.5 and Fig. 4.3

respectively. The first common feature across the two plots is the rating of G 05, i.e.,

G5 MVA. This insight suggests that stability can be enhanced by maximising the MVA

capacity or increasing the number of online units at power plant G 05. Therefore, the

SHAP-informed constraint is designed to maximise the MVA capacity of G 05. There-

fore, this is considered for the SHAP-informed constraint, which aims to maximise the

capacity of the generator. We, therefore, limit the rating to a maximum available rating

of 300 MVA. The RMS-TDS results are shown in Fig. 4.8. A simultaneous improve-

ment across the two chosen stability metrics is observed. The RoCoF range, specific to

Bus 34, is seen to improve to between −0.3223 Hz/s and −0.1508 Hz/s, with a mean

value of −0.2425 Hz/s. This represents a 10% improvement in the mean value and a

22% improvement in the worst-case scenario compared to the base case. Likewise, the

system-wide minimum RoCoF experiences a similar but more pronounced improvement

to between −0.3223 Hz/s and −0.1909 Hz/s and a mean of −0.2640 Hz/s, representing

18% mean value and 22% worst-case scenario improvements. Thus, by maximising the

capacity of G 05, a simultaneous improvement in the local and system-wide minimum

RoCoFs is achieved.
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Figure 4.8: Case Study 3: RMS-TDS results of the system-wide minimum and Bus 34
RoCoF. The (Base Case) shows a scenario where the standard AC-OPF includes no
SHAP insights as constraints

4.4.5 A Discussion on SHAP-Derived Rules for Frequency Stability

Enhancement

The proposed approach applies an explainable ML model to identify important system

interactions in real-time. A sample of scenarios demonstrating the performance of the

proposed approach is shown in Fig. 4.9 using results obtained in Case Study 1, from

Subsection 4.4.4. The figure shows the RoCoF at Bus 34 following a disturbance for the

Base Case and the SHAP-informed optimisation case, i.e., SHAP: Bus 34. Generally,

while significant improvements are achieved in most cases, some scenarios show RoCoF

deterioration following the inclusion of SHAP-informed constraints. This is primarily

due to the remaining unconstrained features, whose aggregated effect may dominate

and lead to unexpected outcomes.

Table 4.2 provides a detailed quantification of the RoCoF changes due to the SHAP-

informed constraints for the three case studies of Section 4.4.4, both in terms of their

magnitudes and the proportion of samples affected. In Case Study 1, which focuses

on localised RoCoF at a specific location of interest (Bus 34 was considered as it was
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Figure 4.9: Sample scenarios showing the RoCoF at Bus 34 of Base Case, and following
the incorporation of SHAP-informed constraints within the AC-OPF

identified as the most vulnerable), 90% of the sample experienced a RoCoF improve-

ment following the SHAP-informed constraints, recording a maximum improvement of

+0.232 Hz/s. A maximum RoCoF deterioration of −0.170 Hz/s was observed in almost

10% of the remaining sample, indicating some negative impacts due to the introduced

constraints. In contrast, 57% of the samples in Case Study 2, targeting the system-

wide minimum RoCoF, experienced improvement, recording a maximum improvement

of +0.208 Hz/s. No deterioration was observed in any of the samples, suggesting that

the constraint effectively avoided negative outcomes at the system level (system-wide),

albeit with a smaller sample improvement compared to Case 1. Furthermore, 42% of

the sample experienced no change. Additionally, for Case 3, 85% of the samples showed

improvement, recording a maximum improvement of +0.192 Hz/s. On the contrary,

10% of the sample exhibited some RoCoF deterioration, with a maximum recorded

value of −0.067 Hz/s, indicating a negative, but not significant in magnitude, effect of

the introduced SHAP-informed constraints. Note that while the feature with the dom-

inant SHAP value may not always be directly controllable at operational timescales,

lower-ranked features may still offer viable insights for guiding practical interventions

—as observed in Case Study 1 in Chapter 4.4.4, where interventions to improve local
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Table 4.2: Performance of the SHAP-informed Optimisation Model for three Case
Studies

Description Case Study 1 Case Study 2 Case Study 3

Max. Deterioration -0.170 Hz/s 0.000 −0.067 Hz/s
Max. Improvement +0.232 Hz/s +0.208 Hz/s +0.192 Hz/s
OCs with Improvement 90.52% 57.14% 85.09%
OCs without Changes 0.00% 42.86% 4.39%
OCs with Deterioration 9.48% 0.00% 10.53%

stability were informed by the second most significant feature, since the most significant

one, i.e., Tripped SG (the location of the disturbance), was considered uncontrollable.

This suggests that even when the most significant feature is not directly controllable,

SHAP explanations may still support the identification of practically useful interven-

tions.

The insights derived from SHAP values lead to a better understanding of the sys-

tem’s frequency dynamics. The proposed method can facilitate the understanding of

the system by providing a foundation for further analysis of system interactions with-

out relying on the computationally intensive brute force RMS-TDS. Important variables

shaping the stability boundary at critical or vulnerable locations or system-wide sta-

bility boundary can be uncovered, and targeted interventions, combined with domain

knowledge, can be implemented. Moreover, the efficiency of decisions, such as the allo-

cation of frequency control resources, can be enhanced through such actionable insights.

Note that the proposed method can effectively identify crucial interventions for improv-

ing system stability, even if the disturbance location changes due to SHAP-informed

re-dispatch. This is because it accounts for the worst-case disturbance in every sce-

nario. However, while the insights offer general improvement, this approach cannot

offer guarantees that opposite effects will not appear for specific operating conditions,

as discussed in this chapter.

4.4.6 Computational Aspects

Concerning computational requirements, the SHAP explainer (DeepExplainer), com-

puted once and offline, following the MLP training phase, took approximately 70 sec-
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onds for the test dataset containing around 1,200 samples. It generated a global ex-

planation plot in only 0.1494 seconds. When explanations are performed online, local

SHAP explanations are generated, requiring approximately the same amount of time.

However, authors acknowledge that training N separate MLPs can be burdensome,

particularly for very large-scale power systems with significant datasets, despite being

a one-time exercise. To address this, there are two main mitigation strategies as follows:

i. instead of training MLP models per bus, the models can be trained at a regional

level, significantly reducing the overall number of required models. In such cases,

the models can be trained to predict the respective region’s worst-case responses

to avoid unforeseen violations. Similarly, SHAP value-based explanations can

remain useful in providing regional-level actionable insights for improving the

stability within respective regions.

ii. utilising a single MLP to capture the worst-case locational frequency response

across the entire system, as demonstrated by Case 2 (Section 4.4.4). Ultimately,

the derived SHAP value-based explanations remain valid in extracting actionable

insights for improving the overall system’s stability, without requiring N separate

models.

4.5 Conclusion

In this chapter, we have demonstrated that Machine Learning (ML), combined with

explainability methods like SHapley Additive exPlanations (SHAP), can effectively cap-

ture and provide insights into the local characteristics of system frequency response.

This approach also offers ways to improve local frequency characteristics through tar-

geted interventions in the form of constraints during security-constrained optimisation.

As local frequency characteristics become more prominent due to the increasing CIG

penetration, conventional COI-based approaches become ineffective in detecting local

violations of frequency stability metrics, particularly the Rate of Change of Frequency

(RoCoF). This can lead to unforeseen relay activations, potentially resulting in load

shedding or local disconnection of distributed resources.
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Chapter 4. Enhancing Understanding of Frequency Dynamics and Preventive
Stability Management

To this end, we propose a machine learning-based approach for estimating frequency

nadir and RoCoF across various system locations. We also use SHAP values to enhance

the interpretability of high-accuracy black-box MLmodels, such as neural networks, and

understand the locational aspects of frequency dynamics. Using both local and global

SHAP explanations, system operators can gain detailed insights into system parameters

affecting local frequency characteristics for specific OCs and general insights across

various conditions. Finally, we propose implementing targeted interventions derived

from SHAP insights in the form of optimisation constraints to improve local frequency

characteristics.

The method is applied and tested in the modified IEEE 39-bus network and vali-

dated with dynamic TDS, showcasing improvements in frequency response characteris-

tics, both targeted at specific locations as well as across the entire system. The impact

of SHAP insights implemented as actionable insights in an AC-OPF is also validated,

showing overall improvement. However, limited cases (up to 10% in our studies) were

observed where local frequency characteristics deteriorated due to the cumulative effect

of the remaining unconstrained features, indicating the need for caution, as no formal

guarantees can be offered for no violation by controlling only a very limited number of

features.
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Chapter 5

Security Constrained

Optimisation for Preventive

Frequency Stability

In Chapter 5, we address challenges encountered by conventional analytical security-

constrained optimisation models. We propose a neural network-constrained OPF model

to fulfil the conditions for locational frequency stability. Locational frequency dynam-

ics, including the ‘hard-to-model’ interactions, can be captured by the neural network

during offline training and embedded within the OPF. Consequently, secure generation

dispatch, ensuring no frequency violations across all the monitored locations in the net-

work, is achieved without imposing significant additional computational requirements

on the optimisation process —which arises from solving DAEs/ numerically equiva-

lent algebraic equations. We then implement multiple case studies and emphasise the

criticality of the growing locational frequency responses driven by the increasing in-

tegration of renewables. Thereafter, comprehensive comparisons are conducted on a

standard network, comparing the proposed approach and baseline methods from the

literature. The paper presenting this methodology is currently under review with IEEE

Transactions on Sustainable Energy as [Pub. D], building on [Pub. G]. Therefore,

in response to the existing limitations associated with achieving computationally effi-

cient and secure generator dispatch —preventing frequency violations across all network
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locations —this chapter makes the following contributions:

i. A neural network-constrained Optimal Power Flow (OPF) model that ensures

locational frequency stability, by directly incorporating locational dynamics —in-

cluding the ‘hard-to-model’ interactions —through the embedded neural network.

ii. A method to identify and classify most active and most inactive regions of neu-

ral networks, based on empirical activation statistics —enabling identification of

high-risk and low-risk regions for safe linearisation.

iii. Abound-tightening technique that assigns fixed output bounds to highly active

regions of the neural network, while pruning out highly inactive regions, thereby

minimising linearisation errors, and facilitating convergence in optimisation.

5.1 Artificial Neural Network Constrained Optimal Power

Flow for Locational Frequency Stability

The reliability of traditional analytical security-constrained models is diminishing due

to increasingly localised frequency dynamics, driven by areas with high local CIG pene-

tration. These models typically rely on the COI-based model, i.e., the average frequency

response of the system weighted by inertia contribution from SGs, hence inherently in-

capable of capturing the extremes of spatially distributed dynamics. As a result, where

such spatial variations in frequency dynamics are not considered, the approach can lead

to a false sense of security by missing the possible locational violations (extremes). In

contrast, to avoid such scenarios from occurring, operators resort to over-securing the

system (allocating more frequency control resources than would be necessary) to avoid

such scenarios from occurring, potentially introducing unnecessarily high operational

costs. To address this challenge, there are two major obstacles: i) the growing com-

plexity of modern power systems difficult to fully capture analytically, and ii) including

more detailed analytical approaches by solving the DAEs of the network requires sig-

nificant computational resources, hindering adoption in real-time (or close to real-time)

applications or large-scale analysis of scenarios. This explains why simplified COI-based
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methods remain widely used despite their limitations.

[14, 15] proposed a numerical approach to describe the frequency response of an

N -region network using the COI and an additional term accounting for the N re-

gional frequency differences —two regions demonstrated in this paper. Although this

approach improves the performance of the COI-based model, the definition of such

regions remains a challenge [41]. Furthermore, using conservative regression may lead

to tighter frequency-security regions, especially if the security boundary is highly non-

linear, potentially leading to convergence issues. [40] captures the detailed frequency

behaviour of each SG in the system using the Trapezoidal rule. This is a numerical

integration method that converts differential equations into their numerical equivalent

algebraic form. These algebraic equations are then embedded into the optimisation

model to represent the locational frequency characteristics. However, this approach

substantially increases computational requirements, particularly due to the large set of

constraints and the inherent complexity of solving such systems, which eventually limits

its scalability. Moreover, with each additional SG, the number of DAEs to be solved in-

creases proportionally, further increasing the required computational requirements. [44]

proposes a security-constrained unit commitment using neural networks for RoCoF es-

timation. A linearised neural network, incorporated as optimisation constraints, is used

for transient stability in [33]. However, while the use of ML models as security con-

straints has demonstrated potential, the challenge of securing against local frequency

stability while accounting for the detailed frequency dynamics in converter-dominated

systems has yet to be fully addressed.

5.2 Stability Constrained Optimal Power Flow Problem

The AC Optimal Power Flow (OPF) is a well-studied nonlinear optimisation problem

in power systems. The objective is to obtain an operating point that minimises the

cost of meeting electricity demand, subject to generation and network constraints. Let

L represent a set of loads, B a set of buses, and G be the set of generators indexed by

i, and let Ci(PG,i) and PG,i be the cost of generation and active power output of the

ith generator, respectively. The OPF problem can be written as follows:
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min
∑
i∈G

Ci(PG,i) (5.1a)

subject to

g0(x0, u0) = 0 (5.1b)

h0(x0, u0) ≤ 0 (5.1c)

hw(xw, uw) ≤ 0 (5.1d)

where the subscripts 0 and w represent the steady-state and post-contingency oper-

ating points of a power system, respectively, while x and u represent the state and

control variables of the system. The steady-state equality (5.1b) and inequality (5.1c)

constraints consist of power balance and bounds, which are expressed as follows. The

power balance equations can be written as, ∀i, k ∈ B, (i, k) ∈ L:

Pi −
∑

k∈N(i)

Pik − PLi = 0 (5.2a)

Qi −
∑

k∈N(i)

Qik −QLi = 0 (5.2b)

where Pi and Qi are the active and reactive power generation at bus i, Pik and Qik

are the active and reactive power flow from bus i to k. PLi and QLi are the active and

reactive power demand at bus i. N(i) represents the set of buses directly connected to

bus i. The active and reactive power flows are nonlinear functions of bus voltages, and

a complete formulation of the power flow constraints can be found in [66]. The bounds

on control and state variables, as well as the apparent power limits on transmission

lines, can be written as follows:
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Pmin,i ≤ PG,i ≤ Pmax,i, ∀i ∈ G (5.3a)

Qmin,i ≤ QG,i ≤ Qmax,i, ∀i ∈ G (5.3b)

Smin,ik ≤ P 2
ik +Q2

ik ≤ Smax,ik, ∀(i, k) ∈ L (5.3c)

Vmin ≤ Vi ≤ Vmax, ∀i ∈ B (5.3d)

The inequality (5.1d) represents the post-contingency operating point of the system.

In this work, to explicitly capture the locational aspects of the frequency response, a

method based on Artificial Neural Networks (ANNs) is proposed. The standard OPF

is reformulated to include Neural Network-based stability constraints, providing accu-

rate stability indications to the solver during the optimisation process. This approach

permits the handling of complex relationships that cannot be easily represented in the

standard optimisation formulation. Consequently, this enables system operators to di-

rectly account for the frequency response at every location in the system (instead of

relying on COI), including the ‘hard-to-model’ frequency relationships. Using MAT-

POWER’s callback function framework [66], which enables customisation of the OPF

process by allowing user-defined code to be executed at specific stages of the OPF

algorithm, we implement the proposed approach.

The resulting OPF model is a non-linear optimisation model. It is solved in MAT-

LAB by extending MATPOWER’s AC-OPF formulation, with MATLAB’s Interior

Point Method (MIPS) employed as a solver. Nonlinear optimisation models can en-

counter numerical issues, especially with very large network sizes. These issues may

include non-convergence, infeasibility, or convergence to local optima. To address such

challenges, the nonlinear AC OPF can be replaced by a suitable convexified or linearised

model [68]. However, such approximations may compromise solution quality [69].
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5.3 Artificial Neural Networks (ANNs) for Locational Fre-

quency Stability

We use ANNs, described in Chapter 3.2.1, as the ML model due to their proven ef-

fectiveness and extensive application in power systems, including the capability to be

linearised and integrated as constraints in optimisation problems [19,33,43,44,70–72].

ANNs have been demonstrated to be scalable, adaptable and able to capture complex

relationships (including critical region performance refinement), which is crucial to ap-

plications in modern large-scale systems. A deep neural network algorithm using the

MLP algorithm is used to capture the locational frequency stability metrics. As shown

in Fig. 3.1, the MLP is a feed-forward ANN that contains a minimum of three layers:

the input layer, the hidden layer with σv neurons each, and the output layer. An MLP

with hidden layers, V, feature vector x, weights matrix Wv (σv×σv+1) and bias vector

bv (σv × 1), can be represented by (5.4a)-(5.4c).

z1 = WT
1 x+ b1 (5.4a)

ẑ1 = Θ1(z1) (5.4b)

zv+1 = WT
v+1ẑv + bv+1 (5.4c)

The model’s activation function is represented by Θ. We use the Rectified Linear

Unit (ReLU) activation function given by ẑv = max(0, zv) due to its superior properties

compared to other functions, such as linear and sigmoid activation functions, among

others. To train the MLP algorithm, the first step is to propagate the features up to the

output layer, a step known as forward propagation. Thereafter, based on the output,

the error, e, is calculated whereby the weights in the hidden layer(s) are adjusted

to minimise the same (back-propagation) [57]. This is achieved by optimising the

parameters, δθ (weights and biases), through the error derivative at a specified learning

rate, η, as follows:
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δθi ← δθi − η∇e (5.5)

Finally, these steps are repeated several times over epochs to establish the best

model parameters. The predicted frequency stability metric, ŷ, is derived from the last

layer as:

ŷ = WT
V+1ẑV + bV+1 (5.6)

5.4 Methodology for Deep Learning Constrained Optimal

Power Flow

As highlighted in Chapter 3, deriving the locational frequency response across dif-

ferent network buses and formulating associated locational constraints is challenging.

This task is particularly difficult in systems with CIG penetration, where the dynamic

response of CIGs can affect the locational frequency characteristics. Maintaining the

detailed locational frequency response characteristics through RMS-TDS is increasingly

important in such systems. However, this approach incurs significant computational

cost, especially if done as part of an optimisation routine. To address this challenge, we

propose a method that captures detailed locational frequency characteristics by train-

ing neural networks. The trained neural network is then reformulated as constraints to

implement stability constraints into an optimisation problem efficiently.

5.4.1 Overview of the Methodology

The methodology is summarised in the three stages shown in Fig. 5.1. In the Offline

stage, the database for training and testing the ML model for locational frequency sta-

bility metric prediction is generated based on RMS-TDS results from a phasor domain

simulation software. After training and testing, the frequency dynamics ANN model is

linearised and formulated as an optimisation constraint(s). In the Online stage, which is

for application, generators are dispatched economically while observing the embedded

locational frequency stability constraints. Thus, the proposed approach excludes the
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Figure 5.1: A three-stage methodology for the development of a Neural Network Con-
strained Optimal Power Flow (OPF)

need to iteratively assess the dynamic response of the OC using RMS-TDS, which are

computationally intensive and can be very slow for large-scale power systems [29,59,72].

Moreover, there is no need to formulate and embed explicit system equations within the

optimisation. Lastly, the Validation stage is an offline stage for performance evaluation

using the ground-truth RMS-TDS to ascertain that there are no violations across the

whole network.

5.4.2 Dataset Generation and ML Model Training

The AC-OPF model is applied in the generation of system operational scenarios by

varying three variables, i.e., the system loading, the number of SGs connected and the

CIG output. Details regarding the penetration of CIGs and subsequent displacement

of SGs are provided in Chapter 3.3.1. The penetration of CIG is modelled using the

Type 4 WECC control model [62, 73]. The CIG is integrated into the grid through a

fully rated converter without provision for any form of synthetic inertia. The output of

the CIG remains fixed at the power dispatch based on (6.16). All the SGs maintained
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the default active and reactive power output limits of 0.2 to 0.85 p.u. and -0.3 to 0.7

p.u. respectively, as per rating. The standard quadratic polynomial power generation

cost function in the optimisation problem is represented as:

Cost (£/hr) =
∑
i∈G

c2,iP
2
G,i + c1,iPG,i + c0,i, ∀i ∈ G (5.7)

where c0,i, c1,i, c2,i are constant, linear and quadratic cost coefficients of the cost

curve of SG i, respectively [3, 66]. The cost function coefficients for each SG are

independently sampled from a normal distribution iteratively within minimum and

maximum cost boundaries, i.e., c0,i = 0, 1 < c1,i < 10, 0.1 < c2,i < 1,∀i ∈ G. This

iterative process reflects scenarios where some SGs become more expensive, leading to

different dispatches necessary for the training dataset [74, 75]. Details of the SG cost

function coefficients used for testing the proposed method are found in Table 3.1 in

Chapter 3.4.1, while the generation cost of CIG is considered to be zero. The locational

frequency stability dataset is generated by simulating the largest generation loss, that

is, an N−1 SG outage, based on the AC-OPF solutions. RMS-TDS are conducted, and

the detailed locational frequency stability metrics, i.e., nadir and RoCoF, are calculated

and recorded. Standardisation of the dataset is as described in Chapter 3, Section 3.3.2.

The fully connected MLP architecture used in the chapter has the ReLU activation

function across three hidden layers with 400 neurons each. The maximum number of

iterations is 3000, while the alpha and the learning rate of the model are 0.01 and 0.001,

respectively. These parameters are optimally determined by the sklearn-GridSearchCV

[57], which is a hyperparameter tuning technique automating the process of finding

optimal hyperparameters for an ML model over a user-defined range. The regression

target of the ANN model is the locational frequency stability metrics of interest (e.g.

nadir and RoCoF) that will be monitored following a contingency. The inputs to

the ANN are the steady-state OC (pre-disturbance) system variables, i.e., SGs and

CIG active power set points and system loading, and some physical characteristics

of the system, i.e., SG ratings and disturbance index (thus the generator, which is

disconnected). The ML model is trained by simulating the largest loss of generation
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for different OCs using RMS-TDS and calculating the worst-case response from the

detailed locational frequency stability metrics for each of the N buses of the network,

i.e. a single output for nadir or RoCoF. Consequently, the ANN learns the complex

underlying relationships related to the locational frequency response metrics.

5.4.3 Incorporating Stability Constraints Within Optimisation Mod-

els

This chapter describes how the standard OPF formulation is modified to incorporate

the proposed ML-based locational frequency stability constraints. The standard general

optimisation vector, x̄, of the power system is expressed as:

x̄T = [Θm Vm Pg Qg] (5.8)

where Θm are the voltage angles, Vm are the voltage magnitudes, Pg and Qg are the

active and reactive power generation, respectively. To incorporate the locational fre-

quency stability constraints, the optimisation vector x̄ is merged with the vector n̄,

which includes static, user-defined additional variables associated with frequency pre-

diction, i.e., ML model biases and static system characteristic features. This unified

set is required for the final stability decision vector, xfreq, which is optimised. Dynamic

constraints, as opposed to standard linear constraints, are used in this study to repre-

sent the frequency dynamics in the system optimisation model. This approach enables

the customisation of the optimisation process and the addition of new variables. It

enables handling more complex tasks compared to the standard OPF formulation, as

well as attaining more efficient solutions. Therefore, the optimisation of system vari-

ables for locational frequency stability takes the form: fmin ≤ Ax̄ + n̄ ≤ fmax, where

fmin and fmax are the stability bounds (e.g., minimum nadir, or RoCoF), and A is a

sparse system state matrix specifying the active variables required as the model’s in-

puts (inactive variables are represented by 0). The choice of the upper stability metric

bound has a significant impact on the optimisation solution space. Consequently, this

must be significant enough not to limit optimisation’s convergence. Thus, the more

relaxed the upper bound is, the easier it is for the optimisation problem to converge.
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This provides a trade-off between easily finding feasible solutions and a tight frequency

security boundary. The frequency stability metrics thresholds for RoCoF and nadir

threshold are −0.5 Hz/s and 59.6 Hz, respectively [12, 76]. Since linearisation is re-

quired to implement stability constraints based on the trained ANN, a direct approach

is to train a linear model. However, this approach fails to capture the full extent of the

highly complex relationships in the data, which can be captured by the ReLU activation

function. Alternatively, binary variables can be used in specialised and/or commercial

solvers to linearise the ReLU function. However, the binary variables require element-

wise computation at each neuron since activation functions are implemented for each

neuron, leading to high computational requirements and/or longer simulation times.

To address this, we adopt a convex relaxation of the ReLU activation function using

the Triangle relaxation method [77,78], discussed in the next Chapter.

5.4.4 Triangle Relaxation of the ReLU Activation Function for Gen-

erating Frequency Stable Optimisation Solutions

This chapter presents the proposed approach, referred to as ∆− OPF , which ensures

locational frequency stability by incorporating ANN-based stability constraints into

the optimisation process. Introducing non-linear stability constraints into a power sys-

tem optimisation model significantly increases the complexity of the dispatch problem,

making it difficult to solve efficiently. To address this, we propose neural network lin-

earisation. This enables us to strike a balance between the computational simplicity of

a linear ANN and the complexity of the ReLU activation function. The Triangle relax-

ation method [77,78] aims to approximate the ReLU activation function in a bounded

input space by offering a purely linear representation. Fig. 5.2 illustrates the method’s

approximation of the ReLU through linear inequalities, thereby minimising complexity

in optimisation. It over-approximates the ReLU function except at the input bound-

aries, and this overestimation is the highest for values close to zero. This property guar-

antees the generation of stable scenarios and makes the method suitable for verification

tasks [77]. Given a trained neural network with ReLU activation functions, the Triangle

relaxation constrains the output of every neuron within a minimum pre-activation lower
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Figure 5.2: Triangle relaxation (red) of the ReLU activation function (brown) with
bounded inputs zv ∈ [LB, UB] for layer v neuron l

bound, LB, and a maximum pre-activation upper bound, UB. The training dataset is

used to compute these neuron-wise upper and lower bounds, assuming it is fully rep-

resentative of the data distribution. We denote the pre-activation output, z, of neuron

l in layer v of a neural network with V hidden layers as z
(l)
v . The scaled upper bound

constraint for Triangle relaxation is expressed as, ∀l = [1, ..., L], ∀v = [1, ..., V ]:

ẑ(l)v ≤
UB

(l)
v ·

(
z
(l)
v − LB

(l)
v

)
UB

(l)
v − LB

(l)
v

(5.9)

This can be rewritten as an affine expression as follows:

G
(l)
v,1 =

UB
(l)
v

UB
(l)
v − LB

(l)
v

, G
(l)
v,2 =

UB
(l)
v · LB(l)

v

UB
(l)
v − LB

(l)
v

(5.10)

Substituting into the original inequality (5.9), the output of every neuron can be

constrained as follows:

ẑ(l)v ≤ G
(l)
v,1 · z

(l)
v −G

(l)
v,2, ∀v = [1, ..., V ],∀l = [1, ..., L] (5.11)
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The complete relaxed neural network from the input to the final prediction can

therefore be represented as follows:

z
(l)
1 = WT

1 x+ b
(l)
1 , ẑ

(l)
1 = G

(l)
1,1 · z

(l)
1 −G

(l)
1,2 (5.12a)

z
(l)
2 = WT

2 ẑ
(l)
1 + b

(l)
2 , ẑ

(l)
2 = G

(l)
2,1.z

(l)
1 −G

(l)
2,2 (5.12b)

...
...
...
...
...
...
...
...
...
...
...
...
...
...

z(l)v = WT
v ẑ

(l)
v−1 + b(l)

v , ẑ(l)v = G
(l)
V,1.z

(l)
v −G

(l)
V,2 (5.12c)

z
(l)
V = WT

V .ẑ
(l)
v + b

(l)
V , ẑ

(l)
V = G

(l)
V,1.z

(l)
V −G

(l)
V,2 (5.12d)

ŷ = WT
V+1z

(l)
V + bV+1, or zV+1 = WT

V+1z
(l)
V + bV+1 (5.12e)

As described in Section 5.4.3, to integrate the stability constraints within our opti-

misation model, we need them expressed linearly in the form fmin ≤ Ax̄ + n̄ ≤ fmax.

To achieve this, we collapse the weights, biases and G
(l)
v parameters in (5.12) as follows:

W̄1 = G1,1 ◦WT
1 , b̄1 = G1,1 ◦ b1 −G1,2 (5.13a)

W̄2 = G2,1 ◦WT
2 , b̄2 = G2,1 ◦ b2 −G2,2 (5.13b)

...

W̄V = GV,1 ◦WT
V , b̄V = GV,1 ◦ bV −GV,2 (5.13c)

W̄V+1 = WT
V+1, b̄V+1 = bV+1 (5.13d)

y = W̄V+1

(
W̄V

(
...
(
W̄2(W̄1x+ b̄1) + b̄2

)
+ ...

)
+ b̄V

)
+ b̄V+1 (5.13e)

where G
(l)
v parameters are applied using element-wise multiplication (◦), while a dot

product is used by the weights to transform the input from the previous layer. This

simplifies the level of implementation complexity and the number of new parameters

introduced into the optimisation model. The final stability decision vector that is

optimised then becomes:
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xTfreq =
[
Θm Vm Pg Qg Fi θj

]
(5.14)

where Fi represent additional variables (ANN input features) not in the standard opti-

misation vector, which are: the system loading condition, SG rating, CIG output and

disturbance index, while θj is the set of model biases, bv. All active variables in the

sparse system matrix, A, (with corresponding values ̸= 0) are therefore updated with

weighting parameters derived from the linearised ANN (5.13).

5.4.5 Selective Activation Pruning OPF (SAP-∆-OPF)

The Triangle relaxation introduces looser bounds, particularly in neurons with high

variance, which provides some guarantee to generate frequency-stable solutions. How-

ever, this approach can significantly reduces the feasible region space, potentially lead-

ing to long optimisation times with low convergence rates. To address this and approxi-

mate the ReLU activation behaviour within OPF constraints more efficiently, we intro-

duce Selective Activation Pruning OPF (SAP-∆-OPF), a method for bounding neurons

based on their empirical activation ratios, rather than imposing hard constraints on ev-

ery neuron —which introduces significant conservatism, particularly around the region

z
(l)
v ≈ 0. We analyse neuron-wise behaviour following training to identify the most ac-

tive and most inactive neurons as an optimal set for linearisation, leaving the ambiguous

ones unconstrained. Given a trained neural network, we assign UB
(l)
v = LB

(l)
v = 0 to

neurons mostly inactive, and UB
(l)
v = 1,LB

(l)
v = 0 to neurons mostly active. We classify

neurons using the activation ratio, Σ
(l)
v , for each neuron l in all V layers as follows:

Σ(l)
v =

1

Ne

Ne∑
n=1

π
[
z(l)v,n > 0

]
, ∀v = [1, ..., V ],∀l = [1, ..., L] (5.15)

where Ne is the total number of data samples, z
(l)
v,n is the preactivation value of neuron

l in layer v for training sample n, and π[·] is the indicator function, returning 1 if

the condition is true, and 0 otherwise. Therefore, Σ
(l)
v lies in the range [0, 1], and we

use 0.95 as a threshold to classify neurons. Specifically, a neuron with Σ
(l)
v ≥ 0.95 is

considered most active, while a neuron with Σ
(l)
v ≤ 0.05 is considered most inactive.
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5.4.6 Model Evaluation and Baseline Methods

The predictive accuracy of the trained ANN model is assessed using the evaluation

metrics RMSE and MAE, described in Chapter 3.3.3. Finally, the performance of

the proposed security-constrained method, ∆−OPF, is compared against the normal

OPF without any frequency stability-related constraints (referred to as OPF) mainly

in terms of computation time and generating frequency-stable solutions. Additionally,

two baseline methods from the literature are also included for comparison as follows:

i) Mixed Analytical-numerical method (Numerical method):

To obtain a linear formulation of the constraints to guarantee that the frequency

nadir is above the stability threshold across the network, a numerical estimation is

applied on the integrals of post-fault frequency deviation [14, 15]. These integrals are

expressed as a linear combination of key system variables, including system inertia,

available reserves, system damping, and the size of the disturbance, as shown below:

∫ tNadir,i

0
∆fi(t)dt =

N∑
j=1

(
cj,iHtj + dj,iDj + ej,iRj

)
+ gi∆P +mi (5.16)

where cj,i, dj,i, ej,i, gi,mi represent the regression weights, Rj represents the available

reserves, Dj represents the available damping, and subscript j represents the location

out of the N areas of the network. The regression weights of the frequency nadir are

calculated through a linear regression on training samples generated by RMS-TDS,

focusing on those on the stability boundary. Further details of this approach can be

found in [14,15].

ii) Iterative RMS TDS-based method (TDS-Opt):

This method uses a two-stage approach to optimise power system operations and

maintain stability [21]. In the first stage, AC-OPF is performed for an economic dis-

patch of the generators. In the second stage, RMS-TDS is conducted on the AC-OPF

solution to assess the system’s frequency stability. If the system is stable, the process

terminates. If instability is detected, following the loss of the largest generating SG as

the disturbance, the process enters an iterative loop, progressively tightening reserve

requirements for each SG until stability is ensured. The reserve requirements for each
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Figure 5.3: The modified IEEE 39-bus network highlighting the three network areas
with CIG penetrations at buses 5, 16 and 26 [3]

SG in the network are calculated as shown below, ∀i ∈ I, i ̸= l:

Ri ≤ 2ρi
MH(f0 − fmin − fdb)

∆Pl
(5.17)

where Ri is the reserve provision of SG i, ρi is the i
th SG governor response, fdb is the

dead-band frequency, I is the set of SGs, and ∆Pl is the power outage due to SG l.

Further details of this approach can be found in [75].

5.5 Case Studies and Results

In this chapter, the results of the proposed ANN-constrained OPF for locational fre-

quency stability are presented using the modified IEEE 39 bus network shown in Fig.

5.3. Two case studies of varying complexity are considered as follows: i) Case I : a
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case where the N − 1 disturbance (loss of largest generation within the area) is in

one location in the area with CIG (Area 2), and ii) Case II : a more complex case

with CIG penetration in each of the three areas and the N − 1 disturbance imple-

mented in each area, i.e., the largest loss of generation for each area is considered as

a disturbance. A single ML model is used in each case study, and the objective of the

proposed ANN-constrained OPF is to generate solutions which, following a disturbance,

do not have any frequency violation at any network location. Accuracy evaluation of

the ANN is done using the metrics discussed in Chapter 3.3.3. The AC-OPF model

is applied for generator dispatch using MIPS in MATPOWER [66], while the solver

find minimum of constrained nonlinear multivariable function (fmincon) is employed

in security-constrained dispatch due to its flexibility and handling complex constrained

optimisation. Based on the scenarios generation criteria described in Chapter 5.4.2,

the solutions from the optimisation are exported to DIgSILENT [17] using the Python

programming language. RMS-TDS are then conducted on these scenarios to generate

the locational frequency stability training and testing datasets for the ML models. All

simulations were carried out on an 11th Gen Intel (R) Core (TM) i7-11700 @ 2.50 GHz

with 16 GB installed RAM.

5.5.1 Observed Locational Frequency Deviations in the System Due

to High CIG Penetration

Similar to locational frequency dynamics variations in Chapter 3.4.3, this chapter uses

a different dataset described in Chapter 5.4.2, to demonstrate how COI-based methods

are increasingly becoming unreliable in the face of high CIG generation. Thereafter,

we test the proposed approach to demonstrate its ability to accurately capture these

important locational frequency characteristics. As stated by (3.1) in Chapter 3.1.1, the

accuracy of the conventional COI-based approach to represent the system frequency

response inversely correlates with the deviation factor, Aiωi(t). An increase in the

deviation factor implies that the frequency response is becoming more locational. Con-

sequently, higher risks of locational frequency violations may exist. Using Case II as

an example, Fig. 5.4 shows the locational RoCoF variations between any two locations

90



Chapter 5. Security Constrained Optimisation for Preventive Frequency Stability

Figure 5.4: Impact of CIG penetration on the maximum locational RoCoF variations
(in Hz/s) between any two locations in the modified IEEE 39 Bus network

across the network under two scenarios: i) With CIG Penetration and ii) Without CIG

Penetration. The disturbances evaluated are the N − 1 largest area-specific generating

SG outages. The maximum variation for the scenario without CIGs is 0.15 Hz/s, 0.37

Hz/s, and 0.08 Hz/s for the disturbance outage of SG 01 (Area 1), SG 05 (Area 2) and

SG 09 (Area 3), respectively. On the other hand, given different high CIG penetration

levels across the network, the maximum variations significantly increase to 0.77 Hz/s

(400% increase), 0.94 Hz/s (62% increase) and 0.48 Hz/s (500% increase) for the dis-

turbance outage of SG 01 (Area 1), SG 05 (Area 2) and SG 09 (Area 3), respectively.

Notably, this happens during instances of high CIG output, over 1,500 MW. Conse-

quently, in systems with high CIG penetration, the significant variation in locational

frequency dynamics can undermine the reliability of COI-based methods —potentially

leading to unforeseen relay activations, as observed in Chapter 3.1.1. These results

highlight that the widening gap between low-CIG and high-CIG systems necessitates

more accurate and efficient modelling approaches to ensure secure system operation.
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5.5.2 Case I: Fixed Disturbance Location With Single Area CIG Pen-

etration

Operational scenarios are generated with the CIG integrated on Bus 16 in Area 2 across

all scenarios. All SGs within the area, i.e., SG 4 - SG 7, are displaced systematically

as stated by (6.15). Likewise, the scaling of the CIG follows the expression (6.16).

Consequently, the penetration level was up to 40% of the overall system generation.

The N − 1 disturbance is the disconnection of SG 05, located in the same area as

the CIG generation, contributing up to 25% of the area’s generation. Overall, 2,114

operating scenarios are generated, and RMS-TDS is conducted to record the locational

frequency nadir and RoCoF of the system following the disturbance. More details on

dataset generation are given in Chapter 5.4.2.

i) Accuracy Evaluation of the Artificial Neural Network (ANN) Model

The ANN network is trained to predict the locational frequency stability metric,

i.e., nadir and/or RoCoF, using the RMS-TDS dataset. The performance results of

the trained model, whose parameters are determined by the GridSearchCV —a tool

that automates the process of finding the best combination of hyperparameters for a

given ML model by exhaustively searching over a user-defined parameter grid [57, 58],

are summarised in Table 5.1. It is observed that the ANN can achieve a high degree

of locational frequency stability metrics prediction accuracy by having a maximum

RoCoF and nadir RMSE of 0.0021 Hz/s and 0.0095 Hz, respectively. It can also be

observed that the mean RMSEs achieved by the model are 0.0020 Hz/s and 0.0093 Hz,

respectively. This indicates that the model can consistently make accurate predictions,

something that is an essential step before implementing it as a constraint in the system

optimisation model. The ML model has adequately learned the locational frequency

dynamics of the case study to generate solutions that adhere to frequency stability

requirements at every bus in the network. The model parameters, i.e., weights, biases,

and the training dataset standardisation parameters, are therefore saved and formulated

into an OPF stability constraint using the method discussed in Chapter 5.4.3. The

results of this approach are presented in the next subsection.

ii) Neural Network-Constrained Optimal Power Flow (∆−OPF) Perfor-
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Table 5.1: Accuracy of the Neural Network Model for locational frequency stability
metrics prediction for Case I

Metric Max RMSE Mean RMSE Max MAE

RoCoF (Hz/s) 0.0021 0.0020 0.0195
Nadir (Hz) 0.0095 0.0093 0.0489

Table 5.2: Model Optimisation Results for Locational Frequency Stability (Nadir) for
Case I

Performance OPF TDS-Opt Numerical ∆-OPF

Mean Iterations 15.76 8.20 16.81 18.77
Unstable OCs (%) 82.98 0.00 19.35 0.00
Mean OC Nadir (Hz) 59.56 59.62 59.84 59.76
Minimum Nadir (Hz) 59.48 59.61 59.75 59.60
Mean Opt. Secs. (MOS) 0.05 57.39 0.05 0.06

mance

The linearised model is embedded in the optimisation model as a locational fre-

quency stability constraint, referred to as ∆−OPF, following the procedure described

in Sections 5.4.3 and 5.4.4. The modified optimisation model (as a security-constrained

OPF model) is run to generate solutions which adhere to frequency stability require-

ments at every bus in the network. To validate this, RMS-TDS are conducted on the

∆ − OPF solutions, whereby the frequency stability metric of interest is recorded for

every OC.

Using the frequency nadir as a stability metric and performance variable, the UFLS

relay setting is considered to be 59.6 Hz. This threshold marks the activation point of

the UFLS relays, indicating an unstable or insecure scenario. The performance of the

∆ − OPF is compared in Table 5.2 against the standard OPF without stability con-

straints (OPF), optimisation incorporating RMS-TDS in the loop (TDS-Opt) (5.17)

and the numerical estimation model (Numerical) (5.16), as explained in Chapter 5.4.6.

The numerical estimation method is applied across the generator buses in the net-

work without the need to explicitly define network areas —leading up to ten stability

constraints. It is observed that the mean and minimum nadir of the OPF model are

59.5613 Hz and 59.4834 Hz, respectively, with an overall nadir violation of 83%, i.e.
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cases where the frequency causes any locational violation exceeding the pre-set thresh-

old of 59.6 Hz in this chapter. The RMS-TDS has both the mean and minimum nadir

above the 59.6 Hz threshold, bearing a 0% nadir violation. The Numerical estimation

has the mean and minimum nadir of 59.8416 Hz and 56.4829 Hz, respectively, with an

overall OCs violation of around 19%. The proposed ∆ − OPF achieves a mean and

minimum frequency nadir of 59.76 Hz and 59.60 Hz, respectively, with no violations

of frequency nadir limit observed in the simulated cases —indicating that the imple-

mented frequency stability constraints can limit the frequency nadir within acceptable

limits.

In Fig. 5.5, the extent of violations of the discussed models based on the results

in Table 5.2 is presented. The figure summarises the nadir violations across a range

of different CIG penetration levels. It can be seen in the figure that only two models,

i.e., OPF and Numerical, bear violations with maximum values of 0.12 Hz. A positive

correlation can be seen between the CIG penetration level and the nadir violations

due to the reduced inertia and increased complexity introduced in the system. The

Numerical method incurs violations only for OCs with the highest CIG penetration,

i.e., at least 600 MW. On the contrary, the TDS-Opt and ∆−OPF have no violation,

i.e., 0 Hz.

5.5.3 Case II: Examining the Effect of Disturbances Across all Areas

of the System

In the second case study, the modified IEEE 39 bus network is formed of three areas,

as shown in Fig. 5.3. The generation of operating scenarios is based on the AC OPF as

done in Chapter 5.5.2, considering the description in Chapter 5.4.2. The commitment

of SGs is based on (6.15), and the scaling of the system loading is as described in

Chapter 5.4.2. The locations of the CIGs within the areas remain fixed at the shown

buses, i.e., Bus 5, Bus 16 and Bus 26 for Area 1, Area 2 and Area 3, respectively. The

penetration of the CIGs in each area is determined by incrementally displacing the four

equal-sized units of SGs as stated by (6.16). After an SG is completely displaced, the

displacement of the next SG follows the same pattern, and the former SG reverts to
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Figure 5.5: Locational Frequency Nadir Violations by four different models, including
the proposed ∆−OPF, across different CIG levels (up to 40% of system generation)

full capacity. Consequently, the total CIG penetration level with respect to the area

generation for Area 1, Area 2 and Area 3 was between 4.5%-70%, 5%-60% and 6%-80%,

respectively. Overall, CIGs generated between 6%-60% of the total system generation.

For each OC, three RMS-TDS cases are performed for the loss of the largest generator

in each of the three network areas. Consequently, the dataset for this case consisted of

4,785 OCs. The frequency nadir boundary is maintained as in Case I at 59.6 Hz.

i) Accuracy Evaluation of the Artificial Neural Network (ANN) Model

The ANN is trained to predict the locational (across 39 buses) frequency stability

metric, i.e., nadir or RoCoF, using the RMS-TDS dataset. The accuracy of the ANN

is then presented based on the buses, which are grouped into three areas, according

to their designated areas shown in Fig. 5.3. Table 5.3 presents the RoCoF and nadir

evaluations across the three areas. It can be observed that, similar to the performance

in Case I (Table 5.1), the ANN maintains high inference accuracy. The worst mean

RoCoF mean RMSE is in Area 2 at 0.0057 Hz/s, while the worst mean nadir RMSE

is in Area 3 at 0.0208 Hz/s, thereby validating the model’s high accuracy performance

requirements needed for the ANN-stability-constrained optimisation application.

ii) Neural Network-Constrained Optimal Power Flow (∆−OPF) Perfor-
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Table 5.3: Accuracy of the Neural Network Model for Locational Frequency Stability
Metrics Prediction for Case II

Metric Area Max RMSE Mean RMSE Max MAE

RoCoF (Hz/s) Area 1 0.0224 0.0047 0.0168
Area 2 0.0108 0.0057 0.0069
Area 3 0.0036 0.0033 0.0025

Nadir (Hz) Area 1 0.0222 0.0205 0.0159
Area 2 0.0224 0.0205 0.0156
Area 3 0.0225 0.0208 0.0156

mance

The trained ANN is linearised and implemented as a constraint within the optimi-

sation model for locational frequency stability, subject to any disturbance from any of

the three areas. The performance of the neural network-constrained OPF using the Tri-

angle relaxation of the ReLU (∆−OPF) is also compared with the Numerical method

(Numerical) and the standard OPF without constraints (OPF). In this network with

three distinct areas (Fig. 5.3), the Numerical estimation method is applied to each area,

resulting in three corresponding stability constraints. The validation of each method

is performed with RMS-TDS. Table 5.4 shows a summary of the performance of the

three different methods following a disturbance in each area (implemented indepen-

dently). The TDS-Opt, which includes RMS-TDS within its optimisation process, is

not included in this table as it exhibits no frequency violation, with the associated

significant computational requirements that were discussed in the previous section be-

ing the only disadvantage. The OPF model incurs 100%, 90% and 98% of frequency

nadir violations for disturbances in Area 1, Area 2 and Area 3, respectively. This is, to

some extent, expected since this approach is not security-constrained. The Numerical

model demonstrates good performance for disturbances in Area 1 with total violations

of around 1%, but its performance deteriorates for the disturbances in other areas,

i.e., 76% and 97% of nadir violations in Areas 2 and 3, respectively. This is due to

the varied behaviour of responses in these areas, which is difficult to capture by the

regression model used in this approach. This can, however, potentially be improved

by i) optimisation with different sets (or more) of data points within a varied distance
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Table 5.4: Model Optimisation Results for Locational Frequency Stability (Nadir) for
Case II

Region Performance OPF Numerical ∆-OPF

Area 1 Unstable OCs (%) 100 1.39 0.00
Mean Nadir (Hz) 59.22 59.77 59.66
Min Nadir (Hz) 59.02 59.59 59.61

Area 2 Unstable OCs (%) 91.67 76.39 0.00
Mean Nadir (Hz) 59.08 59.56 59.85
Min Nadir (Hz) 58.83 59.40 59.60

Area 3 Unstable OCs (%) 98.55 97.10 0.00
Mean Nadir (Hz) 59.25 59.38 59.90
Min Nadir (Hz) 59.04 59.18 59.60

from the stability boundary, ii) using bus-level constraints, rather than area-level, and

iii) overestimating the predictions —though this may lead to reduced solution space. In

contrast, the ∆-OPF model demonstrates consistent adaptability across disturbances,

by keeping the frequency within acceptable limits in all areas. However, it has an opti-

misation convergence of 63% due to over-approximating the ReLU activation function

as described in Section 5.4.5. In the next Chapter, we present the neural network’s

pre-activation statistics, then employ SAP-∆-OPF to improve this convergence, while

tolerating some risks.

5.5.4 Neural Network Pre-activation Statistics and the Necessity of

SAP-∆-OPF

As described in Chapter 5.4.5, the Triangle relaxation can encounter convergence issues

due to the high variance neurons. In Chapter 5.5.3, ∆-OPF exhibited a 63% conver-

gence rate because it is highly conservative; as a result, it reduces the solver’s feasible

region. We assess this tendency by analysing the neural network’s pre-activation distri-

butions. As shown in Fig. 5.6, the layer-wise mean pre-activation intervals are broad,

especially for deeper layers 1 and 2 with ranges -60 to 10 and -30 to 10, respectively.

These distributions are skewed towards 0 across all layers, where the gap between the

ReLU and the relaxation is the widest (as depicted in Fig. 5.2). As a result, inference

within this region is highly conservative, affecting the convergence rate. More gran-
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Table 5.5: Model Optimisation Results for ∆-OPF and SAP-∆-OPF for Case II

Region Performance ∆-OPF SAP-∆-OPF

Area 1
Unstable OCs (%) 0.00 0.00
Mean Nadir (Hz) 59.66 59.93
Min Nadir (Hz) 59.61 59.86

Area 2
Unstable OCs (%) 0.00 1.67
Mean Nadir (Hz) 59.85 59.69
Min Nadir (Hz) 59.60 59.52

Area 3
Unstable OCs (%) 0.00 1.67
Mean Nadir (Hz) 59.90 59.77
Min Nadir (Hz) 59.60 59.53

Computation
Mean Iterations 222.29 386.22
Mean Opt. Secs. (s) 5.44 4.97
Convergence Rate (%) 63.89 83.33

ularity is provided in Fig. 5.7, where the distribution of neuron-wise minimum and

maximum pre-activation bounds is plotted. In this figure, high variance neurons can

be observed, for example, neurons 289, 107 and 249 (full pre-activation trace shown by

Fig. 5.8) in layers 0, 1 and 2, respectively. These neurons are of special (critical) signif-

icance because they determine the overall tightness of the Triangle relaxation —largely

determining the method’s conservativeness.

To improve the linearisation efficiency of the ∆-OPF, and enhance optimisation

convergence —while allowing some risks —we implement selective activation pruning

(SAP-∆-OPF) discussed in Chapter 5.4.5. We achieve this by identifying the most

active and inactive neurons of the neural network using (5.15). A neuron is classified

as most active if it has Σ
(l)
v ≥ 0.95, i.e., the neuron was active at least 95% of the

training time. In contrast, the most inactive neuron has Σ
(l)
v ≤ 0.05, i.e., the neuron

was only active less than 5% of the training time. After identifying these neurons,

SAP-∆-OPF is implemented on them. Results are shown in Table 5.5 using Case

II data (Section 5.5.3), where ∆-OPF managed to maintain the frequency within ac-

ceptable limits, but its convergence was only 63%, as mentioned before. In contrast,

SAP-∆-OPF has no violations in Area 1, but some 1.67% violations in Areas 2 and

3 —violating the acceptable threshold of 59.6 Hz by a maximum of 0.08 Hz and 0.07
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Figure 5.6: Layer-wise preactivation mean distribution of a neural network with three
hidden layers
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Figure 5.7: Neuron-wise minimum-maximum preactivation distribution of a neural
network with three hidden layers and 400 neurons per layer
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Figure 5.8: Full neuron preactivation trace for neuron 249 in Layer 2 (mostly inactive)

Hz in Areas 2 and 3, respectively. However, SAP-∆-OPF significantly improves the

optimisation convergence of ∆-OPF by 32%, increasing it from 63% to 83% —indi-

cating that selective neuron linearisation can be beneficial in scenarios where a degree

of risk is acceptable. Furthermore, SAP-∆-OPF reduces ∆-OPF’s mean optimisation

time (Mean Opt. Secs.) by 10%, that is, from 5.97 seconds to only 5.44 seconds. Such

improvements would yield even greater benefits in larger-scale systems, where compu-

tational challenges and nonlinearity can be more pronounced. Note that while relaxing

the boundary may improve ∆-OPF’s convergence rate, it changes the nature of the

problem and weakens theoretical guarantees. In contrast, SAP-∆-OPF is a principled

improvement —not a workaround —that preserves the original problem’s structure and

improves convergence strictly within the existing feasible region.

5.5.5 Computational Considerations

As previously described in Chapter 5.5.2, both the ∆−OPF and the TDS-Opt exhibit

good performance. However, one of the key advantages of the ∆ − OPF is the im-

provement in computational time while maintaining the detailed locational frequency

response characteristics. This is also one of the key motivations behind the proposed

method. For example, concerning the computation performance in Case I, the OPF

without stability constraints take the least amount of time with 0.05 seconds and 15.8

iterations per solution. This is followed by the Numerical estimation method (0.05

seconds, 16.81 iterations) and the ∆−OPF (0.06 seconds, 18.77 iterations). TDS-Opt
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takes the longest time per solution, up to around 57 seconds. This is due to the in-

corporation of the computationally intensive TDS within the optimisation loop, where

several iterations, n, (8 on average), are required to find an optimal solution —thus

900 times slower than the ∆−OPF. Despite the accuracy of this approach (and TDS

in general), its application can be quite limited in real-time or close-to-real-time ap-

plications, especially for large-scale power systems. Furthermore, it was demonstrated

in Chapter 5.5.4, using results from Case II (Chapter 5.5.3) that, where a degree of

risk is acceptable, SAP-∆-OPF (also proposed in this study) offers the potential to

improve ∆-OPF’s computational efficiency by 10%, further highlighting the potential

of the proposed method in ensuring efficient (and secure) generator dispatch.

5.6 Conclusion

Performing TDS that accurately accounts for spatial frequency response considerations

is a time-intensive process, making its integration into dispatch optimisation imprac-

tical. In this work, a machine learning-driven dispatch optimisation formulation is

presented that models the increasingly important locational aspects of frequency re-

sponse in systems with high penetration of Converter Interfaced Generation (CIG)

while also offering the ability to account for the detailed dynamic behaviour of such

devices. To this end, a Neural Network is trained to accurately predict the locational

frequency characteristics, which is linearised and added as a security constraint to a

typical Optimal Power Flow (OPF). The proposed method has the advantage of offer-

ing preferable qualities of computational speed while exhibiting high accuracy and no

stability violations, comparable to approaches relying on much more computationally

demanding iterative TDS or analytical approaches.

The proposed method was tested using two case studies on a modified version of

the IEEE 39 bus network and compared against an OPF without frequency security

constraints, a numerical approach introducing constraints into OPF and an iterative

optimisation approach based on TDS. In the first case, results showed no frequency

variations when using the proposed approach, compared to 83% violations in the non-

constraint case and 19% violations in the case of the numerical approach. The second,
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more complex case demonstrated consistent behaviour for more complex scenarios for

disturbances across different areas of the test network, highlighting good performance

against locational variations in the frequency response. While no violations can occur

while using the TDS-based approach, the ANN-based proposed approach is up more

than 900 times faster, enabling application in operational timescales.

Overall, the proposed method offers a combination of preferable characteristics

of maintaining the detail of locational frequency response characteristics that time

domain-based approaches have, combined with the speed of analytical-based approaches.
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Chapter 6

Emergency Adaptive Frequency

Control Mechanisms with

Reinforcement Learning

In Chapter 6, we address the challenges faced by conventional AUFLS methods in main-

taining system stability, while minimising supply service interruption (load-shedding).

Specifically, we focus on RL-based AUFLS approaches (AUFLS RL), which have shown

significant advantages over analytical AUFLS methods. These advantages include their

ability to learn even the ‘hard-to-model’ system dynamics through interactions with

the system (simulation environment), while also offering good computational efficiency,

allowing close to real-time control, as discussed in Chapter 2.4. We propose a Physics-

Informed Deep RL technique for AUFLS by introducing a PS within the RL training.

This shield utilises the system’s swing equation to guide the RL agent’s actions and elim-

inate non-essential actions. However, as the swing equation alone cannot adequately

capture the increasingly complex locational/regional frequency dynamics, we introduce

an additional step for coherence detection through the use of neural networks. This ap-

proach addresses a common limitation of most AUFLS RL methods in high-dimensional

settings by providing a systematic dimensionality reduction technique, thereby facili-

tating practical adoption in large-scale power systems. It also increases the precision

of the RL agent’s actions by enabling the agent to consider the OC-specific coherence
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of buses within the network when optimising its decisions. The paper presenting this

methodology is currently under review with IEEE Transactions on Power Systems as

[Pub. F], building on the work [Pub. E], which was published in the proceedings

of the 14th Mediterranean Conference on Power Generation, Transmission, Distribu-

tion and Energy Conversion (MEDPOWER 2024). The contribution of this work is

threefold:

i. We incorporate the governing physics of power system frequency dynamics into

the RL training process through a PS to eliminate non-essential actions and

subsequent fruitless exploration. This enhances both the optimality of solutions

and the computational efficiency of current RL models, typically trained through

excessive sampling.

ii. We propose a neural network-based method for detecting coherence among par-

ticipating frequency control loads, enabling RL agents to execute actions while

considering scenario-specific aggregation. Unlike conventional geographic or static

grouping, real-time identification of coherent areas enables efficient scalability in

high-dimensional systems, increasing precision of the agent’s actions.

iii. We introduce a two-stage frequency protection architecture by integrating the

conventional UFLS scheme with an RL-based control. The RL agent aims to

minimise load shedding while preserving system stability, and the UFLS scheme

remains fully armed as a last resort. This hybrid approach offers a robust control

scheme that demonstrates the practicality of integrating RL-based strategies with

legacy grid schemes.

6.1 Emergency Frequency Control in Power Systems

This chapter outlines the limitations of traditional UFLS schemes and discusses the

challenges associated with existing AUFLS RL techniques proposed in the literature

to address these limitations. The Under-Frequency Load Shedding (UFLS) scheme is

a typical emergency frequency control strategy involving automated load shedding to
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maintain power balance and frequency stability. The UFLS usually operates based on

violation of pre-set frequency thresholds, triggering pre-defined shedding of a certain

load percentage at various steps [45]. However, the assumptions and operational prin-

ciples underlying this technique are increasingly being challenged in many ways. For

instance, relying on pre-set thresholds assumes relatively predictable load and genera-

tion characteristics, and it neglects to account for the possibility of flexible loads [46,47].

6.1.1 Challenges of Existing Alternatives to the UFLS Scheme

Adaptive AUFLS has been proposed to address the limitations of the conventional

UFLS, by using real-time system data to provide an adaptive load-shedding scheme [45,

48,49]. However, most analytical approaches rely on simplifications to derive frequency

responses and determine the appropriate load shedding. Consequently, their accuracy

is increasingly challenged by the complexity and uncertainty introduced by CIGs in

modern power systems [51]. Moreover, real-time computation of the load-shedding

scheme, while considering the specific nature of the disturbance, can be computationally

demanding. As a result, reinforcement learning-based AUFLS (AUFLS RL) has gained

traction. RL models can learn optimal policies from observed or simulated data during

training, allowing them to capture complex dynamics without explicit modelling of the

system.

However, despite the significant advantages of existing AUFLS RL methods over

analytical approaches as described in detail in Chapter 2.4, they are purely data-driven

methods, with scaling challenges in high-dimensional settings. Consequently, they usu-

ally limit analysis to a few selected control variables. For example, these methods

often select a few loads as load-shedding candidates in their control action space, or

they arbitrarily cluster these loads to reduce the system’s dimensionality. This practice

reduces the effectiveness of these AUFLS RL techniques by neglecting the locational

aspect of the participating loads. In addition, these methods ignore the physics gov-

erning the system’s dynamic behaviour, leading to heavy reliance on large datasets to

develop an optimal policy. Although it can be claimed that training datasets may cap-

ture the underlying physics, the explicit lack of it within the training loop contributes
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to sub-optimal performance, long training time and difficulty in extrapolating beyond

the training domain.

6.1.2 Enhancing the Effectiveness of Existing AUFLS RL Methods

In response to the aforementioned challenges, we propose a Physics-Shielded Deep RL

technique for AUFLS. The method introduces a “Physics Shield” (PS) within the RL

training, which incorporates the system’s swing equation to guide the agent’s learn-

ing process. This integration constrains exploration by eliminating non-essential load

shedding actions that unguided and purely data-driven RL agents might otherwise

waste considerable time evaluating. However, while the PS captures the key dynamics

through the swing equation, it is insufficient to account for the impact of the spatial

distribution of loads —a critical factor for effective load shedding. To address this,

we therefore introduce real-time system coherence detection using the rate of change

of frequency (RoCoF). Unlike traditional model-based coherence detection techniques,

which often struggle with clustering non-SG-generating buses, our approach applies a

data-driven technique using neural networks (NNs). This method imposes relatively

little to no computational overhead, making it suitable for online applications [41]. By

adaptively clustering the system based on real-time dynamic behaviour, the proposed

method identifies where, when, and how much load is to be shed more efficiently. Fi-

nally, given that data-driven approaches can suffer accuracy bias resulting from limited

training datasets and/or out-of-distribution edge-case scenarios, we integrate the RL

agent within the existing UFLS protection architecture as a last resort, providing an

extra layer of security.

6.2 Deep Reinforcement Learning Implementation

In this chapter, we describe deep RL and how we formulate our problem of AUFLS

to keep the power system frequency within acceptable limits, through the RL agent’s

location- and time-specific load shedding actions.
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Figure 6.1: Architecture of the DDPG algorithm illustrating the actor and critic net-
works and the simulation environment (TDS)
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6.2.1 Problem Formulation

RL uses Markov’s Decision Process (MDP) to implement sequential strategic deci-

sions [79], where agents aim to maximise the reward, they get from their interactions

with a given environment. By balancing between exploitative and exploratory actions,

RL agents learn and establish the complex relationships of the environment. This is

typically achieved using a Q-value [80], that is, an action value that tells an agent how

good it is to take a certain action in a given state. The Deep Deterministic Policy

Gradient (DDPG) RL algorithm [81], shown in Fig. 6.1, employs an actor-critic archi-

tecture. It uses two NNs: the Actor network, which is responsible for interacting with

the environment and learning the policy mapping, πθ, between the current state and a

given action; and the Critic network, which guides policy improvement by estimating

the Q-value of the action chosen by the actor. Furthermore, the algorithm employs

target actor and target networks, which are slow-moving copies of the actor and critic

networks, with the primary purpose of stabilising the algorithm’s training [50,80]. We

employ the DDPG algorithm because it is well-suited for continuous action multidi-

mensional spaces [50], making it appropriate for our implementation.

To initialise training and properly guide interactions with the environment, two

key parameters are specified, i.e., ϵthreshold, an exploration threshold, and η, sampled

from a normal distribution [0, 1]. During training, if η > ϵthreshold, the agent’s action is

exploitative and vice versa. If η ≤ ϵthreshold, the action is exploratory, allowing the agent

to select any expendable action in the search space. In addition, a decaying Gaussian

noise, ζ, is added to the agent’s actions to prevent the agent from getting trapped

during training. During such interactions, the target actor and the critic networks

learn and update (copy) their parameters as follows:

(
θa

′
←− τθa + (1− τ)θa

′
, θc

′
←− τθc + (1− τ)θc

′)
(6.1)

where θa, θc are parameters of the actor and critic networks, respectively, while θa
′
, θc

′

represent the parameters of the target actor and target critic networks, respectively.

Thus, the actor and critic are the main networks actively being trained to improve

the agent’s performance. The parameters of the target networks are updated at a rate
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related to τ , the role of which is to prevent large updates, thus ensuring stable training.

The aim is to regulate and ensure that the target networks are updated gradually to

match the main networks. As such, a smaller τ leads to slower updates, whereas a

larger τ leads to faster updates [50, 55]. The critic network evaluates and guides the

actor in selecting optimal actions, allowing it to learn the optimal state-action mapping

through the loss function:

J(θc) =
1

m

m∑
j=1

(yj −Q(sj , aj , θc))2 (6.2)

where m is the number of samples of the mini-batch (a subset of the stored transitions

or experience), Q(sj , aj , θc) is the predicted Q value from the critic for the state−action

pair (sj , aj) using the current critic network parameters, θc. yj is the target or the real

Q value for the jth sample, and is calculated from the agent’s reward function as follows:

yj =

 r for istep = 1

r + γQ(sj , aj , θc′) for istep > 1
(6.3)

where the value of the action, yj , equals the immediate allocated reward, r, if the

episode ends during the first step, istep. For all subsequent steps up to the last step,

the cumulative reward reflects intertemporal relationships by being weighted by the

discount factor γ, assigning a lesser value to future rewards. Thus, r is specially de-

signed and is critical to the optimal learning and development of the agent’s policy, πθ.

In our implementation, the scenarios are modelled independently, as each is a separate

TDS. The design choice for this function is described in Section 6.3.3. The loss function

of the actor network is stated as follows:

J(θa) = − 1

m

m∑
j=1

Q(sj , aj , θc) (6.4)

where θa are the actor’s current parameters being optimised to minimise the overall

loss, Q(sj , aj , θc) is the Q value predicted by the critic (with parameter set θc) for the

action aj chosen by the actor. This function aims to minimise the negative Q-value of

the actor’s chosen actions across the minibatch, m. Its minimisation is equivalent to

maximising expected return, so that the critic estimates higher values for the actions

chosen by the actor. Therefore, in the context of this work, the objective of the RL

agent is to maintain the frequency nadir after large disturbances (e.g. N − 2) with
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minimal load-shedding, by controlling when, where, and what amount of distributed

loads is shed across the network. The state and action spaces of the environment are

designed as follows:

i) State (s)

This represents the current status of the environment, consisting of system variables

relevant to the given objective. The state space is crucial for the agent’s learning

as it defines the available knowledge of the system. For our problem, we define s =

[ρ, sg,Pg,L], where ρ is the system’s coherence detection vector, containing bus in-

dices labelled according to the coherence cluster, out of coherence clusters K. This

grouping allows the RL agent to identify coherent buses and treat them as a single

controllable entity, thereby improving both the precision and efficiency of the control

strategy through dimensionality reduction. This is essential to capture detailed loca-

tional frequency dynamics of the system’s current state (Section 6.3.2 describes this in

detail). sg is a vector of generator ratings, Pg is a vector of active power set points of

generators, and L is the total system load scaling.

ii) Action (a)

At each state, the RL agent generates a continuous action vector of size K + 1, where

the first K elements correspond to the AUFLS applicable to K pre-defined clusters of

the system, while the additional element is the load shedding activation time (detailed

in Section 6.3.2). Thus, a is executed in a single step as the optimal load shedding

scheme, ξi, ∀i ∈ K, with a unified activation time, tAct, i.e., a = [ξi, tAct]. The total

load in the system available for frequency control is divided into two equal-sized groups:

flexible loads, Dflexible-loads —controlled by the RL agent through the RL-based scheme

ξi,∀i ∈ K —and defensive loads, Ddefensive-loads, whose protective relays remain fully

armed —managed by the conventional UFLS scheme as a last resort.
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Figure 6.2: Overview of the NN-Physics-shielded RL agent implementation for adaptive
emergency frequency control

112



Chapter 6. Emergency Adaptive Frequency Control Mechanisms with Reinforcement
Learning

6.3 Methodology for the Physics-Informed RL-based AU-

FLS for Frequency Stability

As modern power systems grow in size, complexity, and uncertainty, avoiding local fre-

quency violations throughout the system becomes more challenging. While RL-based

AUFLS has shown promise, existing methods are mainly data-driven, which inherently

limits their scalability and efficiency due to the excessive sampling required during

training to explore the high-dimensional state-action space of complex power systems.

We address this limitation through a physics-shielded approach that incorporates the

system’s physical laws and relationships directly into the RL training process. By em-

bedding domain knowledge through the PS, we constrain the search space and filter

out non-essential actions that existing RL models might otherwise spend considerable

time exploring, enabling faster and optimal convergence. This is summarised in Fig.

6.2, which illustrates the Offline (with Stages 1 and 2) and Online Application phases.

To facilitate efficient training of the RL agent, providing it with information on the lo-

cational frequency characteristics of the system is essential. To this end, we introduce a

method based on NNs and clustering to reduce the dimensionality of the action space.

Instead of treating each PQ load bus hosting a flexible load as a separate variable, the

RL agent can collectively control a group of loads in locations with similar frequency

response behaviour. In the Offline phase, both the NN and the RL agent train by

utilising physical and steady-state operational variables of the system from the train-

ing dataset generated by TDS, and the RL agent interacts with the same simulation

environment. In Stage 1, an NN is trained to predict detailed locational frequency

dynamics (i.e. RoCoF). Then, an unsupervised algorithm (K-Means) uses these pre-

dictions to cluster coherent buses of the network into K groups. In Stage 2, where the

Physics-Shielded RL agent is trained, we introduce a PS that uses the system’s swing

equation to systematically constrain the action space and eliminate actions with ap-

parent violations. However, since this alone is insufficient to account for the locational

aspects of efficient load shedding, we allow the agent to act using information from

Stage 1, where coherent buses are clustered, and interact with the environment (phasor
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domain simulation environment in our case) to learn detailed dynamics of locational

frequency. This enables the agent to treat each coherent group as a single entity, ef-

fectively reducing the problem’s dimensionality in a structured manner. The PS filters

the agent’s actions, ensuring that only essential actions are executed in the simulation

environment (a computationally expensive action), and physics-inconsistent actions are

penalised (Physics Reward). Furthermore, the agent receives an Environment Reward

based on the system’s frequency response (from detailed phasor domain simulation)

to its actions. After training, the Online Application phase is meant to be used with

real measurements during close-to-real-time system operation (e.g. from PMUs) and

employs the AUFLS RL agent trained in the Offline phase. The RL agent can be used

alongside the traditional UFLS scheme based on pre-set thresholds, which can still be

used as a last resort. The AUFLS RL scheme is envisaged to work with predefined flex-

ible loads, Dflexible-loads, able to respond to a signal from the RL agent to disconnect,

providing the locational granularity needed, as further described by Algorithm 1.
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Algorithm 1 NN-Physics-Shielded RL for AUFLS Emergency Frequency Control

Inputs: System operating condition: bus clustering labels (ρ), generator ratings (sg),
generator active powers (Pg), total system load scaling (L)

Output: Load shedding amount (for specific loads in different locations) (ξi),
and activation time (after the disturbance) of the AUFLS RL (tAct)

Stage 1: NN Training:
1: train neural network (NN) to predict bus-level RoCoF from pre-disturbance features
2: evaluate NN accuracy (RMSE and R2)
3: if NN accuracy test passed, continue; else retune and retrain
4: initialise K-Means with K ← 2
5: while true:

apply K-Means on predicted RoCoF; compute maximum intra-cluster inertia
if intra-cluster inertia > 5% of RoCoF threshold: K ← K + 1
else: store K as the cluster number of the power system, break

Stage 2: RL Training:
1: for state space, s, in training dataset do
2: trained NN(s) predicts bus level RoCoF across PQ load buses of the system
3: K-Means clusters the predicted RoCoFs into K coherent groups
4: update s ← bus indices labelled according to the coherence clusters
5: for jepisode ∈ [1, . . . , E0] episodes do
6: if sampled exploration factor η > ϵthreshold
7: exploit agent’s learned actions
8: select action a based on the updated state s
9: . clip action a+ decaying Gaussian noise within [0,1]
10: pass action a through Physics Shield ΩPI

11: get Physics Shield-based reward, rΩPI
, update a

12: initialise RMS-TDS and apply the disturbance
13: rupdate total agent reward rRL ←− rΩPI

+ rf
14: l store system transition in memory buffer, G
15: if frequency nadir within safe bounds, i.e., sMetric < Hlimit

Hz

16: break (exit current episode loop)

17: sample mini-batch B from G, update θa, θa′ , θc, θc′

18: if s, a remain unchanged over Ψ interactions
19: store scheme [ξi, tAct],∀i ∈ Dflexible-loads

20: break (exit full training loop)

6.3.1 Capturing Locational Frequency Dynamics with Artificial Neu-

ral Network

Traditional analytical approaches often struggle to capture locational frequency char-

acteristics, especially in systems with a lot of CIGs, due to high complexity [14]. We

circumvent this challenge using a data-driven neural network approach [82]. The neural
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network (Multi-layer Perceptron (MLP)) [57] is trained to capture bus-level RoCoFs

in a system, focusing on all PQ load buses since we aim to subsequently cluster those

buses based on similarities in frequency response characteristics. This, in turn, will

allow more granular and efficient frequency control by shedding loads in the most ef-

fective locations. The MLP uses an input vector consisting of the total system load

scaling factor, CIG active power output, active power dispatch of SGs, and the MVA

ratings of SGs. For effective hyperparameter tuning, we automate the process using

sklearn-GridSearchCV [57], which performs an exhaustive search over a user-defined

parameter range, while applying k-fold cross-validation (with 5-fold and 0.2 validation

fraction), i.e., evaluating the model’s performance across multiple k data splits. This

enables us to systematically identify the number of hidden layers, the number of neu-

rons per layer, the activation function, the model’s alpha —which regulates the size

of the model’s weights —the learning rate, etc., without biases arising from manual

tuning. This ensures that MLP is both expressive and generalisable. We adopt a 70%-

30% dataset split for training and testing, respectively, and use the root mean squared

error (RMSE) and coefficient of determination R2 for performance evaluations. Once

sufficiently trained, the MLP enables real-time RoCoF-based coherence detection with

minimal computational overhead, as detailed in the next subsection.

6.3.2 RoCoF-Based Adaptive System Coherence Detection

Coherence detection allows power system operators to identify system buses that exhibit

similar dynamic characteristics, typically to reduce dynamic models [41]. In the con-

text of this work, coherence detection aims to identify locations with similar frequency

response (RoCoF) characteristics. The aim is to improve scalability by improving sam-

pling efficiency while training the RL agent, which would otherwise be challenging

in modern high-dimensional power systems. We adopt a data-driven approach to co-

herence detection, which offers several benefits over traditional model-based methods.

Traditional coherence detection methods can be computationally intensive for real-time

applications. Furthermore, these methods typically linearise the system matrix around

an operating point, capturing only small disturbances around that point. In contrast,
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our ML-based approach (described in Chapter 6.3.1) improves efficiency and is suitable

for online application, since once trained, it only utilises (once) matrix multiplication

of learned parameters to predict the system’s dynamic response after a disturbance.

However, while training the model (including the generation of training datasets) can

incur significant time, it is a one-time process done offline, where time is not critical.

Once trained, the model can almost instantly perform predictions on streaming PMU

data, enabling scalable, near real-time dynamic adaptation to changing operating con-

ditions, with respect to RoCoF, and subsequent clustering of flexible PQ load buses for

dimensionality reduction. Therefore, using the RoCoF predictions described in Chapter

6.3.1, we apply the K-Means [57], an unsupervised ML technique, to group coherent

buses. K-Means assigns these buses to K clusters by minimising the inertia within

the clusters, thereby grouping buses with similar RoCoF. This clustering enables each

group of buses to be treated as a single controllable entity, improving the precision and

efficiency of the control strategy. Each cluster is described by the mean of its samples,

or centroid. Mathematically, the objective of K-means is to minimise the cluster inertia

as follows:

n∑
i=1

min(||ŷi − µj ||2), j = [1, ...,K] (6.5)

where ŷi is the i
th data point within the vector of the frequency dynamics predictions

by the ML model (NN), across n PQ buses. µj is the centroid of the jth cluster out

of the K number of clusters. For a given power system, K is determined by ensuring

that the maximum inertia within each cluster is less than 5% of the stability threshold

(by iteratively adjusting the value of K). For example, in a system with a RoCoF

stability boundary of −0.5 Hz/s, the maximum permissible clustering MSE would be

0.025 Hz/s. Using this rule, we consider the clustering of buses with similar frequency

dynamics to be acceptable.
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6.3.3 Physics Shield and Rewards Integration of the RL Agent

In this chapter, the PS is proposed to regulate the actions taken by the RL agent,

ensuring that they abide by the physical laws or relationships governing the system’s

frequency dynamics. As shown in Fig. 6.2, the PS filters all actions taken by the

agent before being executed in the system. The agent is rewarded if the action taken

lies within the PS boundaries to encourage consistency, and vice versa. The agent is

penalised if the action lies beyond the PS to discourage similar actions in the future.

Using the swing equation to represent the foundational system’s frequency dynamics,

we systematically guide and eliminate non-rewarding actions.

i) Physics Shield Structure

As a reminder, the agent has access to a fully detailed phasor time domain sim-

ulator to evaluate the actions in detail and learn the optimal policy. Therefore, the

effectiveness of the agent’s actions is evaluated based on the agent’s ability to identify

a combination yielding the least amount of load shedding while ensuring that the fre-

quency remains within allowed limits. The PS is designed to apply the swing equation

of the power system as a starting point to model emergency frequency control through

load shedding. Following a disturbance, the system responds to the resulting power

imbalance, ∆P (t), as follows:

∆f(t) =

∫ tNadir

t0

df(t)

dt
dt = −

∫ tNadir

t0

∆P (t)fn

2
∑N

i=1 siHi

dt (6.6a)

∆f(tNadir) = −

(
∆E(tNadir)

2
∑N

i=1 siHi

fn

)
, where ∆E(tNadir) =

∫ tNadir

t0

∆p(t) dt (6.6b)

where t0 and tNadir are the disturbance occurrence time (t = 0) and the time when the

frequency nadir occurs, respectively. ∆E(tNadir) is the accumulated energy imbalance

in the system following the disturbance and any subsequent load shedding actions. This

can also be represented by mapping it to the summation of the disturbance, ∆Pl, and

the amount of load shed, ψ, weighted by a factor φ, which captures the ‘hard-to-model’

nonlinear relationships in the system, as follows: φ((−∆Pl + ψ)tNadir) −→ ∆E(tNadir).
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Thus, φ is effectively a simple approximation, a system-specific and operating condition-

dependent variable that linearises a more complex relationship in reality, mapping the

disturbance and any subsequent load-shedding actions before tNadir onto an effective

system imbalance influencing generators’ dynamic behaviour. The PS uses this to

constrain the action space bounds, as described below.

To train the agent more efficiently, we constrain the action space within some per-

missible load-shedding range, between ψmin and ψmax. These theoretical limits elimi-

nate apparent nonessential actions to speed up training. The maximum limit ensures

that the agent does not explore actions which could lead to over-frequency and/or

positive RoCoF. In contrast, the minimum limit ensures that the agent does not ex-

plore actions which could fail to keep the frequency within acceptable limits. While

there is no direct knowledge of the exact limits, the RL agent must discover the opti-

mal actions; apparent non-essential actions can delay and/or prevent the agent from

discovering these optimal actions. Therefore, eliminating them from the action space

improves convergence. We define this range by associating load shedding with a fre-

quency response range as follows: ∆fmax, for maximum frequency decline and ∆fmin,

for minimum frequency decline. Accordingly, (6.6b) is reformulated to define the PS’s

upper and lower bounds:

(
∆fmax

fn
,
∆fmin

fn

)
=

(
φ((−∆Pl + ψmin)tNadir)

2
∑N

i=1 siHi

,
φ((−∆Pl + ψmax)tNadir)

2
∑N

i=1 siHi

)
(6.7)

Thus, the RL agent is constrained to explore and optimise within the permissible

region delineated by (6.7), as follows:

ψΩPI
max = |(ψmax −∆Pl)tNadir| =

2
∑N

i=1 siHi

fn
×∆fmin

COI
φmax

(6.8a)

ψΩPI
min = |(ψmin −∆Pl)tNadir| =

2
∑N

i=1 siHi

fn
×∆fmax

COI
φmin

(6.8b)

where ψΩPI
max and ψΩPI

min are the resultant maximum and minimum imbalances determined
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by the PS due to the agent’s load shedding actions, ψ. φmin and φmax are the minimum

and maximum parameters observed in the system, specified as 0.1 and 0.4, respectively.

We define these bounds based on empirical observation of our dataset, analysing the

relationship between disturbances and the resulting frequency responses. We choose

the most conservative as our representative bounds, giving the agent full flexibility to

develop and identify optimal actions within these conservative limits, thus making φ

an implicitly learnable parameter. As such, these values are system-dependent and

can be adapted to suit any specific system without the loss of generality. (6.8a) de-

fines the maximum feasible load shedding to prevent over-shedding (which may lead to

over-frequency and/or positive RoCoF), while (6.8b) defines the minimum feasible load

shedding to prevent system instability following the disturbance. However, for conve-

nience, the lower bound is unenforced (set to zero), allowing the agent to minimise load

shedding to the fullest extent possible. This is because the precise analytical derivation

of locational frequency dynamics (and the exact load shedding amounts, location and

time) is complex and hard, requiring finding a global minimum to a nonconvex func-

tion [14]. Therefore, we leave these hard-to-model relationships for the RL agent to

discover, while only providing the swing equation, incorporated in the PS, as defined

by (6.8a) and (6.8b), as its starting point. Every action of the agent, ψRL, that violates

or goes beyond the permissible region of the PS is updated by uniformly scaling it as

follows:

ψRL ←



ψRL,

if ψΩPI
min ≤ ψRL ≤ ψΩPI

max

ψRL

(
min

(
1, ψ

ΩPI
max
ψRL

)
×max

(
1,

ψ
ΩPI
min
ψRL

))
,

otherwise

(6.9)

Note that the effective imbalance in the system, after a load shedding action,

depends on the activation time, tAct, as follows: φ ((ψRL −∆Pl)tNadir − ψRLtAct) −→

∆E(tNadir). Note that while it is possible to improve the PS by adding ‘more detailed

physics’ such as: modelling the influence of voltage-dependent loads, accounting for

the equivalent inertia due to renewables and factoring in the variability of primary en-
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ergy sources, we maintain the standard swing equation as a benchmark for the agent’s

control actions to demonstrate how RL models can, even with bare bones, capture the

hard-to-model relationships to establish an effective control strategy. Unlike traditional

model-based controllers that rely on detailed system equations and parameter tuning,

the RL agent learns from interactions with the power system simulator, observing state

transitions and rewards, to uncover hidden dynamics and optimise performance while

capturing detailed dynamics. Eventually, this highlights the potential of RL to gen-

eralise from limited physics, while managing the underlying physics behaviour of the

power system. It also enables us to achieve faster and more efficient training, making

the approach scalable to larger systems.

ii) Physics Shield Reward, rΩPI

Rewards from the PS encourage the RL agent to consistently explore and exploit

only essential actions, thereby speeding its convergence and improving the optimality

of solutions. The PS’s reward, ΩPI, therefore depends on the extent of deviation from

the PS’s bounds, with a weighting factor, ϕΩPI (selected through empirical evaluation

of agent behaviour), as follows:

rΩPI
=


ϕΩPI(ψ

ΩPI
max − ψRL), if ψRL ≥ ψmax,ΩPI

ϕΩPI(ψRL − ψΩPI
min), if ψRL ≤ ψmin,ΩPI

0, otherwise

(6.10)

iii) Agent Rewards Integration

The overall reward of the RL agent, rRL, consists of two parts: rewards from the

PS, rΩPI
, and rewards from the environment, rf —which depends on the system’s

frequency response. We adopt a physics-based reward function that steers the agent

toward consistently performing actions that minimise deviation of the stability metric

from its nominal value. This is achieved by including the observed system response,

fλ, within the function, rather than using binary stability indicators, as follows:

rf = −ϕff (fn − fλ) (6.11)

where fλ is the minimum (or worst) frequency stability metric observed in the system.
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For the frequency nadir, for example, in a network of N buses, fλ = min(fi),∀i =

[1, ..., N ]. fn is the nominal or steady state stability condition (0 Hz/s for RoCoF and

50 Hz or 60 Hz for frequency nadir —depending on the system), ϕff is the stability

metric weighting factor determining the importance of the deviation from the nominal

value. The overall reward for the agent is modulated by a parameter Ξ, which is a

large positive or negative number, based on the desirability of the agent’s actions. We

employ manual tuning to select the relative weights associated with the reward com-

ponents, based on empirical agent behaviour (convergence within the specified number

of interactions) and performance [56, 83]. Specifically, Ξ takes a positive value when

the agent takes an action that keeps the frequency within acceptable limits, and a neg-

ative value when the action fails to prevent violation of those limits. This adjustment

acts as a reward-shaping mechanism, amplifying rewards or penalties beyond the rela-

tively modest incremental feedback provided by the environment and the PS, thereby

accelerating convergence.

rRL =

 Ξ + rΩPI
+ rf , if unstable

−Ξ, otherwise
(6.12)

6.3.4 Modelling of UFLS Relays and Implementation of Conventional

UFLS Scheme

The conventional UFLS associates load-shedding with pre-set frequency thresholds for

emergency frequency control. We model the scheme by discretising the load at each bus

to ensure an even contribution from all loads in the system at every stage of the UFLS.

This is done to avoid a potential locational bias or influence the scheme (positively

or negatively) based on the arbitrary selection and allocation of loads at each UFLS

stage. System protection relays are implemented using the standard Definite Time

(DT) characteristic with an execution time delay of 200 milliseconds and a frequency

sampling time of 0.06 seconds [17]. The amount of load shedding in the system due to

the activation of UFLS relays is given as ZUFLS, expressed as follows:
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ZUFLS =

Ddefensive-loads∑
i=1

lRelay
[0/1],il

Ddefensive-loads
i , ∀i ∈ Ddefensive-loads ⊂ L (6.13)

where lRelay
[0/1],i indicates the status of the ith relay (connected to the ith load), returning

0 if closed and 1 if open, Ddefensive-loads is the set containing all loads participating

in the UFLS defence scheme, while L is a global set containing all loads. Since all

loads participate in the UFLS, arbitrary pre-selection of certain loads to make up the

total percentage required by the UFLS scheme (which sheds all loads uniformly) is not

required. The Physics-Shielded Deep RL agent we propose in our work optimally de-

termines which specific loads to shed and how much, in a coordinated manner, ensuring

no locational frequency violations while minimising the total load shed, while the UFLS

remains in operation as a last resort.

6.3.5 Battery Energy Storage Systems (BESS)

In this study, we consider power systems that include both SGs and BESS. As fre-

quency control responsibilities are increasingly shared between traditional SGs and

converter-interfaced devices, the resulting diversity in control schemes introduces mod-

elling challenges that motivate the need for more adaptive, data-driven approaches.

Battery Energy Storage Systems (BESS) are energy storage systems capable of offering

system frequency support services during emergencies, thanks to power electronics for

fast frequency response applications [23,84]. Such devices can provide a convenient way

for rapid power output changes —quickly minimising system imbalances after distur-

bances and improving the system’s frequency response. Shown in Fig. 6.3 is the BESS

model used in this chapter, consisting of measurement devices, a battery, a charge

controller, and a converter.

The Frequ. Controller uses the measured frequency of the grid, fgrid, to determine

the converter’s reference active power, Pref, which is necessary for droop control, kdroop.

The PQ Controller regulates the active, P , and the reactive, Q, power outputs of the

converter. Specifically, the controller aligns the converter’s current active power output,
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Pmeas, to Pref. idref and iqref are the current phasors transformed in dq−reference

frame, a transformation that enables idref and iqref to equate to the active and reactive

power output of the converter, respectively. This effectively enables the controller to

reduce the converter’s Pmeas output if the frequency of the grid increases and vice versa.

Pmeas is increased if the frequency of the grid deteriorates. The controller controls

the converter’s Q output similarly, by increasing it if the measured voltage at the

coupling point, Umeas, is below the nominal value and reducing it if Umeas exceeds the

nominal value. The Charge Controller regulates the battery’s charging while the Bat-

Model represents the battery model of the BESS unit, including its State Of Charge

(SOC). The BESS droop setting, kdroop, is the sensitivity of the BESS to frequency

fluctuations, determining the ramp rate of the BESS’ power output in response to

observed fluctuations as follows:

Figure 6.3: Battery Energy Storage System (BESS) Model [4]
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∆P (t)BESS =

 0, if ∆fgrid(t) < kdroop.f0

∆fgrid(t)kdroopP
BESS
rated , otherwise

(6.14)

Therefore, the active and reactive powers of the BESS enable the frequency and the

AC voltage of the system to be controlled independently [4].

6.4 Case Studies and Results

Table 6.1: NN and RL Algorithms Architecture and Hyperparameter Settings

NN Model Parameter NN-1 (IEEE 39-Bus) NN-2 (Texas 2000-Bus)

Learning Rate 0.001 0.001
Batch Size, B 64 64
Number of Layers 3 3
Number of Neurons 64 64
Activation, Θ ReLU Tanh

RL Model Parameter RL-1 (IEEE 39-Bus) RL-2 (Texas 2000-Bus)

Learning Rate 1e−4 1e−3

Batch Size, B 128 128
Experience Replay 1e5 1e5

Number of Layers 3 3
Number of Neurons 100:128:64 100:256:128
Activation, Θ ReLU & Sigmoid ReLU & Sigmoid
Episodes, E 200 250
Initial Exploration 0.5 0.5
Exploration Decay 0.9 0.9
Min. Exploration 0.01 0.01
Epsilon decay, ϵdecay 1000 500
ϵstart - ϵend 0.9 - 0.05 0.9 - 0.05

In this chapter, the performance of the proposed RL-based AUFLS approach is

evaluated in two test networks: the modified IEEE 39-bus network (a smaller net-

work) and the Texas 2000-bus network (a larger network). This selection demonstrates

how existing RL methods can converge to optimal results in low-dimensional settings

but struggle to scale effectively to higher-dimensional systems. The proposed physics-

informed RL approach intends to address these limitations. The modified IEEE 39-bus
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network has 19 PQ load buses, while the Texas 2000-bus network has 1,515 PQ load

buses. To predict RoCoF across these buses, the modified IEEE 39-bus employs a

single NN with 19 regression targets, referred to as NN-1 . In the Texas 2000-bus net-

work, we adopt a decentralised ML approach, rather than training a single global model

with 1,515 regression targets. This design choice is motivated by the fact that smaller

models are easier to train (independently or in parallel) and fine-tune, due to fewer

parameters. This also makes it easier to retrain the NN models for specific locations,

referred to as NN-2 , after network changes. As such, we limit the regression targets

to 20 for each NN-2 model, making a total of 75 models. The remaining 15 buses are

represented by an additional NN, resulting in a total of 76 inference models. For RL

agents, we train the agents, referred to as RL-1 in the modified IEEE 39-bus network

and RL-2 in the Texas 2000-bus test network, over a maximum of 200 and 250 episodes,

respectively. Episodes may end early if satisfactory performance is achieved, following

an early termination strategy to facilitate training [85, 86]. Each episode consists of

the agent interacting with the environment (in our case, a phasor time domain simula-

tion), receiving rewards, and updating its policy based on the actions taken. Multiple

episodes ensure that the agent iteratively refines its policy through exploration until

it converges to an optimal strategy. We adopt a 70%-30% dataset split for training

and testing, respectively. Both actor and critic networks have three layers with ReLU

activation functions, while the output layer uses sigmoid activation.

The proposed RL agent operates on three and eight clusters (with scenario-specific

composition) in the modified IEEE 39-bus and Texas 2000-bus networks, respectively,

based on the criteria in Chapter 6.3.2. In contrast, other RL agents, without access to

the system’s coherence detection information, operate on the static default/geographically

defined clusters—three in the modified IEEE 39-bus network [3] and eight in the Texas

2000-bus network [27]. The parameters of all the ML models are summarised in Ta-

ble 6.1, tuned using GridSearchCV —a tool that automates the process of finding the

best combination of hyperparameters for a given ML model by exhaustively searching

over a user-defined parameter grid [57, 58]. Operational scenarios are generated using

the AC-OPF in MATPOWER [66], with MATLAB Interior Point Solver (MIPS) as a
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Table 6.2: Performance Evaluation of ML Model for RoCoF Prediction

Neural Network Metric (Hz/s) IEEE 39-Bus Texas 2000-Bus

Minimum RMSE 0.0048 0.0023
NN Mean RMSE 0.0066 0.0043

Maximum RMSE 0.0124 0.0078

solver.

Specific procedure for data generation is described in Chapter 6.4.1 and Chapter

6.4.2. RMS-TDS simulations are conducted on the converged solutions from the AC-

OPF in DIgSILENT PowerFactory, considering large events, i.e. N − 2 SG outages

(the two largest generating SGs in the network). This remains fixed across all case

studies. The RL agent(s), therefore, interact with the RMS-TDS environment (as a

power system simulator) to establish an optimal AUFLS policy. All simulations were

carried out on an 11th Gen Intel (R) Core (TM) i7-11700 @ 2.50 GHz with 16 GB

installed RAM.

6.4.1 The Modified IEEE 39-Bus Test Case

The modified IEEE 39-bus network includes three BESS (described in Chapter 6.3.5)

and one CIG integrated at buses 14, 18, 28 and 15, respectively (see Fig. 6.4). These

positions remain fixed throughout the simulations. This configuration has been selected

to create two distinct regions: high and low inertia, allowing a clear demonstration

of the impact of high CIG integration on locational frequency dynamics. We vary

the following three system variables to generate operational scenarios: the loading in

the system, the number of online SGs and the CIG output. The system loading is

uniformly scaled across all the system loads over a range of 16 values, ranging from

0.6 p.u. to 1.025 p.u. in increments of 0.027 p.u. Four SGs, i.e., SG 4, SG 5, SG

6 and SG 7 of Area 2, are assumed to consist of four equal-sized units, u, where u =

[1, ..., 4] (6.15), which are incrementally displaced by the CIG. The updated rating of the

SG, SGMVA,new, is therefore determined by the number of remaining units, SGMVA,old,

thereby inversely scaling the CIG (6.16). The CIG penetration equation introduces

scaling factors, s, where s = [0,−0.05, 0, 05], and r, where r = [1, 1.4] to decouple the

127



Chapter 6. Emergency Adaptive Frequency Control Mechanisms with Reinforcement
Learning

Figure 6.4: The modified IEEE 39-bus network highlighting Area 2, which is a low
inertia region with the CIG location at Bus 16 and three BESS units at Buses 14, 18,
and 28
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Table 6.3: Standard 9-Stages Under-Frequency Load Shedding Scheme for the IEEE
39-Bus Network

UFLS Stage Threshold (Hz) Load (%)

1 58.56 5
2 58.50 5
3 58.44 10
4 58.32 7.5
6 58.08 7.5
7 57.84 7.5
8 57.60 5
9 57.36 5

direct linear relationship between SGs displacement and CIG penetration [3]. All of

these parameters are uniformly sampled, resulting in 1,536 scenarios. Of these, 6%

failed to converge in the AC-OPF process, resulting in 1,452 feasible scenarios.

SGMVA,new = u(SGMVA,old/4), u = [1, ..., 4] (6.15)

CIGMVA = r

(
(5− u)SGMVA,old

4
+ s(SGMVA,old)

)
(6.16)

The instantaneous penetration of CIG is between 100 MW to 1000 MW, and the

ratings of the BESS remain fixed at 90 MW, representing a maximum of about 44%

of the system’s generation. The CIG is modelled using the Type IV Wind Generator

(WTG) utilising the Western Electricity Coordinating Council (WECC) control model

[73]. This model is coupled to the grid through a fully rated converter. In contrast,

the BESS is modelled using the standard DIgSILENT BESS model [4, 17]. The UFLS

scheme has nine stages, adapted from the GB system. As is shown in Table 6.3, 60%

of the total system load (6,254.2 MW and 1,387.1 MVAR) is available for the load-

shedding strategy [47], and the nadir stability boundary is set at 0.95 p.u., which is 57

Hz in a 60 Hz power system.

i) Evaluation of the RL Model Training Progress

The training progress of the RL model is evaluated using four metrics: physics-

shield-based rewards, cumulative reward, amount of load shed, and system frequency
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deviation. The PS is implemented to eliminate non-essential actions by defining plau-

sible load-shedding regions, as described in Section 6.3.3. Fig. 6.5 summarises the

training progress, and it is seen that based on the PS’s dictates, at the beginning of

the training, the agent’s policy is still being developed, leading to random actions gar-

nering both rewards (positive values) and penalties (negative values). Rewards are

given when the total load shed remains within the shield’s limits, and vice versa. As

training progresses and the agent refines the policy, it learns to consistently execute

actions that continuously attract positive values. Similarly, the agent’s overall cumu-

lative reward reflects this process. Initially, the agent is consistently penalised until it

learns an accurate policy and maximises the cumulative reward through optimal ac-

tions. To improve efficiency, we use the early termination strategy, which terminates

training once the agent demonstrates consistent execution of optimal actions, thereby

reducing unnecessary training time [85, 86]. In this study, the RL agent is integrated

within the existing UFLS relays to enhance the overall reliability of the control strat-

egy by utilising the UFLS as the last resort. The load-shedding performance of the

agent during training can also be seen in the figure (Fig. 6.5 bottom left). The agent

executes its actions across three network clusters (determined following fulfilment of

the requirements described in Section 6.3.2). During the early training stages, several

activations of UFLS relays can be observed, triggered by frequency crossing particular

frequency thresholds. This may be attributed to the agent shedding an insufficient

load, selecting a sub-optimal combination of load clusters or wrong action execution

time (or a combination of these). As the training progresses, the penalties steer the

agent to optimise its actions and prevent the UFLS from intervening.

In this chapter, the RL agent is integrated within the existing UFLS relays to

enhance the overall reliability of the control strategy by utilising the UFLS as the last

resort. The load-shedding performance of the agent during training can also be seen in

the figure (Fig. 6.5, bottom left). The agent executes its actions across three network

clusters. During the early training stages, several activations of UFLS relays can be

observed, triggered by frequency crossing particular frequency thresholds. This may

be attributed to the agent shedding an insufficient amount of load, selecting a sub-
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Figure 6.5: AUFLS training progress of the RL physics-informed agent in the Modified
IEEE 39-Bus Network
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Table 6.4: Performance Evaluation of ML Model for RoCoF Prediction in the IEEE
39-Bus Network

RMSE (Min) RMSE (Mean) RMSE (Max) R2 (Train / Val.)

0.0022 0.0053 0.0089 0.9976 / 0.9661

Train Time (Secs.): 45.52

optimal combination of load clusters or wrong action execution time (or a combination

of these). As the training progresses, the penalties steer the agent to optimise its actions

and avoid traditional UFLS interventions.

ii) Evaluating the Effectiveness of the Physics-Shielded AUFLS RL

A summary of the quantitative performance of the NN in predicting RoCoF across

all PQ load buses in the IEEE 39-bus network is given in Table 6.4. Across all the PQ

load buses, the NN’s predictive performance, in terms of RMSE, achieved a minimum

of 0.0022 Hz/s, a mean of 0.0053 Hz/s and a maximum of 0.0089 Hz/s. The R2 values

observed during training and validation were 0.9976 and 0.9661, respectively, indicating

an accurate explanation of the variance in the data. The training time required was

45.52 seconds. The predictions are therefore used for coherence detection by the K-

Means clustering algorithm.

The efficacy of the fully trained proposed RL agent (NN-Physics-Shielded RL) is

compared against other approaches: the conventional UFLS scheme (with predeter-

mined settings according to the description in Chapter 6.4.1), a purely data-driven RL

agent (without PS and NN ), and an RL agent with the PS only (Physics-Shielded RL)

to demonstrate the added effectiveness of NN ’s coherence detection. Fig. 6.6 shows

the total amount of load shedding in the system for each OC in the test dataset by

the different approaches (three clusters seen by RL agents). The figure shows that the

proposed method, i.e., the NN-Physics-Shielded RL agent, followed by the Physics-

Shielded agent, shed the least amount of load compared to the rest. This is quantita-

tively summarised in Table 6.5, which shows that although all methods were able to

maintain system stability (i.e., the frequency nadir remains above the 57 Hz threshold),

some methods require more load shedding than others to achieve this. Specifically, the
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Figure 6.6: Stacked plot of the load shedding schemes’ performance by different meth-
ods for emergency frequency control in the Modified IEEE 39-bus network

conventional UFLS scheme requires an average shedding of 971 MW. The data-driven

RL agent reduces this requirement by 28% to 692 MW, with a corresponding training

time of 190 minutes. The Physics-Shielded RL agent further improves this performance

by reducing the requirement by 35% to 627 MW while reducing the training time by

32% to 129 minutes. Additionally, including coherence detection alongside the PS in

the NN-Physics Shielded RL agent enhances this performance even more, reducing

the shedding by 39% to 588 MW while requiring the least training time of 125 minutes

—34% further improvement of the training time required by Data-Driven RL. It should

be noted that the ability of RL to control how much load and in which locations it is

adaptively shed for each specific case allows for coming closer to the acceptable stability

limit. This, in turn, reduces the amount of load shed and, consequently, the associated

cost with such remedial actions.
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Table 6.5: Mean Load Shedding (MW) for Emergency Frequency Control by Different
Methods in the IEEE 39-Bus Network

Frequency Mean Mean Total
Control Model Nadir Load Shed Train Time

UFLS Scheme 58.28 Hz 971.40 MW -
Data-Driven RL 58.67 Hz 692.47 MW 190 mins.
Physics-Shielded RL 58.43 Hz 627.63 MW 129 mins.
NN-Physics-Shielded RL 58.25 Hz 588.63 MW 125 mins.

Figure 6.7: One line diagram of the synthetic Texas2000 case. Orange lines indicate
500 kV, pink lines indicate 230 kV, green lines indicate 161 kV, and black lines indicate
115 kV [5]
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Table 6.6: The 6-Stages Under-Frequency Load Shedding Scheme for the Texas 2000-
Bus Network [7]

UFLS Stage Threshold (Hz) Load (%)

1 59.60 7.4
2 59.40 5.2
3 59.20 5.2
4 59.00 5.2
5 58.70 6.3
6 58.50 3.4

6.4.2 The Texas 2000-Bus Synthetic Grid

The synthetic Texas 2000-bus network (Fig. 6.7), modelled on the footprint of the

Electric Reliability Council of Texas (ERCOT), operates at four voltage levels (500/

230/ 161/ 115 kV) and has a total generation capacity of 98 GW, utilising coal, gas,

hydro, nuclear, solar, and wind technologies. No additional CIG or BESS units are

added, and all parameters, including loads, generator settings, and governor settings,

are default [27]. Operational scenarios are sampled from the dataset in [5], which

has a total of 8,784 scenarios, generated by independently scaling the load profiles in

all eight geographically interconnected grids, within the 29.25% and 100.52% range.

We randomly sample 2,000 operating conditions from this dataset to illustrate the

proposed approach. The UFLS scheme implemented in the network is shown in Table

6.6, according to the North American Electric Reliability Corporation (NERC), and

the stability boundary is 58 Hz [7], and the system is classified as completely unstable

if the frequency nadir falls below 58 Hz. Among all N − 2 SG outage contingencies

applied, 58% involved generators in the North Central grid, 40% in the Coast grid, and

2% in the South Central grid.

A summary of the quantitative performance of the NNs in predicting RoCoF across

all PQ load buses in the Texas 2000-bus network is given in Table 6.7. Across all the

PQ load buses, the predictive performance of the NNs, in terms of RMSE, achieved

a minimum of 0.0045 Hz/s, a mean of 0.0063 Hz/s and a maximum of 0.0082 Hz/s.

Similarly, the minimum R2 values observed during training and validation across all

the NNs were 0.9960 and 0.9941, respectively, indicating a strong fit. The training
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Table 6.7: Performance Evaluation of ML Model for RoCoF Prediction in the Texas
2000-Bus Network

RMSE (Min) RMSE (Mean) RMSE (Max) R2 (Train / Val.)

0.0045 0.0063 0.0082 0.9960 / 0.9941

Train Time (Secs.): 150.79

time required was 150.79 seconds on average per model. Note that training can be

parallelised to reduce the overall training time. The predictions are therefore used for

coherence detection by the K-Means. Since the NNs eliminate solving DAEs, their

predictions are almost instant, enabling seamless adaptive coherence detection, despite

the system’s size.

The efficacy of the fully trained proposed RL agent is compared against different

control models as summarised in Table 6.8. While all approaches successfully main-

tained system frequency stability (i.e., kept the system frequency above the 58 Hz

threshold), they caused varying levels of service interruption in the system. Specifi-

cally, over the simulated week, the conventional UFLS scheme required an average of

598.22 MW, while the Data-Driven RL agent halves this requirement (50%) to 299.09

MW, with a corresponding training time of 700 minutes. This is further improved

by the Physics-Shielded agent, which reduces this requirement by 79% to 127.94 MW

while reducing the training time by 20% to 540 minutes. The NN-Physics-Shielded

agent even further improves this and demonstrates the best performance. The require-

ment is reduced by 80%, bearing the least value of 90.56 MW. By combining the PS and

coherence detection, using the NN’s predicted snapshot of post-disturbance frequency

dynamics, the NN-Physics-Shielded agent can efficiently prune the search space —elim-

inating fruitless actions that other agents might waste time and ‘capacity’, exploring

—enabling allocation of more time to discover effective shedding actions. The training

time, reduced by 35% to 455 minutes, is also the lowest.

The results in the Texas 2000-bus network showcase good performance and also

reasonable training times (about 7.5 hours per week of hourly training data —35%

lower than the conventional data-driven RL agent), which highlight the ability of the
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Table 6.8: Mean Load Shedding (MW) for Emergency Frequency Control by Different
Methods in the Texas 2000-Bus Network

Frequency Mean Mean Total
Control Model Nadir Load Shed Train Time

UFLS Scheme 59.53 Hz 598.22 MW -
Data-Driven RL 59.63 Hz 299.09 MW 700 mins.
Physics-Shielded RL 59.62 Hz 127.94 MW 540 mins.
NN-Physics-Shielded RL 59.63 Hz 90.578 MW 455 mins.

proposed method to scale to large real-world systems, addressing a significant challenge

for ML-based applications. Note that for a trained RL agent, the time to provide real-

time decisions is near-instantaneous. Note that, compared to the IEEE 39-bus case in

Chapter 6.4.1 —which is much smaller, the NN-Physics-Shielded RL sheds less load

in this case study due to the relative severity of the disturbance. The IEEE 39-bus

network has only 10 SGs, and the most severe N − 2 disturbances accounted for up

to 35% and 25% of the generation and reserves, respectively; while the Texas 2000-bus

network has over 400 online SGs with significant headroom, experiencing a maximum

generation and reserve impact of 8% and 14%, respectively. This explains why the

average frequency nadir in the Texas 2000-bus network is higher than that in the IEEE

39-bus network —suggesting that a sequence of load shedding events due to relay

activations was triggered more frequently in the latter case.

6.4.3 Locational Aspect Considerations and the Effectiveness of Shed-

ding Strategies

A key aspect of our proposed method is its ability to identify coherent areas within the

network systematically and adaptively. This facilitates scalability in high-dimensional

settings and enables more efficient, as well as precise, utilisation of the load clusters,

compared to, for example, clustering based on geographic areas. In this study, the

proposed RL agent operates on three and eight clusters in the modified IEEE 39-bus

and Texas 2000-bus networks, respectively, based on the criteria in Chapter 6.3.2. In

contrast, other agents use geographically defined clusters—three in the 39-bus and eight

in the Texas 2000-bus network. We analyse the locational aspects of the schemes in
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Figure 6.8: Load shedding behaviour of different frequency control models focusing on
shedding contribution (in MW) from participating loads in the Texas 2000-bus network

Figure 6.9: Efficiency of the emergency load shedding schemes in the Modified IEEE
39-Bus and the Texas 2000-Bus Networks
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Fig. 6.8, based on the Texas 2000-bus network. The UFLS scheme uniformly allocates

participating loads across the network to the shedding scheme. In contrast, RL-based

methods adaptively adjust the contributions from each cluster based on their policies,

minimising where it is perceived as less effective and maximising in those deemed effec-

tive. Specifically, the Data-Driven RL and Physics Shielded RL agents, lacking direct

access to the real-time dynamic state of the system, develop a limited but noticeable

concept of spatial shedding effectiveness, compared to the NN-Physics Shielded RL

agent, which has direct access to the detailed system’s dynamics. The Data-Driven RL

agent maximises shedding from the South Central and the South grids, the Physics

Shielded RL agent maximises from the North Central, South Central and South grids,

and the NN-Physics Shielded RL agent maximises the North Central, the Coast and

the South Central grids.

The effectiveness of the load shedding policies is evaluated by measuring the load

shedding required per Hz, expressed in MW/Hz. This is calculated by dividing the

amount of load shed by the frequency deviation for each stable scenario, then averaging

across all test cases. This metric indicates how much extra load the scheme sheds,

beyond what is minimally necessary to maintain stability. Ideally, a lower value is

preferable, as it indicates that the scheme can keep the frequency within acceptable

limits, without resorting to aggressive load shedding —even when the frequency nadir

approaches, but remains above, the stability boundary. As shown in Fig. 6.9, in the

modified IEEE 39-bus network, the UFLS scheme has the highest MW/Hz requirement

of 550 MW/Hz. The Data-Driven RL agent slightly improves this by 4.5% to 525

MW/Hz, but has wider whiskers and inter-quartile range, suggesting more aggressive

loading shedding for a limited number of scenarios. The Physics-Shielded RL agent

significantly improves this by 25% by reducing the value to 400 MW/Hz. Furthermore,

the NN-Physics Shielded RL agent achieves the best performance, with an improvement

of 40%, resulting in the lowest value of 330 MW/Hz.

In the synthetic Texas 2000-bus network, a high-dimensional system reflecting a

common challenge in modern grids, the Data-Driven RL agent struggles and performs

worse than the UFLS. This results from a vast search space, which causes the agent to
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waste a considerable amount of time exploring non-essential actions. As a result, it has

the highest requirement of 1,581 MW/Hz, suggesting more aggressive load shedding

than necessary to maintain stability. As shown in Table 6.9, the highest recorded nadir

by the agent is 59.97 Hz, exceeding 59.62 Hz by the UFLS. This, coupled with highly

inefficient load shedding contributed by the clusters, leads to high MW/(∆ Hz) values

—note how other agents attained similar frequency nadirs but with less load shedding,

hence lower MW/(∆ Hz value). This effectively demonstrates how high dimensionality

impacts the effectiveness of purely data-driven models.

Consequently, while the agent appears to perform well on average based on Table

6.8, Fig. 6.9 shows that it can be highly inefficient under certain scenarios. Specifically,

by combining the agent’s load shedding behaviour with the corresponding frequency

response in the system, the figure reveals shedding inefficiencies reaching as high as

3,000 MW/Hz —due to significant load shedding, resulting in a small frequency change

∆Hz, increasing the MW/Hz value. Generally, for purely data-driven RL models in

high-dimensional settings, two outcomes are possible: i) failure to converge, or ii) con-

vergence to a sub-optimal solution (as observed here). Attempts to improve the model

would significantly add to the computational requirements. This performance is then

followed by the UFLS scheme with 728 MW/Hz, which improves it by 54%. The Physics

Shielded agent improves efficiency by 61%, reducing this requirement to 616 MW/Hz.

An even further improvement of 75% is achieved by the NN-Physics Shielded agent,

leading to the lowest requirement of 393 MW/Hz as the most efficient. This is due

to the model’s ability to distribute the load more effectively across coherent locations

(based on the current system’s dynamic state). TDS also show that the NN-Physics

Shielded RL agent achieved this by targeting locations with the highest frequent dis-

turbances (as indicated in Section 5.5.3, the agent does not have direct access to this

information).

6.4.4 Computational Considerations

The computational requirements for training RL models are crucial for their adoption

and application in modern large-scale power systems, which are challenged by high
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Table 6.9: Comparison of load shedding (MW) and frequency nadir (Hz) between four
load shedding schemes

Network Metric UFLS Data-RL Phys-RL NN-Phys-RL

IEEE 39-Bus

Min. Load (MW) 731.65 440.03 443.48 386.59

Max. Load (MW) 1,509.03 948.80 820.01 798.57

Min. Nadir (Hz) 57.43 57.89 57.65 57.40

Max. Nadir (Hz) 58.38 59.36 58.99 59.00

Texas 2000-Bus

Min. Load (MW) 0.00 126.67 47.07 84.14

Max. Load (MW) 1,160.99 362.39 204.21 109.87

Min. Nadir (Hz) 58.80 59.40 59.38 59.36

Max. Nadir (Hz) 59.62 59.97 59.97 59.96

dimensionality. The time required for training RL models depends on numerous factors,

including the problem’s dimensionality, objectives, model architecture (such as the

parameters shown in Table 6.1), problem complexity, and the training setup, among

others. Therefore, careful consideration is needed when setting up RL models. As

shown by Table 6.5 and Table 6.8, the proposed approach significantly reduces the

training time by at least 30%. This value could be even higher if the conventional data-

driven RL agent was strictly required to converge to solutions better than the UFLS

(i.e. in some cases, the data-driven RL agent still requires the activation of UFLS to

limit frequency deviations). The proposed method demonstrates good scalability and

is particularly beneficial in high-dimensionality scenarios, where training times can be

a huge challenge.

6.5 Conclusion

Reinforcement Learning (RL) has demonstrated significant potential in various power

systems domain applications, including adaptive Under-Frequency Load Shedding (AU-

FLS). However, key challenges encountered by RL-based approaches include the vast

search space inherent in power systems, which leads to sub-optimal performance and

sampling inefficiencies due to excessive sampling and consequent difficulty in scaling

up. This eventually hinders the adoption of RL by power systems practitioners. This
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work addresses these challenges by developing a Physics-Informed Deep Reinforcement

Learning (PI-DRL) model for AUFLS, considering the swing equation and adaptive

system coherence detection. Consequently, this approach addresses the curse of dimen-

sionality, improves optimality and enables scalability to large networks.

The effectiveness of the proposed method is demonstrated through two case studies:

the modified IEEE 39-bus model and the synthetic Texas 2000-bus model. By com-

paring the proposed approach with the conventional, purely data-driven RL approach

and the conventional UFLS, improvements were notable in terms of the optimality of

solutions. For instance, close to 80% mean value reduction was observed in the amount

of load shed in the 2000-bus model while reducing the training time by at least 35%.

Moreover, including the governing physics within the model helps in building trust in

RL models among practitioners. The empirical performance improvements and scal-

ability to scale in large, realistic networks (up to 2000 buses) highlight PI-DRL as a

promising solution for advancing AUFLS in modern power systems.
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Conclusions and Future Work

The transition to zero-emission power systems with high renewable penetration presents

significant technical challenges related to capturing, understanding and managing the

detailed system dynamics while ensuring secure system operation. This thesis developed

a novel set of Machine Learning (ML) models to address these challenges, focusing on

situational awareness, as well as preventive and corrective stability management where

conventional approaches fall short.

Power systems dynamics are becoming more complex, leading to the frequency

dynamics becoming more locational/regional. As a result, conventional approaches,

such as Centre of Inertia (COI)-based methods, may fail to capture these locational

variations, thereby leading to risks of unforeseen locational frequency violations. To

address this challenge and enhance the system’s situational awareness, in Chapter 3,

we proposed an ML-based technique to capture the system’s detailed locational fre-

quency dynamics. The key insight obtained is that ML-based situational awareness

offers a dual benefit of high accuracy comparable to that of time domain simulations,

and high predictive speed, at a fraction of the time required by conventional analytical

approaches —without imposing additional computational overhead. This is because to

make such predictions, ML-based models do not require solving the network’s Differ-

ential Algebraic Equations (DAEs), allowing ample time for system interventions to

ensure secure operation.

System operators often encounter challenges of diminished system understanding
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due to the increasing complexity associated with the high share of renewables. To

address this challenge, in Chapter 4, we introduced an ML-based model for explain-

ing locational frequency dynamics in power systems. An additive feature attribution

method, using SHapley Additive exPlanations (SHAP), was proposed to explain the

system and enhance its understanding by identifying statistically critical features influ-

encing the stability metric(s) of interest. Furthermore, rather than simply explaining

the insights derived, we proceeded to verify these insights within the power system con-

text. The key insight obtained from this work is that by combining domain knowledge

with the explanations or insights derived from the ML model, operators are equipped

with advanced decision-making tools necessary for effective targeted preventive actions

capable of enhancing the stability of the system.

To ensure reliable frequency stability management in security-constrained optimi-

sation, accuracy and computational efficiency are prerequisites. To tackle this dual

challenge, in Chapter 5, we proposed a formulation of a neural network-constrained Op-

timal Power Flow (OPF) problem that considers locational frequency dynamics where

conventional analytical methods face significant challenges. Specifically, if detailed an-

alytical formulations are applied, a significant computational hindrance is created due

to solving DAEs, which slows the convergence time taken by the solver. Furthermore,

if simplified models are applied, the security of the system is affected due to the risks of

introducing errors, and if the system is over-secured, the cost of generation increases.

The key insight obtained from the proposed approach is that a well-trained ML model

can be formulated as an accurate and efficient constraint within power system optimi-

sation models, leading to superior performance. This results from the ML’s ability to

directly account for these detailed locational dynamics, including the ‘hard-to-model’

relationships that existing analytical methods struggle to accurately model, without

the need to solve the network’s DAEs during the optimisation. Such an approach is

well-suited for both real-time (or close to real-time) and offline applications in scenario

screening, where applying detailed conventional methods would make it computation-

ally prohibitive.

Considering that all power systems are susceptible to disturbances during their
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operation, real-time control actions are an integral part of system operation. Efficient

control actions are scenario-specific, optimising system security without incurring any

excessive costs. This is unlike the conservative static approach adopted by conventional

UFLS, which utilises pre-defined thresholds to shed load to maintain stability, leading

to inefficient actions. This challenge is more pressing now than ever, as the accuracy

of these thresholds could be affected by the introduction of stochastic renewables into

the system, as well as evolving load profiles. To address this challenge, in Chapter 6,

we proposed an adaptive real-time frequency control for emergencies, through physics-

informed RL. The proposed approach incorporates the physics governing the dynamic

system to attain superior performance over existing AUFLS RL methods, through

a Physics Shield (PS). The key insights derived are that by integrating the legacy

protection schemes with the proposed AUFLS RL model as supplementary controllers,

the optimality of the overall protection against frequency violation is improved, by

minimising the scale of system interruptions while maintaining stability. Additionally,

embedding some of the governing physics governing the dynamic system offers the

advantage of faster training of the RL agent(s) —a crucial and necessary characteristic

to foster scalability to large networks.

7.1 Future Work

The research presented in this thesis has focused on applying ML methods to enhance

the stability of power systems, focusing on frequency stability. While this thesis ad-

dresses some of the key challenges faced by conventional methods in situational aware-

ness, and preventive as well as corrective actions to maintain frequency stability, several

potential research directions have been identified for further research as follows:

7.1.1 Power System Stability Situational Awareness and Stability Man-

agement

ML methods are data-driven techniques whose accuracy depends on the quality of

available training data. As demonstrated by the results in Chapter 3, these models
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are capable of developing highly accurate functions that map inputs to outputs of a

dynamic system. However, potential directions for future research lie in the guarantees

of their predictions. This stems from the fact that these models are usually validated

within the learned distributions; as such, their predictive accuracy can be unpredictable

when applied to scenarios beyond their training domain. Thus, this highlights a key

area for future research, such as verifying and/or improving the robustness of such ML

models beyond the training domain. Despite the initial steps made in this thesis, further

improvements are needed, such as investigating the learning of the physics governing

the dynamic system (see [Pub. H] as an example), to go beyond learning the relation-

ships captured in the datasets. This could potentially ensure reliable ML prediction

performance, a crucial aspect among practitioners to foster adoption and application in

the safety-critical power system infrastructure. Furthermore, while Chapter 3 focuses

on developing fast and efficient models for enhancing situational awareness, a valuable

direction for future research lies in leveraging real-time co-simulation environments.

Tools such as OPAL-RT offer valuable Hardware In the Loop (HIL) capabilities, en-

abling real-time validation and scalability to large-scale system studies, such as in the

real GB network. Furthermore, integration with platforms such as ePHASORSIM or

HYPERSIM could facilitate deployment readiness assessments.

In addition, the research conducted in this thesis employed RMS-TDS to capture

the frequency dynamics following disturbances. However, as modern grids become

increasingly dominated by CIGs, emergent frequency behaviours —particularly those

driven by fast electromagnetic interactions —necessitate modelling within the EMT

Electro-Magnetic Transients (EMT) domain. This shift makes such modelling more

crucial than before to accurately account for these dynamics. Consequently, exploring

the effectiveness and adaptability of the proposed ML-based techniques within EMT

environments presents a valuable path for future research, especially in improving sit-

uational awareness in power systems.

Regarding the application of ML models to enhance the understanding of power

system dynamics, future research could explore the simultaneous implementation of

multiple SHAP-derived constraints to improve the system’s stability, rather than indi-
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vidual implementation. This could go beyond the initial steps made in this thesis by

providing a more structured and coordinated approach to constraint implementation by

effectively balancing the influence of multiple features to enhance the overall effective-

ness of such insights, without causing antagonistic effects. Additionally, causal models

could also be explored to uncover underlying causal relationships within the system,

beyond the correlative relationships generated by additive feature attribution methods.

Such an approach could enable the identification of causal features and support the

design of more precise interventions to enhance system stability.

7.1.2 Preventive Frequency Stability Management in Security-Constrained

Optimisation

ML models with nonlinear activation functions offer greater predictive accuracy as they

are capable of capturing the system’s nonlinearities. However, introducing nonlinear

constraints within the optimisation problem makes the problem much harder to solve

and significantly increases the optimisation time. Consequently, as demonstrated in

Chapter 5, security-constrained optimisation models often rely on the linearisation of

these inference models as constraints to efficiently capture and account for the detailed

system stability dynamics.

However, effectively linearising nonlinear inference models can be quite challenging,

as it requires balancing accuracy and computational efficiency, without focusing on one

at the expense of the other. It is therefore crucial to preserve the level of accuracy

needed, while maintaining the necessary computational simplicity, to allow reliable,

practical application of the models in close to real-time timescales. Therefore, build-

ing on the foundations laid in this thesis, a promising direction for future research is

in identifying an optimal integration point that effectively embeds complex and accu-

rate inference models within the optimisation framework, without imposing significant

computational overhead. This may involve employing more advanced optimisation tools

such as CROWN, an efficient verification algorithm that facilitates bound propagation

by relaxing nonlinear activation functions using adaptive linear bounds.

Furthermore, although neural networks exhibit remarkable expressive power, they
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remain powerful black-box models. In contrast, Kolmogorov-Arnold Networks (KANs)

have recently emerged as suitable alternatives to traditional neural network architec-

tures, due to their ability to decompose multivariate functions into a finite composition

of simple functions. KANs have demonstrated superior accuracy in certain contexts,

while offering full interpretability through their functional matrices. Consequently, an

interesting avenue for future research involves extracting symbolic expressions from

KANs and embedding them as stability constraints within optimisation frameworks,

thereby enhancing both transparency and precision in security-constrained optimisa-

tion.

7.1.3 Adaptive Frequency Control Mechanisms for Emergencies

The physics-informed AUFLS technique proposed in this thesis, in Chapter 6, presents

a significant improvement over existing AUFLS RL methods, particularly in terms

of computational efficiency and optimality of the generated solutions. Specifically,

while the current implementation already minimises excessive sampling by RL agents

in the AUFLS domain by a significant margin, further improvements are possible. To

this end, going beyond the proposed physics and exploring increasingly rich physical

insights can further constrain the RL to only explore within a search space of essential

actions, thereby improving the scalability and optimality of AUFLS RL solutions even

more. Thus, there is effectively no limit to how much physics the agent can account

for during its training, as long as such modifications do not introduce implementation

inefficiencies/complexities. Additionally, introducing physics-informed loss functions

offers additional advantages by embedding domain knowledge directly into the learning

objective(s). Ultimately, these promising directions improve the sampling efficiency

and mitigate the significant computational requirements associated with RL training,

which currently remains a bottleneck for application in large-scale power systems with

large datasets.

Furthermore, employing physics-informed surrogate models, rather than detailed

phasor domain power system simulators as the RL agent’s environment, can signifi-

cantly accelerate the training process. By eliminating the need to solve complex dif-
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ferential equations through the simulators within the training loop, surrogate models,

as an efficient dynamics predictor, enable rapid simulation of the system responses,

thereby facilitating applications in modern large-scale power systems challenged with

high-dimensionality. Finally, inspired by the success of Google’s AlphaZero in master-

ing complex decision spaces such as chess, the RL agent’s exploration strategy could

be further refined. Rather than relying on random sampling, a Monte Carlo-based

exploration mechanism may offer more structured and efficient sampling to improve

convergence and robustness of the learned policy.
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B. Pal, “Optimizing system operation with nadir considerations via simulations of

detailed system dynamic responses,” Electric Power Systems Research, vol. 212,

07 2022.

[22] H. Ahmadi and H. Ghasemi, “Security-constrained unit commitment with lin-

earized system frequency limit constraints,” IEEE Transactions on Power Systems,

vol. 29, no. 4, pp. 1536–1545, 2014.

152

https://www.digsilent.de/en/downloads.html
https://www.digsilent.de/en/downloads.html
https://www.sciencedirect.com/science/article/pii/S0306261925002351
https://www.sciencedirect.com/science/article/pii/S0306261925002351


Bibliography

[23] G. Misyris, D. Ramasubramanian, P. Mitra, and V. Singhvi, “Locational aspect

of fast frequency reserves in low-inertia systems – control performance analysis,”

07 2022.

[24] Q. Wang, F. Li, Y. Tang, and Y. Xu, “Integrating model-driven and data-driven

methods for power system frequency stability assessment and control,” IEEE

Transactions on Power Systems, vol. 34, no. 6, pp. 4557–4568, 2019.

[25] M. Aghahassani, E. D. Castronuovo, P. Ledesma, and F. Milano, “Extended fre-

quency divider formula with inclusion of der control dynamics,” in 2023 IEEE

Power Energy Society General Meeting (PESGM), 2023, pp. 1–5.

[26] F. Milano and Ortega, “Frequency divider,” IEEE Transactions on Power Sys-

tems, vol. 32, no. 2, pp. 1493–1501, 2017.

[27] Texas AM University. (2024) Activsg2000: 2000-bus synthetic grid on

footprint of texas. [Online]. Available: https://electricgrids.engr.tamu.edu/

electric-grid-test-cases/activsg2000/

[28] J. Zhao, L. Mili, and F. Milano, “Robust frequency divider for power system online

monitoring and control,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp.

4414–4423, 2018.

[29] J. Zhao, Y. Tang, and V. Terzija, “Robust online estimation of power system

center of inertia frequency,” IEEE Transactions on Power Systems, vol. 34, no. 1,

pp. 821–825, 2019.
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