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Abstract

Rapid developments in experiments provide promising platforms for realising
quantum computation and quantum simulation. This, in turn, opens new possi-
bilities for developing useful quantum algorithms and explaining complex many-
body physics. The advantages of quantum computation have been demonstrated
in a small range of subjects, but the potential applications of quantum algorithms
for solving complex classical problems are still under investigation. Deeper under-
standing of complex many-body systems can lead to realising quantum simulation
to study systems which are inaccessible by other means.

This thesis studies di↵erent topics of quantum computation and quantum sim-
ulation. The first one is improving a quantum algorithm in adiabatic quantum
computing, which can be used to solve classical problems like combinatorial op-
timisation problems and simulated annealing. We are able to reach a new bound
of time cost for the algorithm which has a potential to achieve a speedup over
standard adiabatic quantum computing. The second topic is to understand the
amplitude noise in optical lattices in the context of adiabatic state preparation
and the thermalisation of the energy introduced to the system. We identify
regimes where introducing certain type of noise in experiments would improve
the final fidelity of adiabatic state preparation, and demonstrate the robustness
of the state preparation to imperfect noise implementations. We also discuss
the competition between heating and dephasing e↵ects, the energy introduced by
non-adiabaticity and heating, and the thermalisation of the system after an ap-
plication of amplitude noise on the lattice. The third topic is to design quantum
algorithms to solve classical problems of fluid dynamics. We develop a quantum
algorithm based around phase estimation that can be tailored to specific fluid
dynamics problems and demonstrate a quantum speed up over classical Monte
Carlo methods. This generates new bridge between quantum physics and fluid
dynamics engineering, can be used to estimate the potential impact of quantum
computers and provides feedback on requirements for implementing quantum al-
gorithms on quantum devices.
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Chapter 1

Introduction

1.1 Background and overview

The spirit of discovery is deeply rooted within the human heart. In order to
continue pushing the frontiers of our knowledge in computational sciences across
many subject areas, there is a need for new algorithms, numerical methods and
computational instruments. Since the 1980s, the development of quantum com-
puting, quantum information and quantum simulation has been undergoing fast
expansion. Quantum computing uses quantum mechanical phenomena such as
superposition and entanglement to perform computing. A quantum computer,
which is the device that performs quantum computing, has the potential to ef-
ficiently solve problems that intractable by classical computers [1, 2]. Quantum
simulation [3, 4], on the other hand, is to study specific quantum systems that
are hard in the laboratory, by controlling other quantum systems that easy to
access [5]. Quantum simulators, implementing quantum simulation, are designed
to solve specific physics problems [6, 7]. The research on such subjects is helping
build towards realising quantum computers and quantum simulators, develop-
ing quantum algorithms and also discussing their many potential applications.
During the last decades, a particular interest for studying quantum many-body
systems in the context of atomic, molecular, and optical physics (AMO) has
arisen, particularly with neutral atoms in optical lattices [8]. Indeed, in such
experiments, quantum many-body systems of atoms can be isolated from their
environment and studied with microscopic understanding. Almost all the param-
eters of the systems can be controlled, allowing us to explore a broad range of
many-body e↵ects. [9]. These systems can be used to implement certain quan-
tum emulations or can act as quantum computers that are able to solve complex
classical problems which are intractable by other means. The continued interests

1



Chapter 1. Introduction 2

in quantum computing arises from the potential of quantum computers to solve
certain complex problems much faster than can be done classically. This advan-
tage of quantum computing over corresponding “classical” calculations, is also
know as a quantum speedup. For example, Shor’s algorithm for performing large
number prime factorisation [10] takes a number of steps polynomial in the num-
ber of digits of the integer to be factored. This is exponentially faster than the
best known classical algorithm which takes an exponential steps in the number
of digits. Our interest in developing quantum algorithms is to achieve quantum
speedups in broader contexts and to identify potential applications.

1.1.1 Cold atoms in optical lattices

The Bose-Einstein condensate (BEC) [11, 12], named after Satyendra Nath Bose
and Albert Einstein, was first observed in dilute atomic gases in 1995 [13]. One
of the key requirements for realising BEC in dilute gases is to achieve very low
temperatures. The experiments can reach BEC in dilute gases at a temperature
lower than 500 picokelvin [14] with the help of laser cooling [15] and evaporative
cooling [16]. The interactions between atoms in such a dilute environment have a
very weak e↵ect on the condensation. In the limit of low temperature, the inter-
atomic interactions reach a universal low-energy regime within scattering theory,
so that the interaction strength is usually proportional to the scattering length.
The fine tuning of the scattering length provides an important way to control the
system. For example, using magnetic and optical Feshbach resonances [17, 18],
the scattering length can be tuned continuously, which for some atomic species
makes it possible to achieve attractive and repulsive interactions in the same
experimental set-up.

The proposal of cold atoms as a toolbox to reach strong correlated regimes for par-
ticles in a lattice was developed by Jaksch et al. in 1998 [19]. Counter-propagating
coherent lase beams form a periodic potential to confine neutral atoms with an
energy shift of the ground state. The energy shift is proportional to the intensity
of the laser field, so the atoms are confined in the optical lattices in the form of
standing waves [15, 20–22]. The toolbox of Bose-Einstein condensation can then
be used for fine tuning of properties of the atoms. We refer Chap. 3 for a detailed
introduction of cold atoms in optical lattices. Several years after experiments
with cold atoms in optical lattices were first proposed, a major experimental
breakthrough was made [23], with observation of low-temperature properties of
the Bose-Hubbard model in such systems. The experimental control of the depth
of the optical potential can change both the interaction strength U between the
atoms and the tunnelling rate J of the atoms from site to site through the lattice.
Feshbach resonances can also be used to tune the interaction strength U . With
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these controls, a wide range of the ratio U/J can thus be implemented. The
continuous changing of U/J can realise a phase transition of the system between
the superfluid phase and the Mott insulator phase.

The theory of phase transitions stands for a key concept for the characterization
of equilibrium matter. A phase transition indicates a nonanalytic change in the
properties of a large system [24]. In classical models, phase transitions are driven
by thermal fluctuations. If the temperature is zero, T = 0, classical systems usu-
ally sit into a ground state which is fluctuationless, and therefore, no phase tran-
sition occurs. On the contrary, for quantum systems, the Heisenberg uncertainty
principle provides the fluctuations that can drive interesting phase transitions at
T = 0 even in the ground state. Quantum phase transitions (QFTs) occur as a
result of competing ground state phases, where the ground-state properties un-
dergo a nonanalytic change as a function of a control parameter [23–27]. One of
the challenges to realise nonequilibrium quantum phase transition is to keep the
system in the ground state throughout the processing. In Chap. 6, we introduce
a new approach to realise the QPT from Mott insulator to superfluid phase by
suppressing coherent process due to the change of the control parameter.

Besides orthogonal laser beam configurations producing cubic optical lattices, the
experimental setups provide a more flexible geometry of optical lattices. Di↵er-
ent geometries (triangular [20], Kagome [28], honeycomb [29]) can be realised by
changing the directions of laser beams generating the optical potential. Two pairs
of laser beams that form two independent 1D lattices with di↵erent frequencies
can generate a superlattice geometry [30]. Also with the interplay of polarisa-
tions of two counterpropagating laser beams, a spin-dependent optical lattice can
be formed to control the spin-dependent transport of neutral atoms [31]. Re-
cent developments of quantum gas microscope techniques for Bosons [32, 33] and
later for Fermions [34, 35] made it possible to detect strongly correlated states
of matter directly via single-atom and single-site-resolved fluorescence imaging,
and to produce arbitrary potential landscapes with spatial light modulations. In
the experiments, atoms in optical lattices are cooled to a very low temperature
of the order of one nanokelvin, where characteristic interaction frequencies are of
the order of 10-104 Hz, and can be traced precisely.

Cold atoms in optical lattices thus construct a realisable platform for quantum
simulations. For example, the experimental insight of high-temperature supercon-
ductors can be obtained by the simulations of phase diagrams for certain classes
via cold atoms as a general quantum simulator of lattice models. The control of
the parameters of the system and precise measurements provide access to out-
of-equilibrium dynamics after a parameter quench [23, 36, 37] and the study of
ground state properties [38, 39]. The long coherence time, secured by isolation
of the system from its environment, provides the probabilities to simulate the
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system with much shorter times of interaction and tunnelling. The high fidelity
of state preparation and single-atom manipulation makes it possible to realise
quantum simulations where this level of control is necessary.

The cold atoms in optical lattice is more than a platform of quantum simulation
that we are interested, is also a promising platform of quantum computing. The
basic requirements of a physical system to perform quantum computing were
proposed by DiVincenzo [40]. Many of the requirements are fulfilled for cold atoms
in optical lattices. An optical lattice can provide a well-defined set of qubits, which
is also scalable. The long coherent time of the system grants the performing of
single-qubit or two-qubit quantum gates realised by Raman laser and controlled
interactions between particles [41–45]. For now, the main technical di�culty of
addressing individual atoms is the disadvantage of cold atoms in optical lattices
as a platform. However, proposals on quantum computing utilising global system
control [46] and on using marker qubits [47] have the potential to solve that
problem in the future.

1.1.2 Quantum algorithms and their applications

Quantum algorithms are designed to provide feasible solutions to problems which
require enormous resources on a classical computer. The power of quantum
computation comes, partly, from the access to enormous Hilbert spaces, which
grow exponentially with the number of qubits. Quantum algorithms are com-
monly described in circuit models of quantum computation, as well as some other
model like measurement-based quantum computing [48] and Hamiltonian oracle
model [49, 50] which is the continuum limit of the standard unitary quantum
oracles. The quantum circuit consists of initial qubits in certain well prepared
quantum states, subsequent unitary quantum gates acting on a finite number
of qubits, and in the end, a series of measurements in certain bases. The out-
comes of measurements can generate the answer to chosen problems. Similar
to classical algorithms, some basic quantum techniques are widely used in many
quantum algorithms. There are two main techniques, amplitude amplification
techniques [51, 52] and quantum Fourier transform (QFT) [4]. The amplitude
amplification technique utilises the superposition principle of quantum mechanics.
To reach a quantum state where the answer is encoded, the technique increases
its amplitude to dominant so that it is the superposition. Thus we can obtain the
target state from an initial state of a superposition of all the finite configurations.
Based on this technique, Grover’s algorithm for performing quantum searching on
an unstructured database [53] provides a quadratic speedup over classical algo-
rithms. The quantum Fourier transform is the quantum analogue of the discrete
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Fourier transform, performing linear transformations on quantum bits. This uni-
tary transform is the core to many well known algorithms like the Deutsch-Jozsa
algorithm [54, 55], the Quantum phase estimation algorithm [4] and Shor’s al-
gorithm [56]. The quantum Fourier transform can be implemented e�ciently
on a quantum computer, and implies an exponential speedup over the classical
Fourier transform [4, 57]. In recent decades, the applications of digital quantum
algorithms have been extended to more general and complex subjects, like solving
linear di↵erential equations [58–60], element distinctness problems [61–63], and
simulating sparse Hamiltonians [64].

Besides the quantum circuit model of quantum algorithms, analog quantum com-
putation can also provide a speedup to solve complex problems [65]. We focus
part of our research interests on adiabatic quantum computing (AQC) [66]. This
form of quantum computing can provide a quantum state (usually the ground
state of complex Hamiltonian) with designated answer encoded, starting with
a well prepared state and implementing adiabatic evolution of time-dependent
Hamiltonian. According to the adiabatic theorem, if the initial state and the tar-
get state are well connected by a time-dependent Hamiltonian, and the ramping
speed is slow enough, the evolving system can be arbitrarily close to the target
state. It has been shown to be equivalent to conventional quantum computing in
the circuit model [67]. Within desired error, the time cost depends on the minimal
energy gap of the Hamiltonian along the time evolution [68, 69]. The applications
of AQC cover many of science subjects. Depending on the information encoded
in the final state, the AQC can be implemeted to find the global optimum of dis-
crete optimization problems [70, 71], to simulate quantum annealing [65, 72, 73],
and to revisit the Grover search problem [74] and quantum simulation in other
subjects [75–77].

To summarise, we are interested in both digital quantum computation and ana-
logue quantum computation. The rapid developments of quantum hardware
make it opportune to identify the potential applications of quantum computers
in broader fields, including in engineering. By doing so, we would raise atten-
tion in di↵erent communities and provide feedback on requirements for practical
quantum computing. We revisit the Phase Estimation Algorithm in Chap. 2
and apply this to develop a quantum algorithm to solve fluid dynamics problems
in Chap. 8. For adiabatic quantum computing, we would like to improve the
time cost of AQC in terms of gap dependence (Chap. 5). For adiabatic state
preparation, we discuss adiabatic dynamics with presence of classical noise in
Bose-Hubbard model (Chap. 6 & 7) to gain understanding of noise e↵ects and
identify possible optimisations of adiabatic ramping.
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1.1.3 Computational methods

In the study of quantum many-body systems, it is generally hard to find analytical
solutions to problems involving Hamiltonian dynamics. In a large complex quan-
tum many-body system, the size of Hilbert space also grows exponentially with
system size, which results in memory issues storing the quantum state and expo-
nentially growing timescales for computations. For example, the Hilbert space of
the one-dimensional spin 1/2 chain with N sites has a size of 2N . The configura-
tion of one quantum state with 100 spins requires approximately 1.3 mega tera
tera bytes of RAM to store which is impossible even for supercomputers. In the
case of N Bosons confined in an optical lattice with M sites, the dimension of the
Hilbert space is (N +M �1)!/N !(M �1)!, which is also undertakes a exponential
growth with the system size N,M at a fixed density of particles per site (N/M).

When we do not need to know all the properties of the system but only focus on a
few of them, one approach is to consider only a subspace of the entire Hilbert space
to approximate the properties. In other words, within certain approximation
errors, considering only the most relevant quantum states can significantly reduce
the dimension of Hilbert space that needs to be studied. As an example of this
idea, Density Matrix Renormalization Group (DMRG) methods were proposed
by S. R. White [78, 79]. These methods with a tensor network approach can
reduce the computational resources required to capture the physics of quantum
many-body systems. In the original proposal, DMRG methods were used for
time independent calculations, like finding the ground state for one-dimensional
system. Later on, it was shown that the form of matrix product states (MPS)
can represent the ground state obtained from DMRG calculations [80]. Later
research [81] quantified the performance of MPS representations approximating
exact ground states of one-dimensional quantum spin systems. This result gave
a theoretical justification of DMRG methods to achieve high accuracy even in
the cases of critical systems. The extension of DMRG to study time-dependent
dynamics was established in Ref. [82–84]. Behind the equivalence between the
Time Evolving Block Decimation (TEBD) algorithm and t-DMRG, is the idea
that adaptive change of basis, and truncation of a Hilbert space that provides
advantages for exploring time evolution of complex system.

Now, the DMRG methods are widely used to study ground state properties and
dynamics of complex quantum many-body systems in one dimension. They are
compatible with many other computational methods like quantum trajectories
methods [85] and master equation methods for studying dynamics in open quan-
tum systems. These methods develop stochastic evolutions of quantum states to
approximate master equations, which further reduces the computational resources
needed. The understanding of open quantum systems can provide potential exper-
imental tools to prepare important quantum states in strongly interacting systems
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and reach the regimes necessary to realise quantum simulators. In the original
research presented in this thesis, the time evolution and the ground state search
of Bose-Hubbard model with large system size are computed utilising TEBD
methods in Chap. 6. For small systems where exact diagonalisation methods are
possible, the master equation approach is used to compute the stochastic average
of a noisy time evolution and is covered in Chap. 6 & 7.

1.2 Outline of thesis

This thesis is arranged as follows. The introductory chapters consist of three
parts including the physics and numerical background knowledge of our research.
The original research results in the rest of this thesis are discussed in the context
presented in the first part.

In Chap. 2, we start with the fundamental concepts of quantum computation
and quantum metrology. In this part, we give a brief overview of quantum states
and the transformations on the one-qubit system in the Bloch sphere, essential
two-qubit gates that form a universal gate set, and controlled operations on n+1-
qubits. In the following parts, we assemble universal quantum gates to form
quantum circuits and demonstrate the basic structure of quantum algorithm. We
discuss one method to mimic the behaviour of stochastic processes in classical
algorithms by implementation of specific controlled gates. Later, we provide an
overview of the phase estimation algorithm (PEA) and one method to estimate
the expectation value of unitary operators. In the second half of this chapter,
we revisit adiabatic quantum computing and adiabatic state preparation. In the
end, we introduce the concept of eigenpath, which is essential to the discussion
in Chap. 5.

In Chap. 3, we review the background of cold atoms in optical lattices, and the
Hamiltonian of bosonic systems. Later, we discuss the amplitude noise introduced
by the fluctuation of laser intensity, and how the parameters of the system behave
accordingly in the context of the deep lattice regime. In the last part, we intro-
duce a method to engineer amplitude noise, the dressed lattice scheme, which
provides fine control on relative changes of the tunnelling parameter and the on-
site interaction parameter. This scheme will be used to realise assisting noise to
improve fidelity in Chap. 6 and to study thermalisation of energy introduced by
amplitude noise in optical lattices in Chap. 7.

In Chap. 4, we introduce two main computational methods that we used in our
research on quantum many-body system, the TEBD method and the Lindblad
form of the master equation which represents an e↵ective equation of motion for
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adiabatic state transformation in the presence of classical noise. We show how
the TEBD method works in the reduced Hilbert space. Later, we show how
the dynamics of noisy adiabatic process can represented in master equations of
Lindblad form in the limit of white noise. These methods are mainly used in
simulations to obtain numerical results in Chap. 6.

In Chap. 5, we extend the idea of randomisation method, which is designed to
achieve better fidelity in adiabatic state transformation by random time evolution
in each discrete time step. The dephasing introduced by this stochastic average
e↵ect simulates projective measurements on an instantaneous eigenspace during
a time evolution. We investigate improved bounds on eigenpath length by consid-
ering the second derivative of the Hamiltonian, and provide detail error analysis
considering imperfect implementations of projective measurements to obtain the
lower bound of the final fidelity of state preparation. These improved results can
achieve better bounds for the time cost of adiabatic state transformation in terms
of dependence relation of minimal gap during the state transformation. Thus, a
potential speed up over previous research is observed.

In Chap. 6, we adapt the idea of randomised time evolution to the context of
adiabatic state preparation in the presence of classical noise. By taking the one-
dimensional Bose Hubbard system as an example, we identify the regime in which
introducing certain type of noise can improve the final fidelity of state prepara-
tions, if the noise is approximately proportional to the instantaneous Bose Hub-
bard Hamiltonian. Later, we consider the adiabatic process with imperfect imple-
mentations of this noise. A study of a two-level system under certain theoretical
assumptions is conducted to provide deeper understanding of this phenomenon.
This study of white noise can provide insight into how classical noise acts during
the adiabatic state preparation and provides a potential method to achieve high
fidelity when time and resources are limited.

In Chap. 7, we extend our research of the classical noise in optical lattices and
discuss further e↵ects that classical noise induces in the dynamics of the sys-
tem. We first investigate the total energy of the system after the adiabatic state
preparation with the presence of classical noise. From our research, we identify
a regime of minimum total energy as the evolution time grows with constant
noise strength. Then we focus on the thermalisation of the system described by
the Bose-Hubbard model after the application of noise pulses. The system in
the superfluid phase tends to thermalise after the noise pulse, while in the Mott
insulator phase, relaxation to a thermal state is not observed.

In Chap. 8, we develop a quantum algorithm to solve a stochastic mixing problem
for classical fluid dynamics. The conventional Monte Carlo method to estimate
properties with high precision of physical system of many particles and grids is
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expensive in terms of computational resources and time-consuming. Using our
quantum algorithm for turbulent mixing problems and reacting flow problems, a
quadratic speed-up over classical methods is demonstrated, in terms of number
of repetitions required to achieve designated precision. In this section,we both
implement a classical MC method and simulate our quantum algorithm on binary
scalar mixing process and reacting flow described by a coaslescence/dispersion
model as examples. By illustrating comparisons of statistical error scaling of the
two algorithms, we are able to demonstrate a quantum speedup. We expect this
work to initiate discussions about potential applications of the quantum algorithm
and requirements of corresponding quantum hardware, to thus estimate timescales
of practical quantum computers.

In the final Chap. 9, we summarise the main results of our original research in
this thesis, and give an outlook of future projects related to this thesis.

1.3 Contributions during my PhD

1.3.1 Publications

• Hao-Tien Chiang, Guanglei Xu, and Rolando D. Somma, “Improved bounds
for eigenpath traversal”, Phys. Rev. A 89, 012314, 2014

The author of this thesis performed the analysis of final fidelities in this
work

• Guanglei Xu, Andrew J. Daley, Peyman Givi, Rolando D. Somma, “Tur-
bulent Mixing Simulation via a Quantum Algorithm”, AIAA journal, pp.
1-13, 2017/12/13 2017

The author of this thesis performed all of the numerical calculations, an-
alytical calculations of the error of quantum algorithm, wrote the sections
on numerical calculations, and produced all of the plots

1.3.2 Manuscripts in preparation

• Guanglei Xu, Andrew J. Daley, “Adiabatic dynamics with classical noise in
optical lattice”, In preparation 2017

• Guanglei Xu, Andrew J. Daley, “Thermalisation of strongly interacting
bosons after amplitude noise pulse”, In preparation 2017
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• Guanglei Xu, Andrew J. Daley, Peyman Givi, Rolando D. Somma “A Quan-
tum Algorithm for Modelling of Reactant Conversion Rate in Homogeneous
Turbulence”, In preparation 2017

1.3.3 Conference presentations

• Guanglei Xu, Andrew Daley, Peyman Givi, Rolando Somma, “Turbulent
Mixing Simulation via Quantum Algorithm” in Pittsburgh Quantum Insti-
tute Conference: Quantum Revolutions, (Pittsburgh, PA, USA), 2017

• Guanglei Xu, Andrew Daley, Peyman Givi, Rolando Somma, “Quantum
speed-up for Turbulent Mixing Simulation” in APS DFD meeting, (Port-
land, OR, USA), 2016

• Guanglei Xu, Andrew Daley, “Adiabatic dynamics with Classical Noise in
Optical Lattice” in Workshop on Many-body Dynamics and Open Quantum
Systems, (Glasgow, UK), 2016

• Guanglei Xu, Andrew Daley, “Adiabatic dynamics with classical noise in
optical lattice” in APS DAMOP meeting (Providence, RI, USA), 2016

• Guanglei Xu, Andrew Daley, “Adiabatic dynamics with classical noise in
optical lattice” in Pittsburgh Quantum Institute Conference: Quantum chal-
lenges, (Pittsburgh, PA, USA), 2016

• Guanglei Xu, Andrew Daley, “Adiabatic state preparation in a noisy optical
lattice” in SUSSP71, (Glasgow, UK) 2015

• Guanglei Xu, Andrew Daley, “Adiabatic state transformation in the pres-
ence of classical noise” in The 24th International Conference on Atomic
Physics, (Washington, D.C., USA), 2014



Chapter 2

Quantum computation

In this chapter, we present the background of techniques and concepts of quantum
computation that we will use in our original research. This chapter consists of two
sections: quantum algorithms and quantum metrology, and adiabatic quantum
computing. Studying basic principles of quantum computation can provide us
the building blocks for developing quantum algorithms. Full understanding of
quantum operations can be used to improve existing quantum algorithms.

We start with an overview of quantum computation and algorithms for quantum
metrology, with the basics of quantum state transformations and the phase esti-
mation algorithm. Then, we revisit adiabatic quantum computing and the core
background of that, the adiabatic theorem of quantum mechanics. After that,
we introduce the concept of the eigenpath of adiabatic processes that has been
used in many eigenpath transversal methods to bound the time cost of adiabatic
quantum computation.

2.1 Quantum computation and quantum metrol-
ogy

In this section, we provide a brief overview of quantum computation and the
quantum phase estimation algorithm for quantum metrology. For more details,
we would refer to Refs. [4, 86]. The Dirac bra-ket notation we use here [4, 86, 87]
is that a state |�i can be associated with a column vector � in the complex
and finite-dimensional Hilbert space CN , and h�| can be associated with �†, the
conjugate transpose of �.

11
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x
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z

✓

�

|0i

|1i

| i

Figure 2.1: A Bloch sphere diagram of single-qubit unitary transformations.
In the eigenbasis of �z, the |0i state (green) is defined along the north pole
and |1i (red) is at the south pole. Up to a global phase factor, single qubit
states can be represented as | i = cos(✓/2) |0i + e

i' sin(✓/2) |1i, where � is
the azimuthal angle, and ✓ is the polar angle. The curved arrows on each axis
indicate rotations around axis ⌫.

2.1.1 Quantum states and transformations

The qubit is the fundamental unit in the circuit model of quantum computation.
The state of a qubit can be represented as a linear superposition of |0i and |1i
( | i = a0 |0i + a1 |1i ), and the complex coe�cients a0 and a1 are normalized
to unity: |a0|2 + |a1|2 = 1. For convenience we also define another possible ba-
sis of single qubit, |+i = (|0i + |1i)/

p
2 and |�i = (|0i � |1i)/

p
2. Assigned

to each qubit are the Pauli (unitary) matrices �i. In general, 1lD denotes the
identity matrix with dimension D. Operations on a single qubit can be imple-
mented by a sequence of unitary transformations. For example, the operation
R(⌫, ✓) = e�i✓�⌫/2, with ⌫ = x, y, z can be interpreted as a rotation operation
around the ⌫ axis (rotations in the Bloch sphere as in Fig. 2.1). Another useful
and standard single-qubit operation used in quantum computing is the Hadamard
gate H, which can transform states as H |0i = |+i and H |1i = |�i. The matrix
representation of the Hadamard gate in the eigenbasis of �z is,

H =
1p
2

✓
1 1
1 �1

◆
. (2.1)
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A state of n qubits can be represented as

| i =
N�1X

l=0

al |li = a0 |0 . . . 00i+ a1 |0 . . . 01i+ . . .+ aN�1 |1 . . . 11i . (2.2)

The dimension of the Hilbert space is N = 2n. In this representation, |li is
a state in the computational basis, which stands for the corresponding binary
representation of a number l. The complex coe�cients al satisfy the normalization
condition

P
N�1
l=0 |al|2 = 1. The position of each number 0, 1 in the computational

basis vectors represents the label of each qubit, |00 . . .i = |0i1 |0i2 . . . |0in.

A state which can be described by a single ket vector is called a pure state, like
|0i and Eq. (2.2). The density operator of a pure state is ⇢pure = | i h |. On
the other hand, a quantum system in one of a number of states | ii with certain
non-zero probabilities pi has the density operator

⇢mix ⌘
X

i

pi | ii h i| , (2.3)

with
P

i
pi = 1, and 0 < pi < 1. This density operator describe a mixed state.

The trace of ⇢2 of a pure state and a mixed state is di↵erent.

tr(⇢2pure) = 1 (2.4)

tr(⇢2mix) < 1 (2.5)

The state vector of a pure state is on the Bloch sphere and the state vector of a
mixed state is inside of the Bloch sphere.

An operation on the j�th qubit in a system of n qubits can be generated by
tensor products of Pauli matrices, that is,

�j

⌫
= �0 ⌦ · · ·⌦ �⌫|{z}

jth position

⌦ · · ·⌦ �0 , (2.6)

where �0 is the 2-by-2 identity matrix. Here, ⌫ = 0, x, y, z and j = 1, . . . , n. In
quantum computing, many-qubit operations can be performed by a sequence of
gates drawn from a universal gate set. A set of gates is said to be universal for
quantum computation, if any unitary operation can be approximate to arbitrary
accuracy by a quantum circuit constructed only using those gates. We refer
Sec.4.5 of Ref. [4] for more details. These gate sets of transformations usually act
on one or two qubits, for example,

Rj(⌫, ✓) = e�i✓�
j
⌫/2 , Rj,k(!) = e�i!�

j
z�

k
z . (2.7)
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Other universal sets of quantum gates can be constructed using the Rj(⌫, ✓) and
controlled operations such as the controlled NOT gate (CNOT). The CNOT gate
represents a two-qubit unitary operation that changes only the state of the target
qubit according to the state of the control qubit. If we represent a two-qubit
state as |ai1 |bi2, where the subscripts 1 and 2 represent the two qubits and |ai
and |bi represent quantum states, |ai , |bi 2 {|0i , |1i}. When the first qubit
is the control qubit, and the second qubit is the target qubit, the CNOT gate
performs the transformations as follows, |0i1 |0i2 ! |0i1 |0i2, |0i1 |1i2 ! |0i1 |1i2,
|1i1 |0i2 ! |1i1 |1i2, |1i1 |1i2 ! |1i1 |0i2

For an arbitrary n-qubit unitary operation U , we can define a n+1-qubit unitary
transformation cU , which is controlled by the state of an ancillary qubit noted as
|0i

a
or |1i

a
, and transforms as follows:

cU |0ia | i = |0ia | i , cU |1ia | i = |1ia U | i . (2.8)

In quantum mechanics, all measurable observables have an associated Hermitian
operator. In our case, we are only concerned about simple measurements of qubits
in the computational basis |0i and |1i, where the measurement operators are the
�z. If the quantum state is described as in Eq. (2.2), the probability that we find
the state projected into |li after measurement of all qubits is |al|2 [88].

2.1.2 Quantum algorithms and quantum circuits

In quantum computing, a general quantum algorithm often consists of three parts.
The first part is the preparation of an initial state, such as a simple state |0 . . . 0i
or a more general initial state | i. The second part is a sequence of instructions,
implementing gates from a universal gate set to approximate a desired unitary
operation on all qubits. The final part is to perform projective measurements to
extract classical information. The number of simple operations needed for each
of the three steps gives the cost of a quantum algorithm. Typically, the com-
plexity of a quantum algorithm (how the cost scales with n) is dominated by
the preparation of the initial state and the second step, since the complexity of
simple measurements from the final part is assumed to be linear in n. Quantum
circuits are commonly used to represent quantum algorithms. A quantum circuit
is a sequence of elementary unitary gates applied to an initial state, and one
convention of diagrams is the time goes from left to right. An example of a quan-
tum circuit is shown in Fig. 2.2, which describes the quantum phase estimation
algorithm (PEA). The quantum Fourier transform F that the PEA uses is also
given in Fig. 2.2 (b). Suppose the unitary operator U has an eigenvector |ui with
eigenvalue e2⇡i�, where � is the eigenphase. The PEA outputs an estimate of an
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Figure 2.2: (a) The diagram of a quantum circuit for the phase estimation
algorithm (PEA). The circles denote a controlled operation (e.g., a controlled
U

k) on the corresponding state of an ancilla qubit in 2.8. The outcome {0, 1}
of each measurement provides one digit of the binary representation of an
estimate of an eigenphase of U (Sec. 2.1.4). F

† is the inverse of the quantum
Fourier transform. (b) Quantum circuit for the quantum Fourier transform in
terms of elementary gates on one or two qubits. For simplicity, this diagram
for F does not show trivial swap operations at the end which reverse the order
of the qubits [4]

eigenphase or eigenvalue of a unitary U [89]. We will provide more details of this
algorithm in Sec. 2.1.4.

2.1.3 Simulating classical probabilistic problem

In computational complexity theory, the class of problems that can be solved ef-
ficiently in polynomial time with a quantum computer is referred to as BQP; on
the other hand, the class of problems that can be solved in polynomial time with
a classical probabilistic computer is called BPP. The relation between this two
classes is that BPP ✓ BQP. Every classically solvable problem can be solved on
a quantum machine. One way to simulate a classical probabilistic algorithm e�-
ciently on a quantum computer, is that each classical random bit can be simulated
by introducing a new ancilla qubit. The ancilla qubit is in the state |pia, which is a
random bit that has probability p of being in |0i, e.g., |pia =

p
p |0ia+

p
1� p |1ia.

We can then construct a controlled gate acting on the state of the ancilla and
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the qubit where the probabilistic implementation acts. We can then disregard
all the ancilla qubits at the end of the quantum computation. In more detail,
assume that the state of a classical computer � 2 {0, 1}n. We introduce a ran-
dom ancillary bit and depending on the value of the random bit we transform
the state to �0 2 {0, 1}n or �1 2 {0, 1}n with certain probability p. In quantum
computation, we can implement a controlled unitary transformation on a random
ancillary qubit and the qubits representing the classical state as follows:

|pia |�i ! pp |0ia |�0i+
p

1� p |1ia |�1i . (2.9)

It follows that a simple measurement of the ancilla qubit in Eq. (2.9) provides the
outcome 0 or 1, which simulates the classical probabilistic process. In either case,
the state of the quantum computer is projected into |�0i or |�1i with classical
probability p or 1� p.

2.1.4 Phase estimation algorithm

Quantum-enhanced metrology (QM), an important example of quantum process-
ing of information (c.f., [90] and references therein), seeks to obtain properties of
quantum states as precisely as possible within the available resources. Take the
problem of obtaining the probability p by making measurements on the single
qubit state | i = pp |0i +

p
1� p |1i as an example. The outcome after the

measurement in the computational basis is either 0 or 1, representing the quan-
tum state after the measurement becomes |0i or |1i depends on the outcome.
One possible way is to repeat state preparation and measurements and count the
frequency of that outcome is 0 (which means the state is in |0i after the mea-
surement). According to Chebyshev’s inequality, the statistical error "c in the
estimation of p scales as "c / 1/

p
N c

r
, after N c

r
repetitions. However, applying

certain quantum algorithms [91–93] on quantum computers, the same precision
in the estimation of p can be achieved by preparing | i for N q

r
times. Since the

error of the quantum algorithm "Q is proportional to 1/N q

r
, when "C = "Q, N q

r
is

of the order of
p

N c
r
, which is known as the QM limit.

We would like to introduce one method to achieve the QM limit in the following
part of this section. Considering the same problem as in the previous paragraph,
estimating the value of p, we can construct U = e�i✓�z/2 for state preparation,
where ✓ = 2arccos(

p
p). The precision ✏ > 0 of the quantum algorithm estimating

✓ can be translated to an uncertainty to estimating of p with the same order of
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precision. We note the estimate of ✓ as ✓̂ in binary form using m bits as

✓̂ = 2⇡[.b01, b
0
2, . . . b

0
m
]

= ⇡(b01 + b02/2 + . . . b0
m
/2m�1) . (2.10)

Here, b0
i
2 {0, 1} specifies the bits of the number in the binary representation, and

we choose m = O(log2(1/✏)) according to achieve the desired precision, ✏. The
quantum algorithm can be implemented inm basic steps. In each step 1  j  m,
it generates the outcome b0

m�j+1. In the beginning, we start by estimating the
least significant bit and move towards the most significant ones using previous
outcomes. This algorithm is referred to as the single-qubit PEA.

Input: A single-qubit unitary U = e�i✓�z/2 and a precision parameter
✏ > 0.

1. Obtain the smallest integer m such that M � 2⇡/✏, with M = 2m.
2.

2.1 Prepare the single-qubit state |+i and apply U , M/2 times.
2.2 Apply a Hadamard transformation and measure the qubit in the

computational basis.
Let b0

m
2 {0, 1} be the measurement outcome.

3. Do the following for each k = (m� 1), . . . , 1:
3.1 Prepare the single qubit state |+i and apply U , 2k�1 times.
3.2 Compensate the phase of |1i by e�i⇡[.b0k+1...b

0
m].

3.3 Apply a Hadamard transformation and measure the qubit in the
computational basis.

Let b0
k
2 {0, 1} be the measurement outcome.

Output: An estimate of ✓ as ✓̂ = 2⇡[.b01 . . . b
0
m
].

In general, the probability of an m-bit estimate ✓̂ of ✓ is [94],

Pr(✓̂) =
1

4m

����
ei2

m
✓ � 1

ei(✓�✓̂) � 1

����
2

. (2.11)
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If ✓ can be exactly represented just using m�1 bits as in Eq. (2.10), this quantum
algorithm provides an exact estimate

Pr(✓̂ ! ✓) =
1

4m

�����

d

d✓
(ei2

m
✓ � 1)

d

d✓
(ei(✓�✓̂) � 1)

�����

2

=
1

4m

����
i2m

i

����
2

= 1

In other cases, let ✓̃ denote the best m-bit estimate of ✓, and ✓ = ✓̃ + �, where
0 < |�|  2⇡

2m+1 . From Eq. (2.11), the probability of the best estimate is

Pr(✓̃) =
1

4m

����
ei2

m
� � 1

ei� � 1

����
2

. (2.12)

Since, |�|  2⇡
2m+1 , it follows |�|2m  ⇡/2, and thus |ei2m� � 1| � �2m/(⇡/2), and

|ei� � 1|  �. Therefore, the probability of obtaining the best estimate ✓̃ is

Pr(✓̃) � 1

4m

✓
�2m/(⇡/2)

�

◆2

=
4

⇡2
⇡ 0.405 . (2.13)

This quantum algorithm returns either of the two closest m-bit estimates of ✓
with probability lower bound 8/⇡2 [94].

The performance of the quantum algorithm is related to the cost of state prepa-
rations. For precision ✏ = O(1/M), the quantum algorithm requires M = 2m

implementations of U . This gives a quadratic cost improvement over standard
(classical) methods [95]. We can also increase the confidence level c of the es-
timation by repeating the PEA for L independent times and letting ✓̂1, . . . , ✓̂L
be L estimates of ✓ obtained in each of these applications. We can bound the
probability that ✓̂i /2 [✓l, ✓r], where ✓l and ✓r as the two closest m-bit approxi-
mations of ✓, by pf = 1 � 8/⇡2 from above [93]. We then choose the median of
these L estimates as the estimate ✓̂, so that the probability that ✓̂ /2 [✓l, ✓r] can
be bounded by [93, 96]

1

2

✓
2
q

pf (1� pf )

◆L

 1

2
(0.8)L . (2.14)

Thus, L = O(| log(1�c)|) repetitions of PEA are required to achieve a confidence
level c. Then in total, the number of implementations the unitary U is

Nr = L⇥M . (2.15)
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With some modifications to the single-qubit PEA, we can also estimate the eigen-
phase of a unitary operator U acting on n-qubit states. First, we need to prepare
the eigenstate of U with the eigenphase ei✓. Let | i satisfy U | i = ei✓ | i, and let
us assume that we can e�ciently prepare it by implementing V , | i = V |00 . . . 0i.
Similar to the singe-qubit PEA, we can define the controlled unitary gate cU act-
ing on the n+1 qubits, which implements U on the state if and only if the ancilla
qubit being in the state |1ia. The PEA for eigenphase estimation is:

Input: n-qubit unitaries U and V , and a precision parameter ✏ > 0.

1. Obtain the smallest integer m such that M � 2⇡/✏, with M = 2m.
2.

2.1 Prepare | i and the single-qubit ancilla state |+ia, and apply cU ,
M/2 times.

2.2 Apply a Hadamard transformation and measure the ancilla qubit
in the computational basis.

Let b0
m
2 {0, 1} be the measurement outcome.

3. Do the following for each k = (m� 1), . . . , 1:
3.1 Prepare the single-qubit ancilla state |+ia and apply cU , 2k�1

times.
3.2 Compensate the phase of |1ia by e�i⇡[.b0k+1...b

0
m].

3.3 Apply a Hadamard transformation and measure the ancilla qubit
in the computational basis.

Let b0
k
2 {0, 1} be the measurement outcome.

Output: An estimate of ✓ as ✓̂ = 2⇡[.b01 . . . b
0
m
].

The outcome of this algorithm is the same as that of the single-qubit PEA and
the probability of the outputs ✓̂ is given by Eq. (2.11). Because of this similarity,
we can estimate the eigenphase ✓ of a unitary operator U with probability of, at
least, 8/⇡2 in a single run. We can also repeat this algorithm L times to reach a
desired confidence level c, with L = O(| log(1 � c)|). The number of uses of the
unitary gate cU , Nr, and L uses of the state preparation gate V will dominate
the cost and therefore complexity of this algorithm.

2.1.4.1 Expectation values estimation

Besides the eigenphase estimation the PEA can also be used as a subroutine for
estimating the expectation value of operators [93, 97]. Considering estimating the
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Figure 2.3: Bloch sphere representation of the two-dimensional vector space
spanned by | i and W | i = cos(✓/2) | i + e

i� sin(✓/2) | ?i. We obtain the
overlap between | i and W | i, w = cos(✓/2). (a) Representation of the two
reflections S0 and S1 = WS0W

†, with S0 defined in Eq. (2.16). (b) Represen-
tation of the e↵ective rotation U = S0S1 for an angle of 2✓ for an arbitrary
vector |↵i (blue). The eigenvalues of U are e

±i✓ and its eigenphases are ±✓.

expectation value w of a unitary operator W , the value of w is associated with
the pure n-qubit state | i = V |00 . . . 0i and w = h |W | i. For simplicity, we
assume that w 2 [0, 1]. We refer to [93] for the general case estimating a complex
expectation value. We can represent W | i = cos(✓/2) | i + ei' sin(✓/2)| ?i,
where | ?i is a state orthogonal to | i. Then the quantum states | i and W | i
can span a two-dimensional Hilbert space, as in Fig. 2.3. The overlap between
| i and W | i is then the expectation value w = cos(✓/2). The next step is
to construct a unitary operation U with eigenphase ✓, so that we can apply the
PEA.

First, we can design a unitary operation which implements a “reflection” opera-
tion. We introduce a unitary operation S0 implementing by applying V †, reflec-
tion over |00 . . . 0i, and then applying V , (S0 = V (1l2n � 2 |00 . . . 0i h00 . . . 0|)V †).

S0 | i = � | i S0 | †i = | †i (2.16)

Second, we can design a unitary operation which implements a reflection over
the state W | i, S1 = WS0W †. The gate cost of S1 is twice the gate cost of W .
With these two reflection operations, we can construct a rotation, U = S0S1, by
an angle of 2✓. By applying the PEA to estimate the eigenphase of U , we can
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then obtain the expectation value w of unitary operator W . For the input state
| i, it can be shown that

| i = 1p
2
(| +i+ | �i) , (2.17)

where | ±i are two eigenstates of U , U | ±i = e±i✓ | ±i. We will obtain an
estimate of ✓ or �✓ with equal probability and any of these estimations su�ces
to determine w = cos(✓/2). With all the steps, the quantum algorithm to estimate
an expectation value w is:

Input: n-qubit unitaries W and V , and a precision parameter ✏ > 0.

1. Obtain the smallest integer m such that M � 2⇡/✏, with M = 2m.
2.

2.1 Prepare | i and the single-qubit ancilla state |+ia, and apply cU ,
M/2 times. Here, U = S0S1.

2.2 Apply a Hadamard transformation and measure the ancilla qubit
in the computational basis.

Let b0
m
2 {0, 1} be the measurement outcome.

3. Do the following for each k = (m� 1), . . . , 1:
3.1 Prepare the single-qubit ancilla state |+ia and apply cU , 2k�1

times.
3.2 Compensate the phase of |1ia by e�i⇡[.b0k+1...b

0
m].

3.3 Apply a Hadamard transformation and measure the ancilla qubit
in the computational basis.

Let b0
k
2 {0, 1} be the measurement outcome.

Output: ŵ, an estimate of w = h |W | i as cos(✓̂/2), with ✓̂ =
2⇡[.b01 . . . b

0
m
].

Since the uncertainty of ✓̂ is ✏, then the precision ✏0 in the estimation of w at first
order in ✏ is O((✏/2) sin(✓̂/2)). Thus, when w is near 1 (i.e, ✓ and the estimating
output ✓̂ are near zero), this algorithm provides more precise estimates. The error
in estimate the expectation value w can be bounded as,

|ŵ � w| = | cos(✓̂/2)� cos(✓/2)|  ✏0 = | cos((✓̂ + ✏)/2)� cos(✓̂/2)| , (2.18)

which is valid when 0  ✓̂  ⇡ and 0 < ✏  1. A similar bound can be obtained
for �⇡  ✓̂  0.
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The results of probability to generate the one of the best two estimates still holds,

Pr(|ŵ � w|  ✏0) � 8/⇡2 . (2.19)

So, we can reach the confidence level c by obtaining L = O(| log(1� c)|) indepen-
dent estimates and computing the median as the best estimate (Eq. (2.14)).

This algorithm can also provide an estimation of expectation value of an observ-
able (not necessary unitary operator) for various problems [98, 99]. With certain
conditions of the observable, it is possible to construct a unitary operator in larger
dimension which has the same expectation value, so we can apply the PEA to
obtain estimates with high precision. We refer to [93, 97–99] for more details and
a more general case.

2.2 Adiabatic quantum computing

In the previous section, we talked about quantum algorithms in the circuit model
and how the PEA can obtain the information simulating classical probabilistic
problems. Quantum algorithms are described by means of quantum circuits.
However, the circuit model may not always be suitable to describe all quantum
information processing systems. Adiabatic quantum computing has been pro-
posed as an alternative. The idea of the adiabatic quantum computation was
first proposed in 2000 [100], where it was shown that we can encode the solution
of a problem in the ground state of a known Hamiltonian. Now, this technology
was used in a wide range of topics like the quantum search [74, 101], quantum
annealing [72, 102, 103] and period finding [104].

In majority of situations, when the ground state of target Hamiltonian is hard to
realise, we can still try to start with a system that easy to prepare and evolve the
whole system under a time-dependent Hamiltonian, which is a linear interpolation
of the initial Hamiltonian (H0) and the final (target) Hamiltonian Hf , H(t) =
(1� s(t))H0+ s(t)Hf . The adiabatic theorem [88] of quantum mechanics ensures
that if we start with the ground state of the initial Hamiltonian and evolve the
system “slowly”, it will remains in the ground state of instantaneous Hamiltonian
provided that there is always a gap between the ground state and the first excited
state. After an infinitely long time (since we change the Hamiltonian infinite
slowly), the system would end up in the target ground state. In the case of finite
speed, we obtain the state in target ground state with a fidelity that depends on
the speed of the ramp, and the details of the Hamiltonian.

During the adiabatic state transformation, the ground state changes from one
simple initial ground state of H0 to the ground state of Hf , which encodes the
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solution of the problem. The probability that system is found in an excited state
depends on the gap between those states and changing speed of the Hamiltonian.
Thus, we should be more careful when the gap is very small, for instance, at crit-
ical point for systems where there is a phase transition, and reduce the speed of
adiabatic ramping. If we don’t have access to the instantaneous ground state, the
condition of speed of changing Hamiltonian (adiabatic condition) around mini-
mum gap should remain global. In this case of linear interpolation, the adiabatic
condition express the relation between total evolution time and minimal energy
gap.

2.2.1 Adiabatic theorem of quantum mechanics

The adiabatic approximation is a popular method of quantum mechanics used to
derive solutions of the Schrödinger equation under a slowly changing Hamiltonian.
According to the Schrödinger equation, the state vector | (t)i evolves as

i
d

dt
| (t)i = H(t) | (t)i , (2.20)

where | (0)i is the ground state of the Hamiltonian H(0), and we consider ~ = 1.
The eigenstates of the instantaneous Hamiltonian |n(t)i are:

H(t) |n(t)i = En(t) |n(t)i , (2.21)

where En(t) are the corresponding eigenvalues (energy) of Hamiltonian. To solve
the equation, we expand the state vector in the basis of eigenstates |n(t)i

| (t)i =
X

n

an(t) exp

✓
� i

Z
t

0

En(t
0)dt0

◆
|n(t)i . (2.22)

Then the time derivative of the state is

d

dt
| (t)i =

X

n

ȧn(t) exp

✓
�i
Z

t

0

En(t
0)dt0

◆
|n(t)i

+
X

n

ȧn(t) exp

✓
�i
Z

t

0

En(t
0)dt0

◆
|ṅ(t)i

+
X

n

an(t) exp

✓
�i
Z

t

0

En(t
0)dt0

◆
(�iEn(t)) |n(t)i . (2.23)
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The HamiltonianH(t) in the eigenbasis takes the formH(t) =
P

n
En(t) |n(t)i hn(t)|,

and the right hand side of Eq. (2.20) becomes

H(t) | (t)i =
X

n

En(t) |n(t)i hn(t)| (t)i . (2.24)

Multiply both side of the Eq. (2.20) by hm| and we have

�iEmam exp

✓
�i
Z

t

0

Em(t
0)dt0

◆
= ȧm(t) exp

✓
�i
Z

t

0

Em(t
0)dt0

◆

� iEmam exp

✓
�i
Z

t

0

Em(t
0)dt0

◆

+
X

n

an(t) exp

✓
�i
Z

t

0

En(t
0)dt0

◆
hm|ṅi (2.25)

Then we get the derivative of projection parameter:

ȧm = �
X

n 6=m

anhm|ṅi exp
✓
� i

Z
t

0

�Enm(t
0)dt0

◆
. (2.26)

with the energy gap �Enm = En � Em. From the time derivative of Eq. (2.21),
we have

Ḣ |ni+H |ṅi = Ėn |ni+ En |ṅi , (2.27)

and multiplied both side by hm|, we get

hm|ṅi = hm| Ḣ |ni
�Enm(t)

. (2.28)

Therefore, the equation (2.26) can be rewritten in the form:

ȧm = �amhm|ṁi �
X

n 6=m

an
hm| Ḣ |ni
�Enm(t)

exp

✓
� i

Z
t

0

�Enm(t
0)dt0

◆
. (2.29)

In an adiabatic evolution, the state vector may remain in the same eigenstate as
in the beginning, while also obtain a phase factor. The phase that is introduced
by the adiabatic evolution has a contribution from the evolution of the state, and
another from the evolution of eigenstates with the time-dependent Hamiltonian.
The first term refers to the Berry phase. Calculating the Berry phase ✓(t) [105]:

✓n(t) = i

Z
t

0

dt0hn(t0)|ṅ(t0)i , (2.30)
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and the time derivative of ame�i✓m is

@

@t
(ame

�i✓m) = ȧme
�i✓m + ame

�i✓mhm|ṁi . (2.31)

Substituted Eq. (2.29) to Eq. (2.31), we have

@

@t
(ame

�i✓m) = �
X

n 6=m

an
hm| Ḣ |ni
�Enm(t)

e�i✓m exp

✓
� i

Z
t

0

�Enm(t
0)dt0

◆
. (2.32)

Change the variable to s(t) = t/T , where T is the total evolution time, and
integrating with respect to s(t), we get

am(s)e
�i✓m(s) = am(0)�

X

n 6=m

Z
s

0

ds0�Enm(s
0)Amn(s

0) exp

✓
� iT

Z
s
0

0

�Enm(s
00)ds00

◆
,

(2.33)

with s(t) 2 [0, 1]. The elements Amn are defined as:

Amn(s) = an(s)
hm(s)| Ḣ |n(s)i
�E2

nm
(t)

e�i✓m(s) . (2.34)

The exponential terms on the right hand side of Eq. 2.33 can then be simplified
as

exp

✓
� iT

Z
s
0

0

�Enm(s
00)ds00

◆
=

i

T�Enm

d

ds0
exp

✓
� iT

Z
s
0

0

�Enm(s
00)ds00

◆
.

(2.35)

The we can integrate Eq.2.33 by parts:

am(s)e
�i✓m(s) = am(0) +

i

T

X

n 6=m

Amn(0)�
i

T

X

n 6=m

Amn(s) exp

✓
� iT

Z
s

0

�Enm(s
0)ds0

◆

+
i

T

X

n 6=m

Z
s

0

ds0
� d

ds0
Amn(s

0)
�
exp

✓
� iT

Z
s
0

0

�Enm(s
00)ds00

◆
.

(2.36)

The adiabatic condition can be obtained by assuming that the last integral van-
ishes when T !1, while the energy di↵erence �Enm remains finite. According
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to the Riemann-Lebesgue lemma, the condition is

Amn(s)

T
! 0 (2.37)

throughout the adiabatic state transformation and all the coupling state |mi and
|ni. Then the adiabatic condition is:

T � E
(�E)2

, (2.38)

with

E = max
s2[0,1]

����hm(s)| dH(s)

ds
|n(s)i

���� , (2.39)

and

�E = min
s2[0,1]

�Enm(s) . (2.40)

When the adiabatic condition is satisfied throughout the time evolution, the sys-
tem will stay close to the ground state in the instantaneous Hamiltonian. At
the end of the evolution, the fidelity of the system in the ground state of target
Hamiltonian is close to 1.

2.2.2 Adiabatic quantum algorithms

The adiabatic quantum computing is used to achieve the answer to certain classi-
cal problems encoded in a quantum state. Then a potentially complicated Hamil-
tonian may be found, whose ground state is the quantum state that describes the
answer. Even if the ground state of this complicated Hamiltonian is hard to
achieve directly, we can still implement an adiabatic quantum algorithm to ob-
tain that ground state. We label the complicated Hamiltonian Hf as our target
Hamiltonian. We label a simple Hamiltonian where we have full access to the
ground state, H0, and use it as the initial Hamiltonian, which is linked to the
target Hamiltonian. The structure of adiabatic quantum algorithms with linear
interpolation of Hamiltonians can be formed as following:

• prepare the system as the ground state | 0i of a designed Hamiltonian H0,
which is easy to access and smoothly linked to the target Hamiltonian Hf .

• evolve the system under linear interpolation of initial Hamiltonian and final
Hamiltonian H(s) = (1� s)H0+ sHf with the time dependent parameter s
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in the condition of s(0) = 0, s(T ) = 1. The speed of evolution is determined
by the adiabatic condition (2.38).

• after a total time of T , the system ends up in a quantum state |�T i which
is very close to the ground state | fi of Hf .

Having the adiabatic condition (Eq. (2.38)), we can come to the conclusion that
if we can spend total time T ! 1, the fidelity (|h�T | fi|2) would approach to
1. However, an explicit expression for the final fidelity of state preparation as a
function of evolution time is di�cult to obtain. With finite evolution time, it is
therefore hard to compare adiabatic quantum algorithms to classical algorithms
theoretically.

2.2.3 Eigenpath of adiabatic transformation

The time cost of adiabatic quantum algorithms is highly related to the speed
of the changing interaction parameter and the spectrum of the time-dependent
Hamiltonian. In this section, we introduce the concept of the eigenpath of the
adiabatic state transformation that captures the essence of the adiabatic process.
The bound on the length of the eigenpath could be used as an input of a quan-
tum algorithm where minimum knowledge of Hamiltonian is assumed, and thus
provides a bound on the time costs in some algorithms [69, 106–109].

Here, we consider the derivative of the Hamiltonian and the eigenstate with re-
spect to the changing parameter s(t). The eigenstates of instantaneous Hamilto-
nian, |n(s)i, are nondegenerate, and �E is the minimum spectral gap throughout
the process. Here we choose one of the eigenstates |�(s)i as the initial state. We
assume that the state is di↵erentiable, and the phases of the |�(s)i are chosen ge-
ometrically, so that h@s�(s)|�(s)i = 0. The path of |�(s)i in continuous adiabatic
evolution is called the eigenpath, and the eigenpath length [107] is,

L =

Z 1

0

k|@s�(s)ik ds . (2.41)

In many cases, the eigenpath length is a constant, L = O(1), such as flipping a

qubit from |0i to |1i. A common bound of the eigenpath length is, L 
���Ḣ
��� /�E.

Here the norm
���Ḣ
��� denotes the spectral norm. In the previous eigenpath traversal

(EPT) methods, the time cost T has depends on the minimal gap of Hamiltonian
and also the eigenpath length [107]. However, the time cost of the EPT methods
has not shown advantages over that of the AQC (Eq. (2.38)). Later in Sec. 5.2,
an improved bound for the eigenpath length L⇤ is developed. From the improved
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bound of eigenpath length, the time cost of the quantum algorithm is improved
(Sec. 5.3.3). With detailed error analysis in Sec. 5.3.2, the improved EPT methods
demonstrate the advantage of the time cost over the AQC methods in terms of
the overall gap dependence.

2.3 Conclusions

In the first half of the chapter, we provided an overview of quantum computation
and a brief introduction to the phase estimation algorithm. We will develop a
new quantum algorithm based on the phase estimation algorithm, and apply our
algorithm to a fluid dynamics problem, specially the turbulence mixing problem
and the reacting flow problem, in Chap. 8. In the second half of this chapter, we
introduced adiabatic quantum computing and calculated the adiabatic condition
of the evolution time in linear interpolation cases. Then we introduced the concept
of the eigenpath, which is used in the eigenpath traversal methods to bound
the time cost. In the Chap. 5, we present our research on improving adiabatic
quantum computing with finite evolution time by performing randomised time
evolution.



Chapter 3

Background techniques with cold
atoms in optical lattices

In this chapter, we introduce the physical system that we will study in this thesis,
cold atoms in optical lattices. Recent experimental developments provide tools
to manipulate such system with fine control of the parameters and good isolation
from its environment. This makes this system a promising platform for quantum
simulation. Understanding the principles of atom-atom and atom-light interac-
tions is very important to realise interesting quantum many-body systems and
study their properties and dynamics.

We first introduce the background of cold atoms in optical lattices and the cor-
responding theoretical model. Secondly, we introduce amplitude noise in optical
lattices in Sec. 3.3. This noise is introduced by fluctuations of the optical po-
tential which is caused by fluctuations of the intensity of the laser producing the
optical lattice. Then we introduce a recently proposed technique to engineer such
noise in Sec. 3.4, which later will be used to introduce useful noise in Chap. 6.

3.1 Background

Optical lattices are formed by coherent laser beams creating a periodic potential
that can be used to confine neutral atoms via AC Stark shift. Due to atom-
light (dipole-field) interactions in a semiclassical model, the ground state energy
of an atom has an energy shift. According to perturbation theory, the energy
shift is proportional to the intensity of the laser field. A detailed explanation can
be found in [12, 110]. As a result, neutral atoms prepared in the ground state
are not excited by o↵-resonant laser light but feel an optical potential, which is

29
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1D:

2D:
3D:

Figure 3.1: Optical lattices formed by interfering counter propagating laser
beams. The arrows demonstrate the directions of the laser beams and the
standing waves represent the periodic potential of laser beams.

proportional to the intensity of the laser. Taking a one-dimensional optical lattice
as an example, a standing wave can be formed by a pair of counter-propagating
laser beams with the same frequency and polarisation, as shown in Fig. 3.1. By
adding more pairs of laser beams, the optical lattice can be extended to higher
dimensions. In the experiments, motion of atoms along one dimension in a lattice
can be formed by a 3-D optical lattice where two directions are highly confined.
By tuning the lattice depth V , the optical lattices can provide fine control of
the many-body dynamics of atoms, including the on-site interactions and the
tunnelling rate [19, 23]. In a 3-D optical lattice,

V (x, y, z) = V0[sin
2(kx) + sin2(ky) + sin2(kz)] , (3.1)

where k = 2⇡/� is the wave number of the laser, � is the laser wavelength, and V0

is the depth of optical lattices. The phase transition according to Bose-Hubbard
model from the superfluid (SF) phase to the Mott insulator (MI) phase at low
temperatures as the ratio of the on-site interaction U to the tunnelling parameter
J increases is realised later in experiments [23, 111, 112]. Simulating a quantum
system may be very di�cult, especially when dealing with large systems. Using
some controllable quantum systems to study another system that is less control-
lable or accessible is the key idea of quantum simulation. Quantum simulators
are designed to implement certain quantum simulations [6, 113, 114]. Cold atoms
in optical lattices are a promising candidate for quantum simulations since they
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can be well isolated from their environment and the system parameters can be
controlled very precisely [8].

3.2 Bose-Hubbard Hamiltonian

A second quantised Bose-Hubbard Hamiltonian can be written as

HBH = �J
X

hi,ji

b̂†
i
b̂j +

U

2

X

i

n̂i(n̂i � 1)� µ
X

i

n̂i , (3.2)

where b̂†
i
, b̂i are bosonic creation and annihilation operators with commutation

relations [b̂i, b̂
†
j
] = �ij, n̂i = b̂†

i
b̂i are the number operators and µ is the chemical

potential.

Considering the lowest band Bose-Hubbard model, the on-site interaction U and
nearest neighbour tunnelling rate J can be represented in the Wannier function
basis as:

U =
4⇡~as
m

Z
d3x|w(~x)|4 , (3.3)

J =

Z
d3xw⇤(~x)

⇣
� ~2

2m
r2 + V (~x)

⌘
w(~x� ~a) , (3.4)

where as is the scattering length, w(~x) are the lowest-band Wannier functions,
and ~a is the lattice spacing. The Wannier functions describe wave functions of a
single particle, and they are localised around each lattice site. The lowest-band
Wannier functions are defined by the Bloch equations,

w(~x� ~xi) =
1p
M

Z
e�i~q·~xi�~q(~x)d~q , (3.5)

where ~xi are the positions of minima of the lattice energy potential, M is the
normalisation parameter, ~q is the quasimomentum, and �~q(~x) = ei~q·~xu~q(~x) are
the Bloch functions [115]. The functions u~q(~x) have the same periodicity as the

lattice potential V (~x) and are the solution of the Schrödinger equation [ (p̂+~q)
2

2m +
V (~x)]u~q(~x) = E~qu~q(~x). The definition of the Wannier function is not unique,
because of the choice of the global phase of �~q and u~q. However, it is shown [116]
that there exists one and only one completely real Wannier function for each
band that is exponentially localised. These functions cab be symmetric or anti-
symmetric with respect to the maxima or minima of the potential. And they
decay exponentially from the centre of the site where they are localised. This
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form of Wannier function is considered maximally localised, and it is used to
construct the Hubbard model.

The main conditions for the validity of the single-band Bose-Hubbard model are:

• The atom-atom interactions are only two-body interactions. This requires
the gas to be su�ciently dilute, ⇢a3 ⌧ 1, where ⇢ = N/V is the average
density of N atoms trapped in a large volume V , and a is the range of
atom-atom interactions. This means that 3 or more atoms interactions at
the same time are less likely to happen, thus that can be neglected.

• The temperature is low enough so that the two-body interactions of the
atoms can be described by low-energy s-wave scattering. In this situation,
the de Broglie wavelength �dB = 2⇡~/p, where p is the momentum of par-
ticles, is much larger than the atom-atom interaction range �dB � a. Then
the scattering amplitude and angle are independent of the energy of collid-
ing particles.

• When the lattice depth increases, the tunnelling amplitude to further site
will decay faster than the amplitude of neighbouring site. Also, the on-
site interaction will increase along with the lattice depth, but the inter-site
interaction will decrease exponentially. So when the lattice depth is deep
enough, long-range tunnelling and inter-site interactions can be neglected.

• The temperature T is smaller than the band separation ! in the optical lat-
tice which depends on the lattice depth to justify the lowest band treatment,
~! � J, U, kBT .

The system described by the Bose-Hubbard model can be in two di↵erent regimes.
When the interaction dominates the Hamiltonian, given the particles number is
commensurate with the number of sites, the system is in the Mott insulator
phase. When the kinetic energy dominates the Hamiltonian, the system is in the
superfluid phase. The transition between the Mott insulator and superfluid phase
is due to the competition between the kinetic energy and the interaction energy.

The zero-temperature phase diagram of the Bose-Hubbard Model in the homoge-
neous case was first investigated by Fisher et al. [117], sketched in Fig. 3.2. The
phase transition described by the Bose-Hubbard model in optical lattices was first
observed in cold atoms by Greiner et al. [23], driving the system from a superfluid
(SF) phase to a Mott insulator (MI) phase.

The ground state of a Bose-Hubbard model with U/J ! 0 describes the super-
fluid phase, where the system minimises kinetic energy. The particles intend to
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delocalise over the whole lattice. For a system with M lattice sites and N Bosons,
the ideal ground state can be written as

| SF i =
 

1p
M

MX

i=1

b̂†
i

!N

|0i , (3.6)

where |0i is the vacuum state. The probability for k atoms to be found at the
i-th lattice site in the ground state is [118]

p(k;N, 1/M) =

✓
N

k

◆✓
1

M

◆k ✓
1� 1

M

◆N�k

(3.7)

This is a binomial distribution for a probability 1/M and N trials. The average
number of particle per site n̄ is given by n̄ = N/M and the number fluctuation isp

N/M(1� 1/M) ⇡
p
n̄. In the limit thatN,M !1 withN/M a fixed number,

the binomial distribution becomes the Poisson distribution and the ground state
becomes indistinguishable in practice from a coherent state [22]

| SF i =
Y

i

exp

 r
N

M
b̂†
i

!
|0i , (3.8)

with Poisson number statistics on each site. This state implies that the particles
are localised in momentum space.

As the ratio U/J increases, the on-site interactions make tunnelling of particles
to neighbouring sites less probable. For a large U/J , if the number of particles
is commensurate with the number of lattice sites, the system is in the Mott
insulator phase, and the particles are localised on particular sites. In the limit of
U/J ! 1 with the average filling factor n = N/M an integer, the ground state
of the Bose-Hubbard Hamiltonian can be written as

| MIi /
MY

i=1

⇣
b̂†
i

⌘n
|0i /

MY

i

|ni
i
. (3.9)

where |ni
i
is the eigenstate of n̂i = b̂†

i
b̂i with the corresponding eigenvalue n. In

this case, the state corresponds to a fixed number of particles on each site.

We have discussed two extreme regime of the parameter U/J ! 0 and U/J !1.
The state in each limit has very di↵erent energy spectrum and phase coherence.
For example, in the Mott insulator phase when U/J � 1, the energy spectrum
has a finite gap � = U . On the other hand, the energy spectrum of superfluid
is gapless (� = 0). When a system is initially prepared to be in the superfluid
phase (U/J ⌧ 1), and the interaction energy parameter U is slowly increasing,
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the energy gap is expected to become non-zero at the critical point (U/J)c and
grows with U . The sharp transition of the phase can be qualitatively explained
as the following. In general, consider the Hamiltonian which varies as a function
of a dimensionless coupling g, H(g) = H1 + gH2. The ground state energy will
generically be a smooth, analytic function of g for the case of a finite lattice. The
possibility of an exception is the case when g couples to a conserved quantity, i.e.
[H1, H2] = 0. Then there can be a level-crossing when an excited state becomes
the ground state at g = gc. At this point, the ground state energy is a nonanalytic
function of g [24]. For Bose-Hubbard model, the competition between the kinetic
energy and the potential energy leads to an avoided level-crossing between the
ground and an excited state in a finite lattice, and it could become progressively
sharper as the lattice size increases.

For finite U and J with infinite lattice, the ground state of this many-body
system cannot be exactly obtained analytically. This makes it di�cult to calculate
the critical value of the phase transition point (U/J)c in general. However, for
an integer average filling factor n̄, we can obtain analytical solutions of phase
transition point cases via mean-field theory [119]. For example, in a 2D or 3D
lattices with n̄ = 1, the critical point is (U/J)c = 5.8z, where z = 2d is the number
of nearest neighbours in d-dimsional optical lattices (z = 4 in 2D lattices). For
1D Bose-Hubbard model with n̄ = 1, the best known phase transition point is
(U/J)c ⇡ 3.3 from numerical calculations using the density matrix renormlisation
group (DMRG) method [120].

3.3 Amplitude noise in optical lattices

Naturally, the fluctuation of the laser intensity will a↵ect the depth of lattice,
and thus introduce noise to the system. Di↵erent heating processes depend on
the spectrum of the intensity noise spectrum. When noise is at frequencies of
the order of band separation, the system undertakes an inter-band transition and
particles are transferred to higher Bloch bands. Noise at lower frequencies of
the order of the tunnelling parameter J and on-site interaction strength U will
introduce intra-band heating for atoms within the lowest band. When the noise
is weak for inter-band processes, the evolution of atoms in the optical lattice is in
the lowest Bloch band. Considering on 1D model, in the deep lattice regime where
the lattice potential is much larger than the recoil energy, V � ER = ~2k2/2m,
where m is the mass of atoms and k is the wave number of the laser light, the
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Figure 3.2: Sketch of the zero temperature phase diagram of the Bose-
Hubbard model. The lobes show the Mott insulator phase with fixed average
filling factor n̄ = 1, 2, 3. The phase transition happens at the intersection of
the lobes and the dashed lines with fixed average particle number. In those
cases, the value of (J/U)c decreases as the density of particles increases.

dependencies of coe�cients to the lattice depth are:

U

ER

= 4
p
2⇡

as
�

✓
V

ER

◆1/4

, (3.10)

J

ER

=
4p
⇡

✓
V

ER

◆3/4

e
⇣
�2
p

V/ER

⌘

, (3.11)

where as is the scattering length, � is the wavelength of optical lattices. The
fluctuation of the lattice depth V will a↵ect the coe�cients. We can calculate the
derivative of U and J with respect to the lattice depth V

dU

dV
=

ER

4V

U

ER

, (3.12)

dJ

dV
=

"
3ER

4V
�
✓

V

ER

◆�1/2
#

J

ER

, (3.13)
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and the first order expansion of the Hamiltonian with respect to the fluctuation
�V is then

Hsys = HBH(J, U) +HBH

✓
dJ

dV
,
dU

dV

◆
�V , (3.14)

HBH(J, U) = �J
X

hi,ji

b†
i
bj +

U

2

X

i

ni(ni � 1) . (3.15)

Because the spectrum of the noise is slowly varying on the scale of U and J , the
fluctuation of depth can be approximated as white noise �V =

p
2�⇠(t), with the

correlation function h�V (t)�V (t0)i = 2��(t� t0). This 1D Bose-Hubbard model is
the one we use in later chapter 6 and 7. In general, this white noise will introduce
heating e↵ects to the system. In the adiabatic state preparation process, the
heating e↵ect will decrease the final fidelity to the target ground state. The total
energy of the system will increase as the noise strength increases and the ramping
time becomes longer. Simulations and discussions of this process will be addressed
in later sections.

3.4 Noise engineering in optical lattices: dressed
lattice scheme

As mentioned in the previous section, amplitude noise can introduce fluctuation
of parameters in the Hamiltonian. Heating e↵ects will occur in the system and
jeopardise state preparation and unitary processes. A recently proposed dressed
lattice scheme[121, 122] provides an alternative method to engineering amplitude
noise so that the relative fluctuation of parameters in the Hamiltonian can be
adjusted.

This scheme requires detuned optical lattices produced from the same laser source
so that the noise is uniform in the system. Two atomic levels (|gi , |ei) are trapped
by a blue-detuned lattice and for the other two ancillary energy levels (|hi , |fi)
the same laser is red-detuned, as shown in Fig. 3.3. Then the lower energy states
|gi , |hi of each system are coupled to form a dressed state. This coupling ⌦gh will
introduce an additional tunnelling so that the atom in |gi can move from site to
site via the virtual auxiliary state |hi. The energy shift of the red-detuned lattice
is proportional to �(V0 + �V ), and the energy shift is proportional to

p
V0 + �V

in the blue-detuned lattice. For an appropriate choice of the detuning, a small
increase of the lattice depth will decrease the energy di↵erence of two energy level
|hi and |gi and the red detuning � from the coupling ⌦gh is weakened. Thus, the
increase of the lattice depth can enhance the tunnelling process via the state |hi
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Jeff

(a) (b)

Figure 3.3: Dressed lattice scheme. In (a), the detuned lattice scheme is
shown. The original atomic levels (|gi , |ei) are in a blue-detuned lattice and
the other two ancillary energy levels (|hi , |fi) are red detuned. The two lower
energy states |gi and |hi are coupled ⌦gh to introduce additional tunnelling. In
(b), we show how the additional tunnelling is introduced. The energy shift of
red-detuned lattice (|hi,|fi) is proportional to �(V0+�V ), and the energy shift
of the blue-detuned lattice (|gi , |ei) is proportional to

p
V0 + �V . In this case,

when �V > 0, the coupling between |gi and |hi is enhanced and the tunnelling
e↵ect also increases via these ancillary states. With fine tuning of the optical
lattices, dJe↵/dV > 0.

to be surpass the loss of the tunnelling from site to site directly in the opticall
lattice. In this situation, the e↵ective tunnelling with both the direct tunnelling
e↵ect and the additional tunnelling e↵ect will increase, so that dJe↵/dV > 0. We
refer to [121] for more details.

Using this dressed lattice scheme, the heating rate of the time-independent Hamil-
tonian (Eq. (3.14)) with amplitude noise can be calculated as [121]

hḢsysi = �
✓

1

J0

dJ

dV
� 1

U0

dU

dV

◆2

h[[HJ , HU ], HJ ]i , (3.16)

in the white noise limit, h�V (t)�V 0(t)i = 2��(t � t0), and first order expansion
of parameters J = J0 + dJ

dV
�V , U = U0 + dU

dV
�V . For the simplicity of this

equation, HJ and HU denote di↵erent terms in the Hamiltonian, HBH = HJ+HU ,
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HJ = �J
P

b̂†
i
b̂j, and HU = U/2

P
n̂i(n̂i� 1). The fluctuation of parameters can

also be parametrised introducing ✓,� to simplify calculations as

p
2�

dU/dV

U
= � sin2 ✓ , (3.17)

p
2�

dJ/dV

J
= � cos2 ✓ ✓ 2 [0, ⇡/2) . (3.18)

Thus the heating rates due to the noise can be represented in the parameter space
of ✓ when ✓ is close to ⇡/4 as,

hḢsysi /
⇣
✓ � ⇡

4

⌘2
, (3.19)

which defines a sweet spot in parameter space of ✓sw = ⇡/4, where introducing
noise will cause no heating to first order for atoms in the optical lattice. Imperfect
implementation of noise engineering can be then parametrised as an o↵set of
✓ 6= ✓sw, �✓ = ✓ � ✓sw. The e↵ect of imperfect implementation can introduce an
interesting behaviour in adiabatic state preparation. We will present our detailed
research in Sec. 6.3.2 and Sec. 7.3.

3.5 Conclusions

In this chapter, we presented the background theory of cold atoms in optical
lattices, which is the physical system that we will study in our research. We
provided the background of the optical lattices that confine the ultracold atoms in
periodic optical potentials. We also introduced amplitude noise in optical lattices,
and explained how to describe a noisy system characterised approximately by
white noise. In the end, we introduced a recently proposed scheme to engineer the
amplitude noise to reduce the heating e↵ect. The dressed lattice scheme provides
the theoretical background to realise the noise regimes of our research on adiabatic
state preparation in optical lattices with the presence of the amplitude noise in
Chap. 6. By applying numerical simulations driving the ground state of the
Mott insulator to the superfluid phase, we are able to identify the regimes where
having the classical noise can improve the final fidelity of the state preparation.
In Chap. 7, we discuss thermalisation of energy introduced by amplitude noises
in optical lattices, and show di↵erent behaviours in the superfluid phase and the
Mott insulator phase.



Chapter 4

Computational methods

In the fundamental research of theoretical study, numerical simulations play an
important role, especially when analytical solutions are hard to obtain. However,
as the system of interest grows larger and larger, the computational resources
required to simulate the behaviour of the system exactly can be enomorous. To
study the dynamics of a system in a pure state | i, the dimension of the cor-
responding Hilbert space is dim(|�i) = O(N). For example, to describe a one
dimensional Ising spin chain with M spins using exact diagonalization, the di-
mension of Hilbert space is 2M . Moreover, to study an even more complex sys-
tem like an open quantum system, the system is no longer a pure state, but a
mixed state, and the equation of motion is described with the density operator
⇢ =

P
ij
Cij |�ii h�j|, which requires extra resource since the Hilbert space is of

dimension of dim(⇢) = O(N2), with dim(|�i) = O(N) if the density operator
is not sparse. Confronted these problems, many mathematical techniques have
been developed to describe such systems.

In this chapter, first we will introduce computational methods that we used to
conduct our numerical simulations within a reasonable level of error: the Time-
Evolving Block Decimation (TEBD) algorithm [123, 124] in Sec. 4.1. The TEBD
technique provides us with access to the dynamics of 1D lattice systems with
large Hilbert spaces. Matrix Product State (MPS) is introduced so that we can
manage the quantum state presentation with limited resources. In Sec. 4.2, we
will introduce the background of open systems, classical stochastic process and
a computational method, the master equation approach. The master equation
approach is to tackle the time evolution of an open many-body system, via the
evolution under the stochastic Schrödinger equation.

39
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4.1 Time-evolving block decimation algorithm

In this section, we will provide a brief overview of the computational methods used
in this thesis to deal with large system calculations. Density Matrix Renormal-
ization Group (DMRG) techniques were first introduced [78, 79] by S. White, to
calculate the ground states of large one dimensional system with high precision.
Later, the Time-Evolving Block Decimation (TEBD) algorithm [125, 126] was
developed to study the time-evolution of a 1D system using DMRG methods.
There are certain systems for which those computational methods can be per-
formed e�ciently, for example, a one-dimensional system described by a gapped
Hamiltonian. Usually, the quantum state of the objective system has di↵erent
amplitudes determined by the basis of the Hilbert space, for instance, the com-
putational basis or eigenbasis. The idea of the TEBD is to change the basis
adaptively and keep most relevant basis states without a significant change of
the physics features. This will result in a truncation of the full Hilbert space
and consider only a subspace of the Hilbert space (shown in Fig. 4.1). When
the interactions in the system are local and between few bodies, the amount of
entanglement is limited, and the TEBD is highly e�cient.

In the following subsections, we will introduce the MPS representation for quan-
tum states in 1D systems and how to calculate local expectation values and im-
plement two-site gates in MPS formalism. Then we will introduce how to describe
time evolutions with MPS. The time evolution operator can be decomposed into
the form of sweeps of two-site gates via Suzuki-Trotter expansion. Finally, we
will introduce the imaginary time evolution to search for the ground state of the
system.

4.1.1 Matrix product state (MPS) representation

As discussed in the previous section, the exact representation of a quantum state
of a large physical system requires storage of enormous number of coe�cients.
An approximate state representation is required for such a calculation. It can
be useful to discuss this in terms of entanglement, which has a direct relation
to the Schmidt rank [4], the number of coe�cients in a bipartite Schmidt de-
composition. We use these relations between those quantities to describe how
well we represent the system. Considering a quantum state of a one dimensional
system with M sites, on each site, a local dimension d represents the number of
possible configurations. For example, a one-dimensional Ising chain has the local
dimension d = 2, and for Bosons in an optical lattice in one dimension, the local
dimension is one more than the maximum number of particles that can sit on one
site. The Hilbert space on each site is spanned by the set of vectors {i}, and the
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H’

H

Figure 4.1: A sketch of the subspace (H 0) of a full Hilbert space (H) for a
1D system with a Hamiltonian with local interaction within few bodies. The
domain of the dynamics we are interested does not span the whole Hilbert space
(H) because of the nature of the Hamiltonian, and TEBD method can benefit
from a truncated representation of the quantum state that only includes H

0.
Within certain error, the computational resource required to catch the physics
is less than that using of full Hilbert space.

whole Hilbert space is of dimension dM . Then, to describe the quantum state we
would require dM coe�cients,

|�i =
dX

i1,...iM

Ci1,...,iM |i1, ..., iMi . (4.1)

In the TEBD algorithm or general cases, the coe�cients will be within as a
product of local tensors, so that we can apply truncation with the help of the
Schmidt decomposition.

4.1.1.1 Schmidt decomposition

Consider a bipartite quantum state of a system with two subsystem A and B,
and the Hilbert space H = HA ⌦HB, with dimensions dA and dB. The quantum
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Examples of tensors:  

Examples of tensors contractions:  

Scalar Vector Matrix Rank-3 
Tensor 

X

j

AijBjk = Cik

=

Figure 4.2: Graphical notation we use in this chapter to represent tensor
networks. Each tensor (shown as a box) has a number of indices (shown as
legs attached to the box). The tensor with di↵erent value of indices repre-
sent di↵erent type of mathematical objects, shown in this figure. When two
boxes are connected, a contraction is representd as the dashed box with the
corresponding index.

state can be written as,

| ABi =
dAX

i=1

dBX

j=1

Ci,j |ii
A
⌦ |ji

B
, (4.2)

where {|ii
A
} and {|ji

B
} are orthonormal bases of the subsystems. Using singular

value decomposition (SVD) [127], the matrix Ci,j can be decomposed into,

C = USV † (4.3)

or in terms of the elements,

Ci,j =
�ABX

k

Ui,kSk,kVk,j , (4.4)

with �AB = min(dA, dB). U and V are unitary matrices with dimension d2
A
and

d2
B
, and S is a diagonal dA ⇥ dB matrix, with the non-negative singular values of
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C. The Schmidt coe�cients defined as �k ⌘ Sk,k, satisfy,

X

k

�2
k
= 1 . (4.5)

The number of non-zero �k is the Schmidt rank. Rearranging the coe�cients of
Ci,j and absorbing the coe�cients corresponding to each subsystem, the quantum
state can be represented as a linear combination of product states,

| ABi =
�ABX

k

�k |�A

k
i ⌦ |�B

k
i , (4.6)

where the orthonormal basis of two subsystems A and B are defined as,

|�A

k
i ⌘

X

i

Ui,k |ii
A

, and |�B

k
i ⌘

X

j

Vk,j |ji
B

. (4.7)

The Schmidt coe�cients provide the amplitude of the system in the bipartite
basis and the values of the Schmidt coe�cients are related to the entanglement.
For example if there is one Schmidt coe�cient much larger than the others, that
means the system is mostly a product state with perturbations. If all of the
coe�cients have the same value, the system is in a maximally entangled state.
One way to quantify the entanglement between the subsystems is via the von
Neumann entropy,

SV N(⇢A) = �tr{⇢A log2 ⇢A} = �tr{⇢B log2 ⇢B} = SV N(⇢B) , (4.8)

where ⇢A ⌘ trB{| ABi h AB|} and ⇢A ⌘ trB{| ABi h AB|} are the reduced den-
sity matrices and trA,B are partial trace over A or B subsystems. Substituting
Eq. 4.6 to Eq. (4.8), the von Neumann entropy is then

SV N = �
�ABX

k

{�2
k
log2 �

2
k
} . (4.9)

The range of von Neumann entropy is 0  SV N  log2(�AB). For a product state,
the von Neumann entropy is S = 0, and the von Neumann entropy of a maximally
entangled state is given by S = log2(�AB). A simple example to consider is a
two-qubit system. The von Neumann entropy of a non-entangled state |0i

A
⌦ |0i

B

where �k = 1 as in Eq. (4.6), is zero. For one of the Bell states [4], which is a
maximally entangled state,

| +i = 1p
2
(|0i

A
⌦ |0i

B
+ |1i

A
⌦ |1i

B
) . (4.10)
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The Schmidt coe�cients are �1 = �2 = 1p
2
, and the Schmidt rank is �AB = 2.

The von Neumann entropy then is

SV N = �2[( 1p
2
)2 log2(

1p
2
)2] = 1

= log2(�AB) . (4.11)

4.1.1.2 Truncated MPS

Similar to two-qubit systems, an arbitrary one-dimensional state with M sites
can also be represented in such a way. This representation can be achieved by
repeatedly applying Schmidt decomposition site by site from the left end or the
right end of the chain, as in the case of the two-qubit system, defines new bipartite
subsystem, as shown in Fig. 4.3. In the end, the coe�cients of a state with M
sites in Eq. 4.1 can be written as a contraction of tensor products,

Ci1,...iM =
�1X

↵1

�2X

↵2

· · ·
�M�1X

↵M�1

�[1]i1
↵1

�[1]
a1
�[2]i2
↵1↵2

�[2]
a2
...�[M�1]

aM�1
�[M ]iM
aM

, (4.12)

where �[m]im
↵m�1↵m is a tensor associated with site number m, ↵m represents the

ordinal number of Schmidt coe�cients, i denotes the physical index of the sys-
tem, and �[i]↵m are tensors of Schmidt coe�cients. This format of the coe�cients
Ci1,...iM has the error associated with bond dimensions �i, and easy to truncate
by changing the number of �i

We can describe this in mathematical details by applying Schmidt decompositions
in the corresponding bond on the first site, we obtain a structure that resembles
the one in Eq. 4.6

| i =
�1X

↵1

�[1]
↵1

| [1]
↵1
i ⌦ | [2,...,M ]

↵1
i . (4.13)

Then each of the Schmidt vectors{| [1]
↵1i} and {| [2,...,M ]

↵1 i} can be rewritten into
the computational basis of local sites as follows,

| [1]
↵1
i =

dX

i1

�[1]i1
↵1

|i1i , (4.14)

| [2,...,M ]
↵1

i =
dX

i2

�[2]i2
↵1↵2

|i2i ⌦ |j[3,...,M ]
↵2,i2

i , (4.15)
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Figure 4.3: In this figure, we show the process of construction of MPS from
one end of the chain. (1) the coe�cients describing a quantum state of M

sites. (2) application of SVD on the first site, and regroup the S, and V
† with

the rest of the chain (3) redefining the tensor as each local dimension di, and

forming the diagonal matrix �[1]↵1 with Schmidt coe�cients. (4) repeating this
process to the other end of the chain.

where the non-normalised states |j[3,...,M ]
↵2,i2

i represent the basis for the rest of the
chain and can be normalised as we repeat the same process for the rest of the
chain. After applying the process above to all the local sites, we can achieve the
representation in Eq. 4.12. This is an exact representation where we replace all
dM coe�cient as the matrix products with (d�2

max +�max)M coe�cients. �max =
max(�i), the maximum Schmidt rank among all the local sites. The maximal
value of the Schmidt rank can grow exponentially as the system size increases.
Under certain conditions, a truncated MPS form can be achieved within the
desired error. To achieve a truncated MPS, we have the Schmidt coe�cients
ordered and keep the largest ones. This will result in a truncation in summing
over ↵i and the rest of terms which has the indices larger than certain value
�  max(�i) will be discarded. The value of � can be fixed or flexible according
to the need of the calculation precision or the site number . In the numerical
simulations in this thesis, the value of �, noted as the bond dimension D is
fixed during the calculation and uniform on the sites. Such truncation reduces
the Hilbert space with less weighted basis and the reduced Hilbert space which
remains tractable. The truncation error introduced in each truncation step can
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easily be calculated as,

✏i =
�iX

↵i=D+1

(�[i]
↵i
)2 . (4.16)

This approximation cannot represent heavily entangled states, as the maximal
bipartite entanglement, quantified by the von Neumann entropy given by,

SV N = �
DX

↵i

�2
↵i
log2(�

2
↵i
) , (4.17)

where the two subsystems are bonded at the i�th site. In our research, the
convergence of bond dimension is always critical when applying large scale simu-
lation.

4.1.2 Local expectation values and two-site gates

As we discussed in the previous section, a state in the MPS form can be e�ciently
stored within a truncated Hilbert space if the entanglement is less than that
given by certain criteria. Having the MPS form of a quantum state, the quantum
operations acting on the state are adapted to similar matrix product form.

4.1.2.1 One-site operators and expectation values

One operator acting on a single site (i�th site) can be represented in the com-

putational basis in the following form Ô[i] ⌘
P

j,k
O[i]k

j
|jii hki|. With the MPS

representation in Eq. 4.12, we can explicitly separate the basis in such a way that
the operator can act on site i,

| i =
X

l

X

↵i�1,↵i

�[i�1]
↵i�1

�[i]l
↵i�1↵i

�[i]
↵i

| [1,...,i�1]
↵i�1

i ⌦ |lii ⌦ | [i+1,...,M ]
↵i�1

i , (4.18)

with the local basis on i�th state represented as {|lii}. To calculate an updated

quantum state when we apply an operator O[i], only the tensors �[i]l
↵i�1↵i need to

be updated,

�̃[i]j
↵i�1↵i

=
X

k

O[i]k
j
�[i]l
↵i�1↵i

�k,l . (4.19)
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Then the local expectation value can be calculated as

h | Ô[i] | i =
X

j,l

X

↵i�1,↵i

(�[i�1]
↵i�1

)2(�[i]
↵i
)2�̃[i]j

↵i�1↵i
�⇤[i]l
↵i�1↵i

�jl , (4.20)

and the complexity of this calculation is in the order of D2d2 as j, l  d and
↵i�1,↵i  D.
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Figure 4.4: Demonstration of the process of updating local sites and calculat-
ing expectation values. (1) tensor of the local state needed to be updated. (2)
update of the state by summing over corresponding indices, O(D2

d) operatios
are required (3) contract the coe�cients to calculate the expectation value.

4.1.2.2 Two-site gates

Similarly to case of one-site gates, we can rewrite the two-site gate in the local ba-
sis, U [i,i+1] ⌘ Uki,ki+1

ji,ji+1
|ji, ji+1i hki, ki+1|. Then the quantum state can be updated

locally as,

| ̃i =
X

ji,ji+1

X

↵i�1,↵i,↵i+1

Ũ ji,ji+1
↵i�1↵i+1

| [1,...,i�1]
↵i�1

i ⌦ |ji, ji+1i ⌦ | [i+2,...,M ]
↵i+2

i , (4.21)

with,

Ũ ji,ji+1
↵i�1↵i+1

⌘ U ji,ji+1
↵i�1↵i+1

X

↵i

�[i�1]
↵i�1

�[i]
↵i
�[i+1]
↵i+1

�[i]ji
↵i�1↵i

�[i]ji+1
↵i↵i+1

. (4.22)
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To apply this update, we contract in two steps with operations in the order of
D3d2 and D2d4. As the quantum state is updated as in Eq. 4.21, additional
operations are required to restore its MPS form. This is shown in Fig. 4.5.

! 

" 

…… …… 

(1) (2) 

!+1 "  

…… …… 

"  

…… …… 

! 

…… …… 

!+1 

(3) (4) 

contract first (D3
d
2)

contract second (D2
d
4)

Figure 4.5: Demonstration of the process of updating local sites. (1) tensors
of local state (i, i + 1) needed to be updated. (2) rewrite the updated state as
in three part product form, the first contract needs O(D3

d
2), and the second

contract needs O(D2
d
4) operations (3) applying Schmidt decompositon on the

bond between i�th and (i + 1)�th site, and keep only first D largest Schmidt
coe�cient to implement truncation (4) restore the updated quantum state back
to MPS form. O(D3

d
3) operations are required

With the help of one-site gates, two-site gates and the capability of evaluating
expectation values, we are able to implement real- (imaginary-) time evolution,
which is the key feature of TEBD algorithm as we will describe in the following
section.

4.1.3 Suzuki-Trotter expansion and time evolution

Simulating the time evolution operator applied to the MPS describing our quan-
tum state can be achieved by applying two-site gates to the MPS in a small time
interval. It is most straight-forward if the Hamiltonian of the system only con-
tains next-neighbour interactions. If this condition is satisfied it can be written as
the sum over two-site Hamiltonians, Ĥsys =

P
M�1
i

Ĥi,i+1. The unitary time evo-
lution operator in each time step within the interval �t then can be represented
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as

Ûsys ⌘ e�iĤsys�t = e�i
P̂M�1

i Ĥi,i+1�t . (4.23)

Here we have chosen the unit system where ~ ⌘ 1. Via Suzuki-Trotter expansion
[128], we are able to rewrite the time-evolution operator in Eq. 4.23 as a sum
of operators that are only related to next-neighbour interaction, so that we can
implement those operators as two-site gates.

Ûsys =
Y

i

Ûi,i+1

Ûi,i+1 ⌘ e�iĤi,i+1�t
0
. (4.24)

One thing to be noted is that the time interval �t0 of each two-site gate Ûj,j+1

are not necessarily equivalent to the original time step �t. In general, the two-
site gates do not commute with each other, thus, the error of this expansion will
be a function of this chosen time interval �t0. The value of �t0 that depends
on the order of the Suzuki-Trotter expansion, is directly related to the error in
simulating the original time evolution operator Ûsys. For example, the intuitive
expansion with two non-commuting operators [Â, B̂] 6= 0 is,

e(Â+B̂)�t = eÂ�teB̂�t + O(�t2) . (4.25)

This is the first order expansion that can be applied to our next-neighbour op-
erators generating the Ûj,j+1 by defining eÂ�t =

Q
odd e

�iĤi,i+1�t and eB̂�t =Q
even e

�iĤi,i+1�t. Applying those two-site gates will have an error of O(�t2).

In practice, higher order expansions are implemented to increase accuracy and de-
crease computational time. Here we introduce the second-order expansion which
is used in our numerical simulations,

e(Â+B̂)�t = eÂ�t/2eB̂�teÂ�t/2 + O(�t3) , (4.26)

as shown in Fig. 4.6.

Higher order expansions, like 4-th order Trotter expansion, can also be imple-
mented. We refer [129] for details of high-order expansions. We do not use
high-order expansions because the stochastic equations we will propagate in this
thesis require small timesteps to more accurately represent dynamics with white
noise.
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𝑒−𝑖𝐻2,3∆𝑡 𝑒−𝑖𝐻4,5∆𝑡 𝑒−𝑖𝐻𝑀−2,𝑀−1∆𝑡

𝑒−𝑖𝐻1,2∆𝑡/2 𝑒−𝑖𝐻3,4∆𝑡/2 𝑒−𝑖𝐻5,6∆𝑡/2 𝑒−𝑖𝐻𝑀−1,𝑀∆𝑡/2

(1) (2)

Figure 4.6: Implementation of time evolution of a MPS with even number of
sites by second order Suzuki-Trotter expansion of the time evolution operator
(1) the original unitary operator e

�iH�t apply on a MPS (2) the implemen-
tation of two-site gates, first applying the odd site evolution operators with
�t/2, then applying even site evolution operators with �t, and finaly applying
the odd site evolution operators with �t/2, as shown in Eq. 4.26.

4.1.4 Imaginary time evolution

The capability to implement time evolution operators not only provides the ad-
vantages for TEBD to simulate the dynamics of complex systems, but also sup-
ports the calculation of ground states via time evolution of imaginary time t = �i⌧
under the Hamiltonian of the system, Ĥsys. The ground state of the Hamiltonian
Ĥsys can be computed as

| GSi = lim
⌧!1

e�Ĥsys⌧ | 0i���e�Ĥsys⌧ | 0i
���
, (4.27)

with the initial state | 0i. Theoretically, the initial state needs to be chosen with
a non-zero overlap with the ground state, i.e. h 0| GSi 6= 0, and the system has
a non-degenerate ground state and the minimum value of the energy di↵erences
between eigenstates larger than zero, �min > 0. By expanding the initial state in
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the eigenbasis of Ĥsys, {|Eni}, with the eigenenergies E0 < E1 < ...,

| 0i =
X

n=0

cn |Eni . (4.28)

When we substitute this into Eq. 4.27, the evolved state is seen to be proportional
to the ground state at infinite time, assuming the energy of ground state E0 = 0
and En > 0 for n > 0,

| GSi / lim
⌧!1

X

n=0

e�En⌧cn |Eni

/ lim
⌧!1

(c0 |E0i+
X

n=1

e�En⌧cn |Eni)

/ |E0i . (4.29)

The TEBD method can realise the calculation of ground states, by applying
imaginary time evolution �t = �i�⌧ via the Suzuki-Trotter expansion. One way
to test whether the evolved state is the ground state is to implement real-time
evolution under the system Hamiltonian Ĥsys, then to check whether long-range
quantities or the state itself change in time, thus testing that the evolved state is
at least an eigenstate.

In practice, the condition of h 0| GSi 6= 0 is not necessarily required. Numerical
errors will typically leads to non-zero population in the ground state regardless
of the choice of initial state.

4.2 Open systems, classical stochastic processes
and the master equation approach

In the study of open quantum systems, the Lindblad equation [130] is the most
useful tool to describe non-unitary Markovian processes such as dissipation and
decoherence. In quantum optics, the simplest example of this is the sponta-
neous emission process in two-level systems that can be described by a Lindblad
equation [4]. Here in this section, we start from introducing basic concepts of
stochastic processes and Ito calculus to derive a special form of Lindblad equa-
tion, which captures the nature of Markovian processes involving classical noise
in the white noise limit.
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4.2.1 Stochastic processes

In situations where the system of interest either involves random processes or the
Hilbert space of such systems is hard to manage, a statistical method is often
required to access the dynamics of the system. The understanding of stochastic
processes can be very useful in describing corresponding physical systems.

There are two main streams of studying stochastic processes, which focus on
di↵erent aspects of dynamics. The one that studies the evolution of probability
distributions for values of a given quantity of interest which can be described by
particular equations, is to solve the Fokker-Planck Equation (FPE) [131]. The
general form of the FPE for a single stochastic variable, x, is

@p(x, t)

@t
= � @

@x
a1(x)p(x, t) +

1

2

@2

@x2
a2(x)p(x, t) , (4.30)

where a1 is called the drift coe�cient, a2 is often referred as the di↵usion coef-
ficient, and p(x, t) is the probability density of the stochastic variable x at time
t.

The other stream that follows the evolution of the stochastic variable along each
individual trajectory with random elements as noise, is to solve the Stochastic
Di↵erential Equation (SDE). Both of these two methods have the same origin in
the study of Brownian motion problems. In most of the cases, the Fokker-Planck
equation can be solved directly or be treated as a set of stochastic di↵erential
equation of random variables. In this chapter, we mainly focus on the SDE, and
later the derivation of a special form of Lindblad equation.

4.2.1.1 Wiener process

The Wiener process is a continuous-time stochastic process, sometimes referred
as the Standard Brownian motion process or Brownian motion. The study of the
Wiener process developed mathematical tools which can be used to describe more
complex random processes. The Wiener process is the solution of a simple FPE
in which the drift coe�cient is zero and the di↵usion coe�cient is one in Eq. 4.30.
The FPE of the Wiener process is,

@

@t
p(w, t|w0, t0) =

1

2

@2

@w2
p(w, t|w0, t0) , (4.31)
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where p(w, t|w0, t0) is the conditional probability of w at time t given the event
that w = w0 at time t0. The initial condition is

p(w, t0|w0, t0) = �(w � w0) . (4.32)

To solve this equation, we can use the characteristic function, which is the Fourier
transform of p(w, t|w0, t0).

�(s, t) =

Z 1

�1
dwp(w, t|w0, t0)e

isw . (4.33)

Taking both sides of Eq. 4.31 and integrating by parts, together with the assump-
tion of {p, @p/@w}! 0 as w ! ±1, the equation of characteristic function is as
follows,

@

@t
�(s, t) = �1

2
s2� , (4.34)

with the corresponding initial condition is �(s, t0) = eisw0 . The solution of
Eq. 4.34 is simple, and will lead us to the solution of the conditional probability
distribution.

�(s, t) = �(s, t0) exp[�s2(t� t0)/2] , (4.35)

p(w, t|w0, t0) =
1

2⇡

Z 1

�1
ds�(s, t)e�isw

=
1p

2⇡(t� t0)
exp[�(w � w0)2

2(t� t0)
] . (4.36)

Then the sample paths W (t) have the following statistics,

hW (t)i = w0 h[W (t)� w0]
2i = t� t0 . (4.37)

4.2.2 Stochastic di↵erential equation

The concept of stochastic di↵erential equations become widely used in the study
of stochastic processes [131]. A general form of Langevin’s equation is

dx

dt
= a(x, t) + b(x, t)⇠(t) , (4.38)

where x is the stochastic variable of interest, and a(x, t) and b(x, t) are functions
describing the motion of the variable. ⇠(t) is considered a rapid fluctuation term
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and related to white noise. For every di↵erent time, the values of ⇠(t) and ⇠(t0)
are independent of each other. Conventionally, we assume the mean value of ⇠(t)
is zero. These two assumptions provide the conditions on ⇠(t).

h⇠(t)i = 0 , and h⇠(t)⇠(t0)i = �(t� t0) . (4.39)

In physical reality, the white noise limit is an idealisation, and no realistic fluc-
tuation would have an infinite variance. Generalisations of this include the case
of the Ornstein-Uhlenbeck process for which, the fluctuating signal has a finite
correlation time,

hX(t)X(t0)i = D

2k
e�k|t�t

0| , (4.40)

and in the limit of certain conditions, D = k2 and k ! 1, this correlation time
becomes,

lim
k!1
hX(t)X(t0)i = �(t� t0) . (4.41)

This delta function implies that the future behaviour at time t does not depends
on the history at time t0, but only on its present state. This simplification is known
as the Markov approximation. Since the delta function can simplify calculations,
the Markov approximation is often chosen as the first assumption, which is valid
in the situation with an infinitesimal correlation time.

4.2.2.1 Integral of ⇠(t)

The new random fluctuating term ⇠(t) in Eq. (4.38) plays an important role in a
wider range of stochastic problems and can be directly related to Wiener process.
Consider the integral of ⇠(t) here, u(t),

u(t) =

Z
t

0

ds⇠(s) . (4.42)

To discuss the relation between u(t) and u(t0), we assume that t0 > t, and derive
the calculation of u(t0) as below,

u(t0) =

Z
t

0

ds⇠(s) +

Z
t
0

t

ds0⇠(s0)

= lim
✏!0

Z
t�✏

0

ds⇠(s) +

Z
t
0

t

ds0⇠(s0) . (4.43)
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The increments ⇠(s) and ⇠(s0) are totally independent of each other, thus u(t0)
can be determined only from u(t), which leads to the conclusion that u(t) is a
Markovian process. On calculating the mean value and variance of the increment
u(t+ dt)� u(t), the relation between u(t) and W (t) becomes clearer.

hu(t+ dt)� u(t)i = h
Z

t+dt

t

ds⇠(s)i = 0 , (4.44)

h[u(t+ dt)� u(t)]2i = h
Z

t+dt

t

ds

Z
t+dt

t

ds0⇠(s)⇠(s0)i

=

Z
t+dt

t

ds

Z
t+dt

t

ds0�(s� s0) = dt . (4.45)

From Eq. 4.37, the mean value and variance of �W (t) = W (t+�t)�W (t) can
be evaluated as,

h�W (t)i = 0 , and h�W (t)2i = �t . (4.46)

That is, u(t) is indeed the Wiener process, and ⇠(t)dt = dW (t). This relation will
be used to derive the Lindblad equation in the next section. Another way to prove
that u(t) is the Wiener process is via calculating drift and di↵usion coe�cients
in the FPE (Eq. 4.30).

a1(t) = lim
dt!0
hu(t+ dt)� u(t)i = 0 , (4.47)

a2(t) = lim
dt!0
h[u(t+ dt)� u(t)]2i/dt = 1 . (4.48)

and result in the same FPE of u(t) as of Eq. 4.31.

4.2.2.2 Stochastic Integration and Ito rules

The nature of W (t) as a non-di↵erentiable process will lead to interesting results
in di↵erent calculus. Consider an arbitrary function G(t) as a function of t and
W (t), the stochastic integral

R
t

t0
G(t0)dW (t0) can be evaluated as the sum of area

below the function,

Sn =
nX

i=1

G(⌧i)[W (ti)�W (ti�1)] , (4.49)

as we divide [t0, t] into n intervals {t0, t1, ..., tn�1, t}, and ⌧i 2 [ti�1, ti]. There are
two di↵erent types of definition of stochastic integral depending on the choice of
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⌧ . One is call Ito stochastic integral, defined as,

Z
t

t0

G(t0)dW (t0) = ms- lim
n!1

(
X

i

G(ti�1)[W (ti)�W (ti�1)]

)
(I) . (4.50)

ms- lim denotes mean-square limit that if

lim
n!1
h(S � Sn)

2i = 0 then S = ms- lim
n!1

Sn . (4.51)

The other one, Stratonovich stochastic integral, is slightly di↵erent

Z
t

t0

G(t0)dW (t0) = ms- lim
n!1

(
X

i

1

2
(G(ti�1 +G(ti))[W (ti)�W (ti�1)]

)
(S) .

(4.52)

These two di↵erent integral will be noted with (S) and (I) in the following sec-
tions. To demonstrate the di↵erence of these two types of stochastic integrals, we
calculate the integral with G(t) = W (t) as an example,

Z
t

t0

W (t0)dW (t0) = ms- lim
n!1

1

2

nX

i

[W (ti) +W (ti�1)][W (ti)�W (ti�1)] (S)

= ms- lim
n!1

1

2

nX

i

[W (ti)
2 �W (ti�1)

2]

=
1

2
W (t)2 � 1

2
W (t0)

2 (S) (4.53)
Z

t

t0

W (t0)dW (t0) = ms- lim
n!1

nX

i

W (ti�1)[W (ti)�W (ti�1)] (S)

= ms- lim
n!1

1

2

nX

i

{[W (ti) +�W (ti)]
2 �W (ti�1)

2 ��W (ti)
2}

=
1

2
W (t)2 � 1

2
W (t0)

2 � 1

2
ms- lim

n!1

nX

i=1

�W (ti)
2

(4.54)

The Stratonovich integral have closer relationship to ordinary calculus. On the
other hand, the Ito integral has its own advantages calculating stochastic average
value of certain type of function G(t), when they are statistically independent
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(non-anticipating) of dW (t). In this case,

⌧Z
t

t0

G(t0)dW (t0)

�
=

Z
t

t0

hG(t0)i hdW (t0)i = 0 , (4.55)

while calculation of the Stratonovich integral might be much more di�cult to
apply. In general, the stochastic average values of the same integral from both
definition will be the same.

In the integral of an arbitrary non-anticipating function G(t), the high order
of increment �W (t)2+N (N � 0) might appear due to consideration of higher
order approximation or product of first order calculation. It is easy to shown the
features of dW (t) with higher order satisfy the formula,

[dW (t)]2 ⌘ dt, [dW (t)]2+N ⌘ 0 for N > 0 (4.56)

this is the Ito rules. The Ito rules are valid only for the Ito integral, as the
derivation used that �W (ti) is independent of G(ti�1).

4.2.2.3 Ito stochastic di↵erential equation and Ito correction

In this section, we would like to introduce the Ito stochastic di↵erential equation
(SDE), and then establish the relation between the Stratonovich SDE and the Ito
correction. Consider a random variable satisfying the Ito SDE,

dx(t) = a(x, t)dt+ b(x, t)dW (t) (I) , (4.57)

the sign “(I)” shown at the end of the equation denotes the Ito SDE, and “(S)”
denotes the Stratonovich SDE. For a function of x(t), f(x), the increments rep-
resenting the stochastic process are,

df(x) = {f 0(x)a(x, t) +
1

2
f 00(x)b(x, t)2}dt+ f 0(x)b(x, t)dW (t) (I) , (4.58)

using the expansion df = f 0dx+ 1/2f 00(dx)2 + .... Eq. 4.58 is referred as the Ito
formula. The terms of higher order than dW 2 and dt are discarded. The second
term on the right hand side of the formula with f 00(x) is called the Ito correction.
However, the Stratonovich calculus for f(x) is

df(x) = {f 0(x)a(x, t)}dt+ f 0(x)b(x, t)dW (t) (I) , (4.59)

without the Ito correction term. In the physical situation where white noise
approximation stands, the Stratonovich represents the system better. The trans-
formation from the Stratonovich SDE to the Ito SDE can be implemented with
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correction terms. Assume the random variable x(t) is a solution of the Ito SDE,
thus Eq. 4.57 holds. The Stratonovich SDE is then,

dx(t) = a(x, t)dt+ b

✓
x(t) + x(t+ dt)

2
, t

◆
dW (t) (S) ,

= a(x, t)dt+ b(x+
1

2
dx, t)dW (t) ,

⇡ a(x, t)dt+ b(x, t)dW (t) +
@b

@x

dx

2
dW (t) .

by substituting Eq. 4.57, we derive,

dx(t) = a(x, t)t+ b(x, t)dW (t) +
@b(x, t)

@x

a(x, t)dt+ b(x, t)dW (t)

2
dW (t) ,

=

✓
a(x, t) +

1

2
b(x, t)

@b(x, t)

@x

◆
dt+ b(x, t)dW (t) (S) . (4.60)

One of the advantage of the Ito form is that when the interested function is
non-anticipating, the calculation is much easier than the Stratonovich calculus
to reach the same results. In this thesis, we mainly discuss the type of noise
in optical lattice that can be characterised as white noise, which the interested
function is non-anticipating. We convert the physical description of the system,
which is Stratonovich calculus, to Ito calculus to simplify the calculation to obtain
stochastic average e↵ects.

4.2.2.4 Multiplicative stochastic di↵erential equation

The multiplicative stochastic di↵erential equation (MSDE), a subset of SDE which
are less complicated to solve. The general form is,

d

dt
u(t) = (A[x(t), t] + B[x(t), t]⇠(t)) u(t) , (4.61)

where A[x(t), t] is the statistical component and B[x(t), t] is the stochastic com-
ponent. The relation between Stratonovich MSDE and Ito MSDE can be easily
formed, if the coe�cients before dt and dW (t) are independent of u(t)

duS(t) = (Adt+BdW (t))uS(t) (S) (4.62)

duI(t) = (A+
1

2
B2)uI(t)dt+BuI(t)dW (t) (I) (4.63)

These formulae play a key role in the derivation of Lindblad equation in the
following section.
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4.2.3 Stochastic Schrödinger equation and Lindblad equa-
tion

In this section, we will start from the Schrödinger equation with a “noisy” Hamil-
tonian to derive a special form of Lindblad equation:

d⇢

dt
= �i[H0, ⇢] + �{2A⇢A� A2⇢� ⇢A2} , (4.64)

where the operators ⇢, H0, A are time-dependent, and � is a constant. The density
operator ⇢ is the stochastic average of quantum states |�(t)i, ⇢(t) = h|�(t)i h�(t)|i.
By introducing a noise term in the system Hamiltonian, the ordinary Schrödinger
equation becomes a Stochastic Schrödinger equation, and also a Stratonovich
MSDE. Consider a general form of noisy Hamiltonian such as,

H(t) = H0(t) +
p
2�⌘(t)A(t) . (4.65)

The function ⌘(t) is used to characterize the noise, with relation to a random
variable,

u(t) =

Z
t

0

⌘(t)dt , (4.66)

where H0(t) is the original Hamiltonian, and A(t) is the noise operator. Here we
assume an initial condition without losing generality, u(0) = 0.

In the time evolution of the physical system, we consider that the noise fluctuates
much faster than the evolution. So in a short time interval t0 2 (t, t+dt), the noise
operator A(t) and the Hamiltonian H0(t) are unchanged. In this assumption, the
only time dependent term is noise, i.e. ⌧c ⌧ �t, and �t is a length of one time
step, which is a constant. Then the Hamiltonian in the time interval (t, t + dt)
should be,

H(t0) = H0(t) +
p
2�⌘(t0)A(t) (4.67)

for any time t0 2 [t, t+�t).

4.2.3.1 White noise limit

To simplify the calculation, we can assume that the noise term is in the white
noise limit, i.e ⌘(t) = ⇠(t), with the correlation h⇠(t)⇠(t0)i = �(t�t0). In the white
noise limit, the noisy Hamiltonian in a short time interval remains unchanged.
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Here we take an example of a time-independent system with fast fluctuation white
noise to derive the Lindblad equation

H = H0 + (
p
2�)⇠(t)A , (4.68)

with noise dW (t) = ⇠(t)dt as in the previous sections and the stochastic behaviour
remains, hdW (t)2i = dt. The operator A is then the noise operator.

In this case, the Stochastic Schrödinger equation is,

i
d | (t)i

dt
= (H0 + (

p
2�)⇠(t)A) | (t)i (S) (4.69)

|d i ⌘ {�iH0dt� i(
p
2�)AdW (t)} | (t)i (S) (4.70)

It is clear that this is a multiplicative stochastic di↵erential equation. To calculate
the stochastic average behaviour of the quantum state | (t)i, we can convert it
to an Ito (M)SDE, using Eq. 4.62,

|d i = {(�iH0 � �A2)dt� i(
p
2�)AdW (t)} | i (I) (4.71)

hd | = h | {(+iH0 � �A2)dt+ i(
p
2�)AdW (t)} (I) (4.72)

where we use |d i and hd | to denote the increments.

Then the MSDE of d⇢, with Ito rules applied, is,

d⇢ ⌘ h|d i h | + | i hd |) + |d i hd |i (4.73)

= h{(�iH0 � �A2)dt� i(
p
2�)AdW (t)}i⇢

+ ⇢h{(+iH0 � �A2)dt+ i(
p
2�)AdW (t)}i

+ 2�A⇢Adt

d⇢ = h{�i[H0, ⇢] + �(2A⇢A� A2⇢� ⇢A2)}dt� i
p
2�[A, ⇢]dW (t)i (I)

(4.74)

where h. . . i notes the stochastic average. With the features of white noise applied,
the equation of motion of density operator can be derived as,

⇢̇ = �i[H0, ⇢] + �(2A⇢A� A2⇢� ⇢A2)

= �i[H0, ⇢] + �[A, [⇢, A]] , (4.75)

where � > 0. That’s exactly what we used in Lindblad equation (4.64) and
implies the physics is Markovian, which means the dynamics of the system de-
pends only on the current state. In this derivation, we applied the Ito rules
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because of the white noise approximation that our interested function (⇢) is non-
anticipating. The Ito rules results in the error going with the first order of dt.
This will support the choice of second order of Suzuki-Trotter decomposition of
time evolutions used when we simulate the dynamics of noisy systems in later
sections, as the simulation result convergent with the lowest order of error. For
cases with coloured noise, a higher order of expansion and corrections will be
needed in the master equation.

4.3 Conclusion

In this chapter, we introduce the main computational methods that we used in
this thesis. In the first half of this chapter, we presented an overview of the
TEBD method and the MPS presentation that provide access to study large-size
systems with manageable computational resources, by considering only the rele-
vant subspace of the Hilbert space. The master equation approach that describes
the stochastic average e↵ect of the time evolution of the stochastic Schrödinger
equation provides insight into the averaged dynamics without stochastic errors.

In the following chapters, we obtain many numerical results applying the methods
we introduced in this chapter. For example, the ground states and time evolution
of large size Bose-Hubbard model in Chap. 6 and 7 are calculated by applying
t-DMRG methods, and the study of two-level systems in the presence of classical
noise are conducted exactly via the master equation method.



Chapter 5

Improving the randomisation
method in adiabatic quantum
computing

In this chapter1, we revisit a recently proposed algorithm of quantum comput-
ing, the randomisation method, which is designed to achieve better performance
over standard adiabatic quantum computing. The principle of the randomisation
method is to simulate projective measurements into the instantaneous eigenbasis
of Hamiltonian and to induce a version of the quantum Zeno e↵ect in adiabatic
state preparation. However, the results from previous research did not demon-
strate better bounds of the time cost over standard adiabatic quantum computing.
We continue our study to improve the randomisation method. In Sec. 5.2, we ob-
tain an improved upper bound on the eigenpath length considering the second
derivative of the Hamiltonian. In Sec. 5.3, we analyse errors from parametriza-
tion and imperfect measurements with a lower bound of the final fidelity of state
preparation. We then obtain better bounds for the time cost of the algorithm
in terms of the dependence relation of the minimal spectral gap during the state
transformation. In Sec. 5.4, we provide two applications of our improved method,
and observe speedups over previous research.

1This work is taken in part from the publication Improved bounds for eigenpath traversal,
H.-T. Chiang, G. Xu, and R. D. Somma, Phys. Rev. A 89, 012314, 2014.

The author of this thesis performed the analysis of final fidelities in this work.
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5.1 Introduction

The eigenstates of a Hamiltonian can often grant access to the solution of many
problems in quantum information, physics and optimization [24, 65, 102, 109,
132–137]. To prepare such eigenstates, we can begin in a state that can be
reliably and reproducibly prepared and then change the interaction parameters
of the controlled Hamiltonians under which the system evolves, which is the key
feature of adiabatic quantum computation (AQC). The adiabatic theorem [138,
139] requires that the system is in an eigenstate as an initial state. By changing
the Hamiltonian parameters slowly enough, the evolved state will be su�ciently
close to an eigenstate of the system, and continuously connected to the final
eigenstate.

Several examples of quantum speedups via AQC have been demonstrated (c.f.,
[101, 103, 104, 109]). In particular, the mapping between quantum circuits and
AQC Hamiltonians is established [140–148]. In AQC, we assume the knowledge
of instantaneous Hamiltonians H(s), along the adiabatic path 0  s  1, that
have non-degenerate and continuously related eigenstates | (s)i. The goal is to
prepare | (1)i from | (0)i, within a small error ", by increasing s with certain
interpolation. The evolution time T required to achieve an error below " de-
termines the cost of the algorithm in AQC, which depends on properties of the
instantaneous Hamiltonians in the evolution, like the rate of change or minimal
spectral gaps. An upper bound to the cost based on the commonly used quantum
adiabatic approximation, is given by [149, 150]

TAQC = max
s

"
kḦk
"�2

,
kḢk2
"�3

#
. (5.1)

This means, to prepare the final eigenstate within error ", we can increase the
parameter s accordingly. For linear ramping, s(t) = t/TAQC, the time cost will
be T = TAQC.  is a constant and � is the minimal spectral gap of H, defined
as the smallest absolute di↵erence between the eigenvalue of | (s)i and other
eigenvalues. s(t) will need to vary slowly when � is small. All derivatives are
with respect to s unless stated otherwise, e.g., Ẋ = @X/@s and Ẍ = @2X/@s2.
kXk denotes the spectral norm of an operator or matrix and k |�i k denotes the
Euclidean norm. For some example, (e.g., Rabi oscillations, c.f. [151, 152]), the
bound in Eq. (5.1) is tight and a lower bound exits, in the order of kḢk2/�3 >
kḦk/�2.

From Eq. (5.1), the dependence of TAQC on the gap is rather poor, specially in
the cases that � ⌧ 1. In some cases, though, this bound can cause significant
overestimation of the actual cost needed. Recent research [106–108] proposed
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new methods to improve dependence on the gap. One of those methods, based
on randomisation of time steps in the evolution, can realise a quantum Zeno e↵ect
by simulating projective measurements in the instantaneous eigenbasis [107]. The
only di↵erence between this “randomisation method” (RM) and AQC is that the
schedule s(t) is randomly chosen according to a probability distribution. The
variance of the probability distribution is related to the approximation error, and
also depends on the spectral gap of the Hamiltonians.

The time cost T of the randomisation method for eigenpath traversal (EPT) also
depends on the eigenstate path length, L =

R 1

0 dsk| ̇ik in Sec. 2.2.3. The cost is
upper bounded, with approximation error " < 1, by [106–109]

TEPT = 0
Lc log(L/")

"mins�
, (5.2)

where 0 is a constant, and c = 1, 2 depends on the details of the method. For
the case that L can be bounded independently of the gap, having an explicit de-
pendence in the L or its bound is very important. For example, the time cost can
achieve better bound [109] and can provide a quantum speedup of simulated an-
nealing method used for optimization [153] (Sec. 5.4.2). For some of optimisation
problems, the spectral gap � decreases exponentially in the problem size, but on
the other hand, L increases only polynomially, and TEPT ⌧ TAQC in Refs. [106–
108] can prepare the final eigenstate with much lower cost than standard AQC.

To have an analytical form of L is very hard in most general cases. Here, we
consider an upper bound L⇤ � L, which can be calculated based on the knowledge
of the Hamiltonians, and then reach a new bound TEPT obtained in Refs. [107,
108]. A commonly used path length bound is

L⇤ = max
s

kḢk
�

, (5.3)

known kḢk and � and k| ̇ik  kḢk/�. Having Eq. (5.3), a new upper bound
for the cost of the eigenpath traversal method is then [106–109]

TEPT = 0 max
s

kḢkc
"�c+1

log(kḢk/("�)) . (5.4)

However, for the RM, c = 2, and TEPT can be larger than TAQC if the parametriza-
tion is di↵erent from the uniform one. Since TAQC and TEPT depend on 1/�3, it
is not clear the RM has any advantages over standard AQC.

In this chapter, we obtain better bounds for the cost of the methods mentioned in
Refs. [106–108], in terms of the spectral gap, the error, kḢk and kḦk. We would
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like to discuss more about the randomisation method described in Ref. [107],
because of the simple connection between RM and standard AQC. Some of our
results can also be used to improve the cost of those other methods as well. In
Sec. 5.2, we focus on an improved bound on the path length L⇤, which is of
order 1/

p
� if | (s)i is the ground state of H(s). This bound can be used in

general Hamiltonian paths, and we also focus on those Hamiltonians that are
frustration free. These allow a more practical form of the bounds to be written
and are important roles in other fields (e.g. condensed matter theory [136, 154],
optimization [155], and quantum information [156–158]). In Sec. 5.3, having
the improved bound, we obtain a new average cost for the RM of order 1/�2.
In the situation that � ⌧ 1, the RM can provide a quantum speed up over
standard AQC - or at least better probable bound. In Sec. 5.3.2 an analysis of
Ref. [107] about the cost scaling factor is conducted, and results in elimination
of the logarithmic factor present in Eqs. (5.2) and (5.4). In Sec. 5.4 we apply
our improved bounds to the preparation of projected entangled pair states [159]
(PEPS) and the quantum simulation of classical annealing processes [109, 153].
By using the results for frustration-free Hamiltonians, we can show that the RM
has an average cost of order 1/�3/2 for the preparation of PEPS, and for the
method based on fixed-point search the cost is of order 1/� (up to a logarithmic
correction).

5.2 Improved bound on the path length

As mentioned in Sec. 2.2.3, the path length of a continuous and di↵erentiable
state {| (s)i}, is

L =

Z 1

0

dsk| ̇ik ,

where s 2 [0, 1]. Also, h | ̇i = 0 can be ensured. We assume that | i is a non-
degenerate eigenstate ofH of eigenvalue 0, so that | ̇i = �H�1Ḣ | i. The inverse
of Hamiltonian, H�1, is in the subspace orthogonal to | i. In this case, an upper
bound of maxs(kḢk/�) on L can be obtained by substituting the expression into
the definition of L, which is commonly used in adiabatic approximations.

In the case that | i is the ground state of H and the state path is two times
di↵erentiable, we can derive a tighter bound on L in terms of the spectral gap.
According to the Cauchy-Schwarz inequality,

L2 
Z 1

0

ds k| ̇ik2 . (5.5)
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A detailed derivation is provided below. As | i is the ground state, andH | i = 0,
we have

| ̇i = �H�1Ḣ | i ,

soH�1 (inverse toH) is in the subspace orthogonal to | i. Having the assumption
that Ḣ exists and kḢk <1 and H � 0, we have

k| ̇ik2 = h | ḢH�2Ḣ | i
 kH�1/2k2kH�1/2Ḣ | i k2

 1

�
h | ḢH�1Ḣ | i

=
�1
�
h | Ḣ| ̇i (5.6)

using Cauchy-Schwarz inequality. In addition, from the second derivative of
H | i = 0, we have the relation that,

Ḣ| ̇i = �1

2
[Ḧ | i+H| ̈i] ,

and using Eq. (5.6) we obtain the desired bound as

k| ̇ik2  1

2�
h | Ḧ| i . (5.7)

This assumes the existence of Ḧ with kḦk < 1. Together with equations (5.5)
and (5.7), we have

L2 
Z 1

0

ds
1

2�
h | Ḧ | i .

In the case that the ground state energy E 6= 0, we then obtain,

L  L⇤ =

✓Z 1

0

ds
1

2�
h | Ḧ � Ë | i

◆1/2

. (5.8)
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5.2.1 General interpolations

In general, because h | Ḧ � Ë | i � 0, the right hand side of Eq. (5.8) can be
bounded so that

L⇤  max
s

s
kḦk � (Ė(1)� Ė(0))

2�

 max
s

s
kḦk+ 2kḢk

2�
,

where Ė(0) and Ė(1) are the first derivative of the ground state energy at s = 0
and s = 1. The spectral gap � usually decreases exponentially with the system
size.

5.2.2 Linear interpolations

In a case that the time-dependent Hamiltonian is constructed as a linear interpo-
lation of two Hamiltonians, H(s) = (1� s)H0 + sHf , where, H0 and Hf are the

initial and final Hamiltonians, we can eliminate the term
���Ḧ
���, and the bound is

L⇤  max
s

s
Ė(1)� Ė(0)

2�

 max
s

s
kḢk
�

.

5.2.3 Frustration-free Hamiltonians

A frustration-free Hamiltonian H =
P

k
⇧k is the sum of a set of Hamiltonians

{⇧k} that shares all the same ground states. Usually, ⇧k corresponds to local
operators and our assumptions hold, for a ground state | i with eigenvalue 0,
H | i = ⇧k | i = 0 for all k, and ⇧k � 0. In this case, the local bound on the
rate of change of the state in Eq. (5.7) applies directly,

L⇤  max
s

s
kḦk
2�

. (5.9)
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5.3 Improved bounds of time cost

In Ref. [107], the “randomization method” (RM) was proposed using phase ran-
domization to traverse the eigenpath. The essence of the RM is: For a discrete
Hamiltonian path {H(s)}, the discretisation 0 < s1 < s2 < . . . < sq = 1 is
determined by the final-state preparation error. At the j-th step of the RM,
we evolve with the constant Hamiltonian H(sj) for a random time tj. The dis-
tribution of this random time depends on �(sj), the minimal gap of this step,
and the error. For an example, the PDF of tj could be a normal distribution of
zero mean and standard deviation of order 1/�(sj). This randomisation intro-
duced by the evolution will induce dephasing and a reduction of the coherences
between | (sj)i and any other eigenstate (see Secs. 5.3.1 and 5.3.2). In other
words, evolution randomisation simulates a projective measurement onto | (sj)i.
Then, the sequence of measurements of | (s1)i , | (s2)i , . . . induces a version of
the quantum Zeno e↵ect, resulted in the preparation of | (sq)i. With a proper
choice of s1, s2 . . . , sq, the state preparation can be achieved with arbitrarily high
probability. The basic steps of the RM are demonstrated in Fig. 5.1; more details
are in Secs. 5.3.1 and 5.3.2.

In general, the average cost of the RM is the number of steps q times the average
(absolute) evolution time per randomization step; the latter is often proportional
to the inverse spectral gap � [107]. For a uniform parametrization under whichR 1

0 dsk| ̇ik = L for all s, and with the error ", we can calculate that q / L2/",
and thus obtain an optimal average cost of order L2/("�). If the evolving times
of each step are nonnegative (or nonpositive), an additional logarithmic factor
(Eq. (5.4)) was needed for the cost analysis [107].

In the case that the given parametrization is not uniform, the RM requires q =
(L⇤)2 to succeed, where L⇤ is an upper bound on L. A standard choice for L⇤

is the one in Eq. (5.3), which gives an overall cost of order 1/�3 because the
number of points in the discretization is on the order of maxs(1/�2). In this
section, we are going to show that the upper bound obtained in Sec. 5.2 can be
used to obtain a better discretization for the RM than that of Ref. [107]. With
this new result, we can achieve an improved average cost of order maxs(1/�2).
We also implement new error analysis to avoid the logarithmic correction in the
cost when the random times are nonnegative (or nonpositive).

5.3.1 Parametrization errors

In this section we analyse the errors due to the choice of discretization. We assume
perfect measurements of the | (s)i in the RM, and discuss about errors in the
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L 

| (s0)i

| (sq)i

| (sj)i
… 

↵1
↵2

Figure 5.1: Basic steps of the RM and state representation. At the jth step,
the RM prepares the mixed state ⇢j (represented by a red arrow) that has large
probability of being in | (sj)i (represented by a black arrow) after measure-
ment. The preparation of ⇢j is done by evolving ⇢j�1 with the Hamiltonian
H(sj) for random time tj . The number of steps q is obtained so that the final
error probability is bounded by some given " > 0. The length of continuous
eigenpath L can be bounded (Secs. 5.2), and the angles ↵ between the eigen
vectors are related to discretization and the final-state preparation error.

case of imperfect measurements due to evolution randomization in Sec. 5.3.2. We
let 0 < s1 < s2 < . . . < sq = 1. Note any discretization of [0, 1], where q, the
total number of intervals, will be obtained below. A upper bound of the error
of preparation or quantum infidelity (1� F ) in the preparation of | (sq)i can be
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obtained as

1� F = 1�
qY

j=1

cos2(↵j)


qX

j=1

sin2(↵j) ,

where the ‘angles’ ↵j are determined from cos↵j =h (sj�1)| (sj)i 2 R as shown
in Fig. 5.1. Without loss of generality, we can assume ↵j 2 [0, ⇡/2]. Then it
follows that

sin↵j = k | (sj�1)i � cos↵j | (sj)i k
 k | (sj�1)i � ei� | (sj)i k . (5.10)

The phase � 2 R can be arbitrary. Next, we split the interval [sj�1, sj] into
r segments of size (sj � sj�1)/r and thus define r + 1 points in this interval
sn
j
= sj�1 + (sj � sj�1)n/r, with n = 0, 1, . . . , r. The corresponding eigenstates

along the eigenpath at each point are now | (sn
j
)i and, we also define cos �n =

h (sn�1
j

)| (sn
j
)i 2 R. In particular, when n = 0, | (s0

j
)i = | (sj�1)i and n = r,

a global phase is added | (sn
j
)i = ei� | (sj)i.

From Eq. (5.10) we obtain

sin↵j  k
r�1X

n=0

�
| (sn

j
)i � | (sn+1

j
)i
�
k


r�1X

n=0

��| (sn
j
)i � | (sn+1

j
)i
�� ,

where we used the triangle inequality. Also,

sin↵j  lim
r!1

r�1X

n=0

��| (sn
j
)i � | (sn+1

j
)i
��

sn+1
j
� sn

j

n

r
(sj � sj�1)


Z

sj

sj�1

ds k| ̇ik , (5.11)

since the phase of | i can be chosen arbitrarily, we can assume that h ̇ | i 2 R,
and thus h ̇ | i = 0 from the normalization condition. The derivatives of | i
are required so the inequality in Eq. (5.11) holds, which means the eigenpath is
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di↵erentiable. Since

Z
sj

sj�1

ds

Z
sj

sj�1

ds k |@s (s)i k2 �
 Z

sj

sj�1

ds k |@s (s)i k
!2

� 0

from the Cauchy-Schwarz inequality, we obtain the desired bound as

sin↵j 
 Z

sj

sj�1

ds

Z
sj

sj�1

ds k| ̇ik2
!1/2

.

Then we have,

sin2(↵j)  (sj � sj�1)

Z
sj

sj�1

ds k| ̇ik2 , (5.12)

for a di↵erentiable path. By choosing a discretization sj = j �s, where �s 
"/
R 1

0 dsk@s | (s)i k2, the infidelity can be bounded by ":

qX

j=1

sin2(↵j)  " . (5.13)

Using the main result of Sec. 5.2 the bounding of L and the expression of final
infidelity (Eq. (5.12)), we can obtain a su�cient condition for the discretisation
Eq. (5.13):

�s =
"

(L⇤)2
.

Here we assume that | i is the ground state of H. The total number of steps in
the state preparation is then

q =
1

�s
=

R 1

0 ds h | Ḧ � Ë | i
(2�)"

, (5.14)

which is proportional to maxs(1/�). Overall, the average cost of the RM is of
order maxs(1/�2) showing a better gap dependence than that in Ref. [107]. In the
next section, we will show how the evolution randomisation can mimic projective
measurements onto eigenstates and provide detailed error analysis.



Chapter 5. Improving the randomisation method in adiabatic quantum
computing 72

5.3.2 Imperfect measurements

In the previous section, we discussed new results of error and discretisation with
the assumption of perfect projective measurements of | i, which eliminates all
coherences between | i and its orthogonal complement. In the density matrix
form of system ⇢ after the perfect measurement, h | ⇢| ?i = 0 for all other
eigenstates | ?i. Ref. [107] shows how we can simulate projective measurements
with the random evolution time t in a distribution where t 2 (�1,1). However,
if t can only be nonnegative (or nonpositive), the coherences are only reduced
by a multiplicative factor 0 < "0 < 1 which means the simulated measurement
isn’t perfect or weak. In Ref. [107], the choice "0 = "/q achieves overall error " in
the preparation, which can be implemented by a sequence of unity-like quantum
operations. The imperfect simulations of projective measurements introduce an
additional factor in the cost of RM, which is of order log(q/") [Eq. (5.2)]. When
q � 1, and � ⌧ 1, the corresponding cost can be large. Nevertheless, here we
present an improved error analysis of the RM and show that the final error of
preparation can still be of order ", when "0 from the imperfect measurements is a
constant independent of ". Then we obtain an improved cost for the RM where
the log(q/") factor isn’t necessary. In the following derivations to demonstrate
the improved scaling, we define ⇢j as the density matrix at the j th step of the
RM (j = 0, 1, . . . , q) after the randomized evolution with H(sj). The density
operator can be decomposed to four parts,

⇢j = Pr(j) | (sj)ih (sj)| + (1� Pr(j))⇢?
j
+

+ |⇠jih (sj)| + | (sj)ih⇠j| ,

where Pr(j) = h (sj)| ⇢j | (sj)i is the probability (fidelity) of ⇢j in | (sj)i. ⇢?j is
a density matrix in the subspace of {| (sj)?i h (sj)?|}, which means ⇢?

j
| (sj)i =

0. The (unnormalized) state |⇠ji is in the subspace of {| (sj)?i} and denotes the
coherences between | (sj)i and its orthogonal space. The norm of |⇠ji denotes a
coherence factor:

cj = k |⇠ji k .

In the case of projective measurements, cj = 0 in each step. The main principle of
the RM to achieve high fidelity is to simulate projective measurements by keeping
cj su�ciently small via randomised evolution.

At the j + 1 th step, we evolve with H(sj+1) for a random time t from some dis-
tribution f(t). Here we discuss the situation that distribution f(t) is independent



Chapter 5. Improving the randomisation method in adiabatic quantum
computing 73

of the time step. Then,

⇢j+1 =

Z
dt e�iH(sj+1)t⇢je

iH(sj+1)t . (5.15)

The evolution under H(sj+1) leaves the eigenstate | (sj+1)i invariant (up to a
global phase). Then, we can derive the fidelity changes to

Pr(j + 1) = h (sj+1)| ⇢j+1 | (sj+1)i
= h (sj+1)| ⇢j | (sj+1)i ,

with | (sj+1)i = cos↵j+1 | (sj)i+ sin↵j+1 | ?(sj)i, as in Fig. 5.1. Then,

Pr(j + 1) � cos2 ↵j+1Pr(j)� 2 sin↵j+1cj . (5.16)

Here, we assumed the worst case scenario for which h⇠j| (sj+1)i = �cj sin↵j+1

and ↵j+1 2 [0, ⇡/2]. The coherence factor at the j +1 th step can also calculated
as

cj+1 = k |⇠j+1i k
= kP?

j+1⇢j+1 | (sj+1)i k

= kP?
j+1

Z
dt f(t)e�iH(sj+1)t⇢je

iH(sj+1)t | (sj+1)i k ,

where f(t) is the PDF for the randomised evolution time at that step. Since
eiH(sj+1)t leaves | (sj+1)i invariant (up to a global phase) and

Z
dt f(t)e�iH(sj+1)t| ̄?(sj+1)i h ?(sj+1)| eiH(sj+1)t  "0| ̄?(sj+1)i h ?(sj+1)|

Z
dt f(t)e�iH(sj+1)t| ?(sj+1)i h ̄?(sj+1)| eiH(sj+1)t  "0| ?(sj+1)i h ̄?(sj+1)|

(5.17)

for any unit state | ̄?(sj+1)i in the subspace of {| ?(sj+1)i}, we arrive at

cj+1  "0kP?
j+1⇢j | (sj+1)i k . (5.18)

Here we introduce a factor "0 < 1 that denotes the magnitude of reduction in
coherence after each time step, due to randomised time evolution. Taking one
term in coherences as an example, the stochastic average of random time evolution
under H(sj+1) applied to ⇢j transforms the coherences | (sj+1)ih ̄(s?j+1)| to an
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integral,
Z

dt f(t)e�iH(sj+1)t | (sj+1)i h ̄(s?j+1)| eiH(sj+1)t ,

where | ̄(sj+1)?i is a normalized state orthogonal to | (sj+1)i. Then, we can
define an upper bound of such multiplicative factor,

"0 =

����
Z

dt f(t)ei�t

���� . (5.19)

where �  �(sj+1) and it is straight-forward to show that "0 < 1 that gives the
results in Eq.(5.17).

The next target is to bound the right hand side of Eq. (5.18). Using the definition
of the ‘angles’ ↵j+1, and substitute | (sj+1)i = cos↵j+1 | (sj)i+sin↵j+1 | ?(sj)i,
then obtain

cj+1  "0
⇥
cos↵j+1kP?

j+1 (Pr(j) | (sj)i+ |⇠ji) k +
+sin↵j+1kP?

j+1⇢j | ?(sj)i k
⇤
,

here we used the triangle inequality and ⇢j | (sj)i = Pr(j) | (sj)i + |⇠ji. Also,
kP?

j+1 | (sj)i k = k | (sj)i � cos↵j+1 | (sj+1)i k = sin↵j+1, and

⇢j | ?(sj)i =
= (1� Pr(j))⇢?

j
| ?(sj)i+ | (sj)ih⇠j| ?(sj)i .

By using the Cauchy-Schwarz inequality, we obtain

cj+1  "0 [cos↵j+1Pr(j) sin↵j+1 + cos↵j+1cj+

+sin↵j+1(1� Pr(j)) + sin2(↵j+1)cj
⇤
,

and reach the recursion formula for coherences

cj+1  "0
⇥
sin↵j+1 + (1 + sin2(↵j+1))cj

⇤
. (5.20)

In the beginning of the time evolution, the initial state is exactly ⇢0 = | (s0)i h (s0)|,
thus c0 = 0 and, by iteration of Eq. (5.20), we have

cj+1  "0 sin↵j+1 + ("0)2(1 + sin2(↵j+1)) sin↵j + . . .

. . .+ ("0)j+1(1 + sin2(↵j+1)) . . . (1 + sin2(↵2)) sin↵1 .
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To establish the relation between "0 and the error " coming from discretisation in
case of perfect measurements, we recall the condition

qX

j=1

sin2(↵j)  "

of Eq. (5.13). Then,

qY

j>1

(1 + sin2(↵j)) 
qY

j=1

(1 + sin2(↵j))

 1 +
qX

j=1

sin2(↵j) +

 
qX

j=1

sin2(↵j)

!2

+ . . .


qX

j�0

"j  1/(1� ") .

By bounding the prefactor in each term in previous formula, we can obtain the
desired bound of coherences,

cj 
1

1� "("
0 sin↵j + "02 sin↵j�1 + . . .+ "0j sin↵1) . (5.21)

As mentioned before, the whole process of the RM starts with | (s0)i, so initially
the fidelity Pr(0) = 1 and coherence c0 = 0. By iteration of Eq. (5.16) we obtain
a bound of final fidelity

Pr(q) �
qY

j=1

cos2(↵j)� 2
qX

j=1

sin↵jcj�1 . (5.22)

The first term on the right-hand-side of Eq. (5.22) represents the error in the case
where all projective measurements are implemented perfectly, i.e., when cj = 0
for all j. This term can be bounded from below by 1�

P
q

j=1 sin
2(↵j) � 1� ", as

described in Sec. 5.3.1. The second term represents the imperfect implementation
of projective measurements, which can be also bounded by using Eq. (5.21),

2

1� "

qX

j=1

sin↵j("
0 sin↵j�1 + "02 sin↵j�2 + . . .) , (5.23)
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and using the definitions of ↵k 2 [0, ⇡/2] and (sin↵j � sin↵j�k)2 � 0,

qX

j=1

sin↵j sin↵j�k 
qX

j=1

sin2(↵j)  " .

we can bound the fidelity of the RM in the state preparation after total q steps,

Pr(q) � 1� "� 2""0

(1� ")(1� "0) . (5.24)

The factor "0 demonstrate how well the randomisation evolution simulates the
projective measurements, and the case when "0 = 0 agrees with the perfect mea-
surement scenario.

5.3.3 Total cost

Based on the bound of the final fidelity in Eq. (5.24), we can choose a constant "0

to achieve the desired error or infidelity which is of the order of ". For example, the
PDF of randomised time steps can be a normal distribution f(t) with standard
deviation of order 1/�. Then, the Fourier transform of f(t), which is a normal
distribution with standard deviation of order �, implies a constant upper bound
"0 (Eq. (5.19)). In this case, the average cost per step of the RM is of order 1/�.
Multiplying the average cost per step by the total number of steps in Eq. (5.14),
an upper bound of the total average cost of the RM can be reached,

(L⇤)2

"�
 0 max

s

kḦk+ 2kḢk
"2�2(s)

, (5.25)

for general interpolations (Sec. 5.2.1). The prefactor 0 ⇡
p
2/⇡ is also con-

stant [107]. For specific Hamiltonians or interpolations, such an upper bound can
be further improved as in Secs. 5.2.2 and 5.2.3. Previous research provides an
upper bound of the cost, which is on the order of maxs[log(1/�)/�3] in Ref. [107].
In terms of the gap dependence, our result in Eq. (5.25) is significantly improved.

5.4 Applications

Our method can apply to many problems in physics, optimization, and quan-
tum information, and new improved bounds for eigenpath traversal will help to
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demonstrate quantum speedups in many cases. In this section, we take two im-
portant examples to demonstrate polynomial quantum speedups by applying our
method.

5.4.1 Preparation of projected entangled pair states

Projected entangled pair states (PEPS), a computational variational state that
generalise matrix product states to higher spatial dimensions, can be interpreted
as pairs of maximally entangled states which are supported in subspaces of pro-
jected auxiliary systems [80, 82, 159, 160]. The extensions from one-dimensional
MPS to PEPS lead to many applications, like variational methods for finding
the ground state of spin systems. This feature of PEPS can be applied to solv-
ing combinatorial optimization and quantum information problems, and ground
state preparation is essential for such problems. With the interest in PEPS, recent
techniques have been proposed for the preparation of exact PEPS on a quantum
computer [137, 158]. In terms of the preparation of PEPS, the key property
is that they can be realised as the ground states of a certain configurations of
frustration-free Hamiltonians. Having the improved bound of the RM obtained
previously, we can analyse the cost of PEPS preparation. Here we assume a
frustration-free Hamiltonian path as H(s) =

P
L

k=1⇧k(s) and the ground state
| i with corresponding eigenvalue 0. Applying the results of Sec. 5.2.3 we obtain
a cost for the RM upper bounded by

TRM  max
s

LkḦk
2"�

.

This cost of the RM can be improved further by the spectral gap amplification
technique [158] constructing the related Hamiltonian

H 0 =
p
k⇧k

LX

k=1

p
⇧k ⌦ [|ki h0| + |0i hk|] ,

where we introduce an ancillary system and |ki, k = 0, 1, . . . L specifies an or-
thonormal basis of this ancillary system. H 0 then has | i ⌦ |0i as the ground
state, the spectral gap �0 has a lower bound on the order of the square root
of that of, �0 �

p
�k⇧k, where k⇧k = maxk k⇧kk. We refer to Ref. [158] for

detailed analysis of the full spectrum and properties of H 0. Then when we have
the access to

p
⇧k, we can apply the randomised time evolution of the RM using

H 0 instead. In each step, the average time cost is of order 1/�0 / 1/
p
�k⇧k,
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which results in an overall time cost upper bounded by,

0 max
s

kḦk
2"k⇧k1/2 ⇥

1

�3/2
. (5.26)

By applying the same technique, an improved bound on the cost in comparison
with other eigenpath traversal methods [108] can be achieved

0 max
s

q
kḦk/2⇥ log(

q
kḦ/(2�)/")

"k⇧k1/2 ⇥ 1

�
. (5.27)

This bound (5.27) is derived from Eq. (5.2) in the case of c = 1, replacing � by
�0 and L by L⇤ as in Eq. (5.9). This bound of the cost is proportional to the
inverse of the gap T / 1/�, which is known as the quantum metrology limit. On
the other hand, the requirement of the access to

p
⇧k can be satisfied for many

frustration-free Hamiltonians, for example, when the terms ⇧k are projectors andp
⇧k = ⇧k.

5.4.2 Quantum simulated annealing

Combinatorial optimisation problems is a topic consisting of finding an optimal
configuration from a finite set. Simulated annealing (SA), a probabilistic method
for approximating the global optimum with a given objective function, is usually
applied to solve such problems. In practice, SA is implemented via Markov-
Chain Monte Carlo techniques. For example, to find the global minimum of a
given objective function E, SA generates a stochastic sequence of configurations
� at each step. During the annealing process, the probability of a system being in
the configuration � with the given function E, at inverse temperature �i satisfies
the Boltzmann distribution.

P� =
1

Z e��iE[�] (5.28)

Then apply random perturbation to the configuration and generate �0. If E[�0] <
E[�], then the configuration is updated to �0, otherwise, accept the new configu-
ration with probability P = exp(��i(E[�0]�E[�])). After the number of updates
satisfies a criterion, the inverse temperature increases to �i+1. As the end of the
evolution, the configurations converge to the Gibbs distribution determined by
the inverse temperature �q, where q is the total number of time steps, and the
objective function is E. In the limit of �q � 1, the final sequences are sampled
from the Gibbs distribution that is dominated by the configuration � that min-
imises the function E [161]. The annealing process is specified by the annealing
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schedule of inverse temperature �0 = 0 < �1 < . . . < �q, where q is a finite
constant determining the cost of the method. An upper bound of this number
is O(max� 1/�(�)), where �(�) is the spectral gap of the stochastic matrix. A
recent proposed quantum algorithm [109] provides an approach to sample from
the same Gibbs distribution, using the RM to traverse a path of states | (�)i.
The quantum state | (�)i contains the information of the corresponding Gibbs
state that encodes the amplitudes with the probabilities. It is defined as

| (�)i = 1p
Z

X

{�}

e��E[�]/2 |�i , (5.29)

where Z =
P

{�} exp(��E[�]) is the partition function, the |�i is the quantum
state represents the configuration � and forms an orthonormal basis {|�i}.

In previous research [109], the time cost of the quantum algorithm was of the
order of

max
�

q log q/
p
�(�) (5.30)

with q = �2
q
E2

M
/(4") and EM is the maximum of absolute value of E[�]. "

represents the overall error (in the probability that the configuration does not
minimize E) and q is the number of points in the discretization of annealing
schedule. Previously, a bound of the value of q was related to the eigenpath
length L, defined L =

R
�q

0 d�k |@� (�)i k, q � L2/". Comparing the results
from Ref. [109], the bound of the cost (5.30) has a square root improvement over
the classical method (O(max� 1/�(�))) in terms of the spectral gap �(�). In
the cases where �(�) is small, the advantages of the improved bound will be
considerable.

Furthermore, we can apply our new results for the discretisation schedule and
eigenpath length in Sec. 5.3 to reach a better bound on the cost of the RM for
this problem. From the Eq. (5.14), we could write the formula of the number of
steps of the RM, q⇤, by changing variables ds = d�/�q. That is,

q⇤ =
�q
"

Z
�q

0

d�k |@� (�)i k2 . (5.31)

For a constant probability error ", �q is proportional to the value of log(1/")/�,
where � is the minimal gap of the range of E.
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The eigenpath in QSA is determined by the definition of the quantum state
| (�)i (5.29). The di↵erential of the quantum state with respect of � is

|@� (�)i =
1

2

"
hEi | (�)i � 1p

Z

X

�

E[�]e��E[�]/2 |�i
#

, (5.32)

where

hEi = 1

Z
X

�

E[�]e��E[�]

is the ensemble average for the energy E at inverse temperature �. Because {|�i}
is an orthonormal basis, Eq. (5.32) can be written as

k |@� (�)i k2 =
1

4

X

�

(hEi � E[�])2 ⇥ e��E[�]

Z

=
1

4

�
hE2i � hEi2

�
,

This equation connects the rate of change of the state with the thermodynamic
fluctuations of E. On the other hand, the di↵erential of the ensemble average of
the energy function is also related to the fluctuations,

@�hEi = @�
1

Z
X

�

E[�]e��E[�]

=
�@�Z

Z2

X

�

E[�]e��E[�] � 1

Z
X

�

E2[�]e��E[�]

= hEi2 � hE2i ,

and therefore, the changing rate of the quantum state is

k |@� (�)i k2 = �
@�hEi

4
. (5.33)

This result of Eq. (5.33) provides the new bound of the number of steps needed
in the RM. Substitute Eq. (5.33) into the integral of Eq. (5.31), we obtain

q⇤ =
�q(hEi0 � hEi�q)

4"
.

In addition, we shift the value of E to satisfy hEi0 = 0. In many cases, for
instance, where E describes a Ising mode this condition is already satisfied. In
the limit of �q � 1, the ensemble average value of the given function converges
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to the minimal value, hEi�q ⇡ �EM and the total number of steps becomes

q⇤  �qEM

4"
.

To sum up, our improved average cost of the RM for the QSA problem is

TQSA = 0 max
�

�qEM

4"
p
�(�)

(5.34)

where 0 is a small constant. The new results for the cost of our algorithm (5.34)
demonstrate a better performance compared with the previous cost given by
Eq. (5.30), which is of order

max
�

�2
q
E2

M
log(�2

q
E2

M
/")

"
p
�(�)

in the large EM and �q limit.

In this section, we demonstrated two applications of the randomisation method
with the improved bound on the cost and the discretisation, and compared our
new results to previous research.

5.5 Conclusions

In this chapter, we presented an improved upper bound for the length L of the
eigenpath traversed by the changing eigenstates of time-dependent Hamiltonians.
The new bound is of the order of the square root of that in previous research. It
results in an overall improvement of the average cost of adiabatic state transfor-
mations with randomised time evolutions. The average cost of the randomisation
method is of the order of 1/�2, which shows a significant speed up or improved
bound compared with conventional AQC, which has the cost upper bounded by
a value of the order of 1/�3. In the cases of frustration-free systems, the average
cost of the randomisation method can be further improved to the order of 1/�3/2,
by applying the spectral gap amplification technique. The minimal spectral gap
� throughout the adiabatic state transformation can be very small, thus the ran-
domisation method provides an alternative to improve the transformation with
proven lower cost.

We also conducted a detailed error analysis of the randomisation method on the
two cases of perfect simulated measurements and imperfect measurements. The
result of a lower bound of the final fidelity has a correction term when imperfect
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measurements are performed, and this correction term is proved to be of the same
order as the error with perfect measurements with a reasonable prefactor. So we
proved that the randomised evolution can perform weak measurements with a
constant multiplicative factor, and result in a reasonable final fidelity of state
preparation with bounded error. This is improved from the requirement that
the reduction on coherences shall depend on the eigenpath length in previous
research, and eliminates the logarithm term in the average cost.

Although we compare upper bounds of the randomisation method and the adia-
batic quantum computing method in terms of the gap dependence, it still remains
open to show how generic the advantages are. For example, in the case that the
AQC as a cost in the order of 1/�3, then the randomisation method has a clear
advantage. Compared to the cost of quantum adiabatic approximations, we pro-
vide a eigenpath traversal method that performs at a lower cost in terms of the
gap, which is hard to improve in previous methods [149, 150, 162, 163], .

Another contribution we made, is that the improved bound on the eigenpath
length can be applied to other eigenpath traversal methods such as that in Ref.
[108], and obtain a lower cost. We demonstrated an example that our bound on
the eigenpath length provides a cost in the order of 1/�3/2 in general and if the
system can be described by frustration-free Hamiltonians, the cost is in the order
of 1/�.



Chapter 6

Adiabatic state preparation in
the presence of classical noise

An important challenge for experiments with ultra-cold atoms is the prepara-
tion of low-temperature many-body states which are sensitive to the temperature
and the environment. One possible route is via the technique of adiabatic state
preparation. However, the influence of classical noise in these adiabatic dynamics
remains unclear. At the same time, the adiabatic condition as shown in Eq. (2.38)
implies that adiabatic state preparation requires long timescales to satisfy the adi-
abatic approximation. It is therefore very important to find the optimal regimes
for adiabatic state preparation.

In this chapter, we adapt the idea of the recently proposed eigenpath traversal
method, the randomisation method [69] to the context of adiabatic state prepara-
tion in the presence of classical noise. The randomised time evolution mentioned
in Ref. [69] can be described as an adiabatic state transformation under a time-
dependent noisy Hamiltonian where the noise term is proportional to the original
Hamiltonian. Recent research [121] proposed a dressed lattice scheme that can
engineer the amplitude noise of optical lattices to realise such noise. We demon-
strate that by introducing proper noise we can improve the final fidelity of the
state preparation, especially when the evolution time is limited, taking the ex-
amples of the one-dimensional Bose-Hubbard model with ramps from the Mott
insulator phase to the superfluid phase and also comparing this to an analytical
study of a two-level system. We also consider the cases when the noise is not
perfectly implemented and show the robustness of state preparation to imper-
fect noise, and characterising the resulting heating and dephasing for many-body
states. We compute the corresponding dynamics using the stochastic many-body
Schrödinger equation and master equation approaches as introduced in Chap. 4.

83
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6.1 Introduction

The essence of the randomisation method from Chapter 5 is to simulate projec-
tive measurements in each time step onto an instantaneous eigenbasis through
dephasing. During the time evolution, the time step is �t(1 + x) where x is a
random variable of a certain probability distribution function (PDF) f(x) with
finite variance, such as a Gaussian distribution. At the time ti, the equation of
motion can be written as

| (ti)i = exp[�iH(ti)�t(1 + x)] | (ti � �t)i . (6.1)

If the system cannot evolve back in time, then 1 + x > 0 should be considered
when choosing f(x). Then we can calculate the average e↵ect on the system as
reductions in o↵-diagonal elements of the density matrix in the basis of Hamil-
tonian eigenstates, applying a multiplicative factor less than 1 to these elements.
Representing the evolving quantum state in the eigenbasis {�j(ti)} of the instan-
taneous Hamiltonian H(ti),  (ti � �t) =

P
j
cj�j(ti), the average state of the

system after the randomised time evolution is

⇢(ti) =
X

jk

⌘jkcjc
⇤
k
|�j(ti)i h�k(ti)| ei�jk�t , (6.2)

where �jk(ti) is the energy di↵erence between the kth and jth eigenstates, and
�jk(ti) = Ek(ti) � Ej(ti). The multiplicative factor ⌘jk is defined as ⌘jk =R
dxf(x) exp(i�jkx�t) which is the Fourier transform of probability distribution

function f(x). For instance, when the PDF of x(t) is Gaussian with a standard
deviation �, f(x) = (2�2⇡)�1/2 exp(�x2/�2), the multiplicative factor applied
on the o↵-diagonal terms is ⌘jk = exp(��2

jk
�t2�2/4) < 1 and for the diagonal

terms, ⌘jj = 1. By calibrating the probability distribution function carefully,
the multiplicative factor of o↵-diagonal elements in instantaneous eigenbasis can
be close to zero, and the diagonal terms remain invariant. These average e↵ects
can be interpreted as simulating projective measurements onto the instantaneous
eigenbasis. By applying repeated projective measurements, the coherent process
of exciting the system to higher energy states is inhibited.

Although the results in Chapter 5 for the upper bounds of time cost show a
speed-up over conventional adiabatic state transformations in terms of the gap
dependence, the advantages of having randomised time evolution in adiabatic
state preparation have not yet been clearly demonstrated for specific example
problems.

This inspires us to develop an interpretation of an adiabatic process with classical
noise in the system to realise the idea of the randomisation method. With classical
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noise involved in the system of interest, the total Hamiltonian consists of two
components, Hsys = H0+A⇠(t), where H0 is the originally designed Hamiltonian
and A is a hermitian operator. Here we characterise the classical noise as a white
noise, and ⇠(t) is the Wiener increment, with the correlation function h⇠(t)⇠(t0)i =
�(t � t0). The relation between the randomisation method and the adiabatic
state preparation in the presence of classical noise can be established when the
classical noise is proportional to the original Hamiltonian up to a constant ↵,
A = ↵H0. Thus, the noisy Hamiltonian is Hsys = H0 + ↵H0⇠(t) = H0(1 +
↵⇠(t)). The equation of motion of the adiabatic process then becomes a stochastic
Schrödinger equation, d | (t)i /dt = �iH0(1+↵⇠(t)) | (t)i, and it is analogous to
the randomisation method replacing x! ↵⇠(t). This transformation provides an
alternative way to realise the randomisation method, and suggests the possibility
to enhance adiabatic state preparation by adding noise.

In the next sections, we present numerical simulation results for a Bose-Hubbard
model with amplitude noise, showing that the tailored noise can improve the
final fidelity in adiabatic state preparation. We also conduct simulations with
imperfect implementation of the noise, and observe robust behaviours of the final
fidelity. To understand the behaviour of the fidelity for noise not proportional
to the Hamiltonian, we conduct analytical calculations in general and for the
Bose-Hubbard model. From the study of similar behaviours of fidelities of the
adiabatic process in two-level systems, we are able to understate how classical
noise a↵ects the adiabatic process in more detail.

6.2 Bose-Hubbard model with noise proportional
to the Hamiltonian

In this section, we take the Bose-Hubbard model with the noise proportional to
the original Hamiltonian as an example and present numerical results that show
improvement of the final fidelity in preparing the ground state in the superfluid
phase. The simulations are conducted for both small systems with varying evolu-
tion time and noise strength, and for large systems with limited evolution time.
The simulations are based on the stochastic Schrödinger equation evolution and
density matrix renormalisation group methods.

In the experimental set-up of optical lattices, the fluctuation of laser intensity is
inevitable, and such fluctuations can result in a global amplitude noise in lattice
depth. The corresponding optical lattice potential V (x) = V0(x) + �V (x, t) then
fluctuates around the designed value V0(x). Depending on the individual experi-
mental set-up, the spectrum of the noise will lead to di↵erent heating processes.



Chapter 6. Adiabatic state preparations in the presence of classical noise 86

Dealing with noise with frequencies of the order of the Bloch band separation
will cause inter-band transitions. For the cases that noise with frequencies of
the order of the hopping amplitude J and the interaction coe�cient U , intra-
band heating will dominate the dynamics. For small fluctuations, we are able
to approximate the Hamiltonian of the first order expansion with respect to the
fluctuation and derive the formulae for the coe�cients, for instance, the hopping
coe�cient J(V (t)) ⇡ J0(V0) +

dJ

dV
�V (t). The Hamiltonian with amplitude noise

in the system can be expressed as the following:

HBH(J, U) = �J
X

hi,ji

b†
i
bj +

U

2

X

i

ni(ni � 1) , (6.3)

Hsys = HBH(J0 +
dJ

dV
�V, U0 +

dU

dV
�V ) , (6.4)

= H0 +H1�V (t) . (6.5)

whereH0 = HBH(J0, U0) denotes the designed Hamiltonian andH1 = HBH(
dJ

dV
, dU

dV
)

denotes the noise operator. During the adiabatic state transformation, we assume
that the fast fluctuation approximation holds in the white noise limit. The corre-
lation function of the white noise is then h�V (t)�V (t0)i = 2��(t� t0), where 2� is
the spectral power of amplitude noise. In the situation that the noise is propor-
tional to the original Hamiltonian, the time-dependent system Hamiltonian can
be expressed as,

Hsys(t) = H0(t) +H0(t)
p
2�⇠(t) , (6.6)

where � can be considered as the strength of the white noise. In the presence of
noise proportional to the original Hamiltonian, the Schrödinger equation becomes
a multiplicative stochastic di↵erential equation (MSDE) and the stochastic aver-
age of the dynamics is a mixed state. From the analytical calculation of Sec. 4.2,
the equation of motion for the averaged density operator, ⇢(t) takes the Lindblad
form of the master equation:

d | (t)i
dt

= �iH0(t)(1 +
p
2�⇠(t)) | (t)i , (6.7)

⇢̇(t) = �i[H0(t), ⇢(t)]� �[H0(t), [H0(t), ⇢(t)]] . (6.8)

Taking the noisy Bose-Hubbard model as an example, we simulate the adiabatic
state preparation of the ground state of the superfluid (SF) phase (U0/J0 = 2),
from the Mott insulator (MI) phase (U0/J0 = 10). The ramping of the interactive
parameter is linear g(t) ⌘ U0(t)/J0 = 10 � 8t/T where T is the total evolution
time. The particle number is conserved throughout the adiabatic process and has
the same value as the number of sites. In the beginning, the system is in the
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ground state of the MI phase |�MIi such that particles tend to be localised on
each site, then we drive the system under the stochastic Schrödinger equation via
sampling the random number from a normal distribution where the variance is the
size of time step dt to represent ⇠(t)dt. After one sequence of time evolution, we
calculate the fidelity F between the system and the ground state of the superfluid
phase |�SF i, F = | h (T )|�SF i |2. We repeat this calculation to obtain the average
of final fidelities and stochastic errors.

First we simulate the dynamics of a small system with 8 particles and 8 sites,
when the ground states in the MI phase and the SF phase can be calculated via
exact diagonalisation. The numerical simulations include variations of the evolu-
tion time and the noise strength, and the behaviour of the fidelities is shown in
Fig.6.1. The results of the adiabatic state preparation without the noise is plot-
ted on the left edge with di↵erent TJ0 for comparison. From there, we note that
achieving a better fidelity requires longer ramping time for the adiabatic condi-
tion to be satisfied. When the ramping time is limited, non-adiabaticity domi-
nates the process and the final fidelity of state preparation is reduced. The near
edge of the plot shows the fidelity behaviour when the evolution time is limited
(TJ0 = 1). It can be clearly observed that when adding noise proportional to the
original Hamiltonian, the noisy processes outperform the conventional adiabatic
state preparation. As we increase the strength of the noise, the corresponding
fidelity grows as well. From the direct relation to the randomisation method,
the strength of the noise proportional to the Hamiltonian is related to the vari-
ance of the PDF of the random variable. Therefore, increasing the noise strength
enhances simulated projective measurements onto the instantaneous eigenbasis,
and results in the quantum Zeno e↵ect that suppress coherent processes due to
non-adiabaticity.

As the system size grows, the minimum gap of the Hamiltonian (at least near the
critical point) usually decreases algebraically. To achieve a high fidelity of state
preparation, it consumes considerable time to satisfy the adiabatic theorem. In
practice, the enormous time cost is problematic to experiments due to the limited
coherence time of a complex system. We continue our numerical simulation with
a larger system of the Bose-Hubbard model of 16 particles and 16 sites, to prepare
the ground state of the superfluid phase (U0/J0 = 2), from the ground state of
the Mott insulator (U0/J0 = 10). The ramping of the interactive parameter g is
linear in time and has the same form of the small scale simulation. We obtain the
ground states of the superfluid phase and the Mott insulator phase via imaginary
time evolution using TEBD methods. The time evolutions of the quantum state,
which is in the form of a matrix product state, are repeated 100 times to obtain
average fidelities and stochastic errors. Fig. 6.2 shows our results for limited time
evolution TJ0 = 1. Again, introducing certain noise helps to prepare the target
state. As the ramping time is limited, the noise-free case achieves a poor fidelity



Chapter 6. Adiabatic state preparations in the presence of classical noise 88

6

TJ0
42010

Noise strength Γ/J0
86420

0.8

0.5

0.6

0.7

1

0.9
F
id
el
it
y

Figure 6.1: Final fidelites of adiabatic state preparations, obtained from
exact diagonalisation calculations of the Bose-Hubbard model of 8 particles
and 8 sites. Data points are averaged values over 100 runs, dt = 10�3, and
statistical error bars are shown only on the near edge. This plot shows the
fidelities of adiabatic state preparation under di↵erent ramp times (TJ0) and
noise strengths (�/J0). The initial state is the ground state of the Mott in-
sulator phase (U0/J0 = 10), and evolves under the noisy Hamiltonian with
the time-dependent parameter g(t) ⌘ U0(t)/J0 = 10� 8t/T . The fidelity F is
between the evolved state | (T )i after time T and the ground state of super-
fluid phase (U0/J0 = 2) |�SF i, F = | h (T )|�SF i |2. The left edge of this plot
where � = 0 shows the noise-free cases, and it demonstrates how the fidelites
change along with increasing evolution time. In the limited ramp time regime,
for example TJ0 = 1, the adiabatic condition is not fulfilled throughout the
adiabatic process and that results in a poor final fidelity at the end of the
ramping. The near edge of this plot shows that in the limited time regime,
introducing noise proportional to the original Hamiltnonian induces the quan-
tum Zeno e↵ect which enhances adiabaticity. This results in an improvement
of final fidelities that normally requires longer ramping time in noise-free sit-
uations. In the situation that ramping time is long (shown at the back of the
plot), the behaviour of the fidelity requires more discussions.

F ⇡ 0.19. However, with the help of noise proportional to the Hamiltonian, the
final fidelity increases as the noise gets stronger.

Our numerical simulation results for the noisy adiabatic state preparation of the
small system and the large system of the Bose-Hubbard model show that in-
troducing certain noise will improve the fidelities in certain regimes, especially
when the ramping time is limited. The classical noise proportional to the original
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Figure 6.2: Final fidelities of adiabatic state preparation, obtained from
DMRG calculations of the Bose Hubbard model of 16 particles and 16 sites.
This plot shows the fidelities of adiabatic state preparations under the same
ramping time TJ0 = 1 with di↵erent noise strengths. The initial state is the
ground state of Mott insulator (U0/J0 = 10), and the final fidelity is compared
with the ground state of superfluid phase (U0/J0 = 2). The data point is av-
eraged over 100 repetitions, and the convergency of the time step dt = 10�5

and the bond dimension D = 128 have been checked. When the ramping time
is limited (TJ0 = 1), the fidelity of the noise-free case (� = 0) is less than
0.20, and the non-adiabaticity is predominant in the process. By introducing
the noise proportional to the original Hamiltonian, we can observe an improve-
ment of fidelities shown as the points with error bars. As the noise strength
grows, the quantum channel e↵ectively performs better simulation of projective
measurements onto instantaneous eigenbasis throughout the adiabatic ramp-
ing, thus performing the quantum Zeno e↵ect to enhance adiabaticity.

Hamiltonian introduced to the system can perform average e↵ects simulating pro-
jective measurements onto the instantaneous eigenbasis. This behaviour induces
a quantum Zeno e↵ect and suppresses non-adiabaticity caused by the limited
ramping time. Taking an example of the adiabatic state preparation in the Bose-
Hubbard model with amplitude noise, we demonstrated how final fidelities can
be enhanced especially in the limited ramping time regime. Although certain
constraints on the noise should be satisfied to achieve such improvements, we will
show how to engineer the noise proportional to the Hamiltonian in optical lattices
in the next section, and demonstrate the robustness of fidelities against imperfect
implementations of the scheme.
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6.3 Experimental implementation of noise pro-
portional to the Hamiltonian and robust-
ness against imperfect implementation

In this section, we discuss the condition required to introduce noise proportional to
the Hamiltonian in the context of the Bose-Hubbard model with amplitude noise
in optical lattices. Then, we will present numerical simulations in the limited
ramping time regime where the noise proportional to the Hamiltonian shows the
advantages for preparing the target state but with imperfect implementations.
We will demonstrate the robustness of the method and present the interesting
e↵ect that the maximum fidelity does not always occur when the noise is exactly
proportional to the Hamiltonian.

6.3.1 Engineering the amplitude noise

In the previous Sec. 6.2, we discussed the e↵ect of classical noise during the
adiabatic process. From numerical simulation results, introducing classical noise
which is proportional to the original Hamiltonian will provide improvements of
state preparations, especially in the case of limited ramping time. The condition
of such results relies on the dependencies of the hopping rate J and the on-
site interaction coe�cient U on the fluctuation of depth of optical lattices V .
However, fine control of noise cannot be realised easily in most of experiments.
In this section, with help of a recent proposal of a dressed lattice scheme, we
indicate how to engineer the noise proportional to the Hamiltonian in optical
lattices and later demonstrate the robustness of noisy adiabatic processes under
imperfect implementation of this control.

Starting with the condition of the noise proportional to the Hamiltonian, i.e.
H1 / H0, we acquire the requirement of the dependency of coe�cients on the
amplitude fluctuation

1

J0

dJ

dV
=

1

U0

dU

dV
. (6.9)

In general, the amplitude noise in conventional experiments would induce heating
e↵ects to the system. A computed heating rate [121] in the presence of the
amplitude noise in a static designed Hamiltonian shows the relation between the
noise strength and the heating rate in the white noise limit. We denote the
tunnelling components as HJ = �J

P
b̂†
i
b̂j, and the interaction components as
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HU = U

2

P
n̂i(n̂i � 1). The heating rate can be expressed as

hḢsysi = �
✓

1

J0

dJ

dV
� 1

U0

dU

dV

◆2

h[[HJ , HU ], HJ ]i . (6.10)

In the experiments, as the depth of optical lattice increases, the on-site interaction
is enhanced, dU/dV > 0; on the other hand, tunnelling becomes unlikely to
happen, dJ/dV < 0. That is the reason why in general, the heating rate is
positive and introducing noise will heat up the system, which reduces the final
fidelity of adiabatic state preparation.

From the heating rate (6.10) and the condition that noise is proportional to the
Hamiltonian (6.9), we understand that the noise proportional to the Hamiltonian
will introduce no heating to the system. With the help of the proposed dressed
lattice scheme [121, 122], we can engineer an e↵ective Hamiltonian with additional
optical lattices, and coupling between ancillary energy levels and original atom
levels. Thus the noise proportional to the Hamiltonian (Eq. 6.9) can be realised,
as we discussed in Sec. 3.4.

In this section, we introduced the condition of noise proportional to the Hamilto-
nian (6.9), the di�culties of realising such noise. Using the dressed lattice scheme
introduced in Sec. 3.4, we can realise such noise in optical lattices. In the next
section, we will demonstrate simulations that use this noise engineering technique
to improve fidelities of adiabatic state preparations and the robustness of systems
against imperfect implementations of the dressed lattice scheme.

6.3.2 Robustness against imperfect implementation

As mentioned in Sec. 3.4, with the help of the dressed state scheme to tailor
amplitude noise, we are able to improve the fidelity of adiabatic state prepara-
tions in the Bose-Hubbard model. Taking an example of one situation that might
occur in experiments, we will demonstrate behaviours of systems under imper-
fect implementation to show the robustness and explain the phenomena in later
sections.

We can parameterise the correlations between the noise on J and U by ✓,� to
simplify calculations, where

p
2�dU/dV

U
= � sin2 ✓,

p
2�dJ/dV

J
= � cos2 ✓ when ✓ 2

[0, ⇡/2). The heating rate in this representation can be expressed in parameter
space of ✓ as

hḢsysi /
⇣
✓ � ⇡

4

⌘2
(6.11)
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This defines a sweet spot in the parameter space of ✓, ✓sw = ⇡/4, where intro-
ducing noise will cause no heating and the white noise term H1 / H0. Consider
the situation that the system sits close to the sweet spot, but with a small o↵-
set �✓, that is ✓ = ⇡/4 + �✓. Then the heating rate is proportional to second
order of �✓, hḢsysi / �✓2. In these cases, the heat introduced to the system
will jeopardise the adiabatic state preparation by exciting the system to excited
states. Competition between heating and the dephasing e↵ect that suppresses
the non-adiabaticity, might result in unknown behaviours of the final fidelities
which interest us most. We conduct numerical simulations in these cases for both
a small system and the large system visited in the previous section 6.2 to un-
derstand the reactions of the system with the classical noise with both heating
e↵ects and dephasing e↵ects.

First, we simulate similar adiabatic state preparations of a small system of 4
particles in 4 sites in the Bose-Hubbard model with di↵erent values of the noise
o↵set. In the representation of ✓ space, we rewrite the Hamiltonian as

Hsys(t) = H0(t) + (2 cos2 ✓HJ + 2 sin2 ✓HU(t))
p
2�⇠(t) . (6.12)

where H0(t) = HBH(t), and HJ and HU are as in Eq. (6.10). The simulations are
done via the master equation approach with exact diagonalisation. Fig. 6.3 shows
the final fidelities of the adiabatic state preparation for a ramping time TJ0 = 0.1
(Fig. 6.3(a)) and TJ0 = 1 (Fig. 6.3(b)). In Fig. 6.3(a), the noisy system (blue line)
still has better fidelities than the noise-free case (black line), within the range of
the o↵set �/�sw 2 [�0.1, 0.1] and the noise strength � = J0. When the o↵set is
negative �✓ < 0, the fidelity increases as the noise is further away from the sweet
spot and reaches the maximum value around �/�sw = �0.09. This behaviour
is not symmetric around the sweet spot. When the o↵set is positive, the further
away from the sweet spot, the worse the fidelity it achieves in the end. For the
case of a longer ramping time shown in Fig.6.3(b) TJ0 = 1, similar behaviour
happens for positive o↵sets, but for negative o↵sets, there is an optimal choice
of noise set-up ✓opt that gives the maximum fidelity under this circumstance. In
the range of o↵sets �✓/✓sw 2 [�0.05, 0.04], the adiabatic state preparations show
better performances over the noise-free case, thus the robustness against imperfect
implementations is observed. As ramping time grows longer, the ✓opt shifts to the
sweet spot.

The fact that adiabatic state preparation with noise not proportional to the
Hamiltonian outperform the noise-free evolution can be explained by understand-
ing that the quantum Zeno e↵ect can still suppress heating e↵ect in that regime.
However, the phenomenon that an optimal set-up occurs at negative o↵set regimes
and the shift of such optimal o↵set still remains unclear.
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Figure 6.3: Final fidelities of adiabatic state preparation, obtained from ex-
act diagonalisation simulations of the Bose-Hubbard model of 4 sites and 4
particles. The system starts with the ground state of the Mott insulator phase
(U0(0)/J0 = 10), and evolves under the noisy Hamiltonian that ramps linearly
g(t) ⌘ U0(t)/J0 = 10 � 8t/T to the superfluid phase. The fidelities are be-
tween the system and the ground state of the superfluid phase (U0(T )/J0 = 2).
Plots correspond to situations with di↵erent ramping times TJ0 = 0.1 (a) and
TJ0 = 1 (b), while the noise strength is � = J0 for both cases. Imperfect en-
gineering of the noise proportional to the Hamiltonian will lead to noise being
outside the sweet spot (�✓ = ✓ � ⇡/4). The noisy Hamiltonian is expressed
as Hsys(t) = H0(t) + (2 cos2 ✓HJ + 2 sin2

✓HU (t))
p

2�⇠(t), where HJ and HU

are the kinetic and interactive components of the Bose-Hubbard model. Black
lines show the fidelities of noise-free cases in each case. Blue lines represent
the fidelities of noisy adiabatic state preparations with di↵erent values of the
o↵set. Even if the implementation is imperfect, the noise can still improve the
fidelity in some regimes. In the short ramping case (a), the fidelites reach the
maximum value at �/�sw = �0.09, and decrease as the o↵set varies from zero
to a positive value. Overall, the fidelities of noisy cases are still higher than
the noise-fress case, which shows the robustness against the imperfect imple-
mentation of the noise proportional to the Hamiltonian. For the long ramping
time, the noise-free cases perform a reasonable state preparation F ⇡ 0.85 and
introducing noise can not provide much help even at the sweet spot. When
the noise is tilted to negative o↵set, �✓ < 0, the system performs with better
fidelity than at the sweet spot. For both cases, the ✓opt that gives the maximum
fidelity is less than ✓sw, and as the ramping time T increases, �✓opt = ✓opt�✓sw
shifts to 0.

To check that this phenomenon is not caused by the limited size of system, we
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conduct simulations for a larger system with 16 particles and 16 sites. The simula-
tions are in the parameter regime of noise strength � = 2.25J0, and we investigate
two cases with di↵erent values of evolving time (TJ0 = 0.1, 1), shown in Fig. 6.4.
Similar to the results of the small system calculations, the optimal choice of o↵set
is negative, and as the ramping time grows, the optimal o↵set shifts back to the
sweet spot.
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Figure 6.4: Final fidelities of adiabatic state preparation, obtained from
DMRG calculations of the Bose Hubbard model of 16 particles and 16
sites. In the plot, it shows fidelities of adiabatic state preparations with
the noise strength � = 2.25J0 but di↵erent ramping times TJ0 = 0.1 (a)
and TJ0 = 1 (b). We investigate the cases mainly with negative noise o↵-
sets �✓ = ✓ � ⇡/4 < 0 from the sweet spot. The noisy Hamiltonian is
Hsys(t) = H0(t) + (2 cos2 ✓HJ + 2 sin2

✓HU (t))
p

2�⇠(t), where HJ , and HU

are the kinetic and interactive components of the Bose-Hubbard model. The
system evolves under Hsys(t) from the ground state of the Mott insulator phase
(U0(0)/J0 = 10), to superfluid regimes (U0(T )/J0 = 2). The changing of the
parameter g(t) is linear in time g(t) ⌘ U0(t)/J0 = 10 � 8t/T . The fidelities
are between the final state with the ground state of the superfluid phase. Con-
vergencies of the time step dt = 10�5 and the bond dimension D = 128 have
been checked. The noise is not proportional to the Hamiltonian, which results
in a small o↵set away from the sweet spot. The heating rate is proportional to
the square of the o↵set, and such heat might reduce the final fidelity. When
the noise is tilted to negative o↵set, �✓ < 0, the noisy time evolutions give
better overal fidelities than that of the sweet spot in a certain range. The ✓opt
that gives maximum fidelity is alway less than ✓sw, and as the ramping time T

increases, �✓opt shifts to 0.

The di↵erent values of o↵set for maximum fidelity requires deeper understanding
of the dynamics during the adiabatic state transformation. We will further study
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the Bose-Hubbard model and also a simple two-level system to give an analytical
explanation for this behaviour in next section.

6.4 Adiabatic dynamics with tilted noise

To study how general classical noise a↵ects the final fidelity of adiabatic state
preparation is important yet hard to achieve. Due to the limit of computational
power, it is hard to access the instantaneous eigenbasis using exact diagonalisa-
tion for a large system, as the Hilbert space increases in system size exponentially.
In this section, we assume that the classical noise is close to the designed Hamil-
tonian. As the heating rate is in the second order of o↵set, we keep up to the
second order of o↵set to study dynamics during adiabatic state transformation.
For the Bose-Hubbard model, we present calculations in each timestep, and for
a two-level system that behaves similarly to the Bose-Hubbard model in terms
of fidelities, we present analytical calculations of the final fidelity as a function
of the noise o↵set, and compare it with numerical results of optimal o↵sets for
di↵erent ramping times. From theoretical understanding of the heating and the
dephasing close to the critical point where the minimum gap is and outside of the
critical area, we are able to explain the parabolic-like behaviour of the fidelities of
the adiabatic state preparation with imperfectly implemented noise and provide
insights of the Bose-Hubbard cases analogous to the two-level system.

6.4.1 Study of the Bose-Hubbard model

To obtain a deeper understanding of the noisy process, we calculate the fidelity
of the evolving state to the instantaneous ground state. Therefore, we are able
to keep track of how di↵erent components of the noisy Hamiltonian a↵ect the
fidelity, and observe the dephasing e↵ect to o↵-diagonal terms of density matrix
in the instantaneous eigenbasis. We expand the noise term H1 close to the sweet
spot with respect to �✓. The zero-th order component is equal to the original
Hamiltonian and the first order HN can be expressed as a linear combination of
HJ and HU , i.e.

Hsys(t) = H0(t) +H1(t)
p
2�⇠(t) , (6.13)

H1(t) = H0(t) + 2�✓HN(t) , (6.14)

HN(t) = �HJ +HU(t) . (6.15)
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The equation of motion is the stochastic Schrödinger equation in Stratonovich
calculus as discussed in Sec. 4.2.2.3,

d

dt
| (t)i = �iHsys(t) | (t)i (S)

Expanding the evolving state | (t)i to the eigenbasis of the instantaneous original
Hamiltonian H0(t), we have | (t)i =

P
n
Cn(t) |�n(t)i. {|�n(t)i} denote the

eigenvectors and {Cn} are the complex components. The stochastic Schrödinger
equation can be used to derive to the equation of motion for di↵erent components,

Ċk(t) =
X

n

Cn(t) h�k(t)|� iHsys(t) |�n(t)i

�
X

n

Cn(t) h�k(t)|
d

dt
|�n(t)i (S) . (6.16)

The fidelity is defined as F (t) = Cg(t)C⇤
g
(t), where Cg denotes the complex com-

ponents of the ground state |�g(t)i. Keeping up to the first order of dt, the change
of the fidelity is �F (t) = F (t + dt) � F (t) = [Ċg(t)C⇤

g
(t) + Cg(t)Ċ⇤

g
(t)]dt. By

applying Ito calculus, the stochastic average of the fidelity in the instantaneous
eigenbasis, up to the second order in �✓, is

dF (t)

dt
⇡ �F (t)4��✓2

X

n 6=g

|Hgn

N
|2

�
X

n 6=g

⇢gn{
h�g(t)| d

dt
H0(t) |�n(t)i†

�ng(t)
+ ��✓Hgn

N

+ 2��✓2Hgn

N
�gn

N
(t)] + c.c} , (6.17)

where Hgn

N
= h�g(t)|HN(t) |�n(t)i, the noise o↵set term HN is represented in the

eigenbasis, ⇢nm(t) = cn(t)c⇤m(t), �ng(t) = En(t) � Eg(t) and �
gn

N
(t) = Hnn

N
(t) �

Hgg

N
(t). This formula also neglects the influences of coherent processes between

excited states in the near-adiabatic assumption, thus ⇢nm ! 0, where n,m 6= g
are excited states. The first term shows how heating reduces the fidelity, which is
of the order of �4��✓2. The multiplier of o↵-diagonal terms ⇢nm which represents
the coherent processes between the ground state and excited states is a↵ected by
the non-adiabaticity caused by the changing rate of the Hamiltonian, and addi-
tional noise influences. The dephasing for o↵-diagonal terms can be calculated
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as

d⇢gn(t)

dt
⇡ ⇢gn(t){i�ng �

�

4
�2

ng
+ ��✓�ng�

ng

N
+ ��✓2(�ng

N
)2}

� F (t){
h�g(t)| d

dt
H0(t) |�n(t)i
�ng(t)

+ ��✓�ngH
gn

N
+ ��✓2Hgn

N
�ng

N
} , (6.18)

where we neglect the influence of o↵-diagonal terms in the density matrix ⇢nm,
where n,m 6= g. In this expression of o↵-diagonal terms, it is clear that dephasing
e↵ects reduce non-adiabticity in each time step. The ⇢gn terms on the right-hand-
side generate the dephasing and the F (t) terms represent the occupation leakage
due to the non-adiabaticity and the heating in the state transformation. In the
expression for the multiplier to the ⇢gn term, the term in the first order of �✓
represents how o↵set influences the dephasing e↵ects and the second order term
which represents the heating e↵ect destroys dephasing e↵ects. The o↵set noise
can enhance or reduce the dephasing, depending on the sign of �✓�ng

N
. The last

two terms show how the noise o↵set a↵ects non-adiabaticity.

To summarise the role of tilted noise in the adiabatic state preparation of the
Bose-Hubbard model, the heating e↵ect reduces the final fidelity and reduces the
e↵ects of dephasing. Also, the tilted noise can enhance the dephasing in certain
regimes of the adiabatic process, compensating for the heating e↵ect overall.
According to numerical results shown in Fig. 6.4, there are still some questions
which need to be investigated. To explain the parabolic-like shape of fidelities,
the shift of optimal o↵set to the sweet spot as the time grows, and the advantages
of certain regimes of negative o↵set, requires a deeper understanding of how the
tilted noise a↵ects the system during the adiabatic state transformation and what
the overall e↵ect on the final fidelity is. Although we have the expression for the
fidelity and of the o↵-diagonal terms of the density matrix, obtaining the explicit
overall e↵ect of heating and dephasing e↵ects is hard to achieve. Under the near-
adiabatic approximation, we can approximate that the coherent coupling only
happens between the ground state and excited states, and the coupling between
excited states is suppressed by adiabaticity. In the next section, we will reproduce
the fidelity behaviour caused by the tilted noise and conduct our study of the
overall e↵ect of classical noise from there.

6.4.2 Study of a two-level system

We now consider an exactly solvable system to discuss the role of tilted noise in
the adiabatic state transformation. First of all, we construct a two-level system
in the presence of classical noise to reproduce the parabolic-like behaviour of
fidelities corresponding to tilted noise. The designed adiabatic process is to flip
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the spin of a qubit from negative direction |0i to positive direction |1i of �z. The
noisy system can be characterised as,

H0(t) = J(�x + g(t)�z) (6.19)

g(t) = �10 + 20
t

T
(6.20)

H1(t) = 2J(cos2(✓)�x + g(t) sin2(✓)�z) (6.21)

Hsys(t) = H0(t) +
p
2�⇠(t)H1(t) (6.22)

⇢̇(t) = �[H0(t), ⇢(t)]� �[H1(t), [H1(t), ⇢(t)]] (6.23)

where �i are Pauli matrices. Similar to the setup of the Bose-Hubbard model,
the parameter ✓ prefers a sweet spot ✓sw = ⇡/4 to provide the noise proportional
to the Hamiltonian. By simulating the adiabatic state preparations via a master
equation and exact diagonalisation calculations, we are able to reproduce the same
parabolic-like behaviour as that in the Bose-Hubbard model, shown in Fig. 6.5.

Because the Hilbert space of this two-level system is small, we performed nu-
merical simulations of the adiabatic state preparation using the time evolution
of the master equation ⇢̇(t) = �i[H0(t), ⇢(t)] � �[H1(t), [H1(t), ⇢(t)]] to obtain
exact stochastic average results. The numerical simulation results are presented
in Fig. 6.5. The same parabolic-like shape of the final fidelities and the shift of
optimal o↵sets are reproduced. In the rest of this section, we analyse the dynam-
ics of the system. From analytical results of final fidelities, we are able to explain
the shift of the optimal o↵set. Based on calculations of the dephasing e↵ect and
the heating e↵ect in the eigenbasis of the instantaneous Hamiltonian, we are able
to explain why the optimal o↵set is always negative.

We expand the noise Hamiltonian close to the sweet spot (✓ ⇡ ⇡/4), H1 =
H0+2�✓HN , with HN = ��x+ g(t)�z, and represent the evolving state | (t)i =
c0(t) |�0(t)i+c1(t) |�1(t)i in the instantaneous eigenspace {|�0(t)i , |�1(t)i} of the
original Hamiltonian H0(t). To reduce the complexity of the formula expressions,
we define ↵(t) = c0(t)c⇤0(t) � c1(t)c⇤1(t) and �(t) = c1(t)c⇤0(t), ⌘(t) = c⇤1(t)c0(t).
Under the near-adiabatic condition and strong noise, we assume �̇ = ⌘̇ = 0, and
derive the equation of motion for parameter ↵(t)

↵̇(t) =
↵(t)

16�

✓
� 4ġ2

1

(1 + g(t)2)3
+�✓ġ232

g(t)2 � 1

(g(t)2 + 1)4

+�✓2[�256 g(t)2

(1 + g(t)2)2
+ 128ġ2

(g(t)2 � 1)2

(g(t)2 + 1)5
� 64ġ2

g(t)4 + 1

(g(t)2 + 1)5
]

◆
, (6.24)

where ġ is the linear ramping speed with an absolute value which depends on
the total evolution time T , |ġ| = 20/T . Integrated throughout the time evolution
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Figure 6.5: Final fidelities of adiabatic state preparations, obtained from
exact diagonalisation calculations of two-level system. Plots are of di↵erent
evolution times TJ = 10 (a), 20 (b). The noise strength is � = J , and dt =
10�4. The ramping is linear g(t) = �10 + 20t/T . The master equation of
time evolution is Eq. (6.23). The system evolves from the ground state |�0(0)i
of H0(0), i.e. ⇢(0) = |�0(0)i h�0(0)|. The fidelities are calculated between the
final state and the ground state of H0(T ). These plots show how noise that
close to the sweet spot (�✓ = ✓ � ⇡/4) can a↵ect final fidelities. The heating
e↵ect introduced by noise is proportional to the second order of the noise
o↵set �✓, and the further the noise is away from sweet spot, the more heating
it introduces into the system. When the noise is tilted to negative o↵sets,
�✓ < 0, the system gives better fidelity at the end of the ramp than at the
sweet spot cases in a certain range. The ✓opt that gives maximum fidelity is
alway less than ✓sw. As the ramping time T grows, �✓opt = ✓opt � ✓sw shifts
to 0.

with the initial condition ↵(0) = 1, we obtain

ln(↵(T )) =
1

16�|ġ| [�ġ
23⇡

2
+�✓ġ2(�8⇡) +�✓2(�128⇡ + 11⇡ġ2)] . (6.25)

At the sweet spot, which means �✓ = 0, the expression becomes ln(↵(T )) =
�3⇡|ġ|/32�. Since ex ⇡ 1+x, as x! 0, and since by definition F = (↵(T )�1)/2,
the final fidelity Fsw and tunnelling rate Rsw to the exited state on sweet spot are

Fsw ⇡ 1� 3⇡|ġ|
64�

, (6.26)

Rsw =
3⇡|ġ|
64�

. (6.27)
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Comparing our result to previous results from relevant research [164] on Landau-
Zener tunnelling, we see that the adapted tunnelling rate in our notation is,

Rtunnel =
⇡|ġ|
16�

> Rsw . (6.28)

The improvement is mainly caused by the di↵erent set-ups of the noise term.
In our case, the e↵ective noise strength is greater than or equal to that of the
processes of ref. [164], and the noise proportional to the Hamiltonian suppresses
the coherent tunnelling and reduces the overall tunnelling rate.

Using Eq. (6.25), we obtain the equation of the final fidelity with respect to �✓ up
to second order, the optimal value of noise o↵set and the corresponding fidelity,

F = 1 +
1

32�|ġ| [�ġ
23⇡

2
+�✓ġ2(�8⇡) +�✓2(�128⇡ + 11⇡ġ2)] , (6.29)

�✓opt =
ġ2

�128 + 11ġ2
, (6.30)

Fopt = 1� 1

32�|ġ|

✓
3⇡

2
ġ2 � 16⇡

128� 11ġ2
ġ4
◆

. (6.31)

In the expression for the final fidelity [Eq. (6.29)], the heating is in the second
order of o↵set �✓, while the dephasing e↵ect of the tilted noise is in the order of
�✓ and �✓2. Thus the final fidelity is a parabolic polynomial of the noise o↵set
�✓. From the expression of the optimal o↵set �✓ [Eq. (6.30)], the optimal value
of o↵set is always negative in the adiabatic regime |ġ|⌧ 1, and as ramping speed
|ġ| decreases, the optimal o↵set noise �✓opt ⇡ �ġ2/32 shifts to zero.

To compare analytical calculations with numerical simulations, we run simulations
of di↵erent values of the total time T and the noise o↵set ✓, shown in Fig. 6.6. The
optimal o↵set �✓opt at certain T is determined by fitting the data with second
order polynomial of fidelities (F (✓, ✓2)), and calculating the condition of maximum
fidelity �✓opt(ġ). The error shown in Fig. 6.6 is the fitting error. Simulations are
performed by evolving the master equation using exact diagonalisation methods.
It shows the behaviour of optimal o↵set �✓ changing according to ramping speed
ġ.

The numerical simulation results agree with analytical calculations. The optimal
o↵set is always negative �✓opt < 0. As the speed of the adiabatic ramping
|ġ| ⌧ 1 decreases, the value of �✓opt of maximum fidelity shifts to 0 linearly.
This shift is due to competition between the dephasing and the heating. The
heating introduced into the system accumulates along with the growth of the
ramping time, and the reduction to fidelity by heating e↵ect increases accordingly.
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Figure 6.6: Plots for optimal noise o↵set �opt, obtained from master equa-
tion and exact diagonalisation calculations of two level system (single qubit).
Plot of optimal �✓ which provide maximum final fidelity in two level system
calculation, and analytical result (Eq.6.30). The simulation is under master
equation (6.23). The changing parameter is g(t) = �10 + 20t/T and the noise
strength � = J , dt = 10�4. This figure shows the value of �✓opt that gives
maximum fidelity in the same ramping time, and the behaviour of �✓opt corre-
sponding to di↵erent evolution speeds |ġ|. As the evolution time increases, the
value of ✓opt comes closer to the sweet spot ✓sw = ⇡/4 in both cases. The more
adiabatic the ramping is, the more reduction of final fidelity is done by intro-
ducing heating to the system, which agrees with the shift of ✓opt to the sweet
spot in the previous numerical result. At the sweet spot, the noise proportional
to the Hamiltonian introduces no heating. From the analytic calculation, the
noise with time-independent o↵set has a stronger dephasing e↵ect in the area
|g| ⌧ 1, and then provides more help to suppress the non-adiabaticity result
in compensation of heating throughout the process.

In these cases, the quantum Zeno e↵ect by dephasing can no longer compensates
the reduction of fidelity done by heating e↵ects overall, so the optimal o↵set shifts
to the sweet spot where no heating is introduced to the system.

To understand the preference for the optimal noise o↵set being negative, we focus
on the transformation matrix of the instantaneous state along the adiabatic pro-
cess. From analytical calculations, we are able to gain insight into the dephasing
e↵ect acting on o↵-diagonal elements of density matrix. The equation of motion
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for the evolution of the system can be expressed as

0

@
↵̇(t)
�̇(t)
⌘̇(t)

1

A = U(t)

0

@
↵(t)
�(t)
⌘(t)

1

A , (6.32)

where U(t) is the transformation matrix. We can understand how the noise
a↵ects dephasing e↵ects in adiabatic dynamics, from the dephasing factor U22 on
the coherent term �(t) that dominates the transformation,

U22(t) = ��

4(1 + g(t)2)� 16�✓(1� g(t)2) + 16�✓2

1 + g(t)4

1 + g(t)2

�
+ 2i

p
1 + g2 .

(6.33)

From this equation, it is clear that when the system passes the critical region
g(t) ! 0, having a negative o↵set of noise �✓ < 0 will enhance the dephasing,
because the first order term�16�✓(1�g(t)2) has the same sign as the zero-th term
4(1+g(t)2) which is the dominant dephasing term. In this area close to the critical
point g = 0, the fidelity drops significantly but the dephasing e↵ect can reduce
the drop caused by heating and non-adiabaticity. Taking two set-ups of the tilted
noise with the same heating e↵ects but opposite sign to distinguish dephasing
e↵ects, we track the instantaneous fidelities throughout the state preparation,
shown in Fig. 6.7.

The fidelity initially equals one since the initial state is the ground state of H0(0),
and the drop of fidelity happens close to the critical point. From di↵erent o↵sets
�✓1 < 0 and �✓2 > 0 with the same heating rate |�✓1| = |�✓2|, we can observe
the di↵erent dropping amplitudes of the fidelity close to the critical point. The
drop of the fidelity is mainly caused by fast ramping speeds, i.e. in the regime
where non-adiabaticity dominates the evolution. With the negative o↵set �✓1,
the dephasing is enhanced, so that the amplitude of the dropping in critical area
is smaller than that of the case �✓2. When the system passes the critical area,
the adiabatic condition is satisfied again, so the fidelity remains almost invariant
in the rest of the process.

In this section, we constructed a two-level system scenario to reproduce the fidelity
behaviour of the Bose-Hubbard model reacting to the di↵erent values of noise
o↵set. Then we presented analytical calculations of the adiabatic dynamics of this
two-level system via a master equation method, and tested these by simulation
results from an exact diagonalisation approach. From the parabolic expression of
the final fidelity with respect to the noise “tilt”, we are able to recover the Landau-
Zener tunnelling rate when the classical noise is on the sweet spot, and explain the
behaviour of the optimal noise o↵set shifting to the sweet spot (�opt ! 0�) as the
ramping time grows longer. Comparing the behaviour of instantaneous fidelities
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Figure 6.7: Instantaneous fidelities during adiabatic state preparations, ob-
tained from exact diagonalisation calculations via master equation method of
a two-level system (single qubit). Plots of fidelities to instantaneous ground
states are of adiabatic rampings with di↵erent noise o↵sets. The ramping time
is TJ = 10, and the noise strength is � = J for both cases. The time step
is dt = 10�4. The system evolves under master equation (6.23), from the
ground state |�0(0)i of H0(0), ⇢(0) = |�0(0)i h�0(0)|. The fidelities shown
are calculated between the evolving density matrix ⇢(t) and instantaneous
ground states |�0(t)i, Fins(t) = h�0(t)| ⇢(t) |�0(t)i. The changing parameter
is g(t) = �10 + 20t/T . The blue line represents the noise with negative o↵-
set case �✓1 = �0.05✓sw, and the red line represents the positive o↵set case
�✓2 = 0.05✓sw. Initially, Fins(0) = 1 in both cases, and remains slightly de-
creasing until g(t) ⇡ �1, because the adiabatic condition is satisfied in this
regime. When the parameter is close to critical point, the gap of the system
is small and the fidelity drops due to the non-adiabaticity. The fidelity of the
system with negative o↵set drops less amplitude than that of system with pos-
itive o↵set, shown in the area of |g|  1. This behaviour can be interpreted
as negative o↵set has stronger dephasing e↵ect to suppress the non-adibaticity
in Eq. 6.33. After passing the critical area, the adiabatic condition is satisfied
again, so the fidelities are steady in the rest of adiabatic processes in both
cases.

during the adiabatic state transformation with two values of the noise o↵set of
same amplitude but di↵erent sign, we observed how dephasing e↵ect suppress
the non-adiabaticity in the critical region. The negative o↵set gives stronger
dephasing e↵ects close to the critical point, so the overall fidelity is better than
positive o↵set with the same heating rate. When the o↵set is further away from
the sweet spot, the dephasing e↵ect can no longer compensate the reduction of
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fidelity introduced by the heating. In the strong noise case and near-adiabatic
limit, the Bose-Hubbard model dynamics will adapt analogous behaviour to what
we have seen from the two-level system.

6.5 Conclusions

In this chapter, we adapted a recent proposed quantum algorithm [69], which
claimed the potential of outperforming adiabatic quantum computing, to the adi-
abatic state preparation with the noise proportional to the Hamiltonian. Taking
the Bose-Hubbard model as an example, we conducted numerical simulations for
both a small system and a large system. With the numerical results, we were
able to identify a regime where introducing a noise proportional to the original
Hamiltonian improves the state preparation, especially when the evolution time
is limited. With a recently developed dressed lattice scheme engineering of the
amplitude noise of optical lattices, we are able to demonstrate a physical system
that could have the noise proportional to the Hamiltonian in an e↵ective Hamil-
tonian. We also conducted numerical simulations to demonstrate the robustness
of our method against imperfect implementations of such noise. The behaviour
of the preparation fidelities with di↵erent values of the noise o↵set away from
sweet spot implies an intriguing mechanism of the classical noise which a↵ects
the adiabatic state preparation. By studying the Bose-Hubbard model, we ac-
quire insight into how the heating jeopardises the state preparation and reduces
the dephasing e↵ect. We also studied the competition between the heating e↵ect
and the dephasing e↵ect to explain such behaviour. The analysis of a two-level
system reproduces the same parabolic-like behaviour of the final fidelities in the
Bose-Hubbard model. Because of the access of the instantaneous eigenbasis, we
are able to apply the master equation approach to study the averaged dynamics.
We studied the competition between the heating and dephasing e↵ects through
analytical calculations of the instantaneous fidelity. We identified the regime that
the dephasing enhanced by the tilted noise can compensate the fidelity reduction
caused by the heating results in an overall higher final state fidelity.



Chapter 7

Thermalisation of energy
introduced by amplitude noise in
optical lattices

In the previous chapter, we adapted the idea of adiabatic quantum computing
with randomised time steps to adiabatic state preparation with engineered am-
plitude noise in optical lattices (see Sec. 6.2). Under the condition that the noise
operator is proportional to the designed Hamiltonian, there is no heat introduced
to the system. When the noise is tilted from the noise proportional to the Hamil-
tonian, the heating rate is in the second order of the o↵set. In this chapter, we
continue to investigate amplitude noise in optical lattices and discuss thermali-
sation behaviour of the system. In Sec. 7.2, we discuss the total energy after the
adiabatic state preparation under the influence of the amplitude noise naturally
caused by lattice depth fluctuations. In Sec. 7.3, we investigate the thermalisation
after an application of engineered amplitude noise. We compute the dynamics in
the Mott Insulator and the superfluid phases, and identify for di↵erent regimes
whether observables relax to thermal values after short times.

7.1 Introduction

Usually, the fluctuation of the depth of an optical lattice is one of the sources
of heating. The heating induces out-of-equilibrium dynamics and thermalisa-
tion processes are expected to be very important. Typically, it is assumed that
the energy introduced into the system will be thermalised and cause an e↵ective
temperature increase. But the question about conditions for and regimes of ther-
malisation is still unanswered. Recently, experiments with strongly interacting

105



Chapter 7. Thermalisation of energy introduced by amplitude noise in optical
lattices 106

cold gases realised the confinement of movement in one dimension [25]. These
experiments have demonstrated a regime in which systems do not thermalise in
the traditional sense [165]. However, sometimes these systems can relax to a
distribution of steady states in a generalised Gibbs ensemble [166, 167].

The study of thermalisation has an impact on the application of cold atoms
as a platform of quantum simulation and quantum computation. For now, the
experiments can realise many interesting many-body Hamiltonians and study cor-
responding quantum states. One of the key challenges for current experiments is
to realise states with small energy gaps which usually require a very low temper-
ature [168]. Adiabatic state preparation is one of the approaches to realise such
states. In Chap. 6, we presented our study of adiabatic state preparation of the
ground state of a superfluid phase under the influence of amplitude noise. There
we identified a regime where introducing a certain type of noise can improve fi-
nal fidelities of state preparations. A recent proposal for engineering amplitude
noise [121] provides us with the method to realise the noise proportional to the
Hamiltonian. We would now like to understand, when this is imperfect and noise
induces heating, whether the final state is really a thermal state. We also want to
better understand how to optimise adiabatic ramps in the presence of unwanted
noise.

In this chapter, we present our research on adiabatic state preparation with natu-
rally occurring amplitude noise which is not engineered to be proportional to the
Hamiltonian. We discuss the corresponding behaviour of the total energy at the
end of the adiabatic evolution with di↵erent ramping times and a constant noise
strength in Sec. 7.2. Furthermore, we investigate the thermalisation process of
the system after an application of an amplitude noise pulse in Sec. 7.3.

7.2 Adiabatic state preparations with naturally
occurring amplitude noises

Naturally, the fluctuations of laser amplitude will a↵ect the depth of the lattice
V = V0 + �V (t), and thus introduce noise to the system. The noise with frequen-
cies of order of the tunnelling parameter J and the on-site interaction strength
U will induce intra-band heating for atoms within the lowest band. While under
the influence of the noise at frequencies of the band separation, the particles are
transferred to a higher band which is called an inter-band process. In the situ-
ation where the noise is weak for inter-band processes, the Hamiltonian of the
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system is

Hsys = H0(J0, U0) +H1(
dJ

dV
,
dU

dV
)�V , (7.1)

H1(
dJ

dV
,
dU

dV
) = � dJ

dV

X

hi,ji

b†
i
bj +

1

2

dU

dV

X

i

ni(ni � 1) , (7.2)

where H0 and H1 are Bose-Hubbard Hamiltonians, U0 and J0 are designed pa-
rameters of the Bose-Hubbard model. As described in Sec. 3.3, the fluctuations
of the tunnelling parameter J and the on-site interaction strength U can be char-
acterised as

dU

dV
=

ER

4V

U

ER

, (7.3)

dJ

dV
= [

3ER

4V
� (

V

ER

)�1/2]
J

ER

, (7.4)

and the dynamics of the adiabatic state preparations can be described as

⇢̇ = �i[H0, ⇢]� �[H1, [H1, ⇢]] . (7.5)

With this setting of the amplitude noise, the heating introduced to the system
will cause a decrease of fidelities in adiabatic state preparation. Here we take adi-
abatic state preparations of the ground state of the superfluid phase (U0/J0 = 2)
from the ground state of the Mott Insulator phase (U0/J0 = 10) as an example, to
demonstrate the final fidelities in corresponding evolution times with a constant
noise strength. Our results are shown in Fig. 7.1. From our numerical simulations,
it is clearly demonstrated the reduction in fidelity due to adiabatic state prepa-
ration compared with noise-free cases. Without the amplitude noise, the fidelity
increases as the evolution time grows as shown by the red line. However, under
amplitude noise with strength � = 0.6J0, the final fidelity (blue line) reaches a
maximal value around 0.94 with a longer evolution time around T ⇡ 10/J0. This
figure also demonstrates the competition between the adiabaticity and heating ef-
fects. After the maximum value of fidelities, the extra adiabaticity can no longer
compensate for the heating e↵ect which results in a drop of the fidelity.

To demonstrate the amount of energy introduced to the system, we present our
calculation of total energy after the adiabatic state preparation in Fig. 7.2.

The energy inputs are mainly from non-adiabaticity of the time evolution and the
heating e↵ects, introduced by the amplitude noise. Here we present an analysis
of these two sources in terms of the evolution time.
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Figure 7.1: Final fidelities of adiabatic state preparations as a function of the
evolution time, obtained from exact diagonalisation calculations of the Bose-
Hubbard model with 8 sites and 8 particles. The inital state is the ground state
of the Mott insulator phase (U0/J0 = 10) and the target state is the ground
state of superfluid phase (U0/J0 = 2). The noise strength � = 0.6J0 which
introduces intra-band heating to the system. Data points of noisy processes
are averaged values over 100 runs, dt=1e-3, and error bars represent statistical
errors. The red line represents fidelities of noise-free cases and the blue line
represents fidelities of noisy state preparations. Without the amplitude noise,
the final fidelity increases as the evolution time grows. However, for fidelities
of noisy state preparation, the maximum value is below 0.94, but the evolution
time is T ⇡ 10/J0. This clearly demonstrates the damage to adiabatic state
preparaions from heating e↵ects.

From the calculated heating rate of the noise presented in Ref. [121], we can
obtain the energy input from the amplitude noise. We find

hḢsysi / �(
1

J

dJ

dV
� 1

U

dU

dV
)2 , (7.6)

�Eamp =

Z
T

0

dthḢsys(t)i =
T

8

Z 10

2

dghḢsys(g)i / �T , (7.7)

where the interactive parameter g is linear in time, g(t) = U0(t)/J0 = 10� 8t/T ,
and T is the evolution time. The energy input from amplitude noise, noted as
�Eamp accumulates linearly in time.

The energy input from non-adiabaticity is hard to calculate analytically. Here we
assume the time evolution is in the near-adiabatic regime with a weak noise. In
this case, the fidelity is close to 1 and the occupation amplitude of the ground state
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Figure 7.2: Total energies after after adiabatic state preparation as a function
of the evolution time, obtained from exact diagonalisation propagation of the
Bose-Hubbard model with 8 sites and 8 particles. The simulation parameters
in the calculation are the same as shown in Fig. 7.1. The energy values are
shown in blue, and a fitting function in the form of E = aT + b/T + c is
plotted in red, where a ⇡ 0.0285, b ⇡ 1.3089 and c ⇡ �9.5327. From fitting
parameters, the minimum of total energy is shown as black dot with the error
bar associated with 95% confidence of fitting parameters. The behaviour of
final fidelities shows the competition of the adiabaticity and the heating. The
adiabaticity comes is of the order of 1/T from the Landau-Zener formula in
near-adiabatic condition as in Eq. (7.7), and the heating e↵ect is of order of T

as in Eq. (7.8).

is dominant. We consider an e↵ective two-level system consisting of the ground
state and an excited state with second dominant occupation amplitude in the
spectrum. From the Landau-Zener transformation, the probability of tunnelling
Pt is usually proportional to the speed of changing parameter |ġ| and the inverse
of the noise strength �, Pt / |ġ|/� = 1/(�T ). The final state | T i can be
expressed (up to a relative phase) in the e↵ective two-level system as, | T i =p
1� Pt |�SF i+

p
Pt |�ii, where |�SF i is the ground state of the superfluid phase

with a corresponding energy ESF

g
, and |�ii is the second dominant eigenstate

associated with an eigenenergy Eex. Then the energy di↵erence between the final
state and the ground state is

�Ena = hEiLZ � ESF

g
= h T |HBH | T i � ESF

g
= � · Pt / 1/(�T ) , (7.8)

where � is the energy gap between the ground state and the excited state, � =
Eex � ESF

g
.
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The di↵erent dependences (shown in Eq. (7.7) and Eq. (7.8)) of the energy inputs
with respect to the evolution time result in a competition. As the evolution time
increases, the non-adiabaticity introduces less energy as the adiabatic condition is
better satisfied, while the heating accumulates energy over time. This competition
relation can be presented as a function E = aT + b/T + c, where a / � and
b / 1/�. We use this relation as a fitting function to study the behaviour of the
total energy.

We apply the fitting function of the total energy as a function of the adiabatic
ramping time T for di↵erent values of the noise strength. Our results are shown
in Fig. 7.3. We found that values of the evolution time that give minimal energy
Tmin (black line) vary. The value of Tmin is,

Tmin =

r
b

a
/ 1/� , (7.9)

where the error bar of Tmin is obtained from �Tmin = Tmin
2 (��a

a
+ �b

b
), where �a

and �b are from 95% confidence bound from fitting parameter.
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Figure 7.3: Total energy after adiabatic state preparation as a function of
the evolution time, obtained from exact diagonalisation calculation of the Bose-
Hubbard model with 8 sites and 8 particles. The data shown here is for noise
strength �/J0 = 0.1, ..., 0.6. The averaged total energy is calculated over 100
runs, and the error bars represent the statistical errors. The fitting function is
E = aT + b/T + c (red line). The calculated value of Tmin (Eq. 7.9) that giving
minimum total energy according to the noise strength (black) with the error
bar associated with 95% confidence of fitting parameters, shifts to zero as the
noise becomes stronger.
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A clear relation between Tmin and noise strength �/J shown in Fig. 7.4 shows
agreement with the analysis in Eq. (7.9).
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Figure 7.4: Values of Tmin of adiabatic state preparations as a function of the
noise strength, obtained from exact diagonalisation calcualtions of the Bose-
Hubbard model with 8 sites and 8 particles. As the noise strength increases,
the value of Tmin deceases as in Eq. (7.9).

In this section, we analysed the dependence of the energy input with respect to
the evolution time both for the non-adiabaticity and the heating e↵ect. From
the numerical results and quantity analysis, we are able to explain the behaviour
of the total energy in di↵erent settings, and obtain deeper understanding of the
amplitude noise in adiabatic state preparations.

7.3 Thermalisation of amplitude noise

Often, the energy introduced by the heating is assumed to be thermalised and
increase the temperature. However, di↵erent types of classical noise introduce
di↵erent heating dynamics to atoms in optical lattices. For example, the e↵ects
of amplitude noise in optical lattices are significant for both Mott Insulator and
superfluid phases (Sec. 3.4), but spontaneous emissions have a very weak heating
influence on the atoms in the lowest band in the Mott Insulator phase [169]. The
heating e↵ect and thermalisation of spontaneous emissions have been previously
investigated [37, 170]. Unlike the local quench from the spontaneous emission,
the amplitude noise is global and the thermalisation behaviour can be di↵erent.
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In this section, we discuss the behaviour of the system after an amplitude noise
pulse. Initially, the system is in the ground state of the Bose-Hubbard Hamilto-
nian in di↵erent phases. Then, an amplitude noise pulse is applied to the system
for a total time TpulseJ0 = 1. After the noise is turned o↵, the system evolves
under the same Hamiltonian for an amount of time. The Hamiltonian of the
system with amplitude noise is in the form

Hsys = H0(J0, U0) +H1(
dJ

dV
,
dU

dV
)�V (7.10)

H1(
dJ

dV
,
dU

dV
)�V =

p
2�⇠(t)

0

@�2 cos2(✓)J
X

hi,ji

b†
i
bj + 2 sin2(✓)

U

2

X

i

ni(ni � 1)

1

A

(7.11)

where H0 is the Bose-Hubbard Hamiltonian. In the noise pulse period, the dy-
namics of the system can be calculated via the master equation

⇢̇(t) = �i[H0, ⇢]� �[H1, [H1, ⇢(t)]] . (7.12)

To study the dynamics described by the master equation, we simulate the tra-
jectories of stochastic Schrödinger equations of a quantum state, and calculate
averaged values of the quantity of interest. In the following research, we fo-
cus on the behaviour of the kinetic energy of the system, Ekin = hHkini where
Hkin = �J0

P
hi,ji b

†
i
bj. As mentioned in Sec. 4.2, the time evolution in the pres-

ence of the noise is implemented by evolving the quantum state with small time
step dt to make sure the Ito rules (Eq. 4.56) applies, so that the system is con-
sidered under the influence of white noise. Because of the noise operator H1

is global, the advantages of this approach compared to quantum trajectories
method [85] is that the e↵ective Hamiltonian in the evolution costs less com-
putational resources than the latter. In the method, the e↵ective Hamiltonian
Hsys = H0+H1�V , where �V can be sampled from a normal distribution. Apply-
ing quantum trajectories method requires evolution with the e↵ective Hamiltonian
is He↵ = H0� i�H2

1 . The calculation of H2
1 in quantum trajectories method cost

more computational resources than the approach of evolution under stochastic
Schrödinger equation which requires only the evolution with the first order of H1,
especially when the system size is large.

The process can be addressed as

• Set the initial state as the ground state |E0(g)i of the Bose-Hubbard Hamil-
tonian with a given value g = U0/J0
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• Evolve under noisy Hamiltonian Hsys with di↵erent random sampling for a
total time TpulseJ0 = 1, and reach the quantum state after the noise pulse,
| (0)i.

• Turn o↵ the noise and evolve the system with the Bose-Hubbard Hamil-
tonian of the same value of g for a total relaxation time TJ0 = 10. The
instantaneous quantum state is | (t)i = e�iH0t | (0)i.

• Track on the average value of the kinetic energy Ekin(t) as a function of
relaxation time

Whether a system will be thermalised under unitary time evolutions can be dis-
cussed in the context of the “eigenstate thermalisation hypothesis” [171–173].
This theory describes a steady state that the system might relax to. Since we
apply amplitude noise to the ground state of the Bose-Hubbard Hamiltonian, the
quantum state after the pulse | (0)i is not an eigenstate |Eni. When a system
has a well-defined total energy E, quantum statistical mechanics assumes that
the average value of some observable (Ô) quantity h | Ô | i over time (h. . . it) is
equal to an ensemble average of all states around the energy E [171]:

hh | Ô | iit =
X

j

�(E,Ej) hEj| Ô |Eji ⌘ hÔimicro , (7.13)

where�(E,Ej) is a normalised function of Ej that is sharply peaked at hEj|H |Eji =
E. We expand the quantum state | (0)i in the eigenbasis {|Eni} with associated
eigenenergy En, as | (0)i =

P
n
Cn |Eni. The kinetic energy can be obtained as

Ekin(t) = h (t)|Hkin | (t)i

=
X

n

|Cn|2 hEn|Hkin |Eni+
X

n 6=n0

C⇤
n
Cn0 hEn|Hkin |En0i e�i(En�En0 )t .

(7.14)

The second term will vanish in the long-time average,

lim
T!1

1

T

Z
T

0

X

n 6=n0

C⇤
n
Cn0 hEn|Hkin |En0i e�i(En�En0 )t = 0 , (7.15)

and we can obtain the kinetic energy of the steady state

E1
kin =

X

n

|Cn|2 hEn|Hkin |Eni . (7.16)

The expression of the steady kinetic energy depends on two main factors: the coef-
ficients Cn in the expansion, and the kinetic energy of the eigenstate hEn|Hkin |Eni.If
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the kinetic energies in the eigenstates vary smoothly with E in a windows deter-
mined by Cn and o↵-diagonal terms are small (hEn|Hkin |En0i ! 0), the system
will relax to a state that the observable can be described with a micro-canonical
ensemble where the probability of the system being in eigenstates is peaked in
one particular eigenstate. We refer [171, 172] for more detailed discussions.

The setting of our amplitude noise is weak, the noise strength is � = 0.1J0,
and the o↵set is �✓ = 0.01⇡/4. The energy input from this amplitude noise
is small, and the thermalisation process is mainly determined by a low energy
eigenspace. Here we use exact diagonalisation to calculate low energy eigenstates
of the Bose-Hubbard model with 10 particles and 10 sites. From the low energy
spectrum of 1000 lowest eigenstates, we calculate the equilibrium value of kinetic
energy Eeq

kin from exponential fitting of the inverse temperature � that gives the
same mean-energy. Also the E1

kin are obtained in the low energy spectrum. Our
numerical results are shown in Fig. 7.5. The dynamics shown on the left is the
kinetic energy in the relaxation time where the system is evolving under the
corresponding Bose-Hubbard Hamiltonian. In the superfluid phase, like for g =
1, 2, the kinetic energy Ekin relaxes to the E

eq
kin from Boltzmann distribution within

statistical error, which indicates thermalisation of the kinect energy. However, in
the Mott Insulator phase for g = 4, 5, the kinetic Ekin relaxes to the E1

kin, which
does not correspond to Boltzmann distribution with the appropriate mean total
energy. To understand the change of the behaviour, we exploit the fact that the
setting of this amplitude noise is weak, and gives rise to populations of low energy
states. The dominant amplitude is of the ground state, shown on the right side of
Fig. 7.5. In the superfluid phase, the Ekin grows linearly as a function of En [37].
This growth implies a very weak interaction energy, and in the limiting cases of
U = 0, the total energy is exactly the kinetic energy. At the phase transition
point between U0/J0 ⇡ 3 and U0/J0 ⇡ 4, the distribution of kinetic energy in
eigenstates has a non-linear relation with the eigenenergy, and a thermal kinetic
energy is not expected. This is directly analogous to the results of Ref. [37, 170],
and the corresponding discussion of the relation between the kinetic energy and
the eigenenergy of a eigenstate in the Bose-Hubbard model. We expect similar
behaviour for larger systems within the weak noise regime.

In this section, we studied the dynamics of the system after an amplitude noise
pulse, and observed a change in the thermalisation behaviour at the phase transi-
tion point between the superfluid and Mott Insulator phases. The kinetic energy
relaxes to a steady value which corresponds to a thermal distribution in the su-
perfluid phase. However, in the Mott Insulator phase, the kinetic energy relaxes
to a steady value which is clearly non-thermal. Because the analysis of our re-
sults depends on low energy spectrum, the understanding of thermalisation may
extend to much larger system with a weak amplitude noise.
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7.4 Conclusions

In this chapter, we extended our research to discuss energy input in adiabatic
processes with amplitude noise. First, we discussed the competition of the non-
adiabaticity and the amplitude noise in final fidelities. The maximal fidelity is
found at the point that the adiabaticity can no longer compensate the heating ef-
fects. We also observe the di↵erence of evolution times providing maximal fidelity
and minimal total energy. Thereby, we studied the total energy after adiabatic
state preparation to obtain a full understanding of the amplitude noise. Through
quantitative analysis of the energy inputs from non-adiabaticity and heating ef-
fects, we are able to explain the behaviour of the evolution time associated with
minimal total energy with constant noise strength.

We also studied the thermalisation behaviour of the system after an application
of amplitude noise pulse. We take the kinetic energy as the quantity of interest,
as any non-local observables will never thermalised [173]. In both the superfluid
phase and the Mott Insulator phase, the kinetic energy relaxes to a steady value,
which corresponds to a thermal distribution only in the superfluid phase. The
understanding of thermalisation behaviour may provide insights of protecting
fragile quantum states that are sensitive to temperature.
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Figure 7.5: Kinetic energies as a function of time (left panels) and corre-
sponding occupation numbers in the lowest 1000 eigenstates after the appli-
cation of the noise pulse (right panels), obtained from exact diagonalisation
calculations for Bose-Hubbard model with 10 particles and 10 sites. The am-
plitude noise is turned for Tpulse = 1/J0 with the noise strength is � = 0.1J0

and ✓ = 0.99⇡/4, as in Eq. 7.10. At t = 0, the noise is turned o↵ and the sys-
tem evolves under the Bose-Hubbard model Hamilatonian. The kinectic energy
(blue line) Ekin are demonstrated in figures on the left (with yellow and orange
lines show the statistical error). The red lines are the weighted kinetic energy
in diagonal ensemble E

1
kin, calculated as in Eq. 7.16. The green lines represent

the equilibrium kinetic energy from exponential fitting E
eq
kin of corresponding

eigenenergies. In the superfluid regime (g = 1, 2), the kinetic energy relax to
E

eq
kin, which indicates a thermalisation of the system. In the Mott Insulator

phase, especially for g = 5, the kinetic energy relax to E
1
kin, which is far from

E
eq
kin. The fluctuations afterwards are due to limited size e↵ects. The figures

on the right show the distributions of occupation probablities (|Cn|2) in the
lowest 1000 eigenstates after the application of the noise pulse.



Chapter 8

A quantum algorithm for
turbulent mixing of fluids

In this chapter1, we discuss applying quantum algorithms to fluid dynamics prob-
lems. With the rapid developments of quantum algorithms and quantum hard-
ware, it is an opportune time to identify potential applications of quantum al-
gorithms and quantum computers. This conversation will not only raise atten-
tion from both the engineering community regarding these technologies and the
physics community, but also provide a framework to identify requirements of fu-
ture practical quantum computers. The intellectual exchanges established will
surely benefit both fields.

8.1 Introduction

The use of large quantum computers providing answers to problems intractable
by classical computers has been discussed in a lot of contexts over the last 30
years [174]. In the last few years, there has been a increasing interest in quan-
tum algorithms providing quantum speed up over classical Monte Carlo (MC)
techniques [53, 92, 93, 97, 109, 175–178]. As MC techniques are implemented
widely in science, the realisation of large-scale quantum computers has the po-
tential to boost computation in a wide range of subjects. Rapid developments
of platforms for quantum computing has been reported [179–186], and questions

1This work is taken in part from the publication Turbulent Mixing Simulation via a Quantum
Algorithm G. Xu, A. J. Daley, P. Givi, R. D. Somma, AIAA journal pp. 1-13, 2017/12/13 2017

The author of this thesis performed all of the numerical calculations, analytical calculations
of the error of quantum algorithm, wrote the sections on numerical calculations, and produced
all the plots.
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about the impact of new developments and the potential applications are very
important. Here, we would like to establish connections between fluid engineering
and quantum computing, providing a quantum speed up for a class of turbulent
flow problems on a quantum computer, and to initiate further discussions linking
these two fields.

In fluid mechanics, there is one category of the dynamic of the system can be
characterised by partial di↵erential equations like FokkerPlanck equations and
Navier-Stokes equations. One approach to answer these problems is to solve
the equations directly. For now it is di�cult to solve a complex system ana-
lytically via a classical algorithm. However, for a simple system that has linear
equations to describe the dynamics, the quantum computer can solve the prob-
lems [58, 60, 187]. Another approach is to simulate the dynamics under the
equations via classical MC methods, especially a class of turbulent scalar mix-
ing problems [188–196]. applying probability density function (PDF) methods,
for instance, Reynolds averaged Navier-Stokes (RANS) [197, 198] and large eddy
simulation (LES) [199, 200]. The e�ciency of the PDF simulations is very impor-
tant to reach high accuracy especially for large scale system. It is a open question
that whether quantum computation can improve the accuracy of these problem.

To utilise classical MC methods for PDF transport simulations, the PDF is repre-
sented as computational elements or particles moving in the fluid and the random
events of each element are determined according to a chosen physics model [201–
203]. The statistics of the ensemble are described by the average data of the
function(s) of interest. We then repeat the MC process many times to obtain an
estimated value of the function of interest with desired accuracy. The parameters
of the calculation that determine the complexity of the MC calculation include
the desired final precision ✏ ⌧ 1 and c, which is the confidence level of the es-
timation. In the situation that the interested quantity has bounded moments,
for instance in turbulent mixing, we can estimate the repetition number Nr to
achieve such conditions. From the central limit theorem, the statistical error of
the estimation is proportional to the inverse of the square root of the repetition
number, " / 1/

p
Nr. Thus, the complexity dependence of MC is proportional

to 1/"2. In conventional techniques, this dependence is inevitable and better
algorithms are highly desirable.

Recent research in quantum enhanced measurements (quantum metrology) [91–
93] extend the abilities of quantum computers for better estimations of certain
quantities in terms of a quadratically improved precision scaling in the error.
In other words, the quantum computer requires quadratically less resources to
reach the same precision as classical MC calculations. These methods apply
to more general problems estimating expected values of interesting quantities
with minimal assumptions and arbitrary confidence levels [93]. However, the
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adaption of such methods to improve the classical MC method had been done
only recently [97].

Here, we develop a quantum algorithm adapted from [93] to solve fluid dynamics
MC problems. We tailor our quantum algorithm for turbulent mixing problems
and compare specific examples for reacting flow described by coalescence/disper-
sion (C/D) closure [204–206], but in general, what we do here applies to large
classes of mixing problems. Estimating the properties of the PDF of a simple
binary scalar mixing process, we demonstrate comparisons of the errors between
MC methods and our quantum algorithm and present a quadratic speedup over
MC methods in terms of number of repetitionsNr. In the setting of binary mixing,
an analytical solution for the moments can be acquired and allows us to analyse
the statistical errors. The MC simulations are implemented to calculate the 4-th
central moment of the PDF during the dynamics as an example, to understand
the behaviour of MC methods. Then we simulate our quantum algorithm by
sampling the probability distribution of the measurement outcomes. Naturally
our quantum algorithm requires significantly many more qubits than a classical
computer could handle. Nevertheless, due to the simplicity of this problem, the
probability distribution of the outputs can be obtained analytically, which is not
possible in general cases. We then compare the errors of estimations between
quantum algorithm and MC methods with same value of Nr, and the error scal-
ing presents a quadratic speed up. Similar results will hold for estimating other
properties of the PDF.

In this chapter, we briefly introduce the turbulent scalar mixing problems and
the C/D closure in Sec. 8.2, followed by reacting flow problems in Sec 8.3. We
then describe the implementation of the classical MC method and demonstrate
numerical calculations estimating the 4-th moment of the PDF solving a binary
mixing problem as an example, as well as the mean fraction conversion of mass
fraction of fuel in reacting flow as another example. In Sec. 8.5, we present our
quantum algorithm tailored to simulate the C/D model and provide the simula-
tion of the binary mixing problem. By comparison of the error scaling of both
methods, we are able to identify the advantages of the quantum algorithm. We
conclude and discuss the outlook of the topics related to our research in Sec. 8.6.

8.2 Turbulent scalar mixing

In this section, we introduce the background of turbulent scalar mixing problems
that can be solved by the single-point PDF transport equation. Specifically,
we consider a coalescence/dispersion (C/D) mixing model where we can obtain
analytical solutions of central moments for the purpose of demonstrating di↵erent
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methods. We consider the mixing of Fickian scalars2 � = �(~x, t), where ~x is the
position in space, starting from a binary state in the range �`  �  �u . We
denote the PDF of the scalar as P ( , t), with  representing the composition
domain of �. With the homogeneous turbulent flow assumption, the statistics
are independent of spatial degrees of freedom. The equations of motion for the
PDF P ( , t) are [195]

@P ( , t)

@t
+
@2 (EP ( , t))

@ 2
= 0 , (8.1)

@P ( , t)

@t
+
@(DP ( , t))

@ 
= 0 . (8.2)

Here, E is the conditional expected value of the scalar dissipation of �(~x, t) and
D denotes the conditional expected value of the scalar di↵usion. E and D are
defined as

E( , t) = E[�r� ·r�|�(~x, t) =  ], D( , t) = E[�r2�|�(~x, t) =  ], (8.3)

where � is the binary Fickian di↵usion coe�cient. We use the standard statistical
notation where E[y] denotes the expected value of a random variable y and E[y|z]
denote the conditional expected value of y, conditioned on an event z. The single-
point PDF description P ( , t) has been used to solve many turbulence closure
problems [204–216]. The available models take the form of a Langevin equation
with the corresponding Fokker-Planck equation describing the PDF, or the form
of a phenomenological transport equation for the PDF evolution [217].

To demonstrate the performance of MC methods in a simple example, we consider
the coalescence/dispersion (C/D) mixing models, described by the equation of
motion [205, 206].

@P ( , t)

@t
= �2�!P ( , t)

+ 2�!

Z
d 0
Z

d 00P ( 0, t)P ( 00, t)

Z 1

0

d↵A(↵)

⇥ �[ � (1� ↵) 0 � 1

2
↵( 0 +  00)] , (8.4)

where �(x) denotes the Dirac delta function, and A(↵) is the PDF of the random
variable ↵ with the range of ↵ 2 [0, 1]. The conditions of mixing are detemined
by the value of ↵. For example, in the so-called Curl’s model [218], we have
A(↵) = �(↵�1) and A(↵) = 1 in the closure of Janicka et al. [204]. The parameter
! denotes the mixing frequency and determines the decay of the variance. The

2stochastically distributed scalar variables in Fickian di↵usion process
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parameter � is related to the PDF of ↵, as follows:

� =
1

a1 � 1
2a2

, am =

Z 1

0

d↵ ↵mA (↵) , (8.5)

where am denotes the m-th moments of the random variable ↵. Characterised by
Eq. (8.4), all C/D models have the same rate of variance decay as !.

Figure 8.1: Sketch of binary mixing scheme of a homogeneous system. The
colours associate with the circles represent di↵erent values of scalar associated
with the simulation element. The figure above shows the mixing process with
initial condition of PDF P ( , 0) = 1

2�( ��l)+ 1
2�( ��u), where  represents

the Fickian scalar and �l,�u represent the lower and upper limit of the scalar
range. As time grows, the elements exchange and rearrange the scalar values
randomly and the probability distribution function of the scalar changes ac-
cordingly. The simulation via classical Monte Carlo is to obtain an estimation
of the PDF as a function of time.

The central moments µl (l = 1, 2, . . .) can be used to describe the properties of
the PDF, defined as

µl (t) = E[( � E[ ])l] . (8.6)

In many cases, we can obtain analytical expressions of such moments, which are
useful to demonstrate the accuracy of algorithms. In binary mixing problems (see
Fig. 8.1), we choose the initial condition P ( , t = 0) = 1

2 [�( � �`) + �( � �u)],
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where the bounds are �` = �1, �u = 1 in Curl’s model. We provide the first four
central moments expressed as:

µ1(t) = µ1(0) = 0 , (8.7)

µ2 (t) ⌘ �2 (t) = e�2!t , (8.8)

µ3 (t) = µ3(0) = 0, (8.9)

µ4 (t) =
�
4e�!t � 3

�
e�4!t , (8.10)

where

� =
a2 +

1
4a4 � a3

a1 � 1
2a2

. (8.11)

8.3 Reacting flows

The research on turbulence reacting flow by Li and Toor [219], and Dutta and
Tarbell [220] provide us means to predict the mean rate of reactant conversion
in a chemical reaction of the type A + B ! P in homogeneous turbulent flows,
where A and B are two reacting chemicals and P denotes their products. Using
the probability density function (PDF) method of coalescence/dispersion (C/D)
model developed by Frankel, Madnia and Givi [221], we can obtain very accurate
classical Monte Carlo (MC) simulation results with high precision. The MC
method requires Nr repetitions to achieve a desired accuracy with the dependence
✏ = O( 1

Nr
). In a system with homogeneous turbulent flow, described by the C/D

model, the PDF of the Fickian scalars � of the field can also provide insight to
track di↵erent chemical components, represented as a scalar function of �.

With the assumption of an infinitely fast chemistry compared to other timescales
of the dynamics, i.e. F + O ! P , the dynamics of two components fuel (F (t))
and oxidizer (O(t)) are scalar functions are related to the evolution of field scalars
 (t). The general form of the evolution equations of this model was described
in Eq. (8.4). Here, we take the mean fractional mass conversion F of the fuel F
as an example to compare the performance of classical MC simulation and our
quantum algorithm. The scalar function of fuel in an infinitely fast reacting flow
is,

F ( ) = H( ) ·  , (8.12)

where  is the field scalar, and H is the Heaviside step function H(x) = 0.5(1 +
sgn(x)). In this setting, the positive scalars  > 0 represent the fuel. The
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corresponding oxidizer scalar function then is,

O( ) = (H( )� 1) ·  , (8.13)

where all the negative scalars represent the oxidizer.

Here, we focus on applying MC simulation and our quantum algorithm to estimate
the mean fractional mass conversion of the fuel:

F(t) = 1� hF ithF i0
, (8.14)

where hF i represents the stochastic average value of function F . The range of F(t)
is [0, 1] in this setting. Initially F(0) = 0 by definition. In the setting of the initial
condition P ( , 0) = 1

2 [�( � 1) + �( + 1)] with Curl’s model, P ( ,1) = �( )
and F (1) = 0, then the value of F(1) = 1. This feature of F can be simulated
directly by our quantum PEA without normalisation.

8.4 Monte Carlo methods for the C/D model

To simulate a system describe by the C/D model [Eq. (8.4)] using a classical
MC method, we choose a number of computational elements or “particles” Np.
Each particle is associated with a scalar  k(i, tj) in the simulation of random
processes, where i = 1, . . . , Np is particle number, j = 0, . . . , Nt is the time
step, and k = 1, . . . , Nr is the number of realisations. These particles are related
to di↵erent populations of di↵erent values of  , so the number of particles Np

also contributes to determining the accuracy of simulations. The variable tj
denotes the time at the j-th step, and is defined as tj = j�t. To reach desired
precision and confidence level, the algorithm should be repeated Nr times. The
total evolution time t > 0, � and the mixing frequency ! are defined by the
physical process of the C/D model (Sec. 8.2). The accuracy and the complexity
of the simulation are related to the numerical parameters like �t, Np, and Nr.
The explicit processing of classical MC algorithm is:
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Input: P ( , 0), t, �, !, �t, Np, Nr

1. Calculate Nt = dt/�te, Ns = d�!�tNpe. Set k = 1, j = 1, ns = 1, and
t0 = 0.
2. Repeat until k > Nr:

2.1. For i = 1, . . . , Np, initialize  k(i, 0) according to a discrete initial
probability distribution Q( k(1, 0), . . . , k(Np, 0)) realising P ( , 0).

2.2. Repeat until j > Nt:
2.2.1. Set tj = j�t and initiate  k(i, tj) :=  k(i, tj�1) for all i 2

{1, . . . , Np}.
2.2.2. Repeat until ns > Ns:

2.2.2.1. Obtain random integers i1, i2 2 {1, . . . , Np}.
2.2.2.2. Sample a value of ↵ 2 [0, 1] according to the probability

distribution A(↵).
2.2.2.3. Perform the mixing transformation:

 k(i1, tj) (1�↵) k(i1, tj)+↵( k(i1, tj)+ k(i2, tj))/2,
 k(i2, tj) (1�↵) k(i2, tj)+↵( k(i1, tj)+ k(i2, tj))/2.

2.2.2.4. ns  ns + 1.
2.2.3. j  j + 1.

2.3. k  k + 1:

3. Output:  k(i, tj) for all k, i, tj.

The initial discrete distribution Q( k(1, 0), . . . , k(Np, 0)) simulates P ( , 0) in
Eq. (8.4) and is independent of the number of realisations. At time tj, the the MC
method provides a distribution Q( k(1, tj), . . . , k(Np, tj)) to estimate P ( , tj)
or central moments of  . To estimate the PDF, we build a histogram with the
values of  k(i, tj) within a corresponding (machine) precision � after proper
normalisation. Di↵erent central moments of the distribution P ( , t) estimated
by the MC method can be calculated as

µ̂l(tj) :=
1

Nr

NrX

k=1

µ̂k

l
(tj) , (8.15)

with the estimation from each MC run calculated with outputs of a random vector
( k(1, t), . . . , k(Np, t)) as

µ̂k

l
(tj) :=

1

Np

NpX

i=1

⇣
 k(i, tj)� Ê[ k(tj)]

⌘l
. (8.16)
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The notation X̂ denotes an estimator of X. The estimator of the expected value
of  k(i, tj), Ê[ k(tj)] after the k-th realisation is

Ê[ k(tj)] :=
1

Np

NpX

i=1

 k(i, tj) . (8.17)

As described above, the MC algorithm takes the repetition number Nr as input
and outputs  k(i, tj) mimic the process according to the PDF transport function.
The usual modification to achieve certain accuracy is to replace Nr by a function
of the desired ✏. To estimate specific properties of the PDF like the central
moments, modifications of outputting the estimator rather than all values of
 k(i, tj) after each realisation can result in improvements in e�ciency due to
reduction of memory usage.

8.4.1 Complexity

Now we will discuss the complexity of implementing the MC method. For sim-
plicity, we omit certain logarithmic factors in the expression of order notations.
Disregarding the complexity of the initial state preparation  k(1, 0), . . . , k(Np, 0)
and the complexity of the random number sampling, the dominant term in the ex-
pression of the complexity of the MC method is the number of updates of the state
vector  k(i, tj). To reach designated accuracy which depends on both Nr and Np,
the complexity to estimate relevant quantities is O(Nr Nt Ns) = O(Nrt�!Np).
The overall precision ✏, in the case of fixed Np and constant confidence level c,
has a direct relation with the number of repetitions Nr. That is, ✏ = O(1/

p
Nr)

from Chebyshev’s inequality. Having the ✏ as an input parameter, the complexity
of the MC method is of O(t�!Np/✏2).

8.4.2 Example: classical Monte Carlo simulations of bi-
nary mixing

To demonstrate the performance and the complexity of the MC method, as well as
to provide a basis for comparison with our quantum algorithm, we implement the
MC simulation of a simple binary mixing problem that can be analytically solved.
This will help to benchmark our algorithm to meet the expected performance of
simulating a complex problem where the solution is unknown. In Curl’s model,
the PDF of the random variable ↵ is A(↵) = �(↵ � 1), and the coe�cients in
analytical solution have been calculated as in Eq. (8.5) and Eq. (8.11), � = 2,
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� = 0.5. The mixing frequency is set to ! = 1. The simulation is of the evolution
time up to t = 1, and other numerical parameters are set to �t = 0.1 and Np =
103. The initial state is set according to the PDF P ( , 0) = 1

2�( �1)+ 1
2�( +1)

taking the form of  k(i, 0) = �1 for all 1  i  Np/2, and  k(i, 0) = +1 otherwise.
We apply the MC method to estimate the 4-th central moment as a function of
time, an as exactly solved for comparison in our restricted model in Eq. (8.10).
However, the analytical solution is in the limit of infinite computational particles
Np = 1. The statistical error with Np = 1000 will be much smaller than the
di↵erence between the estimation and the analytical value. Therefore, we conduct
a a very accurate simulation for finite number of particles Np = 103 by repeating
the MC method Nr = 220 ⇥ 60 times. The factorisation of this expression in this
form is related to that of our quantum algorithm and discussed in 2.15. We
denotes the result of such accurate estimate as µ̃4(t), and the estimations from
other simulations are then denoted as µ̂4(t) in Eq. (8.15).

The simulation results of MC methods are shown in Fig. 8.2. In Fig. 8.2 (a)
we show the behaviour of µ̂4(t) exponentially decaying as a function of time for
Nr = 210 ⇥ 24, and a comparison to the analytical solution. In Fig. 8.2 (b) we
compare µ̂4(t) with di↵erent value of Nr normalised by a very accurate estimation
µ̃4(t). Note that Ê[ k(tj)] = 0 in this case [see Eq. (8.17)]. To obtain the error
bars of Fig. 8.2 (b), we first computed the moment µ̂k

4(tj) for all the realisations
k = 1, . . . , Nr, according to Eq. (8.16) in each run. Then, the estimated standard
deviation associated with the average value µ̂4(t) (Eq. (8.15)) is

�̂µ4(tj) =

"P
Nr

k=1(µ̂
k

4(tj)� µ̂4(tj))2

(Nr � 1)

#1/2
. (8.18)

To reach a 99.75% confidence level of estimating µ4(t), the statistical error should
be

✏C(tj) := 3�̂µ4(tj) (8.19)

which is defined as the error of the MC simulation in this setting. The error bars
of Fig. 8.2 (b) denote the regions


µ̂4(tj)� ✏C(tj)

µ̃4(tj)
,
µ̂4(tj) + ✏C(tj)

µ̃4(tj)

�
. (8.20)

From the simulation results (Fig. 8.2) and the analysis above (Eq. 8.19), we
observe that the dependence of the estimation errors with respect to the number
of repetitions is of order 1/

p
Nr. In the next sections (Sec. 8.5), we will present

our quantum algorithm that can improve this dependence quadratically.
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Figure 8.2: Estimates of the 4-th central moment of the PDF for compu-
tational elements, obtained from MC simulations of a simple binary mixing
problems using Curl’s model. (a) Exponential decay of the estimated 4-th cen-
tral moment µ̂4(t) [Eq. (8.15)] as a function of time for a number of repetitions
Nr = 210 ⇥ 24. The estimated moments are very close to the exact solution
µ4(t) (dashed line), given by Eq. (8.10). (b) The estimated 4-th central mo-
ment relative to a very accurate estimate µ̃4(t) for Np = 103. To reach a
confidence level of 99.75%, the error bars include up to three estimated stan-
dard deviations of the central moment [Eq. (8.19)]. The standard deviation
is estimated by running the MC method Nr times, for Nr = 27 ⇥ 24 (dotted
line, odd positions) and Nr = 210⇥ 24 (solid line, even positions). The relative
error increases with t as both µ̂4(t) and µ̃4(t) decay exponentially with t. The
estimation error of µ̂4(t) is of order 1/

p
Nr. Both of the figures obtained from

simulations with initial PDF P ( , 0) = 1
2�( � 1) + 1

2�( + 1). The simulation
parameters are � = 2, ! = 1, � = 0.5, t = 1, �t = 0.1, and Np = 103. The
initial values are set so that  k(i, 0) = �1 for all i  Np/2 and  

k(i, 0) = +1,
otherwise. This figure was reproduced from [222]

8.4.3 Example: classical Monte Carlo simulations of re-
acting flow

To estimate the mean fractional mass conversion of the fuel, we can simulate the
PDF transport equation via a similar routine introduced by Sec. 8.4 and calculate
the fuel function Eq. (8.12) and the mean fractional mass conversion Eq. (8.14).
With the same settings of the system as we described in Sec. 8.4.2, the estimation
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of the fuel function is

F̂k(tj) = 1� 2

Np

NpX

i=1

H( k

i
(tj)) ·  k

i
(tj) , (8.21)

and, the estimator of the mean fractional mass conversion is

F̂(tj) =
1

Nr

NrX

k=1

F̂k(tj) . (8.22)

The simulation results of MC method are shown in Fig. 8.3. As in Fig. 8.3 (a), we
demonstrate the behaviour of F̂(t) growing as a function of time for Nr = 217⇥24,
and comparing to a very accurate results obtained for Nr = 217 ⇥ 60. In Fig. 8.3
(b), we demonstrate the simulation results of di↵erent values of repetitions and
the deceasing of the error bars as the repetition number grows. The error bars are
obtained in Fig. 8.3 (b) as following. We calculate the F̂k(tj) (Eq. (8.21)) during
the time evolution of each realisation. After all the Nr repetitions, we calculate
the average value to generate F̂(tj) as in Eq. (8.22). Then the estimated standard
deviation associated with the average value F̂(t) is,

�̂F(tj) =

"P
Nr

k=1(F̂k(tj)� F̂(tj))2

(Nr � 1)

#1/2
. (8.23)

To reach a 99.75% confidence level of estimating F(t), the statistical error should
be

✏C(tj) := 3�̂F(tj) , (8.24)

which is defined as the error of the MC simulation in this setting. The error bars
of Fig. 8.2 (b) denote the regions

"
F̂(tj)� ✏C(tj)

F̃(tj)
,
F̂(tj) + ✏C(tj)

F̃(tj)

#
. (8.25)

From the numerical simulation (Fig.8.3) and analysis of the statistical error
(Eq. (8.24)), we observe that the classical error scales as square root of the repe-
tition number ✏C / O(1/

p
Nr). These results provide a nice base for comparisons

between the classical MC method and our quantum algorithm.
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Figure 8.3: Estimates of the mean fractional mass conversion of fuels, ob-
tained from MC simulations of a reacting flow process using Curl’s model.
(a) Growth of the estimated mean fractional mass conversion of fuels F̂(t)
[Eq. (8.14)] as a function of time for a number of repetitions Nr = 217 ⇥ 24.
The estimated moments are very close to the exact solution F(t) (dashed line),
given by Eq. (8.14). (b) The estimated mass fraction of fuels normalised with
a very accurate estimate F̃(t) for Np = 103. To reach a confidence level of
99.75%, the error bars include up to three estimated standard deviations of
the central moment [Eq. (8.19)]. The standard deviation is estimated by run-
ning the MC method Nr times, for Nr = 217⇥24 (blue line) and Nr = 220⇥24
(red line). The relative error decreases with t as both F̂(t) and F̃(t) increase
with t to 3. The estimation error of F̂(t) is of order 1/

p
Nr. Both of the figures

obtained from simulations with initial PDF P ( , 0) = 1
2�( � 1) + 1

2�( + 1).
The simulation parameters are � = 2, ! = 1, �t = 0.1, and Np = 103. The
initial values are set so that  k(i, 0) = �1 for all i  Np/2 and  

k(i, 0) = +1,
otherwise.

8.5 A quantum algorithm for the C/D model

We present our quantum algorithm to simulate the same problem that can be
solved by classical MC methods as in Sec. 8.4. We will illustrate that our al-
gorithm provides a quadratic speedup over the MC method for high precision
estimation of the properties of  . In this section, we first introduce the algorithm
in Sec. 8.5.1, followed by the numerical simulations of the corresponding PEA of
the quantum algorithm tailored for binary mixing problems in Sec. 8.5.3. The
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comparison between the errors of classical MC methods and our quantum algo-
rithm will be made, and the scaling of the error with respect to the repetition
number will demonstrate the quantum speedup.

8.5.1 General statement of the algorithm

To build our quantum algorithm, the preparation of the initial quantum state
| i is very important. The design of such initial state should encode all the
information of the PDF in the discrete presentation like that of the MC algorithm
in Sec. 8.4. The preparation is a sequence of elementary gates that mimic the
random processes as in the MC method with reversible operations described in
Sec. 2.1.3. The expression of the initial quantum state after the state preparation
is,

| i = V |00 . . . 0i

=
X

 1,..., Np

q
Q( 1, . . . , Np) | 1, . . . , Npi |⇠ 1,..., Np

i . (8.26)

The amplitudes are related to the probabilities Q( 1, . . . , Np , tj) when  
k(i, tj) =

 i, which are the same as that of the MC algorithm.

Q( 1, . . . , Np) = Q( k(1, tj) =  1, . . . , 
k(Np, tj) =  Np) (8.27)

The state vector | 1, . . . , Npi is a state where  i is a binary representation of
the computational basis. The ancillary state |⇠ 1,..., Np

i contains information for
the implementation of state preparation and will be discarded. The algorithm for
initial state preparation is:

Input: t, �, !, �t, Np, Nr

1. Obtain Nt = dt/�te, Ns = d�!�tNpe.
2. Obtain the expression of all simple classical gates v1, . . . , vT required
in the MC algorithm of Sec. 8.4.
3. Obtain the one and two-qubit gates ṽ1, . . . , ṽT that are reversible
versions of the vi (Sec. 2.1.3) like a controlled gate with ancillary qubits.
4. Construct a unitary gate V = ṽT . . . ṽ1 and implement V on the state
|00 . . . 0i.

Output: The quantum state | i = V |00 . . . 0i.
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A measurement on | i of the registers with | 1, . . . , Npi encoded will output the
configuration  1, . . . , Np with probability Q( 1, . . . , Np). Instead of implement-
ing such measurements directly, we employ the quantum metrology techniques
introduced in Sec. 2.1.4 for better performance. The number of qubits to rep-
resent | i scales with the number of bits in the implementation of the classical
MC method. The complexity of preparation of | i is similar to that of a single
run of the MC algorithm because of the mapping from operations in the classical
MC algorithm to an equivalent reversible unitary operation. Our algorithm is
designed to reduce the required resource in terms of repetition number Nr.

Our algorithm provides estimates of certain properties of the distributionQ( 1, . . . , Np).
We take the estimation of the l-th central moment in Eq. (8.6) as an exam-
ple. With a large value of Nr, the MC method provides the estimates of PDF,
Q( 1, . . . , Np), and then the j-th moment using Eq. (8.15) becomes

1

Np

X

 i,..., Np

Q( 1, . . . , Np)
h
( 1 � Ẽ[ k(tj)])

l + . . .+ ( Np � Ẽ[ k(tj)])
l

i
.

(8.28)

Here,

Ẽ[ k(tj)] :=
1

Np

X

 1,..., Np

Q( 1, . . . , Np)( 1 + . . .+  Np) . (8.29)

In the binary mixing problem with the initial condition P ( , t = 0) = 1
2 [�( �

�`) + �( � �u)], the first moment Ẽ[ k(tj)] = 0. Then it is simple to construct
a (diagonal) observable A satisfying the condition

h |A | i = 1

Np

X

 1,..., Np

Q( 1, . . . , Np)(( 1)
l + . . .+ ( Np)

l) , (8.30)

with the property

A| 1, . . . , Npi =
1

Np

(( 1)
l + . . .+ ( Np)

l)| 1, . . . , Npi . (8.31)

In the case of binary mixing, the range of the scalar is | i|  1. Then we construct
a unitary W that implements

W | 1, . . . , Npi |0ia = A | 1, . . . , Npi |0ia + |�?i |1ia , (8.32)
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where |�?i is a quantum state in the same space of the observable A. For example,
in block-matrix form,

W =

✓
A

p
1� A2

p
1� A2 �A

◆
, (8.33)

where the first column of blocks corresponds to the subspace associated with |0ia.
The gate complexity of W has a polynomial dependence with respect to Np. For
equation (8.32) the expectation value of W associated with the prepared state is

w = h | h0|a W | i |0ia
=

1

Np

X

 1,..., Np

Q( 1, . . . , Np)(( 1)
l + . . .+ ( Np)

l) . (8.34)

The task of estimating the l-th central moment [Eq. (8.28)] is reduced to estimat-
ing the expectation value of a unitary W [Eq. (8.34)].

On the other hand, the expression of the observable A can be varied from problem
to problem. For example, for a reacting flow problem in Sec. 8.3, we can tailor our
quantum algorithm to estimate the mean fractional mass conversion by simply
redefining the observable A to have the form,

A| 1, . . . , Npi = 1� 2

Np

( 1H( 1) + . . .+  NpH( Np))| 1, . . . , Npi . (8.35)

where H(x) is the Heaviside step function. Then by applying the same techniques
as above in building the unitaryW , we will have an expectation value w associated
with the prepared state,

w = h | h0|a W | i |0ia
= 1� 2

Np

X

 1,..., Np

Q( 1, . . . , Np)( 1H( 1) + . . .+  NpH( Np)) . (8.36)

From the analysis of the error shown in Eq. (2.18) in Sec. 2.1.4, the precision
of the estimation is better when the expected value of a unitary W is close to
1. However, for most mixing problems including binary mixing, the l-th central
moment decays as a function of t. The estimation of a small value of µl(t) can be
improved by calculating a shifted expectation value of W defined as,

W | 1, . . . , Npi |0ia = (1� A)| 1, . . . , Npi |0ia + |⌘?i |1ia , (8.37)
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where |⌘?i is also a quantum state. With this shift when µl(t) is small, the esti-
mation of w within precision ✏0 (Eq. (2.18)) results in the same order of precision.
In the simulation of the reacting flows, we did not apply this shift.

With this state preparation and translation from the quantity of interest to the
expectation value of a unitary to estimate, we use the techniques of quantum
metrology to estimate the l-th central moment of the PDF. In summary, our
algorithm is then:

Input: l, t, �, !, �t, Np, ✏

1. Obtain Nt = dt/�te, Ns = d�!�tNpe and the smallest integer m such
that M � 2⇡/✏, with M = 2m.
2. Construct the state preparation unitary V for | i as in Eq. (8.26).
3. Construct the unitary W as in Eq. (8.32) or Eq. (8.37).
4. Construct the unitary U = S0S1 = S0WS0W †, where S0 = 1l2n � 2 | i h |
performs reflection operation.
5.

5.1 Prepare | i = V |0 . . . 0i and a single-qubit ancilla state in |+ia as the
control qubit, and apply cU , M/2 times.

5.2 Apply a Hadamard transformation and measure the ancilla qubit in
the computational basis.

Let b0
m
2 {0, 1} denote the measurement outcome.

6. Repeat the following for each k in the order k = (m� 1), . . . , 1:
6.1 Prepare a single-qubit ancilla state in |+ia and apply cU , 2k�1 times.
6.2 Compensate the phase of |1ia by e�i⇡[.b0k+1...b

0
m].

6.3 Apply a Hadamard transformation and measure the ancilla qubit in
the computational basis.

Let b0
k
2 {0, 1} denote the measurement outcome.

Output: An estimate of the l-th central moment as cos(✓̂/2), with ✓̂ =
2⇡[.b01 . . . b

0
m
].

The confidence level for the estimation in a single execution of the algorithm is
bounded from below by 8/⇡2 and to reach arbitrarily confidence, we can repeat
estimation for L times, as described in Sec. 2.1.4 [Eq. (2.14)].
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8.5.2 Complexity

In this section we analyse the complexity of the our algorithm and compare that
to the MC method. For simplicity, we disregard logarithmic factors in the order
notation. The complexity to the state preparation | i is determined by the total
number of elementary gates to apply V . As V is constructed using reversible
equivalents of the operations implementing the MC method, we assume the com-
plexity of V is of order O(NtNs) = O(t�!Np), the number of simple operations in
one MC realisation. The complexity of W , related to the corresponding function
of  i to estimate interested properties, is O((Np)q) for some positive constant q.
The constructed unitary U to estimate eigenphases uses two instances of V and
two instances of V †, which results in a complexity of O(t�!Np). The complexity
of U and V can be dominant in the total complexity. Combined with the total
number of calling U for M = O(") times, the overall complexity of our algorithm
is then O(t�!Np/✏). Compare this result with that in Sec. 8.4.1, the dependence
on ✏ is quadratically better. To reach an arbitrary confidence level c, an additional
prefactor in order O(| log(1� c)|) should apply to the complexity.

8.5.3 Example: quantum algorithm for binary mixing

We apply our main quantum algorithm for simulations of the binary mixing prob-
lem and compare the performance with that of the MC simulations of Sec. 8.4.
Our quantum algorithm requires a large number of qubits which is beyond the
reach of classical computers or current quantum devices. Here, we simulate our
quantum algorithm via sampling from the distribution of the measurement out-
puts due to the simplicity of the problem, which we can base on classical MC
simulations with high precision.

We consider the same parameters as the binary mixing problem of Sec. 8.4.2.
We implement the quantum algorithm L times to reach the same confidence
level c = 99.75% as has been demonstrated with MC. We then obtain L values
of the estimator and compute the median value to provide the estimate. From
Eq. (2.14), the number of repetitions to reach confidence level c = 99.75% shall
satisfy this condition,

L � log(2⇥ (1� 0.9975))

log(0.8)
, (8.38)

and we can choose L = 24. This is the reason why we present the Nr in this
section using the convenient factorization, Nr = 2m ⇥ 24.
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Our classical simulations of the quantum algorithm are implemented as follows.
With the knowledge of the analytical solution of 4-th central moments, we assume
that 0  ✓/2 < ⇡/2, and then 0  2✓ < 2⇡. By estimating 2✓, we gain a factor of
1/2 in the error analysis. The probability distribution of estimating 2✓ is given by
Eq. (2.11), simply replacing ✓ ! 2✓ and ✓̂ ! 2✓̂. In the quantum algorithm, this
could be realised by replacing U ! U2 without changing the order of magnitude
of the complexity. According to this probability distribution of measurement
outputs as we run our quantum algorithm in Sec. 8.5, we obtain L = 24 estimates
of a phase 2✓̂i. In our case, our task is to obtain an estimate of the 4-th central
moment, notated as µ̂4(t). We define the unitary W accordingly via Eq. (8.32)
and Eq. (8.37) to reduce the error as explained in Sec. 2.1.4, Eqs. (2.18) and (2.19).

We first apply the MC techniques of Sec. 8.4.2 for Nr = 220⇥60 times to obtain a
very accurate estimate of µ4(t), µ̃4(t). This would not be possible in more general
mixing problems, and that is the justification for designing a quantum algorithm.
Then we can obtain the expression of an actual ✓, which will be estimated by the
PEA.

✓/2 =

⇢
arccos(1� µ̃4(t)) if µ̃4(t)  1/2
arccos(µ̃4(t)) if µ̃4(t) > 1/2 .

After simple calculations of the distribution function Eq. (2.11) in the case of
estimating 2✓, it can be shown that

Pr(b0
m
= 0) =

1

2
(1 + cos(M✓)) , Pr(b0

m
= 1) = 1� Pr(b0

m
= 0), (8.39)

whereM = 2m � 2⇡/✏ and b0
m
is the last digit of the binary representation of 2✓̂ =

2⇡[.b01 . . . b
0
m
]. Recursively we calculate the remaining digits for k = m� 1, . . . , 1,

Pr(b0
k
= 0) =

1

2

�
1 + cos(2k✓ � ⇡[.b0

k+1 . . . b
0
m
])
�
, Pr(b0

k
= 1) = 1� Pr(b0

k
= 0) .

(8.40)

This calculation provides a way to simulate our quantum algorithm on a classical
computer by sampling each digit according to a distribution that depends on
previous outcomes.

In Fig. 8.4 (a), we provide simulation results for the estimate of the 4-th central
moment, µ̂4(t), obtained by using our quantum algorithm. We used m = 10
bits of precision and repeated the simulation L = 24 times; the corresponding
repetition number is, Nr = 210 ⇥ 24. As in Sec. 8.4.2, we observe that the 4-
th central moment decays exponentially in time. In Fig. 8.4 (b), we show the
estimates µ̂4(t) normalised with µ̃4(t) for di↵erent values of m. When t � 0.3,
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the quantum algorithm estimates the value 1�µ4(t), rather than µ4(t), to reduce
estimation errors. we obtain the error bars as,

✏Q :=
���cos((✓̂ + ✏/2)/2)� cos(✓̂/2)

��� (8.41)

from Eq. (2.18) replaced ✏ by ✏/2 � 2⇡/2m+1, since we are estimating 2✓ within
precision ✏. The results shown in Fig. 8.4 should be compared with those in
Fig. 8.2.
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Figure 8.4: Estimates of the 4-th central moment of the PDF for computa-
tional elements, obtained from Quantum-algorithm simulation of a simple bi-
nary mixing process using Curl’s model with the same simulation parameters in
Fig. 8.2. (a) Exponential decay of the estimated 4-th central moment µ̂4(t), as
a function of time for a number of state preparations Nr = 210⇥24 [Eq. (2.15)].
This was obtained as µ̂4(t) = cos(✓̂/2) (t < 0.3) or µ̂4(t) = 1�cos(✓̂/2) (t � 0.3)
, where ✓̂ is the phase estimate obtained by the quantum PEA. The estimated
moments are very close to the exact solution µ4(t) (dashed line), given by
Eq. (8.10). (b) The estimated 4-th central moment relative to a very accurate
estimate µ̃4(t) for Np = 103. The data shown here are for Nr = 27⇥24 (dotted
line, odd positions) and Nr = 210 ⇥ 24 (solid line, even positions). To reach a
confidence level of 99.75 %, the error bars were obtained from Eq.(8.41). The
relative error increases with t as both µ̂4(t) and µ̃4(t) decay exponentially with
t. The estimation error of µ̂4(t) is of the order of 1/Nr. Note that in (b) we use
a di↵erent scale to that shown in Fig.8.2(b), and that it is not meaningful to
compare the quantum and classical algorithms based on these figures alone, as
the algorithms would run on di↵erent hardware. The advantage of the quan-
tum algorithm is in the scaling with Nr, which we plot in Fig. 8.5, and discuss
in detail in the text. This figure was reproduced from [222].
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In Fig. 8.5, we compare the errors output by the classical MC method (✏C) and our
quantum algorithm (✏Q). The results are for estimating the 4-th central moment
of the binary mixing model at di↵erent time t and di↵erent repetition number.
The errors were obtained from Eqs. (8.18) and (8.41). The di↵erent scalings of
these algorithms clearly show the advantages of the quantum algorithm as Nr

becomes larger.
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Figure 8.5: Comparison of the errors output by the classical MC method
(✏C) and our quantum PEA (✏Q). The results are for the 4-th central moment
of the binary mixing model studied in Secs. 8.4.2 and 8.5.3, for di↵erent values
of t and Nr. The latter refers to the number of repetitions of the classical MC
method or the number of state preparations needed by our quantum PEA. The
data points are for Nr = 2m ⇥ L, where m = 10, 14, 17, 20 and L = 24. The
confidence level of the estimation is 99.75%. The logarithmic scale allows us to
observe clearly a better precision dependence, in terms of Nr, for our quantum
PEA than for MC simulations. This figure was reproduced from [222].

This comparison of two algorithms demonstrates the power of quantum computing
in the error scaling in terms of the number of repetitions. This quantum speed-
up of error scaling proves the potential of quantum computers performing high-
precision parameter estimation in the future.

8.5.4 Example: quantum algorithm for reacting flow

Because of the similar nature of the two problems: turbulent mixing problem and
reacting flows, both of them are described in the C/D model, therefore we are able
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to tailor our quantum algorithm with the same routine but a di↵erent observable
to calculate di↵erent functions of interest, as discussed in Sec. 8.5.1. Without go-
ing through of the whole process again, we simply look at the di↵erences between
the implementations of solving the two problems.

The function we are would like to calculate here is the mean fractional mass
conversion as in Eq. (8.14). By designing a observable which has an expectation
value as in Eq. (8.36), we will have the unitary operator with the eigenphase

✓/2 = arccos(F̃(t)) ,

where F̃(t) is a very accurate simulation result obtained via classical MC using
Nr = 220 ⇥ 60 repetitions. To use results from the MC method as an input for
the simulation is not possible in general cases. The rest of the simulation is the
same as that of Sec. 8.5.3

Here we show our classical simulation of our quantum algorithm in estimating
F(t) in Fig. 8.6. Simulations are for di↵erent values of time up to 3 (t  3). In
Fig. 8.6 (a), we demonstrate the simulation with m = 17 digits in our quantum
algorithm and show the growth of F(t) as a function of time. In Fig. 8.6 (b), the
simulation results are very close the very accurate simulation result F̃(t) via the
MC method using Nr = 220 ⇥ 60, since the analytical solution of F varies from
di↵erent models. Then we demonstrate the simulation results for two di↵erent
parameters, m = 17 and m = 20 normalised with F̃(t). The relative errors are
decreasing in time because the value of F(t) is increased to 1. The performance
of the quantum algorithm shown in Fig. 8.6 should be compared with those in
Fig. 8.3.

We then demonstrate the comparison of the errors from the classical MC method
(✏C) and our quantum algorithm (✏Q) in Fig. 8.7. A similar conclusion can be
reached as in the comparison made for turbulent mixing problem, that the error
scaling in terms of the repetition number show the same quadratic quantum
speed-up.

8.6 Conclusions and outlook

In this chapter, we first gave an overview of using MC methods to simulate the
PDF transport equations which can be utilised in the simulations of di↵erent sub-
jects in fluid dynamics. Then we provided the background of two fluid dynamics
problems: turbulent mixing problems and reacting flows problem as examples,
followed by numerical simulations estimating quantities of interest in di↵erent
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Figure 8.6: Estimation of the mean fractional mass conversion of fuels, ob-
tained from quantum-algorithm simulations of a reacting flow problem de-
scribed by Curl’s model with the same simulation parameters in Fig. 8.3. (a)
Growth of the estimated mass fraction of fuels F̂(t), as a function of time for
a number of state preparations Nr = 217 ⇥ 24 [Eq. (2.15)]. This was obtained
as F̂(t) = cos(✓̂/2) , where ✓̂ is the phase estimate obtained by the quantum
PEA. The estimated moments are very close to a very accurate simulation
F̃(t) (dashed line), given by the MC calculations using Nr = 220 ⇥ 60. (b)
The estimated mass fraction of fuels relative to a very accurate estimate F̃(t)
for Np = 103. The dataset shown here is for Nr = 217 ⇥ 24 (blue line) and
Nr = 220⇥ 24 (red line). To reach a confidence level of 99.75 %, the error bars
were obtained from Eq.(8.41). The relative error decreases with t as both F̂(t)
and F̃(t) increase with t to 3. The estimation error of F̂(t) is of the order of
1/Nr. Note that in (b) we use a di↵erent scale to that shown in Fig.8.3(b)
because of the di↵erent range of errors. By using m = 17, 20 bits, we already
observe better performance of the quantum PEA over the MC. Furthermore,
the advantage of the quantum algorithm is in the scaling with Nr, which we
plot in Fig. 8.7, and discuss in detail in the text.

example topics. Then we presented a quantum algorithm for solving MC mix-
ing problems from fluid dynamics. Our quantum algorithm provides a quadratic
speed-up over classical MC methods in terms of the number of repetitions that
are required to achieve a desired precision. We then apply our tailored quantum
algorithm to specific example problems via changing the observables, estimat-
ing the precision obtained as a function of the repetition number in classical MC
methods. By illustrating the error scaling from numerical simulations of our quan-
tum PEA, we observe the expected quantum speed-up over classical algorithms
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Figure 8.7: Comparison of the errors output by the classical MC method
(✏C) and our quantum PEA (✏Q). The results are for the mass fraction of fuels
of the reacting flow problem studied in Secs. 8.4.3 and 8.5.3, for di↵erent values
of t and Nr. The latter refers to the number of repetitions of the classical MC
method or the number of state preparations needed by our quantum PEA. The
data points are for Nr = 2m ⇥ L, where m = 10, 14, 17, 20 and L = 24. The
confidence level of the estimation is 99.75%. The logarithmic scale allows us to
observe clearly a better precision dependence, in terms of Nr, for our quantum
PEA than for MC simulations.

compared to the MC calculation.

This quantum algorithm can be applied to a range of fluid dynamics problems,
and in this chapter we showed two of them. The potential power of quantum
computing in this area is demonstrated. More broadly, this study provides us a
basis to discuss the potential applications of future quantum computers in fluid
dynamics. Recent developments in quantum hardware are very encouraging [179–
186] and we expect some time in the future to implement our quantum algorithm
on a large quantum computer. The investigation of the detailed application of
this technology to solve fluid dynamics problems motivates algorithm develop-
ment in quantum computing, and help us to understand the potential impact of
quantum computers. Our specific examples highlight also how studying potential
applications could give feedback and requirements about the implementation of
quantum algorithms.



Chapter 9

Conclusions and outlook

The research presented in this thesis involves topics of adiabatic quantum com-
puting, adiabatic state preparations and designing quantum algorithms to provide
a quantum speed-up for turbulent mixing problems. Our results demonstrate ad-
vantages of a eigenpath transversal algorithm over conventional adiabatic quan-
tum computing, the assistance of classical noise in adiabatic state preparation,
thermalisation of cold atoms in optical lattices after heating due to classical noise
and a quantum speed-up of tailored algorithms over classical Monte Carlo meth-
ods in turbulent fluid mixing. Our research contributes to di↵erent aspects of
quantum simulation, quantum algorithms and quantum computation, and in a
big picture, quantum simulators and quantum computers.

In Chap. 5, we presented an eigenpath transversal algorithm, the randomisation
method, with improved bounds on the eigenpath length and on the time cost of
the algorithm. The advantage of the randomisation method over conventional
adiabatic quantum computing is demonstrated in terms of the dependence of the
time cost on the gap. Because of the connection to adiabatic quantum computing,
the randomisation method can be future applied to a wide range of problems
which can be solved by adiabatic quantum computing. The improved bound on
the eigenpath length can also apply to other eigenpath transversal methods. This
project can open several directions in the future. First, because the upper bound
of the time cost is loose, it will be very intriguing to search for particular problems
where the randomisation method outperforms conventional adiabatic quantum
computing. Secondly, many quantum algorithms have been proven to have a
quantum speed up over classical algorithms. How to modify the randomisation
method to solve classical problems and how the performance is compared with
classical algorithm will be interesting to investigate.

141
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In Chap. 6, we adapted the random time evolution approach from the randomisa-
tion method to the situation of adiabatic state preparation of many-body system
with classical noise. As an example, we considered noise during adiabatic state
preparation in the Bose-Hubbard model. We also discuss the realisation of such
noise by engineering amplitude fluctuations in optical lattices and its robustness
against imperfect implementations. The study of the fidelities with tilted noise
provides deeper understanding of the competition between the heating and de-
phasing e↵ects. The potential directions of future research could be as follows.
First, it will be interesting to see implementations our method in experiments
with cold Bosons in optical lattices with amplitude noise. Secondly, this study
can be extended to other systems like Fermions in optical lattices or trapped
ions. To realise classical noise proportional to the Hamiltonian could be chal-
lenging with di↵erent experimental settings. Last, how other noise e↵ects, for
example, spontaneous emissions, can influence state preparations also opens a
wide range of future directions.

In Chap. 7, we continued our study of amplitude noise in optical lattices and
discuss the influence on the total energy after the adiabatic state preparation and
the thermalisation after application of noise. We identify the regime of minimal
total energy resulting from the competition between non-adiabaticity and noise
accumulations as we increase the evolution time with a fixed noise strength. Also,
after application of an amplitude noise pulse, we study thermalisation behaviour
in the superfluid phase, and show that in the Mott insulator phase, thermalisation
is not observed. In the future, it will be interesting to study the behaviour of
the state preparation fidelity as a function of evolution time with a fixed noise
strength to identify an optimal evolution time that gives the maximum fidelity and
compare those two optimal values of time. The second direction of this project
is to see experimental implementation of the amplitude noise pulses and observe
the system and compare the experimental results to our numerical simulations.
This research overall will form a basis for better understanding and diagnosing
typical heating processes for cold atoms in optical lattices.

In Chap. 8, we developed a quantum algorithm based on the phase estimation
algorithm to solve specific problems in fluid dynamics. We take two examples,
turbulent scalar mixing and reacting flows, to demonstrate the quantum speedup
achieved by a quantum algorithm over classical Monte Carlo calculations show-
ing the error scaling in terms of number of repetitions. This is intended to start
a conversation with the fluid dynamics engineering community. The quantum
hardware undergoes a rapid developing period. Our research can estimate po-
tential impacts of quantum computers. The study of complexity and the depth
of quantum algorithms can also provide information on requirements of quantum
devices for practical implementations. The first direction of future research would
be to optimise our quantum algorithm to realise parallelisation. The second one,
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is to simulate the probability distribution function transport equation directly,
instead of mimicking the classical method. The potential outcome may lead to
the elimination of the simulation error from the limited number of computational
elements. Lastly we can investigate the potential to design quantum algorithms to
solve partial di↵erential equations, like the Fokker-Planck equation and Navier-
Stokes equation that are widely used in engineering. One possible path is via
tensor network theory for solving partial di↵erential equations (PDEs) [223, 224].
Tensor networks methods are widely used to study quantum many-body system.
To find the quantum system corresponds to the tensor network form can lead
to a bridge between quantum computation of PDEs. However, the nonlinearity
in certain type of PDEs may cause problems in state preparation of quantum
algorithms. To update the information of the nonlinearity, measurements have
to be applied at each step. The projective measurements in the computational
basis can destroy the coherent quantum state, which requires additional state
preparations in quantum computation.
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