
Data Value Storage for Compressed
Semi-Structured Data

Brian Grieve Tripney

A thesis presented in fulfilment of the requirements for the degree of
Doctor of Philosophy

2012

University of Strathclyde
Department of Computer and Information Sciences

ABSTRACT

Growing user expectations of anywhere, anytime access to information require
new types of data transfer to be considered. While semi-structured data is a
common data exchange format, its verbose nature makes files of this type too
large to be transferred quickly, especially where only a small part of that data
is required by the user. There is consequently a need to develop new models of
data storage to support the sharing of small segments of semi-structured data as
existing XML compressors require the transfer of the entire compressed structure
as a whole.

This thesis examines the potential for bisimilarity-based partitioning (i.e. the
grouping of items with similar structural patterns) to be combined with dictio-
nary compression methods to produce a data storage model that remains directly
accessible for query processing whilst facilitating the sharing of individual data
segments.

The use of dictionary compression is shown to compare favourably against Huffman-
type compression, especially with regard to real world data sets, while a study of
the effects of differing types of bisimilarity upon the storage of data values iden-
tified the use of both forwards and backwards bisimilarity as the most promising
basis for a dictionary-compressed structure.

Having employed the above in a combined storage model, a query strategy is
detailed which takes advantage of the compressed structure to reduce the number
of data segments that must be accessed (and therefore transferred) to answer a
query. A method to remove redundancy within the data dictionaries is also
described and shown to have a positive effect in terms of disk space usage.

DECLARATION

This thesis is the result of the author’s original research. It has been composed
by the author and has not been previously submitted for examination which has
led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation
3.50. Due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

Signed:

Date:

PUBLICATIONS

The results of the experimental work detailed in this thesis have previously been
published in the following papers:

Richard Gourlay, Brian Tripney, and John N. Wilson.
Compressed materialised views of semi-structured data.
In Workshops of the Twenty Fourth British National Conference on Databases,
pages 75-82. IEEE Computer Society, Los Alamitos, California, 2007. ISBN
978-0-7695-2912-7.

Brian Tripney, Christopher Foley, Richard Gourlay, and John N. Wilson.
Sharing large data collections between mobile peers.
In Gabriele Kotsis, David Taniar, and Eric Pardede, editors, Proceedings of the
7th International Conference on Advances in Mobile Computing and Multimedia
(MoMM 2009), pages 321-325. ACM, New York, New York, 2009. ISBN 978-3-
85403-261-8.

Brian Tripney, Christopher Foley, Richard Gourlay, and John N. Wilson.
Efficient data representation for XML in peer-based systems.
In International Journal of Web Information Systems, Volume 6, Number 2,
pages 132-148. Emerald, UK, 2010. ISSN 1744-0084.

To my late mother, Dorothy

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Dr John N. Wilson, for his advice
and support throughout the course of this PhD. His words of encouragement
during the drafting of this thesis have been invaluable.

Thank you to my fellow students in the Department of Computer and Information
Sciences for making the office such a friendly place to work - it has made the
process so much less arduous. Thanks also to my friends and colleagues at the
SUERC Radiocarbon Laboratory for keeping me going through the redrafting
process.

Last, but by no means least, I would like to thank my family for their love and
support over the past few years. Thank you to my dad, Peter, for putting up with
me on a daily basis, and thank you to my sisters, Gail and Dawn, for casting an
eye over this document - I’m glad you found it more interesting than you thought
it would be.

CONTENTS

1. Introduction . 1
1.1 Context . 1
1.2 Hypothesis and Research Questions 3
1.3 Thesis Outline . 5

2. Background . 6
2.1 XML Indexing and Structural Summarisation 7
2.2 XML Compression Techniques . 15

2.2.1 Non-Queryable XML Compressors 16
2.2.2 Queryable Homomorphic XML Compressors 22
2.2.3 Queryable Non-Homomorphic XML Compressors 26

2.3 Comparison of Existing Methods 31
2.4 Summary . 33

3. Relevant Technologies . 35
3.1 NSIndex . 35

3.1.1 NSIndex Compression . 36
3.1.2 Program Operation . 37
3.1.3 Section Summary . 40

3.2 HiBase . 40
3.2.1 HiBase Compression/Operation 41
3.2.2 Section Summary . 43

3.3 XGrind . 43
3.3.1 XGrind Compression/Operation 43
3.3.2 Section Summary . 46

3.4 Summary . 46

4. Experimental Work . 47
4.1 Overview . 47
4.2 Data Sets . 48
4.3 Preliminary Work . 49
4.4 Evaluation of Partitioning Methods 50
4.5 Integration of Data Value Compression 53

4.5.1 Dictionary Creation and Data Encoding 53
4.5.2 File Loading . 53

4.6 Querying . 54
4.7 Dictionary Thinning . 57
4.8 Summary . 63

5. Results & Discussion . 64
5.1 Preliminary Work . 64
5.2 Evaluation of Partitioning Schemes 68

5.2.1 Effect on Number of Data Vertices 68
5.2.2 Effect on Compressed Data and Dictionary Sizes 72
5.2.3 Selection of Partitioning Method 75

5.3 Querying . 75
5.4 Dictionary Thinning . 78

5.4.1 Effect on Number of Dictionaries 78
5.4.2 Effect on Dictionary Size 80
5.4.3 Effect on Dictionary Size on Disk 81

5.5 General Discussion . 83
5.5.1 Research Questions and Hypothesis 84

5.6 Limitations and Future Work . 87
5.7 Summary . 89

6. Conclusion . 90

Bibliography . 93

Appendix 99

A. Description of Data Sets . 100
A.1 XMark Benchmark . 100
A.2 Orders . 100
A.3 Modified Orders . 100
A.4 Legal . 102
A.5 Dream . 102
A.6 Medline . 102
A.7 NASA . 104
A.8 Rat . 104
A.9 Human . 105

B. Additional Data . 106
B.1 Effects of Bisimilarity on Number of Vertices 106
B.2 Effects of Bisimilarity on Compressed File Sizes 108

viii

LIST OF TABLES

2.1 Comparison of Existing XML Compressors 32

4.1 Categorisation of Test Data Sets 48
4.2 Summary of Processing Methods for Preliminary Work 50
4.3 Query Example . 56

5.1 Effects of Bisimilarity Options on Number of Data Vertices 69
5.2 Effects of Bisimilarity Options on Compressed Sizes 72
5.3 Test Queries . 76
5.4 Consequences of Thinning on Number of Dictionaries 79
5.5 Consequences of Thinning on Logical Dictionary Size 80
5.6 Consequences of Thinning on Dictionary “Size on Disk” 81

B.1 Effects of Bisimilarity Options on Total Number of Vertices 107
B.2 Effects of Bisimilarity Options on Dictionary Sizes 109

LIST OF LISTINGS

2.1 XML Example . 6
2.2 XGrind Example Output . 23
3.1 NSIndex File Format . 40
4.1 NSIndex Compressed File Format 54
4.2 Dictionary List . 61
A.1 Example of XMark Data . 101
A.2 Example of Orders Data . 101
A.3 Example of Legal Data . 102
A.4 Example of Dream Data . 103
A.5 Example of Medline Data . 103
A.6 Example of NASA Data . 104
A.7 Example of Rat Data . 105

LIST OF ALGORITHMS

1 Calculation Theoretical Size . 49
2 File Loading . 55
3 Compressed Query Strategy - matchDescendants method 57
4 Dictionary Thinning Algorithm . 61
5 Subset Test . 62
6 Building Translation Table . 62

LIST OF FIGURES

2.1 Datagraph Representation of XML in Listing 2.1 8
2.2 DataGuide Representation of Datagraph in Figure 2.1 9
2.3 A(0)-Index for Data Shown in Figure 2.1 10
2.4 A(1)-Index for Data Shown in Figure 2.1 11
2.5 A(2)-Index for Data Shown in Figure 2.1 11
2.6 Uncompressed Skeleton . 13
2.7 Compressed Skeleton . 13
2.8 (1,1)-F+B-Index of Data Shown in Figure 2.1 15
2.9 XMill . 17
2.10 XMLPPM - ESAX Encoding and Distribution 18
2.11 Structure Compression Algorithm 20
2.12 XML Word Replacing Transform 21
2.13 XPRESS Reverse Arithmetic Coding 23
2.14 Query-supporting XML Transform 25
2.15 XQueC . 27
2.16 XQzip . 28
2.17 XCQ . 29
2.18 ISX . 30

3.1 NSIndex Using Forwards and Backwards Bisimilarity 36
3.2 NSIndex System Architecture . 38
3.3 HiBase Compressed Columns and Dictionaries 41
3.4 HiBase Text/Token Conversion 42
3.5 XGrind Operation . 44

4.1 Effect of Data Value Distribution 52
4.2 Data Vertices and Dictionaries Before Thinning 58
4.3 Data Vertices and Dictionaries After Thinning 59

5.1 Orders Data Set . 65
5.2 Modified Orders Data Set . 66
5.3 Legal Data Set . 67
5.4 Effect of Bisimilarity Options on Number of Data Vertices 70
5.5 Effects of Bisimilarity Options on Compressed Sizes 73
5.6 Summary of Dictionary Thinning Effects 82

1. INTRODUCTION

New directions in the provision of end-user computing experiences make it nec-

essary to determine the best way to share online data. The work described in

this thesis evaluates a model for the storage of such data. This chapter sets out

the general context of the thesis before identifying the hypothesis to be tested

and the research questions that will aid in this process. An outline of the thesis

structure rounds off the introductory material.

1.1 Context

The volume of data available over the Internet grows on a daily basis. At the

same time, end users’ expectations are increasing, with smartphone users now

demanding instant access to information wherever they may be. In June 2012,

10.4% of web page views were originated from mobile devices, up from 6.5% in

2011 and 2.6% the previous year[Sta].

The array of different processing techniques in use necessitates a standard

format for data exchange and the self-describing nature of semi-structured data,

in particular XML, has led to its common usage for this purpose. The side effect

of this most useful property is that file sizes quickly become large, with a high

proportion of this being contributed by the description of the file format.

XML compression techniques have partly addressed this by reducing storage

requirements at the significant expense of requiring additional processing to access

the data contained within the compressed files. However, the entire data structure

is often not required, with users typically only interested in a small subset of the

data. In such cases it follows that only the parts of the data structure of interest

to the user need be accessed by the query processing system. Where the data is

appropriately partitioned, or broken into segments, such an approach can limit

the volume of data to be processed.

A similar effect can be seen with data transfer. By only transporting the

data segments directly involved in answering a query, the overall communications

bandwidth utilised is also reduced. The effect is multiplied where additional

queries can be answered using the data segments already held. In a system

allowing sharing between peers, the data can be sourced from another local device

rather than the server - again there is benefit in only sharing the segments required

to resolve the query.

Take for example a museum setting where exhibit information is available via

small handheld devices (possibly the visitor’s own phone or tablet). A system

where data can be sourced from other visitors’ devices could reduce user wait

times and cut server load such that relatively cheap hardware can be used to

fulfil the server role. In such a scenario the server would only be accessed where

a data segment required is not available from the pool of visitor devices.

This can be viewed as analogous to a dual layer of caching. In the first instance

the device will try to answer the visitor’s query using the segment or segments

of data it already holds. As the visitor may well be interested in a number of

similar exhibits, their device potentially has already gathered the relevant data

while answering a previous query. If not, the device expands its search to the

second layer cache - its peer devices. Data relating to popular exhibits is liable

to be available from other visitors’ devices. Even with more specialist artefacts,

there is a reasonable chance that other members of the same visiting party would

be interested in the same exhibits and have the relevant data segments available.

This sharing model can be expanded to applications covering a larger geo-

graphical area, for example work has been done on augmented reality tours of

ancient sites such as Pompeii[VVI04]. Participating users could benefit from the

reduced use of mobile data services provided they are willing to wait for a user

with the necessary data segment to enter their vicinity. In such an environment

it is important to ensure that the minimum data is transferred due to the costs

involved in the process.

Any system built around the sharing of data segments will require an ap-

propriate data storage model. Existing models are either non-queryable ([LS00],

2

[Che01], [LW02], [SGS07]) or have other drawbacks, e.g. requiring large sections

of data to be decompressed in order to access a single value ([TH02], [MPC03],

[SS07], [ABC+04], [CN04], [NLWL06], [WLS07]). In all cases these existing stor-

age models require the entire data structure to be transferred as a single unit to

allow any access to the data contained within.

1.2 Hypothesis and Research Questions

To facilitate sharing, a data storage model should be able to partition the semi-

structured data into segments and store these in a manner that maximises the

usage of storage space while still making the stored values easily accessible. Semi-

structured data can be separated into segments of related data by a process

based around bisimilarity [KSBG02][BGK03] - where items with similar structural

patterns are grouped together. It is proposed that such segmentation forms the

basis of a data storage model that allows individual segments to be shared and

recombined as required. Support for queries could be maintained by utilising

an independent method of compression for each data segment - i.e. the whole

structure should not be required to access the data stored in any one of the

segments.

The hypothesis assessed through this thesis is therefore that:

Independent sharing of data segments while maintaining direct query

access is effectively facilitated by the combination of bisimilarity-based

partitioning and dictionary compression methods.

This hypothesis directs study towards two major technical issues: the validity of

dictionary compression in this context and the evaluation of bisimilarity-based

partitioning methods as a useful means of segmenting a data structure. A sys-

tem combining these two methods should allow the evaluation of queries while

accessing only a portion of the data structure. Once these processes have been

applied to semi-structured data, it is then necessary to explore the way that the

resulting data model can be further processed to improve its utility. As a result

of these issues, this thesis considers the following research questions:

3

RQ1: Are dictionary-based methods a reasonable choice for use in a

compressed semi-structured data storage model?

In order to keep decompression to a minimum, the data storage model must

maintain access to the individual values within a compressed data segment such

that only values directly involved in the evaluation of a query need be decom-

pressed. This means that either the data must be compressed on a per value basis

(dictionary compression) or on a per character basis (akin to text compression)

- it cannot be compressed at the segment level. String-repetition that occurs

within the data sets may provide an opportunity for dictionary compression to

offer improved compression with respect to that available with character-based

compression.

RQ2: What are the effects of varying the partitioning method on the

storage of data values?

Earlier work [GTW07] has considered the effect of changing the type of bisim-

ilarity used in the partitioning process upon structural parts of XML, however

this will also have an effect on the distribution of data values across the segments

of the data storage model. The number of segments produced and the size of the

associated dictionaries are of interest with respect to the future sharing of data.

RQ3: Can a querying strategy designed around the compressed struc-

ture allow queries to be answered with reduced access to the data

structure?

To allow queries to be answered with the minimal transfer of data segments,

the querying method used by the storage model must require access only to those

segments that could potentially hold a query result. By taking account of the

structure of the data during the query process, it is hoped to reduce the number

of segments that are required.

RQ4: With the data split into segments, how might the volume of dic-

tionaries be managed?

4

The partitioning of data into segments could potentially lead to a large num-

ber of associated dictionaries that may well contain a high degree of repetition

within their union. Consideration will be given to the reduction of such redun-

dancy by establishing a methodical manner of identifying and removing duplicate

and subset dictionaries.

The research questions above form the basis of the main pieces of experimental

work detailed in Chapter 4. A comparison between dictionary-based and text-

based compression is set out in Section 4.3, while Section 4.4 evaluates the effects

of differing types of bisimilarity-based partitioning. The design of a structure-

aware query strategy is given in Section 4.6, and finally a method of reducing

redundancy within the set of dictionaries is described in Section 4.7.

1.3 Thesis Outline

The main body of this thesis is organised as follows:

Chapter 2 reviews the previous work in the areas of semi-structured data

compression, indexing and structural summarisation with a more detailed picture

of the technologies built upon later in this thesis provided in Chapter 3.

The experimental work relating to the research questions above is set out in

Chapter 4, which also details the additional coding tasks required to facilitate

the main experiments (Section 4.5). The experimental results are presented and

discussed in Chapter 5. This chapter also returns to the research questions and

hypothesis set out earlier and considers the answers provided by the experimen-

tal work in this context. In addition, potential future avenues of research are

indicated.

Finally a conclusion to the thesis is provided in Chapter 6.

5

2. BACKGROUND

Extensible Markup Language or XML was first published as a W3C recommen-

dation in 1998 [XML]. Its aim was to introduce a standard method of storing

data within a document that would be straightforward and easy to use. The

XML markup consists of tags added to the data values that denote the start

and end of each entity that contains data. A simple example of a contact list is

given in Listing 2.1. It can be seen that all details pertaining to the student Joe

Bloggs are contained between the <Student> </Student> tags and similarly for

the two staff members between the <StaffMember> </StaffMember> tags. Each

individual data item is also self-contained, e.g. Email and Telephone.

<ContactList>

<Student>

<Name>Joe Bloggs</Name>

<Contact>

<Email>j . bloggs@example . com</Email>

</Contact>

</Student>

<StaffMember>

<Name>Prof P. Pending</Name>

<Contact>

<Email>p . pending@example . com</Email>

</Contact>

</StaffMember>

<StaffMember>

<Name>Prof H. Higgins</Name>

<Contact>

<Telephone>0141 496 2232</Telephone>

</Contact>

</StaffMember>

</ContactList>

Listing 2.1: XML Example

As the W3C recommendation requires that XML documents be humanly-

readable, and notes that terseness is unimportant, there is scope for XML to be

an effectively self-describing storage medium - making it highly useful as a means

of data exchange between programs. However this same verbose quality means

that markup can account for a considerable proportion of any XML document,

above that required for the data values themselves, leading to large file sizes and

a high degree of repetition within the documents.

This chapter categorises and describes the notable advances made in the stor-

age and processing of XML documents that are relevant to the work described in

this thesis. The first section looks at techniques that supplement or simplify the

XML document structure, while the second section describes methods of com-

pression particularly designed to cope with XML. These are broad fields and

the examples detailed below have been selected to be representative of those ap-

proaches explored in the past. In particular, the technologies selected below are

those that are notable for a novel approach or that are frequently cited in the lit-

erature. A summary of additional XML technologies can be found in comparison

papers by Ng et al. [NLC06] and Sakr [Sak09].

Those XML processing methods that are built upon or used later in this thesis

are explained in more depth in Chapter 3.

2.1 XML Indexing and Structural Summarisation

The first group of XML technologies described in this review concentrates more on

the structure of XML documents than on the data they contain. The structural

part of the document may be supplemented by an index to speed the querying of

the original data structure. Alternatively the structure may be simplified so that

it is effectively replaced by a summarised version of itself.

XML data structures can be represented as a tree structure. The first tag acts

as the root of the tree with the nested elements thought of as branches emanating

from the root. An extension of this XML tree concept is that of a datagraph -

a graphical representation of the document structure showing each individual

XML element as a node within a graph. The datagraph is used in this chapter

as the starting point for describing methods that deal with XML structure and

an example depicting the XML code from Listing 2.1 above in datagraph form is

7

shown in Figure 2.1.

Each element of the XML structure is replicated within the datagraph. Note

that the datagraph begins with the root node 1, the ContactList element, and

that the edges of the graph are labelled to indicate what type of element appears

next. Therefore node 2 is of type Student, node 6 is of type Contact and node

11 is of type Email. Node 11 represents Joe Bloggs’ email address, mirroring the

path ContactList/Student/Contact/Email found in the XML structure from

Listing 2.1.

1

2 3

5 6 7 8

11 12

Staff Member

Student

Name Contact

Email

Name Contact

Email

4

9 10

13

Name Contact

Telephone

Staff Member

Fig. 2.1: Datagraph Representation of XML in Listing 2.1

Early work that builds upon the datagraph concept was carried out by Gold-

man and Widom. Centred more generally on semi-structured databases (it pre-

dates the XML recommendation), their work on DataGuides [GW97] recognised

the repetitive nature of datagraphs and exploited this to aid querying of schema-

8

less semi-structured databases. By extracting only unique paths of nodes that

exist within the datagraph, the DataGuide produced is a compact and accurate

summarisation of the database structure offering useful information for query

authors.

Figure 2.2 shows two DataGuide versions of the example datagraph set out

in Figure 2.1 above. The DataGuide in Figure 2.2a contains each of the labelled

edges from the datagraph once only with no duplication. Figure 2.2b is a minimal

version of the DataGuide. As the outgoing edges from nodes 15 and 16 are the

same, these nodes can be combined in the minimal version as node 25, with the

Student and Staff Member edges both appearing between nodes 24 and 25.

14

15 16

17 18 19 20

21 22

24

25

26 27

28

(a) (b)

Staff MemberStudent

Name Contact

Email

Name Contact

Email Telephone

23 29

Staff MemberStudent

Name Contact

Email Telephone

Fig. 2.2: DataGuide Representation of Datagraph in Figure 2.1

The structural summarisation methods listed below simplify the datagraph

by exploiting patterns in the types of nodes that are connected to each other - a

quality known as bisimilarity [KSBG02][BGK03]. Establishing the bisimilarity or

otherwise of any two nodes in the datagraph is a two stage process. First, the two

nodes must be labelled the same, i.e. the two elements represented by the nodes

must be of the same type. Secondly, the paths connected to the two nodes are

9

examined to ensure that the labels of the ancestor nodes (via the incoming paths)

are the same for each node and that the labels of the descendant nodes (via the

outgoing paths) are the same for each node. The methods described below each

employ different varieties of bisimilarity, varying the direction and length of the

paths examined.

The A(k)-index [KSBG02] is a family of indices created using different levels

of backwards bisimilarity (k), i.e. it is the incoming paths that are considered

for purposes of determining bisimilarity. This work by Kaushik et al. groups

bisimilar entities into a single node in the resulting A(k)-index.

Contact List 1

2Student

5,7,9Name 6,8,10Contact

11,12Email

3,4Staff Member

Telephone 13

Fig. 2.3: A(0)-Index for Data Shown in Figure 2.1

Figures 2.3 to 2.5 depict the A(k)-indices produced from the example XML.

Note that in these diagrams it is the nodes (as opposed to the edges) that are

labelled and that the numbers next to each node represent the individual XML

elements contained within that node according to the order that they appear in

the original XML document.

The initial A(0)-index, as shown in Figure 2.3, simply groups nodes by their

label type. For levels of k greater than zero the incoming paths to each node are

10

2Student

7,9Name 8,10Contact

11,12Email

5Name 6Contact

3,4Staff Member

Telephone 13

1Contact List

Fig. 2.4: A(1)-Index for Data Shown in Figure 2.1

12Email Telephone 13

2Student

7,9Name 8,10Contact5Name 6Contact

3,4Staff Member

1Contact List

11Email

Fig. 2.5: A(2)-Index for Data Shown in Figure 2.1

11

also considered. Therefore for two nodes to be classed as bisimilar in the A(1)-

index they must have the same label and their parent nodes must also have the

same labels. This can be seen in Figure 2.4 where the Name elements have split

into two nodes, one containing element 5 whose parent node has label Student,

and one containing 7 and 9 which have Staff Member as parent. The same is

true for the Contact elements, however the Email node holding 11 and 12 does

not split as the parent node of each is of type Contact.

For higher levels of k, the length of incoming path examined is increased.

The A(2)-index (Figure 2.5) looks at the parent and grandparent nodes - thus

separating elements 11 and 12 which, although both have Contact as a parent

node, have different grandparent node types (Student and Staff Member respec-

tively). This pattern continues with the A(3)-index additionally considering the

great-grandparent nodes (though further levels of k will have no effect on this

example data).

The work of Buneman et al. [BGK03] also makes use of bisimilarity. Although

their work is phrased as ‘compression’ (discussed in Section 2.2 below) only the

document structure is dealt with, not the data values, making the concept in-

volved more closely related to structural summarisation techniques such as the

A(k)-Index above.

Their technique extracts the structural part of the document, then summarises

this ‘skeleton’ through the sharing of common subtrees. Whereas the A(k)-Index

makes use of backwards bisimilarity, this method employs forwards bisimilarity

- it is the outgoing (as opposed to the incoming) paths of the nodes that are

compared. An uncompressed skeleton version of the example data is shown in

Figure 2.6, with the compressed version shown in Figure 2.7.

In Figure 2.7 Name and Email are included only once as the outgoing edges

of each instance of these are the same (i.e. none). Two of the Contact elements

are also merged into one as they each have the common subtree of Email. The

multiple edges between Contact and Email can be replaced with a single num-

bered edge as shown in the inset part of Figure 2.7 to form a Fully Compressed

Skeleton where the numbers indicate how many edges are represented. The order

of the elements from the original XML is retained by the skeleton compression

12

Contact List

Staff MemberStudent

Name Contact

Email

Name Contact

Email

Name Contact

Telephone

Staff Member

Fig. 2.6: Uncompressed Skeleton

Contact List

Student

Name Contact

Telephone

Staff Member

Email

Contact

Staff Member

(2)

Email

Contact

Fig. 2.7: Compressed Skeleton

13

technique and shown in the diagrams as left-to-right order.

Kaushik et al. [KBNK02] present two methods of employing both forwards

and backwards bisimilarity within the same index.

The first is a restatement of ideas previously presented by Abiteboul, Bune-

man and Suciu [ABS99]. The Forward and Backward Index (F&B-Index) repeat-

edly applies alternating stages of forwards and backwards bisimilarity to the set

of datagraph nodes, with each successive stage using the output of the previous

stage as a starting point. This continues until a point is reached where no further

changes are made to the node groupings and a stable index is formed.

This F&B-Index is the smallest index for which all branching path queries

(i.e. those where the query does not take a linear path through the index) are

accurately covered by the index.

Kaushik et al. then suggest a compromise, proposing an index that is con-

siderably smaller than the F&B-Index, but at the expense of accuracy. This

is done by limiting the levels of bisimilarity used (as is the case for backwards

bisimilarity in the A(k)-Index above) and by limiting the number of times the

main F&B-Index computation is performed. Although repeated iterations of this

computation increase the length of branching query (i.e. the path length of the

deviation away from the main linear path of the query) which can be accurately

answered by the index, the size of the index also increases with each iteration.

The resulting index is known as the (j,k)-F+B-Index, where j and k specify the

levels of forwards and backwards bisimilarity respectively.

A simple example of the use of both forwards and backwards bisimilarity is

shown in Figure 2.8. For this example diagram, the level of bisimilarity in each

direction is set at 1. In comparison to the A(1)-Index (Figure 2.4), which uses only

backwards bisimilarity, it can be seen that that (1,1)-F+B-Index has separated

the two Contact elements 8 and 10. This is because with the addition of forwards

bisimilarity the outgoing paths of the nodes are also considered. Element 8 has

child node of type Email, whereas element 10 has child of type Telephone - these

are consequently grouped differently.

The methods covered in this section each aid the access to the XML data

by supplementing or replacing the structural part of the document. The general

14

8Contact

2Student

7,9Name 10Contact

11,12Email

5Name 6Contact

3,4Staff Member

Telephone 13

1Contact List

(1,1)-F&B-Index

Fig. 2.8: (1,1)-F+B-Index of Data Shown in Figure 2.1

conclusion is that such methods assist in query processing at the expense of

having additional, potentially large, structures. The remainder of this chapter

is concerned with XML compression methods that involve both the document

structure and the data values contained within it.

2.2 XML Compression Techniques

The techniques of the previous section were concerned largely with quick access

to data contained within XML documents. To this end there was a focus on using

the structural part of the document to move quickly to the data values contained

within the XML. The methods examined in this section also have considerable

interest in the structural part of the XML document, but additionally take ac-

count of the storage of data values. These XML compressors process the whole

of the document with a view to reducing the overall file size.

Unlike general purpose compressors (such as gzip, bzip2, etc.), which see an

XML file merely as another text file, the compressors noted below are XML-

aware and take advantage of the repetitive structure of XML documents. The

15

XML compressors described here are split into three categories: Non-Queryable,

Queryable Homomorphic and Queryable Non-Homomorphic. The Non-Queryable

group are those compressors that take advantage of the structure of the XML

document to improve compression but the output must be fully decompressed

back to the original document before querying may occur. XML compressors that

allow querying directly upon the compressed data are divided into two categories

depending on how the compressed data is stored - those that keep structure and

data values together are termed Homomorphic, while those storing data values

separately from the structure are Non-Homomorphic.

2.2.1 Non-Queryable XML Compressors

The compression techniques outlined in this section are concerned solely with

reducing the storage requirements of XML. No provision is made by these methods

for the querying of data contained within the compressed XML, any document

must first be decompressed before any querying can take place. Nevertheless, by

taking advantage of the XML structure, a space saving can be made compared

to general purpose text compressors. As a result, these non-queryable XML

compressors may be considered more suitable for archival purposes.

One of the earliest XML-specific compressors, XMill [LS00], works by sepa-

rating the structure and data values into a number of containers and compressing

these individually. Figure 2.9 shows the process in more detail.

The XML document is read into XMill using a SAX Parser1 and then passed

through the Path Processor, which separates structure from data values. The

structural elements are then tokenised and stored within the Structure Container

such that each element tag is represented as T1, T2, etc. and that any occurence

of a data value is replaced by a reference to the appropriate Data Container, e.g.

C3.

Data values themselves are split according to their path in the original XML.

The Path Processor then passes the data values for each path through a Semantic

1 Simple API for XML, a parser that sequentially reads through a XML document and out-
puts a series of ‘events’ such as StartElement x, TextData abc, EndElement x as it encounters
these.

16

XML
File

SAX
Parser

Path
Processor

1st Semantic
Compressor

Compressed
File

3rd Semantic
Compressor

2nd Semantic
Compressor

gzip gzip gzipgzip

Structure
Container

1st Data
Container

2nd Data
Container

3rd Data
Container

Fig. 2.9: XMill

17

Compressor - a compressor that is appropriate to the type of data encountered

in that path (e.g. date, text, integer) - and stores the resulting data in a number

of Data Containers.

A final step sees the Structural Container and each of the Data Containers

compressed using gzip and output to a compressed XMill file. The authors report

that this method achieves a compression ratio of around twice that of gzip alone.

Whereas XMill keeps structural elements together and separates data into

multiple containers, Cheney’s XMLPPM [Che01] divides up what XMill would

term structure and keeps data values together.

The first stage of XMLPPM encodes the SAX Parser output such that each

SAX event is represented as a one byte code. This encoded SAX output (ESAX) is

then distributed as appropriate to four PPM encoders that work on the principle

of Prediction by Partial Match (PPM). The output from each PPM encoder is

based on the statistics built up as the encoding process takes place, i.e. the PPM

encoder adapts to predict what the next symbol will be and only needs to record

the difference between the predicted and actual symbols.

The first PPM model (Elts) encodes the element structure, the second (Atts)

encodes attribute values, the third (Chars) encodes data values and the fourth

(Syms) encodes the names of elements and attributes. Although there are four

PPM models used for encoding, each makes use of the same set of symbols to

prevent the models falling out of step with each other - thus maintaining the

document structure.

XML
File

SAX
Parser

ESAX
Encoder

<Contact> <Telephone> 0141 496 2232 </Telephone> </Contact>

Elts 04 07 FE FF FF

Atts

Chars <07> 0141 496 2232 00

Syms <07> Telephone 00

Fig. 2.10: XMLPPM - ESAX Encoding and Distribution

18

Figure 2.10 shows the ESAX encoding of a section of XML (from the example

code in Listing 2.1) and the distribution of these ESAX events between the four

PPM models. In this case, the <Contact> element has been seen before and is

encoded in Elts as 04, Telephone is encoded as 07 but is a new symbol so the

element name is also passed to the Syms model. Note that <07> is passed to the

Syms model to maintain context but is not encoded by the model, the code 00

marks the end of the element name. A code (FE) is then passed to the Elts model

to mark the start of a data value, with the telephone number itself being passed

to the Chars model (again <07> maintains context and 00 denotes the end of the

text). Finally for this section of XML, the Elts model receives codes to close the

Telephone and Contact elements (FF).

The output from each PPM encoder (not shown in Figure 2.10 is the difference

between the actual symbol passed to the encoder and the symbol it had predicted

would appear. This information is additionally used to update PPM model’s

statistics in an attempt to improve future predictions. A similar process takes

place during decompression - the four PPM models are built and updated using

the same method as during compression to allow decoding of the data.

An alternative approach to these previous methods, which extract structural

information from the XML document, is to use the declared document structure

(the XML schema) to drive the compression process. An example of such an

approach can be found in Levene and Wood’s Structure Compression Algorithm

[LW02]. This approach focuses on the structure of the XML document though

the data values (separated from the structure in the first stage and reinstated as

the final stage of decompression) are stored and could potentially be processed

by a general purpose compressor as simple text.

The structural part of the document is then compressed according to the

rules set out in the XML schema as follows: Elements required by the schema are

not recorded - these can be inferred during decompression. Optional elements

are simply marked as present or absent. Where the schema allows elements

to occur multiple times, the number of instances must be be recorded (and,

where appropriate, the element types). An example is shown in Figure 2.11.

A simplified schema for the running example XML is shown on the left of the

19

diagram, it dictates that Contact List consists of multiple Student or Staff

Member elements while these in turn each hold one Name and one Contact element.

Contact itself is made up of an optional Email and an optional Telephone. The

Name, Email and Telephone elements all hold data values.

Contact List ((Student | Staff Member)+)

Student (Name, Contact)

Staff Member (Name, Contact)

Name (#PCDATA)

Contact (Email?, Telephone?)

Email (#PCDATA)

Telephone (#PCDATA)

3 0 1 1

1 0

1 0

0 1

Fig. 2.11: Structure Compression Algorithm

To the right of Figure 2.11 is the compressed version of the example XML.

On the first line, the integer 3 records that Contact List has three children, the

remainder of the line notes (as a series of bit tokens) that there is a Student

followed by two Staff Member elements. No information is recorded about the

presence of the Name or Contact elements (as these are required by the schema).

The second line of the compressed structure deals with the optional elements

within the first Contact element. In this case the first bit denotes the presence

of an Email while the second bit shows the absence of a Telephone. This is

repeated on the third line for the first Staff Member’s contact details and reversed

on line four to show that the second Staff Member has no Email, but does have

a Telephone.

The XML Word Replacing Transform (XWRT)[SGS07] by Skibinski, Grabowski

and Swacha seeks to simplify the XML document by replacing common phrases

with short codes (typically one or two bytes) before applying further compres-

sion. A preliminary pass over the file is made to build up a dictionary of common

phrases - which can include start tags (but not end tags or numbers). A sec-

ond pass over the XML allows those common phrases to be replaced with their

20

dictionary codes and also for numbers and end tags to be encoded.

<ContactList>

a

b Joe Bloggs /

c

d j.bloggse /

/

.

.

.

a <Student>

b <Name>

c <Contact>

d <Email>

e @example.com

Encoded XML

Common Phrase Dictionary

XWRT

Fig. 2.12: XML Word Replacing Transform

An example XWRT encoding is shown in Figure 2.12. In this diagram common

phrases, which may include start tags or data values, have been encoded and are

replaced by dictionary codes depicted here by the italicised letters a-e. Note that

<ContactList> is not encoded as it appears only once in the example XML code,

though the other start tags and the repeated text section “@example.com” are

encoded.

As XML elements are arranged hierarchically, any end tag must correspond

to the previous unclosed start tag - this allows all end tags to be represented by

the same one-byte code (‘/’). Numbers also receive special treatment, a one-byte

code introduces a number sequence and records how many of the following bytes

represent the value of that number. The entirety of each following byte in that

number coding is given over to storing the value, i.e. the number is stored in

base-256.

Having applied these changes, the transformed XML is then passed to a gen-

eral purpose compressor (e.g. gzip) to complete the process.

The XML compressors described in this subsection each require the document

to be decompressed back to the original XML before querying can take place. The

overhead this implies can be avoided by arranging the compressed structure in

21

such a way that it can be directly accessed by query processors. The following two

subsections describe two categories of XML compressors that allow such querying

of the document without resorting to full decompression.

2.2.2 Queryable Homomorphic XML Compressors

The queryable XML compressors detailed in this section are those termed ‘ho-

momorphic’, i.e. compressors that keep the structure and data values together in

their compressed format. The result is compressed documents which are them-

selves semi-structured in the same way as the original XML documents. By main-

taining this same organisation of structure and data values, these homomorphic

compressors allow the same parsing and querying techniques as those employed

for XML documents to be used directly upon the compressed version of the files.

This is in contrast to the non-queryable compression systems described in Section

2.2.1, which must have their output files fully decompressed before querying may

take place.

One of the first queryable XML compression systems proposed was Tolani and

Haritsa’s XGrind [TH02]. At the start, the system checks for any available XML

schema. It notes any enumerated attributes, then performs a preliminary pass

over the XML file to build Huffman tables2 for values contained in each element

and non-enumerated attribute. The next stage is the actual tokenisation of the

XML file. In a similar way to that used in XMill, each element is recorded in

the format T1, T2, etc. using a unique number for each tag type, with attribute

types recorded as A1, A2, etc. Tables are kept of element and attribute names.

Enumerated attribute values are then replaced with the appropriate token, while

all other attribute values and data values are compressed using the appropriate

Huffman table. All end tags are recorded as a single ‘/’.

Listing 2.2 shows a section of the example data from Listing 2.1 in XGrind

format. In this diagram the code huff(...) indicates that the data value would

2 Huffman encoding [Huf52] sees each character of the text data being replaced with a binary
code, with the most frequent characters receiving the shortest codes. Codes are allocated such
that, despite being of varying length, no short code can be mistaken for the start of a longer
code.

22

T0
T1

T2 hu f f (Joe Bloggs) /
T3

T4 hu f f (j . bloggs@example . com) /
/

/
.
.
.

Listing 2.2: XGrind Example Output

be stored in a compressed format using the appropriate Huffman table.

XGrind is used later in this thesis for comparison purposes. A more detailed

description is therefore given in Section 3.3.

The XPRESS system [MPC03] was designed to improve upon the path evalu-

ation abilities of homomorphic compressors. The authors, Min, Park and Chung,

employ reverse arithmetic coding to represent the unique paths found in each

XML document. Each element type is assigned an interval between 0.0 and 1.0,

these intervals are then sub-divided according to the frequency of their incoming

paths. This is illustated in Figure 2.13 where Contact has an interval between

0.4 and 0.7. This is then sub-divided into Student/Contact with interval 0.4 to

0.5 and StaffMember/Contact (interval 0.5 to 0.7).

0.0

0.0 1.0

1.00.4 0.7

0.50.4 0.7

Contact

StaffMember/ContactStudent/Contact

Fig. 2.13: XPRESS Reverse Arithmetic Coding

Thus to evaluate a query involving Contact, XPRESS can select the parts of

the document contained in interval 0.4 to 0.7. For a more selective query, e.g.

23

Student/Contact, a smaller interval can be selected (in this case 0.4 to 0.5).

The authors report that this system of storing path details produces significant

improvements in query evaluation times over those of XGrind.

In terms of compression of data values, the XPRESS system attempts to infer

the type of data contained in a particular element during a first pass over the

data. During the second pass, it encodes the data values using whichever of its

built-in encoders is deemed appropriate for that element type. These include

three encoders for different lengths of integer, a floating point number encoder

and a dictionary-based encoder for enumerated attributes. All other types of data

are classed as text and are Huffman encoded.

The Query-supporting XML Transform (QXT) [SS07] proposed by Skibinski

and Swacha expands upon their earlier work, the non-queryable XWRT covered

in Section 2.2.1, by incorporating features that allow for querying over the com-

pressed data. Like the authors’ earlier work, QXT makes two passes over the

XML document. The first pass creates a dictionary of common phrases and the

second pass replaces these with the relevant tokens (an overview of the QXT pro-

cess is shown in Figure 2.14). The key point is that QXT differentiates between

structural parts of the document (i.e. XML start tags) and other data values.

The QXT parser also recognises email and website addresses and treats them as

a single phrase.

As with XWRT, end tags are encoded as a single-byte code and number

sequences are binary encoded, but QXT introduces new special cases for dates,

times, ranges and decimal fractions. For example, dates are stored within three

bytes as the number of days since 1st January 1977 (a one byte flag plus a two

byte integer), while times are recorded as a one byte flag with an additional byte

each for hours and minutes.

Following the encoding of special data types and the application of the com-

mon phrase dictionary to the XML data, QXT splits the encoded document into a

series of containers, compressing each with gzip (or similar) when it reaches 8MB

and storing it on disk. The final QXT compressed file will consist of these con-

tainers and the common phrase dictionary. Note that although the document is

split into containers, the data values are not separated from the related structural

24

QXT

Dictionary
Builder

Dictionary
Encoder

Specialist
Encoders

Container Splitter
& Compressor

File Writer

QXT
Parser

Common
Phrase

Dictionary

XML
File

Encoded
XML

QXT
File

Fig. 2.14: Query-supporting XML Transform

25

part of the document - QXT is thus presented here as homomorphic, although it

does share some characteristics with the non-homomorphic compression methods

presented in the next section.

Querying the QXT data is performed by first identifying and decompressing

(using gunzip or similar) the relevant containers. The second stage of querying

then takes place over the encoded document sections. The final step reverses the

QXT transformation and uses the common phrase dictionary and appropriate

special data type decoders. This final step takes place only for those encoded

elements that are found to match the query.

Queryable homomorphic XML compressors all maintain the integration of

structure and data values found in the original uncompressed XML documents,

albeit in an encoded form. This allows for the querying of compressed docu-

ments at the expense of a reduction in compression ratios3 with respect to the

non-queryable compression methods discussed in Section 2.2.1. The next section

describes systems that offer improvements in both querying ability and compres-

sion ratios over homomorphic compressors by breaking this link between structure

and data values.

2.2.3 Queryable Non-Homomorphic XML Compressors

The queryable homomorphic compression methods described in the previous sec-

tion only allow querying based on top-down evaluation, i.e. the search through

the data must begin at the root of the XML tree and work down through the

structure. This is a consequence of keeping data and structure together as in the

original XML document and relying upon traditional XML parsing and querying

techniques. For more complex queries, such as those containing joins, this can

quickly become cumbersome. The compression methods described below over-

come this issue by returning to the system of storage favoured by some of the

non-queryable compression methods detailed in Section 2.2.1 - splitting the docu-

ment structure from the data values it contains. This non-homomorphic approach

not only allows the use of query strategies other than top-down, but also gives

3 XGrind achieves on average 77% of the compression offered by XMill. [TH02]

26

scope for improvements in compression ratios.

One of the earliest such systems is XQueC, proposed by Arion et al. [ABC+04],

which follows a XMill-style method for splitting the data values into containers

based on their type and path. The structure of the document is recorded by

XQueC as a series of node records (storing the node ID, those of its child nodes,

its parent node and a code for the type of node) in a B+ search tree along with

a table of element and attribute name codes. Data containers consist of a record

for each data value along with links to the relevant nodes in the structure tree.

The data value records are stored in alphanumeric order by value, not the or-

der they appear in the document, to allow bottom-up access to the data. Where

appropriate, an order-preserving string compression (ALM [Ant97]) is used such

that where any two uncompressed values can be compared, the compressed ver-

sions can also be compared to achieve the same result. This means that inequality

comparisons can be evaluated without having to decompress the values.

XQueC
Loader &

Compressor

Structure
Tree

XQueC Document Storage

XQueC
Query
Engine

DataGuide Statistics ...

Block 1:
Compression

Model A

Block 2:
Compression

Model B

Block 3:
Compression

Model A
…

Compressed Containers

Support Structures

XQueC

Fig. 2.15: XQueC

Compression models are applied on a per container basis with each value

within a container being individually compressed using the same model. XQueC

applies a cost function to see if it can apply the same compression model to more

than one container without damaging the compression ratio. This can be seen in

Figure 2.15, which shows a simplified version of the XQueC architecture, where

both Block 1 and Block 3 each use Compression Model A. The diagram also

27

shows that additional support structures such as DataGuides are employed by

XQueC to speed access to the data.

XQzip by Cheng and Ng [CN04] draws upon concepts from the XML structural

summarisation methods described in Section 2.1 to form a Structural Index Tree

(SIT) in a similar style to the F&B-Index discussed earlier. However, unlike the

F&B-Index, the SIT retains the ordering of the data in the form of pointers stored

in each SIT node. These pointers indicate the node’s parent, previous sibling,

next sibling and first child nodes. As in the F&B-Index, duplicate nodes from

the XML tree are removed, however the SIT maintains a record of these within

the nodes it retains.

XQzip

XML
File

Index
Constructor

Structural
Index Tree

Hash Table
Builder

Compressor
Compressed

Blocks

Hash Table
SAX

Parser

structure

element
names

data
values

block info.

XQzip representation

Fig. 2.16: XQzip

As shown in Figure 2.16 an XML document is read into XQzip through a

SAX Parser, which passes the structural part to the Index Constructor to create

the SIT. The element names are passed to the Hash Table Builder. Data values

are split into streams according to type and path, then chopped into blocks of

1000 values (or 2Mb maximum size) and compressed at a block level using gzip.

Compressed data block identifiers are stored in the hash table along with some

additional details (e.g. start address and size).

Querying is performed initially on the Structural Index Tree with data blocks

being accessed through the hash table. The authors contend that compression of

28

data values at a block level is advantageous as this requires a single decompress

operation to allow evaluation of 1000 values. Decompress operations are further

reduced in XQzip by keeping the last few decompressed blocks in a buffer pool to

allow fast access where subsequent queries need to access the same data blocks.

An alternative method of speeding the query process can be found in the XCQ

system proposed by Ng, Lam, Wood and Levene [NLWL06]. XCQ stores the doc-

ument making use of the XML schema in conjuction with the SAX Parser output

to produce a set of path-based data streams and an additional stream containing

structural elements. As shown in Figure 2.17, the data streams are subsequently

split into blocks containing a set number of data values and compressed by gzip.

XML
File

SAX
Parser

Compressed
File

XML
Schema

Schema
Parser

Stream Splitter

Compressor

BSS Labeller
Structure
Stream

Data Streams

BSS Labelled Data Blocks

XCQ

Fig. 2.17: XCQ

The factor that allows the efficient retrieval of data from these compressed

blocks is that each one is labelled with a Block Statistics Signature (BSS), con-

29

taining information about the maximum, minimum and number of values stored

within that block. In this way, when XCQ is looking for a particular value in a

data stream, blocks whose BSS does not meet the criteria can be quickly filtered

out of the search.

Symbol
Table

ISX

0000 1101 0100 1011 …

ABCD --C- E-CD -F-- …

Tier 0

stats stats

stats

Tier 1

Tier 2

Topology
Layer

Offset
Table Compressed Values

Leaf
Node
Layer

Internal
Node
Layer

Fig. 2.18: ISX

A novel approach to improving on tree traversal speeds is proposed by Wong,

Lam and Shui [WLS07]. The ISX system introduces a three-layer model, shown in

Figure 2.18, as opposed to the two-layer data/structure split used by the previous

methods discussed.

The Topology Layer holds a balanced parenthesis representation of the XML

structure. To represent the parentheses in the lowest tier of the Topology Layer

(T0) a 0 is used to record the start of any XML element, attribute or text value,

with a balancing 1 denoting the end of any of these. This Topology Layer is

employed during the querying process to quickly traverse the XML structure.

For example, finding the next sibling node can be performed by comparing the

number of 0s and 1s encountered. Auxilliary tiers of the Topology Layer (T1 and

30

T2 in the diagram) hold summary statistics of groups of entries in the lower tiers

to further speed access.

ISX stores element and attribute names in tokenised form in the Internal Node

Layer, which follows the format of the lowest tier of the Topology Layer. The

Internal Node Layer also holds summary hash values for any data values that are

stored, compressed by gzip, in the Leaf Node Layer.

The queryable non-homomorphic compression methods described above are

distinct from the methods discussed in the previous section in that they each sep-

arate the data values from the document structure. In doing so, query systems

are freed from the restrictive top-down evaluation methods adopted by homomor-

phic systems from the querying of uncompressed XML. The departure from this

linear representation of the structure also makes way for improved compression

ratios4 over homomorphic systems.

2.3 Comparison of Existing Methods

Table 2.1 summarises the key characteristics of the preceeding methods. The

first of these is whether the method is queryable - as discussed earlier, this dic-

tates whether the system is suitable for data access or simply archival purposes.

The second characteristic is whether an XML schema is used by the system to

improve compression. The following two columns record the underlying com-

pression method used to store data values and the smallest unit that must be

decompressed to access a single value, with the penultimate column noting if the

compression method allows the evaluation of inequality operations without final

decompression of the individual values.

While the non-queryable methods require full decompression before any fur-

ther processing may take place, the queryable methods require different levels

of decompression to answer a query. This relates to the choice of backend com-

pressor, with those methods using gzip having to decompress complete blocks or

containers to access a single value, while the methods built upon dictionary or

Huffman compression are able to directly access the individual required value,

4 On average XQzip offers 16.7% more compression than XGrind. [CN04]

31

Q
u
er

ya
b
le

X
M

L
B

ac
ke

n
d

D
ec

om
p
re

ss
io

n
In

eq
u
al

it
y

C
om

m
en

t
S
ch

em
a

C
om

p
re

ss
or

U
n
it

w
it

h
ou

t
D

ec
om

p
re

ss
io

n
X

M
il
l

N
o

N
o

gz
ip

F
u
ll

N
/A

U
se

r
m

u
st

sp
ec

if
y

gr
ou

p
in

gs
an

d
co

m
p
re

ss
or

s
to

ac
h
ie

ve
cl

ai
m

ed
le

ve
l

of
co

m
p
re

ss
io

n
.

X
M

L
P

P
M

N
o

N
o

P
P

M
F

u
ll

N
/A

S
ta

ti
st

ic
al

m
o
d
el

li
n
g

al
lo

w
s

b
et

te
r

co
m

p
re

ss
io

n
th

an
d
ef

au
lt

X
M

il
l,

b
u
t

m
ai

n
ta

in
in

g
fo

u
r

m
o
d
el

s
is

sl
ow

.
S
C

A
N

o
R

eq
.

gz
ip

F
u
ll

N
/A

S
lo

w
er

an
d

le
ss

eff
ec

ti
ve

th
an

X
M

il
l.

C
an

n
ot

w
or

k
w

it
h
ou

t
X

M
L

sc
h
em

a.
X

W
R

T
N

o
N

o
gz

ip
F

u
ll

N
/A

C
an

im
p
ro

ve
co

m
p
re

ss
io

n
,

b
u
t

m
u
st

fu
ll
y

ad
ju

st
p
ar

am
et

er
s.

X
G

ri
n
d

Y
es

O
p
t.

H
u
ff

m
an

V
al

u
e

N
o

C
om

p
re

ss
io

n
re

q
u
ir

es
tw

o
p
as

se
s

ov
er

d
o
cu

m
en

t.
Q

u
er

y
in

g
re

q
u
ir

es
p
ar

si
n
g

of
en

ti
re

co
m

p
re

ss
ed

d
o
cu

m
en

t.
O

n
ly

ex
ac

t
m

at
ch

es
ca

n
b

e
fo

u
n
d
.

X
P

R
E

S
S

Y
es

N
o

H
u
ff

m
an

/
V

al
u
e

N
o

Im
p
ro

ve
s

q
u
er

y
in

g
ov

er
X

G
ri

n
d

-
n
o

n
ee

d
fo

r
d
ic

ti
on

ar
y

li
n
ea

r
p
ar

se
of

d
o
cu

m
en

t.
C

om
p
re

ss
io

n
st

il
l

co
n
si

d
er

ab
ly

w
or

se
th

an
X

M
il
l.

Q
X

T
Y

es
N

o
gz

ip
C

on
ta

in
er

N
o

C
om

p
re

ss
ed

si
ze

is
d
es

ig
n

p
ri

or
it

y.
M

u
st

u
n
zi

p
fu

ll
co

n
ta

in
er

b
ef

or
e

an
y

ex
am

in
at

io
n

of
tr

an
sf

or
m

ed
co

n
te

n
ts

.
X

Q
u
eC

Y
es

N
o

A
L

M
/

V
al

u
e

P
os

s.
P

re
fe

rs
ad

va
n
ce

k
n
ow

le
d
ge

of
q
u
er

y
w

or
k
lo

ad
H

u
ff

m
an

to
ch

o
os

e
co

m
p
re

ss
or

s.
R

eq
u
ir

es
la

rg
e

au
x
il
ia

ry
d
at

a
st

ru
ct

u
re

s
to

p
er

m
it

q
u
er

y
in

g
-

m
u
st

m
an

ag
e

p
oi

n
te

rs
to

in
d
iv

id
u
al

it
em

s
w

it
h
in

co
n
ta

in
er

s.
X

Q
zi

p
Y

es
N

o
gz

ip
/

B
lo

ck
N

o
V

al
u
es

h
el

d
in

b
lo

ck
s

of
10

00
.

R
eq

u
ir

es
d
ic

ti
on

ar
y

d
ec

om
p
re

ss
io

n
of

fu
ll

b
lo

ck
to

ac
ce

ss
si

n
gl

e
va

lu
e.

A
u
th

or
s

re
co

gn
is

e
th

is
an

d
at

te
m

p
t

to
co

m
p

en
sa

te
w

it
h

b
u
ff

er
p

o
ol

.
X

C
Q

Y
es

R
eq

.
gz

ip
B

lo
ck

P
ar

t.
S
to

re
s

le
ss

st
ru

ct
u
re

so
sm

al
le

r
co

m
p
re

ss
ed

fi
le

s,
b
u
t

re
q
u
ir

es
sc

h
em

a
to

d
o

so
.

IS
X

Y
es

O
p
t.

gz
ip

B
lo

ck
N

o
E

m
p
h
as

is
on

tr
av

er
sa

l
of

st
ru

ct
u
ra

l
p
ar

t.

T
ab
.
2.
1:

C
om

p
ar

is
on

of
E

x
is

ti
n
g

X
M

L
C

om
p
re

ss
or

s

32

reducing the decompression workload.

Of the methods which take account of XML schema it must be noted that,

while this can be used to improve compression, without access to the schema

neither XGrind nor ISX will achieve their best compression and both SCA and

XCQ would be unable to process the XML document at all. Given that not every

document will have a schema available this is a considerable drawback to these

methods.

One desirable feature of some of these compressors is the ability to evaluate

inequalities without decompression of the values. A partial version of this is

found in XCQ which can make use of the maximum and minimum values stored

in the block statistics signature to quickly rule out an entire block of values, but

thereafter the matching blocks must be decompressed in their entirety to complete

the query. The full version of this feature is exhibited in XQueC where the

order-preserving nature of ALM compression allows comparison of the individual

compressed values.

However, this depends on the selection of ALM as the backend compressor

which depends on additional user input in the form of advance knowledge of the

query workloads. This additional dependency on the user is undesirable but is

also seen in XMill and XWRT which require the user to manually set a number

of parameters to achieve their claimed compression.

Although each of these methods offer XML compression and each has its own

strengths and weaknesses, the important factor is that each of these existing

methods have been designed with regard to the compression of data, not the

sharing of it. Regardless of the amount of compressed data that must be accessed

to answer a query, each of the methods above require the entire compressed

document to be transferred as a single unit before any querying may take place

making them unsuitable for the sharing of independent segments of data.

2.4 Summary

This chapter has reviewed notable advances in XML processing, beginning with

indexing and structural summarisation techniques that seek to augment the ex-

33

isting XML with a view to improving querying. The chapter then considered

methods concerned with the compression of XML with a view to archival (non-

queryable compressors). Queryable homomorphic techniques keep data and struc-

ture together to combine compression with traditional XML parsing and query-

ing abilities, while non-homomorphic compressors draw upon concepts from XML

structural summarisation to split data and structure, while improving both query-

ing and compression. However, despite the advances of these systems in terms of

compression and querying, none of the compressors described in this chapter are

designed to handle data structures that have been split into parts for sharing.

As noted at the start of the chapter, these methods are representative of

a broad field and are not presented as an exhaustive list. The systems listed

are those commonly referenced in the literature or which propose interesting or

unusual ideas.

The next chapter will review in more detail the technologies that will be made

use of later in this thesis.

34

3. RELEVANT TECHNOLOGIES

The previous chapter provides a general overview of research related to the exper-

iments reported in Chapter 4. This chapter introduces in detail the technologies

that are used or built upon in the experiments set out in the next chapter. In the

work to be described, the structural aspects of data are dealt with using summari-

sation provided by the NSIndex [GTW07] system and the data value compression

is based upon prior work on the HiBase [CMW98] relational compression system.

Further description is also given of XGrind [TH02], a queryable XML compressor

used for comparison purposes in the initial set of experiments.

3.1 NSIndex

NSIndex is a data structure designed with the restrictions associated with mobile

devices in mind. It comprises of a structural summarisation of the XML combined

with a numbering scheme linking to the data values. The original NSGraph

[WGJN06b, WGJN06a] was a main memory-based system that combined a fast

index with a compact array-based representation of the XML data. This was

subsequently extended to become NSIndex, which retains data values as part of

its internal representation of the XML structure (rather than in separate arrays)

and can be written to disk.

The bisimilarity-based structural summarisation used in NSIndex naturally

separates data into discrete groupings (partitions), which have the potential to

form the basis of a system where small sections of a data structure can be dis-

tributed in an environment that requires data to be shared. A bisimilarity-based

partitioning of the XML takes the surrounding structure into account, meaning

that similar data items will fall into the same partitions, as opposed to slicing the

data based on a physical attribute such as the level at which it sits in the XML

tree. Additionally, it is reasonable to assume that where data of a similar kind is

grouped together, there is a likelihood that the actual data values in each group

will contain duplicates. This means that there is potential to extend NSIndex,

which has bisimilarity at its core, with a system of dictionary-based compression

to exploit duplication.

3.1.1 NSIndex Compression

The partitioning used is based around the Forward and Backward Index (as dis-

cussed in Chapter 2.1) in which nodes of the datagraph are deemed to be bisimilar

if their labels match and the same is true for both the ancestor nodes (incoming

paths) and descendant nodes (outgoing paths) - this is applied repeatedly until

a structure with stable node groupings is found. The NSIndex structure is sup-

plemented by a numbering scheme, based on the work of Dietz [Die82], which

maintains the ordering of the data throughout.

NSIndex
F&B

ROOT

0 19

ContactList

1 18

Contact

5 4

Student

2 5

4 0 “Joe Bloggs”

CDATA

Name

9 7

Contact

11 10

Name

3 1

Email

6 3

7 2 “j.bloggs@example.com”

CDATA

Telephone

18 15

CDATA

19 14 “0141 496 2232”

Contact

17 16

StaffMember

8 11

10 6 “Prof P. Pending”

CDATA

16 12 “Prof H. Higgins”

CDATA

13 8 “p.pending@example.com”

CDATA

Email

12 9

StaffMember

14 17

Name

15 13

Fig. 3.1: NSIndex Using Forwards and Backwards Bisimilarity

Figure 3.1 shows a representation of the example XML introduced in Listing

2.1 in the NSIndex format. The structure is set out in terms of vertices (the large

36

boxes) and edges (the connecting lines). Each vertex may hold either structural

information or data values.

In either case, vertices are comprised of NSEntries each representing a data-

graph node as grouped by the bisimilarity function described earlier, so each

entry within a particular vertex is of the one type and it is this type that appears

at the top of each vertex in the diagram. Entries are depicted in the diagram

as a set of two numbers as supplied by the numbering scheme. The first is the

entry’s pre-order number, which corresponds to the order in which the associated

XML elements appear in the original document - thus maintaining the order of

the stored data. The second is the entry’s post-order number, obtained from the

last time each element is encountered in the document. This may be thought of

as the order in which the end tags are found - with data values also numbered.

Note that a special vertex ROOT appears at the top of the diagram and holds

both the first pre-order number (0) and the last post-order number (19). A ROOT

vertex appears in every NSIndex to give a clear starting point for the structure -

the first tag of the XML document is always directly connected to ROOT.

Also recorded in each vertex entry, though not shown in the diagram, is the

level at which the entry appears within the NSIndex structure and the size of

the entry, including any sub-trees which appear beneath it in the structure. For

example, the Contact entry (17,16) shown at the right-hand side of Figure 3.1

will have level 4 (ROOT is counted as level 1) and size 3, counting itself and the two

entries below it in the structure - Telephone(18,15) and CDATA(19,14,"0141

496 2232". This example also shows that the structural part of the Telephone

element is stored in vertex (18,15), while the data value itself is stored in a

separate vertex that holds the NSDataEntry (19,14,"0141 496 2232").

3.1.2 Program Operation

The NSIndex architecture used to produce this structure is shown in Figure 3.2.

The XML document is read in through a SAX Parser and a datagraph con-

structed. This is then used to produce the F&B-Index-based structural sum-

marisation using one of four methods: 1) group by label only, ancestor and de-

37

NSIndex
System

NSGraph

NSStore

NSQuery

Preprocessed
file

Block

Dictionary

DataBlock

XML user

XML
File

SAX
Parser

Datagraph
Builder

F&B-Index
Builder

NSIndex
CSV File

NSStore

NSIndex
Builder

NSQuery
Engine

Datagraph

F&B-Index

NSIndex
Internal

Representation

User

Numbering
Scheme

Fig. 3.2: NSIndex System Architecture

38

scendant nodes are not examined. 2) full backwards bisimilarity, repeatedly apply

bisimilarity to incoming paths until a stable grouping is reached. 3) full forwards

bisimilarity, find stable grouping by examining outgoing paths. 4) F&B-Index,

using both forwards and backwards bisimilarity. At all points throughout this

process an ordering (i.e. the pre-order number) is kept for each XML element.

This is now used, along with the bisimilarity information from the F&B-Index,

to construct the NSIndex.

Following this, a queryable NSIndex structure will exist in the computer’s

memory. Querying is performed as a two-stage process. First, all of the vertices

within the NSIndex structure that hold the correct type of entry for each part of

the query are identified. Secondly, the relationships between the individual entries

are verified using the numbering scheme information. For example, a query to

check the example data for the existence of ContactList/Student/Contact/Email

would select the ContactList vertex, the Student vertex, all three Contact ver-

tices and both Email vertices. It can then be identified that the query is answered

by the sequence of data entries: ContactList (1,18), Student (2,5), Contact

(5,4), Email (6,3) as the numbering scheme shows that connections exist be-

tween these data entries (as indicated in this case by the sequence of pre-order

values 1, 2, 3, 4, 5, 6). The additional Contact and Email entries selected in

the first stage are discarded as the numbering scheme shows they do not connect

to a Student entry.

The NSIndex system is extended by the NSStore module, which allows the

NSIndex structure to be written to disk. NSStore traverses the NSIndex structure

outputting one complete vertex at a time starting at ROOT. The file is created

in comma separated value (CSV) format as shown by the example in Listing 3.1.

The data type of the vertex is output first, followed by each entry contained within

the vertex on subsequent lines. Each structural entry is recorded as sequence of

four values: pre-order, post-order, level and size1, with the data value additionally

being recorded for data entries.

1 NSIndex adds 1 to the expected size of any entry with descendants.

39

ROOT
0 ,19 ,1 ,21
ContactList
1 ,18 ,2 ,20
Student
2 ,5 ,3 ,7
Name
3 ,1 ,4 ,3
CDATA
4 ,0 , 4 , 1 , ‘ ‘ Joe Bloggs ’ ’
Contact
5 ,4 ,4 ,4
Email
6 ,3 ,5 ,3
CDATA
7 ,2 , 5 , 1 , ‘ ‘ j . bloggs@example . com ’ ’
.
.
.

Listing 3.1: NSIndex File Format

3.1.3 Section Summary

The use of bisimilarity-based data partitioning makes NSIndex a suitable platform

on which to explore the use of dictionary-based data storage and to investigate

the effects of different combinations of bisimilarity methods upon the data that

is stored. As part of the experimental work reported in Chapter 4, the existing

codebase was extended to incorporate data value compression along with the

necessary changes to allow continued access to the stored data. The adapted

NSIndex system was then used in the experiments set out in Chapter 4.

3.2 HiBase

Partitioning provides a means of subdividing XML data, which is related to the

concept of domain2 in the relational database world. The concept of domain

is exploited by compressed relational systems, which apply data dictionaries to

encode data values, for example HiBase [CMW98], Chen et al. [CGK01] and

C-Store [AMF06]. However, dictionary compression is only one of a number of

methods used in C-Store and is used as part of a hybrid system in the work

by Chen et al. As HiBase makes exclusive use of dictionary compression, it is

consequently selected as a starting point for the work currently described.

2 The set of potential data values an element may contain.

40

The HiBase system was developed to permit traditional relational databases,

ordinarily stored on disk, to be held within main memory and take advantage of

the reduced access times that follow from this.

Compression is applied on a per column basis, with each column containing all

the values for one attribute of the relational table. As each column contains data

of a particular domain, HiBase employs a dictionary-based compression system

on a one dictionary per column basis to take advantage of repetition within the

data values.

3.2.1 HiBase Compression/Operation

Surname Gender Offence Category Sentence Length

Young M Drugs 12

Jones M Robbery 48

McKenzie F Robbery 48

Findlay F Homicide 240

Munro M Drugs 24

000

001

010

011

100

M

F

Young

Jones

McKenzie

Findlay

Munro

12

48

240

24

Drugs

Robbery

Homicide

0

0

1

1

0

00

01

01

10

00

00

01

01

10

11

Original
Table

Column
Dictionaries

Compressed
Columns

Fig. 3.3: HiBase Compressed Columns and Dictionaries

As noted above and shown in Figure 3.3, HiBase applies compression on a

per column basis. A dictionary of unique terms is drawn up for each column

of the database table. These dictionaries are then used to produce compressed

representations of each column. The tokens (binary elements that indicate dic-

tionary terms) used within each individual column are of uniform length to allow

straightforward addressing of the values, with each column using the fewest bits

41

possible to cover the associated dictionary. For example, the two distinct values

contained in the Gender column of Figure 3.3 can be represented using a sin-

gle bit token, the Offence Category and Sentence Length columns (with three

and four distinct values respectively) each use a two-bit token, while Surname

requires a three-bit token to cover five distinct values.

While each tokenised value in the compressed columns is of uniform length,

the original data values held in the column dictionaries are of variable length.

The HiBase dictionaries therefore consist of two parts: a string heap, a chunk of

text containing all the unique data values one after another, and an offset table

that notes where each value begins in the string heap.

Offset

Token

Text String
Heap

Hash
Table

Offset
Table

Fig. 3.4: HiBase Text/Token Conversion

Figure 3.4 shows that to convert a token to text the offset table is consulted

to obtain the offset address, this in turn is used to retrieve the correct text value

from the string heap. The system also maintains a hash table to allow text values

to be converted back to tokens, thus making the process cyclical. This is used

during the querying process: the query terms are themselves compressed and

HiBase then makes use of a number of access support structures to quickly locate

these terms within the compressed column structure. Only the matching results

are retrieved and decompressed.

The authors report that data stored in the HiBase compressed database is

between one-tenth and one-quarter of the size of same data under a conventional

42

relational database system.

3.2.2 Section Summary

The dictionary-based data compression used by HiBase is similar to the approach

that it is proposed to add to NSIndex. The existing HiBase system is used in

the first experiment of Chapter 4 to provide evidence of the compression achiev-

able using such dictionary methods in the context of values contained in XML

structures.

3.3 XGrind

An early queryable XML compressor, XGrind was proposed as a system that

not only saves on storage space but, by maintaining the same layout as the

original XML document, allows access to the compressed data without resort to

full decompression. XGrind makes some use of dictionary-like symbol tables, but

is largely built around Huffman encoding - most data is compressed as text on a

per character basis. This is in contrast to the one token per data value style of

compression used in the HiBase dictionaries.

Chapter 2 identified three compressors which make use of Huffman encoding

- XGrind [TH02], XPRESS [MPC03] and XQueC [ABC+04]. Of these, XQueC

makes selective use of different compression methods depending on the query

workload and XPRESS is designed to improve upon the query execution of

XGrind, not its compression level. Given this, and its profile in the literature,

XGrind is used in the first experiment of Chapter 4 to provide a comparison be-

tween character-based compression (XGrind) and dictionary-based compression

(HiBase).

3.3.1 XGrind Compression/Operation

The basic description of the compression used by XGrind was given in Section

2.2.2, the following gives more detail on the flow through the XGrind system as

shown in Figure 3.5.

43

XML
File

SAX
Parser

Frequency
Tables

Huffman
Tables

Symbol
Tables

Name
Tables

XML
Schema

Schema
Parser

Auxiliary
Table File

Huffman
Encoder

Enumerated
Value Encoder

XML
Generator

XML
File

SAX
Parser

XGrind Compressor

Internal
Representation

Compressed
XML File

Preliminary Stage

Fig. 3.5: XGrind Operation

44

The preliminary stage sees XGrind examining the XML Schema (if present)

to identify any enumerated attribute types. If any are found, the system builds

a symbol table to provide a token for each possible attribute value. The system

additionally creates tables for element and attribute names. A first pass is then

made over the XML document with frequency information being recorded for

the individual characters that make up the data values contained in each non-

enumerated attribute and element. These frequency tables are used to produce

Huffman coding tables, with the most frequently used characters in each frequency

table receiving the shortest codes in the corresponding Huffman table.

With this preliminary stage complete, the actual XGrind compression takes

place during the second pass through the XML document. The enumerated value

encoder uses the element and attribute name tables to encode start tags and at-

tribute names (in the formats “T1, T2, ...” and “A1, A2, ...” respectively)

and employs the symbol tables created earlier to tokenise any enumerated at-

tribute values. The remaining textual data (the non-enumerated data values) are

dealt with by the system’s Huffman compressor using the coding tables produced

from the character frequency information in the preliminary stage.

The resulting internal XGrind representation of the data is stored on disk in

two parts. An XML generator is used to produce the main compressed XML

document (saved as a .xgr file) while the Huffman, symbol and element/attribute

name tables necessary for decompression are saved as a separate auxiliary (.met)

file.

The XGrind query system, having previously loaded the appropriate auxiliary

tables, compresses both the path and values involved in the query. The com-

pressed XML document is then parsed to identify those parts of the document

that match the query path, the encoded data values stored at those locations are

then compared to the encoded query values. Only the results that answer the

query are fully decompressed to return to the user.

45

3.3.2 Section Summary

As one of the earliest queryable XML compressors, XGrind is consequently one

of the best known and most referenced in the literature for comparison purposes.

In the first experiment of Chapter 4 the XGrind system is used to provide a

comparison with dictionary-based methods as typified by HiBase.

3.4 Summary

The technologies described above are employed during the experimental work of

this thesis. HiBase is a useful example of the kind of dictionary-based compression

proposed to extend the structural summarisation provided by NSIndex, while a

comparison with XGrind provides a useful insight into the way that dictionary-

based compressors perform in comparison with Huffman-based compressors. The

following chapter now gives details of the experimental work.

46

4. EXPERIMENTAL WORK

The purpose of this thesis is to report experiments that evaluate the potential for

compression of data values in compressed XML structures. This chapter briefly

introduces the data sets used in this evaluation and describes the experiments

conducted using them.

4.1 Overview

The main computational challenges addressed by this work are to devise a con-

sistent way of partitioning semi-structured data so that it is possible to represent

the associated data values in a compact form and yet retain the ability to address

each value separately in this compressed form without the need to decompress

the entire data structure.

To permit the sharing of independent segments of data it is necessary to make

use of an appropriate storage method. This must arrange the data into sections

and allow these to be transferred and accessed individually. While existing XML

compression methods group data into containers for compression purposes, the

entire compressed structure must be transferred before any querying may take

place, making these methods unsuitable for sharing data segments independently.

The method of data storage proposed here combines data partitioning with

a system of compression to store the data values. Data partitioning is achieved

through the use of bisimilarity to group similar items of data. As direct ac-

cess to individual values removes the need to decompress more than the required

values for any given query, the choice must be made between dictionary-based

compression and character-based compression. To this end the first section of

experimental work (Section 4.3) compares the dictionary method against Huff-

man encoding using both real-world and benchmark data. The second set of

experiments (Section 4.4) then makes use of the chosen compression method in

evaluating the effects of four different bisimilarity-based partitioning schemes on

compressed data sizes and the number of partitions created.

Having selected the type of bisimilarity and the method of data value com-

pression to be used, Section 4.5 notes the manner in which data value compression

was added to the bisimilarity-based NSIndex system. Section 4.6 then describes

the changes made to the querying system to handle compressed values and how

the query strategy was amended in order to reduce the number of data segments

processed in answering a query.

Finally, with a view to managing the volume of dictionaries produced, Section

4.7 sets out a methodical set of comparisons designed to identify and remove

duplication within the set of dictionaries.

4.2 Data Sets

The experiments described later in this chapter make use of a number of data

sets selected to represent a range of both real world and benchmark data. These

data sets are categorised according to the origin of their data and the regularity

of their structure.

With regard to data origin, each data set is described as either “real world”

or “benchmark”, this distinguishes between generated benchmark data sets and

those taken from real world sources. In terms of structure, each data set either

has a rigid pattern of elements and sub-elements (“regular”) or takes a more

flexible approach (“irregular”).

Regular Irregular
Benchmark Orders XMark

Modified Orders
Real World Legal NASA

Medline
Dream
Rat
Human

Tab. 4.1: Categorisation of Test Data Sets

48

Table 4.1 summarises the categorisation of the data sets. Of the three bench-

mark data sets, Orders and Modified Orders have regular structure with XMark

being irregular, while for the real world data sets only Legal has a regular struc-

ture, the remaining data sets (NASA, Medline, Dream, Rat and Human) each

having irregular structure. Additional detail on the data sets can be found in

Appendix A.

4.3 Preliminary Work

To facilitate efficient access to data within a compressed semi-structured system,

it must be possible to extract individual data values from the system without the

need to first decompress the entire structure. This implies that the stored values

must be encoded using either dictionary based methods (at a per value level) or

using text compression methods (at a per character level).

The two technologies selected in Chapter 3 provided examples of each of these

methods. HiBase (Section 3.2) stores data values using dictionary tables while

XGrind (Section 3.3) employs Huffman coding.

To form a comparison of these compression methods as implemented by the

exemplar programs, test data series were compressed using each system. Since

HiBase is a complete working system with additional support data structures

to speed up querying, a theoretical compressed size was also calculated. This

would reflect the actual space required to store the compressed data values and

associated dictionaries, without including any of the overheads introduced by

HiBase.

The theoretical size is calculated as shown in Calculation 1.

Token Size = log 2(no of unique values in group)

Dictionary Size = (token size * no of entries) + Σ(uncompressed entry size)

Compressed Data Size = no of records * Σ(size of tokens in record)

Total Theoretical Size = compressed data size + Σ(dictionary size)

Calculation 1: Theoretical Size

For this initial work, the Orders data series and the Legal data series were

49

selected as representative of benchmark and real world data respectively. To see

the effect of the generated text values in Orders, the Modified Orders data series

was also used. These data sets have been selected as their regular structure allows

simple conversion to the comma separated format required by the column-based

HiBase without the need to pad the data with null values as would be necessary

with an irregular data structure.

To summarise, each test data set was processed using the three methods shown

in Table 4.2:

HiBase The XML markup is stripped and the data values
passed to Hibase as columns in CSV format.
Compressed data size is taken to be the
overall memory requirement reported by Hibase.

XGrind The XML file is processed by XGrind.
Compressed data size is taken to be that of
the two files generated by the program.

Theoretical The XML markup is stripped and text files of
data values produced. Compressed data size is
calculated using values taken from these files.

Tab. 4.2: Summary of Processing Methods for Preliminary Work

The results of this experimental section provide indications as to whether

minimal-token dictionaries are a suitable option for handling data values in the

extended NSIndex system.

4.4 Evaluation of Partitioning Methods

The structural summarisation produced by NSIndex is dependent on the type

of bisimilarity used during the partitioning process. Earlier work [GTW07] has

shown that varying the bisimilarity used has an effect on the number of edges and

vertices that constitute the NSIndex structure. It follows from this that as the

structure changes, the groupings of data values at the bottom of the structure will

also change. This section of work evaluates the effect of changing the partitioning

scheme on the number and size of data dictionaries required.

A selection of data sets from each of the categories described in Section 4.2 are

used in this experiment. From the randomly generated benchmark data sets, the

50

irregularly structured XMark dataset (10Mb and 30Mb sizes, hereafter XMark-10

and XMark-30) and the regularly structured Orders and Modified Orders (1000

and 15000 orders: Orders-1, Orders-15, ModifiedOrders-1 and ModifiedOrders-

15) are used. The real world, regularly structured, Legal data set is used (1000

and 13000 convictions: Legal-1 and Legal-13) as are the five real world, irregular

data sets: Dream, Medline, NASA, Rat and Human.

A version of the NSIndex program with the ability to output a summarised

structure to a comma-separated file was used to process each data set using each of

the four available bisimilarity options as outlined in Section 3.1.2: no bisimilarity

(data entries grouped by label only), full backwards bisimilarity, full forwards

bisimilarity and full F&B-Index (using both varieties of bisimilarity).

The data values from each data vertex were then extracted from the CSV file

using a simple parser. In their initial form as extracted from the CSV file, the set

of uncompressed data vertices produced for each partitioning scheme will be the

same size since, regardless of their distribution, the complete set of data values

will appear across each set of uncompressed vertices.

However, changing the type of bisimilarity used will have an effect on the

compressed size. Changing the partitioning has an effect on the number of data

vertices that the data values are distributed between at the bottom of the NSIndex

structure. It is this distribution of data values that has an effect on the overall

compressed data size, as repeated data values within a single data vertex require

only one unique entry in the associated data dictionary, while repeated values that

occur across a number of data vertices will have an entry in multiple dictionaries.

An example is given in Figure 4.1 using the data values A, A, B, B, B. If, as

shown on the left of the diagram, these are partitioned in such a way that all of

the B values fall into the same data vertex, then all three values are described by

a single entry in the dictionary associated with that data vertex. In this case the

total dictionary size will be the size of value A plus the size of value B.

However, if as on the right of Figure 4.1 the B values are separated into two

separate data vertices, then an entry will be required in the dictionary associated

with each data vertex containing a B. In this example, the result is that an

extra dictionary entry for value B must be stored in the second data dictionary,

51

Data Vertex

A

A

B

B

B

Data Vertex

A

A

B

Data Vertex

B

B

Dictionary

A

B

Dictionary

A

B

Dictionary

B

Fig. 4.1: Effect of Data Value Distribution

increasing the overall dictionary size by 50%. This could have considerable effect

on the overall size of dictionaries, especially when longer data values are involved.

By processing these data vertex files, a set of associated data dictionaries

containing only the unique entries from each vertex can be created. This process

was applied to each of the four differently-partitioned sets of data vertices for

each data set. In each case, the size of the compressed data was calculated in the

same way as in Section 4.3 using the values taken from the processed files.

The overall size of the compressed data values and the associated dictionar-

ies for each partitioning scheme is of interest here, in particular whether there

are any particular bisimilarity options that perform consistently well across the

various data sets used. Also of interest is the number of dictionaries produced

as, with a view to creating manageable segments of data, the smaller the indi-

vidual dictionaries, the more there will necessarily be. These results are shown

in Chapter 5.2.

52

4.5 Integration of Data Value Compression

A number of changes and additions to the existing code were required to im-

plement data value compression within NSIndex. The following two subsections

note the implementation of dictionary creation and data encoding and a method

for loading previously created NSIndex structures back into the system.

4.5.1 Dictionary Creation and Data Encoding

During the partitioning process, each data vertex in the modified NSIndex system

maintains a list of the unique data values it contains (in addition to the full (pre,

post, level, size, value) details held for each data entry). As the NSIndex structure

is written out to file, these lists become the data dictionaries - each one is written

out to a separate file as it is encountered during the traversal of the structure

and is allocated the next available dictionary number. The dictionary values are

sorted before they are output so that the tokens generated are order preserving

(i.e. the ordered list of tokens will appear in the same order as the ordered list

of values they represent).

Once the dictionary for a data vertex has been written to file, the data vertex

itself can be added to the NSIndex CSV file. The dictionary number forms part of

the dictionary filename and is recorded as part of the data vertex header line. The

data values contained within the individual data entries are encoded according

to the dictionary associated with that data vertex as they are written to the

CSV file. An updated version of the CSV file shown in Listing 3.1 incorporating

dictionary references and encoded data values is given in Listing 4.1.

4.5.2 File Loading

While the unmodified NSIndex had the function of outputting the structure to a

CSV file, there was no equivalent method of loading this file back into NSIndex

for querying. A parser was written to process the CSV file and read the stored

NSIndex strucure back into memory.

The role of each line of the file (Listing 4.1) can be derived from the number

53

ROOT
0 ,19 ,1 ,21
ContactList
1 ,18 ,2 ,20
Student
2 ,5 ,3 ,7
Name
3 ,1 ,4 ,3
CDATA, ContactLis t . 0 . d i c <−− d i c t i ona ry r e f e r e n c e
4 ,0 ,4 ,1 , 0 <−− data value r ep laced by token
Contact
5 ,4 ,4 ,4
Email
6 ,3 ,5 ,3
CDATA, ContactLis t . 1 . d i c <−− d i c t i ona ry r e f e r e n c e
7 ,2 ,5 ,1 , 0 <−− data value r ep laced by token
.
.
.

Listing 4.1: NSIndex Compressed File Format

of tokens on that line: a single token on a line indicates the start of a structural

vertex, while four tokens represent an element stored in a structural vertex. More

than four tokens indicate an element stored in a data vertex. The fifth token is

the data value but there may be additional tokens if that value contains commas.

In such a case these additional tokens must be concatenated to the fifth. A special

case is any line starting with the token “CDATA”, this marks the start of a data

vertex with the remainder of the line being the associated dictionary filename.

Algorithm 2 gives a more complete overview of the process.

When the NSIndex structure is loaded from the file, each data vertex will

hold the data entries with their tokenised data values and a reference to the

associated dictionary. The dictionary itself is held centrally by NSIndex, which

permits multiple vertices to refer to the same dictionary (as described later in

Section 4.7).

4.6 Querying

None of the pre-existing querying strategies for NSIndex were designed with com-

pressed data values in mind. The introduction of compressed data values meant

these querying strategies could no longer access the data values in the manner

previously used. In attempting to rectify this it became apparent that simply

54

Read first line.
while Line not empty do

if first token on line is “CDATA” then
Put previous vertex on stack.
Get dictionary details.
if dictionary not loaded then

Load dictionary.
end
Make new data vertex and add it to structure.
Add edge (pop from vertex stack until parent is found).

else if only one token on line then
if previous vertex was structural then

Put on vertex stack.
end
Make new structural vertex and add it to structure.
if this is not root of structure then

Add edge (pop from vertex stack until parent is found).
end

else if four tokens on line then
Add entry to current structural vertex.

else if more than four tokens on line then
Add entry to current data vertex.

end
Read next line.

end

Algorithm 2: File Loading

55

adding the facility to decompress the values was not a good solution. The nature

of the existing query processing strategies meant that this would lead to a large

number of dictionary decode actions and consequent poor query performance.

For example, the top-down query strategy selected all data entries of the correct

type for each query predicate before linking the entries that matched the last

predicate back to the previous one and so on. An example is given on the left of

Table 4.3 based on the query /A/B/"Data".

NSIndex Native Approach Compressed NSIndex Approach
Note all A entries Note all A vertices
Note all B entries Search children of A to find B vertices
Note all entries matching “Data” Search children of B to find “Data”

entries
Retain B entries with links to Retain B entries with links to “Data”
“Data” entries entries
Retain A entries with links to Retain A entries with links to remaining
remaining B entries B entries
Return results Return results

Tab. 4.3: Query Example

The right-hand side of Table 4.3 shows an adaptation of the old query strat-

egy. At each stage, only those vertices that are children of the vertices at the

previous level and of the correct type are considered as potential results. This is

in contrast to the native strategy, which noted all the individual data entries of

the correct type for each stage regardless of where in the overall structure they

were situated. The compressed strategy takes advantage of the entries being bun-

dled together into vertices and these vertices being linked by edges. Traversing

the edges means that only the child vertices are considered at the next stage of

query resolution. This greatly reduces the number of vertices to be considered at

each stage, which can be important when atomic values are being considered. For

each data vertex to be checked, the query data value must be encoded using the

appropriate dictionary before the contained data entries can be evaluated - it is

therefore an advantage to have limited the number of data vertices to be checked.

The matchDescendants method, which sits at the centre of the compressed query

strategy, is explained in Algorithm 3.

56

input: Candidates vertices (those which match the start of the query).

if Query term is a leaf of the query tree then
if Query term is a data value then

Return matching data entries.
else

Return all data value results.
end

else
Note individual data entries from candidate vertices (used later).
Find descendants of candidates which match next query term.
Recursive call to matchDescendants method, passing current
descendant list as the candidate list.

(At this point have reached bottom of query and working backwards.)
(Now looking at individual data entries, not vertices.)

Retain data entries from candidates where a descendant has been
returned.

end

Return final result.

Algorithm 3: Compressed Query Strategy - matchDescendants method

4.7 Dictionary Thinning

Whichever partitioning method is chosen, there is potential for a large number of

data dictionaries to be created by NSIndex. The nature of the bisimilarity-based

summarisation is such that the logical domains will be split across a number of

data vertices and there arises the possibility of repetition of values across the set of

data dictionaries. This makes poor use of storage space, particularly where there

are duplicate dictionaries but also where one dictionary is a wholly contained

subset of another.

By the application of some additional processing, this redundancy in the data

dictionaries can be removed. This is straightforward in the case of duplicate

dictionaries - the duplicate is deleted and any data vertices that referenced it are

updated to make use of the remaining dictionary. There is no need to change the

compressed data tokens contained in these data vertices.

For subsets, the process is slightly more involved as the additional values

contained within the superset dictionary mean that the values in data vertices

57

previously using the subset dictionary may be represented by different tokens in

the superset dictionary. Therefore to thin the dictionaries a translation table must

be created to update the old tokens in the data vertex, which refer to values in

the subset dictionary, to tokens that point to the same value in the new superset

dictionary.

Data Vertex C Dictionary 3

Pre Post Level Size Value

30 28 3 1 0

32 30 3 1 1

Dictionary 3

0 Databases

1 Programming

Data Vertex D Dictionary 4

Pre Post Level Size Value

38 36 3 1 0

Dictionary 4

0 Programming

Data Vertex A Dictionary 1

Pre Post Level Size Value

9 6 4 1 00

12 9 4 1 01

15 12 4 1 10

Dictionary 1

00 Miller

01 Smith

10 Stewart

Data Vertex B Dictionary 2

Pre Post Level Size Value

22 19 4 1 10

25 22 4 1 00

28 25 4 1 01

Dictionary 2

0 Miller

1 Smith

2 Stewart

Dictionary 2

00 Miller

01 Smith

10 Stewart

Fig. 4.2: Data Vertices and Dictionaries Before Thinning

An example of these processes is shown in Figures 4.2 and 4.3. The compressed

NSIndex data vertices and dictionaries before the thinning process are illustrated

in Figure 4.2 with each of the four example data vertices having an associated

dictionary. Note that Dictionaries 1 and 2 are duplicates of each other and that

the values stored in Dictionary 4 are a subset of those in Dictionary 3. As depicted

in Figure 4.3, the thinning process disposes of Dictionary 2 and points Data Vertex

B at Dictionary 1 (no change to the compressed data values is required as these

58

Data Vertex C Dictionary 3

Pre Post Level Size Value

30 28 3 1 0

32 30 3 1 1

Dictionary 3

0 Databases

1 Programming

Data Vertex D Dictionary 3

Pre Post Level Size Value

38 36 3 1 1

Dictionary 4

0 Programming

Data Vertex A Dictionary 1

Pre Post Level Size Value

9 6 4 1 00

12 9 4 1 01

15 12 4 1 10

Dictionary 1

00 Miller

01 Smith

10 Stewart

Data Vertex B Dictionary 1

Pre Post Level Size Value

22 19 4 1 10

25 22 4 1 00

28 25 4 1 01

Dictionary 2

00 Miller

01 Smith

10 Stewart

Deleted
Duplicate of
Dictionary 1

Deleted
Subset of
Dictionary 3

Fig. 4.3: Data Vertices and Dictionaries After Thinning (updated values shaded)

59

dictionaries are identical). The subset Dictionary 4 is then removed with Data

Vertex D amended to point to Dictionary 3. In this case the compressed data

tokens stored in the data vertex are updated to reflect the encoding used by the

new dictionary.

The problem here is to compare each dictionary using the fewest possible

file accesses. In the worst case each file would have to be checked against every

other file to test for duplication (equivalent to the mathematical “handshaking”

problem1 - n(n-1)/2 comparisons) and for the existence of a subset (a further

n(n-1) comparisons).

Using advance knowledge of dictionary file sizes captured as the dictionaries

were produced, this can be reduced to the equivalent of the handshaking problem.

Knowing if the file sizes are identical decides whether to test for duplication or

a subset and, in the case of the latter, which dictionary to treat as the potential

superset and which to treat as the potential subset.

This present work considers only subsets that appear between dictionaries of

the same token size - this avoids affecting the size of the compressed data values

where the token size would be increased. With respect to file comparisons this

means that instead of comparing a single large set of dictionaries, a number of

smaller sets of dictionaries are compared, reducing the overall number of com-

parisons. To this end, the token sizes are also recorded as the dictionaries are

produced.

It should be noted that the above refers to the maximum number of com-

parisons for a set of dictionaries where no duplicates or subsets exist. Where a

duplicate or subset is found, the redundant dictionary is removed and takes no

part in any further comparison.

Listing 4.2 shows the information on token size and file size captured as the

dictionaries shown in Figure 4.2 are produced. The list is sorted in descending

order first by token size (to find the groups to be compared) and then by file

size such that potential duplicate dictionaries will appear next to each other

(having identical file sizes) and, importantly, possible subset dictionaries will

1 Where n people are in a room, how many handshakes are required in total for each person
to greet every other person?

60

always appear after their potential superset dictionary (the subset dictionary

necessarily being smaller).

Dict ionary . 1 . d i c 2 22

Dict ionary . 2 . d i c 2 22

Dict ionary . 3 . d i c 1 22

Dict ionary . 4 . d i c 1 11

Listing 4.2: Dictionary List

Algorithm 4 shows the overall dictionary thinning process with Algorithm 5

giving a more detailed account of the test for subset dictionaries. The method

of creating the translation tables required to update the CSV file when a subset

dictionary is found is shown in Algorithm 6.

repeat
Read group of dictionaries with same token size from list.
for each dictionary (A) in list do

for each dictionary (B) lower in the list do
if file size A == file size B then

if B is duplicate of A then
Note to change references from B to A.
Mark B for deletion.
Remove B from list (no further comparisons).

end

else
if B is subset of A then

Note to change references from B to A.
Note translation table for tokens.
Mark B for deletion.
Remove B from list (no further comparisons).

end

end

end

end

until End of dictionary list.

Algorithm 4: Dictionary Thinning Algorithm

Once the list of dictionary reference changes is sorted into ascending order

by old dictionary number, the changes can then be applied during a single pass

through the NSIndex CSV file. Where the old dictionary was a subset of the

61

repeat
Compare item b in dictionary B to item a in dictionary A.
if a == b then

Increment a and b.
else if b > a then

Increment a.
else if b < a then

a = terms in dictionary A (force loop exit).
end

until a >= terms in dictionary A OR b >= terms in dictionary B

if b == terms in dictionary B then
Return true (all values found in dictionary A).

else
Return false.

end

Algorithm 5: Subset Test

Read first subset dictionary value.
while subset dictionary value is not null do

repeat
Read next superset dictionary value.

until matching values are found
Add relevant superset dictionary token to translation table.
Read next subset dictionary value.

end

Algorithm 6: Building Translation Table

62

replacement one, the appropriate translation table can be applied to the tokens

as part of this process.

This dictionary thinning process takes no account of the location of the data

values within the structure. For example, if a dictionary containing place names

happens to contain the same data values as one containing surnames, one of these

dictionaries will be removed as a duplicate and both data vertices will use the

same dictionary. There is no limit to the number of data vertices that may share

a dictionary.

The thinning process was applied to NSIndex summarised versions of the data

sets described in Section 4.2. Informed by the results of earlier work (Section 4.4),

these summarisations were created using the full F&B-Index partitioning method.

The effects on dictionary numbers and file sizes are shown in Section 5.4.

4.8 Summary

This chapter has set out the main phases of experimental work: the preliminary

investigation into the viability of using minimal-token dictionaries, the examina-

tion of the effects of differing combinations of bisimilarity and the trial of methods

to thin out the dictionaries. In addition, the experimental data sets have been

described and categorised and the necessary additions to the NSIndex code have

been explained. The next chapter gives the results of the experiments detailed

above, with discussion of these following in Chapter 5.

63

5. RESULTS & DISCUSSION

This thesis has described experiments designed to test the potential for bisimilarity-

based partitioning and dictionary compression methods to be combined in a

queryable storage model for semi-structured data. These investigated the poten-

tial for dictionary-based compression, evaluated differing approaches to bisimilarity-

based partitioning, integrated compression with structural querying and explored

the potential for rationalising the number of dictionaries produced. This chapter

now considers the results of these experiments and the implications that they

have for the future sharing of independent segments of data.

The chapter begins by looking at the results of each experiment in turn.

Section 5.1 presents the results of the comparison of dictionary methods against

Huffman-type text compression, with the results of the evaluation of partitioning

methods following in Section 5.2. The testing of the modified NSIndex query

system is shown in Section 5.3, with dictionary thinning results given in Section

5.4.

The discussion then turns to what may be taken from the experiments as a

whole, with these findings then linked back to the hypothesis and research ques-

tions laid out in Section 1.2. Finally, the limitations of this thesis are discussed

along with avenues for future work that arise from it.

5.1 Preliminary Work

This first experiment [GTW07], as introduced in Section 4.3, sought to compare

the effectiveness of dictionary-based compression, similar to that found in the

HiBase relational system, against Huffman-style text compression as used by the

XGrind XML compressor. These results were complemented by a set of Theoret-

ical results, based on calculation of what the minimum storage requirements for

the dictionaries and compressed data values would be.

This section of work was carried out using three data series as per Section 4.3:

Orders, Modified Orders and Legal. Figures 5.1, 5.2 and 5.3 illustrate the results

for each of these series in turn.

For purposes of comparison, two additional lines are shown on the graph. The

XML line shows the size of the uncompressed XML files, while the Raw Data line

shows the size of the uncompressed data values with all structural formatting

removed.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000

Fi
le

 S
iz

e
(K

b)

Number of Records

XGrind

HiBase

Theoretical

Raw Data

XML

Fig. 5.1: Orders Data Set

65

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000

Fi
le

 S
iz

e
(K

b)

Number of Records

XGrind

HiBase

Theoretical

Raw Data

XML

Fig. 5.2: Modified Orders Data Set

Leaving aside the Theoretical sizes for the moment, Figures 5.1, 5.2 and 5.3

show notable differences in the effectiveness of the HiBase and XGrind compres-

sion systems across the three data series. In Figure 5.1 it is shown that, while

each of the compressed representations give a reduction in size over the original

Orders XML files, HiBase produces the largest of these (slightly above the Raw

Data line) with XGrind’s compressed files being considerably smaller (and be-

low the Raw Data line). By comparison, the gap between the two compression

systems is much closer for the Modified Orders data series (Figure 5.2), where

there are only marginal differences in the compressed sizes. File sizes for HiBase

and XGrind are close to, but slightly above, the Raw Data line. XGrind file sizes

are marginally smaller for files up to 8000 records, but from that point HiBase

produces smaller files than XGrind.

As Modified Orders differs from Orders only in the removal of the large gener-

ated text element, it follows that this is a result of the abilities of the two systems

to cope with such non-repetitive data values. HiBase requires repetition of data

values to make space savings using its dictionary-based technique. The problem

is compounded in the Orders data by the length of the large text data values -

66

each of which must be stored uncompressed in the dictionary for that element.

XGrind’s Huffman coding technique is not affected by the lack of repetition in the

data values, it operates on a per-character basis, and does not store uncompressed

versions of the large data values.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Fi
le

 S
iz

e
(K

b)

Number of Records

XGrind

HiBase

Theoretical

Raw Data

XML

Fig. 5.3: Legal Data Set

The situation is reversed when looking at the Legal data series (Figure 5.3),

where the graph lines are more widely spread. XGrind files sizes are clearly above

the Raw Data line, with results for HiBase well below. It is shown that HiBase

offers considerably greater compression than that of XGrind. The higher level

of data value repetition within the Legal data is exploited by the dictionary-

based compression of HiBase resulting in a smaller compressed representation.

As XGrind’s compression is blind to this repetition at the data value level, a gap

forms between the two systems.

These preliminary results show good levels of compression for HiBase over the

real world data (Legal) and results that are comparable with XGrind for bench-

mark data without large generated text elements (Modified Orders). Although

HiBase does not perform so well with respect to such random elements, as shown

67

with the Orders data, there is still a considerable level of compression compared

with the original XML file.

Returning to the Theoretical compressed data sizes, as was expected these

are lower than the sizes produced by HiBase in all cases - due to the overheads

present in the full HiBase system (as noted in Section 4.3).

Comparing the benchmark data series to the real world Legal series, it can

be seen that where there is greater repetition of data values, the effect of the

HiBase overhead is lessened. Fewer unique data values leading not only to smaller

dictionaries, but to smaller access support structures as well.

For each of the data series, including the Orders series for which HiBase pro-

vided less effective compression than XGrind, the Theoretical compression con-

sistently produced the smallest compressed size. This indicates that dictionary-

based methods form a reasonable basis for the incorporation of data value com-

pression into semi-structured data storage.

5.2 Evaluation of Partitioning Schemes

The second experiment [TFGW09], as described in Section 4.4, explored the

effects of differing types of bisimilarity upon the test data sets. Changes in the

number of data vertices produced by the partitioning methods and in the sizes

of the compressed data and associated dictionaries were measured. The next two

subsections discuss each of these in turn, with the following subsection bringing

the two together.

5.2.1 Effect on Number of Data Vertices

Table 5.1 displays the results produced by the various bisimilarity strategies ap-

plied to the sample data sets. These results are summarised in Figure 5.4 where,

as the data sets vary greatly in the number of data vertices produced, a loga-

rithmic scale is employed - this causes the omission of the “No bisimilarity” and

“Forwards bisimilarity only” bars from the graph.

68

No Forwards Backwards Full

Bisimilarity Bisimilarity Bisimilarity Bisimilarity

XMark-10 1 1 405 46311

XMark-30 1 1 444 129186

Orders-15 1 1 10 10

ModifiedOrders-15 1 1 9 9

Legal-1 1 1 38 346

Legal-13 1 1 40 1533

Dream 1 1 15 100

Medline 1 1 76 31539

NASA 1 1 88 34884

Rat 1 1 77 161

Human 1 1 86 170

Tab. 5.1: Effects of Bisimilarity Options on Number of Data Vertices

69

Fig. 5.4: Effect of Bisimilarity Options on Number of Data Vertices

It can be seen that for each data set processed using the no bisimilarity option,

only one data vertex is produced. This is expected behaviour. As previously

noted, the NSIndex program groups the datagraph nodes by their label and, just

as all nodes of type StaffMember or Student would be grouped together, so too

are the CDATA nodes (which contain all the data values) grouped into a single

data vertex.

The addition of forwards bisimilarity causes no change in the number of data

vertices - each data set again having only one1. Although forwards bisimilarity

may have effects on the partitioning of structural nodes elsewhere in the structure,

a method that exploits outgoing paths predictably has no effect upon the data-

containing leaf nodes, as these have no descendant nodes for forwards bisimilarity

1 The number of structural vertices does increase, see Appendix B.

70

to examine.

Working in the opposite direction, the use of full backwards bisimilarity results

in a notable increase in the number of data vertices produced. By looking back

up the datagraph at the ancestor nodes, the names of the XML entities in each

data set are taken into account during partitioning and this leads to the single

data vertex being split into multiple data vertices.

Across the data sets there is great variety in the numbers of data vertices

produced using backwards bisimilarity. This is a result of both the number of

different XML entity names within each data set and the number of levels con-

tained within each datagraph. The net result of partitioning using this method

is that one data vertex is produced for each uniquely-named path through the

datagraph.

The full complexity of the XML structure is taken into account when the

final NSIndex partitioning method is employed. Full forwards and backwards

bisimilarity alternately applies the bisimilarity rules in each direction until a

stable structure is found. This means that a split caused by forwards bisimilarity

higher up the datagraph can have an effect on the data vertices produced at the

bottom of the structure when backwards bisimilarity considers the ancestors of

each data node.

For example, when using forwards bisimilarity an author with two (descen-

dant) books is deemed different from an author with three books - however all the

books would still be grouped together (each book having the same descendants).

When both forwards and backwards bisimilarity are employed, an examination

of the incoming paths of the book nodes would reveal these two different types of

author node and the book nodes would be split accordingly (books by a two-book

author and books by a three-book author).

The full forwards and backwards bisimilarity partitioning method is clearly

influenced by the semi-structured nature of the test data sets. This is most ap-

parent for XMark-30 (Table 5.1, Figure 5.4), where the irregular structure of

the data set leads to a large number of data vertices when forwards and back-

wards bisimilarity is employed. This form of bisimilarity produces the highest

number of data vertices across all data sets with the exception of Orders-15 and

71

ModifiedOrders-15. These data sets have a simple, regular structure which is

unaffected by forwards bisimilarity - there are no variations in outgoing paths for

any type of node.

5.2.2 Effect on Compressed Data and Dictionary Sizes

The data sizes given in this section, and recorded in Table 5.2 and Figure 5.5, are

each presented as a percentage compared to the total size of the uncompressed

data values within that data set.2 The compressed size is taken to be the size of

the data dictionaries generated by NSIndex plus the size of the compressed data

values (as tokenised using the dictionaries).

No Forwards Backwards Full

Bisimilarity Bisimilarity Bisimilarity Bisimilarity

XMark-10 97% 97% 96% 99%

XMark-30 88% 88% 94% 99%

Orders-15 76% 76% 68% 68%

ModifiedOrders-15 54% 54% 43% 43%

Legal-1 29% 29% 20% 23%

Legal-13 35% 35% 20% 22%

Dream 99% 99% 99% 99%

Medline 73% 73% 67% 77%

NASA 64% 64% 64% 72%

Rat 57% 57% 56% 54%

Human 57% 57% 46% 46%

Tab. 5.2: Effects of Bisimilarity Options on Compressed Sizes

2 The actual data sizes for this experiment are given in Appendix B.

72

Fig. 5.5: Effects of Bisimilarity Options on Compressed Sizes

Table 5.2 shows that as with results for the number of data vertices produced,

the compression levels achieved for the data sets are the same for both the no

bisimilarity and the full forwards bisimilarity partitioning methods. Again this

is expected as the result of the partitioning process is the same for each method.

With only one dictionary for each data set, corresponding to the single data

vertex, the differences in compression levels are purely down to the number of

unique data values found within each data set as a whole. For example, the

Legal-1 data set with a high level of data value repetition is reduced to 29%

of its uncompressed size, while the Dream data set is only lowered to 99% of

its uncompressed size (there being little repetition among the lines and stage

directions of the Shakespeare play).

When considering the effects of backwards bisimilarity on compressed data

73

and dictionary sizes, it is important to note that it is the distribution of the

data values across the data vertices that makes a difference. As this changes,

so too does the repetition of data values within any given data vertex and it

is this repetition that the dictionary compression scheme relies upon to operate

effectively.

This explains the differing levels of change in compressed size visible across

the data sets. For most of the data sets used, the new distribution of data values

caused by the move to backwards bisimilarity separates the data values out in

such a way that it permits the dictionary-based compression scheme to use smaller

tokens, i.e. where the new set of data vertices have a greater level of repetition of

data values per vertex. The effect is only notable where this type of data value

separation occurs - if the repartitioning does not separate the values in this way,

the process can have negligible effect - for example, the Dream, NASA and Rat

data sets where sizes were reduced by less than 2%.

It is noted that in the case of XMark-30 the introduction of backwards bisim-

ilarity has had a negative effect and the compressed size has increased over that

produced using no bisimilarity. In this case the redistribution of the data values

into a greater number of data vertices has led to a reduction in the overall levels

of repetition within those data vertices - as such the dictionary-based scheme

cannot operate as effectively and the compressed size rises.

As shown earlier, the combined use of full forwards and backwards bisimilarity

adds an extra discriminator to the partitioning process and leads to an increase in

the number of data vertices. This affects data value distribution and consequently

the compressed data size. The increase in compressed size for XMark-30, Legal-

1, Legal-13, Medline and NASA is caused by a reduction in the repetition of

data values within the data vertices, while Dream, Rat and Human all reduce

in compressed size as the increased distribution of data values across the data

vertices separates the values in such as way as to allow the use of smaller token

sizes. As previously noted, forwards bisimilarity has no effect upon the number of

data vertices in the Orders-15 and ModifiedOrders-15 data sets and consequently

has no effect on compressed sizes for these data sets either.

74

5.2.3 Selection of Partitioning Method

On balance it appears that, in terms of compressed data size, the full backwards

bisimilarity partitioning method offers the greatest benefit for the majority of data

sets. The significant exception to this is XMark-30 which experiences the best

compression when using no bisimilarity (grouping by label only), and to a lesser

extent the Dream, Rat and Human data sets which all slightly favour the full

forwards and backwards bisimilarity method. However, the overall compressed

size is only one factor when selecting a partitioning method, the number of data

vertices produced must also be considered as this has an effect on individual data

vertex size. Therefore, despite the slight adverse effect on the overall compressed

size of some data sets, it is considered that the greater number of data vertices

produced by the full forwards and backwards bisimilarity method makes it the

most reasonable compromise. Accordingly the experiments described in Sections

4.6 and 4.7 and discussed in Sections 5.3 and 5.4 use this partitioning method to

obtain their initial data.

5.3 Querying

The work on querying the compressed structure, set out in Section 4.6, had two

key objectives: first to demonstrate that the data values remained accessible in

their compressed form and second to show that, in taking the partitioned struc-

ture into account, a query strategy could be formed that reduced the segments

of the data structure required to be accessed to answer a query.

Table 5.3 lists six queries performed over three of the test data sets - Legal-

1, Orders-1 and XMark10. Each query is executed using both the unmodified

NSIndex system (no data value compression, original query strategy) and the

extended NSIndex system (using dictionary compression and a query strategy

which takes advantage of the structure).

It is shown that for all six queries the same number of results are returned for

each strategy and thus the ability to access the data values has not been affected

by the introduction of data value compression. Therefore it is of interest how

many vertices each strategy must utilise to achieve these results.

75

D
at

a
S
et

Q
u
er

y
S
tr

at
eg

y
R

es
u
lt

s
S
tr

u
ct

u
ra

l
D

at
a

V
er

ti
ce

s
V

er
ti

ce
s

u
n
m

o
d
ifi

ed
33

20
34

6
L

eg
al

-1
/s

is
/p

c
ag

e=
“2

1”
m

o
d
ifi

ed
33

20
10

u
n
m

o
d
if

ed
3

30
34

6
L

eg
al

-1
/s

is
/[

p
c

ju
d
ge

=
“L

ad
y

C
os

gr
ov

e”
&

p
c

ca
te

go
ry

=
“H

om
ic

id
e”

]
m

o
d
if

ed
3

30
20

u
n
m

o
d
if

ed
4

2
10

O
rd

er
s-

1
/T

/O
C

U
S
T

K
E

Y
=

“3
70

”
m

o
d
if

ed
4

2
1

u
n
m

o
d
if

ed
95

3
10

O
rd

er
s-

1
/T

/[
O

O
R

D
E

R
S
T

A
T

U
S
=

“O
”

&
O

O
R

D
E

R
-P

R
IO

R
IT

Y
=

“1
-U

R
G

E
N

T
”]

m
o
d
if

ed
95

3
2

u
n
m

o
d
if

ed
55

23
82

0
X

M
ar

k
10

/r
eg

io
n
s/

af
ri

ca
/i

te
m

m
o
d
if

ed
55

51
0

u
n
m

o
d
if

ed
21

75
76

65
3

46
31

1
X

M
ar

k
10

/r
eg

io
n
s/

*/
it

em
m

o
d
if

ed
21

75
22

27
0

T
ab
.
5.
3:

T
es

t
Q

u
er

ie
s

76

For the first four test queries the number of structural vertices required by each

strategy does not differ between the query strategies. Given the short, regular

structures of these data sets this is to be expected. However, the number of data

vertices required differs. Due to the way in which the unmodified NSIndex query

strategy processes the query, each data vertex in the structure is accessed to

check for matching data values. By contrast, as the modified query strategy only

accesses the data vertices which satisfy the structural part of the query, reducing

the pool of potential matches at each stage, a much smaller number of data

vertices are required. In the case of the first query the structure-minded strategy

is able to narrow its search to only the 10 data vertices which hold pc age values,

as opposed to the full set of 346 data vertices that the unmodified strategy must

access.

Looking at a data set with a more complex structure, XMark10, the effects

of the modified query strategy upon the structural part of the query may be

observed. Query 5 seeks to find all the item elements listed under africa. In

the case of the unmodified strategy this means accessing the vertices relating to

regions and africa and all of the item vertices held across the entire structure.

By comparison the modified strategy also accesses regions and africa but is

able to confine its search to only those vertices which appear below africa when

looking for item, answering the query while accessing considerably fewer vertices.

As a purely structural query, neither query method accesses any data vertices.

The effect is even more pronounced in Query 6 which includes a wildcard

character (“*”). While the structure-minded modified strategy is able to follow

the structure and check only the vertices below regions, the unmodified strategy

interprets the wildcard as being any vertex within the entire structure. This

results in not only every structural vertex being accessed but also every data

vertex as, despite the query being purely structural, the unmodified system does

not fully differentiate between structural and data vertices when dealing with

wildcards.

These results show that the addition of data value compression has not com-

promised access to the data values and that the use of a query strategy that takes

account of the structure of the compressed data accesses less of the structure to

77

satisfy a query than the previous query strategy. This has the effect of fewer

potential matches having to be evaluated at each stage but, more importantly in

terms of sharing segments of data, also means that fewer segments of data must

be transferred to permit query execution.

5.4 Dictionary Thinning

This final experiment [TFGW10], described in Section 4.7, aimed to reduce the

redundancy inherent across the set of dictionaries produced for each data set

by thinning out unnecessarily repeated dictionaries and leaving a smaller, useful

set in place. The three measured effects of dictionary thinning are discussed

in separate subsections: the effect on the number of dictionaries, the effect on

dictionary size and the effect on dictionary size on disk. In all cases this thinning

process was applied to an NSIndex version of the data set created using the full

forwards and backwards bisimilarity method.

5.4.1 Effect on Number of Dictionaries

The effect of dictionary thinning on the number of dictionaries required is shown

in Table 5.4. The results largely fall into three groups, which are associated

with the data set categories defined in Section 4.2: the two regularly-structured

benchmark data sets (Orders-15 and ModifiedOrders-15) are both unaffected by

the dictionary thinning process, while the two irregular XMark benchmark data

sets show a 32% (XMark-l0) and 39% (XMark-30) reduction in dictionary num-

bers. All but one of the real world, irregular data sets show between a 56% and

71% reduction (the exception is the Dream data set, discussed below).

78

No. of dictionaries No. of dictionaries Reduction

before thinning after thinning

XMark-10 46311 31368 32%

XMark-30 129186 78988 39%

Orders-15 10 10 0%

ModifiedOrders-15 9 9 0%

Legal-1 346 137 60%

Legal-13 1535 504 67%

Dream 100 79 21%

Medline 31539 9221 71%

NASA 34889 15445 56%

Rat 161 60 63%

Human 170 61 64%

Tab. 5.4: Consequences of Thinning on Number of Dictionaries

Thinning works by identifying duplicate and subset dictionaries without re-

gard to the kind of data represented by those dictionaries. The variable effect of

dictionary thinning across the data sets is again due to data value distribution.

However, by contrast to data partitioning where it is repetition of values within

individual data vertices that is important, for dictionary thinning it is the repe-

tition of data values across the data dictionaries that determines how successful

the process will be.

The difference in the effect of dictionary thinning between the real world

and benchmark data sets is a result of this. As benchmark data sets have their

data values generated, they are less likely to produce repeated data values, and

consequently less likely to produce duplicate or subset dictionaries.

This also applies in part to the Dream data set. Although categorised as a

real world data set, a large part of it acts more like benchmark data in that the

data values provided by the spoken words and stage directions of “A Midsummer

Night’s Dream” have more in common with generated text than with data values

from a real world database.

As the structure of the Orders-15 and ModifiedOrders-15 data sets did not

79

lend itself to partitioning, the resultant NSGraph representations consist of only

10 and 9 dictionaries respectively - one for each of the elements held in an order

record. There are no duplicate or subset dictionaries for these data sets and

dictionary thinning has no effect on the number of dictionaries or either of the

file size measurements discussed in Sections 5.4.2 and 5.4.3.

5.4.2 Effect on Dictionary Size

Changes to the total dictionary file sizes for each data set are shown in Table

5.5. These are the logical file sizes and represent the space actually required by

the NSIndex representation of the dictionaries, not the amount allocated by the

file system. It can be seen that the reductions in file sizes caused by dictionary

thinning do not correspond to the reductions in dictionary numbers. For example,

the Rat data set has 63% of its dictionaries removed and reduces in size by 31%,

but the Human data set dispenses with 64% of its dictionaries and only decreases

its dictionary size by 11%.

Size before thinning Size after thinning Reduction

(bytes) (bytes)

XMark-10 8029213 7759082 3%

XMark-30 23719667 22500517 5%

Orders-15 1065251 1065251 0%

ModifiedOrders-15 312682 312682 0%

Legal-1 46908 43387 8%

Legal-13 574132 503894 12%

Dream 92414 92011 0%

Medline 5448004 5222699 4%

NASA 8999070 8371988 7%

Rat 1585693 1091384 31%

Human 1293906 1156494 11%

Tab. 5.5: Consequences of Thinning on Logical Dictionary Size

These differences are due to the variable size of the individual dictionaries

80

involved. Removing a few large dictionaries can have a greater effect on the

overall dictionary size than removing many small dictionaries. In the case of the

Rat data set, eight of the dictionaries removed were over 21Kb in size (including

three at over 99Kb) whereas with the Human data set all dictionaries removed

were under 17Kb, with only ten above 1Kb.

5.4.3 Effect on Dictionary Size on Disk

Size on disk Size on disk Reduction

before thinning after thinning

(bytes) (bytes)

Xmark-10 190496788 129290260 32%

XMark-30 532369408 326762496 39%

Orders-15 1093632 1093632 0%

ModifiedOrders-15 339968 339968 0%

Legal-1 1429504 573440 60%

Legal-13 6684672 2420736 64%

Dream 471040 385024 18%

Medline 132198400 40787968 69%

NASA 146227200 66531328 55%

Rat 2170880 1294336 40%

Human 1929216 1368064 29%

Tab. 5.6: Consequences of Thinning on Dictionary “Size on Disk”

As the NTFS file system used on the test system allocates disk space in 4Kb

units, the actual disk space required by the dictionary files is larger than the

logical sizes discussed above. The effect dictionary thinning has on the “size on

disk” for each data set is shown in Table 5.6, however the relationship between

these sizes and the logical sizes is best shown in Figure 5.6.

81

Fig. 5.6: Summary of Dictionary Thinning Effects

Looking at the Medline data set, 71% of its dictionaries have been removed by

the thinning process, yet this leads to only a 4% reduction in logical dictionary

size. This is because the dictionaries that have been removed are small. The large

gap between the logical size reduction and the “size on disk” reduction stems from

the removed dictionaries being much smaller than the 4Kb unit of disk space

allocated by the filing system. Although this applies to every dictionary, as each

logical file size is rounded up to the next 4Kb disk unit, the amount of wasted disk

space depends on how close the dictionary is to filling the last disk unit allocated

to that file. The effect is most pronounced on the smallest dictionaries, where

the wasted disk space can form a much higher percentage of the “size on disk”

allocated to the dictionary. It is also noted that for those dictionaries under a

logical size of 2Kb, the wasted disk space will exceed that logically required by

the dictionary entries.

Where the logical sizes of the dictionaries removed are larger, such as with

82

the Rat data set, the gap between logical size and “size on disk” is much lower

as the wasted disk space forms a smaller percentage of the disk space allocated

by the filing system.

The dictionary thinning process helps to eliminate some of the duplication

of data within the NSIndex dictionaries. Although the effects on logical space

occupied by the dictionaries appear modest, it is the “size on disk” that is more

important in terms of occupying storage space and for this the results are greater.

In any case, there is a potentially useful reduction in the number of dictionary

files that require to be managed.

5.5 General Discussion

This work has sought to extend the NSIndex system to provide a rational method

of storing data values as part of the structural summarisation process. While a

level of compression was required to make efficient use of storage space, it was

a key consideration that the data values must be accessible without the need to

decompress the entire structure first.

Preliminary work showed the potential compression achievable with a dictionary-

based minimal-size token scheme similar to that used in HiBase - especially over

data with high repetition of data values. This, combined with the fact that de-

compression would only be performed upon the data values actually involved in

a query, led to the selection of this as the basis of the NSIndex data value storage

system.

An additional benefit of the dictionary-based scheme is that only those dic-

tionaries actually involved with a particular query need to be accessed by the

NSIndex system as demonstrated by Section 5.3. This has implications where

files are being requested over a data connection. In such a scenario the band-

width utilisation would be limited to only those dictionaries that are useful. This

is in contrast to the queryable non-homomorphic compressors ([ABC+04], [CN04],

[NLWL06], [WLS07]) considered earlier which must be transferred as a complete

single entity.

The consideration of differing types of bisimilarity in the partitioning process

83

also has a bearing upon this. This present work corroborates the findings of the

earlier work [GTW07] with regard to the effects of varying bisimilarity on the

number of vertices produced using a wider range of test data sets than before.

This is extended through a comparison of the effects of differing bisimilarity

methods on the size of the compressed data and dictionaries. Section 5.2.3 notes

that the use of backwards bisimilarity is best for overall compressed size, but that

full forwards and backwards bisimilarity may be a better compromise based on

the number of dictionaries produced. With a view to sharing segments of data,

the larger number of dictionaries can be considered preferable as it offers a finer

level of granularity of data and therefore means less data extraneous to the user’s

query is transferred alongside the relevant data.

Likewise it is not simply the total size of the dictionaries that is at issue re-

garding dictionary thinning. While these savings in storage space are useful, the

removal of the redundant dictionaries also means that the surviving dictionaries

may relate to more than one data vertex within the NSIndex structure. This

increases the likelihood that additional user queries may be satisfied using dictio-

naries that have already been acquired, as discussed in Section 1.1. Where files

are being requested over a data connection this has a double effect: no further

bandwidth is used and no additional storage space is required.

5.5.1 Research Questions and Hypothesis

To return to the research questions set out in Section 1.2:

RQ1: Are dictionary-based methods a reasonable choice for use in a

compressed semi-structured data storage model?

In order to maintain the ability to query the data structure, it was proposed

that direct access to the individual compressed data values should be a priority.

This meant a choice between compression at the level of the individual data values

or at the level of individual characters of the data - each method facilitating

data access without the requirement to first decompress an entire grouping of

compressed values.

84

The first experiment set out in Section 4.3 was designed to evaluate these two

compression types, i.e. to compare value-based dictionary compression against

text-based compression. It was demonstrated that dictionary-based methods,

as represented by HiBase, offered levels of compression in excess of those at-

tained by the Huffman-type compression used by XGrind for the real world data

sets. Although in the worst case the reverse was true for the benchmark data

set incorporating large text elements, dictionary-based compression still shows a

considerable reduction in size compared to the original XML file.

Given these results for the fully working dictionary-based system and that the

theoretical dictionary compression sizes were the smallest across all data sets, it

is clear that dictionary-based methods are indeed a reasonable choice for use in

a compressed semi-structured data storage model.

RQ2: What are the effects of varying the partitioning method on the

storage of data values?

It was noted that the number and sizes of the compressed segments produced

by the partitioning would be of interest with a view to potentially sharing the

data held within the compressed model. Section 4.4 described an experiment to

evaluate the effects of different types of bisimilarity-based partitioning.

The experimental results showed that overall, the use of full backwards bisimi-

larity produced the smallest total compressed data and dictionary sizes. However

it is argued that the full forwards and backwards bisimiliarity method of com-

pression produces a set of compressed data vertices and dictionaries that is more

beneficial for the sharing of data - the larger set of vertices meaning that each

individual item is smaller and more specialised, leading to less wasted transfer

bandwidth.

RQ3: Can a querying strategy designed around the compressed struc-

ture allow queries to be answered with reduced access to the data

structure?

85

It was demonstrated that use of the query strategy that restricted its use of

data vertices based on the structural part of the query resulted in a considerable

reduction in the number of data vertices accessed, i.e. only the parts of the

structure that might potentially hold a result are examined. In terms of sharing

independent segments of data, this would equate to a substantial reduction in

the volume of data (and dictionaries) that must be transferred to satisfy a query

- the transfer of those parts not considered by the query strategy need never be

requested.

RQ4: With the data split into segments, how might the volume of dic-

tionaries be managed?

The experimental work described in Section 4.4 showed that partitioning using

bisimilarity did indeed produce a large number of data vertices and consequently

a high number of associated dictionaries. The work described in Section 4.7

considered the reduction of redundancy between these dictionaries by eliminating

duplicate dictionaries and those whose values were a subset of another dictionary.

It was found that this thinning process could significantly reduce the number

of dictionary files involved, especially for the majority of the real world data sets,

potentially reducing the number of dictionary file transfers that may be required

in a sharing environment. There is also a benefit in terms of storage requirements.

Although the reductions in logical space requirements are quite modest for most

data sets (due to the small sizes of the dictionaries removed), there are notica-

ble reductions in the total disk space used once file system allocation methods

are taken into consideration. Both the reduction in dictionary numbers and the

savings in storage requirements are beneficial to the overall management of the

dictionaries.

The original hypothesis presented in Chapter 1 claims that:

86

Independent sharing of data segments while maintaining direct query

access is effectively facilitated by the combination of bisimilarity-based

partitioning and dictionary compression methods.

The research questions explored in this thesis sought to examine the technical

matters that derived from the hypothesis proposed, namely the validity and use-

fulness of dictionary-based compression and bisimilarity-based partitioning meth-

ods and whether a system based on these could be queried while accessing only a

portion of the data structure. In light of the answers to these research questions,

as informed by the results of the experiments described herein, it is reasonable to

conclude that the hypothesis itself has been suitably tested and stands as a valid

statement of the potential for compression in data sharing.

5.6 Limitations and Future Work

The partitioning methods used by the NSIndex system produce a large number

of dictionary files for each data set. The dictionary compression added to the

system in Section 4.5 removes the duplication of data values within data vertices

and the dictionary thinning process described in Section 4.7 is able to remove

some of the duplication of data values that occurs across the set of dictionaries

for each data set. However there are still issues to be considered with respect

to the storage of dictionaries, especially the smaller ones, as highlighted by the

gap between logical file size and the allocated disk space noted in the work on

dictionary thinning (Section 5.4).

The potential effects of combining small dictionaries needs to be examined.

One possible method is to combine dictionaries with overlapping contents where

the two dictionaries use the same size of token. Such a method would reduce the

number of dictionaries without impacting on the compressed data size. However,

any method of combining dictionaries that causes the token sizes within the

compressed data to increase must be treated with caution, as the reduction in

terms of overall dictionary size could easily be negated by the consequent increase

in compressed data size. Some balance point must be found between dictionary

numbers and compressed data sizes that allows for less wastage of the allocated

87

disk space.

On a related note it would be worth considering whether there is a size of

dictionary beyond which it makes sense to physically split the dictionary into

parts for the purposes of sharing between users. These parts could potentially

be reassembled as a single dictionary as they are needed or treated as number

of smaller dictionaries with appropriate changes to the tokens used in the com-

pressed data.

It would also be worth investigating whether a second level of compression

may usefully be applied to the dictionaries (the first level of compression being the

tokenisation within the data structure). This could be particularly useful where

large text elements are contained within the data values, such as those in the

Orders data set, as these are currently stored in the dictionaries in their original

uncompressed form. While this could have benefits in terms of space occupied

by the dictionaries, there is likely to be some impact on query performance.

In the current implementation of the NSIndex system, point queries with

branching paths can be successfully processed. Since the addition of the code

to deal with compressed data values and the associated dictionaries, it is only

possible to perform relatively simple queries upon the data it holds. Algorithms

to perform more complex queries or those involving value wildcards are present

within the codebase but, as noted in Section 4.6, the pre-existing query strategies

require adaptation to cope with compressed data values. The order-preserving

nature of the data tokens (i.e. if value-A < value-B then token-A < token-B)

permits the development of querying approaches that would support range queries

directly over the compressed data tokens. Once querying is fully featured and

the selective loading of dictionaries (see below) is implemented as part of this

process, it would then be appropriate to consider query performance in greater

detail. The current working query system serves to demonstrate that it remains

possible to access, and properly decompress, the stored data.

One aspect of the NSIndex system touched upon above, is that the system

only requires access to the dictionaries directly related to any user query it is

given. At present, this on-demand system of loading dictionaries has not been

implemented as it was not required for this set of experiments. It is conceivable

88

that, given the tree-like structure of NSIndex, this selective loading could be

extended to the structural element of the NSIndex data representation. The

structural summarisation could be split into sub-trees with these also loaded on-

demand.

Finally, the current method of writing the structural component of NSIndex

to file, as shown in Listing 3.1, is highly verbose. For this present work (which has

been concerned with the sizes of data values and dictionaries only) this has been

useful for debugging purposes, but the structural part of NSIndex could be stored

in a more compact manner by switching to a less humanly-readable format.

5.7 Summary

This chapter has discussed the results of the experimental work as detailed earlier

in this thesis. Having established the validity of dictionary-based compression in

the context of a segmented semi-structured storage model and evaluated the ef-

fects of differing types of bisimilarity in the partitioning process, the reduced data

access required by the structure-aware query strategy was noted. The potential

benefits of thinning the dictionaries were then discussed before bringing the focus

back to the research questions and hypothesis. A consideration of the limitations

of the work and potential areas for futher consideration rounded off the chapter.

The final chapter looks back and summarises the thesis as a whole.

89

6. CONCLUSION

The aim of this thesis has been the evaluation of a data storage model that

facilitates the sharing of individual segments of data while maintaining support

for user queries. It was proposed that this could be achieved using a combination

of bisimilarity-based partitioning and dictionary-based compression.

The context was set by Chapter 1, which also outlined the hypothesis and

research questions to be explored. The main hypothesis was that “Indepen-

dent sharing of data segments while maintaining direct query access is effectively

facilitated by the combination of bisimilarity-based partitioning and dictionary

compression methods”.

Chapter 2 then provided the background to this work giving some illustrative

examples of the kinds of technologies that have previously been employed to pro-

cess XML. Initially, indexing ([GW97]) and structural summarisation ([KSBG02],

[BGK03], [KBNK02]) methods that sought to speed up querying were reviewed,

along with non-queryable compression systems ([LS00], [Che01], [LW02], [SGS07])

suitable for archival purposes. Of the queryable compression methods it was

noted that homomorphic compression ([TH02], [MPC03], [SS07]) which kept data

and structure together allowed for traditional XML parsing techniques to be

used. There followed a review of non-homomorphic methods ([ABC+04], [CN04],

[NLWL06], [WLS07]), which offered improved compression and querying by split-

ting data and structure - drawing upon ideas from structural summarisation tech-

niques. However it was noted that each of these methods were designed only to

compress data and must be transferred as a single unit, rendering them unsuitable

for the sharing of segments of data.

Chapter 3 provided further details of the NSIndex, HiBase and XGrind sys-

tems used and extended during the experimental work of the thesis set out in

Chapter 4.

The Preliminary Work sought to compare dictionary-based compression (as

represented by HiBase) against text-based compression (as represented by XGrind)

to find an appropriate method for the storage of data values, such that the val-

ues could be accessed individually. The results showed that the real world data

sets were most compressed by HiBase and the benchmark data sets were most

compressed by XGrind. However, over all the data sets the calculated theoret-

ical dictionary compression consistently offered the greatest compression, thus

validating the dictionary-based method as a reasonable choice for use.

Having identified bisimilarity as an appropriate method of segmenting the

data, the second experiment, on the Evaluation of Partitioning Methods offered

by NSIndex, considered varying combinations of forwards and backwards bisimi-

larity. Supporting and extending knowledge from the earlier work ([GTW07]), it

was shown that backwards bisimilarity produced the smallest overall compressed

sizes, although the finer granularity offered by the combination of forwards and

backwards bisimilarity could provide benefits with respect to data transfer band-

width.

The work on the Integration of Data Value Compression described the steps

necessary to build dictionary-based compression into the NSIndex system. In ad-

dition to the construction of dictionaries and the subsequent encoding of data val-

ues, a method of loading NSIndex structures from file was implemented. This was

followed by the description of a query strategy devised to deal with compressed

values and take advantage of the partitioned structure. It was demonstrated that

data values remained queryable in their compressed form and that the use of a

structure-aware query strategy enabled the evaluation of queries using only the

relevant parts of the data structure.

The final experiment looked at Dictionary Thinning to reduce redundancy

across the set of dictionaries associated with a compressed NSIndex structure.

It was shown that by removing duplicate dictionaries, and by eliminating those

that were a subset of another, the number of dictionaries could be reduced to a

more manageable level with associated benefits in disk space requirements.

The experimental results were presented and discussed in Chapter 5 which

then related these experimental findings back to the research questions and the

91

hypothesis quoted at the beginning of this chapter. The experimental data sup-

ports the validity of this hypothesis. This was followed by a consideration of the

limitations of the thesis and the suggestion of future avenues of research.

The contribution of this thesis is the proposal of a data storage model that

combines bisimilarity-based partitioning and dictionary compression methods.

The evidence presented suggests that this approach has benefits in terms of data

storage. Support for queries is not only maintained but also demonstrated to

access only a fraction of the entire data set. The resulting structure is such that

it lends itself to future exploitation in a system that shares independent segments

of data.

92

BIBLIOGRAPHY

[ABC+04] Andrei Arion, Angela Bonifati, Gianni Costa, Sandra D’Aguanno,

Ioana Manolescu, and Andrea Pugliese. Efficient Query Evaluation

over Compressed XML Data. In EDBT 2004 [BCP+04], pages 200–

218.

[ABS99] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan Kauf-

mann, 1999.

[AMF06] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating

Compression and Execution in Column-Oriented Database Systems.

In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis, ed-

itors, Proceedings of the ACM SIGMOD International Conference

on Management of Data, Chicago, Illinois, USA, June 27-29, 2006,

pages 671–682. ACM, 2006.

[Ant97] Gennady Antoshenkov. Dictionary-Based Order-Preserving String

Compression. In VLDB ’97 [JCD+97], pages 26–39.

[BCP+04] Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vas-

silis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena

Ferrari, editors. Proceedings of 9th International Conference on

Extending Database Technology: Advances in Database Technology

(EDBT 2004), Heraklion, Crete, Greece, March 14-18, 2004, volume

2992 of Lecture Notes in Computer Science. Springer, 2004.

[BGK03] Peter Buneman, Martin Grohe, and Christoph Koch. Path Queries

on Compressed XML. In Johann Christoph Freytag, Peter C. Lock-

emann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger,

and Andreas Heuer, editors, Proceedings of 29th International Con-

ference on Very Large Data Bases (VLDB 2003), September 9-12,

2003, Berlin, Germany, pages 141–152. Morgan Kaufmann, 2003.

[CGK01] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query Optimiza-

tion In Compressed Database Systems. In SIGMOD 2001, pages

271–282, 2001.

[Che01] James Cheney. Compressing XML with Multiplexed Hierarchical

PPM Models. In Data Compression Conference (DCC 2001), 27-29

March 2001, Snowbird, Utah, pages 163–. IEEE Computer Society,

2001.

[CMW98] W. Paul Cockshott, Douglas R. McGregor, and John Wilson. High-

Performance Operations Using a Compressed Database Architec-

ture. The Computer Journal, 41(5):283–296, 1998.

[CN04] James Cheng and Wilfred Ng. XQzip: Querying Compressed XML

Using Structural Indexing. In EDBT 2004 [BCP+04], pages 219–

236.

[Die82] Paul F. Dietz. Maintaining Order in a Linked List. In Proceedings of

the Fourteenth Annual ACM Symposium on Theory of Computing

(STOC 14), 5-7 May 1982, San Francisco, California, USA, pages

122–127. ACM, 1982.

[Ens] Ensembl. Genome Annotation Project. http://www.ensembl.org.

[GTW07] Richard Gourlay, Brian Tripney, and John N. Wilson. Compressed

Materialised Views of Semi-Structured Data. In Workshops of the

Twenty Fourth British National Conference on Databases, Glasgow,

Scotland, 2nd-3rd July 2007, pages 75–82. IEEE Computer Society,

2007.

94

http://www.ensembl.org

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query

Formulation and Optimization in Semistructured Databases. In

VLDB ’97 [JCD+97], pages 436–445.

[Huf52] David Huffman. A Method for the Construction of Minimum-

Redundancy Codes. Proceedings of the Institute of Radio Engineers,

40(9):1098–1101, September 1952.

[IEE02] IEEE Computer Society Press. Proceedings of the 18th Interna-

tional Conference on Data Engineering (ICDE 2002), 26 February

- 1 March 2002, San Jose, CA. IEEE Computer Society, 2002.

[JCD+97] Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H.

Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld, editors.

Proceedings of 23rd International Conference on Very Large Data

Bases (VLDB ’97), August 25-29, 1997, Athens, Greece. Morgan

Kaufmann, 1997.

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and

Henry F. Korth. Covering Indexes for Branching Path Queries. In

Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, edi-

tors, Proceedings of the 2002 ACM SIGMOD International Confer-

ence on Management of Data, Madison, Wisconsin, June 3-6, 2002,

pages 133–144. ACM, 2002.

[KSBG02] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud

Gudes. Exploiting Local Similarity for Indexing Paths in Graph-

Structured Data. In ICDE 2002 [IEE02], pages 129–140.

[LS00] Hartmut Liefke and Dan Suciu. XMILL: An Efficient Compressor for

XML Data. In Weidong Chen, Jeffrey F. Naughton, and Philip A.

Bernstein, editors, Proceedings of the 2000 ACM SIGMOD Interna-

tional Conference on Management of Data, May 16-18, 2000, Dal-

las, Texas, USA, pages 153–164. ACM, 2000.

95

[LW02] Mark Levene and Peter Wood. XML Structure Compression. In

International Workshop on Web Dynamics, 2002.

[MPC03] Jun-Ki Min, Myung-Jae Park, and Chin-Wan Chung. XPRESS:

A Queriable Compression for XML Data. In Alon Y. Halevy,

Zachary G. Ives, and AnHai Doan, editors, Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data,

San Diego, California, USA, June 9-12, 2003, pages 122–133. ACM,

2003.

[NLC06] Wilfred Ng, Wai Yeung Lam, and James Cheng. Comparative Anal-

ysis of XML Compression Technologies. World Wide Web, 9(1):5–33,

2006.

[NLWL06] Wilfred Ng, Wai Yeung Lam, Peter T. Wood, and Mark Levene.

XCQ: A queriable XML compression system. Knowledge and Infor-

mation Systems, 10(4):421–452, 2006.

[Sak09] Sherif Sakr. XML compression techniques: A survey and compari-

son. Journal of Computer and System Sciences, 75(5):303–322, 2009.

[SGS07] P. Skibinski, S. Grabowski, and J. Swacha. Fast Transform for Ef-

fective XML Compression. In CAD Systems in Microelectronics,

2007, 9th International Conference - The Experience of Designing

and Applications of (CADSM ’07), pages 323 –326, Feb. 2007.

[Sha] Jon Bosak. Shakespeare In XML. http://www.cafeconleche.org/

examples/shakespeare.

[SS07] Przemyslaw Skibinski and Jakub Swacha. Combining Efficient XML

Compression with Query Processing. In Yannis E. Ioannidis, Boris

Novikov, and Boris Rachev, editors, Advances in Databases and In-

formation Systems, 11th East European Conference (ADBIS 2007),

Varna, Bulgaria, September 29-October 3, 2007, Proceedings, vol-

ume 4690 of Lecture Notes in Computer Science, pages 330–342.

Springer, 2007.

96

http://www.cafeconleche.org/examples/shakespeare
http://www.cafeconleche.org/examples/shakespeare

[Sta] StatCounter Global Statistics, Mobile v Desktop Usage, June

2010 to June 2012. http://gs.statcounter.com/#mobile_vs_

desktop-ww-monthly-201006-201206.

[TFGW09] Brian Tripney, Christopher Foley, Richard Gourlay, and John N.

Wilson. Sharing large data collections between mobile peers. In

Gabriele Kotsis, David Taniar, and Eric Pardede, editors, The 7th

International Conference on Advances in Mobile Computing and

Multimedia (MoMM 2009), 14-16 December 2009, Kuala Lumpur,

Malaysia, pages 321–325. ACM, 2009.

[TFGW10] Brian Tripney, Christopher Foley, Richard Gourlay, and John N.

Wilson. Efficient data representation for XML in peer-based sys-

tems. International Journal of Web Information Systems (IJWIS),

6(2):132–148, 2010.

[TH02] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A Query-

Friendly XML Compressor. In ICDE 2002 [IEE02], pages 225–234.

[TWH96] Cyrus Tata, John N. Wilson, and Neil Hutton. Representations of

Knowledge and Discretionary Decision-Making by Decision-Support

Systems: the Case of Judicial Sentencing. Journal of Information,

Law and Technology, 1996(2), 1996.

[Uni] University of Washington. XML Repository. http://www.cs.

washington.edu/research/xmldatasets.

[VVI04] T. Pliakas V. Vlahakis, A. Demiris and N. Ioannidis. Experiences

in applying augmented reality techniques to adaptive, continuous

guided tours. In IFITT ENTER, pages 26–28, January 2004.

[WGJN06a] J. N. Wilson, R. Gourlay, R. Japp, and M. Neumueller. Extracting

Partition Statistics from Semistructured Data. In 17th International

Workshop on Database and Expert Systems Applications (DEXA

2006), pages 497–506, Piscataway NJ, September 2006. IEEE.

97

http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-201006-201206
http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-201006-201206
http://www.cs.washington.edu/research/xmldatasets
http://www.cs.washington.edu/research/xmldatasets

[WGJN06b] John N. Wilson, Richard Gourlay, Robert Japp, and Mathias

Neumüller. A Resource Efficient Hybrid Data Structure for Twig

Queries. In Sihem Amer-Yahia, Zohra Bellahsene, Ela Hunt, Rainer

Unland, and Jeffrey Xu Yu, editors, XSym, volume 4156 of Lecture

Notes in Computer Science, pages 77–91. Springer, 2006.

[WLS07] Raymond K. Wong, Franky Lam, and William M. Shui. Querying

and maintaining a compact XML storage. In Carey L. Williamson,

Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy,

editors, Proceedings of the 16th International Conference on World

Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,

pages 1073–1082. ACM, 2007.

[XMa] XMark XML Benchmark Project. http://www.xml-benchmark.

org.

[XML] World Wide Web Consortium. Extensible Markup Language (XML)

1.0. W3C Recommendation 10 February 1998, http://www.w3.

org/TR/1998/REC-xml-19980210.

98

http://www.xml-benchmark.org
http://www.xml-benchmark.org
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210

APPENDIX

A. DESCRIPTION OF DATA SETS

The subsections below provide short descriptions and examples for the data sets

described in Chapter 4.

A.1 XMark Benchmark

The XMark XML Benchmark Project [XMa] provides a generator to create test

data files based on the structure of an online auction website. It is designed

to mimic the important features of XML documents. With no fixed pattern to

its structure and text formed from words randomly selected from Shakespeare,

the XMark data is categorised as benchmark in origin and irregular in structure.

XMark data was generated in file sizes of 10Mb and 30Mb. An example is given

in Listing A.1.

A.2 Orders

A subset of the TPC-H relational benchmark converted into XML, Orders is

categorised as benchmark and regular. As shown in Listing A.2 it is modelled

on order summary data and contains randomly generated values. A series of test

XML files were created ranging from 1000-15000 orders (349Kb - 5.1Mb).

A.3 Modified Orders

To see the effect of the large text element <O COMMENT> in the Orders data

set, the Modified Orders set was created with this generated text element re-

moved. Modified Orders is otherwise the same as Orders so remains benchmark-

regular and is used in a series of file sizes. These range from 279Kb for 1000

orders to 4.1Mb for 15000 orders.

<item id = ‘ ‘ item3 ’ ’>
<l o ca t i on>United States</l o ca t i on>
<quantity>1</quantity>
<name>po i sons </name>
<payment>Money order , Creditcard , Persona l Check , Cash</payment>
<de s c r i p t i on>
<text>
j ack
</text>
</de s c r i p t i on>
<sh ipping>Will sh ip i n t e r n a t i o n a l l y , Buyer pays f i x ed sh ipp ing charges , See

d e s c r i p t i o n f o r charges</shipping>
<i n ca t ego ry category = ‘ ‘ category5 ’ ’/>
<mailbox>
<mail>
<from>Mitsuyuki Toussaint mai l to : Toussaint@uiuc . edu</from>
<to>Cort Penn mai l to : Penn@uic . edu</to>
<date>07/17/2000</date>
<text>
gentleman observe s i l v e r e ag l e b a t t l e s bastardy shames brook mounted o f f i c e r s

dean shrunk lowness dew sandy pro logue armies su sp i c i on e ighty advance
thank fu lne s s albany ended expe r i ence ha l t doubted wert kingdom f i end
d i r e c t ed pa i r perhaps <emph> happy lucky odds rend condemn </emph> cannot
d i spos p e r f e c t s i l e n c e

</text>
</mail>
</mailbox>
</item>

Listing A.1: Example of XMark Data

<T>
<OORDERKEY>35</OORDERKEY>
<O CUSTKEY>1276</O CUSTKEY>
<OORDERSTATUS>O</O ORDERSTATUS>
<O TOTALPRICE>194641.93</O TOTALPRICE>
<OORDERDATE>1995−10−23</OORDERDATE>
<OORDER−PRIORITY>4−NOT SPECIFIED</O ORDER−PRIORITY>
<O CLERK>Clerk#000000259</O CLERK>
<O SHIP−PRIORITY>0</O SHIP−PRIORITY>
<OCOMMENT> f l u f f i l y r e gu l a r p into beans </OCOMMENT>

</T>

Listing A.2: Example of Orders Data

101

<s i s>
<i n i d >2531</ in id>
<i n year >2001</ in year>

<pc age>25</pc age>
<pc sex>M</pc sex>
<pc plea>Guilty</pc plea>
<pc category>Robbery</pc category>
<pc classm>Aggravated Robbery</pc classm>
<pc c l a s sp>Complete Robbery</pc c l a s sp>
<pc senttype>Imprisonment</pc senttype>
<pc sentmths>54</pc sentmths>

<pc forenames>Joseph</pc forenames>
<pc surname>Bloggs</pc surname>
<pc dob>7/12/1976 12:00:00</ pc dob>
<p c c o l l e c t o r>Eric</p c c o l l e c t o r>
<pc sentcat >103</pc sentcat>
<pc sentname>4 yr 6 m</pc sentname>
<pc judge>Lord Cullen</pc judge>
<pc l o ca t i on>Glasgow</pc l o ca t i on>

</s i s>

Listing A.3: Example of Legal Data

A.4 Legal

The first of the real world data sets, Legal consists of records from a court sen-

tencing system developed within the department [TWH96]. Having been taken

from a relational system, the XML is regular in structure. A series of files con-

taining between 1000 and 13000 convictions were created with file sizes between

1.3Mb and 16.8Mb. An example is given in Listing A.3.

A.5 Dream

Real world data with irregular structure, Dream is the text of Shakespeare’s “A

Midsummer Night’s Dream” as encoded into XML by Jon Bosak [Sha] and has a

file size of 146Kb. Listing A.4 shows how both spoken word and stage directions

are annotated.

A.6 Medline

A 20Mb section of the US National Library of Medicine bibliographic database

in XML format. Listing A.5 gives an example of the data contained in Medline.

This data set is real world and irregular.

102

<SPEECH>
<SPEAKER>TITANIA</SPEAKER>
<LINE>Fir s t , r ehea r s e your song by rote</LINE>
<LINE>To each word a warbl ing note :</LINE>
<LINE>Hand in hand , with f a i r y grace ,</LINE>
<LINE>Will we s ing , and b l e s s t h i s p lace .</LINE>
</SPEECH>

<STAGEDIR>Song and dance</STAGEDIR>

Listing A.4: Example of Dream Data

<Medl ineCitat ion Owner= ‘ ‘NLM’ ’ Status = ‘ ‘MEDLINE’ ’>
<PMID>1365841</PMID>
<DateCreated>

<Year>1995</Year>
<Month>03</Month>
<Day>24</Day>

</DateCreated>
.
.
.
<Journal>

<ISSN>0047−6374</ISSN>
<Journa l I s sue>

<Volume>66</Volume>
<I s sue>2</Is sue>
<PubDate>

<Year>1992</Year>
<Month>Nov</Month>

</PubDate>
</Journa l I s sue>

</Journal>
<Ar t i c l eT i t l e>Ef f e c t o f aging on macrophage adherence to e x t r a c e l l u l a r matrix

p r o t e i n s .</ Ar t i c l eT i t l e>
<Pagination>

<MedlinePgn>149−58</MedlinePgn>
</Pagination>
<Abstract>

<AbstractText>Fibronect in , . . . </ AbstractText>
</Abstract>
.
.
.

</Medl ineCitat ion>

Listing A.5: Example of Medline Data

103

<datase t sub j e c t = ‘ ‘ astronomy ’ ’ xmlns : x l i nk = ‘ ‘ http ://www.w3 . org /XML/XLink/0.9 ’ ’>
<t i t l e >Redsh i f t d i s t r i b u t i o n o f g a l a x i e s in the southern Milky way reg i on 210{

deg}&l t ; l&l t ;360{ deg} and | b|& l t ;15{ deg}.</ t i t l e >
<altname type= ‘ ‘ADC’ ’>J/ApJS/107/521</altname>
<altname type= ‘ ‘CDS’ ’>J/ApJS/107/521</altname>
<altname type= ‘ ‘ b r i e f ’ ’>Galax ie s r e d s h i f t s , 210& l t ; l&l t ; 360 , | b|& l t ;15</

altname>
<r e f e r enc e>
<source>
<j ourna l>
<t i t l e >Redsh i f t d i s t r i b u t i o n o f g a l a x i e s in the southern Milky way reg i on

210{deg}&l t ; l&l t ;360{ deg} and | b|& l t ;15{ deg}.</ t i t l e >
<author>
< i n i t i a l >N</ i n i t i a l >
<lastName>Visvanathan</lastName>

</author>
<author>
< i n i t i a l >T</ i n i t i a l >
<lastName>Yamada</lastName>

</author>
<name>Astrophys . J . Suppl . Ser .</name>
<volume>107</volume>
<pageno>521</pageno>
<date>
<year>1996</year>

</date>
<bibcode>1996ApJS . . 1 0 7 . . 5 2 1V</bibcode>

</journa l>
</source>
.
.
.

</r e f e r enc e>
.
.
.

</dataset>

Listing A.6: Example of NASA Data

A.7 NASA

A section of metadata from an XML bibliographic project undertaken by NASA’s

Astronomical Data Centre. The centre closed in 2002 but the XML file is still

available as part of the University of Washington’s XML Repository [Uni]. The

data is both real world and irregular in structure and has a file size of 23.6Mb.

An example is given in Listing A.6.

A.8 Rat

A 25Mb section of rat genome data from the Ensembl genome annotation project

[Ens]. This data is categorised as real world and regular. An example is given in

104

<ensembl−entry>
.
.
.
<e x t e r n a l db r e f s>

<e x t e r na l db r e f>
<s tatus>KNOWN</status>
<ex t e rna l db id >2200</ ex t e rna l db id>
<r e l e a s e >1</r e l e a s e>
<o b j e c t x r e f i d >4052</ ob j e c t x r e f i d>
<db name>SWISSPROT</db name>
<d i s p l a y l a b e l>FGFA RAT</d i s p l a y l a b e l>
<ensembl id >123108</ensembl id>

</ex t e r na l db r e f>
.
.
.

</e x t e r n a l db r e f s>
<gene>

<g en e ana l y s i s i d >26</g en e ana l y s i s i d>
<g en e d i s p l a y x r e f i d >10775</ g en e d i s p l a y x r e f i d>
<gene de s c r i p t i on>

<g en e d e s c r i p t i o n d e s c r i p t i o n>FIBROBLAST GROWTH FACTOR−10 PRECURSOR (FGF
−10) . [Source :SWISSPROT; Acc : P70492]</ g en e d e s c r i p t i o n d e s c r i p t i o n>

<g en e d e s c r i p t i on g en e i d >96737</ g en e d e s c r i p t i on g en e i d>
</gene de s c r i p t i on>
<gene gene id >96737</gene gene id>
<g en e s eq r e g i on i d >137912</ g en e s e q r e g i on i d>
<g en e s e q r e g i o n s t a r t >50795032</ g en e s e q r e g i o n s t a r t>
<gene s eq r eg i on s t r and >1</gene s eq r eg i on s t r and>
<gene s eq r eg i on end >50868552</ gene s eq r eg i on end>
<gene type>ensembl</gene type>

</gene>
</ensembl−entry>

Listing A.7: Example of Rat Data

Listing A.7.

A.9 Human

A 25Mb section of human genome data from the Ensembl genome annotation

project, categorised as real world and regular.

105

B. ADDITIONAL DATA

The following tables provide additional results which may be of interest along

with those presented in Chapter 5.

B.1 Effects of Bisimilarity on Number of Vertices

Table B.1 shows the effects of using different combinations of bisimilarity upon

the total number of vertices in the NSIndex structural summarisation. This

includes both structural and data vertices and shows that, although forwards

bisimilarity has no effect upon the number of data vertices (as shown in Table

5.1), it does have an effect higher up the NSIndex structure (upon the purely

structural vertices).

D
at

aG
ra

p
h

N
o

B
is

im
il
ar

it
y

F
or

w
ar

d
s

B
is

im
il
ar

it
y

B
ac

k
w

ar
d
s

B
is

im
il
ar

it
y

F
u
ll

B
is

im
il
ar

it
y

X
M

ar
k
-1

0
31

97
41

78
70

91
93

3
12

29
64

X
M

ar
k
-3

0
10

10
41

3
79

15
25

8
99

3
31

81
84

O
rd

er
s-

15
28

50
04

14
14

23
23

M
o
d
ifi

ed
O

rd
er

s-
15

25
50

04
13

13
21

21
L

eg
al

-1
70

92
1

43
54

80
70

7
L

eg
al

-1
3

92
06

78
44

10
1

83
31

51
D

re
am

62
03

18
33

38
24

4
M

ed
li
n
e

99
78

30
86

11
12

18
8

77
25

5
N

A
S
A

95
16

81
76

98
6

21
7

90
40

3
R

at
11

14
00

8
10

4
11

3
18

0
36

6
H

u
m

an
11

48
83

5
11

5
12

4
20

0
38

6

T
ab
.
B
.1
:

E
ff

ec
ts

of
B

is
im

il
ar

it
y

O
p
ti

on
s

on
T

ot
al

N
u
m

b
er

of
V

er
ti

ce
s

107

B.2 Effects of Bisimilarity on Compressed File Sizes

Table B.2 shows the actual file sizes (in bytes) used to calculate the percentages

shown in Table 5.2. As with Table 5.2 presented in the main text, each compressed

size consists of both the compressed data values and the associated dictionaries.

108

U
n
co

m
p
re

ss
ed

S
iz

e
N

o
B

is
im

il
ar

it
y

F
or

w
ar

d
s

B
is

im
il
ar

it
y

B
ac

k
w

ar
d
s

B
is

im
il
ar

it
y

F
u
ll

B
is

im
il
ar

it
y

X
M

ar
k
-1

0
81

13
72

4
78

52
55

5
78

52
55

5
78

22
83

8
80

71
14

2
X

M
ar

k
-3

0
24

10
33

88
21

12
86

60
21

12
86

60
22

59
00

10
23

92
34

91
O

rd
er

s-
15

17
76

85
9

13
33

94
6

13
33

94
6

12
15

25
2

12
15

25
2

M
o
d
ifi

ed
O

rd
er

s-
15

10
21

78
1

55
13

37
55

13
37

43
64

33
43

64
33

L
eg

al
-1

28
65

75
81

81
2

81
81

2
58

27
8

65
03

6
L

eg
al

-1
3

35
74

82
6

12
44

96
8

12
44

96
8

73
07

36
79

61
98

D
re

am
96

23
5

95
58

8
95

58
8

95
13

3
94

84
6

M
ed

li
n
e

73
30

61
5

53
46

37
8

53
46

37
8

48
97

31
9

56
29

04
9

N
A

S
A

12
78

64
75

81
93

97
3

81
93

97
3

81
69

50
5

92
36

37
3

R
at

37
63

68
2

21
47

70
5

21
47

70
5

20
95

16
3

20
29

22
1

H
u
m

an
39

49
62

4
22

49
86

5
22

49
86

5
18

20
62

1
18

01
40

8

T
ab
.
B
.2
:

E
ff

ec
ts

of
B

is
im

il
ar

it
y

O
p
ti

on
s

on
D

ic
ti

on
ar

y
S
iz

es

109

	Introduction
	Context
	Hypothesis and Research Questions
	Thesis Outline

	Background
	XML Indexing and Structural Summarisation
	XML Compression Techniques
	Non-Queryable XML Compressors
	Queryable Homomorphic XML Compressors
	Queryable Non-Homomorphic XML Compressors

	Comparison of Existing Methods
	Summary

	Relevant Technologies
	NSIndex
	NSIndex Compression
	Program Operation
	Section Summary

	HiBase
	HiBase Compression/Operation
	Section Summary

	XGrind
	XGrind Compression/Operation
	Section Summary

	Summary

	Experimental Work
	Overview
	Data Sets
	Preliminary Work
	Evaluation of Partitioning Methods
	Integration of Data Value Compression
	Dictionary Creation and Data Encoding
	File Loading

	Querying
	Dictionary Thinning
	Summary

	Results & Discussion
	Preliminary Work
	Evaluation of Partitioning Schemes
	Effect on Number of Data Vertices
	Effect on Compressed Data and Dictionary Sizes
	Selection of Partitioning Method

	Querying
	Dictionary Thinning
	Effect on Number of Dictionaries
	Effect on Dictionary Size
	Effect on Dictionary Size on Disk

	General Discussion
	Research Questions and Hypothesis

	Limitations and Future Work
	Summary

	Conclusion
	Bibliography
	Appendix
	Description of Data Sets
	XMark Benchmark
	Orders
	Modified Orders
	Legal
	Dream
	Medline
	NASA
	Rat
	Human

	Additional Data
	Effects of Bisimilarity on Number of Vertices
	Effects of Bisimilarity on Compressed File Sizes

