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ABSTRACT  

 

Local and regional economies are highly dependent on the road network. The 

concurrent closure of multiple sections of the network following a hazardous event is 

likely to have significant negative consequences for those using the network. In 

situations such as these, infrastructure managers must decide how best to restore 

the network to protect users, maximise connectivity and minimise overall disruption. 

Furthermore, many hazardous events are forecast to become more frequent and 

extreme in the future as a result of climate change.  

Extensive research has been undertaken to understand how to improve the 

resilience of degraded transport networks. Whilst network robustness (that is, the 

ability of a network to withstand stress) has been considered in numerous studies, 

the recovery of the network has captured less attention among researchers. 

Methodologies developed to date are overly simplistic, especially when simulating the 

dynamics of traffic demand and drivers’ decision-making in multi-day situations where 

there is considerable interplay between actual and perceived network states and 

behaviour.  

This thesis presents a decision-support tool that optimises the recovery of 

road transport networks after major day-to-day disruptions, maximising network 

connectivity and minimising total travel costs. This work expands upon previous 

efforts by introducing a new approach that models the damage-capacity-time 

relationship and improves the existing reinforcement-learning traffic-assignment 

models to be applicable to disrupted scenarios. An efficient metaheuristic approach 

(NSGA-II) is proposed to find optimal solutions for the recovery problem. The model 

is also applied to a real-world scenario based on the Scottish road network. Results 

from this case study clearly highlight the potential applicability of this model to 

evaluate different recovery strategies and optimise the recovery of road networks 

after multi-day major disruptions. 

 

Keywords:  RECOVERY, REINFORCEMENT LEARNING, RESOURCE ALLOCATION,           

TRAVEL BEHAVIOUR, OPTIMISATION, RESILIENCE, MULTI-DAY 

DISRUPTION, HAZARDOUS EVENT.    
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Notation Equation Description 

𝛽1, 𝛽2, 

𝛽3, 𝛽4 

(6.4) Coefficients of the terms included in the cost function.  

𝛽𝑧 (6.22) (6.23) 

(6.26) (7.7) 

(7.8) (7.9) 

(7.10) (7.11) 

Binary variable (0-1) that indicates whether option 𝑧 is favourable (𝛽𝑧 = 1) or not (𝛽𝑧 = 0) 

on day 𝑡, when the stimulus is positive. 

𝛽𝐹𝑧 (6.25) (7.12) 

(7.10) 
Binary variable (0-1) that indicates if an option 𝑧 is favourable (𝛽𝐹𝑧 = 0) or unfavourable 

(𝛽𝐹𝑧 = 1), when the stimulus is negative. 

𝛽𝑄𝑧 (7.8) (7.9) 

(7.11) 
Binary variable (0-1) that takes a value of 1 (𝛽𝑄𝑧 = 1) if a packet of drivers ℎ is aware of 

the disrupted route of option 𝑧. Driver knows of this disrupted 

𝛽𝑁 (6.25) Binary variable (0-1) that takes the value of 1 if all options that are no chosen on day 𝑡 

are unfavourable and 0 if not all unselected options are unfavourable. 

𝛽𝑁′ (7.11) (7.13) Binary variable (0-1) that takes the value of 1 (𝛽𝑁′ = 1) if all unselected options are 

unfavourable/disrupted, or 0 (𝛽𝑁′ = 0) otherwise.  

𝜌ℎ,𝐶𝐴𝑅,𝑡 (6.32) Binary variable that indicates if the packet of drivers ℎ travels by car on day 𝑡 (𝜌ℎ,𝐶𝐴𝑅,𝑡 =

1) or decides not to travel by car (𝜌ℎ,𝐶𝐴𝑅,𝑡 = 0). 

𝛿𝑡𝑖𝑗 (3.17) Binary variable that indicates if there is traffic demand from node 𝑖 to node 𝑗 at time 𝑡.  

𝜆 (7.1) User-defined threshold that is defined for each driver. It limits the maximum number of 

vehicles that can be on a road without triggering on-board decisions. 

𝜀 (6.30) Variable that weights the exploration and exploitation phases on the  

𝜀 -greedy approach. 

𝜃 (6.13) Angle between the vertical axis and the decay of the bad-memory event function.  

𝜙 (4.4) Angle between the productivity-resource relationship and the x-axis.  

𝛾𝑟 (3.13) Binary variable that omits those trips whose post-disaster travel time is 𝑘 times greater 

that the pre-disaster travel time. 

𝛾𝑈 (6.28) Variable that indicates the total number of options that are unfavourable.   

𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡 (6.32) Binary variable that indicates if the packet of drivers ℎ arrives late to the destination on 

day 𝑡 (𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡 = 1) or on time (𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡 = 0). 

𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 (6.32) Binary variable that indicates if a packet of drivers ℎ travels using another mode of 

transport that is not car-based (𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = 1) or cancels the trip (𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = 0).    

𝜗𝑛 (4.2) (6.3) A random value between 0 and 1. 

𝜗𝑙 (4.1) Random number (between 0 and 1) that is assigned to each road segment 𝑙. A road 

segment will be classified as damaged if the random number has a value below a pre-

defined limit level. 

𝜗ℎ (5.2) Random value between 0 and 1 that is generated for each packet ℎ of vehicles. 

𝜑𝑗 (6.9) (6.10) Weighting factor that represents the memory level of travellers on day 𝑗. 

Ωℎ (7.2) Patience level of a packet ℎ of vehicles.  

𝜉 (7.15) User-defined value (between 0 and 1) that quantifies how the new pre-trip information is 

altering the mental probabilities of selecting travel options.  

𝜍 (5.1) Parameter of the Chang et al (1985) speed-density model.  

𝒶 (7.19) BPR coefficient, often set at 0.15. 

𝑎𝑐𝑐𝑎 (6.37) (6.38) Accessibility variable that is given to an area 𝑎 and it measures how close an alternative 

transit station is from the area where the user is located. 

𝐴𝐴, 𝐵𝐵, 

 𝐶𝐶, 𝐷𝐷 

(6.32) User-defined values that indicates the importance of each term in the calculation of the 

probability of selecting the option of ‘not travelling by car’. 

𝐴ℎ𝑡 (6.7) Travel cost that packet of drivers ℎ expects at time 𝑡. 

𝐴𝑇ℎ
𝑡 (5.8) (6.26) 

(6.27) 
Previous arrival time of packet of vehicles ℎ. 

𝐴𝑇ℎ
𝑡+1 (5.8) New arrival time assigned to the queued packet of vehicles ℎ. 

𝐴𝑇ℎ𝑧𝑡 (6.5) (7.11) Arrival time of packet of drivers ℎ after choosing travel option 𝑧 on day 𝑡. 

𝒷 (7.19) BPR coefficient, often set to 4. 

𝐵ℎ𝑧𝑡 (6.11) Bad-event memory variable that is used to further weight the travel cost of those bad 

experiences on day 𝑡 identified by packet of drivers ℎ.   
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𝐵𝑚𝑎𝑥 (6.11) User-defined value that quantifies the maximum weighting value that the bad-memory 

variable (𝐵ℎ𝑧𝑡) can take. 

𝑏1 and 

𝑏2 

(6.11) User-defined limit values that characterises the bad-event memory function. 

𝑐𝑜𝑚𝑓 (6.37) Variable that defines the level of comfort that users experience by using this alternative 

transport mode.  

𝑐𝑡 (7.14) Number of consecutive days that an option is disrupted. 

𝐶ℎ𝑧𝑗 (6.7) Travel cost of option 𝑧 that packet of drivers ℎ has experienced on day 𝑗.  

𝐶ℎ,𝐹𝐹 (6.17) Free-flow travel cost of packet of drivers ℎ.   

𝐶𝑟,𝑝𝑟𝑒 (3.14) Cost in terms of travel time between the OD pair 𝑟 during the pre-disaster stage. 

𝐶𝑟,𝑝𝑜𝑠𝑡 (3.14) Cost in terms of travel time between the OD pair 𝑟 during the post-disaster stage. 

𝐶𝑇 (7.4) Current time that is being analysed (e.g. 8:04am). 

𝐶𝑅𝑙 (7.16) The remaining capacity of a disrupted link 𝑙.  

𝒹𝑟,𝑝𝑜𝑠𝑡 (3.12) (3.13) Post-disaster demand between the OD pair 𝑟 that is satisfied.  

𝒹𝑟,𝑝𝑟𝑒 (3.12) (3.13) Pre-disaster demand between the OD pair 𝑟 that can be satisfied. 

𝑑𝑧 (7.14) (7.8) 

(7.10) 
Variable that reduces the probability of selecting those options that contain at least a 

disrupted link.  

𝐷 Section 4.2.4 Value that indicates the amount of damage in units of resource*time.   

𝐷𝑙
0 (4.5) Damage (in resource*time) that needs to be repaired on the damaged road segment 𝑙. 

𝐷𝑚𝑙 (4.1) Binary variable that indicates if a road segment (or link) 𝑙 is damaged (𝐷𝑙 = 1) or 

undamaged (𝐷𝑙 = 0). 

𝐷𝐹ℎ𝑧𝑡 (6.18) Difference between the expected travel cost (𝐴ℎ𝑡) on day 𝑡 and the perceived travel cost 

(𝐸ℎ𝑧𝑡) of each travel option, which is calculated to obtain the stimulus value. 

𝐷𝐹ℎ𝑡,𝑚𝑎𝑥 (6.19) Maximum difference between the expected travel cost (𝐴ℎ𝑡) on day 𝑡 and the perceived 

travel cost (𝐸ℎ𝑧𝑡) of all travel options available for packet of drivers ℎ. 

𝐷𝐹ℎ𝑡,𝑚𝑖𝑛 (6.20) Minimum difference between the expected travel cost (𝐴ℎ𝑡) on day 𝑡 and the perceived 

travel cost (𝐸ℎ𝑧𝑡) of all travel options available for packet of drivers ℎ. 

𝐷𝐿ℎ𝑡 (6.4) Late arrival penalty assigned to packet of vehicles ℎ on day 𝑡. It takes a value of 1 for late 

arrival or 0 otherwise. 

𝐷𝑇𝑧𝑗 (6.8) (6.26) 

(6.27) 
Departure time of chosen option 𝑧 on day 𝑗. 

𝐷𝑇𝑚𝑡 (6.8) (6.26) 

(6.27) 
Departure time of chosen option 𝑚 on day 𝑡.  

𝐷𝐴𝑗  (8.1) Total trip attraction at zone 𝑗. 

𝐸ℎ𝑧𝑡 (6.17) Perceived travel cost of packet of drivers 𝑧 on travel option 𝑧 calculated on day 𝑡. 

𝐸𝑇ℎ (6.5) (6.26) 

(6.27) 
Earliest limit of the preferred arrival time interval (PATI).  

𝐸𝐴𝑇ℎ𝑧 (7.3) Arrival time that packet ℎ of drivers expects after choosing new travel option 𝑧. 

𝐸𝐿 (7.3) User-defined extra time that allows drivers to arrive later than the starting time of the 

activity. 

𝐸[𝐶ℎ𝑧𝑡] (7.20) Estimated travel cost of option 𝑧 that packet of drivers ℎ receives from the GPS systems 

on day 𝑡.  

𝐸𝑃𝐷𝑍 (8.4) Employment at datazone level. 

𝐸𝑃𝑁𝑇𝐸𝑀 (8.4) Aggregated employment at NTEM zone level. 

𝐸𝑇𝑇𝑟𝑜𝑢𝑡𝑒,ℎ (7.4) Travel time of the new route that the packet ℎ of drivers expects.  

𝒻 (8.3) Factor that converts aggregated trips to disaggregated trips.  

𝑓𝑟𝑒𝑞𝑎 (6.37) (6.39) Frequency of the service that is provided by the alternative transport mode. 

𝑓(𝑐𝑖𝑗) (8.1) Deterrence (travel cost) function between any pair of zones 𝑖 and 𝑗. 

𝐹 (7.7) (7.8) (7.9) 

(7.10) 
Binary variable (0-1) that indicates the presence or absence of the new feature that 

reduces the probability of selecting those disrupted options. 

𝑔 (4.4) Gradient of the productivity-resource relationship. Note that tan(𝛽) = 𝑔. 

𝑔𝑎𝑝 (5.7) Average distance between two consecutive vehicles. 

ℊℎ (7.20) Binary variable that takes a value of 1 if packet of drivers ℎ receives GPS information or 0 

if packet ℎ does not receive that information.  

ℎ (5.8) (5.9) 

(5.10) (5.1) 

(5.5) (5.2) (6.7) 

Packet of vehicles 
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𝐻ℎ𝑧𝑗 (6.17) Binary variable that indicates if a travel option 𝑧 has been used on day 𝑗 (𝐻ℎ𝑧𝑗 = 1) or it 

has not been used (𝐻ℎ𝑧𝑗 = 0) by packet of drivers ℎ.   

𝐻𝐻, 𝐽𝐽, 𝐿𝐿 (6.37) User-defined variables that weight each terms of the formula that quantifies the service 

level satisfaction of drivers. 

𝐽ℎ (7.2) Number of disrupted links that driver ℎ has experienced on the same day. 

max 𝐽ℎ (7.2) User-defined maximum number of disrupted links that limits the number of re-routes this 

driver can take.  

𝓀 (3.13) User-defined parameter that indicates that post-disaster travel time is “k” times greater 

than the pre-disaster travel times.  

𝑘𝑙 (5.1) (5.3) (5.5) 

(5.6) (7.1) 
Traffic density only on the running part of link 𝑙. 

𝑘𝑜 (5.1) (5.4) (5.6) Density associated with a maximum flow. In this model, it is assumed that this value is 

half of the jam density value (𝑘𝑗). 

𝑘𝑄,𝑉𝑀𝑆 Section 7.6 Pre-defined limit value of the density of a link that is used by the VMS to give advice to 

drivers of busy roads.  

𝑘𝑗 (5.6) (7.1) Jam density on link 𝑙. Equation (5.4) is used to calculate this value. 

𝐾𝑟 (3.8) Weighting factor that indicates the importance of an OD pair 𝑟. 

𝐾𝑗 (3.17) Weighting factor that indicates the importance of the destination node 𝑗. 

𝐾𝑇ℎ (6.36) (6.32) The ‘need to travel’ variable that is included in the calculation of the probability of selecting 

the option of ‘not travelling by car’.  

𝑙 (3.5) (7.1) (7.2) Link (road segment) number. 

ℓℎ (6.16) (6.1) Learning rate for each packet of vehicles ℎ.  

𝐿𝑖𝑗 (3.8) (3.15) 

(3.17) 
Parameter that determines the level of connectivity between node 𝑖 and node 𝑗 at time 𝑡. 

𝐿𝐴𝑙 (5.3) (5.4) (5.7) Number of lanes on link 𝑙. 

𝐿𝐸𝑙 (5.3) (5.4) Length of link 𝑙. 

𝐿𝐸𝑞𝑢𝑒𝑢𝑒 (5.7) Length of the queue. 

𝐿𝐸𝑣𝑒ℎ (5.7) Average length of a vehicle. It is assumed a value of 4.8m (Qu et al., 2013). 

𝐿𝑇ℎ (6.5) (6.26) 

(6.27) 
Latest limit of the preferred arrival time interval (PATI). 

𝑚 (6.3) Selected travel option on day 𝑡 

𝑚𝑡1 (7.14) Maximum number of consecutive days that a driver can face a disrupted route without 

reducing the probability of being selected.  

𝑚𝑡2 (7.14) Minimum number of consecutive days that a driver can face a disrupted route without 

reducing completely to zero the probability of being selected. 

𝑀ℎ𝑧𝑡 (6.11) Experienced travel cost after using travel option 𝑧 by packet of drivers ℎ on day 𝑡.   

𝑛 (3.8) Total number of node pairs 

𝑛𝐿 (3.5) Total links of the network 

𝑁 (3.17) Total number of nodes 

𝑂𝐷𝑖𝑗 (3.15) (8.1) Traffic demand between node 𝑖 and node 𝑗. 

𝑂𝑃𝑖 (8.1) Total trip production at zone 𝑖. 

 

𝑝𝑧𝑡 (6.2) (6.3) (7.7) 

(7.8) (7.10) 
Probability of selecting each travel option 𝑧 on day 𝑡. 

𝑝𝑚𝑡 (6.22) (6.23) 

(6.24) (6.25) 

(7.7) (7.8)(7.9) 

(7.10) 

Probability of selecting travel option 𝑚 on day 𝑡. 

𝑝𝑚(𝑡+1) (6.22) (6.24) 

(7.7) (7.9) 
Probability of selecting the travel option 𝑚 for the next day 

𝑝𝑧(𝑡+1) (6.23) (6.25) 

(7.8) (7.10) 
Probability of selecting the travel option 𝑧 for the next day. 

𝑝′𝑧 (6.30) The new probability of selecting travel option 𝑧 after the trade-off between exploration 

and exploitation.  

𝑝𝑧,𝑅𝑎𝑛𝑑𝑜𝑚 (6.30) Random probability of selecting the travel option 𝑧 on the 𝜀-greedy approach.  

𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 (6.30) Probability of selecting travel option 𝑧 that drivers store on their mental model.  

𝑝𝑧𝑡,𝑢𝑝𝑑𝑎𝑡𝑒𝑑 (6.31) Updated probability of selecting the travel option 𝑧 on day 𝑡 after incorporating the option 

of ‘not travelling by car’. 

𝑝𝑧,𝑛𝑒𝑤 (7.15) New probability that is obtained as a combination of the 𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙 and the 𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝.  

𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝 (7.15) Probability that is assigned to travel options based on the pre-trip information received.  
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𝑝ℎ,𝑁𝐶,𝑡 (6.31) Probability of selecting the option of ‘not travelling by car’ on day 𝑡 by packets of drivers 

ℎ. 

𝑝ℎ,𝑁𝐶(𝑡+1) (6.32) (6.33) Probability of selecting the option of ‘not travelling by car’ on day 𝑡 + 1 by packets of 

drivers ℎ. 

𝑝ℎ,𝑀𝑂𝐷𝐸 (6.40) Probability of choosing between cancelling the trip or using an alternative transport mode. 

𝑃(𝜗) (4.2) (4.3) A uniform cumulative probability distribution. 

𝑃𝑚𝑖𝑛 (4.3) Upper limit that defines the “minor” damage state on the probability distribution  

𝑃(𝜗). 

𝑃𝑚𝑜𝑑 (4.3) Upper limit that defines the “moderate” damage state on the probability distribution  

𝑃(𝜗). 

𝑃𝑠𝑒𝑣 (4.3) Upper limit that defines the “severe” damage state on the probability distribution  

𝑃(𝜗). 

𝑃𝐷𝑙
𝑡 (4.4) (4.5) Productivity (in units of resource-time/time) of repair teams allocated to damaged road 

segment 𝑙 on day 𝑡. 

𝑃𝑉 Figure 4.10 Priority value (PV) specified on each repair strategy. This value indicates the position of a 

damaged place in the list of priorities.  

𝑃𝐿lim (4.1) Upper limit that is used to classify a road segment as damaged or undamaged. 

𝑃𝑎
𝑡+1 (6.1) Probability that the action 𝑎 occurs at trial 𝑡 + 1, ranging from 0 to 1. 

𝑃𝑎
𝑡 (6.1) Probability that the action 𝑎 occurs at trial 𝑡 (expected probability), ranging from 0 to 1. 

∆𝑃𝑎
𝑡+1 (6.1) Change in the strength of the action 𝑎 for the next trial 𝑡 + 1. Note that the symbol ∆ 

indicates a change in that variable 

𝑃𝐴𝑇𝐼ℎ (6.5) Preferred Arrival Time Interval of packet of drivers ℎ. 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (7.16) User-defined value that penalises the undisrupted travel time of a link.  

𝑞𝑙 (5.5) (5.6) 

(7.19) 
Flow of vehicles on link 𝑙. 

𝑞𝑚𝑎𝑥 (5.6) (7.19) Maximum flow of vehicles on link 𝑙. 

𝑞𝑙,𝑚𝑎𝑥,𝑝𝑜𝑠𝑡 (3.11) Post-disruption capacity of link 𝑙. 

𝑞𝑙,𝑚𝑎𝑥,𝑝𝑟𝑒 (3.11) Pre-disruption capacity of link 𝑙 

𝑄𝑡 (3.3) (3.5) Performance value in terms of total travel time. 

𝑄𝑐 (3.17) Performance value measured in terms of connectivity. It can take values between 0 and 

1, being 0 null connectivity and 1 full connectivity. 

𝑟 (3.8) Node pair 

𝑅 (3.11) (3.12) Total number of origin-destination pairs. 

𝑅𝑆𝐷𝑍 (8.4) Residential population at datazone level. 

𝑅𝑃𝑎
𝑡 (6.1) New probability of the action 𝑎 after experiencing it on trial 𝑡 (experienced probability), 

ranging from 0 to 1. In Bush-Mosteller model (1951). 

𝑅𝑇 (4.4) Number of repair teams that are assigned to a damaged place 

𝑅𝑇𝑚𝑖𝑛 (4.4) Minimum number of repair teams that needs to attend the damaged location in order to 

carry out repairs. 

𝑅𝑇𝑚𝑎𝑥 (4.4) Maximum number of repair teams that can attend the same incident location without 

reducing the total productivity 

𝑅𝑈𝑧 (6.26) (6.27) 

(7.11) 
Path/route of option 𝑧 at day 𝑡. 

𝑅𝑈𝑚 (6.26) (6.27) 

(7.11) 
Path/route of chosen option 𝑚 at day 𝑡. 

𝑅𝐷𝑙
𝑡 (4.5) Percentage of damage that is repaired of damaged road segment 𝑙 on day 𝑡 

𝑅𝐷𝑙
𝑡−1 (4.5) Percentage of damage that is already repaired on day 𝑡 − 1 

𝑅𝐶ℎ (6.32) (6.34) Late arrival coefficient that is used when the packet of drivers ℎ does not reach its 

destination before the starting time of the activity 𝑎.  

𝑅𝑆ℎ (6.35) (6.32) Rescaled value of the service level satisfaction (𝑆𝐿ℎ).  

𝑅𝐸 (6.42) Relative error. 

𝑠ℎ𝑧𝑗 (6.7) Binary variable (0 or 1) that indicates if the travel option 𝑧, which was chosen on day 𝑗, 

has the same departure time as the option chosen on day 𝑡. 

𝑆ℎ𝑚𝑡 (6.16) (6.22) 

(6.23) (6.24) 

(6.25) 

Stimulus value of packet of vehicles ℎ after choosing travel option 𝑚 on day 𝑡. 

𝑆𝐿ℎ (6.32) (6.40) Service level satisfaction of using an alternative transport mode.  

𝑆𝐷𝐸ℎ𝑧𝑡 (6.4) Amount of time that packet of vehicles ℎ arrives early at the destination after choosing 

option 𝑧 on day 𝑡.  
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𝑆𝐷𝐿ℎ𝑧𝑡 (6.4) Amount of time that packet of vehicles ℎ arrives late at the destination after choosing 

option 𝑧 on day 𝑡. 

𝑆𝐴𝑇ℎ𝑚𝑡 (6.16) “Satisfaction” value of packet of vehicles ℎ after choosing travel option 𝑚 on day 𝑡.  

𝑆𝑇 (7.3) Starting time of the activity. 

𝑡 (6.7) Time (in days). 

𝑡0 (3.3) Time when the disruption occurs. 

𝑡1 (3.3) User-defined time horizon. 

𝑡ℎ,𝑤 (5.8) (5.9) Time that packet of vehicles ℎ have to wait until the shockwave reaches its position.  

𝑡ℎ,𝑞𝑢𝑒𝑢𝑒 (5.8) (5.10) Time to drive to the end of the link, assuming a free-flow travel speed. 

𝑡𝑅𝐶  (6.34) Time after the starting time of the activity that is needed to achieves a value of 1 on the 

𝑅𝐶ℎ variable.  

𝑡𝑡𝑙ℎ𝑗 (7.6) Travel time on link 𝑙 that packet ℎ of drivers have experienced on day 𝑗.  

𝑡𝑡𝑤𝑖𝑡ℎ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (7.16) Travel time of link 𝑙 after being penalised due to the capacity reduction. 

𝑡𝑡𝑂 (7.19) (8.1) Free-flow travel time. 

𝑇𝑡,𝑙 (3.5) Average travel time on link 𝑙 on day 𝑡. This is calculated using the BPR formula (Bureau 

of Public Roads, 1964). 

𝑇𝑡,𝑉 (3.7) Time that each vehicle 𝑉 spends travelling on day 𝑡 

𝑇𝑍 (6.14) Time when the bad-event memory variable takes a value of 1. It can be calculated using 

the value of the bad-event memory variable (𝐵ℎ𝑧𝑡) of any day 𝑗. 

𝑇𝑃𝑁𝑇𝐸𝑀 (8.4) Aggregated residential population at NTEM zone level. 

𝑇𝑅𝐷𝑍𝑖 (8.3) Number of trips that are assigned to the smaller zone 𝑖 (datazone level).  

𝑇𝑅𝑁𝑇𝐸𝑀 (8.3) Aggregated number of trips on the NTEM zone level. 

𝑇𝑇ℎ𝑧𝑡 (6.4) Time that packet of vehicles ℎ spent on their journey after choosing option 𝑧 on day 𝑡. 

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡𝑠 (6.42) (8.6) Mean value of the total travel cost of 𝑠 simulations on day 𝑡. 

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡,30 (6.42) (8.6) Mean value of the total travel cost of 30 simulations on day 𝑡 

𝑈 (6.36) Number of days in a row in which drivers have not attended the activity.  

𝑈𝑓 (6.36) Number of days in which activity is not essential and drivers may not attend the activity. 

𝑈𝑠 (6.36) Initial value of the ‘need to travel’ variable 

𝑈𝑔 (6.36) Number of days in which the ‘need to travel’ variable is increasing until it reaches the 

maximum value of 1. 

𝑣ℎ (5.1) (5.5) Speed of the packet ℎ of vehicles. 

𝑣ℎ,𝑚𝑖𝑛 (5.1) Minimum speed of packet ℎ of vehicles.   

𝑣 𝑚𝑎𝑥 (5.2) Maximum speed limit of the road. 

𝑣ℎ,𝐹𝐹 (5.1) (5.2) Free flow speed of packet ℎ of vehicles. 

𝑣𝑓𝑓,𝑙 (5.6) Free-flow speed on link 𝑙. 

𝑣𝑎 (5.2) Variable that limits the maximum variability of the speed of drivers.  

𝑉𝑡,𝑙 (3.5) Number of vehicles on link 𝑙 on day 𝑡. 

𝑉𝑛𝑒𝑡 (3.7) Total number of vehicles travelling on the network 

𝑉𝑙,𝑟𝑢𝑛 (5.3) Total number of vehicles travelling on the running part of link 𝑙 at time 𝑡. 

𝑉𝑞𝑢𝑒𝑢𝑒,𝑙  (5.7) Number of vehicles waiting on the queue of link 𝑙 at time 𝑡. 

𝑉𝑙,𝑚𝑎𝑥 (5.4) Maximum number of vehicles that can use link 𝑙 at time 𝑡. 

𝑉𝑡𝑖𝑗 (3.17) Total number of vehicles that completed their trip from node 𝑖 to node 𝑗 on day 𝑡. 

𝑉𝑖𝑗,𝑝𝑟𝑒  (3.17) Total number of vehicles that are expected to travel from node 𝑖 to node 𝑗 during the pre-

disrupted stage. 

𝑊𝑟 (3.11) Total number of paths between an OD pair 𝑟. 

𝑤𝑟 (3.11) A path between an OD pair 𝑟. 

𝑥(𝑡) (8.7) Results from the model simulation (e.g. traffic flow, speed). 

𝑥′(𝑡) (8.7) Collected real traffic data (e.g. traffic flow, speed). 

𝑦𝑅𝐶 (6.34) Coefficient that indicates how important is to arrive on time to undertake the activity.  

𝑌 (8.7) Difference between model simulation and real traffic data. 

𝑧 (6.3) (6.7) Travel option.  

𝒵 (6.2) (6.3) (6.7) Total number of possible travel options that each driver knows. 
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ATIS Advanced Traveller Information System 

BM Bush-Mosteller model 

DMRB Design manual for Roads and Bridges 

FIFO First-in-first-out principle 

FSM Four-Step model 

GA Genetic Algorithms 

HAZUS-MH HAZard United States - Multiple Hazard (FEMA, 2013) 

LA Learning Automata 

NSGA-II Non-dominated Sorting Genetic Algorithm 

OD Origin-Destination 

PAT Preferred arrival time 

PATI Preferred arrival time interval 

PUE Partial User Equilibrium 

REDARS Risk from Earthquake DAmage to Roadway Systems (ImageCat, 2005). 

RL Reinforcement Learning 

SLA Stochastic Learning Automata 

UE User Equilibrium 

VMS Variable Message Signs 
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   CHAPTER 1 

1 .  Introduction  

 

 

 

 

1.1. Context and problem definition 

A road transport network is an essential infrastructure that contributes to the 

development of a country as it allows the movement of people and goods. Community 

and regional economies are highly dependent on the transport network as they need 

to use road infrastructure to provide their services to other communities. For example, 

the Trunk Road network in Scotland contributes around £1.38 billion to its economy 

each year through public transport, road freight and road construction and 

maintenance (Peeling et al., 2016). It also provides access to education, jobs and 

services, which are essential for the society. 

There is a growing concern for the vulnerability of these networks to disruption 

by natural or human-made hazards. Road networks are highly exposed to these 

hazardous events, which in some cases may produce damage to road sections, 

congestion and closures of some parts of the network. Direct impacts, which are 

related to the physical damage to the road infrastructure, and indirect impacts, which 

are associated with additional travel time and other extra costs borne by society, are 

important for the economy. Road closures produce longer journey times, additional 

delays, costs for businesses and impacts on the tourist market as fewer people are 

willing to travel with disruptions, among other consequences (Ekosgen, 2016). For 

example, a series of rainfall-induced debris flows in August 2004 affected the Scottish 

road network. Social and economic impacts were significant, closing some road 

segments for a few days and making access to and from some remote communities 

difficult (Winter et al., 2013). An increasing incidence of extreme weather events is 

expected to happen in the future due to climate change, which may exacerbate the 
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effect of natural hazards on the transport network (IPCC, 2014). It is therefore 

important to plan for these events and ensure that transport networks are well 

prepared and if the impact is not avoided, guarantee a rapid recovery of the network 

with a minimal impact on society. Therefore, infrastructure owners and transport 

operators aim to provide resilient transportation systems that are capable of 

absorbing the impacts of disruptive events, adapting to new situations and recovering 

quickly if any infrastructure is damaged.  

Recently, there has been a growing interest in the study of the impacts of 

hazards on transport networks and their resilience due to the increase in natural 

disasters and terrorist attacks (Mattsson and Jenelius, 2015; Chang, 2016; Postance, 

2017; Carlos Lam et al., 2020; Zhang et al., 2020). The term resilience is used widely 

over many different fields of research from ecology (Standish et al., 2014) to 

psychology (Schoon, 2006; Schwarz, 2018) as well as to infrastructure systems (Chen 

and Miller-Hooks, 2012). A review of previous definitions in the field of transportation 

systems is included in Wan et al. (2018). In all these definitions, three resilience 

capacities are clearly identified: adaptive capacity, absorptive capacity and 

recoverability. In the context of this thesis, resilience is defined as the ability of a 

system to withstand and respond to the impact of disruptions and to recover within 

an acceptable time after being affected, thereby achieving a desired state. Bruneau 

et al. (2003) conceptualise resilience as encompassing four principles (commonly 

known as 4R’s): (1) Robustness, defined as the ability to withstand stress without 

losing functionality; (2) Redundancy, the ability to provide alternative routes/means 

of transport to continue operations even if some road segments are damaged; (3) 

Resourcefulness, the ability to identify problems, establish priorities and mobilise 

repair resources to achieve goals and shorten the time of recovery (Cimellaro, 

Reinhorn and Bruneau, 2010); and (4) Rapidity, which measures how quickly 

functionality is restored. The levels of robustness and redundancy determine the 

performance loss of transport systems, whilst resourcefulness and rapidity determine 

the ability to restore the functionality of the system. 
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Figure 1.1. Typical disruption profile and posterior recovery 

 [Adapted from Henry and Ramirez-Marquez (2012)] 

 

Graphically, these resilience principles are represented in Figure 1.1. 

Depending on how the network functionality is measured, different phases are 

identified. If it is measured using a flow-based approach (i.e. travel times), six phases 

are identified: (A) Undisrupted state, when the network has not yet been disrupted; 

(B) After the impact of a hazard, there is a degradation phase in which the 

performance of the system is decreasing; (C) Adaptation of drivers to the new 

disrupted situation (e.g. drivers might find alternative routes to get to their 

destination); (D) Stable disrupted state: the system remains disrupted for a period of 

time if no repair action is undertaken;  (E) Recovery process when repairs are carried 

out; and (F) New undisrupted state after all repairs are completed. The new stable 

state can be the same as the pre-disrupted level or worse or better than this level. 

Note that the order of repairs and the allocation of repair resources to damaged places 

can determine the shape of the recovery profile (from C to F). 

Vulnerability is defined in the context of this thesis as the susceptibility to 

events that can cause damage to road networks (Berdica, 2002). In this sense, 

susceptibility is defined as the likelihood of being harmed. Vulnerability of transport 

networks has attracted the attention of the research community (Mattsson and 

Jenelius, 2015; Reggiani, Nijkamp and Lanzi, 2015). Vulnerability assessments 

identify which components are the most important to the performance of the network 

and therefore more vulnerable when the hazard impact occurs. Although considerable 

research has been devoted to studying the vulnerability of transport networks, rather 
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less attention has been paid to studying the functionality restoration of transport 

networks after hazard impacts. These are referred to in the literature as road 

restoration problems (Tuzun Aksu and Ozdamar, 2014) or road recovery problems 

(Nakanishi, Matsuo and Black, 2013). The aim of these problems is to help find the 

‘best’ distribution of resources to damaged locations so that models can assist decision 

makers in restoring the network in a prompt and efficient way under limited budgetary 

resources.     

Several studies have addressed the problem of obtaining the optimal recovery 

strategy to certain damage scenarios. However, the lack of practicality, the low 

resolution and the assumptions made are unable to capture essential aspects of an 

actual road network restoration. In particular, the simulation of drivers’ behaviour is 

a challenging area of research and strong simplifications and hypotheses make 

current transport models unrealistic in a fast and changing environment after hazard 

impacts. For instance, the assumption that drivers have ‘perfect knowledge’ of all 

network conditions before and after a hazard impact is not realistic. This assumption 

could be accepted in a long-term plan for infrastructure changes (Faturechi and Miller-

Hooks, 2014b) but it cannot be accepted for a short-term period where network 

conditions are constantly changing. Understanding the dynamics of the individuals’ 

behaviour is an important consideration to obtain more realistic results that current 

recovery models are missing. 

Also, to date, most road recovery models are designed for catastrophic events, 

such as earthquakes and hurricanes. In these scenarios, short-term responses are 

fundamental to ensure safe evacuation, search-and-rescue and adequate relief 

distribution. In the long term, the repair of the infrastructure is the main concern. 

However, these approaches do not capture the impact of lower-risk weather-related 

hazards, such as landslides and floods, whose consequences are less often at a 

catastrophic level. In such cases, damage is repaired faster and network conditions 

are constantly changing due to repairs.  

Information systems such as Intelligent Transportation Systems (ITS) and 

Advanced Traveller Information Systems (ATIS) are designed to provide external 

information on traffic conditions to drivers, which affects travel choices. These are 

expected to improve the system performance, helping recovery models to achieve the 
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desired outcomes faster. However, current road restoration models do not incorporate 

the effect of information technologies and therefore drivers’ response to network 

changes is not affected by external travel information. ITS could also improve the 

efficiency of transport networks by distributing the flow of vehicles on the network to 

avoid congested areas.  

A literature review conducted for this thesis (see Chapter 2) identified several 

challenging research areas that could improve the way that road transport recovery 

models and drivers’ decision making processes are developed. These areas include:  

(1) A better simulation of how drivers learn and make day-to-day and within-day 

travel decisions, avoiding the assumption of ‘perfect knowledge’ and providing 

different levels of external travel information after hazard impacts.  

(2) The design of an optimisation model that finds the optimal repair strategies 

by taking into account the impact that repair resource allocation produces on 

drivers’ behaviour and consequently on the overall system resilience.  

(3) The practical applicability to real networks that are impacted not only by high 

impact and low probability events (e.g. disasters), but also by low impact and 

high probability events (e.g. winter storms, floods). 

 

1.2. Research aim and objectives 

The goal of this research is to develop a decision-support tool that assists network 

managers to devise the most effective and efficient way to restore a damaged road 

network. The tool recommends optimal repair strategies that allocate repair resources 

to damaged road segments, using an improved reinforcement-learning (RL) 

stochastic traffic model that simulates how drivers react to day-to-day and within-day 

network changes as well as learning from their mistakes. Such models find application 

in more challenging scenarios where, e.g., there are multiple damage locations across 

the network and resources to repair the network are limited. 

In order to narrow the aspects of the recovery modelling field that are 

investigated, some questions that are addressed in this research are the ones 

described in Table 1.1. The research objectives pursued in order to answer the 

research questions are also included in the same table. 
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Table 1.1. Identification of research questions and objectives  

Research questions Research objectives Chapter 

RQ1. What is the current state-of-the-art in 

the field of recovery models of road transport 

networks after disruptive events?   

OB1.1. Undertake a systematic literature 

review of current road recovery models and find 

potential gaps in the literature. 

2 

RQ2. How can the impact of different 

repair strategies on network resilience be 

measured? And, how can the ‘best’ repair 

strategy that produces the largest positive 

impact in terms of resilience be obtained? 

OB2.1. Review previous metrics that measure 

the performance of systems and propose those 

metrics that will be used to measure the 

network functionality in this thesis. Review 

global indicators to measure the resilience of 

road transport networks. 

OB2.2. Review previous techniques to solve 

optimisation problems and select an algorithm 

that finds the ‘optimal’ repair strategies, thereby 

maximising the performance of the network. 

3 

RQ3. How can ‘damage to infrastructure’ be 

quantified and simulated using hazard 

susceptibility data?  

OB3.1. Review how damage has been 

modelled in previous road recovery models. 

OB3.2. Select which road segments are 

damaged based on a probability distribution 

that is obtained from hazard susceptibility data. 

OB3.3. Assign a numerical estimate of damage 

to each damaged road segment.  

4 

RQ4. How can the infrastructure repair 

process be modelled, considering a resource-

damage-time relationship and providing the 

evolution of road capacities over time? 

OB4.1. Develop a resource allocation model 

that assigns repair resources to damaged roads, 

provides a repair scheduling plan and calculates 

the evolution of damage and repair over time.   

4 

RQ5. How can the movement of vehicles 

through the network be modelled, allowing a 

more flexible approach incorporating on-

board decisions, such as re-routing or 

cancelling trips?  

OB5.1. Review previous macroscopic, 

mesoscopic and microscopic traffic simulators. 

OB5.2. Outline the benefits/limitations of using 

existing traffic simulators.  

OB5.3. Propose my own framework that 

models the dynamics of vehicles when moving 

through the network, allowing the possibility of 

including on-board travel decisions. 

5 

RQ6. What is the current state-of-the-art in 

reinforcement-learning traffic models and 

their application to disrupted traffic networks?  

OB6.1. Review current learning-based models 

in traffic assignment and their applicability to 

damaged road transport networks. Identify 

gaps in the literature. 

6 

Continuous in the next page 
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Continuous in the next page 

From the previous page   

Research questions Research objectives Chapter 

RQ7. How can the updating probability 

scheme of selecting travel options of 

previous RL traffic models be improved, 

taking into account departure time 

differences between travel options?  

 

 

OB7.1. Understand the formulation presented in 

previous RL traffic models. 

OB7.2. Reformulate the RL updating probability 

scheme for selecting travel options incorporating 

departure time differences between travel options. 

Differentiate between favourable and unfavourable 

travel options.    

6 

RQ8. How can the RL traffic model 

incorporate the possibility of cancelling a 

trip or using alternative transport modes if 

disruptive events occur? 

OB8.1. Incorporate an additional travel option 

within the set of alternative options that allows 

drivers to decide not to travel using their own car 

and use alternative transport modes or cancel the 

trip. 

6 

RQ9. To what extent can bad 

memories of previous trips affect drivers’ 

travel decisions of future trips and how 

can it be implemented in the formulation 

of the RL traffic model? 

OB9.1. Review previous research that outlines how 

bad experiences are remembered more than good 

ones. 

OB9.2. Introduce an additional factor in the travel 

cost formulation that considers how bad 

experiences are remembered more that good ones.   

6 

RQ10. What is the impact of the 

‘learning rate’ parameter of the RL traffic 

model on the global network 

performance? 

OB10.1. Undertake a sensitivity analysis of the 

learning rate parameter. Assign different values 

and observe how the system performance changes 

over time.  

6 

RQ11. How can the on-board drivers’ 

decision-making process be modelled and 

implemented in the traffic simulator? 

OB11.1. Introduce a triggering option that allows 

drivers to make on-board decisions (re-routing or 

abandoning trip) when they face disruptions on 

their route. 

OB11.2. Design a route choice algorithm that 

helps drivers find alternative routes when they face 

disrupted roads. 

7 

RQ12. How can the consequences of an 

on-board decision after a disruptive event 

impact future travel decisions and how can 

it be implemented in a RL traffic model? 

Or, in other words, how can the functions 

that update the option probabilities of the 

RL traffic model be reformulated in order 

to incorporate the consequences of on-

board travel decisions? 

OB12.1. Update the drivers’ probability of 

selecting options for the next day, which are 

considered in the RL traffic model, incorporating 

the consequences of on-board decisions. 

7 
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From the previous page   

Research questions Research objectives Chapter 

RQ13. To what extent does providing 

information (pre-trip information, GPS 

navigation, Variable Message Signs, etc.) 

to drivers improve the recovery of 

transport networks? 

OB13.1. Assign different types of external 

information to drivers and compare their impact on 

the network performance after disruptive events 

with and without providing external information.  

7 

RQ14. Is the proposed recovery model 

applicable to real case scenarios, 

obtaining a set of optimal repair strategies 

that can be selected to repair a disrupted 

road network? 

OB14.1. Apply the recovery model to a real case 

scenario, which is the Scottish road network, and 

demonstrate that this model can obtain the (near-) 

optimal repair strategies that improve the recovery 

of disrupted road networks. 

8 

   

 

 

1.3. Scope  

This research focuses on the restoration on road networks after disruptive events. 

However, certain areas are out of the scope of this research. The initial period of the 

post-event recovery process, which is called response recovery period or emergency 

phase (Miles, Burton and Kang, 2018), includes actions that vary from immediate 

emergency response actions that ensure human life is not in danger to shutting down 

some parts of the network in order to keep people safe. This research does not cover 

this initial response recovery period and it assumes that the situation is under control, 

damage is already assessed and only recovery actions are needed to ensure traffic 

gets back to normal conditions.     

This model only accounts for physical damages that produce closures or 

capacity reductions of some parts of the network for at least a day. Those incidents 

that are cleared withing a few hours are not considered in this model. It is also 

assumed that damaged road segments are repaired overnight and therefore, no 

changes on the network occur during the simulation. Regarding the traffic modelling, 

this model assumes that all trips are repeated in a daily basis and only passenger cars 

are considered in the simulation. 
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1.4. Research significance: end-user benefits 

Under limited resources, it is challenging to repair all damaged road segments 

simultaneously. Decision makers have to prioritise the interventions that provide the 

largest improvements to network performance. This research benefits both transport 

managers and transport authorities as this project provides a decision-support tool 

that assists them in making optimal and efficient recovery decisions. 

From an operational point of view, immediately following a disruptive event, 

the recovery model can help network managers find optimal repair strategies that 

provide the maximum network performance during the restoration period. Transport 

operators may have some contingency plans in place for when these situations occur 

and this may help them to decide the priority order of repairs in a risk-based approach. 

However, the importance of this model is that it tries to predict the travel behaviour 

of drivers under these scenarios and select the optimal repair strategies based on the 

sum of individual performances. The model also estimates how long the service 

restoration is likely to take, so that managers can increase the number of restoration 

work crews or add redundancy to the network in order to reduce the recovery time. 

The model can also be used to test some traffic management strategies, so that 

transport operators may influence drivers’ decisions when travelling after disruptions. 

From a planning point of view, this model can also be used to identify critical 

road segments that, if disrupted, would cause the greatest disruption to the network. 

These are the areas that either transport authorities and/or transport operators may 

need to make more robust by allocating more resources during the recovery process 

or providing more information to drivers so that they can make more informed 

decisions, avoiding potential congestion in these areas if disrupted.  

The model and its application example to the Scottish road network can guide 

the decision making of network managers in order to optimally restore the 

performance of transport networks after disruptive events.  
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1.5. Thesis structure 

This PhD thesis is divided into nine chapters that describe the whole process that is 

carried out to develop this recovery model fully. Figure 1.2 shows a diagram that 

structures the whole thesis.  

After this introductory chapter, a systematic literature review is presented in 

Chapter 2. It reviews previous recovery models that are applied to road transport 

networks. It also indicates potential research gaps in the area of road recovery 

modelling.    

Chapter 3 presents the conceptual framework of the proposed recovery model 

and formulates the optimisation problem. Two network performance metrics are 

presented and different methods to solve the optimisation problems are also 

reviewed.  

Chapter 4 introduces a damage scenario simulation using hazard susceptibility 

data and a repair process model to simulate how damage is repaired over time. The 

model is applied to the Sioux Falls Network (South Dakota, US). 

The following chapters (5, 6 and 7) focus on the description of the dynamic 

modelling of drivers’ behaviour and traffic simulation after the impact of hazardous 

events. Chapter 5 presents a mesoscopic traffic simulator that aims to model the 

dynamics of vehicles when moving through the network. 

Chapter 6 presents an improved RL traffic model that aims to simulate the 

drivers’ decision making process. The model is again applied to the Sioux Falls 

transport network (South Dakota, US) incorporating the RL traffic model.  

Chapter 7 introduces some improvements (on-board decisions and external 

information) to the previous version of the RL traffic model included in Chapter 6. The 

updated model is also applied to the Sioux Falls transport network (South Dakota, 

US), illustrating the improvements introduced in this chapter.   

Chapter 8 presents the application of the proposed recovery model to a real 

transport network in the north of Scotland. Finally the general conclusions of this PhD 

thesis are presented in Chapter 9 and future lines of research are also highlighted.   
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Figure 1.2. Representation of the thesis structure. 
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CHAPTER 2 

2.  A systematic review of road network 

recovery models and future directions  

 

 

 

2.1. Introduction 

Road networks enable the movement of people and goods, provide access to essential 

and desired activities and support social cohesion and economic development. 

However, these networks are susceptible to the impacts of natural or human-made 

hazard events that can reduce the performance of the network, producing negative 

consequences for individuals, organisations and communities relying on the network.  

In recent years, there has been an increasing interest in the resilience of road 

networks by infrastructure managers and national governments. Their commitment 

to keep the transport network moving makes them show interest in identifying 

measures to protect and aid the recovery of the network from potential events that 

can cause disruption. If disrupted, it is in their interest to restore the network 

efficiently and expeditely so that society can return to normal and economic and social 

losses are minimised.   

Although different definitions of the term resilience have been proposed in the 

literature, most of these agree that resilience includes the ability both to absorb and 

recover from the impact of a hazardous event1. Recent reviews of the definition and 

measurement of infrastructure system resilience include those by Faturechi and Miller-

Hooks (2014a), Konstantinidou et al. (2014), Martinez-Pastor et al. (2015), Hosseini 

et al. (2016), Wang and Yodo (2016), Twumasi-Boakye and Sobanjo (2018), Sun et 

al. (2018), Wan et al. (2018), Rus et al. (2018) and Zhou et al. (2019). Most of them 

 
1 For example, the UNISDR (2009) defines resilience as “the ability of a system, community or society 

exposed to hazards to resist, absorb, accommodate, adapt to, transform and recover from the effects 

of a hazard in a timely and efficient manner, including through the preservation and restoration of 

its essential basic structures and functions through risk management.” 
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highlight the lack of studies into the system recovery phase and acknowledge that 

this is an area where there is an opportunity to contribute to more sustainable and 

resilient systems.  

  The primary focus of this chapter relates to modelling the recovery of the 

road network from an event which causes damage to the road infrastructure and 

disrupts the operation of the network. As a cross-disciplinary concept, researchers 

have applied restoration models to different disciplines, such as psychology, ecology, 

engineering (water, energy, transport and structures), etc. The case of road transport 

systems adds an additional complexity as the performance of the system is directly 

affected by travel demand and individual drivers’ routing decisions and the interaction 

between this demand and supply of infrastructure capacity. Çelik (2016) undertook a 

review of the recovery of general infrastructure systems in humanitarian operations, 

including relief distribution and inventory prepositioning. Although this review 

provided a general overview of restoration models, none of them captured the specific 

peculiarities of the road infrastructure system. There is a need to identify those 

models that specifically represent the recovery of road networks after disruptive 

events. The aim of this chapter is to provide a systematic review of relevant road 

restoration models which highlights the main components of these models, classifies 

the different approaches taken within each component, identifies gaps and limitations 

and considers options to improve restoration models.  

The main contributions of this chapter are the following: (1) to the best of the 

author’s knowledge, this is the first document that reviews in detail recovery models 

of road transport networks after hazardous events; (2) this chapter creates a 

framework to study and compare road recovery models; and (3) finally, it enables the 

identification of gaps in the literature and potential areas of further research.  

 

2.1.1. Road network restoration models 

A general framework for road restoration models is shown in Figure 2.1. The starting 

point is the occurrence of a hazardous event (e.g. earthquake, storm) which causes 

damage to road infrastructure and may also directly affect traffic demand or traffic 

flows before, during and after the event. Physical damage to road infrastructure may 

result in the partial or full closure of parts of the network or the reduction in maximum 
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speed on affected elements or both. Road users will respond to any changes in 

network capacity in one or more ways including re-routing, changing mode of 

transport, adjusting activity schedule (e.g. changing destination or departure time) or 

cancelling travel altogether. Road restoration represents all actions taken by the 

network manager including inter alia ensuring road user safety, informing users of 

existing or future network conditions, modifying the network and managing traffic 

during disruption, prioritising selected users such as emergency services and 

allocating resources to repair damaged network elements.  In many cases, restoration 

will represent the restitution of the network to its former state, although on certain 

occasions full recovery may not be possible in which case the restored network would 

provide lower connectivity or capacity than before. Alternatively, the network 

manager may take the opportunity to enhance the network in some way. 

The main purpose of a restoration model is to assist the network manager to 

devise the most effective and efficient way to restore a damaged road network.  Such 

models find application in more challenging scenarios where e.g. there are multiple 

damage locations across the network and resources to repair the network are limited. 

Restoration is a complex, long-term process involving multiple steps and the 

opportunity to enhance the network is available. 

 

 

Figure 2.1. Key modules of a road recovery model. The sections of this chapter are 

divided according to this diagram. 
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2.1.2. Overview of terminology 

Different definitions have been used to describe essential terms in the area of system 

resilience. As different authors have used these terms in a variety of ways and applied 

to different disciplines, the terminology presents in general inconsistency across the 

literature. This brief section aims to lay the foundations for essential resilience terms 

that might be used in some other sections of this chapter. 

 In the context of this thesis, vulnerability is defined as the susceptibility to 

events that can cause capacity reduction in a road network (Berdica, 2002). In this 

sense, a more vulnerable network would be one where a hazardous event of a given 

magnitude would result in more damage (performance reduction) than a less 

vulnerable network. As opposed to vulnerability, the term robustness is defined as 

the ability of the system to withstand stress without losing functionality. Redundancy 

is the ability to provide alternative routes/means of transport to continue operations 

even if some road segments are damaged. Resourcefulness is the ability of roads’ 

authorities to identify problems, establish priorities and mobilise repair resources to 

achieve goals (Cimellaro, Reinhorn and Bruneau, 2010). Closely related to 

resourcefulness is the concept of rapidity, which is a measure of how quickly 

functionality is restored. 

A hazard is defined as a phenomenon that may cause health impacts, property 

damage and social, economic or environmental disruption (UNISDR, 2009). A 

hazardous event is therefore the manifestation of a hazard in a particular place during 

a particular period of time. Hazards can be classified into three groups (Gill and 

Malamud, 2016): (1) Natural hazards, a natural process that may have negative 

impacts on society; (2) Anthropogenic hazards, human activity that may impact 

negatively; (3) Technological hazards, unintentional failure of technology. Single 

hazards are those independent hazards that are caused by different triggers. The 

effect of one hazard on the others is known as hazard interactions, and the term 

multihazard refers to all possible hazards and their interactions in a region. The 

terminology that defines the interactions between hazards is unclear in the literature. 

Hazard interactions are also known as chains, cascades, domino effects, compound 

hazards or coupled events (Dalezios, 2017). Five possible hazard interactions are 

highlighted (Gill and Malamud, 2016): (1) Natural hazards trigger other natural 

hazards; (2) Human activities trigger other natural hazards; (3) Human activities 
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exacerbating natural hazard triggering; (4) Cascades of hazards or networks of hazard 

interactions; (5) The concurrence of two (or more) hazard events. The probability 

that any hazard causes harm to society is known as risk. In other words, it is the 

composite of the probability for a hazard to occur and the resulting consequences of 

that impact.  

The terms restoration and recovery are used interchangeably in the literature. 

Some authors name restoration models while others recovery models. The difference 

between both concepts is minimal. In the area of computer science, restoration is 

defined as the process of bringing something back to its original state. Whereas 

recovery is the process of regaining something lost. In the area of transportation, 

restoration is used as a more generic term that is related to the performance of the 

network (e.g. restore road functionality). However, recovery is more related to the 

process of planning and assigning resources to restore the functionality of the network 

(e.g. recovery strategies). In any case, both terms are used interchangeably in this 

thesis.   

  These terms are illustrated in the following Figure 2.2, which is a simplified 

version of Figure 1.1. It shows a disruption and posterior recovery profile. As shown, 

the network performance is stable, achieving an equilibrium state before the 

disruptive event occurs. After the impact, the performance is disrupted and only when 

repairs are complete, the performance gets back to normal.  

 

 

Figure 2.2. Simplification of the disruption and recovery profile considered in Figure 

1.1. 
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2.2. Literature review methodology 

A systematic methodology was used to identify relevant publications. The key stages 

of this process, including identification, screening and eligibility are explained below. 

A detailed PRISMA flow diagram (Moher et al., 2009) with the corresponding number 

of publications (n) at each stage is provided in Figure 2.3. The scope of the review 

was restricted to publications in English, including journal papers, conference 

proceedings, doctoral dissertations, books and reports from 1995 to 2019.  
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Figure 2.3. PRISMA flow diagram showing the selection process of the reviewed 

publications (“n” indicates the number of publications). 
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2.2.1. Identification of relevant publications 

Three different databases were used to find published work within the field of 

engineering that addresses the topic of transport resilience: Web of Knowledge, 

Scopus and Google Scholar.  Four groups of individual concepts were used to identify 

relevant publications within the first two databases as shown in Table 2.1. Any 

published work that contained one or more terms from each group, in either the title, 

abstract or keywords was added to the working sample. A single group of terms was 

used to search the Google Scholar database. If one of these terms appeared in the 

title or text of a publication it was added to the working sample.   

 

Table 2.1. Groups of keywords for identifying publications 

IDENTIFICATION  SCREENING 

Web of Knowledge and Scopus  Google Scholar  
Criterion 1 

Group 1 Group 2 Group 3 Group 4  Group 1  

Resilien* 
 

Recovery 
Restoration 

Reconstruction 
Rehabilitation 

Hazard* 
Impact* 
Disrupt* 

Earthquake* 
Flood* 

Landslide*  
Disaster* 

Emergen* 

Optim* 
Simulat* 
Priorit* 
Allocat*  

 Resilience 
Repair 

Recovery 
Restoration 

Hazard 
Disruption 

Impact 

model 

Flood 
Earthquake 
Landslide 

Optimisation 
Simulation 
Allocation 

Prioritisation 

Network 
Infrastructure 

 Road* 
Transport 
network* 
Bridge* 
Road 

infrastructure* 
Link* 

The truncation symbol * indicates that all words starting with this particular combination of letters will be looked for. 

 

2.2.2. Screening 

Two criteria were defined to screen the working sample and select relevant 

publications for review:  

(1) CRITERION 1 was used to select only those publications that were related 

specifically to road networks. Any work that did not contain one of the terms 

in the final column of Table 2.1 either in the title, abstract or keywords was 

excluded from the review. For publications identified from the Google Scholar 

database, publications were selected only if the “road”, “bridge”, “link” or 

“transport” were used in the title or text, and the publications was found to 

be related to the topic following a manual inspection. Exceptionally, if a non-

road-based restoration model could clearly be applied to road networks, this 

publication passed this criterion although further reading was required to 
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check its eligibility. Any publications that was not accessible in full text from a 

research library or publisher was also excluded.  

(2) CRITERION 2 ensured that those publications that passed criteria 1 were in 

line with the general topic: “recovery of road networks after disruptive 

events”. The title, abstract and keywords of each paper were read and if a 

publication addressed the topic, it was accepted for the next stage. Several 

publications relating to retrofitting of bridges prior to disruptions were found. 

Although these publications focussed principally on prevention rather than 

restoration, they also modelled the impact of hazards, the selection of 

retrofitting activities (similar to restoration activities) and the improvement of 

the network performance after these activities (similar to recovery). Due to 

their similarities with recovery models, these papers were also accepted after 

close reading. 

 

2.2.3. Eligibility 

Once all potential publications were identified, an exhaustive reading of the full-text 

was required to decide whether each piece of research would be included in the final 

review. Any work that modelled a detailed road restoration after the impact of 

disruptive events was accepted. Publications that analysed the performance of an 

individual asset (e.g. isolated bridges) rather than a network were excluded.  

Relevant papers cited in selected publications which had not previously been 

identified were considered as potential publications for inclusion in the review. Any 

such publications which satisfied all criteria above were included.  

 

2.2.4. Publications selected for review 

A total of 60 publications met the selection criteria which included 47 journal papers, 

5 doctoral dissertations, 5 conference papers, 2 book sections and 1 report. The 

distribution per 4-year interval is represented in Figure 2.4. It shows an increasing 

trend in recent years. A word cloud that displays the 50 most frequent words of all 

selected publications is also included in the same figure. The most frequent word is 

network followed by time, recovery, resilience, restoration, road and model. The main 

components of these recovery models are summarised in Figure 2.1. All of them 

simulated damage to infrastructure, modelled a repair process and used a 
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performance metric to measure the effectiveness of repairs. However, not all models 

undertook a traffic analysis as it was only needed if a flow-based metric was used. 

The following sections identify the similarities and differences between models on 

each key component. The ‘performance metric’ module is not considered in this 

review as there are already other reviews in the literature, such as the one carried 

out by Faturechi and Miller-Hooks (2014a) or another by Konstantinidou et al. (2014), 

that provide a comprehensive literature review on the measurement of transport 

system performance following disasters. 

 

 

Figure 2.4. On the left, number of studies for each 4-year interval. On the right, 

word cloud that displays the 50 most frequent words of all selected publications. 

Produced using NVIVO software.  

 

2.3. Road restoration modelling approaches 

The aim of this section is to give a general overview of recovery models, 

understanding the different model purposes (problem types or potential outputs) and 

examine how models are mathematically formulated.  

 

2.3.1. Classification based on model purpose and model uncertainty 

Six types of problem were identified based on model purpose. Four of these problems 

aimed to find optimal solutions to the recovery problem: (1) Optimal repair scheduling 

problems, if the purpose of the model was to find the optimal start or end time for 

repairing each damaged asset; (2) Optimal repair sequence problems, if the model 
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focussed on finding the optimal priority list of repairs; (3) Optimal resource allocation 

problems, if the model sought to assign limited available resources to damaged 

locations in an optimal way; (4) Optimal routes to repair, if the model found optimal 

routes composed of different damaged assets that needed to be repaired by different 

repair teams. Some publications might be included in more than one category. The 

final types of identified problems did not necessarily involve trying to find an optimal 

solution: these were (5) those models that evaluated the performance and/or 

resilience of road networks and (6) those models that assessed the effectiveness of 

multiple repair strategies by using some network performance metrics.  

Recovery models were also classified as deterministic, if non-random variables 

were included, or stochastic, if variable uncertainty was included. Variables such as 

recovery time, infrastructure damage, hazard intensity or link capacity may be 

unknown a priori. These uncertain variables were treated using Monte Carlo 

simulations, which generate random variables following a specified probability 

distribution. Table 2.2 differentiates between these two types of models and Table 

2.3 identifies those random variables considered in stochastic models.  
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Table 2.2. Classification of publications based on problem type and approach. 

 

 

 Problem type / Model purpose Description Deterministic approach Stochastic approach 

O
p
ti
m

is
a
ti
o
n
-b

a
se

d
 

Optimal repair time scheduling 
Find the starting or ending 

time for each repair 
(Bocchini and Frangopol, 2012a, 2012b; Tuzun Aksu and 

Ozdamar, 2014; Unal, 2015; Li et al., 2019) 
(Zhang, Wang and Nicholson, 2017; W. 

Zhang et al., 2018; Li et al., 2019) 

Optimal repair sequence 

Find the optimal list of 
repairs, so that repairs are 
made following the order 

of the list 

(Sato and Ichii, 1995; Feng and Wang, 2003; Orabi et 
al., 2009, 2010; Al-Rubaee, 2012; Lertworawanich, 
2012; Bocchini, 2013; Vugrin, Turnquist and Brown, 
2014; Karamlou and Bocchini, 2014, 2016; Ye and 

Ukkusuri, 2015; Nifuku, 2015; Lu et al., 2016; Basavaraj 
et al., 2017; Yamasaki and Miwa, 2017; Zamanifar and 

Seyedhoseyni, 2017; Vodák, Bíl and Křivánková, 2018; Li 
et al., 2019) 

(Furuta et al., 2008; Barker, Ramirez-
Marquez and Rocco, 2013; Baroud et al., 

2014; Li et al., 2019) 

Optimal resource allocation 
Assign available resources 

to damaged locations 
optimistically 

(Sato and Ichii, 1995; Chen and Tzeng, 1999; Karlaftis, 
Kepaptsoglou and Lambropoulos, 2007; Orabi et al., 

2009, 2010; Ferreira, 2010; Duque and Sörensen, 2011; 
Bocchini and Frangopol, 2012b, 2012a; Tuzun Aksu and 

Ozdamar, 2014; Unal, 2015; Karamlou, Bocchini and 
Christou, 2016; Hackl, Adey and Lethanh, 2018; Kaviani 

et al., 2018; Liao, Hu and Ko, 2018; Wu and Chen, 
2019) 

(Furuta et al., 2008; Chang et al., 2012; 
Chen and Miller-Hooks, 2012; Ozbay et 
al., 2013; Faturechi and Miller-Hooks, 
2014b; Zhang and Miller-Hooks, 2014; 

Zhang and Wang, 2016) 

Optimal routes to be chosen 
for repair 

Identify and select routes 
of damaged assets to 

repair in an optimal way 
(Mehlhorn, 2009; Vodák, Bíl and Křivánková, 2018) (X. Zhang et al., 2018) 

N
o
n
-o

p
ti
m

is
a
ti
o
n
-

b
a
se

d
 

Evaluate the performance 
and/or resilience of road 

networks  

Assess the resilience of a 
transport network using 

performance metrics 

(Stevanovic and Nadimpalli, 2010; Henry and Ramirez-
Marquez, 2012; Nogal et al., 2016; Twumasi-Boakye and 

J. O. Sobanjo, 2018; Kilanitis and Sextos, 2019; 
Twumasi-Boakye and Sobanjo, 2019; Vishnu, 

Kameshwar and Padgett, 2019) 

- 

Evaluate different recovery 
scenarios 

Evaluate a pre-set repair 
strategy based on some 
network performance 

metrics 

(Chang, 2003; Zhang, Alipour and Coronel, 2018) 

(Shinozuka et al., 2003; Zhou, Banerjee 
and Shinozuka, 2010; Decò, Frangopol 

and Bocchini, 2013; Nifuku, 2015; Aydin 
et al., 2018) 
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Table 2.3. Stochastic variables considered in stochastic models. 
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(Shinozuka et al., 2003)    ✓           

(Furuta et al., 2008)         ✓    ✓  

(Zhou, Banerjee and Shinozuka, 2010)    ✓           

(Chang et al., 2012)       ✓ ✓ ✓      

(Chen and Miller-Hooks, 2012)       ✓        

(Barker, Ramirez-Marquez and Rocco, 2013)    ✓       ✓    

(Decò, Frangopol and Bocchini, 2013)    ✓   ✓     ✓ ✓  

(Ozbay et al., 2013)              ✓ 

(Baroud et al., 2014)    ✓       ✓    

(Faturechi and Miller-Hooks, 2014b)  ✓     ✓        

(Zhang and Miller-Hooks, 2014)  ✓     ✓        

(Nifuku, 2015)    ✓     ✓      

(Zhang and Wang, 2016) ✓  ✓       ✓     

(Zhang, Wang and Nicholson, 2017) ✓   ✓           

(W. Zhang et al., 2018) ✓   ✓     ✓ ✓     

(X. Zhang et al., 2018)     ✓ ✓ ✓        

(Aydin et al., 2018)    ✓           

(Li et al., 2019)    ✓           



Chapter 2  Systematic literature review 
 

 

25 
 

2.3.2. Classification based on mathematical modelling techniques 

The methods used to solve the reviewed recovery models are identified in Table 2.4. 

Among these, exact methods (20% of all reviewed publications) and metaheuristic 

optimisation techniques (39% of all reviewed publications) were the most frequently 

used techniques. Analytical (or exact) methods are those techniques that are 

guaranteed to find an optimal solution at a high computational time. The algorithms 

have to solve strict mathematical formulations. As opposed to exact methods, 

numerical algorithms can find near optimal solutions at an acceptable computational 

cost. The main aim of these techniques is to find an optimal solution without searching 

the whole solution space (Sangaiah et al., 2020). Numerical methods are further 

categorised into two types: heuristic algorithms and meta-heuristic algorithms. 

Among all reviewed publications that use metaheuristic algorithms, more than 75% 

use some sort of genetic algorithms. This is a metaheuristic search algorithm that, 

based on the evolutionary ideas of natural selection and genetics, selects the fittest 

individuals (solutions) for reproduction and produces their offspring for the next 

generation (Holland, 1975).  

Exact, heuristic and metaheuristic optimisation problems are formulated using 

one or more mathematical functions (objectives) that need to be maximised or 

minimised. Table 2.5 compiles all objective functions identified in the reviewed work. 

If one publication used more than one objective function (multi-objective approach), 

it is included in more than one cell of Table 2.5. Some publications use generic terms 

such as resilience or performance loss as objective functions. In these cases, the 

variables that were used to measure these generic terms are included individually in 

the table, considering its maximisation or minimisation as appropriate. Note that some 

models include an optimisation to assign traffic to the road segments. This 

optimisation problem is not included in this section (see Section 2.5).    

Simulation models are more problem-specific and are developed to evaluate 

the impact of a set of discrete decisions before implementing them in real life. This is 

usually justified by comparing the system performance before and after a disruptive 

event and during the recovery phase. Based on the results extracted from the 

simulation, transport authorities can make the most appropriate decision for each 

situation, not necessarily being the optimal one. About 20% of the reviewed 
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publications used this approach. 

Table 2.4. Classification of publications based on solving method and technique 

 

 

Solution 
method 

Subtype Solving technique/algorithm Publication and year 
E
x
a
ct

 s
o
lu

ti
o
n
 

(Mixed) 

integer 
programming 

Branch and cut algorithm (Tuzun Aksu and Ozdamar, 2014) 

Lagrangian relaxation (Chang et al., 2012) 

Branch and Bound method (Kaviani et al., 2018) 

Sequential quadratic programming (Wu and Chen, 2019) 

Benders decomposition, column 

generation, and Monte Carlo simulation. 
(Chen and Miller-Hooks, 2012) 

Progressive Hedging Algorithm (Faturechi and Miller-Hooks, 2014b) 

Branch-and-cut decomposition and hybrid 

genetic algorithm 
(Zhang and Miller-Hooks, 2014) 

P-Level Efficient Points (pLEP) algorithm (Ozbay et al., 2013) 

(I) (Implemented in General Algebraic Modelling 

System) 
(Mehlhorn, 2009) 

(I) (solved by LINGO software) (Feng and Wang, 2003) 

(I) (Liao, Hu and Ko, 2018) 

H
e
u
ri
st

ic
 

o
p
ti
m

is
a
ti
o
n
 

(I) 

Greedy algorithm (Lu et al., 2016) 

Based on greedy algorithm(II) (Basavaraj et al., 2017) 

NP-Hard (II) (Yamasaki and Miwa, 2017) 

M
e
ta

h
e
u
ri
st

ic
 o

p
ti
m

is
a
ti
o
n
 

(I) 

Modified NSGA-II (MATLAB) 
(Bocchini and Frangopol, 2012a) (Bocchini and 

Frangopol, 2012b) 

NSGA-II (Orabi et al., 2009, 2010; Unal, 2015) 

Genetic Algorithm 
(Sato and Ichii, 1995; Furuta et al., 2008; 

Bocchini, 2013; Karamlou and Bocchini, 2014; Li 

et al., 2019) 

Simulated Annealing (Vugrin, Turnquist and Brown, 2014) 

Algorithm with Multiple-Input Genetic 
Operators (AMIGO) 

(Karamlou and Bocchini, 2016) 

NP-Hard 

NSGA-II (Zhang and Wang, 2016) 

Genetic Algorithm 
(Karlaftis, Kepaptsoglou and Lambropoulos, 

2007; W. Zhang et al., 2018) 

Ant colony algorithm (Vodák, Bíl and Křivánková, 2018) 

Weighted Sum Method + Genetic 
Algorithm 

(Zhang, Wang and Nicholson, 2017) 

Fuzzy multi-objective Genetic Algorithm (Chen and Tzeng, 1999) 

Dynamic 

programming 
Particle swarm optimization (Lertworawanich, 2012) 

Nonlinear 

integer 
programming 

Tabu search (Ye and Ukkusuri, 2015) 

GRASP and VND algorithm (Duque and Sörensen, 2011) 

S
im

u
la

ti
o
n
 

m
o
d
e
ls

 

(I) 

 
(Chang, 2003; Shinozuka et al., 2003; Zhou, Banerjee and Shinozuka, 2010; Stevanovic and 

Nadimpalli, 2010; Henry and Ramirez-Marquez, 2012; Decò, Frangopol and Bocchini, 2013; 
Nogal et al., 2016; Zhang, Alipour and Coronel, 2018; Twumasi-Boakye and J. O. Sobanjo, 
2018; Kilanitis and Sextos, 2019; Twumasi-Boakye and Sobanjo, 2019; Vishnu, Kameshwar 

and Padgett, 2019) 
 

O
th

e
rs

 

(I) 

(I) (Ferreira, 2010; Basavaraj et al., 2017) 

Fuzzy VIKOR method (ranking method) (Zamanifar and Seyedhoseyni, 2017) 

Copeland Score (CS) 
(Barker, Ramirez-Marquez and Rocco, 2013; 

Baroud et al., 2014) 

Analytic Hierarchy Process (AHP) (Al-Rubaee, 2012; Nifuku, 2015) 

  

 

(I) Not specified 
(II) Authors implement their own algorithm 
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Table 2.5. Classification of studies based on the objectives used in the optimisation 

 
MAX / 
MIN 

Objective References 

Connectivity 

MAX Number of independent pathways 
between locations 

(Zhang and Wang, 2016) 

MIN Time to connect critical locations (Bocchini, 2013; Karamlou and Bocchini, 2014; Vodák, Bíl 
and Křivánková, 2018) 

MAX Number of connected nodes  (Karamlou and Bocchini, 2016) 

MAX Connectivity between nodes (Yamasaki and Miwa, 2017; Liao, Hu and Ko, 2018) 

MIN Indirect cost due to loss of connectivity (Hackl, Adey and Lethanh, 2018) 

Accessibility 

MAX Total length of accessible roads (Feng and Wang, 2003) 

MAX Total weighted earliness of all cleared 
paths 

(Tuzun Aksu and Ozdamar, 2014) 

MIN Weighted sum of the time to travel from 
each node to its closest regional centre 

(Duque and Sörensen, 2011) 

Travel time 

MIN Travel time expenditure (Sato and Ichii, 1995; Chen and Tzeng, 1999; Bocchini and 
Frangopol, 2012a, 2012b; Bocchini, 2013; Ozbay et al., 

2013; Vugrin, Turnquist and Brown, 2014; Karamlou and 
Bocchini, 2014, 2016; Lu et al., 2016; Basavaraj et al., 

2017) 

MIN Additional travel time throughout the 
recovery duration 

(Orabi et al., 2009) 

MIN Indirect cost due to  temporal 
prolongation of travel 

(Hackl, Adey and Lethanh, 2018) 

MAX Travel time resilience (Kaviani et al., 2018) 

MAX Ratio between travel time before and after 
the disrupted event 

(Faturechi and Miller-Hooks, 2014b; Ye and Ukkusuri, 
2015) 

MIN Travel delay in areas of higher social 
vulnerability 

(Unal, 2015) 

MIN Indirect losses due to delays (Unal, 2015) 

Travel distance 

MIN Total travel distance (Bocchini and Frangopol, 2012a, 2012b; Bocchini, 2013; 

Karamlou and Bocchini, 2014, 2016) 

MIN Indirect losses due to increased travel 
distance 

(Unal, 2015) 

Flow/Capacity 

MIN Travel demand loss (Chen and Miller-Hooks, 2012; Lertworawanich, 2012; 
Vugrin, Turnquist and Brown, 2014; Li et al., 2019) 

MAX Total flow to destination nodes (Chang et al., 2012; Zhang and Miller-Hooks, 2014) 

MAX Demand satisfaction resilience (Kaviani et al., 2018) 

MAX Number of lanes open to traffic (Karamlou, Bocchini and Christou, 2016) 

Repair costs 

MIN Reconstruction costs (Karlaftis, Kepaptsoglou and Lambropoulos, 2007; Orabi et 
al., 2009, 2010; Bocchini and Frangopol, 2012a, 2012b; 
Unal, 2015; Hackl, Adey and Lethanh, 2018; X. Zhang et 

al., 2018) 

MIN Reconstruction time (Chen and Tzeng, 1999; Vodák, Bíl and Křivánková, 2018) 

MIN Retrofit costs (Chang et al., 2012; Karamlou, Bocchini and Christou, 
2016; Zhang and Wang, 2016) 

MIN Total response cost (Ferreira, 2010) 

MIN Number of crews working in unit time (Unal, 2015) 

Repairs 
MAX Ratio of restored links to damaged links (Furuta et al., 2008) 

MIN Idle time between repair teams (Chen and Tzeng, 1999) 

Benefits after 

repairs 

MAX Economic benefits of restoring a path (Mehlhorn, 2009) 

MAX Total condition improvements after repairs (Karlaftis, Kepaptsoglou and Lambropoulos, 2007) 

Human risk 

MAX Total number of life savings (Feng and Wang, 2003) 

MIN Risk of rescuers (Feng and Wang, 2003) 

MIN Total rescue time (Wu and Chen, 2019) 

Completion time 

MIN Time to reach a target functionality level (Bocchini and Frangopol, 2012b; Unal, 2015) 

MIN Time to full network service resilience (Orabi et al., 2010; Barker, Ramirez-Marquez and Rocco, 
2013; Baroud et al., 2014) 

MIN Total recovery time (Zhang, Wang and Nicholson, 2017; W. Zhang et al., 2018) 

MIN Skew of recovery trajectory (time units) (Zhang, Wang and Nicholson, 2017; W. Zhang et al., 2018) 

No objective function 

(Chang, 2003; Shinozuka et al., 2003; Zhou, Banerjee and 
Shinozuka, 2010; Stevanovic and Nadimpalli, 2010; Al-

Rubaee, 2012; Henry and Ramirez-Marquez, 2012; Decò, 
Frangopol and Bocchini, 2013; Nifuku, 2015; Nogal et al., 
2016; Zamanifar and Seyedhoseyni, 2017; Aydin et al., 

2018; Twumasi-Boakye and J. O. Sobanjo, 2018; Zhang, 
Alipour and Coronel, 2018; Twumasi-Boakye and Sobanjo, 

2019; Vishnu, Kameshwar and Padgett, 2019; Kilanitis and 
Sextos, 2019) 
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2.4. Modelling vulnerability  

This section reviews the approach taken by reviewed recovery models to simulate the 

location and extent of damage. It also describes how road damage is transformed 

numerically into a reduction of road capacity in these models.  

 

2.4.1.  Single vs. multi-hazard 

Most of the reviewed recovery models only analyse the impact of single hazards on 

road infrastructure and these are treated as isolated and independent phenomena. 

The majority of these models treat these hazards as punctual reductions of road 

capacities on the day of the impact. In these cases repairs can start immediately after 

the incident. Other models consider hazards as a continuous impact for a certain 

amount of time. In such situations, the reduction of road capacity is maintained for a 

period of time until the perturbation is ended. As an example, Nogal et al. (2016) 

reduced the capacity of some road segments to 50% as a result of a road 

maintenance that lasted 15 days.  

Regarding the type of hazard, more than half of the publications study the 

impact of earthquakes, whereas only 10% of the models consider the impact of floods 

and 6% of the models the impact of terrorist attacks. The rest of the publications try 

to develop generic models which do not focus on a specific type of hazard. Table 2.6 

classifies each publication based on the type of hazard. 

Only two publications have tried to incorporate the impact of multiple hazards 

on road infrastructure. Basavaraj et al. (2017) considered the susceptibility of nodes 

to different hazards simultaneously (concurrent multi-hazard events). However, their 

model was implemented as a single-hazard model and the only implication was that 

repair resource requirements for each node were different depending on the type of 

hazard considered. Yamasaki and Miwa (2017) initially tried to consider the effect of 

cascading hazards on the network. They considered that some links failed during the 

main shock of an earthquake event, while others failed in the aftershock. The model 

took into consideration these potential cascading link failures in their formulation. 

None of the other publications incorporate the effect of multi-hazard events within 

road restoration models. A single hazard approach is considered to be a good starting 

point to understand how individual or independent hazards affect road networks, but 

not enough to capture all interactions that multiple hazards may have. As Gill and 
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Malamud (2016) mentioned, single hazard approaches could potentially 

underestimate risk, distort management priorities or increase vulnerability to other 

ignored hazards. Therefore, further research needs to be done in this area in order 

to consider multi-hazard approaches in road recovery models.  

 

2.4.2. The hazard-infrastructure damage relationship 

The focus of this section is to understand how current recovery models have simulated 

the damage to infrastructure and the extent of that damage. Three major types of 

road infrastructure (links) are studied: general, bridges and road sections. Five 

categorical ways of classifying the extent of damage were identified: (1) bi-level 

damage classification in which road infrastructure is classified as damaged or 

undamaged states. See for example: (Henry and Ramirez-Marquez, 2012; 

Lertworawanich, 2012; Baroud et al., 2014; Tuzun Aksu and Ozdamar, 2014; Vugrin, 

Turnquist and Brown, 2014; Nogal et al., 2016; Basavaraj et al., 2017; Yamasaki and 

Miwa, 2017); (2) tri-level damage classification, considering undamaged, damaged 

and collapse states (Lu et al., 2016); (3) four-level damage classification, using 

undamaged, small damage, moderate damage and large damage (Furuta et al., 

2008); (4) HAZUS (FEMA, 2013) damage categories, which identify five damage 

states: undamaged, slight, moderate, extreme and complete damage (Mehlhorn, 

2009; Orabi et al., 2009, 2010; Al-Rubaee, 2012; Bocchini, 2013; Karamlou and 

Bocchini, 2014; Zhang, Wang and Nicholson, 2017); and for the particular case of 

bridges: (5) BRIME (Godart and Vassie, 2001) damage categories, which identify five 

classes of bridge deterioration (from class I to class V) (Karlaftis, Kepaptsoglou and 

Lambropoulos, 2007). 

Four major approaches were identified to assign damage to road 

infrastructure: damage can be assigned (1) based on historical data or surveys; (2) 

based on hypothetical events; (3) based on fragility curves; and (4) based on a known 

probability distribution. A classification of the reviewed publications based on these 

four methods is provided in Table 2.6.  
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Table 2.6. Classification of publications based on hazard and damage modelling approach 

 
  

 
Damage modelling approaches 

 

   Deterministic approach Stochastic approach 

   Based on historical data / 
surveys, tests, etc. 

Hypothetical damage Based on fragility curves 
Based on a known probability  

distribution of damages    

H
a
za

rd
 t

y
p
e
s 

N
a
tu

ra
l 
h
a
za

rd
s 

Earthquake 

(Sato and Ichii, 1995; 
Feng and Wang, 2003; 
Bocchini and Frangopol, 

2012b) 

(Chen and Tzeng, 1999; Karlaftis, 
Kepaptsoglou and Lambropoulos, 

2007; Furuta et al., 2008; 
Mehlhorn, 2009; Orabi et al., 2009, 

2010; Karamlou and Bocchini, 
2014; Yamasaki and Miwa, 2017; Li 

et al., 2019) 

(Shinozuka et al., 2003; Zhou, Banerjee 
and Shinozuka, 2010; Stevanovic and 
Nadimpalli, 2010; Chang et al., 2012; 
Decò, Frangopol and Bocchini, 2013; 

Nifuku, 2015; Unal, 2015; Karamlou and 
Bocchini, 2016; Karamlou, Bocchini and 

Christou, 2016; Zhang, Alipour and 
Coronel, 2018; Wu and Chen, 2019; 
Kilanitis and Sextos, 2019; Vishnu, 

Kameshwar and Padgett, 2019) 

(Chen and Miller-Hooks, 2012; 
Bocchini, 2013; Faturechi and Miller-

Hooks, 2014b; Zhang and Miller-
Hooks, 2014; Zhang and Wang, 

2016; Zhang, Wang and Nicholson, 
2017; W. Zhang et al., 2018) 

Flood - 
(Lertworawanich, 2012; Liao, Hu 

and Ko, 2018) 
(Hackl, Adey and Lethanh, 2018) 

(Chen and Miller-Hooks, 2012; 
Faturechi and Miller-Hooks, 2014b; 

Zhang and Miller-Hooks, 2014) 

Landslide (Aydin et al., 2018) - - - 

Hurricanes 
(Twumasi-Boakye and J. 

O. Sobanjo, 2018) 
- - - 

No 
specified 

(Bocchini and Frangopol, 
2012a) 

(Kaviani et al., 2018) - (Basavaraj et al., 2017) 

H
u
m

a
n
-

m
a
d
e
 

h
a
za

rd
s 

Terrorist 
attack 

- (Liao, Hu and Ko, 2018) - 
(Chen and Miller-Hooks, 2012; 

Faturechi and Miller-Hooks, 2014b; 
Zhang and Miller-Hooks, 2014) 

No specified hazard 

(Ferreira, 2010; Duque 
and Sörensen, 2011; Al-
Rubaee, 2012; Ozbay et 

al., 2013; Twumasi-
Boakye and Sobanjo, 

2019) 

(Henry and Ramirez-Marquez, 
2012; Baroud et al., 2014; Tuzun 
Aksu and Ozdamar, 2014; Vugrin, 

Turnquist and Brown, 2014; Ye and 
Ukkusuri, 2015; Lu et al., 2016; 

Nogal et al., 2016; Vodák, Bíl and 
Křivánková, 2018) 

- 
(Barker, Ramirez-Marquez and 

Rocco, 2013; X. Zhang et al., 2018) 
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The first and second approach consists of assigning damage to infrastructure 

deterministically. The first method identifies what infrastructure is damaged based on 

real data (e.g. historical data from previous events, surveys, inspections, field tests, 

etc.). For instance, Sato and Ichii (1995) optimised the restoration process of a road 

network in Japan damaged by the 1978 Off Izu-Oshima earthquake. The second 

method assigns damage to infrastructure according to the modellers’ criteria and 

based on hypothetical hazardous events. 

In contrast, the third and fourth approaches relate damage to hazard 

probabilistically, including those uncertainties involved in the damage process. For 

instance, two equal roads affected by the same hazard with the same intensity suffer 

differently due to other ignored factors, such as the construction or maintenance 

history.  

In particular, the third method uses fragility functions (or fragility curves when 

expressed graphically) to determine whether infrastructure components are damaged 

or not and to what extent. Fragility curves express the probability of exceeding or 

attaining a certain level of damage, for a given value of hazard intensity. A graphical 

example of a generic fragility curve for each damage state is shown in Figure 2.5.  

Given a certain value of hazard intensity, the probability of having a certain level of 

damage is shown. The sum of all probabilities of all damage states for a given hazard 

intensity is equal to 1. This creates a spectrum of damages in which each damage 

state has a specific range of values. The shorter this range of values is, the lower the 

probability of being in that damage state will be. This probabilistic information can be 

used to identify which roads have more chance of being in a damaged state. Two 

different methods have been identified to assign damage using this probabilistic data: 

(a) range-based method and (b) risk-based method. Firstly, the most commonly used 

method for assigning damage to infrastructure is the range-based method (Chang, 

2003; Shinozuka et al., 2003; Zhou, Banerjee and Shinozuka, 2010; Chang et al., 

2012; Karamlou, Bocchini and Christou, 2016) and it consists on generating, using 

Monte Carlo simulation, a uniform-distribution random value (RV) between 0 and 1 

for each damaged asset. This value falls to one of the ranges of damage states 

mentioned before and shown in Figure 2.5. The damage level of this asset 

corresponds to the damage state of that range. Secondly, Bocchini and Frangopol 

(2011) proposed a risk-based method to determine the damage state of each asset 
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without the need to generate random values. This method calculated the level of 

damage as a continuous value based on the concept of risk which is defined as a 

composite of the probability of being in a damage state and the consequences of that 

damage level. The authors quantified the consequences of each damage state as an 

integer value that varies from 0 (no damage) to 4 (collapse), using a five-level 

damage classification. As shown in Equation (2.1), given a certain hazard intensity, 

the damage level was obtained as a product of probabilities and consequences of 

each damage state. Then this numerical value was categorised into one of the five 

damage states by identifying in which range of damage levels the continuous value 

was included.   

 

𝐷𝑎𝑚𝑎𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 = 0 ∙ 𝑃(𝑛𝑜 𝑑𝑎𝑚𝑎𝑔𝑒) + 1 ∙ 𝑃(𝑚𝑖𝑛𝑜𝑟 𝑑𝑎𝑚𝑎𝑔𝑒) + 2

∙ 𝑃(𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑑𝑎𝑚𝑎𝑔𝑒) + 3 ∙ 𝑃(𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑑𝑎𝑚𝑎𝑔𝑒) + 4

∙ 𝑃(𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) 

(2.1) 

 

 

Figure 2.5. Fragility curves for five levels of damage. It shows probability (P) of 
being in a damage state (DS) given a value of hazard intensity. 

 

Although this third major approach can be considered as a very 

straightforward way of assigning damage to infrastructure, the main difficulty falls on 

the development of fragility curves for each type of hazard-infrastructure relationship. 

Fragility curves can be obtained based on expert opinions, empirically if enough data 
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from past events are available (Shinozuka et al., 2003; Zhou, Banerjee and Shinozuka, 

2010; Nifuku, 2015) or analytically (Chang et al., 2012). Other authors (Stevanovic 

and Nadimpalli, 2010; Unal, 2015; Karamlou and Bocchini, 2016) obtained data from 

a combination of analytical and expert-opinion models that were available in software 

packages developed in the United States, such as HAZUS-MH (FEMA, 2013) and 

REDARS (ImageCat, 2005). HAZUS-MH (HAZard United States - Multiple Hazard) is a 

software that estimates damage and losses to essential facilities after natural 

disasters (FEMA, 2013). REDARS software (Risk from Earthquake DAmage to 

Roadway Systems) also estimates damage but just to transportation components 

after earthquakes. This third approach is mostly limited to those publications that 

model the recovery of road networks under seismic conditions.  

The fourth method uses Monte Carlo simulation to assign damage to 

infrastructure in a probabilistic approach. The main difference compared to the 

previous one is the non-use of fragility functions. Although this method might be 

considered a special case of the second approach as the authors are assuming 

‘hypothetically’ that link failures follow a certain probabilistic distribution, it is 

preferred to separate both approaches due to the probabilistic nature of this last 

method. It consists on generating random variables with a given probability 

distribution to simulate random behaviours. Every time random values are generated, 

a possible network state or scenario is created. Basavaraj et al. (2017) assumed that 

the number of unavailable links in a network followed a binomial distribution whose 

parameters were the total number of links and the probability of link failure. Every 

time a random value which followed the binomial distribution was generated, a certain 

number of links were classified as unavailable. After a large number of samplings, the 

generated values of unavailable links covered all spectrum of possibilities. Similarly, 

Zhang and Miller-Hooks (2014) assumed that the number of damaged links followed 

a binomial distribution with a certain probability across the network.  

 

2.4.3. Infrastructure damage and functionality relationship 

This section describes how road damage is transformed numerically into a reduction 

of network functionality. This is measured as a capacity reduction of those damaged 

road segments. Two approaches to assign new values of capacity based on their 
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damage level are identified in the literature: (1) a deterministic-based approach, in 

which the reduction of road capacity is determined by a fixed value that depends on 

the damage level; and (2) a stochastic-based approach, in which a variability in the 

remaining road capacity exists.  

Deterministic values of road capacity from different reviewed publications 

based on each damage state of links is synthesised in Table 2.7. According to Chang 

et al. (2010), there are three ways of developing damage-functionality relationships: 

empirical, analytical and expert opinion-based. As the reader can notice from the 

Table 2.7, expert opinion-based methods are the most widely used. Some models 

considered the functionality of links as a binary variable (opened or closed). Others 

also included the possibility of being partially opened. Some authors may appear more 

than once in Table 2.7 as they have also tried to perform a sensitivity analysis of link 

capacities by exploring different damage-capacity loss relationships. However, as 

Shinozuka et al. (2003) mentioned, most of these values are hypothetical and further 

research is needed to validate them. On the other hand, some other publications did 

not consider reductions in road capacity because they did not measure changes in 

traffic conditions. 

Regarding the stochastic-based approach, some authors argued that road 

capacity should be considered as a stochastic variable due to the uncertainty 

associated with the hazard impact and the subsequent road damage. In this sense, 

link capacities could be treated as random variables with a known probability 

distribution. By generating random values of this distribution using Monte Carlo 

simulation, new remaining capacities were created for each damaged link. For 

instance, Chen and Miller-Hooks (Chen and Miller-Hooks, 2012), Zhang and Miller-

Hooks (2014) and Zhang et al. (2018) assumed that the capacity reduction of each 

damaged link followed a uniform distribution on the interval from 0 to the link’s 

original capacity.  
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Table 2.7. Classification of publications based on hazard and damage modelling approach 

 
 

 
Affected 

infrastructure 

Damage state  
(based on HAZUS damage classification (FEMA, 2013)) 

References Based on:** 
No 

damage 
Minor 

damage 
Moderate 
damage 

Extensive 
damage 

Complete 
damage 

(Shinozuka et al., 2003) - 

Bridges 100% 100% 75% 50% 50%* 
(Zhou, Banerjee and Shinozuka, 2010; Nifuku, 2015) EO 

(Shinozuka et 
al., 2003) 

(Stevanovic and Nadimpalli, 2010) EO 
(Shinozuka et 

al., 2003) 
Bridges 100% 100% 75% 50% 0% 

(Zhou, Banerjee and Shinozuka, 2010; Nifuku, 2015) EO 
(Shinozuka et 

al., 2005) 
Bridges 100% 100% 50% 25% 25%* 

(Karamlou and Bocchini, 2016) EM 
(Applied 

Technology 
Council, 1985) 

Bridges 100% 100% 50% 0% 

(Zhou, Banerjee and Shinozuka, 2010; Nifuku, 2015) EO 
(Shinozuka et 

al., 2005) 
Bridges 100% 100% 25% 10% 10%* 

(Zhang, Alipour and Coronel, 2018) - Bridges 100% 100% 25% 0% 0% 

(Nogal et al., 2016; Li et al., 2019) - Links 100% 50% 0% 

(Bocchini and Frangopol, 2012a, 2012b; Bocchini, 2013; Karamlou 
and Bocchini, 2014; Unal, 2015) 

EO 
(Bocchini and 

Frangopol, 
2012a) 

Bridges 100% 50% 0% 
(Chang et al., 2012; Karamlou, Bocchini and Christou, 2016; Hackl, 
Adey and Lethanh, 2018; Twumasi-Boakye and J. O. Sobanjo, 2018; 

Twumasi-Boakye and Sobanjo, 2019; Vishnu, Kameshwar and 
Padgett, 2019) 

EO 
(Padgett and 
DesRoches, 

2007) 

(Lu et al., 2016) AN 
(Sullivan et al., 

2010) 
Links 100% 15-20% 0% 

(Chen and Tzeng, 1999; Feng and Wang, 2003; Henry and Ramirez-
Marquez, 2012; Baroud et al., 2014; Tuzun Aksu and Ozdamar, 

2014; Vugrin, Turnquist and Brown, 2014; Ye and Ukkusuri, 2015; 
Basavaraj et al., 2017; Yamasaki and Miwa, 2017) 

- Links 100% 0% 

(Lertworawanich, 2012) - Roadways 100% 0% 

(Chang, 2003; Kilanitis and Sextos, 2019; Wu and Chen, 2019) - Bridges 100% 0% 

(Kaviani et al., 2018; Liao, Hu and Ko, 2018) - *** 

(Sato and Ichii, 1995; Karlaftis, Kepaptsoglou and Lambropoulos, 
2007; Furuta et al., 2008; Mehlhorn, 2009; Orabi et al., 2009, 2010; 
Ferreira, 2010; Duque and Sörensen, 2011; Al-Rubaee, 2012; Ozbay 

et al., 2013; Decò, Frangopol and Bocchini, 2013; Zamanifar and 
Seyedhoseyni, 2017; Aydin et al., 2018; Vodák, Bíl and Křivánková, 

2018) 

- Not mentioned / Not specified 

  * Secondary local detour routes are considered. Then, a residual flow capacity is provided 
** EO: Expert Opinion; EM: Empirical; AN: Analytical 

*** Several link capacity reductions are applied 
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2.5. Travel demand and traffic analysis  

Hazardous events not only impact physical road infrastructure but also drivers’ 

behaviour. Traffic modelling becomes essential to understand behavioural changes 

after the impact of disruptive events. However, only those models that uses flow-

based metrics (such as delay, traffic flow, travel time expenditure, etc.) are the ones 

that need to model the response of network users (i.e. system operation). This section 

aims to understand how traffic behaviour is modelled in reviewed publications.  

Three different areas of traffic modelling may be affected by hazard impacts: 

(1) travel demand, which means that some drivers might decide to suppress or re-

schedule their trips, redistribute them to other locations or change transport mode; 

(2) traffic assignment, which deals with route choices after changes in the physical 

road network; and (3) traffic operation, which means that drivers adapt their driving 

behaviour to changes on the road network (e.g. speed reduction). Impacts on traffic 

operation has received less attention among researchers. Shinozuka et al. (2003) 

proposed some hypothetical reductions of free-flow speed on partially-damaged links. 

However, most publications just assumed that free-flow speed does not change. The 

following sections describe in more detail the first and second areas of traffic 

modelling.   

 

2.5.1. Impact on travel demand 

After a hazard impact, some activities may not be available at the destination forcing 

drivers to supress or reallocate the trip to other places, re-schedule activities or switch 

to other transport modes. The majority of reviewed publications do not consider 

changes in travel demand. The lack of empirical travel demand data after hazard 

events makes the modelling of travel demand more difficult (Chang, 2003; Karamlou, 

Bocchini and Christou, 2016). After major disruptive events, some travellers might 

prefer much closer destinations, covering shorter distances and to spend less time 

travelling, which may appear an improvement in the system performance (Bocchini 

and Frangopol, 2012b). Therefore, in order to compute an unbiased metric of network 

performance and due to lack of empirical travel demand data, reviewed traffic models 

assume that travel demand remains constant before and after hazard impacts.    

Nevertheless, only the work done by Zhou, Banerjee and Shinozuka (2010) 

captured changes in travel demand. They proposed a decreasing linear relationship, 
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originally developed by Shinozuka et al. (2005), between trip reduction rate and the 

length of time after a disruptive event. Immediately after the seismic impact, a 

maximum change in travel demand was produced, and travel demand gradually 

recovered as restoration continued over time.  

 

2.5.2. Modelling traffic routing 

Traditionally, traffic assignment problems are classified as: (1) Dynamic, if traffic 

demand varies with time, or static if there is no variation in time; (2) User equilibrium 

based or system optimal based models. The former defines a model whose travellers 

choose the routes that minimise their individual cost. In this sense, traffic flows are 

in equilibrium when no driver can improve his/her travel cost by shifting to other 

routes (Wardrop, 1952). The latter defines a model in which travellers choose the 

routes that minimise the total travel cost of the entire system, instead of their own 

travel cost.  

Table 2.8 classifies the reviewed recovery models based on whether they use 

static or dynamic assignment and user equilibrium or system optimal. Most of the 

publications model traffic assignment under the assumption of static user equilibrium. 

These models assume that drivers are initially in an equilibrium state and, after the 

impact of a disruptive event, the system reaches a new equilibrium state with higher 

total travel cost due to the full/partial closure of some road segments. However, the 

reality is that equilibrium conditions cannot be reached immediately after the impact 

as drivers need time to get/receive information and adapt their travel behaviour to 

the disrupted network before reaching a new equilibrium state. In this case, shortly 

after the disruptive event, drivers do not have perfect knowledge of traffic conditions, 

which means that they cannot select the route with their minimal travel cost on a 

congested network. They cannot anticipate how other drivers will behave and 

therefore equilibrium conditions may not be reached immediately after the impact. 

Unless external travel information is provided via social media or navigation systems, 

drivers only know the travel costs on routes from previous travel experiences. What 

is more, under a dynamic assignment, not all drivers start their journey at the same 

time which means that there is variation in demand over the studied period and 

therefore drivers cannot know all traffic conditions on all routes under these 

circumstances. Faturechi and Miller-Hooks (2014b) admitted that this assumption 
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could be accepted only if there was enough time between network changes (e.g. road 

repairs) so that drivers were completely aware of new network conditions. However, 

it was not clearly defined how much time was considered as enough. To the best of 

the author’s knowledge, this equilibrium-based assumption cannot be ensured after 

a hazard impact.  

The concept of Partial (or Restricted) User Equilibrium (PUE) was introduced 

in the literature in order to avoid making the assumption that equilibrium conditions 

are reached in the aftermath of the impact. Faturechi and Miller-Hooks (2014b) used 

the concept of PUE developed by Sumalee and Watling (2008) which assumed that 

only drivers on affected paths might consider rerouting and the others remained in 

the same routes. Nogal et al. (2016) used the concept of Restricted User Equilibrium 

(RUE) in which a system impedance was introduced in the model to reflect the lack 

of knowledge of the new situation that drivers have and the lack of information of the 

behaviour of other drivers. In other words, this impedance is due to the capacity of 

adaptation of drivers to network changes. The global behaviour of users was analysed 

in a day-to-day basis. This impedance limited the variation of route flows between 

two consecutive time intervals (days). This meant that the quantity of flow that could 

be transferred from one link to another was limited between days. Thus, the model 

did not reach equilibrium conditions immediately after the perturbation and some time 

was needed to reach again equilibrium conditions. It was based on a macroscopic 

traffic model that simulated the dynamic response of the network after a disruption. 

Note that the model is included in Table 2.8 in the area of static assignment as the 

OD demand was assumed to be constant and departure time choice was not 

considered.  

The level of information available to drivers in the aftermath of an incident 

plays an important role assisting drivers in making travel decisions. However, the 

reality is that not all drivers have the same level of information available to them and 

this makes modelling the aftermath of an incident more difficult. Intelligent Transport 

Systems (ITS) bring information technology and telecommunications together, in 

order to monitor traffic, identify incidents and inform drivers as quickly as possible of 

any disruption on the network. In this sense, providing some (or all) drivers with 

information about network conditions (closed links, travel times, congestion, etc.) 
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could help them making more informed travel decisions, which could (or not) reduce 

overall network expenditure (total veh-mins). In any case, it is difficult to anticipate 

exactly how drivers will respond to information of traffic conditions and therefore user 

equilibrium is not likely to be achieved. To the best of the author’s knowledge, the 

provision of external travel information and its impact on drivers’ decisions after 

disruptive events has not been considered on current recovery models. The 

assumption of ‘perfect knowledge’ can no longer be accepted and the network might 

not reach equilibrium conditions immediately after the disruption due to the existence 

of different levels of travel information.  

 

Table 2.8. Classification of reviewed publications in terms of traffic assignment 

 User equilibrium 
Restricted/partial user 

equilibrium 
System optimal 

S
ta

ti
c 

tr
a
ff

ic
 a

ss
ig

n
m

e
n
t 

(Chen and Tzeng, 1999; Shinozuka et 
al., 2003; Chang, 2003; Orabi et al., 

2009; Zhou, Banerjee and Shinozuka, 
2010; Bocchini and Frangopol, 2012b, 

2012a; Lertworawanich, 2012; 
Bocchini, 2013; Vugrin, Turnquist and 
Brown, 2014; Karamlou and Bocchini, 

2014, 2016; Nifuku, 2015; Unal, 
2015; Ye and Ukkusuri, 2015; Lu et 
al., 2016; Twumasi-Boakye and J. O. 

Sobanjo, 2018; Hackl, Adey and 
Lethanh, 2018; Kaviani et al., 2018; 
Li et al., 2019; Twumasi-Boakye and 
Sobanjo, 2019; Vishnu, Kameshwar 

and Padgett, 2019) 

(Faturechi and Miller-Hooks, 
2014b; Nogal et al., 2016) 

- 

D
y
n
a
m

ic
 

tr
a
ff

ic
 

a
ss

ig
n
m

e
n
t 

(Stevanovic and Nadimpalli, 2010; 
Zhang, Alipour and Coronel, 2018; 

Kilanitis and Sextos, 2019) 
- - 

N
o
 t

ra
ff

ic
 a

ss
ig

n
m

e
n
t (Sato and Ichii, 1995; Feng and Wang, 2003; Karlaftis, Kepaptsoglou and Lambropoulos, 2007; 

Furuta et al., 2008; Mehlhorn, 2009; Ferreira, 2010; Orabi et al., 2010; Duque and Sörensen, 
2011; Al-Rubaee, 2012; Henry and Ramirez-Marquez, 2012; Chang et al., 2012; Chen and 

Miller-Hooks, 2012; Barker, Ramirez-Marquez and Rocco, 2013; Decò, Frangopol and Bocchini, 
2013; Tuzun Aksu and Ozdamar, 2014; Zhang and Miller-Hooks, 2014; Baroud et al., 2014; 
Karamlou, Bocchini and Christou, 2016; Zhang and Wang, 2016; Yamasaki and Miwa, 2017; 

Zamanifar and Seyedhoseyni, 2017; Zhang, Wang and Nicholson, 2017; Basavaraj et al., 2017; 
Aydin et al., 2018; Liao, Hu and Ko, 2018; Vodák, Bíl and Křivánková, 2018; W. Zhang et al., 

2018; X. Zhang et al., 2018; Wu and Chen, 2019) 

 

 
NOTE: (Ozbay et al., 2013) do not mention type of assignment, but they use a traffic simulation 

software whose name is not mentioned. 

 

 

2.6. Infrastructure repair modelling 

This section reviews the modelling process of how damaged infrastructure is 

physically repaired.  Two types of recovery models are identified based on the repair 
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modelling process: (1) Those models that simulate how physical resources are 

allocated to damaged locations and consume time to undertake repair tasks 

(Resource-Task-Time relationship); (2) Those models that do not model the entire 

repair process and only select and prioritise repairs considering the benefits or impacts 

of getting damaged infrastructure back to normal.  

The first group of models simulates the repair process by allocating resources 

to damaged locations. Traditionally, these resource are classified as personnel, plant 

and equipment. Recovery models group these resources in teams. For instance, Feng 

and Wang (2003) grouped resources in work-troops which included, in the context of 

that paper, machines, vehicles and manpower and then the whole work-troop 

attended a damaged location. These locations could be repaired by a single repair 

team or more than one. Henry and Ramirez-Marquez (2012) assumed that only one 

repair teams could attend an incident, while other models such as the one presented 

by Sato and Ichii (1995) considered that more than one team could attend the same 

incident and therefore speed up the repair process. There may also be some 

limitations in terms of availability of resources. Zhang, Wang and Nicholson (2017) 

limited the number of available teams that could work at the same time. This leads 

to the concept of sequential or simultaneous repairs. If there is just one available 

team to attend all incidents, damaged infrastructure needs to be repaired in a 

sequential way (e.g. Lertworawanich (2012) and Henry and Ramirez-Marquez (2012), 

among others). If there is more than one available team, these can attend more than 

one incident at the same time and therefore, repair damaged infrastructure in a 

sequential and simultaneous way (e.g. Orabi et al. (Orabi et al., 2009), Karamlou and 

Bocchini (2014), Vugrin, Turnquist and Brown (2014), among others).     

Resources need to undertake tasks to repair damaged assets. It can be a 

single task that represents the entire repair process or a series of connected tasks 

(Vugrin, Turnquist and Brown, 2014). The complexity of the problem is increased if 

different types of resources are required for each task. In turn, these tasks consume 

time that depends on the number of resources that undertake each task. The 

following Section 2.6.1 reviews how current models obtain the time required to repair 

damaged assets.  
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The second group of models do not obtain the time required to repair each 

damaged infrastructure. Instead, these models considered the benefits or impacts of 

getting damaged infrastructure back to normal (e.g. if bridge A, instead of bridge B, 

was repaired to its pre-disrupted condition, a higher network performance would be 

achieved). Karlaftis et al. (2007) allocated limited repair funding to some damaged 

bridges affected by a seismic event, maximising the total condition improvements 

after repairs and minimising reconstruction costs. If a bridge was selected to be 

partially or totally repaired, repairs were represented as an improvement in its 

damage condition and as an associated repair cost. Other bridges might also be 

selected and they would have other improvements and other costs. The final repair 

strategy was the one that maximised the condition and minimised costs. Therefore, 

there was not a time-dependent variable (e.g. repair time) involved in the process. 

Lertworawanich (2012) calculated the sequential list of repairs that minimised travel 

demand loss and network travel time. In this case, links were restored according to 

their relative importance. If a link carried the highest OD demand loss and its failure 

produced a considerable increase in travel time, it was clear that this link would be 

the first in the repair sequence. As observed, repairs do not use any time-dependent 

variable and thus, these are only based on the impact or consequences of repairs on 

the network performance. Similarly, Al-Rubaee (2012) proposed a road recovery 

priority model based on a similar Analytic Hierarchy Process (AHP) (Saaty, 1980) 

approach. It obtained a priority list of links that should be repaired based on several 

criteria, such as traffic, damage and financial factors, among others. Repairs, 

therefore, were only obtained based on the evaluation of these factors for each 

damaged link. Additionally, as repair time is not considered, these models do not give 

a total traffic delay cost, which is considered as an important variable to measure the 

performance of the system after a disruptive event. Also, in general, these models 

assume that repairs do not take place in parallel, which reflects how inaccurate this 

type of models could be.    

 

2.6.1. Approaches to repair time modelling 

This sub-section reviews different approaches of obtaining repair time in the 

literature. Three similar approaches are identified: (1) Repair time as a direct measure 

for damaged infrastructure; (2) Productivity of repair resources; or (3) The number 
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of repair steps.  

The first approach consists on assuming that each damaged asset needs 

certain amount of time to be completely repaired. Repair time that is assigned to each 

location depends on the damage level. It can be obtained deterministically as follows: 

(1) Based on hypothetical repair times for each asset; (2) Using databases from the 

REDARS/HAZUS software (ImageCat, 2005) package that contains repair times of 

damaged transportation components under earthquake scenarios; or (3) Using expert 

opinion or previous real data from similar repairs. A classification of the reviewed 

models based on these three approaches is summarised in Table 2.9. Some authors 

also considered the uncertainty associated with the repair process (e.g. not finishing 

on time due to weather conditions, lack of personnel or plants, etc.) and suggested 

that repair time should be considered as a stochastic variable with a known probability 

distribution.   

The second approach introduces the concept of resource, which has a fixed 

work pace that can be measured as “quantity of repair work per hour”. If a damaged 

asset is measured in units of “quantity of work” or “amount of damage” and the work 

pace of each repair resource is known, then the time required to repair this 

infrastructure can be calculated by doing simple arithmetical calculations. Although 

this second approach can be reduced to the first approach by calculating the repair 

time, it is considered as a separate method in this review as it uses the concept of 

resource productivity and damage quantity to obtain repair time. 

 The third approach uses the concept of steps to determine the repair process. 

Damaged infrastructure needs a certain amount of steps to be carried out to achieve 

its pre-disrupted condition. The higher the damage level the asset has, the more steps 

are required to fully repair it. This number of steps can also vary depending on the 

availability of resources. As it can be seen, this approach can also be considered quite 

similar to the first one in the sense that if we know how long each step takes, we can 

estimate the amount of time taken to repair a road.  
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Table 2.9. Classification of publications according to the ways of modelling repair 

time 

Recovery approach References 
R

e
p
a
ir
 t

im
e
 D

A
*
 

Hypothetical  
repair time 

 
(Duque and Sörensen, 2011; Chen and Miller-Hooks, 2012; Henry and 
Ramirez-Marquez, 2012; Bocchini, 2013; Vugrin, Turnquist and Brown, 

2014; Zhang and Miller-Hooks, 2014; Faturechi and Miller-Hooks, 
2014b; Karamlou and Bocchini, 2014; Tuzun Aksu and Ozdamar, 2014; 
Ye and Ukkusuri, 2015; Nogal et al., 2016; Vodák, Bíl and Křivánková, 

2018; Hackl, Adey and Lethanh, 2018; Kilanitis and Sextos, 2019) 
  

Based on REDARS  
 

(Mehlhorn, 2009; Stevanovic and Nadimpalli, 2010; Zhang, Alipour and 
Coronel, 2018)  

Based on HAZUS 
 

(Vishnu, Kameshwar and Padgett, 2019)  

Based on expert 
opinion/real data 

 
(Chang et al., 2012; Karamlou and Bocchini, 2016; Karamlou, Bocchini 

and Christou, 2016; Twumasi-Boakye and J. O. Sobanjo, 2018; 
Twumasi-Boakye and Sobanjo, 2019)  

S
A
*
*
 

Stochastic 
 repair time 

 
(Shinozuka et al., 2003; Zhou, Banerjee and Shinozuka, 2010; Barker, 

Ramirez-Marquez and Rocco, 2013; Decò, Frangopol and Bocchini, 
2013; Baroud et al., 2014; Nifuku, 2015; Zhang, Wang and Nicholson, 

2017; Aydin et al., 2018; W. Zhang et al., 2018; Li et al., 2019)  

Resource productivity approach 
 

(Feng and Wang, 2003; Furuta et al., 2008; Orabi et al., 2009, 2010; 
Ferreira, 2010; Bocchini and Frangopol, 2012a, 2012b; Unal, 2015)  

Repair steps 

 
(Sato and Ichii, 1995; Chen and Tzeng, 1999; Lu et al., 2016; 

Basavaraj et al., 2017; Yamasaki and Miwa, 2017; Kaviani et al., 2018) 
  

 
* DA: Deterministic approach 

** SA: Stochastic approach 

 

 

2.7. Conclusions and future directions 

This chapter has presented a systematic literature review of current road recovery 

models after disruptive events. The methodology used to identify the final 60 

publications included key stages such as identification, screening and eligibility. Road 

restoration models were analysed in terms of how road infrastructure was damaged 

and quantified, the impact on travel demand and drivers’ decisions, how repairs were 

modelled and what mathematical modelling approach was used to undertake the 

analysis. By describing recovery models in such a way, the content of this chapter 

aims to serve as a guideline for researchers and practitioners in the field of 

transportation to identify what it is being done and detect potential research gaps in 

the area of road recovery.   
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Some general conclusions about the reviewed publications are the following. 

Despite the importance of multi-hazard impacts, only single-hazard events are 

simulated. The majority of the publications considered the impact of earthquakes on 

bridges which result in a reduction in network capacity. These damages are repaired 

by allocating physical resources and considering a single repair task that has a specific 

repair time. Sequential and/or simultaneous repairs are also considered depending on 

the number of available resources at a time. Once the network is damaged, most 

models load traffic onto the road network under the user equilibrium assumption 

which assumes that all drivers have full knowledge at any time of all travel costs in 

any route. Regarding the mathematical modelling approach, more than half of the 

reviewed publications solve the optimisation problem using exact methods or 

metaheuristic algorithms with genetic algorithms as the most common solution-search 

method. The most common purpose for which these models are used is the optimal 

allocation of resources to damaged locations and the optimal repair sequence. Most 

of them use deterministic approaches, although increasingly  the uncertainty involved 

in the restoration process has been considered.   

Existing challenges and future research directions, which are developed 

through the analysis of the selected publications, are discussed as follows. Regarding 

hazard impact analysis, recovery models should take into account that single hazards 

can trigger other hazards and it may affect the way that road networks are recovered 

under these situations. If a community is susceptible to more than one hazard and 

models are only considering isolated and independent hazards, it may result in taking 

wrong management decisions and this may increase the vulnerability of people to 

other ignored hazards. A more dynamic multi-hazard approach should be considered 

in current road restoration models. Also the vast majority of models are especially 

designed for extreme events, such as disasters, or emergency conditions. Less 

research in the area of road network recovery is done when dealing with incidents 

whose consequences are not high but have a medium likelihood of occurrence, such 

as winter storms, floods, etc. However, extensive research has been undertaken to 

study the vulnerability of road networks to the impact of these lower-risk weather-

related hazards (i.e. floods) (Singh et al., 2018; Arrighi et al., 2019; Kasmalkar et al., 

2020; Wang et al., 2020). The hazard-damage-functionality relationship should be 
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studied further as most of the current relations are based on expert opinions which 

would benefit from validation.  

With regard to traffic modelling, the assumption of user equilibrium is not 

representative of how drivers react after these disruptive events. Although some 

authors justify the usage of this assumption for long-term recovery, it is still not clear 

where the boundary of long-term is defined. Further research should be done to 

simulate traffic behaviour under non-equilibrium conditions. In addition, it is also 

important to add that the world of Intelligent Transport System (ITS) is increasingly 

impacting the way that drivers get real-time information. User response changes 

depending on the level of information that is provided. Traffic modelling should be 

flexible enough to be able to adapt to future technological changes. Variations in 

travel demand on recovery models before and after disruptive events are also an 

important topic for future research. 

Regarding infrastructure repair modelling, most publications consider that only 

one restoration team repairs one single asset. However, actual restoration works are 

undertaken by multiple teams. Models should also include repairs performed by 

multiple groups. External aid and temporary road solutions should also be taken into 

account in future road restoration models.   
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CHAPTER 3 

3.  Road recovery modelling framework 

and optimisation problem formulation 

 

 

3.1. Introduction 

The previous chapter presented a review of road recovery models that exist in the 

literature. Differences and similarities between models were highlighted and areas of 

improvement identified. Some of the major limitations of these models focused on 

how drivers’ behaviour was simulated. Models assumed that drivers had full 

knowledge of all traffic conditions in any route at any time and the dissemination of 

external pre- or on-board travel information, via mobile phones or radio, was not 

simulated. This chapter introduces a new recovery model that tries to overcome these 

limitations found in previous models. The main aim of this chapter is to provide an 

overview of the entire model as an introduction to the rest of the parts of this thesis, 

describing the modelling framework and introducing the key models that form the 

global recovery model. The mathematical formulation of the optimisation problem is 

also presented and different numerical techniques are described in order to select the 

most suitable one that solves the optimisation problem. Additionally, this chapter also 

defines the objective functions considered in the optimisation process. Performance 

metrics that measure travel time and network connectivity used in previous models 

are reviewed and two metrics are proposed to use in this model.     

 

3.2. Network modelling 

The road network considered in this model is defined according to graph theory 

(Gibbons, 1985). A network (graph) consists of links and nodes. Every physical 

intersection or points representing changes in link attributes in a network is 

considered a node and two successive nodes are connected with a link that represents 

road segments. Both links and nodes have associated attributes (length, speed, 

capacity, turn penalties, etc.). The study area is divided into different zones (formerly 
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a travel analysis zone, TAZ) and each trip departs/arrives from/to the centroid of each 

zone, which represents the ‘centre of activity’. Those centroids that act as origins and 

destinations for a trip are called dummy nodes as they do not represent a physical 

object/feature. These nodes are added to the network to allow vehicles to enter or 

leave the graph. Dummy nodes are connected to the network via dummy links 

(connectors), which are abstract links connecting TAZ centroids to realistic nodes on 

the physical network (Ortuzar and Willumsen, 2011). Dummy links are assumed to 

have infinite capacity. The number of trips originated from each origin node to their 

destination node forms the origin-destination (OD) matrix. In order to speed up the 

modelling process, vehicles can be grouped into packets that act as one entity. More 

information about how vehicles were grouped into these packets is provided in 

Chapter 5.   

 

3.3. Modelling framework and problem formulation 

This section introduces the general framework of the road recovery model proposed 

in this thesis and set out the optimisation problem. The areas that are excluded from 

this research are also mentioned in the following sections.  

 

3.3.1. Conceptual framework 

A general overview of the model is included in Figure 3.1. The occurrence of a natural 

hazard (e.g. landslides, floods, etc.) can significantly impact the road network causing 

concurrent failures across the network and producing damage to some parts of the 

infrastructure. A damage simulation model (described in Chapter 4) is implemented 

in order to simulate the damage created by the hazard. This model identifies those 

road segments that are physically damaged and need to be repaired. Although there 

are different ways of measuring damage (as mentioned in previous Chapter 2), this 

model gives a numerical value for each damaged link in units of “required resources 

X time” i.e. resource-minutes. The extent of damage is also linked to a reduction in 

link capacity. If a link is significantly damaged, then it may be totally closed or partially 

open to traffic.  

Once the damage on all road segments is assessed, transport authorities and 

managers need to decide how to repair these incidents by giving priority to certain 
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damaged locations and allocating their required repair resources. A repair strategy, 

which will be described more in detail in Section 3.3.2, is a combined decision that 

provides a priority order of repairs and the number of repair teams that are allocated 

to each damaged incident. In order to know the effectiveness of the repair strategy, 

the model needs to simulate how repairs are undertaken considering the allocation of 

repair teams to damaged locations (which are repaired at a certain productivity rate) 

and how drivers using the network react to changes in link capacities from the time 

that damage occurs to when the network is fully recovered. A resource allocation and 

repair process model (Chapter 4) simulates how repairs are carried out on a day-to-

day basis. The main aim of this module is to generate a resource allocation plan and 

a recovery schedule that includes a road restoration plan. With this information, the 

model knows exactly when each damaged road segment is partially or totally repaired 

and therefore the day when the link capacity returns to normal and is open to traffic 

again. 

One of the other important parts of this model is the understanding of how 

drivers react to this network changes over time. The recovery model also includes a 

departure time and route choice model that applies the idea of artificial intelligence 

(AI), using the reinforcement learning (RL) technique (more information in Chapter 6 

and 7), to simulate how drivers learn from their own experience and make day-to-

day and within-day travel decisions. Additionally, the model also includes a novel 

feature, which has not been used in previous RL-based road recovery models, that 

provides external travel information to drivers. The movement of vehicles on the 

network is simulated using a mesoscopic traffic simulator which is implemented in 

order to send drivers from their origins to their destinations and calculate the travel 

cost spent on these journeys. 
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Figure 3.1. Conceptual framework of the optimisation problem 

  

The effectiveness of the repair strategy that has been analysed can be 

measured using performance metrics. In this model, two metrics have been proposed: 

a traffic-related metric, which measures the total travel cost of all drivers and a 

connectivity metric that, to the best of the author’s knowledge, combines for the first 

time a topological and demand characteristics of the network in a single metric. 

Performance metrics are updated on a daily basis to reflect the effect of 

implementation of repair strategies and driver response to the network state. Network 

resilience is defined as the aggregation of each metric over the duration of the repair 

strategy. Therefore, each repair strategy produces a single value of resilience for each 

metric.  

As the aim of this project is to obtain the optimal repair strategy, an 

optimisation process is also included. The procedure consists of finding the repair 

strategy (decision variables) that maximises the objective function values while 

satisfying the constraints of the model. The objective functions considered in this 

model correspond to the resilience values measured on the ‘total travel cost’ curve 
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(objective 1) and ‘connectivity’ curve (objective 2). The optimisation aims to minimise 

travel cost and the possible delays that drivers may experience due to the disruptive 

events and maximise the connectivity of the network. The optimisation algorithm used 

in this model is called Genetic Algorithm (Holland, 1975), more specifically NSGA-II 

(Deb et al., 2000), that is based on the Darwin’s theory of natural selection (Darwin, 

1859): the fittest solutions (repair strategies) survive and have more chance of being 

selected to breed and generate the next population of repair strategies. At the end of 

the last generation, a front of optimal (or close to the optimal) repair strategies is 

obtained and the selection of the final repair strategy is in modellers’ judgement as 

they need to make a trade-off between total network cost and connectivity.      

 

3.3.2. Problem formulation and decision matrix 

The proposed optimisation model consists of three main elements: decision variables, 

objective functions and constraints. The mathematical expression is included in the 

following Equation (3.1). 

𝑚𝑖𝑛 𝑓(𝑋) 𝑎𝑛𝑑𝑚𝑎𝑥𝓂(𝑋) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 
(3.1) 

The problem considers two objective functions. The first objective function 

𝑓(𝑋) quantifies the total travel cost experienced by all drivers that arrive to their 

destination. The second objective function 𝓂(𝑋) quantifies the network connectivity 

after the disruptive event. Both objective functions will be defined and explained more 

in detail in the following Section 3.4. It is important to consider mobility (obj1) and 

connectivity (obj2) aspects in the formulation because, after disruptive events, the 

capacity degradation of some road segments may lead to an increased travel time for 

some drivers compared to normal days and a reduction of partial travel demand that 

cannot be accommodated. In the particular case of a place that has been isolated 

after a hazard impact and attracts low travel demand, connectivity values acquire 

higher importance. If just total travel costs were considered, this lack of connectivity 

would not be reflected in the problem.      

The decision variable 𝑋 in this optimisation problem represents a repair 

strategy. Unlike most of the models reviewed in Chapter 2, this one defines a repair 

strategy as a combination of two main decisions: the identification of a priority order 
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of repairs and the allocation of repair resources to damaged locations. The repair 

strategy is mathematically materialised by the decision matrix 𝑋 = 𝑋[𝑋1, 𝑋2]
𝑇 (see 

Equation (3.2)). Both, 𝑋1 and 𝑋2 are 𝐼𝑛𝑐-dimensional vector of integers, being 𝐼𝑛𝑐 

the total number of damaged locations on the network. The position in the vector 

represents the incident number. Note that a damaged location may include a single 

link failure or a two link failure if this is a two-way road. The integer vector 𝑋1 

represents the priority order of repairs. A value that varies from 1 (highest priority) 

to 𝐼𝑛𝑐 is assigned to each position in the vector. Note that two damaged locations 

cannot have the same priority value, which means that the value on each position 

cannot be repeated. The integer vector 𝑋2 represents the allocation of repair 

resources to each damaged location. Each value indicates the number of repair teams 

that are assigned to the corresponding damaged location. These values have an 

upper- and lower- limit as it is not possible to have ∞ repair teams and some incident 

locations also need a minimum of resources to start repairs. Note that this value can 

also indicate the maximum number of repair teams that can attend the incident 

location. The Example 1 has been included to clarify the values of the decision matrix.   

𝑋 = [
𝑋1
𝑋2
] = [

𝑋1
𝐼𝑛𝑐1 𝑋1

𝐼𝑛𝑐2

𝑋2
𝐼𝑛𝑐1 𝑋2

𝐼𝑛𝑐2    
… 𝑋1

𝐼𝑛𝑐

… 𝑋2
𝐼𝑛𝑐] (3.2) 

 

Example 1. Some roads have been closed as a result of some landslides after 

the impact of a storm. Five locations have been identified as damaged. In this 

particular scenario, a possible repair strategy, and therefore the decision 

matrix, is defined as follows: 

𝑋 = [
𝑋1
𝑋2
] = [

5 3 1
3 7 5

     
4 2
3 4

] 

In this case, as there are five incident locations, there are 5 columns in the 

matrix. First column represent the first incident location and so on. The highest 

priority of repairs (and therefore the first incident location that has to be 

repaired) is given to Incident number 3 (first row, third column). The rest of 

the order is Incident 5, 2, 4 and 1. Regarding the allocation of resources, 3 

repair teams are assigned to incident 1 (second row, first column), 7 repair 

teams to incident 2 and successively.  
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3.3.3. Computer programming language/software 

The model has been implemented using MATLAB software (The MathWorks Inc., 

2018) and coded in MATLAB language. Due to the simplicity of MATLAB, it has been 

broadly used in the areas of science and engineering, especially in the field of Artificial 

Intelligence and Machine Learning to simulate and analyse behavioural dynamics of 

agents (Mohammadi Ziabari and Treur, 2019). One of the benefits of using MATLAB, 

as the abbreviation of MATLAB says (‘MATrix LABoratory’), is that it works with 

matrices while other programming languages mostly work with numbers one at a time 

(The MathWorks Inc., 2018). Therefore, all data from this model is structured in 

matrices and arrays and MATLAB is able to carry out operations between these 

matrices/arrays according to the code that has been implemented, which is available 

under demand.   

 

3.4. Resilience value and network performance metrics  

This section presents the objective functions involved in the optimisation problem. 

Both objective functions are defined using metrics that measure the functionality of 

the network over time. This creates what is known as ‘functionality curves’ (Cimellaro, 

Reinhorn and Bruneau, 2010), which is a graph that measures on a vertical axis the 

network performance and on the horizontal axis the time. However, a single value 

needs to be obtained from these curves, which is ultimately the value that has to be 

maximised or minimised. This is also known as ‘resilience value’. The challenging 

question of how to quantify resilience has been studied exhaustively in recent reviews 

(Francis and Bekera, 2014; Hosseini, Barker and Ramirez-Marquez, 2016; Rus, Kilar 

and Koren, 2018; Zhou, Wang and Yang, 2019). Despite the existence of more 

sophisticated resilience metrics, the model proposed in this thesis quantifies resilience 

(𝑅) as the area under the functionality curve, starting from the day of the disruption 

until a user-defined day (in this case user refers to modeller), which is defined in this 

thesis as a certain amount of time after the last damaged road segment is completely 

repaired, so that there is enough time for network conditions to stabilise again. 

Originally formulated by Reed, Kapur and Christie (2009), it is expressed 

mathematically as shown in Equation (3.3).  
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𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = ∫ 𝑄𝑡  𝑑𝑡
𝑡1

𝑡0

 (3.3) 

Where,  

𝑄𝑡, is the functionality curve. 

𝑡0, time when the disruption occurs. 

𝑡1, user-defined time horizon. 

If the functionality curve (𝑄) is measured in the range of [0,1], the resilience value 

can also be normalised dividing the area under the functionality curve by the time 

interval as shown in Equation (3.4).  

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∫ 𝑄𝑡  𝑑𝑡
𝑡1
𝑡0

𝑡1 − 𝑡0
 (3.4) 

Where, 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the normalised value of resilience in the range [0, 1]. 

Recent reviews provides an overview of the literature on transportation system 

performance metrics (Faturechi and Miller-Hooks, 2014a; Konstantinidou, 

Kepaptsoglou and Karlaftis, 2014; Rus, Kilar and Koren, 2018; Sun, Bocchini and 

Davison, 2018; Twumasi-Boakye and J. Sobanjo, 2018; Wan et al., 2018; Zhou, Wang 

and Yang, 2019). Chapter 2 also provides a summary table (Table 2.5) with all 

performance metrics that have been used in those reviewed recovery models. The 

following sub-sections describe in detail the functionality metrics that are used in the 

model proposed in this thesis to measure the performance of the network. Two 

classes of functionality metrics are considered: traffic-related metrics (total travel 

cost) and a topological-related metrics (connectivity).    

 

3.4.1. Total travel cost metric 

3.4.1.1. A brief review of travel cost metrics 

The impact of natural hazards on the network may produce the closure of some road 

segments and consequently, cause delays to some users on the network. Drivers may 

have to detour, making them take longer routes to get to their destination and/or 

produce more congestion in otherwise uncongested areas. The consequences of these 



Chapter 3  Modelling framework and problem formulation 
 

 

54 
 

impacts have been traditionally measured by computing the travel time expenditure 

of drivers.  

The majority of reviewed recovery models that measured travel time 

expenditure (Sato and Ichii, 1995; Chen and Tzeng, 1999; Bocchini and Frangopol, 

2012a; Lu et al., 2016) simulated traffic movements based on macroscopic models. 

These models represented traffic in an aggregate way as a continuous flow. This 

meant that individual movements of vehicles on the network could not be simulated 

and therefore, travel cost (time) was calculated based on aggregate volumes of traffic 

on each link at a given time. Equation (3.5) shows the link-based travel time formula 

which was used to calculate the network total travel time. In this case, performance 

metric (𝑄𝑡) in terms of total travel time was defined as a weighted sum of all link 

travel times, being the link weight the number of vehicles assigned to each link.  

𝑄𝑡 =∑𝑉𝑡,𝑙 ∙ 𝑇𝑡,𝑙

𝑛𝐿

𝑙=1

 (3.5) 

Where, 

𝑙, links 

𝑛𝐿, all links of the network. 

𝑉𝑡,𝑙, number of vehicles on link 𝑙 on day 𝑡. 

𝑇𝑡,𝑙, average travel time on link 𝑙 on day 𝑡. This is calculated using the BPR 

formula (Bureau of Public Roads, 1964), which calculates the travel time 

on each link based on the number of vehicles using that link:    

𝑇𝑡,𝑙 = 𝑡𝑡𝑂 ∙ [1 + 𝒶 ∙ (
𝑉𝑡,𝑙
𝑞𝑙𝑚𝑎𝑥

)
𝒷

] (3.6) 

     Where, 

𝑡𝑡𝑂, free-flow travel time. 

𝑞𝑙𝑚𝑎𝑥, capacity of the link 𝑙. 

𝒶, BPR coefficient, often set at 0.15. 

𝒷, BPR coefficient, often set to 4. 

 

3.4.1.2. Proposed total travel time metric 

The model implemented in this thesis is able to simulate the trajectory of individual 

vehicles using a mesoscopic traffic model (see Chapter 5 for a detailed description). 
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This means that the travel time expenditure of each driver can be obtained and a 

value of total travel time can be extracted, which is more accurate than the 

aggregated link-based formula expressed in previous Section 3.4.1.1. Unlike the 

previous models that use this aggregated value of total travel time on each link, the 

performance metric shown in Equation (3.7) calculates the vehicle-based total travel 

time and is defined as the sum of the time spent to get to their destination by each 

vehicle. 

𝑄𝑡 = ∑𝑇𝑡,𝑉

𝑉𝑛𝑒𝑡

𝑉=1

 (3.7) 

Where, 

𝑉, vehicle on the network  

𝑉𝑛𝑒𝑡, all vehicles travelling on the network 

𝑇𝑡,𝑉, time that each vehicle 𝑉 spends travelling on day 𝑡 

Note that this metric only computes those trips that have arrived to the destination. 

Those trips that have been cancelled or have not been completed are not included in 

the travel time calculation. These excluded trips will be considered in the 

complementary metric included in the following section.  

 

3.4.2. Connectivity metric 

3.4.2.1. A brief review of connectivity metrics 

Besides travel cost related metrics, another key aspect to evaluate the performance 

of the transport infrastructure is the topological-related information. The concept of 

connectivity has been extensively used in the literature across various sectors (e.g. 

transportation, water, electricity) (Reggiani, Nijkamp and Lanzi, 2015; Soldi, 

Candelieri and Archetti, 2015; Billah Kushal and Illindala, 2020; Huck, Monstadt and 

Driessen, 2020; Rachunok and Nateghi, 2020). In essence, connectivity is defined as 

the ability to get from one place to another (Zhang, Alipour and Coronel, 2018). More 

precisely, in the context of graph theory, two nodes (also known as vertices) in a 

network are connected if there is at least a path between these nodes (Wilson, 1996). 

Over time, more definitions of connectivity have emerged among the literature and 

consequently several ways of measuring connectivity are identified.  
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The initial connectivity metrics come from the concepts of graph theory. 

Kansky (1963) developed several topological indices to measure the connectivity of 

transport networks by counting the number of links and nodes. Another way of 

measuring connectivity came from the concepts of k-edge connectivity and k-node 

connectivity. A graph was k-edge connected if there were k-1 links (or edges) that 

could be removed without disconnecting the network (Yamasaki and Miwa, 2017). 

Similar to k-edge connectivity, k-node connectivity described a graph that was 

disconnected if k nodes failed.  

Kurauchi et al. (2009) also determined connectivity from a topological point 

of view. They defined connectivity as the number of disconnected paths between an 

Origin-Destination (OD) pair. Karamlou and Bocchini (2016) proposed a metric, which 

is shown in Equation (3.8), that included a weighting factor in order to show the 

importance of keeping certain OD pairs connected. This feature prioritised certain 

connections to hospitals, airports, schools, etc. If the weighting factor (𝐾𝑟) was 

greater than zero for all OD pairs, then the loss/partial connection of a priority OD 

pair had a greater impact on 𝑄𝑐 than the loss/partial connection of a non-priority OD 

pair. However, in the hypothetical case that the weighting factor was zero for some 

OD pairs, then this metric implied that even if all OD pairs were not fully connected, 

network connectivity could still acquire its maximum value. Only when those 

important OD pairs were connected, the connectivity values would achieve the 

maximum value.   

𝑄𝑐 =∑(𝐿𝑟 ∙ 𝐾𝑟)

𝑅

𝑟=1

 (3.8) 

Where, 

𝑟, a node pair. 

𝑅, total number of node pairs. 

𝐿𝑟, parameter that determines the level of connectivity between node pair 𝑟 

at time 𝑡. Note that a node pair is defined as fully (partially) connected if 

at least there is a path that is totally (partially) in service. 

𝐿𝑟 = {

1         𝑖𝑓 𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟 𝑟 𝑖𝑠 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑      
0.5       𝑖𝑓 𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟 𝑟 𝑖𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0        𝑖𝑓 𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟 𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑         

 (3.9) 
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𝐾𝑟, weighting factor that indicates the importance of an OD pair 𝑟. This value 

is determined by engineering judgement and it has to satisfy the following 

constraint: 

∑𝐾𝑟

𝑅

𝑟=1

= 1 (3.10) 

 

The number of paths between an OD pair can be very large. That is the reason why 

Zhang and Wang (2016) proposed a new metric that quantified the number of 

independent paths between OD pairs. In this context, independent paths were 

defined as those routes that did not share any common road links. The advantage of 

considering just the number of independent paths was the limited number of paths 

that were identified. The authors also included a weighting factor in order to highlight 

the importance of certain OD pairs.  

As the capacity of certain links might be reduced after the impact of disruptive 

events, it might result in connectivity failures. For that reason, Liao, Hu and Ko (2018) 

proposed a metric that quantifies network connectivity by considering the ratio 

between post- and pre-disruption link capacity.  

𝑄𝑐 = 1 − ∏ (1−∏
𝑞𝑙,𝑚𝑎𝑥,𝑝𝑜𝑠𝑡
𝑞𝑙,𝑚𝑎𝑥,𝑝𝑟𝑒

𝑙∈𝑤

)

𝑤∈𝑊𝑟

    ∀𝑟 ∈ 𝑅 (3.11) 

Where, 

𝑞𝑙,𝑚𝑎𝑥,𝑝𝑜𝑠𝑡, is the post-disruption capacity of link 𝑙. 

𝑞𝑙,𝑚𝑎𝑥,𝑝𝑟𝑒, is the pre-disruption capacity of link 𝑙. 

𝑄𝑐, performance value measured as connectivity value between the OD pair 

𝑟. 

𝑊𝑟, set of paths between an OD pair 𝑟. 

𝑤𝑟, a path between an OD pair 𝑟. 

𝑅, set of OD pairs 𝑟. 

 

Connectivity can also be defined in terms of incompleted trips. If drivers cannot get 

to their destination, cancel their trip or abandon in the middle of their journey, it can 

be considered as a lack of (demand-based) connectivity. In the field of freight 
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transport, Chen and Miller-Hooks (Chen and Miller-Hooks, 2012) proposed a metric 

(see Equation (3.12)) that quantified the expected fraction of demand that was 

satisfied before and after a disaster under certain recovery costs. It is assumed that 

no more than 𝒹𝑟,𝑝𝑟𝑒 trips can be satified. 

𝑄𝑐 =
∑ 𝒹𝑟,𝑝𝑜𝑠𝑡
𝑅
𝑟=1

∑ 𝒹𝑟,𝑝𝑟𝑒
𝑅
𝑟=1

 (3.12) 

Where:  

𝑅, total number of origin-destination pairs.  

𝒹𝑟,𝑝𝑜𝑠𝑡, post-disaster demand between the OD pair 𝑟 that is satisfied. 

𝒹𝑟,𝑝𝑟𝑒, pre-disaster demand between the OD pair 𝑟 that can be satisfied.  

Li et al. (Li et al., 2019) modified the OD demand satisfaction ratio proposed by Chen 

and Miller-Hooks (Chen and Miller-Hooks, 2012). They added a binary variable (𝛾𝑟) 

that omitted those trips whose post-disaster travel time was 𝑘 times greater that the 

pre-disaster travel time.  

𝑄𝑐 =
∑ 𝒹𝑟,𝑝𝑜𝑠𝑡 ∙ 𝛾𝑟
𝑅
𝑟=1

∑ 𝒹𝑟,𝑝𝑟𝑒
𝑅
𝑟=1

 (3.13) 

Where, 

𝛾𝑟, binary variable that omits those trips whose post-disaster travel time is 𝑘 

times greater that the pre-disaster travel time. It takes the values considered 

in the Equation (3.14). 

𝛾𝑟 = {
1,     𝐶𝑟,𝑝𝑜𝑠𝑡 ≤ 𝓀 ∙ 𝐶𝑟,𝑝𝑟𝑒
0,     𝐶𝑟,𝑝𝑜𝑠𝑡 > 𝓀 ∙ 𝐶𝑟,𝑝𝑟𝑒

 (3.14) 

Being,  

𝐶𝑟,𝑝𝑜𝑠𝑡, travel time between the OD pair 𝑟 during the post-disaster stage. 

𝐶𝑟,𝑝𝑟𝑒, travel time between the OD pair 𝑟 during the pre-disaster stage. 

𝓀, user-defined parameter that sets the limit of those trips that are 

counted on the metric or those that do not.  

Bocchini and Frangopol (2013) proposed a metric to quantify network connectivity 

based on the serviceability of routes between OD pairs. Connectivity was quantified 

as the total demand between those OD pairs that existed at least one route in service.  
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𝑄𝑐 =∑∑𝐿𝑖𝑗 ∙ 𝑂𝐷𝑖𝑗

𝑁

𝑗

𝑁

𝑖

 (3.15) 

Where: 

𝐿𝑖𝑗, is the dummy variable that indicates if there exists at least a route in 

service (or not) between node 𝑖 and node 𝑗 at time 𝑡. 

𝐿𝑖𝑗 = {
1,     𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑎 𝑟𝑜𝑢𝑡𝑒 𝑖𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0,       𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑟𝑜𝑢𝑡𝑒𝑠 𝑖𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗     

 (3.16) 

𝑂𝐷𝑖𝑗, demand between node 𝑖 and node 𝑗 at time 𝑡. 

𝑁, total number of nodes.  

This metric considered the value of traffic demand (𝑂𝐷𝑖𝑗) to indicate that some roads 

were more important than others because they carried higher traffic flows and 

therefore connects more important areas (Bocchini and Frangopol, 2013). Therefore, 

the more vehicles it carried, the more important that OD connection was. 

 

3.4.2.1. Proposed connectivity metric 

The previous section provided an overview of the main connectivity metrics proposed 

in the literature. Two classes of connectivity metrics could be highlighted: network-

based connectivity metrics and demand-based connectivity metrics. The former 

focussed on measuring how many nodes were physically connected. The latter 

measured the fraction of travel demand that was satisfied. The problem observed 

from these metrics is that, for the same road network, different values of connectivity 

can be obtained depending on the type of metric that is used. As an example, consider 

a road network that is physically fully connected. Assume that there is a place located 

on a node that has been isolated from the rest of the network due to unforeseen 

circumstances. Under normal conditions, this place has very low intermittent demand 

(some days drivers need to reach that place and some other days no one needs to 

be there). If a demand-based connectivity metric is used, on those days that no one 

needs to get to that place, the connectivity gets the maximum value of 100% because 

the rest of the demand can easily arrive to their destinations. However, if a network-

based connectivity metric is used, as not all nodes are physically connected, the 

connectivity value is less than 100% even when no one needs to reach that place. It 

is important to reflect the isolation of that node on the connectivity metric because, 
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under extraordinary situations, the travel demand that goes to the some places might 

be not zero/low values.  

The proposed connectivity metric combines the supply side and the demand 

side in one formulation. For the supply side, the formula presented by Karamlou and 

Bocchini (2016) is used as an inspiration and for the demand side, the formula 

presented by Chen and Miller-Hooks (Chen and Miller-Hooks, 2012). The proposed 

formulation is included in the following Equation (3.17). To the best of the author’s 

knowledge, this is the first time that a formula combines supply and demand side to 

measure the connectivity of the network. It quantifies the connectivity of all origin 

nodes to the rest of destination nodes of the network. Only the connectivity to nodes 

that are considered important is quantified.   

The benefit of including a demand-based connectivity metric is that it also 

accounts for those vehicles that do not get to their destinations because of 

unconnected nodes, abandoned trips or cancelled trips. As Vishnu, Kameshwar and 

Padgett (2019) affirmed in their work, a robust resilience assessment requires an 

analysis that combines travel time and missed trips. Total travel cost (time) is already 

considered in the first metric on Section 3.4.1 and missed trips are considered in the 

metric that is being explained. As missed trips are not considered in the ‘total travel 

cost’ metric, no double counting of trips is involved.    

A brief description of the formulation is included as follows. Equation (3.17) is 

divided into two main terms: a demand-based term (
𝑉𝑡𝑖𝑗

𝑉𝑖𝑗,𝑝𝑟𝑒
), which calculates the 

percentage of demand that is satisfied; and a topological-based term (𝐿𝑡𝑖𝑗), which 

determines if the node pair is physically connected. These are excluding terms, 

meaning that for the same node pair both terms cannot be computed at the same 

time. That is the reason of adding a binary variable (𝛿𝑡𝑖𝑗). The importance of each 

destination node is computed using the factor 𝐾𝑗. In order to measure connectivity 

values in the range [0,1], the previous terms are divided by the number of node pairs 

whose connectivity is computed in the formula.  
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𝑄𝑐 =

∑ [ ∑ 𝐾𝑗
𝑁
𝑗=1 [𝛿𝑡𝑖𝑗 (

𝑉𝑡𝑖𝑗

𝑉𝑖𝑗,𝑝𝑟𝑒
) + (1 − 𝛿𝑡𝑖𝑗)𝐿𝑖𝑗]]

𝑁
𝑖=1

∑ 𝐾𝑗
𝑁
𝑗=1

 
(3.17) 

Where: 

𝑄𝑐, performance value measured in terms of connectivity. It can take values 

between 0 and 1, being 0 null connectivity and 1 full connectivity.  

𝑁, total number of nodes. 

𝐾𝑗, weighting factor that indicates the importance of the destination node 𝑗. 

This value is determined by engineering judgement and it has to satisfy 

the following constraint (Equation (3.18)): the sum of the weighting 

factor of all destination nodes has to be 1.  

∑𝐾𝑗

𝑁

𝑗=1

= 1 (3.18) 

𝛿𝑡𝑖𝑗, binary variable that indicates if there is traffic demand from node 𝑖 to 

node 𝑗 at time 𝑡.  

𝛿𝑡𝑖𝑗 = {
1,      𝑖𝑓 𝑉𝑖𝑗,𝑝𝑟𝑒 > 0   

   0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (3.19) 

𝑉𝑡𝑖𝑗, total number of vehicles that completed their trip from node 𝑖 to node 𝑗 

on day 𝑡.  

𝑉𝑖𝑗,𝑝𝑟𝑒, total number of vehicles that are expected to travel from node 𝑖 to node 

𝑗 during the pre-disrupted stage.  

𝐿𝑖𝑗, parameter that determines the level of connectivity between node 𝑖 and 

node 𝑗 from a supply side (Karamlou and Bocchini, 2016) on day 𝑡. It 

can take a value of 1 if nodes 𝑖 and 𝑗 are fully connected, or 0 if nodes 

𝑖 and 𝑗 are not connected.  

 

3.5. Multi-objective optimisation model  

The optimal repair strategy that maximises/minimises the objective functions 

described in previous Section 3.4 is obtained using an optimisation model. The 

procedure of an optimisation problem consists of finding the combinations of design 

variable values that obtain the best objective function values, satisfying all the 

constraints. This is also called a combinatorial optimisation problem as it requires 
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searching for the best combination of variables among a large number of discrete 

solutions (Hosny, 2010). More specifically, it aims to find the best priority order of 

repairs and the best allocation of repair teams to those physically damaged road 

segments as described in Section 3.3.2.   

There are mainly two type of methods to solve an optimisation problem (see 

Figure 3.2): analytical methods and numerical methods (Cui et al., 2017). The 

analytical (or exact) methods are those techniques that are guaranteed to find an 

optimal solution at a high computational time. The algorithms have to solve strict 

mathematical formulations but the problem is that some realistic problems cannot be 

represented by a series of formulas. As opposed to exact methods, numerical 

algorithms can find near optimal solutions at an acceptable computational cost. The 

main aim of these techniques is to find an optimal solution without searching the 

whole solution space (Sangaiah et al., 2020). Numerical methods are further 

categorised in two types: heuristic algorithms and meta-heuristic algorithms.  

 

Figure 3.2. Classification of methods to solve optimisation problems 

 

Heuristic methods are defined as techniques that seek good solutions at an 

acceptable computational cost but without the guarantee to achieve optimality 

(Reeves, 1996). It is also defined in the literature as a problem-dependent technique 

because these are solving methods for special and specific problems (Pillay and Qu, 

2019). Examples of heuristic algorithms include local-search algorithms and 

constructive algorithms, among others. The former explores neighbouring solutions 
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in order to improve the solutions. The latter constructs the solution by making the 

best solution after a series of steps (Merz and Freisleben, 2002).  

Metaheuristic algorithms are one level higher than the heuristic methods 

(Hussain et al., 2018) as it combines heuristic methods in higher level frameworks 

with strategies that guide the search process (Alba, 2005). It is also known as 

problem-independent techniques because it is a more generic method that can be 

used for most optimisation problems (Hussain et al., 2018). There exists multiple 

ways of classifying metaheuristic techniques in the literature but one that is commonly 

used is based on the number of solutions that is evaluated at a time. These are 

trajectory-based algorithms and population-based algorithms. The former evaluates 

one solution at a time and starts with a single initial solution. These algorithms create 

a trajectory in the search space. The latter initially explores a population of solutions. 

Then, after each iteration, a new population of solutions is created based on the 

results on the previous iteration and towards better search areas (Hussain et al., 

2018). Some commonly used trajectory-based algorithms are: simulated annealing, 

tabu search, basic local search, etc. On the contrary, some population-based 

algorithm are: genetic algorithms, scatter search, ant colony, particle swarm systems, 

etc. (Cotta, Talbi and Alba, 2005).              

Metaheuristic techniques have become more popular over the exact methods 

in the last years due to the simplicity and robust results (Hussain et al., 2018). 

However, the choice of the resolution technique needs to be based on the formulation 

of the problem (objective functions, variables constraints, etc.). The complexity of the 

problem presented in this thesis makes infeasible its resolution via exact methods. 

The model includes a number of constraints of the “if-then” form, the combinatorial 

nature of the model and other simulation modules that are implemented make the 

use of traditional mathematical resolution techniques difficult. Therefore, an 

approximate approach needs to be selected to solve the problem. Among all numerical 

techniques and due to the nature of the problem, the population-based approach is 

selected against the trajectory-based. The advantage of using a population-based is 

that the search space is explored more in depth as more solutions are run after each 

iteration. The procedure may also be faster as parallel computing can be used to run 

several solutions of the population in parallel. Also, as observed in the literature, 
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similar problems are solved using population-based techniques, obtaining fast and 

reliable results (Connor and Shah, 2014; Zhang, Zhang and Zheng, 2014; Míča, 2015; 

Gerami Matin, Vatani Nezafat and Golroo, 2017).   

Depending on the number of objectives, optimisation problems can also be 

classified into single-objective problems and multi-objective optimisation problems. 

The problem proposed in this chapter optimises simultaneously two contradicting 

objectives (total travel cost and connectivity). This means that the optimisation does 

not provide a unique solution, but a set of optimal trade-offs between these 

potentially conflicting objectives. These set of solutions is called Pareto optimal set of 

solutions.    

It is not possible to identify which population-based multi-objective 

optimisation algorithm is the best for a given problem (Lei and Shi, 2004). As the 

results obtained from an approximate approach are only an “approximation” of the 

optimal solutions, it is hard to know how close solutions are to the optimal value. That 

is the reason why it is difficult to compare between algorithms and in most cases the 

result may also be influenced by the parameter values of the algorithm taken on each 

problem (Míča, 2015). Therefore, the most appropriate algorithm to solve the problem 

presented in this thesis is selected based on the results obtained from similar 

problems already solved in the literature. Based on similar combinatorial optimisation 

problems, Genetic Algorithms have stood out over the rest of the population-based 

algorithms. Said et al. (2014) presented a comparative study between genetic 

algorithm, tabu search and simulated annealing for solving an assignment of facilities 

to different locations. The result showed that genetic algorithm had a better solution 

quality in comparison with the other metaheuristic algorithms. Connor and Shah 

(2014) evaluated the performance of three different metaheuristic techniques 

(Genetic algorithms, simulated annealing and tabu search) on a resource allocation 

and scheduling problem. The analysis suggested that the genetic algorithm performed 

better than the rest of algorithms. Matin et al. (Gerami Matin, Vatani Nezafat and 

Golroo, 2017) presented a problem that optimised road maintenance planning 

minimising the cost and maximising the pavement condition. It concluded that Genetic 

Algorithm performed better and provided the optimum solution. On the other hand, 

there are other studies that indicate that genetic algorithm performs not as good as 
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other metaheuristic algorithms (Zhang, Zhang and Zheng, 2014). However, as 

Abraham and Jain (2005) admit, optimisation techniques such as simulating 

annealing, tabu search, ant colony systems, etc. could generate the Pareto set of 

optimal solutions but the solutions very often tended to be stuck at a local optimum 

and there was no guarantee of finding the optimal set of trade-offs. On the contrary, 

evolutionary algorithms such as genetic algorithms was characterised by a population 

of solutions whose ‘best’ values were reproduced and combined to create new 

populations (natural selection).  

Overall, genetic algorithm demonstrates an adequate and robust performance 

in similar combinatorial optimisation problems and therefore, this is the algorithm that 

is selected to solve the presented recovery problem.  

 

3.5.1. Multi-objective Genetic Algorithm: NSGA-II 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2000) is a 

multiple objective optimisation algorithm, which is an extension of the classical 

Genetic Algorithm. The aim of the NSGA-II is to find the set of repair strategies that 

provides the (near-) optimal total travel cost and connectivity values. Apart from the 

reasons described in the Section 3.5, the NSGA-II is selected as the optimisation 

technique due to: (1) the effectiveness of generating optimal solutions for similar 

problems (Kandil and El-Rayes, 2006; Orabi et al., 2009; Bocchini and Frangopol, 

2012b; Gerami Matin, Vatani Nezafat and Golroo, 2017); (2) the nature of a multi-

objective optimisation problem; (3) the advantage of fast running and good 

convergence of solution set (Deb et al., 2000).  

To clarify the terminology involved in a GA and to make it easier to the reader, 

some concepts are defined in this paragraph. Most of them are directly applied from 

the natural Darwinian theory (Darwin, 1859) and may be a bit confusing for those not 

specialised in the field. In this sense, an individual (in this model, a repair strategy) 

is characterised by a set of variables known as genes. These genes are the priority 

order of repairs and the allocation of repair teams to incidents. Each individual is a 

solution to the problem and the set of individuals is called a population.  

The NSGA-II procedure is described as follows (Figure 3.3). It starts with the 

generation of a random population of repair strategies. Then the recovery model 
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described briefly in Section 3.3.1 evaluates the performance of each repair strategy 

and a resilience value, which is used as a fitness value, is obtained for each objective. 

NSGA-II uses this fitness value to rank and sort these solutions. This is explained 

more in detail in the following Section 3.5.1.1. The genetic operators of selection, 

crossover, mutation and elitism are then applied to the best (highest ranking) 

solutions in order to generate a new population of solutions that are closer to the 

optimal (see Section 3.5.1.2 for more details). This procedure is repeated for a pre-

defined number of generations or until the population has converged to the (near-) 

optimal, which means that the population does not produce offspring which are 

different from the previous generation. The Pareto front of solutions of this last 

generation forms the optimal set of repair strategies. 

 

Figure 3.3. NSGA-II procedure 

 

3.5.1.1. Ranking and sorting method 

After the evaluation of each repair strategy, two fitness values (one for each 

objective) are assigned to each solution. However, the GA algorithm cannot optimise 

the value of two conflicting fitness values at the same time for each repair strategy. 

There are several methods in the literature that combine these two values and 

produce a single value that can be optimised by the algorithm. This value determines 

how “fit” an individual (repair strategy) is. The better the fitness value, the more 

probability this repair strategy has to be selected for reproduction. The Pareto rank-

based technique used in this model to rank the solutions is the classical one 

formulated by Goldberg (1989). The advantage of this technique compared to other 

methods (e.g. weighted sum approach) is that the multi-objective vector is reduced 

to a scalar fitness value without combining the objectives in a weighted formula. The 

procedure of the Goldberg’s method is the following: (1) Identify those non-
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dominated repair strategies, which are those solutions whose objectives cannot be 

improved without degrading some of the other objective values. (2) Assign to these 

repair strategies a rank 1 and remove them from the population. (3) Identify again 

the non-dominated repair strategies of the reduced population. (4) Assign a rank 2 to 

these solutions and remove them from the population. (5) Repeat these steps 

assigning rank values until the whole population is totally ranked. A graphical example 

of this procedure is shown in Figure 3.4. 

 

Figure 3.4. Graphical example of the Pareto ranking-based method used in this 
model. The numbers in the graph represent the ranking value associated with each 

repair strategy.  

 

3.5.1.2. Genetic operators: selection, crossover, mutation and elitism.  

The basic search mechanisms of the GA are the genetic operators. These are used to 

create new solutions based on the existing ones. In this model, two types of operators 

are considered: crossover and mutation. Crossover is one of the vital roles in a genetic 

algorithm. This operator selects some characteristics (genes) from selected repair 

strategies (parents) and creates new ones (kids). In terms of the process of natural 

selection, only the “fittest” strategies are the ones responsible for passing their genes 

to their next generation. The process of selecting those fittest solutions (or parents) 

is described as follows: (1) Select randomly two repair strategies from the same 

generation. (2) Find which of these two repair strategies is better in terms of the 

ranking value obtained in previous Section 3.5.1.1. That repair strategy whose ranking 

value is higher will be selected as a parent. If the ranking value of both repair 

strategies is the same, the modeller needs to define which conflicting objective 
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acquires higher importance and therefore, the parent will be selected based on the 

fitness value of the selected objective. (3) Store the selected repair strategy in a list 

of parents. (4) Repeat steps 1 to 3 to select the total amount of parents. In this 

model, the total number of parents are defined as the double of the number of 

offspring that are expected to produce. It is the double because two repair strategies 

(parents) can only create a single repair strategy (offspring).  

Although a lot of crossover operators have been proposed in the literature 

(Kora and Yadlapalli, 2017), this model uses a uniform crossover operator due to its 

simplicity and randomness involved in the process. The idea behind this operator is 

that each gene of the repair strategy is randomly inherited from a parent. Initially, 

the operator creates a random binary (1 or 0) crossover mask of the same length of 

the repair strategy vector. Each “1” value means that a gene or variable from the 

parent 1 is transferred to the offspring. If there is a “0” value, then the gene is 

transferred from parent 2. A new crossover mask is generated randomly for each pair 

of parents considered in the model.  

As described in Section 3.3.2, two damaged locations cannot have the same 

priority level. This means that a priority value assigned to each damaged location on 

a repair strategy cannot be repeated. For instance, if damaged road segment “A” is 

the second one on the list of priorities, damaged road segment “F” cannot be the 

second one on the list of priorities to be repaired. This restriction has to be imposed 

in the crossover operator as numbers need to be adjusted to avoid repetitions.      

To introduce diversity in the new population of repair strategies, a mutation 

operator is also implemented in the algorithm. This operator introduces random 

changes in a variable (“gene” in nature selection theory) of a repair strategy. There 

are also different types of mutation operators, but in this model, a swap mutation is 

used due to the limitation of the non-repetitive integer values that the repair strategy 

can take. This type of mutation selects two positions at the repair strategy at random 

and interchanges their values.  

In order to avoid losing good solutions from one generation to the next 

(Shumeet and Caruana, 1995), an elitist selection is also incorporated in the model. 

This operator selects the best repair strategies (‘best’ means the highest ranking 
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value) from the current generation and carry over to the next one, without altering 

the repair strategy. This method guarantees that the quality of the best solution does 

not decrease from one generation to the next (Shumeet and Caruana, 1995).  

MATLAB (The MathWorks Inc., 2018) includes a global optimisation toolbox 

that incorporates a whole genetic algorithm module. However, due to the nature and 

singularity of the model presented in this thesis, the built-in MATLAB function of the 

Genetic Algorithm is not suitable for the purpose of this model. However, a similar 

algorithm has been implemented following the information provided in the online 

guides that MATLAB provides (The MathWorks Inc., 2018) and adapting the existing 

code to the structure and constraints of the presented model.  

To run the optimisation algorithm, the user needs to define which percentage 

of the new population is created by using crossover operators, mutation operators or 

elitist selection.   

 

3.6. Conclusions of the chapter  

This chapter has provided an overview of the entire model which is used as an 

introduction to the remaining chapters of the thesis. It presented the conceptual 

framework of the recovery model which included a damage simulation model, a 

resource allocation and repair process model, a departure time and route choice 

model and an optimisation model. The chapter also described the formulation of the  

corresponding optimisation problem. Previous network performance metrics studied 

in the literature were reviewed and two functionality metrics were proposed to 

measure the effectiveness of each repair strategy: a traffic-related metric, which 

measured the total travel cost of all drivers and a connectivity metric that combined 

for the first time topological and demand characteristics of the network in a single 

metric. The model also quantified resilience as the area under the functionality curves. 

The higher the area under the ‘total travel cost’ curve is, the more travel time drivers 

experience to get to their destination. This means that the system is less resilient in 

terms of travel cost. Lower values of the area shows a better adaptation of drivers to 

the disrupted network. In the case of the connectivity values, the higher the value 

under the area of ‘connectivity’ curve, the more trips are completed. In this case the 

system is more resilient in terms of connectivity values. 
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Different types of methods to solve the optimisation problem were also 

reviewed. Genetic algorithms demonstrated an adequate and robust performance in 

similar combinatorial optimisation problems. The Non-dominated Sorting Genetic 

Algorithm (NSGA-II) was selected as a technique to solve the optimisation problem 

and find the Pareto set of repair strategies that provided the (near-) optimal total 

travel costs and connectivity values.  

In conclusion, the key modules that form the proposed recovery model are 

successfully introduced in this chapter and a more detailed description of each module 

will be included in the following chapters. The performance metric considered in the 

proposed model provides a robust resilience assessment as it requires an analysis 

that combines the cost of each driver travelling through the network and the amount 

of trips that cannot be satisfied with the network conditions after hazard impacts.    
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CHAPTER 4 

4.  Damage scenario simulation and a 

three-stage road infrastructure repair 

model 

 

 

 

4.1. Introduction 

The impact of hazard events may produce physical damage to road infrastructure. 

The modelling of this impact is essential to support the strategic pre-disruption risk 

mitigation and post-disruption recovery planning. During the post-disruption planning 

phase, damage has already physically affected the infrastructure, and modellers just 

need to incorporate that real damage into the model and run it to find out the optimal 

repair strategy. However, for the pre-disruption planning phase, damage has not 

happened yet and modellers need to simulate possible scenarios of damage to 

infrastructure. Historical information on hazardous events can be used to recreate the 

impact of previous events on the road network. However, the limitation of historical 

data makes the development of new hazard-specific models more difficult. As an 

example, fragility models (which relates the intensity of a hazard to the probability 

that a particular damage state is exceeded, as described in Chapter 2) have been 

difficult to develop due to the limited post-event data for specific type of hazards 

(Tarbotton et al., 2012). Most of the previous recovery models reviewed in Chapter 2 

simply generate hypothetical damage scenarios and in most cases these are not even 

related to previous hazardous events. In order to overcome this lack of information, 

the first part of this chapter proposes a damage scenario simulation that uses existing 

hazard susceptibility data to identify those elements that are more vulnerable to 

damage from a hazard event. Based on a probabilistic approach, a damage state is 
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assigned to each damaged infrastructure and is quantified in units of repair resources-

time. The second part of this chapter presents a repair model that simulates how 

damage is physically repaired over time. The resource allocation and repair process 

model is implemented in a three-stage model. It assigns resources to damaged places 

following a pre-defined priority order of repairs, updates the damage that is repaired 

on each day and converts this repaired damage into changes in road capacity. 

Therefore, the model combines a resource allocation module and a damage repair 

module to produce a road capacity recovery schedule.  

Figure 4.1 shows how the output of the damage scenario simulation model is 

part of the input to the infrastructure repair model. The output of the repair model is 

the road capacity schedule for a specific repair strategy. Note that the model 

described in this chapter only involves the generation of a damage scenario and the 

physical repair of the damaged network. This means that the drivers’ reaction to these 

network changes is still not simulated. This is incorporated in the model in chapters 

5, 6 and 7 of this thesis.      

The following sections of this chapter describe more in detail these two 

frameworks and apply the model to the Sioux Falls Network (South Dakota, US) in 

order to illustrate how it works. 

 

Figure 4.1. Simplified framework of the damage scenario simulation and 

infrastructure repair model 

 

4.2. Damage scenario simulation: from hazard susceptibility to damage 

quantification  

The determination of infrastructure damage is a very complex process that requires 

the help of engineers and professionals to assess the physical impact on road 

infrastructure. Damage is normally assessed by post-event inspections. A group of 
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engineers attends the incident location, assesses the severity of the damage and 

therefore, evaluates the amount of work that is required to repair this damage.   

The review of previous road recovery models described in Chapter 2 identifies 

three major approaches that model damage to infrastructure: (1) an approach in 

which the modeller creates a hypothetical impact; (2) an approach in which the 

modeller use historic data to model damage of previous events; and (3) a stochastic 

approach, such as those based on fragility curves or based on a known probability 

distribution of damages. The creation of fragility curves for certain infrastructure 

under the impact of a specific type of hazard is a complex process that traditionally 

have been obtained based on seismic data (as observed in the review of Chapter 2) 

(Mai, Konakli and Sudret, 2017). One of the examples that uses fragility curves to 

analyse the vulnerability of transport networks and evaluate the system resilience is 

the work developed by Nogal et al. (2015).  

However, the difficulty in obtaining these curves for some types of hazards 

would limit the application of the model presented in this thesis to certain hazards. In 

fact, if this approach were used in this thesis, the presented model would be limited 

only for seismic hazards. As the aim is to create a model that can be used for any 

type of hazard event, this approach has not been considered. In addition, the 

availability of data from previous hazard impacts is often scarce and modellers cannot 

use this data to predict future events because it is insufficient. As opposed to the 

most common recovery models that generate hypothetical impacts, the framework 

presented in this section describes an alternative methodology that uses the hazard 

susceptibility concept as a way to generate more realistic damage scenarios. Recently, 

hazard susceptibility modelling approaches have raised more interest among 

researchers and more advanced techniques have been developed (Pourghasemi et 

al., 2020) which has made possible the application of the methodology to all types of 

hazards. A detailed description of the susceptibility concept is defined in the following 

Section 4.2.1.   

The procedure that is followed to create damage scenarios is shown in Figure 

4.2. Initially, a hazard susceptibility map is used to identify which road segments are 

damaged or undamaged. Then using a pre-defined probabilistic damage state 

function, a categorical severity of the damage is assigned to each damaged road 
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segment. Finally, a function that converts the categorical damage state to a numerical 

value is used to quantify the damage on each road segment. The following sections 

describe more in detail each aforementioned steps.  

 

Figure 4.2. Process of assigning and quantifying a damage state to a road segment. 

 

4.2.1. From hazard susceptibility to damage selection   

The concept of hazard susceptibility is defined as the likelihood of a specific hazard 

occurring in an area (Brabb, 1984). In other words, it is the degree to which an area 

might be affected by the impact of any hazard event. Susceptibility answers the 

question of where the hazard is more likely to occur. It is important to mention that 

the concept of susceptibility does not consider the magnitude of the expected hazard 

impact nor the temporal occurrence of the hazard. It only accounts for the probability 

of spatial occurrence. This information can be useful as it allows the identification of 
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areas which are more prone to be impacted by certain hazards. However, the 

assessment of hazard susceptibility of an area is out of the scope of this project and 

therefore, already existing susceptibility data is used in this model. 

In this project, hazard susceptibility is classified into four main groups: (1) 

high susceptibility; (2) moderate susceptibility; (3) low susceptibility and (4) not 

susceptible. If an area is highly susceptible to a certain hazard, road segments that 

are located in that area will be more likely to be affected by this hazard. Based on 

this idea, a stochastic rule is defined to identify which road segments are damaged: 

the higher the hazard susceptibility is, the more likely the road segment is identified 

as damaged. Figure 4.3 shows the relationship between damage probability and 

susceptibility classification. Each modeller needs to define the limit levels (𝑎, 𝑏 and 𝑐) 

that separate the damaged part and the undamaged part.  

 

Figure 4.3. Hazard susceptibility vs. damage probability graph 

A random number 𝜗𝑙 is generated for each road segment. A road segment will 

be classified as damaged if the random number has a value below the limit level. This 

is expressed in Equation (4.1) which defines the binary variable 𝐷𝑚𝑙 as the value that 

indicates whether the road segment is damaged or not.          

𝐷𝑚𝑙 = {
1     𝑖𝑓 𝜗𝑙 ≤ 𝑃𝐿lim  
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (4.1) 

Where, 

𝐷𝑚𝑙, binary variable that indicates if the road segment 𝑙 is damaged (𝐷𝑚𝑙 =

1) or undamaged (𝐷𝑚𝑙 = 0). 

𝜗𝑙, random number for road segment 𝑙 
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𝑃𝐿lim, is the upper limit that is used to classify a road segment as damaged 

or undamaged. It takes different values depending on the level of 

susceptibility associated with each road segment: High susceptibility 

(𝑃𝐿lim = 𝑎), Moderate susceptibility (𝑃𝐿lim = 𝑏), Low susceptibility 

(𝑃𝐿lim = 𝑐) and Not susceptible (𝑃𝐿lim = 0). 

 

4.2.2. Categorical damage states and damage assignment 

Once road segments are identified as damaged/undamaged, the extent of the 

damage also needs to be simulated. HAZUS (FEMA, 2013) defined five qualitative 

damage limit states to evaluate the severity of damage on structural infrastructure 

after seismic impacts. These have been used extensively in previous studies as 

mentioned in the literature review (Chapter 2). These are: (1) No damage; (2) 

Slight/Minor damage; (3) Moderate damage; (4) Extensive damage; (5) Complete 

damage. It is not easy to define exactly the type of damage that each category 

includes because it depends on the hazard event and the type of infrastructure that 

is being affected. In this model, only the impact of a single type of hazard is 

considered. However, if multiple types of hazard concurrently impact the road 

network, it must be assumed that the damage state that is assigned to each damaged 

road segment requires the same recovery effort even if repair activities are different 

for each type of hazard. This means that, for instance, the amount of repair work 

involved in a ‘minor damage’ has to be similar when it is produced by a flooding event 

or by a landslide event, even if repair activities are different.   

Once the amount of repair work is defined for each damage state, it needs to 

be assigned to each damaged road segment. As mentioned before, fragility curves 

are not always available to use for all type of hazards and all type of infrastructure. 

For that reason, the general model proposed in this chapter uses a stochastic rule 

and a uniform probability distribution function that assigns a damage state to each 

road segment. The procedure is the following: (1) Generate a new random number 

(𝜗𝑛) between 0 and 1; (2) For simplicity, a uniform cumulative distribution function is 

used in Equation (4.2) to obtain the probability value (also shown in Figure 4.4); (3) 

Identify the damage state using the Equation (4.3). Note that the probability 

distribution function can be changed by the modeller, if more information is provided. 
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𝑃(𝜗𝑛) = 𝜗𝑛 (4.2) 

Where, 

𝑃(𝜗𝑛), is the uniform cumulative probability distribution. 

𝜗𝑛, is a random value between 0 and 1. 

 

Figure 4.4. Example of a damage state assignment graph with values of 𝑃𝑚𝑖𝑛 =

0.25, 𝑃𝑚𝑜𝑑 = 0.5, 𝑃𝑠𝑒𝑣 = 0.75. 

 

𝐷𝑎𝑚𝑠𝑡𝑎𝑡𝑒 =

{
 

 
 

𝑀𝑖𝑛𝑜𝑟,              𝑖𝑓 𝑃(𝜗𝑛) ≤ 𝑃𝑚𝑖𝑛        

    𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,         𝑖𝑓 𝑃𝑚𝑖𝑛 < 𝑃(𝜗𝑛) ≤ 𝑃𝑚𝑜𝑑
    𝑆𝑒𝑣𝑒𝑟𝑒,            𝑖𝑓 𝑃𝑚𝑜𝑑 < 𝑃(𝜗𝑛) ≤ 𝑃𝑠𝑒𝑣
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒,         𝑖𝑓 𝑃(𝜗𝑛) > 𝑃𝑠𝑒𝑣                  

 (4.3) 

Where, 

𝑃𝑚𝑖𝑛, 𝑃𝑚𝑜𝑑 , 𝑃𝑠𝑒𝑣  , is the limit that defines the minor, moderate and severe 

damage states, respectively. 

𝑃(𝜗𝑛), is the uniform cumulative probability distribution.  

 

 

4.2.3. Units of damage  

The question that arises here is: How is road damage measured? The quantification 

of damage requires the definition of a unit that is used to measure the amount of 

damage. The process of quantifying damage state on road infrastructure in a single 

variable is not straightforward.   

As described in Section 2.5.1, previous recovery models use repair units to 

quantify damage. Some of them determine the number of steps to repair that 
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damage. Others assign directly repair time to each damaged infrastructure. And 

others consider the productivity of repair resources, so that repair time can be 

calculated. As described in previous Section 3.3, the model presented in this thesis is 

defined to allocate limited resources on multiple damaged road segments and this 

cannot be done if damage is quantified by simply using the number of steps or repair 

time. This model goes a step further and assigns repair teams (resources) to damaged 

places. In this case, the metric used to quantify damage on road infrastructure is 

measured in units of resource-time. It means that “R” amount of resources are 

required during “T” days (time) to repair the damage. This defines an “area” of 

damage that needs to be repaired. If fewer resources are assigned to this damaged 

infrastructure, more repair time is required to repair the same damage. Figure 4.5 

shows the aforementioned relationship. The shaded area is the amount of damage 

that needs to be repaired. The brown area and the blue area contain exactly the same 

damage (because the area is the same). Depending on how many resources are 

assigned to each place, the damage can be repaired faster/slower because more/less 

resources are assigned to each place, respectively. 

  

Figure 4.5. Damage quantification. Both shaded areas contain the same damage, 

but different number of resources and repair time.  

 

4.2.4. From categorical damage state to quantitative damage 

Based on the description of categorical damage states, each damaged infrastructure 

has been assigned to a specific damage state in Section 4.2.2. This state can be 

transformed into a numerical value in units of resource*time using a pre-defined step 

function. Figure 4.6 shows three types of categorical and quantitative damage state 

relationships. As observed, if there is no damage, then this value will be 0*D, being 
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D an initial damage value (Base Damage) defined by the user. If damage is complete, 

it is assumed to be 4*D in this case. Note that this categorical-quantitative relationship 

is not limited to the ones proposed in this section and other functions can be 

proposed. These relationships have been generated for the purpose of illustration 

assuming three different types of damage behaviour. Further research needs to be 

done in order to validate these values with real data.  

 

Figure 4.6. Categorical and quantitative damage state relationships. “D” is defined 

as the base damage applied to each type of relationship. 

  

The fact that a ‘Base damage’ variable (D) is included in the relationship 

proposed in Figure 4.6 makes this method more flexible to be adapted to any type of 

hazard event. Depending on the type of hazard that is being analysed, the base 

damage can acquire a higher or a lower value. And then, based on the proposed 

relationships, the damage value on the rest of the other damage states can be easily 

obtained.    

Note that if data from real damage of a past event is provided, then all this 

procedure is not needed and therefore the modeller can also introduce manually the 

damage values of each affected infrastructure. 

 

4.3. Three-stage road infrastructure repair modelling: the framework  

This section presents a resource allocation and repair process model that simulates 

how repairs are carried out in a day-to-day basis. The main aim of this model is to 

generate a resource allocation plan and a recovery schedule that includes a road 
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opening plan based on a pre-defined repair strategy (see Figure 4.7). These are 

explained more in detail in the following sections. The output of this model (network 

capacity plan) will be one of the inputs of the traffic simulator which will be used in 

Chapters 5, 6 and 7.   

 

Figure 4.7. Inputs/Outputs of the resource allocation and repair process model 

The model proposed is composed of three main stages as shown in Figure 

4.8. The aim of the first stage of the model is to assign resources to each damaged 

road segment following the priority order of repairs that has been defined by the 

proposed repair strategy. This information will be used on the second stage of the 

model to measure the amount of damage that is repaired if these resources are 

allocated on this damaged road. This stage allows the monitoring of the damage and 

repairs at all times. The third stage of the model is therefore responsible for opening 

roads to traffic, once certain damage is repaired. All three stages are modelled 

sequentially during each day, so that information can be transferred between 

modules.     
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Figure 4.8. Three-stage resource allocation and repair process model 

 

This model assumes that road capacity can only be increased between days 

and not within a day. The main reason is just to make the general problem easier. 

Changing the capacity of roads between days allows drivers to know at the beginning 

of their trip the state of the network. Although it may also be interesting the analysis 

of drivers’ behaviour under dynamic changing network conditions within a day, this is 

out of the scope of this model. The rest of this section explains more in detail the 

three stages of this module.   

 

4.3.1. STAGE I: Repair teams, resource productivity and resource allocation 

process  

4.3.1.1. Repair team definition and productivity 

The term resource defined in the damage quantification is a generic term that is used 

to represent those individuals or elements that carry out the repair process. Resources 

are grouped in repair teams, which are considered as the minimum indivisible unit of 

this repair model. Each repair team is formed by a group of personnel, plant and 

equipment, which are the main elements that are required to carry out the repair 

process. In this model, a repair team is a discrete variable. Depending on how many 

personnel, plant and equipment are within a repair team, the productivity of each 

repair team will be higher or lower. In this sense, productivity is defined as the amount 

of damage that can be repaired on a day by a repair team. Initially, the modeller has 

to decide how big the repair teams are in terms of personnel, plant and equipment 
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and according to this, assign a productivity per repair team. The current version of 

this model assumes that all repair teams have the same productivity. This implies that 

there is only one type of repair team, but further improvements could incorporate the 

possibility of adding different types of repair teams with different productivities. 

In order to speed up the repair process, more than one repair team can attend 

the same incident location. As shown in Figure 4.9, this model assumes a linear 

relationship between repair teams and productivity. The more repair teams (𝑅𝑇) are 

assigned to the same place, the more damage they repair in a shorter amount of time 

(𝑃𝐷, more productivity). However, there is also a saturation point (𝑅𝑇𝑚𝑎𝑥) where the 

addition of more repair teams do not increase the productivity. It is also possible that 

certain damaged places need a minimum number of repair teams (𝑅𝑇𝑚𝑖𝑛) to start 

repairs. If there is only one available team and more than one repair team is required, 

then repairs cannot start as the difficulties of the tasks require more than one repair 

team.   

 

Figure 4.9. Productivity – number of repair teams relationship. 

 

Equation (4.4) expresses mathematically the relationship between productivity 

and repair teams. The modeller needs to specify the maximum number of repair 

teams (𝑅𝑇𝑚𝑎𝑥) that can work at the same damaged location without reducing the 

productivity and the gradient or the slope (𝑔) of the productivity-resource 

relationship. Knowing the number of repair teams assigned to each damaged location, 

the productivity can be obtained following the Equation (4.4).  

𝑃𝐷 = {

    g ∙ 𝑅𝑇𝑚𝑎𝑥         𝑖𝑓 𝑅𝑇 ≥ 𝑅𝑇𝑚𝑎𝑥                 
    g ∙ 𝑅𝑇               𝑖𝑓 𝑅𝑇𝑚𝑖𝑛 ≤ 𝑅𝑇 < 𝑅𝑇𝑚𝑎𝑥  
       0                 𝑖𝑓 𝑅𝑇 < 𝑅𝑇𝑚𝑖𝑛                

 (4.4) 
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Where, 

𝑅𝑇𝑚𝑎𝑥, is the maximum number of repair teams that can attend the same 

incident location without reducing the total productivity.  

𝑅𝑇𝑚𝑖𝑛, is the minimum number of repair teams that needs to attend the 

damaged location in order to carry out repairs. This is normally assumed 

to be 1.  

𝑔, is the gradient of the line. Note that tan(𝜙) = 𝑔. 

𝑅𝑇, is the number of repair teams that are assigned to a damaged place.   

𝑃𝐷, is the productivity associated with the 𝑅𝑇 number of repair teams 

(resource-day/day).  

 

4.3.1.2. Resource assignment sub-model and assumptions 

The principle of the simulation process of the stage I is the assignment of the required 

repair teams to each damaged location following the priority order specified in the 

repair strategy. If not enough resources are available, then repairs will have to wait 

until higher-priority roads have been repaired and their resources released to repair 

new damaged locations. Some assumptions are also considered in this model: (1) it 

is assumed that once the repair of a road segment begins, the repair team assigned 

to this damaged location must complete the restoration of this road before attending 

another incident location; (2) it is also assumed that no time or cost is spent when 

repair teams move from one damaged road to another. Consequently, the existence 

of depots is not considered in this model; (3) no more repair teams than the ones 

required by the repair strategy can be assigned to each road segment; (4) repairs 

can start on a road segment if there are equal or higher available teams than the 

minimum number of repair teams required to start repairs. The following Figure 4.10 

shows the flowchart that has been implemented in MATLAB to develop this resource 

assignment submodel.  
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Figure 4.10. Flowchart of the resource assignment  

 

4.3.2. STAGE II: Road damage repair over time  

4.3.2.1. Damage-time relationship  

Once all repair teams are assigned to each damaged road segment, damage repairs 

need to be simulated. The evolution of damage repair over time is directly connected 

to the previous stage I. Depending on the amount of resources assigned to each road 

segment on each day and based on their total productivity, a value of damage is 

repaired. Figure 4.11 illustrates the most general damage-time relationship that can 

be obtained from this sub-model. The line on this graph represents the evolution of 

damage repair over time. It is composed of five different parts: (PART A) Pre-
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disrupted state. It is assumed that there is no damage before the disruption; (PART 

B) Waiting time, which is the time it takes for an already damaged road segment to 

receive repair resources. No damage is repaired in this section; (PART C) Fewer 

resources than the maximum number of required resources are assigned to this 

segment. In this sense, damage is repaired but in a slower pace as not all resources 

are completely assigned. Note that every time a new repair team attends the repairs 

of this road segment, there is a change in the slope of the damage-time relationship. 

This means that there can be more than just one PART C in Figure 4.11; (PART D) 

The maximum number of required resources are assigned to the road segment. This 

is the section of the graph that achieves the maximum vertical slope. Once resources 

are allocated, they are not reduced, except when the remaining damage requires less 

than the resources allocates for a single day, which is the case of the next part E; 

(PART E) Fewer resources than those required are assigned to the road segment 

because the amount of damage left does not require the maximum number of 

resources. This part usually takes a day of repairs.   

 

Figure 4.11. Evolution of damage over time during repairs 

This damage-time relationship considered in this model adds an additional 

feature that is not contemplated in previous models. Normally damage-time 

relationship is only represented in previous models by parts A, B and D of Figure 4.11 

(Bocchini and Frangopol, 2012b, 2012a; Karamlou and Bocchini, 2014; Unal, 2015). 

Orabi et al. (Orabi et al., 2009) mentioned that repairs can start with fewer resources 

than their resource requirements, which indirectly implies the addition of part C as 

well. The model proposed in this section adds the possibility of having multiple parts 

C (different amount of resources are added on different days) and an additional part 
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E that releases some resources from current repaired place to other damaged places 

only when the damage left can be repaired by fewer resources rather than the 

maximum required resources. This is beneficial as it allows a more realistic 

representation of how repairs are carried out.  

 

4.3.2.2. Update damage value after day-to-day repairs  

The amount of damage that is repaired each day is calculated based on the number 

of repair teams that are working on site. Equation (4.5) describes this damage repair 

update. Figure 4.12 shows the flowchart that has been implemented in MATLAB to 

simulate this damage-time relationship.  

𝑅𝐷𝑙
𝑡 = 𝑅𝐷𝑙

𝑡−1 + 100 ∙ (
𝑃𝐷𝑙

𝑡 ∙ ∆𝑡

𝐷𝑙
0 ) (4.5) 

Where, 

𝑅𝐷𝑙
𝑡, is the percentage of damage that is repaired of damaged road segment 

𝑙 on day 𝑡. 

𝑅𝐷𝑙
𝑡−1, is the percentage of damage that is already repaired on day 𝑡 − 1. 

𝐷𝑙
0, is the total damage (in resource-day) that needs to be repaired on this 

damaged road segment 𝑙. 

𝑃𝐷𝑙
𝑡, is the productivity (in resource-day/day) of repair teams allocated to 

damaged road segment 𝑙 on day 𝑡. 

∆𝑡, interval of time (in days) that the repair teams are working. In this model, 

this is always considered as one day (∆𝑡 = 1) which is the minimum 

indivisible unit of time. 
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Figure 4.12. Flowchart of the damage repair progress model 

 
 

4.3.3. STAGE III: Road capacity changes after repairs  

4.3.3.1. Damage-Capacity relationship  

As mentioned in previous sections, the extent of damage is linked to a reduction in 

road capacity. Once certain damage is repaired, road segments can be partially or 

totally open to traffic. To make it easier, if a road segment needs to be closed after 

a disruption (zero capacity), the damage-capacity relationship proposed in this model 

(as shown in Figure 4.13), which follows a deterministic approach, is defined as a 

three-step relationship in which road capacity can only take three values 0%, 50% or 

100% of the initial road capacity (pre-disruption capacity) depending on the amount 

of damage that is repaired. This relationship could change depending on the decision 

of the corresponding transport manager/authority. Only when 50% of initial damage 

is repaired, is road capacity increased. And once all damage is repaired, then the road 

segment is totally open to traffic. 
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Figure 4.13. Damage-Capacity relationship used in this model when the capacity of 

the damaged road segment after the disruption is zero. 

 
 

There can be cases in which road capacity after disruption is not zero (Figure 

4.14). Capacity after disruption can be any value between 0% and 100% of the initial 

road capacity, being 0% when the road is totally closed to traffic and 100% when it 

is totally open. As shown in Figure 4.14, this model defines three cases: CASE A, when 

capacity after disruption is 0% of the initial road capacity (Figure 4.13); CASE B, when 

capacity after disruption is between 0% and 50% of the initial road capacity; or CASE 

C when capacity after disruption is between 50% and 100% of the initial road 

capacity. In Case A and B, road capacity takes the value of 50% of the initial capacity 

when 50% of the initial damage is repaired. On the contrary, in Case C, as the post-

disruption capacity is higher than 50% of the initial road capacity, it only takes the 

value of 100% when repairs are complete. The flowchart that has been implemented 

in MATLAB is the one included in Figure 4.15.    
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Figure 4.14. Damage-Capacity relationship when initial capacity is lower than 50% 

and higher than 0% (on the left) and lower than 100% and higher than 50% (on 

the right). 

 

Figure 4.15. Flowchart of the damage-capacity sub-model. 



Chapter 4  Damage simulation and repair process model  

 

 

90 
 

4.3.3.2. Capacity-Time relationship  

The final output of this submodel is the evolution of capacity over time on all damaged 

road segments. This is the information that will be used as an input on the traffic 

simulation module.  

 

 

Figure 4.16. Example of the output of the resource allocation model: Evolution of 

road capacity over time 

 

4.4. Illustrative example  

To facilitate the understanding of the concepts described in this section, the resource 

allocation and damage repair model is applied to the well-known transportation 

network, Sioux Falls Network (South Dakota, US) which has been used in numerous 

researches (Chen and Tzeng, 1999; Orabi et al., 2010; Ye and Ukkusuri, 2015; Lu et 

al., 2016; Basavaraj et al., 2017). The aim of this example is to illustrate the process 

that has been explained in the previous sections.  

 

4.4.1. Road network data  

The Sioux Falls network consists of 24 nodes and 76 links as shown in Figure 4.17 

and whose characteristics are presented in Table A.1 and Table A.2 of the Appendix 

A. The original geometry proposed by Leblanc (1975) has been modified to adapt it 

to the real network. The vertex coordinates have been taken from Chakirov and Fourie 

(2014).   
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Figure 4.17. Sioux Falls network. On the left, adjusted geometry network 

(background from OpenStreetMap). On the right, the original Sioux Falls network 

used by Leblanc (1975). 

 

4.4.2. Disruption scenario  

This section aims to generate a damage scenario that simulates damage caused to 

multiple road segments as a result of a severe weather. A road segment susceptibility 

map (Figure 4.18) is used to show which road segments are more susceptible to be 

damaged by earthquakes. This map has been created by the author and does not 

correspond to any particular study done in the area. The susceptibility is represented 

by four categorical classes: not susceptible, low susceptibility, medium susceptibility 

and high susceptibility. As no more data was available, the damage probability 

associated with each level of susceptibility of each road segment is defined by the 

modeller. As described in Section 4.2, the level of susceptibility might indicate the 

likelihood that a road segment was affected by this hazard. This meant that if an area 

was highly susceptible to a certain hazard, road segments that were located in that 

area would be more likely to be affected by this hazard. Therefore, the probability of 

being damaged was higher. Based on this idea, Figure 4.19 shows the damage 

probability associated with each susceptibility level considered in this model. Initially, 

these values were assumed by the author, but if further data were available, these 

limits could change.  
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Figure 4.18. Hypothetic road susceptibility map of the Sioux Falls network. 

 

 

Figure 4.19. ‘Hazard susceptibility vs. damage probability’ graph. It shows the 

probability limits assumed for this example. 

 

Based on the stochastic method presented in Equations (4.1), (4.2) and (4.3), 

several road segments are identified as damaged and a categorical damage state is 

assigned. The process of selecting which road segments are damaged is as follows: 

(1) Generate a random value for each road segment following a uniform probability 

distribution; (2) Depending on the susceptibility level of each road segment and 

considering a user-defined damage probability, it is classified as damaged road 
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segment (if the random value is above the probability associated) or undamaged road 

segment (if the random value is below the probability associated with that 

susceptibility level). This model assumes that if a road segment is damaged, the 

probability of having a minor, moderate, extreme or complete damage is selected 

according to a uniform distribution.  

Ten bridges are identified to be susceptible to the impact seismic events on 

the Sioux Fall network. The location of the bridges is extracted from Chang et al. 

(2010). A hypothetical earthquake is assumed to impact the road network producing 

damage to certain bridges. A damage state has been assigned to each bridge as 

shown in Table 4.1 following a uniform probability distribution. The quantification of 

this damage state has been done using a linear relationship (see type B - Section 

4.2.4). The value of the base damage is set to be D=10 res-day. As it is mentioned 

previously, damage is materialised as a reduction of road capacity. For this particular 

example, the damage-capacity relationship proposed by Padgett and DesRoches 

(2007) is adopted on this model. 

     

Table 4.1. Disruption scenario: damage state, quantification and road capacity 

Bridges Damage state 
Damage value 

(res-day) 

Post-disruption road capacity 

(% original capacity)1 

B1, B2, B9 No damage 0*D 100% 

B3, B5 Minor damage 1*D 50% 

B10 Moderate damage 2*D 0% 

B7 Severe damage 3*D 0% 

B4, B8, B6 Collapse damage 4*D 0% 

Being base damage D = 10 res-day for this particular example 

1 Reference: Padgett and DesRoches (2007) 



Chapter 4  Damage simulation and repair process model  

 

 

94 
 

 

Figure 4.20. Simplification of the Sioux Falls network used in this model. The 

numbers correspond to the link and node number respectively. Bridges are shown in 

red. 

 

4.4.3. Repair strategy and available resources  

The initial proposed repair strategy is the one included in Table 4.2. It considers the 

priority order of repairs and the number of repair teams that are required to attend 

each incident location. This is the maximum number of resources that can be allocated 

to the same damaged place. The minimum number of repair teams must be defined 

by the modeller.  

Table 4.2. Repair strategy proposed for this illustrative example 

Repair strategy        

Damaged bridges B3 B4 B5 B6 B7 B8 B10 

Priority order of repairs  

(from higher to lower priority) 
1 2 5 4 6 3 7 

Number of required repair teams 5 5 5 5 5 5 5 

Minimum number of repair teams  1 1 1 1 1 1 1 

 

The number of resources that are available to repair all damaged places are 

13 repair teams. It is assumed a linear relationship between the productivity and the 
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number of repair teams that work at the same damaged location, as shown in Figure 

4.21. The saturation level of repair teams is set at 5.  

 

Figure 4.21. Productivity-repair team relationship for this example 

 

 

4.4.4. Repair process and model outputs  

The repair process follows the procedure described in Section 4.3. During the stage 

I, the number of required repair teams that are specified on the repair strategy are 

assigned to damaged locations following the priority order of repairs. The output of 

this Stage I is a road repair scheduling that is displayed using a Gantt chart. Figure 

4.22 shows the output of this submodule. On day 1, all required repair teams are 

assigned to the bridge that has higher priority (in this case, B3). If there are spare 

resources, these are assigned to the bridge with the second-highest priority and so 

on.  

 

Figure 4.22. Road repair schedule using a Gantt chart 

Once all repair teams are assigned to incident locations on day 1, repairs are 

carried out and damage values are reduced using the Equation (4.5). This process 

belongs to Stage II. Figure 4.23 displays the evolution of these damage values of 

each damaged bridge over time.  

BRIDGES

B3 5 5

B4 5 5 5 5 5 5 5 5

B8 3 3 5 5 5 5 5 5 4 X Number of 

B6 3 3 3 3 3 3 5 5 5 5 2 repair teams

B5 4 5 5

B7 3 3 5 5 5 5 4

B10 3 5 5 5 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Days
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Figure 4.23. Evolution of the percentage of damage over time. Disruption happened 

on day 1. 

From an operational point of view, after each damage is reduced, Stage III is 

responsible for checking if the road segment can be open to traffic or not. Using the 

pre-defined damage-capacity relationship shown in Figure 4.13 and Figure 4.14, an 

opening-closing schedule of damaged bridges can be obtained. Note that, in the 

relationship proposed in this model, road capacity only takes the value of 0, or the 

value of 50% of the initial capacity or the value of 100% of the initial capacity. 

However, other types of damage-capacity relationships can also be implemented. 

Figure 4.24 shows in red those bridges that are totally closed to traffic, in yellow those 

that are partially open and in green those that are totally open to traffic. As observed, 

this repair strategy requires 16 days of repairs to totally open the road network to 

traffic. On day 15, all network is open to traffic although only partially connected on 

bridges B7 and B10.  

 

 

Figure 4.24. Closing-Opening dates of these damaged bridges. In green, totally 

open to traffic. In yellow, partially open. In red, totally closed to traffic. 

A resilience index can also be used to compare different recovery strategies. 

In this case, using the output that this repair model is providing, the resilience index 

BRIDGES

B3

B4

B8 Full capacity

B6 Partial capacity

B5 No capacity

B7

B10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Days
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can be defined as the earliest time that the network is fully recovered. In this example, 

the earliest time is 16 days, but there might be other recovery strategies whose 

earliest time was lower/higher. Instead of using the earliest time to fully recover the 

network as a resilience index, other ones can also be used: for instance, the earliest 

time to have all damaged road segments partially open to traffic, or the number of 

damaged road segments that are fully recovered on a certain day, among others.   

          

4.4.5. Sensitivity analysis of parameters    

This section analyses the sensitivity of the model to changes in: base damage value 

(D), available repair teams, productivity values and saturation level of repair teams. 

The ‘one-at-time sensitivity’ technique is used, whose aim is to create a variation of 

one parameter, keeping all the rest of parameters fixed, and observe the variation in 

the model outputs. Due to the limitation of space on this chapter, results from the 

tests are included in Appendix 2 and only general conclusions are provided in this 

section.  

Results from the analysis evidence the importance of the variables. Some of 

them such as the base damage value and the available repair teams are variables 

that are considered as a given fixed value for all scenarios. This means that it is not 

possible to change their value, otherwise the problem would change in itself. 

However, the productivity values and saturation level of repair teams may have a 

significant impact on the repair process. The saturation level limits the number of 

teams that can work at the same time on the same damaged location. This has a 

significant impact as the higher the saturation level is, the faster the repair process 

is. Ideally the number of required teams selected by the pre-defined repair strategy 

(maximum repair teams) should be close to the number of saturation teams.   

 

4.5. Contribution to the knowledge 

The contribution that this chapter adds to the body of knowledge of road network 

recovery includes: 

1. The development of a stochastic method to simulate damage scenarios. As 

opposed to previous models that just made up damage scenarios with no 

evidence of data, this method tries to provide a systematic framework that 
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allows the modeller the generation of new damage scenarios. In this model, 

hazard susceptibility data is used (if available) to identify which road segments 

are more vulnerable to the impact of hazard events. Then this information is 

used to assign a categorical damage state and quantify the damage that needs 

to be repaired. This method provides an alternative to the generation of new 

damage scenarios when data is limited (e.g. lack of historical damage data).    

2. The definition of ‘units of damage’ (in units of resource-day) as a way to 

indicate the amount of work that needs to be repaired by those available repair 

resources. 

3. The development of a novel three-stage model that simulates a road network 

repair process. It provides a framework that calculates the evolution of road 

capacities over time as a result of the allocation of repair teams to damaged 

road segments and the repair of damage over time.  

4. The formulation of a dynamic sub-model that allows the assignment of 

resources to vary over time to damaged locations. It avoids the traditional way 

of assigning the same fixed number of resources until the damage is repaired. 

This allows the development of a five-step damage evolution graph (see 

Section 4.3.2.1). It also incorporates a productivity-resource relationship and 

saturation level of repair teams working at the same damaged place that most 

of the previous recovery modes do not include.  

 

4.6. Simplifications and further improvements  

The current version of the repair allocation and repair process model is still a 

simplification of how an actual restoration process is carried out. However, it provides 

the initial framework that sets the base for a potential more complex model. In this 

section, some simplifications that have been considered in the model are described 

and further improvements are proposed to overcome these limitations:  

1. The current version of the model only requires a single task to completely 

repair the damage. Actual repair processes involve the completion of more 

than just one task that is done by teams of different types of resources. In 

fact, depending on the type of repairs that are required, some tasks may 

require more specialised equipment or personnel and this is not considered in 
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this version of this model. Although the current implementation seems to be 

a bit unrealistic by using just one task and one type of resource, it provides 

the first stage of what an actual road recovery process would look like. Further 

improvements should add more types of repair teams that include different 

numbers of personnel, plant and equipment and more variety of tasks. In this 

case, damage would be totally repaired when all tasks were completed. 

Different values of productivity should also be assigned to different repair 

teams. This can make the problem harder as there will be more decision 

variables on the overall optimisation problem, which in this case may slow the 

decision process. 

2. In an actual restoration process, repair resources are located at strategic 

locations across the network and they are sent to damaged places from those 

locations. This is not considered in the current version of the model. Further 

improvements should include the addition of depots of resources at certain 

locations and also include the cost of sending them to repair damaged places. 

This may imply a first sub-optimisation model that allocates resources to 

damaged places minimising the cost of sending them to those places.   

3. An improved definition of productivity of repair teams and their saturation 

level is required. The current model assumes that the productivity and the 

saturation level of workers is the same for all repair teams, no matter the 

damaged location. In reality, productivity values should change depending on 

the type of resources included on each repair team and the saturation level of 

teams working at the same damaged locations should change depending on 

the characteristics of each damaged location (available working space, 

difficulty of repairs, etc.).  

4. As mentioned in the first point, damage may require more specialised 

resources. This may include resources from different sources (e.g. 

contractors) that are not available at all times. This implies that the repair 

process may be affected by the unavailability of these specific type of 

resources and it may require more time to bring these resources. This can 

produce that the damage-time graph explained in Section 4.3.2.1 acquires a 

different profile with more slopes representing the availability of resources at 

different times.    
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5. The current model can only repair the network with the available repair teams 

that are specified. However, if some damaged road segments need a specific 

type of resource that is not available with the existing resources, then there 

should be the possibility of bringing external resources (e.g. specific 

equipment, plant or personnel) from other places or other countries at a 

higher cost. 

 

 

4.7. Conclusions of the chapter 

This chapter aims to answer the following research questions: RQ3 “How can ‘damage 

to infrastructure’ be quantified and simulated using hazard susceptibility data?” and 

RQ4 “How can the infrastructure repair process be modelled, considering a resource-

damage-time relationship and providing the evolution of road capacities over time?”. 

This chapter presents a damage scenario simulation and a resource allocation and 

repair process model. The damage scenario simulation provides a framework to 

generate future damage scenarios. Using hazard susceptibility data, this method 

allows the identification of those elements more vulnerable to receive damage from 

a hazard event and, using a stochastic rule, the model classifies road segments as 

damaged or undamaged. It also identifies the damage state (minor, moderate, 

extensive or complete) that a damaged road segment suffers. Based on certain 

relationship between damage states and damage values, the model also transforms 

categorical damage values into numerical values, so that damage can be quantified.  

The resource allocation and repair process model simulates how damage is 

repaired over time. This is implemented on a three-stage model. The first stage aims 

to assign resources to damaged places following the priority order of repairs. The 

second stage updates the damage that is repaired and the last stage converts this 

repaired damage into changes on road capacity.  

This chapter also applies this model to a well-known transportation network, 

Sioux Falls Network (South Dakota, US). The aim of the example is to illustrate the 

process explained in the previous sections. The ‘sensitivity’ of some variables are also 

analysed. Results from this example show a resource allocation plan and a capacity 

recovery schedule that will be used as an input on the traffic simulator module, which 
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is described in chapters 5, 6 and 7 of this thesis. Future improvements are also 

proposed in order to achieve in future versions of this model a better representation 

of how an actual infrastructure repair process is carried out.    
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CHAPTER 5 

5.  Development of an event-based 

mesoscopic traffic simulation  

 

 

 

5.1. Introduction 

Traffic modelling aims to simulate and recreate how traffic moves in real life. Models 

are used for planning, implementation and traffic management. Depending on the 

level of detail, traffic simulation models are generally classified as microscopic, 

mesoscopic and macroscopic (Maerivoet and De Moor, 2005; Hoogendoorn and 

Knoop, 2013). Microscopic models capture the behaviour of individual vehicles in a 

very high level of detail. Macroscopic models represent traffic in an aggregate way as 

a continuous flow and it is measured in terms of speed, flow and density (Thonhofer 

et al., 2018). And a combination of microscopic and macroscopic modelling is 

represented by the mesoscopic modelling. Mesoscopic models disaggregate the flow 

considered in macroscopic models and simulate the behaviour of individual or groups 

of vehicles as microscopic simulators do (Burghout, Koutsopoulos and Andreasson, 

2006; Zhou and Taylor, 2014). The following section describes in detail each type of 

traffic model.  

In this project, a mesoscopic simulator is selected to model the movements of 

vehicles through the network. During the first stages of this project, a macroscopic 

model was implemented in order to simulate in an aggregate level the characteristics 

of traffic. However, as the aim is to recreate how individual drivers make travel 

decisions and adapt their behaviour to changes in the network, it was necessary to 

increase the level of detail of the model and disaggregate traffic into individual 

vehicles. A microscopic modelling approach was discarded because the level of detail 

which these models provide at junctions was not required and it was expected to 
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simulate a large road network which was not ideal for a microscopic model due to 

their higher computational cost.  

Therefore, the aim of this chapter is to present the mesoscopic traffic 

simulator that was developed and implemented for use in the restoration model. The 

content of the rest of the chapter is the following: the next section describes more in 

detail the different types of traffic models. Then, the next two sections explain the 

existence of different mesoscopic modelling approaches and the reasons why this 

traffic simulator was implemented in this chapter. Then, the structure of the 

mesoscopic model and the queue modelling approach are described. Finally, an 

illustrative example is used to demonstrate and evaluate the performance of the 

proposed model on a simple network.  

 

5.2. Traffic modelling approaches  

This section describes more in detail the three traffic modelling approaches 

(microscopic, macroscopic and mesoscopic models) that are classified in the literature 

according to the different levels of detail in the simulation.  

 

5.2.1. Microscopic traffic model 

Microscopic models describe traffic at a level of detail of individual vehicles and their 

interactions. The behaviour of a vehicle, which includes when the vehicle accelerates, 

decelerates, changes lanes, etc., is determined by the following models: car-following 

models, lane changing models and gap acceptance models (Ben-Akiva, Choudhury 

and Tomer Toledo, 2009; Bevrani and Chung, 2012). The car-following model 

describes the behaviour of a driver when following another vehicle. In this case, the 

motion of a vehicle depends on the distance to a leading vehicle and its speed. If the 

leading vehicle changes its speed, the following vehicles will also change its speed. It 

also describes the accelerating and breaking patterns that comes from the interactions 

of the driver and the leading vehicle (Burghout, 2004). The lane-changing model 

describes the decisions that drivers make to change lanes. Gap-acceptance models 

are used to model the execution of lane changes (Ben-Akiva, Choudhury and T. 
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Toledo, 2009). The available gaps are compared to the minimum accepted gap and 

if the available gap is greater than the minimum, the lane-change is executed.    

The advantage of this high level of detail is that it allows the understanding 

of how vehicles interact and adapt their behaviour to small changes on certain parts 

of the network. However, it incurs a high computational cost as it has to model all 

interactions among vehicles and infrastructure and this cannot be afforded for large 

networks (Toledo et al., 2005).  

 

5.2.2. Macroscopic traffic model 

On the other extreme, macroscopic models represent traffic in an aggregate way as 

a continuous flow and are based on the traffic flow theory describing the relationship 

between flow, speed and density (Thonhofer et al., 2018). As opposed to microscopic 

approaches, these models analyse the average behaviour of a link instead of the 

behaviour of individual vehicles. Intersections are described in a low level of detail 

(Mohan and Ramadurai, 2013). These models usually have fewer parameter to 

calibrate.  

The advantage of macroscopic models is that they can simulate large networks 

with low computational time. However, the level of detail provided by this model is 

very low to represent traffic behaviour at certain locations. The response of individual 

drivers to incidents is not possible to observe in these models. 

 

5.2.2. Mesoscopic traffic model 

A combination of microscopic and macroscopic modelling is represented by the 

mesoscopic modelling. Mesoscopic models disaggregate the flow considered in 

macroscopic models and simulate the behaviour of individual or groups of vehicles as 

microscopic simulators do (Burghout, Koutsopoulos and Andreasson, 2006; Zhou and 

Taylor, 2014). It describes the characteristics of traffic at a high level of detail, but 

the interactions and behaviour of drivers at a lower level of detail. However, a detailed 

model of the interaction between drivers is not needed. In this case, on each road 

(link), each vehicle or groups of vehicles are assigned an average speed which is 
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obtained from a speed-density relationship. Although the speed is calculated using 

aggregated values, vehicles are simulated individually or in groups of packets. The 

lane changes and acceleration/deceleration of vehicles are not modelled. 

Nowadays, a wide variety of mesoscopic simulation models exists. A recent 

review, developed by Wang et al. (2018), highlighted the characteristics of the 

following mesoscopic models: CONTRAM (Leonard, Power and Taylor, 1989), 

DynaSMART (Jayakrishnan, Mahmassani and Hu, 1994), DynaMIT (Ben-Akiva et al., 

1998), MATSIM (Cetin, 2005), Mezzo (Burghout, Koutsopoulos and Andreasson, 

2006), Dynus T (Chiu et al., 2011), DTALite (Zhou and Taylor, 2014). Other 

mesoscopic models are: METROPOLIS (De Palma, Andre and Marchal, 1998), 

SILVESTER (Kristoffersson and Engleson, 2009), Dynameq (Mahut and Florian, 2011).  

Two types of approaches are usually employed in mesoscopic models to 

simulate movements through the network: (1) Time-based (discrete-time) algorithms, 

which update the network state at every time period, even if there is no change on 

the network. Time, in this case, is an independent variable. (2) Event-based (discrete-

event) algorithms, which simulate network changes as a discrete sequence of events 

in time. Each particular event marks a change of the network state. Time, in this case, 

is a dependent variable as it is only modelled when the event occurs. The main 

advantage of this second approach is the efficiency, in terms of computational costs, 

compared to a time-based approach as there is no need to update the network state 

at every single time interval.  

Different approaches to model mesoscopic traffic simulators have been 

implemented in different software tools. The first form of mesoscopic model is the 

one considered in DynaMIT (Ben-Akiva et al., 1998), which divides the road network 

into cells. A cell can include a single vehicle or a group of vehicles and vehicles can 

move between cells with or without overtaking other vehicles. A second approach 

models the movement of vehicles through the network based on a macroscopic model 

of traffic flow in which vehicles are assigned a speed using a specified speed-density 

relationship. Examples of this approach are the following models: CONTRAM 

(Leonard, Power and Taylor, 1989), DynaSMART (Jayakrishnan, Mahmassani and Hu, 

1994), DTASQ (Mahut, 2001b), Mezzo (Burghout, Koutsopoulos and Andreasson, 

2006). Finally, the last approach models individual vehicles through the network using 
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a simplified car following and lane changing models. Example of this approach is 

included in Mahut (2001a).     

 

5.3. Why develop a new simulation model? 

Despite the existence of other available mesoscopic models which are included in 

other already existing traffic simulation software packages, it was decided to 

implement a new mesoscopic model for the following reasons: 

a) There is no free access to the code of some commercial mesoscopic models, 

such as CONTRAM or DynaSMART. This means that the existing codes cannot 

be altered and therefore new features cannot be added. In addition, a detailed 

description of how existing models are implemented is not always provided, 

which complicates the understanding of how models are developed.  

b) Although some other traffic software packages are free and open source such 

as Mezzo, considerable time and effort are required to learn the programming 

language that was used to write the existing code and to understand the 

structure of how the code was implemented. 

 

In addition, an advantage of writing a new code from scratch is that the modeller can 

easily understand how the model works, identify the assumptions made and areas for 

improvement. 

 

5.4. Network structure modelling 

The model proposed in this chapter follows the recent mesoscopic traffic approaches 

(e.g. Mezzo, DynaSMART) that model the movement of individual or groups of 

vehicles through the network at an aggregate level (based on the macroscopic 

fundamental diagrams). The model follows a discrete-event approach, which means 

that the model updates the traffic states only when there is an event. Events in this 

model are defined by vehicles entering the network, vehicles exiting or entering links 

or vehicles arriving at their destination. In order to speed up the modelling process, 

a minimum time unit is set by the modeller. This means that two consecutive events 

can only differ in time by a pre-defined value. By default, it was set to 0.01h (36 

seconds).   
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Road network was represented using graph theory, which governs the relation 

between nodes and links. Nodes are points where traffic converges or diverges (e.g. 

road intersections), the origins and destinations of traffic (i.e. zone centroids) or 

locations where variations in geometric or functional characteristics of consecutive 

links are significant. Links are road segments that connect two nodes. The model was 

implemented using MATLAB programming language (The MathWorks Inc., 2018).  

In order to speed up the modelling process, vehicles can be grouped into 

packets that act as a single entity. The more vehicles a packet contains, the lower the 

level of detail the model provides. If a packet is only formed by a single vehicle, then 

this model acts as an agent-based model in which each agent corresponds to one 

vehicle. If more than one vehicle are grouped in a packet, then the whole packet acts 

as a unique entity that travels through the network. It means that all drivers within 

the packet will make the same travel decisions. From now on, in this thesis when the 

term 'vehicles' is mentioned it also means 'packet of vehicles' and vice versa. Both 

terms are interchangeable. 

The movement of packets is modelled on the link and node side. Interactions 

between vehicles within each packet and between packets when travelling on links 

are not modelled, although it has a macroscopic influence on the speed that is 

assigned to them as explained in Section 5.4.3.   

 

5.4.1. Link model 

A link is divided into two parts as shown in Figure 5.1: running part and queue part. 

The running part of the link contains those vehicles that are on the move to the 

downstream node and the queue part are those vehicles that are waiting to exit the 

link.  

 

Figure 5.1. Link model representation. 
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When a vehicle enters a link, it is assigned to the running part with a speed 

that depends on the number of vehicles that are travelling on that running side. The 

more vehicles on that link (density), the lower the speed is as interactions between 

vehicles occur. The speed-density relationship used in this model is a modified version 

of the Greenshield’s equation (Greenshields, 1933) included in Chang et al (1985). 

This relationship is explained more in detail in Section 5.4.3.   

The speed that is assigned to each packet of vehicles is used to obtain the 

earliest time that a packet can reach the end node of that link. This arrival time is 

used to create a list of vehicles that want to exit the link. As this is not a microscopic 

traffic model, the acceleration of vehicles within the link is not modelled. For this 

reason, this model assumes that vehicles travel along the length of the road with a 

uniform speed (𝑉𝑖). If drivers cannot exit the link on their earliest arrival time at the 

downstream node, they are sent to the queue part of the link. Only when there is 

enough capacity on the next link, are drivers allowed to leave the queue part. More 

information of this queue modelling approach is provided in the following Section 5.5.      

 

5.4.2. Node model 

Upstream links are connected to downstream links through nodes. In this model, 

these nodes are considered as intersections. It is assumed that each turning 

movement has an associated turning pocket as shown in Figure 5.2. All vehicles that 

want to use other links have to access first the turning pocket connected to the 

corresponding downstream link. Turning pockets are modelled as links that have a 

limited storage space, which is determined by the number of lanes and their length. 

Usually the length of these turning pockets, which is defined by the modeller, are 

negligible compared to the length of the links. By default it is set in 100m.     
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Figure 5.2. Representation of nodes using turning pockets 

 

Once a vehicle arrives to the end of a link, it is immediately assigned to the 

turning pocket of that movement. If there is enough capacity on the upcoming link, 

then it is assigned to the next link. If not, this vehicle has to queue on the turning 

pocket until there is enough capacity to access the next link. If the length of vehicles 

queueing is longer than the physical length of the turning pocket, vehicles can block 

other turning movements even if there is still space for some vehicles to access other 

turning pockets. Figure 5.3 shows an example of a turning pocket that is blocking the 

immediate upstream link. Green vehicles occupy the full length of the turning pocket. 

As there is another vehicle that wants to access to the turning pocket, the rest of the 

vehicles queueing behind the green one cannot access the other turning pockets. 

Other types of intersections such as roundabouts, signalised intersections, etc. are 

not considered in this version of the model.  

 

 

Figure 5.3. Turning pockets blocked and link blocked 
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5.4.3. Speed-density relationship 

The speed-density relationship used in this model is a modified version of the 

Greenshield’s equation (Greenshields, 1933) included in Chang et al. (1985). Figure 

5.4 shows graphically the differences between these two models. The first one 

assumes a linear relationship between speed and density and the second one includes 

an additional parameter (𝜍) that modifies the curvature of the function. The second 

difference is that Chang et al. (1985) model adds a minimum speed. In our model, 

this characteristic is important as it allows the movement of vehicles on the queue 

dissipation, which will be explained more in detail in Section 5.5.2. The model needs 

to obtain the earliest exit time of those vehicles waiting on a queue. If speed were 

zero, the model would not be able to obtain an exit time. Therefore, the speed of 

vehicles at maximum density is limited by a minimum non-zero value. In the case of 

queue dissipation, this speed will be the queue dissipation speed.     

 

Figure 5.4. Comparison between the speed-flow relationship used in Greenshield’s 
model (1933) and Chang et al. (1985) model.  

 

Mathematically, Chang et al. (1985) model is expressed using Equation (5.1). 

When no vehicles are on the road, traffic density is zero which means that vehicles 

entering the link can travel under free-flow conditions (maximum speed). When traffic 

density is maximum (at a traffic jam), the model forces drivers to travel at a minimum 

speed to allow, at least, queue dissipation.  

𝑣ℎ = 𝑣ℎ,𝑚𝑖𝑛 + (𝑣ℎ,𝐹𝐹 − 𝑣ℎ,𝑚𝑖𝑛) ∙ [1 − (
𝑘𝑙
𝑘𝑚𝑎𝑥

)]
𝜍

 (5.1) 

Where, 

𝑣ℎ, speed of the packet ℎ of vehicles. 

𝑘𝑙, traffic density only on the running part of link 𝑙. 
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𝑘𝑚𝑎𝑥, maximum density of link 𝑙. 

𝑣ℎ,𝑚𝑖𝑛, minimum speed of packet ℎ of vehicles. 

𝑣ℎ,𝐹𝐹, free flow speed of packet ℎ of vehicles. 

𝜍, parameter of the Chang et al. (1985) model. This model assumes a value 

of 1 to be equivalent to the Greenshield’s model. This value should be 

calibrated in future stages of the model. 

Free-flow speed (𝑉ℎ,𝐹𝐹) is limited to the maximum speed limit on the road. Therefore, 

depending on the type of road, the maximum speed may change. In order to account 

for  variability of drivers, the maximum speed that an individual packet of vehicles 

can travel at is computed stochastically adding a random deviation (𝜗) from its pre-

defined value as shown in Equation (5.2). The maximum difference between the 

maximum speed and the selected speed of drivers is set by the variable 𝑣𝑎. As an 

example, speed limits can vary 5% of the maximum if 𝑣𝑎 = 0.05.  

𝑣ℎ,𝐹𝐹 = 𝑣 𝑚𝑎𝑥 ∙ [1 − 𝜗ℎ ∙ (1 − 𝑣𝑎)] (5.2) 

Where, 

𝑣ℎ,𝐹𝐹, free-flow speed of packet ℎ of vehicles. 

𝑣 𝑚𝑎𝑥, the maximum speed limit of the road. 

𝜗ℎ, random value between 0 and 1 that is generated for each packet ℎ of 

vehicles. 

𝑣𝑎, variable that limits the maximum variability of the speed of drivers. It can 

take values between 0 (no variability) and 1 (highest differences between 

drivers). 

 

The minimum speed of each packet of vehicles (𝑉ℎ,𝑚𝑖𝑛) is needed in order to 

allow the dissipation of the queues. Burghout et al. (2006) propose the value of 

𝑉ℎ,𝑚𝑖𝑛 = 6 𝑚/𝑠.  

The density of each link (𝑘𝑙) is calculated as the sum of all vehicles travelling 

on the running side of a link as shown in Equation (5.3). It is important to note that 

vehicles that are waiting at a queue are not included in the calculation. If the density 

of the link considered all vehicles (including running part and queue part), vehicles 
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could experience an additional delay while travelling (because those vehicles waiting 

at the queue were also considered) and then another extra delay due to the queue 

dissipation at the end of the link. In order to avoid this double counting of that delay, 

their speed is calculated based only on the vehicles that are travelling at that point 

on the running side (Burghout, Koutsopoulos and Andreasson, 2006). If there is a 

queue at the end of the link, vehicles will join the queue and they will have to wait 

until the queue is dissipated.     

𝑘𝑙 =
𝑉𝑙,𝑟𝑢𝑛
𝐿𝐸𝑙 ∙ 𝐿𝐴𝑙

 (5.3) 

Where, 

𝑘𝑙, density of each link 𝑙 (vehicles per unit length) 

𝑉𝑙,𝑟𝑢𝑛, the number of vehicles on the running part of the link 𝑙 at time 𝑡. 

𝐿𝐸𝑙, length of link 𝑙. 

𝐿𝐴𝑙, number of lanes on link 𝑙. 

 

The maximum density (𝑘𝑚𝑎𝑥) is calculated as the maximum number of vehicles that 

can be physically storage on that link divided by the length of this link times the 

number of lanes available.  

𝑘𝑚𝑎𝑥 =
𝑉𝑙,𝑚𝑎𝑥
𝐿𝐸𝑙 ∙ 𝐿𝐴𝑙

 (5.4) 

Where,  

𝑘𝑚𝑎𝑥, maximum density (vehicles per unit length). 

𝑉𝑙,𝑚𝑎𝑥, the maximum number of vehicles that can use link 𝑙 at time 𝑡. 

 

5.4.4. Entry flow restriction 

Mathematically, under uninterrupted flow conditions, speed, density, and flow are all 

related by Equation (5.5) (May, 1990). In this sense, flow is determined by the speed-

density relationship. The speed of new vehicles entering a link is obtained from the 

Equation (5.1) which depends on the density of vehicles at that time. However, in 

terms of computational modelling, the graph on the left of Figure 5.5 shows how the 

model simulates the entry of vehicles. Initially, there is a linear relationship between 

the number of vehicles entering the link per unit time and the density of vehicles on 
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the link (considering running and queue part). The capacity of the link limits the 

number of vehicles that can enter per unit time. However, when the density of 

vehicles is high (𝑘 > 𝑘𝑜), there are more interactions between vehicles and the 

number of vehicles entering a link should be affected by the number of vehicles on 

that link at that time. In fact, if the link density is high, the speed of vehicles is reduced 

and the entry flow should be reduced as well. However, as shown in the graph on the 

left of Figure 5.5, no matter the density of vehicles and speed on a link, if there is 

physical space, in the model, vehicles can still enter the link at their maximum rate 

(limited by the entry flow capacity of the link). The entry flow drops to zero when 

there is no physical space on the link so vehicles cannot enter. In contrast, what 

should happen in reality is what is shown in the graph on the right of Figure 5.5. The 

entry flow of vehicles should be influenced by the number of vehicles on the link. The 

higher the density of vehicles, the lower the number of vehicles that can enter per 

unit of time.  

𝑞 = 𝑣 ∙ 𝑘 (5.5) 

Where, 

𝑞, flow (e.g. vehicles/hour) 

𝑣, speed (e.g. kilometres/hour) 

𝑘, density (e.g. vehicles/kilometre) 

 

 

Figure 5.5. Flow-Density relationship with and without the restriction imposed to the 
entry flow.  
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In order to solve this issue, this model implements the relationship shown in 

the graph on the right of Figure 5.5, by incorporating an enter restriction on each link 

as shown in Figure 5.6. The capacity of the entrance of the link and the density (and 

speed) of vehicles on that link limit the maximum number of vehicles entering a link 

per unit time. This access restriction is expressed mathematically in Equation (5.6). 

If the density of the link is less than half of the density (𝑘𝑜) at a traffic jam, the inflow 

cannot be higher than the capacity of that link. On the other hand, if the density is 

higher than the density 𝑘𝑜, inflow cannot exceed the limitation imposed on Figure 

5.5. Adding this restriction, we allow a smooth transition between higher values of 

inflow and zero flow when the density is high (Figure 5.5). Therefore, this limits the 

maximum number of vehicles that can access the link per unit time during medium-

high values of density.   

 
Figure 5.6. Enter restriction on a link 

 

𝑞𝑙 = {

            𝑞𝑙,𝑚𝑎𝑥                   𝑖𝑓 𝑘𝑙  ≤ 𝑘𝑜

𝑣ff,l ∙ 𝑘𝑙 − (
𝑣ff,l
𝑘𝑗
) ∙ 𝑘𝑙

2     𝑖𝑓 𝑘𝑙 > 𝑘𝑜
 (5.6) 

Where, 

𝑞𝑙, is the limit of vehicles per unit time that can enter a link 𝑙. 

𝑘𝑙, is the value of the density that is being analysed on link 𝑙. 

𝑘𝑗, jam density on link 𝑙. Equation (5.4) is used to calculate this value. 

𝑘𝑜, is the density associated with a maximum flow. In this model, it is 

assumed that this value (𝑘𝑜) is half of the jam density value (𝑘𝑗).  

𝑣𝑓𝑓,𝑙, is the free-flow speed on link 𝑙.  

𝑞𝑚𝑎𝑥, maximum flow.  
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5.5. Queue modelling  

Modelling congestion acquires a significant importance in this model because it is 

expected to happen after the occurrence of disruptive events. One of the main 

reasons why congestion occurs is because travel demand exceeds the infrastructure 

capacity. As mentioned in Chapter 4, the impact of hazard events produces damage 

to infrastructure that is related to a reduction of road capacities. If road capacities 

are reduced as a result of the impact, congested conditions are expected to happen 

at certain locations of the network. In this cases, the capacity of certain roads may 

not be able to accommodate all traffic demand and it will result in growing queues. If 

these saturated traffic conditions persist for a long time, these queues may spill back 

to upstream road segments, blocking other roads and creating congestion in other 

roads of the network.   

This section aims to describe how queue modelling is implemented in this 

traffic simulator. It explains how queues appear in the model and how this impacts 

the kinematic of vehicles travelling through the network. The procedure of how the 

formation and dissipation of queues are implemented are also included in this section.  

 

5.5.1. Capacity constraints and virtual queue modelling  

The formation of queues at intersections is also modelled in this traffic simulator. 

When the flow that tries to exit a link is higher than the outgoing capacity, a queue 

is formed from the downstream node towards the upstream node (see Figure 5.7). 

In this model, it is assumed that the outflow capacity of a link is the same as the 

inflow capacity of the next link. This assumption may underestimate delay 

experienced by vehicles. Note that in reality the capacity of the node may be more 

restrictive than the inflow capacity of the next link.   

 

Figure 5.7. Capacity constraints on links and nodes 
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Packets of vehicles that cannot exit a link are sent to a virtual queue of 

vehicles. This virtual queue is created in order to have an order of vehicles that want 

to exit the link. The order is established based on the expected arrival time of each 

packet of vehicles. This means that this queue follows the FIFO principle (first-in-first-

out): the first vehicle that enters the virtual queue is the first vehicle that leaves the 

queue. As the link model described in Section 5.4.1 is formed by a running part and 

a queue part, this virtual queue is transformed into a physical queue, so that it 

occupies space on the real link as shown in Figure 5.8. This has no implications a 

priori for new vehicles that enter this link. A new arrival time will be calculated and 

assigned to each of them considering just the vehicles that are travelling on the 

running part of the link. If there is a queue in front of them, these new vehicles will 

not be able to exit the link and they will join the queue. The only implication that the 

physical queue might have is related to the blockage of upstream links. If the length 

of the queue is longer than the length of the link, no more vehicles can enter the link 

and the queue starts to grow in the upstream links. Therefore, this model also takes 

into account the queue spillback implementation. The next section will explain how 

the queue is formed and dissipated and the process of implementing this in the model.  

 

Figure 5.8. Virtual queue model implemented in this traffic simulation. Cars are 

represented by the rectangular shape and ATX means the arrival time of each 

vehicle. 

 

5.5.2. Queue formation and dissipation 

The consequences of traffic congestion and queuing are the formation of shockwaves 

that are used to describe the propagation and dissipation of queues. Shockwaves are 

defined as boundaries that divide areas of different density (and thus flow and speed) 



Chapter 5  Mesoscopic traffic simulation  

 

 

117 
 

over time. These boundaries can be stationary or they can move over time. May 

(1990) classifies the type of shockwaves in six groups: frontal stationary, rear 

stationary, backward forming, forward forming, backward recovery and forward 

recovery. A graphical representation is included in Figure 5.9.    

 

Figure 5.9. Classification of shockwaves. Graph on the left adapted from May 

(1990). Graph on the right, examples of shockwaves using sketches.   

 

Most of these types of shockwaves are considered in the mesoscopic model that is 

proposed in this chapter.  

a) Frontal stationary wave, which is a stationary boundary that divides an 

upstream area of higher density and a downstream area of lower density, is 

represented by the limited capacity of the turning pockets (intersection) or the 

capacity of the next link.  

b) Backward forming and forward recovery waves are also represented on this 

model. When some vehicles cannot exit the link because there is a front 

stationary shockwave, vehicles are sent to the queue part of the link. These 

vehicles occupy physical space on the link. If more vehicles are joining the 

queue, there will be a wave that is moving backwards. This is the backward 

forming shockwave and it is quantified by updating the arrival time that will 

be explained more in detail in Section 5.5.2.1. When vehicles are leaving the 

link, then the queue is shrinking and the back of the queue moves forwards. 

This represents the forward recovery wave. This is also represented on the 

arrival time value.  
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c) Rear stationary wave is also represented as it is a particular case between a 

backward forming and a forward recovery wave and both are included in the 

model.  

d) Forward forming wave, which is a downstream moving boundary that 

separates an upstream area of higher density and a downstream area of lower 

density of vehicles, is not considered in this model because the interaction 

between vehicles in links is not represented. For instance, this is the case of 

a lower-speed vehicle (e.g. truck) that causes the formation of a queue 

behind. 

e) Backward recovery wave, which is when the demand flow rate becomes less 

than the capacity of the restricting section of the road, is also represented in 

this model using the queue dissipation method explained more in detail in 

Section 5.5.2.2. This method assumes a dissipation rate (wave) and 

depending on the length of each packet and the queue, it updates the 

departure time of each packet of vehicles, representing the backward recovery 

wave. 

 

 

5.5.2.1. Queue formation: different arrival times 

If packets of vehicles cannot leave a link because of the restricted capacity on the 

following node/link, a queue is starting to build up. As mentioned in Section 5.4.1, 

every time a packet enters a new link, an expected arrival time (to the end of the 

link) is calculated. If vehicles cannot leave the link at their corresponding time, they 

are sent to the queue part of the link and this is used to create a list of packets that 

shows the order of vehicles that want to exit the link. Therefore, the queue will be 

formed.    

In this model, the queue occupies space. The length of the queue of vehicles 

waiting to exit the link is calculated following Equation (5.7). It depends on the 

average vehicle length, the gap between vehicles, the number of vehicles and the 

number of lanes.   

𝐿𝐸𝑞𝑢𝑒𝑢𝑒 =
𝑉𝑞𝑢𝑒𝑢𝑒,𝑙 

𝐿𝐴𝑙
∙ (𝐿𝐸𝑣𝑒ℎ + 𝑔𝑎𝑝) − 𝑔𝑎𝑝 (5.7) 
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Where, 

𝐿𝐸𝑞𝑢𝑒𝑢𝑒, is the length of the queue. 

𝑉𝑞𝑢𝑒𝑢𝑒,𝑙 , is the number of vehicles waiting on the queue. 

𝐿𝐸𝑣𝑒ℎ, average length of a vehicle. It is assumed a value of 4.8m (Qu et al., 

2013). 

𝑔𝑎𝑝, average distance between two consecutive vehicles. 

𝐿𝐴𝑙, number of lanes on link 𝑙. 

 

 

Figure 5.10. Sketch used to explain the calculation of queue length 

 

5.5.2.2. Queue dissipation: updating arrival/departure times 

When there is enough capacity on the following links and vehicles can exit the link, 

the queue of vehicles starts to move. In real-life, the leading vehicle starts 

accelerating instantaneously until they reach the expected speed. It provides a space 

headway so that the second vehicle can move. Then, this second vehicle starts to 

accelerate and the process is repeated to the third vehicle and so on.  

This process, which follows Mezzo (Burghout, Koutsopoulos and Andreasson, 

2006), is implemented in this model by changing the arrival time of each vehicle. Each 

queued packet of vehicles cannot move until the shockwave reaches them. So they 

have to wait a certain amount of time (𝑡ℎ,𝑤). Then these packets have also to travel 

to the end of the link, so there is another travel time associated (𝑡ℎ,𝑞𝑢𝑒𝑢𝑒). The 

updated arrival time will be the sum of these two values as shown in Equation (5.8). 

𝐴𝑇ℎ
𝑡+1 = 𝐴𝑇ℎ

𝑡 + 𝑡ℎ,𝑤 + 𝑡ℎ,𝑞𝑢𝑒𝑢𝑒 (5.8) 

Where, 

𝐴𝑇ℎ
𝑡+1, is the new arrival time assigned to the queued packet of vehicles ℎ. 

𝐴𝑇ℎ
𝑡, is the previous arrival time of packet of vehicles ℎ. 
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𝑡ℎ,𝑤, is the time that packet of vehicles 𝑖 have to wait until the shockwave 

reaches its position. 

𝑡ℎ,𝑞𝑢𝑒𝑢𝑒, is the time to drive to the end of the link, assuming a free-flow travel 

speed.  

 

The procedure that is followed in this model is the following. For each packet of 

vehicles that is on the queue:  

(1) Obtain the speed (𝜔) of the backward recovery shockwave. Qu et al. (2013) 

conducted a qualitative and quantitative analysis based on video-collected 

data to study the motion characteristic of the queued vehicles at a signalised 

intersection. They concluded that the average shockwave speed is 4.42m/s 

and 4.94m/s, through the video survey and the mathematical calculation 

respectively. In this model, an approximate value of 5m/s (18km/h) will be 

used for the calculation. 

(2) Calculate the length of vehicles (𝐿𝑒𝑛𝑞𝑢𝑒𝑢𝑒) that are waiting just in front of this 

packet as explained in Section 5.5.2.1.  

(3) Obtain the waiting time (𝑡ℎ,𝑤) until the shockwave reaches this packet of 

vehicles. It is obtained using Equation (5.9). 

𝑡ℎ,𝑤 =
𝐿𝑒𝑛𝑞𝑢𝑒𝑢𝑒

𝜔
 (5.9) 

(4) Calculate the travel time (𝑡ℎ,𝑞𝑢𝑒𝑢𝑒) of this packet of vehicles to drive to the end 

of the link. It is obtained using Equation (5.10), assuming a free-flow travel 

speed (𝑣𝑓𝑓,𝑙). It is known that this will not be the speed that this packet will 

use at this moment because the vehicles are accelerating. However, it is 

assumed that vehicles instantaneously will reach this speed and therefore, the 

acceleration value would be negligible. It also makes the implementation of 

the formula much easier.    

𝑡ℎ,𝑞𝑢𝑒𝑢𝑒 =
𝐿𝑒𝑛𝑞𝑢𝑒𝑢𝑒
𝑣𝑓𝑓,𝑙

 (5.10) 

 

(5) Finally, the new arrival time will be calculated using the Equation (5.8). This 

value will be rounded to the nearest time unit (in this case multiples of 0.01h).   
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A graphical example is also included in Figure 5.11. Three packets of six 

vehicles are queuing waiting to exit the link. The expecting departure time is at 7am 

because the capacity of the next link is not restricted at that time. As the minimum 

time unit in this model is 0.01h (36sec), and due to the starting shockwave, this 

example will determine if all vehicles can leave at the same time (7am) or recalculate 

the departure time of the following vehicles. Based on the length of the queue and 

the speed of the shockwave, a waiting time is obtained from the graph on the right 

of the Figure 5.11. Then travel time is obtained based on the distance to the end of 

the link. The new arrival time will be the sum of both values.  

 

Figure 5.11. Example of the calculation of new departure times when multiple 

packets are waiting on a queue. 

This procedure is also applied to new traffic demand that wants to enter the 

network for the first time. Even if they are not still on the network, not all vehicles 

can enter the network at the same time. The capacity of links determines the number 

of new packets of vehicles that can be added to the network. If some demand cannot 

be added because it exceeds the capacity of the link, they will form a virtual queue 

on the node (even if they are not still on the network), so that the departure time of 

each packet of vehicles is updated following the procedure that is explained in this 

section. This version of the model does not count towards network travel time the 

delay in entering the network. Future versions of the model could consider this 

additional delay.   

Note that if the vehicles that are in at queue and cannot exit the link at the 

current simulation event time, the arrival time of those vehicles is updated by adding 



Chapter 5  Mesoscopic traffic simulation  

 

 

122 
 

a +0.01h (which is the minimum unit of time of the model) to the previous arrival 

time. In doing so, the model makes sure that the next running time, the model 

analyses these queued vehicles and checks if there is enough capacity. This is a 

modeller choice and could take other values. 

 

5.6. Traffic simulator implementation 

This section describes the procedure to simulate the movement of vehicles on the 

network. As mentioned in Section 5.4, this is an event-based traffic simulator which 

means that the model is only run when movements on the network are expected to 

happen. Therefore, the aim of the simulator is to find new events so that it keeps 

vehicles moving all the time. The modelling information that is described in this 

section is not freely provided by any of those existing mesoscopic traffic models 

mentioned in Section 5.2. For that reason, the content of this section can be 

considered as novel in a sense that it has never been shown before. It has been 

implemented from scratch, following the logical sense.  

Figure 5.12 shows the general framework that has been implemented in this 

model. At the beginning of each new day, all packets of vehicles that want to enter 

the network for the first time are added to a list of traffic demand which includes the 

expected departure time of each packet, among other information such as the number 

of vehicles on the packet, the chosen route or the destination node. At this point, 

there is a module that finds the event with the earliest time. All vehicles that are 

expected to move at this time are sent to a ‘list of movements’. These are the 

movements of the packets that are simulated. The three-step procedure shown in 

Figure 5.12, which will be explained more in detailed in the following sections, aims 

to simulate these movements sending vehicles to next links. Finally, the model checks 

if all vehicles have already arrived to their destination. If they have not arrived yet, 

then the model needs to find the next event so that more movements can be 

simulated. Once all vehicles have arrived to their destination, then no more 

movements are left and the simulation for the day in question is complete. The 

following sections explain the three steps that are responsible for simulating the 

movement of vehicles on the network.   
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Figure 5.12. General traffic simulator framework considered in this model 

 

5.6.1. STEP 1: Have vehicles reached destination? 

The aim of this first step is to identify those vehicles that have already reached their 

destination. These vehicles are removed from the list of movements, removed from 

the network and added to the list of ‘already arrived to destination’. This is done 

during the first step because in this way we avoid having vehicles on the network 

without being in motion. It also allows queues to get rid of vehicles that have already 

arrived to their destination. Another reason is also because the next step involves 

sending vehicles to next links and these vehicles have no next link as they have 

already reached their destination.  

 

5.6.2. STEP 2: Add packets to next links 

The aim of this second step is to send vehicles to next links when they have reached 

the end of a link. These vehicles have been travelling through the network and have 

reached a node that is not their destination. In this case, the model assigns vehicles 

to the next corresponding link if they satisfy some conditions that are explained 

further on in this section. To the best of the author’s knowledge, the methodology 

proposed for this second step has not been explicitly included in previous mesoscopic 

models.  
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Two possible approaches were studied when implementing this second step: 

A) Analyse individually each packet of vehicles included in the list of movements in a 

random order and send it to the next link; or B) Analyse every single node of the 

network and send the vehicles that have reached this node to their next links. 

Although both approaches are totally acceptable, option B was preferred due to the 

following reason: analysing each node individually allows modelling the interaction 

between vehicles that arrive to the same node. The model can give priority to certain 

roads and reduce priority to other so that some vehicles need to wait until the 

movement of the other vehicles is completed. However, the disadvantage of this 

approach is that the algorithm has to visit all nodes on the network. If the network 

that is being analysed is large, it may take a long time to visit all possible nodes.  

The procedure that is implemented in the model is summarised in Figure 5.13. 

The algorithm consists of two main loops: the ‘node’ loop and the ‘packet’ loop. 

Initially, the list of packets that are planning to move at this event is given. Remember 

that the ‘event’ has been found as described in previous sections, so the vehicles that 

are ready to move to the next link are known. At this stage, the algorithm enters into 

the node loop. Those nodes that have vehicles waiting to be sent to next links are 

analysed in this loop. This node can be the convergence point of more than one road, 

which means that a series of vehicles coming from different roads can reach the node 

at the same time. The algorithm can only simulate the movement of one packet of 

vehicles at a time. This means that an order of packets needs to be set in place. In 

this model, the order for simulating movements of packets is set depending on the 

hierarchy of roads. This means that if a road has a higher hierarchy than another 

road, the movement of those vehicles that are waiting on the first road will be 

simulated first. If all roads have the same hierarchy level, then the movement of 

vehicles will be simulated following the FIFO rule. This implies that those packets 

travelling through high-hierarchy roads may experience lower travel time compared 

to other packets that use lower-hierarchy roads.    
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Figure 5.13. Flowchart of the step 2: Sending packets to next links 

  

At this stage, a list of ordered packets of vehicles (based on the road 

hierarchy) is known. This means that the algorithm is ready to enter the ‘packet loop’. 

In this loop, the movement of all packets of the list are simulated. The algorithm 

selects a packet of vehicles following the established order and find the next link. 

Then the algorithm checks the capacity of this link for this time period of the 

selected event. As mentioned in Section 5.4, the minimum time period between 

events is 0.01h=36 secs. Therefore, there is a limit of the maximum number of 

vehicles that can physically access this link during these 36 secs. The number of 

vehicles that are entering the link during these 36 seconds is stored for the whole 
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simulation of the event. The capacity of each link is provided in vehicles per hour. 

This value can easily be transformed to vehicles per 36 seconds by simply multiplying 

the value by this factor (*36/3600). This is the maximum number of vehicles that can 

enter during this simulated event. If the number of vehicles per packet is higher than 

the maximum number of vehicles allowed to enter the link for that time period, 

vehicles can still enter the link (otherwise they will never enter that link), but the 

entering time of the following vehicles needs to be updated. Figure 5.14 shows an 

example of this particular case. In this case, the maximum number of vehicles is 4 

per 36 seconds. The packet that wants to enter the link contains 10 vehicles. Not all 

of them can be sent to the next link during 36 seconds. This means that the entering 

time of the following vehicles needs to be updated, following the same methodology 

explained in Section 5.5.2.3.      

 

 

Figure 5.14. Graphical example of the method that updates the entering time of 

those vehicles that follow a packet of vehicles that contains more vehicles than the 

maximum number of vehicles allowed to enter the link per unit time. 

 

Following the flowchart of Figure 5.13, if the number of vehicles exceeds the 

capacity of that link, then vehicles are sent to the queueing part of the original link. 

After that, the algorithm checks that the node is not blocked by other vehicles that 

are queuing in front of them (see Section 5.4.2). If the node is blocked, vehicles 

cannot use this node and they need to queue. However, if the node is not blocked, 

vehicles can be sent to their next link. Depending on the size of the packet, the 

arrival/departure time of vehicles that are behind them needs to be updated (as 

described in Section 5.5.2.2). Those packets of vehicles that are already sent to their 
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next links are removed from the list of movements, so that they are not analysed 

again.  

Once all packets of the list of a specific node have been analysed, then a new 

node is visited and the process is repeated again. When all nodes have been 

successfully visited, the algorithm is coded in a way that repeats the exact same 

process only if there has been any movement during the current iteration. The reason 

is explained as follows. As this algorithm visits each node in a random order, it may 

visit some nodes whose vehicles cannot move because other nodes have not been 

analysed yet and next links are blocked. Figure 5.15 shows an example of this process. 

In this case, the algorithm visits the nodes in an ascending order (from N1 to N4). As 

link N2-N3 is physically completely full, vehicles that are located on link N1-N2 cannot 

move to the next link. When the algorithm visits node N3, a vehicle (the green one) 

can move to the next link N3-N4. This means that there is a new gap for one more 

vehicle in the link N2-N3 and the algorithm should send the first vehicle located in 

link N1-N2 (the blue one) to the next link. If the algorithm only considered one 

iteration, it would not be able to send that blue vehicle to the next link. That is the 

reason why the algorithm includes that iterative condition: ‘if there has been any 

movement during an iteration, there should be one more iteration to run’ just in case 

there are other vehicles that can fill some gaps. 

 

Figure 5.15. Example used to explain the iteration of the step 2. 

 

 

5.6.3. STEP 3: Update arrival time 

After sending packets of vehicles to next links, it is necessary to update their new 

arrival time to the next node. Therefore, the aim of this step is to calculate the new 

arrival time based on current traffic conditions. Every time a packet of vehicles enters 

a link, an arrival time is calculated using the Equation (5.11). The arrival time is 
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calculated as the current time when the packet has entered the link plus the time that 

each packet needs to travel through this link.       

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 (5.11) 

The additional time is obtained considering that each packet travels at an 

average speed as shown in Equation (5.12). This speed is calculated based on the 

number of vehicles travelling only on the running part and its formulation has already 

been explained in Section 5.4.3, Equation (5.1). Note that the speed is assigned to 

each vehicle when it enters the link and it is assumed that this vehicle travels at this 

speed through the whole link.  

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑝𝑒𝑒𝑑
 (5.12) 

Note also that if there are vehicles waiting on the queue part, the calculated 

arrival time of new packets cannot be earlier than the arrival time of these vehicles 

queueing.  

 

5.7. ‘Warm-up’ and ‘Cool-down’ modelling periods 

The road network implemented in the model is totally empty at the beginning of the 

simulation. The network requires some time to allow vehicles to enter the network 

and reach the real-world conditions. That is the reason why a ‘warm-up’ period is 

essential in this model. An additional ‘cool-down’ period is required to allow drivers 

already on the network to complete their trips. If a ‘cool-down’ period is not simulated, 

vehicles driving at the end of the peak period may experience faster travel times 

because no more vehicles are loading into the network and no interaction is produced.  

The length of these additional periods may vary from project to project (Traffic 

Engineering, Operations & Safety Manual, 2005), but there are some rules of thumb 

that estimates the length of these periods. The manual done by the Federal Highway 

Administration (2004) and NSW Roads & Maritime Services (2013) says that the 

minimum warm-up period is twice the longest trip length of the network. But it states 

that after a few runs, the adequacy of the considered length should be verified and 

extended if required. The minimum cool-down period should be the time when the 

last vehicle of the peak period enters the network until the last vehicle of the peak 

period arrives to its destination. As this value is difficult to know a priori, in this model, 
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a certain number of preliminary runs will determine the length of this warm-up and 

cool-down period.   

 

5.8. Illustrative example  

In this section, the performance of the proposed model is evaluated over a sample 

network. This example tries to focus on the accomplishment of two main goals: (1) 

observe that the fundamental diagrams of traffic flow obtained from the model is in 

accordance to the theoretical diagrams proposed by Greenshield’s model (1933) and 

the one modified by Chang et al. (1985) and (2) test that the queue formation and 

dissipation is working satisfactorily on congested networks.  

The sample network, shown in Figure 5.16, consists of 10 nodes and 9 

consecutive link segments of 1000 meters long each one. Each link segment have two 

lanes, a capacity of 2000 veh/h and a free-flow speed of 96 km/h.  

 
Figure 5.16. Network used to illustrate the mesoscopic traffic simulator of this 

chapter. 
 

There is a traffic demand from Node A to Node K of 1700 veh/h. Individual 

vehicles are added following a uniform distribution from 8am to 9am. As the minimum 

time unit between events is 0.01h (~36seconds), vehicles are added into the network 

every 36 seconds.  

An incident is introduced to alter the levels of flow, density and speed during 

a period of time. In this particular example, the last link (link 9) is closed to traffic at 

8:24am (8.4h) and it is open again at 8:48am (8.8h). During this time, no vehicles 

can use link 9 and therefore, they need to wait until the road segment is open again. 

Note that the ‘warm-up’ and ‘cool-down’ periods are not modelled in this example. 
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5.8.1. Fundamental diagrams 

The following section obtains the fundamental diagrams after running the model. 

Figure 5.17 shows the average data of flow, speed and density that is collected every 

minute on every single link of the model. In order to have a larger dataset, the same 

model has been run five times. Each colour indicates the data of each simulation. As 

the minimum time between events is 0.01h, data has been collected between events. 

In order to obtain data every minute, data has been averaged merging two 

consecutive events (0.01h+0.01h ~ 1 min). Flow is measured as the number of 

vehicles that enters each link at that period of time. The speed is obtained as an 

average of all speeds of all vehicles travelling through that link at that certain time. 

Note that the speed of those vehicles that are on a queue is assumed to be zero. In 

reality, vehicles should move at the speed of the queue dissipation. However, in this 

model, the speed of the queue dissipation is used to calculate a new arrival time to 

the end of the link (see Section 5.5.2.2). That is the reason why the Speed-Density 

diagram of Figure 5.17 shows the minimum speed in 0km/h. 

Results from the model are compared to the theoretical fundamental 

diagrams. The resulting diagrams are in accordance to the theoretical ones (see 

Figure 5.4 and Figure 5.4 in Sections 5.4.3 and 5.4.4. respectively). Several aspects 

marked in red ellipses are explained more in detailed because these could be 

considered as anomalies of the model that are not shown in the classical fundamental 

diagrams. 

Ellipse I highlights the assumption made in this section to obtain the average 

speed of vehicles on a queue. As observed in the diagram, the average speed on the 

link is zero but there are still vehicles on the link (density is not zero). This is possible 

because those vehicles that are still waiting on a queue to exit the link have zero 

speed.  

Ellipse II shows the case of no inflow of new vehicles but high density of 

vehicles on the link. This is possible in this model because even if no more demand 

is entering the link, there are still vehicles waiting to exit that link and therefore the 

density is not zero at that time. As observed, the density is gradually decreasing until 

it gets a value of zero with zero inflow, as expected.     
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Ellipse III corresponds to a particular case of Ellipse II with vehicles still 

entering the link (moderate density and inflow). Generally, data of Ellipse III comes 

from the end of the simulation period when the number of new vehicles entering links 

is quite low. The trend is to have lower inflow (which at the end it will be part of 

Ellipse II) because no more demand is added into the network (demand stops at 

9am). As opposed, the density of that link is still moderate/high because even if not 

a lot of vehicles are entering that link, there are still vehicles travelling or waiting on 

a queue to exit that link. The average speed of these vehicles at that time is quite 

low (~20km/h on average) because the speed of vehicles travelling through the 

network is averaged with the speed of vehicles waiting on the queue which is zero 

speed. This is the reason why the average speed of the link when there are vehicles 

waiting at the queue reduced the overall speed of the link. 

 

 

Figure 5.17. Fundamental diagrams of traffic flow obtained from the implemented 
mesoscopic model. Each dot represents an average data of flow, speed and density 

respectively that is collected every minute on every single link of the model. Five 
simulations have been run (see colours). Time period from 8am to 9am. 



Chapter 5  Mesoscopic traffic simulation  

 

 

132 
 

5.8.2. Queue propagation 

This section illustrates the shockwave-propagation mechanism after the closure of 

one link located downstream. Figure 5.18 plots the cumulative number of vehicles 

entering each link over time. The slope of the lines represents the entering flow rate. 

As observed in the graph, vehicles are added into the network at 8am on link 1 and 

rapidly travel through the rest of the links. The first vehicle reaches the last link 9 

after 10 minutes approximately. At 8:24am (8.4h in graph), Link 9 is closed and no 

more vehicles can use that link (slope of the line is zero – no flow rate). This means 

that the cumulative number of vehicles stays constant at that time. Vehicles that 

cannot access link 9 start to form a queue on link 8 from downstream to upstream 

waiting to exit the link. If the closure of link 9 extends for a long period, the formation 

of the queue on link 8 can reach the upstream node, producing the blockage of this 

link (queue spillback). Letter A in Figure 5.18 shows the time that it takes to block 

the link to new vehicles. In this case, after 7 minutes, link 8 is blocked and no more 

vehicles can use that link. The distance between lines represents the number of 

vehicles on each link (letter B in Figure 5.18). The queue formation is also blocking 

Links 7, 6, 5 and 4. This shows how the backward propagation of the queue is 

represented correctly (backward forming shockwave).  

At 8.48am (8.8h in graph), the incident clears, vehicles can start using link 9 

again and the queue start to dissipate and propagates via link 8, 7, etc. On link 3 the 

backward forming shockwave is caught up by the backward recovery shockwave 

which is moving faster. That is why links 1, 2 and 3 are unaffected by the incident.   

For this particular example, as the capacity of all links is the same, the rate of 

vehicles leaving and entering a link is the same for all links. That is the reason why 

Figure 5.18 shows that the lines of entering flow and leaving flow rate (queue 

dissipation) are parallel. Lines come together when there is no new demand added 

into the network (at 9am).    
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Figure 5.18. Cumulative number of vehicles that enters on each link. Incident starts 
on link 9 at time 8.4h and finishes at 8.8h. 

 

Figure 5.19 shows another way of representing this queue propagation. It 

plots the number of vehicles waiting on a queue over time on each link. The vertical 

axis represents the simulation time and the horizontal axis the number of vehicles on 

a queue. Each colour represents a different link and the physical representation of 

the links is included at the bottom of the figure. As observed, at 8.4h the queue starts 

to build-up until it reaches link 3 at time 8.9h approx. Once link 9 is open again to 

traffic at 8.8h, a reduction of the number of queued vehicles on link 8 is observed 

because some vehicles are already sent to Link 9. The density of vehicles on link 8 

starts to reduce and more vehicles that are waiting on a queue on link 7 can use link 

8 and so on. As mentioned, when the queue dissipation line catches up the queue 

formation line, the queue is not propagated to more upstream links. In this example, 

even though the damaged link is open to traffic, the queue does not completely 

disappear until the end of the simulation. The main reason is that the entry flow rate 

and the exiting flow rate of each link is exactly the same for all links. In other words, 

the link capacity restrictions are the same for all links. In this sense, only limited 

number of queued vehicles of link 8 can enter link 9 due to capacity restrictions. The 

number of vehicles that enters link 9 is equivalent to the queue reduction of link 8. 

When no more vehicles can enter link 9 (due to the lack of capacity for the time 

interval 0.01h), queued vehicles that have not been able to enter link 9 will form a 

queue on link 8 until the next time interval (+0.01h) when link 9 will accept more 

vehicles. As some vehicles have left link 8, there is still space to access this link and 

therefore the same amount of vehicles that have entered link 9 will enter link 8 from 
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link 7. The process is repeated for all links. Therefore, as arrival and departure rates 

are the same, the queue is never completely dissipated unless flow rates changes. 

Only when the arrival rate becomes lower than the departure rate, the queue starts 

to clear from upstream to downstream links.      

 

Figure 5.19. Number of vehicles queueing on each link vs. time 
 

This Figure 5.19 also shows one aspect of the implemented relation between 

flow and density. As explained in the previous Section 5.8.1 and Section 5.4.4, the 

flow of vehicles that enters a link (entering rate) starts being affected once more than 

half of the jam density is reached, which means that the entering rate of vehicles is 

reduced. That is the reason why a queue can build up even without having the next 

link full. For instance, the queue on link 7 has started to build up without having the 

link 8 completely full. This means that the departure rate is lower than the arrival rate 

and a queue starts to build-up. On the other hand, the density of link 3 is less than 

half of the jam density, which means that inflow is not affected. Evidence of this is 

included in Figure 5.18 showing that the arrival rate of link 3 is not affected by the 

incident.  

     

5.9. Contributions to the knowledge  

This section provides an insight into those aspects that make this model slightly 

different from other existing mesoscopic models. However, it is worth mentioning that 
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the main aim of this chapter is not to present a novel traffic simulator. Already existing 

models work properly and although there are some areas of research that could be 

addressed to improve these models, that was not the intention of this chapter. 

However, due to the need to implement a bespoke mesoscopic model (see Section 

5.3), several new aspects have been included, which contributes to the body of 

knowledge. This chapter provides a detailed explanation of a new three-stage 

process, which is explained in Section 5.6 and is used to simulate movements through 

the network. None of the models that have been consulted to develop this chapter 

(Mezzo, DynaSMART) provide an explanation of how they implement this modelling 

process of sending vehicles to next links. This model contributes to the body of 

knowledge by providing a detailed explanation of how this new procedure is 

implemented and it can be considered as a starting point for other researchers to 

develop new mesoscopic traffic simulators.   

 

5.10. Drawbacks and areas of improvement  

Some disadvantages regarding the implementation of the mesoscopic simulator and 

their possible areas of further improvement are included in the following section:   

1. Code efficiency and computational cost. The method used in this model to 

simulate the process of moving vehicles across the network may not be the 

most efficient one. The ‘node’ loop and the ‘packet’ loop presented in Section 

5.6.2 requires the simulation of all movements of all packets located on all 

nodes for several times. Every time there is a new movement on the network, 

the model needs to check that no more vehicles can move forward. If the 

network contains a large amount of nodes to visit and many packets of 

vehicles to simulate, the model may take a lot of time to run. However, there 

is still room for improvement in this area. Further work needs to focus on the 

improvement of the efficiency of the algorithm. The order of nodes that are 

visited during the ‘node’ loop should not be randomly selected and an order 

that maximises movements on the network should be implemented. This 

allows the algorithm to run fewer times and therefore, speed up the 

computational process. 
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2. Intersection modelling (nodes). This model considers that all intersections are 

simulated using turning pockets. For each next link, there is a turning pocket 

that drivers need to visit in order to be sent to the consecutive link. However, 

other typology of intersections should be implemented in future versions of 

this model. The addition of traffic signal control could also be an area of 

interest, which can provide different levels of priority to some roads after 

disruptions.  

Another aspect to consider in future versions of the model is that capacity of 

intersections may be more restrictive that the capacity of links. In this model, 

the capacity of the downstream link restricts the outflow of the upstream link, 

which means that junction delay is not considered. However, in reality, the 

capacity of the junction restricts the outflow of the upstream link.     

 

3. Calibration and validation with real data. The model needs to be tested to 

larger networks, calibrated to specific traffic conditions to which they are 

applied and validated using real traffic data in order to be applicable to real 

life operations. Future work should focus all the efforts on the calibration and 

validation process.  

 

4. Entry flow restriction. This model imposes that the flow of vehicles that enters 

in a link depends on the density of vehicles that are already on that link. The 

more vehicles that are circulating on the link, the lower the inflow of vehicles 

that can enter the link (see Section 5.4.4). However, this assumption implies 

that when the density of the link is already high (not necessarily a full link) 

and there is a high demand of vehicles that want to use that link, some drivers 

may not have access to the link and they start to build up a queue, even if the 

link is not completely full of vehicles. In reality, the queue spillback starts once 

all link is full of vehicles and no more vehicles can use that link. Further work 

needs to study this relationship more in depth. 

 

5. Type of vehicles. This model only simulates the movement of cars. However, 

trucks are one type of heavy vehicles that also share the road with other cars. 

The interactions between vehicles are not modelled in this mesoscopic model 
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but it may have an impact as not all vehicles travel at the same speed. This 

model incorporates a variability in the free-flow speed that depends on the 

type of driver but it does not consider that these heavy vehicles can reduce 

the speed of other vehicles (interactions). The number of heavy vehicles that 

are travelling through the link may also influence the speed that is assigned 

to each vehicle that wants to enter the link. Further research needs to be done 

in this area.  

 

5.11. Conclusions of the chapter 

This chapter has presented a mesoscopic traffic simulator that models the dynamics 

of vehicles when moving through the network. Although there are already available 

existing mesoscopic models, this chapter has explained the reasons why another 

model has been implemented. The model represents the network using nodes and 

links, which are divided into running and queueing part. The fundamental diagrams 

based on aggregated macroscopic quantities dictate the movements of vehicles 

through the network. This model has also described how a queue is formed and 

dissipated when the network is congested. The contribution of this chapter to the 

body of knowledge is focussed on the provision of a detailed explanation of a new 

three-stage process that is used to simulate movements through the network and 

how it could be implemented in MATLAB. None of the consulted mesoscopic models 

(Mezzo, DynaSMART) have provided a detailed explanation of how they implemented 

this modelling process of sending vehicles to next links. It could be considered as a 

starting point for other researchers to develop new mesoscopic traffic simulators. An 

illustrative example has also been included and it demonstrates that the implemented 

model is able to replicate the fundamental diagrams of traffic flow and it forms and 

dissipates queues successfully. Further work needs to be done in order to calibrate 

the model to specific traffic conditions to which they are applied and validate it with 

real traffic data. 
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CHAPTER 6 

6.  A reinforcement-learning model of 

departure time and route choice  

 

 

 

6.1. Introduction and background 

Traffic assignment models, which are part of the traditional four-step model (Ortuzar 

and Willumsen, 2011), are widely used as a transport planning tool to predict traffic 

loads on the network. Results from these models, such as traffic flows, travel times 

and congestion levels, are used by transport planners to make important decisions 

regarding infrastructure investment and transport policies. Within restoration 

modelling, the current approach is to use static user equilibrium-based traffic 

assignment models (see literature review in Chapter 2). These models are based on 

the Wardrop’s first principle (1952) which states that, under congested conditions, 

every traveller seeks to minimise his/her travel cost. User equilibrium (UE) is then 

reached when no traveller can reduce his/her travel cost by unilaterally switching to 

another route. However, in reality, drivers do not have ‘perfect knowledge’ of costs 

on all routes at all times and therefore, they may not select the route that has the 

minimum travel cost for them. Drivers only know information about traffic conditions 

on those routes that have been used in previous days or based on real-time 

information that is provided by traffic information services. After the impact of a 

hazard, parts of the network can be severely damaged, which may require the 

immediate closure of some road segments. Not all drivers may be aware of all network 

changes and therefore, it is unrealistic to think that after these incidents all drivers 

have perfect knowledge of traffic conditions (Hackl, Adey and Lethanh, 2018). 

Although static user-equilibrium assignment is still a preferred tool to assign traffic on 
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the network due to its simplicity and computational efficiency (Bliemer et al., 2013; 

Kaviani et al., 2018), the unrealistic assumptions made are likely to lead to output 

errors.  

In recent years, there have been attempts to incorporate a non-equilibrium or 

transient drivers’ behaviour in vehicle assignment (Faturechi and Miller-Hooks, 2014b; 

Nogal et al., 2016). A system impedance was introduced in these models to reflect 

the drivers’ lack of knowledge of the new situation.  

Drivers need to make travel decisions that, in most cases, are repeated in a 

daily basis. As human beings, they have an inherited ability to learn from past 

experiences and therefore, they make current travel decisions based on the 

consequences of previous ones. Therefore, drivers can build their own travel memory 

and create their own travel expectations based on previous days. In this case, as 

drivers do not have perfect knowledge of network conditions, user equilibrium may 

not be reached. Learning-based algorithms for modelling travel behaviour result in 

more realistic traffic assignments (Wahba and Shalaby, 2006). 

Therefore, the aim of this chapter is to develop a model that assigns traffic 

loads on the network, avoiding the user equilibrium condition and providing a more 

realistic drivers’ decision-making modelling approach. The rest of this section 

describes the process of how human beings learn from their past experiences and 

use this information to make future travel decisions. Current learning-based traffic 

models are identified and their limitations are highlighted. Section 6.2 presents the 

modelling framework of the RL traffic model proposed in this chapter. Section 6.3 to 

6.8 describe different parts of the model more in detail (expected travel cost 

calculation, stimulus functions, option probability updating functions). Section 6.9 

applies all these concepts to the same transport network used in Chapter 4 (the Sioux 

Falls Network, US). Finally, Section 6.10 to 6.12 includes some limitations, further 

work and conclusions.  

   

6.1.1. Psychological principles of learning behaviour 

One of the first attempts that applies psychological principles to the area of learning 

comes from Thorndike’s experiments (Thorndike, 1898, 1911). He studied the process 
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of how animals learn over time. In his experiments, he placed a cat inside a puzzle 

box and then a piece of meat outside the box. The only way to escape the box was 

through a door that was opened by pressing a lever. He observed that even though 

during the first time the cat opened the door probably by accident, the cat became 

more likely to repeat the action as it received a reward immediately after opening the 

door. Thorndike also noticed that cats became much faster at escaping the box. The 

reason was because opening the door led to a positive reward and thus, cats were 

more likely to repeat the same action in the future. This learning process is defined 

by Thorndike (1911) as the “Law of effect” and two key aspects are highlighted from 

this theory: 

a) Any behaviour that leads to positive consequences is MORE likely to be 

repeated in the future. 

b) Any behaviour that leads to negative consequences is LESS likely to occur 

again.  

To the best of the author’s knowledge, the term “reinforcement” appeared for 

the first time in the work done by Ivan Pavlov (1927) on his conditioned reflexes. The 

author, creator of classical (or Pavlovian) conditioning, demonstrated through his 

experiments why dogs started salivating even without having food in front of them. 

He suggested that any stimulus (e.g. the sound of a bell) could have the same effect 

of salivation if it was initially paired with the original stimulus (e.g. food). In this sense, 

this process of strengthening a behavioural pattern (e.g. salivating even without 

having food) is known as reinforcement.   

 

6.1.2. Introduction to reinforcement learning and learning automata.  

Reinforcement learning (RL) is a major branch of Machine Learning, which is an 

important research area of Artificial Intelligence (AI). RL allows agents to determine 

automatically the optimal behaviour based on the response of the environment, as 

shown in Figure 6.1. This feedback allows agents to learn from their behaviour. If the 

response is satisfactory, the agent receives a positive reward. And if it is not 

satisfactory, a negative reward (or punishment) is received.  
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Figure 6.1. Diagram of the Reinforcement Learning system  

[Adapted from (Sutton and Barto, 1998)] 

 

There are some terms of the RL field that the reader must know at this point. 

Table 6.1 summarises some of these RL terms. 

Table 6.1. Reinforcement learning terms. 

Term Description 

Agent Individual that makes a decision. 

Action A set of decisions that the agent can undertake. 

Environment Where the agent learns and makes decisions. The 

environment can be deterministic (if the same action 

leads to the same state) or stochastic (if the agent 

takes an action and the resulting state might not 

always be the same).   

State The observations that the agent receives from the 

environment.  

Reward The output after selecting an action by the agent. 

Policy A strategy that an agent uses in pursuit of goals. 

  

Two types of RL models are classified in the literature (Gläscher et al., 2010; 

Kurdi, Gershman and Banaji, 2019): model-based RL and model-free RL. Model-based 

RL algorithms are formulated as a Markov Decision Process (MDP), which represents 

how the environment reacts to the actions that an agent might take. It includes two 

functions  (Haith and Krakauer, 2013): (1) a transition function (or transition model) 

that gives the probability of moving to any of the next states, given the current state 

of the environment and an action that an agent might take, and (2) a function that 

provides the reward to the agent. The “dynamics” of the environment are determined 
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by the transition function and the reward function. In this sense, the agent can 

potentially predict the dynamics of the environment. In summary, this system uses a 

predictive model of the world that answers questions such as “what will happen if the 

agent does X?” (Janner et al., 2019).  

However, in the absence of the transition and reward functions, MDP is 

unknown and the agent does not know a priori what the effects of the actions that 

the agent might take are. Therefore, the agent needs to interact with the environment 

and learn from their mistakes using a ‘trial and error’ approach. In this sense, and by 

taking actions, the agent starts to understand the unknown environment and the 

response to his/her actions. This is also known as ‘model-free RL algorithm’. 

Therefore, this algorithm estimates the optimal policy directly from experience, 

without using any transition and reward function. Examples of this type of algorithms 

are: Learning automata (Narendra and Thathachar, 1974) and Q-learning (Watkins, 

1989; Watkins and Dayan, 1992), among others.  

The model that is proposed in this chapter belongs to the category of model-

free algorithms because a priori agents (or drivers in this case) do not know the 

consequences of the actions they could take. They need to undertake the actions in 

order to gather information about the environment and with this information they can 

make future decisions.    

The difference between the two model-free RL algorithms – Learning 

automata and Q-learning – is described as follows. Learning automata belong to the 

category of ‘policy iteration methods’, which search directly for the optimal policy in 

the space of policies (Wauters et al., 2013). This algorithm defines a starting policy, 

estimates the state value of that policy and iterates towards the best policy by making 

changes to action choices (Buşoniu et al., 2010). This is expressed using an action 

probability distribution that is updated using some reinforcement schemes (Wauters 

et al., 2013). In contrast, Q-learning, which belongs to the ‘value iteration methods’, 

do not search for the optimal policy (also known as ‘off-policy’ algorithm (Violante, 

2019)) and instead it evaluates the ‘Quality’ of a state-action pair through a value 

function (Wauters et al., 2013). In this sense, ‘quality’ shows how useful an action is 

in obtaining the maximum reward (Violante, 2019). The optimal policy can be derived 

at the end from the obtained values (Habib, 2012).  
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Robert Bush and Frederick Mosteller (1951), using some considerations of 

Estes (1950), developed the first mathematical learning model in the area of 

psychology and biology to describe human behaviour. The idea behind the Bush-

Mosteller (BM) model is that an agent is able to make a decision based on the 

consequences of their previous actions. In terms of probabilities, the Bush-Mosteller 

model (see Equation (6.1)) updates the probability 𝑃 that an action 𝑎 occurs on trial 

𝑡 + 1 as a function of its value in the previous trial 𝑡 and a correction term (∆𝑃𝑎
𝑡) that 

is based on the agent’s experience on trial 𝑡. This term increases or decreases the 

probability 𝑃𝑎
𝑡. The term 𝓇 ∙ (1 − 𝑃𝑎

𝑡) of Equation (6.1) corresponds to an increment 

in 𝑃𝑎
𝑡 which is proportional to the maximum possible increment, (1 − 𝑃𝑎

𝑡). The term 

−𝓅 ∙ 𝑃𝑎
𝑡 corresponds to a decrement in 𝑃𝑎

𝑡 which is proportional to the maximum 

possible decrement, −𝑃𝑎
𝑡. The parameters 𝓇 and 𝓅 are also known as reward and 

punishment, respectively, and they take values between 0 and 1. Note that if an 

action is rewarded (𝓇 > 0), it cannot be punished (𝓅 = 0) and vice versa. These terms 

are multiplied by ℓ, which is also known as the learning rate. If the learning rate 

acquires the maximum value (ℓ = 1) and the agent receives the maximum reward 

(𝓇 = 1, 𝓅 = 0), then 𝑃𝑎
𝑡+1 = 1 which means that the probability that the action occurs 

on the next trial is immediately updated based on what the agent has experienced 

just the trial before. If the value of the learning rate is small (non-zero value), then 

the value of 𝑃𝑎
𝑡+1 is slowly increased or decreased, depending on the value of the 

reward/punishment.  

𝑃𝑎
𝑡+1 = 𝑃𝑎

𝑡 + ∆𝑃𝑎
𝑡 

Being ∆𝑃𝑎
𝑡 = ℓ ∙ [𝓇 ∙ (1 − 𝑃𝑎

𝑡) − 𝓅 ∙ 𝑃𝑎
𝑡] 

(6.1) 

Where, 

𝑃𝑎
𝑡+1, is the probability that the action 𝑎 occurs at trial 𝑡 + 1, ranging from 0 

to 1. 

𝑃𝑎
𝑡, is the probability that the action 𝑎 occurs at trial 𝑡, ranging from 0 to 1. 

∆𝑃𝑎
𝑡, is the change in the strength of the action 𝑎, ranging from 0 to 1. 

ℓ, is the learning rate, ranging from 0 to 1.  

𝓇, is the parameter that increases the probability 𝑃𝑎
𝑡+1. It is also known as 

reward. It lies between 0 and 1. 
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𝓅, is the parameter that decreases the probability 𝑃𝑎
𝑡+1. It is also known as 

punishment. It lies between 0 and 1. 

 

6.1.3. Reinforcement learning in the area of transport modelling  

Reinforcement learning have been applied to other areas of engineering (Obaidat, 

Papadimitriou and Pomportsis, 2002), such as computer vision (Maravall, de Lope and 

Fuentes, 2013), transportation (Unsal, Kachroo and Bay, 1999; Barzegar et al., 2011), 

automated system design (Oommen and Hashem, 2010). A review carried out by 

Abdulhai and Kattan (2003) about the reinforcement learning and their applications 

shows the potential of this technique in the transportation field. These authors and 

others (Bartin, 2019) admitted that the most researched part in the transport area 

was the use of RL in optimising traffic signal control operations (Roozemond and Veer, 

1998; Abdullah, Pringle and Karakuls, 2003; Shoufeng, Ximin and Shiqiang, 2008; 

Bombol, Koltovska and Veljanovska, 2012; Zang et al., 2020). However, they also 

mentioned that the application of the RL in the area of transportation field needed to 

be examined and explored further more.    

In the area of route choice modelling, only a few models that apply the RL to 

the route choice problem have been identified in the literature. The following Table 

6.2 summarises the characteristics of these models.   

Table 6.2. Models found that use RL in route choice modelling 

Reference Description 

(Ozbay, Datta and 

Kachroo, 2001) 

A day-to-day route choice model using stochastic learning automata (SLA). 

The authors used a Linear Reward-Penalty Scheme to represent the day-to-

day learning process. They used a macroscopic traffic model. The model was 

applied to simple 2-route network.    

(Ozbay, Datta and 

Kachroo, 2002) 

 

This model updated the previous one (Ozbay, Datta and Kachroo, 2001) by 

allowing drivers to choose a departure time (in addition to the route). Drivers 

were grouped into packets. They also used a macroscopic model. The model 

was also applied to a 2-route network.  

(Wahba and Shalaby, 

2005) 

A day-to-day and within-day transit assignment model. The authors used a RL 

algorithm to simulate the adaptation process of passengers to the dynamics 

of the public transit network. Passengers made their travel choices (including 

departure time, origin-destination bus stops and route choice) based on the 

experience over time. It was modelled using a microscopic transport simulator.  

 Continuous in the next page 
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From the previous page  

Reference Description 

(Yanmaz-Tuzel and 

Ozbay, 2009) 

The authors improved the SLA originally proposed by Ozbay et al. (2001) to a 

Bayesian SLA model. The learning parameters were modelled as probability 

distributions rather than deterministic values and were estimated via a 

Bayesian Inference approach.   

(Wei, Ma and Jia, 2014) A day-to-day route choice model based on RL and multi-agent simulation. The 

authors applied the classical learning Bush-Mosteller model to simulate how 

individual drivers made daily route choices.  

The Reward-Penalty Scheme was represented as a stimulus function that 

represented the degree of satisfaction or dissatisfaction of each driver’s choice. 

They used a macroscopic traffic model. The authors applied the model to a 

network of 13 nodes, 19 links and a demand of 2062 vehicles.    

(de Oliveira Ramos and 

Grunitzki, 2015) 

Route choice model that compared the Q-learning algorithm and the learning 

automata algorithm. The authors proposed a new mechanism that updated 

the drivers’ set of routes, allowing faster routes to be learned. They applied 

the model to a network of 13 nodes and 24 links and modelling 1700 vehicles 

(4 OD). It also used a macroscopic traffic model.  

(Bazzan and Grunitzki, 

2016) 

Traffic assignment model that allowed each driver to create his or her own 

route by deciding, at each node, how to continue their trips to their 

destination. The authors used the Q-learning algorithm to solve the problem. 

The difference between this model compared to the other models was that 

drivers decide to go to nodes instead of the classical method of selecting entire 

routes.   

(Zhou et al., 2020) The authors combined a learning automata approach with a congestion game 

to address the route choice problem and reach the optimal route choice 

strategy. They pointed out that the BM model is an effective method to learn 

the optimal route choice strategy. 

 

6.1.4. Limitations of current RL traffic models  

Reinforcement learning algorithms have been used to model drivers’ behaviour. 

However, current models do not capture essential aspects that characterise drivers’ 

decisions. Some of the limitations of previous models are described as follows:  

1. Reviewed RL traffic models have not dealt with the situation where one or 

more links have been closed. In such situations, drivers need to divert to other 

routes or even decide to abandon the trip and return home. These travel 

decisions may also influence future ones.  
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2. Especially after disruptive events, drivers may decide not to travel using their 

car and use other modes of transport or even cancel the trip. Current RL traffic 

models should incorporate a multi-modal approach and add the possibility of 

not travelling by car.      

3. Emerging technologies and Intelligent Transport Systems (ITS) are helping 

drivers to make more informed decisions. Nowadays, drivers have access to 

pre-trip information and on-board information via GPS navigation, radio and 

social media. Travel decisions can be altered based on this new information. 

In this sense, current RL traffic models need to incorporate pre-trip and en-

route travel information and understand how this new information alters the 

habitual travel behaviour and how it is integrated in the driver’s cognitive 

model.  

4. Current reward-penalty schemes of the RL traffic models reward the chosen 

option if it was a good decision or penalise the option if it was a bad decision. 

Consequently, the model rewards (penalises) the rest of the unselected 

options so that it stimulates drivers to use (or not use) them. If the model 

rewards the chosen option, then it penalises the rest and vice versa. However, 

models should not consider all the rest of options as a fixed block. Some of 

them may be favourable to use while others may not. A clear example is 

described as follows: according to current models, if a driver departs at 8am 

and arrives late at the destination, this option is penalised and all the rest of 

options are rewarded. However, this driver would never choose an option that 

departs later than 8am because there is a high chance of arriving late again. 

Modifications to current reward-penalty schemes should differentiate between 

travel options that drivers are also willing to use (favourable options) and 

those options that they prefer not to use (unfavourable options), instead of 

just differentiating between selected and unselected options.  

These potential improvements are relevant to this study because it allows a more 

realistic approach in which drivers can make on-board travel decisions, learn from 

their past mistakes, influence future ones and make more informed decisions, among 

others. This acquires special importance after the impact of disruptive events. 
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Therefore, Chapters 6 and 7 aim to develop a model that overcomes the limitations 

observed in previous RL traffic models.  

 

6.2. Modelling framework 

6.2.1. Drivers’ decision making process framework 

The model proposed in this chapter is a departure time and route choice model that 

applies the idea of RL to simulate how drivers learn from their own experience and 

make day-to-day and within-day travel decisions. Learning techniques are ideal 

methods to model drivers’ reactions to a changing environment without necessary 

converging to an equilibrium state (Brenner, 2004). This allows a more dynamic 

representation of drivers’ adaptation to changing network conditions.  

Based on the original idea of Bush and Mosteller (1951), this model allows 

drivers to learn from their own mistakes (as a ‘trial and error’ approach) and move 

towards minimising their day-to-day travel cost. Among the RL techniques, learning 

automata algorithm is the one selected to use in this model. The reasons why this 

approach have been selected are the following: (1) The LA algorithm is more intuitive 

compared to a Q-learning algorithm and reflects accurately drivers’ decision-making 

as it describes the internal states of drivers as a probability distribution according to 

which actions are chosen. (2) LA searches directly for the optimal policy instead of 

evaluating the ‘Quality’ of a state-action pair through a value function (Wauters et al., 

2013). (3) A comparison between LA against QL algorithm which was done by de 

Oliveira Ramos and Grunitzki (2015) shows that LA converges faster to a preferred 

solution and needs to explore less of the network. (4) Easier to implement than other 

algorithms, such as the Q-Learning algorithm.    

The inspiration of the model which is described in this chapter is based on the 

previous work done by Ozbay et al. (2002) and Wei et al. (2014). The former because 

they provide the idea of incorporating a departure time and a route choice as an inter-

related decision on these types of models and the latter because they present an easy 

and understandable formulation for the reward-penalty scheme that can be directly 

applied to the transport area. Therefore, a combination of both models and several 

improvements are presented in this chapter.  
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Drivers’ day-to-day behaviour can be represented as a dynamic process of 

repetitive travel decision making. They have to plan their trips in an uncertain 

environment and through making day-to-day decisions, drivers learn by ‘trial and 

error’ the dynamics of the system. Drivers acquire knowledge during the first days 

about the environment and store and update this information on their mental model. 

Over time, drivers may choose different travel options and learn which of these 

choices are the ‘best’ for them in achieving a certain goal. In the context of this model, 

a travel option is defined as a combined decision in which drivers choose a departure 

time and a route to get to their destination. Note that the model does not tell drivers 

the action that they should take. Instead, it allows them to discover which actions 

give them the maximum reward.       

 

 

Figure 6.2. Drivers’ decision-making process based on a reinforcement learning 
approach   

 

The framework of the RL traffic model proposed in this chapter is shown in 

Figure 6.2. In this model, each driver has a ‘brain’ (mental model) that stores travel 

information from previous trips. These travel memories are represented by the LA 

algorithm as an internal state of each possible travel option. The consequences of 

selecting a travel option on each day updates the internal state of each option. 
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Mathematically, it is described as a probability distribution according to which travel 

options are chosen. The probability associated with each option indicates how likely 

the option is to be chosen by the driver. In this model, this is stored in an action 

probability vector (probability mass density) and it satisfies the condition shown in 

Equation (6.2): the sum of the probabilities of all possible travel options that a driver 

knows must be equal to 1. Initially drivers have zero knowledge about the 

environment and they learn while they select travel options on each day. This model 

assumes that all initial probabilities of selecting options are equal. 

∑𝑝𝑧𝑡

𝒵

𝑧=1

= 1 (6.2) 

Where, 

𝒵, is the total number of possible travel options that each driver knows. 

𝑝𝑧𝑡, is the probability of selecting each travel option 𝑧 at time 𝑡. 

 

Each driver selects stochastically the travel option for next day. This is done 

by using the stochastic choice rule presented in Equation (6.3). The bigger the 

probability of an option is, the more likely this option is selected by the driver. Each 

day, a uniform distributed random value (𝜗) is generated for each driver and it is 

compared to the cumulative probability distribution of all options. Each possible travel 

option is given randomly a unique number (𝑧), which are then ordered from lowest 

to highest. The travel option (𝑧 = 𝑚) that satisfies Equation (6.3) is the one selected 

by the driver for that day. 

∑ 𝑝𝑧𝑡

𝑚−1

𝑧=1

< 𝜗 ≤∑𝑝𝑧𝑡

𝑚

𝑧=1

 

∀ 𝑚 ∈ 𝒵 

(6.3) 

Where: 

𝑝𝑧𝑡, is the probability of selecting a travel option 𝑧 on day 𝑡. 

𝑚, is the future selected travel option on day 𝑡. 

𝑧, is a travel option. 

𝒵, is the total number of possible travel options that each driver knows. 

𝜗, is the random value (ranging from 0 to 1). 
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Once the driver has chosen a travel option for the day, a mesoscopic traffic 

model simulates the movement of vehicles through the network. This has already 

been explained in Chapter 5. At the end of the simulation, drivers receive a response 

from the environment in the form of the travel costs, which are stored in their mental 

models. Comparing this perceived travel cost and the travel cost that the driver 

expects from previous travel experiences, each driver receives a positive stimulus 

(reward) towards repeating the same travel option again or negative stimulus 

(punishment) that penalises the selection of this travel option. The action probability 

vector is adjusted for the day 𝑡 + 1 according to the success or failure of the action 

taken on day 𝑡. Note that, as mentioned in previous Chapter 5, drivers can be grouped 

into packets in order to speed up the modelling process. Therefore, all drivers within 

the packet are treated as a homogenous group. 

 

6.2.2. Preferred Arrival Time Interval (PATI) and types of drivers 

The purpose of travelling is to undertake activities at the destination place. These 

activities may include work, recreational and social activities, among others. The 

importance of knowing the reason why drivers travel is because activities can be 

treated differently in this model. The starting time of all activity types may not be the 

same. Some activities have more restrictive starting times than others. For instance, 

the starting time of a work-based activity may not be as flexible as a leisure-based 

activity in general. This model considers this feature by assuming different starting 

times for different activities.      

Drivers may have a period of time that they preferred to arrive before the 

activity starts. Some authors (Jenelius, Mattsson and Levinson, 2011; Thorhauge, 

Cherchi and Rich, 2014) use a Preferred Arrival Time (PAT) while others (Xiao, Liu 

and Huang, 2014) define a Preferred Arrival Time Interval (PATI) instead of a single 

point in time. If drivers do not arrive before the PAT or PATI, it may affect negatively 

producing stress, nerves, etc. If they arrive earlier, it may be too early and they would 

prefer to depart later. If they arrive later, that could be too late and they could arrive 

not in time to undertake the activity. In both cases, drivers are penalised for being 

late/early as it will be explained in the Section 6.3. The model proposed in this chapter 
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includes the possibility of adding both PAT and PATI. In fact, PATI can be transformed 

into PAT if the extreme values of the interval are equal.  

Heterogeneity between drivers have also been considered in this model. As 

not all drivers prefer to arrive at the same interval time, different types of drivers 

have also been implemented in this model. Different types of drivers mean different 

PAT/PATI. Although this model opens the possibility to include these additional 

features, the lack of enough data may complicate the model and simplifications may 

be added, such as assuming a single starting time for all activities, or adding just one 

type of driver and therefore just one PAT or PATI. 

 

6.2.3. Subset of initial routes 

A large set of paths connects an origin and a destination in a real network. However, 

all these alternative routes cannot be generated in the model because it would be 

computationally expensive. Instead, a subset of routes is defined for each origin-

destination pair. The modeller needs to define the number of routes (K) that the 

subset includes. 

Routes are obtained using the Yen's K-Shortest Path algorithm (1971) based 

on free-flow travel times. This algorithm initially finds the shortest path between the 

origin node and the destination node using the Dijkstra’s algorithm (1959) and then 

finds K-1 deviations of this previously-discovered shortest path without repeating 

nodes in the path. Yen (1971) identifies every node of the main shortest path and 

calculates another shortest path (spur) from each node to the last node, avoiding 

selecting already visited nodes and links from the root path (loopless). The process is 

repeated calculating a spur path from each node in each new shortest path (Brander 

and Sinclair, 1996; Chen et al., 2020). 

 

6.3. Travel cost function 

Traditionally, the function that quantifies the travel cost depends on the time spent 

by a driver from an origin to a destination. However, more generalised cost functions 

than just travel time have been suggested by other researchers. As this model also 

considers the option of choosing a departure time, the cost function should consider 
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the effect of arriving earlier or later than the PAT/PATI. In fact, drivers may adjust 

their departure time for future trips depending on how early or late they arrive to the 

destination. This function usually consists of a trade-off between the travel time spent 

between an origin to a destination and some penalties for early or late arrivals.   

There is a group of studies in which a simple linear cost function is considered, 

assuming that disutility is proportional to the delay. For instance, and based on 

previous work done by Gaver (1968), Vickrey (1969) and Cosslett (1977), Small 

(1982) proposed a utility function, which was extended by Noland and Small (1995), 

that considers the cost of early or late arrivals relative to some specific preferred 

arrival time. De Palma et al. (1983) changed this model and proposed a preferred 

arrival time interval, instead of a single preferred arrival time. 

For the simplicity of the function, we use the one proposed by Small (1982), 

with the considerations of De Palma et al. (1983). Equation (6.4) shows the 

implemented generalised cost function.  

𝐶ℎ𝑧𝑡 = 𝛽1 ∙ 𝑇𝑇ℎ𝑧𝑡 + 𝛽2 ∙ 𝑆𝐷𝐸ℎ𝑧𝑡 + 𝛽3 ∙ 𝑆𝐷𝐿ℎ𝑧𝑡 + 𝛽4 ∙ 𝐷𝐿ℎ𝑡 (6.4) 

Where, 

𝑇𝑇ℎ𝑧𝑡, time that packet of vehicles ℎ spent on their journey after choosing 

option 𝑧 on day 𝑡. 

𝑆𝐷𝐸ℎ𝑧𝑡, amount of time that packet of vehicles ℎ arrives early at the 

destination after choosing option 𝑧 on day 𝑡.  

𝑆𝐷𝐸ℎ𝑧𝑡 = {
𝐸𝑇ℎ − 𝐴𝑇ℎ𝑧𝑡,          𝑖𝑓 𝐴𝑇ℎ𝑧𝑡 < 𝐸𝑇ℎ  

     0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (6.5) 

Being, 

𝐸𝑇ℎ, earliest limit of the preferred arrival time interval (PATI). 

𝑃𝐴𝑇𝐼ℎ = [𝐸𝑇ℎ   ,   𝐿𝑇ℎ] 

𝐴𝑇ℎ𝑧𝑡, arrival time of driver ℎ choosing option 𝑧 

𝑆𝐷𝐿ℎ𝑧𝑡, amount of time that packet of vehicles ℎ arrives late at the destination 

after choosing option 𝑧 on day 𝑡. 

𝑆𝐷𝐿ℎ𝑧𝑡 = {
𝐴𝑇ℎ𝑧𝑡 − 𝐿𝑇ℎ,          𝑖𝑓 𝐴𝑇ℎ𝑧𝑡 > 𝐿𝑇ℎ  

     0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (6.6) 
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Being, 

𝐿𝑇ℎ, latest limit of the preferred arrival time interval (PATI). 

𝑃𝐴𝑇𝐼ℎ = [𝐸𝑇ℎ   ,   𝐿𝑇ℎ] 

𝐴𝑇ℎ𝑧𝑡, arrival time of packet of vehicles ℎ choosing option 𝑧 

𝐷𝐿ℎ𝑡, late arrival penalty assigned to packet of vehicles ℎ on day 𝑡. It takes a 

value of 1 for late arrival or 0 otherwise. 

𝛽1, 𝛽2, 𝛽3, 𝛽4, coefficients. These can take any value between 0 and 1. If it 

takes a value of 0, the corresponding term does not interfere in the cost 

function.   

 

6.4. Expected travel cost 

Every time drivers want to undertake a trip, they recall the travel cost spent on 

previous trips with similar characteristics. In this sense, the travel cost that drivers 

expect after choosing a route and a departure time is obtained from previous 

experienced trips that drivers have undertaken on previous days using the same route 

and departure time. This is called the expected travel cost, which is an aggregation 

of experienced travel costs. When a driver finishes a trip, the experienced travel cost 

of this journey is stored in his or her mental model. This creates a collection of 

memories that are used to estimate future travel costs.   

The formulation of this expected travel cost is based on the formula proposed 

by Wei et al. (2014), which also use the Bush-Mosteller model. These authors 

proposed a formula to calculate the expected travel cost as a weighted average of all 

travel costs of all routes that a driver has used in the past. In this sense, they calculate 

an average travel cost specifically for that origin-destination (OD) pair. However, their 

model only accounts for route choice. Departure time choice is not considered. Due 

to the demand variation along a day, the travel cost of a route varies at different 

times. For instance, the travel cost of a route is not the same in the peak period as 

in a non-peak period. That is the reason why there is a need to update the previous 

formulation to account for departure time variations.  

The formulation proposed in this model is designed to overcome the above 

limitation. The developed expression is shown in Equation (6.7). It calculates the 

expected travel cost (𝐴ℎ𝑡) between an OD pair as the average travel cost of all travel 
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options (𝑧) that depart at a specific time based on previous travel experience. In other 

words, the travel cost that a driver expects once he or she knows the departure time 

for that day is calculated considering the travel cost of previous trips that have 

departed at the same time, no matter which route they take. That is represented by 

the third equation in the group of Equations (6.7).  

If drivers have never used any route that has the same departure time, they 

cannot expect a travel cost at that time. In this model, it is assumed that if this 

happens, the expected travel cost will be calculated considering all routes and 

departure times, without including the previous limitation of having the same 

departure time. It is known that this is not a realistic assumption but at least the 

model still allows drivers to calculate an expected travel cost. This is represented by 

the second equation in the group of Equations (6.7).  

Note that if drivers have no previous knowledge of travel options (that is the 

case on day 𝑡 = 1), it is assumed that the expected travel cost is zero. Alternatively, 

the free-flow travel time could also be used to obtain the expected travel cost.         

𝐴ℎ𝑡 =

{
  
 

  
 

          0                                         𝑖𝑓 𝑡 = 1     

           
∑  ∑ (𝐶ℎ𝑧𝑗)

𝒵
𝑧=1

𝑡−1
𝑗=1

𝑡 − 1
                        𝑖𝑓 ∑∑𝑠ℎ𝑧𝑗

𝒵

𝑧=1

= 0

𝑡−1

𝑗=1

 
∑  ∑ (𝑠ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗)

𝒵
𝑧=1

𝑡−1
𝑗=1

∑ ∑ (𝑠ℎ𝑧𝑗)
𝒵
𝑧=1

𝑡−1 
𝑗=1

                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 (6.7) 

Where: 

𝑧, is the travel option number. 

ℎ, is the packet of drivers. 

𝑡, is the time (in days). 

𝐴ℎ𝑡, is the travel cost that packet of drivers ℎ expects at time 𝑡. 

𝐶ℎ𝑧𝑗, travel cost of option 𝑧 that packet of drivers ℎ has experienced on day 𝑗. 

If a travel option has not been used on day 𝑗, then 𝐶ℎ𝑧𝑗 = 0. This means 

that only one travel option can be selected on each day and therefore 

only one travel cost per day is computed in the formula. 

𝑠ℎ𝑧𝑗, binary variable that takes the value of 1 if the travel option 𝑧, which was 

chosen on day 𝑗, has the same departure time as the travel option 𝑚 
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chosen on day 𝑡. Otherwise, it takes a value of 0. Note that if a travel 

option 𝑧 is not chosen on day 𝑗, then 𝑠ℎ𝑧𝑗 = 0. This means that only one 

travel option can be selected per day and therefore the maximum value 

of 𝑠ℎ𝑧𝑗 on each day 𝑗 can only be 1. 

𝑠ℎ𝑧𝑗 = {
    1,            𝑖𝑓 𝐷𝑇𝑧𝑗 = 𝐷𝑇𝑚𝑡 

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 (6.8) 

Being, 

𝐷𝑇𝑧𝑗, departure time of chosen option 𝑧 on day 𝑗. 

𝐷𝑇𝑚𝑡, departure time of chosen option 𝑚 on day 𝑡. Note that option 

𝑚 may not use the same route as option 𝑧.  

 

6.4.1. Weighting factor 𝝋𝒋: memory level of drivers 

The mental model represents the driver’s memory where previous travel experiences 

are stored. Every time a driver undertakes a trip, he or she is able to remember the 

cost associated with this travel option. However, as Anderson et al. (1994) say, all 

species that have memory forgets. This means that humans are able to remember 

experiences but at the same time these experiences can be lost over time.      

Hermann Ebbinghaus (1880) was the first person who studied how memories 

decay over time. In his experiments, he proposed a mathematical equation that 

described the shape of forgetting, also worldwide known as Ebbinghaus’ forgetting 

curve (see Figure 6.3). He found that this curve tends to be exponential in nature, so 

that memory loss is rapid within the first few days.  

 

Figure 6.3. Simplified Ebbinghaus’ forgetting curve 
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Previous models, such as the one developed by Wei et al. (2014), also 

incorporate the effect that memories decay over time when calculating the average 

travel cost. Drivers are able to remember more recent travel experiences than old 

ones. That is the reason why, in the drivers’ mental model, recent travel experiences 

are stronger than old travel experiences.  

The effect of memory decay is added to the group of Equations (6.7) and is 

updated in Equation (6.9). In these modified equations, the travel costs of all days 

are not counted as equal on the formulation. The effect of memory is represented by 

adding different importance (weights) to the values of different days, which are 

shown in green in Equation (6.9). As old travel experiences are remembered less than 

recent ones, their weighting values are lower. As opposed, recent travel experiences 

have the greatest impact with higher weighting values.   

𝐴ℎ𝑡 =

{
  
 

  
 

               0                                      𝑖𝑓 𝑡 = 1       

     
∑  [ 𝜑𝑗 ∙ (∑ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )]𝑡−1

𝑗=1

∑ 𝜑𝑗
𝑡−1 
𝑗=1

                𝑖𝑓 ∑∑𝑠ℎ𝑧𝑗

𝒵

𝑧=1

= 0

𝑡−1

𝑗=1

      
∑  [ 𝜑𝑗 ∙ (∑ 𝑠ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )]𝑡−1

𝑗=1

∑ [𝜑𝑗 ∙ ∑ 𝑠ℎ𝑧𝑗
𝒵
𝑧=1 ]𝑡−1 

𝑗=1

            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 (6.9) 

Where: 

𝜑𝑗, weighting factor that represents the memory level of travellers.  

The rest of variables are defined in Equation (6.7) 

 

Different forgetting functions represent different ways of how drivers 

remember previous experiences. Although Ebbinghaus (1880) represents the memory 

decay as an exponential function, to simplify the complexity of the model, a linear 

function is proposed. However, the way that the model is coded allows the modeller 

to decide which forgetting curve prefers to use. Equation (6.10) expresses 

mathematically the calculation of the weighting factor (𝜑𝑗) that represents the 

memory decay of drivers. Note that if 𝜑𝑗 = 1, Equation (6.9) is equivalent to Equation 

(6.7).      
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𝜑𝑗 = {   

    1               𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛         
  𝑗               𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛             

   𝑒𝑗             𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   

 (6.10) 

Where, 

𝜑𝑗, is the weighting factor the represents the memory level of drivers on day 

𝑗. 

𝑗, is the day that is being analysed.  

 

6.4.2. Weighting factor 𝑩𝒅𝒌𝒋: bad memories  

By nature, human beings tend to weight losses more than gains. For instance, 

Kahneman and Tversky (1979) found that people are more upset about losing £10 

than happy finding £10, meaning that people are more afraid of losses. This idea that 

bad things are stronger than good ones have been present in the literature for quite 

long time. The literature proposes a ‘loss aversion coefficient’ to quantify the 

importance that people give to losses and gains (Kahneman and Tversky, 1979; 

Shalev, 2000; Abdellaoui, Bleichrodt and Paraschiv, 2007). As an example, in financial 

context, a loss aversion coefficient of 2 indicates that a loss should be valued up to 2 

times more than a gain. Most of these loss aversion values have been empirically 

estimated using some financial experiments. Fishburn and Kochenberger (1979) 

proposed a median coefficient of 4.8 for the loss aversion value. Tversky and 

Kahneman (1992) suggested that people tend to value losses about 2.25 times higher 

than gains of the same value. Gottman (1995) proposed an index to evaluate the 

success or failure of a relationship, indicating that the number of positive interactions 

must outnumber the negative ones by five to one. Baumeister et al. (2001) and Rozin 

and Royzman (2001) reviewed a large number of studies that evidenced that bad 

things were stronger than good ones. They could not find any study that found the 

opposite. In fact, they found that bad events had stronger and more lasting 

consequences than good events. They also came to the conclusion that people’s brain 

retained the memory of bad things and tended to learn faster from bad events (e.g. 

punishment) than from good ones (e.g. reward). Tugend (2012) also mentioned how 

bad experiences worn off more slowly than good ones. 
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This idea could be extrapolated in order to incorporate how bad experiences 

are remembered more that good ones in the drivers’ decision making process. To the 

best of the author’s knowledge, the model proposed in this chapter is the first one 

that takes into account and incorporates in the formulations how bad experiences are 

more retained than good ones in the memory of drivers when making travel decisions. 

The next section explains more in detail how this model has implemented this new 

feature.     

 

6.4.2.1. Implementation: the importance of bad experiences 

The question that arises here is: what is a bad experience for a driver? As an example, 

a 50-minute delay can be considered as a bad experience for a driver while a 10-

minute delay can be considered a bad one for another driver. As bad experiences can 

differ from driver to driver and from journey to journey, it is necessary to quantify 

different levels of bad experience. In this model, a bad experience is defined as those 

journeys whose travel time goes beyond the expected one for that route. The more 

difference between the experienced and expected travel time, the worse the event 

will be for the driver and therefore, it will be remembered for a longer time.  

A new variable that is called bad-event memory (𝐵ℎ𝑧𝑡) has been created in 

order to further weight the travel time of those bad experiences. This variable is 

defined using a step-defined function shown in Figure 6.4. It can take the following 

range of values: a minimum value of 1 when the experience is not considered bad, 

which means that this term is not further weighted; and a maximum value of 𝐵𝑚𝑎𝑥 

when it is considered as a bad experience. Equation (6.11) includes the mathematical 

description of this function.    
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Figure 6.4. Graphical representation of the bad-event memory function 

 

The advantage of the function presented in this section is that if the modeller 

does not want to consider this additional feature of further weighting bad memories, 

the value of 𝐵𝑚𝑎𝑥 can be set to 1 and therefore, bad and good memories are equally 

weighted.   

𝐵ℎ𝑧𝑡 =

{
 

 

  

                                 1                                                     𝑖𝑓    (𝑀ℎ𝑧𝑡 − 𝐴ℎ𝑡) ≤ 𝑏1    

(
𝐵𝑚𝑎𝑥 − 1

𝑏2 − 𝑏1
) ∙ (𝑀ℎ𝑧𝑡 − 𝐴ℎ𝑡) + (

𝑏2 − 𝑏1 ∙ 𝐵𝑚𝑎𝑥
𝑏2 − 𝑏1

)     𝑖𝑓   𝑏1 < (𝑀ℎ𝑧𝑡 − 𝐴ℎ𝑡) < 𝑏2 

                         𝐵𝑚𝑎𝑥                                                 𝑖𝑓   (𝑀ℎ𝑧𝑡 − 𝐴ℎ𝑡) ≥ 𝑏2

 (6.11) 

Where, 

𝐴ℎ𝑡, is the expected travel cost of packet of drivers ℎ on day 𝑡. 

𝑀ℎ𝑧𝑡, is the experienced travel cost after using travel option 𝑧 by packet of 

drivers ℎ on day 𝑡.   

𝑏1 and 𝑏2, are limit values defined by the modeller.   

𝐵𝑚𝑎𝑥, is a user-defined value that quantifies the maximum weighting value 

that the bad-memory variable can take. 

𝐵ℎ𝑧𝑡, is the bad-event memory variable on day 𝑡 when a bad experience is 

identified. 

 

This bad-event memory weighting factor is also added to the group of Equation (6.9) 

that calculates the expected travel cost and is updated in the following group of 

Equations (6.12) – Marked in green the weighting factor in the formulation. Note that 

if the bad-event memory weighting factor (𝐵ℎ𝑧𝑗) is not considered in the formulation, 

Equation (6.12) turns into Equation (6.9).  
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𝐴ℎ𝑡 =

{
  
 

  
 

              0                                               𝑖𝑓 𝑡 = 1

     
∑  [ 𝜑𝑗 ∙ (∑ 𝐵ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )]𝑡−1

𝑗=1

∑ [𝜑𝑗 ∙ ∑ 𝐵ℎ𝑧𝑗
𝒵
𝑧=1 ]𝑡−1 

𝑗=1

                    𝑖𝑓 ∑∑𝑠ℎ𝑧𝑗

𝒵

𝑧=1

= 0

𝑡−1

𝑗=1

 
∑  [ 𝜑𝑗 ∙ (∑ 𝐵ℎ𝑧𝑗 ∙ 𝑠ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )]𝑡−1

𝑗=1

∑ [𝜑𝑗 ∙ ∑ (𝐵ℎ𝑧𝑗 ∙ 𝑠ℎ𝑧𝑗)
𝒵
𝑧=1 ]𝑡−1 

𝑗=1

             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 (6.12) 

Where,  

𝐵ℎ𝑧𝑗, is the bad-event memory variable of packet of drivers ℎ after choosing 

option 𝑧 on day 𝑗.  

The rest of variables are defined in Equation (6.7) and Equation (6.9). 

 

6.4.2.2. Bad experiences lose importance over time 

An old well-known proverb says that time heals all wounds. Based on this expression, 

it was assumed that people tend to soften the importance of bad memories over time. 

After a certain amount of time, these bad experiences are considered equally 

important as good ones and therefore, there is no need to further weight these bad 

memories. That is the reason why a bad-memory decay function has been proposed 

in this section. It consists on a linear equation that decreases the value of the bad-

event memory variable (𝐵ℎ𝑧𝑡) over time until it reaches the value of 1, which is when 

memories are not further weighted. Figure 6.5 shows graphically how the additional 

weighting value decreases over time evidencing that drivers forget those bad 

experiences. Mathematically, this function is expressed in Equation (6.13) and it is 

used to update the value of the bad-event memory variable.     
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Figure 6.5. Graphical representation of the bad memory decay function 

  

𝐵ℎ𝑧𝑡 = {
𝐵ℎ𝑧(𝑡−1) −

1

tan𝜃
          𝑖𝑓 𝑡 ≤ 𝑇𝑍

             1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.13) 

Where, 

𝐵ℎ𝑧(𝑡−1), is the value of the bad-event memory variable on the previous day. 

𝐵ℎ𝑧𝑡, is the bad-event memory variable at time 𝑡. 

𝑡, is the time in days. 

𝜃, is the angle between the vertical axis and the inclination of the decay 

function. This is a value defined by the modeller. It is measured in degrees 

and this can only take these values 𝜃 ∈ [𝜃𝑚𝑖𝑛 , 90). 𝜃𝑚𝑖𝑛 is described more 

in detail in Equation (6.15).  

𝑇𝑍, is the time when the bad-event memory variable takes a value of 1. It can 

be calculated using the value of the bad-event memory variable (𝐵ℎ𝑧𝑡) of 

any day 𝑡.  

𝑇𝑍 = (𝐵ℎ𝑧𝑡 − 1) ∙ tan 𝜃 + 𝑡 (6.14) 

 

The angle (𝜃) between the vertical axis and the inclination of the decay 

function is a user-defined value that indicates how fast a driver forgets a bad 

experience. Low values of this angle indicates that drivers forget really fast the 

importance of previous bad events, while high values of the angle show that drivers 

retain in their mind these bad experiences for longer time.   
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It is important to limit the values that this angle can take. A minimum value 

𝜃𝑚𝑖𝑛 (steepest slope) is defined in order to reach at least one-day gap (see Figure 

6.5) between the day when the bad experience is identified and the next day. The 

formula used to calculate this value is shown in Equation (6.15). The maximum value 

has to be less than 90 degrees as the tangent of 90 cannot be mathematically 

calculated. Therefore, this angle can only take these values:  𝜃 ∈ [𝜃𝑚𝑖𝑛 , < 90) 

   𝜃𝑚𝑖𝑛 = tan
−1 (

1

𝐵ℎ𝑧,0−1
) (6.15) 

Note that not all drivers are the same and therefore, we cannot assign a 

unique value of this angle to all drivers. For that reason, a different value of this angle 

will be assign to each driver. In the model, it is assigned randomly for each driver a 

different value between the minimum and 90 degrees (excluding this last one). If the 

angle is almost 90 degrees (e.g. 89.99), then it is considered that bad experiences do 

not lose importance over time. In this case, it is assumed that drivers will remember 

forever all these bad experiences and they will weight them more than good ones. 

 

6.4.3. Calibration of memory parameters  

The calibration process aims to find the parameters of the model that provide a good 

representation of the drivers’ behaviour. This process can be achieved by confronting 

model results with actual measurements performed on the network. In particular, the 

calibration of the parameters that affect the memory of drivers is a complex process 

due to the entity of the information that is required. Data could be obtained through 

surveys in which drivers define what a bad experience is for them and how this bad 

experience is forgotten over time. Another possibility is to create a web-based travel 

simulator (Ozbay, Datta and Kachroo, 2001) that could be used to store drivers’ 

decisions and therefore, acquire data that could be used in the model.    

 

 

6.5. Stimulus function (reward-punishment function) 

The consequences of the decisions that drivers make every day are accounted by a 

stimulus function. If drivers are satisfied with the travel decision on that day, they 

receive a positive stimulus towards repeating the same action the next day. If drivers 
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are not satisfied, they have less stimulus to repeat the same option the next day. The 

formulation that this section includes is based on the idea of the classical Bush-

Mosteller model (1951) and modifies some models that have been applied to the 

transport area (Narendra and Thathachar, 1974; Ozbay, Datta and Kachroo, 2001; 

Wei, Ma and Jia, 2014).   

The stimulus function that is proposed considers the difference between the 

expected and perceived travel cost of each driver on each day and it also includes 

some penalties for early or late arrivals. Based on this stimulus value, the probabilities 

of selecting travel options for the next days will be updated (see next Section 6.7).   

The formulation of the stimulus function is described in Equation (6.16). The 

stimulus value (𝑆ℎ𝑚𝑡) is formed by a satisfaction value (𝑆𝐴𝑇ℎ𝑚𝑡) and a learning rate 

(ℓℎ). The satisfaction value indicates how happy (or satisfied) the driver is with the 

selected option on day 𝑡 compared to the experience of previous days. The following 

Section 6.6.1 describes more in detail the calculation of this value.  

𝑆ℎ𝑚𝑡 = ℓℎ ∙ 𝑆𝐴𝑇ℎ𝑚𝑡     (6.16) 

Where, 

𝑆ℎ𝑚𝑡, stimulus value of packet of vehicles ℎ after choosing travel option 𝑚 on 

day 𝑡. It can take values between -1 (negative stimulus towards 

repeating the same action the next day) and 1 (positive stimulus towards 

repeating the same action the next day).   

ℓℎ, the learning rate for each packet of vehicles ℎ. It can take values between 

0 (excluded) and 1.  

𝑆𝐴𝑇ℎ𝑚𝑡, is the “satisfaction” value of packet of vehicles ℎ after choosing travel 

option 𝑚 on day 𝑡. This variable can only take values between -1 (totally 

dissatisfied) and 1 (totally satisfied).  

 

The learning rate is commonly known in the field of machine learning as a 

‘hyper-parameter’, which is a parameter value that is used to control the rate at which 

the algorithm learns (Smith, 2017; Blier, Wolinski and Ollivier, 2019; Gulde et al., 

2020). It determines how fast or slow the algorithm will move towards optimal 
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solutions (Rakhecha, 2019). To understand this better, a simple example is described 

as follows.  

EXAMPLE. Imagine that 10 boxes are placed in a room. Four of 

them contain a prize of £50, £100, £500 and £1000 (each one) 

while the rest are empty. Each day, a person chooses one of the 

boxes and win the prize that is inside the box. The prizes are always 

placed in the same box on each day, which means that once the 

person opens a box, he/she knows the prize that is inside for the 

rest of the days. However, the person does not know how much 

money the maximum prize contains or how many prizes there are. 

The experiment is repeated for 10 days. In order to understand the 

concept of ‘learning rate’, the learning process of this person is 

analysed under two situations: when the learning rate is (CASE A) 

a high value or (CASE B) a low value.  

The experiment starts. On day 1, the person opens the box and 

finds no prize. The next day, the person selects another box and 

finds no prize again. On day 3, the person selects another different 

box and finds a prize of £100. At this point, if the learning rate is 

too high, the person will instantly start to believe that this is the 

best prize he/she can get based on previous experience and 

therefore there is a very high probability of choosing the same box 

for the next days. On the other hand, with a low learning rate, the 

person is not completely sure that this is the maximum prize he/she 

can get and therefore the probability of choosing the same box for 

the next day is higher than choosing another box but he/she also 

gives the chance to try other boxes and find out if there is a higher 

prize.   

To sum up, a higher learning rate could result in selecting rapidly a 

box that might not contain the maximum available prize and this 

person would never know if that is the maximum reward he/she 

can get. A lower learning rate means that the person might explore 
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the content of other boxes before sticking to the final one which 

means that more time is needed to converge but better prizes might 

be reached.  

 

In this model, the learning rate represents the parameter that controls the 

learning process of drivers. If the learning rate is very high, drivers will rapidly stick 

to a travel option (not necessarily the optimal one) and if it is too small, drivers will 

take more time to learn and converge to the best values. A desirable learning rate is 

the one that is low enough so that it finds a (near) optimal solution but high enough 

so that it can be found in a reasonable amount of time. The consequences of choosing 

different values of the learning rate and the impact of these values on the model are 

analysed in an example proposed in Section 6.9 (more specifically in Section 6.9.3). 

   

6.5.1. “Satisfaction” value (𝑺𝑨𝑻𝒉𝒎𝒕).  

The core of the stimulus value is the satisfaction (or dissatisfaction) of drivers after 

each travel decision. It compares the difference between the expected travel cost and 

the perceived travel cost. If the result of this difference is positive, it means that the 

perceived travel cost on that travel option is less than the expected one and therefore, 

drivers are satisfied with that decision. On the contrary, if the difference is negative, 

the perceived travel cost on that travel option is higher than the expected travel cost, 

meaning that drivers were expecting less travel cost on that option. Figure 6.6 

summarises the procedure that is proposed to obtain the value of satisfaction or 

dissatisfaction, which is described as follows:  
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Figure 6.6. Process of satisfaction value calculation 

     

1) Calculate the expected travel cost (𝐴ℎ𝑡) for each driver on each day using 

Equation (6.12), as described in Section 6.4, which is obtained before travelling 

on day 𝑡.  

2) For each driver, identify all possible travel options that this driver could have 

chosen on day t. These options include those travel options that driver has used 

on previous days and those travel options that driver knows but he or she has 

never used. Other models (Ozbay, Datta and Kachroo, 2001; Wei, Ma and Jia, 

2014) include all possible options instead of just considering the travel options 

that each driver knows. It is important to make this distinction because options 

that a driver does not know yet cannot be considered in the calculation. The 

reason is because this driver is not able to select this option due to the lack of 

knowledge.      

3) Calculate the perceived travel cost (𝐸ℎ𝑧𝑡) for each travel option identified in step 

2. This is obtained as a weighted average of travel costs, calculated specifically 

for each travel option, as shown in Equation (6.17). There are two main 

differences between the perceived travel cost of option 𝑧 and the expected travel 

cost [Equation (6.12)]: (1) the perceived travel cost of option 𝑧 is calculated as 

the weighted average of travel costs considering only those days in which travel 
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option 𝑧 is used. In contrast, the expected travel cost is obtained considering the 

weighted average of travel costs of all options; (2) The perceived travel cost also 

includes in the average the experienced travel cost on day 𝑡 while the expected 

travel cost does not include this value. If other travel options different to 𝑧 are 

used, these are not included in the weighted average value. If an option has 

never been used, it is assumed that the travel cost of that option is calculated 

using the free-flow travel cost. This is an assumption that needs validation in 

future stages of this model. 

𝐸ℎ𝑧𝑡 =

{
 
 

 
 ∑  [ 𝜑𝑗 ∙ (∑ 𝐵ℎ𝑧𝑗 ∙ 𝐻ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )]𝑡

𝑗=1

∑ [𝜑𝑗 ∙ ∑ (𝐵ℎ𝑧𝑗 ∙ 𝐻ℎ𝑧𝑗)
𝒵
𝑧=1 ]𝑡 

𝑗=1

,       𝑖𝑓 ∑∑𝐻ℎ𝑧𝑗

𝒵

𝑧=1

𝑡

𝑗=1

> 0

  
 𝐶ℎ,𝐹𝐹 ,                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (6.17)  

Where, 

𝐸ℎ𝑧𝑡, perceived travel cost of packet of drivers ℎ on travel option 𝑧 

calculated on day 𝑡. 

𝐶ℎ𝑧𝑗, travel cost of option 𝑧 that packet of drivers ℎ has experienced on day 

𝑗. 

𝜑𝑗, memory level of drivers (0 < 𝜑 ≤ 1). This variable is explained more in 

detail in previous Section 6.4.1. 

𝐵ℎ𝑧𝑗, is the bad-event memory variable that is used to further weight the 

travel cost of those bad experiences on day 𝑡 identified by packet of 

drivers ℎ.  This variable is explained more in detail in Section 6.4.2. 

𝐻ℎ𝑧𝑗, binary variable that indicates if a travel option 𝑧 has been used on 

day 𝑗 (𝐻ℎ𝑧𝑗 = 1) or it has not been used (𝐻ℎ𝑧𝑗 = 0) by packet of 

drivers ℎ.   

𝐶ℎ,𝐹𝐹, free-flow travel cost of packet of drivers ℎ.   

  

4) Calculate the difference (𝐷𝐹ℎ𝑧𝑡) between the expected travel cost (𝐴ℎ𝑡) on day 𝑡 

and the perceived travel cost (𝐸ℎ𝑧𝑡) of each travel option calculated in previous 

steps.  

𝐷𝐹ℎ𝑧𝑡 = 𝐴ℎ𝑡 − 𝐸ℎ𝑧𝑡     ,       ∀𝑧 ∈  𝒵    (6.18) 

Where,  
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𝐴ℎ𝑡, is the travel cost that packet of drivers ℎ expects at time 𝑡. 

𝐸ℎ𝑧𝑡, is the perceived travel cost of packet of drivers ℎ on travel option 𝑧 

calculated on day 𝑡. 

 

5) Find the maximum (𝐷𝐹ℎ𝑡,𝑚𝑎𝑥) and minimum difference (𝐷𝐹ℎ𝑡,𝑚𝑖𝑛) in travel cost 

obtained in the previous step. This indicates which travel option 𝑧 would be the 

best and worst for each driver on that day by just comparing the expected and 

perceived travel cost.   

𝐷𝐹ℎ𝑡,𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐷ℎ𝑧𝑡)  ,         ∀𝑧 ∈  𝒵    (6.19) 

𝐷𝐹ℎ𝑡,𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐷ℎ𝑧𝑡)  ,         ∀𝑧 ∈  𝒵    (6.20) 

 

6) Obtain the ‘satisfaction’ value of each packet of drivers ℎ on day 𝑡 after choosing 

option 𝑚 by normalising the differences of travel costs to the [−1, 1] range, being 

-1 the worst option that packet of drivers ℎ could choose on day 𝑡 and 1 the best 

option. With this scaling factor, the satisfaction value (𝑆𝐴𝑇ℎ𝑚𝑡) is always greater 

or equal to -1 and lower or equal to 1. Equation (6.21) shows mathematically 

how to calculate the satisfaction value. The denominator indicates how good or 

bad a travel option 𝑧 is, compared to the rest of options. 

 𝑆𝐴𝑇ℎ𝑚𝑡 = {

𝐷𝐹ℎ𝑚𝑡

𝐷𝐹ℎ𝑡,𝑚𝑎𝑥
,         𝑖𝑓 𝐷𝐹ℎ𝑚𝑡 ≥ 0

 
𝐷𝐹ℎ𝑚𝑡

|𝐷𝐹ℎ𝑡,𝑚𝑖𝑛|
,         𝑖𝑓 𝐷𝐹ℎ𝑚𝑡 < 0

    (6.21) 

  

6.6. Option probability updating functions  

The heart and soul of the learning automata is the reinforcement scheme (Najim and 

Poznyak, 1994). Based on the selected travel option, the response of the environment 

and the stimulus value obtained from previous section, the model updates the 

probability vector of selecting travel options for the next day.  

The formulation used by the classical Bush-Mosteller model (1951) adopts a 

very flexible approach and it leaves space for further improvements. The updating 

scheme of the classical model is based on the value of the stimulus (or drivers’ 

satisfaction). After choosing an option 𝑚 on day 𝑡, driver has a positive or negative 
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stimulus towards repeating the same option the next day. If the stimulus is positive, 

the probability of repeating the same option 𝑚 the next day is increased and the 

probability of all the rest of options 𝑧 is decreased. On the contrary, if the stimulus is 

negative, the driver is less likely to repeat the same option the next day. This means 

that the probability of choosing the selected option 𝑚 is decreased and the probability 

of selecting the rest of options 𝑧 is increased.   

Recent models that are applied to transport modelling (Ozbay, Datta and 

Kachroo, 2001; Wei, Ma and Jia, 2014) keep the essence of the original model and 

do not introduce new improvements to the updating probability formulation. However, 

the formulation proposed in this section improves the previous updating scheme by 

considering a different approach, which is a direct consequence of the additional 

departure time choice module. As described in Section 6.2.2, each driver has an arrival 

time interval of preference (PATI). In this sense, there might be cases that some 

drivers are satisfied with the selected travel decision on day 𝑡 but they arrive earlier 

or later than the PATI. There might be other travel options that use the same route 

but with different departure times, which means that drivers still have the chance to 

leave earlier if they have arrived late or leave later if they have arrived early. That is 

the reason why in this model the approach of increasing/decreasing the probability of 

selecting again the chosen travel option 𝑚 and decreasing/increasing the probability 

of the rest of options 𝑧 is not used and instead, a novel way of updating probabilities 

is presented in this chapter considering departure time differences between travel 

options. In this sense, travel options are classified as favourable options, which are 

more likely to repeat them the next day, and unfavourable options, which are less 

likely to repeat them the next day.    

The following subsections present the new updating scheme of the proposed 

model. Two different formulations are presented according to the satisfaction of the 

driver (positive stimulus) or dissatisfaction (negative stimulus). For each particular 

case, the description of the favourable and unfavourable travel options are specified 

more in detail in each section.   
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6.6.1. Positive stimulus 

A positive stimulus (𝑆ℎ𝑚𝑡 ≥ 0) means that drivers are satisfied with the selected travel 

decision for that day, and therefore they are more likely to repeat the same option 

the next day. 

Following the traditional BM model (Bush and Mosteller, 1951), the probability 

of choosing the selected option 𝑚 on this day should be increased and the probability 

of choosing the rest of options 𝑧 should be decreased. However, depending on the 

arrival time of each packet of drivers, some of them may not arrive within the PATI. 

If drivers arrive earlier/later than the preferred arrival time, other travel options that 

use the same route but later/earlier departure time may also be good travel decisions. 

Note that only those travel options with the same route are considered to be on the 

selection.  

In this sense, a travel option 𝑧 that is not selected by the driver on day 𝑡 is 

considered a favourable option, which means that are more likely to be repeated the 

next day, in the following cases: 

a) Driver that chooses option 𝑚 on day 𝑡 arrives earlier than the PATI and this 

alternative travel option 𝑧 that is being analysed has the same route but later 

departure time than option 𝑚. 

b) Driver that chooses option 𝑚 on day 𝑡 arrives later than the PATI and this 

alternative travel option 𝑧 that is being analysed has the same route but earlier 

departure time than option 𝑚. 

All the rest of travel options are considered unfavourable, which are less likely to be 

repeated the next day.  
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Figure 6.7. Graphical example of the option probability updating process when 
stimulus is positive. 

 

The formulation, which is shown mathematically in Equations (6.22) and 

(6.23) of Table 6.3 and graphically in Figure 6.7, increases the probability of choosing 

again the selected travel option and decreases the probability of choosing 

unfavourable travel options. In this version of the model, the probability of choosing 

a favourable option is not increased or decreased. Although it is debatable, drivers 

who are satisfied with a travel decision are more likely to repeat the same option the 

next day but that does not mean that they are more/less likely to select a more 

favourable option instead. Future stages of the model should update the formulation 

in order to add the possibility of increasing the probability of selecting these 

favourable travel options. In any case, they certainly know which option they do not 

have to select and these are the ones whose probability is reduced. 

Equation (6.22) updates the probability of choosing the option 𝑚 for the next 

day (𝑝𝑚(𝑡+1)). Note that this option 𝑚 is the one that has been chosen on day 𝑡. The 

new probability value is calculated by adding to the previous probability (𝑝𝑚𝑡) an 

additional value that comes from the reduction of the probabilities of selecting 

unfavourable options: the term (1 − 𝑝𝑚𝑡 − ∑ 𝑝𝑧𝑡 ∙ 𝛽𝑧
𝒵
𝑧=1 ) calculates the remaining 

probability after removing the chosen option and favourable options and only the 𝑆ℎ𝑚𝑡 

part of the remaining probabilities constitutes the additional value that is added to 

the previous probability (𝑝𝑚𝑡).    

For the rest of the options that have not been chosen on day 𝑡, Equation 

(6.23) updates the probability of selecting them for the next day. If the option is 

favourable, the probability remains the same as the previous day. If the option is 
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unfavourable, the value that has to be reduced from the probability of unfavourable 

options is the additional value that has been added to the selected option 𝑚 on the 

previous Equation (6.22)  [(1 − 𝑝𝑚𝑡 − ∑ 𝑝𝑧𝑡 ∙ 𝛽𝑧
𝒵
𝑧=1 ) ∙ 𝑆ℎ𝑚𝑡]. The quantity that is 

reduced to each unfavourable option is directly proportional to the value of the 

probability of each option [
𝑝𝑧𝑡

∑ [(1−𝛽𝑧)∙𝑝𝑧𝑡]
𝒵
𝑧=1
𝑧≠𝑚

]. This means that if an unfavourable option 

has a high probability of being selected, the reduction will be higher. This is done in 

order to keep in zero (and not negative values) those options with zero probability of 

being selected.  

A particular case is when the satisfaction value (𝑆𝐴𝑇𝑑𝑐𝑡, see Section 6.5.1) is 

1, which is the maximum value it can take, and the packet of drivers arrives to the 

destination within the PATI. As this is the best outcome a driver can get on a single 

day and in order to accelerate computationally the convergence to the best option, 

drivers are forced to select the same travel option for the next day. Due to the 

stochastic nature of the model, if this condition is not imposed, some drivers choose 

on a day their best travel option and then the next day, instead of making the same 

decision, they might choose an alternative option. Common sense indicates that 

drivers will choose the decision that gave them the best possible outcome. Only in 

this case, the stochastic choice rule presented in Equation (6.3) (Section 6.2.1) is not 

considered and drivers will choose exactly the same option. However, probabilities 

are still updated according to the previous formulas. Ultimately, the modeller can 

decide if this imposed travel decision is considered or not in the model. 

 

6.6.2. Negative stimulus 

A negative stimulus (𝑆ℎ𝑚𝑡 < 0) means that drivers are not satisfied with the selected 

travel decision for that day and therefore, they are less likely to repeat the same 

option the next day.  

According to the traditional model (Bush and Mosteller, 1951), the probability 

associated with the selected option on this day should be decreased and the 

probability of choosing the rest of options should be increased. However, as 

mentioned in Section 6.6, some travel options may be favourable and others 



Chapter 6  Departure time and route choice RL model  

 

 

173 
 

unfavourable. It means that the probability of selecting certain options cannot be 

increased and therefore the updating functions needs to be reformulated.       

In this sense, a travel option 𝑧 that is not selected by the packet of drivers ℎ 

on day 𝑡 is considered unfavourable in the following cases: 

a) Driver that chooses option 𝑚 on day 𝑡 arrives earlier than the PATI and this 

alternative travel option 𝑧 that is being analysed has the same route but earlier 

departure time than option 𝑚. 

b) Driver that chooses option 𝑚 arrives later than the PATI and this alternative 

travel option 𝑧 has the same route but later departure time than option 𝑚. 

 

 

Figure 6.8. Graphical example of the option probability updating process when 
stimulus is negative. 

 

The formulation proposed in Equations (6.24) and (6.25) of Table 6.3 and 

graphically in Figure 6.8 indicates that, when the stimulus is negative, the probability 

of the selected option 𝑚 on day 𝑡 is reduced. The probability of choosing those 

unfavourable options is reduced as well. And the probability of selecting favourable 

options is increased.    

Equation (6.24) updates the probability of choosing the option 𝑚 for the next 

day (𝑝𝑚(𝑡+1)). This option 𝑚 is the one that has been chosen on day 𝑡. The new value 

is obtained by reducing from the previous probability (𝑝𝑚𝑡) a certain value that 

depends on the stimulus value of that driver.   
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Equation (6.25) updates the probability of choosing those options that have 

not been selected by the driver on day 𝑡. In order to make it easier for the reader, a 

breakdown of this equation is included in Figure 6.9. The equation is divided into 

three terms. The first one corresponds to the probability value of the previous day. 

The second and third ones are either-or terms because both cannot be computed at 

the same time. One of these terms is cancelled out while the other is calculated. It 

depends on the number of unfavourable options (𝛽𝑁). If all unselected options are 

unfavourable 𝛽𝑁 = 1, as the probability of the selected option 𝑚 has to be decreased 

(because stimulus is negative), the probability of selecting the rest of options (even 

if they are unfavourable) has to be increased. This means that the second term is not 

calculated and only the third term is obtained. If not all options are unfavourable 

(𝛽𝑁 = 0), then the formulation differentiates between favourable and unfavourable 

options and increases the probability of selecting favourable options and decreases 

the probability of selecting unfavourable options. 

 

Figure 6.9. Breakdown of Equation (6.25) that updates the probability of selecting 
travel options that are not chosen on day t when the stimulus is negative. 
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Table 6.3. Option probability updating functions when stimulus is positive and negative. 

 

 

  Formulation Equation 
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 s

ti
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s 

(𝑆
ℎ
𝑚
𝑡
≥
0
) 

Chosen 
option 𝑚 

on day 𝑡 

 

𝑝𝑚(𝑡+1) = 𝑝𝑚𝑡 + (1 − 𝑝𝑚𝑡 −∑ 𝑝𝑧𝑡 ∙ 𝛽𝑧
𝒵

𝑧=1
) ∙ 𝑆ℎ𝑚𝑡 

 

 

(6.22) 

Rest of 
options 𝑧 

 

𝑝𝑧(𝑡+1) = 𝑝𝑧𝑡 − (1 − 𝛽𝑧) ∙ [
𝑝𝑧𝑡

∑ [(1 − 𝛽𝑧) ∙ 𝑝𝑧𝑡]
𝒵
𝑧=1
𝑧≠𝑚

] ∙ [(1 − 𝑝𝑚𝑡 −∑ [𝑝𝑧𝑡 ∙ 𝛽𝑧]
𝒵

𝑧=1
) ∙ 𝑆ℎ𝑚𝑡] 

 

 

(6.23) 
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(𝑆
ℎ
𝑚
𝑡
<
0
) 

Chosen 
option 𝑚 

on day 𝑡 

 

 
𝑝𝑚(𝑡+1) = 𝑝𝑚𝑡 + 𝑝𝑚𝑡 ∙ 𝑆ℎ𝑚𝑡 

 

 

(6.24) 

Rest of 
options 𝑧 

 

𝑝𝑧(𝑡+1) = 𝑝𝑧𝑡 + (1 − 𝛽𝑁) ∙ [𝛽𝐹𝑧 ∙ 𝑝𝑧𝑡 ∙ 𝑆ℎ𝑚𝑡 − (1 − 𝛽𝐹𝑧) ∙ [
𝑝𝑚𝑡 ∙ 𝑆ℎ𝑚𝑡 + ∑ (𝛽𝐹𝑧 ∙ 𝑝𝑧𝑡 ∙ 𝑆ℎ𝑚𝑡)

𝒵
𝑧=1
𝑧≠𝑚

𝒵 − 1 − 𝛾𝑈
]] − 𝛽𝑁 ∙

𝑝𝑚𝑡 ∙ 𝑆ℎ𝑚𝑡
𝒵 − 1

 

 

(6.25) 

  
 

𝑧 ∈ 𝒵,      𝑧 ≠ 𝑚 

 
 



Chapter 6  Departure time and route choice RL model  

 

 

176 
 

Where: 

𝑧, travel option that is not chosen on day 𝑡.  

𝑚, option that is chosen on day 𝑡.  

𝒵, total number of options. 

𝑝𝑚𝑡, is the probability of selecting option 𝑚 on day 𝑡. 

𝑝𝑧𝑡, is the probability of selecting another option 𝑧 on day 𝑡. 

𝑝𝑚(𝑡+1), is the new probability of selecting the travel option 𝑚 for the next 

day.  

𝑝𝑧(𝑡+1), is the new probability of selecting the travel option 𝑧 for the next day. 

𝑆ℎ𝑚𝑡, stimulus value of packet of drivers ℎ after choosing option 𝑚 on day 𝑡. 

𝛽𝑧, binary variable (0-1) that indicates whether option 𝑧 is favourable (𝛽𝑧 = 1) 

or not (𝛽𝑧 = 0) on day 𝑡, when the stimulus is positive.  

𝛽𝑧 = {
   1,      𝑖𝑓  𝐴𝑇ℎ𝑚 < 𝐸𝑇ℎ   𝑎𝑛𝑑     𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 > 𝐷𝑇𝑚         
   1,      𝑖𝑓  𝐴𝑇ℎ𝑚 > 𝐿𝑇ℎ    𝑎𝑛𝑑    𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 < 𝐷𝑇𝑚          
  0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           

 (6.26) 

𝑧 ∈ 𝒵,      𝑧 ≠ 𝑚 

𝑅𝑈𝑧, path/route of option 𝑧 at day 𝑡 

𝑅𝑈𝑚, path/route of chosen option 𝑚 at day 𝑡 

𝐷𝑇𝑧, departure time of option 𝑧 at day 𝑡 

𝐷𝑇𝑚, departure time of chosen option 𝑚 at day 𝑡 

𝐸𝑇ℎ, earliest limit of the preferred arrival time interval (PATI).  

𝐿𝑇ℎ, latest limit of the preferred arrival time interval (PATI).  

𝐴𝑇ℎ𝑚, arrival time of packet of drivers ℎ after choosing option 𝑚 

𝛽𝐹𝑧, binary variable (0-1) that indicates if an option 𝑧 is favourable (𝛽𝐹𝑧 = 0) 

or unfavourable (𝛽𝐹𝑧 = 1), when the stimulus is negative.  

𝛽𝐹𝑧 = {    
1,         𝑖𝑓  𝐴𝑇ℎ𝑚 < 𝐸𝑇ℎ   𝑎𝑛𝑑   𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 < 𝐷𝑇𝑚
1,        𝑖𝑓  𝐴𝑇ℎ𝑚 > 𝐿𝑇ℎ    𝑎𝑛𝑑    𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 > 𝐷𝑇𝑚
0,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

 (6.27) 

𝛾𝑈, variable that indicates the total number of options that are unfavourable:    

𝛾𝑈 = ∑ 𝛽𝐹𝑧

𝒵

𝑧=1
𝑧≠𝑚

 (6.28) 
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𝛽𝑁, binary variable (0-1) that takes the value of 1 if all options that are no 

chosen on day 𝑡 are unfavourable and 0 if not all unselected options are 

unfavourable. This is done in order to avoid having a denominator with 

a value less than 1 in equation (6.25). If 𝛽𝑁 = 1, the second term of the 

equation (6.25) cannot be computed in the formulation and only the 

third term is be calculated.  

𝛽𝑁 = {   
1,         𝑖𝑓   (𝑁 − 1 − 𝛾𝑈) < 1 
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 (6.29) 

  

6.7. Balancing Exploration and Exploitation  

One of the problems identified in previous RL models that are applied to the transport 

field (Ozbay, Datta and Kachroo, 2001; Wahba and Shalaby, 2005; Wei, Ma and Jia, 

2014; de Oliveira Ramos and Grunitzki, 2015) is that drivers quite rapidly stick to 

certain travel options without even trying all the rest of options that are available to 

them. If they do not give the chance to try other options, they will never know if 

these options are better than the chosen one. The models mentioned above use a 

learning rate value  (see Section 6.5) that represents the speed at which drivers stick 

to good options. For instance, if a driver finds a good travel option, the probability of 

selecting this option again for the next day is increased higher if the learning rate is 

high or lower if the learning rate is low. However, even considering low learning rates, 

sometimes some drivers do not have the chance to try new options.  

As drivers must try new ones since these may lead to even higher rewards, in 

addition to the learning rate, an additional mechanism is added to the current model 

in order to consider a trade-off between exploration (e.g. find new information about 

other options) and exploitation (e.g. use past information to select the travel option 

that maximises rewards). The method used in this model is called ε-greedy (Sutton 

and Barto, 1998). This classical algorithm consists in choosing a random travel option 

(exploration) with probability 𝜀 or choosing the best travel option (exploitation) for 

each driver with probability (1 − 𝜀). Equation (6.30) shows the new probability that 

is assigned to each travel option 𝑧 after balancing exploration and exploitation. This 

new probability is the one that is used in the stochastic rule choice presented in 

Section 6.2.1 and that is used to choose stochastically a travel option for each day. 
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Independently of this new probability, drivers are still updating the probabilities on 

their mental model based on the consequences of their travel experiences as 

explained in the same section. Figure 6.10 incorporates the ε-greedy approach in the 

general framework of drivers’ decision making of Figure 6.2. As observed, the whole 

process is the same but the stochastic rule choice is done using a new probability 

vector that is obtained from the greedy approach. 

𝑝′𝑧 = 𝜀 ∙ 𝑝𝑧,𝑅𝑎𝑛𝑑𝑜𝑚 + (1 − 𝜀) ∙ 𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 (6.30) 

Where, 

𝑝′𝑧, is the new probability of selecting travel option 𝑧 after the trade-off 

between exploration and exploitation.  

𝑝𝑧,𝑅𝑎𝑛𝑑𝑜𝑚, is the probability of selecting the option 𝑧. It is assumed that all 

options have the same probability.   

𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑜𝑑𝑒𝑙, is the probability of selecting travel option 𝑧 that drivers store 

on their mental model.  

𝜀, variable that weights the exploration and exploitation phases.  

   

 

Figure 6.10. Updated drivers’ decision-making process incorporating the ε-greedy 

approach (shaded part).  
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Different 𝜀 functions are proposed in this model in order to consider different 

ways of balancing exploitation and exploration. At the beginning of the exploration 

phase (usually at day t=1), ε starts with a high value which means that more random 

travel options are chosen by each driver in order to explore the possibilities the 

network is offering. Depending on the type of function that the modeller has decided 

to use, different ε values are considered on each day. If a constant function is chosen 

with a constant value of 1, drivers will choose their travel options randomly during 

the exploration phase. On the contrary, if the constant function takes the value of 0, 

we allow drivers to select their options based on their knowledge. Initially, all the 

options will have the same probability to be selected. Other possible ε-functions 

include linear, quadratic and exponential functions that start with a high value of ε 

and decreases with time, leading to high exploitation in the end. All these functions 

are acceptable, however, due to the simplicity of its formulation and the lower value 

of additional variables, a linear function has been chosen to be used in this model. 

The modeller has to define the end date of the exploration phase.     

 

Figure 6.11. Different ε-functions proposed in this model 

 

6.8. Extra option of ‘not travelling by car’ 

After disruptions, some parts of the network may be closed to traffic and drivers may 

expect longer detours, communities may be isolated and some trips may be cancelled 

(Dalziell, 1998). The model adds the novel option of allowing drivers to decide if they 

want to travel using their car or, instead, they prefer to cancel the trip or use an 

alternative mode of transport to get to their destination. All reviewed transport 
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recovery models do not include this additional option and just assume that drivers 

have to travel every day. It is important to note that the aim of this model is not the 

implementation of a multimodal approach. The model adds this new feature in order 

to account for those trips that in real life would be cancelled because of the isolation 

of some disrupted destinations, the possibility of facing long detours or the existence 

of alternative transport modes. Also, in the light of Covid-19, the modelling of trip 

cancellation/suppression becomes more important as more people is able to work 

from home for short periods of time.  

The new decision of ‘not travelling by car’ that drivers can choose is added as 

another option 𝑧, which has a probability of being selected by each driver on each 

day. Based on the consequences of driver’s decisions on day 𝑡, the probability of ‘not 

travelling by car’ is updated independently, ranging from 0 to 1 following the process 

that is explained later on in this section. Initially the model described in previous 

sections only considered those travel options with a route and a departure time and 

the sum of probabilities of selecting these travel options was already 1. However, the 

incorporation of a new option that drivers can choose implies the recalculation of the 

probabilities associated with each travel option. Equation (6.31) calculates the 

updated probability of selecting each travel option after incorporating the additional 

option of ‘not travelling by car’. Graphically it is also explained in Figure 6.12. Note 

that on day 𝑡 = 1 (the first day of the simulation), it is assumed that the probability 

of selecting the option of ‘not travelling by car’ is zero.  

𝑝𝑧𝑡,𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑝𝑧𝑡 ∙ (1 − 𝑝ℎ,𝑁𝐶,𝑡) 

∀  𝑧  ∈   𝒵 

(6.31) 

Where, 

𝑝𝑧𝑡,𝑢𝑝𝑑𝑎𝑡𝑒𝑑, is the updated probability of selecting the travel option 𝑧 on day 𝑡 

after incorporating the option of ‘not travelling by car’. 

𝑝ℎ,𝑁𝐶,𝑡, is the probability of selecting the option of ‘not travelling by car’ on 

day 𝑡 by packets of drivers ℎ. The calculation of this value is 

explained later on in this section. 

𝑝𝑧𝑡, is the probability of selecting the travel option 𝑧 on day 𝑡. 
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Figure 6.12. Graphical description of how to update probabilities of selecting travel 

options after incorporating the option of ‘not travelling by car’.   

 

The algorithm that is behind the increase or decrease of the probability of not 

travelling by car is shown in Figure 6.13. As observed in this figure, if drivers have 

travelled on day 𝑡 using their car, they could have arrived late or not to undertake 

the activity. If they have not arrived late, then they are more likely to keep travelling 

by car on day 𝑡 + 1. On the contrary, if they have arrived late to the destination, they 

need to evaluate if they have alternative travel options or other transport modes to 

get to that place. If there are no other modes of transport or the service is deficient 

but they have more travel options (e.g. leaving earlier), they are more likely to keep 

travelling by car. However, if there are other alternatives, they may prefer to use 

them which means that drivers are more likely to travel using these other transport 

modes. On the other hand, if drivers have cancelled the trip on day 𝑡, they are more 

likely to try and travel the next day. The model captures an increasing need to 

undertake a trip from day to day. The rate at which this “need” increases is a topic 

worthy of research on its own. On the contrary, if drivers that have decided to travel 

by an alternative mode of transport are satisfied with the service, then they are more 

likely to continue using this service. If they are not satisfied, they are more likely to 

keep travelling using their car.   
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Figure 6.13. Increasing or decreasing the probability of NOT travelling by car based 

on the travel decisions on day t 

 

Mathematically, this is expressed in Equation (6.32) and to make it easier for 

the reader a breakdown of the equation is included in Figure 6.14. Three main terms 

are identified. The first term represents the probability of not travelling by car on day 

𝑡. The second and third term increase or decrease the probability of the first term 

based on the algorithm stated in Figure 6.13. Note that the second and third terms 

cannot be considered at the same time. For example, if a driver travels by car on day 

𝑡, the second term is considered and the third term is excluded from the formulation 

and vice versa.    

The second term of the Equation (6.32) modifies the probability of not 

travelling by car when the driver travels on day 𝑡. If the driver arrives late, the 

probability of using again the car can be increased or decreased depending on the 

service level of the alternative transport modes. On the contrary, if driver arrives on 

time, the probability of using the car again is increased. 

The third term of the Equation (6.32) also modifies the probability of travelling 

by car but only when drivers decide not to use the car on day 𝑡. If drivers use another 

mode of transport, then the probability of using a car the next day can be increased 

or decreased depending on the service level of the alternative transport modes. 
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However, if drivers have decided to cancel the trip on day 𝑡, the probability of 

travelling the next day 𝑡 + 1 is increased depending on the type of activity.     

𝑝ℎ,𝑁𝐶(𝑡+1) = 𝑝ℎ,𝑁𝐶,𝑡 + 𝜌ℎ,𝐶𝐴𝑅,𝑡

∙ [𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡 ∙ (𝐴𝐴 ∙ 𝑅𝐶ℎ ∙ 𝑆𝐿ℎ) − (1 − 𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡) ∙ 𝐵𝐵] 

+(1 − 𝜌ℎ,𝐶𝐴𝑅,𝑡) ∙ [𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 ∙ (𝐶𝐶 ∙ 𝑆𝐿ℎ) − (1 − 𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡)

∙ (𝐷𝐷 ∙ 𝐾𝑇ℎ ∙ (1 − 𝑅𝑆ℎ))] 

(6.32) 

 

 

Figure 6.14. Breakdown of Equation (6.32) that updates the probability of selecting 
the option of ‘not travelling by car’ on day t+1. 

 

Where: 

𝑝ℎ,𝑁𝐶(𝑡+1), is the probability of selecting the option of ‘not travelling by car’ on 

day 𝑡 + 1 by packets of drivers ℎ. It is necessary to limit the range of 

values of  𝑝𝑑,𝑁𝐶(𝑡+1) to a number between 0 and 1, which is done using 

the following Equation (6.33).  
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𝑝ℎ,𝑁𝐶(𝑡+1) = {

max (  0   ;    𝑝ℎ,𝑁𝐶(𝑡+1) ),          𝑖𝑓 𝑝ℎ,𝑁𝐶(𝑡+1) ≤ 0        

𝑝ℎ,𝑁𝐶(𝑡+1),                                   𝑖𝑓 𝑝ℎ,𝑁𝐶(𝑡+1) ∈ (0,1)

min (  1   ;    𝑝ℎ,𝑁𝐶(𝑡+1)  ) ,        𝑖𝑓𝑝ℎ,𝑁𝐶(𝑡+1) ≥ 1       

 (6.33) 

𝑝ℎ,𝑁𝐶,𝑡, is the probability of selecting the option of ‘not travelling by car’ by 

packet of drivers ℎ on day 𝑡. 

𝜌ℎ,𝐶𝐴𝑅,𝑡, is a binary variable that indicates if the packet of drivers ℎ travels by 

car on day 𝑡 (𝜌ℎ,𝐶𝐴𝑅,𝑡 = 1) or decides not to travel by car (𝜌ℎ,𝐶𝐴𝑅,𝑡 = 0). 

𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡, is a binary variable that indicates if the packet of drivers ℎ arrives 

late to the destination on day 𝑡 (𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡 = 1) or on time (𝜈ℎ,𝐿𝐴𝑇𝐸,𝑡 = 0). 

𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡, is a binary variable that indicates if a packet of drivers ℎ travels 

using another mode of transport that is not car-based (𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = 1) or 

cancels the trip (𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = 0). The procedure to obtain the value of this 

variable is described in Section 6.8.2.    

𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷, are user-defined values that indicates the importance of each 

term in the calculation of the probability of selecting the option of ‘not 

travelling by car’. These can take any value between 0 and 1. If it is 0, 

the corresponding term of the Equation (6.32) is not considered.   

𝑅𝐶ℎ, late arrival coefficient that is used when the packet of drivers ℎ does not 

reach its destination before the starting time of the activity 𝑎. It depends 

on the type of activity that is undertaken and the consequences of not 

arriving on time. This variable can take any value between 0 (not 

important if drivers arrive late) and 1 (important to arrive on time) – see 

Equation (6.34). 

𝑅𝐶ℎ = {
(
1 − 𝑦𝑅𝐶
𝑡𝑅𝐶

) ∙ 𝑡 + 𝑦𝑅𝐶           𝑖𝑓 𝑡 < 𝑡𝑅𝐶  

               1                             𝑖𝑓 𝑡 ≥ 𝑡𝑅𝐶

 (6.34) 

Where, 

𝑦𝑅𝐶, coefficient that indicates how important is to arrive on time to 

undertake the activity. It can take any value between 0 and 1. 
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𝑡𝑅𝐶, time after the starting time of the activity that is needed to 

achieves a value of 1 on the 𝑅𝐶ℎ variable.  

 

 

Figure 6.15. Late arrival coefficient (𝑅𝐶ℎ) and example of some parameters. The 

example values of the table are selected for the purpose of illustration. 

 

𝑆𝐿ℎ, service level satisfaction of using an alternative transport mode. 

Depending on the origin and the destination of each packet of vehicles, 

there might be some areas that are very good connected to others. This 

variable reflects how the level of the service is. It can take values between 

1 (e.g. good frequencies, journey times, stop distances, etc.) to -1 (bad 

frequencies, no comfort, always late, etc.). If it takes a value of zero, the 

probability is not increased nor decreased. A more detailed description of 

the values that this variable can take is included in Section 6.8.1.    

𝑅𝑆ℎ, is the rescaled value of the service level satisfaction (𝑆𝐿ℎ). The original 

value of the 𝑆𝐿ℎ is measured between -1 and 1. However, this value has 

been rescaled within the range of 0 to 1 because the rest of the values of 

the term of Equation (6.32) is measured in the range of 0-1.  

𝑅𝑆ℎ = {
0 + (𝑆𝐿ℎ + 1) ∙ 0.5          𝑖𝑓 𝑆𝐿ℎ  ∈  [−1, 0] 

0.5 + (𝑆𝐿ℎ) ∙ 0.5             𝑖𝑓 𝑆𝐿ℎ  ∈ (0, 1]     
 (6.35) 

𝐾𝑇ℎ, is the ‘need to travel’ variable. Depending on the type of activity and the 

number of days in a row without undertaking the activity, this variable 

can take any value between 0 and 1, being 0 the case that the activity is 

not essential and there is no need to travel, and 1 the case that drivers 
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need to travel. Figure 6.16 shows two cases that summarises the values 

that this variable can take [see Equation (6.36)]. Case 1 represents a 

typical leisure-based activity in which the variable takes a value of 0 during 

the first days, which means that the activity is not essential. On the other 

hand, Case 2 represents a work-based activity in which the variable 

already takes values close to 1 during the first days, which means that 

there is a need to travel. The more days without undertaking the activity, 

the higher the coefficient is (up to 1).  

𝐾𝑇ℎ =

{
 
 

 
 (
1 − 𝑈𝑆
𝑈𝑔

) ∙ 𝑈 + 𝑈𝑆            𝑖𝑓 𝑈𝑓 = 0                        

               0                           𝑖𝑓 𝑈𝑓 > 0  𝑎𝑛𝑑 𝑈 < 𝑈𝑓

         
𝑈 − 𝑈𝑓

𝑈𝑔
                     𝑖𝑓 𝑈𝑓 > 0 𝑎𝑛𝑑 𝑈 ≥ 𝑈𝑓   

 (6.36) 

Where, 

𝑈, number of days in a row in which drivers have not attended the 

activity. 

𝑈𝑓, number of days in which activity is not essential and drivers may 

not attend the activity.   

𝑈𝑠, initial value of the ‘need to travel’ variable. 

𝑈𝑔, number of days in which the ‘need to travel’ variable is increasing 

until it reaches the maximum value of 1. 
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Figure 6.16. ‘Need to travel’ variable. Values on the table are selected for the 
purpose of illustration for different activities. 

 

6.8.1. Service level satisfaction (𝑺𝑳𝒉) of alternative transport modes 

One of the advantages of this model is that it allows drivers to decide not to travel 

using their car and instead they can use another transport mode or cancel a trip. This 

decision depends on the level of satisfaction of drivers towards using other transport 

modes. Different factors may influence these decisions, such as the frequency of the 

service, comfort, price, journey time, accessibility, reliability of time schedule, safety, 

aesthetics, etc. Although the aim of this model is not to develop a multi-modal 

approach, it was necessary to introduce some variables that evaluate the level of 

service of alternative transport modes. In this model, the service level satisfaction has 

been quantified using three variables: accessibility, frequency of the service and 

comfort. Mathematically, the calculation of the level of service is shown in Equation 

(6.37). This satisfaction level can vary between -1 (dissatisfied with the provided 

service) and 1 (really satisfied with the service). The difficulty of this approach is 

based on the need to incorporate real data from surveys to obtain the satisfaction of 

drivers towards the use of alternative transport modes of the study area. 

Unfortunately, the data collection is out of the scope of this thesis and information 

obtained from other surveys or the one provided by alternative transport modes 
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should be initially used. If more information is obtained, more variable can be 

incorporated into the equation (6.37). 

𝑆𝐿ℎ =
𝐻𝐻 ∙ 𝑎𝑐𝑐𝑎 + 𝐽𝐽 ∙ 𝑓𝑟𝑒𝑞𝑎 + 𝐿𝐿 ∙ 𝑐𝑜𝑚𝑓

3
 (6.37) 

Where, 

𝑎𝑐𝑐𝑎, is the accessibility variable that is given to an area 𝑎 and it measures 

how close an alternative transit station is from the area where the user 

is located. As no data is available at this stage, the use of a piecewise-

defined function expressed in Equation (6.38) is proposed. The function 

varies between -1 (difficulty in accessing other transport modes) and 1 

(easy access to other transport modes). The variable 𝐷𝑖𝑠𝑡𝑤𝑎𝑙𝑘 quantifies 

in an approximate way the distance between the user origin and the 

nearest transit station of the alternative transport mode. A graphical 

representation of this function is also shown in Figure 6.17. 

𝑎𝑐𝑐𝑎 =

{
 
 

 
 

1                     𝑖𝑓 𝐷𝑖𝑠𝑡𝑤𝑎𝑙𝑘 ≤ 100𝑚     
0.5          𝑖𝑓 100𝑚 < 𝐷𝑖𝑠𝑡𝑤𝑎𝑙𝑘 ≤ 500𝑚
0           𝑖𝑓 500𝑚 < 𝐷𝑖𝑠𝑡𝑤𝑎𝑙𝑘 ≤ 1𝑘𝑚

 

−0.5           𝑖𝑓 1𝑘𝑚 < 𝐷𝑖𝑠𝑡𝑤𝑎𝑙𝑘 ≤ 1.5𝑘𝑚     
−1                     𝑖𝑓 𝐷𝑖𝑠𝑡𝑤𝑎𝑙𝑘 > 1.5𝑘𝑚        

 (6.38) 

 

Figure 6.17. Graphical representation of the accessibility variable of alternative 
transport modes  

 

𝑓𝑟𝑒𝑞𝑎, is the frequency of the service that is provided by the alternative 

transport mode. Due to the lack of data, it is proposed a linear function 

which increases or decreases based on the amount of time that a user 

has to wait to start his/her journey at the transit station. This value 

varies between -1 (really bad service frequency) and 1 (good service 
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frequency). The mathematical expression is included in Equation (6.39) 

and a graphical representation of this formula is considered in Figure 

6.18. Users will be satisfied if the service is running every less than 𝑡𝑚𝑖𝑛 

minutes. However, if they have to wait more time to get the vehicle, the 

level of service satisfaction will decrease until it reaches a maximum limit 

(-1).  

𝑓𝑟𝑒𝑞𝑎

=

{
 

 
                              1                                                   𝑖𝑓 𝑡𝑤𝑎𝑖𝑡 ≤ 𝑡𝑚𝑖𝑛        

(
−2

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
) ∙ 𝑡𝑤𝑎𝑖𝑡 + (1 +

2 ∙ 𝑡𝑚𝑖𝑛
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

)          𝑖𝑓 𝑡𝑚𝑖𝑛 < 𝑡𝑤𝑎𝑖𝑡 ≤ 𝑡𝑚𝑎𝑥

                              −1                                                   𝑖𝑓 𝑡𝑤𝑎𝑖𝑡 > 𝑡𝑚𝑎𝑥          

 
(6.39) 

 

Figure 6.18. Graphical representation of the function that quantifies the value of the 
frequency of alternative transport modes 

 

𝑐𝑜𝑚𝑓, is the variable that defines the level of comfort that users experience 

by using this alternative transport mode. This value varies between -1 

(not comfortable at all) and 1 (comfortable).  

𝐻𝐻, 𝐽𝐽, 𝐿𝐿, are user-defined variables that weight each terms of the formula. 

Note that the sum of these variables has to be one (𝐻𝐻 +  𝐽𝐽 + 𝐿𝐿 = 1). 

 

6.8.2. Decision of changing to other transport mode or cancel the trip 

When drivers decides not to travel by car, they can still reach the destination if there 

are other available modes of transport. However, drivers will only use this alternative 

transport modes if the level of service satisfies their requirements. Therefore the 

probability of using another transport mode is influenced by the service level 
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satisfaction (𝑆𝐿ℎ) of each driver. If the service level is good for a driver (closer to 1), 

then this driver will be more likely to use it in a close future. On the contrary, if the 

service is bad (close to -1), then there is small chance that this driver chooses this 

transport mode to travel. If a driver decides not to use this alternative transport mode, 

although there can be other options (e.g. rescheduling the trip, etc.), it is assumed in 

this model that the driver opts for cancelling the trip.   

The function that determines if a driver chooses another mode of transport or 

prefers to cancel the trip is expressed mathematically in Equation (6.40) and 

graphically in Figure 6.19. This is a piecewise-defined function in which its value 

depends on driver’s satisfaction towards the use of the alternative transport modes. 

If the satisfaction is less than zero, driver has 100% probability of cancelling the trip. 

On the contrary, if the satisfaction is greater than 0, it is assumed that the probability 

of using another mode of transport will increase linearly with the satisfaction of the 

service.  

𝑝ℎ,𝑀𝑂𝐷𝐸 = {
  0             𝑖𝑓 𝑆𝐿ℎ < 0
  𝑆𝐿ℎ        𝑖𝑓 𝑆𝐿ℎ ≥ 0

 (6.40) 

Where, 

𝑆𝐿ℎ, is the service level satisfaction of packet of drivers ℎ towards using 

another mode of transport. This is calculated as explained in Section 6.8.1. 

𝑝ℎ,𝑀𝑂𝐷𝐸, is the probability of choosing between cancelling the trip or using an 

alternative transport mode. 

 

Figure 6.19. Graphical representation of the proposed probability distribution for 
cancelling trips or using another mode of transport    

 

The modeller can simplify the model by omitting the existence of alternative 

transport modes. This means that those drivers who do not travel on a day cannot 
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find alternative transport modes and therefore, they have to cancel the trip. This can 

be done assigning a service satisfaction value lower than zero for all drivers. In this 

sense, according to Equation (6.40), the probability of using alternative modes of 

transport would be zero and drivers would have to cancel the trip.  

The process of deciding if a driver chooses an alternative transport mode or 

cancel the trip consists on the following steps: (1) Generate for each driver a random 

value (𝜗) between 0 and 1 with a uniform-distribution probability. (2) Given a specific 

value of the service level satisfaction (𝑆𝐿ℎ), obtain the corresponding value of the 

probability distribution using Equation (6.40). (3) Compare the random value (𝜗) with 

the probability distribution (𝑝ℎ,𝑀𝑂𝐷𝐸) following the Equation (6.41) in order to identify 

if this driver decides to use other non-car-based transport modes (𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = 1) or 

driver decides to cancel the trip (𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = 0).    

𝜂ℎ,𝑀𝑂𝐷𝐸,𝑡 = {
  0             𝑖𝑓 𝜗 > 𝑝ℎ,𝑀𝑂𝐷𝐸
    1                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 (6.41) 

 

6.9. Illustrative example 

To facilitate the understanding of the concepts introduced in this section, the 

departure time and route choice model is applied to the same transport network used 

in Chapter 4, the Sioux Falls Network (South Dakota, US). The aim of this example is 

to illustrate how the proposed model works. It shows how the reinforcement-learning 

algorithm is used to simulate day-to-day drivers’ travel decisions. Only the pre-

disruption stage is analysed, which means that there is no network disruption 

involved. The following Section 6.9.2.1 analyses the process of how an individual 

packet of vehicles make travel decisions. However, in section 6.9.2.2, the behaviour 

of all drivers is analysed together in order to observe the overall state of the network 

on any given day. As this is a stochastic model, it needs to be run several times in 

order to obtain representative results. At the end of the section, the results that are 

obtained using multiple simulations are compared to the results of a single simulation.  
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6.9.1. Road network and traffic demand data  

The Sioux Falls network consists of 24 nodes and 76 links as shown in Figure 6.20 

and whose characteristics are presented in Table A.1 and Table A.2 of the Appendix 

1. The vertex coordinates have been taken from Chakirov and Fourie (2014).  

The traffic demand used in this example is extracted from the work done by 

Martinez-Pastor (2017). A total number of 4840 trips per hour are simulated in that 

work, which are grouped into 18 OD pairs as shown in Table A.3 of Appendix 1. It is 

assumed a maximum set of 2 initial routes for each OD pair and it is expected that 

drivers choose between 3 possible departure times (8am, 8:15am or 8:30am). 

Therefore, the total number of possible options for each OD pair is 7 (2 routes and 3 

departure times/route and the additional option of ‘not travelling by car’). For this 

reason, the peak period modelled in this example is adapted to these 3 departure 

times (every 15min) and therefore the period of demand that is analysed is between 

8am and 8:45am. This means that the total number of trips is (proportionally) 3636 

for that time period. A warm-up and cool-down 30-min period are also simulated with 

a proportional number of trips for that amount of time. The number of vehicles per 

packet considered in the model is 10.     

 

Figure 6.20. Sioux Falls network, defined by links and nodes. 
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It is assumed that all drivers are going to work (activity purpose) and the 

activity starts at 9am for all users. In order to consider the heterogeneity of drivers, 

two preferred arrival time intervals (PATI) have been included in this model. It is 

assumed that 50% of drivers prefer to arrive between 20 min and 10 min before the 

activity starts. For the rest 50% of drivers, PATI is defined between 10 min and 5 

min.   

A linear memory function is considered when calculating the expected and 

perceived travel cost over time. It is assumed a learning rate of 0.2. The additional 

feature of considering that bad memories are remembered more than good ones is 

also included in this example. The only information that drivers know is the one they 

have collected on previous travel experiences. No external travel information is 

provided to them. The value of the rest of parameters used in this example is included 

in Table 6.4.  

 

Table 6.4. Values of the variables considered in this example. 

Variable Value Variable Value 

Travel cost function (Section 6.3) General 
𝜷𝟏 = 𝜷𝟐 = 𝜷𝟑 = 𝜷𝟒 1 Vehicles/packet 10 

Memory function (Section 6.4.1) Simulation time 25 days 

Linear function Linear exploration function 

𝑩𝒎𝒂𝒙 3 Exploration time 10 days 
𝒃𝟏 10min Exploitation time 15 days 
𝒃𝟐 30min   

𝜽 
Uniform distribution 

[0,90] 
Learning rate 0.2 

Option of not travelling (Section 6.8) 

𝒚𝑹𝑪 0.8 𝑎𝑐𝑐𝑎 
Probability 

distribution of 
Figure 6.21. 

𝒕𝑹𝑪 10 min 𝑓𝑟𝑒𝑞𝑎 
Uniform distribution 

[-1,1] 

𝑼𝒔 0.8 𝑐𝑜𝑚𝑓 
Uniform distribution 

[-1,1] 
𝑼𝒇 0 days 𝑔 3 days 

𝒕𝒎𝒊𝒏(𝒇𝒓𝒆𝒒𝒂) 10 min 𝐴𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐷𝐷 1 
𝒕𝒎𝒂𝒙 (𝒇𝒓𝒆𝒒𝒂) 1 h   
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Figure 6.21. Probability distribution of walking distance to the closest transit station 
for each node. 

 

The model is performed on a computer with 8GB memory and a quad-core 

3.3 GHz Intel i5-3550 processor. Based on this, the computational time to run 10 

simulations is approximately 20 minutes.   

 

6.9.2. Results and discussion 

6.9.2.1. Disaggregated results: understanding individual driver’s travel decisions 

Driver’s decision making process is studied in this section by selecting randomly a 

packet of vehicles and analysing its travel decisions over time. In this example, a 

packet that travels from node 1 to node 20 has been selected. Table 6.5 includes a 

summary of the travel options that this packet can choose from.  

Table 6.5. Travel options between origin node 1 to destination node 20 

Option  Route Departure time 

Option 1 

N1-N3-N4-N11-N14-N23-N22-N20 

8:00am 

Option 2 8:15am 

Option 3 8:30am 

Option 4 

N1-N3-N4-N11-N14-N15-N22-N20 

8:00am 

Option 5 8:15am 

Option 6 8:30am 

Option not travel 

 

Results from the model are included in Figure 6.22. The first graph (A) 

represents the evolution of the probability of selecting travel options. Each option 

(route and departure time) is drawn as a line and the cross symbol in the figure 
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indicates the travel option that this packet of drivers has chosen on each day. Note 

that the number of the option is shown on the second axis. Initially, all options except 

the option of ‘not travelling by car’ have the same probability of being chosen by the 

driver. Following the stochastic rule choice (Section 6.2.1), this packet of drivers 

selects travel options. As an example, this packet chooses option #2 for day 1.  

The second graph (B) in Figure 6.22 shows the departure and arrival time of 

this packet of vehicles. This graph also includes the starting time of the activity and 

the preferred arrival time interval for this packet. If the arrival time is beyond the red 

line (activity starting time), the packet of drivers will have arrived late to undertake 

the activity.  

The third graph (C) represents the travel cost on each day and the weighted 

average of travel costs of previous days (expected and perceived travel costs). On 

day 1, the expected travel cost is not considered because drivers do not have previous 

travel experiences. As observed, the sudden high travel costs evidences the penalties 

that are applied to the travel cost functions due to late or early arrivals.    

The last graph (D) displays the stimulus values (positive in green and negative 

in red). On day 1, as the perceived travel cost is greater than the expected travel 

cost, the stimulus is negative. This means that this packet of vehicles is less likely to 

repeat option #2 for the next day. At this point, this packet updates its option 

probability vector according to the stimulus value obtained from the previous day. 

Note that one of the improvements of this model compared to the previous ones 

(Ozbay, Datta and Kachroo, 2001; Wei, Ma and Jia, 2014) is shown on this updating 

scheme. After selecting option #2, this packet has departed at 8:15am on day 1 and 

it has arrived earlier than PATI. In these previous models, the probability of selecting 

option #2 for day 2 would be reduced and the probability of selecting the rest of 

options would be increased. However, in reality, it is very unlikely to increase the 

probability of option #1 because it has even an earlier departure time than the 

selected option on day 1. Drivers know that if they select option #1, the probabilities 

of arriving even earlier than option #2 are high. Therefore, this option #1 is 

considered in this case as an unfavourable travel option (see Section 6.6) and drivers 

will be less likely to choose it for the next day. For that reason, the probabilities of 
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selecting option #1 and #2 are reduced and the probabilities of selecting the rest of 

the options are increased.     

  

 

Figure 6.22. Mental model of packet of drivers #4 that travels from node 1 to node 
20. Learning rate=0.2.  
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The process is repeated again for the next days. Based on the option 

probability vector and using the stochastic rule choice, a travel option is selected. The 

travel costs are obtained after travelling and a new stimulus value is calculated that 

is used to update the probabilities of selecting travel options for the next day. 

Every time the packet of drivers arrives later than the starting time of the 

activity there is an increase on the probability of selecting the option of ‘not travelling 

by car’. In this case, drivers can use any alternative transport mode or even cancel 

the trip. More specifically, on day 7 this packet arrives late and the next day the 

probability of not travelling increases. If drivers continue arriving late, the probability 

of not travelling will continue increasing. Due to the stochastic nature of the model, 

drivers may select the option of ‘not travelling by car’. After a few days, the probability 

of not travelling is reduced because drivers have a ‘need’ to travel by car as mentioned 

in Section 6.8.     

The core of this reinforcement model is the stimulus values and the updating 

scheme. Only when there are big changes in stimulus values, the probabilities of 

selecting options experience huge changes. In some cases of Figure 6.22, the 

stimulus values are close to zero. This means that the driver see no difference 

between the expected travel cost and the perceived travel cost compared to 

alternative options. If stimulus is close to zero, it implies that the probabilities of 

choosing travel options remain almost the same as the previous day.  

The stimulus achieves the maximum positive value on day 18. It seems that 

both expected and perceived travel cost are similar in the graph, but numerically there 

is a slight difference. The expected travel cost on day 18 is 0.58h and the perceived 

travel cost is 0.55h., this being the maximum difference among all possible alternative 

options. That is the reason why stimulus get the maximum value. This implies that 

the probability of selecting the same option (#5) for the next day is increased the 

maximum possible value. At the end of this simulation period, option #5 stands out 

as the preferred travel option for this packet of drivers.  

ε-greedy approach 

This example has also used the ε-greedy approach explained in Section 6.7. Figure 

6.23 shows the difference between the evolution of probabilities with and without 
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considering the ε-greedy linear approach. As observed, the ε value decreases linearly 

until it gets a value of zero after 10 days (exploration phase). This means that at the 

beginning all options have the same probability of being selected and then, as the ε 

value goes down, the probabilities acquire their ‘undisturbed’ value (without the ε-

greedy consideration).  As the probabilities of all options on day 1 are the same and 

the exploration phase is limited to 10 days, the ε-greedy linear effect is limited. An 

alternative would consider an extension of the exploration phase (more than just 10 

days) or an alternative ε-greedy approach.   

 

Figure 6.23. Evolution of probabilities of selecting travel options without and with 
the e-greedy linear approach. Packet of drivers #4. 

 

Memory variables 

Memory variables also have a high impact on the expected and perceived travel cost 

calculation. Figure 6.24 shows the memory coefficients that are used by packet of 

vehicles #57 to calculate travel costs on each day. These are obtained by multiplying 

the linear memory value (𝜑) and bad memory value (𝐵ℎ𝑧𝑡) on each day.  Each column 

of the graph represents the coefficients that are used on the weighted average of 

travel cost calculations on Equations (6.7) and (6.17). The black boxes highlighted on 

Figure 6.24 show the additional bad memory consideration and the corresponding 

decay over time. Note that for this example, a bad memory is considered as a journey 

whose travel time exceeds 10 min the expected travel time. The decay feature in 

which drivers forget the importance of bad memories over time is also shown in the 

graph. It is observed that the coefficient of bad memories is reduced over time until 
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it reaches its memory value alone (𝜑). In order to fully understand how to use this 

graph, an example is also included Figure 6.24. The idea of this example is to calculate 

the perceived travel cost on day 12 (highlighted column in the graph). This 12th 

column shows the memory values for the decisions that this packet made on each 

day (rows). As observed, the travel cost on day 12 (12th row) is weighted a value of 

12. Travel cost on day 11 (11th row) is weighted a value of 11 and so on. However, 

the weighting coefficient on day 9 is 14 because this packet has considered the 

journey on day 9 as a bad experience and therefore, it is remembered more than 

some good ones.  

 

Figure 6.24. Memory coefficients (φ times B) over time used by the packet #57 of 

vehicles from node 1 to node 20. Memory decay (𝜃) of 64 degrees. Linear memory 

function. Highest bad memory value (𝐵𝑚𝑎𝑥) is 3.   

 

As mentioned, the additional bad memory variable loses importance over time. 

It depends on the decay value that is assigned to each packet of drivers. Figure 6.25 

shows the decay of bad memory values depending on different decay angles (𝜃). The 

higher the angle, the longer the packet of driver remembers the bad event. If the 

modeller decides not to consider the bad memory feature, then the values located in 
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black boxes in Figure 6.24 would be their corresponding values of the memory levels 

(𝜑) and values on Figure 6.25 would be all 1 (𝜃 = 0). For instance, if a packet of 

drivers is characterised by a decay angle of 70 degrees, the bad memory weights 

more than a good one during 6 days. On the 7th day, this bad memory is considered 

equally important as a good one.   

 

Figure 6.25. Bad memory variable decay depending on different values of the decay 

angle (𝜃). Highest bad memory value (𝐵𝑚𝑎𝑥) is 3.  

 

The impact that the bad memory formulation has on the calculation of the 

travel cost is shown in Figure 6.26. This graph provides two values of the expected 

travel cost on each day. One of them is when the maximum value of the extra 

weighting factor of bad experiences (𝐵𝑚𝑎𝑥) is 3, meaning that a bad experience is 

remembered 3 times more than a good one. And the second one is calculated when 

the value of 𝐵𝑚𝑎𝑥 is 1, which means that bad experiences are not stronger that good 

ones. Expected cost is not calculated on day 1 (because it is not computed during the 

first day of the simulation) and day 7 (because this packet of drivers decide not to 

travel on this day). Those expected travel costs that consider the additional weighting 

factor due to bad experiences have a higher cost compared to the others. This 

simulates the fact that drivers tend to remember slightly more those bad experiences.  
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Figure 6.26. Impact of the additional weighting of bad experiences on the 
calculation of the expected travel cost. Packet #57 of vehicles from node 1 to node 

20. Learning rate=0.2; Linear memory function. 

 

6.9.2.2. Aggregated results: network level analysis  

An aggregated analysis provides an overview of the state of the network on each day. 

Figure 6.27 shows the results of all travel cost spent on the whole network on each 

day during the simulation period. Due to the stochastic nature of the model, the 

algorithm is run 10 times and results are displayed on the same figure using a Box 

and Whisker plot. Total travel cost is obtained as the sum of all travel costs of all 

drivers travelling through the network on each day. Results evidence that travel cost 

stabilises and drivers tend to find the travel option that minimises their travel cost 

over time. Initially, drivers are on the exploration phase, which means that they are 

trying new travel options and choosing their best one. After 10-15 days, the gradient 

of the total travel cost trend is reduced, having a period of almost no changes in total 

travel cost from days 20 to 25. It is also observed that the difference between the 1st 

quartile and 3rd quartile is also reduced over time.  
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Figure 6.27. Box-Whisker plot: sum of travel costs for all drivers on each day. The 
graph includes 10 simulations. Learning rate=0.2. 

 

It is important to analyse if 10 simulations are enough to rely on these results. 

For this reason, the model has been run 20 and 30 times and a comparison of the 

results are included in Figure 6.28. Graph A shows a comparison of the evolution of 

travel costs. The line that crosses all boxes represents the mean values on each day. 

Assuming that travel costs on the 30-sim results are reliable, the relative error (𝑅𝐸) 

is calculated in order to quantify how far each solution is from the 30-sim one. The 

error is calculated using Equation (6.42). A comparative of the relative errors is shown 

in Graph B of Figure 6.28. As expected, 10-sim results differ more than 20-sim results. 

However, the maximum error is less than 3% which means that there is not a huge 

difference between considering the 10-sim results or the 30-sim results. In addition, 

as the total travel cost metric used to measure the resilience of the network (Section 

3.4.1) is calculated as the area under the travel cost curve, these slightly differences 

are not significant.       

𝑅𝐸(%) =
𝑇𝑇𝐶̅̅ ̅̅ ̅̅

𝑡𝑠 − 𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡,30

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡,30

∙ 100 (6.42) 

Where, 

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡𝑠, is the mean value of the total travel cost of 𝑠 simulations on day 𝑡. 

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡,30, is the mean value of the total travel cost of 30 simulations on day 𝑡. 

𝑅𝐸, relative error in %. 
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Figure 6.28. Graph A represents the evolution of travel cost over time of 10, 20 and 

30 simulations using a multiple box plot representation. Graph B represents the 
relative error of the 10-sim and 20-sim considering the 30-sim as the right value. 

 

Some drivers may not have the chance to use all available options before 

deciding the best travel option for them. Figure 6.29 shows the average number of 

travel options that drivers have already used on each day. It is obvious that the first 

day every driver has only used an option. As days go by, drivers are using other travel 

options and that is reflected on the increasing line on the graph. However, if drivers 

find an option that provides good results for them, they stick to it and no more options 

are used, even if these options may be better in terms of travel cost. This is reflected 

on the (almost) horizontal asymptote of the final days of the graph.  It seems that, 

in this example after 25 days, almost all drivers have already tried all the 6 available 

travel options.  
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Figure 6.29. Average number of used/known travel options – route and departure 
time –   on each day (10 simulations). The option of ‘not travelling by car’ is not 

considered in the graph. 

 

 

6.9.3. Sensitivity analysis: learning rate 

This section analyses the sensitivity of the model to changes in the learning rate (ℓℎ, 

see Section 6.5). The ‘one-at-time sensitivity’ technique is used and whose aim is to 

create a variation of one parameter (learning rate, in this case), keeping all the rest 

of parameters fixed, and observe the variation in the model outputs.   

The learning rate is the parameter that indicates how fast drivers learn from 

the environment. The stimulus value, which is already described in Section 6.5, is a 

function of this learning rate. The higher the learning rate is, the higher the value of 

the stimulus is. This directly affects the updating scheme as a higher value of the 

stimulus implies a higher increase/decrease in the probabilities of selecting travel 

options.     

Figure 6.30 shows the average total travel costs on each day for 10 simulations 

using different values of the learning rate. Low values of the learning rate show that 

drivers take more time to find their best travel option. The maximum value of the 

stimulus is limited to the learning rate, which means that if the learning rate is low, 

the stimulus is low as well. In these cases, after each day, the amount of probability 

that is increased/decreased is also reduced, meaning that the rate at which a travel 

option stands out among the rest is reduced as well. On the other hand, the higher 

the value of the learning rate is, the faster drivers learn and find their ‘best’ travel 

option. In these situations, when drivers find a very good option, the stimulus value 
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that is assigned to that option is high because the learning rate is high as well. This 

means that the probability of selecting that travel option is increased/decreased a 

quantity that is proportional to the stimulus value. As observed in the graph, when 

the learning rate is 1, drivers are able to find rapidly their best travel options so that 

the total travel cost is reduced almost at its minimum value on day 10. However, if 

the learning rate is 0.1, even after 30 days drivers are still trying to find their best 

option and they are not still close to reduce the total travel cost to its minimum value.  

 
Figure 6.30. Average total travel cost (10-sim result) using different values of the 

learning rate.  
 

However, taking high values of the learning rate can have side effects. Figure 

6.31 represents the cumulative number of travel options that are used on average by 

drivers after running different values of the learning rate. As observed, the lower the 

learning rate is, the more chance drivers have to explore the network because the 

probability of selecting an option does not increase/decrease that fast. This implies 

that drivers try more travel options before sticking to their ‘best’ one. On the contrary, 

if the learning rate is high, drivers rapidly converge to an option (even if this option 

is not their ‘best’ one) and do not have the chance to try other alternative options. 

The difference shown in Figure 6.31 may get worse if more travel options are provided 

to drivers.  

To sum up, the following conclusions can be extracted from the sensitivity 

analysis: (1) High learning rates mean that drivers find ‘good’ options faster (not 
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necessary the ‘best’ options) and rapidly stick to them and this implies a less 

exploration phase. (2) Low learning rates mean that drivers take time to learn and 

find the ‘best’ travel option and this implies that more options are used (more 

exploration phase).      

 

Figure 6.31. Average cumulative number of travel options (10-sim result) that 
drivers have used on average after using different values of the learning rates.  

 

 

6.10. Comparison to previous methodologies and contribution 

This section compares the methodology proposed in this chapter to the ones 

presented in the literature. Table 6.6 explains how the new improvements fill the gaps 

of previous models. The contributions to the knowledge are therefore also included 

in this table.    
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Table 6.6. Comparison of the main drawbacks of previous methodologies and the 
ones proposed in this Chapter 6. 

Drawbacks of previous models  Solution of the proposed model 

Expected travel cost. The expected 

travel cost calculation in Wei et al. 

(2014) considers a weighted average 

of travel costs of ALL routes for an OD 

pair.  

 

Section 6.4. This model proposes an 

improved formulation to calculate the expected 

travel cost that only considers routes with the 

same departure times.  

Memory and bad experiences. All 

travel experiences are equally 

important in previous models (Ozbay, 

Datta and Kachroo, 2001; Wei, Ma and 

Jia, 2014). Only the memory factor 

reduces the importance of previous 

travel experiences.  

 

Section 6.4.2. This model introduces a new 

approach that considers the importance of bad 

experiences vs good ones. The section 

describes a novel method to include these new 

features on previous models. The model also 

implements the idea that bad experiences wear 

off more slowly than good ones. It is done by 

adding a novel approach that considers the 

bad-memory decay over time.   

Updating probability vector. 

Previous models (Ozbay, Datta and 

Kachroo, 2001) that also consider 

departure time choices do not 

differentiate between options with 

different departure times. For 

example, if stimulus is negative, the 

probability of selecting the chosen 

option is decreased and the rest of 

options increased. However, there can 

be other options with different 

departure times that should not be 

increased because in reality drivers are 

less likely to choose it.    

 

Section 6.6. A new and more realistic 

approach is proposed that classifies travel 

options by favourable and unfavourable in 

order to update the probability of selecting 

options for the next day. This allows the 

possibility of not considering unchosen options 

as a fixed block of options whose probability is 

increased/decreased. Travel options are 

considered individually, allowing a more 

flexible approach.   

  

Continuous in the next page 

 

 

 

 

 



Chapter 6  Departure time and route choice RL model  

 

 

208 
 

From the previous page   

Drawbacks of previous models  Solution of the proposed model 

Option of ‘not travelling by car’ on 

a day. Previous reviewed RL models 

of Section 6.1.3 do not include the 

option of allowing drivers not to travel 

on a day. However, this option 

acquires importance especially after 

disruptive events and models should 

allow drivers to decide between 

cancelling the trip or even use another 

transport mode if it is available.   

 

Section 6.8. This model adds a new feature 

as it incorporates an additional option that 

allows drivers not to travel by car and use other 

transport modes or cancel their trip. Although 

the approach proposed in Section 6.9 is not a 

very sophisticated one, it provides the first step 

to build a multi-modal transport model in which 

drivers can cancel their trips if alternative 

transport modes do not provide good services.    

Level of resolution. Previous models 

apply their reinforcement-learning 

model using a macroscopic traffic 

simulator (Ozbay, Datta and Kachroo, 

2001; Wei, Ma and Jia, 2014; de 

Oliveira Ramos and Grunitzki, 2015) or 

a microscopic traffic simulator (Wahba 

and Shalaby, 2005).   

 

Previous chapter 5. To the best of the 

author’s knowledge, this is the first 

reinforcement-learning model that simulates 

departure time and route choices and is 

applied on a mesoscopic traffic simulator.  

 

 

6.11. Limitations and further work 

This section presents Table 6.7 which includes the limitations of the proposed model 

and some key areas of further research.   
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Table 6.7. Limitations and areas of improvement of the reinforcement-learning 
model 

Limitation  Areas of improvement 

Day-to-day learning model.  Drivers acquire 

knowledge about the environment after 

repeatedly making travel decisions. This implies 

that drivers have to travel on an everyday basis 

to learn from their decisions. The model is ideal 

to simulate how drivers commute and make 

day-to-day travel decisions. However, although 

this model can include leisure-based activities, 

it might be not very realistic as people do not 

require travelling repeatedly every day for these 

purposes.  

 

New improvements should study the 

possibility of including leisure-based 

activities that are not usually 

undertaken on an everyday basis by 

each driver. This can be done by 

considering that, instead of learning 

between days, drivers can learn 

between “X” days that are the days 

that drivers undertake the activities.    

Initial path set generation. The path set 

generation always starts with the K-shortest 

free-flow paths for each OD pair. However, for 

instance on an urban network, there could be 

too much overlap between these K-shortest 

paths. This means that, if something wrong 

happens on the network, drivers will not know 

enough alternative routes to get to their 

destination.  

 

An improved path set generation could 

be implemented that finds the K-

shortest paths but penalises those 

paths that share some links.  

Learning rate and heterogeneity of 

drivers. A static learning rate for each driver 

may not reflect how drivers learn in real life. 

High values of learning rate make driver 

converge faster to some travel options that may 

not be the ‘best’ one. On the contrary, lower 

values of learning rates make drivers slow down 

the convergence process.    

 

Further research should be done in 

order to understand how fast/slow 

drivers stick (converge) to certain 

travel options. A more dynamic 

approach should be considered in 

which drivers can learn faster/slower at 

different times and therefore try 

more/less travel options. Different 

values of learning rates should also be 

assigned to different types of drivers to 

show the heterogeneity of drivers.   

  
Continuous in the next page 
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From the previous page   

Limitation  Areas of improvement 

Exploration vs Exploitation. Travel options 

that are not chosen initially, are less likely to be 

chosen over time, in the absence of sufficient 

exploration. Sometimes these options are even 

never used. This was also identified by Duffy 

(2006).    

 

Make sure that all travel options are 

used at least once. This can be done 

extending the exploration phase of the 

ε-greedy approach or assigning a lower 

learning rate during the pre-disruptive 

stage. 

Multi-modal transport model. The extra 

option of ‘not travelling by car’ added in this 

model requires the understanding of existing 

alternative transport modes. The approach 

proposed in Section 6.9 is not the most 

sophisticated one as it requires data that is not 

easily available. 

 

Surveys could be done in order to 

understand drivers’ satisfaction to the 

use of alternative transport modes 

available in the area. Alternatively, a 

multi-modal approach could be added 

to the current model so that it can 

influence drivers’ decision of ‘not 

travelling by car’ and use another 

transport modes.  

Drivers’ information. The proposed model 

considers that drivers have only access to travel 

information based on their previous experience. 

External travel information should be provided 

in order to allow drivers to make more informed 

travel decisions.  

 

External travel information such as the 

one provided by GPS navigation, radio, 

social media could be used to update 

the probability of selecting travel 

options on each day. 

There is still room for improvements in 

the direction of managing traffic. 

Incentives can be given to drivers that 

select those options that are globally 

more efficient rather than just 

minimising the individual travel cost of 

each driver.   

Calibration and validation. The model needs 

to be calibrated to the traffic conditions that are 

applied and validated using real traffic data in 

order to be applicable to real life operations. 

The lack of time has made this process 

impossible to complete.  

 

Future work should focus on gathering 

traffic data to calibrate the model and 

validate the results. 
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6.12. Conclusions  

This chapter aims to answer the following research questions: RQ6 “What is the 

current state-of-the-art on reinforcement-learning traffic models and their application 

to disrupted traffic networks?”. RQ7 “How can the updating probability scheme of 

selecting travel options of previous RL traffic models be improved, taking into account 

departure time differences between travel options?”. RQ8 “How can the RL traffic 

model incorporate the possibility of cancel a trip or use alternative transport modes if 

disruptive events occur?”. RQ9 “To what extend can bad memories of previous trips 

affect drivers’ travel decisions of future trips and how can it be implemented in the 

formulation of the RL traffic model”. RQ10 “What is the impact of the learning rate 

parameter on the global network performance?”.  

This chapter presents an improved reinforcement-learning traffic model that 

aims to simulate the drivers’ decision making process. The model described in this 

chapter uses a reinforcement-learning technique that allows drivers to make their 

own travel decisions based on previous travel experiences. Drivers may choose 

different departure time and route options and learn which choices are the ‘best’ for 

them in minimising their travel cost. A renewed formulation for the expected and 

perceived travel cost is formulated. It also incorporates a new feature that quantifies 

the importance of bad memories vs good ones and their decay over time. An 

additional option is also added to this model that considers the possibility of cancelling 

the trip or even use an alternative transport mode. A new updating probability scheme 

that differentiates between favourable and unfavourable travel options and updates 

the probabilities of selecting travel options for each driver is proposed in this chapter. 

All these novel features constitute part of the improvements that previous RL traffic 

models were demanding and they will help to provide results that are a step closer to 

reality.   

The departure time and route choice model is applied to the Sioux Falls 

transport network (South Dakota, US), illustrating the concepts introduced in this 

chapter. Results from the example include individual driver’s travel decisions and 

global average travel costs. A sensitivity analysis of the learning rate parameter is 

also undertaken, showing the meaning of high and low learning rates. Limitations and 
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potential areas of further research show the need to continue betting on these 

artificial intelligence models to simulate drivers’ behaviour.   
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CHAPTER 7 

7.  Extending the reinforcement-learning 

model to include on-board travel 

decisions and pre-departure and in-

journey travel information  

 

 

 

7.1. Introduction 

The model presented in the previous chapter introduced an improved reinforcement-

learning model that was applied to the area of transport modelling. It focused on the 

pre-disruption stage where drivers had no previous knowledge about traffic conditions 

in the network and during this phase they were building up their own travel 

experience. Through reinforcement learning, within the model drivers made decisions 

on route and departure time based on their previous travel experience and learnt 

from their mistakes. However, neither the model of Chapter 6 nor the reviewed RL 

traffic models (Ozbay, Datta and Kachroo, 2002; Wahba and Shalaby, 2005; Wei, Ma 

and Jia, 2014; de Oliveira Ramos and Grunitzki, 2015) describe what happens to 

drivers’ behaviour when a disruptive event causes the closure of certain roads. If 

drivers face disruption, the model must reflect how drivers adjust to unexpected 

events when they encounter disruption for the first time. Apart from this, another 

important aspect that previous RL traffic models do not include is the provision of 

real-time travel information to drivers. This provision of information is potentially 

highly beneficial under unexpected disruptive events such as incidents, road closures, 

etc. As previous RL traffic models have not considered the impact of disruptive events 

on drivers’ behaviour, there has been no need to incorporate additional traffic 

information. Advanced Traveller Information Systems (ATIS) and Road Traffic 
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Information (RTI), key components of the Intelligent Transportation Systems (ITS), 

are designed to assist drivers in making more informed travel decisions. This 

additional information is likely to enable drivers to choose more efficiently among 

available routes and departure times, reducing congestion and travel times. As 

Tavares and Bazzan (2012) concluded, both previous travel experience and additional 

information play an important role in decisions made by drivers.    

The main aim of this chapter is to improve the RL traffic model presented in 

Chapter 6 by incorporating on-board travel decisions and adding the provision of 

external traffic information. Section 7.2 presents a framework that allows drivers to 

make on-board travel decisions. Section 7.3 introduces types of external travel 

information that is provided to drivers and the following Sections 7.4, 7.5 and 7.6 

describe more in detail pre-trip and en-route information considered in the model. 

Section 7.7 applies the model to the Sioux Falls transport network (South Dakota, US) 

in order to illustrate the concepts explained in this chapter. Section 7.8 describes the 

drawbacks of previous models and highlights the contribution that this model makes 

to knowledge. Finally, Section 7.9 and 7.10 describe some limitations of the model, 

further work that can be done in order to improve the current model and some 

conclusions.  

 

7.2. On-board travel decisions with no external information 

Drivers have to make decisions mid-journey. An unexpected congestion or a road 

closure may make drivers decide to take another route. But, how do drivers make the 

decision of changing routes? What triggers the re-route decision? Which route do 

drivers choose if they opt for rerouting? The following section presents a framework 

that allows drivers to make on-board decisions. Figure 7.1 includes a flowchart that 

summarises the contents of the rest of this section. When drivers arrive at an 

intersection, they evaluate the conditions (described later on in this section) that may 

(or may not) trigger the on-board decision-making process. If drivers decide to re-

route, the model differentiates between a road closure and a non-closure. If a road 

segment is closed to traffic, driver can decide between following the diversion route 

that is set in place for that closure or find alternative routes that he/she has already 

used in a previous trip. Following a deterministic approach, the modeller can decide 
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the percentage of drivers that prefer to use diversion routes under these 

circumstances. However, in order to reduce the number of variables, the model 

assumes that all drivers will follow diversion routes if these are set in place after road 

closures. If the road is not closed to traffic, drivers can choose any alternative route 

that has been used by them in the past. The model introduces an algorithm that 

determines the route that drivers prefer to follow based on previously experienced 

travel times (Section 7.2.2). The model also allows drivers to decide if they want to 

abandon the trip if certain conditions are satisfied (Section 7.2.3).  

 

Figure 7.1. Flowchart of the on-board drivers’ decision algorithm 

 

The on-board decisions that drivers make due to disruptive events may also 

influence future travel decisions. That is why the option probability functions 

presented in Section 6.6 of Chapter 6 are also reformulated in Section 7.2.5 in order 

to consider the impact of on-board travel decisions. This is inspired by the similar idea 

proposed by Sutton and Barto (1981) that penalises bad intermediate actions on the 

original Bush-Mosteller model (1951) of reinforcement learning.   

 

7.2.1. Triggering on-route drivers' decisions 

The model allows drivers to make re-routing decisions when they face mid-trip 

disruptions. Note that when drivers have no external information, they need to make 

the re-routing decision based on current traffic conditions that they are experiencing 

and on the memory they have from previous trips.  

In this model, two conditions are proposed to allow driver to decide if they 

remain on their chosen route or they re-route. If any of these two conditions are met, 
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it can trigger the on-board decision-making process of drivers. At each intersection, 

drivers check if any of the following two conditions are met and therefore, make the 

on-board decision.  

✓ CONDITION 1: The next link is closed 

As drivers have no additional external information, they cannot know if the 

next road segment is closed or open. Therefore, if they face a road that is 

closed, they have to reroute. 

  

✓ CONDITION 2: Busy road segment and willingness to reroute 

It is assumed that drivers can observe if a road is busy or not by looking at 

the density of vehicles ahead. If the density of vehicles on that road exceeds 

a user-defined threshold, then drivers have the chance to re-route (Equation 

(7.1)). However, not all drivers are aware of the density condition or they 

might be not willing to re-route. Therefore, in order to consider this 

heterogeneity of drivers, an additional variable called patience level shows 

how patient a driver is and it indicates the probability of staying on the same 

route or changing to another one. The more patient a driver is (high patience 

value), the higher the probability of staying on the chosen route. On the 

contrary, if a driver has a low patience value then this driver will have a higher 

probability of changing to another route.   

The patience level of drivers can also be altered if they face more than 

one busy link on the same day. The tiredness of encountering congested links 

and switching routes can make drivers to stick to certain routes even if these 

are busy. In other words, drivers have a limited number of on-board decisions. 

This restriction has been imposed in order to limit those drivers who would 

otherwise switch routes all the time during congested conditions.  

    
𝑘𝑙

𝑘𝑚𝑎𝑥,𝑙
> 𝜆 (7.1) 

And 

  𝜗ℎ > [Ωℎ +
𝐽ℎ

max𝐽ℎ
∙ (1 − Ωℎ)]  (7.2) 

Where, 
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𝑙, the link number that packet ℎ of drivers wants to use. 

𝑘𝑙, number of vehicles per km on link 𝑙. 

𝑘𝑚𝑎𝑥,𝑙, maximum number of vehicles per km on link 𝑙. 

𝜆, user-defined threshold that is defined for each driver. It limits the 

maximum number of vehicles that can be on a road without triggering 

on-board decisions. It can take a value between 0 and 1. It can also 

take different values for each driver. 

𝜗ℎ, a random value for each packet ℎ of drivers. These values follow a 

uniform distribution between 0 and 1. 

Ωℎ, patience level of a packet ℎ of vehicles. It can take a value between 0 

and 1 and it is assigned to each packet of drivers following a pre-defined 

probability distribution. 

𝐽ℎ, number of disrupted links that driver ℎ has experienced on the same 

day. 

max 𝐽ℎ, user-defined maximum number of disrupted links that limits the 

number of re-routes this driver can take.  

 

The right side of the Equation (7.2) limits the willingness of a packet 

of drivers ℎ to change route. In order to know if a packet of drivers is willing 

to reroute, a random value (𝜗𝑑) is generated for each packet ℎ. If the random 

value is lower than the willingness to reroute, this packet of driver sticks to 

the same route. If the random value is higher, then drivers change route only 

if Equation (7.1) is also satisfied. Every time drivers face a disrupted road 

segment, the willingness to reroute is increased and therefore drivers are less 

likely to reroute when they face another disruption. A graphical example of 

how the willingness to reroute changes when more disrupted road segments 

are faced is included in Figure 7.2. Note that both Equations (7.1) and (7.2) 

must be satisfied to fully meet condition 2.  
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Figure 7.2. Example of how the willingness to reroute changes when more disrupted 
road segments are faced.  

 

 

7.2.2. Route choice algorithm  

This subsection describes the algorithm that is used to find alternative routes after 

facing a disruption. The algorithm works differently depending on whether the 

disrupted link is closed or busy. If the link is closed (condition 1 of previous Section 

7.2.1 is satisfied), it is assumed that a diversion route is set in place. This new route 

is obtained as the shortest travel distance between the nodes that form the disrupted 

link. In this case, drivers have to follow the diversion route until it encounters the 

original route that this driver wanted to follow. If the link is busy (condition 2 of 

previous Section 7.2.1 is satisfied), an algorithm finds a previously used route that 

avoids the disrupted link (if it is possible). A full description of the algorithm is included 

in Figure 7.3 with an example to complement the explanation. The advantage of this 

algorithm is that it allows drivers to go back to previous nodes of the original route 

and find alternative paths from these nodes avoiding the disrupted links. A list of 

alternative routes is generated and the travel time of all these routes is calculated 

based on previous travel experience. The route with minimum travel time is the one 

selected by each packet of drivers.   

Note that if the algorithm does not find an alternative route, it means that 

drivers do not know alternative routes because they have not used them in the past. 

In this case, drivers would have to choose between sticking to the original route even 
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if the link is busy or taking the risk, explore the network and find a way to reach the 

destination. In this model, if drivers do not know alternative routes, drivers are forced 

to stick to the original route. Future version of this model should include an algorithm 

that simulates how drivers take the decision between sticking on the same route or 

explore the network. The process of exploring and creating a new route without 

previous experience also needs to be implemented in future versions of the model.  
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Figure 7.3. Algorithm that finds a new route based on previous driver’s experience 
and the application to an example. 
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7.2.3. Abandon trip and return home 

The model adds the feature of allowing drivers to abandon their trip and go back to 

the origin node if some conditions are met. This important feature needs to be 

considered especially when dealing with disrupted conditions where drivers have to 

reroute. Previous RL traffic models do not incorporate this feature and in such cases, 

drivers are forced to use any of the pre-defined routes even if it takes too much time 

to get to the destination. The benefit of adding this new feature is two-fold: first, it 

reflects how drivers would act under these circumstances and secondly, it releases 

traffic from some congested areas as some drivers would abandon their trip and go 

home under extreme circumstances.  

Drivers can decide to abandon their trip if any the following conditions are 

met. Condition (1): if drivers cannot find any alternative known route to follow after 

the closure of a road segment and there is no diversion route place set in place; 

and/or Condition (2): if the expected travel time of the new route is too high. This 

second condition is mathematically expressed in Equation (7.3). It means that if the 

expected arrival time calculated for each alternative option is later than the starting 

time of the activity, drivers abandon their trip. The modeller can also add an extra 

additional late arrival value, to be more flexible and allow drivers to arrive later. 

𝐸𝐴𝑇ℎ𝑧 > 𝑆𝑇 + 𝐸𝐿 (7.3) 

Where, 

𝐸𝐴𝑇ℎ𝑧, is the arrival time that packet ℎ of drivers expects after choosing new 

travel option 𝑧. 

𝑆𝑇, is the starting time of the activity. 

𝐸𝐿, is the user-defined extra time that allows drivers to arrive later than the 

starting time of the activity. 

The expected arrival time (𝐸𝐴𝑇ℎ𝑧) is calculated in Equation (7.4) as the sum 

of the current time that is being analysed and the expected travel time of the new 

selected option. The expected travel time is calculated as a weighted average of the 

travel time of all links that form the route as shown in Equation (7.5).  

𝐸𝐴𝑇ℎ𝑧 = 𝐶𝑇 + 𝐸𝑇𝑇𝑟𝑜𝑢𝑡𝑒,ℎ (7.4) 
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Where, 

𝐶𝑇, current time that is being analysed (e.g. 8:04am). 

𝐸𝑇𝑇𝑟𝑜𝑢𝑡𝑒,ℎ, is the travel time of the new route that the packet ℎ of drivers 

expects. This can be calculated as shown in Equation (7.5). 

𝐸𝑇𝑇𝑟𝑜𝑢𝑡𝑒,ℎ =∑ 𝑒𝑡𝑡𝑙ℎ
𝑎𝑙𝑙 𝑙𝑖𝑛𝑘𝑠 𝑟𝑜𝑢𝑡𝑒

𝑙
 (7.5) 

 Where, 

𝑙, the link number. 

𝑒𝑡𝑡𝑙ℎ, travel time that packet ℎ of drivers expects from link 𝑙, which is 

calculated as shown in Equation (7.6). 

𝑒𝑡𝑡𝑙ℎ =
∑ (𝜑𝑗 ∙ 𝑡𝑡𝑙ℎ𝑗)
𝑡
𝑗=1

∑ 𝜑𝑗
𝑡
𝑗=1

 (7.6) 

Where, 

𝑡𝑡𝑙ℎ𝑗, is the travel time on link 𝑙 that packet ℎ of drivers have 

experienced on day 𝑗. If this packet of drivers has never used 

this link, the travel time considered is the free-flow travel time.  

𝜑𝑗, represents the memory level of travellers (0 < 𝜑 ≤ 1). Same 

variable explained in Section 6.4.1 of Chapter 6.  

𝑡, is the current day that is being analysed. 

 

When drivers decide to abandon their trip and return to the origin node, the 

model forces drivers to follow the same path that they have originally selected to use 

for that day but in the opposite direction. The model also assumes that they cannot 

take more on-board decisions on their way home. This tries to avoid drivers make 

unnecessary decisions when they already know they are cancelling the trip and going 

home.  

The modeller can decide whether this ‘abandon trip’ module is considered or 

not in the model. If it is not considered, then drivers cannot abandon trip and they 

are forced to stick with the original route even though it is busy.   
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7.2.4. Isolated nodes: cancelling trips 

The unexpected closure of some roads due to hazard impacts might cause the 

isolation of some nodes on the network. Drivers that do not have external information 

cannot know a priori which nodes are isolated. In these cases, drivers might be stuck 

on the network trying to find alternative paths in the model. In order to avoid this 

situation, drivers are forced to make the decision of cancelling the trip at the 

beginning of each day. Therefore, the model assumes that all drivers know if any 

node is isolated, so that they can cancel the trip if they cannot leave the origin node 

or they cannot get to the destination node.  

 

7.2.5. Impact on future decisions: updating option probabilities 

Previous sections 7.2.1 to 7.2.4 have introduced a method to allow drivers to make 

on-board decisions when no external travel information is provided. This means that 

if they face road closures or busy roads they can decide to follow an alternative route 

until they get to their destination. However, these multi-day disruptions may also 

have an impact on future travel decisions. As an example, if drivers face the same 

road closure day after day, they will be less likely to choose any route that contains 

that closed road in the following days until further notice of the road opening. This 

additional aspect is also taken into account in the improved formulation presented in 

this section. It updates the probabilities of selecting travel options for future days 

considering on-board decisions.  

The previous Section 6.6 of Chapter 6 describes the formulation that is used 

to update the drivers’ probability of selecting travel options for the next day. However, 

this formulation does not include the influence of any on-board travel decision. For 

that reason, there is a need to update the formulation in order to incorporate the 

consequences of on-board decisions.  

Following the same structure expressed in Chapter 6, the formulation used to 

update the option probabilities is included in Table 7.1. Equation (7.7) and (7.8) are 

used if the sign of the stimulus value is positive and Equation (7.9) and (7.10) if the 

sign of the stimulus value is negative. The difference compared to the previous 

formulation included in Table 6.3 is the addition of a term that reduces the probability 

of selecting those options that contain disrupted routes. As no external travel 
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information is provided, this reduction is only applied to the disruptions that a packet 

of driver faces on day 𝑡 and it impacts the probabilities of choosing travel options for 

the day 𝑡 + 1. This means that if no disrupted option is encountered on a day, then 

the probability reduction is not applied to any travel option. Mathematically, these 

terms are preceded by the binary variable 𝐹 in equations of Table 7.1, which allows 

the modeller to decide if this new feature of reducing the probability of choosing 

disrupted options is used or not. If 𝐹 = 0, the formulation of Table 7.1 is exactly the 

same as the one described in Table 6.3 of Chapter 6 and therefore this additional 

feature is not used. One of the variables that quantifies the probability reduction of 

selecting those options that contain at least a disrupted road segment is 𝑑𝑧. 

Depending on the number of consecutive days that this packet of drivers has faced 

the same disruption, the variable takes different values ranging from 0 (no reduction) 

to 1 (maximum reduction) – see Equation (7.14) after Table 7.1. It is assumed that 

drivers do not know when the disruption will be cleared up unless they face the road 

segment again and see that is open. A more detailed explanation of these additional 

terms is included after Table 7.1. Note that, from now on, the chosen option 𝑚 is the 

revised option (if packet has re-routed) and not the originally option selected by the 

packet of drivers.   

 

7.2.5.1. Positive stimulus  

As already explained in Section 6.6.1 of Chapter 6, a positive stimulus (𝑆ℎ𝑚𝑡 ≥ 0) 

means that drivers are satisfied with the selected travel decision for that day and 

therefore, they are more likely to repeat the same option the next day. The previous 

formulation [Equations (6.22) and (6.23)] increases the driver’s probability of 

selecting the chosen option again for the next day and decreases the probability of 

selecting unfavourable options. However, in order to account for the disrupted options 

due to on-board travel decisions, an updated formulation is presented in Table 7.1. A 

graphical example of the idea of how this formulation works is included in Figure 7.4. 

If stimulus is positive, the probability of selecting again the chosen option is increased 

and the probability of selecting unfavourable options or disrupted options is 

decreased. 
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Figure 7.4. Graphical example of the improved option probability updating process 
when stimulus is positive. 

 

Equation (7.7) in Table 7.1 updates the probability of choosing the option 𝑚 

for the next day (𝑝𝑚(𝑡+1)). The new value is calculated by adding to the previous 

probability (𝑝𝑚𝑡) an additional value that comes from the probabilities of the 

unfavourable options and disrupted options. If an option is favourable but it contains 

a link that is disrupted, it is considered as a disrupted option.    

Equation (7.8) in Table 7.1 updates the probability of choosing those options 

that have not been selected by the packet of drivers on day 𝑡 (𝑝𝑧(𝑡+1)). If the option 

is favourable, the probability remains the same as the previous day. If the option is 

unfavourable or it is a disrupted option, then the probability of selecting these options 

the next day is reduced. The quantity by which each option is reduced is directly 

proportional to the value of the probability of each option. This means that if an option 

has more probability of being selected than another one, the reduction will be higher 

on that option.  

 

7.2.5.2. Negative stimulus  

As described in Section 6.6.2 of Chapter 6, a negative stimulus (𝑆ℎ𝑚𝑡 < 0) means that 

drivers are not satisfied with the selected travel decision for that day and therefore, 

they are less likely to repeat the same option the next day. The previous formulation 

[Equations (6.24) and (6.25)] reduces the probability of selecting again the chosen 

option and unfavourable options for the next day and increases the probability of 

selecting favourable travel options. However, an updated formulation that is used to 

update probabilities when stimulus is negative is presented in this section. This new 
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formula considers disrupted options as unfavourable options, so that the probability 

of selecting these options is not increased.  

In this sense, a travel option 𝑧 that is not selected by the packet of drivers ℎ 

on day 𝑡 is considered unfavourable in the following cases: 

c) Driver that chooses option 𝑚 on day 𝑡 arrives earlier than the PATI and this 

alternative travel option 𝑧 that is being analysed has the same route but earlier 

departure time than option 𝑚. 

d) Driver that chooses option 𝑚 arrives later than the PATI and this alternative 

travel option 𝑧 has the same route but later departure time than option 𝑚. 

 

Figure 7.5. Graphical example of the improved option probability updating process 
when stimulus is negative. 

The graphical example shown in Figure 7.5 explains how the proposed formula 

works. The probability of selecting the chosen option, disrupted options and 

unfavourable options is decreased, whereas the probability of selecting favourable 

options is increased. The formulation for the chosen option and the rest of options is 

included in Equations (7.9) and (7.10) of the same table.  

Equation (7.9) updates the probability of choosing the option 𝑚 for the next 

day (𝑝𝑚(𝑡+1)). The new value is calculated reducing the previous probability (𝑝𝑚𝑡) a 

certain value that depends on the stimulus value of the driver.  

Equation (7.10) updates the probability of choosing those options that have 

not been selected by the packet of drivers on day 𝑡. In order to make it easier for the 

reader, a breakdown of this equation is included in Figure 7.6. The equation is divided 
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into three terms, exactly the same terms that were explained in the previous 

formulation in Chapter 6. The first one corresponds to the probability value of the 

previous day. The second and third ones are either-or terms that depend on the 

number of unfavourable options. Within the second term, additional terms are added 

compared to the previous formulation. These are the ones related to disrupted 

options. The probability of selecting favourable options is increased except those 

favourable options that are disrupted. The probability of selecting unfavourable 

options and disrupted options (even if these are favourable) is decreased. The last 

term is included just in case there are no favourable options so that all the rest of 

options are increased even if they are unfavourable or disrupted options.  

 

Figure 7.6. Breakdown of Equation (7.10) that updates the probability of selecting 

travel options that are not chosen on day t when the stimulus is negative.  
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Table 7.1. Option probability updating functions when stimulus is positive and negative. 

  Formulation Equation 

P
o
si

ti
v
e
 s

ti
m

u
lu

s 

(𝑆
ℎ
𝑚
𝑡
≥
0
) 

Chosen 
option 𝑚 

on day 𝑡 

 

𝑝𝑚(𝑡+1) = 𝑝𝑚𝑡 + (1 − 𝑝𝑚𝑡 −∑ [(1 − 𝐹 ∙ 𝛽𝑄𝑧) ∙ 𝑝𝑧𝑡 ∙ 𝛽𝑧]
𝒵

𝑧=1
) ∙ 𝑆ℎ𝑚𝑡 

 

(7.7) 

Rest of 
options 𝑧 

 

𝑝𝑧(𝑡+1) = 𝑝𝑧𝑡 − [(1 − 𝛽𝑧) + 𝛽𝑧 ∙ 𝛽𝑄𝑧 ∙ 𝐹] ∙ [
(1 − 𝛽𝑧) ∙ 𝑝𝑧𝑡 + 𝛽𝑧 ∙ 𝐹 ∙ 𝛽𝑄𝑧 ∙ 𝑑𝑧 ∙ 𝑝𝑧𝑡

∑ [(1 − 𝛽𝑧) ∙ 𝑝𝑧𝑡 + 𝛽𝑧 ∙ 𝐹 ∙ 𝛽𝑄𝑧 ∙ 𝑑𝑧 ∙ 𝑝𝑧𝑡]
𝒵
𝑧=1
𝑧≠𝑚

]

∙ [(1 − 𝑝𝑚𝑡 −∑ [(1 − 𝐹 ∙ 𝛽𝑄𝑧) ∙ 𝑝𝑧𝑡 ∙ 𝛽𝑧]
𝒵

𝑧=1
) ∙ 𝑆ℎ𝑚𝑡] 

 

 

(7.8) 

N
e
g
a
ti
v
e
 S

ti
m

u
lu

s 
 

(𝑆
ℎ
𝑚
𝑡
<
0
) 

Chosen 
option 𝑚 

on day 𝑡 

 
𝑝𝑚(𝑡+1) = 𝑝𝑚𝑡 + 𝑝𝑚𝑡 ∙ 𝑆ℎ𝑚𝑡 

 

(7.9) 

Rest of 
options 𝑧 

 
𝑝𝑧(𝑡+1) = 𝑝𝑧𝑡 + (1 − 𝛽𝑁′)

∙ [𝛽𝐹𝑧 ∙ 𝑝𝑧𝑡 ∙ 𝑆ℎ𝑚𝑡 + (1 − 𝛽𝐹𝑧)

∙ (𝐹 ∙ 𝛽𝑄𝑧 ∙ 𝑝𝑧𝑡 ∙ 𝑆ℎ𝑚𝑡 ∙ 𝑑𝑧 − (1 − 𝐹 ∙ 𝛽𝑄𝑧)

∙ [

𝑝𝑚𝑡 ∙ 𝑆ℎ𝑚𝑡 + ∑ (𝛽𝐹𝑧 ∙ 𝑝𝑧𝑡 ∙ 𝑆ℎ𝑚𝑡 + (1 − 𝛽𝐹𝑧) ∙ 𝑝𝑧𝑡 ∙ 𝑆ℎ𝑚𝑡 ∙ 𝑑𝑧 ∙ 𝐹 ∙ 𝛽𝑄𝑧)
𝒵
𝑧=1
𝑧≠𝑚

𝒵 − 1 − (∑ 𝛽𝐹𝑧
𝒵
𝑧=1
𝑧≠𝑚

+ ∑ 𝐹 ∙ 𝛽𝑄𝑧(1 − 𝛽𝐹𝑧)
𝒵
𝑧=1
𝑧≠𝑚

)
])] − 𝛽𝑁′ ∙

𝑝𝑚𝑡 ∙ 𝑆ℎ𝑚𝑡
𝒵 − 1

 

 

(7.10) 

  
 

𝑧 ∈ 𝒵,      𝑧 ≠ 𝑚 
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Where:  

𝑧, travel option that is not chosen on day 𝑡.  

𝑚, travel option that is chosen on day 𝑡 (diverted option if packet of drivers 

has rerouted).  

𝒵, total number of travel options. 

𝑝𝑚𝑡, is the probability of selecting option 𝑚 on day 𝑡. 

𝑝𝑧𝑡, is the probability of selecting another option 𝑧 on day 𝑡. 

𝑝𝑚(𝑡+1), is the new probability of selecting the travel option 𝑚 on day 𝑡 + 1.  

𝑝𝑧(𝑡+1), is the new probability of selecting the travel option 𝑧 on day 𝑡 + 1. 

𝑆ℎ𝑚𝑡, stimulus value of packet of drivers ℎ after choosing option 𝑚 on day 𝑡. 

𝛽𝑧, binary variable (0-1) that indicates whether option 𝑧 is favourable (𝛽𝑧 = 1) 

or unfavourable (𝛽𝑧 = 0) on day 𝑡 when stimulus is positive.  

𝛽𝑧 = {

   1,      𝑖𝑓  𝐴𝑇ℎ𝑚 < 𝐸𝑇ℎ   𝑎𝑛𝑑     𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 > 𝐷𝑇𝑚         
   1,      𝑖𝑓  𝐴𝑇ℎ𝑚 > 𝐿𝑇ℎ    𝑎𝑛𝑑    𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 < 𝐷𝑇𝑚          
  0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

 (7.11) 

𝑧 ∈ 𝒵,      𝑧 ≠ 𝑚 

𝑅𝑈𝑧, path/route of option 𝑧 at day 𝑡. 

𝑅𝑈𝑚, path/route of chosen option 𝑚 at day 𝑡. 

𝐷𝑇𝑧, departure time of option 𝑧 at day 𝑡. 

𝐷𝑇𝑚, departure time of chosen option 𝑚 at day 𝑡. 

𝐸𝑇ℎ, earliest limit of the preferred arrival time interval (PATI).  

𝐿𝑇ℎ, latest limit of the preferred arrival time interval (PATI).  

𝐴𝑇ℎ𝑚, arrival time of driver ℎ choosing option 𝑚. 

𝛽𝐹𝑧, binary variable (0-1) that indicates if an option 𝑧 is favourable (𝛽𝐹𝑧 = 0) 

or unfavourable (𝛽𝐹𝑧 = 1) when the stimulus is negative.  

𝛽𝐹𝑧 = {    
1,         𝑖𝑓  𝐴𝑇ℎ𝑚 < 𝐸𝑇ℎ   𝑎𝑛𝑑   𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 < 𝐷𝑇𝑚
1,        𝑖𝑓  𝐴𝑇ℎ𝑚 > 𝐿𝑇ℎ    𝑎𝑛𝑑    𝑅𝑈𝑧 = 𝑅𝑈𝑚    𝑎𝑛𝑑    𝐷𝑇𝑧 > 𝐷𝑇𝑚
0,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

 (7.12) 

𝑅𝑈𝑧, path/route of option 𝑧 at day 𝑡. 

𝑅𝑈𝑚, path/route of chosen option 𝑚 at day 𝑡. 

𝐷𝑇𝑧, departure time of option 𝑧 at day 𝑡. 
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𝐷𝑇𝑚, departure time of chosen option 𝑚 at day 𝑡. 

𝐸𝑇ℎ, earliest limit of the preferred arrival time interval (PATI).  

𝐿𝑇ℎ, latest limit of the preferred arrival time interval (PATI).  

𝐴𝑇ℎ𝑚, arrival time of driver ℎ choosing option 𝑚. 

𝐹, binary variable (0-1) that indicates the presence or absence of the new 

feature presented in this chapter that reduces the probability of selecting 

those disrupted options. It can take a value of 1 (𝐹 = 1) if the reduction 

of the probability is required or a value of 0 (𝐹 = 0) if it is not required. 

Note that if 𝐹 = 0, the formulation of Table 7.1 is exactly the same as the 

one described in Table 6.3 of Chapter 6.   

𝛽𝑄𝑧, binary variable (0-1) that takes a value of 1 (𝛽𝑄𝑧 = 1) if a packet of drivers 

ℎ is aware of the disrupted route of option 𝑧. Driver knows of this 

disrupted route because he/she has faced a disrupted link that is included 

in the route; and it takes the value of 0 (𝛽𝑄𝑧 = 0) if the packet of drivers 

does not know that this route is disrupted.  

𝛽𝑁′, binary variable (0-1) that takes the value of 1 (𝛽𝑁′ = 1) if all unselected 

options are unfavourable/disrupted, or 0 (𝛽𝑁′ = 0) otherwise. This is done 

in order to avoid having a denominator with a value less than 1. If 𝛽𝑁′ =

1, the second term of the formula cannot be computed in the formulation 

and only the third term is be calculated.  

𝛽𝑁′ = {   
1,         𝑖𝑓   𝒵 − 1 − (∑ 𝛽𝐹𝑧

𝒵

𝑧=1
𝑧≠𝑚

+∑ 𝐹 ∙ 𝛽𝑄𝑧(1 − 𝛽𝐹𝑧)
𝒵

𝑧=1
𝑧≠𝑚

) < 1 

0,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

 (7.13) 

𝑑𝑧, variable that reduces the probability of selecting those options that contain 

at least a disrupted link. This variable is represented by a function that is 

shown in Figure 7.7. It can take values between 0 (drivers does not reduce 

the probability of selecting disrupted options) and 1 (drivers avoid these 

disrupted options and reduce the probability of selecting these options to 

zero). Mathematically, it is expressed in Equation (7.14).  
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Figure 7.7. Function of the reduction variable dz 

 

𝑑𝑧 = {  

0                          𝑖𝑓    𝑐𝑡 < 𝑚𝑡1    
𝑐𝑡 − 𝑚𝑡1
𝑚𝑡2 −𝑚𝑡1

                   𝑖𝑓   𝑚𝑡1 < 𝑐𝑡 < 𝑚𝑡2

1                         𝑖𝑓   𝑐𝑡 ≥ 𝑚𝑡2     

 (7.14) 

Being, 

𝑐𝑡, the number of consecutive days that an option is disrupted. 

𝑚𝑡1, the maximum number of consecutive days that a driver can face 

a disrupted route without reducing the probability of being 

selected. This is a user-defined value. 

𝑚𝑡2, the minimum number of consecutive days that a driver can face 

a disrupted route without reducing completely to zero the 

probability of being selected. This is also a user-defined value.  

Note that the value of 𝑚𝑡1 and 𝑚𝑡2 can vary between drivers.  

It is important to mention that the equations of Table 7.1 can be reduced to simpler 

equations considered in previous chapters if some conditions are satisfied. If the new 

feature of reducing the probability of selecting disrupted options is not considered 

(𝐹 = 0), equations of Table 7.1 are the same as the equations of Table 6.3 included 

in previous Chapter 6. Additionally, if travel options are not divided into favourable 

and unfavourable (𝛽𝑁′ = 1 and 𝛽𝑧 = 0), Equations (7.7) to (7.9) are the same as the 

ones considered in the original formulation developed by Wei et al. (2014). The last 

Equation (7.10) (negative stimulus) is slightly different because the proposed model 

increases the probability of choosing the unselected favourable options by adding the 
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same quantity to these unselected options whereas the formulation of Wei et al. 

(2014) adds the quantity that is proportional to the previous probability. However, 

this has been reformulated because if all unselected options have a previous 

probability of zero, then the model proposed by Wei et al. (2014) could not increase 

the probability of these options. This problem is solved with the proposed model.  

 

7.3. Provision of external information to drivers 

The interaction between information and communication technologies (ICT) and 

human travel behaviour is an area that has received considerable attention in recent 

years (Emmerink et al., 1996; Dia, Harney and Boyle, 2001; Bekhor, Ben-Akive and 

Ramming, 2002; Koski, 2002; Parvaneh, Arentze and Timmermans, 2010; de Abreu 

e Silva, de Oña and Gasparovic, 2017; Wang, He and Leung, 2018; Jamal and Habib, 

2020). Advanced Traveller Information Systems (ATIS) and Road Traffic Information 

(RTI), key components of Intelligent Transportation Systems (ITS), are designed to 

assist drivers in making more informed travel decisions. It has the potential to reduce 

congestion, improve network performance and reduce environmental impacts. The 

additional information is likely to enable drivers to choose more efficiently among 

available routes and departure times, reducing congestion and travel times.  

As mentioned in Chapter 2 and 6, previous RL traffic models do not provide 

external travel information to drivers. The importance of advanced and on-route travel 

information is vital in a world that is becoming more and more dependent of 

technological systems. Results from RL models would be misleading if external 

information is not provided to drivers.    

The model proposed in this thesis goes a step beyond previous RL traffic 

models and introduces the possibility of adding external travel information to drivers. 

The ATIS-supplied information considered in this model can take place at two main 

instances: at the origin of the trip (pre-trip information) or on-route (GPS navigation 

or Variable Message Signs VMS). The following sections of this chapter describe more 

in detail how this new information is implemented in the model and the type of 

information that is provided. The modeller needs to define the information that is 

assigned to each packet of drivers. The model assumes that if a packet of drivers 
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receives external travel information, they rely on this information and they will follow 

it.     

 

7.4. Pre-trip information  

Pre-trip information is the travel information that is provided to drivers at origins 

before undertaking their trips. This information is disseminated through television, 

radio, computer online services, mobile phones, etc. With this information, drivers 

can make more efficient travel decisions by changing departure time, route, 

destination, or even cancel the trip. However, the current version of the model only 

allows drivers to change route and cancel the trip. This information is especially 

important when several road sections are closed to traffic and drivers need to find 

alternative routes to get to their destination. Therefore, pre-trip information can help 

drivers to reduce the risk of arriving late to the destination by avoiding road closures.     

 

7.4.1. Type of pre-trip information and implementation 

The pre-trip information that is provided in this model informs at the start of the trip 

which links are closed or partially closed. If drivers receive this information, they 

become aware of which links are closed but they do not look for information advising 

them of the best route available. Drivers assess possible routes based on their 

previous experience. The model assumes that if a link is closed, a diversion route is 

set in place avoiding that closure. If a link is partially closed, there is no diversion 

route set in place because the link is still open to traffic.      

As explained in Section 6.2 of the previous chapter, drivers have in mind a 

probability associated with the selection of each travel option on each day. If they 

receive updated information about road closures, these probabilities might be altered 

temporally. The new updated probabilities are the ones that need to be obtained in 

order to allow drivers to select a travel option on each day. Figure 7.8 shows how the 

addition of new pre-trip information is incorporated into the framework of drivers’ 

decision-making process explained in the previous Section 6.2.1 of Chapter 6. The 

following paragraphs explain the process that has been implemented in this model to 

calculate the new updated probability based on pre-trip information. 



Chapter 7   RL model: on-board decisions and external information  

 

 

234 
 

 

Figure 7.8. Addition of pre-trip information in the drivers’ decision-making process 
framework 

 

The temporal probability of choosing a travel option is expressed in Equation 

(7.15). It is calculated as a linear combination between the probability obtained from 

the mental model of each driver and the probability associated with the updated pre-

trip information. Note that a constant value (𝜉) between 0 and 1 weights the 

importance of new information versus previous travel information that is obtained 

from previous experience. The extreme value of 𝜉 = 0 indicates that drivers prefer to 

use the updated information rather than the information that they have learnt from 

previous travel experiences. If it takes a value of 𝜉 = 1 means that drivers prefer not 

to follow pre-trip information and instead they follow the information they have 

experienced from previous days. Note that the probability vector that is used to 

update the probabilities for the next day (see Figure 7.8) is the one that each driver 

has on their mental model (𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙) and not the new temporal probability vector 

(𝑝𝑧,𝑛𝑒𝑤) obtained from the addition of pre-trip information. It is important to 

emphasise that this new probability is just to choose the travel option for the day in 

question.          
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𝑝𝑧,𝑛𝑒𝑤 = 𝜉 ∙ 𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙 + (1 − 𝜉) ∙ 𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝 (7.15) 

Where: 

𝑝𝑧,𝑛𝑒𝑤, is the new probability that is obtained as a combination of the 𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙 

and the 𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝.  

𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙, is the probability that the driver has in his or her mind that comes 

from the learning-based decisions taken in other days.  

𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝, is the probability that is assigned to the options based on the pre-

trip information received.  

𝜉, user-defined value (between 0 and 1) that quantifies how the new pre-trip 

information is altering the mental probabilities of selecting travel 

options.  

 

Note that the option probability vector (𝑝𝑧,𝑚𝑒𝑛𝑡𝑎𝑙) that drivers build through 

experience in their minds is already explained in previous Chapter 6. However, the 

procedure to obtain the probability of selecting travel options associated with the new 

pre-trip information (𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝) is not described yet. The method proposed in this 

model is based on the idea that the travel option that has the minimum travel cost is 

more likely to be chosen by drivers. This means that the travel cost of all possible 

options needs to be calculated and then the model has to assign a probability that is 

inversely proportional to the travel cost. A more detailed explanation is described in 

the following steps: 

1) For each driver that receives pre-trip information, identify all possible known 

routes that this driver could choose on that day. Routes that contain roads 

that are closed should also include the diversion routes.   

2) For each possible option, calculate the expected travel cost based on the travel 

experience of previous days. The procedure is the same as the one explained 

in Section 6.4 of Chapter 6. If a link has never been used, the travel time of 

that link is assumed to be the free-flow travel time. If a link is closed, a 

diversion route will be set in place and the travel time of the whole route will 

be calculated. However, if a link is partially closed, as there is no diversion 

route set in place because drivers can still use the link, a penalty has been 
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applied to the link that is disrupted. The travel time of a disrupted link (not 

totally closed) is obtained following Equation (7.16). The undisrupted travel 

time is penalised depending on a user-defined penalty value and the remaining 

capacity of that link. The more remaining capacity the link has, the less penalty 

is applied to the link.  

𝑡𝑡𝑤𝑖𝑡ℎ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑡𝑡𝑙 ∗ (1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ (1 − 𝐶𝑅𝑙)) (7.16) 

Where,  

𝑡𝑡𝑤𝑖𝑡ℎ𝑝𝑒𝑛𝑎𝑙𝑡𝑦, is the travel time of link 𝑙 after being penalised due to 

the capacity reduction. 

𝑡𝑡𝑙, is the travel time of link 𝑙. 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦, is a user-defined value that penalises the undisrupted travel 

time of a link. It can take a value between 0 and 1. 

𝐶𝑅𝑙, is the remaining capacity of a disrupted link. It varies between 0 

and 1.  

3) Re-scale between the range of 0-1 using an inverse cross-multiplication as 

shown in Equation (7.17). The lowest travel cost value takes the highest value 

(1) and higher values of travel cost get values lower than 1.  

𝑉𝑧 =
min (𝑐𝑧) ∙ 1

𝑐𝑧
       ∀ 𝑧 (7.17) 

Where, 

𝑉𝑧 is the new value of the travel cost in the range of 0-1. 

𝑐𝑧 is the travel cost of travel option 𝑧.  

4) Obtain the probability of choosing travel options associated with the new pre-

trip information (𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝).  

𝑝𝑧,𝑝𝑟𝑒𝑡𝑟𝑖𝑝 =
𝑉𝑧
∑𝑉𝑧

 (7.18) 

 

7.5. External on-board information: GPS navigation  

GPS (Global Positioning Systems) are those systems that provide full car navigation 

with route information, providing turn-by-turn directions to drivers. These navigation 
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systems are now a common part of driving and the influence of these systems on 

drivers’ behaviour and network performance cannot be avoided. Previous reviewed 

RL traffic models do not incorporate this type of on-board information. The aim of 

this section is to go a step further and include external GPS information in the drivers’ 

decision-making process. That is the reason why this model has also included GPS 

navigation as a way of providing information about the shortest route that drivers can 

take.   

This model allows drivers to use GPS information as a (1) route planning or 

as (2) an on-route decision. The former is done before departure and provides the 

shortest travel time route at the beginning of each trip. On the contrary, the latter 

provides the shortest travel time route at each intersection so that drivers can change 

route on their way until they get to the destination.  

  

7.5.1. Shortest travel time route 

The information that GPS provides in this model is the route that has the shortest 

travel time from an origin to a destination based on current traffic conditions. When 

a driver is about to make a decision, current traffic conditions are obtained based on 

a macroscopic level. The total number of vehicles is known on all links and at all times. 

Travel time on each link can be calculated based on the BPR function (Bureau of 

Public Roads, 1964) that is shown in Equation (7.19). The Dijkstra algorithm (Dijkstra, 

1959) is used to find the shortest path between a node and a destination. Drivers 

revise their route whenever they approach an intersection and if the route is different 

from the previous one, they change routes. An alternative approach would be to 

sample the travel times on each link in the model and use this information to estimate 

the shortest path between two places.  

𝑡𝑡𝑙 = 𝑡𝑡𝑂 ∙ [1 + 𝒶 ∙ (
𝑞𝑙

𝑞𝑙𝑚𝑎𝑥
)
𝒷

] (7.19) 

Where, 

𝑡𝑡𝑂, free-flow travel time. 

𝑡𝑡𝑙, travel time of link 𝑙. 

𝑞𝑙, traffic volume on a link 𝑙. 

𝑞𝑙𝑚𝑎𝑥, capacity of the link 𝑙. 
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𝒶, BPR coefficient, often set at 0.15. 

𝒷, BPR coefficient, often set to 4. 

Note that the shortest travel time route is calculated at all intersections for all 

drivers that arrive at intersections and use GPS information. This means that on an 

urban environment where drivers find intersections very often, the computational 

time of the Dijkstra algorithm can be very high because it has to be run a lot of times. 

For instance, a driver may approach intersections every minute in an urban area. 

However, the shortest path may not change between minutes and there is no need 

to update the shortest route for all drivers at every single minute. For that reason, 

and in order to speed up the computational time of the global model, the shortest 

path algorithm is only called every fixed amount of time. This means that if the 

modeller decides to set the updating time to 3 minutes (for example) the shortest 

route will not be updated within 3 minutes even if they approach an intersection. The 

modeller is the one that decides the amount of time between updates. If the updating 

time is set to 0, it means that there is no limit of updates and the shortest route 

algorithm will be run at every intersection.  

As drivers receive real-time information about the travel time of the shortest 

route to get to their destination, the model allows drivers to cancel their trip if the 

expected arrival time is much later than the starting time of the activity. The equation 

that is used is the same Equation (7.3) described in Section 7.2.3, but with the 

difference that the expected arrival time is calculated using the information that is 

provided by the GPS.  

 

7.5.2. Updating the expected travel cost formula 

If drivers receive the shortest route from the GPS information, they know the travel 

time that is expected based on current traffic conditions. Therefore, the expected 

travel cost should also incorporate the information that the GPS provides. The 

previous formulation (Equation (6.12)) presented in Section 6.4 of Chapter 6 does not 

include any external information that driver may receive via GPS. The formulation 

presented in the following Equation (7.20) is exactly the same formulation as the 

Equation (6.12) but adding the additional terms that include the expected travel cost 

of the GPS route (shown in bold and green colour).    
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𝐴ℎ𝑡

=

{
  
 

  
 

                               0                                                          𝑖𝑓 𝑡 = 1

     
∑  [ 𝜑𝑗 ∙ (∑ 𝐵ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )] + 𝝋

𝒕
∙ 𝓰

𝒉
∙ 𝑬[𝑪𝒉𝒛𝒕]

𝑡−1
𝑗=1

∑ [𝜑𝑗 ∙ ∑ 𝐵ℎ𝑧𝑗
𝒵
𝑧=1 ]𝑡−1 

𝑗=1 + 𝝋
𝒕
∙ 𝓰

𝒉

               𝑖𝑓 ∑∑𝑠ℎ𝑧𝑗

𝒵

𝑧=1

= 0

𝑡−1

𝑗=1

    
∑  [ 𝜑𝑗 ∙ (∑ 𝐵ℎ𝑧𝑗 ∙ 𝑠ℎ𝑧𝑗 ∙ 𝐶ℎ𝑧𝑗

𝒵
𝑧=1  )] + 𝝋

𝒕
∙ 𝓰

𝒉
∙ 𝑬[𝑪𝒉𝒛𝒕]

𝑡−1
𝑗=1

∑ [𝜑𝑗 ∙ ∑ (𝐵ℎ𝑧𝑗 ∙ 𝑠ℎ𝑧𝑗)
𝒵
𝑧=1 ] + 𝝋

𝒕
∙ 𝓰

𝒉
𝑡−1 
𝑗=1

        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

(7.20

) 

Where, 

𝜑𝑡, is the memory level of travellers on day 𝑡 (0 < 𝜑𝑡 ≤ 1). 

ℊℎ, is a binary variable that takes a value of 1 if packet of drivers ℎ receives 

GPS information or 0 if packet ℎ does not receive that information.  

𝐸[𝐶ℎ𝑧𝑡], is the estimated travel cost of option 𝑧 that packet of drivers ℎ receives 

from the GPS systems on day 𝑡. It is calculated using the same expression 

of the travel cost function of Section 6.3 of Chapter 6 but considering the 

estimated travel time provided by GPS systems.  

The rest of the variables are the same as the ones described in Section 6.4 of 

Chapter 6.  

 

7.6. External on-board information: Variable Message Signs (VMS)  

Variable Message Signs (VMS) are one of the components of the Advanced Traveller 

Information System (ATIS) that are used to disseminate non-personalised real-time 

traffic information to drivers who are already travelling on the network. This model 

also incorporates this type of information and the locations of the VMS are pre-defined 

by the modeller. There can only be one VMS per link and not all links need to have 

VMS.  

Two types of information can be disseminated via VMS: (1) information used 

to manage incidents on the network and (2) general driver information. As prescribed 

in Schedule 15 of the “The Traffic Signs Regulations and General Directions order” in 

United Kingdom (HM Government, 2002), the information that can be shown on a 

VMS should contain the following information: 

▪ Problem and location of a disruptive event. 

▪ Effect (e.g. Long delays, Delay information, Travel time information). 

▪ Guidance (e.g. use M8). 
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The VMS considered in this model only displays generic information about 

closed roads, busy roads when the density of vehicles on a link is higher than a pre-

defined value (𝑘𝑙 > 𝑘𝑄,𝑉𝑀𝑆) or those roads whose capacity is lower than a certain pre-

defined value (𝑄𝑙𝑖𝑚𝑖𝑡 𝑉𝑀𝑆). These are the links that drivers will try to avoid. This is 

especially important because, in the scenario of a disruption, drivers that have no pre-

trip or GPS information can follow the information that is provided by the VMS and 

avoid the congestion caused by those disrupted links.   

The information displayed on a VMS can also make drivers decide about 

changing routes. Previous Section 7.2 proposed two conditions to trigger the 

procedure to make new on-board decisions. However, as VMS information can also 

trigger new travel decisions, this additional condition should also be taken into 

account. The procedure that selects the new route is the same as the one explained 

in Section 7.2.2. 

 

7.6.1. VMS activation: range of coverage 

Each VMS displays the information of roads that are located within a range of 

coverage. Incidents that happen out of this range are not displayed on the signs. This 

model has proposed a method that limits the range of coverage of each VMS. These 

limits are defined by two conditions and the more restrictive condition sets the limit 

of the coverage. The first condition is defined by the number of consecutive road 

segments. For example, if this is set to 2 consecutive links, all that happens within 

these links is displayed on the VMS. However, as the length of these consecutive links 

can be too short at certain locations, a second condition is added and is defined as 

the maximum length of these consecutive links. Following the previous example, if 

the length of these 2 consecutive links is below a pre-defined maximum length (e.g. 

10km), all that happens on those consecutive links whose total length is below that 

defined value is displayed on the VMS. Therefore, the range of coverage of each VMS 

is limited to a pre-defined number of consecutive links unless the sum of their length 

is less than a defined value, in which case all consecutive links included within that 

length will be displayed on the sign. In order to clarify this idea, a simple example is 

described below. It is assumed that the VMS shown in Figure 7.9 can only display 

what happens on the two consecutive links as mentioned in the first condition. The 
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second condition is defined by a pre-defined length, which in this case it is assumed 

to be 10 km for example. The sum of the length of the two consecutive links following 

the VMS is less than the pre-defined length of the second condition. This means that 

the VMS can show the information of all consecutive links located in a radius of 10 

km. If the length of the two consecutive links were higher than 10km, then the VMS 

would display only the information of these two consecutive links.       

 

Figure 7.9. Example of the range of coverage of a VMS.  

 

7.7. Illustrative example 

In this section, the post-disruption model proposed in this chapter is applied to the 

same transport network used in Chapter 6, the Sioux Falls Network (South Dakota, 

US). The aim of this example is to illustrate how the addition of external travel 

information after disruptive events can impact the performance of the whole network. 

The provision of additional information can help drivers make more informed travel 

decisions and choose those routes without disruptions. On-board drivers’ decisions 

are also allowed. In this example, no optimisation is involved and the effectiveness of 

a single repair strategy is assessed by measuring the performance of the whole 

system after repairs. Results show the evolution of total travel costs over time under 

the provision of different levels of external traffic information to drivers.  

 



Chapter 7   RL model: on-board decisions and external information  

 

 

242 
 

7.7.1. Road network, traffic demand data and disruptive scenario  

The Sioux Falls network used in this example is exactly the same network used in 

Chapter 4 and 6. It consists of 24 nodes and 76 links as shown in Figure 7.10 and 

whose characteristics are presented in Table A.1 and Table A.2 of the Appendix 1.  

Traffic demand, which is extracted from the work done by Martinez-Pastor 

(2017), considers a total number of 4840 trips per hour – see the OD matrix in Table 

A.3 in Appendix 1. In this example, it is assume a maximum set of initial routes for 

each OD pair of 2 and it is expected that drivers choose between 3 possible departure 

times (8am, 8:15am or 8:30am). For this reason, the peak period modelled in this 

example is adapted to these 3 departure times and therefore the period of demand 

that is analysed is between 8am and 8:45am. This means that the total number of 

trips is proportionally 3636 trips for that time period. A warm-up and cool-down 30-

min period are also simulated with a proportional number of trips for that amount of 

time. Vehicles are grouped into packets of 10 vehicles.  

The disruptive scenario considered in this example is the one obtained on the 

example included in Section 4.4.2 of Chapter 4. Seven bridges (B3, B4, B5, B6, B7, 

B8 and B10) have been identified as damaged. The repair strategy proposed for this 

example is the same as the one considered in Table 4.2 of Chapter 4. The simulation 

time is 55 days. The disruption occurs at day 26. The pre-disrupted state is from day 

1 to day 25. During this period, drivers are learning based on their day-to-day travel 

experience. It is assumed that after 25 days, drivers achieve an stable state which 

means that the overall travel cost is not further reduced.  
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Figure 7.10. Location of the damaged bridges on the Sioux Falls network. 

 

Regarding the external information that drivers receive, the existing literature 

does not show the type of traffic information that drivers use on the Sioux Falls 

network while travelling to their destination. Given the lack of data, it was assumed 

6 cases  representing different situations where drivers use different types of 

information. Case 1 is the first hypothetical situation when drivers do not receive any 

external travel information. Case 2 introduces pre-trip information of disrupted roads 

as shown in Section 7.4. Case 3 and Case 4 incorporate the GPS information providing 

route planning and on-route guidance respectively as shown in Section 7.5. Case 5 

shows the impact of VMS information. Finally, Case 6 combines all types of 

information. Table 7.2 summarises all these described cases. The value of the rest of 

the parameters used in this example is included in Table 7.3. These values have been 

selected at the author's judgement.  
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Table 7.2. Cases that distribute external information among drivers 

 Distribution of drivers and information 

CASE 1 100% of drivers with no external information 

CASE 2 50% of drivers with no external information 

50% of drivers with pre-trip information 

CASE 3 50% of drivers with no external information 

50% of drivers with GPS planning (before departure) 

CASE 4 50% of drivers with no external information 

50% of drivers with GPS on-route 

CASE 5 100% of drivers with no external information 

All drivers can receive information via VMS 

CASE 6 40% of drivers with no external information 

20% of drivers with pre-trip information 

20% of drivers with GPS planning (before departure) 

20% of drivers with GPS on-route 

 

Table 7.3. Values of the variables considered in this example 

Variable Value Variable Value 

# routes per OD 2 # departure times 3 

Travel cost function General 
𝜷𝟏 = 𝜷𝟐 = 𝜷𝟑 = 𝜷𝟒 1 Vehicles/packet 10 

Memory function (Section 6.4) Simulation time 55 days 

Linear function ε-greedy approach None 
𝑩𝒎𝒂𝒙 3 Pre-disruptive time 25 days 

𝒃𝟏 10min Post-disruptive time 30 days 

𝒃𝟐 30min Learning rate 0.4 

𝜽 
Uniform 

distribution [0,90] 
# of simulations  10 

Option of not travelling (Section 6.8) 

𝒚𝑹𝑪 0.8 𝑎𝑐𝑐𝑎 
Probability 

distribution of 
Figure 6.21. 

𝒕𝑹𝑪 10 min 𝑓𝑟𝑒𝑞𝑎 
Uniform distribution 

[-1,1] 

𝑼𝒔 0.8 𝑐𝑜𝑚𝑓 
Uniform distribution 

[-1,1] 
𝑼𝒇 0 days 𝑔 3 days 

𝒕𝒎𝒊𝒏(𝒇𝒓𝒆𝒒𝒂) 10 min 𝐴𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐷𝐷 1 

𝒕𝒎𝒂𝒙(𝒇𝒓𝒆𝒒𝒂) 1h 𝑯𝑯 = 𝑱𝑱 = 𝑳𝑳 0.333 

Preferred arrival time interval (PATI) (Section 6.2.2) 

Activity starting time 9am Activity WORK 

PATI 1 (time before 
activity starts) 

Between 20 and 
10 min 

Distribution of drivers 
that prefer PATI 1 

50% 

PATI 2 (time before 
activity starts) 

Between 10 and 5 
min 

Distribution of  drivers 
that prefer PATI 2 

50% 

Repair module (Chapter 4) 

Base damage (D) 10 res-day Repair teams 13 units 

Angle of productivity-
repairs graph 

45 degrees 
Saturation level 

repair teams 
5 units 

  Continuous in the next page 
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From the previous page   

On-board decisions (Section 7.2) 

Variable 𝝀  0.9 
𝛺ℎ, patience level of 

vehicles 
Uniform probability 
distribution [0,1] 

𝒎𝒂𝒙𝑱𝒉 3 links 𝐸𝐿 30 min 

𝒎𝒕𝟏 1 day 𝑚𝑡2 3 days 

External information (Section 7.3 to 7.6) 

𝝃 (Equation (7.15)) 0.2 
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (Equation 

(7.16)) 
0.5 

GPS update route 0 min - - 

VMS: number of 
consecutive roads 

2 
VMS: length of 

consecutive links  
10 km 

𝑸𝒍𝒊𝒎𝒊𝒕 𝑽𝑴𝑺 20% 𝑘𝑄,𝑉𝑀𝑆 90% 

Links with VMS: 
1, 2, 5, 6, 9, 10, 11, 12,  
31, 32, 47, 48, 61, 62 

 

   

7.7.2. Results and discussion 

7.7.2.1. Aggregated results: total travel time with external information 

This section describes the results obtained after running the model through a series 

of cases. Each case shows a different provision of travel information to users. Results 

will show the impact of the addition of external travel information on the general 

network performance. Figure 7.11 (A and B) shows the evolution of total travel time 

and total number of completed trips before and after the disruptive event. In this 

example, a completed trip means that a driver arrives to the destination. Each line 

represents the results of a particular distribution of travel information through users. 

For each case (see Table 7.2 of cases), 10 simulations have been run in order to 

consider the stochastic nature of the model. The average value of these 10 

simulations of each particular case is represented by each line of the graph. The 

model is performed on a computer with 8 GB memory and a quad-core 3.3 GHz Intel 

i5-3550 processor. Parallel computing have been used to run these 10 simulations 

and it took on average 40 min to run each pack of 10 simulations.  
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Figure 7.11. Evolution of total travel time and number of trips over time before and 
after the disruptive event. Each line shows the mean of 10 simulations. Each case 
represents a different distribution of travel information (see Table 7.2 of cases). 

Learning rate=0.4. 
  

From day 1 to day 25, there is a period of no disruption. This is the pre-

disruption stage described more in detail in Chapter 6. During this time, drivers are 

trying different travel options and storing the information (travel time, arrival time, 

etc.) after each journey. In this example, after 10 days, drivers reach a stable state 

in which they have chosen their preferred travel option and travel time is not further 

reduced as observed in Graph A. This pre-disruptive stage is only used to allow drivers 

to experience and learn from their mistakes and find the ‘best’ option for them. As it 

is observed, during this period of no disruption, the information that is provided to 
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drivers does not make a significant difference in terms of travel time and completed 

trips on the considered cases.  

The disruption occurs on day 26. There is an increase on the total travel time 

and a reduction on the number of completed trips in all considered cases. Case 1, 

Case 2 and Case 5 produce the highest increase in travel time and the highest 

reduction in the number of completed trips the day after the disruption. Case 3 and 

Case 4 also achieve a high value of travel time but less than the previous cases. Case 

6, which is a mixture of external travel information and drivers with only their previous 

travel experience, has the lowest increase in travel time after the disruption and one 

of the lowest reduction in terms of completed trips. From the 26th day to the 42nd day, 

repairs are still taking place and this is observed in high values of travel time and low 

values of completed trips. After day 42, a stable state is observed in which drivers get 

back to normal. However, as shown in Figure 7.11-A, the post-disruption total travel 

time is not the same as the pre-disruption one. The same happens with the number 

of completed trips. 

At this point, it is interesting to analyse and understand the reasons and 

mechanisms by which these results have been obtained and the limitations of the 

model application. In order to do so, the reader needs to understand how drivers 

evolve and adapt to the situation during and after disruption. When drivers receive 

information about road closures, they retain that information in their memories when 

considering how to travel on the next days which, in that case, they will use this 

information to make more informed decisions. The post-disruption stage shows that 

Case 3 and Case 4 achieves lower values of travel time (and higher values of 

completed trips) faster than other cases in which drivers who do not receive external 

information and need more time to adapt to these network changes.  

In this particular example, there is not a significant difference in travel time 

between knowing which links are closed (Case2) and not using any external 

information (Case1). The reason is due to the module that obtains the initial subset 

of routes that each driver knows. In this example, only two routes are known from 

the beginning. This module that obtains the initial subset of routes is not very 

sophisticated as described in the model limitations (Section 6.11 of Chapter 6) and 

the calculated routes may share a number of links between them. If a driver knows 
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the links that are closed and these links are located on both routes, then this driver 

cannot choose an alternative undisrupted route. In this case and due to the way that 

the model is implemented, this driver has to follow the diversion route which is exactly 

the same route as the one that the driver with no external information would follow. 

This problem disappear if the initial subset of routes does not share any links.  

As observed in Figure 7.11-A, the pre-disruption phase (from day 1 to day 25) 

shows some fluctuations in the graph while the final phase of the post disruption 

presents a smoother transition. This is because the pre-disruption phase has not been 

obtained from 10 simulations and instead only 1 simulation has been calculated. The 

reason is based on the fact that the 10 simulations of the post-disruption phase must 

have the same initial pre-disruption data in order to compare the results. That is why 

a single simulation of the pre disruption is calculated and it is used as a starting point. 

The 10 simulations of the post disruption phase are calculated based on that initial 

data. In the graph, the average of these post-disruption 10 simulations is shown and 

for that reason, a smoother transition is observed between days. 

It is also observed that the number of completed trips decreases one or two 

days after the disruptive event on day 26. The reason for this is because drivers who 

experience the first day of the disruption do not arrive at the scheduled time to 

undertake the activity and this makes drivers increase the probability of not travelling 

by car the next day. 

During the disruption phase as capacity is limited, cancelled trips are expected. 

However, as observed in Graph B of Figure 7.11, some drivers have chosen the option 

of ‘not travelling by car’ during the pre-disruption phase and in the post-disruption 

phase. The reason for this are explained in the formulation. Equation (6.32) (see 

Section 6.8 of Chapter 6) calculates the new probability of choosing the option of ‘not 

travelling by car’ using parameters that have not been calibrated/validated. This 

means that, if a driver arrives late to the activity, the new probability of choosing the 

option of not travelling by car on the following day increases, and the size of this 

increase depends on the values of selected parameters which have not been 

calibrated with real-life data. In order to demonstrate the sensitivity of the model to 

selected values of 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷 of Equation (6.32), Figure 7.12 shows the impact 

of these variables on the number of completed trips. These user-defined variables, 
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which are described in detail in Section 6.8 of Chapter 6, are used as weighting factors 

of the terms included in the calculation of the new probability of choosing the option 

of ‘not travelling by car’. The extreme values indicate that if 𝐴𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐷𝐷 =

0, the probability of choosing this non-travel option is zero for all drivers and that is 

the reason why all trips are completed during the pre-disruption stage and after the 

disruption phase., but not during the disruption phase. On the other hand, if 𝐴𝐴 =

𝐵𝐵 = 𝐶𝐶 = 𝐷𝐷 = 1, all terms that are calculated on the formula and the probability 

of choosing the option of ‘not travelling by car’ may not be zero. That is why some 

drivers choose the option of ‘not travelling by car’. Further work should include the 

calibration and validation of these parameters with real-life data.   

 
Figure 7.12. Impact of parameters (AA, BB, CC, DD) of Equation (6.32) on the 

number of completed trips. Only for case 1 (no external information). Parameters of 
Table 7.3.   

  

From a global point of view, it is interesting to know the difference between 

the types of external information provided to users based on a resilience measure. 

This is be the information that will be used in the global optimisation problem 

considered in Chapter 3. In this section, the resilience measure is calculated as the 

area under the ‘total travel time’ curve (Figure 7.11-A) and under the ‘completed trips’ 

curve (of Figure 7.11-B) from the day of the disruption. For the specific Graph A, the 

higher the value of the area, the more travel time drivers have experienced to get to 

their destination. This means that lower values of the area provides a better 

adaptation of drivers to the disrupted network and posterior repairs in terms of travel 

time. For the graph B, the higher the area under the curve is, the more trips have 

been completed. In order to study the effectiveness of providing external travel 

information to drivers, both areas have been taken into account. External information 
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is important to reduce travel time but it can also be used to alert drivers of potential 

road closures so that they can complete their trips effectively.  

Figure 7.13 shows the confrontation of the two objectives and the values 

taken by the different studied cases. As observed, drivers who have no external 

information (Case1) get a low value of the area in terms of travel time. However, the 

lack of information of those roads that are closed is translated in a reduction of the 

number of completed trips. This situation improves if the information about road 

closures is delivered to drivers (Case 2, pre-trip information in this model). In this 

case, drivers are aware of all road closures so that they can choose the undisrupted 

route. The number of completed trips increases compared to the number of 

completed trips when no information is available, although travel time increases 

slightly. When drivers also receive information about the shortest routes via GPS 

navigation (Cases 3 and 4), there is a reduction in travel time and more trips are 

completed compared to the previous cases. However, if the information about the 

location of the road closures is only provided via VMS (Case 5), the total travel time 

is not reduced compared to the previous cases but the number of completed trips is 

higher than case 1 and case 2. The reason for not observing a reduction also in terms 

of travel time is due to two possible options: 1) The number of damaged roads 

compared to the size of the network is high which means that drivers do not have a 

lot of alternative undisrupted routes to choose. 2) Probably also related to the 

previous reason, when VMS informs drivers of which roads are disrupted, drivers tend 

to choose alternative routes that avoid the critical road segments. This can be a 

counter-productive situation as disrupted routes may not be chosen by anyone and 

may be free of congestion, whereas the alternative routes, which were uncongested, 

become congested. As a result, total travel time increases. The last Case 6 

corresponds to the case that includes all types of information together. It is observed 

an improvement in terms of travel time and completed trips compared to the case 

with no provision of external information. 

The results shown in this section evidence the importance of including the 

provision external information to road users on traffic models. This information can 

help drivers make better travel decisions, especially when multiple road closures are 

produced. Although the traffic information provided by this model to road users is 
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simplified (adapted to a simple model), there is still evidence of a global improvement 

in the network performance. Therefore, the addition of the module that provides 

external information to drivers can be a significant improvement compared to the 

previous RL traffic models that did not include the dissemination of any type of 

external information.   

 

 Figure 7.13. Bi-objective graph that compares all 6 cases of information 
provision considered in the model in terms of the area under the ‘total travel time’ 
curve and ‘completed trips’ curve. Data used from Figure 7.11, from day 26th to 

55th.  

 

 

7.8. Comparison to previous methodologies and contribution  

This section compares the methodology proposed in this chapter to the ones 

presented in the literature. Table 7.4 explains how the new improvements fill the gaps 

of previous models. The contributions to the knowledge are therefore also included 

in this table.    
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Table 7.4. Comparison of the main drawbacks of previous methodologies and the 
one proposed in this Chapter 7. 

Drawbacks of previous models  Solution of the proposed model 

No on-board decisions are 

allowed. Previous RL traffic models 

(Ozbay, Datta and Kachroo, 2001; 

Wei, Ma and Jia, 2014; de Oliveira 

Ramos and Grunitzki, 2015) were not 

applied to disrupted scenarios, which 

meant that drivers did not need to 

make on-route decisions.  

 

Section 7.2.1. This model incorporates the 

novelty of adding on-board travel decisions on 

RL traffic models. This is important especially 

when disruptions occur. If a link is busy or 

closed, the model allows drivers to decide and 

change routes on their way to the destination.    

 

Section 7.2.2. The model also includes a new 

algorithm that is used to find the alternative 

routes that drivers would choose after facing a 

disruption.  

Drivers were forced to finish their 

trip. All reviewed RL traffic models did 

not allow drivers to abandon their trip 

in the middle of a journey. If drivers 

were on their way, they were forced to 

use the chosen route and arrive to the 

destination.   

 

Section 7.2.3. A new feature allows drivers to 

decide to abandon their trip and return home 

if they face a severe disruption. This feature 

can release traffic from some congested areas 

as some drivers abandon their trip and avoid 

reaching more disrupted areas.  

Option probability updating 

functions.  Previous functions only 

updated the drivers’ probability of 

choosing options for the next day. 

However, these updating schemes 

might change if disruptions occurred. 

Previous functions did not penalise any 

travel option that contained a link that 

was disrupted.   

 

Section 7.2.5. This model modifies the 

updating functions described in Chapter 6 by 

introducing additional and novel factors that 

account for the influence of any on-board 

travel decision taken by each driver. 

No external travel information 

was provided. Previous reviewed RL 

traffic models did not provide external 

travel information to drivers. 

 

Section 7.3 to 7.6. The model introduces the 

possibility of adding external travel information 

to drivers. To the best of the author’s 

knowledge, this is the first RL traffic model that 

incorporates this new feature.  
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7.9. Limitations and further work 

This section presents Table 7.5 which includes the limitations of the proposed model 

and some key areas of further research.   

 

Table 7.5. Limitations and areas of improvement of post-disruption model proposed 
in this Chapter 7.  

Limitation  Areas of improvement 

Lack of data to calibrate/validate 

results. It has not been found a previous 

study that indicates a percentage of drivers 

that uses on a daily basis pre-trip and/or on-

board information on particular areas. Without 

this information, the alternative option is to 

estimate an approximate distribution of 

information between drivers. Results from the 

current model should be analysed, taking into 

consideration this assumption.     

 

Future work should study how many 

drivers use pre-trip information or on-

board information on their day-to-day 

journeys on specific areas.     

Drivers’ usage of information. This 

proposed model assigns a certain external 

information to drivers and it assumes that they 

follow the information every day. However, if 

drivers achieve a repetitive behaviour, they 

may ignore (or do not plug in) the information 

provided through radio or GPS. If they face a 

disruption, they will turn on the devices to 

follow instructions. This means that drivers do 

not necessarily follow the information every 

day.   

 

A dynamic usage of the information is 

proposed as a future improvement of the 

model. It implies the introduction of a 

new term ‘habit’ and the conditions that 

are required to become a habit. If 

conditions are met, drivers may ignore 

information such as the shortest route 

and follow the route that they have 

chosen on their every day basis.    

 

 

 

 

Continuous in the next page 
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From the previous page   

Limitation  Areas of improvement 

Diversion routes. The method proposed in 

Section 7.4, which obtains the probability of 

choosing a travel option after receiving pre-

trip information, assumes that drivers know 

the diversion route set in place for each road 

closure. In reality, this is not known until 

drivers reach the location of the closure 

(unless they search more information on the 

media).   

Also, in this model, diversion routes are 

automatically obtained as the shortest path 

between the initial node and the final node of 

the closed link. In reality the modeller should 

decide the path of the diversion route. 

 

Further work needs to be done in order 

to avoid the assumption that all drivers 

know the diversion route set in place 

even before reaching the closure. 

 

It is also proposed a modification of part 

of the code so that it allows the modeller 

to set manually a diversion route.    

Information provided by the VMS. The 

current model only provides generic 

information about the roads that are closed. 

However, in reality, VMS are also designed to 

provide alternative undisrupted routes to 

drivers.   

 

An improvement of the information that 

is provided by the VMS is proposed for 

future versions of the model. It should 

also include alternative route suggestions 

so that drivers can decide whether they 

prefer to choose the suggested route or 

follow the original path. This can also be 

used by traffic controllers to improve the 

network performance by suggesting 

alternative diversion routes.  

Information provided by the GPS 

navigation. The model only provides the 

shortest route between the origin and 

destination nodes.  

 

Future versions of the model should also 

incorporate other types of routes, such as 

longer routes that avoid congested areas, 

and analyse the impact of them on the 

network performance. Smartphone apps 

could also boost the usage of these 

routes by offering vouchers or points to 

those drivers who are willing to use these 

alternative paths.   

  Continuous in the next page 
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From the previous page   

Limitation  Areas of improvement 

Unknown routes. The current model does 

not allow drivers to explore the network in 

order to find new unknown routes. In this 

model, drivers can only follow known routes, 

diversion routes or new routes that are 

provided by new external information.  

 

A method to improve the current route 

choice algorithm (Section 7.2.2) by 

allowing also drivers to explore the 

network and find new routes. In this case 

they need to decide if they want to take 

the risk and explore the network or they 

prefer to use their known routes. An 

algorithm that simulates how drivers 

explore the network should also be 

implemented.   

Acquire knowledge from past disruptive 

events. During the pre-disruption phase, 

drivers are acquiring knowledge about the 

network in a scenario without disruptions. 

However, drivers should also learn from 

disruptive events and find possible alternative 

routes before facing a real disruptive event in 

the simulation. If they do not practice and 

learn from other hypothetical disruptive 

events, they may not be fully prepared and 

their reaction may be inefficient.  

 

Future applications of the model should 

include disruptive events during the 

learning phase, before the real disruptive 

event happens. This allow drivers to 

remember these previous disruptive 

events and the routes they took to 

overcome these past situations.   

 

 

7.10. Conclusions 

The content of this chapter answers the following research questions: RQ11 “How 

can the on-board drivers’ decision-making process be modelled and implemented on 

the traffic simulator?”. RQ12 “How can the consequences of an on-board decision 

after a disruptive event impact future travel decisions and how can it be implemented 

on a RL traffic model?” Or, in other words, “how can the functions that update the 

option probabilities of the RL traffic model be reformulated in order to incorporate the 

consequences of on-board travel decisions?”. RQ13 “To what extent does providing 

information (pre-trip information, GPS navigation, Variable Message Signs, etc.) to 

drivers improve the recovery of transport networks?”. 
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This chapter presents some improvements to the previous version of the RL 

traffic model (included in Chapter 6). This updated model goes a step beyond previous 

RL models and introduces the possibility of making on-board travel decisions and also 

adds the provision of external travel information to drivers. A framework that 

simulates the on-board decisions that drivers make when they face a disrupted road 

segment is developed. A new route choice algorithm is also implemented in order to 

find alternative undisrupted routes when drivers decide to re-route. Probability 

functions are also reformulated in order to consider the impact of on-board travel 

decisions. External travel information, pre-trip (radio) and on-route (GPS and VMS) 

are also incorporated for the first time into a RL traffic model. A new method that 

updates the option probability vector of each driver due to the provision of pre-trip 

information is also implemented. It is also included a procedure that calculates the 

probability of choosing travel options associated with the pre-trip information.        

The updated model is applied to the Sioux Falls transport network (South 

Dakota, US), illustrating the concepts introduced in this chapter. Six cases that 

represent different distributions of external travel information that are provided to 

drivers are considered. In order to be able to compare the different cases, the results 

of the model are analysed based on two performance indicators: total travel time and 

number of completed trips. Results evidence the importance of including the provision 

of external information to road users. The information can help drivers make better 

travel decisions, especially when multiple road closures exist. A global improvement 

on the network performance is observed when information is provided. There is a 

noticeable benefit of including external information compared to previous RL traffic 

models that did not include this information. Among the benefits, a reduction in total 

travel time and an increase in the total number of completed trips after disruptive 

events. Limitations and potential improvements, which are included at the end of the 

chapter, highlight the importance of continue researching and improving current RL 

traffic models with the aim of bringing current results a step closer to reality.   
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CHAPTER 8 

8.  Application of the road recovery 

model to a disrupted network in the 

north of Scotland 

 

 

 

8.1. Introduction 

To demonstrate the applicability of the methodologies presented in this thesis, the 

proposed road recovery model was applied to a real network. In particular, a portion 

of the Scottish road network was considered. The selected region is located in the 

North of the county and it has been chosen as a case study due to the peculiarities 

of the network and the area: its susceptibility to landslide activity (Postance et al., 

2017) and its sparse network makes this region ideal to be considered as the 

application of the recovery model. The impact of hazardous events (especially 

landslides in this area) on the road network may produce the closure of some routes, 

which may isolate some remote areas of Scotland and communities may have limited 

alternative transport routes available. Congestion or closures may lead to increases 

in business costs, as drivers have to find other routes (if available) and spend more 

time travelling. According to a research commissioned by Highlands and Islands 

Enterprise (HIE) about the transport connectivity and economy of the Scottish 

regions, road closures produce longer journey times, additional delays, costs for 

businesses, impact on the tourist market as fewer people are willing to travel with 

disruptions, among other consequences (Ekosgen, 2016). Climate change models for 

Scotland predict an increase in the intensity of heavy rainfall events in summer and 

winter. Also overall summers are projected to become drier and winters wetter (UK 

Met Office, 2018). This means that the risk of landslides and flooding is likely to 

increase in the future. The model presented in this thesis can help transport 
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authorities and operators to find a list of repair strategies that leads to a (near-) 

optimal recovery of disrupted road networks.  

Previous recovery models have been applied to real networks as is shown in 

the list of networks presented in Table A.4 of Appendix 4. However, to the best of the 

author’s knowledge, the use of a reinforcement learning approach to simulate drivers’ 

behaviour on a recovery model has never been applied to real networks. The 

application of the model that is described in this chapter presents a real challenge 

from a computational and technical point of view as a large number of road segments 

and individual drivers’ travel decisions are simulated.  

The rest of the chapter is organised as follows. Section 8.2 presents the 

formulation of the problem and describes a summary of the methodology used to find 

the optimal repair strategies. Section 8.3 and 8.4 explain a detailed description of the 

road network and travel demand. Section 8.5 generates the landslide damage 

scenario. Section 8.6 indicates the level of external information that is provided to 

each driver. Section 8.7 summarises the variables involved in the model and Section 

8.8 justifies the number of simulations that the model is run. Finally, section 8.9 

presents the results of the model and Section 8.10 and 8.11 describes some 

limitations, future work and conclusions. 

 

8.2. Problem formulation and methodology 

The aim of this chapter is to apply the proposed model to a damaged Scottish road 

network and find the optimal (or near-optimal) repair strategies that maximise the 

performance of the system. Two objective functions were applied in this model (see 

Section 3.4 of Chapter 3): total travel cost and network connectivity. Total travel cost 

was measured as the sum of the time that each driver spent to get to their destination 

including the penalties for early/late arrivals as described in Section 6.3. This metric 

includes the total travel costs of all vehicles that departed during the peak period 

8:00-9:00am, excluding those vehicles that decided to return home in the middle of 

a trip. These excluded vehicles were counted under the connectivity metric. The 

network connectivity metric that was used in this case study only considered the 

demand side of the formulation proposed in Equation (3.17). The reason for not 
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including the supply side of the formula was due to the high computational time that 

was required to check if each node pair of the network was connected. Therefore, 

network connectivity metric quantified the fraction of demand that was satisfied, 

which means those vehicles that successfully arrived at their destination.   

The repair strategy (decision vector) that the optimisation model needs to find 

is the same as the one included in Equation (3.2) of Section 3.3.2 of Chapter 3. As a 

reminder, the repair strategy was defined as a combination of two main decisions: 

the identification of a priority order of repairs and the allocation of repair resources 

to damaged locations. The multi-objective optimisation algorithm that was used in 

this model was the Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al., 

2000), which was already presented in Section 3.5 of Chapter 3. 

The proposed methodology is included in Figure 8.1. It divides the model into 

5 parts: preliminary data, pre-disruption phase, damage scenario simulation, post-

disruption phase and optimisation model. Each part was run in a sequential order, 

meaning that one section could not be run before another section because it needed 

the outputs of the previous one to start the simulation.  

The first part dealt with the input data of the model. On the supply side, 

physical characteristics of the model included the location of nodes and links, link 

capacity and free-flow speed, type of road segment and length. On the demand side, 

travel demand data obtained from the National Trip End Model (NTEM) was used. 

Further details are below.   

All this information was sent to the next part which was the calculation of the 

pre-disruption database. In this section, there was no disruption yet and drivers were 

trying travel options in order to find and select their option with minimum travel cost. 

In this sense, drivers were learning based on their travel experience. In this model, 

this process lasted from Day 1 to Day 27 of the simulation. Due to the stochastic 

nature of the RL traffic model, several simulations of the pre-disruption stage were 

obtained and the closest to the average behaviour of these was selected. This was 

considered as the common drivers’ behaviour during the pre-disruption stage of all 

future repair strategies. Therefore, all repair strategies shared the same drivers’ pre-
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disruption behaviour, so that it did not interference on the effectiveness of each repair 

strategy.  

After that, damage was simulated on the Scottish road network. Based on the 

methodology proposed in Chapter 4, several road segments were identified as 

damaged on Day 28. Minor, moderate, severe and collapse states were also assigned 

to these damaged road segments based on pre-defined probability distributions. 

Damage was defined in this model as a reduction of road capacity. Therefore, the 

information that was provided to the next part of the sub-model was a capacity-

reduced damaged network. 
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Figure 8.1. Methodology of the proposed recovery model applied to the Scottish 
case. 
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The next part entailed the post-disruption phase in which the effectiveness of 

repair strategies were obtained after running the model for 20 simulated days. 

Initially, a population of 20 repair strategies was generated. For each strategy, a 

resource allocation plan and a capacity recovery schedule was generated from the 

infrastructure repair model (see Section 4.3 of Chapter 4). The impact of these road 

changes on drivers’ behaviour was simulated using the improved RL traffic model 

(Chapter 6 and 7) and the movement of vehicles through the network was simulated 

using the proposed mesoscopic traffic simulator (Chapter 5). Then, the performance 

of the network after 20 days was analysed and resilience values were obtained for 

both objective functions. The process was repeated for each repair strategy 

considered in the population of repair strategies.  

After evaluating all repair strategies, the next part included the optimisation 

model. All repair strategies were ranked from best option to worst option as described 

in Section 3.5 of Chapter 3. A new generation of repair strategies (new population) 

was obtained using the mechanisms (elitism, crossover, mutation) provided by the 

NSGA-II. The process of evaluation of the post-disruption phase of the new 

generation was repeated. This loop terminated when a stopping criteria was reached 

so that no further generation of repair strategies was carried out and therefore, the 

(near-) optimal Pareto front of solutions was provided. In this case, the stopping 

criteria was reached if: (1) a certain number of generations were run (in this case the 

limit is 60 which was set due to computational reasons), or (2) the difference between 

the Pareto front of solutions of one generation and the following was not improved. 

The following sections explain more in detail some of these steps that have been 

briefly described here.  

 

8.3. Supply side: network description 

The Scottish road network was modelled as a graph where intersections were 

represented by 396 nodes and roads by 978 links. The network topology and 

attributes were obtained from Ordnance Survey (OS) data (Ordnance Survey, 2019). 

The GIS file from OS data contained information about the characteristics (e.g. length, 

width, road class, etc.) of all Scottish roads. Only motorways, A roads and B roads 

were considered in this network. The capacity of each road was estimated based on 
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the methods proposed by the Design Manual for Roads and Bridges (DMRB) for urban 

roads DMRB TA 79/99 (Highways Agency, 1999) and for rural roads DMRB 46/97 

(Highways Agency, 1997). The procedure that was followed to calculate road 

capacities is included in Appendix 5. The desired speed of each road is also included 

in Appendix 5. Figure 8.2 shows the considered road network.  

 

Figure 8.2. Area of study including the road network. Contains OS data © Crown 
copyright and database right 2020. Ordnance Survey (Educational Service Provider 

Licence Number 100025252).  

 

There are some nodes that are more important than others because they 

provide Health and Social Care Services, ferry services, airport services, etc. Appendix 

3 includes the maps of some of these services: the location of the NHS Highland 

hospitals (Figure A.6), location of ferry services (Figure A.7) and location of main 

airports (Figure A.8). According to Equation (3.17), the connectivity metric considered 

in this model can give higher importance to certain destination nodes. In this case, 

only those nodes that located hospitals and airports acquired higher importance.  

The external information provided by the Variable Message Signs were also 

considered in this model. The locations of these VMS are included in the map of Figure 

A.9 in Appendix 3.  
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8.4. Travel demand 

This section describes the process of estimating travel demand between the defined 

zones in Scotland. The output of this section is an estimation of the origin-destination 

matrix which indicates the number of trips between each pair of zones.   

 

8.4.1. Estimation of the origin-destination (OD) matrix 

8.4.1.1. NTEM Trip generation and zone characterisation 

The trip generation process calculated the number of trips produced from or attracted 

to a zone, based on socio-economic characteristics of that zone. The number of trip 

productions and attractions were obtained from the National Trip End Model (NTEM) 

accessed through TEMPRO (Department for Transport, 2017).  

NTEM divided Scotland into 499 zones (National Records of Scotland, 2011). 

The study area was formed from 24 NTEM zones located in the North of Scotland; 

the remainder of Scotland was divided into 4 external zones as follows: Zone 1: Argyll 

and Bute; Zone 2: Aberdeen(shire); Zone 3: South Scotland; and Zone 4: West 

Aberdeenshire/South Moray, based on aggregations of NTEM zones. Western Isles, 

Orkney and Shetland were excluded from model. Each trip departed/arrived from/to 

a geometric centroid of each zone, which represented the ‘centre of activity’. A 

graphical representation of these centroids is included in Figure 8.3. These centroids 

were connected to the transport network through centroid connectors, which 

represented local roads with infinite capacity. It was assumed that vehicles travelled 

at a speed of 32km/h on centroid connectors and the time that drivers spent travelling 

on them was also computed on the travel cost formulation [Equation (6.4)]. Only one 

centroid connector per zone was used and this was obtained connecting the centroid 

to the nearest node of the road network.    

The number of trips that the NTEM provided (produced and attracted at each 

zone) were for the AM period (7:00 – 10:00 am weekday). The base year considered 

for the extraction of trips from TEMPro software was 2019. Only cars were considered 

and buses or HGVs were excluded from the study. Six purpose-based categories of 

trips were considered: work, employers business, education, shopping, personal 

business and others (that include recreational/social purposes).  
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Figure 8.3. NTEM distribution of zones. The initial distribution of 24 internal zones in 
the Highland zone and 4 external zones and their corresponding centroids. Contains 
OS data © Crown copyright and database right 2020. Ordnance Survey (Educational 

Service Provider Licence Number 100025252). 

 

8.4.1.2. Trip distribution: Gravity model 

In order to obtain the distribution of trips between zones, a gravity distribution model 

(Ortuzar and Willumsen, 2011) was applied to the NTEM data using the commercial 

transport planning software TransCAD (Caliper Corporation, 2008). The aim of using 

a trip distribution model was to obtain an Origin-Destination matrix, which indicated 

the number of trips going from each origin to each destination. The gravity model 

assumed that the number of trips produced at an origin and attracted to a destination 

were directly proportional to the total trip productions at the origin and the total trip 

attractions at the destinations and inversely proportional to the travel cost between 

the origin and destination. The output from this distribution model was the morning 

peak period Origin-Destination Matrix (7:00 – 10:00 am hours).  

𝑂𝐷𝑖𝑗 =∝ 𝑂𝑃𝑖   𝐷𝐴𝑗   𝑓(𝑐𝑖𝑗) 
(8.1) 

Where, 

𝑂𝐷𝑖𝑗, is the trips produced in an origin zone 𝑖 and destination zone 𝑗. 
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∝, is the proportionality factor. 

𝑂𝑃𝑖, are the total trip production at zone 𝑖. 

𝐷𝐴𝑗, are the total trip attraction at zone 𝑗. 

𝑓(𝑐𝑖𝑗), is the deterrence (travel cost) function between any pair of zones 𝑖 and 

𝑗. The deterrence function considered in this model is the one included in 

Equation (8.2).  

𝑓(𝑐𝑖𝑗) = 𝑒
−𝜏∙𝑡𝑡𝑂 (8.2) 

Where,  

𝜏, is the travel deterrence parameters obtained from the Guidance on 

Accessibility Planning in Local Transport Plans, Technical Annex 6 

(Department for Transport, no date). It depends on trip purposes 

(Work 𝜏 = 0.036; Employers business 𝜏 = 0.013; Education 𝜏 =

0.042; Shopping 𝜏 = 0.085; Personal Business 𝜏 = 0.042; Others 𝜏 =

0.030). 

𝑡𝑡𝑂, is the free-flow travel time. 

 

8.4.1.3. OD matrix disaggregation 

The NTEM provided a low resolution zoning system, as observed in previous Figure 

8.3. Some zones covered very large areas and therefore the assumption that the 

centre of activities were located in the centroid of each zone was not valid. This could 

lead to an inaccurate simulation that was a poor representation of reality. Thus it was 

decided to improve the resolution of the model by disaggregating NTEM internal zones 

into smaller zones based on Datazone geography. The process of matrix 

disaggregation was done using a built-in function in TransCAD (Caliper Corporation, 

2008). Origin trips of NTEM zones were assigned to the smaller zones assuming that 

they were proportional to the residential population at datazone level. Likewise, for 

the internal zone destination disaggregation, the destination trips of NTEM zones were 

assigned to the smaller zones assuming that they were proportional to the 

employment at the datazone level. It is expressed mathematically as shown in 

Equation (8.3). The data used to undertake the disaggregation was extracted from 

the Scotland’s Census 2011 (Scottish Government, 2011), code DT604SCdz, and all 
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people aged 16 to 74 in employment were included in the analysis. Additionally, a 

manual screening was done in order to cluster Datazone centroids that were located 

in close proximity to one another. Only one selected centroid represented all 

datazones in the cluster. This clustering process benefited the model by speeding up 

the computational time required to run the model (fewer OD pairs were modelled). 

The resulting group of centroids considered in the model and the comparison to the 

previous centroids of the NTEM zone level is included in Figure 8.4.      

𝑇𝑅𝐷𝑍𝑖 = 𝑇𝑅𝑁𝑇𝐸𝑀  ∙ 𝒻 (8.3) 

Where, 

𝑇𝑅𝐷𝑍𝑖, is the number of trips that were assigned to the smaller zone 𝑖 

(datazone level). 

𝑇𝑅𝑁𝑇𝐸𝑀, are the aggregated number of trips on the NTEM zone level. 

𝒻, is the factor that converts aggregated trips to disaggregated trips. It is 

calculated using the following equation:  

𝒻 =

{
 

 

 

𝑅𝑆𝐷𝑍
𝑇𝑃𝑁𝑇𝐸𝑀

,           𝑓𝑜𝑟 𝑜𝑟𝑖𝑔𝑖𝑛 𝑑𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛   

      
𝐸𝑃𝐷𝑍
𝐸𝑃𝑁𝑇𝐸𝑀

,             𝑓𝑜𝑟 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛

 (8.4) 

Where,  

𝑅𝑆𝐷𝑍, is the residential population at datazone level. 

𝑇𝑃𝑁𝑇𝐸𝑀, is the aggregated residential population at NTEM zone level. 

𝐸𝑃𝐷𝑍, is the employment at datazone level. 

𝐸𝑃𝑁𝑇𝐸𝑀, is the aggregated employment at NTEM zone level. 
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Figure 8.4. On the left, the initial distribution of 28 OD nodes (centroids). On the 
right, the final distribution of 113 OD nodes after matrix disaggregation. Contains 

OS data © Crown copyright and database right 2020. Ordnance Survey (Educational 
Service Provider Licence Number 100025252). 

 

8.4.1.4. OD matrix transformations 

The OD Trip Matrix obtained applied to the time period 7:00 – 10:00 am. However, 

the study period considered in this model was an hourly peak period (8:00 – 9:00 am 

weekday) which meant that the three-hour period had to be transformed into a hourly 

period. The following Equation (8.5) was used to reduce the number of trips to the 

hourly period. The 𝑃𝐹 is the peak 3-hour factor that was used to consider a non-

uniform distribution within the 3 hour period, representing the busiest hour of the 3 

hour period. The number of trips were rounded to the nearest whole number after 

applying Equation (8.5). A warm-up period (from 7:30 to 8:00 am) and cool-down 

period (from 9:00 to 9:30 am) were also considered in order to avoid having an empty 

network (without vehicles) at the beginning/end of the simulation.   

𝑡𝑖𝑗 =
𝑇𝑖𝑗

3 × 𝑃𝐹
 (8.5) 

Where, 
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𝑡𝑖𝑗, is the hourly demand between zones 𝑖 and 𝑗 (veh/h). 

𝑇𝑖𝑗, is the total demand between zones 𝑖 and 𝑗 in period 7:00-10:00am hours. 

𝑃𝐹, is the peak 3-hour factor. It was assumed to be 0.85. 

 

After the reduction to the hourly period, the following trips were excluded 

from the analysis: (1) Trips between external zones were omitted; (2) Trips within 

the same zone (internal trips) were excluded; (3) If the number of trips between an 

OD pair after the reduction to the hourly period was less than 1, these trips were 

omitted. 

 

8.4.1.5. Final OD results   

A total number of 15741 trips were considered for the hourly period 8:00 – 9:00am 

in the final OD matrix. Trips were grouped into 113 OD pairs. Figure 8.5 shows the 

final distribution of centroids and the trips that were produced/attracted at each zone. 

Drivers were allowed to choose between two departure times: at 8:00am or at 8:30 

am.    

 
Figure 8.5. On the left, the number of trips that are attracted at each zone. On the 

right, the number of trips that are produced at each zone. Contains OS data © 
Crown copyright and database right 2020. Ordnance Survey (Educational Service 

Provider Licence Number 100025252). 
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Figure 8.6. Map of Scotland showing the considered road network, centroids of 
datazones and external zones. Contains OS data © Crown copyright and database 

right 2020. Ordnance Survey (Educational Service Provider Licence Number 
100025252). 



Chapter 8                  Application to the Scottish Road Network 

 

 

271 
 

8.4.2. OD data analysis and modelling implications 

8.4.2.1. Number of vehicles per packet 

In order to speed up the simulation process, vehicles that departed at the same time 

from the same origin and arrived at the same destination were grouped into packets. 

The simulation time grows exponentially with the number of packets. The drawback 

of grouping vehicles was the following: the more vehicles per packet, the less 

individual travel decisions were simulated, which meant that less level of detail was 

modelled. 

The question that raised was: What was the optimal number of vehicles that 

could be grouped into packets in order to get a maximum computational time 

reduction while keeping a reasonable resolution of the model? A distribution of the 

number of vehicles that contained each OD pair is shown in Figure 8.7, graph on the 

left. It shows that more than 44% of all OD pairs contained fewer than 5 vehicles 

travelling between each pair. This meant that having more than 5 vehicles per packets 

would not get any reduction in the number of simulated packets on those OD pairs. 

If this idea was extrapolated to all OD pairs, the graph on the right of Figure 8.7 was 

obtained and it showed the number of vehicles per packets and the total number of 

packets that the model had to simulate. If only 1 vehicle per packet was considered, 

the model needed to simulate the total number of 15741 vehicles. The more vehicles 

added to each packet, the fewer number of packets were simulated. However, the 

reduction in the number of packets was negligible when the number of vehicles per 

packet was higher than 25 or 30. For this particular case study, the selected number 

of vehicles per packet was set to 25. If there were fewer than 25 vehicles in an OD 

pair, then the packet size would contain the corresponding number of vehicles.   
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Figure 8.7. On the left, the distribution of the number of vehicles on each OD pair. 
On the right, the number of packet that the model needs to run depending on the 

number of vehicles per packet considered. 

 

 

8.4.2.1. Activity starting time  

Travel demand described in the previous Section 8.4.1 could include any trip around 

Scotland. Travel distance between OD pairs might vary from just a few kms to 

hundreds of them as observed in Figure 8.8. This meant that travel time could range 

from minutes to hours. If the earliest departure time of vehicles was at 8:00am (see 

Section 8.4.1.5) and the travel time of some vehicles was in the order of hours, it 

would not be appropriate to consider only one activity starting time (at 9:00am) for 

all OD trips. Therefore, the model considered 4 different activity starting times 

(9:00am, 10:00am, 11:00am and 12:00noon) so that it could be assigned to drivers 

depending on the distance they had to their destination (OD pair). The expected travel 

time was obtained assuming a constant average travel speed of 70km/h and the 

shortest path to all destinations was obtained. If the travel distance of an OD pair 

was less than 70km, the activity starting time would be at 9am. If the distance was 

between 70km and 140km, the starting time would be at 10am. If the distance was 

between 140km and 210km, the starting time would be at 11am. And if it was further 

than 210km, the starting time would be at 12noon. Note that the model was run until 

the last vehicle arrived to its destination.    
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Figure 8.8. Distribution of trips in terms of travel distance (considering the shortest 
path to their destination). 

 

 

8.5. Disruption scenario. Landslide-damaged roads 

The aim of this section is to create a damage scenario that simulates damage caused 

to multiple road segments as a result of a severe weather event. The potential 

scenario considered in this case study focused on the impact of a series of landslides 

that occurred in different areas of the study network. A large part of the UK’s strategic 

transport network is located in places considered highly susceptible to landslides 

(Postance, 2017). The impact of landslides affecting the road network in the north of 

Scotland can be significant as the number of alternative roads that drivers can choose, 

avoiding the damaged roads, is limited at certain locations. These problems can get 

worse as climate change models for Scotland predict an increase in precipitation in 

winter (UK Met Office, 2018), which means that more landslides and floods are likely 

to occur in the future.  
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Figure 8.9. Susceptible road segments on the major Scottish road network. Map 
extracted from the work done by Postance (2017). 

 

 

Figure 8.10. Number of road segments classified according to their susceptibility 
level.  Information extracted from the map of Figure 8.9. 

 

The framework presented in Chapter 4 was used to generate the damage 

scenario. A road segment susceptibility map (Figure 8.9) was extracted from the work 
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done by Postance (2017). The map was obtained from the intersection of a landslide 

susceptibility map, which identified areas predisposed to landslides, and the Scottish 

major road network. It showed which road segments were more susceptible to be 

damaged by landslides. The susceptibility was represented by four categorical classes: 

not susceptible, low susceptibility, medium susceptibility and high susceptibility. As 

no more data was available, the damage probability associated with each level of 

susceptibility of each road segment was defined by the modeller. As described in 

Chapter 4, the level of susceptibility might indicate the likelihood that a road segment 

was affected by this hazard. This meant that if an area was highly susceptible to a 

certain hazard, road segments that were located in that area would be more likely to 

be affected by this hazard. Therefore, the probability of being damaged was higher. 

Based on this idea, Figure 8.11 shows the damage probability associated with each 

susceptibility level considered in this model. Initially, these values were assumed by 

the author, but if further data were available, these limits could change. These 

probability values indicated that, for a large enough sample, the X% (value of the 

vertical axis in Figure 8.11) of those road segments of the corresponding susceptibility 

level were considered as damaged. Note that the susceptibility level assigned to 

centroid connectors was zero.   

 

Figure 8.11. ‘Hazard susceptibility vs. damage probability’ graph. It shows the 
probability limits assumed for this example. 

 

Based on the stochastic method presented in Equations (4.1), (4.2) and (4.3) 

of Chapter 4, several road segments were identified as damaged and a categorical 
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damage state was assigned. The process of selecting which road segments were 

damaged was as follows: (1) Generate a random value for each road segment 

following a uniform probability distribution; (2) Depending on the susceptibility level 

of each road segment and considering a user-defined damage probability, it was 

classified as damaged road segment (if the random value was above the probability 

associated) or undamaged road segment (if the random value was below the 

probability associated with that susceptibility level). This model assumed that if a road 

segment was damaged, the probability of having a minor, moderate, extreme or 

complete damage was selected according to a uniform distribution.  

A total number of 8 bidirectional road segments (16 in total) were considered 

as damaged: DL1, DL2, DL3, DL4, DL5, DL6, DL7 and DL8. The following damage 

value function, which was described in Chapter 4 and included in Table 8.1, converted 

the categorical damage state to a numerical value of that damage. For simplicity, a 

linear function was assumed in this case study although in the real world it might be 

closer to a non-linear function in which the damage value of ‘complete damage’ would 

be higher than 4 times the minor damage. The location of these damaged road 

segments is included in Figure 8.12. It was assumed that damage was produced on 

day 28 of the simulation.  

 

Table 8.1. Disruption scenario: affected links, damage state, quantification and road 
capacity 

Road 
segments2 

Damage state 
Damage value 

(res-day) 

Post-disruption 
road capacity (% 
original capacity)1 

Minimum repair 
teams to start 

repairs 

Rest No damage 0*D 100% - 

DL3, DL6 Minor damage 1*D 50% 1 

DL5 Moderate damage 2*D 0% 1 

DL2, DL4, 

DL7  
Severe damage 3*D 0% 

2 

DL1, DL8 Complete damage 4*D 0% 3 

Being base damage D = 10 res-day for this particular example 
1 Reference: Padgett and DesRoches (2007) 

2 One-way road segment 
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Figure 8.12. Location of the damaged road segments considered in this model 
application. Contains OS data © Crown copyright and database right 2020. 

Ordnance Survey (Educational Service Provider Licence Number 100025252). 

 

8.6. External travel information  

No previous studies have been found that evidence the percentage of drivers that use 

no travel information, pre-trip information or GPS navigation systems on their day-to-

day journeys. This lack of information made the author assume a distribution of 

external information among drivers. In this model it was assumed that 25% of drivers 

did not receive any external information and they made travel decisions based on 

their own travel experience. Another 25% of drivers received pre-trip information 

which meant that they could know before travelling which road segments were closed. 

Another 25% of drivers checked the shortest travel time route before departure. And 
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the rest 25% of drivers used GPS navigation during their journey. Additionally, all 

drivers received the information that was provided via VMS at certain locations.  

 

8.7. Summary of variables 

The following Table 8.2 summarises all input variables and their values that were 

used in this model.  

Table 8.2. Values of the variables considered in this example 

Variable Value Variable Value 

# routes per OD 3 # departure times 2 

Travel cost function General 

𝜷𝟏 = 𝜷𝟐 = 𝜷𝟑 = 𝜷𝟒 1 Vehicles/packet 20 

Memory function (Section 6.4) Simulation time 47 days 

Linear function ε-greedy approach None 

𝑩𝒎𝒂𝒙 3 Pre-disruptive time 27 days 

𝒃𝟏 10min Post-disruptive time 20 days 

𝒃𝟐 30min Learning rate 0.4 

𝜽 

Uniform 
distribution 

[0,90] 
# of simulations  VAR 

Option of not travelling (Section 6.9) 

𝒚𝑹𝑪 0.8 𝑎𝑐𝑐𝑎 
Probability distribution of 

Figure 6.21. 

𝒕𝑹𝑪 10 min 𝑓𝑟𝑒𝑞𝑎 Uniform distribution [-1,1] 

𝑼𝒔 0.8 𝑐𝑜𝑚𝑓 Uniform distribution [-1,1] 

𝑼𝒇 0 days 𝑔 3 days 

𝑯𝑯 = 𝑱𝑱 = 𝑳𝑳 0.333 𝐴𝐴 = 𝐶𝐶 0.02 

𝒕𝒎𝒊𝒏(𝒇𝒓𝒆𝒒𝒂) 10 min 𝐵𝐵 = 𝐷𝐷 1 

𝒕𝒎𝒂𝒙(𝒇𝒓𝒆𝒒𝒂) 1h   

Preferred arrival time interval (PATI) (Section 6.2.2) 

Activity starting time VAR Activity WORK 

PATI 1 (time before 
activity starts) 

Between 20 
and 10 min 

Distribution of drivers that 
prefer PATI 1 

50% 

PATI 2 (time before 
activity starts) 

Between 10 
and 5 min 

Distribution of  drivers that 
prefer PATI 2 

50% 

Disruption scenario (Section 4.2) 

𝒂 (Section 4.2.1) 0.08 𝑐 (Section 4.2.1) 0.03 

𝒃 (Section 4.2.1) 0.05   

Repair module (Chapter 4) 

Base damage (D) 10 res-day Repair teams 16 units 

Angle of productivity-
repairs graph 

45 degrees 
Saturation level repair 

teams 
5 units 

On-board decisions (Section 7.2) 

Variable 𝝀  0.9 
𝛺ℎ, patience level of 

vehicles 
Uniform probability 
distribution [0,1] 

𝒎𝒂𝒙𝑱𝒉 3 links 𝐸𝐿 (Equation (7.3)) 2h 

𝒎𝒕𝟏 1 day 𝑚𝑡2 3 days 

Distribution of information between drivers 

Drivers with no external 
information 

25% 
Drivers with pre-trip 

information 
25% 

Drivers with GPS planning 
information 

25% 
Drivers with GPS en-route 

information  
25% 

Continuous in the next page 
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From the previous page 

External information (Section 7.3 to 7.6) 

𝝃 (Equation (7.15)) 0.2 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (Equation (7.16)) 0.5 

GPS update route 10 min   

VMS: number of 
consecutive roads 

2 
VMS: length of consecutive 

links  
10 km 

𝑸𝒍𝒊𝒎𝒊𝒕 𝑽𝑴𝑺 20% 𝑘𝑄,𝑉𝑀𝑆 90% 

Link IDs with VMS: 

39, 40, 69, 70, 163, 164, 183, 184, 291, 292, 293 , 294, 
305, 306, 365, 366, 441, 442, 463, 464, 483, 484, 555, 
556, 710, 711, 713, 714, 811, 812, 847, 848, 853, 854, 

855, 856 

 

   

 

8.8. Stochasticity of the model: single vs. multiple simulations  

One of the characteristics of the RL traffic model is the randomness involved in the 

drivers’ decision-making process (apart from the randomness included in network 

failures, external events and restoration actions of the recovery model). The impact 

of each repair strategy on drivers’ behaviour needs to be modelled several times in 

order to get accurate results. This can be a real challenge from the point of view of 

the computational time. Running the whole model several times for the same repair 

strategy requires computer time and efforts. In this case, the model was performed 

on a computer with 8 GB memory and a quad-core 3.3 GHz Intel i5-3550 processor. 

To run one simulation of a repair strategy it took approximately 1.5 hours, which 

meant that for 10 simulations of the same repair strategy it would take 15 hours. With 

parallel computing, computational time could be reduced to even minutes if multiple 

computers were used at the same time, but more data was stored for each repair 

strategy. As observed, the computational effort that required the modelling of multiple 

simulations of a single repair strategy was high. Therefore, the aim of this section is 

to analyse the difference between modelling a single simulation and multiple 

simulations for the same repair strategy and observe whether this extra computational 

time of running multiple simulations (1.5h vs. 15h) is worthwhile or not.  

The network and travel data used in this example was the same as the one 

described in previous sections of this chapter. Two random repair strategies were 

chosen to be analysed and the effectiveness of each one was obtained. The pre-

disruption phase was obtained after running the model on an undamaged network. 

This phase shared results for both repair strategies to ensure that it did not interfere 

with the effectiveness of each strategy. The model was run ten times for each repair 
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strategy. Figure 8.13 shows the impact of each strategy on the total travel cost, 

considering 10 simulations for each one and the mean of all simulations.  

 
Figure 8.13. Total travel cost comparison between two random repair strategies. 

The pre-disruption stage was the same for both strategies. Only the post-disruption 
stage changes based on the effectiveness of each repair strategy. Notation: 

RS=Repair strategy. Sim=Simulation. 

 

The effectiveness of each repair strategy was measured using the resilience 

metric described in Section 3.4 of Chapter 3. It calculated the area under the total 

travel cost curves of the post-disruption phase. The mean of 10 simulations was used 

to compare the effectiveness of repair strategies #1 and #2. The difference in mean 

resilience between the two repair strategies was 7242 h·day, which is graphically 

shown as the area between the mean curves on Figure 8.13.  

On the other side, the effectiveness of each single simulation was compared 

to the mean value of the same repair strategy. Results of the comparison are shown 

in Figure 8.14 and it indicates the differences in terms of resilience values of each 

simulation compared to the mean values of the same repair strategy. As observed, 

the maximum difference is found in simulation #6 of repair strategy 1 with a resilience 

value of 911h·day. This corresponds to a relative error lower than 0.3%, which is 

negligible. The standard deviation of resilience for repair strategy 1 is 571 h·day and 

for repair strategy 2 is 439 h·day. 
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Figure 8.14. Differences of resilience values in terms of total travel cost of each 
simulation compared to the mean of the same repair strategy. 

 

Additionally, the differences between the effectiveness of individual 

simulations of each repair strategy is included in Figure 8.15. Each bar considered the 

difference of resilience values of total travel cost between a single simulation of repair 

strategy #1 and a single simulation of repair strategy #2. The black dotted line 

represents the difference between the mean values of both strategies and both red 

lines showed one standard deviation (687 h·day) from the mean. Pairwise comparison 

between individual simulations from each repair strategy shows the difference ranges 

from ~5500 h·day to ~8750 h·day. The maximum difference from the mean was 

obtained when simulation #6 of RS1 was compared to simulation #3 of RS2. The 

obtained value was 5517 h·day, which compared to the mean value (7242 h·day) 

gave a maximum relative error of 23.8%.     

After observing the results from this section, it was concluded that, for the 

purpose of this case study, it was not worth executing the model for 10 simulations 

because the computational time increased by 4 or 5 times while the differences 

between simulations and their mean value for this particular case were negligible 

(~±0.3%). However, the main difference between considering n=1 or n=10 

simulations per repair strategy may be the final ranking of ‘best’ repair strategies that 

results from the simulation. Similar repair strategies may be in different positions in 

the ranking depending on whether n=1 or n=10. However, in any case, these small 

changes would not alter the final Pareto front of solutions. Therefore, for the rest of 

the chapter, a single simulation per repair strategy is considered, taking into account 

the potential error that this assumption might entail.  
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Figure 8.15. Differences in terms of resilience values between any simulation of the 
repair strategy 1 and any simulation of repair strategy 2. The dotted line represents 
the difference between the mean values of repair strategy 1 and the mean values of 

repair strategy 2. Notation: RS=Repair strategy. Sim=Simulation. SD=Standard 
Deviation. 

 

8.9. Results and discussion 

8.9.1. Pre-disruption stage 

During the first 27 days of the simulation, there was no disruption involved and drivers 

were trying travel options in order to find and select their option with minimum travel 

cost. Drivers were learning based on their previous travel experience. The travel 

decision they made on a day was influenced by their decisions in previous days. As 

observed, in the long run and assuming that there are no changes in overall demand 

and the network, drivers will tend towards the alternative which they are satisfied 

with.  

Due to the stochastic nature of the model, the pre-disruption stage model (see 

Chapter 6) was run several times in order to show the randomness involved in the 

drivers’ decision-making process. Figure 8.16 shows 22 simulations of the pre-

disruption phase. The mean value of each day was also calculated. The model needed 

to be run until the conditions stabilised, which was when drivers found their preferred 

travel option. In this case, it was considered that conditions were stabilised when the 

difference in terms of total travel cost of 4 consecutive days measured on the mean 
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curve was less than 50h, which was a negligible value compared to the total travel 

cost that was obtained on a single day. After 27 days travel cost stabilised, which 

meant that most drivers already selected their satisfactory travel option.     

 

Figure 8.16. Multiple simulations (22 + mean values) of the pre-disruption phase. 

 

The travel choices that drivers made on Day 27 was used as input to the post-

disruption stage. The problem was that the evaluation of the effectiveness of each 

repair strategy needed to be done using only one simulation of the pre-disruption 

stage. Otherwise, if different simulations were used for each repair strategy, it might 

influence the effectiveness of each strategy because the starting database for each 

driver might be different. Therefore, only a single simulation needed to be chosen for 

all repair strategies. But, which pre-disruption data should be considered among all 

22 simulations? The mean value of all of them could not be chosen because it was 

not a simulation obtained from the model. In this case, the closest simulation to the 

mean value was selected as data for the post-disruption stage because it was close 

to the average behaviour of all simulations. The procedure that was used to select 

the closest simulation is detailed as follows: (1) Obtain the relative error of the total 

travel cost on each simulation compared to the mean on each day using Equation 

(8.6); (2) Sum all relative errors (positive and negatives) of a single simulation for all 

days; (3) Identify the simulation with the minimum sum of relative errors. Figure 8.17 

shows the sum of relative errors of all simulations. The lower the error associated 

with a simulation, the closer to the mean curve it is. The sum of relative errors is 
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indicated in a bar at the top of the figure. The closest simulation to the mean is 

simulation#3, which had a sum of errors of 22.1% after 27 days. Therefore, this was 

the one that was selected for the post-disruption stage.            

𝑅𝐸(%) =
𝑇𝑇𝐶𝑡𝑠 − 𝑇𝑇𝐶̅̅ ̅̅ ̅̅

𝑡,22

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡,22

∙ 100 (8.6) 

Where, 

𝑇𝑇𝐶𝑡𝑠, is the value of the total travel cost of simulation 𝑠 on day 𝑡. 

𝑇𝑇𝐶̅̅ ̅̅ ̅̅
𝑡,22, is the mean value of the total travel cost of 22 simulations on day 𝑡. 

 

 

Figure 8.17. Sum of the relative error of each simulation in relation to the mean. 

 

8.9.2. Post-disruption stage. 

On Day 28, the hypothetical hazardous event damaged the road network producing 

a capacity reduction on certain road segments as described in previous Section 8.5. 

Results from the post-disruption phase showed how drivers reacted to these network 

changes and the effectiveness of the implemented repair strategies was evaluated. 

The starting data on this post-disruption phase was the same for all simulations so 

that it did not interfere with the effectiveness of each repair strategy.  

After running all repair strategies considered in the optimisation model (a total 

of 1200 repair strategies), Figure 8.18 shows the evolution of the impact of all repair 

strategies on the total travel cost and network connectivity. There was considerable 
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variability in the impact produced by the different strategies which demonstrates the 

diversity of repair strategies analysed in the model.  

 

Figure 8.18. Evolution of the total travel cost and network connectivity measured as 
the number of completed trips of all repair strategies. Pre-disruption phase: from 
day 1 to day 27. Post-disruption phase: from day 28 to day 47. A total of 1200 

repair strategies. 

 

 A directed graph of the Scottish network showed in Figure 8.19 was created 

by a built-in function in MATLAB (The MathWorks Inc., 2018). This figure 

superimposed the road network implemented in MATLAB and the Scottish map so 

that readers can relate the road network to real locations. Figure 8.20 used this 

directed graph to show the impact of road closures on the flow of vehicles on Day 27 

(pre-disruption) and on Day 28 (post-disruption). The first row of graphs represents 

the relation between the flow of vehicles and road capacity. The second row of graphs 

shows the flow on each link. As observed, the first impact of the disruption is the 

increase in the volume of vehicles on alternative routes due to the closure of some 
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other roads. In particular, the area near Inverness and Lairg (near DL2) shows at 

major increase in flow values.      

 
Figure 8.19. Scottish road network extracted from a built-in function (digraph) of 
MATLAB (The MathWorks Inc., 2018). This function represents roads as directed 
graphs between two nodes using a curved line. The real distance is included in 
MATLAB as an input. The map that shows the Scottish areas is not provided by 
MATLAB and is included in order to help readers to identify the location of roads on 
the Scottish area. Contains OS data © Crown copyright and database right 2020. 
Ordnance Survey (Educational Service Provider Licence Number 100025252). 
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Figure 8.20. Scottish road network map showing the relation flow/capacity and flow on Day 27 (before the disruption) and on Day 28 (after the 
disruption) during the peak period bet ween 8am and 9am. In red lines, the damaged road segments.                                                                     

DLx road segment open to traffic; DLx partially open to traffic; DLx totally closed to traffic. 
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8.9.3. Optimisation results 

The model was performed on a computer with 8 GB memory and a quad-core 3.3 

GHz Intel i5-3550 processor. For each repair strategy, the model took ~1.5-2h on 

average to run one simulation. A total number of 1200 repair strategies were 

simulated on the optimisation model. In order to speed up the running process, 

parallel computing was used so that two simulations were run at the same time. Two 

laptops were used, with the same characteristics that are indicated at the beginning 

of this paragraph. This reduced the computational time to half of the original amount 

of time. Therefore, the model needed ~1200 hours (~50 days) to run the whole 

optimisation problem.  

Results from the optimisation model are included in Figure 8.21. It shows the 

value of the two conflicting objectives in each repair strategy. It also includes the 

Pareto front of solutions of generations 1, 10, 20, 30, 40, 50 and 60. Due to 

computational time limitations, only 60 generations were run. The evolution of the 

front of solutions after each generation shows a clear trend towards at decrease in 

total travel cost and the increase in network connectivity. A great improvement is 

observed in the search for optimal solutions between generation 1 and 10, while 

among the rest of generations this improvement is smaller. The reason behind this is 

that the initial population of repair strategies is generated randomly which means that 

there is more variability in the range of solutions. However, while the optimisation 

process is getting closer to the last generations, the repair strategies are more similar 

between them which means that there is less variability on the solutions and therefore 

huge improvements are not expected. A small improvement in the front of solutions 

is still observed between generations 50 and 60, which may indicate that the model 

has not reached the most optimal front of solutions. As the aim of the chapter was to 

demonstrate the applicability of the model to a real road network, it was decided that 

the value of running further generations of the model to obtain a solution closer to 

the optimal was marginal.  
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Figure 8.21. Bi-objective graph with all repair strategies and the Pareto front of 

solutions for 60 generations  

 

After 60 generations, the Pareto front of solutions showed 13 potential (near-

) optimal solutions (from “a” to “m” in Figure 8.21). The priority order of repairs and 

the repair teams assigned to each damaged location of the final 13 repair strategies 

is included in Table 8.3 and Table 8.4. Results show the similarity between some 

repair strategies. There is a clear trend towards repairing DL2 in the first place, DL4 

in the second place, DL8 in the seventh place and DL6 in the last place. The order of 

repairs for the rest of damaged locations varies depending on the considered repair 

strategy. Regarding the allocation of repair teams (Table 8.4), most of them assign a 

value of “5” which was the maximum value that could be allocated to a damaged road 

segment (see “Saturation level repair teams” on the summary of variables in Section 

8.7).      
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Table 8.3. Priority order of repairs of all optimal repair strategies after the 60th 
generation. The number “1” indicates the highest priority value and “8” the lowest 

priority value. 

 

 

Table 8.4. Assigned resources to each damaged road segment on the optimal repair 
strategies after the 60th generation. The value (e.g. “5”) indicates the number of 

repair teams that are allocated on each damaged location. 

 

 

The impact of these repair strategies on the performance of the system is 

observed in Figure 8.22. It shows the evolution of total travel cost and network 

connectivity over time of these 13 repair strategies. Regarding the total travel cost 

(graph A) and as stated above, drivers are getting information about daily traffic 

conditions (creating on their own experience) during the first 27 days and therefore, 

they are improving their departure time and route choices through a learning process. 

Only when the overall performance is stable, is it assumed that drivers have found a 

satisfactory travel option. On Day 28, the closure of some roads produces an increase 

in the average travel cost as drivers have to adapt to new network conditions and 

take longer routes to reach their destinations.  
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Figure 8.22. Evolution of the total travel cost (graph A) and network connectivity 
(graph B) of all optimal front of repair strategies after the 60th generation.  

 

The differences between of selected (near-) optimal repair strategies in terms 

of total travel cost are small. All of them follow the same pattern with a peak value 

on days 28, 29 and 30 and lower values the rest of the days. The highest impact after 

the closure of these road segments on Day 28 appears on repair strategies e, i, j, k, 

l, m and lower impact on repair strategies a, b, c, d. The graph also shows that the 

performance in terms of travel cost achieves a lower value at the end of the simulation 

compared to the pre-disruption value. This suggests that, during the pre-disruption 

phase, drivers stick to certain travel options that are not necessarily the optimal for 

them. However, once a disruption occurs, drivers are forced to try alternative routes 

and they find that these travel options are better in terms of travel cost than the pre-

disruptive ones and therefore, the overall network cost is reduced. Regarding the 
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evolution of the network connectivity in Graph B of Figure 8.22, repair strategies a, 

b, c and d have the lowest values of connectivity among the front of optimal solutions 

after the 60th generation, but lowest total travel cost as well. Note that option c is 

mostly hidden by option d. 

The road opening plan that is extracted from each repair strategy is included 

in Figure 8.23. It shows when each damaged road segment is totally closed (0% of 

original capacity), partially open (50% of the original capacity) and totally open 

(100% of the original capacity). A summary of Figure 8.23 is included in Table 8.5. It 

shows the day when each road segment totally opens to traffic (full capacity) after 

repairs.  

 Some of the main differences between repair strategies in terms of opening-

closing dates are described as follows. It is observed that some strategies repair DL1 

later than others. This road segment connects the Isle of Skye to the rest of the 

Scottish network and if this link is not connected, drivers cannot leave/enter the island 

by car. Repair strategies a, b, c and d partially open DL1 on days 36-38, while the 

rest of strategies partially open this road segment on day 32. This is reflected in a 

lower value of connectivity on these repair strategies a, b, c and d as there are 4-6 

days that drivers cannot leave/enter the island.  

It is also observed that only two strategies (a and j) repair the whole network 

within the simulation period (<47 days). The rest of strategies need more days to 

fully open damaged road segment DL8.  
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Figure 8.23. Opening-closing dates of damaged road segments based on the 
optimal repair strategies obtained after the 60th generation. 

 

 

LEGEND: Totally open to traffic (100% original capacity)

Partially open to traffic (50% original capacity)

Totally closed to traffic (0% original capacity)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

DL1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 DL1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL5 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

DL6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 DL8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

DL1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 DL1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DL3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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DL8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 DL8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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DL2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DL2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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DL8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 DL8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
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Table 8.5. Opening day of damaged road segments (full capacity) on the optimal 
repair strategies after the 60th generation. Note that these road segments are closed 

on the 28th day. The term “>47” indicates that the damaged road segment is not 
fully open to traffic on day 47, which is the last day of the simulation. 

 

 

The following Figure 8.24 and Figure 8.25 show the evolution of flows during 3 

days (Day 30, 31 and 32) as a result of applying repair strategies a and m, which are 

the most different strategies of the Pareto front of solutions (see Figure 8.21). As 

observed, there is no significant difference between these two repair strategies on 

Day 30. However, on Day 31, some road segments located near DL4 and DL5 still 

have higher flow of vehicles (in the order of 100veh/h) after applying repair strategy 

m compared to repair strategy a (less than 40veh/h). The reason is due to the repairs 

that were undertaken in DL4. In repair strategy a, DL4 was already (partially) open 

to traffic on Day 31, while in repair strategy m, DL4 was still closed to traffic which 

forced drivers to use these other road segments. In terms of total travel cost, drivers 

needed to follow a longer route compared to repair strategy a and this was already 

shown in Figure 8.21, when a higher value of total travel cost was observed in repair 

strategy m compared to the lower value of repair strategy a. In terms of connectivity, 

if diversion route is very long then some drivers may cancel the trip resulting in 

decrease in connectivity. This means that when a solution involves a long diversion 

route then there may be a significant trade-off between increasing connectivity (what 

is being connected) and increasing total travel time.      

To sum up the results of this section, a Pareto front of 13 repair strategies 

were found. These solutions contained strategies with lower total travel cost values 

and higher connectivity values (e.g. the extreme repair strategy a of the Pareto front) 

and strategies with higher total travel cost values but lower connectivity values (e.g. 
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the extreme repair strategy m of the Pareto front). Regarding the opening-closing 

dates of damaged road segments, only two strategies (a and j) repaired the whole 

network within the simulation period (<47 days) while the rest of strategies needed 

more days to fully open damaged road segment DL8. It is ultimately a question for 

the decision-maker as to what specific strategy is chosen. 
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Figure 8.24. Scottish road network map showing the relation volume/capacity and flow on days 30, 31 and 32 during the peak period between 

8am and 9am of REPAIR STRATEGY a. In red lines, the damaged road segments. 

 DLx road segment open to traffic; DLx partially open to traffic; DLx totally closed to traffic. 
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Figure 8.25. Scottish road network map showing the relation volume/capacity and flow on days 30, 31 and 32 during the peak period between 

8am and 9am of REPAIR STRATEGY m. In red lines, the damaged road segments. 

 DLx road segment open to traffic; DLx partially open to traffic; DLx totally closed to traffic.  
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8.10. Calibration and validation of model parameters 

The model proposed in this thesis includes a number of parameters that should be 

appropriately determined to reproduce the traffic flow characteristics and travel 

behaviour with the highest accuracy. Before employing the model in practice, it is 

important to calibrate it against real traffic data. There are several methods to 

calibrate the model but the most common approach is to minimise the difference 

between the model estimation and the real traffic data using some optimisation tools 

(Spiliopoulou et al., 2015). Due to time limitations, the model applied in this chapter 

has not been calibrated and validated using real traffic data. Therefore, the aim of 

this section is to describe the procedure that should have been carried out. 

The parameter estimation problem can be formulated as a nonlinear least-

squares optimisation problem, which minimises the difference between model 

calculations and real traffic data. The measurable model output and the real measured 

traffic data consists of flows and mean speeds at certain network locations where 

data can be obtained. The procedure that can be used to obtain the optimal model 

parameters is included in Figure 8.26. Initially, the parameters of the model are 

assigned a random value. Then the model is simulated and the results (flow and 

speed) from the simulation are compared to the collected real traffic data. As 

mentioned before, a nonlinear least-squares error formulation is used to quantify the 

difference between model outputs and real data. This formulation is included in 

Equation (8.7). 

𝑌 = √
1

𝑡
∙ ∑[𝑥(𝑡) − 𝑥′(𝑡)]2

𝑡1−1

𝑡=1

 
(8.7) 

Where, 

𝑡, time (days). 

𝑡1, User-defined time horizon. 

𝑥(𝑡), results from the model simulation (e.g. traffic flow, speed). 

𝑥′(𝑡), collected real traffic data (e.g. traffic flow, speed). 

𝑌, difference between model simulation and real traffic data. 
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Then, if the error is below the desired user-defined value, the model parameters are 

the optimal for that specific case. If it is not, then the selected optimisation algorithm 

has to find new model parameters and repeat the exact process. Furhter research 

needs to be done in order to select the appropiate optimisation algorithm.    

 

Figure 8.26. Model calibration procedure 

 

8.11. Model limitations and future work 

This section discusses potential limitations of the model application to a real case 

study. Note that these limitations are additional to those already indicated in the 

corresponding chapters that describe the model. Future work that aims to overcome 

these limitations is also included in this section.  

(1) Computational cost. The model takes a significant amount of time to 

evaluate the consequences of a single repair strategy. Some of the reasons are 

explained as follows: 

a. There is a large number of nodes, links and OD pairs that needs to be 

simulated for the Scottish case. 
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b. Large amount of pre-disruption data. This data is used by the post-

disruption phase and contains all information that vehicles have been 

storing during the first 27 days (travel decisions, travel times, expected 

travel costs, stimulus values, probabilities associated with the selection of 

each option, on-board decisions,  etc.). For this particular case, these files 

can reach almost 1GB of size, which means that the model has to access 

this file every time it needs data from the pre-disruption phase. The size 

of these files is proportional to the number of days that is being analysed, 

the number of OD pairs and the number of packets of vehicles. The bigger 

the size of these files, the more time the model takes to run. Also, the 

more vehicles on the network, the more time is required to get stable 

conditions and therefore, more days are needed on the pre-disruption 

phase.  

c. Modules, such as the one that finds the shortest path between two nodes, 

requires analysing all nodes and links. In particular, the Dijkstra algorithm 

(1959) creates a tree of shortest paths from the starting node, the source, 

to all other points in the graph. Every time a packet of drivers use GPS 

navigation, the algorithm is run at each intersection or after a pre-defined 

amount of time. If there is a large number of nodes and links and drivers 

who use GPS systems, the computational time of the algorithm will be 

high.  

d. The simulation of the warm-up and cool-down periods follows the same 

algorithm as the one that models drivers’ behaviour during the peak 

period. It also consumes a lot of time and then the results do not have 

much use apart from filling the network of vehicles at the beginning and 

at the end of the simulation.  

Future work needs to focus on improving the efficiency of the model so that 

it can be run faster. It can be done by: (a) Reducing the pre-disruption data that is 

transferred to the post-disruption phase so that the memory access cost is reduced; 

(b) Improving the efficiency of the mesoscopic traffic simulator algorithm as it has 

already mentioned in previous Chapter 5 so that the computational cost is reduced; 

(c) Research alternative algorithms that find the shortest route between two nodes 
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and analyse which one is more efficient in terms of computational cost. Recent 

reviews show the potential of alternative shortest path algorithms (Magzhan and Jani, 

2013; Latuconsina and Purboyo, 2017; Lewis, 2020). The model can also be examined 

in order to see if the Dijkstra algorithm can be run fewer times and therefore reduce 

the running time; (d) The optimisation model does not need to be calculated for 60 

generations as there is not a huge improvement on the last generations. Instead, the 

model could have stopped before as no further improvements would have been 

achieved.      

(2) Warm-up/Cool-down periods. Apart from the computational cost 

mentioned in the previous point, these periods have been limited to 15 min before 

the simulation of the peak period and 30 min after. This means that after these 30 

min, no more vehicles are entering the network. However, some vehicles are still 

travelling after this time (journey times can be even higher than 2hours). The model 

should have kept loading the network with inter-peak flow during the cool-down 

period until all vehicles entering the network during the period 8:00-9:00am reached 

their destination. However, due to computational costs, these periods were not 

extended and it was recognised as a limitation of this application of the model. This 

may have influenced the modelling results as the lack of vehicles of the network may 

have produced a reduction of journey times on those vehicles that were travelling 

with an “empty” network.  

Future work should study other ways of incorporating the warm-up/cool down 

periods without running the RL traffic model for these vehicles. It also removes the 

need to store drivers’ travel information between days. An option could be the 

assignment of vehicles of the warm-up/cool-down period using a user-equilibrium 

model so that it would speed up the running time. Another option to reduce the 

computational time is to stop the model when drivers that depart at the peak period 

arrive at their destinations. This means that the model does not simulate the 

movement of more vehicles of the cool-down period, even if these vehicles have not 

arrived yet to their destinations.  

(3) Multi-modal approach. As already mentioned in Section 6.11 of Chapter 6, 

adding the extra option of ‘not travelling by car’ requires the understanding of existing 

alternative transport modes on the region. This requires data that is not easily 
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available and that is the reason why random probability distributions have been used 

to define the accessibility of certain nodes to alternative transport modes and the 

frequency of service. For this particular case, data from other transport modes such 

as buses and trains should be gathered and analysed. However, as the aim at this 

stage was not to develop a multi-modal approach, this work is out of the scope of 

this thesis. Future work should focus on incorporating a more sophisticated multi-

model approach to the current model or collect data so that it can be used in the 

application to the case study.    

(4) Distribution of external travel information to drivers. The author has not 

found previous studies that evidence the percentage of drivers that use pre-trip 

information or GPS navigation systems on their day-to-day journeys. Future work 

should study the drivers’ usage of external travel information on Scottish regions via 

surveys. 

(5) Calibration/Validation. The model needs to be calibrated to the traffic 

conditions that are applied and validated using real traffic data in order to be 

applicable to real life operations. The lack of time and available traffic data has made 

this process uncompleted. Future work should focus on gathering traffic data to 

calibrate the model and validate the results. 

Other areas of future work should focus on the following points: 

(a) Role play scenario. As this is first time that a RL traffic recovery model is 

applied to the Scottish road network, there is no benchmark to compare with. 

Alternatively, a role play scenario can be used to measure the effectiveness of the 

model. The same scenario simulated in this chapter can be provided to a transport 

asset manager and ask them to decide how to repair the network under such 

conditions. A comparison between the repair strategy proposed by the asset manager 

and the one that is provided in this model can be done. It may show that asset 

managers’ decisions are (or not) near the optimal. 

(b) Past scenario simulation. Similarly to the previous point, data from 

previous multi-day damage scenarios can be simulated (if enough data is available) 

and the decisions that transport authorities/managers took at that moment can be 

compared to the ones that would be obtained using the recovery model. It can show 
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if those past recovery decisions were the optimal or instead, alternative decisions 

could have been proposed.     

(c) Alternative output information. The current model obtains the (near-) 

optimal repair strategy, maximising the performance of the network. However, 

transport authorities/operators may also be interested in knowing the number of 

repair teams that should be assigned to each damaged location whilst ensuring certain 

levels of network connectivity and without having a significant increase in total travel 

cost. This can also be obtained from this model if certain modifications are done, such 

as adding a new restriction to the optimisation formulation that ensure minimum 

levels of connectivity and limits maximum values of travel costs. Repair teams can 

also be transformed into monetary values, so that they can know the amount of 

money they have to invest in order to maintain certain levels of connectivity and travel 

times.    

 

 

8.12. Conclusions 

This chapter has presented the application of the proposed recovery model to a real 

case study: the Scottish road network. A landslide-based damage scenario was 

generated producing a reduction of road capacity on certain road segments. The aim 

of the proposed model was to find the optimal repair strategies that maximised 

network connectivity and minimised total travel costs. The algorithm used to solve 

the bi-objective optimisation model was the Non-dominated Sorting Genetic Algorithm 

(NSGA-II). Drivers’ decisions were simulated using the improved reinforcement 

learning traffic model presented in this thesis. External information was also provided 

to some drivers so they could make more informed decisions. Results showed a Pareto 

front of 13 optimal repair strategies that could be used by transport authorities and 

managers to make more optimal decisions. These solutions have been found after 

running the optimisation model for 60 generations. These solutions contained 

strategies with lower total travel cost values and higher connectivity values (e.g. the 

extreme repair strategy a of the Pareto front) and strategies with higher total travel 

cost values but lower connectivity values (e.g. the extreme repair strategy m of the 

Pareto front). Regarding the opening-closing dates of damaged road segments, only 
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two strategies (a and j) repaired the whole network within the simulation period (<47 

days) while the remaining strategies needed more days to fully open damaged road 

segment DL8.  

To the best of the author’s knowledge, this is the first time that a recovery 

model that incorporates a reinforcement learning traffic model is applied to a real 

network. Results show the potential of this model to find strategies that enhance the 

resilience of road networks. Transport authorities and operators can benefit from this 

model as it suggests a list of optimal strategies to repair the network when multiple 

road segments are damaged and limited resources are available. The model 

constitutes the first step towards the development of future models that improve road 

network recovery using AI techniques (i.e. machine learning – reinforcement learning) 

to simulate drivers’ reactions after the implementation of repair strategies.   
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CHAPTER 9 

9.  Conclusions and further research  

 

 

 

9.1. Completion of the aim and objectives 

This research has successfully developed a model to optimise the recovery of road 

networks after concurrent road capacity-reducing incidents. The methodology to 

obtain the optimal network recovery combined four main modules: (1) damage 

scenario generator that identified which road segments were damaged; (2) an 

infrastructure repair model that simulated how resources repaired damaged road 

segments; (3) a reinforcement-learning traffic module that simulated how drivers 

reacted and made decisions after changing network conditions; and (4) an 

optimisation module that found the optimal repair strategies that minimised total 

travel cost and maximised network connectivity. The following objectives were 

achieved in this thesis: 

✓ A systematic literature review of current road recovery models after disruptive 

events was developed. This helped to identify recovery models, learn how 

other authors have modelled damage to infrastructure, drivers’ behaviour and 

the repair process. It also identified the potential research gaps of the current 

state-of-the-art. A review of previous metrics that measured the performance 

of the system and techniques to solve optimization problems were also 

examined. 

✓ A resource allocation model has been successfully developed, allowing the 

assignment of repair resources to damaged places, the provision of a repair 

scheduling plan and the calculation of damage evolution and repair over time. 

✓ The development of an event-based mesoscopic traffic model to simulate the 

movement of individual or groups of vehicles through links at an aggregate 

level (based on the macroscopic fundamental diagrams). A detailed 
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explanation of how this new algorithm was implemented was included. This 

could potentially be used as a starting point for other researchers to develop 

new mesoscopic traffic simulators. 

✓ The reformulation of the previous reinforcement-learning traffic model by 

incorporating departure time differences between travel options and 

differentiating between favourable and unfavourable options. The new model 

also incorporated the additional travel option that allowed drivers to decide 

not to travel using their own car and use alternative transport modes or cancel 

the trip. 

✓ The understanding of the impact of the ‘learning rate’ parameter of the RL 

traffic model on the global network performance by undertaking a sensitivity 

analysis. 

✓ The modelling of the on-board drivers’ decision-making process by introducing 

a triggering option when drivers faced disruptions and a route choice 

algorithm that helped drivers find alternative routes after disruptive events. 

The consequences of on-board decisions were also incorporated into the 

drivers’ probability of selecting travel options.   

✓ The incorporation of external travel information in the model that allowed 

drivers to make more informed decisions.  

✓ The application of the recovery model to a real case scenario (Scottish road 

network), demonstrating that the model could potentially obtain the (near-) 

optimal repair strategies after disruptive events.  

 

 

9.2. Synthesis of key conclusions 

After developing the literature review in Chapter 2, it was concluded that current 

methodologies used in road recovery models were overly simplistic, especially when 

simulating the dynamics of traffic demand and drivers’ decision-making in multi-day 

damage scenarios. The majority of models loaded traffic onto the road network under 

the user equilibrium assumption which assumed that all drivers had complete 

knowledge at any time of all travel costs of any route. However, shortly after a 

disruptive event, drivers did not have perfect knowledge of traffic conditions and 

therefore they could not select the route with the minimal travel cost on a congested 
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network. They could not anticipate how other drivers would behave and therefore 

equilibrium conditions might not be reached immediately after the impact.    

In order to overcome these limitations, Chapter 3 proposed the modelling 

framework of a new recovery model. Two functionality metrics were also proposed to 

measure the effectiveness of each repair strategy: a traffic-related metric, which 

measured the total travel cost, and a connectivity metric, which measured the 

demand that was not satisfied. The optimisation algorithm (NSGA-II) were also 

proposed. 

  The generation of damage scenarios was presented in Chapter 4. The 

methodology used hazard susceptibility data which allowed the modeller to identify 

those road segments that were more vulnerable to be damaged by a hazard event. A 

damage state (minor, moderate, extensive and collapse) was also assigned to each 

damaged infrastructure and the state was quantified in units of repair resources-time. 

This method provided a systematic framework that allowed modellers the generation 

of new damage scenarios.  

A new three-stage repair model was also included in Chapter 4 and it 

simulated the road network repair process. It provided a framework that calculated 

the evolution of road capacities over time as a result of the allocation of repair teams 

to damaged road segments and the evolution of damage over time.    

An event-based mesoscopic traffic model was required to simulate the 

movement of vehicles through links at an aggregate level based on the macroscopic 

fundamental diagrams. A new algorithm was implemented to send vehicles to next 

links. The algorithm consisted of two loops: the main ‘ node’ loop, which was used to 

visit each node of the network and observe if there were vehicles to be sent to new 

links, and the ‘packet’ loop, which was inside the node loop, whose aim was to send 

those packets that were waiting at this node to neighbouring links.  

 A departure time and route choice model, which applied the idea of the 

reinforcement-learning algorithm, was presented in Chapter 6. Based on the 

difference between the expected and perceived travel cost, the driver was able to 

update the probability that was associated to the selection of each travel option. If 

the consequences of the decision that that driver took at the beginning of the day 

were good, then this driver would have more chances of repeating the some travel 

option the next day. If the consequences were negative, then the driver would have 
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less probabilities of repeating the same travel option the next day. This model 

improved the previous one by formulating a new updating probability scheme that 

took into account departure time differences between travel options. The new travel 

option of ‘not travelling by car’ was also added for the first time in this RL traffic 

model. That was an advantage compared to previous models due to the fact that, 

after the impact of weather-related hazards, some areas might be completely isolated 

or the detour route set in place might be too long and drivers might decide not to 

travel by car on that day. Therefore, a more realistic simulation of drivers’ decision-

making, such as the one presented in this thesis, contributes to a better prediction of 

the impact of repair strategies on the network.     

Further improvements were introduced in Chapter 7. An on-board algorithm 

was presented that allowed drivers to decide at each intersection if they wanted to 

remain on the main route or they preferred to re-route. If they chose to re-route, a 

new  algorithm was implemented to select the alternative route based on the travel 

time spent on known routes in previous days. The model also allowed drivers to 

abandon their trip and go back to the origin node if certain conditions were met. The 

option probability functions of the RL traffic model were also reformulated in order to 

incorporate the impact of on-board travel decisions. 

For the first time, a RL traffic model added the possibility of providing external 

travel information to drivers: at the origin of the trip (pre-trip information) or on-route 

(GPS navigation or VMS). The results of applying the model to the Sioux Falls Network 

demonstrated the importance of including the provision of external information to 

road users. This information supported drivers to make better travel decisions, 

especially when multiple road closures existed and a global improvement in the 

network performance was observed when information was provided. 

The recovery model was also applied to a real network, which was the Scottish 

road network. The aim was to demonstrate that the recovery model could potentially 

be applied to real networks and consequently, to find (near-) optimal repair strategies 

that maximised network connectivity and minimised total travel cost. Results from the 

analysis showed a Pareto front of 13 repair strategies after running the optimisation 

model for 60 generations. Transport authorities and operators could benefit from this 

model as it suggested a list of optimal strategies to repair the network when multiple 

road segments were damaged and limited repair resources were available. The model 
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constituted the first step towards the development of future models to improve road 

network recoveries using Artificial Intelligence techniques to simulate drivers’ 

reactions after the implementation of repair strategies.   

 

 

9.3. Limitations and recommendations for further research 

The understanding of the model’s limitations and constraints is required to apply the 

recovery model effectively to real networks. Although some limitations and 

recommendations for future research have already been described at the end of each 

chapter, in this section, a summary of the most important ones is presented.  

Regarding the damage scenario simulation, the difficulty in obtaining fragility 

curves for certain infrastructure under the impact of a specific type of hazard makes 

the application of this approach to this project difficult. In addition, data from previous 

hazard impacts were often scarce and modellers cannot easily use these data to 

predict future events. Hazard susceptibility data were used in this model to overcome 

this lack of fragility data. However, these data could only indicate which road 

segments were more likely to be damaged. The modeller still needed to define 

thresholds that differentiated between damaged and undamaged road segments. In 

addition, the damage state (minor, moderate, severe, complete) of each damaged 

road segment was also a limitation of the model and a hypothetical uniform probability 

distribution was proposed in this model. The benefit of the proposed model compared 

to others that just generate a hypothetical impact was the use of susceptibility data 

to generate more realistic scenarios. Further research needs to be done in the area 

of hazard scenario simulation of this model and to apply existing fragility data to 

generate more realistic scenarios.   

This model only simulates damage on road networks from a single-hazard 

impact. A single-hazard approach was a good starting point to understand how 

individual or independent hazards affect road networks, but it is not sufficient to 

capture all interactions that multiple hazards might have. It could potentially 

underestimate the impact that multiple hazards could generate. Therefore, further 

work should develop a multi-hazard approach to generate future damage scenarios 

on road networks.  
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Regarding the infrastructure repair model, it only assumes a single task and 

one type of resource is required to completely repair a damaged road segment. 

Resources, which were grouped into teams, were assumed to have the same 

productivity and saturation levels, which is not realistic. Depending on the type of 

repairs that are required, some tasks might require more specialised equipment or 

personnel. The impact that this might have on the model results are variations in the 

actual schedule of repairs due to the requirement of more (or less) time to complete 

tasks. This limitation could be overcome if future models included more types of repair 

teams (with different levels of productivity and saturation) and more variety of tasks.      

Potential weaknesses of the RL traffic model focus on the following aspects:  

(a) Everyday activities. The traffic model is focussed on simulating the decision-

making process of those drivers that travel every day (e.g. commuting). The 

model could also consider leisure-based activities but it might be unrealistic to 

think that a driver undertake this leisure-based trip repeatedly every day. Future 

research should study the possibility of including these activities considering that 

drivers might travel every “X” days and therefore the learning process should be 

established between these “X” days. 

(b) Multi-modal approach. After the closure of multiple road segments, alternative 

modes of travel could also help to improve the recovery of disrupted networks. 

These were considered as an additional measure of redundancy. That was the 

reason why those models that predict travel behaviour also need to consider 

alternative transport modes. The goal of the current model was not to develop a 

multimodal approach, but it has been forced to introduce aspects that would 

require a more sophisticated multi-modal model to determine which drivers would 

choose alternative modes of transport under disrupted conditions. This was one 

of the limitations of the current model and further work should incorporate a 

more sophisticated multi-modal modelling approach. 

(c) Initial path set generation. The current path set generation found the K-shortest 

free-flow paths for each OD pair. The problem was that there could be too much 

overlap between these K-shortest paths. This meant that the heterogeneity of 

paths could be very limited under disrupted conditions. Future research should 
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improve the path set generation so that it finds the K-shortest paths but penalises 

those paths that share some links. 

(d) System optimum. The proposed method to simulate drivers’ decision making was 

based on the principle that drivers tend to minimise their individual travel costs 

when choosing a travel option on each day. However, the provision of more 

advanced personalised information to drivers might allow road managers to guide 

drivers’ decisions towards the minimisation of total travel times. This follows the 

principle of system optimum, which benefits the whole system instead of 

individual agents. From a global perspective, this approach is more in accordance 

to the priorities of transport managers. Therefore, an alternative method should 

be implemented in the current model that allows the application of the system 

optimum principles.      

(e) Calibration and validation of results. The model needs to calibrate its parameters 

to the traffic conditions that are applied and validate the simulation results using 

real traffic data. The lack of time has made this process impossible to complete. 

 

Computational cost. The global optimisation model incurs high computational costs 

due to the time required to evaluate of the impact of each repair strategy on drivers’ 

travel decisions. Some reasons for the high computational time were: the size of the 

transport network, the large amount of data that characterises the pre-disruption 

phase, the modelling of the warm-up and cool-down periods following the same 

principles as the peak period, among others. To increase the usability of the current 

model, the computational efficiency has to be improved allowing faster evaluation of 

repair strategies. Future research should investigate alternatives to reduce the high 

computational time and make it more affordable, such as the improvement of the 

efficiency of the algorithm, the usage of more powerful computers or the 

implementation of parallel computing in other parts of the model. A user interface 

can also be developed, facilitating the usage of the model and making it more 

attractive for infrastructure managers.   
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9.4. Contribution of this research: implications for theory and practice 

This research contributed to the current body of knowledge in the area of road 

transport restoration and traffic modelling in the following ways: 

 

▪ The development of a systematic review of recovery models that have been 

applied to road transport networks. This allowed readers to understand what a 

road recovery model looked like and what the current state-of-the-art was in 

the field of road transport network restoration modelling. It provided a 

methodology to identify road recovery models that could be used by other 

researchers. Current gaps and areas of further research were also highlighted 

so that it could contribute to the development of future research projects.   

 

▪ The formulation of a multi-objective optimisation model that was capable of 

determining optimal repair strategies involving the allocation of limited repair 

resources to damaged locations, maximising the network performance. The 

novelty of the proposed recovery model led to the integration of: (1) an 

improved reinforcement-learning traffic model that simulated how drivers learn 

from day-to-day and adapt their behaviour to network changes and (2) an 

infrastructure repair model that simulated how repairs were carried out based 

on pre-defined repair strategies. 

 

▪ The implementation of an improved reinforcement-learning stochastic traffic 

model that simulated the decision-making process of drivers after network 

disruptions. It allowed a more realistic representation of how drivers 

progressively adapt their travel behaviour and choose their travel options day 

after day. The improvements that this model provided compared to previous 

ones include:  

(1) The provision of new information to drivers, avoiding the assumption 

of ‘perfect knowledge’ (user equilibrium) that previous traffic 

assignment models used.  

(2) The addition of on-board decisions that allowed drivers to re-route or 

abandon their trip if they face disrupted road segments. This acquired 
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great importance in recovery models especially when dealing with road 

incidents. 

(3) A reformulation of the RL updating probability scheme for selecting 

travel options, which included departure time differences between 

travel options, the consequences of on-board travel decisions and the 

addition of external travel information. 

(4) The idea that bad memories were stronger and had longer lasting 

effects than good ones and the degradation of memories over time. 

(5) The addition of travel demand variations after disruptive events that 

previous learning-based traffic assignment models did not include. 

 

▪ Application of the model to a real road network. In this case, the north of 

Scotland was chosen as a case study. The example demonstrated the success 

in the applicability of the model to real networks and the potential to influence 

decision making.  

 

 

The model has an important academic contribution in the area of RL modelling 

applied to the road transport field. Particularly, the improvements of the proposed RL 

traffic model benefit the research community as it goes a step beyond the previous 

RL models that have been developed during the past years. It is a more realistic 

model of how drivers react and make travel decisions with(out) the occurrence of 

disruptions. The assumption of user equilibrium cannot be accepted as not all drivers 

have ‘perfect knowledge’ of traffic conditions immediately after a hazardous event 

and, therefore, future studies that model travel behaviour need to use modelling 

techniques, such as the one presented in this thesis, that avoid reaching equilibrium 

conditions after the impact. The provision of external travel information to drivers also 

constitutes an important area that cannot be omitted in future transport models. 

Depending on the distribution of information, drivers are able to make more informed 

travel decisions and therefore, this has an impact on the global performance of the 

network. From a global point of view, the methodology proposed in this thesis to 

develop the recovery model may serve as a blueprint for similar analyses and it can 

be considered as the starting point for developing more advanced models that allow 
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a closer representation of how repairs are undertaken and their impact on the real 

world, and contribution to improving the recovery of transport systems.  

 

The proposed new road recovery model not only contributes to academic 

research, but it is an important contribution to practice. Its value lies in its potential 

to improve the efficiency of road transport recovery management in such scenarios 

where multiple road segments are damaged and repair resources are limited. In these 

situations, transport managers need to prioritise repairs and assign resources to 

damaged locations in an efficient way. The model is able to recommend road recovery 

plans and it can help network managers find repair strategies that repair damaged 

road segments in an optimal way and improve the restoration of the system 

functionality. In other words, the outputs of the model are beneficial for government 

agencies and network managers to evaluate the impact of recovery strategies on 

transport systems, to improve the system’s resilience under economic constraints 

(limited repair resources), and to evaluate contingency plans for transport 

management.  

The recovery model can also contribute, from a planning point of view, to 

identifying critical road segments that, if disrupted, would cause the greatest 

disruption to the network. These are the areas that either transport authorities and/or 

transport operators may need to make more robust by allocating more resources 

during the recovery process or providing more information to drivers so that they can 

make more informed decisions, avoiding potential congestion in these areas if 

disrupted.  

The provision of travel information can also play an important role in the 

recovery of road networks. It is noted that drivers make more informed decisions 

when information is disseminated. The type of information that should be provided 

to drivers is a topic that needs to be studied more in detail because, depending on 

the information that is provided, congestion can be solved in one place but created 

in another location. ITS provides road managers with the possibility of influencing 

drivers’ behaviour by managing the information that is provided to them. This is an 

area that network managers need to take advantage of as ultimately it will help to 

improve the recovery of road networks.  
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Appendix 1. Sioux falls network characteristics 

 

Table A.1. XY coordinates of nodes 

Node X-coord (m) Y-coord (m) 

1 10.25 612.62 

2 68.96 605.56 

3 5.44 572.56 

4 19.10 564.37 

5 48.94 564.17 

6 69.53 576.57 

7 86.67 563.66 

8 68.82 562.10 

9 48.96 551.22 

10 49.00 544.69 

11 19.16 543.92 

12 0.03 543.91 

13 0.00 514.83 

14 19.12 529.40 

15 49.00 529.41 

16 68.90 546.66 

17 68.95 537.56 

18 86.27 546.70 

19 69.00 529.37 

20 68.71 515.31 

21 49.04 514.87 

22 49.01 522.14 

23 19.13 522.12 

24 19.21 514.82 

 

Table A.2. Link description, length, capacity and susceptibility to hazards 

Link 
Number 

Node_1 Node_2 Length (km) Capacity (veh/h) 

Susceptibility to 
hazard impacts (2-

>high susceptible; 0-
>No susceptible) 

1 1 2 6.5 1554.01 0 

2 2 1 6.5 1404.21 0 

3 1 3 6 1554.01 0 

4 3 1 6 297.49 0 

5 2 6 4.5 1404.21 2 

6 6 2 4.5 1026.63 2 

7 3 4 2 1404.21 2 
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Link 
Number 

Node_1 Node_2 Length (km) Capacity (veh/h) 

Susceptibility to 
hazard impacts (2-

>high susceptible; 0-
>No susceptible) 

8 4 3 2 1026.63 2 

9 3 12 4.5 1066.97 0 

10 12 3 4.5 294.53 0 

11 4 5 3.5 1066.97 0 

12 5 4 3.5 296.88 0 

13 4 11 3.1 600 0 

14 11 4 3.1 297.49 0 

15 5 6 3.6 296.88 0 

16 6 5 3.6 293.92 0 

17 5 9 2 470.51 2 

18 9 5 2 1404.21 2 

19 6 8 2.2 293.92 0 

20 8 6 2.2 470.51 0 

21 7 8 2 303.01 2 

22 8 7 2 302.75 2 

23 7 18 2.6 600 0 

24 18 7 2.6 303.01 0 

25 8 9 3.6 834.95 0 

26 9 8 3.6 834.95 0 

27 8 16 2.4 600 0 

28 16 8 2.4 810.72 0 

29 9 10 1 291.3 0 

30 10 9 1 299.61 0 

31 10 11 3.5 294.53 0 

32 11 10 3.5 600 0 

33 10 15 2.3 294.53 2 

34 15 10 2.3 292.59 2 

35 10 16 2.3 1404.21 2 

36 16 10 2.3 294.53 2 

37 10 17 3.5 1554.01 0 

38 17 10 3.5 1554.01 0 

39 11 12 2 305.48 2 

40 12 11 2 292.59 2 

41 11 14 2.2 307.65 2 

42 14 11 2.2 295.49 2 

43 12 13 4.5 810.72 0 

44 13 12 4.5 307.65 0 

45 13 24 2.1 873.89 2 

46 24 13 2.1 575.95 2 

47 14 15 3.3 302.75 0 

48 15 14 3.3 291.3 0 
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Link 
Number 

Node_1 Node_2 Length (km) Capacity (veh/h) 

Susceptibility to 
hazard impacts (2-

>high susceptible; 0-
>No susceptible) 

49 14 23 1.1 313.79 0 

50 23 14 1.1 1180.79 0 

51 15 19 2.2 299.61 0 

52 19 15 2.2 313.79 0 

53 15 22 1.1 289.44 0 

54 22 15 1.1 1404.21 0 

55 16 17 1.4 1180.79 2 

56 17 16 1.4 1404.21 2 

57 16 18 2 873.89 0 

58 18 16 2 289.44 0 

59 17 19 1.3 300.16 0 

60 19 17 1.3 1404.21 0 

61 18 20 5.5 300.16 0 

62 20 18 5.5 303.59 0 

63 19 20 2.1 304.54 0 

64 20 19 2.1 303.59 0 

65 20 21 2.3 313.79 0 

66 21 20 2.3 293.12 0 

67 20 22 2.5 575.95 0 

68 22 20 2.5 304.54 0 

69 21 22 1.1 313.79 0 

70 22 21 1.1 300 0 

71 21 24 3.3 295.49 0 

72 24 21 3.3 300 0 

73 22 23 3.3 304.71 0 

74 23 22 3.3 305.48 0 

75 23 24 1.1 293.12 0 

76 24 23 1.1 304.71 0 

 

Traffic demand 

Table A.3. Disruption scenario: damage state, quantification and road capacity 

OD pair 
Initial 
node 

Final 
node 

Traffic demand 
(users/h) 

1 1 13 10 

2 1 18 140 

3 1 20 880 

4 2 13 50 

5 2 18 20 

6 2 20 50 
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7 7 12 650 

8 7 13 610 

9 7 20 10 

10 12 7 650 

11 13 1 10 

12 13 2 50 

13 13 7 610 

14 18 1 140 

15 18 2 20 

16 20 1 880 

17 20 2 50 

18 20 7 10 

TOTAL 4840 
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Appendix 2. Sensitivity analysis of parameters (CHAPTER 4)  

 

CHAPTER 4: Damage scenario simulation and three-stage road 

infrastructure repair model 

A sensitivity analysis is carried out in order to understand the effect of certain inputs and 

parameters on the model outputs. For more information about the network and other data, 

please refer to Chapter 4.  

 

Base damage value (D) and available repair teams 

The number of the available repair teams is modified in order to see how the model changes 

to variations of resources, while keeping the rest of the parameters fixed. The results are 

shown in Figure A.1. As observed, the more teams available to repair the network, the less 

number of days are required to physically repair the network. It is also observed that, due to 

the saturation of repair teams working at the same damaged road segment, the addition of 

more repair teams cannot reduce the total repair time. This information can be useful for 

transport operators as they can know if it is worth adding/reducing repair teams to get a faster 

repair time.  

 

Figure A.1. Relationship between the number of available repair resources and the amount 

of time required to totally repair the road network. Damage base D=10res-day.  

In addition, the analysis of the effect of the base damage value (D) on the model output is 

also analysed. As expected, the more damage on the network, the more repair time is required 

to repair the network for a fixed number of repair resources.   
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Figure A.2. Relationship between the base damage value (D) and the amount of time 

required to totally repair the road network. Available repair teams = 13.  

 

Results from both variables (Base damage value and available repair teams) can be combined 

together as shown in Figure A.3. The vertical axis represents the base damage variable and 

the horizontal axis the available number of repair teams. Each number on the table shows the 

number of days that are expected to repair the whole network. The column of repair times 

that is highlighted (13 available teams) provides the same results as the one shown in Figure 

A.2. On the other hand, the row of repair times when base damage is 10 res-day represents 

the results shown in Figure A.1. As observed, both variables have a significant importance in 

the calculation of repair time. A deficit of repair teams may lead to really high repair times, 

especially if base damage is high too. If extreme values are not considered, the rest of the 

values of repair teams acquire similar results. These results can also be useful for transport 

operators as they can see how adding or reducing available resources can enhance the repair 

time.  
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Figure A.3. Time (days) required to physically repair the road network depending on the 

number of available repair teams and damage base value. Note that these values are 

obtained using the repair strategy defined on the illustrative example of Chapter 4. 

 

Productivity values and saturation level  

The variables ‘saturation level of repair teams’ and ‘productivity gradient’ are also analysed in 

this section. The saturation level is set to 5 teams because, for this particular example, the 

repair strategy requires a maximum of 5 teams per damaged road which means that the 

saturation level cannot be exceeded. As observed, the difference in gradient for the same 

saturation level is not that high compared to changes on the saturation level for a fixed 

gradient value.  

Base Damage (D)

20 380 191 128 95 77 67 56 50 44 40 37 34 31 30 29 29 28 25 24 24 23 21 18 17 17 16 16 16 16 16

19 365 182 125 91 75 64 54 48 42 40 36 32 31 29 29 29 27 26 24 24 22 20 19 17 16 16 16 16 16 16

18 347 174 115 87 73 59 51 46 41 39 35 32 29 28 27 27 25 24 23 23 22 19 16 16 16 16 16 16 16 16

17 330 167 111 86 66 56 48 42 38 35 32 29 26 26 25 25 24 22 21 20 19 17 15 14 14 14 14 14 14 14

16 305 152 105 77 63 54 46 40 36 32 30 27 25 24 23 23 22 21 20 19 18 16 15 14 14 13 13 13 13 13

15 286 147 95 73 60 50 43 39 34 32 29 26 24 23 22 22 22 19 19 19 18 16 14 13 13 13 13 13 13 13

14 270 138 92 68 56 45 39 35 31 30 26 24 23 21 21 21 20 18 18 18 17 15 14 12 12 12 12 12 12 12

13 251 128 87 64 54 45 38 34 30 29 26 24 22 21 21 21 19 18 17 17 16 13 12 12 12 12 12 12 12 12

12 234 115 77 60 49 41 35 30 28 25 22 21 20 19 18 18 17 16 15 14 14 12 12 11 10 10 10 10 10 10

11 212 106 72 53 47 39 33 29 27 24 22 20 18 18 17 17 17 15 14 14 13 12 10 10 10 10 10 10 10 10

10 191 95 67 48 38 33 28 25 23 20 19 18 16 15 14 14 14 13 12 12 12 11 9 8 8 8 8 8 8 8

9 174 87 60 45 38 32 27 23 21 20 18 16 16 15 14 14 13 12 12 12 11 10 8 8 8 8 8 8 8 8

8 152 77 52 38 32 28 24 21 18 16 15 15 14 12 13 12 11 11 10 10 9 8 7 8 7 7 7 7 7 7

7 138 71 48 34 28 24 21 17 16 15 13 12 11 11 11 10 10 9 9 8 8 7 6 6 6 6 6 6 6 6

6 115 60 38 29 27 23 20 17 15 13 12 11 11 10 9 9 9 8 8 8 7 6 6 6 6 6 5 5 5 5

5 95 49 33 26 19 16 15 13 12 10 9 9 8 8 7 7 7 7 7 6 6 6 5 5 4 4 4 4 4 4

4 77 38 29 19 18 13 11 10 10 10 8 7 7 7 7 7 6 6 6 6 5 5 4 4 4 4 4 4 4 4

3 60 30 19 15 13 10 10 8 7 6 6 6 5 5 5 4 5 4 4 4 3 3 3 3 3 3 3 3 3 3

2 38 19 14 10 9 9 6 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

1 19 11 10 7 5 5 4 5 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Available repair teams
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Figure A.4. Time (days) required to repair the network depending on different values of 

productivity 

 

It is also observed how the model outputs change depending on the saturation level of teams 

and the available number of repair teams to repair all damage locations (see Figure A.5). As 

observed, if the number of saturation teams is quite low, there is a significant effect on the 

repair time. However, the difference in repair time is lower when the saturation level is closer 

to the number of teams required by the repair strategy. This evidences that ideally the number 

of required teams (by the repair strategy) should be closer to the number of saturation teams 

to get a better value of global repair time.     

 

Figure A.5. Available repair teams profile with different saturation levels. 

 

  

Max number of repair teams 

working at the same place 5 16 8 6 4 4 3 3 2 2 3 3 3 3 3 3 3 3 3 3 2

(saturation value) 4 19 18 15 11 13 13 10 10 10 10 10 12 12 11 11 11 11 11 11 11

3 25 22 15 18 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

2 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35

1 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Gradient, k
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Appendix 3. Maps 

 

 

 

 

 

 

 

 

 

 

 

This figure has been removed for copyright reasons.  

 

The reader can use the following link to access the image: 

https://www.nhshighland.scot.nhs.uk/OurAreas/HHSCS/Pages/welcome.aspx 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6. Location of NHS Hospitals in the North-West of Scotland. Source: 

https://www.nhshighland.scot.nhs.uk/OurAreas/HHSCS/Pages/welcome.aspx 

https://www.nhshighland.scot.nhs.uk/OurAreas/HHSCS/Pages/welcome.aspx
https://www.nhshighland.scot.nhs.uk/OurAreas/HHSCS/Pages/welcome.aspx
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Figure A.7. Map of ferry services in Scotland. Source: https://www.audit-

scotland.gov.uk/transport-scotlands-ferry-services 

https://www.audit-scotland.gov.uk/transport-scotlands-ferry-services
https://www.audit-scotland.gov.uk/transport-scotlands-ferry-services
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Figure A.8. Locations of the main airports in Scotland. Source: 

https://www.mapsofworld.com/international-airports/europe/scotland.html 

 

 

 

 

 

 

 

 

https://www.mapsofworld.com/international-airports/europe/scotland.html
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Figure A.9. Map of Scotland showing the location of the VMS. Source: Traffic Scotland 

Website. Date of access: November 2019. Map data ©2019 GeoBasis-DE/BKG (©2009)  

https://trafficscotland.org/map/index.aspx?type=8 

 

  

https://trafficscotland.org/map/index.aspx?type=8
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Appendix 4. Fictitious/Real case applications of recovery models  

 

Table A.4. Summary of fictitious/real case scenarios modelled in reviewed publications 

Application to road networks Nodes Links Bridges 
% Damaged 

asset* 
References 

Road network in Lehigh Valley, 

Pennsylvania (US) 
6 8 13 100% (Unal, 2015) 

Hypothetical road network 6 16 - - (Faturechi and Miller-Hooks, 2014b) 

Hypothetical road network.  

Seervada Park 

7 12 - 42% 
(Henry and Ramirez-Marquez, 2012; 

Baroud et al., 2014) 

7 12 - - (X. Zhang et al., 2018) 

Hypothetical road network 8 12 24 100% (Bocchini, 2013) 

Hypothetical road network 8 13 8 62% (Twumasi-Boakye and Sobanjo, 2019) 

Freight transport network in the 
Western US 

8 12 - - 
(Chen and Miller-Hooks, 2012; Zhang 

and Miller-Hooks, 2014) 

Hypothetical road network 9 30 - 13% (Vugrin, Turnquist and Brown, 2014) 

Road network in Greece 9 12 9 50% (Kilanitis and Sextos, 2019) 

Hypothetical road network 9 12 - 25% (Ye and Ukkusuri, 2015) 

Hypothetical road network 

10 13 8 100% (Karamlou and Bocchini, 2014) 

10 26 8 100% 
(Karamlou, Bocchini and Christou, 

2016) 

Road network in the area 
of Santa Barbara, California (US) 

11 28 38 100% (Bocchini and Frangopol, 2012b) 

Hypothetical road network 12 17 - 24% (Ferreira, 2010) 

Hypothetical road network 13 32 - 31% (Lertworawanich, 2012) 

Road network in Izu peninsula (Japan) 14 20 - 55% (Sato and Ichii, 1995) 

Road network in San Diego, California 
(US) 

16 52 238 34% (Karamlou and Bocchini, 2016) 

Hypothetical road network 20 30 - - 
(Barker, Ramirez-Marquez and Rocco, 

2013; X. Zhang et al., 2018) 

Road network of a virtual 
community called Centerville 

20 33 8 - (Wu and Chen, 2019) 

Hypothetical road network 30 37 - - 
(Zhang and Wang, 2016; Zhang, Wang 

and Nicholson, 2017) 

Road network in Sioux Falls, South 

Dakota (US) 

- - - - (Orabi et al., 2010) 

24 76 - 10% (Lu et al., 2016) 

24 76 - - (Basavaraj et al., 2017) 

24 76 - 4% (Kaviani et al., 2018) 

24 76 - 13% (Chen and Tzeng, 1999) 

24 76 - 16% (Vodák, Bíl and Křivánková, 2018) 

24 76 - 8% (Ye and Ukkusuri, 2015) 

Highway network in Shelby County, 

Tennessee (US) 

- - 100 83% (Mehlhorn, 2009) 

- - 7 - (Orabi et al., 2009) 

34 46 24 85% 
(Vishnu, Kameshwar and Padgett, 

2019) 

34 46 24 80% (W. Zhang et al., 2018) 

Highway network in Nantou (Taiwan) 52 62 - 16% (Feng and Wang, 2003) 

Hypothetical road network 62 122 - 25% (Li et al., 2019) 

Hypothetical road network 82 92 - - (Yamasaki and Miwa, 2017) 

Road network in Los Angeles 

metropolitan area, Califonia (US) 

- - 524 - (Nifuku, 2015) 

118 185 2727 - (Shinozuka et al., 2003) 

- - 3133 - (Zhou, Banerjee and Shinozuka, 2010) 

Road network in Kaohsiung City 
(Taiwan) 

132 196 - 12% (Liao, Hu and Ko, 2018) 

Road network in Kobe (Japan) 164 228 - 39% (Furuta et al., 2008) 

Road network in Haiti  216 281 - 10% (Duque and Sörensen, 2011) 

Road network in Cuenca (Spain) 323 672 - 3% (Nogal et al., 2016) 

Rural road network in Sindhupalchok 
District (Nepal) 

457 557 - 12% (Aydin et al., 2018) 

Road network of the Zlín region (Czech 
Republic) 

723 974 - 5% (Vodák, Bíl and Křivánková, 2018) 

Road network in the Canton of Grisons 

(Switzerland) 
37** 2011 116 - (Hackl, Adey and Lethanh, 2018) 

Road network in Chicago (US) 935 2950 - 100% (Basavaraj et al., 2017) 

Highway network in Seattle, 
Washington (US) 

6187 16769 106 - (Chang, 2003) 

Road network in the Memphis 
metropolitan area, Tennessee (US) 

12821 15758 616 - (Chang et al., 2012) 

Road network in Leon County, Florida 
(US) 

2240** 27930 - 10 bridges (Twumasi-Boakye and Sobanjo, 2019) 
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Application to road networks Nodes Links Bridges 
% Damaged 

asset* 
References 

Road network in the Tampa Bay area – 
Florida (US) 

3029** 31797 - 5 bridges 
(Twumasi-Boakye and J. O. Sobanjo, 

2018) 

Two road networks in two districts in 
Istanbul (Turkey) 

- 
212 
and 
386 

- 20% (Tuzun Aksu and Ozdamar, 2014) 

Road network in San Francisco Bay 
Area (US) 

- - - 664 bridges (Zhang, Alipour and Coronel, 2018) 

Road sections in Baghdad city (Iraq) - - - - (Al-Rubaee, 2012) 

Two scenario (SC) earthquakes 
affecting bridges in Athens (Greece) 

- - 400 
SC1: 15% 
SC2: 35% 

(Karlaftis, Kepaptsoglou and 
Lambropoulos, 2007) 

Road network in Tehran (Iran) - - - - (Zamanifar and Seyedhoseyni, 2017) 

Road network in Salt Lake County, Utah 

(US) 
- - - - (Stevanovic and Nadimpalli, 2010) 

Hypothetical highway segment - - 3  
(Bocchini and Frangopol, 2012a; Decò, 

Frangopol and Bocchini, 2013) 

Road network in South Jersey, New 

Jersey (US) 
- - - - (Ozbay et al., 2013) 

* Ratio between damaged assets and total number of assets 

**Zones, not nodes. 
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Appendix 5. Free flow travel time and capacity estimation for Scottish roads  

 

A5.1. Free flow travel time 

The free flow travel time considered in the Scottish case study is obtained dividing the desired 

travel speed by the length of the road. 

The desired speed is the one considered in the following table: 

Table A.5. Desired speed considered in the Scottish case study 

Route Hierarchy Form of Way Desired Speed (km/h) 

Motorway  108 

A Road or A Road Primary Dual 92 

B Road or B Road Primary Dual 72 

A Road or A Road Primary any other 40 

B Road or B Road Primary any other 40 

Minor Road  39 

Local Road  32 

all other  16 
   

 

A5.2 Capacity estimation  

 

RURAL ROADS (based on DMRB 46/97) 

The DMRB 46/97 provides a method to estimate the capacity of rural roads that depends on 

the number of lanes and the width of the road. The formula used to calculate the capacity is 

the following:  

𝑞′𝑚𝑎𝑥 = 𝑞𝑚𝑎𝑥 ∙ 𝑙𝑎𝑛𝑒𝑠 ∙ 𝑊𝑓 
(A.8) 

Where: 

𝑞′𝑚𝑎𝑥, is the updated capacity affected by the width of the road. 

𝑞𝑚𝑎𝑥, is the maximum hourly lane throughput. Based on the road standard, this 

parameter takes a value of 1380 veh/h/lane for single carriageway; 2100 veh/h/lane 

for dual carriageway; 2300 veh/h/lane for motorways.  

𝑙𝑎𝑛𝑒𝑠, number of lanes.  

𝑊𝑓, is the width factor. For motorways, 𝑊𝑓 = 1; For dual carriageways, the factor is 

given by Equation (A.9) and for single carriageways, Equation (A.10).    

𝑊𝑓 =
𝐶𝑎𝑟𝑟𝑖𝑎𝑔𝑒𝑤𝑎𝑦 𝑤𝑖𝑑𝑡ℎ

𝑙𝑎𝑛𝑒𝑠 ∙ 3,65
 (A.9) 

 

𝑊𝑓 = 0,171 ∙ 𝐶𝑎𝑟𝑟𝑖𝑎𝑔𝑒𝑤𝑎𝑦 𝑤𝑖𝑑𝑡ℎ − 0,25 (A.10) 
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Where, 

𝐶𝑎𝑟𝑟𝑖𝑎𝑔𝑒𝑤𝑎𝑦 𝑤𝑖𝑑𝑡ℎ, is defined as the total paved width of the carriageway less the 

width of ghost islands and hard strips. 

 

URBAN ROADS (based on DMRB TA 79/99) 

The DMRB TA 79/99 differentiates between different road types: (1) UM: Motorways; (2) 

UAP1: single/dual carriageway road with limited access; (2) UAP2: single/dual carriageway 

road with frontage access and more than two side roads per km; (3) UAP3: variable standard 

road carrying mixed traffic, frontage access, bus stops and pedestrian crossings; (4) UAP4: 

Busy street carrying local traffic. The model presented in this thesis assumes in the Scottish 

case study that an A road Primary corresponds to a UAP1, an A road or B road to UAP2, a 

minor road to UAP3 and for the rest of roads UAP4. 

According to the DMRB TA 79/99, the estimated capacities for urban roads are the following: 

Motorway 
UM (2 lanes). Capacity = 4000 veh/h each way 

UM (3 lanes). Capacity = 5600 veh/h each way 
UM (4 lanes). Capacity = 7200 veh/h each way 

UM (5 lanes). Capacity = 8800 veh/h each way 

 
UAP1 
UAP1 2-way, 2 lane. Capacity = 1590 veh/h each way 

UAP1 2-way, 4 lane. Capacity = 2800 veh/h each way 

UAP1 1-way, 1 lane. Capacity = 1590 veh/h 
UAP1 1-way, >1 lane. Capacity = 2800 veh/h 

 
UAP2 
UAP2 2-way, 2 lane. Capacity = 1470 veh/h each way, if > 2 lanes then 1650 veh/h each 
way 

UAP2 1-way. Capacity = 1470 veh/h, if > 1 lane then 1650 veh/h. 

 
UAP3 
UAP3 2-way for 2 lanes = 1300 veh/h each way, else if >2 lanes then 1620 veh/h 
UAP3 1-way for 1 lane = 1300 veh/h, else if > 1 lane then 1620 veh/h 

 
UAP4 
UAP4 2-way for 2 lanes = 1140 veh/h each way, else if >2 lanes then 1410 veh/h 

UAP4 1-way for 1 lane = 1140 veh/h, else if > 1 lane then 1410 veh/h 
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Appendix 6. Disruption scenario for the Scottish case study  

 

A6.1. Damaged links 

A total number of 8 bidirectional road segments (16 in total) are considered as damaged: DL1 

(Links 293 and 294), DL2 (Links 441 and 442), DL3 (Links 403 and 404), DL4 (Links 159 and 

160), DL5 (Links 143 and 144), DL6 (Links 347 and 348), DL7 (Links 305 and 306) and DL8 

(Link 123 and 124). 
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Appendix 7. Image of Research  

 

 

Figure A.10. Image can be found at: 

https://www.imagesofresearch.strath.ac.uk/2019/gallery.php 

https://www.imagesofresearch.strath.ac.uk/2019/gallery.php
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