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Synopsis

Renewable energy sources now provide 27% of global electricity genera-

tion, an increase of nearly 38% since 2010. This trend is expected to not

only continue, but to accelerate over the coming decades as nations set

out domestic policies and international agreements to curb emissions

(IEA 2020b). Achieving the ambitious emissions commitments within

the Paris Agreement (BEIS 2020b) as well even more ambitious regional

targets (ASP 15 2019, WGCCC 2021, PMO 2021) require the deployment

of both large and small-scale renewable generation technologies. While

some of the infrastructure and capacity necessary to achieve these goals

will be located far from populous areas, developments such as onshore

wind are increasingly being sited near more densely populated residen-

tial areas. At the same time, there is a rapidly growing deployment of

residential solar generation installed directly on homes.

This thesis contributes to the literature on the externalities associated

with renewable energy developments through an assessment of house

price trends arising from both large-scale commercial windfarms and

residential solar photovoltaic (PV) systems. The research area is Eng-

land and Wales, places experiencing a rapid deployment of both com-

mercial and domestic renewable energy technologies. Commercial de-

velopments are those which export electricity directly to the grid and

domestic are primarily used to generate electricity to be used on-site in

2



residential homes. The aim of this thesis is to apply econometric meth-

ods to generate new insights into how these developments impact upon

house prices. It also sheds light on how the assumptions made and

analytical approaches influence the results of such analyses.

There is a substantial literature examining the effects of proximity to

and visibility of wind energy developments on house prices (Hoen et al.

2011, Brown et al. 2012, Heintzelman & Tuttle 2012, Jensen et al. 2014,

Lang et al. 2014, McCarthy & Balli 2014, Vyn & McCullough 2014,

Gibbons 2015, Hoen et al. 2015, Dröes & Koster 2016, Heblich et al.

2016, Hoen & Atkinson-Palombo 2016, Sunak & Madlener 2016, 2017,

Jensen et al. 2018). This thesis presents original research which ex-

tends this literature in a number of ways. In Chapter 3, I extend this

literature by replicating a leading paper in the literature (Gibbons 2015).

Here I apply an average sales analysis, using the average postcode trans-

action price to estimate effects, and test the robustness of modifications

to the assumptions underpinning the analysis. In Chapter 4, I take the

same dataset from Chapter 3 to analyze the effects of windfarm prox-

imity and visibility through the use of a repeat sales analysis, where

changes in transaction prices of properties which sell multiple times

over the study period are used to create an alternative estimation of

price effects from windfarm siting. Chapters 3 and 4 together provide

a comparison between the results under average price and repeat sales

respectively.

Chapter 5 contributes to the nascent literature examining the capital-

ization of residential PV systems into house prices (Dastrup et al. 2012,

Hoen et al. 2013, Wee 2016, Ma et al. 2016, Qiu et al. 2017, Lan et al.

2020). This is the first analysis using data from the housing markets

of England and Wales to estimate whether residential solar panels are

3



capitalized into property values. Additionally, this chapter makes use

of the largest dataset to date within the wider literature and is the first

to use exact matching between solar and non-solar properties through

the application of propensity score matching.

Chapter 1

The first chapter of the thesis provides an introduction to the topic area.

I outline the key policy issues and debates around renewable energy -

specifically onshore wind and solar PV - in the UK. These two technolo-

gies are particularly relevant within the context of the UK emissions

reductions goals and policies set out to achieve them. I also present

a review of the academic literature on environmental amenities, dis-

amenities, and the valuation of non-market goods through the applica-

tion of hedonic pricing methods; which decompose property transaction

prices to place values on individual characteristics. Given the reliance

of this thesis on these approaches this chapter contextualizes much of

the work in Chapters 3, 4, and 5.

Chapter 2

The second chapter reviews the literature on the house price effects of

windfarm proximity and visibility in detail, to provide a clear context

for the empirical work and the contributions made in Chapters 3 and

4. I examine the methodological approaches and the empirical find-

ings of the papers included here. The literature is well-developed, but

remains very much in disagreement as to what - if any - house price

effects arise from windfarm proximity and visibility. Broadly, some re-

search has found either a negative price effect (Heintzelman & Tuttle
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2012, Jensen et al. 2014, Gibbons 2015, Sunak & Madlener 2016,

2017, Jensen et al. 2018) while other papers find no statistically sig-

nificant effect (Hoen et al. 2011, Brown et al. 2012, Lang et al. 2014,

McCarthy & Balli 2014, Vyn & McCullough 2014, Hoen et al. 2015,

Hoen & Atkinson-Palombo 2016) from windfarm proximity and visibil-

ity. A single study by Heblich et al. (2016) found mixed results including

some evidence of positive price effects.

Chapter 3

As set out in Chapter 2, there are some key limitations of the current

literature. First, there has been an substantial increase in the number

of wind turbines and their distribution throughout England and Wales

leading to a very different landscape since the most recent empirical

analysis was performed (Gibbons 2015). Second, there are a variety of

methods applied within the literature to incorporate windfarm visibility

into the analyses, but no consensus on the best practices for achieving

this - or even if it is necessary. Third, there is very limited discussion

around the importance of the study period to driving results or the per-

sistence of price effects over time. The chapter begins with a replication

of Gibbons (2015) by applying a staggered Difference-in-Difference spa-

tial fixed effects model, before extending it in a number of ways.

While traditional electricity generation technologies such as coal may

affect property values through lowered air quality, visibility is assumed

to be the key driver of any observed price effect from proximity to wind

energy developments. Testing this assumption through detailed sensi-

tivity analysis with alternative visibility estimation techniques provides

important insights to the results found by Gibbons (2015), who defines

a windfarm as visible if there is an unobstructed line of sight between

5



the center of a windfarm and the center of a postcode. Gibbons (2015)

restricts his analysis to include only windfarms located in rural areas,

citing the possibility that there may be difficulties accurately estimat-

ing their visibility and analyzes transactions covering the period 2000-

2012. I apply the same visibility definition but test it for sensitivity to

the relaxation of restriction criteria and the use of a more refined dig-

ital elevation model. This sensitivity testing generates useful insights

into the variety of results within the literature which may stem from the

varied methods applied within it.

Through this analysis, I confirm that the inclusion of urban windfarms

does significantly skew the estimated price effect, something that has

not been tested in detail within the literature. I also find evidence that

visibility estimation is a key driver of results by comparing the use of al-

ternative digital elevation models when calculating visibility estimates.

Additionally, I test visibility estimation accuracy by applying a variety of

visibility threshold tests. Gibbons also tested for treatment intensity by

comparing effects by windfarm size, however this chapter provides an

alternative intensity measure based on the presence of multiple wind-

farms, producing evidence that larger visual impacts from wind turbines

lead to a larger observed price effect.

I am able to extend the study period beyond that considered by Gib-

bons, to include a total of 23 years of property transactions placing

it just behind Heblich et al. (2016) with 24 years and Dröes & Koster

(2016) with 26 years of housing transactions covered by the analysis.

However, it includes the most recent set of transactions within the lit-

erature, which is an important addition to the analysis, as the latest

analysis in the literature (Heblich et al. 2016) includes transactions up

to 2014. The increasingly rapid deployment of larger wind turbines and
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larger windfarms has led to a substantial change in the population’s ex-

posure to windfarms, requiring an updated analysis, for England and

Wales in particular. The expansion exploits the additional data to show:

1) over the full period, there is a reverse of the negative impacts found

under the replicated analysis; and 2) results are sensitive to the du-

ration of the analysis: when subdivided into smaller time periods, the

observed negative price effects are largest at the earliest period and be-

come either small or positive by the most recent period. This is the first

analysis which finds that the negative price effects from windfarm visi-

bility and proximity dissipate over time, and ultimately become positive

under some assumptions.

To summarize: in this chapter I extend the literature by exploring how

alternative visibility measures influence estimated price effects, high-

lighting a divergence between urban and rural areas, and finding ev-

idence that price effects are not stable over time. However, there are

some limits to the average sales analysis of this chapter, such as the

fact that the average transaction price in a postcode may not reflect the

average properties within that postcode; postcode boundaries change

over time, the fact that the sole property characteristic controlled for is

the construction type; and the use of postcode and windfarm centroids

to estimate visibility and proximity. I use the analysis of this chapter as

a baseline and in the subsequent chapter I apply a repeat sales analy-

sis, which addresses these limitations. I then use the exact locations of

individual properties to further refine the modeling of visibility, found

to be a key driver of results.
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Chapter 4

Chapter 4 takes an alternative, but complementary, approach to un-

derstanding the effects of windfarm proximity and visibility on house

prices. Specifically, I use a repeat sales analysis while maintaining the

key assumptions to those applied within Chapter 3 to further test them

under a repeat sales model. These assumptions are 1) visibility is the

main driver of an observed price effect; 2) the magnitude of visibility

is largest for properties closest to wind turbines. The repeat sales ap-

proach estimates the change in price for individual properties by com-

paring transaction prices of the same property before and after a nearby

windfarm becomes operational. This serves to test the methodological

framework of the analysis for consistency in estimated effects, which

has previously been left unexplored within England and Wales. Here,

properties which sell multiple times over the study period are used to

generate an estimate of the price effect from windfarm proximity and

visibility.

This chapter marks the first repeat sales analysis exploring windfarm

visibility and proximity in England and Wales, and the repeat sales and

average sales analyses together provide several key contributions. First,

Chapter 3 assumes that any transaction(s) within a postcode accurately

reflects the average property, which may not be the case due to differ-

ences in property characteristics and the limited number of simultane-

ous transactions within a postcode. This is a potential source of bias in

the estimated effects. The analysis of this chapter focuses on changes

in price of the same properties, comparing effects before and after wind-

farm operationality. This allows for a cleaner estimation of price effects

as it eliminates the issues of comparing price effects on homes with dif-

fering characteristics, and - by its nature - location is automatically con-
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trolled for. Second, by defining visibility at the property level, the repeat

sales approach allows for two properties in the same postcode to have

differing visibility estimates. I find some evidence for slight differences

in home buyers preferences towards properties with views of windfarms

versus properties situated in postcodes where windfarms may be visible.

As with the average sales analysis, I find that the two factors which have

the greatest influence on the estimated price effects are the method and

granularity of visibility estimation and the timing of the analysis. When

the most detailed and refined visibility estimates are used, there is no

negative price effect from windfarm proximity and visibility, but there is

a positive price impact. As in Chapter 3, I find further evidence that atti-

tudes toward windfarms have changed over time, despite the increasing

size of wind turbine height and blade diameter. This implies that over

the study period, windfarm visibility may have shifted from a disamenity

to an amenity or at the very least is a preference-neutral environmental

feature.

In summary, Chapters 3 and 4 apply a similar set of underlying data and

assumptions but use complementary analyses to estimate the impact of

windfarm visibility and proximity on house prices. The two analytical

approaches applied serve both to display the robustness of the find-

ings, due to their alternative strengths and weaknesses. The two chap-

ters both show evidence that alternative visibility calculations heavily

influence the observed price effect of windfarm siting on house prices

- as does the study period of the analysis. This is the first academic

research to heavily test the importance of alternative specifications of

the models used to estimate house price impacts from windfarm siting

within the same study. This is a significant contribution to the litera-

ture, and may explain the disagreement in the direction and magnitude
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of reported effects therein.

Chapter 5

Whereas the previous empirical chapters dealt with large-scale renew-

able energy generation, in this chapter I analyze house price effects from

residential-scale installations. As shown in Chapter 2, the installation

of small-scale installations has become a popular policy to reduce emis-

sions within England and Wales. I make several contributions to the lit-

erature on residential photovoltaic (PV) capitalization into house prices.

I generate the first estimates of a solar property price-premium and the

capitalization of PV systems into English and Welsh house prices. The

empirical analyses of the chapter include the application of a hedonic

regression model, a repeat sales analysis, and propensity score match-

ing.

This chapter contributes to a limited literature currently consisting of

only six peer-reviewed papers in this topic area. All of which have found

evidence that a solar property price-premium does exist, and that resi-

dential PV systems are capitalized into property transactions. The ma-

jority of the papers in the literature (Dastrup et al. 2012, Ma et al. 2016,

Wee 2016, Lan et al. 2020) have applied a simple hedonic regression ap-

proach as their baseline estimation for comparison against an alterna-

tive approach - although Hoen et al. (2013) use this approach to gener-

ate their headline results. The most common alternative approach is a

repeat sales analysis, as applied in (Dastrup et al. 2012, Ma et al. 2016,

Wee 2016), but Qiu et al. (2017) and Lan et al. (2020) make use of fuzzy

matching techniques to create a set of control properties to estimate

premiums and capitalization. This chapter makes use of all three ap-

proaches and the results of each model tell the same story - that there
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is evidence of a solar property premium in England and Wales.

To summarize, this chapter is the first analysis in the literature to es-

timate a solar property premium and residential PV capitalization in

England and Wales. I show that solar PV systems are capitalized into

English and Welsh house prices. Further, I find that the solar property

premium is large enough to recover and profit from the cost of installing

the typical English and Welsh residential PV system. In this chapter, I

extend the literature in two key ways. First, the larger sample of data

gives the analysis considerably more statistical power than any of the

other papers in the literature. Second, its size is exploited to perform

an exact match between treatment and control properties through the

use of exact matching criteria based on property characteristics. This

is an improvement upon the fuzzy matching methods employed by Lan

et al. (2020) and Qiu et al. (2017), as it ensures that treatment and con-

trol properties are as similar as possible, with the exception being the

installation of a residential PV system. The analysis contributes to a

very limited existing literature which has to date been focused on the

United States and Australia. I find that compared to the existing liter-

ature, the price premium is smaller, possibly explained by the smaller

solar energy endowment of England and Wales relative to other study

areas.

Chapter 6

This chapter concludes the thesis, contextualizes its contributions to

the literature and provides suggestions for future research into the topic

area.
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Chapter 1

This Thesis in Context

1.1 Introduction

This thesis contains a series of empirical analyses which evaluate exter-

nalities arising from renewable energy developments, particularly how

these impact on the housing market within England and Wales. The

technologies analyzed are onshore wind, offshore wind, and residential

solar photovoltaic generation. Within this chapter, I provide a contex-

tual background for these analyses. First I discuss the legally binding

emissions reductions commitments made by the UK through interna-

tional agreements, second I discuss the domestic policies implemented

to achieve these targets. Third, I explain how the resulting energy devel-

opments may impact the housing market of England and Wales. Lastly

I overview the broad set of methods used both within this thesis and

the relevant to estimate the value of these impacts.

1.2 International Climate Change Policy

Over the past 50 years, there has been a growing consensus among

climate scientists that climate change is due to anthropogenic emissions
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of greenhouse gases (GHGs) (Oreskes 2004). Powell (2017) find that

among climate scientists, there is no peer-reviewed research taking a

dissenting posture from this consensus. As the United Nations Fifth

Assessment Report on Climate Change states:

“Continued emission of greenhouse gases will cause further

warming and long-lasting changes in all components of the

climate system, increasing the likelihood of severe, pervasive

and irreversible impacts for people and ecosystems. Limiting

climate change would require substantial and sustained re-

ductions in greenhouse gas emissions which, together with

adaptation, can limit climate change risks1."

More recently, social and economic costs of climate change have been

the subject of increasing interest among researchers, and concern among

policymakers. Overall, these costs are expected to be negative, though

they are not evenly distributed globally or even nationally (IPCC 2014).

Within the United States, Hsiang et al. (2017) find that across the sec-

tors analyzed, the estimated cost of climate change will be approximately

1.2% of GDP per 1°C increase in the global average temperature. They

do find positive economic impacts for some regions within the US, but

the negative impacts in other regions, particularly the South, outweigh

these. The estimated impacts for the least developed countries are even

more dire and range from 2-20% of country income (Hsiang et al. 2017).

Within the African Continent, the economic costs are estimated to reach

1.5-3% of GDP per year by 2030 (Watkiss P 2010).

The economic costs associated with climate change have motivated the

global community to attempt to reduce global emissions of GHGs. This

has led to a series of international agreements aimed at reducing GHG
1United Nations Fifth Assessment Report on Climate Change, 2014, pp 8.
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emissions globally including the Kyoto Protocol (1997) and Paris Agree-

ment (2015). Both the Kyoto Protocol and Paris Agreement build on the

United Nations Framework Convention on Climate Change (1992) (UN-

FCC). This framework convention has been ratified by 197 countries and

is aimed at preventing dangerous human interference with the climate

system. Created prior to the scientific consensus on the anthropogenic

nature of climate change, the UNFCC binds states to act in the inter-

ests of human safety even in the face of scientific uncertainty. The Kyoto

Protocol was adopted in 1997, but did not come into force until 2005.

It committed developed countries to both limit and reduce their GHG

emissions by setting individual targets for each country. These limits

were binding for developed nations, but not for developing nations as it

recognizes that developed and developing nations will have different ca-

pacities to reduce their emissions while maintaining economic growth.

However, there have been a series of criticisms about the Protocol and

claims that it has failed to achieve its objectives of addressing climate

change caused by GHG emissions (Rosen 2015).

The 2015 Paris Agreement addresses many of the limitations of the Ky-

oto Protocol. This is because it is legally binding on all ratifying govern-

ments, and its goal is to limit global warming to below 2°C, but prefer-

ably to below 1.5°C relative to pre-industrial average global tempera-

tures. To achieve this, countries set out their nationally determined

contributions (NDCs) to GHG reductions which are aimed at reaching

a climate neutral world by 2050. These NDCs set out the actions that

each country has committed to in order to reach its targeted emission

reductions, and these are published every 5 years. The United King-

dom has been working to achieve its own emissions reductions targets

within this framework, and has produced some of the most ambitious

reductions targets in the world (PMO 2021). I will now discuss the do-
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mestic policies that have been implemented as part of these goals, and

how these relate to the externalities of renewable energy developments

on house prices.

1.3 The United Kingdom and the Low-carbon

Transition

The United Kingdom has committed to substantial reductions in GHG

emissions, and has worked towards these targets with increasing am-

bition. In its previous NDC, the government had legally committed to

reducing its emissions by 68% compared to the levels in 1990 by 2030

with the objective of reaching net zero emissions by 2050. As the UK

continues to progress towards this goal, it has now committed to a re-

duction of 78% by 2035, and this will now include the UK’s share of

international and aviation shipping emissions (PMO 2021). Though

these legally mandated emissions targets are based on the commit-

ments made in the Paris Agreement, the ability to meet and exceed

them are greatly influenced by past and present policies promoting the

transition to a low-carbon economy. I will focus my discussion first

on policies supporting large-scale renewable energy developments, and

then turn to policies supporting small-scale or micro-generation devel-

opments.

1.3.1 Large-scale and Commercial Renewable Energy

The first key policy which has led to the UK’s success in the the transi-

tion to a low-carbon economy is the Non-Fossil Fuel Obligation (NFFO).

This policy went into effect in 1990 and it was created to provide finan-

cial incentives to energy providers to invest in non-fossil fuel electric-
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ity generation such as Nuclear plants or renewables. This was partly

achieved through mandating suppliers make non-fossil fuel electricity

purchases and by setting the price that these purchases would be made

at. The NFFO has since been replaced, but these contracts will continue

until the NFFO fully expires in 2019 (OFGEM 2020d).

The Renewables Obligation (RO) replaced the NFFO in 2002, and pro-

vided additional support for the transition towards low-carbon elec-

tricity generation. This policy forced electricity suppliers in the UK to

source an increasing share of their generated electricity from renew-

able energy sources. The mandated proportion of supply was initially

3% in 2002, but increases to 49.2% of supply in the 2020/2021 period

(OFGEM 2020e). Suppliers receive Renewables Obligation Certificates

(ROCs) which are equivalent to the amount of renewable energy they

produced. Suppliers which exceeded the mandated proportion of their

total generation from renewables could then sell their excess ROCs to

those that had not met the minimum threshold. Those suppliers who

do not meet their targets are required to purchase the number of ROCs

equivalent to to the difference between earned ROCs and the number

which would have been generated had they met the mandated propor-

tion of renewable generation. Just as the mandatory proportion of re-

newable electricity increased each year, so did the buy-out price of ROCs

(OFGEM 2020e).

These two policies, but particularly the RO were great successes in re-

gards to their encouragement of diversifying the UK electricity gener-

ation away from fossil fuels and towards renewable generation at the

commercial-scale. These policies lead to substantial growth in wind

energy developments across the UK, which is home to the largest wind

energy endowment in Europe (Dalla Longa et al. 2018). I focus the dis-
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cussion in this Chapter as well a the Thesis on England and Wales as

this is the study area of the empirical analyses contained herein.

The growth in electricity generation from wind in the ten years follow-

ing the RO going into force is presented in Appendix A1. The growth in

the English and Welsh wind turbine stock between 1992 and 2017 is

highlighted in Figure 3.2 of Chapter 3. This trend towards increasing

generation from wind turbines is also exemplified in Figure 3.3 which

displays the growth in the total generation capacity of wind energy de-

velopments in England and Wales. There has also been substantial

government support for micro-generation technologies in England and

Wales. I will discuss these policies, and how they have influenced the

deployment of small-scale renewable generation in the following section.

1.3.2 Small-scale and Residential Renewable Energy

The UK has implemented two policies - the first of which has been key

to supporting the growth in small-scale renewable generation develop-

ments and the second will be key to continuing this support. These

are the Feed-in Tariffs (FIT) Scheme and the Smart Export Guarantee

(SEG). The aim of the FIT was to support the development and adop-

tion of renewable and low-carbon electricity generation at small-scales.

Generation capacity was required to be below 5MW, and eligible tech-

nologies include: solar photovoltaic (PV), wind, micro combined heat

and power (CHP), hydro, and anaerobic digestion (AD). I will focus the

discussion on solar PV (OFGEM 2020c).

Participants in the FIT scheme are paid for all electricity they generate

as well as additional payments for any excess generation which is ex-

ported back into the grid. These payments are guaranteed and based
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on the year of entry into the FIT, though the rate decreased with each

year which incentivized early adoption. The payments continue for 25

years after entry into the scheme. The FIT opened in 2010, but closed

to new entrants in 2019, and participants could be homeowners but

any system smaller than 5MW in capacity was eligible (OFGEM 2020a).

Figure 5.3 shows the cumulative installed residential solar PV systems

in England and Wales, with a substantial increase from the opening of

the FIT scheme in 2010.

Replacing the FIT is the Smart Export Guarantee, which came into force

January 2020. While the FIT participants received a payment for all

electricity generated, the SEG guarantees participants will be paid only

for electricity exported to the grid. The same technologies which were

eligible for the FIT are eligible for the SEG. Though the SEG only en-

sures payment for exported electricity, the rates paid are guaranteed to

be above £0, even if the wholesale price of electricity is at or below £0.

Although the SEG is too recent to be of consequence to the empirical

analyses presented in Chapter 5, this policy is the main source of con-

tinued UK government support for small-scale renewables.

1.3.3 Summary of Domestic Policies

The policies that have been implemented in the UK to support the tran-

sition to low-carbon electricity generation and to reduce GHG emissions

have been highly successful. As a result, the UK is on track to achieve

among the most ambitions emissions reductions targets in the world

and ahead of schedule on meeting its Paris Agreement commitments

(PMO 2021). The NFFO and RO policies were responsible for the sub-

stantial commercial-scale wind energy developments throughout the

UK by mandating an ever increasing share of electricity be provided
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by renewable energy. At the same time, the levelized cost of generation

for renewables has fallen sharply and are now produced at lower costs

than competing fossil-fuel sourced electricity IEA (2020a).

Evidence of the success of these policies can be seen in the share of

UK electricity generation by source in 2002 and 2020. Coal accounted

for 35.61% of electricity generation in 2002, but dropped to 3.11% in

2020. Over the same period, wind and solar generation accounted for

only 0.25% of the UK’s electricity in 2002, but by 2020 it comprised

27.98% OFGEM (2020b). The FIT has supported a similarly rapid de-

ployment of small-scale and domestic low-carbon generation, with resi-

dential solar PV seeing substantial adoption rates through the life of the

scheme. These micro-generation technologies will continue to be sup-

ported through the SEG which came into effect in 2020 OFGEM (2019).

1.4 Externalities, Amenities, and Renewable

Energy

The rapid deployment of both commercial-scale wind generation and

residential solar have led to an intersection of the transition to a low-

carbon economy and the housing market. This is a result of the trade

off between the emissions reduction from adopting low-carbon energy

developments and their potential impacts on house prices. Researchers

have a choice between applying stated or revealed preference methods

to estimate values of the house price impacts of wind turbine proxim-

ity and visibility - or residential PV systems. Within the context of the

housing market, both methods seek to value individual’s willingness to

pay for (WTP) or willingness to accept (WTA) the presence of some fea-

ture of a property.
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Stated preference methods, such as contingent-choice or contingent-

valuation, use surveys to estimate the value of an environmental feature

or housing characteristic. These approaches are relatively straightfor-

ward as they simply ask individuals how they value a given feature of a

home (Denant-Boemont & Hammiche 2019). For example, a survey may

ask individuals how much they would be willing to pay to prevent the

construction of a wind turbine located near their home, or how much

compensation for its construction would make them willing to accept it.

These are essentially hypothetical questions, and individuals may not

have an accurate valuation. As such, he main issue with stated prefer-

ence methods is the well-documented discrepancy between stated WTA

and WTP and actual behaviors (Cohen 1990, Plott & Zeiler 2005, Song

et al. 2012).

Revealed preference methods are the preferred approach to valuing the

characteristics of residential properties. This is because preferences are

revealed through actual choices made by individuals Richter (1966). Es-

timating consumer preferences towards these developments, and valu-

ing their impact on house prices has been extensively applied within

the literature, reviewed in Chapter 2. The underlying assumption of

any hedonic model is that the price of a given product is a function of

its characteristics (Rosen 1974). Therefore the ultimate goal of a hedo-

nic analysis is to decompose price into the characteristics of the product

Rosen (1974). This can then be applied to housing transactions, where

the residential property is the product whose price is a function of its

characteristics.
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1.4.1 Rosen and Hedonic Theory

The analyses of this thesis rely on Hedonic Valuation and in this section

I will briefly discuss the origin and theory which underpins it. The sem-

inal paper within the Hedonic Valuation literature is Sherwin Rosen’s

’Hedonic Prices and Implicit Markets: Product Differentiation in Pure

Competition’ Rosen (1974). Rosen outlines how markets match buy-

ers and sellers of multidimensional goods and this framework has been

widely applied within economics as nearly all goods contain multiple

characteristics. The paper sets out a method for estimating the willing-

ness to pay for goods which do not have explicit markets.

A multidimensional good can be described by a vector of its charac-

teristics. For homes the characteristics could be intrinsic (number of

bedrooms, size of garden) or extrinsic (local school quality, or local air

quality). Therefore the market price for the ith home is written as fol-

lows:

Pi = P (ci1, ci1, ..., cin) (1.1)

Where Pi is the price of house i and is comprised of the value of the

characteristics of the house. The partial derivative of P with respect to

the jth characteristic (∂P/∂cj ) is the marginal implicit price. This is the

marginal price of the jth characteristic, when all other characteristics

are held constant and is implicit to the overall transaction price of the

house Greenstone (2017).

The intersection between house prices and a given characteristic is the

hedonic price schedule (HPS) which is generated by the equilibrium in-

teraction of buyers and sellers. If we assume that housing markets are

competitive and buyers purchase at the market price, buyer’s utility
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is maximized when individuals choose maximum levels of characteris-

tics which satisfy their budget constraint. Consumer utility depends on

consumption of the numeraire X and the vector of characteristics:

u = u(X,C) (1.2)

The budget constraint is expressed I − P − X = 0, where I is income.

Maximization of 1.2 with respect to the budget constraint reveals that

individuals choose levels of each characteristic whch satisfy (∂U/∂cj )/(∂U/∂x)

= ∂P/∂cj ) Therefore, the marginal willingness to pay for a characteristic

(school quality) will equal the cost of an extra unit of that characteristic

within the market Greenstone (2017).Substituting the budget constraint

into 1.2 gives u = u(I − P, c1, c2, ..., cn) and inverting this while holding

all characteristics but j constant gives the expression for willingness to

pay for cj:

Bj = Bj(I − P, cj ;C ∗ j , u∗) (1.3)

Here, u∗ is the highest level of utility attainable within the budget con-

straint and C∗j is the vector of optimal quantities of other character-

istics. Within the literature, this is referred to as a bid curve (indiffer-

ence curve) because it reveals the maximum amount that a buyer would

pay for different values of cj holding utility constant Greenstone (2017).

Heterogeneity in buyer’s indifference curves due to differences in pref-

erences or income levels leads to differences in the chosen quantities of

a given characteristic. Buyers will choose homes where their marginal

willingness to pay for cj is equal to the market-determined marginal im-

plicit price Greenstone (2017).
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On the supply side of the housing market, it is assumed that suppliers

are heterogeneous. This arises due to differences in the cost functions

across suppliers. To determine the curve of the offer price for suppliers,

we invert their profit function and can then determine the offer curve

for characteristic cj:

Oj = Oj(cj ;C∗j , π∗) (1.4)

Where π* is the maximum available profit given the supplier’s cost func-

tion and the given Hedonic Price Schedule. The HPS is formed by the

tangencies between a consumer’s bid and the suppliers offer curves. At

all points along the HPS, the marginal price of a given housing charac-

teristics is equal to both the buyer’s marginal willingness to pay for that

characteristic and the suppliers marginal cost of providing it. The HPS

reveals the marginal willingness to pay for the set of consumers that

have sorted themselves by the prices and quantities of the character-

istics of interest. We can then infer welfare gains or losses associated

with marginal changes to the quantities of given characteristics within

the relevant population of buyers Greenstone (2017).

However, the HPS on its own cannot be used to determine welfare im-

pacts from non-marginal changes in characteristics of interest Rosen

(1974) this is because the points observed along the HPS are only for

other buyers who may have different preferences or income levels. Rosen’s

solution is to introduce a two-step econometric procedure that delivers

both the HPS and bid functions. Using neighborhood vista quality as a

an example, the first step is to regress house prices against all charac-

teristics including vista quality. This allows their effects to be non-linear

Greenstone (2017):
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p = α+ f(c1, c2, ..., cn) + ε (1.5)

The marginal implicit price of vista quality is the derivative of house

prices with respect to vista quality and this quantity is then used in the

second stage equation:

∂p(C)/∂cvistaquality = α+ g(cvistaquality) + ε′ (1.6)

Here ε includes all demand influences such as preferences or incomes,

which are observable and can be included as covariates. We then eval-

uate g(cvistaquality) at different values of cvistaquality to determine the bid

function. If Rosen’s approach is successfully applied it reveals a buyer’s

preferences, and measures welfare impacts arising from non-marginal

changes in characteristics of homes.

1.4.2 Challenges of Hedonic Estimation

The foundation of any welfare calculation rests upon the consistent esti-

mation of Equation 1.1 because welfare impacts from marginal changes

in a given characteristic are given directly by the HPS. Another risk is

that inconsistent estimation of the HPS will result in an inconsistent

marginal willingness to pay function which essentially invalidates any

welfare analysis of non-marginal changes. This is particularly chal-

lenging to overcome in a cross-sectional and panel data settings Green-

stone (2017). This presents itself as severe sensitivity to the inclusion

of additional covariates and has been illustrated within the application

of hedonics under a variety of settings - ie the housing market Chay

& Greenstone (2005), as well as health economics Black & Kniesner

(2003).

24



These will largely arise due to omitted variable bias. To address this,

more recent works applying a hedonic valuation approach make use of

quasi-experimental variation within the covariates of interest. These in-

clude, for example, variations caused by nature, politics, accidents, or

actions/influences beyond the control of the researcher because these

are assumed to be exogenous. Within quasi-experimental contexts, re-

searches will understand the source of the variation.

A further challenge arises when researchers attempt to infer the bid

function or offer function directly from the HPS. It has been demon-

strated that hedonic methods are highly reliant on strong functional

form assumptions Brown & Rosen (1982). Particularly crucial are as-

sumptions on the house price function and whether it is assumed to be

linear or non-linear. Additionally, there is the risk that inferring the bid

functions from the HPS may be undermined by taste-based sorting of

home buyers.

Despite these challenges, hedonic valuation with a quasi-experimental

research design remains a workhorse within many research areas. Al-

though consistent estimation of the HPS will not recover the underlying

bid and offer functions it can estimate welfare impacts of non-marginal

changes which arise from past changes in amenities. This is the context

in which the approach is applied within the subsequent chapters of this

thesis. I make use of a quasi-experimental design, and compare early to

later periods which allows for measurement of non-marginal changes to

house prices. In the subsequent section I will describe the application

of the reduced form hedonic estimation which underpins the analyses

of Chapters 3,4, 5.
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1.4.3 Reduced Form Hedonic Estimation

In the context of hedonic modeling - or hedonic pricing - applied to

house prices, we assume that the sales price of a given home is based

on the sum of its total characteristics and their amenity value. Amenity

value is simply the currency value that buyers ascribe to each charac-

teristic of a home. These could be positive or negative values, meaning

that the characteristic may increase or decrease the total price of a given

property (Monson 2009). In Equations 1.8 and 1.9 I have split the char-

acteristics into intrinsic and extrinsic groups. Intrinsic characteristics

are those contained in the property itself, such as the number of bed-

rooms or lot size. Extrinsic characteristics refer to those which may

contribute to the value of the property, but are not features of the prop-

erty itself such as proximity to the beach. For the purpose of this thesis,

as well as the hedonic literature, when a feature increases the value of

a property, it is considered an amenity. Any feature which decreases

the value of a property is a disamenity.

House Price = f(House Characteristics) (1.7)

Price = f((Intrinsic Characteristics) + (Extrinsic Characteristics)) (1.8)

Price = f((Bedrooms+Bathrooms+ Lot Size+ ...))+

((School Quality + Proximity to Beach+ Transport Links+ ...))

(1.9)

Hedonic Pricing methods have been applied to evaluate a wide vari-

ety of Environmental features, for example: Proximity to Rivers (Ander-

son & West 2006, Gibbons et al. 2014, Tapsuwan et al. 2015) , Urban

Greenspace (Chen & JIM 2010, Brander & Koetse 2011, Schläpfer et al.

2015), and Wildfires (Stetler et al. 2010). The approach has also been

applied to estimate the value of intrinsic property characteristics in-
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cluding the number of bedrooms, bathrooms, fireplaces, garage size,

square footage, pools, yard size, etc. (Coley 2005, Cebula 2009, Liao &

Wang 2012, Pride et al. 2018). I will discuss the classification of intrin-

sic and extrinsic features as amenities or disamenities using examples

relevant to the empirical analyses of this Thesis.

Installed residential PV systems are an intrinsic characteristic - much

like the number of bedrooms, etc. That is to say the presence of a PV

system us a feature specific to the property and as such, is expected

to influence the price. There is a growing literature on the influence

that residential PV systems have on property values, which is discussed

within Chapter 5. Though the peer-reviewed literature applying hedo-

nic pricing methods to estimate the amenity value of such systems is

limited, all published papers have found that it positively influences

property prices. Therefore residential PV systems are considered an in-

trinsic amenity.

Wind turbines and windfarms fall into the extrinsic set of property char-

acteristics, and have therefore been included within the Environmental

Amenity literature (Brinkley & Leach 2019). Schaeffer & Dissart (2018)

defines environmental amenities to be the set of local attributes enhanc-

ing the residential quality of life. I then take this to define environmental

disamenities as the set of local attributes which reduce the residential

quality of life. There may be improvements to residential quality of life

through the reduction of emissions that wind energy facilitates, how-

ever there may also be potential costs. Similarly, there may be amenity

value to the installation of residential PV systems. The value of these

benefits or costs can be estimated through changes in house prices.

There has long been concern that wind-turbines may have negative im-

pacts on nearby house prices, and the first academic paper on the po-
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tential influences of wind turbine proximity and visibility was published

in 2007 by Sims & Dent. This paper did not contain a dataset which al-

lowed for a highly detailed analyses, but since its publication there has

been a substantial academic interest in estimating house price effects

arising from wind energy facilities. This research has focused on the

potential impacts of windfarm or wind turbine proximity and visibility

as environmental amenities or disamenities by analyzing their impacts

on housing markets. Though the academic research on this subject is

well-developed, there is not yet a consensus on whether wind turbines

should be classified as environmental amenity or disamenity. A detailed

discussion of this literature is provided in Chapter 2.

1.5 Hedonic Pricing and Renewable Energy

The previous section explained how renewable energy developments

may be defined as amenities if they increase a property value or dis-

amenities if they decrease a property value. In this section, I will dis-

cuss the application of Average Price and Repeat Sales Hedonic Pricing

Approaches. As described in the previous section, the value is ascribed

by analyzing property characteristics as shown in Equation 1.9. The

process is the same for both intrinsic and extrinsic characteristics, as

both types of characteristics contribute to a property’s value. Here I

will outline the average and repeat sales approaches to value property

characteristics, but with a focus on examples such as wind turbines

and residential PV.

In Equation 1.10 I again show the basic setup of a hedonic analysis,

but describe its application under an Average Price analysis. On the

left-hand side is the average transaction price, averaged over a specific
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geographic region at a specific point in time - usually at quarterly or

monthly intervals. Some examples of geographic regions used within

the literature discussed in Chapter 2 are postcodes (Gibbons 2015) and

cities Hoen & Atkinson-Palombo (2016). In a Repeat Sales analysis,

the left-hand side of the equation compares the prices of the properties

which sell multiple times over the study period. For both approaches,

the right-hand side of the equations will include variables representing

intrinsic and extrinsic characteristics of the analyzed properties.

When the goal is to estimate the impacts of a nearby wind turbine, re-

searchers will include a term to capture the influence of this charac-

teristic on the average price at the geographic or property level. Time

is also included in the analysis as there may be time trends which in-

fluence house prices. The key advantages and disadvantages of the

Average Price approach are thoroughly discussed in Chapter 3, but the

most common justification for their use is that it does not require in-

formation on the exact location of the properties in the dataset. This

usually allows for an analysis with a larger group of properties to be

included. The key advantages of the Repeat Sales Approach discussed

in Chapter 4 but the main justifications for applying this approach is

that it is less likely to suffer from omitted variable bias as the properties

are compared to themselves.

Price = ((Intrinsic) + (Extrinsic) + (Time)) (1.10)

In their most basic setup, both repeat and average price transactions

will capture the impact of renewable energy developments through a

basic indicator dummy variable on the right-hand side of the equa-

tion. This simply captures the difference in price between properties
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affected by the development and the properties unaffected by it. More

robust analyses will incorporate the timing that a renewable develop-

ment, allowing for a comparison of price impacts both before and after

a property is impacted. I describe the hedonic frameworks of the litera-

ture estimating wind turbine impacts on house prices in great detail in

Chapter 2. I do the same for house price impacts from residential PV

systems in Chapter 5.

1.6 Conclusions

This chapter provides a contextual overview of the Thesis topic area.

First I present the policy environment relevant to the empirical anal-

yses of Chapters 3, 4, and 5. This included a description of the UK’s

binding commitments to reduce its emissions in line with the targets

set in the Paris Agreement, as well as an outline of the policies imple-

mented to achieve this at a record-setting pace. The NFFO and RO both

supported the development of large-scale renewables - particularly on

and offshore wind - which are the focus of the analyses within Chapters

3 and 4. The FIT and SEG schemes support small-scale renewables and

the FIT has been particularly successful in the rapid uptake of residen-

tial PV systems which the subject of the analyses of Chapter 5.

I then describe how these policies which have led to the rapid transi-

tion to low-carbon electricity generation may create externalities within

the housing market, through the amenity value they bring to homes in

England and Wales. In this section, I discuss the definition of amenities

and disamenities. I then overview the approaches used to estimate the

preferences towards these developments through the application of He-

donic Pricing approaches such as Average Price and Repeat Sales. The

contextual background of this chapter sets the stage for the literature
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which is reviewed in the subsequent chapter, as well as the empirical

analyses contained within this thesis.
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Chapter 2

Literature Review: Wind

turbine proximity,

visibility and house prices

2.1 Introduction

Although the literature examining house price impacts from wind tur-

bine proximity and visibility is well-developed, there is not a consensus

within the reported findings. These papers apply differing statistical

methods as well as differing sets of assumptions regarding the data uti-

lized within their analyses. The variety in the analytical approaches

and decisions applied occurs not only across papers which find differ-

ent impacts (no effect, decrease, increase) but it is also present even

across papers which find a similar effect. In this chapter, I will review

this literature in detail, discussing the findings, analytical approaches,

and methodological assumptions applied for each analysis. These pa-

pers are published in academic journals at the time of writing, with

the exception of Heblich et al. (2016), which is a report from a research
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project exploring this issue in Scotland. Each paper reviewed within

this chapter attempts to value the impacts on house prices arising from

nearby windfarm siting, some account for visual impacts while others

rely solely on proximity to the developments to estimate the impact. I fo-

cus the discussion around the fifteen relevant papers which comprised

the literature at the time of writing.

Six of the papers have found statistically significant, negative price im-

pacts arising either through proximity to or visibility of nearby wind tur-

bines (Heintzelman & Tuttle 2012, Jensen et al. 2014, Gibbons 2015,

Sunak & Madlener 2016, 2017, Jensen et al. 2018). The papers report-

ing negative impacts range from a price decrease of 1.4% for properties

within a 2km distance from a wind turbine (Dröes & Koster 2016) to a

decrease of up to 14% for properties where visible turbines strongly af-

fected the vistas surrounding the properties (Sunak & Madlener 2016,

2017). These papers apply differing analytical approaches, for example,

Heintzelman & Tuttle (2012) and Jensen et al. (2018) do not model vis-

ibility of wind turbines and therefore report effects of proximity alone.

Dröes & Koster (2016) do model wind turbine visibility from the prop-

erties in their analysis, but they find a statistically insignificant posi-

tive effect, while finding a statistically significant decrease arising from

proximity alone.

Eight papers find no statistically significant house price effect from

proximity to, or visibility, of wind energy facilities (Sims & Dent 2007,

Sims et al. 2008, Hoen et al. 2011, Lang et al. 2014, McCarthy & Balli

2014, Vyn & McCullough 2014, Hoen et al. 2015, Hoen & Atkinson-

Palombo 2016). Of this group, all papers with the exception of Sims &

Dent (2007), Hoen et al. (2015), and Hoen & Atkinson-Palombo (2016)

include a measure of the visibility of wind turbines within their anal-

33



ysis. Lang et al. (2014) and Hoen & Atkinson-Palombo (2016) report

negative, but not significant effects. McCarthy & Balli (2014) and Vyn

& McCullough (2014) find positive, but insignificant impacts from wind-

farm visibility. The rest of the papers find a mix of positive or negative

impacts depending on the specification of their models - though all are

statistically insignificant. Lastly, one paper (Heblich et al. 2016) also

finds both statistically significant positive and negative impacts from

visibility, though these depend on the distance to the visible wind tur-

bine.

The geographic distributions of study areas within the literature spans

across North America, Europe, and Oceania. The largest concentra-

tion is within the United States (Hoen et al. 2011, Heintzelman & Tuttle

2012, Lang et al. 2014, Hoen et al. 2015, Hoen & Atkinson-Palombo

2016); followed by the United Kingdom (Sims & Dent 2007, Sims et al.

2008, Gibbons 2015, Heblich et al. 2016); Denmark (Jensen et al. 2014,

2018); Germany (Sunak & Madlener 2016, 2017); the Netherlands (Dröes

& Koster 2016); Canada (Vyn & McCullough 2014); and New Zealand

(McCarthy & Balli 2014). Within the United Kingdom, the findings re-

flect the disagreement within the broader literature with two papers

finding no statistically significant effect Sims & Dent (2007), Sims et al.

(2008); one finding statistically significant negative effects Gibbons (2015);

and one finding both positive and negative effects Heblich et al. (2016).

Within this chapter of the thesis, I will detail the underlying data and as-

sumptions applied within the literature to estimate house price effects

from windfarm siting. Each analysis within the literature has made

decisions regarding both the statistical approaches and assumptions

towards the data used to answer these questions, and these analytical

decisions are potentially responsible for some of the disagreement in
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their reported findings. I have structured the discussion of the litera-

ture around these decisions and assumptions.

2.2 Inclusion Criteria

To perform a hedonic analysis, housing transaction data are required.

Therefore the very first research decision for all papers within the litera-

ture is to determine which transactions will be included in any analysis.

This choice involves firstly determining which windfarms or wind tur-

bines the analysis will estimate siting impacts for, and then determining

which properties are considered ’nearby.’ Once the selection of wind-

farms and property transactions has been made, many studies further

restrict the transactions to remove transaction prices above or below a

certain price threshold. All papers within the literature use Geographic

Information System (GIS) techniques to calculate distance from either

windfarms or wind turbines to properties. This distance measure is

then used to determine which housing transactions will be used within

the study, but the maximum distance varies across studies noteNot all

studies make use of the GIS calculated distance within their empirical

models.

2.2.1 Windfarm Selection

A key decision of all papers within the literature is the selection of which

windfarms will be included within the study. For all papers, windfarms

are those which were operational within the study period, even when

pre-operation impacts are estimated1. Many of the papers make a very
1To be considered operational, a windfarm will have been fully assembled and con-

nected to the grid. Pre-operation is any time prior to the connection to the grid, though
some papers subdivide the pre-operation status as follows: pre-announcement - the pe-
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simple restriction to include all wind turbines within an administrative

region including: Rhode Island (Lang et al. 2014); Massachusetts (Hoen

& Atkinson-Palombo 2016); Scotland (Heblich et al. 2016); and North

Rhine-Westphalia (Sunak & Madlener 2016, 2017). These papers in-

clude all wind turbines which were operational within those boundaries.

Gibbons (2015) deviates slightly and includes all rural-sited windfarms

in England and Wales, but drops those sited in urban areas2. Dröes &

Koster (2016) and Jensen et al. (2014) are the only papers to perform a

national analysis and include all wind turbines within the Netherlands

and Denmark respectively. Other papers select either a single wind-

farm (Sims & Dent 2007, Sims et al. 2008, Vyn & McCullough 2014)

or a group of windfarms within a specific region (Heintzelman & Tuttle

2012, McCarthy & Balli 2014) or regions across a country (Jensen et al.

2018, Hoen et al. 2011, 2015).

2.2.2 Transaction Selection

Once the selection of windfarms or wind turbines has been made, the

next key decision is determining which transactions will be included

within the analysis. All papers within the literature attempt to estimate

the impacts on residential properties, but there are three exceptions

to this rule. Firstly, Vyn & McCullough (2014) include both residential

properties and agricultural land together in their analysis. Heintzelman

& Tuttle (2012) also include both residential and agricultural property3,

riod before it is publicly announced that a windfarm has been approved for construction
at a given location; pre-construction - the period between announcement and the begin-
ning of the windfarm’s construction; post-construction/pre-operation - the period where
construction has commenced, but the windfarm is not yet operational.

2Here, urban is defined using the 200m grid land classification codes for England and
Wales. Gibbons also removes some single-turbine windfarms on a case-by-case basis
when it seems likely they are located on an industrial estate.

3Residential properties are those where the primary use of the land is residential.
Agricultural properties are those where the primary use of the land is agricultural - such
as the growing and harvesting of crops or livestock.

36



but estimate their price effects separately. Lastly, Jensen et al. (2018)

include exclusively residential properties but split these into primary

residences and vacation homes to test for a difference in price impacts

between these two groups. Sunak & Madlener (2016) attempt to esti-

mate price effects for residential properties, but use only the value of

the parcel of land surrounding the property due to data restrictions4.

It is worth noting here that Sunak & Madlener (2016) also use ’asking

price’ and ’sales price’ interchangeably so there is some confusion re-

garding exactly which price effect they are modeling5.

Each paper within the literature makes a decision on which transac-

tions to include based on their proximity to the windfarms within their

analysis. McCarthy & Balli (2014), simply include all transactions oc-

curring within the two towns nearby the windfarm developments of their

study. For the rest of the literature, this decision involves selecting prop-

erties located within a specific distance from each wind turbine - or

the center of a windfarm. For most, this involves making assumptions

around where they expect any siting effects to dissipate to zero. Sims &

Dent (2007) and Sims et al. (2008) are the most restrictive and include

only properties within 1 mile of the wind turbines of their studies. All

but two studies limit their analysis to transactions of properties up to

16km from an operational wind turbine. Vyn & McCullough (2014) in-

clude properties within 50km of a wind turbine and Heintzelman & Tut-

tle (2012) include properties located nearly 150 miles from the nearest

turbine. Heblich et al. (2016) are unique in that they include properties

located within 15km of an operational wind turbine, but also properties
4The property price data provided by the expert advisory boards contains arm’s length

transactions of properties in terms of parcels of land, which were assigned for residential
utilization according to the regional land-use plan of the local administration. The price
of the structure (i.e. a certain type of building) that has been built on a given land plot (if
any) is not included.

5The asking price is the price that a property is advertised on the market, the sales
price is the value of the transaction.
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outside of this radius with similar characteristics which are used as a

control group.

In addition to selecting the properties which are within a specified dis-

tance of wind energy developments, the analyses within the literature

will generally apply either an average price (Sims et al. 2008, Hoen et al.

2011, Jensen et al. 2014, McCarthy & Balli 2014, Gibbons 2015, Hoen

et al. 2015, Hoen & Atkinson-Palombo 2016, Sunak & Madlener 2016,

2017, Jensen et al. 2018) or a repeat sales analysis (Heintzelman & Tut-

tle 2012, Heblich et al. 2016). Average price models examine impacts to

the average transaction price within a geographic region while Repeat

Sales models examine price impacts between two transactions of the

same property. There is a selection of papers from the literature which

include both average and repeat sales analyses to check for consistency

across these two approaches (Lang et al. 2014, Vyn & McCullough 2014,

Dröes & Koster 2016). For the papers applying an average price anal-

ysis, the transactions are aggregated at some spatial level such as the

postcode or city. This allows for a larger pool of property transactions

because properties must be sold at least once to be included. Repeat

sales analyses restrict the transactions to come from properties selling

multiple times over the study period, which generally leads to a smaller

sample of transactions within the analysis.

Once the windfarms and property transactions of an analysis have been

chosen, each paper then defines the treatment. Treatment within the

context of the literature is the feature of windfarm siting that is expected

to impact the prices of the properties within the sample. The two main

effects within the literature here are proximity and visibility. There have

been some attempts to account for the effects of noise from a wind tur-

bine on house prices, though this is assumed to be captured using a
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distance term and effects are expected only at the very closest proxim-

ities. Dröes & Koster (2016) state that within 400-500m the noise level

produced by a wind turbine is similar to that of a typical refrigerator.

In the subsequent sections I will detail the approaches to defining and

estimating visibility and proximity from within the literature.

2.3 Wind Turbines as a(n) (Dis)Amenity

There are three broad mechanisms through which wind turbines may

be considered environmental amenities or disamenities, and ultimately

may impact upon house prices. If there is a positive price impact, wind

turbines are considered an environmental amenity (they add value to

properties). If there is a negative price impact, wind turbines are con-

sidered an environmental disamenity (they subtract value from proper-

ties). Hoen et al. (2011) defines the three mechanisms through which a

wind turbine may be classified as a disamenity, though I have expanded

these to include the possibility of a positive price impact. These include:

The ‘Scenic Vista Stigma’, the ‘Area Stigma’, and the ‘Nuisance Stigma’.

The Scenic Vista Stigma refers to the perception that views from prop-

erties may add or subtract considerable value to that property, based

on the quality of or desire for that view. When the vista feeds through

into the value of a given property, it is an amenity if the vista adds to

the value of a property and a disamenity if it subtracts from the value

of a property. Within the context of wind turbines, the Scenic Vista

Stigma would occur if the installation of wind turbines are considered

a detriment to the pre-turbine vista from a property and decrease the

value a buyer places on the view leading to a reduction in the value of

that property. Conversely, the addition of wind turbines to a vista could
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increase the value of that view, which ultimately increases the property

value. The effects observed due to the Scenic Vista Stigma may be in-

fluenced by the quality and type of existing vista.

The Area Stigma is related to the Scenic Vista Stigma, but refers to the

perception that the general area surrounding a windfarm will appear

more developed and therefore influence the property values of the local

community - regardless if whether any individual homes have views of

the wind turbines. Again, it is possible for the Area Stigma to lead to

positive or negative price effects, as this will reflect the preferences of

home buyers towards windfarms. There may also be influences here

arising from community development funds, recreational opportunities

etc. (Gibbons 2015).

The Nuisance Stigma refers to the potential for disrupting factors aris-

ing from wind turbines post-construction. These are expected to occur

only very close to turbines. Nuisances include factors such as noise

and shadow flicker from wind turbine blades. Noise is expected to be

an issue for properties within a proximity of 4-5 times the hub height

of a wind turbine, assuming there are no intervening features to deafen

or disrupt this noise (Dröes & Koster 2016). So, a turbine with a hub

height of 100m could be expected to be heard 400-500m away. The flick-

ering of a shadow from the turbine could project further though there is

no estimate from the literature regarding the extent of a shadow. Dröes

& Koster (2016) do find evidence of a negative price effect arising from

the flickering shadow of turbines, though it is not statistically signifi-

cant.

The price effects found withing the literature are explained as arising

through these mechanisms. When creating an econometric model to
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evaluate the impacts then it is very important for each analysis to es-

timate the proximity to and visibility of a wind turbine from a nearby

property. In the subsequent section, I will detail the ways that prox-

imity and visibility have been defined, or proxied within the literature.

As stated previously, any effects arising from the Nuisance stigma have

thus far been proxied by distance rather than directly measuring the

sound or presence of a flicker.

Many papers within the literature include both turbine proximity - to

account for the Area Stigma or the Nuisance Stigma (noise) - as well as

visibility to account for the Scenic Vista Stigma and Nuisance Stigma

(flicker). However in the next two sections I will focus on how proxim-

ity and visibility are included separately within the literature and then

discuss the application of both together subsequently.

2.3.1 Proximity

Proximity of properties to wind turbines is a key variable in the analysis

of every paper within the literature with the single exception of Mc-

Carthy & Balli (2014) where proximity, while known, is not included in

the model. For the rest of the literature, GIS software is used to measure

proximity of homes to wind turbines. Gibbons (2015) use the center of

a windfarm and the center of a postcode to determine distance. This

is a method replicated by Heblich et al. (2016) under one specification

of their analysis. The remainder calculate proximity from a property to

the nearest wind turbine, or in some cases to all wind turbines within

the maximum distance allowed by their selection criteria. Proximity to

wind turbines or windfarms is primarily used as a means to estimate

price effects arising from the Area and Nuisance stigmas though some
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papers also use it as a proxy for visibility6.

Within the literature, there are a few different methods of defining the

distance term for the analyses they perform. Firstly, some papers use

a continuous measure of distance within their analysis (Sims & Dent

2007, Sims et al. 2008, Heintzelman & Tuttle 2012, Jensen et al. 2014,

2018). Of the papers taking this approach, Jensen et al. (2014) and

Jensen et al. (2018) measure the exact distance from each property

to the turbines which were operational during their study period, and

are able to show that there is a decreasing marginal price effect from

each additional proximate wind turbine. The other papers measure the

distance to the chronologically first operational wind turbine. The key

drawback of this approach is that when the continuous measure of dis-

tance is included within a pricing model, the coefficient is reporting the

average treatment effect for the average distance7. The issue here is

that when utilizing a continuous distance measure, the coefficient of

the distance term is the effect at the average distance from a wind tur-

bine. This is particularly problematic as these papers extrapolate their

findings to represent the impacts observed at the closest distances to

the turbines, where both local and property characteristics may be quite

different than those at the greatest distances (Hoen et al. 2015).

An alternative approach is to classify the continuous distance measures

into discrete distance bands - like rings in a target8 - to more accu-

rately estimate price effects within specific distances to nearby wind

turbines. This is considered to impose the least non-existent structure
6The earliest papers within the literature use distance as the proxy for all effects (noise,

visibility, etc) though more recent papers create term for each of the stigmas within their
model, with the exception of noise which is generally assumed to be wrapped into the
nearest distance band when these are applied.

7For example, Heintzelman & Tuttle (2012) include properties located 148 miles from
the nearest turbine, and the mean distance from a turbine was 10 miles, approaching a
point beyond the distance where any price impacts from wind turbines are anticipated.

8I provide an illustration of distance bands in Appendix A4
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on the data, as well as being the most transparent means of estimat-

ing true proximity effects9 (Hoen et al. 2015, Hoen & Atkinson-Palombo

2016, Sunak & Madlener 2016). The majority of papers in the literature

take this approach (Hoen et al. 2011, Lang et al. 2014, Vyn & McCul-

lough 2014, Hoen et al. 2015, Dröes & Koster 2016, Heblich et al. 2016,

Hoen & Atkinson-Palombo 2016, Sunak & Madlener 2017) with Gib-

bons (2015) applying this to the distances between postcode and wind-

farm centroids rather than between properties and turbines. Sunak

& Madlener (2016, 2017) also use discrete distance bands, but Sunak

& Madlener (2016) do not include a stand alone proximity measure in

their model. Instead they combine visibility and distance to all nearby

turbines to estimate a categorical visibility impact indicator. This brings

us to the next key component of the analyses within the literature: Ef-

fects from visibility.

2.3.2 Visibility

Within the literature, visibility of a wind turbine - or lack-thereof - is as-

sumed to be a key driver of any observed house price effects, and this

feeds through into all three of the stigmas described in the previous sec-

tion. The Scenic Vista Stigma assumes that a price effect occurs due to

changes in the views from nearby properties (for better or worse), while

the Area Stigma assumes that direct views of windfarms from properties

are not necessary for there to be an impact but that ultimately living in

an area with views is enough for there to be price effects. Lastly, the

Nuisance Stigma includes visual impacts arising from the flicker of a

shadow of moving turbine blades. Despite the assumed importance

of visibility to any house price effects, there is considerable variation
9A continuous functional form imposes structure because the researcher must decide

how price is related to the underlying variables (distance in this case) through the selec-
tion of a specific functional relationship between the two.
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within the literature regarding how, or if, visibility is estimated.

Broadly, the literature can be split into three categories by the approach

taken to estimating windfarm/turbine visibility. The first group are the

papers which do not directly measure visibility, but rather assume that

it is accounted for within the proximity measure (Sims & Dent 2007,

Heintzelman & Tuttle 2012, Hoen et al. 2015, Hoen & Atkinson-Palombo

2016, Jensen et al. 2018). The justification for this approach is that

these papers are measuring the effects arising from the Area Stigma

(Hoen & Atkinson-Palombo 2016), although some claim that properties

very close to turbines will have a direct view and therefore they measure

all effects from windfarms (Heintzelman & Tuttle 2012), or that because

they focus on the properties very close to wind turbines, it is likely that

they have a direct view (Hoen & Atkinson-Palombo 2016).

Within the literature, there are five papers which used in-person as-

sessments of windfarm visibility by a researcher (Sims et al. 2008, Hoen

et al. 2011, Lang et al. 2014, McCarthy & Balli 2014, Vyn & McCullough

2014). The number of sites visited ranges from 147 (Sims et al. 2008),

to more than 1,000 (Hoen et al. 2011, Lang et al. 2014). Although there

is potential for the assessments of visibility to be subjective, each study

used one individual assessor to ensure consistency throughout. Among

these studies, all create a visibility impact scale of some kind - ie they do

not use a simple dummy variable to indicate visibility, but rather cate-

gorize the visibility into a scale from not visible to extreme visual impact.

The visual impact scales may incorporate the number of turbines which

are visible, the visibility of turbines interacted with proximity10, or even

whether the vistas the turbines interrupt were high or low quality.

10In this case, a higher visual impact score is assigned when turbines are located closer
to the properties than if turbines are farther away.
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Sims et al. (2008) define their visual impact categories by both the num-

ber of visible turbines and whether properties have partial or full views

of the turbines. They also use the full property (ie, front, back, sides) to

determine whether there are visible turbines. Hoen et al. (2011) take a

similar approach and their visibility scale includes the number of tur-

bines visible, as well as the viewing angle. They also created a rank-

ing scale for the vista excluding the wind turbines to compare effects

from turbines which interrupted ‘good’ views to those which interrupted

‘poor’ views. Lang et al. (2014) also use a visibility scale, though rather

than creating a direct a ranking system, they estimate the percent of the

property from which turbines are visible and use this to classify proper-

ties into four categories of visibility. They generated these by what could

be seen from the street in front of the house, as well as some walking

in both directions away from it.

Vyn & McCullough (2014) also take the site visit approach to generate

a visibility scale, though they only classify the visibility of the near-

est wind turbine, and visibility only accounts for visibility of the blades

rather than the tower. Lastly, McCarthy & Balli (2014) are unique to the

literature in that they use both site visits to assign a visibility impact

scale as well as applying an assessment using GIS software. Though

their analyses using the GIS and site-visit visibility measures show no

differences, they do report that there was a roughly 5% misclassifica-

tion of visibility in the GIS model, largely due to intervening flora and

buildings.

The final category of visibility estimation includes those which apply

GIS techniques to model visibility. This is the most popular means of ac-

counting for windfarm visibility within the literature, as for most studies

it was not feasible to physically visit each individual property or location
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within the datasets used. The most basic visibility estimation technique

within the literature involves generating viewsheds or line-of-sight esti-

mation from properties to wind turbines using a Digital Elevation Model

(DEM). This is the approach taken by Gibbons (2015) and McCarthy

& Balli (2014), both of which use a 200 meter grid resolution. DEMs

represent surface elevation on a grid, where each tile contains the aver-

age elevation within each grid-tile. DEMs are essentially topographical

maps which can be used to determine if a property has a view of a wind

turbine, or if the view is obstructed by geological features such has hills

or mountains. Therefore higher resolution (smaller tiles) DEMs will gen-

erate more accurate visibility estimations11. Jensen et al. (2014) utilize

a 1.6 meter resolution DEM, which is the most granular analysis taking

this approach within the literature.

However, DEMs only account for topographic features and on their own,

do not account for features such as buildings or trees. Within the more

recent literature, many papers have augmented their DEMs with build-

ing height data to take account for lines of sight or viewsheds where

wind turbines are blocked by buildings Jensen et al. (2014), Dröes &

Koster (2016), Heblich et al. (2016). For Jensen et al. (2014) and Dröes

& Koster (2016), this does not require restricting the data in their sam-

ple as they were able to access building height data covering the entire

areas of their analyses. Heblich et al. (2016) restrict their analysis which

includes building heights as there is currently not data available for the

whole of Scotland. One final augmentation to GIS visibility analyses is

the inclusion of land cover such as trees, which may also block views of

wind turbines. Currently, only Jensen et al. (2014), Sunak & Madlener

(2016), and Sunak & Madlener (2017) do so in their analyses. To achieve

this, they make use of Digital Surface Models (DSM) which include this
11Figure 4.10 provides a comparison between DEMs at differing resolutions.
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information, and are the most refined level of visibility estimation set

ups possible within GIS. The key difference between a DSM and a DEM

is that DSMs represent the elevation of topographic, flora, and building

objects on the Earth’s surface. A DEM represents only the topographic

elevation.

One may be under the impression that including building heights or

flora will improve accuracy of the visibility modeling. This is true under

some circumstances, but unfortunately, there is a potential drawback

to the utilization of these data. This is due to the potential for a DSM or

a DEM augmented with building heights to no longer represent the true

state of the landscape. None of the papers in the literature restrict their

analyses to be within ±3 years of the date that the building height data

or DSMs are published as is recommended to ensure the accuracy of the

data (CEDA 2020).This is simply due to the nature of changes in both

the building stock or flora within the data, where outside of this range

the data may no longer reflect the past or present state of things. This

is particularly problematic for the papers whose analyses contain very

long study periods such as Heblich et al. (2016) or Sunak & Madlener

(2016).

2.4 Analytical Approaches

In the previous sections, I have outlined the approaches within the data

to determine the size or area of the studies, the type of transactions used

to estimate prices, as well as the differing approaches to measuring

windfarm proximity and visibility. There are a variety of approaches to

building the dataset which is ultimately used to estimate price impacts

on housing transactions from wind energy developments. Regarding
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the statistical approaches within the literature, there is a similar level

of variety of econometric models to which these datasets are fitted and

ultimately generate the discordant findings in the literature. In this

section I will discuss these econometric approaches from the literature,

but I do focus on those most relevant to the empirical analyses of Chap-

ters 3 and 4.

Price = Treatment+ Characteristics+ Location+ Time (2.1)

I provide a generalized version of the Hedonic Models applied within

the literature in Equation 2.1. This is to highlight the key variables

included in the analyses whether they take the form of a standard he-

donic regression model or the more complex Difference-in-Difference

models. Each of these variables are expected to influence the transac-

tion prices of homes, first and foremost is the treatment by windfarm or

wind turbine siting. As described in the previous sections, treatment

may include windfarm proximity, visibility, or a combination of the two.

When the coefficient for this term is negative and statistically signifi-

cant, this indicates that wind turbines may be a disamenity - if it is

positive and statistically significant, the opposite is true. The property

characteristics are also expected to be an important contribution to the

transaction price, and these may include construction type or informa-

tion about the size or number of rooms of a property. Location is also

important, firstly to control for local fixed-effects, but also locational

features such as crime or school quality, or proximity to recreational

activities. Lastly, it is important to incorporate the time of transactions

or treatment into the model as prices may fluctuate over time due to

shocks such as the Financial Crisis of 2008.
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Within the wider hedonic literature, the standard hedonic regression

model is the workhorse for revealing the value buyers place on property

features or characteristics. However, there are some drawbacks to this

approach, mostly regarding the potential for spatial auto-correlation,

and the presence of fixed effects that these basic models do not ac-

count for. Within the windfarm amenity literature, only Sims et al.

(2008), McCarthy & Balli (2014), and Hoen et al. (2015) use this as their

econometric approach to valuing the house price effects from windfarm

siting. Though the nature of these two papers being essentially case

studies, examining the impacts of one windfarm (Sims et al. 2008) and

two windfarms on two towns (McCarthy & Balli 2014), the models are

unlikely to suffer too much from these issues.

Other papers within the literature augment the basic OLS regression

models to account for spatial fixed effects, these include simply includ-

ing fixed effects within the OLS model (Heintzelman & Tuttle 2012),

including a Generalized Method of Moments Estimator and a Spatial

Autoregressive Error term Jensen et al. (2014), or applying a General-

ized Additive Model with fixed effects (Jensen et al. 2018). These models

account for spatial and temporal fixed effects, by including quarter and

location dummy variables which should reduce bias in the estimated

coefficients, but there are more robust econometric methods within the

literature. For example, Vyn & McCullough (2014) apply a Hedonic

Box-Cox model with a Spatial Autoregressive Error while others apply

a difference-in-differences model.

The fixed effects DID model is the preferred econometric tool for estimat-

ing the price impacts of windfarm siting on property values because it

generates far more reliable results than the standard OLS models. This

is largely due to the DID models simulating a Randomized Control Trial,
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or natural experiment via comparing a treatment and control groups to

measure the differences in outcomes for the two groups (Callaway et al.

2018, Athey & Imbens 2018, 2021). Within the context of the literature,

treatment relates to the siting of a nearby windfarm and the control

group are those untreated. I will discuss treatment and control groups

in more depth in the next section. Ultimately, a DID compares the pre-

treatment values of properties in both the treatment and control group

to the post treatment values generating estimates of windfarm siting

(turbine proximity and visibility)on nearby house prices.

2.4.1 Spatial Fixed-Effects Difference-in-Differences Mod-

els

The majority of the most recently published papers have chosen to im-

plement a spatial fixed-effects DID model to estimate the house price

impacts from windfarm proximity or visibility (Hoen et al. 2011, Lang

et al. 2014, Gibbons 2015, Dröes & Koster 2016, Heblich et al. 2016,

Sunak & Madlener 2016, 2017). Within any DID framework, there is

an interaction between the treatment - regardless of what the treatment

ultimately is defined as - and the time that the treatment becomes ac-

tive. In this section I will discuss the differences across this subset of

the literature and how they have implemented the DID framework, and

provide a generalized version of this model below in Equation 2.2.

Price = (Treatment ∗ Time of Treatment) + Characteristics+

Location F ixed− Effects + Time Trends

(2.2)

In its generalized form, the variable of interest in the DID framework in-
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corporates both treatment and the time that treatment occurs. Again,

treatment could be turbine proximity, visibility, or a combination of the

two. The time of the treatment varies across the analyses within the lit-

erature, but is generally defined as the date when a wind turbine (or the

windfarm it belongs to) becomes operational. However some papers test

for robustness to alternative definitions of treatment timing such as af-

ter construction is announced but prior to operation. There is also some

variety in regards to the chosen control or comparator group within the

literature. Characteristics are again incorporated into the DID model.

To control for unobserved features which may influence house prices,

but which vary across both time and space, these models incorporate

Fixed-effects and Time Trends into the model. This is to account for

any features or time trends which may be related to the treatment by

windfarm proximity or visibility.

Hoen et al. (2011) define treatment as being within 2 miles of a visi-

ble wind turbine, but they perform three separate analyses within this

framework which differ through the timing of this treatment. In the first

model, treatment occurs when it is publicly announced that a windfarm

will be built, the second model sets treatment at the time construction

work begins, and the final model sets the treatment timing at the date

the windfarm becomes operational. This allows for an estimation of an-

ticipation effects (ie, home buyers would not see a wind turbine at the

announcement date, but may anticipate an impact on the views from the

home). In each model, the set of control properties are those located 3-

10 miles from the nearest wind turbine and in the post-operation model

the control set includes the properties which will ultimately have a line

of sight to a turbine. Lang et al. (2014) take a similar approach, with the

treated group being properties within 2 miles of an operational visible

wind turbine, though the set of control properties are those between 5
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and 10 miles from the nearest turbine. They set the time of treatment

to be at the date the wind turbine becomes operational. Both of these

analyses allow for the treatment itself to be a categorical variable de-

pending on the level of visual impact as described in Section 2.3.2.

While all other papers in the literature define treatment at the property

level, Gibbons (2015) and Dröes & Koster (2016) do so at the postcode

level, as do Heblich et al. (2016) under their initial analysis. For Gibbons

and Heblich et al., treatment occurs when a nearby windfarm becomes

operational within one of the discrete distance bands of the analysis.

However, unlike any of the other papers in the literature, these papers

perform two separate DID analyses. The first analysis defines the treat-

ment group as postcodes where windfarms are visible, and the second

where windfarms are not visible.

Here, the control properties are those which will - by the end of the

study period - be treated by an operational windfarm within 14km but

have not yet been treated. The time of treatment is the time that the first

windfarm becomes operational. The separate DID models are ultimately

combined to estimate at triple difference to generate the difference in

price impact between the two treatment groups. Dröes & Koster (2016)

apply a very similar approach, but the treated postcodes are limited to

those within 2km of an operational wind turbine, and the control are

those between 2 and 8km from the nearest wind turbine.

Sunak & Madlener (2016) and Sunak & Madlener (2017) also apply a

definition of treatment and control properties which which is very simi-

lar to that of Gibbons (2015). The treatment group are properties with a

direct view of the wind turbine, and are within 2km of it. The timing of

the treatment occurs when the wind turbine becomes operational, and
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the control properties include those which have not yet been treated,

but by the end of the study period will receive treatment. Though un-

like Gibbons (2015) controls also include properties which will never

have a view of the wind turbine.

In their main analysis, Heblich et al. (2016) define treatment at the prop-

erty level, but maintain the same definition as their and Gibbons (2015)

average sales analysis - simply applying this to properties rather than

postcodes. Treatment properties are those within a distance band of an

operational windfarm, again separating visible and non-visible treat-

ment groups. However, unlike the other studies within the literature

the control properties are not limited to those within a given distance.

Instead they build a set of control properties based on these having

a similar set of characteristics or internal features to those properties

which ultimately receive the treatment. The only difference being that

these properties are never exposed to an operational windfarm.

2.5 Conclusions

In this chapter, I have reviewed the well-developed literature examining

house price impacts from windfarm proximity and visibility. The liter-

ature itself has not settled on the direction, nor the size, of any price

effects on nearby homes arising from windfarms. As I have outlined

within this chapter, there are several key analytical decisions that any

research into this area must make, and within the literature there is

little consistency regarding any of these steps. This begins with the

simple selection of the properties which will be analyzed, whether the

analysis will take the form of a repeat sales or average price analysis.

The research decisions diverge further with the decisions regarding the
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classifications of proximity and visibility - though there is agreement

within the literature that these will be the key drivers behind any ob-

served price impact, there is no agreement in the approach to modeling

either. Lastly, the econometric approaches within the literature vary

greatly. Though there does seem to be a converging preference towards

a Difference-in-Difference empirical framework, the definitions of both

the treatment and control groups differ within each study. As such, it

is unsurprising that the findings of these analyses range from a house

price decrease of 14% to an increase of %3.

In the next chapter of this thesis, I attempt to better inform the literature

regarding the influence of these differences across research decisions

and their impact on the findings. I follow the basic framework laid out

by Gibbons (2015) and firstly replicate that analysis to generate a base-

line for comparison. I then extend this analysis to include additional

data unavailable at the time this article was published, and then be-

gin to test the analysis for robustness to alternative assumptions from

the wider literature. This analysis is then used as a comparison to the

empirical work of Chapter 4 where I apply a repeat sales analysis and

test this framework as well. This literature review has served to inform

the alternative assumptions tested as well as the best practices for an

analysis within the area.
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Chapter 3

House price effects of

windfarm siting in

England and Wales: An

average price analysis
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3.1 Introduction

Wind energy is one of the key tools in the transition to a low-carbon

economy. This due to the increasing maturity of the technology and

its cost advantage over other renewable energy generation technologies,

and indeed over some non-renewable energy generation technologies

(IEA 2020a). The need to rapidly transition away from a carbon-based

economy has led to substantial investment in wind energy, and the

United Kingdom has led the charge. In 2000, 946 GWh of electricity

was generated by wind turbines, and by 2018, this had increased by

nearly 57 fold to 56,906 GWh (OFGEM 2020b). This has been hailed as

a successful start to decarbonizing the UK economy. The public has re-

mained broadly supportive of offshore and onshore wind (BEIS 2020a),

and the government has made increasingly ambitions emissions reduc-

tions targets (PMO 2021). Yet, there is some evidence that despite this

support, windfarm siting may be negatively affecting property values

when properties are located near and have views of nearby wind tur-

bines.

As discussed in the previous chapter, there has been growing academic

interest in exploring the price effects of windfarm visibility and proxim-

ity on nearby house prices, though the literature itself disagrees on the

size and direction of such effects. The peer-reviewed literature examin-

ing these effects within the UK has also found differing impacts ranging

from price decreases, no price impact, to price increases. Sims & Dent

(2007) found no effect in Wales, Gibbons (2015) found significant nega-

tive price effects in England and Wales, and Heblich et al. (2016) found

evidence of positive and negative effects which were not consistent with

distance from the windfarms. In addition to the disagreeing evidence

of these analyses, there has been a rapid change in the landscape – for
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England and Wales particularly – with a substantial increase in both

the number of wind turbines operating, but also the size of such new

turbines.

Figure 3.1 below highlights the rapid increase in windfarms between

1997 and 2017, Figure 3.2 shows the growth in the total number of

operational wind turbines, and Figure 3.3 shows the increase in gener-

ation capacity over the same period. Across these Figures, the extent

of wind turbine deployment and generation capacity as it stood during

the period analyzed by Gibbons (2015) is shown by the solid line, and

shown by the dotted is the period after. At the end of 2011, there were

1,551 operational turbines in England and Wales. By the end of 2017,

there were 3,746; an increase of more than 200% over a period of 6

years. Over the same period, there was a 300% increase in generation

capacity reflecting the fact that the size of installed turbines also saw

a sharp increase both in height and blade diameter. Figure 3.4 shows

this development geographically1. The changing landscape in England

and Wales taken together with the disagreement in the wider windfarm

visual amenity literature warrant further investigation into the relation-

ship between wind turbines and house prices.

1Appendix A2 presents the geographic distribution of windfarms showing the areas
within 14km of each windfarm, highlighting the increased share of locations within Eng-
land and Wales which are potentially affected by windfarm siting.
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Figure 3.1: Operational Windfarms in England and Wales: 1992-2017

Figure 3.2: Operational Wind Turbines in England and Wales: 1992-
2017

Figure 3.3: Generation Capacity (MWh) in England and Wales: 1992-
2017
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To this end, this chapter analyzes the interaction between windfarm

proximity and visibility on nearby house prices. This is done firstly

by replicating Gibbons (2015) which makes use of an average hedonic

pricing approach to value the effects of windfarm visibility on house

prices. After replicating the paper by Gibbons, I apply the same ana-

lytical methods to an extended dataset, which includes 12 additional

years of property transaction data, and 6 additional years of windfarm

siting data. I then test the results for sensitivity to a variety of alterna-

tive specifications or datasets. This analysis is, at the time of writing,

the largest average price HPM analysis of its kind. The analyses per-

formed here will contribute clarity to a wider literature which is largely

in disagreement as to the direction and scale that windfarm proximity

and visibility affect house prices.

This extension of the analyzed period allows for several important con-

tributions to the wider literature on windfarm- visibility and its effects

on house prices. Because we assume that it is home buyer’s prefer-

ences towards windfarm visibility that lead to the reduced postcode-

average prices presented in the replication section, it is crucial to test

whether these are stable across time. Sunak & Madlener (2017) found

that reduced property values arising from windfarm visibility was per-

sistent over at least ten years. However, their analysis reported effects

arising from three windfarms. It is therefore important to test if this

is the case on a national rather than local scale. This is because not

only did the visibility of these windfarms remain stable over time, so

did the availability of properties with no view of the windfarms in their

study. In the wider environmental amenity valuation research, a meta-

analysis of price effects from urban rivers used a treatment dummy to

differentiate effects from studies published prior to and after 2000 Chen

et al. (2019). They found that willingness to pay estimates were signif-
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Figure 3.4: Geographic Distribution of Operational Windfarms in Eng-
land and Wales (1997-2017)

.
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icantly higher for studies after 2000 – they attribute this to local and

regional governments implementing river cleanup programs becoming

more common after 2000. This increased WTP can be interpreted as

home buyers showing a preference change when the valued amenity is

altered – or their perception of the amenity is altered. As there has been

a substantial change in the landscape with postcodes being treated by

both visible and non-visible windfarms for the first time, it is important

to test if our estimated treatment effect is stable over time. If the effects

are stable, this would imply that the persistence in treatment effects

reported by Sunak & Madlener (2016) may be generalizable to all wind-

farms across time. If the effects are found to be unstable, this would

reflect that while individual windfarms may have stable impacts, that

this is not necessarily the case for properties treated at other points in

time.

Through the replication of analysis performed by Gibbons (2015), I con-

firm the original results. This replication is not the only objective or

contribution of this chapter, but it generates a useful baseline set of

results which are subsequently tested to alternative analytical assump-

tions as well as additional data. Gibbons’ analysis includes windfarms

which became operational between 1992 and 2011. Since 2011, the

number of operational wind turbines in the UK has nearly doubled, as

has the area of the UK which is within 14km of an operational wind-

farm. This rapid growth justifies revisiting the effects found in previous

research, as more and more housing transactions occur in locations

with nearby wind farms. This means that an increasing share of res-

idential properties will be situated near windfarms, and therefore an

increasing number of properties will be treated by windfarm proximity

and visibility. In fact, the number of postcode-quarter transactions oc-

curring between 1995 and 2018 is over four times larger than the period
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2000 – 2012. In addition to analyzing a larger dataset, I determine if the

observed effects are consistent over time and robust to alternative ana-

lytical assumptions. Beyond the replication and extension, this chapter

presents a series of robustness and sensitivity checks which were not

presented in the replicated paper.

3.2 Contextual Background

Rapid development of wind power generation since 2000 has generally

followed the pattern of the sites most optimally suited to generating wind

energy being developed first, and the spread to areas with less wind po-

tential being developed as they become the ‘next best’ siting location

(OECD 2012). This is essentially an interaction of wind energy poten-

tial, cost of construction and cost of transmission. Sites which would

generate the greatest investment returns are generally developed first,

i.e., windy sites, near energy consumers, and which are relatively low-

cost to construct windfarms will generally be the preferred sites (OECD

2012).

Of course, there is a technological pattern as well, where increased

efficiency will open previously unproductive or unprofitable locations

to wind development. Importantly, there is also a policy dimension to

windfarm siting. Developments must receive planning permission from

local authorities, and in some cases these may be rejected – though re-

jections can be appealed to and overridden by the central government.

Broadly, these developments tend to occur in sparsely populated ar-

eas with large wind energy resources, however, the siting of windfarms

and turbines have slowly encroached on more densely populated areas.

This greater distribution across space implies that wind farms are en-
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croaching on residential areas and therefore increasingly becoming a

characteristic of homes that buyers consider when making purchases

(Heblich et al. 2016, OECD 2012).

Determining whether wind turbines should be considered an environ-

mental amenity or disamenity has important implications for energy

policy, environmental policy, and the housing market. To some extent,

this has been recognized by the UK government, which prescribes lo-

cations where wind energy development is and is not appropriate. If

wind farms cause a substantial decrease in house prices, this implies

that part of the siting and planning process of windfarms should en-

tail payments to the affected individuals to compensate for the loss of

wealth that this could cause. Similarly, if a positive impact is found on

house prices, this may encourage many communities to increase their

support for wind energy developments locally and may reduce delays

faced in the construction and operation of such farms.

3.2.1 Wind Energy And House Prices

When surveyed, the people of the UK are rather supportive of wind

energy development as well as supporting the siting of developments

within their ‘local area’ (BEIS 2020a) . However, when considering the

evidence from hedonic analyses in England and Wales, there may be

a ‘but not in my back yard’ attitude that accompanies this support.

Essentially individuals tend to support the growth and installment of

wind turbines but prefer that this development occurs out of sight and

therefore out of mind. If we follow the literature and assume that price

effects will occur near to windfarms, there is potential for the costs and

benefits of windfarm installation to accrue at different spatial scales.

The reduction of carbon emissions that wind energy provides accrues
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globally. It could be argued that increasing domestic wind energy gen-

eration increases energy security and affordability, which are benefits

which accrue nationally. However, a reduction in home values near

windfarms is a cost which accrues only in areas near to windfarms. It

is this unequal distribution of costs and benefits which have driven the

academic interest in this topic area.

If there are negative price effects, individuals may lose some of the eq-

uity in their homes, which could be a significant share of their wealth

(ONS n.d.). Of course, reducing C02 and other emissions is of key im-

portance both economically and environmentally, but these individuals

would essentially have a global share of the benefits of reduced emis-

sions whilst themselves experiencing the lion’s share of the costs. It

is therefore highly important to accurately and reliably estimate the ef-

fects that windfarms have on their local property values.

As the deployment of windfarms has increased rapidly since 1995, with

approximately 30 gigawatts of installed capacity to over 280 gigawatts in

2013 IEA (2020a). The impacts of these developments have been stud-

ied with increasing scrutiny from economic, environmental and social

perspectives OECD (2012). These have considered the wider impacts of

wind turbine and windfarm developments on variables such as employ-

ment and income, but more recently research has been conducted to

test for and estimate price effects from windfarm siting. Although the

work of Gibbons (2015) is the focus of this chapter, it is not alone in the

application of a revealed price approach to estimate price effects.

Revealed preference methods use the actual choices that individuals

make to place a value on the amenity in question Blumenschein et al.

(2008). The Hedonic Price Method is one of the most common revealed
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preference approaches for determining the value of non-market envi-

ronmental amenities in housing transactions. This is because environ-

mental characteristics can be considered characteristics of the property,

and contribute to the price at which buyers are willing to purchase a

house Monson (2009). This could include the age, size, number of bed-

rooms, etc. that the house contains. However, the price may also in-

clude aspects such as the surrounding scenery. The Hedonic Pricing

Method provides information on the value that individuals place on cer-

tain characteristics or amenities, via the price premium that certain

amenities have over others Lang et al. (2014). The generic formula for

determining house prices is given below:

Price = f(intrinsicfeatures, extrinsicfeatures, time)

Hedonic pricing approaches allow for the decomposition of property val-

ues into a variety of components, each with their own attached value

which taken together equal the sales price of a property transaction.

These values are revealed through the prices paid by home buyers. De-

termining the marginal value of individual property characteristics that

home buyers are willing to pay or be compensated for is the key value of

applying any hedonic analysis. When this is applied to features, those

which increase the value of a home are considered amenities, those

which decrease the value of the home are considered disamenities Mon-

son (2009).

Intrinsic features refer to characteristics such as the number of bed-

rooms, bathrooms, lot size, etc. Extrinsic features are characteristics

of the location where a property is situated, such as the crime rate,

school quality, or as the focus of this chapter – the presence of nearby

wind turbines. Lastly, the timing of a sale is an important factor which
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this chapter as well as much of the literature exploit to generate es-

timates of price effects from windfarm siting. This is due in part to

time-specific price trends across the housing market itself, but we ex-

ploit the fact that transactions may occur before and after windfarms

become operational. Thus the analysis of this chapter estimates how

the change in the characteristics of properties (the novel presence of a

windfarm) is factored into the price.

3.2.2 Windfarms, House Prices, and the United King-

dom

I now move on to discuss the two papers which apply similar hedonic

approaches to value visual amenities or disamenities from windfarms

within the UK. The first paper, by Heblich et al. (2016) evaluated the

price effects in Scotland and found a mixed set of results. The second,

Gibbons (2015), explores these effects in England and Wales and finds

consistent and substantial negative price impacts. These two papers

apply very similar methodological approaches, but with several key dif-

ferences in their definitions of the treated and control groups – which

may explain some of the differences that they find. Both papers are

unique to the literature insofar as they seek to value both the price of

windfarm proximity and visibility by comparing effects from proximity

to nearby visible and nearby non-visible windfarms. Additionally, Gib-

bons (2015) provides a triple difference estimate to compare these two

price effects.

Heblich et al. (2016) evaluated the impact that windfarms had on nearby

house prices in Scotland. The analysis found results that suggest some

areas of Scotland experience price increases from windfarm visibility
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and decreases from lack of visibility. These findings differ from the rest

of the literature which applies similar methodological approaches as

well as the wider windfarm-amenity literature. The study used house

price paid data from 1990-2014 and windfarm data for windfarms built

between 1995 and 2014. The results of this study were robust to a va-

riety of methodological approaches and reliability tests.

The analysis was conducted using a Repeat Sales approach where in-

dividual homes were linked to individual turbines or entire windfarms,

as well as an average price approach following Gibbons (2015) Their

viewshed calculation included natural landscape and built infrastruc-

ture which could obscure views. The results, which found that at the

2-3km range, house prices where windfarms were visible increased by

2% compared to similar homes where the windfarms were not visible.

Interestingly, at other distance bands, it was found that the lack of wind-

farm view was associated with price decreases. Additionally, they find

that some of the more rural regions of Scotland experienced insignifi-

cant decreases in property prices.

Gibbons (2015) examines the price effects of windfarm proximity and

visibility in England and Wales, using similar methods but ultimately

finds severe negative price impacts from windfarm siting. The analysis

includes modeling for proximity alone, visibility, and both proximity and

visibility at different spatial scales. Gibbons (2015) defines treatment as

occurring once a windfarm is operational within a given distance from a

postcode. He models windfarm visibility and lack of visibility separately.

Once a postcode is treated, it remains treated through to the end of the

study. Here, the control or comparator group are postcodes which have

not been treated by operational windfarms – yet. This essentially means

that the treatment and control groups are the same sets of postcodes –
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by the end of the study all postcodes are treated.

This removes any potential bias from the arbitrary selection of a control

group, ensuring that there is comparability in the spatially fixed-effects

between the control and treated groups. Gibbons (2015)s defines two

DD analyses one which estimates the effect of treatment by visible wind-

farms, and the other which estimates the effect of treatment by non-

visible windfarms. He finds that treatment by visible windfarms lead to

negative price effects, whilst treatment by non-visible windfarms leads

to positive price effects. These results are then compared by performing

a triple-difference (DIDID) analysis. which shows the relative difference

between these two treatment groups, and suggests that the DID models

alone may underestimate the true price impact from windfarm visibility.

The findings of this paper were that for visible-operational windfarms

within 1km was -6.32%, within 2km -6.28%, 4km -3%, 8km – 1% and

within 14km found a negative, but insignificant impact. When these

were split into distance bands, similar results were found: 0-1km -

5.39%, 1-2km, -5.78%, 2-4km, -1.93%, 4-8km, -1.04% and 8-14km

-.5%. All of which were statistically significant results. These are some

of the largest price effects within the literature, particularly for proper-

ties which are relatively distant from windfarms.

In the subsequent sections of this chapter, I follow the methodological

approach laid out by Gibbons to assess the hedonic value of windfarm

visibility and proximity on house prices. The first analyses are an at-

tempt to replicate the work by Gibbons, and the second set of results

extends this analysis to include a considerably larger dataset as well

as to investigate how changes to the underlying data impact upon the

results. The primary investigations revolve around updating the anal-
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ysis to include 12 additional years of data, apply alternative visibility

estimation techniques, and testing for robustness to key assumptions

around data inclusion and exclusion criteria.

3.3 Methods

To determine the effects of windfarm siting on house prices, the anal-

ysis performed in this chapter applies a Fixed Effects, Difference-in-

Difference (DID) model in a Hedonic Pricing context. The model itself is

borrowed from Gibbons, but I test it to a variety of alternative datasets

to both improve the estimation and test for sensitivity to alternative vis-

ibility estimates, and data exclusion criteria. In this section, I describe

the estimation strategy and the data underpinning the analysis. I then

apply this DID framework to a replicated dataset and subsequently to an

extended dataset. The spatial FE model is applied here because there

may be unobserved characteristics of locations suitable for windfarm

siting which also impact house prices - this arises from spatial depen-

dence, must be controlled for within the model.

A key requirement in the application of a DID estimation is that both

the parallel trends and parallel shocks assumptions be met (Athey &

Imbens 2018). The analysis here achieves this by restricting the anal-

ysis to property transactions occurring within postcodes that are com-

parable in their suitability for wind energy developments. Essentially

it is assumed that the characteristics that lead to windfarm siting are

similar across regions, and the price effect estimated here represent

the change in windfarm visibility. Postcode fixed effects are removed in

Equation 3.1 by using the within groups estimator and common time

effects are removed by using quarter-specific dummy variables. Here I
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am accounting for the similarities in house prices that we would expect

to see as a virtue of a property being near an area suitable to wind en-

ergy developments. The time effects account for external factors that

are time variant, i.e. the financial crisis of 2008 which caused a signif-

icant drop in property.

Figure 3.5 shows the natural log of the average transaction price for

properties within 14km of a visible windfarm (dotted line), within 14km

of a non-visible windfarm (solid line), and properties more than 14km

from a wind turbine (dashed line). The same trends are presented for the

mean transaction price in ix A7. The analysis of this chapter makes use

of only properties within 14km of a windfarm and these track each other

quite well showing that the parallel trends and shocks assumptions are

not violated and therefore the data is suitable for the application of the

DID model. The set of properties located in postcodes more than 14km

from an operational windfarm have a much higher average price, and

the yearly growth in price does not follow the same path as those near

to windfarms.
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Figure 3.5: Yearly Transaction Prices for Properties within 14km of Vis-
ible and Non-visible Windfarms (1995-2018)

3.3.1 Estimation Strategy

I follow the estimation strategy applied by Gibbons (2015). This makes

use of a Fixed Effect DID, as well as a difference in difference in differ-

ence (DIDID) estimator at the later stage of the analysis. The original

work did not have information on planning permission or construction

dates for the windfarms analyzed, so it is assumed that the date of op-

eration is taken as the date around which the price effects are expected

to take effect. However, I make use of an improved dataset and test for

anticipation effects post announcement and prior to operation and find

a negligible effect. This serves as an event study and enhances the reli-

ability of the estimated effect arising from operation and the effects are

reported in Table A5.
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The following basic equation is the starting point for the DID/fixed ef-

fects regression specification it is worth noting that this equation is used

separately to generate estimated price effects for visible and non-visible

windfarms. Equation 3.1:

ln(price)it =
∑
k

βk(visible, jk < dististance < k, operational)it−1

+x′
itγ + f(i, t) + Eit

(3.1)

Where:

• ln(price)it is the average housing transaction price in postcode i in

quarter t.

• (visible, jk < dististance < k, operational)it−1 is an interaction dummy

indicator which captures exposure to windfarm developments. With

a value of 1, this indicates that postcode i has at least one visible -

or non visible -operational windfarm between j_k and k kilometers

in the preceding quarter.

visible is the visibility indicator. When effects from visible wind-

farms are estimated this takes the value 1 if a windfarm is visible

from postcode i. When effects from non-visible windfarms are es-

timated, this takes the value of 1 if a windfarm is not visible from

postcode i.

jk < dististance < k is the distance indicator – under the first

specification distance takes the form of radii, and in the second

distance is defined in bands to test allow for a more refined esti-

mate of proximity effects.

operational is a post-policy indicator which indicates whether

the turbine(s) have been built and are operational.

• βk, the coefficient of interest is the average effect of windfarm tur-
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bines visible within distance band jk-k on housing prices. The

sign (+-) of βk is unknown a priori because it will be influenced

by home buyers’ preferences for views of windfarms, the impact of

noise or visual disturbance, potential gains or losses from shares

in profits, community grants, employment or other impacts related

to windfarm proximity. Because this is a DID model, if the coeffi-

cient is negative, this means that prices have fallen relative to the

comparator group. If the coefficient is positive, prices have risen

relative to the comparator group.

• f(i, t) represents unobserved components which may vary over time

and space, and are inevitably correlated with the visibility of wind-

farms due to the fact that windfarms are not distributed randomly,

as well as the fact that postcodes near windfarms may not be simi-

lar to postcodes that are not near windfarms. Correlation with the

time effects is present because the number of windfarms increases

over time, and this would create a spurious correlation between

any trend in average prices over time with visibility of windfarms.

• Eit is the general error term.

For the first stage of analysis, Equation 3.1 compares effects at dif-

fering distance radii. Under this specification, the dummy variable

jk < dististance < k is defined as jk = 0, and k = 1km, 2km, 4km, 8km,

or 14km. The radius stops at 14 because wind turbines are expected to

be only barely visible at this distance. The use of distance radii allow for

testing whether any price effects decay with distance. However, the use

of radii as the distance measure may contaminate the analysis insofar

as the coefficient of interest here reports the average treatment effect

for the full sample of affected transactions within that radius. To gen-

erate a more refined estimate of the influence of proximity on the size

and direction of potential price effects, I refine the distance measure.
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I redefine jk < dististance < k to represent discrete distance bands. By

splitting the radii into bands, it is possible to analyze effects at discrete

distances from wind turbines. these more closely and to see exactly

where impacts are greatest. Here, there are 5 distance bands in the

model: 0-1km, 1-2km, 2-4km, 4-8km, 8-14km. These distance bands

are a feature of Gibbons (2015) and I maintain them both within the

replication and the extended analysis. This allows for a cleaner anal-

ysis of the impacts at varying levels of proximity to windfarms. Figure

A6 illustrates the distance bands used in this analysis.

Lastly, to obtain clearer estimates of windfarm visibility impacts, 3.1

is augmented with treatment indicators for postcodes within the given

distance bands of windfarms, but where the turbines are unlikely to be

visible from due to the lay of the land. Cleaner estimates of the impacts

of windfarm visibility can be estimated by differencing these two differ-

ences. This triple difference is the relative difference in changes to price

by treatment by visible windfarms relative to treatment by non-visible

windfarms. This is an important test of the estimated effects of wind-

farm visibility because postcodes because the two sets of treated post-

codes are located in geographically very similar locations. These two

treated groups are assumed to be very comparable on unobserved char-

acteristics and therefore subject to similar price trends arising through

omitted causal channels. I should note here, that it is possible that

differences observed at the closest range (0-1km) between visible and

non-visible wind farms could arise from sound effects from windfarms

and not visibility only. Equation 3.2 is shown below:
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ln(price)it =
∑
k

βk(visible, jk < dististance < k, operational)it−1+

∑
k

δk(non− visible, jk < dististance < k, operational)it−1 + x′
itγ + f(i, t) + Eit

(3.2)

Equation 3.2 uses a treatment dummy which indicates that there are

no visible windfarms at the postcode, that the postcode is at a given dis-

tance band, and the turbines are operational. In this equation, δk are

estimates of the effects on house prices due to proximity to operational

wind farms when there is no impact from the turbines being visible in

the postcode. Therefore, the DIDID estimate of βk - δk will provide a

better estimate of the specific impact of windfarm visibility through the

gap between house prices where windfarms are visible and where they

are not. This allows for an explicitly inferred willingness to pay through

housing expenditure to avoid views of wind turbines, as well as the es-

timated compensation required for willingness to accept the visual of

wind farms disamenity. This gives a clearer estimate of the valuation of

the visual impacts of windfarms on house prices.

3.3.2 Data

The data necessary to the analysis of this chapter was obtained from a

variety of sources, but mostly match the sources used by Gibbons. All

datasets are either freely available to the public or are freely available

via an academic use license. I list the data and their sources a Table

3.1 below. I merge windfarm, postcode, and house price data to con-

struct several datasets with observations in each postcode i at quarter t.

Firstly, I impute windfarm and postcode geocoordinates into GIS where

I then generate a linked dataset which includes distance from windfarm
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centroids to postcode centroids. I then generate several visibility esti-

mates for each postcode to determine which windfarms it has a line of

sight to, or is within the viewshed of. Example viewsheds are located in

Appendix A4 In addition, I generate postcode level geographic controls

including elevation, slope and aspect. This dataset is then merged with

the property transaction dataset and further cleaned and transformed

into a usable format.

Ultimately this provides a series of unbalanced panels, with gaps when

there are no transactions in postcode i in quarter t. The panel includes

the following variables of interest for each postcode-quarter: natural log

of the average price, share of transactions by property type, postcode

elevation, slope and aspect, year dummies, quarter dummies, postcode

distance from windfarms, dummy indicators for postcodes with trans-

actions which occur before or after the windfarm became operational,

and visibility dummies. The replicated dataset is restricted to transac-

tions occurring between January 2000 and March 2012 within 14km

of windfarms which became operational before January 2012, while the

extended analysis uses the full dataset. I make further restrictions and

alterations to the underlying panel in order to perform a series of ro-

bustness checks. These alterations are described in more detail below,

and are primarily related to alternative visibility calculation and the re-

laxation of windfarm exclusion criteria.

It is important to note that within this application of the HPM, it is only

possible to measure marginal changes in price without the application

of a further sorting model which is beyond the scope of this work.
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Table 3.1: Data and Data Sources

Data Period Published Source Application Access

Postcode Data 1995-2018 2018 ONS Geocoordinates of postcode centroids used to
determine distance and visibility to windfarms.

Free

Housing Transactions 1995-2018 10-Jul HM Land Registry Housing Type, price, and address Free

Wind Energy

Wind Farms 1992-2017 10-Jul Renewable En-
ergy Planning
Database, Re-
newable UK

Windfarm location, turbine height, generation
capacity, status, dates of operation

Academic

Digital Elevation Models

200m DEM 2015 Digimaps Visibility analysis and geographic controls Academic
90m DEM 2015 Digimaps Visibility analysis and geographic controls Academic

Landcover

Landcover Map 2000 2000
Windfarm Exclusion based on urban landcover

Academic
Landcover Map 2010 2010 Academic
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3.3.3 Descriptive Figures and Statistics

In this section, I provide the summary statistics of the windfarms, post-

codes, and transactions used to generate the results presented in sub-

sequent section of this chapter. The replicated analysis was limited to

the inclusion of windfarm siting data between 1992 and the final quar-

ter of 2011, and housing transactions occurring over the period 2000-

2012. I now extend the analysis to include windfarm siting data between

1992 and the final quarter of 2017 and housing transactions occurring

between 1995 and the first quarter of 2018. In this section, I provide the

summary statistics of the windfarms, postcodes, and transactions used

to generate the results presented in subsequent section of this chapter.

The replicated analysis was limited to the inclusion of windfarm siting

data between 1992 and the final quarter of 2011, and housing transac-

tions occurring over the period 2000-2012. I now extend the analysis

to include windfarm siting data between 1992 and the final quarter of

2017 and housing transactions occurring between 1995 and the first

quarter of 2018. I also show here visibility estimates under a variety of

alternative specifications. Price effects are then are reported in Table

3.4 for the following datasets:

• Results as presented by Gibbons (2015)

• Replicated Analysis: Restrict to the period 2000-2012, maintain

Gibbons’ exclusion criteria

• Extended Analysis: Using all available data, but maintain Gibbons’

exclusion criteria

• Full Analysis: No restriction Criteria

• Robustness to: House Price Restrictions, treatment intensity, and

the study period.
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The characteristics of the windfarms included in the subsequent analy-

ses are presented in Table 3.2. The turbines used in more recent wind-

farm construction tend to be larger, and have a higher generation ca-

pacity, and more numerous than in older windfarm sites. The extended

analysis of this chapter considers these changes in windfarm character-

istics. Although the replicated dataset is using the process outlined by

Gibbons (2015), there are some important differences between his re-

ported statistics and those of the replicated dataset which I note here.

These include the average height to tip, MW capacity, and the number

of turbines.

It is also worth noting that when using the image of windfarm locations

that Gibbons provides, I find several differences in the windfarm loca-

tions. If it is assumed that the image presented by Gibbons reflects

the windfarms in the analysis, there are a few violations of the data

restrictions: one Scottish windfarm is included2, two windfarms which

are more than 14km from any English or Welsh postcodes is included3.

Additionally, several windfarm centroids in the North Midlands do not

match the locations presented by Gibbons (2015). A side-by-side com-

parison of centroid locations is presented in Appendix A4.

The use of a slightly different windfarm dataset feeds into the rest of

the panel building process, and therefore the results. Despite this, the

replicated dataset and results remain broadly similar to those reported

by Gibbons (2015). The number of postcodes included in the analysis

are also broadly similar as reported in Table 3.3. Table 3.4 compares

visibility estimations for the postcodes included in the analysis under

several specifications. The largest discrepancies arise at the greatest

distances from the windfarm centroids, which is to be expected. These
2Robin Rigg
3Walney I and II
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Table 3.2: Windfarm Summary Statistics

Gibbons:
1992-
2011

Replicated:
1992-
2011

Extended:
1992-
2018

All: 1992-
2018

Turbines

Mean 11.2 10.76 6.25 5.74
SD 15.4 15.2 15.9 14.63
Min 1 1 1 1
Max 103 103 175 175

MW Capacity

Mean 18.6 18.9 14.25 12.58
SD 39.2 35.63 53.95 48.93
Min 0.22 0.2 0.09 0.09
Max 300 300 630 630

Height to Tip

Mean 90.9 86.2 85.11 85.94
SD 29.2 25.57 27.76 27.99
Min 42 42 28 28
Max 150 150 195 195

Total Windfarms 148 148 589 653

are also the areas expected to have the least impact due to the visible

size of a wind turbine at such distances. This table shows that par-

ticularly at the closest distances where price effects are expected to be

the most felt, the visibility estimates are quite consistent regardless of

the DEM and visibility calculation applied. Lastly, Table 3.5 reports the

postcode-quarter transaction summary statistics. The largest discrep-

ancy between the data as reported by Gibbons and the replication is the

share property types of transactions included in the analysis. The repli-

cated dataset includes substantially fewer flats/maisonette and sub-

stantially more semidetached properties, which are presented in table

3.5 It is worth noting that according to the 2011 and 2018 English

Housing Survey, roughly 20% of UK household stock consisted of flats.

This is higher in Urban areas and lower in rural areas. It is possible

that the replicated data includes more rural postcodes relative to the
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selection by Gibbons.

Table 3.3: Postcode Counts by Distance Radius

Distance
from
wind-
farm

Gibbons:
2000-
2011

Replicated:
2000-
2011

Extended:
1995-
2018

All: 1995-
2012

0-1km 1,142 1,149 3,146 3,751
0-2km 5,350 5,898 18,971 22,353
0-4km 20,838 22,416 79,277 105,550
0-8km 81,820 85,573 260,219 327,155

0-14km 220,669 233,473 597,846 726,356

Table 3.4: Visibility Estimates

Distance from windfarm Extended 200m DEM 90m DEM 200m DEM 90m DEM

0-1km 3,146 3,095 3,092 3,104 3,099
0-2km 18,971 18,049 17,919 18,222 18,234
0-4km 79,277 66,593 65,800 69,748 69,177
0-8km 260,219 172,577 167,138 191,599 189,361

0-14km 597,846 295,037 282,721 351,414 344,539

Visible X X X X X
Not Visible X

Viewshed Gradient X X X
Horizon Depth X X X
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Table 3.5: Postcode Quarter Transaction Summary

Gibbons Replication Extended All Windfarms

Observations 1,710,293 1,830,664 5,512,092 6,944,185
Mean Log Price 11.56 11.63 11.64 11.56

Detached 0.25 0.2122 0.24 0.25
Semidetached 0.07 0.3002 0.31 0.32

Flat 0.361 0.1133 0.11 0.08
Terraced 0.32 0.3743 0.34 0.34
Newbuild 0.041 0.0393 0.04 0.05
Freehold 0.849 0.8081 0.83 0.83

3.4 Results

The following section reports a series of results arising from the em-

pirical analyses described in the previous sections. These results are

organized as follows: First, I present the results of my replication of the

work by Gibbons which becomes the baseline for the additional anal-

yses tested here. The replicated results are restricted to include only

postcode-quarter transactions from the period 2000-2012, and wind-

farms which become operational in the period 1992-2011. I then re-

port the results of an expanded analysis which makes use of the full

dataset and alternative model specifications. This extends the period of

analysis to include transactions from 1995-2018, and windfarms which

became operational in the period 1992-2017. I then report a series of

robustness checks to test the key assumptions of the model, as well as

test for sensitivity to alternative restrictions in the dataset. These ex-

tended results and their contributions are discussed in the context of

the wider windfarm-amenity literature.

The replicated distance radii results are reported in Table 3.6 where I

compare the effects of both visible and non-visible windfarms on post-

code average prices. These results are grouped by distance and the

replicated results are compared to the original findings for both effects
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from visibility and lack of visibility. I then move on to focus on the

distance band specification which forms the backbone of the extended

analysis and separately report the results of the distance radii analysis

in Table 3.7. I then present the robustness tests in the subsequent sec-

tion.

3.4.1 Replication Distance Radii

This section provides a set of results estimating the treatment effect,

or the average change in postcode average prices after being treated by

an operational visible or non-visible windfarm at a given radius. The

replicated results are well-aligned with those reported by Gibbons. I

find negative price effects which are generally larger at the most prox-

imate distances to visible windfarms and become insignificant when

postcodes at the greatest distances from windfarm centroids are in-

cluded in the analysis.

Both the replicated results and those reported by Gibbons show neg-

ative and statistically significant price effects arising from non-visible

wind farms at the 0-8km radius. In the 0-1km distance radius the

results are remarkably similar - both Gibbons’s and the replicated esti-

mate that a visible windfarm at this distance will decrease property val-

ues by about 6.6%. However, the similarity in estimated impact begins

to decrease for each subsequent distance radius. At the 0-2km radius,

I find a nearly 1.3% larger negative impact than Gibbons. This patterns

continue at the 0-4km radius, where I find a 1.4% larger decrease in

transaction price. At the 0-8km radius this grows to a 3.2% difference

between the replicated estimate and Gibbons’. Although the estimated

impact is not statistically significant in the 0-14km radius the repli-

cated results are still much larger and more negative. This is consistent
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across the replication.Broadly speaking, The Properties nearest visible

windfarms sell at lower prices than those further away, and these dif-

ferences are often statistically significant. These reduced prices can be

attributed to the presence of operational and visible windfarms. Lack

of visibility is associated with insignificant negative impacts, and a sta-

tistically significant positive impact at the 0-8km radius.

Table 3.6: Replication: Distance Radii

Radius Visible Not Visible

0-1km -0.0666* -.0667*** - -
(RSE) (0.0221) (0.0019) - -
Obs. 8,052 8,659 - -

0-2km -0.0558*** -0.0689*** -0.0611 -0.0697
(RSE) (0.0095) (0.0074) (0.0609) (0.0560)
Obs. 37,998 45,575 37,998 45,575

0-4km -0.0244*** -0.0426*** -0.0018 0.0030
(RSE) (0.0054) (0.0044) (0.0125) (0.0031)
Obs. 150,907 182,077 150,907 182,077

0-8km -0.0035 -0.0358*** 0.0165*** 0.0113***
(RSE) (0.0029) (0.0024) (0.0041) (0.0043)
Obs. 621,395 702,191 621,395 702,191

0-14km -0.0027 -0.0252 -0.0024 -0.0014
(RSE) (0.0017) (0.0154) (0.0020) (0.0010)
Obs. 1,710,293 1,830,644 1,710,293 1,830,644

Gibbons X X
Replication X X

Notes:
∗ ∗ ∗p < 0.001
∗ ∗ p < 0.01
∗p < 0.05
RSE: Robust Standard Errors Clustered at the
Output Census Area
Control Vars: postcode slope-by-year, elevation-
by-year, aspect by-year dummies, proportions
of sales of detached, semi-detached, terraced,
flat/maisonette;quarterly dummies. Results are
reported to four decimal places.
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3.4.2 Replication Distance Band Analysis

The results of the distance band analysis are presented in Table 3.7

which provides a side-by-side comparison of the replicated results and

those from Gibbons. I present effects at each distance band for visible

and non-visible windfarms. I have arranged Table 3.7 to present results

of the replication beside the comparable analysis from Gibbons. Effects

from visible windfarms are reported in Columns 1 and 2; non-visible

windfarms in Columns 3 and 4; and the triple difference estimates in

Columns 5 and 6. The replicated results again agree with those re-

ported by Gibbons.

Table 3.7 Column (2) reports the statistically significant estimated price

effect which ranges from a 6.42% to a 3.13% decrease in price for prop-

erties within the first four distance bands, up to 8km, from visible and

operational windfarms before becoming statistically insignificant at the

8-14km band. Again, it was expected that the largest effect on house

prices would occur at the closest distance to windfarms where a larger

share of a property’s viewshed would be interrupted by wind turbines.

However, much like the radii specification of the model, it is the second

distance group (the 1-2km distance band) where the largest effect is

detected. Here, I find that property transactions in the 0-1km band sell

on average, for 6.02% less after visible windfarms become operational.

This effect then increases to -6.42% at the 1-2km distance band, then

the effect begins to decrease with an average reduction of 3.8% in the 2-

4km distance band, dropping to a 3.13% decrease in the average price

at the 4-8km band before further reducing to a statistically insignificant

2.26% at the 8-14km band.
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Table 3.7: Replication: Distance Bands

Price Effect Of Presence of an Operational Windfarm

Distance Band 1 2 3 4 5 6

0-1km -0.0539*** -0.0602*** - -0.0660 - -
(RSE) (0.0164) (0.0017) - (0.0770) - -

1-2km -0.0578*** -0.0642*** 0.0268 0.0012 -0.0847 -0.0654
(RSE) (0.0092) (0.0073) (0.0498) (0.0491) (0.0501) (0.0850)

2-4km -0.0193*** -0.0379*** 0.0152 0.0113 -0.0345** -0.0492*
(RSE) (0.0052) (0.0042) (0.0105) (0.0114) (0.0106) (0.0238)

4-8km -0.0104*** -0.0313*** 0.0223*** 0.0091** -0.0327*** -0.0404**
(RSE) (0.0028) (0.0022) (0.0040) (0.0041) (0.0046) (0.0141)

8-14km -0.0050** -0.0226 0.0018 -0.00241 -0.0068* -0.0202
(RSE) (0.0019) (0.0153) (0.0021) (0.0021) (0.0027) (0.0492)

Geographic Controls X X X X X X
Fixed Effects X X X X X X

Gibbons X X X
Replication X X X

Visible X X
Not Visible X X

Tripple Difference X X

Notes:
∗ ∗ ∗p < 0.001
∗ ∗ p < 0.01
∗p < 0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: postcode slope-by-year, elevation-by-year, aspect by-year
dummies, proportions of sales of detached, semi-detached, terraced,
flat/maisonette;quarterly dummies. Results are reported to four decimal
places.
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Relative to the analysis by Gibbons, column (1) the replicated results

show a larger negative impact arising from windfarm siting when these

windfarms are visible. Gibbons results range from -5.78% to -0.5%

price impacts and find statistically significant effects at each distance

band – even the 8-14km band (though this is roughly ½ of one per-

cent). I find that the replicated results are closest to those reported by

Gibbons at the 0-1 and 1-2km distance bands, though these both dif-

fer by approximately 0.7%. The difference between the estimates again

increases as the analysis moves to distance bands which are located

farther from the windfarm centroids.

The replication’s estimated effects of non-visible windfarms on postcode

average house prices, reported in column (4) statistically significant for

only the 4-8km range, which is again much larger than that reported by

gibbons, which also finds statistically significant effects at the 4-8km

distance band. The replicated estimate is less than half that reported by

Gibbons, but both are positive. The replication presents an estimated

effect at the 0-1km, which Gibbons does not report (1). This is negative,

but not statistically significant. It should be noted that at the 0-1km

radius, very few postcodes are near to non-visible windfarms. Again,

this implies that there is a small price premium for properties in post-

codes where non-visible windfarms are nearby which should be taken

to mean that vistas without wind turbines become more valuable after

windfarms became operational.

Column 6 present the replicated triple difference estimates, which are

statistically significant at the 2-4 and 4-8km distance bands, though

only at the 5% level. Comparing these estimates to those reported in

Column 2 show that the DID estimates may actually undervalue the

discount that home buyers demand to compensate for windfarm visibil-
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ity, as the average treatment effect from visible windfarms is between 4

and 5% lower postcode-average prices relative to postcode average prices

where windfarms are not visible at the same distances. At the 1-2km

band, the triple difference is smaller than that reported by Gibbons,

but larger at all other distance bands.

3.4.3 Replication Summary

Despite replicating the dataset and analytical approach of Gibbons (2015),

the replication finds consistently larger negative price effects. There are

statistically significant price effects arising from windfarm visibility, and

that generally these price effects decrease as distance to the windfarm

increases. Although the coefficient estimates are larger - sometimes

a difference of 3%, both analyses do find negative price effects from

windfarm visibility, and that these are larger at the closest proximities

to windfarms. This implies that the results are robust to differences in

the underlying dataset, which is in of itself a robustness check of the

model. To summarize, the distance band specification of Equation 3.1

provides a cleaner estimation of the change in postcode-average prices

after windfarms become operational than is produced under the dis-

tance radii specification.

An interesting difference between the replicated results and those of

Gibbons (2015) is that the negative impacts of visible windfarms in the

replication are considerably larger than those reported by Gibbons. A

similar, though less consistent difference is also present for the impacts

arising from non-visible windfarms. at the 2-4km the replicated results

are very close to Gibbons’, but at the other distance bands, the impact

of a non-visible windfarm is considerably smaller than those reported

by Gibbons.
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By classifying postcodes into several discrete distance bands which don’t

overlap, I am able to estimate the degradation of the visual impacts of

windfarm visibility as proximity decreases. This is because the main

expected effect of windfarm siting on nearby properties is to alter the

views from these locations, and it is assumed that there will be larger

visual interference with natural views at the closest proximities. This

approach is superior to the use of a continuous distance measure which

would only serve to estimate the treatment effect at the average distance

between a postcode and windfarm centroid. The results reported in Ta-

ble 3.7 shows that the impacts are greatest in postcodes located in the

nearest distance bands. Apart from the 1-2km distance band reporting

a slightly larger negative effect, postcodes treated by visible windfarms

saw the average treatment effect reduce as distance from the visible

windfarms increased. Although the estimation of treatment effects from

non-visible operational windfarms was only found to be statistically sig-

nificant at the 4-8km distance band, the triple difference effects show

potential underestimation of the treatment effect for windfarm visibility.

I now move on to the extended analysis of this chapter.

3.4.4 Extended Analysis

In the previous subsection, I presented a series of results from the repli-

cation of Gibbons (2015) using both distance bands and radii to esti-

mate house price effects from windfarm proximity and visibility. In this

subsection I apply the same methodological framework from the analy-

ses from the replication section to the full dataset available at the time

of writing, an extension of 12 years of property transactions (6 years

prior to and 6 years after the study period of the replication) and 6 ad-

ditional years of windfarm data. I then perform a series of robustness

checks applying alternative treatment definitions, and data restrictions.
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These tests for sensitivity to alternative models and differences in the

underlying data and how this feeds through to the results, and is used

to better inform the analysis itself.
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Table 3.8: Extension - Distance Bands Analysis

Distance Band Price Effect Of Presence of an Operational Windfarm

1 2 3 4 5 6

0-1km -0.0602*** -0.0660 0.0549*** 0.0302 -0.0497*** -0.0082
(RSE) (0.0017) (0.0770) (0.0183) (0.0296) (0.0126) (0.0693)

1-2km -0.0642*** 0.0012 0.0290** 0.0329* -0.0171 -0.0211
(RSE) (0.0073) (0.0491) (0.0120) (0.0173) (0.0504) (0.0168)

2-4km -0.0379*** 0.0113 0.0251*** 0.0773*** -0.0039 -0.0054
(RSE) (0.0042) (0.0114) (0.0048) (0.0076) (0.0028) (0.0059)

4-8km -0.0313*** 0.0091** 0.0616*** 0.0574*** 0.0027* 0.0092***
(RSE) (0.0022) (0.0041) (0.0023) (0.0061) (0.0016) (0.0024)

8-14km -0.0226 -0.0024 -0.0189 0.0841 0.0006 0.0008
(RSE) (0.0153) (0.0021) (0.0147) (0.0453) (0.0012) (0.0015)

Geographic Controls X X X X X X
Fixed Effects X X X X X X

Replicated X X
Replicated Exclusion Criteria X X X X

House Price Restrictions
Full Dataset X X

Visible X X X
Not Visible X X X

Notes:
∗ ∗ ∗p < 0.001
∗ ∗ p < 0.01
∗p < 0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: postcode slope-by-year, elevation-by-year, aspect by-year
dummies, proportions of sales of detached, semi-detached, terraced,
flat/maisonette;quarterly dummies. Results are reported to four decimal
places.
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Table 3.8 reports the effects found in the replicated analysis to those

found utilizing the entire sample available, although I do follow the same

methodological approach, so here we are only seeing differences which

arise from the inclusion of additional data rather than changes in the

analytical approach itself. Here I present the results from the replica-

tion period of analysis beside the results under the extended period.

The difference between the two sets of results is substantial. I then test

for robustness to house price restrictions while maintaining the Gib-

bons’ exclusion criteria, and lastly relax the exclusion criteria to include

all windfarms and nearby postcodes including urban sited windfarms.

I present the estimated coefficients for effects in postcodes with at least

one visible-operational windfarm in the odd numbered columns, and

those with non-visible operational windfarms are located in the even

numbered columns. The replicated analysis is presented in columns

1 and 2; the extended analysis in columns 3 and 4; and the analysis

which makes use of the full dataset is presented in columns 5 and 6.

When the extended set of postcode-quarter transactions which occur

between 1995 Q1 and 2018 Q1, and within 14m of a non-urban wind-

farm is analyzed the results diverge substantially from the replicated

results. Columns 3 and 4 show that when the dataset is extended to the

maximum period while maintaining the same exclusion criteria (non-

urban windfarms only), the estimated price effects from visible wind-

farms become positive rather than negative. The positive increases in

price should be interpreted as the average change in price in postcode-

quarterly average transaction for properties sold after a visible windfarm

becomes operational relative to those which sold prior to windfarm op-

eration. Impacts are positive at all distance bands but increase in size

and significance with distance. At the 0-1km range, I find that visibility

increases the average transaction price by roughly 5%, and 2.9% at the
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1-2km range, 2.5% at the 2-4km band, and 6.2% at the 408km band.

The effect is negative, but not statistically significant at the 8-14km

band.

I find statistically significant and positive impacts at the 1-2km, 2-4km

and 4-8km bands. The estimate price effects are increases of 3.3%,

7.7% and 5.7% respectively for postcodes treated by operational but

not-visible wind turbines. Under the extended analysis the estimated

price effects are broadly positive from treatment by both visible and

non-visible windfarms.

3.4.5 Triple Difference Analysis

As a further test for price effects from windfarm visibility, I perform

a triple difference analysis. Here, the estimated impacts of non-visible

windfarms are subtracted from the impacts of visible windfarms at each

distance band, and the results are reported in Columns 3 and 6 of Ta-

ble 3.9 for the Extended Analysis and Full Dataset Analysis respectively.

This essentially estimates the willingness to pay to avoid windfarm visi-

bility. Under the extended analysis, I find that there is a statistically sig-

nificant triple difference at the 2-4km and 8-14km bands. At the 2-4km

band, both visible and non-visible windfarms are associated with pos-

itive price impacts, but the effect from non-visible windfarms is larger.

At the 8-14km band, the triple difference is substantial - roughly 10%

lower price effect from visible windfarms relative to non-visible wind-

farms. When triple differencing the results of the Full Dataset Analy-

sis, I find that statistically significant negative relative price impact is

observed at the 0-1km band (-4.15%) and at the 4-8km band (-0.65%).

Therefore, it would seem that there is some evidence that home buyers

are willing to pay roughly 4% less for properties located in postcodes
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within 1km of a visible windfarm, and about 1% less for properties

within 4-8km of a visible windfarm.

Table 3.9: Triple Differences: Extension and Full Dataset

Distance Band 1 2 3 4 5 6

0-1km 0.0549*** 0.0302 0.0247 -0.0497*** -0.0082 -0.0415*
(RSE) (0.0183) (0.0296) (0.0185) (0.0126) (0.0693) (0.0207)
1-2km 0.0290** 0.0329* -0.0039 -0.0171 -0.0211 0.0040
(RSE) (0.0120) (0.0173) (0.0122) (0.0504) (0.0168) (0.0280)
2-4km 0.0251*** 0.0773*** -0.0522*** -0.0039 -0.0054 0.0015
(RSE) (0.0048) (0.0076) (0.0051) (0.0028) (0.0059) (0.0043)
4-8km 0.0616*** 0.0574*** 0.0042 0.0027* 0.0092*** -0.0065*
(RSE) (0.0023) (0.0061) (0.0034) (0.0016) (0.0024) (0.0030)

8-14km -0.0189 0.0841 -0.1030*** 0.0006 0.0008 -0.0002
(RSE) (0.0147) (0.0453) (0.0299) (0.0012) (0.0015) (0.0012)

Visible X
Not Visible X
Triple Difference X

Extension X X X
Full Dataset X X X

Notes:
***p < 0.001
**p < 0.01
*p < 0.05

3.4.6 Robustness to Alternative Assumptions

Columns 5 and 6 of Table 3.8 report effects at each distance band when

I relax the windfarm exclusion criteria to allow for windfarms sited in

predominantly urban areas to be included in the analysis. This in-

creases the number of windfarms in the analysis substantially and is

expected to alter the results from the baseline due to issues of visibility

estimation. Recall that we assume visibility will be the main determi-

nant of price effects. This test is an important robustness check, as the

inclusion of urban-sited windfarms increases the possibility of incor-

rect visibility estimation. The potential for miscoded visibility estimates
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arises from the fact that, urban areas tend to be more built up. These

areas are more likely to contain buildings which may obscure a wind-

farm from view. However, the DEM utilized for the visibility calculation

does not take buildings into account, so this will lead to an increased

number of postcodes with misclassified visibility.

Table 3.10 reports a series of series of results organized by visibility and

compared to the extended analysis (Columns 1 and 4). These include

transaction exclusion criteria where the transactions below the 5th and

above the 95th percentiles are dropped from the analysis (Columns 2

and 6); intensity of treatment where postcodes near only a single wind-

farm (Columns 3 and 7) are compared to postcodes multiple windfarms

(Columns 4 and 8). I test for visibility intensity by segregating the

dataset into two groups-where the first group contains postcodes within

14km of only one windfarm and the second group contains only post-

codes within 14km of multiple windfarms (at least two).

Next, I test the analysis for sensitivity to the study period and present

results in Table 3.11. Here I have split the full dataset into 4 discrete

study periods to test if effects are consistent across the full dataset. The

periods consist of three, six-year groupings and one five-year grouping:

1995- 2000; 2001-2006; 2007-2012; 2013-2018. These groupings were

chosen to estimate the evolution of windfarm-visibility impacts over the

full period of data. An advantage of the current division is that it is

split into roughly equal time periods which capture effects at the pre-

replication period, an early replication period, a late replication period,

and a post replication period. This allows for a reporting of the evolu-

tion of price impacts at useful points. All visible effects are grouped to

the left of the table, and all non-visible effects to the right.
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Table 3.10: Extended Analysis: Robustness Checks

Distance Band 1 2 3 4 5 6 7 8

0-1km 0.0302 -0.0398*** 0.113*** -0.115*** 0.0549*** -0.0346 0.0670 -0.0432
(RSE) (0.0296) (0.0112) (0.0262) (0.0068) (0.0183) (0.0572) (0.0349) (0.0716)

1-2km 0.0329* -0.0131*** 0.0218 -0.0287** 0.0290** -0.0050 0.0216 -0.0096
(RSE) (0.0173) (0.0046) (0.0398) (0.0141) (0.0120) (0.0140) (0.0441) (0.0239)

2-4km 0.0773*** 0.00254 0.0492*** -0.0073 0.0251*** -0.0133*** -0.0087 0.0097
(RSE) (0.0076) (0.0025) (0.0178) (0.0073) (0.0049) (0.0051) (0.0202) (0.0063)

4-8km 0.0574*** 0.0037*** 0.0387*** 0.0070 0.0062*** 0.0063*** -0.0010 0.0213***
(RSE) (0.0061) (0.0014) (0.0096) (0.0064) (0.00234) (0.00201) (0.0100) (0.0027)

8-14km 0.0841*** 0.0052*** 0.0422*** 0.0642* -0.0189*** 0.0028** 0.0763*** -0.0094***
(RSE) (0.0045) (0.0010) (0.0059) (0.0368) (0.0015) (0.0024) (0.0070) (0.0027)

Extension X X
House Price Restrictions X X

Single Windfarm Only X X
Multiple Windfarm Only X X

Visible X X X X
Not Visible X X X X

Notes:
∗ ∗ ∗p < 0.001
∗ ∗ p < 0.01
∗p < 0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: postcode slope-by-year, elevation-by-year, aspect by-year dummies, proportions
of sales of detached, semi-detached, terraced, flat/maisonette;quarterly dummies. Results are
reported to four decimal places.
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Table 3.11: Robustness to Study Period

Distance Band Price Effect Of Presence of an Operational Windfarm

1 2 3 4 5 6 7 8 9 10

0-1km 0.0302 -0.0167 -0.0980**** -0.0079*** 0.0191 0.0549*** - 0.0720*** 0.0753 0.0643**
(RSE) (0.0296) (0.0477) (0.00275) (0.00170) (0.0168) (0.0183) - (0.00585) (0.0665) (0.0288)

1-2km 0.0329* -0.0473* -0.0870*** -0.0032 0.0063 0.0290** 0.2530 0.0723*** 0.0799*** -0.0015
(RSE) (0.0173) (0.0283) (0.00969) (0.00717) (0.00738) (0.0120) (0.322) (0.0146) (0.0288) (0.0158)

2-4km 0.0773*** -0.0887*** -0.104*** 0.0383*** -0.0091** 0.0251*** -0.0451* -0.0119** 0.0151 0.0117*
(RSE) (0.00759) (0.0101) (0.00475) (0.00376) (0.00363) (0.00485) (0.0266) (0.00367) (0.00115) (0.00641)

4-8km 0.0574*** -0.0683*** -0.110*** 0.0114*** 0.0017 0.0062*** -0.0299*** -0.0260 0.0271*** 0.0065
(RSE) (0.00610) (0.00520) (0.00293) (0.0024) (0.00229) (0.00234) (0.00911) (0.0238) (0.00449) (0.00351)

8-14km 0.0841*** -0.0026 -0.0233 -0.00722 -
0.0080***

-0.0189*** -0.0202** 0.0109 -0.0011* -0.0079***

(RSE) (0.00453) (0.00259) (0.0181) (0.0165) (0.00199) (0.00147) (0.00823) (0.0416) (0.00245) (0.00236)

Extension X X
1995-2000 X X
2001-2006 X X
2007-2012 X X
2013-2018 X X

Visible X X X X X
Not Visible X X X X X

Notes:
∗ ∗ ∗p < 0.001
∗ ∗ p < 0.01
∗p < 0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: postcode slope-by-year, elevation-by-year, aspect by-year dummies, proportions of sales of
detached, semi-detached, terraced, flat/maisonette;quarterly dummies. Results are reported to four deci-
mal places. There were not enough observations to generate results for Column 7 at the 0-1km DB.
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The effects from visible windfarms are found to be largest and most

negative in the period 2001-2006, where the statistically significant

decrease in postcode average price ranges from -11% to -8.7%. The

1995-2000 period sees similar trends but range from -8.9% to -4.7%.

Although these effects are smaller on average, during this period, wind-

farms generally consisted of smaller and fewer turbines. In the 2007-

2012 period, there remains a strong negative impact from windfarm

visibility at the 0-1km band, of 7.9%, but the more distant treatment

bands become statistically significant and positive at the 2-4 and 4-8km

bands. (3.8% and 1.1% respectively). The final period exhibits statisti-

cally significant treatment effects at only the 2-4km and 4-8km bands,

but these are both less than one percent decreases in price. Generally

speaking, the visual disamenity of windfarms appears to degrade over

time. However, it is important to contextualize this degradation with

non-visible treatment effects. Non-visible windfarm treatment is gen-

erally positive across the different study periods. These positive effects

appear to be consistently significant and sizable at the closest distance

bands, ranging from an 8% increase in 2007-2012. The positive effects

decrease with time, and distance.

3.5 Discussion

The replicated results find negative impacts from windfarm visibility and

proximity and though this is in agreement with what has been reported

by Gibbons (2015), though the replicated results are considerably larger

- in particular at the greater distance bands. At the same time, the im-

pacts arising from non-visible windfarms is generally about 2% smaller

than found by Gibbons. There is evidence that nearby, visible wind-

farms did decrease the average transaction price nearby postcodes over
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the study period of 2000-2011. This implies that home buyers were

willing to accept the presence of an operational and visible windfarm

near their home, but only when the price of that property is reduced by

between 6.4 and 3.8% if it lies within 8km of such a windfarm. Con-

versely, these results imply that home buyers are not willing to pay a

statistically significant higher price for properties in postcodes within

4km of a windfarm, or further than 8km of a windfarm. There is ev-

idence of a willingness to pay a slight premium for lack of visibility at

the 4-8km distance band. Overall, I find evidence that in England and

Wales between 2000 and 2012, among home buyers there was a will-

ingness to accept a discount for windfarm disability and only a small

willingness to pay for properties in similar locales but without a line

of sight to a windfarm. Therefore, I can conclude that under these as-

sumptions, and during this period in time, windfarm visibility was an

environmental disamenity.

When the expanded dataset is analyzed relaxing only the time period

restriction, I find that the negative impacts arising from nearby wind-

farms disappear. Even at the closest distance, the effects are no longer

negative - they are positive, though insignificant. Interestingly, the pos-

itive price effect mostly increases with distance from a windfarm and

reaches a maximum of +8.41% at the 8-14km distance group. This does

still follow Gibbons’ results in the sense that the average price of prop-

erties increases with distance from a windfarm, though when including

all transactions and windfarms, the results are increasingly positive

rather than decreasingly negative. An examination of the changes in

price effects over time has not yet been included within the literature,

however there are two potential avenues that may explain this diver-

gence in price effect between the early period of the replication and

Gibbons (2015). Firstly, it is possible that home buyers are now willing
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to pay a premium for the view of a windfarm relative to the lack thereof.

Secondly, and potentially more plausible is the issue of changes to the

characteristics of windfarms themselves. While the installed turbine

sizes has increased over time, the inclusion of recreational amenities

within windfarm cites has also increased substantially since the Repli-

cation period of 2000-2011. Such amenities include payments to local

community funds, mountain biking or hiking trails and other outdoor

activity sites. It may be that windfarm visibility remains a disamenity,

and preferences towards it remains negative as research by Parmeter &

Pope (2013) suggests; but the included amenities over compensate for

the decrease in value driven by visibility.

The results are sensitive to the inclusion of urban-sited windfarms. This

is expected due to the increased ambiguity of visibility estimates for

these urban windfarms, and as we expect that visibility is a key deter-

minant of the price effect this sensitivity is reasonable. I can report that

the results are sensitive to the inclusion of urban windfarms, which

drastically change the results relative to the baseline estimate. This

essentially validates the comparison made between treatment by prox-

imity versus an interaction between proximity and visibility as argued

by several of the key papers in the literature (Sunak & Madlener 2016,

2017, Heblich et al. 2016, Gibbons 2015). As a building height dataset

for the entire land area of England and Wales was not available, this

also further justifies the restriction of the baseline analysis to incorpo-

rate rural windfarms only. Lang et al. (2014) and Hoen et al. (2011)

are the only papers in the literature to exclusively model effects from

urban windfarms alone, though they do not find statistically significant

impacts.

Next, I tested for consistency in price effects across time by subdividing

100



the panel in to four subgroups. Overall, the treatment effects of both

windfarm visibility and proximity appear to diminish over time. This

evolution of windfarm visibility preferences explains the differences be-

tween the results over the replicated period and the full period of anal-

ysis. It seems that with time, individuals demand smaller and smaller

compensation for windfarm visibility. At the same time, their willing-

ness to pay a premium for properties treated by non-visible windfarms

has decreased. There are a few factors which could explain this tempo-

ral variation in coefficient estimates.

This may reflect the fact that there are fewer and fewer properties on the

market which are greater than 14km from a windfarm centroid due to

the expansion of the UK’s wind energy generation. This could imply that

as there are fewer and fewer homes without a view of a windfarm, home

buyers may place less and less importance on the presence of nearby

windfarm visibility. Additionally, as proposed previously, there may be

increasing amenities associated with windfarm sites which compensate

for the reduction in natural views of the landscape. There could also

be a general trend in preferences towards views of windfarms where

individuals generally appreciate the sight of turbines. Under the as-

sumptions of the extended analysis, windfarm visibility is associated

with positive price effects at all but the 8-14km distance band. How-

ever, when the full dataset is analyzed, there is a statistically significant

price impact from visibility at the 0-1km band. This is also reflected in

the Triple Difference Analysis.

I have shown that results are, in a manner, sensitive to the period of

the analysis performed, but more importantly that by splitting the long-

term analysis into period subgroups, it is possible to track that sensitiv-

ity. This may show that changes in attitudes towards windfarm visibility
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which have shifted from largely negative, to now largely positive. How-

ever, it is also possible that the preferences towards windfarm visibility

has remained stable, but the characteristics of windfarms themselves

has changed and the inclusion of recreational amenities within wind-

farm developments overcompensates for the visual disamenity of the

windfarm.

This analysis has thus provided a generalized context to the wider litera-

ture by potentially explaining the variation in reported results through-

out. While papers such as those by Sunak & Madlener (2016, 2017)

find stable price effects on attitudes towards three windfarms, I find

that attitudes do indeed change, and become more positive. Though

it is out with the scope of this Chapter to determine exactly what has

caused these new attitudes.

To summarize, the study period analysis showed that the negative ef-

fects from windfarm visibility are largest in the earlier periods and be-

come positive or insignificant by the 2013-2018 period. Effects from

non-visible windfarms are largest and most positive in the 2001-2006

group but are more mixed than the effects from visibility. This supplies

evidence that preferences towards windfarm visibility are not constant

over time or that changes to windfarm characteristics have overcompen-

sated for the visual disamenity of the windfarms. . To further test the

robustness of these results, I altered the treatment definition to account

for treatment intensity. Under this specification, I found that there is a

considerably larger negative effect from visibility of multiple windfarms

relative to postcodes with only a single visible windfarm.

In the Headline results, I define a postcode as treated when: one quarter

after at least one visible or not-visible windfarm within a given distance
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band becomes operational. This leads to postcodes receiving treatments

from different windfarms at different distance bands, which is arguably

a very different to a treatment with only one windfarm at any distance

band. One would expect the visual impacts arising from several wind-

farms to be different from the effects arising from a single windfarm.

This is of particular importance in the extended analysis due to the sig-

nificant increase in the number of operation windfarms. Additionally,

the larger the number of nearby visible windfarms, the less likely it is

that a postcode is grouped into the wrong treatment group (visible or

non-visible treatment).

To test this, I split the panel in two groups-where the first group contains

postcodes within 14km of only one windfarm and the second group con-

tains only postcodes within 14km of multiple windfarms (at least two).

This is essentially to test for differences arising from treatment inten-

sities. I find that there is indeed a difference in the estimated coeffi-

cients when accounting for treatment intensity, following expectations,

price effects are much more negative for visibility of multiple windfarms,

whereas treatment by single visible windfarms are broadly positive. This

is in line with expectations Heblich et al. (2016), Gibbons (2015), Sunak

& Madlener (2016), Jensen et al. (2014). This is not unexpected, as it

is assumed the main driver of any effect will be visibility and therefore,

visibility of multiple windfarms increases the likelihood that a view from

a postcode centroid will contain a larger share of wind turbines.

Lastly, I made a restriction to the house prices to remove outlier trans-

actions. This was partly due to the fact that some transactions in the

dataset were as low as £0, whilst others were as high as £780,000,000.

This specification showed that the results are sensitive to restriction of

very low and very high value transactions, though still makes use of the
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majority of the available data. The only other analysis which mentions

the removal of outlier transactions is that by Sims & Dent (2007), who

restrict their analysis to include transactions above £40,000 and below

£400,000.

3.6 Conclusions

In the first portion of this Chapter I replicate the analysis of Gibbons

(2015). The replication found substantially larger negative impacts aris-

ing from windfarm visibility than the estimates reported by Gibbons

(2015). I find evidence to support the claim that visible windfarms

did have a statistically significant negative impact on postcode-average

property transactions in England and Wales between 2000 and 2012. In

the subsequent section, I applied Gibbons’ methodological approach to

a much larger and more current dataset. This expanded the postcode-

quarter transaction of the analysis from 1.8 million observations to

nearly 7 million observations. Additionally, 505 more windfarms were

included in the analysis, many of which are structurally different than

those analyzed by Gibbons. This extended analysis was necessary due

to the substantial increase in the number of operational windfarms in

England and Wales, as well as the substantial increase in the number

of housing transactions occurring within 14km of these windfarms.

The results of this extended analysis show firstly, that when simply ap-

plying Gibbons’ analysis the results show a complete reversal of the

effects found in the replicated analysis. Windfarm visibility is associ-

ated with a large statistically significant positive effect on house prices,

with this being greatest at the largest distances from the windfarm. I

find that the lack of visibility is no longer associated with a consistently
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positive effect on house prices at the closest proximities. However, I

also find that the analysis is highly sensitive to a number of assump-

tions regarding the underlying data applied within the model. These

include sensitivity to the inclusion of all windfarms, both urban and

rural sited; house price restriction to exclude the least and most valu-

able 5% of transactions, the intensity of the view of nearby windfarms,

and the study period itself.

The findings of this chapter have several important implications for pol-

icymakers. Firstly, there may be justification to compensate homeown-

ers whose properties decreased in value - though this may be difficult

as the results imply this was the case for transactions the farthest in

the past. Going forward, it may be advisable to account for the fact that

postcodes near to multiple windfarms do experience larger and more

negative price impacts. This should not necessarily discourage approval

of multiple windfarms near to each other, rather clustering should be

encouraged where there are relatively few nearby homes. In addition, as

there is now evidence that windfarm visibility positively impacts home

values there may be scope to further increase the number of windfarms

in England and Wales. However, there should be additional research

examining whether the positive effects found in the extended analysis

arise from windfarm visibility or rather access to amenities which are

constructed at windfarm sites. Policymakers should share this infor-

mation with communities near potential windfarm locations to build

greater support for such developments, as well as ensuring that new or

existing developments include recreational amenities. This would have

the benefit of both increasing electricity generation from a low-carbon

source, but may also increase nearby house prices allowing for home

owners to reap both environmental and financial windfalls.

105



There are limitations of the analysis presented within this chapter.Firstly,

the Average Price approach to Hedonic Valuation assumes that the prop-

erties within a postcode are very similar, that the average transaction

price in a postcode is representative of the average value of properties

within that postcode. Therefore, any changes or differences in price that

are observed can be explained via the presence of a nearby windfarm.

However, this may not necessarily be the case.

Many postcode-quarter averages are generated via a single transaction.

This could lead to averages below or above the truly average transaction

price leading to biases in the estimation, as the composition of average

transactions will vary over time. Additionally, by restricting to wind-

farms which are not sited in urban areas, I increase the likelihood that

the properties in a postcode are less similar – consider a block of flats

or terraced homes, at least in regard to their layout and size are very

similar. Whereas in more rural areas or postcodes with a larger share

of detached homes, there will be greater variation in the housing stock.

My analysis does include the property type, but has no information on

more detailed property characteristics which could be utilized to ensure

the housing stock in postcodes are as similar as possible.

A potential weakness of the approach taken in this analysis is the def-

initions of both windfarm proximity and visibility. In the analysis of

this chapter I tested for sensitivity to alternative means of visibility es-

timation, achieved in two ways: dropping postcodes which have a high

visibility gradient from the 200m or 90m grid cells surrounding the

postcode, or testing for changes in visibility estimates by increasing the

viewpoint (postcode centroid) by 5 additional meters. Postcode visibility

estimates were relatively stable across these alternative methods. How-

ever, the use of postcode and windfarm centroids as visibility points is

106



crude – though useful.

This ultimately leads to an estimation of the effects on house prices in

neighborhoods where windfarms are likely visible. This could poten-

tially bias estimates if preferences about windfarm visibility from ones’

own property is what drives behavior rather than simply living in an

area where they may be visible. Though this has been little discussed

within the windfarm amenity literature, there is some evidence from

other visual amenity analyses that there are differences in value placed

on properties in neighborhoods with good views, compared to proper-

ties with good views (Bourassa et al. 2004).

Further, the application of the Fixed Effects DID to the panel assumes

that by controlling generally for geographical effects as well as time ef-

fects, the omitted variable bias is avoided. However, it this may not be

the case for such a large national sample as used within this chapter.

There may be local economic effects which the model cannot capture

such as changes in employment or connectivity to larger job markets.

Unfortunately it is not feasible to include all variables which may con-

trol for all possible biases - within the wider hedonic literature, there is

even evidence of micro markets within individual cities, therefore this

will be a limitation of any national scale analysis which applies fixed

effects.

As the analysis makes use of a Hedonic Valuation approach which is

built on the seminal work by Rosen (1974) it is worth noting the limita-

tion inherent to this approach. Firstly, there is a risk of misspecification

of the hedonic price schedule (HPS) which would lead to unreliable es-

timation of the marginal price impact of windfarm visibility on nearby

house prices. However, this is less likely to be an issue within quasi-
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experimental contexts, as well as in cases where changes in character-

istics (windfarm visibility) occur in the past Greenstone (2017). Both

of these are key features of the research design used here. To fully

measure non-marginal price impacts would require the application of a

sorting model, which was beyond the scope of this research.

Finally, there is the potential for selection bias influencing the results.

As the price effects become more positive and larger with time, there is

potential that these are driven by the fact that as the number of sites

where windfarms become operational increases the characteristics of

homes and buyers may change. Because of this, it is unclear whether

the changes between the early and late periods are due to changes in

preferences, characteristics of windfarms, or simply because new wind-

farms are being located in areas where house prices are already increas-

ing. This is an important limitation of the analysis, and is something

that future research should examine in more depth.

To account for the limitations of the analysis presented in this chapter,

I continue the analysis in the next chapter, but apply a Repeat Sales

specification of the Hedonic Pricing Method. In this analysis, individual

properties located within 14km of operational windfarms are analyzed

rather than postcode-averages. This means that the analysis compares

the price of property i in quarter t to property i in quarter t+x. This

analysis allows for further testing of sensitivity to the underlying data

under an alternative, but complementary analytical framework. I am

able to exploit the characteristics of a repeat sales analysis to provide

additional insight to the results within this chapter.

I address the potentially flawed assumption that all transactions within

a given postcode are representative of the other properties within that
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postcode by comparing properties to themselves over time. Addition-

ally, I am able to refine visibility estimates from neighborhood visibility

to property visibility. This is a potentially important distinction if buy-

ers value the views from their homes more than the views from their

neighborhoods. I then make use of additional data such as building

height information and individual turbine locations to better model vis-

ibility. The issue of comparability of properties within a given postcode

no longer becomes relevant because properties are being compared to

themselves. In addition, I am able to account for the intrinsic charac-

teristics of the properties themselves, in as well as the property type.
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Chapter 4

House price effects of

windfarm siting in

England and Wales: A

repeat sales analysis

4.1 Introduction

Over recent years, there has been a substantial shift in attitudes to-

wards the use of carbon emitting electricity generation. This is largely

due to ever growing concerns regarding the economic and environmen-

tal impacts arising from substantial increases to the global average tem-

perature and the dangers that this poses. As such, there has been wide-

scale and rapid deployment of renewable energy developments in many

industrialized countries. The UK has been one of the leading adopters

of renewable, low-carbon energy generation, and in fact its domestic

carbon emissions peaked in and have reduced since 1972, or in 2007 if
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imported emissions are included ONS (n.d.). This reduction has arisen

from several sources, but between 1990 and 2017, the carbon intensity

of electricity generation within the UK has fallen by 67% ONS (n.d.).

This reduction in the carbon intensity of electricity generation has largely

occurred due to the decommissioning of coal fired plants which have

been replaced with renewable generation. Wind energy generation in

the UK has developed rapidly leading to both praise for the amount of

carbon emissions not generated due to these installations, as well as

concerns about externalities that such a wide-scale and rapid deploy-

ment of new energy infrastructures may entail. One of the most com-

mon concerns voiced by the public are the effects of windfarm siting on

nearby property values as other energy generation infrastructure has

been shown to have detrimental effects for properties sited nearby.

This has led to a growing academic interest in the area, with several

papers being published between 2005 and 2019 which attempt to de-

termine if there is a link between property values and windfarm sit-

ing. Of these papers, only a select few have explored the price effects of

windfarm siting within the UK, the two largest and most comprehensive

being Gibbons (2015) and Heblich et al. (2016). These papers made use

of property transactions which occurred up to 2012 and 2014 respec-

tively. Because the British public is largely supportive of wind energy, as

well as the siting of large-scale renewable infrastructure ‘in their area’

it is possible to compare stated and revealed preferences towards wind

energy developments within England and Wales.

Gibbons (2015) was replicated and extended in the previous chapter

due to the substantial change in the landscape since the time of publi-

cation. Indeed, with a continued rapid development of windfarms more
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and more areas of the country are located nearby wind farms and the

turbines installed in the latest windfarms are considerably larger than

older turbines within the replication period. The analysis of the previ-

ous chapter applies an average sales hedonic model to estimate price

impacts of windfarm proximity and visibility, with observations at the

quarterly postcode level.

In this chapter, I build on the work in Chapter 3 in several ways. First,

I perform a repeat sales analysis to determine if the effects found on

postcode-average prices are similar for the repeat sales analysis apply-

ing a property-windfarm centroid visibility analysis. This is potentially

an important comparison for two reasons: By comparing postcode level

to individual property level effects, I am able to decompose visibility

into neighborhood level and property level visibility while also testing

whether the estimated effects are consistent across an alternative ana-

lytical approach. Here, I compare effects from windfarm centroid visi-

bility and non-visibility at several different distance bands.

As a further refinement of the approach taken in the previous chapter, I

then enhance the analysis to include property-turbine visibility analysis

rather than estimating visibility from the center of the windfarm. This

does restrict the analysis somewhat due to lack of turbine locations for

some windfarms, but it is still a useful exercise. I also perform a fur-

ther refinement of the visibility estimation on a subset of the data where

building height data can be included in visibility estimation, which ac-

counts for intervening buildings which block views of wind turbines.

Because the analysis occurs at the property level, I make use of de-

tailed property characteristics data to control for differing attributes of

the properties in the analysis. While the analysis of the previous chap-

ter controls for property type, here I perform the analysis on a subset
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of the transactions which were paired with detailed property character-

istics information.

The empirical analyses performed in both this chapter and Chapter 3 is

underpinned by the assumption that the visibility of windfarms/turbines

the key treatment that will affect property values, and that proximity

is essentially a measure of how prominent the windfarm/turbines are

within a viewshed. As such, I model visibility in several ways, making

the trade-off that for the most accurate visibility estimates requires re-

stricting the analysis to a very small subset of the data. However, even

when the most accurate visibility estimates are not available, I control

for fixed effects and apply a staggered difference-in-difference analy-

sis, where the treated group of properties are those which sell after a

nearby windfarm has become operational and the control properties are

those selling at the same time, but where nearby turbines have not be-

come operational yet. This analysis is then followed by a difference-in-

difference-in-difference analysis comparing effects between properties

treated by visible and non-visible wind turbines.

4.2 Contextual Background: A Changing Land-

scape

The United Kingdom has made substantial progress in reducing the

emissions of its electricity generation, decreasing the carbon intensity

of the electricity it generates by nearly 70% between 1990 and 2017

(ONS n.d.). One of the key drivers of this reduction has been a rapid

expansion of renewable energy technology within the country which

has gradually replaced decommissioned coal fired plants. The share

of electricity generated from coal within the UK has seen a steady de-
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cline whilst the contribution of renewable energy has seen a sustained

increase over the period 1998-2020. In fact, as of the first quarter of

2020, fossil fuels supplied just under 30% of UK electricity and the

largest single source of electricity was generated from wind turbines

(27.585%) (OFGEM 2020b). The rapid advancement of the share of

total electricity by wind has been fueled by the rapid deployment of

wind turbines within the UK. In this chapter I will only discuss these

advancements within England and Wales as the other UK regions are

not included in the Repeat Sales Analysis performed below. Figure 4.1

highlights how the stock of UK wind energy generation has evolved over

time, displaying cumulative installed capacity, number of windfarms,

and number of wind turbines respectively. Figure 4.2 displays the stock

on and offshore turbines over the same period and highlights the more

recent and perhaps more rapid growth in size of offshore wind genera-

tion. As I will show in the results section of this chapter, the changes

in windfarm/turbine stock over time is an important driver of results,

as preferences towards windfarms is not stable over time, as well as the

number of homes lacking visible windfarms decreases as windfarms be-

come more widespread.

Figure 4.1: Operational Wind Turbines in England and Wales: 1992-
2020

The figures above highlight the rapid deployment of wind energy de-
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Figure 4.2: On and Offshore Turbines in England and Wales: 1992-
2020

velopments within England and Wales. As can be seen, not only has

the UK’s stock of wind energy generation greatly increased since the

first windfarm became active in 1992, but the current stock has greatly

changed since the time period that the paper by Gibbons (2015) ex-

plored the effects of windfarm siting – namely the interaction of wind-

farm proximity and visibility – on house prices. The results presented

in the previous chapter show that this change in preferences towards

windfarm proximity and visibility over time substantially affect the price

effect and this is also found for the repeat analysis of this chapter.

These changes in preferences towards windfarms are assumed to be

the key driver of any price difference arising between properties with

and without a visible windfarm nearby. As reported in the Department

for Business, Energy and Industrial Strategy Public Attitudes Tracker,

there has been increasing support both for wind energy generation in

the abstract, as well as support for large scale renewable energy infras-

tructure ‘in their area.’ Of course, for a true comparison between the

stated preferences of the wider public and their preferences as revealed

through hedonic pricing, it would be necessary to survey actual home

buyers, which is beyond the scope of this thesis. However, changes

in surveyed preferences coupled with changes in revealed preferences
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taken together is a strong indicator of the important role time plays in

the analysis of this chapter.

This shift in attitudes is also borne out in the BEIS surveys on en-

ergy and climate change BEIS (2020a). The surveys cover the period

2012-2020, though unfortunately not all waves of the survey contain

the questions presented in Figures 4.3 and 4.4. Figure 4.3 displays the

percent of respondents who agree that they “Would be happy to have a

large-scale renewable energy development in my area” over the period

2012-2018. The responses show that though there is a majority of re-

spondents who agree, though this covers all renewable developments

and does not define the size of the ‘area.’ Taken together with survey

questions about preferences towards wind energy, it would appear that

there is support both for wind energy as well as other renewable energy

developments local to the respondents.

Figure 4.4 presents the survey results for On and Offshore Wind En-

ergy: “Q13. Generally speaking, do you support or oppose the use of

the following renewable energy developments.” Between 2012 and 2020,

there has been an increase in the percent of respondents who claim to

support offshore wind developments, rising from 76% in 2012 to 81%

in 2020, with peak support of 83% in 2018 and 2019. Broadly speak-

ing, the support for offshore wind has broadly been consistently high

over the period of the survey. Onshore wind has seen a much larger

gain in support, rising from only 66% of respondents in 2012 to 78%

in 2020, after peaking at 79% in 2019. This increase in support has

tracked with the increased presence of onshore wind over the period.
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Figure 4.3: Agreement with the statement “I would be happy to have a
large-scale renewable energy development in my area"

Figure 4.4: “Generally speaking, do you support or oppose the use of
the following renewable energy developments?”

4.3 Relevant Literature

In this section, I will present the literature relevant to this chapter and

the empirical analysis performed within it organized into three general

categories. Firstly, I will discuss the concepts of environmental ameni-

ties and disamenities, secondly how these can be valued via the Hedo-

nic Pricing Method, and lastly I will discuss how other works within the

literature have applied these within the context of house price effects

arising from windfarm proximity-visibility. There is some duplication of

the discussions of Chapters 2 and 3, though here I focus on the appli-

cation of repeat sales analyses within the literature.
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4.3.1 Amenities and Disamenities

The purpose of the empirical analysis in this chapter is to apply a repeat

sales analysis which supports the classification of wind energy develop-

ments as either environmental amenities or disamenities. There is not a

standard definition of either environmental amenities nor environmen-

tal disamenities (Schaeffer & Dissart 2018) and in fact the exact defini-

tion tends to differ from paper to paper. However, in general terms, an

environmental amenity is some environmental feature which provides

a benefit. This means that if there is a measurable benefit arising from

the presence or loss of a feature or characteristic of nature, this is an

environmental amenity. Conversely if there is a measurable economic

cost arising from the presence or loss of a feature of nature, this is an

environmental disamenity.

In the context of this and the previous chapter, I seek to determine if

the visibility of a windfarm or wind turbine is an environmental amenity

or disamenity. To do so, this requires that there be a measurable eco-

nomic cost or economic benefit arising due to the presence of a visible

turbine or turbines. Or, if we assume that natural vistas have an eco-

nomic benefit which can be measured, this can be rephrased to the

research question, ‘does windfarm or wind turbine presence affect the

economic benefit derived from natural vistas?’. If the answer is yes, and

they increase the economic benefits, windfarms and wind turbines can

be classified as an environmental amenity. If the answer is yes, and

they decrease the economic benefits of natural vistas, windfarms and

wind turbines can be classified as environmental disamenities.
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4.3.2 Hedonic Valuation of Environmental Features

To determine whether visual impacts of windfarms are environmental

amenities or disamenities, it is necessary that the economic costs or

benefits associated with them be measurable. This presents a problem,

as there is no explicit market for natural vistas with or without wind tur-

bines, from which a value can be quantified. It is, therefore, why many

studies which attempt to quantify the economic value of environmental

amenities or disamenities apply some form of Hedonic Valuation. He-

donic Valuation or Hedonic Pricing is the application of a model which

assumes that the price of a good is determined by both internal and

external features or characteristic which affect that good. Because the

price or value of the good is determined by the combination of its charac-

teristics, if these characteristics are disaggregated, it becomes possible

to estimate the values of each characteristic (Blumenschein et al. 2008,

Lang et al. 2014, Monson 2009).

Following as defined in Chapter 4 the following is the generic form of

the hedonic model applied:

Price = f(intrinsicfeatures, extrinsicfeatures, time)

Intrinsic features refer to characteristics such as the number of bed-

rooms, bathrooms, lot size, etc. Extrinsic features are characteristics of

the location where a property is situated, such as the crime rate, school

quality, or as the focus of this and the previous chapter – the presence

of nearby wind turbines. When a hedonic analysis is performed for a

large sample of properties, it becomes possible to estimate the average

value of each component of properties in the analysis. Hedonic Valua-

tion has been applied to classify many environmental features as either

amenities or disamenities based on how they affect the value of homes.
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There are two types of Hedonic Analyses that have been widely applied

in the environmental amenity literature – Average Price analyses and

Repeat Sales analyses. The key difference is that an average price ap-

proach simply compares the average transaction price of a geograph-

ical area – most commonly a postcode or zip code – before and after

treatment. This was performed in the previous chapter. A repeat sales

analysis compares the same property at transactions which occur be-

fore and after treatment - in the case of this chapter, when nearby wind

turbines become operational.

4.3.3 Valuing the Visual Impacts of Windfarms

There is a developed literature around the classification of windfarms

and wind turbines as environmental amenities, but here I will only ad-

dress those most relevant to the analysis of this chapter. Most literature

discussed here have applied a repeat sales analysis, for a wider review of

the full literature see Chapter 2. I have structured this section around

the key assumptions which underpin the analyses within the literature

and within this chapter. The first key assumption is that the magnitude

of a price effect from an environmental feature will be correlated with

distance – i.e., a home located closer to an amenity will receive a larger

price premium than a home located further away. Conversely, a home

located closer to a disamenity will receive a higher price discount than

a home located further away.

The second key assumption is that visibility, paired with distance is a

key determinant of any price effect arising from wind turbines. This

implies that a property with a line of sight to a wind turbine will expe-

rience a price effect differing from a property without a line of sight to

the wind turbine. It is therefore crucial to accurately estimate whether a
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property has a line of sight to any turbines. The third key assumption is

that preferences towards windfarm proximity-visibility will change over

time. Lastly, how the control group is defined will directly affect the es-

timated effects of any analysis – as the comparison between the treated

and control group is what allows for the estimation of any price effects.

Therefore, it is key to ensure that treatment and control groups are suit-

able for such an analysis.

Proximity

Because proximity is of key importance, every paper exploring the price

effects of windfarm siting utilize some measure of distance as a key

variable in the analyses that they perform. There are two papers which

do not make use of visibility estimation in their analyses. Firstly is

the paper by Sims et al. (2008) which applies a cross-sectional anal-

ysis of 900 properties in Cornwall but find no statistically significant

effects.Heintzelman & Tuttle (2012) who are the first to apply a repeat

sales analysis in the literature use only proximity to estimate the price

effect.

They analyze the effects using transaction data on 11,369 properties

over 9 years in Northern New York, USA and find statistically signifi-

cant negative effect ranging from -7.73% to -14.87%. This is one of the

larger price effects in the literature. The main specification of Dröes

& Koster (2016) uses proximity alone as the treatment effect, as the

authors assume that proximity to turbines is an adequate proxy for vis-

ibility, and that because the Netherlands is a very flat country it is likely

that nearby wind turbines will be visible. They find a small negative im-

pact of about 1% decreased prices within 2km of wind turbines relative

to properties located farther than 2km away from the turbines of the
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study. They do perform a visibility analysis with a subset of their data

and find no impact from direct views.

All other literature which estimates price effects from windfarms make

use of some type of visibility analysis, and this is always paired with

a measure of distance. This is due to the fact that despite wind tur-

bines growing to ever increasing heights and being fitted with increas-

ingly large blades, even large objects become smaller when viewed from

large distances. In all other research, therefore, the treatment effect

from windfarm siting is an interaction of both proximity and visibility

together.

In all studies aside from those mentioned above, visibility estimates are

combined with proximity estimates to define treatment of properties in

the literature. Lang et al. (2014), Vyn & McCullough (2014), Sunak &

Madlener (2016), Heblich et al. (2016), Dröes & Koster (2016) all make

use of distance bands as either the main measure of distance, or as an

alternative to additional analyses which use exact distance measures.

Distance bands are essentially a means to group properties, or post-

codes into discrete treatment groups. An example of the distance bands

used in the analysis of this chapter overlaid on land elevation and build-

ing height information is shown in Figure 4.5. Highlighted in yellow is

the Dagenham single turbine windfarm, the green triangles represent

other wind turbines in the area. Each ring represents one of the dis-

tance bands used to group properties within the analysis of this chapter.
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Figure 4.5: Example of Distance Bands Surrounding Wind Turbines

Visibility

Because visibility, paired with distance, is assumed to be the key driver

of price effects arising from windfarm siting, the way visibility is defined

is crucial to the results. Generally, this is done by using GIS software

to estimate whether properties or postcodes have a line of sight, or view

of a windfarm or turbine. This is achieved by plotting observers and

windfarms or turbines by their geographic location, overlaid on some

form of digital elevation or surface map into GIS software to calculate if

there are obstructions or a clear view between the two points.

This is broadly the approach taken by the vast majority of the litera-

ture. Vyn & McCullough (2014), Sunak & Madlener (2016), Heblich

et al. (2016), Dröes & Koster (2016) all use this approach. Heblich et al.

(2016) make use of a Digital Elevation Map (DEM) comprised of 5m grid

squares to account for topographic features which block views of wind-

farms, and as a further refinement to their analysis, add building height

data to account for intervening buildings for the subset of their trans-
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actions occurring in locations where this data is available.

Sunak & Madlener (2016) follow a similar approach, but make use of a

Digital Surface Map (DSM) at a resolution of 1m grids. This accounts for

topographic features, building heights, and even vegetation. However,

it should be noted that neither paper restrict their analysis to a period

based on the publication date of the building height or DSM data used.

This may reduce the reliability of these highly refined visibility estimates

simply due to the fact that the landscape (particularly vegetation and

structures) change frequently and the study periods cover 24 and 26

years for Heblich et al. (2016) and Sunak & Madlener (2016) respec-

tively.

Two studies performed in-person field visits to inspect properties and

generate visibility and intensity categories. Lang et al. (2014) visited

1,354 properties which were located within 2 miles of urban windfarms

in Rhode Island. While Hoen et al. (2011) visited 6,194 properties across

5 US states to generate visibility measures, as well as to categorize the

quality of vistas surrounding the properties. They then created an es-

timate of the degree of dominance the windfarm had on the landscape,

which fell into five categories: no view, minor, moderate, high, and ex-

treme. McCarthy & Balli (2014) made use of both GIS analysis and

field visits, though they visited only properties which were classified as

having visible turbines. Comparing between their estimated and actual

visibility classification, there was roughly 5% of cases where GIS and

field visitors disagreed.

Site visits were not feasible for the empirical analysis performed in this

chapter due the sheer number of properties included. As such, I follow

the approach taken by the other literature and model visibility using
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GIS software, a digital elevation map and the locations of residential

properties, windfarms, and turbines, and for a subset of the data in-

clude the locations and heights of intervening buildings to refine the

visibility analysis of this chapter.

Difference-in-differences Estimation

The empirical analysis performed in this chapter applies a Spatial Fixed

Effects Difference-in-difference (DID) model to estimate the price effects

arising from windfarm proximity and visibility. This is the approach

taken by Lang et al. (2014), Gibbons (2015), Heblich et al. (2016), Sunak

& Madlener (2016), Dröes & Koster (2016). A more detailed discussion

of the application of a DID model and controlling for spatial and time

effects can be found in the previous chapter of this thesis. Here I will

discuss how the treatment and control groups have been defined by the

relevant papers, and how these compare to the definitions of treatment

and control within this chapter.

Treatment of a property has been defined as the presence of a nearby op-

erational windfarm or wind turbine, though I do estimate effects arising

from visible and non-visible windfarms and turbines separately. How-

ever, equally important is the definition of the control, or comparator

group from which the change in price resulting from treatment is es-

timated. The literature has broadly taken three approaches for defin-

ing the control groups. Two of these use somewhat arbitrary means of

defining the control group. The first and most common is the creation

of a control group for comparison using a set of properties which are

located near windfarms, but where these windfarms or turbines are not

visible. Vyn & McCullough (2014) compare properties at the same dis-

tance to the treatment group, but where the windfarms are not visible.
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Sunak & Madlener (2016) generate their control groups using properties

which have not yet been treated by visible windfarms, as well as those

without a view of operational windfarms. Hoen et al. (2011), Lang et al.

(2014), and Heintzelman & Tuttle (2012) create their control group us-

ing properties which are farther from the wind turbines than the treated

group. For Hoen et al. (2011) These are properties 4-6miles from wind

turbines, for Lan et al. (2020) the control properties are between 3 and

5 miles from the turbines, and for Heintzelman & Tuttle (2012) control

properties are those more than 1/2, but within 10miles from an oper-

ational turbine.

Heblich et al. (2016) take a different approach. They explore price ef-

fects from both windfarm visibility and lack of visibility by comparing

these properties to a control group which closely resemble the property

characteristics of dwellings in the treated group, but which are not near

a windfarm. Their use of detailed property characteristics enhances the

suitability of the control group for comparison with the treated group,

however there is still some scope for bias. The list of property charac-

teristics is not exhaustive, so there may be some unobserved property

features which differ between treatment and control groups.

For these reasons, this empirical analysis follows the DID framework

as used by Gibbons (2015), Dröes & Koster (2016) and that of Chap-

ter 3. Here, the treatment and control groups are one in the same –

the key difference is that the control group will eventually be treated by

windfarm siting. See Figure 4.6. Therefore, the two groups are equally

suitable for wind developments, and because this is a repeat sales anal-

ysis, I compare the property values both before and after treatment by

a windfarm. Therefore, the only real difference between the treatment

and control groups is that while a property is in the control group, it
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Figure 4.6: Treatment Visualized

simply has not been treated yet or at the same distance band. The

analysis presented subsequently presents a difference-in-difference-in-

difference (DIDID) estimation. Here, the average treatment effect from

visible windfarms is compared to the average treatment effect from non-

visible windfarms. This therefore will provide a more reliable estimate

of the specific price effect of windfarm visibility in terms of WTP.

4.4 Estimation Strategy

The research design applied within this chapter follows from that ap-

plied in Chapter 3 and includes both fixed effects and regression-based

difference-in-difference methods. Here I apply the model to individual

properties as opposed to postcode averages. At all times, I am com-

paring pre and post treatment effects arising from windfarm visibility

and lack of visibility. This means that I am estimating the difference in

house prices arising from nearby and visible windfarms by comparing

the price of homes prior to windfarm operation to prices of the same

homes post-operation. I also perform the analysis comparing the pre

and post treatment effects for properties sold before a non-visible wind-
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farm is operations to the observed prices of those same properties after

the windfarm has become operational. Ultimately the two sets of results

are compared through a difference-in-difference-in-difference model.

The underpinning logic for comparing pre and post treatment prices is

that the properties in the analysis will be suitable for comparing as 1)

this removes the concern that observed price effects may be the result of

differences in housing characteristics as the properties are compared to

themselves and 2) regional effects will be similar as all properties in the

control group eventually become treated. Equation 2.1 is the baseline

analysis, which models price effects of proximity to windfarms alone.

Here, the treatment groups are those property transactions occurring

after a windfarm has become operational at a given distance band – re-

gardless of whether that windfarm is visible or not. Whereas the control

group is the set of properties for which transactions occurred prior to

a windfarm becoming operational but will eventually be located within

14km of an operational windfarm. This equation is subsequently aug-

mented to include a visibility indicator as well as a vector of property

specific characteristics, and it takes the same form as 3.1.

ln(price)it =
∑
k

βkjk < distance < k, operational)it−1 + x′
itγ + f(i, t) + Eit

(4.1)

Where:

• ln(price)it is the transaction price of property i in quarter t.

• (jk < dististance < k, operational)it−1 is an interaction dummy in-

dicator which captures exposure to windfarm developments. With
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a value of 1, this indicates that property i has at least one op-

erational windfarm between jk and k kilometers in the preceding

quarter. This is an interaction of two dummy variables:

jk < dististance < k indicates whether the turbine(s) are within

a given distance from a property.

operational is a post-policy indicator which indicates whether

the turbine(s) have been built and are operational.

• βk, the coefficient of interest is the average effect of operational

windfarm turbines within distance band jk − k on property prices.

βk captures home buyer’s preferences for proximity to windfarms.

Factors influencing the coefficient will include: noise or visual pol-

lution, community grants, employment or other impacts related

to turbine proximity. If βk is positive, this implies that the mean

transaction price of treated properties have risen faster than that

of the control properties. If it is negative, the opposite is true.

• f(i, t) represents unobserved characteristics which may vary over

time and space, and are likely correlated with the visibility of wind-

farms. This potential correlation may arise because windfarms

are not distributed randomly. Correlation with the time effects

is present because the number of windfarms increases over time,

and this would create a spurious correlation between any trend in

prices over time with proximity to windfarms.

• Eit is the general error term.

As in Chapter 3 I have tested for anticipation effects, but using the sam-

ple of repeat sales properties I find no statistically significant effect.

Property fixed effects are removed in 4.1 by using the within groups es-

timator and common time effects are removed by using quarter-specific

dummy variables. The time effects account for external factors that are
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time variant, i.e. the financial crisis of 2008 which caused a significant

drop in property values.

This restriction of properties creates a property groups which are sim-

ilar in the following ways: they are close to sites which are amenable

to windfarm developments, planning and construction have been com-

pleted, and it is likely that windfarms will be visible from the postcode.

Further, properties are being compared to themselves which should en-

sure that property specific fixed-effects are accounted for. In one spec-

ification I also include a set of property specific intrinsic characteristics.

It is important to note that within this application of the HPM, it is only

possible to measure marginal changes in price without the application

of a further sorting model which is beyond the scope of this work.

4.4.1 Visibility

I then refine Equation 4.1 to include a visibility indicator, as well as

property specific characteristics. I estimate treatment effects for prop-

erties treated by visible and non-visible wind turbines separately. Equa-

tion 4.2 is the model which generates the headline results for this chap-

ter. Comparisons of the proportion of properties with views of wind-

farms, and the differences between visibility estimation at the postcode

vs property level are presented in Appendix A8 and A9.

ln(price)it =
∑
k

βk(visible, jk < dististance < k, operational)it−1

+x′
itγ + f(i, t) + Eit

(4.2)

Where:
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• (visible, jk < dististance < k, operational)it−1 is an interaction dummy

indicator which captures exposure to windfarm developments. With

a value of 1, this indicates that property i has at least one visible -

or non visible -operational windfarm between jk and k kilometers

in the preceding quarter.

visible is the visibility indicator. When effects from visible wind-

farms are estimated this takes the value 1 if a windfarm is visible

from property i. When effects from non-visible windfarms are es-

timated, this takes the value of 1 if a windfarm is not visible from

property i.

• x′
itγ is a vector of property specific characteristics - ie, number of

rooms, floor area, etc.

The refinement of the model from Equation 4.1 to 4.2 will account for

price effects arising from visible and non-visible windfarms, as well as

allowing for control of property specific features which may affect price.

This should provide a cleaner estimate of the price effects arising from

windfarm proximity and visibility. Lastly, I apply a triple difference to

estimate the true price premium or discount that home buyers demand

as a result of the presence of a visible windfarm at a given distance.

This is modeled in Equation 4.3:

ln(price)it =
∑
k

βk(visible, jk < dististance < k, operational)it−1+

∑
k

δk(non− visible, jk < dististance < k, operational)it−1 + x′
itγ + f(i, t) + Eit

(4.3)

Where:

• (non − visible, jk < dististance < k, operational)it−1 is the interac-
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tion dummy for lack of visibility, distance band, and operation of

a windfarm.

• δk reports the average treatment effect arising from proximity to

operational, but not-visible windfarms.

Here I compare the average price effect from windfarm visibility on

post operation transaction to the average price effect from windfarm

non-visibility on post operation transactions. If the resulting DIDID is

negative, this essentially estimates the WTA for windfarm visibility.

4.5 Data, Descriptive Figures, and Statistics

Here I present the current state of wind energy generation within Eng-

land and Wales, the housing market, and highlight the key features of

the data relating to the analyses performed herein.

4.5.1 Windfarms and Wind Turbines

Figure 4.1 shows the significant and rapid changes in the wind turbine

stock of England and Wales between 1992 and 2020, as well as the in-

creasingly rapid growth after the analysis of Gibbons (2015). Figure 4.7

shows the turbine locations for all of England and Wales as well as the

turbines included within this study. Not all operational windfarms or

turbines are included in the analysis, as there are several offshore wind-

farms entirely or partially more than 14km from land, and therefore will

are more than 14km from any residential properties. Table 4.1provides

summary statistics on the size and capacity of the turbines included in

the analysis. Note that there is a substantial range in both heights of

turbines as well as their generation capacity. The smallest turbines, as

well as those with the lowest generation capacity tend to be the earliest

installed, and the largest tend to be more recent developments, with the
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largest being offshore developments.

Table 4.1: Wind Turbine Summary Statistics

Mean SD Min Max

Height to Tip 169.58 53.73 34 305
Rotor Diameter 94 36.12 - 180

Turbine Capacity 3.55 14.38 0.22 630

133



Figure 4.7: Comparison of all English and Welsh turbine locations (Left)
to those within the study (Right).

4.5.2 Properties

The next set of figures highlight the locations of the properties used

in the Analysis. I restrict this dataset in several ways pertaining to

the analyses undertaken here. Firstly, only properties which were sold

repeatedly over the period 1995-2018 are included, secondly, repeat

transactions must occur within 14km of an operational wind turbine.

This reduces the number of properties in the dataset to 2,299,352 –

which have on average been sold 2.05 times over the period. The geo-

graphic distribution of these properties is displayed in Figure 4.8a.

One final geography-based restriction is for the analysis which applies

the visibility estimation using information on the locations of and heights

of buildings to account for visual obstructions due to man-made objects.

These properties are shown in Figure 4.8b. Due to the nature of this

data, there are both geographic and time-based restrictions due to the

accuracy of the data becoming questionable 3 years prior and after its

publication. This reduces the properties to 1,481,338 in total based
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(a) Full Analysis (b) Building Height Restriction

Figure 4.8: Repeat Property Locations

on the Geographic cutoff, and further reduces it to 665,121 due to the

time constraint. There is also a reduction in the number of properties

to 895,261 under the specification where I restrict to repeat properties

with detailed characteristics available. Summary information is pre-

sented in Table 4.2.

Table 4.2: Property Summary Statistics

Main Building
Height

Characteristics

1995-
2018

2011-2017 1995-2018

Observations 4,717,888 1,735,966 1,844,238
Properties 2,299,352 665,121 895,261
Mean Log Price 11.59 11.7 11.58
Mean Transactions 2.05 2.61 2.06
Detached 0.19 0.05 0.2
Semidetached 0.31 0.18 0.29
Flat 0.08 0.58 0.11
Terraced 0.42 0.19 0.4
Freehold 0.84 0.86 0.83
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Figure 4.9: Comparison of line of sight using 200m, 90m, and 5m DEMs

4.5.3 Digital Elevation and Digital Surface Maps

Because Visibility together with distance is considered to be the main

treatment effect, it is necessary to ensure accurate estimation of whether

a nearby windfarm or wind turbine is visible from a given property – as

misclassification of visibility will lead to mis-grouping properties into

the appropriate group (treatment or control). Gibbons (2015) calcu-

lated visibility using a 200m grid elevation – elevation is estimated for a

200m x 200m square. In Chapter 3 I calculated visibility on a 200m grid

and 90m grid. This provided a more granular and more accurate model

of the land. However, for the repeat sales analysis, I calculate visibility

using the 5m grid, and ultimately include building height information.

To highlight the differences in accuracy, I show an example of all three

elevation models at the same location for comparison in Figure 4.10

and Figure 4.9 gives an example of the differences in obstructions to a

line of sight under each of the DEMs. Using the 200m elevation model,

the line of sight is not obstructed, however for both higher resolutions,

the line of sight is obstructed by natural features of the land. I have

also generated a line of sight with a land profile which includes build-

ing height data in Figure 4.11. Again, differences in visibility estimates

are presented in Appendices A8 and A9.

The analysis of this chapter also includes a comparison of the Eleva-

tion Map with building height data. This is data covering central and

east London. For this, I convert the 5m grid to a one-meter grid (the

values of the natural elevation still use the same data, but in 25 1m
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(a) 200m Resolution (b) 90m Resolution

(c) 5m Resolution (d) 5m Resolution and Building Heights

Figure 4.10: DEM Resolutions and Inclusion of Building Height Data

squares rather than one 5m square). I then added the building height

data to this natural elevation and calculated visibility for the dataset

where building height information was available. This is illustrated in

Figure ??. The top right image shows the elevation model on a 200m

grid, Top left displays the elevation model on a 90m grid, Bottom Right

shows the elevation on a 5m Grid, and Bottom Left shows the elevation

with added building height data at a 1m grid. I have included larger

versions of these images in Appendix A10 Figure 4.11 shows the differ-

ences in observed elevation as a profile, with an example line of sight

to highlight where different DEM resolutions could affect visibility es-

timates. Elevation and horizontal distance are shown in meters. Table

4.3 summarizes the source and use of the data which is used in the

analysis of this chapter.

Figure 4.11 highlights the fact that even when using the DEM at the

highest resolution, failure to account for intervening buildings may still

lead to errors in visibility estimation. Unfortunately it was not possible
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Figure 4.11: Line of Sight to Dagenham II Windfarm

to obtain a Digital Surface Map which included vegetation such as trees,

but despite this the analysis here is considerably more robust than any

other within England and Wales, as well as much of the wider literature.
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Table 4.3: Data Sources

Data Period Published Source Application Free Ac-
cess

Housing Transactions 1995-
2018

19-Mar HM Land Registry Price Paid
Data

Housing Type, price, and
address

Yes

Wind Energy
Wind Farms 1992-

2020
20-Jul Renewable Energy Planning

Database
Windfarm location, tur-
bine height, generation
capacity, status, dates of
operation

Academic

Wind Turbines 1992-
2020

20-Jul Renewables-MapUK Turbine locations Academic

Digital Elevation Models

200m DEM 2015 Digimaps Visibility analysis and ge-
ographic controls

Academic

90m DEM 2015 Digimaps Visibility analysis and ge-
ographic controls

Academic

5m DEM 2015 Centre for Environmental Data
Analysis

Visibility analysis and ge-
ographic controls

Academic

Building
Heights

2014 Centre for Environmental Data
Analysis

Visibility analysis Academic

Energy Performance Certifi-
cates

1995-
2018

2019 Ministry of Housing, Commu-
nities & Local Government

Property Characteristics Academic
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4.6 Results

The following section presents a series of results of the analyses de-

scribed in the preceding sections of this chapter. Firstly, I present

the headline results in Table 4.4, where they are presented across 10

columns. These results include a proximity alone analysis, a proximity-

visibility analysis I then summarize these results, which are followed by

a series of robustness checks which test key assumptions of the analy-

sis.

4.6.1 Proximity Alone

The first two columns of Table 4.4 report the results of a proximity only

analysis, column one reports the results when no geographic controls

are included in the analysis and column two reports results with con-

trols. Although I have established that the key indicator is an inter-

action of windfarm proximity and visibility, it is still useful to compare

the reported price effects with and without a visibility indicator to high-

light the fact that visibility interacted with distance is a far better proxy

for determining siting effects on house prices. Comparing the first two

columns, it is possible to see the importance that geographic controls

play in the results, although these are broadly similar. There are statis-

tically significant and negative impacts reported at the first two distance

bands in column two of about 1%, however at the 2-4km and 8-14km

range the effects are statistically significant and positive.

4.6.2 Proximity and Visibility

Columns 3, 4, 5 and 6 of Table 4.4 report results of the full dataset us-

ing a proximity and visibility interaction as the basis of the treatment.

Columns 3 and 4 show the effects from visible (3) and non-visible (4)
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windfarms when there are no geographic controls included in the model.

I find very similar results from windfarm visibility and non-visibility.

Columns 5 and 6 report effects from visible (5) and non-visible (6) wind-

farms respectively and include geographic controls. At the 0-1km dis-

tance, there are statistically insignificant and positive effects for both

visible and non-visible windfarms. However, properties within 1-2km

of both visible and non-visible windfarms show a decrease in price of

roughly 2%, with non-visible windfarms associated with a slightly larger

drop in value. At the 2-4km band, Both results are a statistically sig-

nificant and positive, close to 1% increase in price. Though non-visible

windfarms are associated with a roughly 0.15% larger increase. At the

4-8km band, both visible and non-visible windfarms are again associ-

ated with a slight increase in home value of between 1.7% and 1.6%

respectively. At the farthest distance band of 8-14km, it was found that

both locations are associated with a slightly larger than 3% increase in

price after windfarms became operational. See Table 4.5 for the DIDID

results comparing these results to quantify the price effect of windfarm

proximity and visibility more clearly.

4.6.3 Building Heights

Because it is assumed that visibility is the main cause of any price effect

arising from windfarm siting, it is important to test the results using the

most accurate visibility estimates possible. However, this required the

exclusion of a substantial portion of the dataset. Nonetheless, in Table

4.4 I report the estimated price effect of windfarm proximity and visi-

bility when building height data is included for visible and non-visible

windfarms in columns 7 and 8, respectively. Under this restriction, I

find only two statistically significant price effects. These occur at the

8-14km band for properties with visible windfarms, and the effect is a
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roughly 1.5% increase post operation. For properties with non-visible

windfarms, only those located at the 4-8km band have a statistically

significant price effect of +1.08%. All other results under this restric-

tion range from positive to negative, but all are insignificant.

4.6.4 Detailed Property Characteristics

To ensure the robustness of the results, I performed the analysis for the

subset of property transactions which were able to be paired with the

property information from the English and Welsh EPC registry. This

also led to a substantial restriction in the transactions included in the

data. I report these results in columns 9 and 10 of Table 4.4 for visible

and non-visible windfarms, respectively. When characteristics are in-

cluded, statistically significant effects are found at the 0-1km range for

properties with both visible and non-visible windfarms. For those with

visible windfarms, there was a decrease of 0.75% after windfarm oper-

ation, and for those with non-visible windfarms, there was an increase

of 2.24% after the windfarms became operational. At the 2-4km band,

properties with nearby visible and non-visible windfarms both experi-

ence an increase in price after the windfarm has become operational.

For properties with visible windfarms, there was an increase of 1.34%

while non-visible windfarms increased the price by 1.98%.
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Table 4.4: Headline Results

Distance Band Price Effect Of Presence of an Operational Windfarm

1 2 3 4 5 6 7 8 9 10

0-1km -0.0069 -0.0125** 0.0116*** 0.0409 0.0090*** 0.0446 0.0086 -0.0187 -0.0075* 0.0224**
(RSE) (0.0059) (0.0057) (0.0037) (0.0348) (0.0035) (0.0324) (0.0104) (0.0105) (0.0042) (0.0712)

1-2km -0.0094*** -0.0104*** 0.0081*** -0.0193* 0.0066** -0.0232** 0.0075 -0.0015 0.0078 0.0085
(RSE) (0.003) (0.0029) -0.0030 (0.0105) (0.0028) (0.0097) (0.0100) (0.0093) (0.0048) (0.0120)

2-4km 0.0080*** 0.0081*** -0.0089*** 0.0075*** -0.0081*** 0.0090*** 0.0042 0.0115 0.0134*** 0.0198*
(RSE) (0.0014) (0.0014) -0.0015 (0.0034) (0.0014) (0.0032) (0.0099) (0.0089) (0.0029) (0.0120)

4-8km 0.0002 -0.0009 0.0034*** 0.0172*** 0.0049*** 0.0159*** -0.0039 0.0108* -0.0186 -0.0181
(RSE) (0.0008) (0.0008) -0.0009 (0.0014) (0.0008) (0.0013) (0.0098) (0.0061) (0.0124) (0.0130)

8-14km 0.0120*** 0.0116*** -0.0029*** 0.0320*** -0.0023*** 0.0312*** 0.0147** 0.0099 0.0037 0.0053
(RSE) (0.0006) (0.0006) -0.0007 (0.0009) (0.0063) (0.00081) (0.0062) (0.0070) (0.0121) (0.0051)

Obs. 4,717,888 4,717,888 4,717,888 4,717,888 4,717,888 4,717,888 1,735,966 1,735,966 1,844,238 1,844,238
R-Squared 0.888 0.896 0.889 0.889 0.903 0.903 0.884 0.913 0.921 0.924

Geographic Controls X X X X X X X
Property Controls X X
Proximity Alone X X
Proximity and Visibility X X X X X X X X
Visible X X X X
Not Visible X X X X
Building Height Data X X

*** p<0.001
**p<0.01
*p<0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: property slope-by-year, elevation-by-year, aspect by-year dummies. Results are reported to four decimal places.
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4.6.5 DIDID

To provide a clearer estimation of the price premium or discount as-

sociated with windfarm visibility, I perform a triple difference estima-

tion comparing the average effect from windfarm visibility relative to

windfarm non-visibility. The results presented in Table 4.5 on the fol-

lowing page show the average price effect from non-visible windfarms

subtracted from the average price effect from visible windfarms. Here

I find statistically significant relative price effects at all distance bands

except the 0-1km range.

There is no statistically significant effect at the closest band, and inter-

esting the difference is not consistent. These results imply that within

1-2km, home buyers are willing to spend just under 3% more for a view

WITH a windfarm relative to a view without one. The same is true at the

4-8km band, though the premium for windfarm visibility is only 0.5%.

At the 2-4 and 8-14km bands, home buyers seem to be willing to pay

more for a lack of view f windfarms, though these premiums are very

small, both being close to 0.2%.
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Table 4.5: Difference-in-Difference-in-Differences

Distance Band 1 2 3

Visible Not Visible DIDID
0-1km 0.0090*** 0.0446 -0.0356
(RSE) (0.00345) (0.0324) (0.0325)

1-2km 0.0066* -0.0232** 0.0298***
(RSE) (0.00282) (0.0097) (0.0106)

2-4km -0.0081*** 0.0090*** -0.0017***
(RSE) (0.0014) (0.0032) (0.0004)

4-8km 0.0049*** 0.0159*** 0.0049***
(RSE) (0.0008) (0.00130) (0.0008)

8-14km -0.00228*** 0.0031*** -0.0023***
(RSE) (0.0063) 0.0009) (0.00063)

Obs. 4,717,888 4,717,888 4,717,888

*** p<0.001
**p<0.01
*p<0.05
RSE: Robust Standard Errors Clustered at the
Output Census Area
Control Vars: property slope-by-year,
elevation-by-year, aspect by-year dummies.
Results are reported to four decimal places.
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4.6.6 Additional Robustness Checks

Here I present additional results testing for robustness to the study pe-

riod and visibility intensity.

Study Period

To test for robustness to the study period, I break the analysis into 4

smaller time periods which provide the average price effect over the pe-

riods 1995-2000, 2001-2006, 2007-2012, and 2012-2018. This is pre-

sented in Table 4.6 and shows how the preferences towards windfarms

have changed over time. There is considerable variation in the reported

results across all periods for both visible and non-visible windfarms.

When disaggregated across smaller time periods, there does appear to

be rather more negative effects arising from visible windfarms than from

non-visible windfarms, Though by the final period, I show that wind-

farm visibility is associated with some very large increases in prices.

View Intensity

In Table 4.7 I present the price effects arising from differences in the

number of visible and non-visible wind turbines, or wind turbine view

intensity. Accounting for intensity of treatment by visible or not visible

turbines is a potentially important robustness check as the presence

of several turbines very close to a property would arguably result in a

much larger impact on the views from any property than the presence

of relatively few turbines at larger distances. This analysis is restricted

to include only repeatedly sold properties which are within 5km of an

operational wind turbine. I further restrict the dataset to include prop-

erties with turbines at only a single distance band to avoid any spillover
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effects arising from treatment at several distance bands. The intensity

has been grouped into four intensity categories. These intensity cate-

gories are: presence of a single turbine, 2-4 turbines, 5-10 turbines,

and more than ten turbines. These are then grouped by distance from

the property to determine if there are differing price effects arising from

a larger number of turbines at a given distance from a property.
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Table 4.6: Study Period Subdivisions

Distance Band 1 2 3 4 5 6 7 8 9 10

0-1km 0.009*** -0.0293*** -0.0154*** 0.0106 0.0302*** 0.0446 -0.0209*** 0.0245* 0.0763*** 0.0458
(RSE) (0.0035) (0.0028) (0.0008) (0.0829) (0.0077) (0.0324) (0.0058) (0.0147) (0.0091) (0.0745)

1-2km 0.0066* 0.0337 -0.0165*** 0.0094 -0.0123** -0.0232** 0.0726*** 0.0676*** -0.0205*** -0.0428*
(RSE) (0.0028) (0.0243) (0.0023) (0.0407) (0.0062) (0.0097) (0.0018) (0.0067) (0.0076) (0.0225)

2-4km -0.0081*** -0.0363 -0.0113*** 0.0278*** -0.0008 0.0090*** 0.0853*** 0.0131 0.0296*** 0.0022
(RSE) (0.0014) (0.0445) (0.0011) (0.0036) (0.0029) (0.0032) (0.0125) (0.0033) (0.0090) (0.0073)

4-8km 0.0049*** 0.0237** 0.0123* -0.0187*** 0.0199*** 0.0159*** 0.0912*** 0.0451*** 0.0261*** -0.0039**
(RSE) (0.0008) (0.0105) (0.0043) (0.0020) (0.0031) (0.0013) (0.0072) (0.0019) (0.0039) (0.0020)

8-14km -0.0023*** -0.0012 -0.0455 0.0185*** -0.0056*** 0.0031*** 0.0737*** 0.024*** -0.0021 0.0073***
(RSE) (0.0063) (0.0067) (0.259 ) (0.0020) (0.0016) (0.0009) (0.0060) (0.0016) (0.0017) (0.0024)
Obs. 4,717,888 4,717,888

R-Squared 0.847 0.866 0.898 0.911 0.904 0.850 0.866 0.898 0.911 0.904

Extension X X
1995-2000 X X
2001-2006 X X
2007-2012 X X
2013-2018 X X

Visible X X X X X
Not Visible X X X X X

*** p<0.001
**p<0.01
*p<0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: postcode slope-by-year, elevation-by-year, aspect by-year dummies, proportions of
sales of detached, semi-detached, terraced, flat/maisonette;quarterly dummies. Results are re-
ported to four decimal places.
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Table 4.7: Turbine Visibility Intensity

Distance Band 1 2 3 4 5 6 7 8

0-1km -0.0074 - - - 0.0170 - - -
(RSE) (0.0730) (0.0180)

1-2km 0.0339 0.0064 - - -0.0053 - - -
(RSE) (0.0618) (0.0082) (0.0529)

2-3km 0.0404 0.0260 -0.0176*** -0.046*** 0.0523*** 0.0751 - -
(RSE) (0.0560) (0.0197) (0.0041) (0.0009) (0.0105) (0.0483)

3-4km 0.0342 -0.0115 0.0166 -0.0222 0.0410*** 0.0188* 0.0038 -
(RSE) (0.0544) (0.0237) (0.0207) (0.0198) (0.0110) (0.0095) (0.0574)

4-5km 0.0308 0.0083 -0.0357 0.0056 -0.0158 0.0307 0.0041 0.0560
(RSE) (0.1580) (0.0920) (0.1240) (0.0847) (0.0178) (0.0181) (0.0692) (0.0250)

Number of Turbines
1 X X

2-4 X X
5-10 X X
10+ X X

Visible X X X X
Not Visible X X X X

*** p<0.001
**p<0.01
*p<0.05
RSE: Robust Standard Errors Clustered at the Output Census Area
Control Vars: postcode slope-by-year, elevation-by-year, aspect by-year dummies, pro-
portions of sales of detached, semi-detached, terraced, flat/maisonette;quarterly dum-
mies. Results are reported to four decimal places.
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4.7 Discussion

The Results presented provide evidence that wind farm visibility is both

an amenity and disamenity through the application of a fixed effects

hedonic model of valuation. The Results as presented in table 4.5 show

that home buyers will pay a premium for homes where there is a view

of a nearby windfarm – but only at certain distances (1-2km and 4-

8km). Buyers will also pay a premium for properties with no view of a

windfarm if the windfarm is sited between 2-4km or 8-14km from the

property. This is interesting as it implies there is not a consistent at-

titude towards wind turbine visibility and proximity. However, it must

be restated that this analysis has observed only properties which have

sold repeatedly over the period, though we assume any unobserved ef-

fects have been captured by the fixed effects model. This inconsistency

could be explained by several factors, such as the time the transactions

occur, as well as the number of nearby turbines which I test and pre-

sented results for in tables 4.6 and 4.7 respectively.

The results of the headline analysis fit well with those found by Heblich

et al. (2016) insofar as there is no consistent negative effect arising from

either windfarms which are visible or those which are not. The statisti-

cally significant effects found here are smaller, and though do not agree

with the direction of the effect, are more in line with Dröes & Koster

(2016) who find a decrease of about 1% but only within 2k of a wind

turbine than studies such as Lang et al. (2014), Hoen et al. (2011), or

McCarthy & Balli (2014) all of which found no statistically significant

impact on house prices arising from windfarm visibility. I find no evi-

dence of the severe statistically significant negative impacts reported by

Heintzelman & Tuttle (2012) or Sunak & Madlener (2016).
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Interestingly, the results of the repeat sales analysis within this chapter

don’t match up with the results reported in Chapter 3 as closely as had

been expected. Under the extended analysis (presented in Table 3.8) I

found consistently positive price effects from windfarm visibility at all

distance bands, with significant increases of 2.51%, 2.9%, and 6.16%

at the 2-4km, 1-2km, and 4-8km bands respectively. The observed ef-

fects here while statistically significant at all distance bands were near

zero and negative at the 2-4km and 8-14km bands. I also found con-

sistently positive, though not necessarily statistically significant effects

from non-visible windfarms within the average sales analysis.

This is evidence that the analyses in the literature may be sensitive

to the application of repeat vs average sales analyses. This is sensi-

ble when one considers what is actually being estimated across the two

analyses. In the average sales model, visibility is estimated using the

postcode centroid. Put in another way, this is a measure of whether a

windfarm is visible from the neighborhood where a property is located.

The repeat sales approach is instead estimating price effects from vis-

ibility at the property level itself. Finding a different effect under the

two approaches is not unexpected as this is the case for other ameni-

ties Bourassa et al. (2004)

It should be noted here that selection may be an issue and it is not clear

what is driving the difference in estimates between the Average and Re-

peat Sales headline results - as this could arise from either the sample

itself or the inclusion of fixed effects at different scales.

In addition to the hedonic approach, visibility estimation is highly im-

portant to the analysis. When accounting for intervening buildings,

the statistical significance of the results disappear for all but the 8-
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14km distance band with visible turbines increasing transaction prices

by about 1.5%, and non-visible turbines increasing transaction prices

by about 1%. This highlights the importance of an accurate visibility

estimate. Although Sunak & Madlener (2016) are able to make use of a

higher resolution DSM which includes both building heights and vege-

tation, it is unlikely that this is accurate for the entirety of their study

period which covers 1992-2010. They do not list the year that their

DSM was published. Similarly, Heblich et al. (2016) also make use of a

high resolution DEM and building height data, but do not restrict their

study period under this analysis, making it unlikely that the visibility

estimates are accurate for the study period of 1992 - 2014.

Therefore, despite the restriction to transactions occurring only three

years before or after the publishing of the Building Height data used

within this chapter’s analysis, I provide what is likely a far more accu-

rate visibility estimation for this specification. I should note of course,

that the time restrictions on the building height analysis lead to a study

period which overlaps with a time when negative impacts of windfarm

siting are diminishing as shown in the Study Period analysis.

Because the analysis of this chapter applies a revealed choice method,

where we assume the preferences towards wind turbine proximity and

visibility are revealed through property transaction prices. As in Chap-

ter 3 I test for changes in preferences over time. I have found that at-

titudes towards windfarm visibility have been changing, with a larger

abundance of negative price effects from wind turbine visibility in the

earlier transactions and most recently it would seem that home buyers

are less sensitive to the presence of wind turbines. This may imply that

preferences towards wind turbine proximity and visibility are not stable

over time, which could be explained individuals simply becoming accus-
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tomed to the sight of windfarms and simply accepting these as part of

the landscape. An alternative explanation is that preferences towards

windfarm visibility do remain stable over time as has been found previ-

ously by Parmeter & Pope (2013), but the increasing inclusion of recre-

ational amenities and community benefit programs over-compensates

for the visual disamenity that windfarms generate. Again, the impacts

do not match exactly to those of the average sales analysis of the pre-

ceding chapter, but they are in agreement insofar as both find more

evidence of negative effects in the earliest study periods and largely pos-

itive effects in the most recent ones. This may partly explain some of the

negative findings within the wider literature as many studies are skewed

towards the earlier ends of the analysis performed here and in Chapter

3. The majority of the papers in the wider literature, only Heblich et al.

(2016) includes data more recent than 2012.

In addition to exploring changes in the effects over time, I test whether

there are differences arising from the number of wind turbines at a

given distance band. Since the presence of several turbines may affect

vistas differently than presence of a single turbine or relatively few tur-

bines, this may be an important robustness check. Particularly because

many windfarms consist of a single turbine and may be very different

from windfarms which consist of a few hundred turbines in terms of

their impact on property vistas. Table 4.7 indicates that there is a dif-

ference in effects arising from the presence of a single turbine versus

several turbines at the same distance from the property. In regards to

policy implications, this intensity effect could be further explored under

a variety of assumptions to determine if there is an optimal wind farm

size and distance from residential properties, as well as accounting for

the density of properties, that minimizes property effects while still pro-

viding the benefits of wind energy development.
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4.7.1 Limitations of the Analysis

By definition, the properties included in a repeat sales analysis are re-

stricted to those sold multiple times over the period. This reduces sub-

stantially the size of the housing transactions dataset which is used

to value the presence of nearby and visible windfarms. Secondly, by

making this restriction, it is possible that there is a sample selection

bias due to the fact that all properties were sold multiple times which

may imply that they are generally more desirable than properties which

did not experience repeated sales over the period. However, these are

limitations of all repeat sales analyses and not unique to the present

analysis. Indeed, the limitations of this analysis are partly compen-

sated by the strengths of the average sales analysis of 3.

A limitation of all analyses within the literature suffer from is the visi-

bility estimation. This analysis is no different. Despite generating the

most detailed visibility model for England and Wales, and one of the

most detailed within the wider literature there are still limits to the ap-

plication of GIS modeling. Consider firstly that here, I use the center of

a property as the view point to estimate visibility of turbines and wind-

farm centroids. However, it is possible that this does not accurately re-

flect visibility from windows of the property or from their yards/gardens.

Secondly, McCarthy & Balli (2014) find differences between their visi-

bility estimation using GIS and field visits, which implies that even with

a very accurate model there may be misclassification. Again, it was not

feasible to physically visit individual properties due to the size of the

dataset utilized here.
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4.8 Conclusion

This chapter estimated the values of windfarm proximity and visibility

on house prices through the application of a repeat sales hedonic pric-

ing analysis, within a spatial fixed-effects DID model. Broadly speaking,

there was no consistent effect of windfarm visibility or lack of visibility

on nearby house prices. The analysis of this chapter and of 3 con-

tribute to the literature by updating the windfarm amenity literature

within England and Wales to include a period where there has been

substantial changes to the landscape since the analysis by Gibbons

(2015). This chapter also presents the first repeat sales analysis using

data from England and Wales, and allows for a testing of the estimated

impacts robustness to repeat vs average sales techniques. Further, I

find evidence across both chapters that preferences towards windfarm

visibility is not stable over time, and that broadly speaking acceptance

towards and even a preference towards windfarm visibility exists. In

addition, I find some evidence that home buyers may place different

amenity value on owning a property in a neighborhood with windfarm

visibility as opposed to living in a property with its own direct views of

wind turbines.

The findings of this chapter have several implications for policy mak-

ers. First, I find that early on, there were negative price effects from

windfarm viability and proximity. There may be justification in compen-

sating affected property owners, though as mentioned in the previous

chapter this may be difficult. Second, there is no consistent negative

impact from windfarm proximity and visibility. This should be taken

into account when choosing the sites for windfarms. There is evidence

that windfarm visibility may lead to increased home values for proper-

ties located within 2km of an operational windfarm. This information
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should be shared with communities where development applications

are being lodged, as it may bolster local support for such developments.

Third, I do find evidence that properties located near multiple visible

wind turbines doe experience statistically significant price decreases.

Policy makers should therefore continue to ensure that new wind devel-

opments are at least 3km from properties to avoid these negative effects.

At this distance, effects from a single turbine are statistically insignifi-

cant though positive - but when 5 or more wind turbines are within this

distance, statistically significant price reductions are observed.
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Chapter 5

A hedonic analysis of

residential PV systems in

England and Wales

5.1 Introduction

Over the past 30 years, there has been a sustained interest in reducing

carbon emissions through transitioning electricity generation to renew-

able sources (BEIS 2020a). In many countries, and particularly within

the UK, this transition has been largely composed of increasing the sup-

ply of electricity generated by both on and offshore wind by large-scale

commercial wind farms. At the same time, the UK has committed to re-

tiring its current stock of coal fired generation by 2025, and is replacing

these with mostly renewable generation technologies (Littlecott 2016).

Wind energy is currently the cheapest form of renewable energy and

the UK is endowed with considerable wind energy generation potential

(Gibbons 2015, Heblich et al. 2016, OFGEM 2020b). The rapid deploy-

ment of wind turbines across England and Wales was the primary focus
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of the previous two chapters, which explored the effects of large-scale,

commercial wind energy generation on house prices. I found that there

were price effects, which were significant and negative during the ear-

liest periods of the analysis. By the end of the study period, these had

shifted to either insignificant or significant and positive effects for all

but properties closest to the wind turbines. Although these wind farms

required approval, planning refusal at the local authority level could be

overridden by the Secretary of State. And even with a refusal by the

local planning authority, there is no discretion at the household level

regarding the decision for wind farm siting. Therefore, any house price

effects arising from windfarm proximity were caused by factors external

to the preferences of any individual property owner. And any effects ob-

served in price effects were the result of the preferences of prospective

home buyers.

It is worth noting that although residential solar has been consistently

found to capitalize positively into house prices, this is not necessar-

ily the case for commercial-scale solar farms. Dröes & Koster (2021)

explored whether commercial scale solar farms have any impacts on

nearby house prices and find that they decrease transaction prices for

properties within 1km by about 2.6%. This may imply that for the UK it

is more sensible to support commercial-scale wind generation. As was

reported in Chapters 3 and 4 windfarms are currently associated with

positive price impacts on nearby properties. Even if a similar impact is

found for commercial-scale solar farms, the disparity between the wind

energy and solar energy endowments for the UK would imply that given

the opportunity costs of investing in solar, wind will generate greater

returns. However, this chapter explores the impacts of residential solar

on house prices within the UK.

At the same time, there has also been a rapid and growing deployment
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of domestic renewable electricity generation within both England and

Wales. The boom in residential solar installations takes a similar tra-

jectory to commercial wind shown in Chapters 3 and 4, with a spike

occurring in 2010. Unlike commercial developments, the decision to

install residential solar or wind generation is entirely at the discretion

of property owners. The decision to install solar panels is likely based

upon a financial and personal preference basis (Black 2004, Dastrup

et al. 2012). Here the financial incentives will arise from costs of instal-

lation, savings from domestic generation and the presence and size of

any green subsidies.

Regarding the non-pecuniary factors which influence installation, there

is some evidence for a ’keeping up with the Jones’ effect within the lit-

erature (Dastrup et al. 2012). When estimating the price effects of a

residential PV system on a property, it is the personal preferences of

prospective home buyers that will determine if any solar premium ex-

ists. Such a premium may arise from a few avenues, such as the desire

to reduce their own carbon footprint, or to support the transition to low-

carbon energy generation at the individual level. The price premium

may even be a means to signal an individual’s commitment to reduc-

ing emissions or the importance placed on environmental protection to

others (Dastrup et al. 2012).

The growing adoption of residential solar generation has sparked aca-

demic interest in evaluating the extent to which solar photovoltaic (PV)

systems are capitalized into home values. Though the literature is small,

all research into the capitalization of residential PV has been performed

in ‘sunny’ countries or regions which have substantially higher PV gen-

eration potential compared to the UK. The literature include works by

Hoen et al. (2013) and Dastrup et al. (2012) which found that the solar
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property premium in California was large enough to recoup installation

costs or generate profits, respectively. More recently, Ma et al. (2016),

Wee (2016) and Lan et al. (2020) found solar installations costs are fully

recovered through increased sales prices in Western Australia, Hawaii,

and Queensland, Australia respectively. Lastly, a paper by Qiu et al.

(2017) reports that in Phoenix Arizona, the solar premium leads to in-

creased property values of up to $45,000 with a substantial profit over

the costs of installation.

The United Kingdom has also experienced a boom in solar PV instal-

lations, with reported installations in just over 800,000 properties in

England and Wales presently OFGEM (2020b). The largest increase

was between 2010 and 2014, but growth has continued to the present

day. In this chapter, I extend the literature on the solar premium and

capitalization by analyzing price effects through 3 statistical models un-

der a variety of assumptions. The first two models reflect approaches

taken within the current literature to value the solar premium and the

third applies a propensity score matching approach and takes a quasi-

experimental design – the first to be applied within this literature. The

matching analysis is the largest performed to date, and unlike Qiu et al.

(2017) and Lan et al. (2020), I use a national dataset rather than a sin-

gle city case study. In addition, this is the first analysis to estimate the

extent to which solar installations within the UK are capitalized into

house prices.

I find evidence that a solar premium exists in England and Wales. Un-

der two of the empirical models, I find the size of the premium is large

enough that costs of installations will be fully recovered and may lead

to a profit for the average installation. These findings are robust to a

number of sensitivity analyses.
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5.2 Solar PV Capitalization in the Literature

Here, I will present a discussion of the papers which have reported val-

ues of solar premiums or capitalization rates from the literature. These

papers have broadly informed the structure of the analysis outlined in

Section 5.4 and the results presented in Section 5.5. Firstly, I will dis-

cuss the general methodologies applied within the literature and how

they have influenced the methods applied in the analysis of this chap-

ter. Subsequently, I discuss the key findings of the papers and lastly I

highlight how the current analysis fits into the literature.

Table 5.1 highlights the key features and findings of the analyses from

the literature. First, the have thus far included a very small selection

of residential transactions where solar PV have been installed. Second,

there are three broad methodological approaches taken to value the so-

lar premium/capitalization into house prices. Five of the six papers

apply some form of the basic hedonic regression model, half go on to

apply a repeat sales analysis, while two utilize control matching tech-

niques. Third, despite the different econometric approaches taken and

the broad geographic distribution of study areas, there is agreement

within the literature: solar panels are capitalized into house prices and

the solar premium is large enough to fully recover or profit from the cost

of installing a residential PV system.
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Table 5.1: Residential PV Capitalization Literature

Author(s) Period Transactions PV
Homes

Study Area Hedonic
Regres-
sion

Repeat
Sales

Control-
Matching

Solar Pre-
mium

Recover
Installa-
tion Costs

Profit Over
Installa-
tion Costs

Dastrup et al. 1997-2010 364,992 329 California Y Y N 3.50% Y Y
Hoen et al. 2000-

2009
72,319 894 California Y N N 3.60% Y -

Ma et al. 2009-
2012

25,970 413 Western Australia Y Y N 2.3-3.2% Y -

Wee 2000-
2013

47,696 259 Hawaii Y Y N 5% Y -

Qiu et al. 2014 246 123 Arizona N N Y 15-17% Y Y
Lan et al. 2008-

2018
315 228 Queensland, Australia Y N Y $21,403 AUD Y Y

162



5.2.1 Hedonic Regression

A key assumption of hedonic valuation approach is that the price of a

given good is determined by the values a buyer or seller ascribe to both

the internal and external characteristics of that good (Monson 2009). As

outlined in the previous chapters of this thesis, the price is essentially

a sum of the values of the features of the good, it is possible to generate

an estimate of each characteristic by disaggregating them (Rosen 1974,

Blumenschein et al. 2008). In the context of this chapter and the liter-

ature reviewed in this section, the ‘good’ is a residential property. The

intrinsic characteristics are the features of the property itself such as its

construction type, floor area, number of rooms, lot size, etc. Extrinsic

characteristics are features of the area where the property is located,

such as the school catchment area, local crime rate, proximity to local

amenities, etc. Equation 5.1 is the generic model applied to estimate

the disaggregated values of internal and external characteristics which

taken together are the price of a property and will be a familiar feature

of this thesis.

Price = f(intrinsicfeatures, extrinsicfeatures, time) (5.1)

In its simplest form, the hedonic valuation is based on a regression

equation where price is the dependent variable, and the characteristics

are independent variables. The majority of studies applying a hedonic

analysis have used a semi-logarithmic function to estimate the value of

property characteristics under a hedonic regression model (Lan et al.

2020). Studies valuing solar premiums have taken this approach, ei-

ther in their main analysis (Hoen et al. 2013) or as a benchmark for

subsequent analyses (Dastrup et al. 2012, Ma et al. 2016, Wee 2016,

Lan et al. 2020). Qiu et al. (2017) are unique within the literature in
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that they do not first make a logarithmic transformation of their depen-

dent variable (price), but rather perform their hedonic regression using

the raw values of sales prices from their dataset.

The general approach of these analyses, as well as the benchmark anal-

ysis described in the subsequent section of this chapter is to disaggre-

gate and control for the various influences of property characteristics,

as well as time on house prices. This is done by using the regression

coefficients to reflect the contributions of each characteristics, and time

to the total price of a given property, and by taking the coefficients of

the regression on an entire dataset, estimate an average price or value

of each component. Under this approach, in addition to controlling for

property specific characteristics, it is imperative to control for time and

fixed effects (Gibbons 2015) to avoid biases in the results.

Applying this approach as the main analysis of their paper, Hoen et al.

(2013) report an average solar premium of 3.6% of the average prop-

erty value in their dataset, which translates to a price premium of $17-

38,000 relative to non-solar properties in the same zip code within Cal-

ifornia. The other papers which performed a hedonic approach used

it to benchmark their headline results – either against a Repeat Sales

Analysis or a Control-Matching analysis and these approaches are dis-

cussed in the following two sections.

5.2.2 Repeat Sales Analyses

An alternative to the standard hedonic regression model is a repeat

sales model. A common problem with the basic hedonic regression is

the omitted variable bias, which in this case, arise from unobserved

property-specific factors. The inclusion of fixed effects in the model
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can address the potentially omitted variables. Though when this is per-

formed at the zip code level, as was the case for Hoen et al. (2013), there

is still a reasonable possibility that some potentially important factors

are omitted. The repeat sales approach addresses this issue by com-

paring properties to themselves, rather than to nearby properties.

This basic idea underpinning this approach is that it compares the

change in price between two sales of a given property, while control-

ling for intrinsic and extrinsic characteristics, time and fixed effects.

Because this approach compares a property to itself, it is imperative

that both the timing of and the time between sales is accounted for to

ensure that price effects are not simply a reflection of house price in-

flation (Dastrup et al. 2012, Ma et al. 2016, Wee 2016). A repeat sales

analysis essentially exploits the fact that the only difference between

two transactions is the presence of a new feature of that property. This

is then added to the regression model (usually as a dummy indicator) to

allow for the estimation of of how much of the change in price between

sales is caused by installing solar panels. For present purposes, the

feature of interest which is allowed to change between transactions of a

given property is the presence of residential solar installations.

A repeat sales model will measure the average additional appreciation of

properties which have installed PV systems between consecutive sales

and properties located in the same area which have not installed a PV

system in the same period. An advantage of this approach is that by

comparing a property to itself, a repeat sales analysis eliminates the

potential biases in selecting an appropriate control group faced by the

standard approach. Under the assumptions of a repeat sales analysis,

the transactions are restricted to properties which have sold multiple

times, eventually install residential solar PV and have sales during the
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study period.

This approach was used to generate the headline results for Dastrup

et al. (2012) who report and average solar capitalization of 3.5% for

properties located near Sacramento and San Diego California. As is

the case with all other repeat sales within the literature, Dastrup et al.

(2012) define their dependent variable as the natural log of the change

in price between sales of a given property. The coefficient of their PV

installation dummy variable, which takes a 1 if PV was installed be-

tween transactions and 0 otherwise is the percent of the sales price

attributable to the presence of the solar panels. This translated into a

solar premium of $22,554. This is slightly below the cost of installing

the average PV system within the analysis. However, state and federal

subsidies towards the purchase, financing, and installation lowered the

cost to the extent that home sellers would fully recoup and profit from

their installations. Ma et al. (2016) found a similar result for proper-

ties in and around Perth, Western Australia where they estimated the

capitalization rate to be 2.3-3.2%, which would fully recover the costs

of installations analyzed in their study. Lastly, Wee (2016) finds a cap-

italization rate of 5% of the property value which again, leads to a full

recovery of the installation costs through the sale of the property.

The repeat sales approach has the potential to address the omitted vari-

able bias relative to the basic hedonic regression models due essentially

controlling for fixed effects at the property level rather than the neigh-

borhood level (if controlled for at all). One potential source of bias in

any repeat sales model is the assumption that implicit prices are con-

stant. By implicit prices, I mean the value of each property charac-

teristics which combined equal the transaction price of the property.

This assumption likely holds true in the short term, but this assump-
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tion becomes weaker as the time between transactions increases Case

& Quigley (1991). One method to address this issue within a repeat

sales model is to control for the time of the sequential sales, as well as

the time between these sales. As an alternative, some papers in the lit-

erature have performed a control-matching analysis, which I describe

subsequently.

5.2.3 Control Matching

The final approach to estimating the capitalization of solar panels into

property values that will be discussed is the control matching approach.

As this technique forms the basis for the headline results of this chapter

and has not been discussed in the previous two chapters of this disser-

tation, I discuss the literature and methods used more thoroughly than

the recaps on hedonic regressions and repeat sales approaches above.

In a general sense, control matching imposes a quasi-experimental de-

sign on the analysis by comparing a treatment group to a control group.

In the strictest set up, the two groups are identical on all control vari-

ables with the exception that the treatment group receive a treatment

and the control group does not (Austin 2011). However, within the liter-

ature, there has not been an analysis which has a large enough dataset

to perform an exact matching approach - the papers in the literature

instead apply inexact matching techniques. In the context of the liter-

ature and this chapter, the treated group are properties which install a

residential PV system and the control group are properties which do not.

Control matching essentially creates a set of control properties which

are identical to the treated properties, prior to the installation of a solar

panel (Lan et al. 2020). The key assumption of this approach is that: if

two properties are sold in the same location, at the same time and have
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identical sets of intrinsic and extrinsic features - with the exception of

the presence of a residential PV system, then any observed difference

in price can be attributed to the PV system.

Within the literature on solar PV capitalization, only Qiu et al. (2017)

and Lan et al. (2020) use a matching approach to select controls and

apply this research design. Both papers apply a fuzzy matching design –

their datasets limited them to matching treatment properties to controls

using inexact matching on characteristics. For example, when match-

ing on the number of bedrooms, Lan et al. (2020) allowed for matches of

±1 – so a treated property with 4 bedrooms could be matched to a con-

trol property with 3, 4 or 5 bedrooms. Qiu et al. (2017) apply Coarsened

Exact Matching (CEM) which uses an algorithm to transform variables

from discrete values into categorical ranges for both the treated and

control groups. These categories were then matched exactly to gener-

ate a matched control group. In Table 5.2 I list the matching variables

for Qiu et al. (2017), Lan et al. (2020), and the matching performed in

Model 3 of this chapter.

The matching approach used in the analysis of this chapter varies from

that of the literature. Rather than applying techniques such as fuzzy

matching following Lan et al. (2020) or coarsened exact matching asQiu

et al. (2017) do, I apply a Propensity Score Matching (PSM) approach.

PSM estimates the house price effect of installing residential PV by ac-

counting for the property characteristics which predict installation of

a residential PV system. Ultimately, PSM creates a sample of control

properties (no solar PV) which are comparable on all observed charac-

teristics to the sample of treatment properties (solar PV). The analysis

herein makes use of a national dataset of property transactions and

characteristics which allows for exact matching on characteristics be-
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tween the set of properties which install solar PV and those which do

not. This is a significant improvement over the single-city case studies

within the current literature.

Table 5.2: Control-Matching variables from the literature and Model 3

Match variables

Fuzzy Matching Exact Matching
Lan et al. Qiu et al. Model 3

Number of Bedrooms Number of Bedrooms Number of Rooms
Number of Bathrooms Number of Bathrooms Number of Fireplaces

Number of Parking Spaces Square Footage Floor area (m2)
Land size Lot Square Footage Property Type

Swimming Pool Pool New Build
Grage Year Built Tenure Type

Undercover Parking Good Views Construction Age Band
Ensuite Sale Year
Study Postcode

Built in Robes
Alarm System

Gym
Rumpus Room

Workshop
Air Conditioner
Solar Hot Water

5.2.4 Propensity Score Matching

Randomized controlled trials (RCT) are considered to be the best ap-

proach for estimating treatment effects because random assignment to

the treatment or control groups ensures that there is no confounding of

treatment effects with known or unknown baseline characteristics and

this allows for the effects of a treatment on an outcome to be measured

by comparing outcomes between treated and untreated cases (Austin

2011). However, most observational studies do not allow for a random

assignment to either a treatment or control group, leading to potential

bias in the selection and assignment into treatment or control groups.
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This is the case for the research discussed above, as well as for the anal-

ysis presented in the subsequent sections of this chapter – residential

solar PV systems are not installed at random. Installation is a choice

made by homeowners or developers based on their own preferences, in-

centives and situations. Although an RCT model is the gold-standard

for estimating treatment effects, there alternative methods which can

simulate an RCT or make adjustments to correct for potential selection

biases.

Propensity score matching (PSM) is a statistical technique which simu-

lates an RCT where a well-defined treatment case is matched with one

or more control cases based on each case’s propensity score (Randolph

& Falbe 2014). A propensity score, which forms the basis for matching

treatment to control cases, is the probability of receiving a treatment

conditional on a vector of baseline characteristics (Austin 2011) and

the estimated score is the predicted probability of treatment derived

from a fitted regression model, often a logistic regression. Here, a treat-

ment case is a property which installs a residential solar PV system,

and a control case is a property which does not install such a system.

The baseline characteristics are the intrinsic and extrinsic features of

a given property – number of rooms, local school quality, etc. A key as-

sumption of the PSM approach is that treatment assignment is strongly

ignorable (Rosenbaum & Rubin 1983). Ignorability refers to what extent

cases assigned to treatment or control groups is irrelevant for the data

analysis (Rubin 1978). Strong ignorability implies that non-random se-

lection for treatment will not bias the results, and for an unbiased anal-

ysis using the PSM, the model must be strongly ignorable (Rosenbaum

& Rubin 1983).

For a model to have strong ignorability, there are two key conditions
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which must be met. Firstly that treatment assignment is independent

of the potential outcomes, conditional on the observed baseline covari-

ates (Austin 2011, Rosenbaum & Rubin 1983). In the context of this

chapter, this means that the characteristics of the properties in the

dataset do not affect the properties’ probability of installing a PV sys-

tem. The second condition requires that all cases – treatment or control

– have a non-zero probability of receiving or not receiving the treatment.

Rosenbaum & Rubin (1983) show that if assignment to the treatment

group is strongly ignorable then conditioning via the propensity score

allows for unbiased estimates of the average treatment effect. This es-

timate is referred to as the average treatment effect of treatment on the

treatment group (ATT) (Imbens 2004). Because installation of residen-

tial PV systems is voluntary, the ATT reports the effect of installation

for properties where owners have chosen to install such a system.

To summarize, the PSM approach estimates the effects of treatment

by accounting for the covariates which predict receiving the treatment.

Within the context of this chapter, the covariates are the observed prop-

erty characteristics, and the treatment is the installation of a residential

PV system. The strength of the PSM approach is its ability to reduce the

confounding variable bias inherent to an estimate of the PV installation

price effect in a comparison of outcomes between the solar and non-

solar property groups (Rosenbaum & Rubin 1983). These biases arise

because installation of residential PV systems is not random, so there

is potential that the difference in outcomes between the two groups is

caused by some factor which predicts installation of a residential PV sys-

tem, rather than installation itself (Rosenbaum & Rubin 1983, Imbens

2004). PSM addresses the non-random installation of PV by creating a

sample of non-solar properties which are comparable to the solar prop-

erties with similar or the same observed characteristics.
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5.3 Contextual Background

In the next section, I discuss the current state of the literature on the

capitalization of residential solar PV systems into house prices and the

analytical approaches taken therein. The literature reports evidence

not only that there exists a solar property premium – a premium above

that of comparable properties lacking solar PV systems, but also that

this is of a value large enough to compensate for the installation costs

associated with such systems. However, it should be noted that the cur-

rent literature examines property transactions which occur in Arizona,

California, and Hawaii in the United states and Western Australia and

Queensland in Australia – locations which are relatively well known for

warm and sunny weather. The United Kingdom, though it has a sub-

stantial wind energy endowment, is relatively sparse for solar energy

(SolarGIS 2020). Figure 5.1, on the following page, presents the dif-

ferences in solar photovoltaic potential of California (Left) and England

and Wales (Right). Cities where studies on residential solar PV capital-

ization have been labeled. Hoen et al. (2013) reports capitalization from

across California, whilst Dastrup et al. (2012)) reports capitalizations

for properties in the Sacramento and San Diego areas.

The sizes of these locations are not shown to scale, but the average an-

nual PV generation potential is consistently displayed across each re-

gion. It is immediately clear that the regions which have been the focus

of the research within the Residential Solar Capitalization literature has

been on locations with considerably larger solar energy resources than

England and Wales. In fact for the majority of these regions, locations

with the poorest PV are roughly on par with the locations in England
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and Wales with the highest PV potential.

Within the literature, the solar premium has been largely explained

through energy savings, profits from export of excess generation (Das-

trup et al. 2012, Hoen et al. 2013, Ma et al. 2016, Wee 2016, Qiu et al.

2017, Lan et al. 2020). It is reasonable to assume, that given the same

technology and the same PV installation size, one located in an area with

higher generation potential would produce larger savings and more ex-

cess electricity for export. Therefore, the differences in potential solar

generation will lead to differences in the total energy savings or profits

from export of excess generation to the grid. Of course, local electric-

ity costs and export rates will also influence these values. Regardless,

despite the lack of a solar resource endowment this has not prevented

England and Wales from experiencing a relatively rapid deployment of

residential solar PV systems. Comparisons between the UK PV potential

and other study areas from the literature are presented in Appendices

A11, A12, A13, and A14.
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Figure 5.1: Average Annual PV potential: California, England and Wales.
Data: SolarGIS (2020); created in QGIS
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5.3.1 The Rise of Residential PV in England and Wales

The increased demand for renewable energy generation over the past

few decades has been met with increased efficiency of these new gener-

ation technologies which has led to ever increasing shares of national

energy profiles coming from renewable energy generation. The increase

in generation efficiency from renewable energy sources has been due

to a combination of increased capacity as well as improvements to the

technologies themselves (Xu et al. 2018). Although wind generation

contributes the greatest share of renewable electricity, solar generation

has also grown rapidly in recent years. Figure 5.2 shows the share of

total electricity generated in the UK between 2000 and 2019 by all non-

fossil fuel sources, wind, and solar.

Although solar represents a small share of the total and non-fossil gen-

eration, it is increasingly becoming a meaningful electricity source as

PV costs decline and efficiency increases. Of course, much of the so-

lar electricity generation is produced by large-scale commercial solar

farms (OFGEM 2020c), residential solar installations have also seen

widespread adoption and currently stand at just under 800,000 for the

UK as a whole (OFGEM 2020c). In Figure 5.3 I have plotted the total

number of residential solar installations in England and Wales and Fig-

ure 5.4 plots the total residential solar capacity over the same period.

The first residential PV systems became active in 1995 in Southeast

England, and residential PV was extremely rare until 2010, when sys-

tems became much more widespread. Figure 5.3 shows that from 2010

to 2015 there was a rapid deployment in residential PV systems and

cumulative residential capacity. Initially the two values grew at roughly

the same rate. This reflects the increase in the average capacity of newer

systems relative to older systems as shown in Figure 5.5 below.
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Figure 5.2: UK electricity generation by source, 2000-2020. Data: EM-
BER (2020)

Figure 5.3: Cumulative Installed Residential PV systems in England
and Wales: 1995-2020

Figure 5.4: Cumulative Installed Residential PV systems in England
and Wales: 1995-2020
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Figure 5.5: Mean Residential PV Generation Capacity

As discussed briefly in the previous section, the solar premium is ex-

pected to arise through a combination of energy savings, energy exports,

and non-pecuniary preferences towards solar panels. Within the UK,

the Feed-in Tariffs Scheme (FIT) was a government policy to promote the

uptake of renewable micro-generation technologies including residential

PV systems (OFGEM 2020a). The FIT Scheme mandated that electric-

ity providers must pay generators for all electricity generated from a

qualifying system, as well as any excess electricity exported to the grid.

Within the context of this chapter, a generator would be any homeowner

who installed residential solar PV and accepted into the scheme. The

FIT scheme was opened to applicants on April 1, 2010 and closed to new

applicants on April 1, 2019. The Feed-in Tariff was guaranteed for 25

years for solar PV, and the size of the tariff (per KWhr) was determined

by the year of entry to the scheme and is constant for the 25 year period.

The size of the tariff decreased each year for new entrants. From April

1 2019, the FIT was replaced by the Smart Export Guarantee, which

guarantees a non-zero payment (per Kwh) for exported electricity only

(OFGEM 2019).

Evidence from the literature shows that not only are solar PV systems
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capitalized into property values, but this solar premium will compensate

for the costs of installation and potentially even lead to profit above the

installation costs. However, this evidence has been gathered from re-

gions with considerable larger PV generation potential than that of Eng-

land and Wales. Despite the lower generation potential within the study

region, the FIT scheme was quite generous. The subsequent analysis of

this chapter performs a series of statistical analyses to determine if 1)

residential PV systems are capitalized into property values in England

and Wales, 2) if that capitalization will compensate for the installation

costs despite the relative lack of electricity generation potential and, 3)

how the capitalization and solar premium compare to those reported in

the literature.

5.4 Data and Estimation Strategy

The research design applied to the data is as follows: Firstly, I esti-

mate a baseline hedonic regression model using pooled OLS to estimate

the capitalization of residential PV systems into property transaction

prices in England and Wales. However, as there are limitations and

potential biases associated with this model, I then take a repeat sales

approach to generate a second set of results where capitalization is esti-

mated by comparing the price between two neighboring transactions of

the same property. Neighboring transactions refer to transactions of the

same property which are sequentially neighbors - ie the fist and second

transaction or second and third transactions of a given property. Lastly,

I perform a propensity score matching analysis to generate a matched

control group and the average treatment effect on the treatment group

is reported. The goal of all three models is to estimate the average value

added to a property arising from the installation of a residential PV sys-
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tem. I perform Moran’s I test for spatial auto-correlation within Models

1 and 2, and the results are reported in Appendix A16.

5.4.1 Model 1: Baseline Hedonic Regression

Model 1 is the benchmark against which I compare the results of the

subsequent models. This model is a pooled OLS model and applies a

semi-log function which allows for the interpretation of the regression

coefficients as a percentage of the property transaction price. (β1) is

therefore interpreted as the average price effect from the average sized

PV system. Here, the sample analyzed includes property transactions

which occur in postcodes where residential PV systems are present and

include a mix of properties where the systems have been installed and

neighboring properties which have not installed. Model 1 is represented

in Equation 5.2 where year-by-quarter dummies (σt) and postcode dum-

mies (γj ) control for any unobserved factors across time and postcodes

which may affect transaction prices. The time dummies will adjust for

seasonal fluctuations within the housing market and the neighborhood

dummies (postcodes) capture locational features such as crime rates,

school quality, recreational opportunities etc.

ln(price)ijt = α+ β(solar)it−1 + σt + γj + x′
ity + Eit (5.2)

Where:

• α is the constant.

• priceijt is the price of property i in postcode j at quarter t.

• β reports the estimated value of the average sized residential PV

system as a percentage of the transaction price.
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• Solarit−1 is a dummy indicator which takes the value of 1 if a prop-

erty has an installed PV system at least one quarter prior to a sale,

and is 0 otherwise.

• σt is the quarter and year in which the property was sold.

• γj is the postcode where property i is located.

• x′
ity is a vector of property specific characteristics including: num-

ber of rooms, floor area, (m2), number of fireplaces, property type,

construction age band, and an indicator for whether the property

will install a PV system in the future.

• Eit is the error term.

Hedonic regression models are the workhorse of many econometric anal-

yses valuing property characteristics. Though it is a more simple analy-

sis than the techniques applied subsequently, its main strength is that

it can be used to compare the prices of all PV homes in the sample to

all non-PV homes within the dataset. A key assumption of this model is

that any unobserved property-specific characteristics are not correlated

with PV installation. Any omitted variables which are correlated with

the presence of a residential PV system, and affect house prices, may

bias the estimated price effect from installing PV. Within this model, I

attempt to reduce this bias by controlling for fixed effects at the post-

code level. There is also potential for selection bias, or the possibility

that the distribution of PV homes may differ systematically from the set

of non-PV homes. To further address potential biases in the estimated

price effect, I perform two subsequent analyses which address or reduce

the selection and omitted variable biases.
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5.4.2 Model 2: Repeat Sales Analysis

Model 2 takes the form of a Repeat Sales Analysis. This approach allows

for a comparison of a given property’s value before and after a residen-

tial PV system is installed. Here, I restrict the sample to only properties

which have sold twice or more, and which at some point will install

solar panels. I then construct a cross-section of neighboring transac-

tion pairs and compare the average change in price between the two

sales. I then generate a dummy indicator which is 1 when a residen-

tial PV system has been installed between two sequential transactions

and 0 otherwise. This model estimates the average increase in trans-

action price between two sales of properties which install PV between

sales. Again, if a property within the dataset is sold four times, these

four transactions will appear as 3 pairs of neighboring transactions.

Transaction one paired to transaction two, transaction two paired with

transaction three and transaction three paired with transaction four.

This captures the price effect of the installation. The model controls

for time and geographic effects, as well as the characteristics of the

transacted properties. The coefficient of this installation indicator β

provides the estimated capitalization of a residential PV system. Again,

year by quarter dummies σt and postcode dummies γj control for any

unobserved factors across time and postcodes which may affect trans-

action prices of a property between two sales. Crucially, the model also

controls for both years of the neighboring transactions, as well as the

time between them measured in quarters. The equation of model one is

shown below:

ln(
Priceij(t+T )

Priceijt
) = β∆(Solari(t+T )) + x′

i(t+T )γi + σt ++Et+T (5.3)

Where:
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• Priceij(t+T ) and Priceijt are neighboring transaction pairs of prop-

erty i in postcode j which occur T quarters apart, and the first

transaction occurs in quarter t.

• ∆(Solari(t+T )) is a dummy indicator which is 1 if solar panels have

been installed between sales of property i.

• β is the average effect of the average PV installation.

• x′
itγj is a vector of property and geographic characteristics of prop-

erty i.

• E(t+T ) is the error term.

The repeat sales estimate (β) of the capitalization of solar panels in hous-

ing prices measures the additional premium of properties with residen-

tial PV systems installed between sales above and beyond the price ap-

preciation of like properties with no solar installations. By interpreting

β as the effect of PV installation on subsequent transaction price re-

quires the assumption that any idiosyncratic price appreciation of the

properties in the study is not associated with the installation of solar

panels. This is likely controlled for by the fact that all properties in the

study are restricted to those which eventually install residential PV sys-

tems as the indicator will be 0 if a PV system was previously installed

or has not yet been installed. There is also some potential for treat-

ment effect heterogeneity bias here, though this is partially addressed

by controlling for within the neighborhood effects at the postcode level.

I discuss this in more depth in 5.6 In the repeat sales sample, 2,541

properties have installed observations have installed solar panels prior

to their first sale, 1,785 install between transactions, and 1,801 have

not yet installed. These are English and Welsh property transactions

cover the period 2008 through 2019, which eventually install residen-

tial PV.
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This approach has a few advantages over Model 1. As the properties are

compared to themselves, this reduces the potential for omitted variable

bias, as any unobserved characteristics which are correlated both with

PV installation and transaction prices are controlled for. By restrict-

ing the analysis to only properties which eventually install PV systems,

this analysis addresses the potential of selection bias where PV homes

may be of higher quality than non-PV homes. This is simply due to the

fact that all properties eventually install solar. I am additionally able to

control for other changes in property characteristics, though these are

exceptionally rare within the data. For example, between transactions

one property gains a room, and therefore its total area also increases,

and another property removes a fireplace. Unfortunately, the data does

not allow for a full set of characteristics to be tracked over time, but it

is assumed that these are also relatively constant.

5.4.3 Model 3: Propensity Score Matching

The final model used to estimate the capitalization of residential solar

PV into property transactions is a Propensity Score Matching approach

which pairs property transactions where PV systems are installed prior

to the transaction to transactions where no PV system is installed before

the sale. The underlying goal of this approach is to create a treatment

and control group, where one did not exist. In this way, I estimate the

counterfactual of what a given property’s transaction price would have

been if it had not installed a solar panel. As discussed in the previous

section, this pairing matches treated and controlled properties based on

exact matches on the matching criteria. These criteria are: Floor Area,

number of rooms, number of fireplaces, property type, tenure type, the

age band of the property, the year and quarter of the transaction, en-
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ergy efficiency rating, and the postcode where the property is located. A

balancing test of these variables is presented in Table 5.3, though this

table reports only the core variables as when sale year-quarter and post-

code values are included the table will list thousands of variables. The

balancing test compares the means of the matching variables between

the treated and control groups – there is no statistically significant dif-

ference in the means of the two groups. The bias of the matching should

remain below |5%| and this is the case for all variables. I also present a

histogram of the propensity scores of the treated and untreated groups

in Table 5.6.

By using Propensity Score Matching, the analysis allows for compar-

isons of the transaction prices of properties who do and do not install

residential PV systems, but between properties which are equally likely,

or nearly equally likely to install such systems – based on the charac-

teristics discussed above. This model provides the Average Treatment

effect for the Treated (ATT) which is the estimated increase in property

value for properties which have installed a residential PV system. Apply-

ing this approach works in two stages. First, I use a logistic regression

model to calculate all properties’ propensity for being treated (installing

solar PV systems). Following Rosenbaum & Rubin (1983), the propen-

sity score is defined in Equation 5.4 below.

p(T ) = Pr{T = 1|S} = E{T |S} (5.4)

Where:

• p(T ) is the propensity to install a residential PV system.

• T is and indicator that a property has or has not installed a PV

system.

• S is the vector of covariates which influence whether a property
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has been treated.

The second stage of the analysis uses the estimated propensity scores

to match treated and control properties. There are multiple matching

techniques, but for this paper I have applied Kernel matching, Stan-

dard Nearest-Neighbor matching and Greedy Nearest-Neighbor match-

ing. Kernel matching uses the calculated propensity score to match

treated properties to a weighted mean of control properties. The weights

assigned to the control properties are based on the distance between the

propensity score of the control properties and the score of the treated

property which they are being matched to. In this way, all control prop-

erties can potentially contribute to the weighted composite mean of the

control cases. This improves the estimation power and efficiency of

the model (Frisco et al. 2007, Morgan et al. 2017). Nearest-neighbor

(NN) matching also uses the calculated propensity score to match a

treated property to a control property (Frye & Bartlett 2017). This is

achieved by measuring the distance between the propensity scores of

each treated and control property and matching between those with

the closest scores. Standard NN matching only allows a control prop-

erty to be matched once, while greedy NN allows the control property to

be matched to multiple treatment properties if it has the closest propen-

sity score to that property.

The ATT is the average effect of treatment on the properties which in-

stall a residential PV system, whereas the results presented in Model 1

will be the average population-wide effect, Models 2 and 3 estimate the

effects for only the group of properties which eventually install the solar

systems. I perform the propensity score matching method under 2 al-

ternative matching approaches - nearest neighbor matching and greedy

nearest neighbor matching. This essentially acts as a robustness to

test whether the results are sensitive to alternative means of generating
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Figure 5.6: Treated and Untreated Propensity Scores

the control group. Nearest neighbor matching is an exact matching ap-

proach which allows a control property to be matched to multiple treated

property if it is the best match. Under the greedy matching, controls

can be paired only once.

5.4.4 Data and Methods

Properties and Transactions

Under each model outlined in the subsequent section, controlling for

or matching on property characteristics is key to eliminating biases in

the estimations of capitalization of residential PV systems. These prop-

erty characteristics were obtained from the Energy Performance Certifi-

cate (EPC) registry for England and Wales and include detailed property

characteristics relating to the energy efficiency of residential proper-

ties. All properties must have an EPC lodged with the registry when

constructed, sold, let, at assessment for, and after installation of any
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Table 5.3: Balancing Tests for Controls

Variable Mean t-test

Treated Control Bias (%) t p>t
Floor Area (m2) 99.208 98.741 1.3 0.98 0.328

Number of Rooms 4.9618 4.9693 -0.5 -0.49 0.622
Number of Fireplaces 0.11113 0.10946 0.4 0.37 0.715

Property Type
Detached 0.30115 0.30259 -0.3 -0.29 0.77

Semidetached 0.39702 0.39564 0.3 0.26 0.792
Terraced 0.27978 0.27829 0.3 0.31 0.756

Flat/Maisonette 0.02033 0.02154 -0.6 -0.79 0.431
New Build 0.06161 0.05994 0.7 0.65 0.515

Tenure Type
Owner-occupied 0.8559 0.84534 3.1 1.37 0.172
Rental (Private) 0.03544 0.03708 -0.7 -0.41 0.685
Rental (Social) 0.00892 0.00915 -0.3 -0.11 0.909

Unknown 0.09974 0.10843 -3.7 -1.31 0.189

Construction Age Band
1900-1929 0.12247 0.12173 0.2 0.21 0.831
1930-1949 0.28335 0.28761 -1 -0.88 0.379
1950-1966 0.19572 0.19744 -0.4 -0.41 0.685
1967-1975 0.07986 0.07819 0.6 0.58 0.564
1976-1982 0.06576 0.06593 -0.1 -0.06 0.948
1983-1990 0.04192 0.0418 0.1 0.05 0.957
1991-1995 0.06812 0.06771 0.2 0.15 0.881
1996-2002 0.02781 0.02677 0.6 0.59 0.553
2003-2006 0.01871 0.01589 2.4 2.02 0.044

2007 Onwards 0.0323 0.03432 -1 -1.05 0.295

Sale Year
1996 0.04376 0.04226 0.8 0.69 0.492
1997 0.04583 0.04319 1.4 1.2 0.231
1998 0.04837 0.0486 -0.1 -0.1 0.92
1999 0.05436 0.05257 0.8 0.74 0.46
2000 0.05447 0.05413 0.2 0.14 0.887
2001 0.05729 0.05873 -0.7 -0.57 0.566
2002 0.06121 0.06276 -0.7 -0.6 0.548
2003 0.05603 0.05395 0.9 0.85 0.397
2004 0.0558 0.05827 -1.1 -0.99 0.32
2005 0.04301 0.04365 -0.3 -0.29 0.772
2006 0.05522 0.0558 -0.3 -0.23 0.815
2007 0.0562 0.05718 -0.4 -0.39 0.693
2008 0.02332 0.02487 -1.1 -0.94 0.345
2009 0.01894 0.01814 0.5 0.56 0.578
2010 0.01704 0.01848 -0.9 -1.02 0.31
2011 0.0175 0.01768 -0.1 -0.12 0.903
2012 0.01912 0.01848 0.4 0.43 0.664
2013 0.03754 0.03691 0.3 0.31 0.755
2014 0.05257 0.05349 -0.4 -0.38 0.702
2015 0.03288 0.03161 0.6 0.67 0.504
2016 0.0258 0.02637 -0.3 -0.34 0.736
2017 0.02608 0.0262 -0.1 -0.07 0.946
2018 0.02706 0.02591 0.6 0.67 0.504
2019 0.02747 0.02591 0.8 0.9 0.369
2020 0.00685 0.00668 0.2 0.2 0.844
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renewable energy system qualifying for the FIT or SEG schemes (EPC

2018). The registry contains duplicate certificates for properties which

have met the lodgement requirements multiple times. This dataset was

then linked with the transaction data from the Land Registry Price Paid

data for England and Wales to create a dataset consisting of detailed

property characteristics and transaction prices of these properties.

Linking these two datasets involved a series of complex matching on ad-

dresses from each dataset, and not all properties from the EPC registry

were linked to a transaction within the Land Registry (LR) data. The

headline results presented below represent matched properties which

did not require editing the address fields of the two datasets – it is

assumed that these are perfect matches and there are no incorrectly

linked addresses here. In addition to the linking of the LR and EPC

datasets, I then link geocoordinate data from Ordnance Survey’s Ad-

dress Base Plus (ABP) dataset. This again required a series of match-

ing criteria and some properties failed to have corresponding matches

across the dataset1.

To create this dataset, I first restricted the EPC characteristics data to

those located in a postcode with at least one installed residential PV

system. This included approximately 665,000 properties within solar

postcodes. 81,000 properties with installed solar panels and 584,000

properties without, after matching under the strictest criteria described

above, roughly 21% of the properties were retained in the final matched

dataset. Only 13% of properties with residential PV systems were re-

tained while 22% of non-PV properties were retained. This is shown in

Table 5.4.

This reduction is a function of 1) the fact that not all properties which
1Instructions for carrying out the multi-stage process of linking these datasets was

graciously provided by (Chi et al. 2019).
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Table 5.4: Matching

First Stage Perfect Matches

PV No PV Within a PV Postcode
EPC 81,112 584299 665,411

EPC-LR-ABP 10,777 130,159 140,936
Proportion 0.132866 0.222761 0.211802931

appear in the EPC dataset will have been sold during the period and

therefore do not appear in the LR dataset and 2) that the addresses

reported in the two datasets differ substantially and to increase the

matching rate requires the relaxation of several matching restrictions.

Such a relaxation will increase the size of the dataset, but also lead

to potentially incorrect matches, introducing bias into the results. The

analysis of this chapter presents results only form the dataset where

perfect linking was achieved. Even with the strict inclusion criteria,

my dataset is considerably larger than those within the existing litera-

ture. To summarize, the base dataset for this chapter is restricted to

1) properties which appear in the EPC Registry 2) Properties located in

a postcode where at some point over the study period a residential PV

system is installed; 3) properties which have been sold over the study

period and have had transaction(s) recorded in the Land Registry; and 4)

Transactions below £10,000 and above £1,000,000 were dropped from

the analysis following Sims et al. (2008). I then make further restric-

tions to this base dataset to suit the repeat sales and PSM approaches,

which I discuss in their respective sections.

In Figure 5.7 below, I show the solar PV potential of England and Wales

as well as the locations of the properties from the analysis which have

installed residential PV systems. Figure 5.8 Is a heat map showing the

geographical concentrations of the solar properties in the analysis. A

key takeaway from these two figures is that the location of solar proper-
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ties is less a feature of solar potential as it is a feature of the geography

of the English and Welsh populations, coupled with the local stocks

of residential properties. This is clearly shown in Figure 5.8 where the

highest concentration of solar properties are near Manchester and Leeds

rather than in along the southern cost where there is the largest gener-

ation potential, or in London where the largest share of residences are

located. It is important to reiterate that this is not the distribution of all

properties with residential solar installations in England and Wales, but

rather the locations of such properties analyzed in the current study.

Figure 5.9 below is a histogram of the transaction values of the prop-

erties in the current analysis, cutoff at £10,000 and £500,000 to avoid

an exceptionally long tail.
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Figure 5.7: UK Solar Potential and Geographic Distribution of Properties in this Analysis
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Figure 5.8: Heat Map of Properties with PV Systems
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Figure 5.9: Histogram of Transaction Prices within Postcodes with Res-
idential PV
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5.5 Results

The following section presents a series of results from the analyses de-

scribed in the previous sections of this chapter, and are structured as

follows: Firstly, in Table 5.5, I present the results from the OLS regres-

sion coefficients of the benchmark analysis that form the starting point

for the subsequent analyses. Next, in Table 5.6 I present the results

from Model 2, a repeat sales analysis applying a pooled cross-section

approach which reports the average capitalization of residential solar

installations by comparing neighboring transactions of the same prop-

erties. Lastly, Table 5.7 reports the results from Model 3, which applied

three propensity score matching approaches to determine the extent to

which solar panels are capitalized into property transactions.

5.5.1 Hedonic Regression Analysis

Table 5.5 Column (1) reports that in the baseline regression, where the

only independent variable is the dummy indicator for solar installations

pre-sale, there is a roughly 9.3% increase in price relative to properties

which have not installed solar panels prior to being sold. In Column

(2), where additional independent variables are included in the analy-

sis, the average price effect of solar installations drops from about 9.3%

to 7.8% - still a substantial and statistically significant increase in the

value of a property. While both specifications of this model show posi-

tive and statistically significant results, the inclusion of the additional

characteristics does reduce the estimated effect.

Internal property-specific characteristics which are associated with sta-

tistically significant price effects include the total floor area, number of

rooms, and the number of fireplaces. For each additional square me-

ter of usable floor area, there is an associated price increase of 0.39%,
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or for each additional 10 square meters an increase of 3.91%. Each

additional room increases price by roughly 3.16%, and each additional

fireplace by 12.80%. Additionally, the property type itself is highly cor-

related with price effects which range from average prices being 12.44%

lower for flats to 42.5% higher for detached homes – there is also a 9.4%

price premium for newly built homes. Additional controls and associ-

ated coefficients are reported in Appendix ??.

Under this model there is evidence of a solar property premium with

an average capitalization of 7.8%. Based on the mean sales price of

properties sold without solar panels (£134,531) this translates to an

increase of £9,417.18. This result can be interpreted to imply that by

installing the average-sized PV system, a property will increase by just

under £10,000. This is well above the cost of installing the average sized

PV system. Following Wee (2016) I take the 7.8% price increase from so-

lar panels to be an upper bound estimate of the extent that solar panels

are capitalized into house prices, and use it as a benchmark to compare

the results of the subsequent two models presented in Sections 5.5.2

and 5.5.3.

As discussed in the previous Section (5.4) the main strength of the He-

donic Regression approach is that it makes use of the full dataset avail-

able. However, as the list of property characteristics is limited, there

may be some omitted covariates which are correlated with both price

and the installation of PV. In fact, there is evidence that the inclusion

of additional covariates (2) reduces the coefficient relative to the spec-

ification with none (1) there is potential that unobserved characteris-

tics may similarly influence the results were they to be included in the

model. Additionally, there may be a systemic difference in the distribu-

tion of PV and non-pv homes leading to selection bias. I mitigate these

potential sources of bias in the subsequent models of the analysis.
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Table 5.5: Model 1: Hedonic Regression Analysis

Ln Price (1) (2)

Solar 0.09321*** 0.07786***
(RSE) (0.00421) (0.00816)
Total Floor Area (m2) 0.00391***
(RSE) (0.00003)
Number Rooms 0.03161***
(RSE) (0.00072)
Number Fireplaces 0.1280***
(RSE) (0.00170)
Flat -0.1244***
(RSE) (0.00447)
Terraced 0.24408***
(RSE) (0.03363)
Semidetached 0.28921***
(RSE) (0.00211)
Detached 0.4252***
(RSE) (0.00225)
New Build 0.09440***
(RSE) (0.00379)

Observations 416,508 416,508
Sales with Solar 17,407 17,407
R-squared .2708 .4405

Property Controls Yes
Geogrpahic Controls Yes
Time Controls Yes

*** p<0.001
**p<0.01
*p<0.05
RSE: Robust Standard Errors Clustered at the Outcode
Geographic Controls: Outcode by Year, Photovoltaic
Potential at the Postcode Level.
Time Controls: Sale Year, Sale Month
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5.5.2 Cross-Sectional Repeat Sales Analysis

Here I present the capitalization of residential solar installations un-

der the assumptions of Model 2, which applies a Repeat Sales Analysis

using a cross-section of sequential transaction pairs, with the key in-

dependent variable being a dummy indicator for a property having in-

stalled solar panels between two sequential transactions. This analysis

is restricted to only properties which eventually install solar panels, and

which are sold repeatedly during the study period. The restriction crite-

ria significantly reduce the number of observations in the repeat sales

analysis. The benchmark analysis of Model 1 contains over 416,000

observations whilst the repeat sales analysis contains only 6,665 ob-

servations. The results of Model 2 are presented in Table 5.6 below and

are again split into two columns which present the effects on the change

in the natural log of price between two sales where column (1) reports

results with no controls and Column (2) reports results with a variety

of property-specific, geographic and time controls.

When performing the analysis with no controls I find a rather large ef-

fect of 10.13%. However when controlling for the various internal and

external property-specific characteristics as well as time and geographic

features, the installation of solar panels between two transactions of the

same property is estimated to increase the value of a property by an av-

erage of 2.7%. This is substantially lower than the estimate presented

under the simple regression of Model 1. There is also a statistically sig-

nificant effect associated with the time between sales, implying that the

longer the time between neighboring transactions increases, so does the

change in price – this is essentially capturing house price inflation. The

coefficients of the internal property characteristics are broadly similar

to those reported under Model 1.
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Under Model 2 I also find evidence of a solar panel premium with an

average capitalization of 2.7%. Based on the mean transaction price for

properties before the solar panels are installed (£172,544) this trans-

lates to an average solar property premium of £4,651.79. This estimated

effect is lower than that found under Model 1. However, the main advan-

tages of the repeat sales analysis relative to Model 1 is the mitigation of

the omitted variable bias by arising from comparing properties to them-

selves. As the repeat sales model functionally takes the form of a prop-

erty fixed-effects model any unobserved characteristics are inherently

controlled for. By restricting the repeat sales analysis to only properties

which eventually install PV, the problem of selection bias is also ad-

dressed. However, mitigating these potential biases comes at the cost

of reducing the dataset substantially, and generalizing the estimated ef-

fects outside of the small subset of properties becomes problematic as

there may be other features which lead to these properties being sold

multiple times.
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Table 5.6: Model 2: Cross-Sectional Repeat Sales Analysis

Ln ∆ Price (1) (2)

Solar 0.10134* 0.02696***
(RSE) (0.04902) (0.007987)

Total Floor Area (m2) 0.00334***
(RSE) (0.00054)

Number Rooms 0.04786***
(RSE) (0.011751)

Number Fireplaces 0.09016***
(RSE) (0.03164)
Flat 0.01410***

(RSE) (0.00336)
Terraced 0.02844***

(RSE) (0.00366)
Semidetached 0.06071***

(RSE) (0.00986)
Detached 0.84721*

(RSE) (0.40976)
New Build at First Sale -0.04391***

(RSE) (0.004252)
Years Between Sale 0.12717***

(RSE) (0.002422)

Observations 6,665 6,665
Sales with Solar 2,089 2,089
R-squared 0.2933 .6007

Property Controls Yes
Geogrpahic Controls Yes
Time Controls Yes
Geography*Time Controls Yes

*** p<0.001
**p<0.01
*p<0.05
RSE: Robust Standard Errors Clustered at the Outcode
Property Controls: Room count, Useable Floor Area (m2),
Fireplace Count, Newbuild Property at first sale, Property
type: Flat, Terraced, Semi-detached, Detached, Construc-
tion Age Band.
Geographic Controls: Outcode by Year, Photovoltaic Poten-
tial at the Postcode Level
Time Controls: Sale Year, Sale Month, Time Between Sales,
Interaction of First Sale Year and Second Sale Year.
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5.5.3 Propensity Score Matching

In Table 5.7 I present the results of Model 3. Here, I generated a series

of control property transactions (no solar installations before a sale)

which are then paired with treated properties (solar installations prior

to a sale) to estimate the solar panel premium and the extent to which

they are capitalized into housing transactions. Columns (1), (2), and (3)

present the average treatment effect on the treated group, or the average

effect of being sold with installed solar panels in terms of the natural log

of the transaction price. Each column presents results using a different

set of matching criteria, with (1) being the least strict – only matching on

property characteristics, while (2) applies slightly stricter matching cri-

teria involving time effects, and lastly (3) which requires exact matches

between treated and controls on property characteristics, geographic

and time controls. I then perform two alternative matching techniques

which are listed in Columns (4) and (5) Where I apply a greedy nearest

neighbor matching, and standard nearest neighbor matching.

When the matching criteria are at their loosest, I find an average in-

crease in in the treated group of 16.32%. Though this would imply a

substantial gain from installing solar panels, the suitability of matching

between the treated properties to appropriate controls is questionable.

Though it ensures that treated and control properties are structurally

the same, it cannot account for general inflation, nor other price effects

which may differ over time and space. Under the assumptions of Col-

umn (2), where properties are matched exactly on property character-

istics as well as the time of the transaction the effect drops to a 10.62%

capitalization. Although this estimate is more robust than that pre-

sented in (1), it still allows for a treatment and control matching which

is geographically unrestricted. Finally in Column (3) where treatment

and control matching require exact matches on property characteris-
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tics, time and geographic controls I find an estimated capitalization of

3.46% which is statistically significant at the p<.001 level. Based on

the mean transaction price of the matched control group (£190,335.76)

this translates to an average treatment effect of £6,578.00.
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Table 5.7: Model 3: Propensity Score Matching Analysis

ATT: Ln Price (1) (2) (3) (4) (5) (6)

Solar Installed Prior to Sale 0.1632*** 0.1062*** 0.0346*** 0.0360*** 0.0458*** 0.0756***
(SE) (0.0187) (0.0131) (0.0082) (0.0087) (0.0095) (0.0121)

T-Stat 8.73 8.12 4.24 4.12 4.82 6.25

Observations 416,061 387,366 176,916 175,555 196,161 288,437
Treated 4,253 4,253 4,250 4,270 4,270 4,270

Untreated 411,808 391,619 172,666 171,285 191,891 284,167

Property Characteristics Yes Yes Yes Yes Yes Yes
Time Controls Yes Yes Yes Yes Yes

Geographic Controls Yes Yes Yes Yes

Within same postcode Yes Yes Yes
Within same outcode Yes

*** p<0.001
**p<0.01
*p<0.05
Bootstrapped Standard Errors

Matching Criteria
Property Characteristics: Room Count, Useable Floor Area (m2), Fireplace Count,
Newbuild Property, Property Type: Flat, Terraced, Semi-detached, Detached, Con-
struction Age Band, Postcode.
Geographic Controls: Parliamentary Constituency, Photovoltaic Potential at the
Postcode Level, Elevation, Slope and Aspect.
Time Controls: Sale Year, Sale Quarter

202



Column (4) shows the estimated ATT when applying a nearest neighbor

matching, and (5) the estimated ATT when applying a greedy nearest

neighbor matching. The effect remains statistically significant, though

under the standard nearest neighbor match there is an increase of

about 0.14% above the kernel matching result. When I make use of the

greedy nearest neighbor approach, the coefficient increases to about

4.6%. Lastly in Column (7) I relax the matching criteria to allow for

matches at the outcode level rather than the postcode level. Outcodes

are the first one to three characters in a postcode. For example, with

the postcode G1 1XQ, the outcode is G1. Under this relaxation, the ATT

increases to about 7.6%.

I have generated results using the Kernel, Standard and Greedy Near-

est Neighbor matching techniques to serve as robustness of the model

to alternative matching approaches. The Kernel matching approach to

PSM essentially allows all control properties to contribute to the esti-

mated effect of the ATT. This has the advantage of not discarding un-

matched control properties from the analysis, while the properties used

to generate the composite control are weighted by their propensity score,

meaning closer matches are weighted higher. Under this matching ap-

proach, the estimation power and efficiency of the model are improved

through maintaining a larger sample size. The Standard Nearest Neigh-

bor matching simply pairs a treatment to the control with the closest

propensity score, and once a control property has been paired it can-

not be paired again. The Greedy Nearest Neighbor also pairs a treated

property to the control with the closest propensity score, but if a control

is the nearest neighbor to multiple treatment properties it is allowed to

match them all (Frye & Bartlett 2017).

The PSM approach of Model 3 mitigates the selection bias relative to
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the benchmark hedonic regression of Model 1, because it creates a set

of control properties based on their propensity to install solar PV. This

approach ensures comparability between the two groups - PV proper-

ties and non-PV properties. Though it addresses selection bias, this

model also has potential to suffer from the omitted variable bias due

to the incomplete nature of the property characteristics data available,

much like the analysis of Model 1. Although the repeat sales analysis

of Model 2 addresses both the omitted variable bias and the selection

bias, this comes at the cost of a significant reduction in the number of

observations within the sample, and the generalizable of the results to

properties which do not sell repeatedly. The PSM approach of Model 3

allows for an estimated price effect using a much larger sample than

the repeat sales model.

5.6 Discussion

The results presented in the previous section provide evidence that

there is a solar property premium within England and Wales, and evi-

dence that this premium is capitalized into property transaction values.

All three models report statistically significant and positive increases in

home values when solar panels are present. A summary of the headline

results of each model are presented in Table 5.8 below. The variation

in the estimated capitalization is to be expected as the models apply

slightly different statistical approaches to different datasets but all three

models point to the same conclusion – that the transaction prices for

properties with solar panels is higher than properties without the pan-

els. The results of Models 1 and 3 suggest that the average value of

the capitalization exceeds the average cost of a residential solar instal-

lations in the UK which ranges from £4,800 for the average installation

to £5,600 in 2020 (EST 2020). Model 2 shows that although there is a

204



statistically significant increase in price attributable to the installation

of a PV system, this is not quite large enough to fully recover the average

cost of installation.

Table 5.8: Solar Capitalization Estimates: All Models

Model Capitalization (%) £ Value

1 7.786% 9,417.18
2 2.696% 4,651.79
3 3.456% 6,578.00

The results of all three models show that residential PV systems are cap-

italized into housing transactions in England and Wales, and PV homes

enjoy a price premium over non-PV homes. However, the models do not

agree that the installation costs, based on the UK average residential PV

system will necessarily be fully recovered through the transaction price

of a home. The results of Models 1 and 3 show that the solar premium

is in excess of the UK average installation cost. Using the installation

cost of the average PV system provided by the Energy Savings Trust,

this ranges from £978 to £1,778 for Model 3. For model 1, the premium

in excess of the installation cost ranges from £3,817.18 to £4,617. Un-

der the repeat sales analysis of Model 2 the estimated solar premium is

not enough to fully recover the costs of installing an average sized PV

system. Here, there is a loss of between £949 and £149.

There are four likely contributors to the values of these systems which

explain the capitalized value of residential PV and the increase in trans-

action prices for solar properties. The first is simply the energy savings

from the electricity generated by the PV system itself. However, under

the highest estimated savings scenario from the Energy Savings Trust

(EST 2020), this would amount to a yearly savings of only £240 and

would require 20 years of energy savings to break even with the cost of
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the installation. Of course, the actual value of savings is dependent on

the cost of electricity external to the PV system. If the price of electricity

imported to the grid increases, the value of the energy savings will also

increase - and if the price of electricity declines the opposite is true. The

second contributor to the solar premium are subsidies, which may both

reduce the cost of installation as well as increase the value of generated

electricity.

These subsidies have not been stable across the period of this analysis,

and attributing value to any one is beyond the scope of this paper. How-

ever, subsidies range from grants which would essentially cover half the

installation cost of solar panels, to no interest loans, as well as a guar-

anteed export rate for unused electricity and a guaranteed payment for

each unit of electricity generated. The variety of subsidies which also

varied in size and duration may partly explain the differences in the cap-

italized value of residential solar panels across the three models due to

a different set of transactions being analyzed under each which could

lead to differences in subsidies incorporated into the valuations. The

size and scope of any subsidies may be crucial.

As mentioned previously, Dröes & Koster (2021) find a decrease of 2.6%

in the value of properties sited within 1km of commercial-scale solar

farms. This is a substantial difference relative to the findings of this

chapter and its analysis of residential solar’s impacts on house prices.

There are two potential avenues which may explain this - firstly The dis-

parity between impacts arising from commercial-scale and residential

solar is likely due to the presence of subsidy schemes for residential

solar, and the lack of any compensation mechanism for solar farms.

Secondly, it may be the difference between a solar home vs a home in

a solar neighborhood. If there is a lack of community or recreational
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amenities associated with commercial scale solar, there would be no

compensation mechanism which may explain the positive impacts on

house prices from large-scale windfarms reported in the previous two

chapters. However, testing this is beyond the scope of this thesis.

Black (2004) found that with the early subsidies provided by the state of

California as well as energy savings, the after-tax return on investment

for a 5kw solar PV system would outperform the stock market. Lastly,

the solar premium will reflect a preference towards solar energy instal-

lations by prospective home buyers. It is possible that this preference

may not be pecuniary in nature, but rather reflect a preference towards

green energy generation. This preference for reducing carbon emissions

may be a truly non-market aspect of the solar capitalization found in

the current analysis (Dastrup et al. 2012).

5.6.1 Context from the Literature

The results presented in this chapter complement the current literature

on the capitalization of a solar premium into property values. All papers

in the literature have found that residential solar premiums are either

equal to or in excess of the costs of installation, and the results pre-

sented here are in agreement and add the United Kingdom to the litera-

ture. In addition, the estimated price effects of the analyses presented

in the previous section which range from 3.5% to 7.8% capitalizations

are well within the ranges reported in the literature which ranges from

2.3% by Ma et al. (2016) to 17% by Qiu et al. (2017).

It is difficult to accurately compare the actual value of these effects in

currency terms due to both differing currencies across studies as well

as inflation of those currencies based on the periods of their analysis.
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A very rough, back of the napkin estimate2 of the currency value would

lead to the capitalization of the results of this analysis to be valued at

roughly $6,311.53 (Model 2), $8,925 (Model 3) and $12,777 (Model1)–

the lowest, second lowest, and third lowest values within the literature

respectively. Table 5.9 below presents the results from this chapter

alongside the findings of the literature. Although the estimated effects

are smaller than those within the literature regarding the value of the

capitalization, as a share of the value of the properties themselves, these

results are larger than those found by Dastrup et al. (2012), Hoen et al.

(2013) and Ma et al. (2016).

Compared to the estimated treatment effects reported by Dastrup et al.

(2012) and Hoen et al. (2013) the 7.8% price increase of Model 1 is quite

high, though it should be noted that the property values within Cali-

fornia are considerably higher than those of this study, and ultimately

the value of the increase is considerably higher in both of these papers.

Lan et al. (2020) do not report their results as a percent of property val-

ues, but they do find that installation costs are fully recovered or lead to

profit in their analysis. The repeat sales analysis of this chapter is finds

an effect closest to that of Ma et al. (2016) (2.3%), but it is also quite

similar to the effect reported by Hoen et al. (2013) (3.6%) and Dastrup

et al. (2012) (3.5%). Though again, the cash value of the solar premium

is higher in California than England and Wales. The estimated capi-

talization of 2.7% is smaller than that of Wee (2016) who found a 5%

increase, and a substantially higher solar premium. Under the propen-

sity score matching method of Model 3, the results are again smaller

than the comparable analyses within the literature. Qiu et al. (2017)

find an increase of 15-17% in property values due to the presence of a
2This rough conversion is calculated by multiplying the estimated solar premium in £

of each model and multiplying these by the exchange rate (£1 = $1.3568) at the time of
writing.
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residential PV system, which is the largest yet reported within the lit-

erature on residential PV capitalization. It should be noted the sample

of transactions within their analysis was exceptionally small, covering

a period of only 3 months.

The results presented within this chapter show that there is some sen-

sitivity regarding the model applied to the data, as I find a much higher

capitalization under the analysis of Model 1, than Models 2 or 3. Each

model is also sensitive to the restrictions to the data as well, as the coef-

ficients change substantially depending on the controls included within

the models. This has also been the case with the published literature

and therefore it is not surprising that similar sensitivities were found

here.

209



Table 5.9: Results of Models 1-3 Compared to Headline Results From the Literature

Author(s) Hedonic Re-
gression

Repeat
Sales

Control-
Matching

Solar
Premium

Recover
Installation
Costs

Profit Over
Installation
Costs

Dastrup et al. Y Y N 3.50% Y Y
Hoen et al. Y N N 3.60% Y -
Ma et al. Y Y N 2.3-3.2% Y -
Wee Y Y N 5% Y -
Qiu et al. N N Y 15-17% Y Y
Lan et al. Y N Y $21,403 Y Y

Model 1 Y N N 7.80% Y Y
Model 2 N Y N 2.70% N N
Model 3 N N Y 3.50% Y Y
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5.7 Conclusion

The analyses within this chapter make several contributions to the rel-

atively small, but growing literature in residential PV capitalization.

First, this is the first to estimate the solar property premium and the

capitalization of residential PV into homes located in England and Wales.

Second, this is the first analysis to include Propensity Score Matching

techniques, and compare these findings to both a Hedonic Regression

and Repeat Sales Model. Third, the analyses of this chapter make use

of the largest dataset to date, containing considerably more solar prop-

erties than any paper in the literature.

Under all three models, I find evidence that within England and Wales,

residential PV systems are capitalized into house prices and there is a

solar premium. This is in line with the findings reported in the litera-

ture, though there is some evidence under Model 2 that the premium

is not large enough to fully recover the cost of installing a residential PV

system. The findings of this chapter have mixed implications for policy-

makers. The findings of Models 1 and 3 show that the premium is large

enough to compensate for and profit from the installation of residential

PV. These results would suggest that policymakers seeking to encourage

adoption of these systems should make an effort to inform homeowners

that the installation costs of residential PV can be recouped through

the sale of the property. This may encourage additional installation of

residential PV.

As there is potential that the residential solar premium arises, at least

partly, from government subsidies aimed at increasing adoption, it may

be important to preserve the generosity of such subsidies. This is of

particular importance within the UK where the FIT scheme has just
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been replaced with the less generous SEG. In fact, based solely on the

findings of Model 2, it may be necessary to increase the size of subsidy

available to homeowners who install PV systems. These results imply

that at current levels, homeowners may not be able to fully recover the

cost of installation and therefore are potentially more hesitant to pur-

chase a PV system.

Of course, the analyses here are not without their limitations. This

analysis does not include every property in England and Wales which

has installed a residential PV system. There are nearly 800,000 proper-

ties which have such a system, but only about 80,000 of these properties

appear in the EPC registry, and of those only 10,777 are matched with

transactions from the Land Registry Price Paid data. Although this is

by far the largest sample of properties to be analyzed within the litera-

ture on residential PV capitalization, it does reflect an analysis of only

a small sample of the total solar properties. Although the results are

statistically significant across the models applied, the use of a dataset

containing all transactions of properties with solar panels would lend

increased accuracy to the estimation and ensure that there is no se-

lection bias present within the sample. Future research could include

a larger dataset which could extend the analysis to cover all or even a

majority of these properties.

An additional limitation of the underlying data are the known intrin-

sic property characteristics. Although this analysis makes use of more

detailed characteristics than other studies in the literature, these are

limited to those available within the Energy Performance Registry. This

data provides invaluable information about the properties in the anal-

ysis, but these are mostly related to the energy performance of a given

property. Other research makes use of characteristics such as the num-
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ber of bedrooms, bathrooms, whereas the data available for this work

simply lists the number of rooms with no distinction between the room

types.

These characteristics have been shown to be important factors in prop-

erty valuations and therefore a future analysis may be able to apply

even more detailed property information within controls or matching

variables. In fact, perhaps the most important missing information is

the size of a PV system at a given property. Although the EPC registry

reports the area of roof covered by solar panels, it does not give an in-

dication of the generation capacity of an installed system – and this is

likely to largely drive the value of any capitalization into any transac-

tion price. Larger systems will generate more electricity and may also

receive larger subsidies which will effect the value added by the system

itself. There is also the matter of the subsidies for residential solar sys-

tem installation. These were not stable over time, neither in regards to

their total value, or what properties might be eligible for installing the

panels. Accounting for the impacts of the variety of subsidy programs

which were opened, modified, or closed over the period is unfortunately

not possible due to data availability constraints.

Lastly, and perhaps the most crucial limitation relates to the timing of

an installation. The installation date is taken to be the date an entry

is logged in the EPC registry where the presence of a PV system is in-

dicated. For some properties, an earlier record where no PV system is

installed is followed by a subsequent record indicating that the property

has installed a PV system. However, for other properties there is only

an EPC record indicating that a system has been installed with no pre-

vious records prior to the installation. The analysis assumes that the

EPC inspection date is equivalent to the date of a completed installation
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– EPC does not record the presence of solar panels until the installation

has been completed and many solar installers either qualify as domestic

energy assessors or partner with a qualified energy assessor who may

assess the property at the time of installation.

This assumption will have no impact on the results of Model 1 as it

simply tests for a price difference between properties which install solar

panels eventually and those that never do. However, it could have an

impact on the results of Model 2 and which use the time of installation

to determine the time of treatment which is a key component of of the

model. The EPC registry did not exist before 2008, and any existing PV

system which had been installed prior to the FIT could be grandfathered

in to the scheme. It is therefore possible that a property had installed

a PV system prior to the launch of the FIT may not have an accurate

installation date within the analysis - the installation date would be

recorded as a date later than the true installation date. This could im-

pact the estimated effects of the Repeat Sales Analysis of Model 2. This

is because there is potential that a property had already installed PV,

so there is no installation between two sequential transactions. In this

way, the estimated effect would be reduced as there would be no change

in the presence of solar panels between two sales. The PSM analysis of

Model 3 could also be impacted, though to a lesser extent - there would

simply be fewer early transactions of PV properties matched to non-pv

control properties. However, this issue may be partly mitigated by the

fact that the installation data provided by OFGEM, and displayed in 5.3

shows that a majority of these installations occur from 2010, onward -

after the EPC registry was created.

This chapter estimated the capitalization of residential solar PV sys-

tems into house prices of properties in England and Wales under three
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different statistical models. The first model performed a basic hedonic

regression, the second a repeat sales analysis and the third a propensity

score matching analysis. All three models found evidence that there is a

solar property premium and that installing a residential PV system and

this ranges from a price increase of 2.7% to 7.8%, and under two models

this is enough to recover installation costs as well as earn a profit from

installing the average sized residential PV system. The analyses per-

formed in this chapter updates the literature to include evidence of a

solar property premium even in regions with relatively low PV potential,

being the first analysis of its kind in the United Kingdom. In addition,

this chapter applies an analysis to the largest dataset to date, and is the

first to apply a propensity score matching method to measure the value

of the solar premium. Therefore this analysis updates the regionality

of the literate as well as the models applied to generate estimates of a

solar premium. It provides context to the range of results found within

the literature as the estimated effects are sensitive to the models and

underlying data restrictions, though it does find consistently positive

and significant price effects.
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Chapter 6

Conclusions

6.1 Introduction

The growing need to address anthropogenic climate change has led

to the United Kingdom making international commitments to reduce

greenhouse gas emissions. To achieve these targets, a number of do-

mestic policies have been implemented to support the transition to a

low-carbon economy. This thesis has examined the externalities aris-

ing within the housing market from the implementation of these poli-

cies, specifically those which support the generation of electricity from

commercial wind and domestic solar sources. In this final chapter of

the thesis, I will summarize the contributions of each chapter. This will

include the empirical findings, the contributions to the literature, and

future avenues of research which can build upon the work undertaken

within this thesis.
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6.2 Chapter 1

Chapter 1 provides an overview of the current climate crisis and the

international agreements which have been drafted to address it. I then

outline the resulting legally binding emissions reductions targets made

by the UK government to meet its commitments under the Paris Agree-

ment. The discussion then turns to domestic policies in the electricity

sector aimed at supporting the transition away from carbon based elec-

tricity. Policies aimed at supporting large-scale commercial low-carbon

electricity generation include the now defunct Non-Fossil Fuel Obliga-

tion, and its replacement the Renewables Obligation.

The UK government also implemented the Feed-in Tariff Scheme, as

well as its replacement the Smart Export Guarantee. The FIT and SEG

support the development of small-scale renewable electricity generation

such as residential solar PV systems. These policies, while very success-

ful in supporting these technologies, led to externalities in the housing

market by altering the characteristics of properties. The presence of an

ever-increasing number of large wind turbines and residential PV sys-

tems have led to changes in the characteristics of homes located near to

windfarms, and homes which have installed PV systems. The chapter

then provided an overview of amenities and disamenities in the housing

market, as well as the tools generally applied to evaluate them.

6.3 Chapter 2

Building on the context provided in Chapter 1, this chapter provided a

detailed review of the literature classifying windfarms and environmen-

tal amenity or disamenity. This is the research area in which the empir-

ical analyses of Chapters 2 and 3 are situated. It discussed the current
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findings presented within the peer reviewed research in this area, as

well as the disagreement regarding whether wind energy development

will affect house prices. Most papers find no statistically significant ef-

fect on house prices arising from wind turbine proximity or visibility,

though a large minority find statistically significant negative price ef-

fects - and one paper finds positive impacts. The discussion then goes

on to describe the data and analytical approaches taken within the liter-

ature, as well as the strengths and weaknesses of these approaches. As

such, this chapter serves to contextualize the research topic of Chapters

3 and 4, as well as the analytical methods taken.

6.4 Chapters 3 and 4

Chapters 3 and 4 contain complementary analyses, applying Spatial

Fixed Effects Difference-in-Differences models to estimate impacts of

windfarm proximity and visibility on house prices. Both analyses also

include a triple-difference analysis comparing effects of treatment by

visible and not-visible windfarms. The empirical work within these

chapters serve as two standalone analyses, as well as testing the find-

ings for robustness to the methodological framework applied. Both

analyses include only property transactions located near to a windfarm

or wind turbine, comparing prices before and after nearby windfarms

become operational. The key difference between the two chapters is that

Chapter 3 makes use of the average transaction prices at the postcode-

quarter level, while Chapter 4 makes use of the transaction prices of

properties sold at least twice over the study period. The main advan-

tage of the average price analysis is that it allows for the inclusion of

all property transactions in the dataset. The repeat sales analysis has

the advantage that individual properties are compared to themselves,

ensuring that the observed price impacts are due to treatment by wind-
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farms rather than changes in the properties transacted at a given time.

In the following two sections I discuss the key findings and contribu-

tions of both chapters, and in the third I discuss the insights for future

research into this topic.

6.4.1 Chapter 3

Chapter 3 evaluates the impacts of windfarm proximity and visibility

on nearby house prices through the application of an Average Sales

Approach Hedonic Pricing analysis. First, this chapter replicated the

analysis by Gibbons (2015). I find statistically significant decreases of

the average housing transaction price in postcodes located near to vis-

ible windfarms. Over the same period, I find statistically significant

increases in the average transaction price for postcodes located near

windfarms, but for which the windfarms are not visible. The estimated

impacts are considerably larger than those reported by Gibbons, par-

ticularly for properties located very distant to windfarms. The chapter

then goes on to extend the analysis to include an additional 12 years

of property transaction data and 6 additional years of windfarm data.

In the headline results of the extension, I find that windfarm proxim-

ity and visibility are now associated with statistically significant posi-

tive price effects. I also find that the analysis is highly sensitive to the

study period, and evidence that opinions towards windfarm visibility

has changed from an environmental disamenity to and environmental

amenity.

This chapter makes several contributions to the literature on windfarms

and house prices. First it replicates and updates the literature to in-

clude an analysis that extends both 5 years prior to and 6 years after

the analysis by Gibbons. This analysis makes use of the largest dataset

in the literature to estimate effects of windfarm visibility and proximity.
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This extension covers a period of rapid change in the distribution and

concentration of wind turbines across England and Wales. It is the first

analysis to test for sensitivity to alternative visibility estimates using

GIS software. It also presents evidence that the size and direction of

the price effect is sensitive to the number of nearby windfarms, which

has not previously been tested within the literature. In addition, this is

the first analysis to test for differences in price effect arising from the in-

clusion of windfarms sited in both urban and rural locations. Further,

it is the first analysis within the literature to explore the consistency of

the price effect across subdivisions of the total study period. By doing

so, I find evidence that the price effects of windfarm visibility and prox-

imity are not stable over time - they have gone from largely negative in

the earliest periods to largely positive in the latest periods.

6.4.2 Chapter 4

Chapter 4 evaluates the impacts of windfarm proximity and visibility on

nearby house prices through the application of a Repeat Sales Approach

Hedonic Pricing analysis. In this chapter, I find that wind turbine vis-

ibility is not consistently associated with with negative price impacts,

and lack of visibility is not consistently associated with positive price

impacts, and the impacts while statistically significant are below a 1%

change in price. If detailed property characteristics are controlled for,

I do find a statistically significant decrease arising from visibility, and

a statistically significant increase from lack of visibility at the 0-1km

range. However, when the visibility measure is enhanced and takes

account of intervening buildings, there are no statistically significant

negative impacts from windfarm visibility or lack of visibility on the an-

alyzed properties. I find that the analysis is sensitive to changes in the

underlying data regarding the visibility analysis, as well as the inclu-
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sion of detailed property characteristics. I also tested these results for

robustness to alternative study periods. I find evidence of negative price

effects from turbine visibility and positive impacts from non-visible tur-

bines in the earliest periods, but by the final period visibility is associ-

ated with a positive price effect. The analysis of this chapter concurs

with the findings of Chapter 3, and that under a repeat sales analysis

windfarm visibility has transitioned from an environmental disamenity

to an amenity in England and Wales.

This chapter makes key contributions to the literature on windfarms

and house prices. It updates the literature to include the most recent

analysis of windfarm impacts on house prices by applying the first re-

peat sales analysis examining the house price impacts from windfarm

visibility and proximity in England and Wales. The analysis is also the

first in England and Wales to incorporate building height data, as well

as detailed property characteristics into its analysis to test the robust-

ness of the findings. The analysis finds evidence that there is sensitivity

regarding both the inclusion of detailed visibility estimation and prop-

erty characteristics suggesting that these are key variables that should

be included in analyses of this kind. I also show that treatment by

multiple wind turbines leads to larger negative impacts from visibility

and larger positive impacts from lack of visibility. This is an important

finding implying that intensity of treatment is an important factor of-

ten overlooked by previous work, as many analyses from the literature

define treatment by ’at least’ one turbine. The analysis of this chapter

finds further evidence that price impacts from windfarm proximity and

visibility are not stable over time, which has been untested within the

current literature.
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6.4.3 Chapters 3 and 4 Together

The empirical analyses of Chapters 3 and 4 make standalone contri-

butions to the research into house price impacts from windfarm siting.

The two analyses together also make contributions to the literature.

This thesis contains the first application of both an Average Price and

a Repeat Sales analysis to the same underlying model to estimate im-

pacts from windfarm siting in England and Wales. In this sense, the

two analyses serve as robustness tests for each other, and I find that

the estimated impacts are broadly consistent across the two models.

This is an important contribution as both approaches have strengths

and weaknesses specific to themselves. The differences in the visibil-

ity estimation processes allows for an important comparison of how the

definition of ’visible’ can influence results. The analysis of Chapter 3

found little impact from alternative visibility measures between post-

code and windfarm centroids using higher resolution DEMS. However,

the work undertaken in Chapter 4 shows that the inclusion of building

height data may be a key factor in generating accurate impacts of wind-

farm visibility on house prices.

The complementary empirical analyses contained in these chapters are

in agreement that the house price impacts from wind turbine siting in

England and Wales are largely positive. These findings are consistent

across both an average price and repeat sales approach in a fixed-effects

difference-in-difference setting. Under both analyses, I find that there is

sensitivity to the study period analyzed, and that impacts from visibility

of nearby windfarms or turbines have transitioned from negative to pos-

itive. This implies that not only has the landscape changed significantly

since the previous analysis by Gibbons (2015), but so have the opinions

of home buyers. As such, the analyses of Chapters 3 and 4 update the

analysis by Gibbons by including additional housing transaction data
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as well as applying a Repeat Sales analysis. They also generate impor-

tant insights into the findings of the the current literature suggesting

that long study periods may hide shifting attitudes towards windfarm

proximity and visibility.

6.4.4 Insights and Avenues for Future Research

The literature examining house price impacts from windfarm siting is

well-developed, but has considerable room to grow. I have organized the

discussion on how new research could build upon the work of Chapters

3 and 4 into the following categories: Data, Analytical Approaches, and

Related Research.

Data

In regards to improvements to the data informing the analysis, an ob-

vious improvement would be the use of more detailed property charac-

teristics which would include information on changes to these charac-

teristics over time. The ability to track such changes would ensure that

any observed price effects from windfarm siting are not arising from

improvements (deterioration) increasing (decreasing) the quality of the

homes in the sample independently. A further refinement would be the

inclusion of the exact turbine locations of all wind turbines in England

and Wales, which was not available at the time of writing. This would

allow for a deeper investigation into impacts from different intensities of

treatment. It would also expand the analysis to better compare effects

from the full set of individual turbines to windfarm centroids in England

and Wales.
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To better estimate visibility, the use of a Digital Surface Model account-

ing for land features like trees as well as buildings would be a substan-

tial improvement. Such a model was not available for all of England

and Wales, and unfortunately the current available DSM has gaps even

within cities which would impose severe restrictions on the analysis.

As the DSM coverage increases future research should incorporate this

data. Until a national DSM is available, future research could make

site visits to compare visibility of windfarms/turbines from postcode

centroids and compare this to visibility at the property level. Of course,

it may not be feasible to visit each property or postcode in the country,

but even visiting a random sample could generate important insights to

the accuracy of any GIS modeling used.

It would also be ideal if a UK-wide dataset could be constructed to com-

pare the effects across England, Northern Ireland, Scotland and Wales.

This would allow for testing whether all regions experience consistent

impacts. They could then test if there is a similar trend within each

country where early windfarms cause negative impacts, but these ef-

fects decrease or reverse with time - this may provide useful insights to

policy makers on how best to compensate affected homeowners. Lastly,

a very useful dataset would be location-specific survey data similar

to what is provided by the BEIS Public Attitudes Tracker. This sur-

vey tracks public opinion on renewable energy developments, and even

asks if they would accept a new development near their home. If the

responses were broken down into smaller localities rather than the na-

tional level, it would be possible to test whether the stated attitudes

match the revealed attitudes found through HPM analyses. This would

be particularly interesting if the support was stronger in areas unsuited

to wind energy developments.
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Analytical Approaches

There are a few avenues that future researchers could take regarding

the analytical framework applied to estimate house price impacts from

windfarm siting. The fixed-effects difference-in-difference model is a

strong identification strategy, and was the best option for the analyses

of Chapters 3 and 4. However, since these analyses were performed,

the approach has been shown to be susceptible to bias if the timing of

treatment is staggered (not uniform for all treated units). This is par-

ticularly troublesome for long study periods. Future research applying

this framework should apply a decomposition as proposed by Goodman-

Bacon (2021).

It would also be interesting to apply newer analytical methods to gain

new insights into this area. The use of a Synthetic Control approach

would be a particularly interesting novel way to test for windfarm siting

effects on house prices. This approach has not yet been applied within

the literature, but it essentially creates a control group based on pre

treatment trends of the control and treated units. There have recently

been extensions to the Synthetic Control framework which allow for an

analysis of multiple treated units (Kreif et al. 2016), as well as the in-

clusion of fixed-effects Xu (2017). These recent innovations would allow

for analyses to relax the Parallel Trends Assumption required within a

DID framework, as the SC approach generates less biased results when

the assumption is violated relative to a DID analysis.

Related Research

Future research can also build on the work of this thesis by exploring

related questions involving windfarm siting and house prices. First, it

would be interesting to determine if there are any house price effects
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arising from windfarm rejection - i.e. do homes nearby proposed wind-

farm sites increase in value when planning permission is not granted?

In a similar vein, testing for causal relationships between windfarm re-

jection and local characteristics would also be an interesting research

area. This thesis has found that properties near windfarm develop-

ments sell at lower prices than those far away, and also that properties

with views of turbines sell at lower prices than those without even be-

fore treatment. It would be interesting to test for a relationship between

rejection and home values. Future research could also explore whether

variation in the community investment from windfarms has any impact

on home values, or on planning permission being granted.

Just as the landscape has significantly changes since the time of the

analysis by Gibbons, the windfarm stock of England and Wales is set

to experience further changes in the future. Many early windfarms are

now at the end of their expected lifespans, and are beginning to be re-

placed. Often, the planned replacement turbines are larger than those

they are replacing. Future research could test whether this has any im-

pact, or whether the presence of nearby turbines is already baked into

house prices regardless of their size. There has also been a substan-

tial increase in the number of commercial solar farms in recent years.

Future researchers could use insights from the work of this thesis to

explore how other commercial-scale renewable energy technologies im-

pact on nearby house prices.

Summary

The analyses of Chapters 3 and 4 provide several key contributions to

the existing literature on the impacts of windfarm siting and house

prices. These contributions are made both by each chapter individu-
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ally as well as the insights gained from comparing the results of both

sets of empirical analyses. There are several potential avenues for fu-

ture researchers to build on this work by deepening our understanding

of house price impacts from nearby windfarms. This could be achieved

through the use of more detailed datasets or by applying novel analyti-

cal frameworks. There is also considerable scope to widen the literature

area by researching related questions and issues that have not yet been

explored while taking lessons from the research presented within Chap-

ters 3 and 4.

6.5 Chapter 5

Chapter 5 examines whether there is a solar premium for homes in

the Uk as well as estimating the capitalization of residential solar PV

systems into house prices through the application of a Hedonic Regres-

sion Model (Model 1), a Repeat Sales Analysis (Model 2), and Propensity

Score Matching (Model 3). I find that there is a solar property premium

in England and Wales and that residential PV systems are capitalized

into English and Welsh house prices. The capitalization estimates are

£9,417 (Model 1), £4,651 (Model 2), and £6,578 (Model 3). The average

installation cost for a PV system in the UK is approximately £4,800 -

the findings of this chapter show that this cost will either be nearly re-

couped through the sale of a home, or potentially lead to profit.

The academic literature on solar property premiums and residential PV

system capitalization into house prices is in the early stages of develop-

ment. As such, this chapter makes several key contributions into this

research area. It is the first analysis to test for a solar property premium

or capitalization of residential PV systems into English and Welsh house

prices. This is an important extension of the current literature which
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has previously examined only locations with considerably larger solar

potential and therefore potential for large energy savings or export prof-

its. My findings are consistent with those reported in the literature,

though I find a much smaller solar premium and capitalization. The

lack of solar potential in England and Wales may partly explain these

findings, as well as highlight the important role of government subsidies

in generating the returns on installation found. The chapter exploits a

large and rich dataset to perform the first application of a Propensity

Score Matching analytical framework to estimate the capitalization of

residential PV systems into house prices. This is an improvement on

the fuzzy matching techniques previously applied within the literature.

The findings of Chapter 5 supports the reported impacts of residential

solar within the literature being positively capitalized into house prices.

However, the impacts of commercial-scale are negatively capitalized into

house prices Dröes & Koster (2021). This implies that the subsidies paid

to homeowners, who choose to install residential PV systems or energy

savings are likely a large driver of the difference between these two uses

of the same technology.

6.5.1 Insights and Avenues for Future Research

The literature examining the capitalization of residential PV systems

into house prices, and the solar property premium is small. At the

time of writing, there were only six peer reviewed papers exploring this

topic area. There is considerable scope for future research exploring

this topic, and in this section I will outline how the the work contained

in Chapter 5 can be built upon by future researchers, again organized

by: Data, Analytical Approaches and Related Research.
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Data

The analysis of this chapter was limited by the availability of data on

solar properties. Future research should make use of larger datasets

which contain the full list of solar properties in England and Wales

which is controlled by OFGEM, and which was not accessible for the

work of this thesis. This dataset includes information on every prop-

erty which has entered into the FIT scheme and has details such as: The

size of each installation, the total electricity generated by the system,

the FIT payments made to the owner and the export payments made

to the owner. The OFGEM data also includes information for the en-

tire UK, and would allow for a national analysis. Future research could

also make use of more detailed property characteristic information, in

particular information on changes to property characteristics over time.

This would ensure that any observed price effect is solely due to the in-

stallation of a residential PV system and not other changes to homes in

the sample.

Analytical Approaches

In regards to alternative analytical approaches, future researchers could

consider the application of both a Difference-in-Differences model or

synthetic control methods to estimate the capitalization of residential

PV into solar properties. The choice of the method, and how it could be

applied will likely depend on the data available. If the parallel trends

assumption holds, a DID framework would allow for a direct compari-

son of price trends between solar and non-solar properties. If it does not

hold, then the synthetic control approach may be a superior alternative.

Rather than using the PSM approach, future researchers could apply

Coarsened Exact Matching, or Fuzzy matching techniques to generate a

set of control properties. These have been applied within the literature,
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but not within the context of the UK.

Related Research

Previous research has found that a large portion of the solar premium

arises from subsidies, and others have found that in order to recoup

the cost of installation these subsidies are required. Future researchers

with access to the OFGEM data described above would have informa-

tion on the subsidies paid to owners of residential PV systems, as well

as the total electricity generated. Access to this information would al-

low future researchers to disaggregate PV capitalization to measure the

contributions of government subsidies and energy savings separately.

This would be particularly interesting given both the relatively low solar

energy endowment of th UK, as well as the generous subsidies provided

by the Feed-in Tariff Scheme.

Residential PV systems are not the only technology eligible for the FIT

scheme. Future researchers could test whether residential wind-turbines

have a similar capitalization to residential PV systems. There are nearly

30,000 residential properties which have installed these small-scale

wind turbines within the UK. At the time of writing, this was a com-

pletely empty area within the literature. Research into this topic would

build on the work of all analytical chapters of this thesis - firstly it

could test for residential wind turbine capitalization, and compare this

to residential PV capitalization. Second, there would be scope to test

whether the presence of a residential turbine has any negative impact

on neighboring home values due to either visual effects or noise pollu-

tion. This would be particularly interesting given the nature of the FIT

which would subsidize the owner, but not any impacted neighbors.
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In fact, the FIT should be the subject of future research relating to both

the transition to a low-carbon economy as well as unintended policy

outcomes. The findings of this chapter show that residential PV sys-

tems increase house prices, potentially enough to profit from installing

the system. The majority of these currently in operation within the UK

participate in the FIT scheme, which provides payment for all electricity

generated, even if it is used on site, as well as additional payments for

exported electricity. This is paid for by all electricity users in the UK,

including those who are unable to take advantage of the subsidy either

because they do not own a home or cannot afford to install a PV system.

Consider that to benefit from this scheme, an individual would need to

both be a home owner, and have the financial ability to make the up

front investment in a PV system. Future research should evaluate the

welfare effects of this policy in relation to its cost, wealth transfers, and

carbon reduction value.

Summary

The analysis of Chapter 5 generates several contributions to the grow-

ing literature on residential PV system capitalization into house prices,

and the solar property premium. It extends the literature to include lo-

cations with relatively low solar PV potential, as well as applying novel

analytical frameworks to the the research area. There is substantial po-

tential for future research to build on the work of this chapter by using

more detailed data, alternative analytical methods, or exploring related

research questions.

231



6.6 Closing Remarks

This thesis makes several contributions to the literature on the exter-

nalities associated with renewable energy developments through the ap-

plication of Hedonic Pricing Techniques. The thesis builds on and up-

dates the current research into house price impacts from wind turbine

visibility. The empirical work generates key insights into how these im-

pacts have evolved over time, and what factors future research should

consider to better model these impacts. It extends the research into

the capitalization of residential PV systems into house prices to include

England and Wales, as well as the first application of a Propensity Score

Matching analysis.
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Appendices
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A1 Implementation of the Renewables Obli-

gation and the Wind Turbine Stock of Eng-

land and Wales: 1992 - 2011

The Renewables Obligation went into effect in 2002, and there is a clear

increase in the number of wind turbines in England and Wales following

this. The delay between the policy going into effect and the takeoff of

the wind turbine stock can be explained by the time required to receive

planning permission and complete construction of a windfarm. This is

the study period of Gibbons (2015), and one can see there is a sub-

stantial increase in the turbine stock - though this increase is relatively

small compared to the period after Gibbons’ work.
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A2 Areas within 14km of English and Welsh

Wind Turbines 1992-2017

An increasing proportion of England and Wales is near wind energy de-

velopments, highlighting the importance of updating the previous em-

pirical work analyzing proximity and visibility impacts on house prices.
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A3 Comparison of Gibbons’ and Replicated Wind-

farm Sites

Shown on the left are the locations of the windfarms included in the

analysis by Gibbons (2015) as shown within the paper. On the right are

the windfarm locations of the replicated dataset, areas of difference are

located within the red boxes. The replicated locations were generated

by following the inclusion criteria specified by Gibbons. Although the

locations do not match exactly to those presented within Gibbon’s work,

there are 148 windfarms in both.
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A4 Example Viewshed

Shown here are the 5km viewsheds of (from left to right) the Bro Dyfi

Community Turbine, Dullas Valley Community Turbine, and the Cem-

maes windfarms in Wales. These are estimated from the centroids of

each windfarm which are shown in white. Areas shaded green are

expected to have a view of the windfarm centroids, and areas shaded

darker green will have views of more than one centroid. Cemmaes con-

sists of 18 turbines, and this is potentially problematic when calculating

viewsheds following the centroid approach of Gibbons.
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A5 Testing for Anticipation Effects

Announcement Effect

Distance Band Visible Not Visible

0-2km -0.0062* -0.0051*
(RSE) (0.0027) (0.0026)

2-4km -0.0191 0.0037
(RSE) (0.0235) (0.0381)

4-6km 0.0080 -0.0224
(RSE) (0.0136) (0.0351)

When testing for anticipation effects arising from the announcement
of a windfarm being approved for construction, I find statistically

significant decreases for the average price in postcodes within 2km of
windfarms. This decrease of about a half a percent is found for both

postcodes which will have views of the future windfarms and
postcodes which will not. The anticipation effects are insignificant at

distances greater than 2km.
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A6 Illustration of Distance Bands

Shown here is an illustration of the distance bands used within the

analyses of Chapters 3 and 4.
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A7 Transaction Price Trends

The price trends for properties within 14km of visible and non-visible

wind turbines are compared to properties located more than 14km from

an operational wind turbine. Much like Figure 3.5 the visible and not

visible groups trend together while the set of properties more than 14km

from operational windfarms follows a less similar trend. It is also note-

worthy that properties within 14km of operational windfarms are con-

siderably lower on average than properties farther away, regardless of

windfarm visibility.

240



A8 Visibility Comparisons: Proportion of prop-

erties with visible wind turbines.

Percentage of properties with a visible wind turbine.

Distance Radius % Visible

1 2 3 4

0-1km 97.11 97.04 96.24 85.33
0-2km 94.45 94.30 92.55 80.21
0-4km 84.08 82.47 80.36 62.44
0-8km 68.90 65.02 62.95 53.57

0-14km 52.73 51.80 49.06 39.51

DEM

200m X
90m X
5m X

5m + BH X

The first table shows that the proportion of properties with a view of

at least one turbine varies substantially with the DEM model used to

model visibility. The inclusion of building heights leads to a substantial

drop in the proportion of properties with a view. This is to be expected

though, as the the inclusion of building height data requires a substan-

tial restriction of the properties included, as well as including additional

features which may block views.
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A9 Postcode vs property visibility estimates.

Proportion of Properties with visibility estimates different from their
postcode centroid.

Distance Radius % Difference

1 2
0-1km 3.22 4.30
0-2km 5.25 7.28
0-4km 9.67 10.94
0-8km 11.39 12.02

0-14km 14.44 16.21

DEM

200m X
90m X

Here I show that there are substantial differences between neighbor-

hood and property specific windfarm visibility. This highlights the im-

portance of the visibility estimate used to define treatment by visible

windfarms.
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A10 DEM Resolutions: 200m, 90m, 5m, and

5m with Building Heights

Here I show the alternate DEM resolutions, with the darkest colors rep-

resenting the lowest elevations and the bright yellow the highest. The

locations shown are London, though at the 200m resolution it is only

just possible to make out the Thames. When building heights are in-

cluded, the Thames is clearly visible and London’s CBD can be seen

clearly due to the concentration of tall buildings.

Shown here is the 200m resolution DEM.
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Shown here is the 90m resolution DEM.
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Shown here is the 5m resolution DEM.

Shown here is the 5m resolution DEM redrawn to 1m resolution with

added building heights.
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A11 Solar PV Potential: Hawaii, England and

Wales

This figure compares the PV potential of Hawaii and England and Wales.

Solar PV capitalization into house prices in Hawaii was analyzed by Wee

(2016) who found a 5% capitalization, large enough to cover the cost of

installing the average PV system in the analyzed dataset.
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A12 Solar PV Potential: Arizona, England and

Wales

This figure compares the PV potential of Arizona and England and

Wales. Solar PV capitalization into house prices in Phoenix Arizona

was analyzed by Qiu et al. (2017) who found a 15-17% capitalization,

large enough to cover the cost of installing as well as earn a profit over

the cost of installing the average PV system in the analyzed dataset.
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A13 Solar PV Potential: Western Australia, Eng-

land and Wales

This figure compares the PV potential of Western Australia, England

and Wales. Solar PV capitalization into house prices in and around

Perth, Western Australia was analyzed by Ma et al. (2016) who found a

2.3-3.2% capitalization, large enough to cover the cost of installing the

average PV system in the analyzed dataset.
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A14 Solar PV Potential: Southport Australia,

England and Wales

This figure compares the PV potential of Southport, Queensland and

England and Wales. Solar PV capitalization into house prices in and

around Southport was analyzed by Lan et al. (2020) who found a solar

premium of $21,403 AUD, large enough to cover the cost of installing

the average PV system, and make a profit in the analyzed dataset.
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A15 Additional Control Coefficients

Ln Price Coefficient RSE

Repeated Sales 0.0718*** 0.0075
Lighting Costs -0.0051*** 0.0001
Heating Costs -0.0005*** 0.0000

Proportion of Windows Multiglazed 0.0029*** 0.0003
Number of Extensions 0.0753*** 0.0054

Emissions -0.0298*** 0.0045
Energy Rating

A 0.0506*** 0.0209
B 0.0603*** 0.0208
C 0.0600*** 0.0208
D 0.0524 0.2086
E -0.0479*** 0.0212
F -0.0674*** 0.0228
G - -

Year of Sale

1996 -0.0103 0.0259
1997 0.0895*** 0.0255
1998 0.1388*** 0.0252
1999 0.2061*** 0.0251
2000 0.2560*** 0.0248
2001 0.3725*** 0.0248
2002 0.5200*** 0.0242
2003 0.7315*** 0.0247
2004 0.9220*** 0.0246
2005 1.0011*** 0.0256
2006 1.0863*** 0.0248
2007 1.1086*** 0.0250
2008 1.1165*** 0.0301
2009 1.1147*** 0.0303
2010 1.2099*** 0.0298
2011 1.1307*** 0.0304
2012 1.2298*** 0.0289
2013 1.2699*** 0.0261
2014 1.2927*** 0.0245
2015 1.3128*** 0.0268
2016 1.2747*** 0.0280
2017 1.2002*** 0.0282
2018 1.3222*** 0.0277
2019 1.2998*** 0.0274
2020 1.3910*** 0.0450

Here I report the coefficients of additional property characteristics and

their influences on transaction price.
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A16 Moran’s I Test for Spatial Auto-correlation

Variable Moran’s I E(I) SE(I) Z(I) p-Value

Model 1 LnPrice 0.54517 -0.00006 0.00935 58.30666 0.00000
Model 2 Ln Price 0.30110 -0.00006 0.00188 160.35806 0.00000

Here I present the Moran’s I tests for Spatial Auto-correlation within the

datasets of Models 1 and 2 of Chapter 5. The null hypothesis is rejected

and therefore there is spatial auto-correlation within the dataset. This

is to be expected, as it simply implies that properties located near to

each other sell at similar prices. This auto-correlation is absorbed in

the model through the inclusion of location-specific and time specific

controls.
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