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Abstract

Hopf-Frobenius algebras are an algebraic structure present in two distinct areas of

applied category theory. They consist of two Frobenius algebras and two Hopf algebras

such that their structure maps overlap – i.e. a Frobenius algebra shares its monoid with

one Hopf algebra, and its comonoid with the other Hopf algebra.

Hopf-Frobenius algebras are present in ZX-calculus, a model for quantum circuits,

and the category of linear relations, which is used to model signal-flow graphs and

graphical linear algebra. Both of these are exemplary examples of how string diagrams

can be used, and the algebras are both commutative.

This thesis focuses on the noncommutative case of Hopf-Frobenius algebras. We

examine the conditions under which a Hopf algebra is Hopf-Frobenius, and show that the

conditions are relatively minor - every Hopf algebra in the category of Vector spaces is a

Hopf-Frobenius algebra. We have provided several conditions which are all equivalent to

when a Hopf algebra is Hopf-Frobenius, which makes checking if a given Hopf algebra is

Hopf-Frobenius relatively straightforward. This is beneficial, as when a Hopf algebra

is Hopf-Frobenius, we have more morphisms and equations to work with, and the

string diagrams of Hopf-Frobenius algebras have a pleasing topology. In addition, we

demonstrate in the final section of this thesis that many theorems about Hopf algebras

in finite dimensional vector spaces can be lifted to the Hopf-Frobenius case. Hence

when a Hopf algebra from a category other than vector spaces is Hopf-Frobenius, it will

inherit machinery from the category of finite vector spaces.

We develop the theory of Hopf-Frobenius algebras by proving that Hopf algebra

isomorphisms preserve Frobenius algebra structure, and using these to construct the

category of Hopf-Frobenius algebras.
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Chapter 1

Introduction

Hopf-Frobenius algebras are algebraic structures that have a pivotal role in two distinct

parts of applied category theory which would not be a priori associated with each other

– categorical quantum computing [19,31] and graphical linear algebra [13,68].

Hopf algebras and Frobenius algebras are the two algebraic structures which appear in

Hopf-Frobenius algebras, and they will be the main focus of this thesis. They are similar

in a number of ways: they both consist of a monoid and a comonoid, such that their

respective monoids preserve the structure of their respective comonoids. Specifically,

in a Hopf algebra, the monoid structure maps are comonoid homomorphisms, and

in a Frobenius algebra the monoid preserves the comodule structure induced by the

comonoid1. We say that a Frobenius algebra and a Hopf algebra overlap when they

share their monoid. In other words, they overlap when the monoid of one of these

structures is the same as the monoid of the other. A Frobenius algebra and a Hopf

algebra may also overlap on their comonoid in much the same way. With this in mind,

a Hopf-Frobenius algebra consists of two Hopf algebras and two Frobenius algebras such

that each Frobenius algebra overlaps on its monoid with one Hopf algebra, and on its

comonoid with the other Hopf algebra.

The structure Interacting Frobenius Algebras [26] is a commutative example of

Hopf-Frobenius algebras, and forms the mathematical backbone of ZX-calculus [18, 67],

a model for quantum computing. On the other hand, Interacting Hopf algebras [13] are
1For a more in depth survey on the history of Hopf algebras, see [3]. For a more in-depth survey of

Frobenius algebras, see [28]
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Chapter 1. Introduction

also a commutative case of Hopf-Frobenius algebras which are used to model signal-flow

graphs and graphical linear algebra [57]. We may ask, why does this algebraic structure

appear in these two places? Are there other places where this structure appears, but we

are not aware of it?

In this thesis, we provide several equivalent conditions for when a Hopf algebra is

a Hopf-Frobenius algebra. These mostly revolve around the existence of an integral

(Definition 4.2.2), and we show that they are equivalent to the Larson-Sweedler theorem

[41] which states that every Hopf algebra in the category of finite dimensional vector

spaces (FVectk) may be equipped with a Frobenius algebra. Hence, one of the main

results of this thesis is that every finite dimensional Hopf algebra is Hopf-Frobenius.

While none of the conditions that we provide for when a Hopf algebra is Hopf-

Frobenius are constructed purely from the structural maps of the Hopf algebra, we still

believe that they are relatively straightforward to confirm. As we mentioned previously,

the conditions mostly revolve around the construction of an integral. In particular,

the construction of an integral Hopf algebra (Definition 4.2.3). However, it is not a

trivial matter to construct an integral. As such, it is useful to consider the integral

morphism (Definition 4.4.1). When you can construct a trace on the Hopf algebra object,

or it has a dual structure, you may construct the integral morphism. It may be that

this is sufficient, as in Lemma 5.2.1. However, in Lemma 4.4.7, we discuss how, given

the integral morphism, we may construct an integral Hopf algebra from a given Hopf

algebra. If the Hopf algebra is equipped with a dual structure, and the category has

equalisers or coequalisers, then Lemma 5.2.5 is a constructive proof that will produce

an integral if one exists. On the other hand, if you can prove that the Hopf algebra

does not have any dual structure, then this will prove that the Hopf algebra must not

be Hopf-Frobenius, as every Frobenius algebra comes equipped with a dual structure

(see Remark 2.4.4). Hence, we believe that if you are operating in a string diagram with

Hopf algebra structure, it is relatively straightforward to check if the Hopf algebra is

Hopf-Frobenius.

When we find that a Hopf algebra is Hopf-Frobenius, then this gives us several

benefits. First of all, the theory of Hopf-Frobenius algebras is simply a stronger

3
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Chapter 1. Introduction

theory than Hopf algebras. In addition, the equations that we get are well suited to

string diagrams. Commutative Frobenius algebras are well known for their topological

properties - for example see 2 dimensional TQFTs [39] and the spider theorem [18] -

but even without commutativity, Frobenius algebras retain some topologically pleasing

properties - for example, see the planar spider theorem [31]. Of course, we cannot

prove the statement “Hopf-Frobenius algebras make good string diagrams”, but we

hope that as you read this thesis and the proofs contained within, you will find that the

diagrammatic language of Hopf-Frobenius algebras is pleasing.

In addition, we find that many theorems about finite dimensional Hopf algebras only

rely on their Hopf-Frobenius structure. This means that it is possible to lift theorems

directly from a finite dimensional context to the Hopf-Frobenius context. For example,

in the final section of the thesis, we have proven Radford’s theorem on the order of

the antipode for general Hopf-Frobenius algebras, and shown a connection between

semisimplicity of Hopf algebras and the symmetry of Frobenius algebras.

1.1 Hopf Algebras

We may see the motivation behind a symmetric monoidal category as a way of generalising

the Cartesian product - for example, in Set we can take any two sets, A and B, or

functions, f and g, and we get A × B (or f × g respectively). To generalise this, we

say that a monoidal category is a category C equipped with a functor ⊗ : C × C → C,

called the monoidal product and object I, called the monoidal unit, such that (C,⊗, I)

behaves somewhat like a monoid. It becomes a symmetric monoidal category when we

equip it with a natural transformation, {σA,B : A⊗B → B ⊗A}, called the symmetry,

where A,B are objects in C.

The notion that a monoidal product is a straightforward generalisation of the

Cartesian product motivated us to generalise concepts that are traditionally defined in

Set to an arbitrary monoidal category. For example, when we generalise the concept

of a monoid in Set to monoidal categories, we find concepts like an algebra, which is a

monoid in the category of vector spaces (denoted Vectk); a monad, which is a monoid

in the category of endofunctors of an arbitrary category; or a strict monoidal category,

4



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�

Chapter 1. Introduction

which is a monoid in Cat. When we generalise the concept of group to a symmetric2

monoidal category, the result is a Hopf algebra 3.

Let us unpack exactly what we mean by that. Recall that the definition of a group

is a monoid (G,µ, e) with an inverse operation _−1 : G → G, where gg−1 = e and

g−1g = e for all g ∈ G. This is a sufficient definition for groups in Set, but for our

purposes it is helpful to state the definition in terms of commutative diagrams.

In the category of sets and functions, a group is a set G with a binary operation

µ : G×G → G, an element e : 1 → G, and an operation _−1 : G → G such that

1 ×G G×G G× 1 G×G×G G×G G×G G G×G

G G×G G G×G 1 G×G

G

e×1G 1G×e

µ
∼ ∼

1G×µ

µ×1G

µ

µ

δ

1G×_−1

µ

!

e

δ

_−1×1G

µ

where δ : G → G×G is the diagonal map (or the copy map) induced by the cartesian

product, and ! : G → 1 is the terminal map from G. Note also that, within Set, a

function with type 1 → G is the same as an element of G. We claim that when we

generalise this definition to an arbitrary symmetric monoidal category, we will get the

definition of a Hopf algebra. However, it is not immediately obvious how to accomplish

this – the definition of a group uses the concept of the diagonal map δ, the terminal

object 1, and a terminal map !. Given an arbitrary symmetric monoidal category, these

maps may not exist. Hence, to define a Hopf algebra, we must first define concepts that

are analogous to the terminal object, a monoid, δ and !.

The role that the terminal object plays in the above definition of a group is that of

the monoidal unit – that is, 1 is the monoidal unit of the Cartesian product. Hence,

given a symmetric monoidal category, (C,⊗, I), we use ⊗ in place of × and I in place

of 1. This makes it relatively straightforward to define a monoid in C.

Recall that a monoid consists of a set, M , an associative multiplication M×M → M ,

and a unit element e ∈ M such that me = em = m for all elements m in M . We
2Throughout this thesis we’re going to focus on symmetric monoidal categories, however many of

the structures here can also be defined in braided monoidal categories.
3Hopf algebras origins lie in algebraic topology and algebraic groups. For an in-depth review of the

history of Hopf algebras, see [3].

5
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generalise this to the symmetric monoidal setting as follows.

Let C be an arbitrary symmetric monoidal category. A monoid (M,µ, e) in C is an

object M in C, morphisms µ : M ⊗M → M and e : I → M such that

I ⊗M M ⊗M M ⊗ I M ⊗M ⊗M M ⊗M

M M ⊗M M

e⊗1M 1M ⊗e

µ
∼ ∼

1M ⊗µ

µ⊗1M

µ

µ

It is clear that when C is Set, then this corresponds to the familiar definition of a

monoid.

At this point, we shall also introduce the string diagram notation that we shall

be using throughout this thesis. We shall draw the following pictures to denote the

multiplication and unit of the monoid

µ := or and e := or

Throughout the thesis, we may have to deal with multiple monoids on the same object,

and the way that we shall notationally differentiate between the two monoids is by

their colours. Note also that we draw our diagrams to be read from top to bottom - so

M ⊗M → M is denoted .

Every commutative diagram may be redrawn in the language of string diagrams.

For example, the associativity axiom may be drawn as

=

As such, within the body of the thesis we shall tend to draw our equations as string

diagrams rather than commutative diagrams.

To capture the essence of δ : G → G×G and ! : G → 1, we define the concept of a

comonoid. This is simply the dual concept of a monoid – that is, a comonoid in C is a

monoid in Cop. Explicitly, a comonoid (C,∆, ϵ) in C is an object C in C, morphisms

6
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∆ : C → C ⊗ C and ϵ : C → I such that

H H H ⊗H

I ⊗H H ⊗H H ⊗ I H ⊗H H ⊗H ⊗H
ϵ⊗1H 1H⊗ϵ

∆
∼ ∼

1H⊗∆

∆⊗1H

∆

∆

Since comonoids are the dual concept of monoids, we will draw them simply as upside

down monoids (i.e. , , etc.)

We shall show later, in Example 2.3.3, that for each set A there is a unique comonoid

(A, δ, !) called the copy comonoid. Hence, the concept of a comonoid generalises the

concept of the diagonal map in Set.

So far, in pursuit of our goal to generalise groups to symmetric monoidal categories,

we have captured the notions of the group multiplication and the diagonal map. However,

an arbitrary monoid and comonoid are not sufficient for our purposes - the multiplication

and the diagonal map interact in a specific way.

Given any function f : A → B, we have

A B A B

A×A B ×B 1

f

δA δB

f×f

f

!A
!B

in other words, every function f : A → B is a comonoid homomorphism . In particular,

given a monoid in set (G,µ, e), both µ and e are comonoid homomorphisms. This only

follows when the monoidal product is the Cartesian product.

To generalise the concept of a group to a symmetric monoidal category, we require

that we have a monoid (H,µ, e) and a comonoid (H,∆, ϵ) such that µ and e are

both comonoid homomorphisms. We call such a structure (H,µ, e,∆, ϵ) a bialgebra .

7
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Explicitly, the axioms that this structure must fulfil are

H ⊗H H I H

H ⊗H ⊗H ⊗H I ⊗ I H ⊗H

H ⊗H ⊗H ⊗H H ⊗H

H ⊗H I ⊗ I I H

H I I

∆⊗∆

µ

∆

µ⊗µ
1H⊗σ⊗1H

e

∆

e⊗e

µ

ϵ

ϵ⊗ϵ e

ϵ

where σ is the symmetry. Note that this implies that every monoid in Set forms a

bialgebra with the copy comonoid, as every function is a comonoid homomorphism.

It is worth noting that this definition is self-dual. Hence, we may equivalently define

a bialgebra as a monoid (H,µ, e) and a comonoid (H,∆, ϵ) such that ∆ and ϵ are both

monoid homomorphisms.

We represent these equations graphically as follows

=

=

=

=

where they are presented in the same order as the commutative diagrams above. We

are denoting the multiplication and comultiplication maps as and respectively,

and the unit and counit as and . Not that the colours are mere notation - for

example, later on we will have green comonoids and red monoids.

Finally, we now need to capture the concept of the group inverse. This is the

rightmost commutative diagram in the definition of a group above. Let us simply

8
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Chapter 1. Introduction

replace the inverse operation _−1 : G → G with a morphism S : H → H

H ⊗H H H ⊗H

I

H ⊗H H H ⊗H

∆

1H⊗S

µ

∆

S⊗1H

µ

ϵ

e

This is denoted graphically as

7→ 7→

where we denote the antipode S graphically as . When we have a morphism S that

fulfils the above condition, we call this an antipode. Given a bialgebra H, there is only

ever a unique antipode (see Proposition 2.5.6) that we may equip it with, in which

case we call such a bialgebra a Hopf Algebra. We define Hopf Algebras and antipodes

fully in terms of string diagrams in Definition 2.5.3. To summarise, a Hopf algebra

(H,µ, e,∆, ϵ, S) consists of a monoid (H,µ, e) and a comonoid (H,∆, ϵ) such that they

form a bialgebra (H,µ, e,∆, ϵ), which is then equipped with an antipode. We find that

the Hopf algebras in Set are exactly the groups, where the antipode of a group is the

group inverse.

We may see this by looking at some familiar properties of the group inverse. For

example, it is true that (gh)−1 = h−1g−1 in groups. As we will see below, this property

of group inverses is carried over to Hopf algebras, as S ◦ µ = µ ◦ σ ◦ (S ⊗ S), where σ is

the symmetry. We call this anticommutativity and is denoted graphically as

= =

However, not every property of the inverse is shared by the antipode: the inverse

operation of a group is an involution, but it is not necessarily the case in general. Indeed,

9
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Chapter 1. Introduction

there are Hopf algebras that have an antipode that are not even invertible [62], though

in vector spaces, this is only possible for Hopf algebras that are infinite dimensional.

We shall see in Proposition 2.5.6 that whenever either the monoid or comonoid are

commutative, the antipode is involutive, which is why it is always the case that group

algebras have an involutive Hopf algebra - the copy map is always cocommutative. More

generally, we see in Lemma 5.4.14 that it is also implied by symmetry.

The primary reason that Hopf algebras have garnered interest is due to their role

in representation theory. It can be shown that the modules of a Hopf algebra always

form a monoidal category, and that any dual structure or closed monoidal structure of

the base category is lifted to the category of modules. In addition, if we can equip the

Hopf algebra with a quasitriangular structure, then this will tell us that the modules

are braided [47,60]. In physics, this fact is used in the field of quantum groups, where

there are quasitriangular Hopf algebras that are represented in certain operator algebras,

implying that the operators have a braided monoidal structure. See Majid [43] for more

information.

1.2 Frobenius Algebras

Given an arbitrary symmetric monoidal category C and object F , a Frobenius algebra 4

(F, µ, e,∆, ϵ) is similar in some ways to a bialgebra, in that we have a monoid (F, µ, e)

and a comonoid (F,∆, ϵ) 5, but we do not have the bialgebra rules of interaction. Instead,

let us see F as a left and right F -module, where the action is simply induced by the

multiplication. For example, in vector spaces this would be written as a ▷ b := µ(a, b)

and a ◁ b := µ(a, b), where ▷ and ◁ are the left and right module actions respectively. In

a Frobenius algebra, the comultiplication is F -linear, so in vector spaces, this would be

written as a ▷∆(b) = ∆(a ▷ b), and similarly for ◁. Thus, we write this in the language
4Frobenius algebras were named after Georg Frobenius by Curtis and Reiner [23], and were initially

used in representation theory.
5This definition of Frobenius algebras is due to Carboni and Walters [16]

10
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of commutative diagrams as

F ⊗ F

F ⊗ F ⊗ F F F ⊗ F ⊗ F

F ⊗ F

µ

∆

∆⊗1F

1F ⊗µ

1F ⊗∆

µ⊗1F

We denote this graphically as

= =

We see from this definition that we may also write the following equation

= =

This motivates us to denote the following morphisms

:=:=

which call the cap and cup respectively.

The monoid is commutative exactly when the comonoid is cocommutative (See

Lemma 2.4.3), so in such a case, we shall say that the Frobenius algebra as a whole is

commutative. We say that it is special when

F F ⊗ F

F

∆

µ
1F

We denote this graphically as

=

11
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When a Frobenius algebra is both commutative and special, then it has a normal form

due the spider theorem6 (see [18]). The easiest way to state this theorem is graphically,

in terms of string diagrams7.

We define n-ary multiplication as the morphism µn : F⊗n → F , where µ0 := η and

µn := µ ◦ (1 ⊗ µn−1). Under this notation, we have µ1 = 1F and µ2 = µ. Since µ is

commutative and associative, µn is the unique composition of n−1 µ maps together. We

define n-ary comultiplication ∆n : F → F⊗n analogously. We depict these morphisms

graphically as
n· · ·µn :=

· · ·
m

∆m :=

Consider any morphism term t : F⊗n → F⊗m in the language of Frobenius algebras –

i.e. some term t generated by the Frobenius algebra structure maps, (µ, e,∆, ϵ), and

the structure maps of a symmetric monoidal category, (⊗, I, σ), such that the string

diagram is a connected graph. For example, consider the following string diagram.

The spider theorem tells us that we may construct a proof that t is equal to ∆n ◦ µn :

F⊗n → F⊗m. So the above diagram would be equal to

6Commutativity is not necessary for the spider theorem. A term without any instances of the
symmetry σF,F also has a normal form - see [31]. Hence, every special Frobenius algebra in a non-
symmetric monoidal category has a normal form.

7In his work on PROPs, Lack [40] constructed a PROP from cospans on the finite ordinals that
is equivalent to commutative, special Frobenius algebras. The spider theorem is equivalent to the
distributive law present in this PROP.

12
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Since every term in a symmetric monoidal category can be seen as a sequence of

connected graphs in the language of string diagrams, the spider theorem extends to

every term in the language of Frobenius algebras.

Frobenius algebras are relatively common algebraic structures – for example, every

semisimple algebra in the category of vector spaces may be equipped with a Frobenius

structure (See Example 2.2.17 in Kock [39]).

In more recent times Frobenius algebras are studied in the context of topological

quantum field theories (TQFTs). Quantum field theories are famously difficult to model

in a mathematically rigorous manner. TQFTs (Atiyah [4]) can be seen as a way of

capturing some of the dynamics of a quantum field theory, without these issues of

rigour. We construct a category of n-dimensional cobordisms, Cordn, where the objects

are (n − 1)-dimensional manifolds, and a morphism X → Y is an isotopy class of n

dimensional manifold such that its boundary is the disjoint union of X and Y . A

topological quantum field theory is a strong monoidal functor Cordn → Vectk. We

find that when the cobordisms are 2-dimensional, then a TQFT is exactly the same as

identifying a commutative Frobenius algebra in Vectk (See Kock [39]).

1.3 Hopf-Frobenius Algebras

In this section, we will introduce Hopf-Frobenius algebras, which are the main focus of

this thesis. They are an algebraic structure that combines both a Hopf algebra and

a Frobenius algebra, and therefore they have a complex definition. Despite this, they

naturally appear in a variety of contexts, as we will see.

A Hopf-Frobenius algebra consists of two monoids, (H, , ) and (H, , ),

and two comonoids, (H, , ) and (H, , ) such that when we pair these monoids

and comonoids together, we require that they form a Frobenius algebra or a Hopf

algebra. To distinguish between the different algebraic structures, we use a naming

convention where the structure is named after the colour of its monoid – for example,

(H, , , , , ) is called the green Hopf algebra, and (H, , , , ) is called

the red Frobenius algebra. The comonoids (H, , ) and (H, , ) are named after

their colours. Note that the colours are merely notation, used to distinguish different

13
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Chapter 1. Introduction

algebraic structures.

The following diagram captures all of the above information

Frobenius Algebra

Frobenius Algebra

Hopf Algebra Hopf Algebra

= = Antipodes

where we have a 2 × 3 grid with two monoids, two comonoids, and two antipodes. Each

column is a distinct Hopf algebra, the top and bottom rows are Frobenius algebras, and

the centre row is how the antipodes are constructed. Each monoid and comonoid is

part of one Hopf algebra and one Frobenius algebra, and each of the Hopf algebras and

Frobenius algebras overlap.

1.4 PROPs and Interacting Hopf Algebras

In the above sections, we have defined algebraic structures by stating an object, structural

morphisms, and axioms that those morphisms follow. For example, a monoid on M

consists of a multiplication map µ : M ⊗M → M and a unit η : I → M such that

I ⊗M M ⊗M M ⊗ I M ⊗M ⊗M M ⊗M

M M ⊗M M

η⊗1M 1M ⊗η

µ
∼ ∼

1M ⊗µ

µ⊗1M

µ

µ

However, we may define algebraic structures in alternative manner using PROPs. We

define a PROP as a strict symmetric monoidal category, where the objects are natural

numbers, and the monoidal product on objects is addition. This tells us that to define a

PROP, we only need to state the morphisms. For example, consider the PROP where a

morphism n → m is a function from the finite ordinal with n elements to the one with

m elements. Let us call this category FinOrd. A string diagram for such a morphism

14
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might look like

0 1 2 3

0 1 2

where this morphism is the function where 0, 2, 3 7→ 1 and 1 7→ 0. Note how similar this

diagram looks to a morphism in the language of monoids. Indeed, we find that this

PROP is able to capture the theory of commutative monoids perfectly. By this, we

mean that, given a symmetric monoidal category C, every commutative monoid in C

is equivalent to a strong monoidal functor from FinOrd to C. More generally, we say

that, given a PROP P , an algebra of P in C is a strong monoidal functor P → C. In

this manner, we may use PROPs to define many algebraic theories. This is typically

done by defining a PROP by the structure maps and equations present in the algebraic

theory. For example, we may define a PROP for noncommutative monoids by having a

PROP generated by the maps µ : 2 → 1 and η : 0 → 1, which is then quotiented by the

equations

1 2 1 3 2

1 2 1

η⊗1 1⊗η

µ∼ ∼

1⊗µ

µ⊗1
µ

µ

Let us call this PROP Mon. It is clear from how this PROP is defined that every

algebra of this PROP will be a monoid, and indeed, we find that Mon is equivalent to

FinOrd. We may do something similar with every algebraic theory that we have defined

previously (Comonoids, Hopf algebras, Frobenius algebras, Hopf-Frobenius algebras).

We may define a PROP, MatR , where a morphism n → m is a matrix from

Rn → Rm where R is a unital ring. For example, the following matrix

A =

a11 a12 a13

a21 a22 a23



15
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is a morphism A : 2 → 3. Bonchi, Sobociński and Zanasi [13] proved the classic folklore

that this PROP is equivalent to the PROP of commutative and cocommutative Hopf

algebras over R, denoted HAR. We construct this PROP by taking the PROP of

commutative Hopf algebras and equipping it with extra morphisms r : 1 → 1 for each

r ∈ R, called ring elements, which each function as homomorphisms. Explicitly, we

generate a PROP via the morphisms

r

quotiented such that

• ( , , , , -1 ), where -1 is the additive inverse of R, forms a commutative

and cocommutative Hopf algebra

• Each ring element is a Hopf algebra homomorphism

• r k r + k=

• rk=r

k

• 1 = 0 =and

We see that this PROP is equivalent to MatR via the functor HAR → MatR defined

in such a manner that

a11 a12 a13

a21 a22 a23

 7→
a11 a23

a12

a21

a22

a13

where each row is a comultiplication, and each column is a multiplication.

16
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This equivalence is extended by the main result of Bonchi et al. [13]. They construct

the PROP of linear relations, denoted LinRelR, in a similar manner to the way that

Rel is constructed from Set. In Rel, a morphism R : A → B is a subset R ⊆ A×B,

while in LinRelR a morphism L : n → m is a subspace L ⊆ Rn ⊕Rm.

Bonchi et al. [13] construct an algebraic theory whose PROP is equivalent to

LinRelR, called interacting Hopf algebras, denoted IHR. Essentially, it is a commutative

and cocommutative Hopf-Frobenius algebra equipped with ring elements in a similar

manner to HAR. Explicitly, the PROP is generated by

r

r

and quotiented such that

• both ( , , , , r ) and ( , , , , r ) are HAR,

• both ( , , , ) and ( , , , ) are commutative special Frobenius

algebras

•
r

r r
=

r

=and

Interacting Hopf algebras are used to model signal-flow graphs, as in [11,12, 29,68].

They function well as denotational semantics, which introduces compositionality into

signal flow diagrams. It also functions as operational semantics, with the caveat that

IHR does not capture deadlocks. This allows it to also model control theory [6].

Since the morphisms of LinRelR are linear subspaces, we see that IHR also captures

the linear subspaces. This allows us to present an entirely graphical presentation of

linear algebra, including concepts such as image, kernel and matrix multiplication [57].

17
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1.5 Categorical quantum mechanics and Interacting Frobe-

nius Algebras

Categorical quantum mechanics [1,19,31] is a framework for modelling quantum informa-

tion and computing processes that focuses on the abstract structures underlying quantum

mechanics. A foundational structure in this framework is a type of Hopf-Frobenius

algebra called an interacting Frobenius algebra. In this section, we will briefly discuss

quantum computing and categorical quantum mechanics, followed by an explanation of

interacting Frobenius algebras and their use. The next section, on ZX-calculus [18, 67],

will explore the most important application of interacting Frobenius algebras to date.

To understand quantum computing, it is important to first discuss quantum infor-

mation. In a classical (non-quantum) computer, a bit can take a value from the set

2 := {0, 1}, so that the state space with n bits is 2n. One important fact to keep in

mind is that each bit in a classical computer corresponds to the state of a physical

system, such as the on/off state of a transistor. In a quantum computer, the basic unit

of information is the quantum bit, or qubit. A qubit is similar to a classical bit, but

instead of being an element of a set with 2 elements, it is a vector in a 2 dimensional

vector space over C, and we denote such a quantum state as a ket, such as |x⟩. This

means that the state of the qubit can be modelled as a linear combination of multiple

elements of an orthonormal basis, which we can view as classical states. This is the

phenomena which within physics is referred to as superposition. In this way, qubits can

be thought of as a more general version of classical bits that are based on the principles

of quantum mechanics.

In quantum mechanics, we may model observable quantities with an orthonormal

basis, where each value of the basis represents a possible classical value that we could

measure. We distinguish between the outcomes of a measurement, x, and the states

that correspond to those outcomes, |x⟩. Measurement is nondeterministic – that is,

given a quantum state |ϕ⟩, there is some probability of measuring |x⟩. This probability

is |⟨x | ϕ⟩|2, where ⟨x | ϕ⟩ is the inner product of |x⟩ and |ϕ⟩. If we do happen to

measure x, then the state of the quantum system becomes |x⟩. In other words, the act

18
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of measuring a quantum state will change the system. This is very different from the

classical setting where, for example, to know the state of a bit I only need to look it up,

and this will not effect the system at all.

We may also contrast the quantum scenario with a classical nondeterministic process.

For example, if I flip a coin and see that it is ‘heads’, my measuring of the coin did

not cause it to change – the coin’s state was heads, independent of my measurement

of it. However, in quantum mechanics, Bell’s theorem [7] tells us that this is not the

case. Prior to measurement, the outcome of the measurement was not determined – the

state of the system was a superposition of all possible outcomes. Mathematically, it is a

linear combination of the elements of the orthonormal basis.

Every quantum transformation must be unitary – i.e. its inverse is equal to its

conjugate transpose – and therefore, may be reversed. Hence, in every quantum

transformation, no information may ever be lost. Note how this is contrasted with

measurement, where a state cannot be measured without losing information. In quantum

computing, a quantum transformation is usually presented as a quantum circuit, which

is the quantum equivalent to a logic circuit, and is the main focus of the next section.

Categorical quantum mechanics (CQM) is an approach to modelling quantum

mechanics that focusses more on abstract structures, such as algebra and compositionality.

For example, a fundamental structure in CQM is the dagger functor [1,54]. This is a

involutive strict monoidal functor on our category, with type † : C → Cop. This functor

is able to capture adjoint operators on Hilbert spaces, where every operator U : H → K

has a pair, U † : K → H that reverses the type. Since the functor is involutive strict

monoidal, we know U †† = U , and (U ⊗ V )† = U † ⊗ V †. Hence, the dagger functor is

used to represent unitarity in an abstract setting.

One of the key structures in categorical quantum mechanics is the way in which

classical information is modelled using dagger special commutative Frobenius algebras (†-

SC Frobenius algebra). We covered special commutative Frobenius algebras in Section

1.2. Given such a Frobenius algebra, F = (F, µ, e,∆, ϵ) we say that it is a dagger

Frobenius algebra when µ† = ∆ and e† = ϵ. We find that every †-SC Frobenius algebra

on a finite dimensional Hilbert space corresponds exactly with an orthonormal basis [17].
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Given an orthonormal basis A := {|j⟩ |0 ≤ j < n}, we construct the corresponding †-SC

Frobenius algebra as

:= |j⟩ ⊗ |k⟩ 7→


|j⟩ if j = k

0 otherwise
:=

n−1∑
j=0

|j⟩

:= |j⟩ 7→ |j⟩ ⊗ |j⟩ := |j⟩ 7→ 1

In addition, each Frobenius algebra comes with a set of morphisms called phases.

These are unitary morphisms α : F → F with the following property

α = α =
α α

=
α

= α

These morphisms are automorphisms, and therefore form a group. We see that this

is in fact an abelian group as

α

γ

α

γ α

α α
= = = =

γ

γ

γ

In the category of Hilbert spaces, these are rotation matrices. Concretely, given basis

A := {|j⟩ |0 ≤ j < n}, then the phases are maps of the form

|j⟩ 7→


|0⟩ if j = 0

eiαj |j⟩ otherwise

where αj is an angle, and i is the complex number i.

Recall that when we measure a quantum state, |ϕ⟩, we measure with respect to a

basis and the outcome is nondeterministic. The different members of that basis are the

possible outcomes of the measurement, and |ϕ⟩’s representation in that basis tells us the

probability of measuring any particular outcome. Suppose that we have two bases, A

and B. For a ∈ A, if |ϕ⟩ = |a⟩ there is a 100% probability of measuring a from |ϕ⟩ when
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measured with respect to the A basis. Suppose that, for all a in A, when we measure

|a⟩ with respect to the B basis, there is an equal probability of measuring any given b

in B. So if B has n elements, there is a 1
n chance of measuring any b in B. In this case,

we call A and B mutually unbiased [53] or strongly complementary. Mutually unbiased

bases are used in quantum key distribution [8] and quantum error correction [30], and

are important in quantum information.

We find that two bases are mutually unbiased if their respective Frobenius algebras

interact to form a Hopf-Frobenius algebra. More specifically, it is a scaled Hopf-Frobenius

algebra. A scaled Hopf-Frobenius algebra is an algebraic structure with almost exactly

the same equations as a Hopf-Frobenius algebra, except each equation is modified by

some invertible scalar factor. This allows us to define the classical maps of the Frobenius

algebra. The classical maps of the green Frobenius algebra are the subgroup of the

phases of the red Frobenius algebra that are also homomorphisms of the green Frobenius

algebra. In other words, they are phases of the red Frobenius algebra such that

α

αα= α

αα
=

In the Hilbert space setting, given a basis X, the classical maps of the X Frobenius

algebra correspond exactly with the endofunctions on the basis elements of X. We

now move on to a specific instance of categorical quantum mechanics and interacting

Frobenius algebras – ZX-Calculus.

1.6 Quantum Circuits and ZX-calculus

In this section, we will focus on a specific way of modelling quantum transformations

on the state space of a quantum computer, called a quantum circuit. We will also look

at the CQM approach to quantum circuits, a formal language based on interacting

Frobenius algebras called ZX-calculus.

A quantum circuit is analogous to a logic circuit in the classical setting. For a

classical computer, we may see a computer process as a function from one state space to

another. A logic circuit models this function via logic gate. In the same way a quantum
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circuit models the quantum transformation on a state space with n qubits, (C2)⊗n, as

the composition of a series of quantum gates. A quantum gate may be seen as any

quantum transformation on a small number of qubits (typically 1 or 2). In the classical

setting, the AND, OR and NOT gates are sufficient to model every logic gate, and we

call this a universal gate set. We get something similar in the quantum setting, where

the following gates are a universal set

RZ(α) :=

1 0

0 eiα

 RX(α) :=

 cos(α/2) −i sin(α/2)

−i sin(α/2) cos(α/2)



CNOT :=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


H := 1√

2

1 1

1 −1



We call the RZ and RX matrices the rotation matrices, where α takes the value of an

angle. CNOT stands for controlled-not, and H stands for Hadamard. Note that this

universal gate set is uncountable. In fact, we only need one family of rotation matrices –

the RZ gates and the Hadamard gate is sufficient to generate the RX gates. However,

this presentation shall make our discussion of ZX-calculus easier.

In quantum computing, we are primarily concerned with two bases, the Z basis and

the X basis. The Z basis is denoted |0⟩ and |1⟩, while we define the X basis as

|+⟩ := |0⟩ + |1⟩√
2

|−⟩ := |0⟩ − |1⟩√
2

These two bases are mutually unbiased, and indeed we may define the Z basis in terms

of the X basis as follows

|0⟩ := |+⟩ + |−⟩√
2

|1⟩ := |+⟩ − |−⟩√
2

We represent quantum circuits graphically using string diagrams in a PROP, whch

22



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�

Chapter 1. Introduction

we shall call QCIRCUIT. The notation is fairly straightforward, as follows

MM := CNOT :=
+

where M is either RZ(α), RX(α) or H. This notation has no equations, and is therefore

purely syntactical8. Regardless, it is a PROP and it does have an interpretation functor,

QCIRCUIT → FHilbC, defined in the obvious way.

ZX-calculus is a major approach that categorical quantum mechanics uses to model

quantum circuits. It is the interacting Frobenius algebra based off of the Z and X

bases, as they are mutually unbiased. In this scenario, the phases are the rotation

matrices that we defined previously. We also equip the structure with a Hadamard

morphism, which functions as a Frobenius algebra isomorphism between the red and

green Frobenius structures, is unitary and self-inverse. This structure, equipped with

some extra axioms (see Duncan and Coecke [18]) gives us a sound and complete [64, 65]

model of finite dimensional Hilbert spaces – in other words, there is an interpretation

functor, ZX → FHilbC and this functor is an equivalence. To define this functor, we

define what the Frobenius algebras map to, then the phase maps and the Hadamard. The

red and green Frobenius algebras map to the †-SC Frobenius algebras in FHilbCthat

correspond with the Z and X bases respectively. The antipodes of the Hopf algebra

map to the identity morphism.

The Hadamard map and the phases map to the unitaries that we have defined

previously

H

[ ]
:= H α

[ ]
:= RZ(α) α

[ ]
:= RX(α)

We find that the green Hopf algebra, ( , , , ), maps to a scaled version of the Z2

group algebra9. Specifically, we find that the comonoid ( , ) is the comultiplication

of Z2, while the monoid ( , ) is the monoid of Z2 multiplied by
√

2.
8There are ways that we may apply equations to this formalism - see [21] for example. However,

traditionally, these diagrams are used purely for notational purposes
9A group algebra is a group that has been lifted to vector spaces from Set. See Example 2.3.4 for

more information.
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There is a functor from QCIRCUIT to ZX, defined as

H

+
H7→

α αRZ(α) 7→ RX(α) 7→

7→

where for the CNOT gate, we have written

= =

This interacts with the interpretation functors that we have previously defined in the

following way

QCIRCUIT ZX

FHilbC

The presence of this functor informs us of how we use ZX calculus. Given a quantum

circuit, we may convert it into the language of matrices in FHilbC, or the language

of ZX-calculus. By converting it into ZX-calculus, we maintain the graphical aspect

of circuit notation, while also being able to use the algebraic rules of ZX-calculus to

reason about and perform calculations on quantum circuits. This means that it is often

easier to reason using ZX diagrams than matrices. Since the above diagram commutes,

we know that, given a quantum circuit, the unitary matrix that we get shall be the

same as if we convert the circuit into ZX-calculus, perform algebraic rewrites, and then

convert it into a matrix. This means that we may convert a circuit into ZX and then

prove properties about it. For example, see [22]. We may also convert a circuit into ZX,

optimise it according to some criteria, then convert it back into a circuit. An excellent

example of this are the results by Kissinger and van der Wetering [38]. The phase

gate RZ(π4 ) is often called the T -gate, and it is both necessary for quantum effects10

10Together, the CNOT gate, the Hadamard gate, RZ( π
2 ) and the T -gate form an approximately
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and it is difficult to implement in a noise resistant fashion [15]. Kissinger and Van der

Wetering [38] provide an algorithm that takes quantum circuits and, using the ZX rules,

returns an equivalent circuit with fewer T -gates.

.

1.7 Outline of Thesis and Original Contributions

In the Background (Chapter 2), we define a few monoidal categories that we will be

working with - such as modules and vector spaces. Most of the literature on Hopf

algebras is within these categories, and most of our examples of Hopf algebras are in

the category of finite dimensional vector spaces. We are working almost entirely in the

language of string diagrams, so we briefly cover this topic - however, we leave a full

discussion of string diagrams for the appendix (See Section A.1). We shall cover dual

structures – i.e. cups and caps – and define the algebraic structures that we will be

mostly concerning ourselves with in this thesis – namely monoids, comonoids, Frobenius

algebras and Hopf algebras – in the general context of a symmetric monoidal category.

Note in particular Lemma 2.5.10, which was originally mentioned in the Appendix of

Collins and Duncan [20]. It is also worth noting that in the appendix of this thesis,

in Section A.1, we construct a definition of string diagrams without any reference to

topology. Compare this with the traditional definition given by Joyal and Street [33].

We follow up the background chapter with a chapter on the trace. In this thesis, we

do not assume that we are working in a traced monoidal category [34], so we introduce

the novel concept of a traced family. The definition of a traced family comes from a

requirement to have a subset of objects in a category on which a trace may be defined,

as opposed to the definition of a traced monoidal category which has a traced for every

object. We introduce the concept of a traced family, and prove several lemmas that will

help us work with them. Lemma 3.0.10 is of particular note. We introduce an axiom for

traced families, and by extension, traced monoidal categories, that replaces two axioms

- dinaturality and the second vanishing axiom (See Joyal, Street and Verity [34]), which

we call Axioms T4 and T5.
universal gate set (See Nielsen and Chuang [48])
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In Chapter 4, we introduce the most central concepts in the paper – integrals

and cointegrals. This section refers heavily to Hopf-Frobenius Algebras and a Simpler

Drinfeld Double [20] by the author of this thesis, and develops its ideas. Every result

connecting Hopf algebras to Frobenius algebras is related to integrals. We introduce the

integral Hopf algebra, Definition 4.2.3, which is a concept in between a Hopf algebra

and a Frobenius algebra: integral Hopf algebras are weaker than a Hopf-Frobenius

algebra11, but they do still have many properties that are similar. We define the concept

of a half-dual (Definition 4.3.3), which is a weakening of the standard notion of a dual

(Definition 2.3.7). It does not obey the full snake equation, but it is strong enough

to define a trace. This allows us to define the integral morphism (Definition 4.4.1), a

morphism that is able to capture the essence of integrals in a Hopf algebra. We show

that we can use it to construct integrals (Lemma 4.4.7 and Remark 4.4.8) and that we

can use it to capture the idea of a space of integrals (Remark 4.4.5).

We expand upon previous results by strengthening the link between integrals and

Frobenius algebras by proving new results and talking more about traced families. We

see that we may equip the comonoid with a multiplication that behaves much like a

Frobenius algebra if and only if the Hopf algebra can be equipped with an integral

(Lemma 4.2.12). We develop the idea of half duals and traced families, by showing

that they are sufficient to define a unique trace (Lemma 4.3.7 and 4.3.8), and while the

integral morphism is defined in [20], we are able to define it in terms of the trace, rather

than half duals, thus weakening the definition (Definition 4.4.1).

The penultimate chapter of this thesis, Chapter 5, is primarily about the several

equivalent theorems that state when a Hopf algebra is Hopf-Frobenius. These are all

defined in terms of the concepts that we introduced in the previous chapter, and they

are summarised in Theorem 5.2.8. Again, much of these results come from Collins and

Duncan [20]. However, we develop these results by examining the integral morphism, and

showing how is behaves in a comparable manner to it’s counterpart in the category of

finite vector spaces, and how these results compare with Hopf algebra folklore, Definition

5.1.1, Lemma 5.1.2 and Lemma 5.2.5, which were communicated by Gabriella Böhm.
11We have not been able to prove that integral Hopf algebras are strictly weaker than Hopf-Frobenius

algebras, however. This is a conjecture
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Chapter 1. Introduction

Section 5.3 is original work, where we develop the theory of Hopf-Frobenius algebras

by defining the concept of a morphism between Hopf-Frobenius algebras, and hence,

we introduce the category of Hopf-Frobenius algebras. We find that morphisms that

preserve Hopf algebra structure and integrals are a class of Hopf algebra isomorphisms.

We also provide a condition that allows us to check with relative ease whether a Hopf

algebra morphism preserves Hopf-Frobenius structure (Corollary 5.3.10). We link

this definition of morphisms to Hadamard gates, which are a staple of ZX-calculus.

Hadamard morphisms exist whenever we have a self-dual Hopf algebra, and we provide

conditions under which we may construct a Hadamard morphism from a quasitriangular

Hopf algebra - thereby providing conditions under which a quasitriangular Hopf algebra

is self-dual.

In the final section of the chapter, we prove several results for finite dimensional

Hopf algebras in the context of Hopf-Frobenius algebras. This shows how much of

the structure of Hopf-Frobenius algebras is preserved between finite dimensional Hopf

algebras and Hopf-Frobenius algebras, and demonstrates how, when we have a Hopf-

Frobenius algebra, we can transfer theorems from finite dimensional Hopf algebras to

Hopf-Frobenius algebras.

We provide a new proof of Radford’s theorem [51]. This is a well established theorem

in Hopf algebra theory, but the proof that we provide is original - Lemma 5.4.2 until

Corollary 5.4.7 are all independent. The proof that we provide is shorter and easier to

follow than the original proof, and demonstrates why I believe that string diagrams are

the “right” language for Hopf-Frobenius algebras.

The section ends with a demonstration of the link between the symmetry of the

Frobenius algebra, and semisimplicity of the Hopf algebra - i.e. the diagrams are very

similar. These are two old concepts in algebra (from 1939 [?] and 1969 [41] respectively).

Without string diagrams, this is not an obvious perspective, but string diagrams make

the connection between the two concepts clear. However, while the work was done

independently, the work does appear in later work by Radford [52]. The definitions and

proofs differ significantly, where Radford uses module actions instead of string diagrams,

and our results are simpler and take less space, despite being graphical.
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Chapter 1. Introduction

Finally, we conclude and consider further work based on the results of this thesis.
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Chapter 2

Mathematical Background

We begin this thesis by introducing concepts that may be familiar to the reader. We will

assume that the reader is familiar with the basic concepts of monoidal category theory

— the definition of a category, functors, natural transformations, adjunctions, limits,

colimits and their monoidal counterparts. We refer to Mac Lane [42] for an explanation

of these concepts if the reader is not familiar. We begin in Section 2.1 by defining two

categories that we shall reference throughout this thesis, the category of modules over a

ring, ModR, and the category of vector spaces, Vectk. We will use these categories for

the majority of our examples of Hopf algebras. For more on these topics, see Street [60].

We shall be primarily working in an arbitrary symmetric monoidal category, which we

shall discuss in Section 2.2. We shall also develop the graphical language that we shall

be primarily working in — that of string diagrams. Given a category C, we construct

the category of string diagrams, and we state how this connects to the free symmetric

monoidal category C. We do this briefly in this chapter, but we cover it in much more

depth in the appendix, in Section A.1. For more on this topic, see Selinger [55]. We shall

define the various equational theories that we will be working with, such as monoids

and dual structures (Section 2.3), Frobenius algebras (Section 2.4), bialgebras and Hopf

algebras (Section 2.5). For more on these topics, see Kock [39] and Street [60].

We begin the background chapter by introducing categories that we will refer to

later.

Example 2.0.1. We denote the category of sets and functions by Set.
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Chapter 2. Mathematical Background

Example 2.0.2. The category of sets and relations, denoted Rel, has sets as objects

and a subset R ⊆ A×B is a morphism R : A → B. When (a, b) ∈ R, we say that aRb.

Given R : A → B and R′ : B → C, the composition R′ ◦ R is the relation where

a(R′ ◦R)c if there exists some b ∈ B such that aRb and bR′c.

Let f : A → B be a function in Set. We set G(f) to be the corresponding relation

in Rel,

G(f) := {(a, f(a)) : a ∈ A} ⊆ A×B.

Note how G(f) ◦ G(g) = G(f ◦ g). Hence, we may define a functor G : Set → Rel

where G(A) := A.

2.1 Modules

Most of the theory of Hopf algebras comes from the category of vector spaces and

modules over a ring, and so most of the examples of Hopf algebras are in these categories.

In this section, we define these categories and introduce some terminology that we will

be using.

Definition 2.1.1. Let R be a commutative ring, and let (M,+, 0) be an abelian group.

We say that an operation · : R ×M → M is an R-action on M when for all r, r′ ∈ R

and m,m′ ∈ M

1. 1 ·m = m

2. r · (m+m′) = r ·m+ r ·m′

3. (r + r′) ·m = r ·m+ r′ ·m

4. (rr′) ·m = r · (r′ ·m).

We say that an R-module M = (M,+, 0, ·), is an abelian group (M,+, 0) equipped with

· , an R-action on M . In this case, we say that the elements of R are the scalars of M .

We may also refer to the R-action · as scalar multiplication.
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Chapter 2. Mathematical Background

A linear transformation f between R-modules M and N is a function f : M → N

such that

f(x+ y) = f(x) + f(y) and r · f(x) = f(r · x).

Note how the composition of two linear transformations is a linear transformation. The

category of R-modules, denoted ModR, is defined as the category where each R-module

is an object, and the linear transformations are the morphisms. We will often suppress

the notation ·, and instead write rx for r · x when it is clear.

Remark 2.1.2. In the above example, we limited ourselves to the case when R is a

commutative ring. When R is not commutative, we must instead specify if R is acting

on M from the left or the right. However, in this thesis, we shall only refer to the case

when R is commutative.

Definition 2.1.3. Given a set A, the free R-module generated by A is the module,

denoted F (A), where the elements are every term of the form

r0a0 + r1a1 + . . .+ rnan

with ri ∈ R, ai ∈ A and n is a natural number. This includes the empty term, which

we will denote 0. This is then quotiented such that

ra+ r′b = r′b+ ra (r + r′)a = ra+ r′a 0a = 0

We shall show that F (A) is a module. We begin by showing that F (A) is an abelian group.

Clearly + and 0 give us a commutative monoid, so we merely need to show that each

element has an inverse. The inverse of r0a0 + . . .+rnan is simply (−r0)a0 + . . .+(−rn)an.

Hence we have an abelian group. We define the R-action as

r · (r0a0 + . . .+ rnan) = rr0a0 + . . .+ rrnan.

Hence, F (A) is a module.
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Chapter 2. Mathematical Background

There is straightforward way of defining linear transformations with type f : F (A) →

M . We define what f(a) is for each element a ∈ A. This then tells us how f is defined

over all of F (A), as

f(r0a0 + . . .+ rnan) = r0f(a0) + . . .+ rnf(an)

where ri ∈ R and ai ∈ A.

Given f : A → B, we define F (f) to be the linear transformation F (f) : F (A) →

F (B) where F (f)(a) = f(a) for each a ∈ A. Since the set A generates the module

F (A), and f is defined on each a ∈ A, we see that this sufficient to define F (f).

This assignment of A 7→ F (A) and f 7→ F (f) defines a functor F : Set → ModR.

We may define another functor, U : Set → ModR that maps R-module (M,+, 0, ·) to

its generating set M , and linear transformation f : M → N to the underlying function

f . We remark without proof that F is the left adjoint functor to U .

Definition 2.1.4. Let M be an R-module. We say that subset B ⊆ M is a generating

set of M when, for every x ∈ M , there exists a set of scalars {rb ∈ R|b ∈ B} such that

x =
∑
b∈B

rbb

We say that the set {rb} is a set of coefficients of x. We shall see that {rb} is not

necessarily unique in Example 2.1.7. Consider the free module F (B), and the linear

map ϕ : F (B) → M defined as ϕ(b) = b. Note the abuse of notation, where the b on

the left hand side is a free term, while the b on the right hand side is an element of M .

Since B generates M , we see that ϕ is always surjective. When ϕ is an isomorphism,

we say that B is a basis of M . In this case, we say that it is freely generated by B. It

should be noted that a basis is not necessarily unique, as we shall see in Example 2.1.6.

Example 2.1.5. The integers, Z, form a commutative ring. We may therefore see Z

itself as a Z-module, where the Z-action is multiplication. This module is generated

by the set {1}, but it is also generated by the set {2, 3}. This is because 3 − 2 = 1 so

the set {2, 3} is able to generate everything that {1} is able to generate. Note also how
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Chapter 2. Mathematical Background

since 2 · 1 = 2 and 3 · 1 = 3, the set {1} is able to generate everything that {2, 3}. Hence,

they are equivalent as generating sets. However, only F ({1}) is isomorphic to Z, and

therefore {1} is a basis of Z.

Example 2.1.6. The rational numbers, Q, form a field, so we may see Q itself as a

Q-module. We see that, as in Example 2.1.5 above, {1} is a basis of Q. However, so is

{2}, and every other element of Q. Hence, we see that the basis of Q is not unique.

Example 2.1.7. Not every module with a generating set is freely generated. For

example, we may see the cyclic group of order 2, Z2 as a Z-module, where we set the

Z-action · : Z × Z2 → Z2 as n · k = nk modulo 2. Then {1} is a generating set of Z2.

However, clearly F ({1}) is not isomorphic to Z2, as the free module generated by {1}

is Z. In other words, Z2 is generated by {1}, but it is not freely generated by {1}. So

does Z2 have a basis? The answer is no - Z2 has only 2 elements, while every freely

generated Z-module has an infinite number of elements (apart from F (∅)). Hence, Z2 is

not a free Z-module.

Lemma 2.1.8. Let M be an R-module with generating set B, where each x ∈ M

has a unique set of coefficients. Then given any other R-module, N , we may define a

morphism f : M → N by stating what f(b) is equal to, for each b ∈ B. Then, for any

x ∈ M with coefficients {rb}, we have

f(x) = f(
∑
b∈B

rbb) =
∑
b∈B

rbf(b).

Proof. To prove that this is a well-defined function, we point out how it is clear that

for all x ∈ M , there is a unique value of f(x) due to the uniqueness of {rb} for each x.

That this function is a linear map follows by definition.

For R-modules without this property, there is no guarantee that this morphism will

be well defined - consider Z2 from Example 2.1.7. Recall that {1} is a generating set

of Z2. If we were to try to define a linear map f : Z2 → Z, where f(1) = 1, then since
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Chapter 2. Mathematical Background

0 = 2 · 1 = 4 · 1, we would have

f(0) = f(2 · 1) = 2 · f(1) = 1

= f(4 · 1) = 4 · f(1) = 4

Hence, f would not be well defined.

Lemma 2.1.9. Let R-module M have a generating set B. Then B is a basis of M if

and only if, for each x ∈ M , its set of coefficients {rb} is unique.

Proof. First off, note that in F (B), the coefficients of any v ∈ F (B) are unique by

construction.

Suppose that M has B as a basis. By definition, the morphism ϕ : F (B) → M is an

isomorphism. Then there exists an inverse ϕ−1 : M → F (B). Suppose that there exists

x ∈ M which has two distinct sets of coefficients, {rb} and {r′
b}. So we have

x =
∑
b∈B

rbb =
∑
b∈B

r′
bb

such that {rb} ≠ {r′
b}. But this implies that

ϕ−1(x) =
∑
b∈B

rbϕ
−1(b) ̸=

∑
b∈B

r′
bϕ

−1(b).

This is a contradiction. Hence, this implies that x must have a unique set of coefficients.

On the other hand, suppose that for all x ∈ M , each x has a unique set of coefficients.

We now need to show that ϕ is an isomorphism.

From Lemma 2.1.8, we see that we may define a linear map ψ : M → F (B) as

ψ(b) = b. Clearly, ψ is the inverse of ϕ. Hence, F (B) is isomorphic to M and B forms

a basis.

Definition 2.1.10. A vector space is a k-module, where k is a field. We remark without

proof that, when we assume the axiom of choice, every vector space has a basis. This

property makes vector spaces a critical subset of modules. In addition, vector spaces

have the property that, while the basis of vector space V is not unique, we cannot
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Chapter 2. Mathematical Background

have two bases of V with different cardinalities. We say that the dimension of V is the

cardinality of its basis set.

Let V and W be vector spaces with bases BV and BW . If V and W have the same

dimension, then there is a bijection between the sets BV and BW . Hence F (BV ) will

be isomorphic to F (BW ). Therefore, since V ∼= F (BV ) and W ∼= F (BW ), this implies

that when vector spaces have the same dimension, they will be isomorphic.

We denote the category of vector spaces as Vectk , where the objects are vector

spaces and the morphisms are linear maps. The category of finite dimensional vector

spaces, denoted FVectk is the full subcategory of Vectk where the objects are only the

vector spaces with finite dimensions.

Definition 2.1.11. Let M and N be R-modules. The tensor product of M and N ,

denoted M ⊗N is the module freely generated by ordered pairs

m⊗ n where m ∈ M,n ∈ N.

which is then quotiented such that the following identities hold

(m⊗ n) + (m⊗ n′) = m⊗ (n+ n′)

(m⊗ n) + (m′ ⊗ n) = (m+m′) ⊗ n

r(m⊗ n) = rm⊗ n = m⊗ rn.

Given morphisms, f : M1 → M2 and g : N1 → N2, the tensor product of f and g is

defined as a morphism f ⊗ g : M1 ⊗N1 → M2 ⊗N2 where

(f ⊗ g)(m⊗ n) = f(m) ⊗ g(n).

Definition 2.1.12. Recall the definition of the free functor F : Set → ModR from

Definition 2.1.1. Recall that the monoidal unit with respect to the Cartesian product in
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Chapter 2. Mathematical Background

Set is the singleton set, 1 = {e}. This functor is strong monoidal, as follows.

if x ∈ F (A×B), then x has the form
∑
i

ri(ai, bi) (2.1)

if x ∈ F (A) ⊗ F (B), then x has the form
∑
i

riai ⊗
∑
j

kjbj =
∑
i,j

rikjai ⊗ bj (2.2)

if x ∈ F (1), then x has the form re (2.3)

where ri, kj , r ∈ R, ai ∈ A and bj ∈ B.

Note that the basis elements of F (A×B) are (a, b) ∈ A×B, and the basis elements

of F (A) ⊗ F (B) are a ⊗ b, where a ∈ A and b ∈ B. Hence, we define the natural

transformation γA,B : F (A) ⊗ F (B) → F (A × B) as γA,B(a ⊗ b) = (a, b), and the

morphism τ : R → F (1) as τ(r) = re. We sketch the proof that the equations are

respected. For the associativity axiom, this is merely the statement that

γA⊗B,C(γA,B(a⊗ b) ⊗ c) = γA⊗B,C((a, b) ⊗ c) = (a, b, c)

= γA,B⊗C(a⊗ (b, c))

= γA,B⊗C(a⊗ γB,C(b⊗ c))

for a ∈ A, b ∈ B and c ∈ C. For the unitality axioms, we will only look at the left hand

axiom.

λFA(re⊗ a) = ra and FλA(γ1,A(τ(r) ⊗ a)) = FλA(γ1,A(re⊗ a))

= FλA(r(e, a))

= ra

where r ∈ R and a ∈ A It is clear that both γ and τ are isomorphisms, and that they

fulfil the appropriate axioms. Hence, F is a strong monoidal functor.
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Chapter 2. Mathematical Background

2.2 Monoidal Categories and String Diagrams

The categories of modules over a ring and vector spaces are both examples of symmetric

monoidal categories. This thesis is not limiting itself to these categories however – we

will be proving our results for an arbitrary symmetric monoidal category.

This section of the thesis will cover some results and definitions for symmetric

monoidal categories, and we will discuss our method for reasoning within symmetric

monoidal categories - string diagrams.

In this thesis, we are going to be denoting the natural isomorphisms as follows:

the associator is denoted αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), the left and right

unitors are respectively λA : I ⊗ A → A and ρA : A ⊗ I → A, and the symmetry is

σA,B : A⊗B → B ⊗A.

However, we will note that the following classic result tells that, even though our

results are true for arbitrary symmetric monoidal categories, we only need to prove our

results for strict symmetric monoidal categories.

Theorem 2.2.1. Given any (symmetric) monoidal category C, we can construct a

strict (symmetric) monoidal category C such that there is a strong monoidal equivalence

between C and C.

We cite MacLane [42] for the proof of this theorem.

Lemma 2.2.2. Let C be a monoidal category. Then ρI : I ⊗ I → I is equal to

λI : I ⊗ I → I.

Proof. We refer to Kelly [37] for the proof of the above Lemma.

Definition 2.2.3. Let C be a monoidal category (note: not necessarily symmetric),

and let A be an object in C. We say that a morphism with type I → A is a point, a

morphism with type A → I is a copoint, and a morphism with type I → I is a scalar .

We may define a multiplication on scalars as follows.

Recall from Lemma 2.2.2 that ρI = λI . Given scalars a, b : I → I, the multiplication

is defined as a • b := ρ−1
I ◦ (a ⊗ b) ◦ ρI . In addition, by the natural transformation

property of ρ, we see that the following diagram commutes
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Chapter 2. Mathematical Background

I ⊗ I I ⊗ I

I I

a⊗1I

ρI

a

ρ−1
I

The same is true for 1I ⊗ a. Therefore, 1I is the unit of the multiplication. Finally, note

that

a ◦ b = (a • 1I) ◦ (1I • b) = a • b

= (1I • a) ◦ (b • 1I) = b • a

so the monoid via ◦ is the same as the multiplication via •, and this monoid is

commutative. This is known as the Eckmann-Hilton argument [27]. We see that this

also implies that • is associative, since ◦ is associative. As such, we say that a scalar a

is invertible when there exists some a−1 such that a • a−1 = 1I .

Remark 2.2.4. In Set, the unit is the terminal object, a singleton set, denoted 1. A

point in Set a : 1 → A is therefore an element of A. In Rel, a point I → A is a subset

of A. A similar fact holds true in ModR; R is the unit object in ModR, and to define

a morphism m : R → M , we state what element in M the multiplicative identity1 1 ∈ R

is being mapped to. This then tells us that m(r) = rm(1). Hence, in ModR, each point

m : R → M corresponds to an element in M .

This implies that a scalar in the module sense (i.e. an element of R) corresponds

with a scalar in the categorical sense, a morphism r : R → R. Hence we refer to

morphisms with type I → I as scalars.

Let V be a finite dimensional vector space with basis B. The dual basis, denoted

B∗, is the set of copoints where, for each b ∈ B, we define b∗ : V → k as

v 7→


1 if v = b

0 otherwise.

1For modules non-unital rings, there is not a bijective correspondence between elements of the
module and maps from the ring. For non-unital ring R and module A, with element x ∈ A, we may
define a morphism fx : R → A such that fx(r) = rx. However, there may be an element y ∈ A such
that rx = ry, and therefore fx = fy. Hence, there is no bijective correspondence.
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Chapter 2. Mathematical Background

In this case, we say that b∗ is the dual of b. In Lemma 2.3.17 we will show how B∗

forms a basis of the dual space of V .

The vast majority of proofs in this paper are done in the language of string diagrams.

As such, we shall devote the remainder of this section to how we shall be using string

diagrams. This section is primarily a sketch of the full definition of string diagrams.

We have included the full discussion in the appendix, in Section A.1, including a more

rigourous definition of open graphs (Definition A.1.1), string diagrams (Definition A.1.5),

composition (Definitions A.1.13 and A.1.10), the category of string diagrams (Lemma

A.1.17) and the free symmetric monoidal category (Definition A.1.19). We also provide

concrete examples of each of the string diagram concepts. In this section, however, we

shall merely sketch these concepts.

A graph G has a set of vertices, V and a set of edges, E such that each edge connects

one vertex to another vertex – i.e. we have source and target functions, s, t : E → V .

In an open graph, we do not require that each edge is connected to a vertex. In other

words, s and t are partial functions. When an edge’s source is undefined, then we say

that it is in the domain of G. Likewise, when an edge’s target is undefined, then we

say that it is in the codomain of G. This essentially allows us to define a notion of

composition on open graphs. For example, the following are all examples of open graphs

e v

v1
e1 e2

e3
v2

e4

v1

e

v2

We explain how these are open graphs in Example A.1.2.

A string diagram is a certain type of open graph that represents a morphism term

in a given symmetric monoidal category. So, for example, given a symmetric monoidal

category C, with morphisms f : A → B ⊗ C, g : B ⊗ A → D and h : I → E ⊗ F , we

may represent the morphism term

((1C ⊗ g) ◦ ((σB,C ◦ f) ⊗ 1A)) ⊗ (σE,F ◦ h)
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Chapter 2. Mathematical Background

as the string diagram

f

g

AA

B C

C D

h

E F

We do this by labelling edges as objects of C, and vertices as morphisms in C. For each

vertex v, we say that the domain of v is the set of edges e such that t(e) = v. Likewise,

we may define the codomain of v in a similar manner. When labelling a vertex v with a

morphism f , we require that the object labels of the domain and codomain of v match

with the domain and codomain of f .

However, we find that open graphs do not have enough structure to accurately

represent morphism terms in particular, we do not want the following string diagrams

to be equal

̸= ̸=
X X X X

X X X X

We accomplish this by requiring that the domain and codomain of the string diagram

have a total order. We also require that the domain and codomain of each vertex have

a total order.

Finally, we require that no string diagrams exist of the following form

we do this by saying that there are no cycles – paths from a vertex v back to v (see

Definition A.1.1).

We use this definition of string diagram to construct a category of string diagrams,

SD(C), of a given symmetric monoidal category C. We use this category to state the

following theorem. We only paraphrase here, but we will state the full theorem in the

appendix.

Theorem 2.2.5. Let C be a strict symmetric monoidal category. Then given two free

morphism terms, t1 and t2, there are corresponding string diagrams t̂1 and t̂2 in SD(C)
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Chapter 2. Mathematical Background

such that there is a proof following from the strict symmetric monoidal category axioms

that t1 = t2 if and only if t̂1 = t̂2.

We do not prove this theorem in this thesis – instead, we refer to Joyal and

Street [33] for the proof of the theorem, and for a full discussion of the theorem, we

refer to Selinger [55].

Practically, this means that instead of using free morphism terms in definitions

and proofs, we may instead use string diagrams. This carries the following advantage;

with the term language we may have two terms that are not equal as free morphism

terms, but are equal in the free symmetric monoidal category. Then these terms will be

mapped to the same string diagram. This is advantageous, as it can often be difficult to

prove that two terms are equal in the free symmetric monoidal category, but it is trivial

in the category of string diagrams. Hence, from now on the majority of our reasoning

will be graphical.

However, the equations of the free symmetric monoidal category are rarely enough.

How might we reason about, for example, monoids? We will approach this problem by

quotienting SD(C), as follows

Definition 2.2.6. Let E = {si = ti} be a finite family of equations, where si and ti are

morphism terms in C and their types match. Let the category of graphical reasoning

with respect to E be the category GRE(C) that is SD(C) quotiented such that ŝi = t̂i.

By Theorem 2.2.5, we know that each symmetric monoidal term t has a corresponding

string diagram t̂. Since GRE(C) is a quotient of SD(C), each string diagram in SD(C)

has a corresponding string diagram in GRE(C). Hence, we set {t} as the term t’s

corresponding string diagram in GRE(C). We shall state without proof that we may

define composition and monoidal product in GRE(C) as

{t1} ◦ {t2} := {t1 ◦ t2}

{t1} ⊗ {t2} := {t1 ⊗ t2}

Corollary 2.2.7. Let t1 and t2 be morphism terms in C. Then there is a proof that

t1 = t2 in C following from the axioms of strict symmetric monoidal categories and the
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Chapter 2. Mathematical Background

equations E if and only if {t1} = {t2}.

2.3 Monoids, Comonoids and Duals

We begin this section by providing an example of how we use graphical reasoning by

defining a monoid in an arbitrary monoidal category. Recall from Definition 2.2.3 and

the subsequent Remark 2.2.4 that a point is a morphism with type I → A for some

object A, and it corresponds to an element of A when the category is Set or ModR.

Definition 2.3.1. A monoid in a monoidal category C consists of an object M , a binary

multiplication µ : M ⊗M → M and a unit point η : I → M , denoted graphically as

µ := and η :=

respectively. These obey the familiar associativity and unit laws, shown diagrammatically

below.

= = = .

The set of equations that define the above graphical reasoning for monoids is

expressed below as a family of commutative diagrams

M ⊗M ⊗M M ⊗M M M ⊗M M

M ⊗M M M

1⊗µ

µ⊗1 µ

η⊗1

1
µ

1⊗η

1
µ

Note how these equations can be inferred from the string diagrams. Therefore, since it

is not necessary to state the equations as terms in the language of C, we will refrain

from doing so from now on.

A comonoid in C is the dual concept of a monoid. Concretely, a comonoid C consists

of a comultiplication ∆ : C → C ⊗ C and counit ε : C → I depicted below.

δ = and ϵ = .
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These obey the dual of the monoid axioms, known as the coassociativity and counit

laws, as follows.

= = = .

A (co)monoid is called (co)commutative if its (co)multiplication is invariant under

symmetry, as depicted below.

= =

Let (M, , ) and (N, , ) be monoids in C. A monoid homomorphism is a

morphism in C, ϕ : M → N , such that

ϕ=

M

N

ϕϕ

M

N

M M

N
= ϕ

N

M

A comonoid homomorphism is the dual notion of this.

Example 2.3.2. This more general definition of a monoid aligns with the familiar

definition of a monoid in Set. In the category ModR, a monoid is typically referred to

as an algebra. Likewise, a comonoid in ModR is typically referred to as a coalgebra.

When we are referring to a monoid (M, · : M ⊗M → M, 1) in Set or ModR, we

will often suppress the notation · and instead write ab for a · b.

We may see a homomorphism between monoids (M, ·, 1M ) and (N, ·, 1N ) as a

function on Set (resp. a linear map in ModR) ϕ : M → N where ϕ(ab) = ϕ(a)ϕ(b)

and ϕ(1M ) = 1N .

Example 2.3.3. Suppose that C has products. Then there is exactly one comonoid for

each object – the copy comonoid. The comultiplication is commonly referred to as the

diagonal map, and it comes from the universal property of the product

C

C C × C C

1C ∆C
1C

π1 π2

.

43



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�
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By definition, the counit must have type C → 1, where 1 is the terminal object. Hence,

by the universal property of the terminal object, there is only one morphism that the

counit could be.

To see that this comonoid is unique for each object, suppose that for some object

A, we have a comonoid, (A, δ : A → A×A, ϵ : A → 1). Since δ maps to A×A, by the

properties of the product there must be maps δ1, δ2 : A → A such that

A

A A×A A

δ

π1 π2

δ1 δ2 (⋆)

However, note that

π1 = A×A
1A×ϵ−−−→ A× 1 ∼= A

since there is only a single morphism from A to 1. This means that the following

diagram commutes
A A

A× 1 A×A

δ

1A×ϵ

δ1

This is simply the counit axiom for comonoids. Hence, δ1 must be equal to the identity

1A. The same follows for δ2. If we now refer back to the commutative diagram ⋆, we see

that by the uniqueness property of products, δ must equal ∆A, the copy map. Hence,

there is only one comonoid defined on A.

Recall that in Set, the terminal object is the singleton set, 1 = {⋆}. The diagonal

map is ∆C : C → C × C is defined as ∆C(c) = (c, c), and the counit ϵC : C → 1 maps

each c ∈ C to ⋆.

Example 2.3.4. Consider a monoid M = (M, ·, e) in Set. Recall that the free module

functor is strong monoidal from Definition 2.1.12. It follows from the definition of a

monoidal functor that F (M) is a monoid in ModR. The multiplication is

F (M) ⊗ F (M) γM,M−−−→ F (M ×M) F (·)−−→ F (M),
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with unit R τ−→ F (1) F (e)−−−→ F (M). In ModR, monoids are typically called algebras, and

the algebra F (M) is called the free algebra generated by M . An important case of this

is when M is a group. In this case, it is called a group algebra.

For a concrete definition of the free algebra, recall that M is a basis of F (M). Hence,

we only need to define the multiplication and unit maps on the elements of M . Given

m,n ∈ M , the free algebra would map m⊗n to mn. The unit is simply the unit element

of M .

Example 2.3.5. Let C be a set. We may apply the free functor F : Set → ModR to

the copy comonoid to get the copy coalgebra. Let M be a free module with basis B.

Since the copy comonoid exists for every set, we may define a copy coalgebra on M as

(M,∆, ϵ), where ∆ : M → M ⊗M and ϵ : M → R are defined as ∆ := b 7→ b⊗ b and

ϵ := b 7→ 1 for all b ∈ B, where 1 is the unit in the ring R.

When B is finite, we may also define an algebra on M that we will refer to as the

copy algebra. The multiplication is defined for b, b′ ∈ B as

b⊗ b′ 7→


b if b = b′

0 otherwise

and the unit is the element ∑
b∈B

b.

In certain circumstances, this is actually a monoid algebra. Suppose that B = {b0, b1, b2},

and that we are working over the complex numbers2. Then we set ω = e
2
3πi, and define

the basis Z3, where

0 := 1
3b0 + 1

3b1 + 1
3b2

1 := 1
3b0 + 1

3ωb1 + 1
3ω

2b2

2 := 1
3b0 + 1

3ω
2b1 + 1

3ωb2

2This construction works with the free module of a set of p elements, over a commutative ring with
a primitive pth root of unity, where p is a prime number, and invertible within the ring. This was
communicated to me via private correspondence with Ezra Schoen.
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In this case, this copy algebra is the free algebra of the cyclic group of order 3, Z3.

Example 2.3.6. Let M = (M, · : M × M → M, e) be a finite monoid. We may

define a coalgebra that bears similarities with the free algebra. The comultiplication

F (M) → F (M) ⊗ F (M) is defined

m 7→
∑
m=ab

a⊗ b.

with counit F (M) → k, defined

m 7→


1 if m = e

0 otherwise.

We will refer to this coalgebra as the monoid coalgebra.

When we have a finite group G, the group coalgebra has the following equivalent

definition.

g 7→
∑
h∈G

gh⊗ h−1.

because g = ghh−1

Definition 2.3.7. Let A,B be objects in monoidal category C. We say that B is left

dual to A if there exist morphisms d : I → A ⊗ B and e : B ⊗ A → I with graphical

representations
d

A B
and B

e

A

such that
d

A e

A = A and
dB

e B

= B .

In this circumstance A is right dual to B. Note that if C is symmetric then each left

dual is also a right dual.
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Proposition 2.3.8. In monoidal category C, suppose that A has two right duals

(B1, d1, e1) and (B2, d2, e2); then there exists an isomorphism δ : B1 ∼= B2, satisfying

the equations shown below.

B1

B2

δ :=
d2B1

e1 B2

B2

B1

δ
-1

:=
d1B2

e2 B1

d1

B1

A

B2

δ
=

d2

A B2

B1

e2

B2

Aδ =
B1

e1

A

Proof. Define δ as shown above; the required equations follow immediately.

The morphisms d and e are often referred to as the unit and counit respectively. In

this thesis, there are already morphisms that we refer to as the unit and counit, so we

avoid that terminology. Due to their graphical representations, we refer to d as the cap

and e as the cup.

Definition 2.3.9. A compact closed category [36] is a symmetric monoidal category

where every object A has an assigned dual (A∗, dA, eA). In the graphical notation we

depict the cap and cup as

dA :=
A A∗

eA :=
AA∗

.

Note how we are abusing the notation above, where we have drawn the above morphisms

as though they were a single edge. The cap and the cup are morphisms of type I → A⊗A∗

and A∗ ⊗ A → I respectively. Therefore, their string diagrammatic representations

consist of a vertex and two edges.

Remark 2.3.10. When drawing compact closed structure, some authors will use arrow

notation,

A A

AA

dA := eA :=
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where when a wire has type A∗, instead of being labelled as such, it will be labelled

with A and annotated with an arrow to indicate whether or not it is the dual of A.

Corollary 2.3.11. Let C be a compact closed category. Then A ∼= A∗∗ for all objects A.

Proof. This follows from Proposition 2.3.8 and the fact that both A and A∗∗ are both

dual to A∗.

Proposition 2.3.12. Let A and B have duals, A∗, B∗. We set the dual of f : A → B

as the morphism f∗ : B∗ → A∗, defined as

f∗

A∗

B∗

:= f

B∗

A∗

A

B

Assigning objects and morphisms to their duals has the following properties

(f ◦ g)∗ = g∗ ◦ f∗ 1∗
A = 1A∗ (A⊗B)∗ ∼= B∗ ⊗A∗ I∗ ∼= I

Proof. We begin by showing that (·)∗ preserves composition. This follows graphically

(f ◦ g)∗ =
g

f

g

f

=
=

g

f

= g∗ ◦ f∗

It is obvious from the definition that (1A)∗ = 1A∗ .

The proof that (A⊗ B)∗ ∼= B∗ ⊗ A∗ follows graphically, as we see below that the

cup and cap of A⊗B must be defined as follows

A B A∗B∗
A BA∗B∗

dA⊗B = eA⊗B =

The isomorphism (A⊗B)∗ ∼= B∗ ⊗A∗ then follows from Proposition 2.3.8. Note that in

a symmetric monoidal category, since A⊗B ∼= B ⊗A, it is also the case that A∗ ⊗B∗

is dual to A⊗B.
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Finally, since we are working in a strict monoidal category, I ⊗ I = I. Then the

identity map 1I functions as a cap I → I ⊗ I and cup I ⊗ I → I. This clearly fulfils the

dual equations. Hence, Proposition 2.3.8 gives us the isomorphism I∗ ∼= I.

Corollary 2.3.13. When C is a compact closed category, the assignment of A 7→ A∗

and f 7→ f∗ defines a strong monoidal functor, (·)∗ : C → Cop. We call this the dual

functor.

Lemma 2.3.14. In monoidal category C, suppose that A and B have two right duals

each: (A∗, dA∗, eA∗) and (A⋄, dA⋄, eA⋄) shall be the duals of A; (B∗, dB∗, eB∗) and

(B⋄, dB⋄, eB⋄) shall be the duals of B. Let us denote the dual actions on morphism

f : A → B as f∗ and f⋄ respectively.

In Proposition 2.3.8, we construct an isomorphism between mutual dual structures on

the same object. Let us denote these isomorphisms as δA : A∗ ∼= A⋄ and δB : B∗ ∼= B⋄.

Then the following square commutes

B∗ A∗

B⋄ A⋄

δAδB

f∗

f⋄

for all morphisms f : A → B.

Proof. We see this from the string diagram

f

eB⋄

dA⋄

f

eB∗

dA∗

δA δBf

eB∗

dA⋄

= =

Corollary 2.3.15. Let C be a symmetric monoidal category with two compact closed

structures, denoted ∗ and ⋄. Then their respective functors, (·)∗ : C → Cop and (·)⋄ :

C → Cop are naturally isomorphic via δ : (·)∗ ∼= (·)⋄, as defined in Lemma 2.3.14.
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Example 2.3.16. The category of finite vector spaces, FVectk, is compact closed.

Given an n-dimensional vector space V , the dual-space of V , denoted V ∗ is the space

populated by copoints V → k. To see that this is a vector space, simply observe that

for f, g ∈ V ∗, both f + g and rf are in V ∗ for all r ∈ k.

We defined a dual basis in Remark 2.2.4, but we repeat the definition here. Suppose

that V has finite basis B. The dual basis of B is the subset {b∗ ∈ V ∗| for each b ∈ B}

where each b∗ : V → k is defined as

v 7→


1 if v = b

0 otherwise.

In this case, we say that b∗ is the dual of b.

Lemma 2.3.17. Suppose a finite dimensional vector space V has basis B. The set B∗

forms a basis for V ∗.

Proof. We start by proving that the basis is linearly independent. Suppose that there is

some n such that for b∗
n ∈ B∗, we have

b∗
n =

∑
i ̸=n

aib
∗
i

Then we would have

b∗
n(bn) =

∑
i ̸=n

aib
∗
i (bn)

However, since b∗
n(bn) = 1, and b∗

i (bn) = 0 for all i ≠ n, we have a contradiction. Hence,

B∗ must be linearly independent.

Let f ∈ V ∗. Then f has type f : V → k. Consider the linear map

g :=
∑
b∈B

f(b)b∗

Since g(b) = f(b) for each basis element b ∈ B, this implies by linearity that g = f .

Hence, each f ∈ V ∗ is equal to a linear combination of the elements of B∗, so B∗ forms

a basis of V ∗.
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We will now show that V ∗ is the dual of V . To prove this, we will define the cup

and cap of V . Recall from Remark 2.2.4 that for any vector space A, a morphism of

type k → A is equivalent to an element of A. The cap k → V ⊗ V ∗ is ∑b∈B b⊗ b∗, and

the cup V ∗ ⊗ V → k is the map that maps f ⊗ v to f(v), where f ∈ V ∗ and v ∈ V . It

is straightforward to show that this cup and cap fulfils the appropriate axioms, making

V ∗ the dual of V .

Example 2.3.18. Note that the above proof does not hold for ModR in general, as

there is no guarantee that an R-module will have a finite basis. For an R-module M to

have a dual, we require that M is

• Projective: There exist sets {mi ∈ M} and {fi ∈ ModR(M,R)}, both indexed

over some indexing set I, where for all x ∈ M , fi(x) is nonzero for finitely many

fi, and

x =
∑
i∈I

fi(x)mi

• Finitely generated: There exists some set {nj ∈ M}, indexed over finite set J ,

such that for any x ∈ M there exists {rj ∈ R} such that

x =
∑
j∈J

rjnj

This forms the category of finitely generated projective modules, FPModR, which is

the largest full subcategory of ModR that is compact closed. Recall from the definition

of a generating set (Definition 2.1.4) that even though a finitely generated module has

a generating set, this set may not be a basis – i.e. {rj ∈ R} may not be unique.

2.4 Frobenius Algebras

In this thesis, we will focus primarily on the algebraic structures Frobenius algebras and

Hopf algebras. Both of these structures consist of a monoid, a comonoid, and some laws

of interaction between the two. We begin with the definition of a Frobenius algebra.
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Definition 2.4.1. A Frobenius algebra F = (F, , , , ) in a symmetric monoidal

category C consists of a monoid (F, , ) and a comonoid (F, , ) on the same

object F , obeying the Frobenius law, shown below on the left:

= = =

A Frobenius algebra is called special or separable when it obeys the equation above on

the right, and quasispecial when it obeys the special equation up to an invertible scalar.

A Frobenius algebra is commutative when its monoid (F, , ) is commutative.

Remark 2.4.2. Note how the Frobenius law does not use the unit or counit of the

Frobenius algebra. In Lemma 4.2.12, we will refer to the Frobenius law when we only

have a multiplication and a comultiplication map, as opposed to a monoid and comonoid.

Lemma 2.4.3. Let F = (F, , , , ) be a Frobenius algebra. Then the following

identities hold

1. = =

2. = =

3. = if and only if =

4. The monoid (F, , ) is commutative if and only if the comonoid (F, , )

is cocommutative

When the Frobenius algebra fulfils the equations in 3, we say that it is symmetric. When

either the monoid (F, , ) or the comonoid (F, , ) are commutative, we say

that the Frobenius algebra is commutative.
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Proof. 1 and 2 both follow immediately from the Frobenius law, and the properties of

the unit and counit, as follows

= == =

.

For 3, suppose that the left hand of the equivalence holds. We use 2 to get the

following identity

= = = =

This implies therefore that

= =

The implication in the other direction follows similarly.

Finally, suppose that the monoid (F, , ) is commutative. Following from 3, this

implies that the Frobenius algebra will also be symmetric. Therefore,

== = = =

It is clear that the converse holds as well.

Remark 2.4.4. Note how part 2 of the above Lemma tells us that for every Frobenius

algebra, (F, , , , ), F is dual with itself, as in Definition 2.3.7, where we set
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the cup and cap as

:=:=

When using this dual structure, we denote the dual of object A and morphism f as A

and f respectively.

Example 2.4.5. In Examples 2.3.4 and 2.3.6, we defined the free algebra and monoid

coalgebra. This forms a Frobenius algebra (M, , , , ) in Vectk if and only if

M is a group algebra, as we shall see. Let us denote M as the generating monoid of M

in Set (i.e. F (M) ∼= M).

For (M, , , , ) to be a Frobenius algebra, we need the following equations

to hold

= =

Since M forms a basis for this vector space, we shall denote the right hand equation with

basis elements. Let m,n ∈ M . Then from the definition of free algebra and coalgebra,

we get that

∑
mn=ab

a⊗ b
∑

m=m1m2

m1 ⊗m2n

=

m⊗ n

mn
∑

m=m1m2

m1 ⊗m2 ⊗ n

m⊗ n

In other words, a free algebra is a Frobenius algebra if and only if the sets

A(m,n) = {(a, b)|a, b ∈ M,ab = mn}

and

B(m,n) = {(m1,m2n)|m1,m2 ∈ M,m1m2 = m}

are equal. Consider the sets A(1,m) and B(1,m) for some m ∈ M . Clearly, (m, 1) is

an element of A(1,m), so it must therefore be an element of B(1,m). Hence, there
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exists some k ∈ M such that (m, km) = (m, 1) ∈ B(1,m) – i.e. mk = 1 and km = 1.

Therefore, every m ∈ M has a left and right inverse, so M must be a group.

Example 2.4.6. Recall that in Example 2.3.5, we defined the copy coalgebra and copy

algebra. Together, these form a commutative Frobenius algebra, that we call the copy

Frobenius algebra.

Definition 2.4.1, due to Carboni and Walters [16], has a pleasing symmetry between

the monoid and comonoid parts. However, the following equivalent definition will be

useful in later sections3.

Definition 2.4.7. A Frobenius algebra in a symmetric monoidal category C consists of

a monoid (F, , ) and a Frobenius form β : F ⊗ F → I, which admits an inverse,

β̄ : I → F ⊗ F (i.e. F is self-dual). These are denoted graphically as

β := β̄ :=

and they satisfy the equations

= = =

The left hand equation tells us that β is associative.
Lemma 2.4.8. Definition 2.4.1 and Definition 2.4.7 are equivalent definitions of

Frobenius algebras.

Proof. To see that Definition 2.4.1 implies Definition 2.4.7, it suffices to take the cup

and cap defined in Remark 2.4.4 as β and β̄.

For the converse, we dualise and using β as in Proposition 2.3.12

:= :=

3See Fauser’s survey [28] for several equivalent definitions.
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It follows from Proposition 2.3.12 that (F, , ) is therefore a comonoid. To prove

that the Frobenius law is satisfied, we first prove the following identities for the comulti-

plication

= = =

and

= = = = .

We only prove one side of the Frobenius law, as the proof of the other side is similar.

= = =

Hence, Definition 2.4.7 implies Definition 2.4.1.

Given a comonoid (C, , ), a copoint a : C → I is coinvertible if there exists

copoint a−1 : C → I such that

= =
aa

-1
a a

-1

Lemma 2.4.9. There is a bijective correspondence between invertible points for the

monoid and coinvertible copoints for the comonoid of a Frobenius algebra.

Proof. Recall the duality (·) induced by the cup and cap of the Frobenius algebra,

as in Remark 2.4.4; then u : I → F is invertible iff and only if the dual u : F → I is

coinvertible.
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Chapter 2. Mathematical Background

Lemma 2.4.10. Let u be a coinvertible copoint of the comonoid. Define

βu :=
u

β̄u :=

u
-1

Then βu is a Frobenius form for the monoid (F, , ).

Proof. We must show that the equations of Definition 2.4.7 hold. The first follows from

associativity of the monoid. For the second we have:

u
-1

u

=

u

=

u
-1

=
u

-1

u

=

and similarly for the other side. Note that βu = βv implies u = v by the uniqueness of

inverses.

Lemma 2.4.11. Suppose that β is a Frobenius form on Frobenius algebra F ; then we

obtain a coinvertible copoint u : F → I as follows:

u :=
β

u−1 :=
β̄

Proof. Recall that for any Frobenius form

β

=
β
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Chapter 2. Mathematical Background

We need only to show that u−1 is the coinverse of u. The calculation is as follows

β

β̄

=

β̄

β

β̄

β

=

β̄

β

=

β̄

β

=

β̄

β

= =

Combining the three preceding lemmas we obtain:

Proposition 2.4.12. There is a bijective correspondence between the invertible elements

of a monoid and the Frobenius forms definable on it.

Frobenius algebras are merely one structure that is composed of a monoid and a

comonoid. We now move onto the main algebraic structure of this thesis.

2.5 Bialgebras and Hopf algebras

Note. Unlike the preceding section, in our discussion of bialgebras and Hopf algebras,

we will use different colours for the monoid and comonoid parts of the structure. We

will refer to green and red morphisms, but this is mere notation.

Definition 2.5.1. A bialgebra B = (B, , , , ) in a symmetric monoidal

category C consists of a monoid (B, , ) and a comonoid (B, , ) on the same

object, which jointly obey the copy, cocopy, bialgebra, and scalar laws depicted below.
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Chapter 2. Mathematical Background

= =

= =

We may equivalently define a bialgebra as a monoid and a comonoid such that

the comonoid is a monoid homomorphism. Given bialgebras (B, , , , ) and

(B′, , , , ), a bialgebra morphism is an morphism ϕ : B → B′ in C which

is both a monoid homomorphism from (B, , ) to (B′, , ) and a comonoid

homomorphism from (B, , ) to (B′, , ). Note that B ⊗B′ is also a bialgebra,

with structure maps

Remark 2.5.2. Some works, notably on the zx-calculus [5, 18,32] and related theories

[26], the scalar law is dropped and the other equations modified by a scalar factor, to

give a scaled bialgebra.

Definition 2.5.3. A Hopf algebra consists of a bialgebra (H, , , , ) and a

morphism : H → H called the antipode which satisfies the Hopf law:

= =

Given two Hopf algebras, H,K, with antipodes H , K , we may make the bialgebra

H ⊗ K, as defined in Definition 2.5.1, a Hopf algebra by equipping it with antipode

H ⊗ K .

Proposition 2.5.4. We can define another Hopf algebra Hop on the same object, having

the same unit and counit, but the multiplication and comultiplication are composed with
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Chapter 2. Mathematical Background

the symmetry:

7→ 7→

When we only replace the multiplication as above, we get a bialgebra, denoted Hσ which

is not necessarily Hopf.

Proof. To prove that Hop is a Hopf algebra, we simply show that each of the axioms

are fulfilled. We shall begin by proving that both Hop and Hσ are bialgebras. It is clear

that Hop fulfils the copy, cocopy and scalar laws, so we shall only prove the bialgebra

law. First off, note that

==

where we have simply swapped the two morphisms. It then follows that

= = ==

where the third equality is from swapping the two morphisms. Hence, Hop fulfils

the bialgebra law, and is therefore a bialgebra.

Showing that Hσ is a bialgebra is similar, as the copy, cocopy and scalar laws follow

immediately. As such, we shall only prove the bialgebra law here.

= =
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Chapter 2. Mathematical Background

To see that Hop is a Hopf algebra, simply see that

= =

However, Hσ fails here, as we only get

which we cannot

Definition 2.5.5. The category of Hopf algebras on C is the category Hopf where

the objects are Hopf algebras (H, , , , , ) and the morphisms are bialgebra

homomorphisms. We show below that bialgebra morphisms are sufficient, i.e. when

f : H → K is a bialgebra morphism, f ◦ H = K ◦ f .

Given bialgebras H,K, we may define a monoid structure, called the convolution

algebra, on the homset C(H,K), where the multiplication and unit are respectively

f g
H

K

H

K
f ⋆ g :=

H

K

1⋆ :=

for morphisms f, g : H → K. Suppose that H and K are Hopf algebras. We find that

when f : H → K is a monoid homomorphism or comonoid homomorphism, then f

has an inverse when composed with the antipode. For example, when f : H → K is a
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Chapter 2. Mathematical Background

monoid homomorphism, then f ◦ H is the convolution inverse of f

f
f

H

K

H

K

= H
H

=

f f

K

=

K

H

K

H

This implies that, since inverses are unique, when f : H → K is a bialgebra homomor-

phism, then f ◦ H = K ◦ f . This also tells us that Hopf(H,K) is a group4.

Proposition 2.5.6. For a Hopf algebra H = (H, , , , , ):

1. The antipode is unique.

2. : Hop → H is a bialgebra homomorphism, i.e.

= =

3. The bialgebra Hσ, as defined in Proposition 2.5.4, is a Hopf algebra if and only if

is invertible, in which case the antipode of Hσ is the inverse of the antipode of

H, which is denoted −1.

4. If H is commutative or cocommutative then the antipode is an involution, i.e.

◦ = idH .

Proof. 1. This follows from the fact that the antipode is the inverse of 1H in the

convolution algebra of Hopf(H,H), and that inverses are unique.

2. We will show that the antipode is a monoid homomorphism. The fact that it is a

comonoid homomorphism will follow dually. To do this, we will show that both

sides of the equation are inverses of the multiplication map . That is, we will
4This does not mean that the category is enriched in the category of groups (Group), and indeed,

Hopf fails to be enriched over Group when the monoidal product is the Cartesian product.
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show that

⋆ =⋆ = and

where the right hand side of each of the above equations is the convolution unit of

Hopf(H ⊗H,H). We prove that equation on the left is true as follows

= = =

To prove the equation on the right, we use associativity of the monoid, in addition

to the Hopf law

= = = = =

We now need to show that ◦ = .

= = = =

The proof for and are similar.

3. The bialgebra Hσ is the underlying bialgebra of H, except is replaced with

◦ σH,H , where σH,H is the symmetry natural transformation on H. Since we

know the Hσ is a bialgebra, we only need to prove that the Hopf law follows for
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Hσ if and only if is invertible. Suppose that Hσ has antipode s. Then

s
s

= = =

where we used the fact that the antipode is a bialgebra homomorphism. The above

proof implies that ◦ s is the convolution inverse of . Since the antipode is the

convolution inverse of 1H , this implies that ◦ s = 1H . By a similar argument,

we see that s ◦ = 1H . On the other hand, suppose that the antipode has an

inverse. Then note that this implies that the antipode inverse is a bialgebra

homomorphism. Then we have

== = =-1

-1

-1 -1

-1

-1

=
-1

Hence, we have proven our result.

4. This follows from the the previous result, as when the Hopf algebra is commutative

then H = Hσ as Hopf algebras. Since the antipode is unique, we get that the

antipode is it’s own inverse.

Example 2.5.7. In Set, any monoid forms a bialgebra when paired with the copy

comonoid. This structure is a Hopf algebra if and only if the monoid is a group – the

antipode is the operation where g 7→ g−1. This also clearly implies that, the free algebra

defined in Example 2.3.4 is a bialgebra when paired with the copy coalgebra, defined in

Example 2.3.5, and becomes a Hopf algebra if and only if it is a group algebra.

Example 2.5.8. Unlike Set, there are Hopf algebras in FVectk which are not group
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algebras. An example of this is the Taft Hopf algebra. Let k be a field with a primitive

nth root of unity, which we denote as z. This means that there exists some element z ∈ k

such that zn = 1 and zm ̸= 1 for m < n. For example, the complex numbers have a

primitive 2nd root of unity, i. To define the Taft Hopf algebra, T = (T, µ, e,∆, ϵ, S), we

must define the monoid (T, µ, e), the comonoid (T,∆, ϵ), and the antipode S : T → T .

Let T be the vector space constructed by taking the free algebra generated by {x, g}

over the field k, and quotienting it such that xn = 0, gn = e and gx = zxg, where e is

the unit of the monoid and z is the nth root of unity of k. We denote this multiplication

as µ. This tells us that T has a basis of elements of the form gaxb for a, b < n. Hence,

T is finite dimensional. The monoid (T, µ, e) is unital and associative by construction.

For the comonoid, we must define structure maps ∆ : T → T ⊗ T and ϵ : T → k.

We shall require ∆ and ϵ to be monoid homomorphisms, as (T, µ, e,∆, ϵ) will form a

bialgebra. Hence, while we would typically only need to define linear maps on basis

elements, it is actually sufficient to define ∆ and ϵ on the generators of (T, µ, e). We

define ∆ and ϵ as

∆(x) = e⊗ x+ x⊗ g and ∆(g) = g ⊗ g

ϵ(x) = 0 and ϵ(g) = 1

For the proof that (T,∆, ϵ) is coassociative and counital, it is sufficient to prove it on

the generators – i.e. proving, for example, that (1 ⊗ ∆) ◦ ∆(x) = (∆ ⊗ 1) ◦ ∆(x). This

follows from straightforward calculation.

Finally, we now need to define an antipode S : T → T such that (T, µ, e,∆, ϵ, S)

forms a Hopf algebra. Such an antipode is a bialgebra homomorphism T op → T . Hence,

we only need to state the action of S on the generators of (T, µ, e). Set

S(x) = −xg−1 and S(g) = g−1

where we note that g−1 = gn−1. To prove that S satisfies the Hopf law, it is sufficient
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Chapter 2. Mathematical Background

to prove that it holds for the generators. This follows as

µ ◦ (1 ⊗ S) ◦ ∆(g) = gg−1 = 1 = g−1g = µ ◦ (S ⊗ 1) ◦ ∆(g)

µ ◦ (1 ⊗ S) ◦ ∆(x) = e⊗ S(x) + x⊗ S(g) = −xg−1 + xg−1 = 0

µ ◦ (S ⊗ 1) ◦ ∆(x) = S(e) ⊗ x+ S(x) ⊗ g = x− −xg−1g = 0

Hence, S fulfils the Hopf law, and therefore (T, µ, e,∆, ϵ, S) forms a Hopf algebra.

Example 2.5.9 (Sweedler [61], pg. 89). Consider a vector space A over a field k,

generated by elements 1, g, g−1 and x such that 1 is the unit, and the following relations

hold

gg−1 = g−1g = 1 x2 = 0 xg = −gx

This gives us an algebra on A. Note that this space has basis elements gn and gnx for

all integers n. Hence, A is infinite dimensional.

We may define a comonoid (∆, ϵ) on A as follows:

∆(g) = g ⊗ g ∆(x) = x⊗ g + 1 ⊗ x ϵ(g) = 1 ϵ(x) = 0

Together with the monoid, this forms a bialgebra. Finally, we may define an antipode S

on A, where

S(g) = g−1 S(x) = g−1x

This then gives us a Hopf algebra.
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Lemma 2.5.10. Let H = (H, , , , , ) be a Hopf algebra. Then

=

Proof. Observe that

= = =

= = = =

1.

2.

where 1. comes from the bialgebra rule and 2. comes from the Hopf law.

Note that the above lemma does not require any additional structure upon the Hopf

algebra.

Definition 2.5.11. Let (H, , , , , ) be a Hopf algebra, and suppose that the
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object H has a left dual H∗. We define the dual Hopf algebra (H∗, ∗, ∗, ∗, ∗, ∗)

as in Proposition 2.3.12 as :

⋆ := ⋆ :=

⋆ := ⋆ :=

⋆ :=

Note the above abuse of notation where, for example, ∗ is the dual of – i.e.
∗ = ( )∗. It is clear that since the dual action (·)∗ preserves composition that the

dual Hopf algebra is still a Hopf algebra.

We shall be using the dual structure throughout this thesis, in particular in Theorem

5.2.9, where we shall use the dual Hopf algebra to construct out Hopf-Frobenius algebra.

The dual structure may also be used to construct a trace, as we shall see in Lemma

4.3.7. We make the concept of a trace more concrete in the following chapter, where we

shall generalise traced monoidal categories to define traced families.
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Trace

In this short chapter, we introduce the notion of a trace. This is usually defined in the

context of a traced monoidal category, but in this thesis we are concerned with the case

when we may not necessarily be able to define a trace on every object in the category.

Hence, we introduce the notion of a traced family.

Definition 3.0.1. Given a symmetric monoidal category C, a pre-traced family of C is

a family T of objects of C such that

1. If A and B are elements of T , then A⊗B is in T

2. I is in T

3. For each object A in T , and each X,Y in C, we may define a function

TrAX,Y : hom(X ⊗A, Y ⊗A) → hom(X,Y )

We will say that TrAX,Y (f) is the trace of f with respect to T , or simply the trace of f .

Notation 3.0.2. Given morphism f : X ⊗ A → Y ⊗ A, we denote the trace of f ,

TrAX,Y (f) as the string diagram

fTrA
X,Y (f) :=

A

Y

X

A
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Chapter 3. Trace

Compare this notation to the notation used by Joyal, Street and Verity [34] when

defining traced monoidal categories, and the notation used by Malherbe, Scott and

Sellinger [46] when defining partially traced categories.

Recall from Definition A.1.5 that string diagrams are defined not to have any cycles.

If we did not have the dashed box, then our string diagram would include a cycle.

Instead, we read the above diagram in the following manner: it is a string diagram with

1 vertex and 2 edges. The edges are labelled by X and Y , and the vertex is labelled

by the string diagram of the morphism f : X ⊗A → Y ⊗A. We have highlighted the

different parts of the string diagram below

f

A

Y

X

A

= f

A

Y

X

AX

Y

The edges of the string diagram are red, the vertex is the blue box, and the label of the

vertex is the string diagram which is highlighted yellow. Note how the dashed lines and

the border of the trace "loop" are all part of the same blue box.

Keep in mind that f in the above picture is a string diagram in GRE(C) . If the

term f is equal to another term f ′ in C with respect to the equations E, then it follows

that TrAX,Y (f) = TrAX,Y (f ′), and we will rewrite the diagram to reflect this. For example,

given a monoid (M, , ), associativity of the monoid implies that we may write

=

Definition 3.0.3. We say that T is a traced family when the following axioms are

fulfilled. Let A,B ∈ T , and X,X ′, Y, Y ′ ∈ C.

(T1) TrAX,Y is natural in both X and Y . This means that, for all g1 : X ′ → X and

g2 : Y → Y ′, we have
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– TrAX,Y (f) ◦ g1 = TrAX′,Y (f ◦ (g1 ⊗ 1A))

– g2 ◦ TrAX,Y (f) = TrAX,Y ′((g2 ⊗ 1A) ◦ f)

This is denoted graphically as

f

g1

=
f

g1

and

f

g2

=

f

g2

A

AY

A

AYA

A

XA

A

X

Y ′

X

Y ′

X

Y

X′

Y

X′

(T1)

(T2) Let g : X ′ → Y ′. Then

g ⊗ TrAX,Y (f) = TrAX′⊗X,Y ′⊗Y (g ⊗ f).

This is represented graphically as

fg = fg

A

Y

X

A

Y

X

Y ′

X′

Y ′

X′

(T2)

(T3) The trace respects the symmetry of C as

TrAA,A(σA,A) = 1A,

where σA,A is the symmetry on A. This is depicted graphically as

=

A

A

A

A

(T3)

(T4) For any B in T , let g : A → B be a morphism, and f : X ⊗ B → Y ⊗ A in C.
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Then

TrAX,Y (f ◦ (1X ⊗ g)) = TrBX,Y ((1Y ⊗ g) ◦ f).

Graphically, this is depicted as

=
f

g f

g

B

A

Y

X

B

A

Y

X

B

A

(T4)

(T5) Suppose that B is in T . Then A⊗B is in T , with trace

TrA⊗B
X,Y = TrAX,Y ◦ TrBX⊗A.Y⊗A .

The graphical depiction of this is

=f f

Y

X

Y

X

BAA ⊗ B

(T5)

(T6) Recall that we denote the left unitor of a monoidal category as ρ. The monoidal

unit I is in T , where the trace is defined as f : X⊗I → Y ⊗I maps to ρY ◦f ◦ρ−1
X .

We denote this as

f

Y

X

(T6)

Remark 3.0.4. We may define a traced monoidal category as a symmetric monoidal

category C equipped with a traced family that includes every object in C. This implies

that, given a symmetric monoidal category with traced family T , the full subcategory

consisting of the objects in T is a traced monoidal category.
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Chapter 3. Trace

Selinger in Theorem 5.22 of [55] provides a seperate graphical language for traced

symmetric monoidal categories. This notation is similar to our string diagrams, except

it does allow cycles. This notation effectively means that when we write string diagrams

of this form, we would be able to ignore the trace axioms in a similar manner to how

string diagrams allow us to ignore the symmetric monoidal category axioms. However,

we will not use this notation, as it requires that we are working in a traced monoidal

category. In this thesis, we will not work in such a category, as to do so would require

us to assume that every object has a trace. Instead, we will stick with our definition of

string diagrams given in Definition A.1.5. However, it would be likely be possible to

develop a graphical language for traced families where loops are permitted, but only if

they are labelled by a certain set of objects.

Remark 3.0.5. Note the similarity of the concept of a traced family and partially

traced categories (which are themselves a categorification of traced ideals). Partially

traced categories are effectively traced monoidal categories where the trace function

TrAX,Y : hom(X ⊗A, Y ⊗A) → hom(X,Y )

is a partial function. The two are comparable, as a traced family defines a trace on a

subset of the objects in the category.

Notation 3.0.6. Let T be a pre-traced family in C. The following notation will aid us

when we are proving when T is a traced family.

Let A ∈ T . We say that T1(A) holds in T if Axiom T1 holds for A. That is, T1(A)

holds if for all X,X ′, Y, Y ′ ∈ C, all g1 : X ′ → X and g2 : Y → Y ′, and f : X⊗A → Y ⊗A,

we have

• TrAX,Y (f) ◦ g1 = TrAX′,Y (f ◦ (g1 ⊗ 1A))

• g2 ◦ TrAX,Y (f) = TrAX,Y ′((g2 ⊗ 1A) ◦ f)

We will use similar notation for the other axioms; when Axioms T2 or T3 hold for

A ∈ T , we say that T2(A) or T3(A) respectively holds in T . When Axioms T4 or T5
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Chapter 3. Trace

hold for A,B ∈ T , then we say that T4(A,B) or T5(A,B) respectively holds in T . We

do not need such notation for T6.

Lemma 3.0.7. Suppose that, for pre-traced family T , and for some A,B ∈ T , T5(A,B)

holds. Then

• If T1(A) and T1(B) hold, then T1(A⊗B) holds

• If T2(A) and T2(B) hold, then T2(A⊗B) holds

• If T3(A) and T3(B) hold, then T3(A⊗B) holds

Proof. We shall only prove this Lemma for T1, as the proof for T2 and T3 are similar.

f

g1

=f

g1

A

X A

A

X

Y

X′

Y

X′

B

B

f

g1

A

A

X

Y

X′

B

B

f

g1

A

A

X

Y

X′

B

B

A ⊗ B

= =

Definition 3.0.8. Suppose that T is a pre-traced family of C. We denote the following

equation as P (A,B)

f

A B = f

A B

Y

X

Y

X

(P (A,B))

where A,B ∈ T .

Lemma 3.0.9. Suppose that T is a pre-traced family of C that fulfils T1, T2, T3 and

T5. Let A,B,C ∈ T . If P (A,C) and P (B,C) are true, then P (A ⊗ B,C) is true.

Likewise, if P (A,B) and P (A,C) are true, then P (A,B ⊗ C) is true.
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Proof. Suppose that P (A,C) and P (B,C) are true. Since T5 holds, we simply consider

the definition of P (A⊗B,C).

f

A B

Y

X

C
f

A B

Y

X

C

f

A B

Y

X

C= =

From this definition, it is clear that the result holds.

Lemma 3.0.10. Suppose that we have a pre-traced family T that fulfils T1, T2 and

T3. Let A,B ∈ T . Then T4(A,B) is equivalent to the following: for all X,Y ∈ C,

g : X → Y and f : X ⊗B → Y ⊗A,

f

AB

= f

AB

Y

X

Y

X

g

g

In particular, P (A,B) implies T4(A,B).

Proof. First off, note that the following identity is a result of T1 and T3

g =

g

=

g

=
g

B

A

A
A A

B
B B

T1 and T2 then then leads us to the result that
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f

g

=
g

f

=
g

f

=B

A

Y

X

B

A

A

Y

X

Y

X

f

AB

Y

X

g
B

A

By similar reasoning, we get

=
f

g

Y

X

A

B

B

f

AB

Y

X

g

The result follows.
Lemma 3.0.11. Suppose that we have a pre-traced family T that fulfils T1, T2 and

T3. Then P (A⊗B,A) and P (A⊗B,B) imply T5(A,B).

Proof. Suppose that P (A⊗B,A) and P (A⊗B,B) hold in T and consider the identity

map, 1A⊗B : A⊗B → A⊗B. Graphically, we represent this morphism as

A B

A ⊗ B

1A⊗B

The reason why we are using this notation instead of the standard notation (i.e. two

disconnected wires labelled with A and B) is so that we can graphically distinguish

between TrA⊗B
X,Y and TrAX,Y ◦ TrBX⊗A,Y⊗A, as we shall see below. Lemma 3.0.9 tells us

that
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f

A B

Y

X

A ⊗ B

1A⊗B

f

A B

Y

X

A ⊗ B

1A⊗B=

Therefore, Lemma 3.0.10 proves that

f

Y

X

A ⊗ B

f

A B

Y

X

A ⊗ B

1A⊗B

= = f

A B

Y

X

A ⊗ B

1A⊗B

f

A B

Y

X

=

Hence, we have our result.
Remark 3.0.12. Sprunger and Katsumata [59] define a delayed trace, which is a trace

that drops axioms T3 and T4 to model feedback. In our case, we find that we are able

to replace T4 and T5 with P, but this requires that T3 holds.

Definition 3.0.13. Let T and R be traced families of category C with respective trace

functions Tr and Tr′ such that T is a subset of R, and for all A ∈ T , TrA = Tr′A.

Then we say that the traced family T is a sub-family of R, and we denote this as

(T ,Tr) ⊆ (R,Tr′)

Lemma 3.0.14. Let W be an object in C such that we may define a function

TrWX,Y : hom(X ⊗W,Y ⊗W ) → hom(X,Y )

for all X,Y ∈ C that fulfils T1(W ), T2(W ), T3(W ) and P (W,W ). Then

1. We may define a traced family, TW with trace Tr such that TrW = TrW

2. If there exists some other traced family R with trace Tr′ such that A ∈ R and

TrW = Tr′W , then (TW ,Tr) ⊆ (R,Tr′)

We say that TrW is the minimal traced family of W .
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Proof. Let us inductively define a family of objects of C, denoted as TW , as

• W ∈ TW

• I ∈ TW

• If A,B ∈ TW , then A⊗B ∈ TW

We shall begin by showing that TW is a pre-traced family, then proving that it fulfils

the trace axioms (Definition 3.0.3). We define TrWX,Y as TrW = TrW , and TrIX,Y as in

Axiom T6 of the definition of a traced family. For A,B ∈ TW , TrA⊗B
X,Y is defined as in

Axiom T5. In other words,

• Given f : X ⊗W → Y ⊗W , TrWX,Y (f) := TrWX,Y (f)

• Given f : X ⊗ I → Y ⊗ I, TrIX,Y (f) = ρY ◦ f ◦ ρ−1
X

• Given f : X ⊗A⊗B → Y ⊗A⊗B, such that A,B ∈ TW and both TrA and TrB

are defined, then TrA⊗B
X,Y = TrAX,Y ◦ TrBX⊗A.Y⊗A

Therefore, TW is a pre-traced family.

Now we need to show that TW fulfils the trace axioms. It is clear that it fulfils

Axioms T5 and T6 by construction. Note that T1(I), T2(I) and T3(I) all hold. The

axioms T1(W ), T2(W ) and T3(W ) all hold by assumption. Lemma 3.0.7 tells us that,

since Axiom T5 holds, and T1, T2 and T3 hold for both I and W , then T1, T2 and T3

all hold for every object in TW .

Hence, we now only need to prove that T4 holds. Recall the definition of P (A,B)

from Lemma 3.0.9. Lemma 3.0.10 tells us that P (A,B) implies T4(A,B), so we shall

focus on proving P (A,B) for all A,B ∈ TW .

To prove that P (A,B) hold for all A and B, we note that since each A ∈ TW is

generated by W, I and ⊗, we may proceed by induction on the generators. We know

that P (W,W ) by assumption, and it is clear from T6 that P (A, I) and P (I, A) hold for

all A ∈ TW . This tells us that, given some A ∈ TW such that P (A,W ) holds, it follows

from Lemma 3.0.9 that P (W ⊗A,W ) and P (I ⊗A,W ) hold. Hence, by induction, and

the definition of TW , P (A,W ) holds for all A ∈ TW . Likewise, if P (A,B) holds for
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some B ∈ TW , then P (A,W ⊗B) and P (A, I ⊗B) hold. Hence, P (A,B) holds for all

A,B ∈ TW . Hence, by Lemma 3.0.10, TW must fulfil T4. Hence, TW fulfils all of the

trace axioms, and is therefore a traced family.

For part 2, we see that since W ∈ R, each of the the elements of TW are contained

within R by construction. Hence, TW is a subset of R.

We also see that since

• TrW = TrW = Tr′W

• TrI and Tr′I are both determined by Axiom T6

we only need to prove that TrA⊗B = Tr′A⊗B for A,B ∈ TW . However, this follows

immediately from Axiom T5. Hence, TrA = Tr′A for all A ∈ TW , and therefore

(TW ,Tr) ⊆ (R,Tr′)

Developing a language that allows us to talk about the trace of a morphism in a

category that is not traced monoidal will give us a straightforward language to talk

about traces. We will now move on to the main topic of this thesis.
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Integrals

We begin this section by formally defining Hopf-Frobenius algebras and providing

familiar examples. In the following section, we will focus on the conditions for when a

Hopf algebra is Hopf-Frobenius, so this section will be focussed on introducing concepts

that we shall need later on. Primary among these concepts are integrals and cointegrals,

which are a type of copoint and point respectively. When a Hopf algebra is equipped

with an integral and cointegral, then it resembles a Frobenius algebra. Specifically,

every Frobenius algebra is equipped with a comonoid that fulfils the Frobenius law

(Definition 2.4.1). We see that the presence of an integral implies the presence of a

comultiplication that obeys the Frobenius law, but not necessarily a counit (Lemma

4.2.12). In addition, a Frobenius algebra is equipped with a cup and a cap, making it

self-dual (Remark 2.4.4). The presence of an integral gives us a half-dual – a cup and

cap that are only one sided (Corollary 4.3.5). While strictly weaker than a standard

dual, it is sufficient to define a trace on H. Our final concept is the Integral morphism.

This is a morphism with type I : H → H on a Hopf algebra H, that behaves like

an integral and a cointegral. This is despite the fact that it is neither a point, nor a

copoint. We may use the integral morphism to map any point or copoint to a cointegral

or integral respectively. It essentially acts as a “projection” to the “space” of integrals

and cointegrals. Because of this, the integral morphism is instrumental in informing us

about the Frobenius structure of a Hopf algebra.

Throughout this chapter, we will be using concepts and results that the author of this
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Chapter 4. Integrals

thesis originally stated in [20]. In particular, the definitions of Hopf-Frobenius algebras

(Definition 4.1.1), integral Hopf algebras (Definition 4.2.3), half-duals (Definition 4.3.3),

nondegeneracy (Definition 5.1.1) and the integral morphism (Definition 4.4.1) were all

defined previously. The results of Lemma 4.3.1, Lemma 5.2.1, Lemma 5.2.5, Theorem

5.2.6, Theorem 5.2.8, Theorem 5.2.9 and Lemma 5.2.15 were all proven previously.

4.1 Hopf-Frobenius Algebras

The main topic of this thesis is the subject of Hopf-Frobenius algebras. We covered this

in the introduction, but now we introduce the concept concretely.

Definition 4.1.1. Let C be a strict symmetric monoidal category. A Hopf-Frobenius

Algebra, or HF-Algebra on C is an algebraic structure consisting of

• An object H in C

• a green monoid ( , ), a green comonoid ( , ), a red monoid ( , ), and

a red comonoid ( , )

We require the above structure to have the following properties

• ( , , , ) and ( , , , ) are Frobenius algebras

• When we set

:= , :=

then ( , , , , ) and ( , , , , ) are Hopf algebras

The algebraic structures that we referenced in the introduction, interacting Frobenius

algebras [26] and interacting Hopf algebras [13], are both instances of this structure,

wherein each monoid and comonoid is commutative and both Frobenius algebras are

special.

Example 4.1.2. Consider a finite group algebra G over field k, with generating group

G = (G,µ, e). Recall from Example 2.4.5 that we may define a Frobenius algebra on G

with the group coalgebra, and from Example 2.5.7 that we may define a Hopf algebra on
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G with the copy coalgebra. In addition, recall from Example 2.4.6 that the copy algebra

and coalgebra form a Frobenius algebra. We now summarise each of these algebraic

structures.

The group algebra (G, , ) is defined on the basis G. It is simply the underlying

group multiplication where g ⊗ h 7→ gh, and the unit of G is the unit e of G.

This is paired with the group coalgebra (G, , ), where

:= g 7→
∑
ab=g

a⊗ b =
∑
h∈G

h⊗ h−1g

with counit

:= g 7→


1 if g = e

0 otherwise.

where 1 is the unit of the field k, to give us our green Frobenius algebra (G, , , , ).

The group algebra may be paired with the copy coalgebra, defined in Example 2.3.5,

which we denote as (G, , ). This is defined as := g 7→ g ⊗ g and := g 7→ 1

for all g ∈ G, where 1 is the unit of the field k. When we pair the group algebra and the

copy coalgebra together, we get our green Hopf algebra, (G, , , , , ), where

: G → G is the inverse operation, := g 7→ g−1, on the elements of G.

The copy coalgebra may be paired with the copy algebra, (G, , ), as defined in

Example 2.3.5. Recall that the multiplication is defined

:= g ⊗ h 7→


g if g = h

0 otherwise.

for all g ∈ G. The unit is the following element of G

:=
∑
g∈G

g.

When we pair this monoid with the copy coalgebra, we get our red Frobenius algebra,
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(G, , , , ).

Finally, pairing the copy algebra with the group coalgebra, we get our red Hopf

algebra, (G, , , , , ), where the antipode, , is the inverse operation

g 7→ g−1.

Recall that, in the definition of Hopf-Frobenius algebras, we require that the antipodes

have the form

:= , :=

To prove that this group algebra structure is Hopf-Frobenius, we must show that the

antipode has this form. We shall show this for , as the proof for is similar.

Recall that the green cap and the red cup are defined as

= =
∑
g∈G

g−1 ⊗ g

= = g ⊗ h 7→

1 if g = h

0 otherwise

Hence, the composition of the two is

∑
g∈G

g−1 ⊗ g ⊗ h

h

g−1

so this is simply the group’s inverse operation.

4.2 Integrals and Cointegrals

As we saw above, every group algebra is a Hopf-Frobenius algebra. This motivates us

to ask the following question – given a Hopf algebra, H, on an arbitrary symmetric

monoidal category, when is it a Hopf-Frobenius algebra? To answer this we introduce

the dual concepts of integrals and cointegrals.
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Definition 4.2.1. A left cointegral on H is a point : I → H, satisfying the equation:

=

A right cointegral is defined similarly.

Definition 4.2.2. A right integral on H is a copoint : H → I, satisfying the equation:

=

A left integral is defined similarly.

We provide special attention to the above definitions. Note that in ModR and

Vectk, the zero map, 0, is trivially a cointegral. As we shall see in Lemma 4.2.12 the

presence of a cointegral is the same as a comultiplication that fulfils the Frobenius law.

In fact, we will see later in Lemma 5.1.2 the conditions under which these two coincide.

We will also see that the cointegral functions as a unit for the red multiplication.

Larson and Sweedler [41] have previously showed that every finite dimensional Hopf

algebra has an associated Frobenius algebra. The space of integrals of H formed a

central part of their proof. This was later expanded upon by Paregis [49], who provided

the conditions under which a Hopf algebra in FPModR (Example 2.3.18) is Frobenius.

Both of their proofs follow a similar structure. Recall that FVectk and FPModR

are compact closed, so each object has a dual. In addition, recall from Definition

2.4.7 that one condition for a Frobenius algebra is that it is self-dual, such that the

dual structure is associative. To show that H is self-dual, we must merely provide an

isomorphism H ∼= H∗.

Larson and Sweedler show that every Hopf algebra H may be equipped with an

isomorphism H ∼= H∗ ⊗P (H), where H∗ is the dual space of H, and P (H) is the space

of integrals on H. Hence, when P (H) is isomorphic to the monoidal unit, we have our

self dual structure. Larson and Sweedler showed that for every Hopf algebra in FVectk,

P (H) is isomorphic to the underlying field, and that the self dual structure that this

provides is associative.
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Chapter 4. Integrals

Clearly, this condition is not sufficient for us, as we cannot define the space of

integrals in an arbitrary symmetric monoidal category. Though we do define a set

analogous to this in Remark 4.4.5. We shall be focussing on the integrals themselves

and their properties. With that in mind, consider the following definition.

Definition 4.2.3. A left-right integral Hopf algebra or LR integral Hopf algebra (H, , )

is a Hopf algebra H equipped with a choice of left cointegral , and right integral ,

such that

= .

An RL integral Hopf algebra or right-left integral Hopf algebra is defined in a similar

manner, except we have a right cointegral and left integral.

Remark 4.2.4. The above requirement that ◦ = 1I rules out the possibility that

either the integral or cointegral are 0 in ModR or Vectk (except for the 0 ring).

Definition 4.2.5. Unless we state otherwise, we shall only talk about LR integral

Hopf algebras, and refer to them simply as integral Hopf algebras. This is because

the distinction between LR and RL integral Hopf algebras is relatively minor. We

understand intuitively that there is a sense in which every theorem about LR integral

Hopf algebras may be restated in terms of RL integral Hopf algebras: we may take

any statement in terms of LR integral Hopf algebras, flip it along the vertical axis and

replace left cointegrals (resp. right integrals) with right cointegrals (resp. left integrals).

We state this more concretely in the appendix, in Section A.2. As such, every theorem

that we prove about LR integral Hopf algebras is also a theorem about RL integral Hopf

algebras. As follows, there is another sense in which every LR integral Hopf algebra

gives us an RL integral Hopf algebra

Lemma 4.2.6. Let H be an LR integral Hopf algebra, and suppose that the antipode

has an inverse. Consider the following morphisms
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These morphisms are a right cointegral and a left integral respectively. The same holds

for the inverse of the antipode.

Proof. We shall only prove this for the cointegral and the antipode, as the rest of the

proof follows similarly.

This follows from the fact that the antipode is a homomorphism.

=

-1

=

-1

=

-1

=

Corollary 4.2.7. Given an LR integral Hopf algebra, we may construct an RL integral

Hopf algebra, with integral/cointegral pair

-1

Consider the following examples. We shall denote the left cointegral as Λ, and the

right integral as
∫

: H → I.

Example 4.2.8. Consider a finite group algebra G, with generating group G. A left

cointegral on G would be an element Λ ∈ G such that Λg = Λ for all g. A candidate for

this is

Λ :=
∑
g∈G

g

Likewise, an integral on G is a linear map
∫

: G → k such that

∫
(g) ⊗ g =

∫
(g)e

for all g1. Hence we set
∫

(e) = 1 and
∫

(g) = 0 otherwise.

We note that since
∫

(Λ) = 1, this choice of integral and cointegral gives us an

integral Hopf algebra.
1Note that since

∫
(g) is an element of k, we are abusing the notation here - since

∫
(g)⊗g = 1⊗

∫
(g)g
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Note also that the integral and cointegral are the counit and unit respectively that

we defined in Example 4.1.2.

Example 4.2.9. Recall that we defined the Taft Hopf algebra T in Example 2.5.8.

For the Taft Hopf algebra, we have left cointegral Λ = ∑n
i=1 z

−igixn−1 and the right

integral is the map where
∫

(xn−1) = 1 and every other basis element maps to 0. Again,

these compose together to give us
∫

(Λ) = 1.

Example 4.2.10. Recall from Example 2.5.9 that we defined a Hopf algebra A that

was infinite dimensional, and that it has basis gn and gnx for all integers n. Consider

the linear map
∫

: A → k that maps x to 1 and every other basis element to 0. Since

we get

(1 ⊗
∫

) ◦ ∆(g) = 0 and (1 ⊗
∫

) ◦ ∆(x) = 1

it follows that this is therefore a right integral.

Remark 4.2.11. In the literature, the term co-Frobenius is used to describe a Hopf

algebra with an integral, but not necessarily a cointegral (we refer to Theorem 3 of

Lin [9]).

Lemma 4.2.12. A Hopf algebra (H, , , , , ) has a left cointegral if and

only if there exists a comultiplication map such that it fulfils the Frobenius law:

= =

and is coassociative.

Remark 4.2.13. Note that the above lemma is not saying that a Hopf algebra with a

left cointegral is a Frobenius algebra. The comultiplication given by the cointegral

does not necessarily have a counit , and therefore it does not give us a comonoid.
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Proof. Suppose that H has a left cointegral, , and we set

:= =

We use the Lemma 2.5.10, and we get

= ==

where we have also used the definition of the cointegral. This relation then implies the

Frobenius law

= =

and

= = =

All that remains to be proven is that is coassociative. This follows from the Frobenius

law

= = =

Hence we see that the presence of a cointegral allows us to construct the comultiplication.

For the other direction, suppose that we have a comultiplication map that fulfils
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the Frobenius law and is coassociative. We set

:=

It follows that this is a left cointegral

= = == =

and we have proven our result.

Corollary 4.2.14. A Hopf algebra (H, , , , , ) has a right integral if and

only if there exists a multiplication map such that it fulfils the Frobenius law:

= =

and is associative.

Example 4.2.15. Consider the infinite dimensional Hopf algebra that we have defined

previously, in Example 2.5.9 and Example 4.2.10. Recall that the basis elements are of

the form gn and xgn, where n is any positive or negative integer. This has an integral, so

according to the above Corollary, we must be able to define another multiplication on H

that is associative and fulfils the Frobenius law. When we follow the above construction,

we get the following map : A⊗A → A.

gn gm = 0 xgn gm = gn if n = m, otherwise 0

gn xgm = gn if n = m+ 1, otherwise 0 xgn xgm = xgn if n = m, otherwise 0

4.3 Integrals and the Trace

Our goal is to produce several equivalent conditions for a Hopf algebra to be Hopf-

Frobenius. In the following chapter, we will be providing a condition that implies that

89



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�

Chapter 4. Integrals

we may equip our Hopf algebra with a Frobenius algebra, and it requires that we may

define a trace on H, as in Definition 3.0.3. Below, we show that when we have an

integral Hopf algebra we may construct a unique trace on H.

Lemma 4.3.1. Let (H, , ) be an integral Hopf algebra. Then the following map is the

inverse of the antipode.

:=-1

Proof. From the definition of −1, we see that

= =

-1

= =

Recall from Proposition 2.5.4 the definition of Hσ. The above diagram implies that Hσ

is a Hopf algebra with −1 as the antipode. Proposition 2.5.6 tells us that the antipode

of Hσ is the inverse of the antipode of H.

Remark 4.3.2. It was known from the inception of the concept of the integral [41] that

when a Hopf algebra has an integral and cointegral pair, the Hopf algebra’s antipode is

an isomorphism. The above lemma tells us that the antipode inverse has a form .

We see something similar in ZX calculus [66] and in interacting Frobenius algebras [26].

The fact that we can construct the antipode inverse in this manner implies that when

you have a bialgebra with an integral and cointegral pair, then you have a Hopf algebra.

Note that the above lemma implies that

= =

Note how similar this is to duals (see Definition 2.3.7). This motivates us to weaken the

definition of a dual as follows.
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Definition 4.3.3. Let A and B be objects in a symmetric monoidal category C. A is

a right half dual of B if there exists morphisms : I → A ⊗ B and : B ⊗ A → I

which satisfy the following equation

A

A

B = A

In this circumstance, B is a left half dual of A.

Compare the above definition with Definition 2.3.7 of duals. To make the distinction

between duals and half duals more clear, we will sometimes refer to duals as full duals.

Every full dual is trivially an example of a half dual, but not necessarily the other way

around.

Example 4.3.4. Let X be a right full dual to A such that there exists morphisms

m : A → B and e : B → A such that e ◦ m = 1A. Then we show that X is a right

half dual to B, but not necessarily a full dual, by defining the cup and the cap in the

following manner.

X

:=
A

m
B X B

X

:=
A

e
B XB

Clearly, X is only a full dual to B if m and e are mutually inverse.2

This definition motivates the following Lemma

Lemma 4.3.5. Let (H, , ) be an integral Hopf algebra. Then H is half dual to itself.

Proof. There are two ways that we may assign a half dual structure to H. We may

define the cup and cap as

and

or we could set them as

and

2Note that our primary example of a half-dual throughout this thesis will be the half dual constructed
from an integral Hopf algebra, which, unlike this example, is not constructed via a retract of a full dual.
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These follow from Lemma 4.3.1.

Definition 4.3.6. We say that an object A has a trace when there exists a traced

family T where A is a member of T . We say that the trace of A is unique when we can

show that, for all X,Y in C, the function TrAX,Y is the same for every traced family that

A belongs to.

Lemma 4.3.7. Suppose that W has a left half dual W ∗, with cup d : W ⊗W ∗ → I and

cap e : I → W ∗ ⊗W . Then W has a trace, defined as

ff :=

W

Y

X

W

Y

X

Proof. As per Definition 4.3.6, we say that W has a trace when there exists some traced

family that contains W . We claim that W fulfils the conditions for a minimal traced

family, as in Lemma 3.0.14. We define TrWX,Y as above, and we now only need to show

that it fulfils T1(W ), T2(W ), T3(W ) and P (W,W ).

These all follow fairly straightforwardly. We shall prove T1(W ), as T2(W ) and

T3(W ) follow similarly

f=
W

Y

f

g1

X

Y

X′

W

g1

X′

f=
W

Y

g1

X′

f

g1

X

Y

X′

W

=
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Chapter 4. Integrals

We can then show that P (w,W ) holds

f

Y

X

W W

= f

Y

X

W W

f

Y

X

W W

==
f

Y

X

W W

Hence, W has a minimal traced family.

Lemma 4.3.8. Suppose that W has a left half dual W ∗, with cup d : W ⊗W ∗ → I and

cap e : I → W ∗ ⊗W . The trace defined in Lemma 4.3.7 is unique.

Proof. Suppose that there is some traced family T that W is in, with trace TrW . To

prove that the trace of W is unique, we shall show that the half-dual trace defined as

above is equal to TrW . We shall actually prove a stronger result, as follows: for all

A ∈ T , X,Y ∈ C, and g : W → A and f : X ⊗A → Y ⊗W , we have

f

g

=
W

Y

X

A

A

f

g

Y

X

W

A

W
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Chapter 4. Integrals

Let A ∈ T and g : W → A. Let us first state the following

f

g

f

g f

g

= =

Y

X

Y

X

Y

X

A

A

W

A

A

W

A

A
W

W

This follows from graphical reasoning and the definition of the half dual. We then use

the above identity and T1, T2 and T3.

f

g

=
W

Y

X

A

A

f

g

Y

X

W

W

A

A

=

f

Y

X

W

A

g

W

= =
f

g

Y

X

W

A

W

f

Y

X

W

g

W

Then, to get our result, we shall only need to set A = W and g = 1W . Hence, we

have proven our result.

Remark 4.3.9. Compare the above results to the result in the original paper on traced

monoidal categories by [34], where it is proven that every compact closed category is

traced monoidal.
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Chapter 4. Integrals

4.4 Integral Morphism

Definition 4.4.1. Let the object H have a trace. The integral morphism, denoted

I : H → H, is defined as shown below.

:=I

Note that when H has a half dual, then we may draw I as

=

Remark 4.4.2. The integral morphism was constructed from the isomorphism in the

fundamental theorem of Hopf Modules (see Larson and Sweedler [41]). However, the

two are not equivalent, and their definitions differ considerably.

We defined in our original paper [20] in Definition 3.10, and afterwards we found that

this exact morphism was used previously (See Fig. 3 of [10]). The following Lemmas

were all discovered independently.

Lemma 4.4.3. Let H be a Hopf algebra such that H is traced. Then

= and
I I =

I I

Proof. we compose I with and use Lemma 2.5.10.

95



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�

Chapter 4. Integrals

= = =
1. 2.

After composing I with , we use the trace axioms at step 1. (Definition 3.0.3), and

then Lemma 2.5.10 rule at step 2.

= ==
3. 4.
=

5. 6.

Recall from Axiom T5 that if H has a trace then H ⊗H has a trace. At step 3., we

use this and Axiom T4 of the trace (Definition 3.0.3) to move through the trace. At

step 4., we use the fact that the antipode is a Hopf algebra homomorphism Hop → H,

while step 5. is simply string diagrammatic reasoning. Finally, at step 6. we use Axiom
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Chapter 4. Integrals

T4 of the trace to move the symmetry σH,H through the trace.

= ==
7. 8.

=

= = =
9.

=

At step 7., we move . We also use the definition of TrH⊗H as defined in Axiom T5

of the trace. At step 8., we use the trace axioms to get rid of one of the traces. This

allows us to reposition , which then allows us to use the Hopf law at step 9.. All

that remains is using the axioms of the trace and string diagramatic reasoning, and we

have our result.

The proof for the comultiplication is similar.

Lemma 4.4.4. Given a point p : I → H, and copoint q : H → I, the morphism I ◦ p is
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Chapter 4. Integrals

a left cointegral, and q ◦ I is a right integral. In addition, p is a left cointegral if and

only if I ◦ p = p, and q is a right integral if and only if q ◦ I = q.

Proof. We begin by proving that I ◦ p is a left cointegral. In other words, for all points

p,

=I I
pp

This follows immediately from Lemma 4.4.3.

Suppose that we have a point p such that I ◦ p = p. Since we know that I ◦ p is a

cointegral, p must therefore be a cointegral. For the converse, let be a left cointegral.

We then get

= = =

where we use the fact that ◦ = . The proof for right integrals is similar.

Remark 4.4.5. Let us set P (H) as the set of left cointegrals p : I → H. The above

lemma tells us that that since I ◦ p is always an integral, we can see I as a function

I ◦ _ : C(I,H) → P (H). We see that when we restrict the domain of I ◦ _ to P (H),

then we get the identity function, as I ◦ p = p for all p ∈ P (H).

Lemma 4.4.6. The integral morphism I is idempotent.

Proof. Recall that idempotent means I ◦ I = I. The result follows in a straightforward
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Chapter 4. Integrals

manner

=I
I

I

= I =

I

I=

Recall that the definition of an integral Hopf algebra (Definition 4.2.3) requires that

our Hopf algebra is equipped with an integral and a cointegral pair. This raises the

question – given an arbitrary Hopf algebra H, is there a reliable way to find an integral

and cointegral pair for H? If H has a trace, then we may use the integral morphism.

Consider the following Lemma.

Lemma 4.4.7. Let H be Hopf Algebra that has a trace. Suppose that we have a point

p : I → H and a copoint q : H → I such that q ◦ I ◦ p is an invertible scalar, with

inverse k : I → I. Then (H, I ◦ p ◦ k, q ◦ I) is an integral Hopf algebra.

Proof. Recall from Lemma 4.4.4 that given any point p : I → H, the composition I ◦ p

is a cointegral. Likewise, given copoint q, the composition q ◦ I is an integral. We

require that the composition of the integral and cointegral is the identity, but this follows

directly from our assumption, and the fact that the integral morphism is idempotent

(Lemma 4.4.6)

q ◦ I ◦ I ◦ p ◦ k = q ◦ I ◦ p ◦ k = 1I

Hence, we have our result.

Note that in a strict symmetric monoidal category, p ◦ k = p⊗ k. As such, we use

the two interchangeably from now on.

Remark 4.4.8. Let us use the category of Vector spaces to examine the above Lemma.

In the category of vector spaces, every nonzero point m : I → H is a monomorphism, and
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Chapter 4. Integrals

for every monomorphism there exists an epimorphism e : H → I such that e ◦m = 1I .

Also, note that every point p : I → H is an element of H. As such, if we have an

element p such that I(p) is not zero, it is fairly simple to find a morphism q : H → I

such that q(I(p)) = 1. Note, however, that since infinite dimensional vector spaces do

not have traces, this approach will not work for infinite dimensional Hopf algebras. The

only category of modules that have traces are finitely generated projective modules [50].
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Hopf-Frobenius Algebras

We say that a Hopf algebra (H, , , , , ) is Frobenius when we may equip the

Hopf algebra with a comonoid ( , ) such that (H, , , , ) is a Frobenius

algebra. In this chapter, we will be providing several conditions for when a Hopf algebra

is Frobenius.

Recall from Lemma 4.2.12 that when a Hopf algebra has a cointegral, we may

construct a comultiplication that fulfils the Frobenius law with the multiplication.

This provides some glimpse into the connection between Frobenius algebras and integrals.

Given a Hopf algebra with a cointegral, we could ask when the constructed comulti-

plication has a counit. To answer this, we introduce nondegeneracy (Definition 5.1.1)

and show in Lemma 5.1.2 that the constructed comultiplication has a counit exactly

when the Hopf algebra is a nondegenerate integral Hopf algebra.

The condition defined in Definition 5.1.5 uses the integral morphism from Definition

4.4.1. This condition may have greater utility than nondegeneracy, as it only requires

that the Hopf algebra H has a trace and, depending on the category, it may provide to

us a way that may construct the integral and cointegral pair.

Finally, we provide a condition that shows that the Hopf algebra is nondegenerate

when a certain limit exists, and we use this to show that when the Hopf algebra is

Frobenius, we may construct an integral and cointegral pair making the Hopf algebra a

nondegenerate integral Hopf algebra. This shows that all of our separate conditions are

equivalent to nondegeneracy.
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Chapter 5. Hopf-Frobenius Algebras

Theorem 5.2.9 is the main result of the thesis, where we show that when a Hopf

algebra is a nondegenerate integral Hopf algebra, then it must also be Hopf-Frobenius.

Since nondegeneracy is equivalent to the Hopf algebra being Frobenius, and since every

Hopf algebra in FVectk is Frobenius, we see that every finite dimensional Hopf algebra

must therefore be Hopf-Frobenius. We illustrate this by showing how some standard

concepts in the field of finite dimensional Hopf algebras relate to the Hopf-Frobenius

structure, and then we finish the chapter by proving Radford’s form for the antipode to

the power of 4, in Lemma 5.4.4.

Throughout this chapter, we will be using concepts and results that the author of

this thesis originally stated in [20]. In particular, nondegeneracy (Definition 5.1.1) was

defined previously, as well as the results of Lemma 5.2.1, Lemma 5.2.5, Theorem 5.2.6,

Theorem 5.2.8, Theorem 5.2.9 and Lemma 5.2.15, which were all proven previously.

5.1 Non-degeneracy

Definition 5.1.1. An integral Hopf algebra (H, , ) is nondegenerate1 when

=

Lemma 5.1.2. Suppose that the Hopf algebra (H, , , , , ) has left cointegral

. By Lemma 4.2.12, we know that we may equip H with a green comultiplication

that fulfils the Frobenius law with . Suppose that there exists a copoint . Then

the following two statements are equivalent:

• is the counit of the comonoid (H, , ).

• is a right integral, and forms a nondegenerate integral Hopf algebra (H, , ).
1The above concept was brought to our attention by Gabriella Böhm in a private correspondence

where she explained several pieces of Hopf algebra folklore. Since this is folklore, we are unsure of it’s
origin.
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Chapter 5. Hopf-Frobenius Algebras

Proof. Recall from Lemma 4.2.12 that we define as

:= =

Suppose that we have such that (H, , ) is a comonoid. Then

== ==
and

We use these two equations to get

= = ==

and

= = ==

respectively.

Recall the Definition of I from Definition 4.4.1. Integral Hopf algebras have a

half-dual (Lemma 4.3.5), which means that we may define a trace on H (Lemma 4.3.8).

Lemma 4.4.3 tells us that

=
I I

and I =1 2
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Chapter 5. Hopf-Frobenius Algebras

We use these facts below.

= = =
I

I I
1 =2

Hence, ◦ I is a right counit. The counit of a comonoid is unique, so we see that

I =

Lemma 4.4.4 tells us that copoint q is an integral if and only if q ◦ I = q. Hence,

is an integral. Since both ◦ = 1I and ◦ ◦ = 1I , we see that (H, , ) is a

nondegenerate integral Hopf algebra.

On the other hand, suppose that we have a right integral such that (H, , )

is nondegenerate. We now show that is the counit of . The right side follows

immediately from the fact that is a right integral, and that the composition of and

is 1I .

= = ==

For the left hand side, recall that since we have an integral Hopf algebra, the antipode

has an inverse −1 by Lemma 4.3.1. Since is a homomorphism, −1 must also be

a homomorphism. Hence, we see that

-1=
-1

=
-1

=
-1

= =

where we have used the nondegeneracy of and . From this, we use the definition of

to see that

= ==
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Chapter 5. Hopf-Frobenius Algebras

Hence, is a left and right counit to .

Corollary 5.1.3. Suppose that the Hopf algebra H has right integral . By Corollary

4.2.14, we know that we may equip H with a red multiplication that fulfils the

Frobenius law with . Suppose that there exists a point . Then the following two

statements are equivalent:

• is the unit of the monoid (H, , ).

• is a left cointegral, and forms a nondegenerate integral Hopf algebra (H, , ).

Lemma 5.1.4. An integral Hopf algebra (H, , ) is nondegenerate if and only if

=

Proof. Suppose that we have nondegenerate (H, , ). Then by Lemma 5.1.2, we have

a comonoid (H, , ), defined as

:= =

This follows from Lemma 5.1.2, as we know that we must have a comonoid (H, , ).

Hence

==

Definition 5.1.5. Recall the definition of I from Definition 4.4.1. Suppose that we

may define a trace on H. We say that I factors through the unit when there exists
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Chapter 5. Hopf-Frobenius Algebras

copoint : H → I and point : I → H such that

==I =

Note how, since ◦ = 1I , is a section of , hence is a monomorphism and is an

epimorphism. When we want to specify and , we say that I factors through the unit

with and . Note that we are not assuming a factorisation system in our category -

we are still working within an arbitrary symmetric monoidal category.

Remark 5.1.6. Recall Lemma 4.4.4 and Remark 4.4.5. The above definition tells us

that, when I factors through the unit, then for every cointegral p ∈ P (H), we have the

identity

==I
p

=

p

p

p

Hence, every cointegral is simply a scalar multiple of . Since the scalar multiple of

a cointegral is always a cointegral, there is a bijection from C(I, I) to P (H), the set of

cointegrals.

In FPModR and Vectk, every morphism f : A → B may be factorised into an

epimorphism e : A → X and a monomorphism m : X → B such that m ◦ e = f . In this

case, we would say that X is the image of f . In both of these cases, the image of I is

equal to P (H). Hence, the above condition is analgous to the condition presented by

Paregis [49], where P (H) is isomorphic to the monoidal unit.

Lemma 5.1.7. Suppose that I factors through the unit with and . Then (H, , )

is an integral Hopf algebra

Proof. We only need to show that and are a cointegral and integral respectively.
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Chapter 5. Hopf-Frobenius Algebras

Recall from Lemma 4.4.4 that a point p is an integral if and only if I ◦ p = p. We see

that this is true as follows

= I =

By a similar argument, is an integral. HEnce, (H, , ) is an integral Hopf algebra

5.2 Equivalences with Frobenius structure

Lemma 5.2.1. If I factors though the unit with and , then (H, , ) is a nonde-

generate integral Hopf algebra

Proof. Lemma 5.1.7 tells us that H is an integral Hopf algebra. Therefore, by Corollary

4.3.5, H is half dual to itself. By Lemma 4.3.7 and Lemma 4.3.8, the trace on H is the

same as the trace given by the half dual. Hence, in the following proof, we use the half

dual trace. Observe that

== = =

= = = =

1. 2.

5.

3.

4.
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Chapter 5. Hopf-Frobenius Algebras

where step 1 is due to the Frobenius condition, 2 comes from associativity and at step 3

we use the fact that the antipode is a homomorphism Hop → H. The presence of half

duals gives us 4, and 5 is due to the Hopf law. We then get the following identity

=

Lemma 5.1.4 tells us that this is the same as H being a nondegenerate integral Hopf

algebra.

Lemma 5.2.2. Let (H, , ) be a nondegenerate integral Hopf algebra. Then I factors

through the unit with and .

I =

Proof. Recall that by Lemma 4.4.4, ◦ I = , and by Lemma 5.1.4, it is true that

= .

We combine these to see that

=
I

=
I

= I = I

where we have used the result from Lemma 4.4.3

= I
I

All we need to show now is that ◦ = 1I . However, this follows from the definition of

an integral Hopf algebra

We have now shown that the integral morphism factorises through the unit exactly
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Chapter 5. Hopf-Frobenius Algebras

when we have a nondegenerate integral Hopf algebra. In what follows, we will provide

another equivalent condition to when a Hopf algebra is nondegenerate, and we shall

show that all of this is equivalent to our Hopf algebra being Frobenius.

Definition 5.2.3. Suppose that we have e : E → A and morphisms f, g : A → B such

that f ◦ e = g ◦ e. In addition, suppose that there exists morphisms s : A → E and

t : B → A such that s ◦ e = 1E , t ◦ f = 1A or t ◦ g = 1A, and the following diagram

commutes

A B

E A

g

s t

e

In this case, we say that e is a split equaliser of f over g, with structure maps s and t.

Note how the above definition does not assume that a split equaliser is a limit.

Hence, we need the following lemma.

Lemma 5.2.4. Suppose that e : E → A is a split equaliser of f over g, with f, g : A → B,

with structure maps s : A → E and t : B → A. Then e is an equaliser of f and g.

Proof. As part of the definition of a split equaliser, we are assuming that f ◦ e = g ◦ e.

Hence, we only need to prove that e is universal in equalising f and g. Suppose that

x : X → A equalises f and g. To prove that e is an equaliser, we need to show that

there exists some unique morphism i : X → E such that x = e ◦ i. In other words, the

following diagram commutes

E A B

X

e f

g
x

i

Consider the morphism s◦x : X → E. It follows from the definition of the split equaliser,

and the fact that x equalises f and g, that the following diagram commutes.

E A

A B

X A

e

g

s t

x

x

f

1A
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Chapter 5. Hopf-Frobenius Algebras

Hence, x = e ◦ s ◦ x. Now all we need to show that this morphism is unique. Suppose

that there exists some other morphism j : X → E such that x = e ◦ j. Then the

following diagram commutes

E

E A

X

e

1E s

j
x

Hence, j = s ◦ x, and we have our result.

Lemma 5.2.5. Let H have a right half dual H∗. Then the following statements are

equivalent

1. I factors through the unit with and

2. There is a point : I → H that is the equaliser2 of

and

3. There is a copoint : H → I which is a coequaliser of

and

Proof. We will only prove that point 1. and 2. are equivalent, as the proof that 1. and

3. are equivalent follows from duality.

Suppose that I factors though the unit. We shall actually prove a stronger result,

that is a split equaliser of f over g, where f = and g = . Lemma 5.2.1 tells

us that we have and such that (H, , ) is a nondegenerate integral Hopf algebra.

Then by definition

=

2In the same correspondence that brought Definition 5.1.1 to our attention, Gabriella Böhm brought
this lemma to our attention. This is also Hopf algebra folklore, and we are unsure of it’s origin.
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Chapter 5. Hopf-Frobenius Algebras

Hence, equalises the appropriate maps. To prove that is a split equaliser, we need

to find the appropriate structure maps. So we need s : H → I and t : H ⊗ H∗ → H

such that s is a retract of , t is a retract of , and the following identity holds

s =
t

We shall accomplish this by setting

s := t :=
2

Therefore, we need to prove that is the retract of , and
2

is a retract of

. In other words

2

= =

Both of these are clearly true. Hence, the final condition required to show that is a

split equaliser is that

=

but this follows immediately from the fact that I factors through the unit. The result

that that is a split coequaliser follows similarly.
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Chapter 5. Hopf-Frobenius Algebras

For the other direction, suppose that we have a point which acts as an equaliser of

and

To achieve our result, we shall be proving that I factors through the unit (Lemma

5.2.1). By Lemma 4.4.4 we have

I = I

Thus, I is a cone of the appropriate diagram. We are assuming that : I → H is

an equaliser, so by the universal property of the equaliser there is a unique morphism

: H → I such that

=

Now we merely need to show that and are a monomorphism and epimorphism

respectively. Since is an equaliser, it must be an monomorphism. Hence, all we need

to show is that is an epimorphism. Note that, by assumption, is a cointegral, so by

Lemma 4.4.4 we get that I ◦ = . Hence

= I = .

Since is a monomorphism, and = ◦ ◦ , it follows that ◦ = 1I . This implies

that must therefore be an epimorphism, as it is a left handed inverse. Hence, I

factorises though the unit, and we have our result.

Theorem 5.2.6. Let H be a Hopf algebra. I factors through the unit (Definition 5.1.5)

if and only if H is Frobenius3.
3As we shall see later on, a Hopf algebra is Frobenius if and only if it is Hopf-Frobenius (Corollary

5.2.10)
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Chapter 5. Hopf-Frobenius Algebras

Proof. Suppose that I factors through the unit. By Lemma 5.2.1, we know that H

must be a nondegenerate integral Hopf algebra, and by Lemma 5.1.2, we may construct

a Frobenius algebra on H.

For the other direction, suppose thatH has a green Frobenius algebra, (H, , , , ).

This implies that H is self dual by Definition 2.4.7.

Let us set

α := .

We will show that α : I → H is a split equaliser of f over g, for f = 1H ⊗α and g = .

In other words, it is a split equaliser of the diagram

H H ⊗H

=

.

which, by Lemma 5.2.5, this will prove our assertion.

To show that α is a split equaliser, we must first show that it is a cone of the

appropriate diagram. That is, we will show that

=

This follows from the properties of the Frobenius algebra and the Hopf algebra.

= = =

We now need to find structure maps s : H → I and t : H ⊗ H → H such that s is a
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Chapter 5. Hopf-Frobenius Algebras

retract of α, t is a retract of , and the following identity holds

s =
t

Let us set

s := t := .

We see that is a retract of α, and is a retract of . The final condition for

α to be a split equaliser is

=

Thus, α is a split equaliser, and we have our result.

Remark 5.2.7. Recall that when we have a nondegenerate integral Hopf algebra, we

may construct a Frobenius algebra (Lemma 5.1.2) from the integral and cointegral

pair. In the above theorem, we show that I factors through the unit when a Hopf

algebra is Frobenius, which is equivalent to constructing a nondegenerate Frobenius

algebra (Lemma 5.2.2). It is therefore worth asking the following: given Hopf algebra

(H, , , , , ) with Frobenius structure (H, , , , ), we construct a

nondegenerate integral Hopf algebra (H, , ) via Theorem 5.2.6. Is the Frobenius

algebra that we may construct from (H, , ) via Lemma 5.1.2 equal to our original

Frobenius algebra, (H, , , , )?

The answer to this is no in general. The above theorem gives us left cointegral .

This implies that the corresponding green comultiplication given by Lemma 4.2.12 is

defined as
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Chapter 5. Hopf-Frobenius Algebras

Likewise, Lemma 5.2.5 tells us that the integral is ◦ I, which is not necessarily equal

to . We see that this is equal to and only if they are a cointegral and integral

respectively.

However, the converse is true – given nondegenerate integral Hopf algebra (H, , ),

we construct a Frobenius algebra (H, , , , ) via Lemma 5.1.2. We construct a

nondegenerate integral Hopf algebra as above, and we find that is our cointegral, and

is our integral.

We summarize the results of section by stating the main theorem of the paper.

Theorem 5.2.8. Let H be a Hopf algebra. The following conditions are equivalent

1. The Hopf algebra H is Frobenius.

2. We may define a trace on H, and the integral morphism, I, factors through the

unit with and .

3. There exists left cointegral and right integral such that (H, , ) is a nonde-

generate integral Hopf algebra.

4. We may define a half dual on H, and H admits an equaliser of

and .

Proof. Theorem 5.2.6 tells us that 1 is equivalent to 2. Lemma 5.2.1 and Lemma 5.2.2

tells us that 2 is equivalent to 3 and finally Lemma 5.2.5 tells us that 2 is equivalent to

4.

The most straightforward of these conditions to check is likely to be 2, with the

manner that we describe in Lemma 4.4.7. We have provided a set of conditions that

are equivalent to when a Hopf algebra is Frobenius. In this final section, we show that

these conditions are all equivalent to a Hopf algebra being Hopf-Frobenius (Definition

4.1.1).
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Theorem 5.2.9. Let H = (H, , , , , ) be a Hopf algebra. Then H is

Hopf-Frobenius with red Hopf algebra (H, , , , , ) if and only if H is a

nondegenerate integral Hopf algebra (H, , ).

Proof. Suppose that H is Hopf-Frobenius, with red Hopf algebra (H, , , , , ).

Recall from the definition of a Hopf-Frobenius algebra (Definition 4.1.1 that

:= and therefore =-1

Our goal is to show that and are a left integral and right cointegral respectively,

and that they form a nondegenerate integral pair.

Since is the unit of a Hopf algebra, we know that −1 ◦ = . Similarly, we

know that ◦ −1 = . This therefore implies that

and= =−1 = =

We use this to show that is a left cointegral as follows

= = = = =

The proof that is a right integral is similar. Note that since these are the unit and

counit of a Hopf algebra, it is immediate that ◦ = 1. Hence, we only need to show

nondegeneracy (Definition 5.1.1). This follows from the fact that the antipode has the

form = , as

= = =

Hence, (H, , ) is a nondegenerate integral Hopf algebra.

We now assume the converse, that H is a nondegenerate integral Hopf algebra

(H, , ). Using the nondegenerate integral structure (H, , ), we set (H, , , , )

as the Frobenius algebra that we construct via Lemma 5.1.2, and (H, , , , )

as the Frobenius structure that we get from Corollary 5.1.3. To show that H is Hopf-
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Frobenius, we only need to prove that (H, , , , , ) forms a Hopf algebra,

where

:= and therefore =-1

recall that we call the Hopf algebra (H, , , , , ) the red Hopf algebra.

Recall from Definition 2.5.11 the definition of the dual Hopf algebra. Since H is

Frobenius, then H is self-dual as we stated in Remark 2.4.4. We may apply the dual

structure of the green Frobenius algebra to get a dual Hopf algebra. In other words, we

know immediately that

H := (H, , , , , )

is a Hopf algebra. Note that and are constructed as follows

:= and :=

Therefore, we may use the antipode to transfer between the green dual structure and

the red dual structure as follows

= and == =

We now apply the green dual to our Hopf algebra. It is clear from the definition that

( )
=

( )
=
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On the other hand, when we apply the green dual to the red comonoid, we find that

=( ) = = = =

In a similar manner, we see that ( ) = .

Recall from Proposition 2.5.4 that, given an arbitrary Hopf algebraG = (G, , , , , S),

we get bialgebra Gσ = (G,
σ
, , , ) where

σ
:= ◦ σG,G. Recall from

Proposition 2.5.6 that Gσ is a Hopf algebra if and only if S, the antipode of G, is

invertible.

We see, therefore, that the red Hopf algebra (H, , , , ) is simply (H )σ

when viewed as a bialgebra. Therefore, all we need to show now is that (H )σ has an

antipode. We therefore only need to show that is invertible. We see that is

equal to

= =

The fact that has an inverse follows from the fact that has an inverse (Lemma

4.3.1), and that the dual action preserves composition (Proposition 2.3.12), so ( )−1 =

( −1) . We see that the antipode of the red Hopf algebra is therefore

:= and therefore =-1

We have therefore proved the result that H is a Hopf-Frobenius algebra.

Corollary 5.2.10. Let H be a Hopf algebra. Then H is Frobenius if and only if H is

Hopf-Frobenius.

Corollary 5.2.11. Every Hopf algebra in FVectk is Hopf-Frobenius.

Proof. This follows from Larson and Sweedler’s theorem [41] that every Hopf algebra in

FVectk is Frobenius.
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Remark 5.2.12. Let us recall the various antipode forms and antipode inverses

= =-1== -1

Corollary 5.2.13. Let H be a Hopf-Frobenius algebra. Then

−1 −1====

Proof. The above corollary follows directly from the antipode forms in Remark 5.2.12.

Corollary 5.2.14. Let H be a Hopf-Frobenius algebra. Then

= = and = =

Recall from Proposition 2.4.12 that each invertible element of a Frobenius algebra

gives us a new Frobenius algebra. This means that there is no canonical choice for a

Frobenius structure in general. However, with Hopf-Frobenius algebras, this is not the

case, as the following Lemma shows.

Lemma 5.2.15. Let H admit a Hopf-Frobenius algebra structure. Then this structure

is unique up to invertible scalar.

Proof. Suppose that Hopf algebraH = (H, , , , , ) admits two Hopf-Frobenius

structures, with red Hopf algebrasH = (H, , , , , ) and Ĥ = (H, , , , , S).

Our goal is to show that the structure maps of H and Ĥ only differ by an invertible

scalar factor. Recall that we refer to (H, , , , , ) as the green Hopf algebra.

By Theorem 5.2.9 we know that (H, , ) must be a nondegenerate integral Hopf

algebra so therefore Theorem 5.2.8 tells us that I must factor through the unit with

and . Hence, by Lemma 5.2.2, we get that

I= =
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In a similar manner, = ◦ . These two scalar factors are inverses of each other,

as follows

==

So and are inverses. Hence, the respective units and counits of H and Ĥ are

an invertible scalar multiple of each other.

This implies that the antipodes of the two red Hopf algebras are equal, as follows

== = = S

which then allows us to show that the green comultiplication maps are scalar multiples

of each other. Recall from Lemma 5.1.2 how the comultiplication is constructed

= = =

The proof for the red multiplication maps is similar. Thus, we have proven our result.

5.3 Morphisms Between Hopf-Frobenius Algebras

Now that we have established Hopf-Frobenius algebras, it is natural to ask what the

category of Hopf-Frobenius algebras is? What is the appropriate notion of morphism

between two Hopf-Frobenius algebras?

In Definition 2.5.5, we showed that bialgebra morphisms preserve Hopf algebra

structure. However, maps between Frobenius algebras are much more limiting:

Lemma 5.3.1. Let (F, , , , ) and (G, , , , ) be two Frobenius al-

gebras, and let ϕ : F → G be a Frobenius algebra homomorphism. The ϕ must be an

isomorphism.
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Proof. A Frobenius algebra homomorphism is a homomorphism of both the monoid

and the comonoid. In other words, we have

ϕ

ϕ ϕ

=

ϕ

ϕϕ

=

ϕ = ϕ=

This implies the following equation

ϕ ϕ = =

We may therefore define an inverse to ϕ as follows

ϕ:=ϕ
−1

There is no requirement for bialgebra morphisms to be an isomorphism, however.

This suggests that there are morphisms between Hopf algebras that do not preserve

Frobenius structure. For example, in Vectk, finite dimensional Hopf algebras must be

Hopf-Frobenius by Corollary 5.2.11, while infinite dimensional Hopf algebras cannot be

Frobenius, as Frobenius structure implies the existence of a dual structure (Definition

2.3.7). However, there are bialgebra morphisms from finite dimensional Hopf algebras

to infinite dimensional Hopf algebras – from the group algebras Zn to Z, for example.

Below, when we refer toH andK, we will mean integral Hopf algebras (H, , , , , )

and (K, , , , , S) with integrals ( , ) and ( , ) respectively.

Definition 5.3.2. We say that a bialgebra homomorphism ϕ : H → K preserves

integrals if ◦ ϕ is a right integral for H, ϕ ◦ is a left cointegral for K, and ◦ ϕ ◦

is an invertible scalar with inverse ψ. In other words, there exists scalar ψ : I → I such
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that

ϕ =

ϕ

=ϕ

ϕ
ϕ ψ =

Lemma 5.3.3. Let ϕ : H → K be a bialgebra isomorphism for integral Hopf algebras

H and K. Then ◦ ϕ is a right integral for H, and ϕ ◦ is a left cointegral for K.

Proof. We shall only prove this for the integral, as the proof for the cointegral follows

similarly. This follows from

ϕ

ϕ =ϕ

ϕ

=

ϕ

ϕ

ϕ

ϕ

=ϕ =
−1 −1 −1

Lemma 5.3.4. Let ϕ : H → K be a bialgebra homomorphism such that ◦ ϕ ◦ is an

invertible scalar. Then ϕ is a bialgebra isomorphism if and only if it preserves integrals.

Proof. Suppose that ϕ is an isomorphism. We see that it preserves integrals immediately

as a result of Lemma 5.3.3.

For the converse, we recall how we proved that the presence of integrals gives us the

inverse of the antipode, from Lemma 4.3.1. Consider the following equation

==

ϕ
ϕ

ϕψ ψ ψ =

This implies that the antipode has the following morphism as its inverse

−1
= ϕ

ψ
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Hence,

= ϕ

ψ
=

ψ ϕϕ

By a similar argument, we have

= =
ψ

ϕ

ψ

ϕϕ

S

S
=

ψ ϕ

ϕ

Therefore, ϕ must have the following morphism as its inverse.

=
ψ ϕ

ϕ
−1

Recall from Definition 4.2.3 the distinction between LR integral Hopf algebras and

RL integral Hopf algebras. Via Corollary 4.2.7, we see that we may extend the definition

of an integral preserving morphism to one from an LR integral Hopf algebra to an RL

integral Hopf algebra as follows:

Definition 5.3.5. Let H be an LR integral Hopf algebra and K be an RL integral

Hopf algebra. Via Corollary 4.2.7, we may construct an LR integral Hopf algebra on

K. An LR to RL morphism is an integral preserving morphism between these two LR

integral Hopf algebras. In other words, we have the following equations

ϕ = =ϕ

ϕ

ϕ
k =

S
-1

S
-1

ϕ

S
-1
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Example 5.3.6. Let H be an LR integral Hopf algebra. The antipode : H → Hop

is an LR to RL morphism. As established in Proposition 2.5.6, the antipode is a

Hopf algebra homomorphism, and from Lemma 4.3.1 we have that the antipode is an

isomorphism. Finally, we see that

-1= =

Hence, by Lemma 5.3.4, we have our result.

Below, H and K will refer to Hopf-Frobenius algebras, with green Hopf algebras

(H, , , , , ) and (K, , , , , S), and red Hopf algebras (H, , , , , )

and (K, , , , , S†).

Corollary 5.3.7. Let ϕ : H → K a bialgebra homomorphism. Then ϕ preserves

integrals if and only if ϕ is an isomorphism.

Proof. This follows immediately from Lemma 5.3.4 and Lemma 5.3.8.

Lemma 5.3.8. Let H and K be Hopf-Frobenius algebras, and let ϕ : H → K be a

bialgebra isomorphism between their respective green Hopf algebras. Then

ϕ ϕ =
−1

Proof. We recall from Lemma 5.2.1 that H and K are Hopf-Frobenius if and only if I

factor through the unit. Therefore, we have

ϕ

ϕ

=
ϕ

ϕ

=I
ϕ

ϕ = =

−1
−1

−1

where we use the fact that when ϕ is an isomorphism, ◦ ϕ is an integral from Lemma

5.3.3, and Lemma 4.4.4 which says that, for any integral q : H → I, q ◦ I = q.
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Lemma 5.3.9. Let H and K be Hopf-Frobenius algebras, and let ϕ : H → K be a

bialgebra isomorphism between their respective green Hopf algebras. Then the following

morphism

ϕφ := ϕ
−1

is a bialgebra isomorphism between (H, , , , , ) and (K, , , , , S†).

Proof. We shall prove this for the counit and the comultiplication, and the proof for

the unit and multiplication follow similarly.

Consider the following

ϕ
−1

ϕ ϕ

I
= ϕ

−1
=

ϕ

ϕ
−1

==φ

where we used the fact that ◦ ϕ is an integral from Lemma 5.3.3, and Lemma 4.4.4

which says that, for any integral q : H → I, q ◦ I = q. Since H is Hopf-Frobenius, I

factors through the unit, and then Lemma 5.3.8 gives us the final equality. This informs

us that ϕ will preserve the cup between the Frobenius algebras up to a scalar factor, as

follows.
ϕ ϕ

= ϕ = ϕ

This implies that the cap will also be preserved. We see that

ϕ ϕ ϕ
= ϕ ϕ

−1 −1

= ϕ ϕ
−1 −1

Therefore

ϕ
−1

ϕ ϕ
−1 −1

=
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Hence, we find that when we compose φ with the green comultiplication, , we get

ϕ
−1φ

=
φ

=
ϕ

ϕ ϕ
−1 −1

=
ϕ ϕ

ϕ
−1

ϕ ϕ
−1

ϕ

=
φ φ

Corollary 5.3.10. Let (H, , , , , ) and (K, , , , , S) be Hopf-

Frobenius algebras, and let ϕ : H → K be a bialgebra isomorphism. Then ϕ preserves

Frobenius structure if and only if ◦ ϕ ◦ = 1.

Definition 5.3.11. The category of Hopf-Frobenius algebras is a category where the

objects are Hopf-Frobenius algebras, and the morphisms are bialgebra isomorphisms

such that ◦ ϕ ◦ = 1.

A Hadamard morphism 4 is a type of morphism that acts on the Hopf-Frobenius

algebra itself. Majid [44], defines two types of Hadamard morphisms:

Definition 5.3.12. A type 1 Hadamard, H : H → H is a Frobenius homomorphism

from the green Frobenius algebra to the red Frobenius algebra. In other words, we have

the following equations

H

H H H

H H
= =H H= =

A type 2 Hadamard5 H : H → H is a bialgebra isomorphism from the green Hopf

algebra to the red Hopf algebra. Note that the green Hopf algebra is an LR integral

Hopf algebra with ( , ), while the red Hopf algebra is an RL integral Hopf algebra

with ( , ). So we have the equations

H
H H H

H H
= =H H= =

4This terminology originates from ZX-calculus (See Duncan and Coecke [18]) where the Hadamard
gate is a unitary map that maps between the Z basis and X basis. In the context of ZX-calculus, this
means that it maps between the green Frobenius algebra and red Frobenius algebra.

5The terminology, type 1 and 2 Hadamard, comes from Majid [44]
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Lemma 5.3.13. Hopf-Frobenius algebra H has a type 2 Hadamard if and only if the

green Hopf algebra of H is isomorphic to the dual Hopf algebra, H∗σ, as defined in

Definition 2.5.11 and Definition 2.5.4.

Proof. The red Hopf algebra is equal to H σ, so this follows from Lemma 2.3.14.

Corollary 5.3.14. A type 2 Hadamard H : H → H will be a type 1 Hadamard if

H =-1

Proof. A type 2 Hadamard is an LR to RL morphism, so this follows from Definition

5.3.5 and Corollary 5.3.10. Note that we are not stating that a type 1 Hadamard is a

type 2 Hadamard when the above condition is fulfilled.

A quasitriangular Hopf algebra is a Hopf algebra equipped with points, R,R−1 :

I → H ⊗H such that R−1 is the multiplicative inverse of R – i.e.

R R−1

=

RR−1

=

and the following equations are met

R R

=

R

=

R R

R

=

RR

This point R is called the R-matrix of H. We shall show later how an R-matrix is

similar to a type 2 Hadamard.
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Quasitriangular Hopf algebras were introduced by Drinfeld [25], where he showed

that a Hopf algebra H has an R-matrix if and only if the category of modules of H is

braided monoidal.

Lemma 5.3.15. For quasitriangular Hopf algebra H, with R-matrix R : I → H ⊗H,

we have

R = R=
R

R−1
=

R

= −1

Proof. We begin by proving the first equations. We shall only prove the left equality, as

the right equality follows similarly.

Note first that

R = R =

R R

We then see that

=

R R−1

=

R R−1

=

These two facts tell us that ( ⊗ 1) ◦ R is idempotent and it has an inverse with

respect to the multiplication . Together, this informs us that it must be equal to the

multiplicative unit.

R =

R R−1R
R

=

R−1

=*

where ∗ follows from the fact that ( ⊗ 1) ◦R with respect to the multiplication.

For the second equations, we again will prove the left equality, as the right equality

follows similarly. We first note that, since R−1 is the multiplicative inverse of R on

H ⊗ H, we only need to show that our proposed morphism acts as the inverse of R,
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since inverses are unique. This follows straightforwardly.

R R

=

R

=

R

=

Hence, we have our results.

Definition 5.3.16. We define R as

R
R :=

Lemma 5.3.17. The morphism R : H → H is a Hopf algebra homomorphism from

the red Hopf algebra to the green Hopf algebra.

Proof. To prove this, we must show that R is a bialgebra homomorphism. We shall

show that R preserves the structure of the green comonoid, as the proof for the monoid

is similar.

The proof for the counit is simple

R

= =R =

For the comonoid, first note that

R
R

=

R R

= =

R R
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Therefore, we see that

R R

R

= =

R R

=R =
R R

*

where at *, we use the fact that

=
-1 -1

= =

where we have used Corollary 5.2.13. Hence, the result follows.

In other words, the R-matrix of a quasitriangular Hopf algebra gives us a morphism

that is close to a type 2 Hadamard morphism, except it is not invertible. This motivates

the following corollary.

Lemma 5.3.18. For quasitriangular Hopf algebra H, R is a type 2 Hadamard if and

only if R preserves integrals. This is equivalent to when the following morphisms

RR
and

are left and right cointegrals of the green Hopf algebra respectively, and the following

scalar is invertible
R

Proof. This follows on from Lemma 5.3.17 and Corollary 5.3.7.

Note that since the red Hopf algebra and green Hopf algebra are RL and LR integral

Hopf algebras respectively, which means that R is an RL to LR morphism. Hence we

require that

R

=
R

= R
and

R
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are a left cointegral of the green Hopf algebra of H, and a right integral of the red Hopf

algebra of H respectively, and

R

=
R

= R

is invertible. Hence, all we have left to prove is that

R

= R

We already have

=
R

R

Hence, it follows that

R

R = =

R

=

R

=

R

*

where at *, we use the fact that

=
-1 -1

= =

where we have used Corollary 5.2.13.

Note that R is always invertible with respect to the multiplication on H ⊗ H.

However, this does not necessarily imply that R will be invertible with respect to
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composition.

5.4 Relation to Finite Dimensional Hopf algebras

We now introduce one aspect of the significance of Hopf-Frobenius algebras. In this

section, we will show that a Hopf-Frobenius algebra recovers much of the classic theorems

of finite dimensional Hopf algebras.

In this section, we will be including the definitions of group-like points [41] (Definition

5.4.1), unimodularity [41] (Definition 5.4.8), the Nakayama automorphism [?] (Definition

5.4.12) and semisimplicity [41](Definition 5.4.19). These are all well known concepts

with well known properties in Hopf algebra theory. The proofs that we used in this

section were all done independently, with the exception of Lemma 5.4.23, and they

differ significantly from their counterparts. From Definition 5.4.15 until Corollary

5.4.18 we define and use the morphism ν, and we use it to demonstrate similarities

between symmetric Frobenius algebras (Definition 2.4.1) and semisimple Hopf algebras

(Definition 5.4.19). We later discovered that this morphism was originally defined by

Radford [52].

Let us recall the definition of a right cointegral, as in Definition 4.2.1. Note that we

have kept to left cointegrals and right integrals in this thesis. Hence, all of the previous

results of this thesis are dependant on this choice. However, there are clearly equivalent

results if we were to instead use right cointegrals or left integrals.

Definition 5.4.1. Let x : I → H. We say that x is group-like when

x

x x=

In the same way, we would refer to a copoint y : H → I as group-like.

y y y
=

When x : I → H is group-like, if ◦ x = 1I then ◦ x = −1 ◦ x is the multiplicative
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inverse of x, as follows. We provide the proof for , but the proof for −1 is similar.

xx

= =

x

=

x

Likewise, when y : H → I is group-like, if y ◦ = 1I then y ◦ = y ◦ −1 is the

comultiplicative inverse of y.

Given a Hopf-Frobenius algebra H, we define the following point and copoint as the

distinguished group-like point a and copoint α respectively

a = α =

We will show that a is group-like, and a similar proof follows for α

= = = =

Hence, the above explanation tells us that the inverses of the distinguished group-like

point and copoint are

a−1 α−1−1= −1== =

Note also that in literature related to ZX-calculus, the term set-like or classical may be

used instead of group-like [18].

Lemma 5.4.2. Let H be Hopf-Frobenius. Then

= =
-1
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Proof. Recall from Corollary 5.2.13 that

−1=

The proof follows pictorially

= = =

-1

=

-1

-1
-1 -1 =-1 -1

We then use the form of the antipode inverse (Remark 5.2.12) to get

=−1 =

Note the presence of the distinguished group-like point (Definition 5.4.1). We note that

the distinguished group-like point is invertible, with the following inverse

( )−1

=

Since both the distinguished group-like point and the antipode are invertible, the inverse

of our morphism is

=
-1

=
( )−1

=
( )−1

Hence, we have our result.
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Corollary 5.4.3. Let H be Hopf-Frobenius. Then

= =

-1

Lemma 5.4.4. We may write the antipode as follows

=
4

Proof. Recall from the definition of the distinguished group-like point and copoint

(Definition 5.4.1) that the following morphisms

-1= -1=and

are equal to the inverse of the distinguished group-like point and copoint respectively.

We use this with Lemma 5.4.2 to see that

-1

-1

-1= =
-2

=
-1

-1

On the other hand, we use Corollary 5.4.3 to show that

= =
-1

=

-1
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We use Corollary 5.2.13 to transfer between the green cup and the red cup, and then

introduce another −1 by using the fact that ◦ −1 = 1 to get

-1

=

-1

= =

2

2

-1
-1

-1

-1

=

Finally, we use the form of −1 from Remark 5.2.12 and see that

2

-1

=
-1

2

=
2

=

2

=

2

Hence, we have shown that

2-2
=

Since both the antipode and the group-like points and copoints are invertible, we may

therefore derive our result

=4

Definition 5.4.5. We denote the powers of a point as follows. Given a point a : I → H,
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Chapter 5. Hopf-Frobenius Algebras

we write
n· · ·a a

:=
α

n

We say that the order of a point is the smallest finite n such that

:=
α

n

Note that not every point has an order.

Lemma 5.4.6. Let us denote the group-like point and copoint as a and α respectively.

Then

=4k α
k

α
−k

a a
k−k

Proof. We begin by proving the following property of the distinguished group-like point

and copoint.

= = ==

Where we have used the group-like property and the Hopf law. It follows similarly that

=
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Chapter 5. Hopf-Frobenius Algebras

We will use this to show that

=

This follows from the bialgebra law and the properties of the group-like point and

copoint.

= = =

Hence, when we take 4 to the power of k, and set the group-like point and copoint as

a and α respectively, we get

=4k α
k

α
−k

a a
k−k

Corollary 5.4.7 (Radford). Suppose that the distinguished group-like point and copoint

have finite orders n and m respectively, and set l as the lowest common multiple of n

and m. Then the order of the antipode will be a divisor of 4l.

Radford’s theorem [51] is a staple of finite dimensional Hopf algebra theory, so it is

interesting that this theorem may be generalised to the Hopf-Frobenius case. We will

now show how concepts such as unimodularity and semisimplicity may be generalised

to the Hopf-Frobenius case, and how symmetry of the Frobenius algebra links them.

Definition 5.4.8. Let Hopf algebra H have left cointegral . We say that H is
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unimodular when is also a right cointegral. Likewise, we say that H is counimodular

when right integral is a left integral.

Lemma 5.4.9. Suppose that H is an integral Hopf algebra. Then H is unimodular6 if

and only if ◦ = .

Proof. It is clear from the definition of unimodular (Definition 5.4.8) and Lemma 4.2.6

that when ◦ = , H must be unimodular.

On the other hand, suppose that H is unimodular. Consider the following identity

−1= = =

The result follows from this, as
−1

= =

Corollary 5.4.10. When Hopf-Frobenius algebra H is unimodular, the distinguished

group-like point and copoint are equal to the unit and counit respectively.

Proof. This follows immediately from the definition

= = =

Corollary 5.4.11. When Hopf-Frobenius algebra H is unimodular and counimodular,

the antipode has an order of 4

Proof. This follows from Corollaries 5.4.7 and 5.4.10.
6The terminology unimodular comes from the way that unimodular Hopf algebras are analogous to

unimodular Lie groups [41]
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Recall that the definition of a symmetric Frobenius algebra (Lemma 2.4.3) is that

= or, equivalently = .

Since a Hopf-Frobenius algebra H has two Frobenius structures, a green Frobenius

algebra (H, , , , ) and a red Frobenius algebra (H, , , , ), we shall

say that H is -symmetric when the green Frobenius algebra is symmetric. Likewise,

we shall say that H is -symmetric when the red Frobenius algebra is symmetric.

When it is unambiguous which structure we are talking about, we shall simply say that

H is symmetric.

Definition 5.4.12. Consider the green Frobenius algebra of H, (H, , , , ).

Let us define the -Nakayama automorphism, ρ : H → H and its inverse as

ρ := ρ-1 :=

We define the -Nakayama automorphism, ρ , in a similar manner. It is clear from the

definition that the Nakayama automorphism has the following property

ρ = = =

Therefore, it is equal to the identity if and only if H is symmetric

Lemma 5.4.13. Let H be Hopf-Frobenius. Then if H is unimodular, the square of the

antipode is equal to the -Nakayama automorphism

Proof. Suppose that H is unimodular. Then we have another form for the antipode

= =
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Chapter 5. Hopf-Frobenius Algebras

as follows

= = = =

When we compose this with the standard form for the antipode (Remark 5.2.12), we get

2 = = = ρ

Lemma 5.4.14. Let H be Hopf-Frobenius. Then H is -symmetric if and only if H

is unimodular and 2 = 1.

Proof. Lemma 5.4.13 tells us that when H is unimodular, 2 = ρ . Since ρ = 1 if and

only if H is -symmetric (See Definition 5.4.12), we see that unimodularity implies

that 2 = 1 if and only H is -symmetric. This tells us that unimodularity and 2 = 1

imply -symmetry. Note that by duality, if H is counimodular and 2 = 1, then H is

-symmetric.

To show the converse, suppose that H has -symmetry. Then if we show that

-symmetry implies unimodularity, we also get that 2 = 1. Simply note from Corollary

5.2.14 that

= = =

Hence, it follows from Lemma 4.2.6 that is a right cointegral, so H is unimodular.

Hence, symmetry implies unimodularity, which in turn implies that 2 = 1. Therefore,

we have our result.

Definition 5.4.15. Let H be Hopf-Frobenius. We say that a copoint k : H → I is

-symmetrising if

k

=

k
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We say that k is -cocentral if

=
k

k

We denote the trace of as ν : H → I, as follows

ν :=

Note that to define ν, we only need a monoid (M, , ) with a trace TrM . Since F is

a Frobenius algebra, we know it has a trace via Lemma 4.3.7. In this case, we may write

= =

Lemma 5.4.16. Let (F, , , , ) be a Frobenius algebra.

1. There exists an additional Frobenius structure on F that is symmetric if and only

if there exists some symmetrising, coinvertible copoint k : H → I

2. If there exists a symmetrising copoint k : H → I that is both coinvertible and

cocentral, then F is symmetric.

Proof. 1. Suppose that F has an additional Frobenius structure, (F, β, β̄), where

β : F ⊗ F → I and β̄ : I → F ⊗ F are symmetric. Proposition 2.4.12 tells us that

there is a bijective correspondence between additional Frobenius structures on F

and coinvertible copoints. Via Lemma 2.4.10 and Lemma 2.4.11, we see that we

may construct a coinvertible copoint k : F → I such that

k

=
β
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We are assuming that β is symmetric, so

k

=

k

2. Note that if k is cocentral, this implies that k−1 is also cocentral. Hence

= =

k k k

=

k

=

k

==
k-1

k
-1

k
-1

k
-1k

-1

Lemma 5.4.17. Let H be a Hopf-Frobenius algebra. Then ν is symmetrising.

Proof. When we compose the cup with ν, we get the following equation

= = = = ==

Corollary 5.4.18. If the morphism ν is coinvertible and cocentral then H is -

symmetric.

Definition 5.4.19. Let H be a Hopf-Frobenius algebra. We say that H is semisimple

when the scalar has an inverse.

Semisimplicity is an important algebraic property for finite dimensional Hopf algebras.

In FVectk, a semisimple algebra is equivalent to the direct sum of matrix algebras – See

2.2.17 in Kock [39]. For finite dimensional Hopf algebras, we find that the traditional

definition of semisimplicity is equivalent is non-zero, due to Maschke’s theorem for

Hopf algebras (See Larson and Sweedler [41]). On the other hand, special Frobenius
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Chapter 5. Hopf-Frobenius Algebras

algebras allow us to perform the spider theorem, and achieve a normal form for Frobenius

terms – see Majid [45].

Lemma 5.4.20. Recall the definition of quasispecial from Definition 2.4.1 that there

exists an invertible scalar k : I → I such that

=k

Let H be Hopf-Frobenius. Then H is semisimple if and only if the green Frobenius

algebra is quasispecial.

Proof. Suppose that there exists invertible scalar k such that

= k

Then we see that

=

k

= = = k

Hence, the above relation holds if and only if the green Frobenius algebra is quasispecial.

We see that this equation relates to semisimplicity as

==

where we have used Corollary 5.2.13, and the Hopf law. We see that fulfils the definition

of semisimplicity by setting k = . Hence, H is semisimple if and only if has an

inverse, which is true if and only if the green Frobenius algebra of H is quasispecial.

Lemma 5.4.21. If H is -symmetric, then ν is cocentral.

Proof. This follows in a similar manner to the proof that quasispecialness is equivalent
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Chapter 5. Hopf-Frobenius Algebras

to semisimplicity, as follows

= = =

Where we have used Remark 5.2.12, and we see that is the antipode of the red Hopf

algebra in H. This morphism is clearly cocentral.

Lemma 5.4.22. If the morphism ν is coinvertible and cocentral then H is semisimple.

Proof. Via Lemma 5.4.18, we see that H is -symmetric. Hence we get that

= = =

as in Lemma 5.4.21. ν is coinvertible, which implies that has an inverse. Hence, H

is semisimple.

Lemma 5.4.23. Let H be semisimple. Then H is unimodular.

Proof. Recall from Corollary 5.2.14 and Lemma 4.2.6 that when we compose with

the antipode

= =

we get a right cointegral. We may show that H is unimodular by showing that ◦ = .

Suppose that H is semisimple. Then there exists a scalar k : I → I that is the

inverse of . Therefore

= = k k=

where we used the copy rule. We then use the Frobenius law to get

k k= k= ==
k

=
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Chapter 5. Hopf-Frobenius Algebras

As we have seen, there are strong links between -symmetry, semisimplicity, and

ν. We see from Corollary 5.4.18 and Lemma 5.4.22 then when ν is cocentral and

coinvertible, H is both -symmetric and semisimple. When H is -symmetric, Lemma

5.4.21 tells us that ν is cocentral.

To summarise

• H is -symmetric if and only if H is unimodular and 2 = 1 (Lemma 5.4.14)

• If H is semisimple, then H is unimodular (Lemma 5.4.23)

• If ν is cocentral and coinvertible, then H is -symmetric and semisimple (Corollary

5.4.18 and Lemma 5.4.22)

• If H is -symmetric, then ν is cocentral (Lemma 5.4.21)

We see that both semisimplicity and -symmetry are linked together by ν. The

proposal that semisimplicity implies that 2 = 1 in FVectk is known as the Kaplinsky’s

fourth conjecture, and is an open problem in the theory of Hopf algebras. We see that

this conjecture is equivalent to the conjecture that semisimplicity implies -symmetry.

Here we see a related result: Suppose that it is possible to prove that when H is

-symmetric, ν is coinvertible. Then -symmetry implies semisimplicity.
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Conclusions and Further Work

6.1 Conclusion

We will conclude this thesis with a summary of the results of this thesis, how they might

be connected to other results in the literature and further work that may be done. We

will begin by stating that, even though all of the examples of Hopf-Frobenius algebras

that we have referenced in this thesis are in either FPModR or FVectk, the results of

this thesis do apply outside of these two categories. Recall that, for any Hopf algebra

for which we may define a trace, we can define the integral morphism (Definition 4.4.1).

In Lemma 4.4.7 we discussed how we may construct an integral Hopf algebra using the

integral morphism. Hence, the results of this thesis are relevant beyond the categories

FPModR and FVectk.

Throughout this thesis, we have been using string diagrams to reason about Hopf-

Frobenius algebras. One of the arguments of this thesis is that the string diagrams

of Hopf-Frobenius algebras have advantages over the standard term language of Hopf-

Frobenius algebras. For general string diagrams, the primary advantage can be seen in

the following equation

(f ◦ g) ⊗ (f ′ ◦ g′) = (f ⊗ f ′) ◦ (g ⊗ g′)

This equation may be effectively ignored in string diagrams, as both sides of the equation
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Chapter 6. Conclusions and Further Work

are represented by the diagram

f f ′

g g′

The way that we have used string diagrams in this paper may be contrasted with the

way that Hopf algebras are typically reasoned with. Compare the proof of Radford’s

proof of the order of the antipode in the original paper with the one in this thesis. Our

proof of Radford’s theorem, (Corollary 5.4.7) uses only a handful of results (Corollary

5.2.13, Definition 5.4.1, Lemma 5.4.2, Corollary 5.4.3, Lemma 5.4.4 and Lemma 5.4.6),

and the definition of a Hopf-Frobenius algebra. This is to be contrasted with Radford’s

proof of the order of the antipode [51] which is very involved. Part of the simplicity of

our proofs comes from the fact that the only morphisms that we use in our proofs are

the structural morphisms of Hopf-Frobenius algebras. For example, in Lemma 3 of [51],

the proof of b) has the following equality for all p ∈ H∗:

βlβ
∗
r (γ−2(α−1(p · a−1)α)) = βlβ

∗
l (p)

Let us have Hopf algebra (H,µ, e,∆, ϵ, S) with integral
∫

and cointegral Λ. In this

statement we have

βl(q) =
∫

◦µ(q,_) β∗
r (p) = (p⊗ 1) ◦ ∆ ◦ Λ

γ = s∗ p · q = p ◦ µ(p,_)

for all p ∈ H∗ and q ∈ H. The group like point and copoint are represented as a and

α respectively. The equivalent statement in our presentation would be the following
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equation

=

-2

So we see that string diagrams are often able to avoid this particular type of obfuscation.

As an example of the way that one may approach Hopf-Frobenius algebras differently

as a result of their string diagrams, consider ZX calculus. The Hopf-Frobenius algebras

of ZX calculus are commutative, cocommutative and special. The spider theorem

tells us that connected Frobenius terms have a normal form, as we talked about in

the introduction (See Section 1.2). Due to the spider theorem, we know that every

connected Frobenius term may be represented as a graph with a single node. Because

of this and because ZX-calculus has a trivial antipode – i.e. = 1H

=

there will only be a single edge between any two vertices. To see this, suppose that

we have a term that has k > 1 edges between two nodes. The nodes will be either red

or green. If the nodes are the same colour, then they are part of the same Frobenius

algebra, so by the spider rule, they may be joined. If they are different colours, then

since the identity wire is the antipode, we may rewrite the graph term so that there are

k mod 2 edges connecting the two nodes - i.e. either 0 or 1 edges.

This results in ZX-calculus terms being seen as graphs rather than algebraic terms,

and instead of term rewriting, ZX-calculus uses graph rewriting. For example Kissinger

and van der Wetering [38] optimise a quantum circuit with respect to T gates using

a concept called Gflow, which is a graph theoretic property that is not easily stated

algebraically. Using graph theoretic ideas makes it easier for ZX-calculus to state
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theorems about terms that involve a large number of structural morphisms. A quantum

circuit is constructed from an arbitrarily large number of gates which, when they are

from certain universal gate sets (such as Clifford+T), are each constructed from at

least one structural morphism when represented in ZX-calculus. Hence, standard term

rewriting is not suited for these kinds of equations. Even when computer scientists are

not using ZX-calculus, they still use circuit diagrams [48].

This Hopf-Frobenius algebra that is used in ZX-calculus is particularly suited to

being represented as a graph. As such, for the remander of this chapter, we will call

Hopf-Frobenius algebras where the Frobenius algebras are both commutative and special

graph-like1.

In general, Hopf-Frobenius algebras are not represented as simple graphs, but it is

still worth asking the question – can we use graph theory to develop tools in our proofs

about Hopf-Frobenius algebras? In order to do this, we will need to state an appropriate

graph representation for Hopf-Frobenius algebras. Recall from Lemma 5.4.20 that the

Frobenius algebra of a Hopf-Frobenius algebra is quasispecial if and only if the Hopf

algebra is semisimple. However, the proof tells us that it is always the case that

=

It is just the case that the scalar will not always be invertible - i.e. in a non-semisimple

Hopf algebra in FVectk, is equal to 0. As such, in every Hopf-Frobenius algebra,

the Frobenius terms may be described by the planar spider theorem (See Majid [45])

when there is no use of the symmetry morphism.

However, in a general symmetric monoidal category, planarity is not an assumption

that we can make – indeed, the bialgebra rule will always causes wires to cross, making

the graph non-planar. We also must contend with the fact that since the antipode is not

equal to the identity morphism in general, the graphical representation of an arbitrary
1Note how we are not assuming that the antipode is equal to 1. While this is critical to the graph

structure of ZX-calculus, it is not very common. Indeed, it does not hold for the ZX-calculus that
describes qutrits [66]
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Hopf-Frobenius morphism will not be a simple graph.

Since the graphs involved are not, in general, planar, we may describe the graphs

by ordering the edges that are incedent to a given vertex – see Definition A.1.5 in

the appendix. Compare this approach to work on rotation systems – see Altenmüller

et al. [2] where a similar approach is taken to embed string diagrams into different

topological surfaces. We conjecture that the graphs of Hopf-Frobenius algebras will

have the following properties:

1. They are open graphs, where the domain and codomain of the graph, and of each

of the vertices, are ordered.

2. We colour the vertices of the graph with two colours to indicate which Frobenius

algebra the node belongs to.

3. We may label the edges with an integer n to indicate the presence of n antipodes.

The graphical representation becomes more simple for certain flavours of Hopf-

Frobenius algebras. For example, if the algebra is either -symmetric or -symmetric,

then 2 = 1, so an edge will at most only ever have a single antipode on it.

While most graph theoretic concepts are not made with the idea that edges are

ordered in mind, we believe that many standard graph theory definitions should be able

to be generalised to this setting.

In this thesis, we introduced the notion of a traced family of objects in a symmetric

monoidal category. This is a generalisation of the notion of a traced monoidal category.

We introduced it so that we would not have to require that an entire category was traced,

and model how finite dimensional vector spaces operate within Vectk. In the same

way that in a monoidal category, a single object may have a dual without the entire

category being compact closed, using this definition we may say that a single object

has a trace without it belonging to a traced monoidal category. This concept leads

directly onto the concept of half-duals. Half-duals emerged naturally when defining an

integral Hopf algebra, and it allows for a concept in-between a trace and a dual. It is

known that compact closed categories and traced monoidal categories are intimately

connected, as every compact closed category is traced, and the INT construction on a
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traced monoidal category gives us a free compact closed category (See Joyal, Street and

Verity [34]). An object with a half dual implies that there is a trace on that object, but

it is strictly weaker than a full dual. This raises the question, what concepts does a half

dual inherit from a full dual? For example, half duals are not sufficient to define an

internal Hom, but we do get something similar - where when for all objects A, we have

a dual, A∗, we have a natural isomorphism

C(A⊗B,C) ∼= C(A,C ⊗B∗).

When every object A has a half dual A∗, we have natural monomorphisms and epimor-

phisms

C(A⊗B,C) C(A,C ⊗B×) C(A,B ⊗ C) C(B× ⊗A,C)

C(A⊗B,C) C(A,B ⊗ C)

Curiously, this implies that in a symmetric monoidal category where every object has

half duals, then there is both a monomorphism and an epimorphism A → A××. We have

shown in Lemma 4.3.7 and Lemma 4.3.8 that the mere presence of a half dual implies

that the trace is equal to the half dual trace. Indeed, if we have a pair of morphisms,

I → A⊗B, B ⊗A → I, and we construct a trace in the same way that we did with the

half dual in Lemma 4.3.7, then the pair of morphisms must be half-duals. This might

suggest that there is a construction similar to the Int construction (cf. Joyal, Street

and Verity [34]) for half duals. In general, it remains to be seen exactly how half duals

fit into the gap between traced monoidal categories and closed monoidal categories.

In Section 4.2, we introduced the concept of integrals, and showed that the presence

of a cointegral is equivalent to the presence of a comultiplication that fulfils the Frobenius

law in Lemma 4.2.12. This demonstrates the deep connection between integrals and

Frobenius algebras. Integrals are a concept that has been well studied in the theory

of Hopf algebras, and the connection between Frobenius algebras and integrals is well

understood. We introduce the concept of an integral Hopf algebra as an intermediate

concept between a standard Hopf algebra and a Hopf-Frobenius algebra. An integral
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Hopf algebra inherits some concepts that a Hopf-Frobenius algebra has – an integral

Hopf algebra has an invertible antipode, and half-duals. Due to Lemma 4.2.12 and

Corollary 4.2.14, it has an extra multiplication and comultiplication. As of yet, we have

not found any examples of an integral Hopf algebra that are not Hopf-Frobenius. There

are no integral Hopf algebras in Vectk that are infinite dimensional, as Lemma 4.3.7

tells us that the object must have a trace, and only finite dimensional vector spaces

have a trace (to see this, note that the trace of the identity map does not converge for

infinite dimensions). However, it would be interesting to find an example of such a Hopf

algebra.

Finally, we provide several equivalent conditions for when a Hopf algebra is Hopf-

Frobenius, summarised in Theorem 5.2.8. We believe that, if you have a Hopf algebra

in a symmetric monoidal category, it is worth checking if the Hopf algebra is Hopf-

Frobenius. Depending on the category, this may be relatively easy. First off, if you can

show that it is impossible to define a trace on your Hopf algebra, then the Hopf algebra

cannot be Hopf-Frobenius. If you can define a trace on the Hopf algebra, then you may

construct the integral morphism (Definition 4.4.1). As we state in Lemma 4.4.7, if we

can find point p and copoint q such that q ◦ I ◦ p is invertible, then we may construct

an integral Hopf algebra, and from there, it is trivial to check if the Hopf algebra is

Hopf-Frobenius (It is Hopf-Frobenius if and only if it is nondegenerate – see Definition

5.1.1). If the category has equalisers or coequalisers, and H has a dual, then Lemma

5.2.5 tells us that we only need to check if a particular equaliser is a map I → H.

The Larson-Sweedler theorem [41] tells us that every Hopf algebra in the category of

finite dimensional vector spaces is a Hopf algebra. More generally, when we show that a

particular class of Hopf algebras has a Frobenius algebra, we say that we are proving

the Larson-Sweedler theorem for this class (For example, see [14,35,63]). As such, every

class of Hopf algebra in a symmetric monoidal category for which the Larson-Sweedler

theorem has been proven is also Hopf-Frobenius.

As we showed in section 5.4, we may transfer several classic theorems of Hopf

algebras into the language of Hopf-Frobenius algebras. This means that the theory

of Hopf-Frobenius algebras is already fairly well developed. When you prove that a
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Hopf algebra is Hopf-Frobenius, then this Hopf algebra will inherit many results from

the theory of finite dimensional Hopf algebras. A potential avenue for further work

would be to develop this statement and make it more explicit. In general, whenever a

proof of Hopf algebras only uses morphisms constructed from the structural maps of

Hopf algebras, integrals and cointegrals, then this may be straightforwardly translated

into the language of Hopf-Frobenius algebras. There is less of a guarantee that this is

possible for proofs that use, for example, properties of abelian categories.

6.2 Further Work

This work has defined and explored the construction of a Hopf-Frobenius algebra, and

shown its connection to finite dimensional Hopf algebras in Vectk. We now explore

several future directions for Hopf-Frobenius algebras.

In their work on interacting Hopf algebras, Zanasi et al. [13] proved an equivalence

between the PROP of graph-like Hopf-Frobenius algebras and the PROP of linear

relations, LinRelZ where we are setting the ring to be Z, as we established in Section

1.4 of the Introduction. This implies that, given a symmetric monoidal category C, every

graph-like Hopf-Frobenius algebra in C has an associated functor from LinRelZ to C

that preserves the structure of the linear relations. For example, given the cyclic group

of order n, Zn, we may construct the group algebra in FVectk. This group algebra

will be a graph-like Hopf-Frobenius algebra, via Example 4.1.2. There is a functor

LinRelZ → FVectk that maps the matrix

1

1

 to the group multiplication .

This tells us that every graph-like Hopf-Frobenius algebra has an underlying structure

of LinRelZ. It also implies that every term in the language of graph-like Hopf-Frobenius

algebras has a corresponding linear relation, and two terms are equal if and only if

their respective linear relations are equal. This is fascinating, as it implies that to work

out if two morphisms are equal in the PROP of graph-like Hopf-Frobenius algebras,

instead of using rewrite rules one can prove equality of subspaces of Z. This begs

the question, can this be done with ZX-calculus? ZX-calculus is a graph-like scaled

Hopf-Frobenius algebra, so for terms that only use the structure maps, the PROP of
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ZX-calculus is equivalent to LinRelR where R = Z2 such that we set the scalars of

ZX-calculus equal to 1. However, the inclusion of the phases and the Hadamard gate,

as defined in Section 1.6, means that this equivalence no longer holds (This follows from

Duncan and Dunne [26]). Still, is it possible that this equivalence may be utilised to

make proving equality of two circuits in ZX more efficient?

We find that the construction done by Zanasi et al. [13] is more generic than merely

applying to the PROP of matrices and LinRelZ. Given a category with biproducts,

every object has a unique bialgebra associated with it. To see this, consider Example

2.3.3, where we show how in a category with products every object has a unique

comonoid associated with it. By duality, we know that when a category has coproducts,

every object must have a unique monoid with respect to the coproduct. Recall that we

may define a bialgebra (B,µ, e, δ, ϵ) as a monoid (B,µ, e) and comonoid (B, δ, ϵ) such

that δ : B → B ⊗B and ϵ : B → I are monoid homomorphisms. To see this, note the

similarities between the homomorphism equations and the bialgebra equations

=

=

=

=

ϕ =

M

N

ϕ ϕ

M

N

MM

N
=ϕ

N

M

When a category has products then the comonoid must be natural. This means

that every morphism in the category must act as a comonoid homomorphism. The

same is true for categories with coproducts with respect to the canonical monoid. In

particular, this means that in a category with biproducts, the comonoid must be a

monoid homomorphism. Hence, in a category with biproducts, every object has a unique

bialgebra. Since each bialgebra B is unique for each object, we see that both Bop and

Bσ must be equal to B. Hence, the bialgebra must be commutative and cocommutative.
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This ends up making the category enriched in commutative monoids. To see this,

recall how we defined the convolution algebra in Definition 2.5.5. Every morphism in

this category is a bialgebra morphism, so the entire category is enriched in commutative

monoids.

The bialgebra becomes a Hopf algebra if and only if this category is enriched in

abelian groups. To see this, note that when we have a category with biproducts such

that each object is a Hopf algebra, the antipode acts as an inverse operator we see

in Definition 2.5.5. For the other direction, suppose that we have a category C with

biproducts that is enriched in abelian groups. Then for each object B, the homset

C(B,B) is a group. Set the antipode of B to be -1B. It follows that B is therefore a

Hopf algebra.

Finally, if this category is regular, then we may take the category of internal relations

(via Carboni and Walters [16]), then the comonoid will become a Frobenius algebra.

Since every Hopf algebra that is Frobenius is a Hopf-Frobenius algebra, via Corollary

5.2.10, we find that in such a category, every object has a unique graph-like Hopf-

Frobenius algebra. Every abelian category has biproducts, is enriched in abelian groups,

and is regular. Hence, the category of relations of any abelian category has this structure.

This work was explored in unpublished work by Spivak and Fong [58].

It was shown by Zanasi et. al. [13] that since the morphisms of LinRelZ are

subspaces, we may describe the kernel and image of morphisms in the language of

graph-like Hopf-Frobenius algebras. This was expanded by Spivak and Fong, where

they showed that it was possible to prove theorems about abelian categories using this

language. It remains an open question on how much further can we take this work? It

also suggests that it may be possible to prove theorems about Hopf-Frobenius algebra

using abelian categories.

156



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�

Appendix A

Appendix

A.1 Graphical Language

In the following section, we shall develop the graphical language that we will use in

most of our proofs. String diagrams were formally defined by Joyal and Street [33], and

we shall use them in this thesis because we find that the algebraic equations of Hopf

algebras and Frobenius algebras become much easier to follow when they are presented

graphically than in their typical symbolic language. We define an open graph (Definition

A.1.1), and from this definition, we may define a string diagram (Definition A.1.5). We

show how to compose string diagrams, and therefore we may construct a category of

string diagrams. This allows us to state Theorem 2.2.5, which says that every term in

the language of monoidal categories has a corresponding string diagram, meaning that

string diagram notation is equivalent to the conventional symbolic language.

We will begin by defining an open graph. We may think of an open graph as a graph

that can be composed with other open graphs. This composition is done by joining

edges together. This is done by allowing the edges to not necessarily be connected

to a vertex - i.e. the source and target functions are partially defined. We may then

compose two open graphs, G1 and G2 by identifying the edges in G1 that don’t have a

target with the edges in G2 that don’t have a source. However, even though this is the

motivation behind how we define open graphs, we shall only formally define composition

after we have formally defined string diagrams.
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Definition A.1.1. An open graph G consists of a set of vertices, V and a set of edges

E, and two partially defined functions, s, t : E → V , the source and target functions.

When we are dealing with multiple graphs, these components will be denoted with the

appropriate subscript – VG, sG for example. Let e ∈ E. When we write a formula using

the term s(e) or t(e), it is to be understood that there is an implicit assumption that

s(e) or t(e) is defined.

In G, there will be a subset of E which are the edges that do not have a source –

i.e. s(e) is not defined. We call this subset the domain of G, and denote it as domG.

We similarly define the codomain of G as the subset of E such that t(e) is not defined,

and denote it as codG. The intuition behind this is that, when we have graphs G1

and G2, such that codG1 is the same as domG2, then we may compose G1 and G2 by

identifying codG1 with domG2.

Let v be a vertex. We set the domain (resp. codomain) of v, denoted dom v (resp.

cod v), as the set of edges e for which s(e) = v (resp. t(e) = v). We do this because

when we later define string diagrams, vertices will be labelled with morphisms, and the

domain and codomain of v will be identified with the domain and codomain of those

morphisms.

A path in an open graph G is a finite sequence p = e1, . . . , en of edges ei ∈ E such

that t(ei) = s(ei+1). We say that s(p) = s(e1), and t(p) = t(en). A cycle is a path

where s(p) = t(p). Given paths p1 and p2 such that t(p1) = s(p2), we may append p1

and p2, denoted p1@p2, by appending their lists. We say that q is a subpath of p if there

exists paths pl and pr such that pl@q@pr = p.

Example A.1.2. We draw open graphs as follows, where edges are drawn as wires,

and vertices are denoted as dots.

e v

v1
e1 e2

e3
v2

e4

v1

e

v2

Above, we have four open graphs. From left to right, the open graphs above are

1. A graph consisting of a single edge, e, and no vertices. The domain and codomain

of the graph will therefore both contain e.
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2. A graph with no edges and a single vertex, v. The set of edges is empty, so the

domain and codomain of the graph is also empty.

3. A graph with two vertices, {v1, v2} and a single edge e such that s(e) = v1 and

t(e) = v2. Since s(e) and t(e) are both defined, the domain and codomain of the

graph will be empty.

4. A graph with two vertices, {v1, v2} and four edges, {e1, e2, e3, e4}. The source and

target functions are defined

t(e1) = t(e3) = v1 t(e2) = t(e4) = v2

s(e3) = v2 s(e2) = v1

Since t(e) is defined for all edges e, the codomain of the graph will be empty.

However, both s(e1) and s(e4) are undefined, so dom = {e1, e4}.

Note how in the rightmost graph we have a cycle – the path e2, e3 is a cycle, since

s(e2) = t(e3) = v1.

Definition A.1.3. Let G be an open graph. We define a relation ∼ on the set V + E,

where

v ∼ e if s(e) = v or t(e) = v

We then take the transitive, symmetric and reflexive closure of the above relation. We

say that if x ∼ y, then x is connected to y. The set of connected components of G is the

set of equivalence classes generated by ∼.

For example, if we consider the following diagram as a single graph

then the above graph contains 3 connected components.
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Lemma A.1.4. The connected components of an open graph either contain a vertex,

or are a single edge e with both s(e) and t(e) undefined.

Proof. Let G be an open graph. Suppose that we have connected component c, and c

does not contain a vertex. A connected component is an equivalence class of V + E,

and c is non empty, c must only contain edges. Let e be an edge in c. If s(e) or t(e)

were defined, then c would contain a vertex. Hence, there is no d in c such that e ∼ d,

other than d = e. Hence we have proven our result.

Definition A.1.5. Let C be a symmetric monoidal category. A string diagram over C

is an open graph G such that

1. The sets domG and codG have a total order,

2. The sets dom v and cod v have a total order for each v ∈ V ,

3. There are no cycles in G,

4. We equip G with a function that assigns each edge e ∈ E to some object O(e) in

C . We say that e is labelled by O(e).

5. Let v ∈ V , and set

D(v) :=
⊗

e∈dom v

O(e), and C(v) :=
⊗

e∈cod v
O(e).

such that if dom v is empty, then D(v) = I. Likewise, if cod v is empty then

C(v) = I. We equip G with a function that maps each v ∈ V to some M(v) ∈

C(D(v), C(v)). We say that v is labelled by M(v).

We denote the set of string diagrams over C as SD(C).

Let us define functions D,C : SD(C) → objC⋆, where objC⋆ is the set of finite lists

of objects of C. We denote elements of objC⋆ as bold letters (i.e. A) or as a list of

objects (i.e. [A, . . . , C]). Recall that domG is an ordered set of edges, e1 < . . . < en.

The function D(G) is defined as the list [O(e1), . . . , O(en)]. Likewise, C(G) is the list

[O(e′
1), . . . , O(e′

m)] where e′
1 < . . . < e′

m are the edges in codG. We denote that a graph
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has D(G) = A and C(G) = B by writing G : A → B. We note that by using morphism

notation, we could conceivably call both domG and D(G) the domain of G. However,

in this thesis, we shall stick to calling domG the domain of G.

Remark A.1.6. In this thesis, we will be using string diagrams to reason about

symmetric monoidal categories. It is shown in Selinger [55] that it is possible to use

an alternate definition of a string diagram to talk about compact closed categories

(Definition 2.3.9) and traced monoidal categories (Definition 3.0.3). In this thesis, we

will refer to compact closed categories and traced monoidal categories, but we will not

change our definition of string diagram. Instead, we will treat them in a similar manner

as other equational theories, as in Definition 2.2.6.

Definition A.1.7. In general we will depict string diagrams in the following manner

• Edges are depicted as wires, and vertices are depicted as shapes (i.e. boxes or

circles).

• If edge e has s(e) = v, then the wire depicting e will be drawn going into the top

of the shape depicting v. Likewise, if t(e) = v, then e is drawn coming from the

bottom of v.

• When e ∈ domG, then e will be drawn emerging from the top of the picture.

Likewise, for all e ∈ codG, e is drawn going into the bottom of the picture.

• The order of domG is depicted as the order in which the edges are drawn from

left to right. So if ei < ej , then the place that ei emerges from will be to the left

of ej . Similar conventions hold for codG, dom v and cod v, where if ei < ej , then

the place that ei emerges from or descends to will be to the left of ej .

• If O(e) = A, then in general we will write A next to the side of e. However, we

will avoid doing this when O(e) = A for all edges e.

• If M(v) = f , then we will typically write f in the centre of the shape depicting v.

An exception to this is that we will occasionally fill the shape depicting v with a

colour. In this case, we will make it clear that M(v) = f in another manner. For
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example, in Definition 2.3.1, we have a multiplication map µ : H ⊗H → H, and

we explicitly state that we are setting µ = .

Example A.1.8. Let f : A → B⊗C, g : B⊗A → D and h : I → E⊗F be morphisms

in C. Consider the following diagram

f

g

AA

B C

C D

h

E F

This is the string diagram that represents the morphism term

((1C ⊗ g) ◦ ((σB,C ◦ f) ⊗ 1A)) ⊗ (σE,F ◦ h)

We may infer from the above picture how the string diagram is defined. It is clear that

this is a string diagram G : [A,A] → [C,D,E, F ]. Edges are represented by wires, so

we have 7 edges, e1, . . . , e7. Boxes represent vertices, so we have three vertices, v1, v2

and v3. The source and target functions are defined

t(e1) = v1 t(e2) = t(e4) = v2

s(e2) = s(e3) = v1 s(e5) = v2 s(e6) = s(e7) = v3

The dom and cod sets have orders

domG : e1 < e4 dom v1 : e1 dom v2 : e2 < e4

codG : e3 < e5 < e6 < e7 cod v1 : e2 < e3 cod v2 : e5 cod v3 : e7 < e6

Finally, the labelling functions are defined as

O(e1) = O(e4) = A O(e2) = B O(e3) = C O(e5) = D O(e6) = E

O(e7) = F
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and

M(v1) = f M(v2) = g M(v3) = h

Remark A.1.9. Notice how in the previous example, how well the graphical presentation

captures the string diagram. Instead of defining our string diagrams explicitly, as we

did in Example A.1.8, we will instead simply draw the picture of the string diagram,

and infer from the picture what the string diagram is.

Definition A.1.10. Let G : A → B and H : C → D be string diagrams over C. The

parallel composition of G and H, is denoted G⊗H : A@C → B@D where @ denotes

the concatenation of lists. The set of edges of G⊗H is EG + EH , the set of vertices

is VG + VH , and the labelling functions are OG + OH and MG + MH . The order on

domG⊗H and codG⊗H is defined such that

e ≤ e′ if and only if


e, e′ ∈ EG and e ≤ e′ in codG or domG

e, e′ ∈ EH and e ≤ e′ in codH or domH

e ∈ EG and e′ ∈ EG

The source and target functions are defined as expected, where sG⊗H := sG + sH and

tG⊗H := tG + tH . Following from Definition A.1.7, we depict G⊗H as G parallel to

the left of H.

Lemma A.1.11. Let G : A1 → B1, H : A2 → B2 and S : A3 → B3 be string

diagrams. Then

1. (S ⊗G) ⊗H = S ⊗ (G⊗H) up to isomorphism of coproducts

2. G⊗H : A1@A2 → B1@B2 is a string diagram.

Proof. 1. This follows immediately from the definition of parallel composition. For

example, the set of edges on the left hand side of the equation is (ES +EG) +EH ,

while the set of edges on the right hand side is ES + (EG + EH). These sets are

equal up to isomorphism of coproducts. The same holds for the set of vertices,

the source and target functions, and the labelling functions.
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2. As we have shown what the vertices and edges are, how the source and targets

are defined, and what the orders are. It is clear how the type of G ⊗ H is

G⊗H : A@C → B@D. Hence, all we need to show is that there are no cycles in

G⊗H.

Suppose that there exists a cycle p = e1, . . . , en in G ⊗ H. Without loss of

generality, suppose that e1 is G. Since there are no cycles in G, there must be

some ei in p that is in H. This implies that there is some ej with s(ej) ∈ VG and

t(ej) ∈ VH . However, this is impossible. Hence, there are no cycles in G⊗H.

Example A.1.12. Consider the following string diagrams

f

g

f ′

g′
G := H :=

The parallel composition of these two string diagrams is depicted

f

g

f ′

g′
G⊗H =

Definition A.1.13. Let G : A → B and H : B → C be string diagrams over C. Each

edge in codG has a corresponding member in the list B, as does each edge in domH.

Hence, there exists an order preserving isomorphism ψ : codG ∼= domH such that the

following diagram commutes

codG C

domH

OG

ψ
OH

The sequential composition of G and H is denoted H ◦G where

• The set of vertices is VG + VH
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• The set of edges is the union of EG and EH where we identify codG and domH

via the isomorphism ψ. We may equivalently define it as the pushout EG ∪EH in

the diagram

codG EH

EG EG ∪ EH

ψ
⌜

• The source and target functions are defined as expected, where the source function

is defined as

sH◦G(e) =


sG(e) if e ∈ EG

sH(e) if e ∈ EH

and the target function is defined in a similar manner. In particular, we are

identifying the edges in codG and domH, and for any edge e in these sets, if

sG(e) is defined, then sH(e) is not defined, and if sH(e) is defined, then sG(e) is

not defined. The same holds true for the target function.

• The labelling function for the vertices is MG +MH .

• For the labelling function of the edges, recall that for e ∈ codG, OG(e) = OH(ψ(e)).

We are identifying the edges in codG and domH, so it makes sense to define the

labelling function as

OH◦G(e) :=


OG(e) if e ∈ EG

OH(e) if e ∈ EH

• The orders of domains and codomains are as expected, where domH ◦G = domG,

codH ◦G = codH, and

domH◦G(v) :=


domG(v) if v ∈ VG

domH(v) if v ∈ VH

and similarly for codH◦G.
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Lemma A.1.14. For X = [X1, . . . , Xn], set 1X as the string diagram with n edges,

e1 < . . . < en, and no vertices, where O(ei) = Xi. Then for all string diagrams

G : A → B, we have

1B ◦G = G = G ◦ 1A

Proof. In G ◦ 1A, since cod 1A is the same as the edges of 1A, we are simply identifying

all of the edges of 1A with domG. Hence the composition G◦ 1A will be equal to G.

Example A.1.15. Consider the following string diagrams

f

g

AA

B C

C D

h

C D

A

f

B C

The sequential composition of the above diagrams would be

f

g

AA

B C

h
A

f

B C

DC

Lemma A.1.16. Consider string diagrams G, H, and S in C. Then

1. H ◦G is a string diagram

2. S ◦ (H ◦G) = (S ◦H) ◦G up to equality of colimits

where the above terms are defined.

Proof. 1. The definition tells us how the structure of the string diagram is defined,

we only need to prove that there are no cycles in H ◦ G. Let p = e1, . . . , en be

a path in H ◦ G, and suppose that p is a cycle. Without loss of generality, we

suppose that that s(e1) = t(en) is in VG. If p is contained entirely within G or H,
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then p cannot be a cycle as G is a string diagram. Hence, since v ∈ VG, there is

exists some e in p such that e ∈ EH .

If it were the case that en ∈ codG = domH then t(en) ∈ VH . Hence, en ̸∈ codG =

domH. Let p′ be the path from e to en that is a subpath of p. Then there is

some edge f in p′ such that s(f) ∈ VH and t(f) ∈ VG. This implies that f ∈ EG

and EH . Given the definition of sequential composition, f ∈ domG = codH.

However, this would imply that s(f) ∈ VG and t(f) ∈ VH . This is a contradiction,

so p must not be a cycle.

2. Both sides of the equation are equal as follows. The set of vertices is VG+VH +VS .

The set of edges of S ◦ (H ◦G) is (EG ∪EH) ∪ES , which is a pushout. Therefore,

this is equal to EG ∪ (EH ∪ ES) up to equality of colimits. The rest of the proof

follows from similar reasoning.

Lemma A.1.17. We may define a strict monoidal category of string diagrams over C,

denoted SD(C). The objects of this category are finite lists [A1, A2, . . . , An] of the objects

of C. A morphism G : [A1, . . . , An] → [B1, . . . , Bm] is a string diagram G (Definition

A.1.5) in C where

• There are n edges, e1 < . . . < en in domG, with O(ei) = Ai.

• Likewise, there are m edges, e′
1 < . . . < e′

m in codG, with O(ei) = Bi.

The identity morphism 1 : [A1, . . . , An] → [A1, . . . , An] is the string diagram with no

vertices and n edges such that e1 < . . . < en in both domG and codG and O(ei) = Ai.

A1 · · · An

A1 · · · An

· · ·

Composition of morphisms is sequential composition of string diagrams (Definition

A.1.13). The monoidal product of two objects is the concatenation of lists, and the

monoidal product on morphisms is parallel composition (Definition A.1.10), where the

monoidal unit object I is the empty list.
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Proof. As we showed in Lemma A.1.14, for each object in the category there is an

identity morphism. In Lemma A.1.16, we have shown that the composition of two

string diagrams gives us another string diagram, and that this composition is associative.

Hence, this forms a category.

Now all we need to do is show that the category is strictly monoidal. As we mentioned

above, the monoidal product is defined where the action on objects is concatenation of

lists, and the action on morphisms is parallel composition. We need to show that this

action is well defined, is functorial, and that it is unital and associative.

We showed that parallel composition results in another string diagram and is

associative in Lemma A.1.11. The fact that it is unital is trivial, as the unit is the

empty list is clearly unital with respect to concatenation.

We now need to show that, for string diagrams G,H,G′, H ′, then

(G ◦G′) ⊗ (H ◦H ′) = (G⊗H) ◦ (G′ ⊗H ′)

when the above equation is defined.

It is clear that the set of vertices for both sides of the equation is VG+VH +VG′ +VH′ .

For the set of edges, the left side of the equation is (EG ∪ EG′) + (EH ∪ EH′), and the

right side is (EG + EH) ∪ (EG′ + EH′).

First off, note that for (G⊗H) ◦ (G′ ⊗H ′) to be defined, it must be true that the

codomain of G⊗H is codG+ codH, which will be equal to domG′ + domH ′. Recall

that we may define EG ∪ EG′ and EH ∪ EH′ as pushouts

codG codH

EG EG′ EH EH′

EG ∪ EG′ EH ∪ EH′

We may take the coproduct of these two pushouts, and we find the set of edges on the
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left side of the equation.

codG+ codH

EG + EH EG′ + EH′

(EG ∪ EG′) + (EH ∪ EH′)

However, note that the codomain of G⊗H is codG+ codH. Hence, it is also true that

(EG + EH) ∪ (EG′ + EH′) is the pushout of the above diagram. Hence,

(EG ∪ EG′) + (EH ∪ EH′) = (EG + EH) ∪ (EG′ + EH′)

A similar proof tells us that the labelling functions M and O, and the source and target

functions are equal. Hence, we see that ⊗ is functorial.

Remark A.1.18. We note that since sequential and parallel composition are defined

by colimits, they are unique only up to isomorphism p to coproduct. It is possible to

define composition and the monoidal product up to equality on the nose by defining a

choice function for the coproduct. However, we will ignore this for the sake of notational

simplicity.

Definition A.1.19. A monoidal signature D (referred as a tensor scheme in Joyal and

Street [33]) is a pair of sets, objD and morD with functions dom, cod : morD → objD∗,

where objD∗ is the set of finite lists over objD. We denote the empty list as [].

Let C be a small symmetric monoidal category. An interpretation of D to C, denoted

K : D → C is a pair of functions, K0 : objD → objC and K1 : morD → morC such that

given f : [A1 . . . An] → [B1 . . . Bm] ∈ morD, the action of K1 on f has type

K1f : K0A1 ⊗ . . .⊗K0An → K0B1 ⊗ . . .⊗K0Bm

We denote x@y as the concatenation of lists. We say that the set of free morphism

terms on D is the set morD⊗ where the elements are generated by

• The set morD.
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• The set {1x : x → x}, indexed over x ∈ objD∗

• The set {σx,y}, indexed over x, y ∈ objD∗, where σx,y has type x@y → y@x.

• The operation ⊗, where f ⊗ g has type dom(f)@ dom(g) → cod(f)@ cod(g)

• The operation ◦, where f ◦ g is defined only if cod(g) = dom(f), in which case it

has type f ◦ g : dom(g) → cod(f).

The free symmetric monoidal category on D, M(D), is the category where the set

of objects is objD∗, and morphisms are the free morphism terms on D, quotiented such

that

(f ◦ g) ◦ h = f ◦ (g ◦ h) 1cod(f) ◦ f = f = f ◦ 1dom(f)

(f ⊗ g) ⊗ h = f ⊗ (g ⊗ h) 1x ⊗ 1y = 1x@y

(f ◦ g) ⊗ (f ′ ◦ g′) = (f ⊗ f ′) ◦ (g ⊗ g′) 1[] ⊗ f = f = f ⊗ 1[]

(1y ⊗ σx,z) ◦ (σx,y ⊗ 1z) = σx,y@z (σx,z ⊗ 1y) ◦ (1x ⊗ σy,z) = σx@y,z

σy,x ◦ σx,y = 1x@y

where [] is the empty list. This gives us a strict symmetric monoidal category, with ◦ as

composition and 1x as the identity morphism. The monoidal product of objects x and

y is x@y, the monoidal product of morphisms is ⊗, and the monoidal unit is the empty

list, [].

Lemma A.1.20. Given monoidal signature D, there exists an interpretation K : D →

M(D) such that if there is an interpretation L : D → C, then there exists a unique strict

monoidal functor U : M(D) → C such that the below diagram commutes.

D M(D)

C

K

L
U

We call K the canonical interpretation of D
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Proof. There are two parts to this proof – we must first define K, then for any given L,

we must define U . To define K, we define the object map K0 and the morphism map

K1.

Since objM(D) = objD∗, K0 has type K0 : objD → objD∗, and is defined as

K0(A) = [A], the single element list. We have morM(D) = morD⊗, and morD is

contained within morD⊗. Hence, K1 : morD → morD⊗ is defined as K1(f) = f . We

see that this fulfils the definition of an interpretation, as if we suppose that f ∈ D has

type f : [A1, A2, A3] → [B1, B2], then

K(f) : K0(A1)@K0(A2)@K0(A3) → K0(B1)@K0(B2) = f : [A1, A2, A3] → [B1, B2]

in D.

Suppose that we have an interpretation L : D → C. Our goal is to define a functor

U : M(D) → C that fulfils the above property and show that it is unique. We shall show

that U must defined as U([A1, . . . , An]) := LA1 ⊗ . . .⊗ LAn for all objects A ∈ morD,

and

U(f) := L(f) for all f ∈ morD (A.1)

U(1x) := 1Ux for all x ∈ objD∗D (A.2)

U(σx,y) := σUx,Uy for all x, y ∈ objD∗D (A.3)

U(t ◦ t′) = Ut ◦ Ut′ for all t, t′ ∈ morD⊗D (A.4)

U(t⊗ t′) = Ut⊗ Ut′ for all t, t′ ∈ morD⊗D (A.5)

For U : M(D) → C to be defined with the above property, we see that the action

on objects must be UK(A) = L(A) for each A ∈ objD. Since K(A) = [A], we see that

U([A]) = L(A) for all single element lists.

Since U is strict monoidal, then U(x@y) = Ux⊗ Uy. Hence, we see that

U([A1, . . . , An]) := LA1 ⊗ . . .⊗ LAn.

Therefore, if a strict monoidal functor exists that fulfils the above property, then there
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is only one possible way that U ’s action on objects may be defined.

For a similar reason, we see that U(f) = UK(f) = L(f) for all f ∈ morD. Since

U is a strict functor, we also require that Equations A.2 through A.5 hold. Hence, we

have shown that U exists and is unique.

Theorem 2.2.5. Let C be a strict symmetric monoidal category. We may see C as a

monoidal signature in the obvious way. Then the category of string diagrams over C ,

denoted SD(C), is isomorphic to the free symmetric monoidal category on C, denoted

M(C). We denote the canonical interpretation from C to SD(C) as _̂.

A.2 LR and RL Integral Hopf Algebras

In this section, we cover how any statement about LR integral Hopf algebras implies an

equivalent one about RL integral Hopf algebras.

Definition A.2.1. Let G be a string diagram of C, f a morphism in C and let

VG(f) ⊆ VG be the subset of vertices v such that M(v) = f . Let g be a morphism with

the same type signature as f . We define the string diagram G[g/f ] as the same string

diagram as G, except for each vertex v in VG(f), we have M(v) = g. We say that in

G[g/f ], we have substituted g for f . For example, let f : A → A ⊗ A, g : A ⊗ A → B

and h : I → A be morphisms in C. In the following figure

f

g

f

→ h

g

h

A

A

B B

A A A

A
A

A

A

A

we have substituted 1A ⊗ h for f .

Definition A.2.2. Let S be a string diagram in SD(C) such that for every edge e in

S, we have O(e) = A for some A ∈ C. We define the horizontal dual of S as the string

diagram H(S) where

• The set of vertices and edges of H(S) are the same as those in S. Likewise, the

source and target functions are the same for both H(S) and S, and the labelling
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functions O and M are the same.

• The edges in domH(S) are the same as the edges in domS, except that the order

is reversed. The same is true for codH(S).

• For vertex v in H(S), the edges in dom v in are the same as the edges dom v in S,

except that the order is reversed.

For example, consider the following string diagram

f

g
h

The horizontal dual of this string diagram is

f

g
h

Let S = T be an equation in GRE(C). The horizontal dual of S = T is H(S) = H(T ).

We say that an equation is horizontally self-dual when it is equal to its horizontal dual.

Likewise, a set of equations may be horizontally self-dual if when we take the horizontal

dual of each of the equations, we get back equations that are equivalent to the original

set of equations. When we use a horizontally self-dual set of equations to form a proof,

then the proof will be horizontally self dual.

For example, consider the monoid axioms

= = = .

Note how, for the associativity axiom, neither string diagram is self-dual, but the

horizontal dual of the equation is still the associativity axiom. Likewise, the unit

axiom contains two equalities, neither of which are horizontally self-dual, but the set of

173



�
D
R
A
F
T
�
O
ct
o
b
er

3
,
2
0
2
4
�

Appendix A. Appendix

equalities are.

As such, the monoid axioms as horizontally self-dual. This implies that any proof

for an arbitrary monoid will be horizontally self-dual. We see that the same holds for

comonoids.

When we look at the defining equations of Frobenius algebras, bialgebras and Hopf

algebras, we find that they are all similarly horizontally self-dual.

Lemma A.2.3. Let t be a true statement about an arbitrary LR integral Hopf algebra.

If we take the horizontal dual of t, then substitute left cointegrals for right cointegrals,

and right integrals for left integrals, then we shall have a true statement about arbitrary

RL integral Hopf algebras.

Proof. Using the notation for substitution, we would write the above construction on t

as H(t)[ / ][ / ], and we shall refer to this as the mirror of t.

Let the axiom that defines left cointegrals and right integrals be denoted LC and

RI respectively. We see that H(LC)[ / ][ / ] and H(RI)[ / ][ / ] are equal to

==

In other words, they are equal to the axioms of right cointegrals and left integrals

respectively.

Recall that the axioms of Hopf algebras are vertically self dual. Hence, if we mirror

the axioms of an LR integral Hopf algebra, then we get the axioms of an RL integral

Hopf algebra. Thus, we have proven our result.
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