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Abstract

This thesis treats finite element methods for Stokes and Oseen equations on highly

anisotropic meshes. The stability of the discrete saddle-point problem may be affected

in a negative way by the anisotropies in the mesh P. The reason is a required com-

patibility condition (inf-sup condition) between the discrete velocity space V P and the

pressure space MP.

We identify subspaces G ⊂ MP and derive uniform inf-sup conditions for the pair

V P × G. That is, the inf-sup constant βG is independent of properties of the mesh.

These conditions are shown to be equivalent to the deficiency

sup
v∈V P

(div v, q)Ω

|v|1,Ω
≥ βG‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω for all q ∈MP ,

where ΠG : MP → G is a surjective projection.

The definition of the spaces G ⊂MP relies on a set of constraints. Using these results

we propose uniformly stable mixed methods, either by using the pairs V P × G (i. e.,

strongly imposing the constraints) or by adding a stabilisation term to the formulation

using V P × MP (i. e., weakly imposing the constraints). The proposed stabilisation

terms only act on the non-inf-sup stable part of the pressure, they vanish for members

of G, and they are block diagonal. In addition, these properties ensure a local mass-

conservation property also of the stabilised methods.

The above claims are confirmed by several numerical experiments.

viii



Chapter 1

Introduction

In this thesis we study (stabilised) Finite Element Methods (FEM) applied to problems

in fluid mechanics on anisotropic meshes, that is, meshes containing long and thin cells.

Although the solution u of the problem is unknown, some of its physical properties may

be known. Suppose, for example, that u is the velocity of water flowing through a pipe.

At the boundary of the pipe, the magnitude of the velocity |u| is zero, whereas towards

its centre |u| may increase rapidly. The velocity u is almost constant in the direction

of flow and therefore the approximation error in this direction will be very small. By

using meshes with long and thin cells we can exploit this fact and save computational

effort when computing a discrete approximation uh of u.

A general incompressible flow problem is given by the Navier–Stokes equations:

Find a velocity u and a pressure p such that

∂tu− ν∆u+ u · ∇u+ σu+∇p = f and divu = 0 (NS)

inside a domain Ω, for suitable parameters ν, σ, a body force f and subject to boundary

conditions.

Here the phrase “suitable parameters” refers loosely to parameters such that a unique

solution exists. One of the main references for this problem is the book by Girault and

Raviart [GR86GR86], where more precise assumptions on the parameters are given. The

solution of (NSNS) is normally approximated by solving linearised sub-problems again

and again in an iterative fashion. The iterative process is independent of anisotropies

of meshes if the sub-problems can be solved independently. Therefore, we may restrict

our attention to Ω ⊂ R2 and sub-problems of the type:

For a given source f ∈ L2(Ω)2, find u and p such that

−ν∆u+ b · ∇u+ σu+∇p = f in Ω ,

divu = 0 in Ω ,

u = 0 on ∂Ω ,

(1.1)

1



1. Introduction

where ν > 0 and σ ≥ 0 are non-negative constants and b serves as a parameter.

When b = u, problem (1.11.1) is the stationary case of (NSNS), that is, ∂u/∂t = 0. For

b ∈ L∞(Ω)2, div b = 0, (1.11.1) is the Oseen problem, which arises, for example, from a

linearisation of (NSNS) when b is an approximation of u. And, for b ≡ 0 it resembles the

(generalised) Stokes problem, which also arises when the non-linear term in (NSNS) can

be ignored, for example if the velocity is small compared to the parameters ν and σ.

The remainder of this chapter is structured as follows. We first set the necessary no-

tation and recall sufficient conditions to solve problems of type (1.11.1). These conditions

will also provide some structure for the subsequent literature review. Afterwards, an

outline of the thesis is given.

1.1. Context for Literature review

We include this section for the sake of completeness and to motivate some detailed

statements in the later review of existing literature. We will assume basic knowledge

on FEMs, see for example [Cia78Cia78,BS08BS08] for a thorough introduction to the topic.

We start with some notation, a weak formulation of (1.11.1), and an existence result

which will be useful to refer to in the literature review. Hereafter, we use the standard

notation for Sobolev spaces. The notation is aligned with [GR86GR86], for more details

we also refer to [Ada75Ada75]. Let ω ⊆ Ω and let L2(ω) be the set of square integrable

functions on ω with the inner product denoted by (u, v)ω :=
∫
ω uv dx and the corre-

sponding norm ‖v‖20,ω := (v, v)ω. Moreover, we use the average free subspace given by

L2
0(ω) :=

{
q ∈ L2(ω) : (1, q)ω = 0

}
.

For ` ∈ N+, H`(ω) ⊂ L2(ω) denotes the usual Sobolev space containing functions

whose weak (or distributional) derivatives exist up to order ` and lie in L2(ω). The

functions in H1
0 (ω) belong to H1(ω) and vanish on the boundary ∂ω. We denote the

norm and seminorm in H`(ω) by ‖·‖`,ω and |·|`,ω, respectively. Vector-valued functions

and their spaces are given a bold-faced symbol, e. g. v ∈ H1
0(ω) =

[
H1

0 (ω)
]2

. Norms

and inner products for functions in L2(ω)2 and L2(ω)2×2 are defined component-wise;

the same notation is used.

In (1.11.1) the pressure p only appears as a gradient. Therefore, the solution is only

unique up to a constant. This is normally solved by looking for a pressure in L2
0(Ω)

and later, if desired, adding the average of the atmospheric pressure to the obtained

solution.

Now we are in the position to state the weak formulation of (1.11.1):

2



1. Introduction

Find (u, p) ∈ V ×M := H1
0(Ω)× L2

0(Ω) such that

B(u, p;v, q) = (f ,v)Ω for all (v, q) ∈ V ×M , (1.2)

where the bilinear form B is defined by

B(u, p;v, q) := a(v,v)− (p,div v)Ω − (q,divu)Ω , (1.3)

with

a(u,v) := ν(∇u,∇v)Ω + (b · ∇u,v)Ω + σ(u,v)Ω . (1.4)

We note that to obtain this formulation we integrated by parts over the domain Ω,

that is, we applied Green’s formula (see [GR86GR86]). This formula is proven to be valid

on domains whose boundary is Lipschitz continuous, which, for Ω ⊂ R2, means that

the boundary ∂Ω can be locally parametrized by a Lipschitz continuous function. A

more general definition can be found in [GR86GR86,Gri85Gri85] . All domains in this thesis have

a Lipschitz continuous boundary.

We say a problem is well-posed if it has a unique solution. The following result

restates [GR86GR86, Corollary I.4.1] and gives criteria that are sufficient for the existence

of a unique solution of (1.21.2).

Corollary 1.1. Let the bilinear form a(·, ·) be V -elliptic, that is, there is γ > 0 such

that

a(v,v) ≥ γ‖v‖2V = γ‖v‖21,Ω for all v ∈ V . (1.5)

Then, problem (1.21.2) is well-posed if and only if

inf
q∈M

sup
v∈V

(q,div v)Ω

‖q‖0,Ω|v|1,Ω
≥ βΩ > 0 . (1.6)

Condition (1.61.6) has been proven to hold, see also [Gal94Gal94, Lemma III.3.1], and is

called inf-sup condition, or LBB condition, where LBB are the initials of the authors

Ladyzhenskaya, Babus̆ka and Brezzi, who independently proposed the condition. Fi-

nally, the Poincaré inequality ‖v‖0,Ω ≤ CΩ|v|1,Ω (see [BS08BS08, Sec. 10.6]) guarantees the

validity of (1.51.5) even for σ = 0 and div b = 0.

Let us now state a finite element formulation of (1.21.2). To this end we define some

terminology. A finite element method seeks a solution in a trial space and tests the

equality for every function in a test space. If trial and test spaces coincide, then

the method is called Galerkin method , otherwise it is called Petrov–Galerkin method .

3



1. Introduction

Now, we suppose that Ω ⊂ R2 is an open, polygonal and bounded domain covered by

a partition P consisting of geometrically simple and non-overlapping cells (a precise

definition is given later in Section 2.12.1). Furthermore, let V P ⊂ V and MP ⊂ M be

discrete, finite-dimensional, spaces associated with P. Then, a Galerkin method for

(1.21.2) reads:

Find (uP, pP) ∈ V P ×MP such that

B(uP, pP;v, q) = (f ,v)Ω for all (v, q) ∈ V P ×MP , (1.7)

where the bilinear form B is defined as in (1.31.3).

Unlike an elliptic problem, (1.71.7) is not automatically well-posed by choosing sub-

spaces V P ⊂ V and MP ⊂ M . This is one source of instability that may occur when

solving problem (1.71.7). At this point we elaborate on this and other sources in form of

a few comments:

• The existence of the unique (discrete) solution of (1.71.7) follows from Corollary 1.1Corollary 1.1,

if the discrete pair V P ×MP satisfies the conditions in Corollary 1.1Corollary 1.1. It is note-

worthy that (1.51.5) remains valid for any subspace V P ⊂ V ; in particular for any

partition P. However, the discrete equivalent of (1.61.6), namely

inf
q∈MP

sup
v∈V P

(q,div v)Ω

‖q‖0,Ω|v|1,Ω
≥ βP , (1.8)

imposes implicit constraints on the partition P and the relation between V P and

MP. This is very important for the scope of the present thesis.

Existing results concerning the behaviour of inf-sup constants and how to circum-

vent condition (1.81.8) are presented in Sections 1.2.11.2.1 and 1.2.21.2.2. Additionally, the

choice of the space V P×MP has an impact on how well the divergence constraint

in (1.11.1) is satisfied, cf. Section 1.2.41.2.4.

• Another source of an unsatisfactory behaviour of a finite element method may

be caused by dominating convection (ν � ‖b‖∞) or reaction (ν � σ). Such

behaviour is mainly observed for high Reynolds number flows, which is a case of

practical interest. A few results on this point are listed in Section 1.2.31.2.3.

• Furthermore, the approximation qualities of a discrete solution may require some

regularity of the partition P, because the proof relies on properties of interpolation

operators which may require a maximum angle condition. We cover this point

and its literature review in Section 2.2.32.2.3, as more detailed definitions are required.

The desire for an LBB constant βP in (1.81.8) to be independent of the partition P has

4



1. Introduction

two motivations. The first one, is given by the worst case error estimate for the Stokes

problem. That is, if the inf-sup condition (1.81.8) is satisfied, then a standard a priori

error estimate is

|u− uP|1,Ω+‖p− pP‖0,Ω ≤
(

1+
C

β2
P

){
inf

(vP,qP)∈V P×MP

|u− vP|1,Ω+‖p− qP‖0,Ω
}

, (1.9)

see for example [ESW14ESW14] or [BF91BF91, Sec. II.2.2]. The negative power of βP in this

estimate is the reason why a βP independent of mesh properties, such as size and shape

of the elements of Partition P, is desirable.

The second motivation is that βP affects the condition number of the discrete sys-

tem to be solved. For instance, the smallest eigenvalue of the discrete Stokes system

behaves as β2
P, whereas its largest eigenvalue is independent of the partition (bounded

by the continuity constant of the bilinear form). Hence, the condition number of the

discrete system is related to β−2
P , which is a strong inconvenience when βP is small.

For a detailed discussion on the preconditioning issue for stabilised low order meth-

ods and symmetric indefinite systems we refer to [Sil94Sil94, WS93WS93, SW94SW94, SS11SS11] and for a

comprehensive introduction to the iterative solving process to [ESW14ESW14] or [GS00GS00, pp.

623–639].

1.2. Literature review

In this section we perform a literature review for various sources of instability that

occur when problem (1.71.7) is solved. These sources include inf-sup condition (1.81.8), and

how to circumvent it, dominating convection and mass-conservation.

As observed, when solving (1.71.7) an inf-sup stable pair V P×MP is beneficial, that is,

a pair satisfying (1.81.8) with a positive constant βP independent of mesh properties. We

refer to βP as the inf-sup or LBB constant of the pair V P ×MP. The term spurious

(pressure) mode refers to a (basis) function, say φs ∈MP, that causes βP to depend

on mesh quantities. Inserting any multiple of φs into (1.81.8) gives the same inf-sup

constant βP. Therefore, if a spurious mode is to be removed from MP, then a whole

one-dimensional subspace, span {φs} ⊂MP or one degree of freedom (DOF), has to be

removed.

In order to discuss available finite element pairs, we define (discontinuous) spaces

that consist piece-wise of polynomials. To this end, for ` ∈ N and ω ⊆ Ω we introduce

sets of polynomials P`(ω) of (at most) degree ` and Q`(ω) of (at most) of degree ` in

each variable. Furthermore, let P be a conforming partition of Ω into the union of

closed parallelograms or triangles (defined later). Then, we define the scalar-valued
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1. Introduction

spaces

Q`,P :=
{
v ∈ L2(Ω): v|K ∈ Q`(K) ∀K ∈ P

}

and

P`,P :=
{
q ∈ L2(Ω): q|K ∈ P`(K) ∀K ∈ P

}
.

Continuous spaces are given a superscript c, that is, we define Qc
`,P := Q`,P ∩ C0(Ω)

and vector-valued spaces are bold-faced, e. g. Qc
`,P := [Qc

`,P]2. In this thesis we pre-

dominantly use continuous velocity spaces and discontinuous pressure spaces. The

superscript c merely serves to avoid confusion during the literature review. When us-

ing a continuous space we implicitly suppose an appropriate partition, for example Pck,P
can be defined on triangles but not on parallelograms. If we talk about inf-sup stable

pairs and the spaces are defined on the same partition, then the partition symbol is left

out, for instance, the pairs P c
k × Pck and Qc

k × Pk (defined on parallelograms) are not

inf-sup stable.

The aim of the next two sections is to recall inf-sup stable pairs and show methods

available to circumvent the inf-sup condition (1.81.8).

1.2.1. Inf-sup stable pairs

A thorough introduction to inf-sup stable pairs on (shape-) regular meshes and a recent

summary of such pairs may be found in [BBF13BBF13]. We summarise the results most

relevant to us here. For the arguments below it is worth mentioning that on regular

meshes the pairs Qc
k × Qc

k and P c
k × Pck are not inf-sup stable, as can be confirmed

by numerical experiments. The pairs Qc
k × Pk−1 [BM99BM99] and the Hood–Taylor pairs

P c
k ×Pck−1 and Qc

k ×Qc
k−1 are inf-sup stable for k ≥ 2 [Bof94Bof94] and [BBF13BBF13, Sec. 8.8.2].

The latter pairs are also called balanced-order pairs, since the norms in (1.91.9) converge

equally fast.

On anisotropic meshes the situation is more complicated. Here we provide a more

detailed review. First, we cover non-conforming approaches, that is V P 6⊂ V . The

piecewise linear, non-conforming Crouzeix–Raviart element introduced in [CR73CR73] was

in [ANS01ANS01] proven to satisfy (1.81.8) on arbitrary conforming anisotropic meshes consist-

ing of triangles. However, to ensure good approximation properties of the interpolant a

maximum angle condition is assumed, see also [AD99AD99]. Another non-conforming stable

pair is the rotated, non-parametric Q̃1 × P0-element introduced in [RT92RT92]. This pair

was later [BR95BR95] shown to be stable independent of the cell aspect ratio on rectan-

gular, conforming tensor-product meshes. Finally, in [AM08AM08] inf-sup stable pairs on

6



1. Introduction

anisotropic rectangular meshes are defined. This is done, starting from a fixed pressure

space (Pk−1) and a velocity space P k that is enriched by functions belonging to Qk+1

until uniform stability is achieved.

In this thesis we focus on V P ⊂ V . For conforming spaces V P ⊂ V on anisotropic

meshes, a difference of two in the polynomial degree between velocity and pressure

space seems to allow LBB constants independent of local aspect ratios. For example, in

[SS98SS98,SSS99SSS99] theQc
k+1×Qk−1 pair was proven to be uniformly inf-sup stable on meshes

containing edge patches, but corner patches were excluded. If a corner patch is present,

then the LBB constant may depend on a non-local quantity κ (called grading factor

in [SSS99SSS99]), see Figure 1.11.1. The exclusion of corner patches is motivated by experiments

in [SSS99SSS99,AC00AC00,AMR03AMR03]. Furthermore, in [AC00AC00] some spurious pressure modes that

cause βP = C(κ) are identified for Qc
k+1 × Pk−1 and other pairs. This knowledge was

used to construct velocity polynomials of degree κ−1/2 (with κ given by hc/Hc from

Figure 1.11.1), that, when added to V P = Qc
k+1, prevent βP from degenerating. These

polynomials change with κ which complicates the implementation of this approach.

Moreover, in [AN04AN04], the stability of Qc
2×P0 and P c

2×P0 on some anisotropic meshes

is justified. In detail, the assumptions on the partition in [AN04AN04] restrict grading factors

and allow any partition that can be split into a finite number of shape-regular macro

elements where each of the macro elements contains cells stretched in a single direction.

In [BLR12BLR12] a divergence-preserving interpolant on anisotropic meshes is constructed.

Its approximation estimates, however, are not independent of local anisotropies, cf.

[BLR12BLR12, estimate (1.3)], and the grading factors are restricted see [BLR12BLR12, Assumption

1].

hc

Hc

Hc

hc

hc

Hc

Hc

Fig. 1.1. An edge and a corner patch with aspect ratio % = hc/Hc and grading factor
κ = hc/Hc.

In summary, when V P is fixed, then βP is defined by the infimum over MP and

restricting this infimum to any subspace of MP increases βP. On various meshes the

works [SS98SS98, SSS99SSS99, AN04AN04] show that dependencies on local aspect ratios are cured

by a velocity space that is “two polynomial degrees richer“ than the pressure space,

where simultaneous stretching in two spatial directions is bounded. Experiments for the
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1. Introduction

balanced-order pairs Qc
k×Pk−1 (k ≥ 2) show they are not uniformly inf-sup stable, and

hence loose their stability as aspect ratios decrease. Table 1.11.1 shows the behaviours of

the LBB constant that can be expected on anisotropic meshes consisting of rectangles

(for simplicity). The constant βP = C(. . .) may, in general, depend on the aspect ratio %,

or topological parameters κ (e. g. neighbourhood-local grading factor) and polynomial

degree k. The shown dependencies have been either restricted or proven in the cited

publication, for instance the result in the second row is proven for shape-regular meshes

on which % and κ are bounded by constants. In the course of this thesis, it will turn out

that the topological dependency, indicated by κ in Table 1.11.1, is not local (see Chapter 33

and Remark 3.2Remark 3.2 for details).

Table 1.1. The relation between V P ×MP and LBB constants βP

V P ×MP, k ≥ 1 βP Comments

Qc
k+1 × Pk+1 0 consequence of [BM99BM99, Prop. 2.1]

Qc
k+1 × Pk C(%, κ, k) > 0 consequence of [BM99BM99, Prop. 4.1]

Qc
k+1 × Pk−1 C(κ, k) > 0 consequence of [AC00AC00]

None of the approaches [SS98SS98, SSS99SSS99, AMR03AMR03, AN04AN04, AM08AM08, BLR12BLR12] allows corner

patches as in [AC00AC00], or in Figure 1.11.1, right. And the approach of augmenting the LBB

constant proposed in [AC00AC00] imposes difficulties when being implemented.

1.2.2. Circumventing inf-sup conditions

The observations made for inf-sup stable pairs show that equal-order pairs, for ex-

ample P c
k × Pck, are not inf-sup stable. However, for ease of implementation such

pairs are considered desirable. This is why condition (1.81.8) is often circumvented by

penalty/decoupling techniques [GR86GR86, Section I.4.3] or by stabilisation as follows. We

skip penalty approaches here, because it is elaborated in [DB04DB04] that penalty methods

may fail to converge.

An early stabilisation approach is the Galerkin-Least-Squares (GLS) method designed

in [HF87HF87]. One special case is the method using the P c
1 × P0 pair, which is not inf-

sup stable, and penalising jumps of the pressure across all interior edges makes the

discrete problem solvable. This GLS method is included in [HF87HF87], but also analysed

in [SK90SK90]. A simple switch of a sign in the stabilisation term resulted in the Douglas–

Wang method [DJW89DJW89] which has better stability properties as analysed in [FFH92FFH92].

One form of an “incomplete” GLS-stabilised method is the Streamline Upwind Petrov–

Galerkin (SUPG) method introduced in [BH82BH82] for convection dominated flows. If

the pair V P ×MP is not inf-sup stable, then such methods contain a sum of weighted

8



1. Introduction

discrete gradients of the pressure to circumvent (1.81.8), sometimes referred to as pressure-

stabilised Petrov–Galerkin (PSPG) method [HFB86HFB86, JS86JS86]. These methods can be

classified as consistently stabilised methods [BBGS04BBGS04], that is, the stabilisation terms

vanish for the exact solution if it is sufficiently smooth.

Both GLS and SUPG methods use a stabilisation term based on weighted resid-

uals. This causes two main drawbacks. One of them is that the stabilisation term

introduces additional (unphysical) couplings between velocity and pressure. This is

inconvenient because the coupling terms modify the system matrix in many different

places. Furthermore (to paraphrase [BBJL07BBJL07, p. 864]) the physical meaning of a term

in the SUPG-norm is unclear. Another drawback is that the higher-order versions are

not robust with respect to over-stabilisation, which is caused by using inverse inequal-

ities to bound the coupling terms in the proofs. In the case of the Stokes problem,

these inequalities are used when ∆uP 6= 0 (and not in the lowest-order case with

constant coefficients). The methods in their original form were proposed on isotropic

meshes [BH82BH82,HF87HF87] using the diameter hK of a cell K to define the stabilisation pa-

rameters. This works because cells in isotropic meshes are stretched (almost) equally

in each spatial direction. For some anisotropic meshes consisting of triangles the GLS

method for the pair P c
1 × Pc1 is analysed in [MPP03MPP03]. Therein, the stabilisation pa-

rameters are defined using the smallest eigenvalue of the Jacobian matrix JK of the

affine transformation onto the cell K. The SUPG/PSPG method has been extended

in [AKL08AKL08] for continuous equal-order pairs P c
k × Pck on meshes where the Jacobian of

each cell has (block) diagonal form. In the ansiotropic case, the choice of stabilisation

parameters is also restricted by inverse inequalities, see for example [AKL08AKL08, eq. (20)].

Additionally, in [AKL08AKL08, Theorem 5, Remark 6] a restriction on the local aspect ratio is

made. Both approaches in [MPP03MPP03,AKL08AKL08] use one small cell-dependent stabilisation

parameter for all spatial directions. The subsequent work [Bla08Bla08] significantly improves

the behaviour of GLS methods by stabilising differently in each spatial direction. In

this case the full Jacobian JK , which implicitly contains stretching information about

each spatial direction, is used to define the stabilisation terms in two and three space

dimensions on affine meshes.

The stability of the GLS and SUPG methods is only due to their symmetric (or

block-diagonal) terms. This fact and the drawbacks, mentioned in the previous para-

graph, motivated the design of other methods. Reviews on these approaches for

the Oseen problem on isotropic meshes are given in [BBJL07BBJL07, RST08RST08]. More re-

cently, [MT15MT15] gives an account of inf-sup stable and (locally) stabilised equal-order

pairs used on isotropic meshes. Only a few of the methods in [MT15MT15, BBJL07BBJL07] have

9



1. Introduction

been extended to anisotropic meshes. One of them is a so-called Pressure Gradient

Projection (PGP) method [CB00CB00], which is adapted to anisotropic meshes in [Bla07Bla07].

We are particularly interested in methods stabilised by adding terms in form of local

fluctuations, usually called Local Projection Stabilisation (LPS) terms, see for exam-

ple [BB01BB01, MST07MST07, MT15MT15]. This approach may be used both to circumvent the LBB

condition and to increase control over a convection dominated velocity, see, for in-

stance, [Bra08Bra08] where an LPS stabilised method using the Qc
1×Qc

1 pair is analysed for

the Oseen problem on anisotropic quadrilateral meshes.

In some cases Pressure Projection Stabilisation (PPS) is related to LPS. For instance,

if an inf-sup stable subspace V P×G with G ⊆MP and an LBB constant βG is known,

then the following inf-sup deficiency holds

sup
v∈V P

(div v, q)Ω

|v|1,Ω
≥ βG‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω for all q ∈MP , (1.10)

where ΠG : MP → G is any surjective projection (cf. Lemma 3.5Lemma 3.5 later). Then, adding

a stabilisation term, say sp satisfying sp(q, q) ≥ ‖q −ΠGq‖20,Ω for all q ∈ MP, cures

the inf-sup deficiency and adds stability for the pressure modes causing the stability

issue. The first (possibly minimal) PPS method may have been presented in [PS85PS85]

where local checker-board modes are removed from Qc
1 × P0 to circumvent (1.81.8). Ad-

ditionally, optimal convergence can be achieved, provided the space G ⊂MP is large

enough, that is, infqP∈G‖p− qP‖0,Ω converges fast enough, see also [Bur08Bur08,BF01BF01]. This

is particularly interesting for equal-order pairs on shape-regular meshes, where, for ex-

ample, Qc
k × Pk and G := Pk−1 (cf. Table 1.11.1) may be chosen, see also [DB04DB04]. Then,

since balanced-order pairs converge with optimal order, also the equal-order pair will

converge, see [BF01BF01] for other examples. An alternative approach for the pairs P c
1×P0

and P c
1 × Pc1 is developed in [BDG06BDG06], where inf-sup deficiencies, similar to (1.101.10), are

derived integrating by parts, and applying inverse inequalities. A unified presentation

of the PPS methods above can also be found in [Bur08Bur08].

On anisotropic meshes a proof of an inf-sup deficiency as in [BDG06BDG06] does not seem to

be applicable. Whereas, the difficulty in the proof of (1.101.10) lies in proving the uniform

inf-sup condition for V P × G. This is because the uniformly inf-sup stable part may

be even smaller and therefore the convergence of the mixed method might suffer when

adding more stabilisation. In this case, coarse-scale projections may be a remedy. For

example, the local jump stabilisation proposed in [SK90SK90, KS92KS92, Sil94Sil94], and extended

to anisotropic meshes in [LS13LS13] (without corner patches), and in [BW15BW15] (with corner

patches), converges optimally.

This PPS concept is valid for several methods in literature and can be used to derive
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uniformly inf-sup stable methods, as we will do in this thesis. The methods presented in

this thesis fit into this (sometimes minimal) stabilisation framework presented in [BF01BF01].

1.2.3. Dominating convection

As mentioned before, another source of instability is dominating convection. If we

remove the divergence constraint and the pressure from (1.11.1), then we obtain the vector-

valued Convection-diffusion-reaction (CDR) equation. In this case, to obtain an elliptic

bilinear form, the demand on b is usually b ∈ W 1,∞(Ω)2 and σ − 1
2 div b ≥ 0. For

this problem it is well known that dominating convection (‖b‖∞,Ω � ν) or reaction

(σ � ν) may cause the solution to contain layers; that is, components of the solution

that cause steep gradients in a very narrow region of the domain Ω. It is known

that the (standard) Galerkin solution of such problems possesses spurious oscillations

when layers are not resolved. If the location, orientation and width of these regions

is known a priori, then the CDR problem may be solved by the Galerkin method on

layer-adapted meshes (very anisotropic meshes). For a comprehensive review on this

topic, see [RST08RST08]. In [SO97SO97] the CDR equation is solved on Shishkin meshes, and

in [DL06DL06] on graded meshes. An immediate consequence of [SO97SO97, DL06DL06] is that on

meshes adapted to the behaviour of the solution no stabilisation is needed to achieve

a good approximation. This is different in the case of non-conforming approaches

with V P 6⊂ V , since the bilinear form does not automatically inherit the ellipticity

condition (1.51.5). Then, an appropriate choice of stabilisation parameters is required,

see for instance [FRW14FRW14] where a singularly perturbed biharmonic problem is solved

by a Continuous Interior Penalty (CIP) method on Shishkin meshes. These approaches

require knowledge of the structure of layers which is in general unavailable. Therefore,

both for CDR and Oseen problems stabilisation approaches were developed on shape-

regular meshes, see for example [BH82BH82, FFH92FFH92], the collection by Tobiska [Tob09Tob09],

detailed information on LPS methods [Kno09Kno09, Kno10Kno10, KT13KT13], a CIP method [BFH06BFH06],

and the already mentioned methods in [AKL08AKL08,Bra08Bra08] and references therein.

1.2.4. Mass conservation

If the divergence constraint can be satisfied pointwise, then the error estimates for

velocity and pressure can be decoupled, cf. [GR86GR86]. Then, in particular the velocity

error does not depend on the pressure or on the inf-sup constant. In [Lin14Lin14] a clever

variational crime is designed to mimic these features. However, most finite element

methods do not solve in a pointwise divergence-free space. Because of that, stabilisation

of the divergence constraint, hereafter referred to as grad-div stabilisation, has been

11
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pointed out as important for robustness, see for instance [FF92FF92,HS90HS90,TL91TL91,GLOS05GLOS05].

More recently, in [JJLR14JJLR14] a good choice of the grad-div stabilisation parameter for the

Stokes problem is developed. And in [LR13LR13], a grad-div term with a reduced stencil is

designed and analysed.

1.3. Outline

We end this chapter with the outline of this thesis. With the desire to use anisotropic

meshes and in the context of anisotropic refinements one may wish to use corner patches

(see Figure 1.11.1) and then it is interesting how to circumvent the behaviours of LBB

constants depending on mesh properties, cf. Table 1.11.1.

Then, for rest of this thesis we have the following aims:

1. Propose alternative (possibly stabilised) methods to [AC00AC00] for the Qc
k+1 × Pk−1

pair that allow corner patches and whose implementation is independent of mesh

properties. We start with these pairs and the Stokes problem, as this allows us

to focus on inf-sup deficiencies caused by corner patches.

2. Extend the ideas to balanced-order pairs on meshes with corner patches.

3. Extend the results to more general problems (the Oseen and NS problem) and

more general meshes.

4. Propose methods with full control over the L2-norm of the pressure. On anisotropic

meshes this is rarely proven. In [AKL08AKL08] and the appendix of [MPP03MPP03], the control

seems to depend on aspect ratios. In [Bra08Bra08] only the fluctuation of the pressure

gradient is controlled and a higher regularity is required to prove convergence.

The thesis is organised as follows. In Chapter 22 we introduce other notation and

estimates with explicit constants valid on isotropic and anisotropic cells. Various of the

presented tools, in particular trace inequalities, may be useful also outside the scope of

the present thesis, for instance, when deriving a posteriori error bounds.

Then, in Chapter 33 we apply the PPS approach to achieve Aim 1 for the non-optimal

order pair V P ×MP := Qc
k+1 × Pk−1. We propose methods that circumvent the mesh-

dependency of the LBB constant, cf. Table 1.11.1 (3rd. row). This is done by identifying a

maximal-dimensional, subspace G ⊂MP, such that the pair V P×G is uniformly inf-sup

stable. Equivalently, MP is restricted by a minimal set of constraints to the subspace

G. These constraints may be added in form of stabilisation terms to obtain a FEM

whose convergence is independent of mesh properties. Approaches whose stability and

12
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convergence analysis rely on the same type of analysis are for instance [BDG06BDG06,BF01BF01].

The results in Chapter 33 are the basis of the publication [ABW15ABW15]; Section 3.63.6 gives

an account of the published results.

Afterwards, in Chapter 44 we attack Aim 2 and extend the results in Chapter 33 to

the balanced-order pair Qc
1 × P0. Similarly to Table 1.11.1 (2nd. row) this pair requires

more stabilisation terms, as inf-sup deficiencies are also caused by local aspect ratios.

In fact, the results here only extend the method proposed in [LS13LS13] to meshes that

contain corner patches. Results based on this chapter were accepted for publication

in [BW15BW15]. Apparently, the method for Qc
1 × P0 or P c

1 × P0 stabilised by global jumps

on anisotropic meshes has not been published. The results in Chapter 44 show that

such a method can be proposed, but local jumps are preferred, for the sake of local

mass-conservation properties.

In Chapter 55 we will mix and extend the approaches from Chapter 44 and from [MT15MT15,

Bra08Bra08] to propose low-order methods for the Oseen equation on meshes containing

further refined corner patches (Aim 3). For the analysis we use and extend results from

[MT15MT15], to the non-inf-sup stable pair Qc
1×P0. The Oseen problem may be convection

dominated, and therefore another source of instability may have to be treated. We will

add velocity stabilisation in form of LPS terms to reduce the effects of this issue. More

precisely, we compare the term proposed by [Bra08Bra08] with a grad-div term enhanced by

a minimal fluctuation of the convective gradient when applied to a strongly convection

dominated solution.

We conclude and present possible further extensions in Chapter 66. For instance, in

Chapter 33 the meshes are restricted to parallelograms, and it is interesting to extend

the results to meshes consisting of triangles. We present experiments and arguments

for the P c
2 × P0 pair. In Chapter 44 we only propose the lowest (balanced) order pair.

Extending these results to triangles and to higher (balanced) order pairs is also of

interest. In fact, we show numerical evidence that this is possible for the Qc
2 × P1

and P c
2 × P1 pairs. Additionally, we apply the method proposed in Chapter 55 to the

Navier–Stokes problem and show some preliminary results.

Finally, we include an appendix describing how the methods using the subspaces G

can be implemented in an abstract way.
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Chapter 2

Notations and preliminaries

In this chapter we introduce notations and conventions used later on. In particular, we

introduce notation associated with domains and partitions, as well as their isotropic and

anisotropic properties. Afterwards, we state estimates whose constants are independent

of any property of the partition. Finally, we define function spaces and operators used

throughout.

Throughout the thesis N := {0, 1, 2, . . .} and N+ := N \ {0} denote the set of natural

and positive natural numbers, respectively. We use R to denote the set of real numbers.

2.1. Geometry

Let Ω ⊂ Rd for d ∈ {2, 3} be an open, bounded and connected domain with boundary

∂Ω. Then, for a set ω ⊆ Ω we denote its closure by ω := ω ∪ ∂ω and its interior by

ω◦ := ω \ ∂ω.

A partition P of a polygonal domain Ω (also called mesh or triangulation) is a finite

set of closed simplices, or quadrilaterals with disjoint interiors, such that Ω =
⋃
K∈PK.

Elements K ∈ P are called cells. A partition is conforming if every non-empty intersec-

tion of two distinct cells is either a common node or a common edge. We call a mesh P

axis-parallel if every cell K ∈ P is an axis-aligned rectangle. The set EP contains all

interior edges of P.

For a finite set, say P, card(P) is the number of elements in P. The symbol |�| is

defined depending on the input �, that is, for ω ⊂ Rd, |ω| is the appropriate measure.

For instance, |ω| is the length of a curve in Rd, the area of a surface in R3 or cell in R2

and the volume of a cell in R3. Moreover, we denote by |x| the Euclidean distance of

x ∈ Rd to the origin (for d = 1 it is the absolute value).
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2.1.1. On shape regularity and anisotropies

A common assumption is that families of partitions are (shape-) regular, that is, for

every cell the ratio of its diameter and the radius of its largest inscribed ball is bounded

by a common constant. An anisotropic mesh is by definition not regular. In this section,

we become familiar with these notions.

In order to give the following definition we use a subscript h := maxK∈P diam(K) for

partitions. A family of partitions {Ph}h is said to be (shape-) regular (also isotropic),

if there exists a constant %0 > 0, such that

∀K ∈ {Ph}h :
rK

diam(K)
≥ %0 > 0 , (2.1)

where rK is the radius of the largest ball inscribed in K. By definition, an anisotropic

mesh violates condition (2.12.1) which is characterised by the presence of cellsK possessing

small (aspect) ratios rK/diam(K).

The definition of aspect ratios is not unique in literature, cf. [AC00AC00] and [LS13LS13]. We

use the one from [AC00AC00] as a basis for this thesis. This means for a rectangle K, of area

|K| = hH, and edges of lengths h ≤ H, that the aspect ratio equals h/H = |K|/H2.

Motivated by this relation we define the aspect ratio of parallelograms and triangles to

be

%K := h−2
1 |K| where h1 := max

e⊂∂K
|e|.

We note that %K ≤ 1 for any parallelogram and triangle. The global aspect ratio is

denoted and defined by

% := min
K∈P

%K .

The following remark shows that a family of meshes with bounded aspect ratio is

shape-regular, and vice-versa.

Remark 2.1. If a family {Ph}h consists of parallelograms or triangles, then

{Ph}his shape regular ⇐⇒ the aspect ratio is uniformly bounded, that is,

∃ %0 > 0: ∀K ∈ {Ph}h : %K ≥ %0 > 0.

Proof. The proof relies on the equivalences rK ∼ |K|/h1 and h1 ∼ diam(K). For an

arbitrary triangle K these are given by h1 = diam(K) and

rK = 2
|K|
|∂K| and 2h1 < |∂K| ≤ 3h1.

For parallelograms, we have h1 < diam(K) < 2h1 and 2rK = |K|/h1.
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A single partition P is shape-regular, since card(P) is finite. However, for practical

reasons we may call a single partition P anisotropic if there is a cell K ∈ P with %K � 1.

We realise that the aspect ratio %K depends only on cell-local properties. For a

mesh consisting of parallelograms we define the (neighbourhood-local) grading factor ,

denoted by κK , to be

κK := min
e⊂∂K, e=∂K∩∂K′

(
min

{ |K|
|K ′| ,

|K ′|
|K|

})
,

and global grading factor by

κ := min
K∈P

κK .

We end this section with some examples of isotropic and anisotropic meshes. In

Figure 2.1a2.1a we show an isotropic mesh where % and κ are bounded, Figure 2.1b2.1b shows

a geometrically graded mesh (κ = 1/2) with unbounded aspect ratios and Figure 2.1c2.1c

shows an edge patch, that is, a shape-regular domain covered by cells that are squeezed

in only one spatial direction. Additionally, in Figure 2.22.2 we show different corner

patches, which are (for now) special anisotropic meshes containing cells stretched in

different directions, with small aspect ratios %c = hc/Hc and the property κ = %.

(a) % = κ = 1 (b) %� 1, κ = 1/2 (c) %� 1, κ� 1

Fig. 2.1. Isotropic and anisotropic meshes with small aspect ratio % and grading factor κ.
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Fig. 2.2. Corner patches with aspect ratio % = hc/Hc and grading factor κ = hc/Hc.
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2.2. Estimates on anisotropic meshes

In this section we report some technical results that are essential not only for performing

the stability and convergence analysis of methods proposed later in this thesis, but also

for methods outside this thesis. A common property of the presented estimates is that

they have constants independent of properties of the mesh. Trace and inverse estimates

introduce dependencies on cell-local geometric properties and have to be used with care.

We start by introducing a few standard inequalities. Probably the most used esti-

mates in this thesis are inequalities of Cauchy and Schwarz , for completeness we list

them here

(v, w)ω ≤ ‖v‖0,ω‖w‖0,ω for all v, w ∈ L2(ω) , (CS1)

n∑

i=1

|xiyi| ≤
(

n∑

i=1

x2
i

)1/2( n∑

i=1

y2
i

)1/2

for all x, y ∈ Rn . (CS2)

Occasionally, we estimate a product by a weighted sum. This is done using Young’s

inequality

|ab| ≤ ε

2
a2 +

1

2ε
b2 for all a, b ∈ R, ε > 0 (Young)

If trace inequalities are excluded, then a rule of thumb is: “Estimates valid on infinite

dimensional function spaces do not introduce dependencies on mesh properties”. An

example is given by (CS1CS1).

2.2.1. Anisotropic trace inequalities

Trace (and inverse) estimates introduce dependencies on local mesh properties. These

dependencies have to be known, so that methods can be designed appropriately. Subse-

quently, we present and discuss trace estimates with constants that are separated into a

geometric (cell-dependent) component and everything else, for example the dimension

of space and polynomial degree k.

For trace inequalities that are valid on infinite dimensional spaces, that is, H1(K)

where K ∈ P, the constants cannot depend on polynomial degrees. Below we prove

such estimates for triangles and parallelograms, we include their proofs as they are not

common. Additionally, we point out that the estimates are strict for locally constant

functions. The following lemma states a version of Green’s formula which we use later

in the proof of the trace estimates. We did not find the proof, but it seems to be

classical.
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2. Notations and preliminaries

Lemma 2.2. Let ω be a bounded open subset of Rd with a Lipschitz-continuous bound-

ary ∂ω. Let φ ∈ C∞(ω)d and v ∈ H1(ω), then

∫

∂ω
v2(φ · n) ds =

∫

ω
v2 divφdx+ 2

∫

ω
v(φ · ∇v) dx . (2.2)

Proof. Let φ = (φ1, . . . , φd)
> and wi := φiv for i = 1, . . . , d. We observe that wi ∈

H1(ω) and Green’s formula [GR86GR86, eq. (1.19)] yields
∫

∂ω
vwini ds =

∫

ω
wi(∂v/∂xi) dx+

∫

ω
(∂wi/∂xi)v dx .

Furthermore, the product rule applies (cf. [Ada75Ada75, p. 21, point 1.58]), and gives

∂wi/∂xi = ∂(vφi)/∂xi = v(∂φi/∂xi) + φi(∂v/∂xi) a.e. in ω.

Inserting this identity into the previous one and rearranging (using wi = vφi), we get
∫

∂ω
v2φini ds = 2

∫

ω
vφi(∂v/∂xi) dx+

∫

ω
v2(∂φi/∂xi) dx .

Now, summing over i = 1, . . . , d gives (2.22.2) and finishes the proof.

Lemma 2.3. Let T be a triangle, e one of its edges, and pe the node opposite to e.

Then, all v ∈ H1(T ) satisfy

‖v‖20,e ≤
|e|
|T |‖v‖0,T

(
‖v‖0,T + ‖(x− pe) · ∇v‖0,T

)
.

Proof. We prepare to apply Lemma 2.2Lemma 2.2 with ω := T and φe := x − pe and n as the

outward unit vector on ∂T . Now, direct evaluation gives divφe = 2 and φe · n = 0 on

∂T \ e, since φe is a tangential vector on this part of the boundary. Furthermore, on e

we have φe · ne = 2|T ||e|−1, since x ∈ e is given by

x = pe + 2|T ||e|−1ne + rte for some r ∈ R,

where te is a tangential vector of e.

Inserting the obtained values into (2.22.2) and applying (CS1CS1) finishes the proof.

The proof of Lemma 2.3Lemma 2.3 can also be applied to tetrahedrons, as Lemma 2.2Lemma 2.2 remains

valid in more dimensions. Also, a similar result with a non-explicit constant is given

in [Kun00Kun00, Lemma 1]. Next we present a result for parallelograms.

Lemma 2.4. Let K be a parallelogram with edge e and let ti be a unit tangential vector

of an edge i that is incident to e. Then, all v ∈ H1(K) satisfy

‖v‖20,e ≤ ‖v‖0,K
( |e|
|K|‖v‖0,K +

2

sinα
‖ti · ∇v‖0,K

)
(2.3a)

=
|e|
|K|‖v‖0,K

(
‖v‖0,K + 2|i| ‖ti · ∇v‖0,K

)
. (2.3b)
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2. Notations and preliminaries

Proof. Using the notation given by Figure 2.32.3, we define

φe(x) :=
(
ne · (x− p¯̄e)

)
ti ,

where ne is the outer unit normal to edge e, ti is a tangential unit vector of an incident

edge such that ti ·ne > 0 and p¯̄e is any point on the opposite edge ¯̄e (parallel to e). It

remains to evaluate the terms involving φe. We start by observing that

divφe = ne1ti1 + ne2ti2 = ne · ti = cos(π − (π/2 + α)) = sin(α) . (2.4)

Furthermore, the unit tangential and normal vector of edge e form a basis of R2, that

is, each x ∈ K is representable as x = p¯̄e + r1(x)|e|−1|K|ne + r2(x)te with r1 ∈ [0, 1]

and r2 ∈ R. Therefore, the definition of φe simplifies to

φe = r1(x)|e|−1|K|ti for r1 ∈ [0, 1] , (2.5)

with r1 ≡ 0 on ¯̄e and r1 ≡ 1 on e (since K is a parallelogram). Therefore, φe · n = 0

on ∂K \ e and

∫

∂K
(φe ·n)v2 ds =

∫

e
(φe ·ne)v2 ds =

|K|
|e| (ne ·ti)

∫

e
v2 ds =

|K|
|e| sin(α)

∫

e
v2 ds . (2.6)

Then, inserting (2.42.4), (2.52.5) and (2.62.6) into (2.22.2) we arrive at

sin(α)
|K|
|e|

∫

e
v2 ds = sin(α)

∫

K
v2 dx+

|K|
|e|

∫

K
r1(x)2v(ti · ∇v) dx

which, after recalling maxx∈K r1(x) = 1 and applying (CS1CS1) gives

‖v‖20,e ≤ ‖v‖0,K
( |e|
|K|‖v‖0,K +

2

sinα
‖ti · ∇v‖0,K

)

=
|e|
|K|‖v‖0,K

(
‖v‖0,K + 2|i| ‖ti · ∇v‖0,K

)

and finishes the proof.

For rectangles, incident tangential vectors are also normal vectors of edge e and

Lemma 2.4Lemma 2.4 implies the following result which is similar to, e. g. [Geo03Geo03, Lemma A.1].

e

ne

α
¯̄e

ti

Fig. 2.3. Parallelogram K with notation and level-sets of φe.
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Corollary 2.5. Let K be a rectangle and let u ∈ H1(K). Then

‖u‖20,e ≤
|e|
|K|‖u‖

2
0,K + 2‖u‖0,K‖∂neu‖0,K ,

for each edge e of K with ne denoting a unit normal vector of e.

By analogy the proof of Corollary 2.5Corollary 2.5 can also be applied on rectangular cuboids. The

proof of Lemma 2.4Lemma 2.4 works on parallelepipeds (affine cubes) if the incident tangential

vector is chosen as follows. Let ei be an incident edge shared by two incident faces and

let ti be its tangential vector such that ne · ti > 0. This tangential vector is orthogonal

to the normal vectors of all incident faces.

2.2.2. Anisotropic discrete trace inequalities

Here we recall some optimal results on triangles and tetrahedrons.

Lemma 2.6 (trace-inverse estimates). Let T be a triangle with an edge e and let

K be a tetrahedron with a face F . Then, all u ∈ Pp(T ), v ∈ Pp(K) satisfy

|T |
|e| ‖u‖

2
0,e ≤

1

2
(p+ 1)(p+ 2)‖u‖20,T ,

|K|
|F | ‖v‖

2
0,F ≤

1

3
(p+ 1)(p+ 3)‖v‖20,K .

Proof. See proofs of Theorem 3 and 4 in [WH03WH03].

In what follows we present similar but more detailed results for intervals and par-

allelograms. In this case we include the proofs, as they allow the construction of

special polynomials whose L2-norm behaves as the inverse of the trace constant. Later

in Chapter 33 this property is invaluable for the optimal convergence of the designed

methods.

Estimates on intervals and parallelograms

In the proofs of the estimates we use the following properties of Legendre polynomials.

A detailed reference for all properties mentioned here is for instance [Riv81Riv81, pp. 62f].

Let j ∈ N, k ∈ N+, and Pj be the Legendre polynomial of degree j. Then, the set

{Pj}k−1
j=0 forms a basis of Pk−1([−1, 1]), and satisfies the recurrence relation: P0(s) = 1,

P1(s) = s and

mPm(s) = (2m− 1)sPm−1(s)− (m− 1)Pm−2(s) for m = 2, . . . , k − 1 . (2.7)
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2. Notations and preliminaries

Additionally, we have Pj(1) = 1, Pj(−1) = (−1)j and

∫ 1

−1
Pm(s)Pj(s)ds = CL,jδjm where CL,j =

2

2j + 1
, (2.8)

where δjm is the Kronecker delta.

Later in this section we prove trace estimates of optimal order in polynomial degree.

The following result is used to show their optimality.

Corollary 2.7. Let j ∈ N+. Then, Pj(0) = 0 for odd j and

(j + 1)Pj(0)2 ∈
(

2

π
,
3

4

]
for even j ≥ 2 . (2.9)

Proof. First, the recurrence relation (2.72.7) gives Pj(0) = − j−1
j Pj−2(0) for j ≥ 2. There-

fore, Pj(0) = 0 for odd j and Pj(0) =
∏j/2
m=1

(
−2m−1

2m

)
for even j. For even j ≥ 2, this

last identity implies

(j + 1)Pj(0)2 = (j + 1)

j/2∏

m=1

(
2m− 1

2m

)2

=

j/2∏

m=1

(2m+ 1)(2m− 1)

4m2
.

Evaluating this product for j = 2 gives the upper bound. The lower bound follows

from Wallis’ product, that is,
∏∞
m=1

(2m+1)(2m−1)
4m2 = 2

π (see [BB98BB98, p. 338]).

We next present an estimate of the mid-point value of a univariate polynomial.

Lemma 2.8. Let k ∈ N+. Then, for all q ∈ Pk−1([a, b]) the following bound holds

∣∣∣∣q
(
a+ b

2

)∣∣∣∣
2

≤ 3k + 1

4

1

b− a‖q‖
2
0,[a,b] . (2.10)

Proof. We first prove (2.102.10) on the interval [−1, 1]. To this end, let {Pj}k−1
j=0 denote

the basis of Pk−1([−1, 1]) consisting of Legendre polynomials. Let f ∈ Pk−1([−1, 1]).

Hence f =
∑k−1

j=0 fjPj , and (2.82.8) yields ‖f‖20,[−1,1] =
∑k−1

j=0 f
2
j

2
2j+1 . Now, using (CS2CS2)

we obtain

|f(0)|2 ≤



k−1∑

j=0

2j + 1

2
Pj(0)2





k−1∑

j=0

2

2j + 1
f2
j


 = Σk,01

1

2
‖f‖20,[−1,1] . (2.11)

where Σk,01 :=
∑k−1

j=0(2j + 1)Pj(0)2. Our next aim is to show that Σk,01 ≤ (3k + 1)/4.

Using Corollary 2.7Corollary 2.7 we bound each even summand from below and above. Let j ≥ 2

be even, then

(2j + 1)Pj(0)2 ∈ 2j + 1

j + 1
·
(

2

π
,
3

4

]
⊂
(

1,
3

2

)
, (2.12)
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2. Notations and preliminaries

since the j-dependent ratio belongs to [5/3, 2) for j ≥ 2, and 10/(3π) > 1. Therefore,

recalling Pj(0) = 0 for odd j and P0 = 1, we get

Σk,01 =
k−1∑

j=0

(2j + 1)Pj(0)2 ≤ 1 +
3

2

⌊
k − 1

2

⌋
≤ 1 +

3

4
(k − 1) =

3k + 1

4
,

where brc ≤ r is the integer part of r ≥ 0. This completes (2.112.11). Then, inserting

f(s) = q
(
a+b

2 + s b−a2

)
, where q ∈ Pk−1([a, b]), gives (2.102.10).

The following two lemmas contain trace estimates and show the existence of special

polynomials `k−1 ∈ Pk−1(K) for rectangles. In Chapter 33 we use the affine version of

these polynomials.

Lemma 2.9. Let k ∈ N+. Then, there exists `k−1 ∈ Pk−1([−1, 1]2) such that

`k−1(1, 0) = 1 and

∫ 1

−1

∫ 1

−1
`k−1(x, y)2dxdy =

4

Σk
=

∫ 1

−1

∫ 1

−1
`k−1(x, y)dxdy , (2.13)

where Σk is a constant that only depends on the polynomial degree. For a parallelo-

gram K, let xe ∈ ∂K be the midpoint of an edge e ⊂ ∂K. Then, for all q ∈ Pk−1(K)

the following bound holds

q(xe)
2 ≤ Σk

|K|‖q‖
2
0,K with

1

6
k3 < Σk ≤ k3 . (2.14)

Proof. Let κ̂ = [−1, 1]× [−1, 1], f ∈ Pk−1(κ̂) and write

f(x, y) =
k−1∑

i=0

k−1−i∑

j=0

fijPj(x)Pi(y) ,

where Pj denotes the Legendre polynomial of degree j. Then, (2.72.7)–(2.82.8) yield Pj(1) = 1

and
∫
κ̂ f

2dx =
∑k−1

i=0

∑k−1−i
j=0 f2

ijCL,jCL,i. Therefore, applying (CS2CS2) gives

f(1, 0)2 =

(
k−1∑

i=0

k−1−i∑

j=0

fijPi(0)

)2

≤
(

4

k−1∑

i=0

k−1−i∑

j=0

Pi(0)2

CL,jCL,i

)
1

4

∫

κ̂
f2dx .

We define a shortcut, i. e., let Σk := 4
∑k−1

i=0

∑k−1−i
j=0 Pi(0)2C−1

L,jC
−1
L,i . At this point,

inserting the polynomial `k−1 with the coefficients `ij := 4
Σk
Pi(0)C−1

L,jC
−1
L,i , for i, j, gives

an equality, `k−1(1, 0) = 1 and
∫
κ̂ `k−1(x)dx = 4

Σk
=
∫
κ̂ `k−1(x)2dx.

Now, (2.142.14) follows by a change of variables, once we bound the (k-dependent) con-
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stant Σk, i. e., show that k−3Σk ∈ (1/6, 1]. We sum up (
∑0

i=1 := 0) to obtain

Σk = 4
k−1∑

i=0

Pi(0)2

CL,i

k−1−i∑

j=0

1

CL,j
= 4

k−1∑

i=0

Pi(0)2

CL,i

(k − i)2

2

= k2 + 4

b(k−1)/2c∑

i=1

P2i(0)2

CL,2i

(k − 2i)2

2

= k2 +

b(k−1)/2c∑

i=1

2
P2i(0)2

CL,2i
(k − 2i)2 .

By means of (2.122.12), we get 2P2j(0)2/CL,2j = (2(2j)+1)P2j(0)2 ∈ (1, 3/2). Additionally,

we evaluate
∑b(k−1)/2c

i=1 (k−2i)2 = k(k−1)(k−2)/6, which holds for even and odd k ∈ N.

Hence, we get the bounds

1

6
k3 < k2 +

1

6
k(k − 1)(k − 2) ≤ Σk ≤ k2 +

1

4
k(k − 1)(k − 2) ≤ k3 ,

which finishes the proof.

Lemma 2.10. Let H,h > 0 and k−1 ∈ N. Then, there exists a univariate polynomial

`k−1 of degree k − 1 such that

`k−1(1) = 1 and

∫ 1

−1
`k−1(s)2 ds =

2

k2
=

∫ 1

−1
`k−1(s) ds . (2.15)

Moreover, for all q ∈ Pk−1((0, H)× (0, h)) the following, optimal bound holds

1

h

∫ h

0
q(0, y)2dy ≤ 1

Hh
k2

∫ h

0

∫ H

0
q(x, y)2dxdy . (2.16)

Proof. Let Pj denote the Legendre polynomial of degree j. We recall the identities

P0 = 1, Pj(+1) = 1, Pj(−1) = (−1)j and (2.82.8). Let f ∈ Pk−1([−1, 1]), and write

f =
∑k−1

j=0 fjPj . Then, the properties above, the triangle inequality and (CS2CS2) show

|f(±1)|2 ≤



k−1∑

j=0

|fj |




2

≤



k−1∑

j=0

2j + 1

2





k−1∑

j=0

2

2j + 1
f2
j


 = Σk

∫ 1

−1
f(s)2 ds , (2.17)

where Σk :=
∑k−1

j=0(2j + 1)/2 = k2/2.

The first result is obtained by choosing `k−1(s) =
∑

j∈J fjPj(s) with coefficients

fj := Σ−1
k (2j+1)/2, j ∈ {0, . . . , k − 1} and from the fact that only P0 has non-vanishing

average. Bound (2.172.17) is then sharp, as equality is attained for f = `k−1.

Finally, let q ∈ Pk−1([0, H] × [0, h]) and let y ∈ [0, h] be fixed. Then, we insert

f(s) = q((1 + s)H/2, y), s ∈ (−1, 1) into inequality (2.172.17). Integrating the resulting

inequality over y ∈ [0, h] gives the second result.
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2.2.3. Interpolation on anisotropic meshes

Later in the thesis, we will restrict ourselves to the proof of a priori estimates with

respect to the best approximation on a given mesh. This is done to avoid the usual

discussion whether the anisotropic mesh is aligned with the “anisotropic” behaviour

of the solution which is a related but different issue. If not known a priori, then a

posteriori information may be used to refine and/or realign the mesh, but this is not

within the scope of this thesis.

Many authors prefer a final estimate containing only explicit quantities. Such an

estimate is obtained by replacing the best-approximation by an interpolant whose error

can be bounded explicitly. In this section we show two interpolation error estimates

on anisotropic meshes, so that we gain an idea of how the error behaves in some

cases. We restrict the presentation to interpolants defined explicitly on each cell, since

known results for averaging interpolants, like the one of Clément, or Scott–Zhang,

restrict anisotropies in the neighbourhood of each cell, for example the meshes shown

in Figures 1.11.1, 2.1c2.1c, and 2.22.2 are ruled out by [MPP03MPP03, eq. (2.1)] and [Ape99Ape99, p. 100,

eq. (3.4)], or in [Bla08Bla08,AKL08AKL08].

First, we state an estimate for the L2-projection into (globally discontinuous) piece-

wise constant polynomials.

Lemma 2.11. Let p ∈ H1(K) and let K be an axis-aligned rectangle of width hx

and height hy. Furthermore, let Π0p ∈ P0(K) be the L2-projection given by Π0p =

|K|−1 ∫
K p dx. Then, there exists C > 0, independent of K, such that

C‖p−Π0p‖0,K ≤ hx‖∂xp‖0,K + hy‖∂yp‖0,K .

Proof. See [AMR03AMR03].

In order to define a continuous function more regularity is required. The following

lemma is an example.

Lemma 2.12. Let K be an axis-aligned rectangle with edges of lengths h1 and h2. Let

u ∈ H`(K) for some ` ≥ 2. Then, there exists an interpolant Ihu ∈ Qk(K), such that

‖u− Ihu‖0,K ≤ C
∑

|α|≤s
hα1

1 hα2
2 ‖Dαu‖0,K ,

and

|u− Ihu|1,K ≤ C
∑

|α|≤s−1

hα1
1 hα2

2 |Dαu|1,K

where s := min{k + 1, `}, α ∈ N2 with |α| := α1 +α2 and Dα := ∂α2
x2 ∂

α1
x1 . The constants

C are independent of K.
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Proof. In [AADL08AADL08, Thm. 3] the proof is carried out for an interpolant defined by

moments and nodal values (see [GR86GR86] where this operator seems to be defined for the

first time), which extends previous estimates from [ST08ST08,Ape99Ape99,GR86GR86,MS09MS09]. Earlier,

the estimates were proven for the Lagrange interpolant in [Ape99Ape99, Thm. 2.7].

A result similar to Lemma 2.12Lemma 2.12 can be proven for triangles, tetrahedrons, paral-

lelograms, parallelepipeds and some non-affine elements, see [AADL08AADL08]. On general

elements, the constants may depend on angles of the cell. Such dependencies are dis-

cussed for example in [AD99AD99,Ape99Ape99,BA76BA76].

Hereafter the capital letter C (without subscripts) denotes a constant independent

of the polynomial degree k and of properties of the mesh (except angles). It will

be explicitly pointed out when such a C is independent of angles. In a sequence of

estimates, the value of C may be different at every occurrence.

2.3. Operators and conventions

In the subsequent chapters we frequently use the following definitions and conventions.

For ` ∈ N+ and a given v : ω → R`, we define supp v := {x ∈ ω : v(x) 6= 0 ∈ R`} to be

the support of v. The operator 〈·〉ω : L2(ω)→ R returns the average given by

〈v〉ω :=
1

|ω|

∫

ω
v dx ,

where ω is a cell K, or an edge e or another subdomain of Ω.

Let e ∈ EP be an edge, such that e = K ∩K ′. Given a function v belonging to the

set H1(P) =
{
v ∈ L2(Ω): v|K ∈ H1(K) for K ∈ P

}
we define its jump across edge e

by

JvKe := v|K |e − v|K′ |e

where v|K |e denotes the restriction of v first to K and then to e.

For a linear functional L : V → R and a norm ‖ · ‖V on V , we use the short form

sup
v∈V

L(v)

‖v‖V
instead of sup

v∈V \{0}

L(v)

‖v‖V
or sup

v∈V,‖v‖V =1
L(v) .

The same applies to infima.
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Chapter 3

Minimal stabilisation for arbitrary order

In this and the next chapter, the main concern of our study is to solve the Stokes flow

problem by a finite element method on anisotropic meshes. Our approach is motivated

by meshes containing corner patches that possess arbitrary high aspect ratios. We start

with the finite element pair Qc
k+1 × Pk−1. This pair is known to be inf-sup stable, but

the inf-sup constant depends on geometrical properties of corner patches, cf. [AC00AC00] or

Table 1.11.1 (3rd. row). Within this chapter we generalise some results from [AC00AC00] which

enables us to identify the minimal number of spurious (responsible) pressure modes.

With this knowledge, we identify uniformly inf-sup stable subspaces. Then, it is possible

to define two new finite element methods; a mixed FEM (using a minimally reduced

pressure space) and a stabilised FEM, which adds the minimal number of constraints in

form of stabilisation terms. These terms take the form of (almost) consistent jumps and

identify the spurious modes automatically. Additionally, the stabilisation parameters

are completely local and optimal in terms of mesh properties and polynomial degree k.

This chapter is organised as follows. The next section deals with the model problem

and notation. In Section 3.23.2 we restrict the set of considered partitions to allow certain

anisotropies. This allows us to identify a subspace G of the pressure space, such that

V P × G is uniformly inf-sup stable and G is of maximal dimension. For readability,

the proof of these results is located in Section 3.53.5. In Section 3.2.23.2.2 an inf-sup defi-

ciency is proven which motivates the definition of the stabilised method in Section 3.33.3.

Afterwards, well-posedness and approximation qualities are discussed. Then, in Sec-

tion 3.43.4, numerical experiments confirm that our stabilisation removes the dependency

on the mesh properties and that the space G is of maximal dimension. The ideas and

results contained in Sections 3.23.2–3.53.5 have been modified and published in [ABW15ABW15]. In

Section 3.63.6 the published results are listed.

In Section 3.73.7 we conclude and show possible extensions which lead naturally into

the subsequent chapters.
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3. Minimal stabilisation for arbitrary order

3.1. The problem of interest and notations

Hereafter, we deal with the Stokes equations in a bounded, polygonal domain Ω ⊂ R2.

We recall the problem, existence results and define used finite element spaces.

For f ∈ L2(Ω)2, find a velocity u : Ω→ R2 and a pressure p : Ω→ R, such that

−∆u+ grad p = f and divu = 0 in Ω , (3.1)

where u = 0 on ∂Ω and 〈p〉Ω = 0.

We recall the notation for Sobolev spaces and that 〈p〉ω denotes the mean value of p

on ω ⊂ Ω. Furthermore, we recall the variational formulation of Problem (3.13.1).

Find (u, p) ∈ V ×M := H1
0(Ω)× L2

0(Ω) such that

B(u, p;v, q) = (f ,v)Ω for all (v, q) ∈ V ×M (3.2a)

where

B(u, p;v, q) := (gradu, gradv)Ω − (p,div v)Ω − (q,divu)Ω . (3.2b)

Problem (3.2a3.2a) is a well studied saddle-point problem. Its well-posedness is a conse-

quence of the inf-sup condition [GR86GR86, pp. 58–61] or [Gal94Gal94, Lemma III.3.1]:

inf
q∈M

sup
v∈V

(div v, q)Ω

|v|1,Ω‖q‖0,Ω
≥ βΩ > 0 . (3.3)

For the finite element approximation, we suppose the domain Ω is covered by a

conforming partition P consisting of closed parallelograms K, more properties of P are

defined in the next section. We aim to approximate the solution of (3.2a3.2a) within the

spaces

V P :=
{
v ∈ V : v|K ∈ Qk+1(K)2 for K ∈ P

}
,

and

MP := {q ∈M : q|K ∈ Pk−1(K) for K ∈ P} .

For our results, later on, we also require local subspaces. For ω ⊆ Ω we define the

restrictions

V P(ω) := {v ∈ V P : suppv ⊆ ω} ,
MP(ω) := {q ∈MP : supp q ⊆ ω} .

We observe that a function v ∈ V P(ω) belongs to H1
0(ω), since v ∈ C0(Ω). Similarly,

q ∈MP(ω) belongs to L2
0(ω), since 0 = 〈q〉Ω = 〈q〉(supp q).
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3. Minimal stabilisation for arbitrary order

As mentioned in the introduction, the pair V P ×MP does satisfy a discrete version

of (3.33.3). However, the discrete inf-sup constant degenerates as the aspect ratio tends

to zero. In the next section, we first state that certain spurious pressure modes cause

this behaviour. Then, we generalise some results from [AC00AC00] and introduce a maximal

subspace G ⊂MP, such that the pair V P×G is uniformly inf-sup stable, that is, V P×G
satisfies an inf-sup condition with a constant βG independent of the aspect ratio. Using

this information we derive an inf-sup deficiency caused by the spurious modes.

3.2. A decomposition of the pressure space

We restrict our attention to conforming partitions P consisting of parallelograms, and

allow them to contain highly stretched (also anisotropic) cells, as shown in Figure 3.13.1.

In what follows, we require some notation and properties related to partition P. Most

importantly, we require that P is the anisotropic refinement of an initial shape regular

partition, say Psr. During this refinement we select a few nodes c ∈ C of Psr. For

c ∈ C, the subdomains Ωc :=
⋃{K ∈ Psr : c ∈ K} should be disjoint (which requires

Psr to be sufficiently fine). Then the anisotropic refinement towards each node c ∈ C

inserts one of the corner patches shown in Figure 3.23.2. Once this is done, edge patches

are fitted as required, to ensure the conformity of the resulting mesh P.

J·K J·K

J·KJ·K

J·K J·K

(a) Edge patch (b) single corner patch

Fig. 3.1. An affine, anisotropic mesh (from [AC00AC00]) consisting of edge and corner patches.

It is convenient to associate each node c ∈ C with a corner patch and with the

subdomains Ωc and ωc :=
⋃{K ∈ P : c ∈ K}. By construction, the part of P covering

the subdomains ωc only contains (extremely) small and shape-regular cells (shaded in
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3. Minimal stabilisation for arbitrary order

hc

hc

Hc

Hc

J·K

(a)

hcHc

hc

Hc

hc

Hc

J·K

(b)

hc

hc

Hc

Hc

hc

hc

Hc

Hc

J·K

(c)

hc

hc

Hc

Hc

hc

hc

Hc

Hc

J·K

(d)

Fig. 3.2. Corner patches with %c = hc/Hc.

Figures 3.13.1–3.23.2). Furthermore, for c ∈ C let γc ⊂ ∂ωc ∩ ∂(Ωc \ ωc) be an edge in EP,

for instance, the edges enclosed by the jump symbol J·K in Figures 3.13.1–3.23.2.

At this point, we realise that each subdomain Ωc contains anisotropic cells K ∈ P

with aspect ratio %c := hc/Hc � 1. This is desirable to resolve local features of solu-

tions, but has a drawback: the discrete inf-sup constant depends on the aspect ratio %.

More precisely, a detailed analysis in [AC00AC00] (see Lemma 3.1Lemma 3.1 below) proves

inf
q∈MP

sup
v∈V P

(div v, q)Ω

|v|1,Ω‖q‖0,Ω
=: βP ≥ Ck−1/2 min{1, k√% }, (3.4)

with % = min{%c : c ∈ C}.
The proof of (3.43.4) is decomposed into local inf-sup conditions. In the following lemma

we restate these conditions for a single corner patch (Figure 3.13.1b), as more insight is

given.

Lemma 3.1. Let Ωc denote a single corner patch (cf. Figure 3.13.1b), and let q ∈MP(Ωc).

Then, there exists v ∈ V P, such that

(div v, q)Ωc
= ‖q‖20,Ωc

and |v|1,Ωc
≤ Ck1/2 min{1, k√%c }−1‖q‖0,Ωc . (3.5)

Furthermore, if 〈q〉ωc
= 0, then

(div v, q)Ωc
= ‖q‖20,Ωc

and |v|1,Ωc
≤ Ck1/2‖q‖0,Ωc . (3.6)

Both constants C are independent of partition and polynomial degree k.

Proof. Condition (3.63.6) is proven in [AC00AC00, Lemma 4.3]. Condition (3.53.5) is a conse-

quence of [AC00AC00, Lemma 4.6].

One consequence of (3.63.6) is that spurious pressure modes belong to a one-dimensional

subspace, say MP(Ωc) \
{
q ∈MP(Ωc) : 〈q〉ωc

= 0
}

. Another, more important, conse-

quence is elaborated in the following remark.

29



3. Minimal stabilisation for arbitrary order

Remark 3.2. The dependency of βP on
√
% is caused by the presence of a function in

MP that “connects” MP(ωc) and MP(Ωc \ωc). This function’s support is non-local and

may cover the whole of Ωc. Then, the inf-sup degeneracy is not caused only by local

aspect ratios % (or grading factors κ), but rather by the topology of the mesh P. To

stress this fact, we notice that for a mesh that consists of edge patches only, the inf-sup

constant does not depend on the aspect ratio, or the grading factor. Then, the culprit of

the inf-sup deficiency is not the aspect ratio (or grading factor) per se, but the presence

of corner patches.

In order to avoid the repetition of this discussion and, since for corner patches (as

in Figure 2.22.2) βP decays like
√
% , we will abuse the language and say “βP depends on

aspect ratios”, instead of the less precise term “βP depends on topological properties“.

In [AC00AC00], the equivalent of (3.53.5) is used in a macro-element technique to obtain

the global inf-sup condition (3.43.4). These arguments seem to suggest that there are as

many spurious pressure modes as there are single corner patches in the partition P, for

example twelve on the T-mesh of Figure 3.13.1 and one, two, three or four on the corner

patches shown in Figure 3.23.2.

A closer inspection (located in Section 3.53.5) shows that whenever single corner patches

are neighbours and the small corners form a small connected domain ωc (shaded in

Figures 3.13.1–3.23.2), then there is only one spurious pressure mode per each of these do-

mains. That is, there is only one spurious mode per c ∈ C. That means, six spurious

modes in the T-mesh of Figure 3.13.1 and one spurious mode on each of the partitions

shown in Figure 3.23.2. Additionally, the spurious subspace of MP is not unique, an ad-

vantage that allows us to construct a subspace G ⊂MP (of maximal dimension), such

that V P×G satisfies a uniform inf-sup condition. The next section is devoted to make

this statement precise.

3.2.1. A uniformly inf-sup stable subspace

The following result characterises a subspace G ⊂MP, such that V P ×G is uniformly

inf-sup stable. The theorem and its proof are considered as key results of this chapter,

since they motivate every method we propose in this thesis.

Theorem 3.3 (A uniformly inf-sup stable subspace). Let Ω and P be as defined

in Section 3.23.2. Suppose P contains corner patches and for c ∈ C, let xc be the midpoint

of the previously selected edge γc. Finally, let G be defined as

G :=
{
q ∈MP : Jq(xc)Kγc = 0 for c ∈ C

}
. (3.7)
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3. Minimal stabilisation for arbitrary order

Then,

sup
v∈V P

(div v, q)Ω

|v|1,Ω
≥ βG‖q‖0,Ω for all q ∈ G . (3.8)

with a constant βG ≥ max
{
βP, Ck

−2
}
> 0 and C independent of % and k.

The proof of Theorem 3.3Theorem 3.3 is postponed to the end of Section 3.53.5.

Remark 3.4. We realise that for each selected edge γc (c ∈ C), definition (3.73.7) imposes

a continuity in one point. Considering uniform inf-sup condition (3.83.8) we conclude that

spurious pressure modes belong to, say B := MP \G, and that

dim(B) = dim(MP)− dim(G) = card(C) > 0 .

So, the number of spurious pressure modes is smaller than, or equal to, the number of

corner patches. Later in the numerical experiments, we confirm that there exists one

spurious mode for each of the corner patches shown in Figure 3.23.2.

3.2.2. Inf-sup deficiency

In this section, we first characterise the inf-sup deficiency of the space V P ×MP in

terms of the space G. Then, we prove an equivalence between the deficient part and a

few jumps which motivates the stabilisation term used later.

In the following lemma we show that any surjective projection ΠG onto G implies

a deficiency equivalent to the inf-sup condition of V P × G. After that, we choose ΠG

conveniently and prove the desired equivalence.

Lemma 3.5 (general inf-sup deficiency).

Let ΠG : MP → G be any projection. Then, for all q ∈MP the following holds

sup
v∈V P

(div v, q)Ω

|v|1,Ω
≥ βG‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω , (3.9)

where βG is the constant from Theorem 3.3Theorem 3.3, which is independent of aspect ratios %.

Furthermore, if Π is surjective, then (3.93.9) implies (3.83.8).

Proof. Let q ∈MP, then ΠGq ∈ G and by Theorem 3.3Theorem 3.3 there exists a non-zero v ∈ V P,

such that

βG|v|1,Ω‖ΠGq‖0,Ω ≤ (div v,ΠGq)Ω = −(div v, q −ΠGq)Ω + (div v, q)Ω

≤ |v|1,Ω‖q −ΠGq‖0,Ω + (div v, q)Ω .

Now, dividing by |v|1,Ω and taking the supremum over v ∈ V P proves (3.93.9). The

reverse follows since q = Πq for q ∈ G, which finishes the proof.
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3. Minimal stabilisation for arbitrary order

Our next aim, is to define a suitable projection onto G. Since the different regions

Ωc are disjoint (cf. Section 3.23.2) we start locally. For c ∈ C, we require a function, say

φc, that jumps in xc. The following lemma fixes φc and provides useful properties.

Lemma 3.6. Let Bc :=
{
q ∈MP(Ωc) : Jq(xc)Kγc 6= 0

}
with γc = K ∩K ′. Then, there

exists φc ∈ Bc, such that 〈φc〉Ωc
= 0 and

Jφc(xc)Kγc =
1

|K| +
1

|K ′| and ‖φc‖20,Ωc
=

1

Σk

(
1

|K| +
1

|K ′|

)
,

where Σk is the (k-dependent) constant in the trace inverse estimate in Lemma 2.9Lemma 2.9.

Proof. Let κ̂ := [−1, 1]× [−1, 1] and let FK : κ̂→ K be an affine, invertible transforma-

tion, such that `Kk−1(xc) = 1, where `Kk−1 := `k−1 ◦ F−1
K is the image of the polynomial

`k−1 defined in Lemma 2.9Lemma 2.9. Similarly, let `K
′

k−1 such that `K
′

k−1(xc) = 1. Then, we define

φc :=





1
|K|`

K
k−1 , in K,

− 1
|K′|`

K′
k−1 , in K ′,

0 elsewhere.

The jump condition follows directly. The average freeness of φc follows using the

properties of affine transformations and `k−1 on the reference cell, that is,
∫

Ωc

φc =
〈
`Kk−1

〉
K
−
〈
`K

′
k−1

〉
K′

= 〈`k−1〉κ̂ − 〈`k−1〉κ̂ = 0.

Similarly, again using properties of `k−1, the norm satisfies

‖φc‖20,Ωc
=

1

|K|2
∥∥`Kk−1

∥∥2

0,K
+

1

|K ′|2
∥∥∥`K′
k−1

∥∥∥
2

0,K′

=
1

4|K|‖`k−1‖20,κ̂ +
1

4|K ′|‖`k−1‖20,κ̂ =
1

Σk

(
1

|K| +
1

|K ′|

)
,

where Σk is the (k-dependent) trace constant from Lemma 2.9Lemma 2.9.

In order to remove the jumps across γc (c ∈ C), we define ΠG : MP → G by

ΠGq := q −
∑

c∈C

Jq(xc)Kγc
Jφc(xc)Kγc

φc , (3.10)

where φc (for c ∈ C) is the function constructed in Lemma 3.6Lemma 3.6. Using this definition

we are now in the position to formulate the equivalence that motivates the stabilisation

term and allows us to propose a new stabilised method.

Lemma 3.7. Let ΠG be the projection defined by (3.103.10). Then, all q ∈MP satisfy

1

6
‖q −ΠGq‖20,Ω <

1

k3

∑

c∈C

|K||K ′|
|K ∪K ′|Jq(xc)K2

γc
≤ ‖q −ΠGq‖20,Ω . (3.11)
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3. Minimal stabilisation for arbitrary order

Proof. Our mesh assumptions imply that different sets Ωc (c ∈ C) are disjoint. Then,

since suppφc ⊆ Ωc, definition (3.103.10) and the properties of φc imply

‖q −ΠGq‖20,Ω =
∑

c∈C

Jq(xc)K2
γc

Jφc(xc)K2
γc

‖φc‖20,Ωc
=

1

Σk

∑

c∈C

|K||K ′|
|K ∪K ′|Jq(xc)K2

γc
. (3.12)

Then, multiplying (3.123.12) through by Σk/k
3, which by Lemma 2.9Lemma 2.9 belongs to the interval

(1/6, 1], finishes the proof.

Remark 3.8. The number of jumps is card(C) for both Theorem 3.3Theorem 3.3 and Lemma 3.7Lemma 3.7.

This is the minimal dimension we have to remove from MP to be uniformly stable. On

the other hand, since ΠG is not the L2(Ω) projection onto G, we have ‖p−ΠGp‖0,Ω 6=
infq∈G‖p− q‖0,Ω. Nevertheless, the pair V P×G has optimal approximation properties,

both in terms of geometry and polynomial degree k, as we will see later. Addition-

ally, applying trace inequality Lemma 2.9Lemma 2.9 and (CS2CS2) to (3.123.12) we obtain the continuity

property ‖q −ΠGq‖0,Ω ≤ ‖q‖0,Ω for all q ∈MP.

3.3. The stabilised method

We start this section by presenting a new stabilised method. It is motivated by

Lemma 3.5Lemma 3.5 and Lemma 3.7Lemma 3.7.

Seek (uP, pP) ∈ V P ×MP such that

Bs(uP, pP;v, q) = (f , q)Ω for all (v, q) ∈ V P ×MP (3.13a)

where

Bs(u, p;v, q) := B(u, p;v, q)− sp(p, q) (3.13b)

with bilinear form B from (3.2b3.2b) and

sp(p, q) :=
1

k3

∑

c∈C

|K||K ′|
|K ∪K ′|Jp(xc)KγcJq(xc)Kγc . (3.13c)

For each corner patch we recall that the edge γc separates a small from a large cell.

Remark 3.9. Alternatively to method (3.13a3.13a) we may impose the constraints strongly

and approximate in V P × G. In terms of pressure accuracy, the mixed method using

V P × G would converge at least as fast as the stabilised method for V P ×MP, which
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follows from ΠG being surjective, (3.13c3.13c) and (3.113.11). More precisely, we get

inf
qG∈G

‖p− qG‖0,Ω = inf
q∈MP

‖p−ΠGq‖0,Ω

≤ inf
q∈MP

‖p− q‖0,Ω + ‖q −ΠGq‖0,Ω

≤ inf
q∈MP

‖p− q‖0,Ω +
√

6sp(q, q) .

Remark 3.10. From the implementation point of view, the bilinear form sp, defined

in (3.13c3.13c), can be seen as an one-point quadrature approximation of the more usual

jump term (JpPK, JqPK)γc. This approximation is exact for locally constant functions,

that is, for k = 1 we may write the stabilisation term as

sp(p, q) =
∑

c∈C

|K||K ′|
|K ∪K ′|

1

|γc|

∫

γc

JpKJqK ds .

Remark 3.11. It is worth mentioning that the knowledge of the geometry of the mesh

fully suffices to define G ⊂ MP and the stabilisation term sp (3.13c3.13c). Therefore, after

selecting edges as described in Section 3.23.2, penalising certain jumps is easy to implement

and automatically identifies spurious pressure modes within the basis of MP.

3.3.1. Stability and a priori estimates

This section is devoted to study the existence, uniqueness and convergence of dis-

crete solutions (uP, pP) ∈ V P × MP. We state stability and a priori estimates for

method (3.13a3.13a) with respect to the norm given by

|||(v, q)|||2 := |v|21,Ω + ‖q‖20,Ω . (3.14)

The proof of the following stability result is fairly similar to, for instance, the one

of [BDG06BDG06, Theorem 4.1].

Theorem 3.12. There exists µs = Cβ2
G > 0, with C > 0 independent of mesh proper-

ties and polynomial degree, such that all (w, r) ∈ V P ×MP satisfy

sup
(v,q)∈V P×MP\{0}

Bs(w, r;v, q)

|||(v, q)||| ≥ µs|||(w, r)||| . (3.15)

Consequently, Problem (3.13a3.13a) has a unique solution (uP, pP) ∈ V P ×MP.

Proof. Let (w, r) ∈ V P ×MP be given. In terms of this pair we construct a suitable

pair (v, q) ∈ V P ×MP. First, the definition of Bs by (3.13b3.13b) gives

Bs(w, r;w,−r) = |w|21,Ω + sp(r, r) . (3.16)
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Additionally, using (CS1CS1) and (YoungYoung) with ε := 2/(1 + β2
G) all wδ ∈ V P satisfy

Bs(w, r;−wδ, 0) = −(∇w,∇wδ)Ω + (divwδ, r)Ω

≥ − 1

1 + β2
G

|w|21,Ω −
1 + β2

G

4
|wδ|21,Ω + (divwδ, r)Ω. (3.17)

Next, we choose a particular wδ. By Lemma 3.5Lemma 3.5 there exists z ∈ V P with |z|1,Ω = 1,

such that

(div z, r)Ω ≥ βG‖ΠGr‖0,Ω − ‖r −ΠGr‖0,Ω ≥ βG‖r‖0,Ω − (1 + βG)‖r −ΠGr‖0,Ω.

Hence, inserting wδ := δ‖r‖0,Ωz, with δ > 0 to be chosen, followed by applying (3.113.11),

(3.13c3.13c), and ab ≤ a2/4 + b2 gives

(divwδ, r) ≥ δβG‖r‖20,Ω − (1 + βG)δ‖r‖0,ΩC
−1/2
1 sp(r, r)

1/2

≥ δβG‖r‖20,Ω −
(1 + βG)2δ2

4C1
‖r‖20,Ω − sp(r, r) ,

where C1 = 1/6. Now, let (v, q) := (w−wδ, r). Then, |wδ|1,Ω = δ‖r‖0,Ω, (3.163.16), (3.173.17),

and this lower bound yield

Bs(w, r;v, q) ≥
β2
G

1 + β2
G

|w|21,Ω +

(
δβG −

(1 + βG)2δ2

4C1

)
‖r‖20,Ω −

1 + β2
G

4
δ2‖r‖20,Ω

≥ β2
G

1 + β2
G

|w|21,Ω +

(
δβG − δ2 1

min{1, C1}
1 + βG + β2

G

2

)
‖r‖20,Ω

≥ δβG
2

(
|w|21,Ω + ‖r‖20,Ω

)
=
δβG

2
|||(w, r)|||2

where we chose δ := min{1, C1}βG/(1 + βG + β2
G) to obtain the last estimate.

Finally, using the definition of wδ, (3.143.14) and the triangle inequality we get

|||(v, q)||| ≤ |||(w, r)|||+ |wδ|1,Ω ≤ |||(w, r)|||+ δ‖r‖0,Ω ≤ (1 + δ)|||(w, r)||| ,

which proves (3.153.15) with µs ≥ δβG/(2 + 2δ) = Cβ2
G.

The following bounds will simplify the a priori estimate later on.

Lemma 3.13. Let qP ∈ MP and p ∈ H1(Ω). Then, the stabilisation term is bounded

as follows

sp(qP, qP) ≤




‖qP‖20,Ω ,

Ck−2
∑

c∈C
(
‖p− qP‖20,K∪K′ + |γc|2

∥∥∂(p− qP)/∂t̃c
∥∥2

0,K∪K′

)
,

(3.18)

where t̃c is evaluated element-wise as the tangential vector of the neighbouring edge of

γc inside K and K ′, respectively, and C is a constant independent of mesh properties

and polynomial degree k.
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Proof. We first note that γc = K ∩K ′ for all c ∈ C. Then, using definition (3.13c3.13c), the

trace estimate (2.142.14), and (CS2CS2), we get

sp(qP, qP) =
1

k3

∑

c∈C

|K||K ′|
|K ∪K ′|

∣∣∣qP|K(xc)− qP|K′(xc)
∣∣∣
2

≤
∑

c∈C

|K||K ′|
|K ∪K ′|

(
1

|K| +
1

|K ′|

)
‖qP‖20,K∪K′ ≤ ‖qP‖20,Ω ,

where the last estimate follows using that the corner patches are non-overlapping. This

proves (3.183.18)1. Similarly, since JqPKγc ∈ Pk−1(γc), we apply (2.102.10) to get

sp(qP, qP) =
1

k3

∑

c∈C

|K||K ′|
|K ∪K ′|JqP(xc)K2

γc
≤ 1

k2

∑

c∈C

|K||K ′|
|K ∪K ′| |γc|

−1‖JqPK‖20,γc .

Using the regularity of p ∈ H1(Ω), that is, JpKe = 0 a.e. in Ω, we insert p, apply trace

estimate (2.3a2.3a) and |K||K′|
|K∪K′| ≤ min{|K|, |K ′|} ≤ C|γc|2, to obtain

sp(qP, qP) ≤ k−2
∑

c∈C

min{|K|, |K ′|}
|γc|

‖Jp− qPK‖20,γc

≤ Ck−2
∑

c∈C

∑

ω∈{K,K′}

(
‖p− qP‖20,ω + |γc| ‖p− qP‖0,ω

∥∥∂(p− qP)/∂t̃c
∥∥

0,ω

)

≤ Ck−2
∑

c∈C
‖p− qP‖20,K∪K′ + |γc|2

∥∥∂(p− qP)/∂t̃c
∥∥2

0,K∪K′ ,

which finishes the proof.

We end this section with the main a priori error bound for the method.

Theorem 3.14. Let (u, p) ∈ V ×M be the solution of Problem (3.2a3.2a) with p ∈ H1(Ω),

and (uP, pP) ∈ V P ×MP be the solution of (3.13a3.13a). Then

|u− uP|1,Ω + ‖p− pP‖0,Ω ≤
C

µs
inf

(vP,qP)∈V P×MP

{
|u− vP|1,Ω + ‖p− qP‖0,Ω

+
(
k−2

∑

c∈C
|γc|2

∥∥∂(p− qP)/∂t̃c
∥∥2

0,K∪K′

)1/2}
,

where C is a constant independent of mesh properties and the polynomial degree, and

t̃c is defined in Lemma 3.13Lemma 3.13.

Proof. We use standard arguments. For an arbitrary pair (vP, qP) ∈ V P × MP the

triangle inequality gives

|||(u− uP, p− pP)||| ≤ |||(u− vP, p− qP)|||+ |||(ξv, ξp)||| , (3.19)
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3. Minimal stabilisation for arbitrary order

where ξv := uP − vP and ξp := pP − qP are discrete errors. Our aim is to bound them.

To do so, we prepare a useful identity. A direct computation using V P ⊂ V , and the

definitions of methods (3.2a3.2a) and (3.13a3.13a), shows

B(u, p;wP, rP) = Bs(uP, pP;wP, rP) for all (wP, rP) ∈ V P ×MP ,

which together with the linearity of Bs and B implies

Bs(ξv, ξp;wP, rP) = Bs(uP, pP;wP, rP)−B(vP, qP;wP, rP) + sp(qP, rP)

= B(u− vP, p− qP;wP, rP) + sp(qP, rP) ,

for all (wP, rP) ∈ V P ×MP.

Now, by Theorem 3.12Theorem 3.12, there exists a pair (w̃P, r̃P) ∈ V P×MP with |||(w̃P, r̃P)||| = 1,

such that

µs|||(ξv, ξp)||| ≤ Bs(ξv, ξp; w̃P, r̃P)

= B(u− vP, p− qP; w̃P, r̃P) + sp(qP, r̃P)

≤ C|||(u− vP, p− qP)|||+
√
sp(qP, qP)

√
sp(r̃P, r̃P) , (3.20)

where we have used the continuity of B with respect to |||·|||, and (CS1CS1) to bound sp.

Now, inserting (3.203.20) into (3.193.19) and applying (3.183.18)1 and ‖r̃P‖0,Ω ≤ 1, we get

|||(u− uP, p− pP)||| ≤ (1 + µ−1
s C)

(
|||(u− vP, p− qP)|||+

√
sp(qP, qP)

)
.

Finally, applying the equivalence of |v|1,Ω + ‖q‖0,Ω and |||(v, q)|||, as well as, part two of

(3.183.18) gives

|u− uP|1,Ω + ‖p− pP‖0,Ω ≤ Cµ−1
s

{
|u− vP|1,Ω + ‖p− qP‖0,Ω

+
( 1

k2

∑

c∈C
|γc|2

∥∥∂(p− qP)/∂t̃c
∥∥2

0,K∪K′

)1/2}
,

which finishes the proof, as the pair (vP, qP) was arbitrary.

3.4. Numerical evidence

In this section we present numerical evidence that confirms the theoretical results ob-

tained so far. For this, we recall the (aspect) ratio % := minc∈C hc/Hc, and for quick

reference, the LBB constants βP from (3.43.4) and βG from Theorem 3.3Theorem 3.3, as well as the

stability constant µs from (3.153.15). All experiments are performed on meshes shown in

Figures 3.13.1 and 3.23.2 with hc + Hc = 1. The edges embraced by the jump symbol J·K
were chosen as γc (c ∈ C).
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3. Minimal stabilisation for arbitrary order

The implementation of the finite element methods was done in MatLab. And, eigen-

value problems posed in Corollary 4.7Corollary 4.7 and Lemma 4.8Lemma 4.8 (see Chapter 44) were used to

calculate the stability constant µs and to compute βP and βG, respectively.

The numerical evidence confirms the following points.

• One (appropriate) constraint suffices to obtain an LBB constant βG indepen-

dent of % on either of the corner patches shown in Figure 3.23.2. On the T-mesh

(Figure 3.13.1), six constraints are sufficient. All this is confirmed by Figure 3.33.3,

which depicts βG and βP for k = 1 (left) and k = 4 (right).

• Figure 3.43.4 shows the behaviour of the squared LBB constants βP and βG, as well

as the stability constant µs on the T-mesh for various % and k. This confirms

that the stability constant µs in (3.153.15) behaves like β2
G.

• Another confirmation that µs = Cβ2
G is shown in Figure 3.53.5 for a fixed aspect

ratio % = 10−5 and various polynomial degrees k. This also confirms that both

µs and the error constant in Theorem 3.14Theorem 3.14 are independent of the (aspect) ratio

hc/Hc.

• It is necessary to choose an edge γc ⊂ ∂ωc ∩ ∂(Ωc \ ωc). If this is not done, then

there is virtually no improvement of βG over βP. To illustrate, we have chosen

the edge labelled in Figure 3.63.6 (left, e 6⊂ ∂ωc ∩ ∂(Ωc \ ωc)), and then Figure 3.63.6

(right) compares the obtained “βG” to the possible improvement.

In summary, we have observed that βP behaves as predicted by (3.43.4) and [AC00AC00,

Lemma 4.6], respectively. That is, βP → 0 as % → 0, and βP grows with k until

k
√
% ≈ 1. More importantly, our βG is, as predicted, independent of % and mostly

(despite a decay in k) much larger than βP.
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10−6 10−5 10−4 10−3 10−2 10−1

̺ (k = 1)

10−3

10−2

10−1

100

βP

βG

10−6 10−5 10−4 10−3 10−2 10−1

̺ (k = 4)

10−3

10−2

10−1

100

βP

βG

Figure 3.23.2b
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Figure 3.23.2c
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Figure 3.23.2d
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Fig. 3.3. LBB constants βP and βG vs % on corner patches and the T-mesh.
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G and stability constant µs vs. % and k on T-mesh.
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Fig. 3.5. Stability constant µs = Cβ2
G (Theorem 3.123.12) on T-Mesh (Figure 3.13.1).
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Fig. 3.6. LBB constant βG is independent of %, only for edges e ⊂ ∂ωc ∩ ∂(Ωc \ ωc).
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3.5. Uniformly inf-sup stable sub-spaces

This section contains the theoretical justification of Theorem 3.3Theorem 3.3 in Section 3.2.13.2.1. That

is, we prove that the pair V P × G is uniformly inf-sup stable. The proof is split into

the following parts. We first present known LBB conditions for partitions consisting

of shape-regular parts and edge patches. These allow us to prove local uniform inf-sup

conditions by constraining averages, in particular, Corollary 3.15Corollary 3.15 which generalises inf-

sup condition (3.63.6) and [AC00AC00, Lemma 4.3], respectively. This corollary also confirms

the reduced number of spurious pressure modes. After that, we replace the average

constraints by jump constraints, to prove a local inf-sup condition for the pair V P×G.

We end this section with the proof of Theorem 3.3Theorem 3.3.

Let Psr be a shape-regular partition of ω. Then, the pair Qc
k×Pk−1(⊂ V Psr ×MPsr)

is inf-sup stable on shape-regular meshes, see [BM99BM99, Proposition 4.1]. Hence, for all

q ∈MPsr there exists v ∈ V Psr such that

(div v, q)ω = ‖q‖20,ω and |v|1,ω ≤ C‖q‖0,ω , (3.21)

with a constant C independent of mesh properties and polynomial degree k.

Let PE be a partition of ω containing shape-regular parts and edge patches. Then,

by [AC00AC00, Theorem 4.7] the pair V PE ×MPE is uniformly inf-sup stable, that is, for

all q ∈MPE there exists a v ∈ V PE such that

(div v, q)ω = ‖q‖20,ω and |v|1,ω ≤ Ck1/2‖q‖0,ω , (3.22)

with a constant C independent of mesh properties and polynomial degree k.

In particular, if edge patches are overlapping without creating a finely resolved

corner, then (3.223.22) holds; for instance, in [AC00AC00, Lemma 4.2] the uniform inf-sup

condition (3.223.22) is proved for a single overlapping edge patch, that is, the mesh in

Figure 3.73.7(centre). Then, by [AC00AC00, Theorem 4.7] condition (3.223.22) holds on the un-

shaded parts of Figures 3.13.1 and 3.23.2.

hc

hc

hc

hc

Hc

Hc

hc

hc

Hc

Hc

Fig. 3.7. A corner patch decomposed into its regular part and (overlapped) edge patches.
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3.5.1. A uniformly inf-sup stable space by average constraints

Hereafter, we derive an orthogonal decomposition of the local pressure space on corner

patches. The arguments require local notation. We recall the localized finite element

spaces V P(ω) and MP(ω), defined in Section 3.13.1.

The following corollary generalises Lemma 3.1Lemma 3.1 (see also [AC00AC00, Lemma 4.3]). The

proof follows the same lines, but is valid for all corner patches shown in Figure 3.23.2. We

include it in an abstract form. The main idea of the proof is to connect uniform inf-sup

conditions of the involved finite element spaces on subdomains ωc and Ωc \ ωc, which

are covered by partitions consisting of shape-regular parts and edge patches. Later in

this thesis, we will apply this idea to more general situations.

Corollary 3.15. Let Ωc ⊆ Ω be one of the corner patches shown in Figure 3.23.2 with

ωc being the small shaded set. Let

M?
P(Ωc) :=

{
q ∈MP : supp q ⊆ Ωc and 〈q〉ωc

= 0
}
.

Then, for all q ∈M?
P(Ωc) there exists v ∈ V P(Ωc) such that v|ωc

∈H1
0(ωc) and

(div v, q)Ωc
= ‖q‖20,Ωc

and |v|1,Ωc
≤ Ck1/2‖q‖0,Ωc , (3.23)

with a constant C independent of mesh properties and polynomial degree.

Proof. Let q ∈ M?
P(Ωc). Then, since q ∈ L2

0(Ωc), we have 0 = (q, 1)ωc
= −(q, 1)Ωc\ωc

.

Therefore, we may write q = qc + qI with qc ∈ MP(ωc) and qI ∈ MP(Ωc \ ωc). We

remark that the partition P on ωc consists of a small number of shape-regular cells.

Hence, by (3.213.21) there exists vc ∈ V P(ωc) such that

(div vc, qc)ωc
= ‖qc‖20,ωc

and |vc|1,ωc
≤ C‖qc‖0,ωc .

Similarly, the partition on Ωc\ωc consists of (overlapped) edge patches only and hence,

by (3.223.22), there exists vI ∈ V P(Ωc \ ωc) such that

(div vI , qI)Ωc\ωc
= ‖qI‖20,Ωc\ωc

and |vI |1,Ωc\ωc
≤ Ck1/2‖qI‖0,Ωc\ωc .

Together, we let v := vc + vI and realise because of disjoint supports that

(div v, q)Ωc
= (div vc, qc)ωc

+ (div vI , qI)Ωc\ωc
= ‖qc‖20,ωc

+ ‖qI‖20,Ωc\ωc
= ‖q‖20,Ωc ,

and

|v|21,Ωc
= |vc|21,ωc

+ |vI |21,Ωc\ωc
≤ C‖qc‖20,ωc

+ Ck‖qI‖20,Ωc\ωc
≤ Ck‖q‖20,Ωc ,

which proves (3.233.23).
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Corollary 3.15Corollary 3.15 proves that the space containing the spurious modes is (at most)

one-dimensional on each corner patch shown in Figure 3.23.2. From the experiments in

Section 3.43.4 we know that there is at least one spurious pressure mode. In conclusion

there is exactly one spurious pressure mode on each corner patch.

Remark 3.16. For the local pressure space we have the decomposition

MP(Ωc) = M?
P(Ωc)⊕ span {qB} = MP(ωc)⊕MP(Ωc \ ωc)⊕ span {qB} ,

where qB ∈MP(Ωc) is defined by

qB :=





1
|ωc| in ωc ,

− 1
|Ωc\ωc| in Ωc \ ωc .

Alternatively, every q ∈MP(Ωc) can be written as

q = q? + Πcq with q? ∈M?
P(Ωc) and Πcq := (q, 1)ωc

qB , (3.24)

and (q?,Πcq)Ωc
= 0.

Moreover, let (Ω,P) be a pair of domain and partition as shown in Figure 3.23.2. Then

P consists of one corner patch. Hence, comparing the results Corollary 3.15Corollary 3.15 and (3.43.4),

we observe that the degeneration of the inf-sup constant appears as a consequence of

connecting the pressure spaces on the subdomains ωc and Ωc \ ωc, by the average-free

function qB. This generalises Remark 3.2Remark 3.2 to the meshes shown in Figure 3.23.2.

In Corollary 3.15Corollary 3.15 we impose an average constraint to remove the spurious mode

qB ∈ MP(Ωc). The next aim is to show that we alternatively can remove a single

degree of freedom by imposing a single jump constraint. The motivation for selecting

an edge on ∂ωc ∩ ∂(Ωc \ ωc), is that the pressure spaces MP(ωc) and MP(Ωc \ ωc) do

not contain spurious modes and that the basis function qB has the same jump across

each of these edges.

In the next section we enforce the continuity of the discrete pressure space in the

mid-point xc of an edge γc. An abstract implementation concept enabling this idea is

described in Appendix A.1A.1.

3.5.2. A uniformly inf-sup stable space by jump constraints

In this section we prove Theorem 3.3Theorem 3.3; we start with a local result. To this end, let

(Ωc,P) be one of the domains and its associated partition given by Figure 3.23.2, let

ωc ⊂ Ωc be the small shaded subset, and let γc be an edge on ∂ωc ∩ ∂(Ωc \ ωc). Then,
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we restrict G, defined in (3.73.7), to Ωc by

Gc :=
{
q ∈MP(Ωc) : Jq(xc)Kγc = 0 where xc is the midpoint of γc

}
. (3.25)

The upcoming results are based on the decomposition proposed in Corollary 3.15Corollary 3.15 and

Remark 3.16Remark 3.16, respectively. In order to prepare the proof of the local uniform inf-sup

condition on V P(Ωc)×Gc, we give the following auxiliary estimate.

Lemma 3.17. Let Gc be defined by (3.253.25) and q ∈ Gc. Then, q = q? + Πcq with

q? ∈M?
P(Ωc) as defined in Remark 3.16Remark 3.16 and

‖q‖0,Ωc
≤ Ck3/2‖q?‖0,Ωc , (3.26)

with a constant C independent of mesh properties and polynomial degree.

Proof. Let q ∈ Gc, and write q = q? + Πcq with q? ∈M?
P(Ωc). Using the orthogonality

of q? and Πcq we obtain

‖q‖20,Ωc
= ‖q?‖20,Ωc

+ ‖Πcq‖20,Ωc .

Therefore, (3.263.26) follows once we prove ‖Πcq‖0,Ωc
≤ Ck3/2‖q?‖0,Ωc .

We start by observing Πcq = αqB for a coefficient α ∈ R and qB from Remark 3.16Remark 3.16.

Then, a direct computation shows

‖Πcq‖20,Ωc
= α2|JqB(xc)K| = 1

|JqB(xc)K|α
2JqB(xc)K2 =

|ωc||Ωc \ ωc|
|Ωc|

JΠcq(xc)K2 .

Using Jq(xc)K = 0, we get −JΠcq(xc)K = Jq?(xc)K and then

‖Πcq‖20,Ωc
=
|ωc||Ωc \ ωc|
|Ωc|

Jq?(xc)K2 . (3.27)

Next, we recall γc = K ∩K ′, and apply trace inequality (2.142.14) and (CS2CS2) to get

Jq?(xc)K2 ≤ k3

(
1

|K| +
1

|K ′|

)
‖q?‖20,K∪K′ . (3.28)

The inverses of the areas need to be compensated. For corner patches with K ⊆ ωc and

|K| ≤ |K ′| we have |ωc| = δc|K| where δc is number of small cells in ωc, cf. Figure 3.23.2.

Therefore, we obtain

|ωc|
(
|K|−1 +

∣∣K ′
∣∣−1)

= δc(1 + %K′) ≤ 2 δc ≤ C . (3.29)

Finally, inserting (3.283.28) into (3.273.27) and applying (3.293.29) gives

‖Πcq‖20,Ωc
≤ |ωc||Ωc \ ωc|

|Ωc|
k3

(
1

|K| +
1

|K ′|

)
‖q?‖20,K∪K′ ≤ Ck3‖q?‖20,Ωc ,

which finishes the proof.
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Remark 3.18. The number δc in (3.293.29) is uniformly bounded thanks to the maximum

angle condition of P (inherited from Psr).

Lemma 3.19. Let Ωc be one of the domains in Figure 3.23.2 and let Gc be defined

by (3.253.25). Then there exists a positive constant C, independent of mesh properties,

such that for all q ∈ Gc there exists v ∈ V P(Ωc) satisfying

(div v, q)Ωc
= ‖q‖20,Ωc

and |v|1,Ωc
≤ Ck2‖q‖0,Ωc . (3.30)

Proof. Let q ∈ Gc, and write q = q?+Πcq with q? ∈M?
P(Ωc). Then, using Corollary 3.15Corollary 3.15

there exists v? ∈ V P(Ωc) such that v?|ωc
∈H1

0(ωc) and

(div v?, q?)Ωc
= ‖q?‖20,Ωc

and |v?|1,Ωc
≤ Ck1/2‖q?‖0,Ωc ,

and, due to Πcq ∈ span {qB} and qB being constant on ωc and Ωc \ ωc, we have

(div v?,Πcq)Ωc
= 0 .

Together, we define v := ‖q‖20,Ωc
‖q?‖−2

0,Ωc
v? and use the equalities above to obtain

(div v, q)Ωc
=
‖q‖20,Ωc

‖q?‖20,Ωc

(div v?, q? + Πcq)Ωc
= ‖q‖20,Ωc .

Furthermore, using the estimate for |v?|1,Ωc
and (3.263.26), we get

|v|1,Ωc
=
‖q‖20,Ωc

‖q?‖20,Ωc

|v?|1,Ωc
≤ Ck1/2

‖q‖20,Ωc

‖q?‖0,Ωc

≤ Ck1/2k3/2‖q‖0,Ωc ,

which proves (3.303.30).

We conclude this section with the proof of the main result, cf. Section 3.2.13.2.1.

Proof of Theorem 3.3Theorem 3.3. We collect the ingredients such that a proof using a macro-

element technique can be applied. To this end, we recall that P arose as an anisotropic

refinement of a shape-regular partition Psr. At first we notice that on Psr the pair

Q2 × P0 is inf-sup stable, and hence V Psr ×MPsr is inf-sup stable, where

MPsr := {q : q|K = const. for K ∈ Psr} ∩
{
q : q|Ωc

= const. for c ∈ C
}
.

Then, on shape-regular parts, edge patches and corner patches of partition P we have

the local inf-sup conditions (3.213.21), (3.223.22) and (3.303.30). Therefore, performing a macro-

element technique, as in [AC00AC00, Section 4.4] or [GR86GR86] we conclude βG in Theorem 3.3Theorem 3.3

satisfies βG ≥ Ck−2. Furthermore, since G ⊂ MP we get βG ≥ βP which finishes the

proof.
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3.6. Published results

In collaboration with Prof. Mark Ainsworth results based this on chapter were published

in [ABW15ABW15]. The purpose of this section is to list the published results.

In [ABW15ABW15] we replaced G ⊂MP by the subspace M̃P ⊂MP defined by

M̃P :=

{
q ∈MP :

∫

γc

JqK ds = 0 for c ∈ C

}
, (3.31)

where JqK is the jump of the pressure q ∈MP across the edge γc.

Then, the following properties are proven in [ABW15ABW15]:

• The pair V P×M̃P is uniformly inf-sup stable with an LBB constant β̃P satisfying

β̃P ≥ max
{
βP, Ck

−3/2
}

. This constant may be up to k1/2 larger than βG in

Theorem 3.3Theorem 3.3.

• The constraints in definition (3.313.31) motivate the stabilisation term:

sp(p, q) :=
1

k2

∑

c∈C

∫

γc

JpK ds ·
∫

γc

JqK ds .

This term satisfies the equivalence

C1

∥∥qP − Π̃PqP
∥∥2

0,Ω
≤ sp(qP, qP) ≤ C2

∥∥qP − Π̃PqP
∥∥2

0,Ω ,

where Π̃P is an appropriate projection and C1, C2 are constants only depending

on angles. Additionally, for all q ∈MP and p ∈ H1(Ω) we have

sp(qP, qP) ≤ C




‖qP‖20,Ω ,

k−2
∑

c∈C
(
‖p− qP‖20,K∪K′ + |γc|2‖∂(p− qP)/∂nc‖20,K∪K′

)
,

where nc is a unit normal vector of the edge γc.

• Using the properties above (similar to Remark 3.9Remark 3.9) we get:

inf
q̃P∈M̃P

‖p− q̃P‖20,Ω ≤ C inf
qP∈MP

(
‖p− qP‖20,Ω + k−2

∑

c∈C
|γc|2‖∂(p− qP)/∂nc‖20,K∪K′

)
.

• Both the mixed method using the pair V P× M̃P and the method using V P×MP

which has been stabilised by adding the term above are stable, independent of

properties of the mesh, and in particular of the properties of the corner patches.
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Furthermore, both methods satisfy the a priori estimate

|u− uP|1,Ω + ‖p− pP‖0,Ω ≤ Cβ̃−2
P

{
inf

vP∈V P

|u− vP|1,Ω

+ inf
qP∈MP

(
‖p− qP‖20,Ω + k−2

∑

c∈C
|γc|2‖∂(p− qP)/∂nc‖20,K∪K′

)1/2
}
.

3.7. Conclusions

In this chapter, we discussed the stability of the mixed finite element schemeQc
k+1 × Pk−1

on anisotropic meshes. The unconstrained pair satisfies uniform inf-sup conditions on

shape-regular meshes [SS96SS96,BM99BM99] and on edge patches [SSS99SSS99,AC00AC00,SS98SS98]. Unfortu-

nately, the LBB constant degenerates on partitions containing corner patches with their

aspect ratio, cf. (3.43.4), which is a result proved in [AC00AC00]. Further results in [AC00AC00] give

the impression that the degeneration is caused by as many spurious modes as single

corner patches (see Figure 3.13.1b) are present in the partition.

The first achievement of this chapter is Corollary 3.15Corollary 3.15, which shows that the num-

ber of spurious pressure modes is smaller, since the uniformly inf-sup stable part of

the space is larger. Then, the inf-sup condition in Corollary 3.15Corollary 3.15 is the basis for the

results Theorem 3.3Theorem 3.3, and [ABW15ABW15, Thm. 1.1], which prove the existence of alterna-

tive uniformly inf-sup stable spaces G and M̃P. These spaces impose constraints on

the pressure space which, similarly to boundary conditions, may be enforced strongly

(by using the reduced space) or weakly (by adding a stabilisation term to the formu-

lation). Numerical experiments confirmed that the number of constraints is indeed

minimal. It turns out that the schemes using the reduced pressure spaces converge at

least as fast as the stabilised alternatives, cf. Remark 3.9Remark 3.9 and Theorem 3.14Theorem 3.14, as well

as [ABW15ABW15, Theorems 1.1 and 1.2].

In conclusion, the chapter is the basis for four new mixed methods for the Stokes

flow problem whose stability is independent of mesh properties, even on meshes that

contain corner patches. For the lowest polynomial degree k = 1 (Qc
2×P0), the reduced

spaces G (3.73.7) and M̃P (3.313.31) coincide. Similarly, the stabilisation terms, and therefore

the stabilised methods, coincide. The methods proposed here represent an easy to

implement alternative to the method in [AC00AC00]. Each of the methods circumvents

a dependency of βP on the ratio minc∈C hc/Hc, cf. Figure 3.23.2, which is a non-local

quantity, cf. Remark 3.2Remark 3.2.
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3.7.1. Extensions

The approach presented in this chapter can be extended into various directions. An

extension to a balanced-order pair requires more stabilisation terms as a dependency

on local aspect ratios arises, see also Table 1.11.1. The lowest order pair Qc
1×P0 is treated

in the next chapter. The results are then extended to the Oseen problem in Chapter 55.
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Chapter 4

A note on the stabilised Qc
1 × P0 method

In this chapter, we extend results obtained so far to the lowest balanced-order pair for

the Stokes problem, that is, we propose a method using bilinear velocities and constant

pressures. For this, we extend the method proposed in [LS13LS13] to cover the case in

which the mesh contains anisotropically refined corners. This modification consists of

adding extra jump terms in selected edges connecting small shape regular with large

anisotropic elements. We prove stability and convergence of the proposed method,

and provide numerical evidence for the fact that our approach successfully removes the

dependence on the anisotropy.

The results contained in this chapter are the basis of the publication [BW15BW15].

4.1. Motivation

As in Chapter 33 we consider the Stokes problem in a bounded, connected, polygonal

domain Ω ⊂ R2. We recall the problem to pose the context:

Find a velocity u and a pressure p such that

−∆u+ grad p = f , divu = 0 in Ω (4.1)

subject to u = 0 on ∂Ω and p ∈ L2
0(Ω), with given source term f ∈ L2(Ω)2.

For the discrete space we choose theQc
1×P0 pair and allow the mesh to be anisotropic.

It is well known that the Qc
1 × P0 pair is not inf-sup stable (cf. [GR86GR86]). In the

introduction we saw that several stabilised finite element methods have been proposed.

In this chapter, we focus on the case in which the mesh used contains anisotropic

elements. This possibility is considered in [LS13LS13], but the method needs to be extended

to accommodate the anisotropies we consider in this chapter. In fact, the method con-

sidered in [LS13LS13] is an extension of the locally stabilised FEM [KS92KS92]. In order to

build the method, the mesh P used in the discretization has to be a uniform refinement

of an initial (macro element) partition P0 (see Figure 4.14.1). This refinement divides
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each macro element M ∈ P0 into 4 quadrangles by connecting the mid-points of op-

posite edges (see Figure 4.14.1, right). The stability of the locally stabilised method is a

consequence of the stability of the Qc
2 × P0 space over the initial partition P0.

Now, from Chapter 33 (or [AC00AC00]) we know that the following fact holds

inf
q∈P0

sup
v∈Qc

2

(q,div v)Ω

|v|1,Ω‖q‖0,Ω
≥ C√% , (4.2)

where % = h/H is the aspect ratio (recall Remark 3.2Remark 3.2 for a more precise statement).

Hence, (4.24.2) leads to a deterioration of the stability constant when % tends to zero, as

suggested by Figure 4.14.1. This dependence is still present in [LS13LS13], since that method

only considers jumps inside macro elements M ∈ P0, and then, in such a case, a

deterioration of stability of the type (4.24.2) will not be corrected.

h

h

H

H

J K

h

h

H

H

J K

Fig. 4.1. Partition P0 (left) and P (right).

In this chapter we propose an extension of the method from [LS13LS13] which remains

uniformly stable as % tends to zero. For this, we apply the techniques developed in the

previous chapter and augment the method by adding jumps in selected edges of the

partition P. More precisely, we add jumps to the formulation that allow to “connect”

the small (shaded) corner macro element in P0 to the rest of the corner patch from

Figure 4.14.1.

We recall the weak formulation of (4.14.1):

Find u ∈ V := H1
0(Ω) and p ∈M := L2

0(Ω) such that

B(u, p;v, q) = (f ,v)Ω for all (v, q) ∈ V ×M (4.3)

where

B(u, p;v, q) := (gradu, gradv)Ω − (div v, p)Ω − (divu, q)Ω . (4.4)

The well-posedness of (4.34.3) was discussed in Chapter 33.

The rest of this chapter is organised as follows. We define required notation and

extend the stabilisation terms of the method in [LS13LS13] by a few jumps. Then, the
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stability, a priori estimates and numerical experiments are stated. These experiments

confirm the dependency on % and that the additional jumps remove it. Then, the proof

of the main results and concluding remarks are given. Finally we justify the numerical

experiments made.

4.2. The finite element approximation

In order to construct partition P we start from an initial macro element partition P0

that consists of closed parallelograms and satisfies a maximal angle condition. We

suppose that P0 is a conforming partition of Ω and allow it to be highly anisotropic

and contain corner patches, as in Chapter 33. See for example the shaded cells and their

neighbourhoods in Figures 4.14.1 and 4.34.3 (later).

We define the partition P as a uniform refinement of P0, and state important defini-

tions and properties of P:

• Let EP denote the set of interior edges of P. Throughout we use K to denote

elements of P, and M to denote elements of P0. We refer to M as macro element.

• The uniform refinement splits each macro element M ∈ P0 into K1,K2,K3,K4 ∈
P, such that |Ki| = |M |/4 (i = 1, .., 4) and each Ki has the same angles as M ,

see Figure 4.14.1(right).

• For M ∈ P0, let EM ⊆ EP collect its interior edges, dashed in Figure 4.14.1(right).

• Let C be the set of corners, that is, nodes c of the mesh P0 towards which the

mesh is graded, denoted by filled circles in Figures 4.14.1 and 4.34.3. Moreover, for

c ∈ C, we select a single edge γc ∈ EP0 that separates an extremely small corner

macro element (shaded) from a highly stretched neighbouring macro element, for

instance, the embraced edges in Figures 4.14.1(left) and 4.34.3. The selected edges γc

are collected in the set EC.

Finally, we define the finite element spaces

Qc
`,P :=

{
v ∈ V : v|K ∈ Q`(K)2 for all K ∈ P

}
, ` = 1, 2

and

MP := {q ∈M : q|K ∈ P0(K) for all K ∈ P} ,

and seek an approximation of the solution (u, p) of Problem (4.34.3) within the discrete

space Qc
1,P ×MP. Then, the stabilised method reads:

52



4. A note on the stabilised Qc
1 × P0 method

Find (usP, p
s
P) ∈ Qc

1,P×MP such that

Bs(u
s
P, p

s
P;v, q) = (f ,v)Ω for all (v, q) ∈ Qc

1,P×MP . (4.5)

Here,

Bs(u, p;v, q) := B(u, p;v, q)− 1

4
sp(p, q) , (4.6)

and the stabilisation terms are

sp(p, q) :=
∑

M∈P0

SM (p, q) +
∑

γc∈EC

Sγc(p, q) (4.7)

where, if J·Ke stands for the jump of a function across edge e = K ∩K ′, then

SM (p, q) :=
∑

e∈EM

|M |
4|e|

∫

e
JpKJqK ds ,

Sγc(p, q) :=
∑

e⊂γc

min{|K|, |K ′|}
|e|

∫

e
JpKJqK ds .

Remark 4.1. The method proposed in [LS13LS13] seeks (u, p) ∈ Qc
1,P×MP, such that

B(u, p;v, q)− 1

4

∑

M∈P0

SM (p, q) = (f ,v)Ω for all (v, q) ∈ Qc
1,P×MP . (4.8)

Then, the difference is given by additional jumps across a few selected edges.

For simplicity, in this chapter, we restrict ourselves to axis-parallel meshes. The

results can be easily extended to meshes consisting of parallelograms. We summarise

the existence and a priori results here, the proofs are postponed until after the numerical

experiments.

Theorem 4.2. Let |||(v, q)|||2 := |v|21,Ω + ‖q‖20,Ω. Then, there exists a constant µs > 0

independent of %, such that

sup
(v,q)∈Qc

1,P×MP

Bs(w, r;v, q)

|||(v, q)||| ≥ µs |||(w, r)||| for all (w, r) ∈ Qc
1,P×MP . (4.9)

Consequently, Problem (4.54.5) has a unique solution (usP, p
s
P) ∈ Qc

1,P×MP. Moreover, if

p ∈ H1(Ω), then there exists a positive constant C such that

|||(u− usP, p− psP)||| ≤ (1 + Cµ−1
s )

(
inf

(vP,qP)∈Qc
1,P×MP

|||(u− vP, p− qP)|||+
{∑

K∈P
‖diag(hK,x, hK,y)∇p‖20,K

}1/2
)
,

(4.10)
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where hK,x and hK,y is the length of cell K ∈ P in x- and y-direction, respectively.

4.3. Numerical results

We compare µs from (4.94.9) and the stability constant ξ from [LS13LS13] given by

ξ = inf
(w,r)∈Qc

1,P×MP

sup
(v,q)∈Qc

1,P×MP

B(w, r;v, q)− 4−1
∑

M∈P0
SM (r, q)

|||(v, q)||||||(w, r)||| .

The experiments in Figure 4.24.2 were performed on partitions P shown in Figure 4.14.1

(right) and Figure 4.34.3 on the domains Ω = (0, 1)×(0, 1) and Ω = (−3, 3)×(0, 2) ∪
(−1, 1)×(−2, 0], respectively. The set of additional edges EC was chosen to contain all

edges enclosed by a jump symbol J·K. We observe for % → 0, that while µs remains

uniformly bounded away from zero, ξ degrades and tends to zero. Hence, the additional

jumps correct the dependency of ξ on %. We used Corollary 4.7Corollary 4.7 (cf. Section 4.64.6) to

calculate the values of ξ and µs.

10−6 10−5 10−4 10−3 10−2 10−1 100

̺

10−6

10−5

10−4

10−3

10−2

10−1

100

µs

ξ
10−6 10−5 10−4 10−3 10−2 10−1 100

̺

10−6

10−5

10−4

10−3

10−2

10−1

100

µs

ξ

Fig. 4.2. Stability constants µs in (4.94.9) and ξ in [LS13LS13, (3.12)] for various values of %. Left: on
the mesh of Figure 4.14.1, right: on mesh in Figure 4.34.3.

J K J K

J KJ K

J K J K

Fig. 4.3. An anisotropic mesh on a T-shaped domain.
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4.4. Proof of stability

In this section we prove Theorem 4.2Theorem 4.2. We start by deriving a uniformly inf-sup-stable

subspace G ⊂MP and an inf-sup deficiency. To this end, we recall the definition of EC

in Section 4.24.2.

Lemma 4.3. For the subspace G ⊂MP0 ⊂MP, defined by

G :=
{
q ∈MP0 : JqKγc = 0 for γc ∈ EC

}
, (4.11)

there exists a constant βG independent of % such that

sup
vP∈Qc

1,P

(div vP, qP)Ω

|vP|1,Ω
≥ βG‖qP‖0,Ω for all q ∈ G . (4.12)

Proof. We reason by similarity of the velocity spaces Qc
1,P and Qc

2,P0
. For the pair

Qc
2,P0
×G the result is a consequence of Theorem 3.3Theorem 3.3, or [ABW15ABW15, Theorem 1.1].

The result above induces the following inf-sup deficiency of Qc
1,P×MP.

Lemma 4.4. Let G be defined by (4.114.11) and let ΠG : MP → G be an operator. Then

sup
v∈Qc

1,P

(div v, q)Ω

|v|1,Ω
≥ βG‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω for all q ∈MP . (4.13)

Furthermore, if ΠGq = q for all q ∈ G, then (4.134.13) implies (4.124.12).

Proof. Let q ∈MP, then ΠGq ∈ G and by (4.124.12) there exists a non-zero v ∈ Qc
1,P such

that

βG|v|1,Ω‖ΠGq‖0,Ω ≤ (div v,ΠGq)Ω ≤ |v|1,Ω‖q −ΠGq‖0,Ω + (div v, q)Ω .

Dividing by |v|1,Ω gives (4.134.13) for one v ∈ Qc
1,P. The rest follows easily.

The last results can be read as follows: The inf-sup deficiency (4.24.2) is caused by

functions whose jumps do not vanish across edges in EC. Then, in the rest of this

section, we show that it is enough to control such jumps to obtain uniform stability.

To this end, we recall that P0 is conforming and rewrite every selected edge γc ∈ EC

as γc = M ∩M ′ where M,M ′ ∈ P0 and |M | ≤ |M ′|. In order to simplify the proof we

define ωγc := M ∪M ′. Now, let G be defined by (4.114.11) and let ΠG : MP → G be the

L2-projection into G, which is given by

ΠGq
∣∣
M

=




〈q〉ωγc if M ⊂ ωγc ,

〈q〉M otherwise.
(4.14)
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Now, Lemma 4.5Lemma 4.5 proves properties of the stabilisation terms (4.74.7). The proof uses

the characteristic function on subdomains ω ⊆ Ω given by

χω(x) :=





1 if x ∈ ω ,

0 otherwise.

Lemma 4.5. Let qP ∈MP. On M ∈ P0 with M 6⊂ ωγc we have the equivalence

2‖qP −ΠGqP‖20,M ≤ SM (qP, qP) ≤ 4‖qP −ΠGqP‖20,M , (4.15a)

on ωγc = M ∪M ′ we have

1

4
‖qP −ΠGqP‖20,ωγc ≤

(
SM + SM ′ + Sγc

)
(qP, qP) ≤ 6‖qP −ΠGqP‖20,ωγc . (4.15b)

Furthermore, let sp|M := SM and sp|ωγc := SM + SM ′ + Sγc, then

sp(qP, qP)|ω ≤ C




‖qP‖20,ω
∑

K⊂ω
(
‖p− qP‖20,K + h2

K,x‖∂xp‖20,K + h2
k,y‖∂yp‖20,K

) (4.16)

for all p ∈ H1(Ω), where ω = M ∈ P0 or ω = ωγc.

Proof. Equivalence (4.15a4.15a) has been proven in [LS13LS13, Lemma 3.2]. We include here

an alternative proof which supplies us with notation and arguments for (4.15b4.15b). Let

M ∈ P0 be a (2-by-2) macro element such that M 6⊂ ωγc , γc ∈ EC. Since, all cells

K ⊂ M have the same area, an orthogonal (with respect to the inner product in L2)

basis of MP(M) := {q ∈MP : supp q ⊆M} ⊂ L2
0(M) is given by (cf. Figure 4.44.4, left)

φ1,M := χK1
− χK2

,

φ2,M := χK1∪K2
− χK3∪K4

,

φ3,M := χK3
− χK4

.

(4.17)

Below, we omit the subscript M when it is clear from the context.

K1,M K2,M

K3,MK4,M

K1,M K2,M

K3,MK4,M

s {

s {
K1,M ′ K2,M ′

K3,M ′K4,M ′

Fig. 4.4. A macro element M ∈ P0 (left) and set ωγc (right) with cells Ki,M ∈ P.

We define ra := (qP − 〈qP〉M )|M and realise ra ∈ MP(M). Therefore, from (4.174.17)

we get ra =
∑3

i=1 αiφi,M with appropriate coefficients αi (i = 1, 2, 3). Then, using

56



4. A note on the stabilised Qc
1 × P0 method

|Ki| = |M |/4, (i = 1, . . . , 4), the definition of SM , JraKe ∈ P0(e) and orthogonalities of

the basis we get

SM (qP, qP) =
|M |

4

∑

e∈EM

1

|e|

∫

e
JqPK2 =

|M |
4

∑

e∈EM

1

|e|

∫

e
JraK2 =

|M |
4

∑

e∈EM
JraK2

e

=
|M |

4

[
(2α1)2 + (2α2 − α1 − α3)2 + (2α3)2 + (−2α2 − α3 − α1)2

]

=
|M |

4

[
4α2

1 + 4α2
3 + 8α2

2 + 2(α1 + α3)2
]

= 2‖α1φ1‖20,M + 2‖α3φ3‖20,M + 2‖α2φ2‖20,M +
|M |

2
(α1 + α3)2

= 2‖ra‖20,M +
|M |

2
(α1 + α3)2 , (4.18)

which proves the lower bound of (4.15a4.15a). Applying (α1 +α3)2|M |/2 ≤ 2‖ra‖20,M proves

the upper bound.

To prove (4.15b4.15b), we fix an edge γc ∈ EC and let rb := (qP − 〈qP〉ωγc )
∣∣
ωγc

. Then

rb = α0φ0 + ra + r′a ,

where φ0 = |M |−1χM − |M ′|−1χM ′ , ra =
∑3

i=1 αiφi,M and r′a =
∑3

i=1 α
′
iφi,M ′ . Using

(4.184.18), the definition of φ0 and |K| ≤ |K ′| (since |M | ≤ |M ′|), the stabilisation terms

(4.74.7) inside ωγc satisfy

(
SM + SM ′ + Sγc

)
(qP, qP) ≥ 2‖ra‖20,M + 2

∥∥r′a
∥∥2

0,M ′ +
∑

e⊂γc

|K|
|e|

∫

e
JrbK2 (4.19)

where the additional edges e ⊂ γc satisfy e ⊂ M ∩M ′. We need a lower bound for

the last term. Using JrbKe, Jφ0Ke ∈ P0(e), the linearity of the jump, followed by the

inequality, 2ab ≤ 1
2a

2 + 2b2, we obtain

∑

e⊂γc

∫

e

JrbK2

|e| =
(
Jα0φ0Kγc − α2 + α′2 − α3 − α′3

)2
+
(
Jα0φ0Kγc + α2 − α′2 − α1 − α′1

)2

= 2Jα0φ0K2
γc

+ 2(α2 − α′2)2 + (α1 + α′1)2 + (α3 + α′3)2

− 2(Jα0φ0Kγc + α2 − α′2)(α1 + α′1)− 2(Jα0φ0Kγc − α2 + α′2)(α3 + α′3)

≥ Jα0φ0K2
γc

+ (α2 − α′2)2 − (α1 + α′1)2 − (α3 + α′3)2 ,

and conclude, multiplying through by |K| = |M |/4 ≤ |M ′|/4, that

∑

e⊂γc

|K|
|e|

∫

e
JrbK2 ≥ |K|Jα0φ0K2

γc
− 2|K|(α2

1 + α′21 + α2
3 + α′23 ) . (4.20)

Now, the definition of φ0 and |K| = |M |/4 imply

|K|Jα0φ0K2
γc

= α2
0

|M |
4

(
1

|M | +
1

|M ′|

)2

≥ 1

4
α2

0

(
1

|M | +
1

|M ′|

)
=

1

4
‖α0φ0‖20,ωγc
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and |M | ≤ |M ′| shows

2|K|
(
α2

1 + α′21 + α2
3 + α′23

)
≤ |M |

2
(α2

1 + α2
3) +

|M ′|
2

(α′21 + α′23 )

≤ ‖ra‖20,M +
∥∥r′a
∥∥2

0,M .

Gathering (4.194.19), (4.204.20), the last two estimates and using the fact that φ0 is orthogonal

to ra and r′a yields the lower bound

(
SM +SM ′ +Sγc

)
(qP, qP) ≥ ‖ra‖20,M +

∥∥r′a
∥∥2

0,M
+

1

4
‖α0φ0‖20,ωγc ≥

1

4
‖rb‖20,ωγc . (4.21)

The upper bound follows using that rb is constant on each K ⊂ ωγc with value rK and

that jumps across at most three edges e ⊂ ∂K are penalised, i. e.

(
SM + SM ′ + Sγc

)
(qP, qP) =

(
SM + SM ′ + Sγc

)
(rb, rb)

≤
∑

e∈EM∪EM′∪{e : e⊂γc}
2
|K|
|e|

∫

e
(r2
K + r2

K′) ≤ 6
∑

K⊂ωγc
|K|r2

K = 6‖rb‖20,ωγc .

Now, equivalence (4.15b4.15b) follows from estimate (4.214.21) and this upper bound.

Bound (4.164.16)1 is a consequence of (4.154.15) and ‖qP −ΠGqP‖20,ω + ‖ΠGqP‖20,ω = ‖qP‖20,ω
for ω = M ∈ P0 or ω = ωγc . Finally, estimate (4.164.16)2 follows using p ∈ H1(M) and the

arguments used to prove [LS13LS13, estimate (3.24)].

Proof of Theorem 4.2Theorem 4.2. First, by Lemma 4.3Lemma 4.3 we notice that the pressure space MP con-

tains a uniformly inf-sup stable subspace G. Then, thanks to (4.154.15), the stabilisation

terms control the non-stable part of MP. Then, (4.94.9) follows by standard arguments,

as in Theorem 3.12Theorem 3.12 or in [BDG06BDG06, LS13LS13, ABW15ABW15]. Using (4.164.16) the a priori estimate

also follows known arguments, cf. Theorem 3.14Theorem 3.14 or [BDG06BDG06,LS13LS13,ABW15ABW15].

4.5. Conclusions

In this chapter we have extended the method from [LS13LS13] to cover the case in which

the meshes contain anisotropically refined corners. We have enhanced the aforemen-

tioned method with selected, appropriately weighted jumps that improve the stability

constant by curing its dependency on % = h/H. Finally, it is worth mentioning that

the refinement strategy proposed in [LS13LS13] leads to meshes for which the method is

as stable as it was on the initial mesh. This explains some numerical results in that

reference, since the original mesh used was shape-regular.
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4.6. Verifying discrete LBB and stability conditions

For completeness we include the standard result Lemma 4.6Lemma 4.6. A proof for a special case

is given, for instance, in [Mal81Mal81, Section 3.B]. However, before we found this result,

we proved the general case presented here. Corollary 4.7Corollary 4.7 is a direct consequence of

Lemma 4.6Lemma 4.6 and justifies our numerical experiments.

Lemma 4.6. Let A,B ∈ Rn×n be symmetric matrices and let B be positive definite.

Then, the generalised eigenvalue problem

Av = ξ Bv , (4.22)

has n real eigenvalues {ξi}i, and an A,B-orthogonal basis of eigenvectors of Rn, {vi}i,
such that

〈vj ,Avi〉 = ξi δij and 〈vj ,Bvi〉 = δij . (4.23)

Moreover, we have the (sharp) discrete inf-sup condition:

sup
v∈Rn

v>Au√
v>Bv

≥ |ξ1|
√
u>Bu for all u ∈ Rn (4.24)

where ξ1 is an eigenvalue of Problem (4.224.22) of smallest magnitude.

Proof. Since B is positive definite, there exists a regular matrix L ∈ Rn×n, such that

B = LL>. Then, Problem (4.224.22) is equivalent to a standard eigenvalue problem with

a symmetric matrix, i.e.

Av = ξ Bv ⇐⇒ L−1AL−>L>v = ξ L>v

⇐⇒ Ãw = ξw with Ã = L−1AL−> .

The equivalent problem is symmetric and has n real eigenvalues {ξi}i and a basis of

eigenvectors {wi}i of Rn, such that

Ãwi = ξiwi , 〈wj ,wi〉 = δij and
〈
wj , Ãwi

〉
= ξi δij .

Using the regularity of L we define vi := L−Twi , (i = 1, . . . n) and note that {vi}i, is a

basis of Rn. Following the equivalence of the eigenvalue problems we realise that each

vi is an eigenvector of (4.224.22). And, from the equalities above, we obtain

〈vj ,Bvi〉 =
〈
L>vj , L>vi

〉
= 〈wj ,wi〉 = δij ,

〈vj ,Avi〉 =
〈
L−>wj ,AL−>wi

〉
=
〈
wj , Ãwi

〉
= ξi δij ,

which proves (4.234.23).
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In order to prove (4.244.24), let u ∈ Rn be given. Using the basis property of {vi}ni=1

we have u =
∑n

i=1 αi vi and define v :=
∑n

i=1 α̃ivi with α̃i := sign(ξi)αi (i = 1, . . . , n).

Now, using (4.234.23) shows

v>Bv =

n∑

i=1

α̃i

( n∑

j=1

α̃j〈vj ,Bvi〉
)

=

n∑

i=1

α̃i

( n∑

j=1

α̃jδij

)
=

n∑

i=1

α2
i = u>Bu ,

and
√
u>Bu =

√
v>Bv , respectively. Using this identity and again (4.234.23), we get

v>Au =
n∑

i=1

αi

( n∑

j=1

α̃j〈vj ,Avi〉
)

=
n∑

i=1

αi

( n∑

j=1

αjsign(ξj)ξiδij

)

=

n∑

i=1

α2
i |ξi| ≥ |ξ1|

n∑

i=1

α2
i = |ξ1|

√
u>Bu

√
v>Bv ,

which proves (4.244.24) and its sharpness.

Corollary 4.7. Let B be as in (4.44.4) and let s : MP×MP → R be an arbitrary symmetric

non-negative bilinear form. Then

inf
(u,p)∈Qc

1,P×MP

sup
(v,q)∈Qc

1,P×MP

B(u, p;v, q)− s(p, q)
|||(v, q)||||||(u, p)||| = |ξ1|

where ξ1 is an eigenvalue of smallest magnitude of the problem

(
A B

B> −S

)
U = ξ

(
A 0

0 M

)
U (4.25)

with matrices A,B and S defined as usual from B and s, the mass-matrix M on the

pressure space MP and U ∈ Rn, n = dim(Qc
1,P×MP).

Proof. We first realise that A and M are symmetric and positive definite. The matrix

S is symmetric as its form s. We define

A :=

(
A B

B> −S

)
, B :=

(
A 0

0 M

)
and V :=

(
vc

qc

)
.

Using V as coefficient vector of (v, q) ∈ Qc
1,P×MP we obtain

V>B V = |v|21,Ω + ‖q‖20,Ω = |||(v, q)|||2 ,

and, using Lemma 4.6Lemma 4.6 we get

inf
(u,p)∈Qc

1,P×MP

sup
(v,q)∈Qc

1,P×MP

B(u, p;v, q)− s(p, q)
|||(v, q)||||||(u, p)||| = inf

U∈Rn
sup
V∈Rn

V>AU√
V>B V

√
U>B U

= |ξ1|

where ξ1 is an eigenvalue of smallest magnitude of Problem (4.254.25).
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Lemma 4.8. The inf-sup constant defined by

βP := inf
q∈MP

sup
v∈V P

(div v, q)Ω

|v|1,Ω‖q‖0,Ω
satisfies β2

P = ξ1, where ξ1 is an eigenvalue of smallest magnitude of the generalised

eigenvalue problem

(
A B

B> 0

)(
u

p

)
= −ξ

(
0 0

0 M

)(
u

p

)

where A,B,M are the matrices induced by the bilinear forms (gradu, gradv)Ω, (div v, p)Ω

and (p, q)Ω.

Proof. See [HSV12HSV12, Lemma 9.1].
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Chapter 5

Low order methods for the Oseen problem

In this chapter, we mix and extend the approaches from Chapter 33, 44 and from [MT15MT15,

Bra08Bra08] to propose low-order methods for the Oseen equation on meshes containing

refined corner patches. To solve this problem we now have to treat two sources of

instability. So far we only have dealt with the inf-sup condition. Now, we also allow

the case known as the convection-dominated case, in which the instabilities may result

in the appearance of spurious (non-physical) oscillations.

Starting with the lowest order Qc
1 × P0 pair, we again identify the pressure compo-

nents that cause this finite element pair to be non-inf-sup stable. We then propose

a way to penalise them, both strongly (by directly removing them from the space),

and weakly, by adding a stabilisation term based on jumps of the pressure across se-

lected edges. Concerning the velocity stabilisation, we propose an enhanced grad-div

term and give a new choice for stabilisation parameters with convincing results for

convection-dominated problems. Some of the proofs presented here follow the very

general approach given in [MT15MT15].

The presentation is organised as follows. Section 5.15.1 first recalls the Oseen problem

and its weak formulation. Then, the assumptions associated to the mesh are given.

After that, results for the Stokes problem are extended to the meshes defined. In

particular, we prove the existence of a subspace G ⊂ P0 such that the pair Qc
1 × G

satisfies a uniform LBB condition. This is confirmed numerically. Additionally, the

existence of the divergence preserving interpolant is stated. In Section 5.25.2 we then give

the general framework for the methods proposed. In Sections 5.2.15.2.1 and 5.2.25.2.2 stability

and a priori estimates are derived. The definition and analysis of the methods leaves

the choice of stabilisation terms and parameters flexible. Section 5.35.3 fixes the latter for

the numerical experiments in Section 5.45.4.
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5. Low order methods for the Oseen problem

5.1. Notation and preliminary results

As before, constants with capital C are independent of data, but now constants with a

lower case c may depend on data. Both the instances of C and c will be independent

of all geometric properties of the mesh. We recall the notation for Sobolev spaces and

associated norms from Chapter 11.

5.1.1. The problem of interest

Let Ω ⊂ R2 be a polygonal, bounded and connected domain. Then, given a source

term f ∈ L2(Ω)2, we consider the following Oseen problem

−ν∆u+ b · ∇u+ σu+∇p = f in Ω ,

divu = 0 in Ω ,

u = 0 on ∂Ω ,

(5.1)

subject to 〈p〉Ω = 0, where 〈q〉ω denotes the mean value of q over ω ⊂ Ω. For simplicity

we suppose ν is a positive viscosity constant, σ is a non-negative constant and b ∈
H(div,Ω) ∩ L∞(Ω), with div b = 0, is a given velocity field.

We let V := H1
0(Ω), M := L2

0(Ω) and state a weak formulation of Problem (5.15.1):

Find (u, p) ∈ V ×M such that

B(u, p;v, q) = (f ,v)Ω for all (v, q) ∈ V ×M , (5.2)

where

B(u, p;v, q) := a(u,v)− (div v, p)Ω − (divu, q)Ω , (5.3)

a(u,v) := ν(∇u,∇v)Ω + (b · ∇u,v)Ω + σ(u,v)Ω . (5.4)

Using integration by parts and div b = 0 the bilinear form a induces the norm

‖v‖2a := a(v,v) = ν|v|21,Ω + σ‖v‖20,Ω for all v ∈ V . (5.5)

If σ = 0, then thanks to the Poincaré inequality

∃CΩ > 0 ∀v ∈ V : ‖v‖0,Ω ≤ CΩ|v|1,Ω , (5.6)

‖·‖a remains a norm. The Poincaré constant CΩ will be of constant use throughout.

Again, the inf-sup condition (1.61.6) holds, cf. Chapter 11. From (5.55.5) and (1.61.6) it follows

that the Oseen problem (5.25.2) has a unique solution, see for instance [GR86GR86]. Finally, the

following continuity estimates will be of use in the stability and convergence analysis.
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5. Low order methods for the Oseen problem

Lemma 5.1. For all w,v ∈ V the following inequalities hold

‖v‖20,Ω ≤
C2

Ω

ν + σC2
Ω

‖v‖2a , (5.7)

and

a(w,v) ≤ ca‖w‖a|v|1,Ω where ca :=
ν + σC2

Ω + b∞,ΩCΩ(
ν + σC2

Ω

)1/2 (5.8)

with CΩ from (5.65.6) and b∞,ω := ‖b‖∞,ω for ω ⊆ Ω.

Proof. Using the Poincaré inequality (5.65.6) and a basic computation, we get

‖v‖20,Ω ≤ min
t∈[0,1]

(
(1− t)2

σ
+
t2C2

Ω

ν

)
‖v‖2a =

C2
Ω

ν + σC2
Ω

‖v‖2a .

To prove (5.85.8), we consider (5.45.4), (5.55.5) and estimate each term. First, we obtain

ν(∇w,∇z)Ω + σ(w, z)Ω ≤
(
ν|z|21,Ω + σ‖z‖20,Ω

)1/2
‖w‖a

≤
(
ν + σC2

Ω

)1/2|z|1,Ω‖w‖a.

Now, integrating by parts, using div b = 0, and (5.75.7) we get

|(b · ∇w, z)Ω| = |(b · ∇z,w)Ω| ≤ b∞,Ω|z|1,Ω‖w‖0,Ω ≤
b∞,ΩCΩ(

ν + σC2
Ω

)1/2 |z|1,Ω‖w‖a. (5.9)

Adding these estimates proves the claim.

5.1.2. Partition and finite elements

Within this chapter, we assume the partition P to satisfy assumptions very similar to

those of Chapter 44, but with a small change concerning the notation associated with

the corners. This allows us to generalise some results.

In particular, we assume P has been obtained by a uniform refinement from a macro

element partition P0. Where P0 is a conforming partition of Ω consisting of closed

parallelograms, and satisfying a maximal angle condition. Again, P0 is allowed to be

highly anisotropic and contain corner patches, for instance, as in Chapter 33 and 44. See

for example the shaded cells and their neighbourhoods in Figures 5.15.1–5.35.3. Similar to

Chapter 44:

• K is an element of P,

• M belongs to P0 and will be called macro element,

• M is split into four elements of P possessing the same angles and area |M |/4,
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• EP is the set of interior edges, and

• for M ∈ P0, let EM be the set of edges inside M , dashed in Figures 5.15.1–5.35.3.

One of the interests in this chapter is to extend the previous results to refined corner

patches. That is why the nodes C, edges γc and subdomains ωc are re-defined as follows:

• Let C be the set of corners, that is, nodes c of the mesh P0 towards which the

mesh is graded, denoted by filled circles in Figures 5.15.1–5.35.3. For c ∈ C, we denote

by ωc the area around c that is partitioned in a shape-regular way (shaded in

Figures 5.15.1–5.35.3). Moreover, for c ∈ C, we select a single edge γc ∈ EP that sepa-

rates an extremely small corner macro element (shaded) from a highly stretched

neighbouring macro element, for example, the embraced edges in Figures 5.15.1–5.35.3.

The selected edges γc are collected in the set EC.

h

h

H

H

h

h

H

H

J K

Fig. 5.1. Partition P0 (left) and P (right)

λ

J K
λ

J K

λ
J K

Fig. 5.2. Corner patches on [0, λ+H]2 whose corners were refined r times (r = 0, 1, 2).

We point out that the condition “P arises from a uniform refinement of P0” still

allows local (macro-element based) refinements as described in [LS13LS13]. These may

produce further anisotropies. In particular, instead of P0, an initial partition Pr, that

contains corner patches that have been refined uniformly r-times, may be used as a

macro-element mesh for P, cf. Figure 5.25.2.
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J K

J K

J K

Fig. 5.3. Jumps on an anisotropic mesh for a flow over step problem.

Finally, we define the finite element spaces

Qc
`,P :=

{
v ∈ V : v|K ∈ Q`(K)2 for all K ∈ P

}
, ` = 1, 2 , (5.10)

and

MP := {q ∈M : q|K ∈ P0(K) for all K ∈ P} , (5.11)

and seek an approximation of the solution (u, p) of Problem (5.15.1) within the discrete

space Qc
1,P ×MP.

5.1.3. Preliminary results

It is well known that Qc
1,P×MP is not inf-sup stable. On the other hand, since Qc

1,P

and Qc
2,P0

share the same degrees of freedom, Qc
1,P ×MP0 is inf-sup stable. Now, the

inf-sup constant of the latter pair is affected by geometrical properties of P0, since P0

contains corner patches, cf. Chapter 44, condition (4.24.2). We realised (Remark 3.2Remark 3.2) that

the deficiency is caused by non-local geometric quantities, which is again indicated by

Remark 5.3Remark 5.3 below. However, we solve the issue in the next result where we impose a

minimal set of additional constraints to obtain a uniformly inf-sup stable subspace G

of MP0 .

Lemma 5.2. Let G ⊂MP0 ⊂MP be the space defined by

G :=
{
q ∈MP0 : JqKγc = 0 for γc ∈ EC

}
. (5.12)

Then, the following inf-sup condition holds

sup
v∈Qc

1,P

(div v, q)Ω

|v|1,Ω
≥ βG‖q‖0,Ω for all q ∈ G , (5.13)
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with a constant βG ≥ max{βP0 , C/2
r}, where C is independent of the mesh and data.

Equivalently, the following inf-sup deficiency holds

sup
v∈Qc

1,P

(div v, q)Ω

|v|1,Ω
≥ βG‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω for all q ∈MP , (5.14)

where ΠG : MP → G stands for the L2-projection onto G.

Proof. The proof follows a similar path as in [ABW15ABW15] allowing the extension to re-

fined corner patches. For completeness we include an abridged version here. We first

prove (5.135.13). Since G ⊂ MP0 , we have βG ≥ βP0 . For the alternative βG ≥ C/2r, we

proceed as in [ABW15ABW15]. First, we define

M∗P0
:=
{
q ∈MP0 : 〈q〉ωc

= 0 for c ∈ C
}
.

Analogously to [ABW15ABW15, Corollary 3.1], for all q∗ ∈ M∗P0
there exists v∗ ∈ Qc

1,P such

that v∗|ωc
∈H1

0(ωc) for every c ∈ C, and

(div v∗, q∗)Ω = ‖q∗‖0,Ω and |v∗|1,Ω ≤ C‖q∗‖0,Ω , (5.15)

where C > 0 depends only on Ω. Now, as in [ABW15ABW15, Lemma 3.2], we decompose

q ∈ G into q = ΠCq + q∗ where ΠCq|ωc
(for c ∈ C) and ΠCq|Ω\(∪c∈Cωc) are constants

and q∗ ∈ M∗P0
. Then, since (div v∗,ΠCq)Ω = 0 we get (div v∗, q) = ‖q∗‖20,Ω. Therefore,

(5.155.15) implies (5.135.13), once the following is proved

‖q‖0,Ω ≤ C2r‖q∗‖0,Ω . (5.16)

Following analogous steps to those from [ABW15ABW15, Lemma 3.2] we conclude that

‖ΠCq‖20,Ω ≤ C
∑

c∈C|ωc|〈Jq∗K〉2γc . Next, we bound each of these jumps as

|ωc|〈Jq∗K〉2γc ≤ C|ωc||κc|−1‖q∗‖20,κc∪Kc
= C22r‖q∗‖20,Ω ,

since |ωc||κc|−1 = 22r, and then (5.165.16) follows.

Given (5.135.13) the proof of [ABW15ABW15, Lemma 4.1] implies (5.145.14). The reverse follows

using only ΠGq = q for q ∈ G.

Remark 5.3. For a single corner patch we conclude from (5.155.15) that the spurious

mode on the (refined) corner patches in Figure 5.25.2 is given by the function connecting

the (uniformly stable) average free spaces on ωc := [0, λ]×[0, λ] and Ω \ ωc, that is,

qB := χωc −
|ωc|
|Ω \ ωc|

χΩ\ωc
.

Hence for small enough λ we have βP0 = βP1 = . . . = βPr .

67



5. Low order methods for the Oseen problem

Remark 5.4. We stress the fact that βG only depends on how refined the partition P0

is. This is reflected by the factor 2r in βG. This unfortunate behaviour can be easily

solved by limiting the number of refinements and instead moving λ closer to the nodes

c, since βG is independent of λ.

The next result shows the existence of a divergence preserving interpolant on parti-

tions that contain (refined) corner patches.

Lemma 5.5. Let G ⊂ MP be defined as in Lemma 5.2Lemma 5.2. Then, there exists uI ∈ Qc
1,P

such that

(div(u− uI), q)Ω = 0 for all q ∈ G , (5.17)

and

|u− uI |1,Ω ≤ (1 + Cβ−1
G ) inf

vP∈Qc
1,P

|u− vP|1,Ω . (5.18)

Proof. Let (φP, χP) ∈ Qc
1,P ×G be the solution of the following auxiliary problem:

(∇φP,∇v)Ω − (div v, χP)Ω = (∇u,∇v)Ω for all v ∈ Qc
1,P ,

(divφP, q)Ω = (divu, q)Ω for all q ∈ G .
(5.19)

The well-posedness of this problem is a consequence of (5.135.13). Then, defining uI := φP,

(5.175.17) follows immediately from (5.195.19). Moreover, since (uI , χP) is a finite element

approximation of (u, 0), (5.185.18) follows by standard arguments, see e.g. [GR86GR86, p.115].

5.1.4. Numerical confirmation (part 1)

In this section we show the improvement of βG over βP0 . For simplicity we restrict

the presentation of βG to partitions on the unit square Ω = (0, 1)×(0, 1). To this end,

we define a parametrized (by λ > 0), refined corner patch Pcr as the tensor-product

of the following one-dimensional interval subdivision of [0, 1]. The parameter λ < 1/2

separates a coarse and a fine region in [0, 1]. The interval [0, λ] is split into 2r intervals

of length h := λ/2r and [λ, 1] remains unsplit. Figure 5.25.2 shows P0 = Pcr(r = 0, 1, 2) as

continuous lines and the uniform refinement P of P0 is indicated by the dashed lines.

The subspace G ⊂MP0 additionally imposes the continuity across the edges EC.

We have computed βG and βP0 for different levels of refinements while letting λ→ 0.

The results are depicted in Figure 5.45.4. The constant βG remains independent of λ, as

predicted by Lemma 5.2Lemma 5.2.
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10−6 10−5 10−4 10−3 10−2 10−1

λ (r = 0)

10−2

10−1

100

βP0

βG

10−6 10−5 10−4 10−3 10−2 10−1

λ (r = 1)

10−2

10−1

100

βP0

βG

10−6 10−5 10−4 10−3 10−2 10−1

λ (r = 2)

10−2

10−1

100

βP0

βG

Fig. 5.4. Refined corner patches, from left to right r = 0, 1, 2 times refined.

5.2. The stabilised method for the Oseen equation

The stabilised method proposed in this chapter reads:

Find (uP, pP) ∈ Qc
1,P ×MP such that

Bs(uP, pP;vP, qP) = (f ,vP)Ω for all (vP, qP) ∈ Qc
1,P ×MP , (5.20)

where

Bs(u, p;v, q) := B(u, p;v, q) + sv(u,v)− sp(p, q) , (5.21)

and sv and sp are symmetric, positive semi-definite bilinear forms aimed at stabilising

velocity and pressure, respectively. In order to prove stability and a priori estimates

we need to make assumptions on sv and sp. For this purpose, we define

|v|2sv := sv(v,v) and ‖v‖2a+s := ‖v‖2a + |v|2sv , (5.22)

and the bilinear form

sdivv (u;v) :=
∑

K∈P
γK(κK(divu), div v)K , γK ≥ 0 , (5.23)

where κω := id − 〈·〉ω denotes the fluctuation operator. Then, the main assumptions

on sv and sp are now stated.

Assumption 5.6. Let v,w ∈ V . There exists a positive constant cs, which may

depend on the data, but is independent of the mesh, such that

sv(w,v) ≤ cs|w|sv |v|1,Ω . (5.24)

Furthermore, sv is assumed to satisfy

sv(w,v) ≤ sv(w,w)1/2sv(v,v)1/2 , (5.25)

sdivv (v;v) ≤ sv(v,v) , (5.26)
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where sdivv is given by the LPS-like term (5.235.23).

The pressure stabilisation is given by

sp(p, q) :=
αp
4

∑

M∈P0

SM (p, q) +
αp
4

∑

γc∈EC

Sγc(p, q) , (5.27a)

with αp ≥ α (α given below in (5.285.28)) and

SM (p, q) :=
∑

e∈EM

|M |
4|e| (JpK, JqK)e , (5.27b)

Sγc(p, q) :=
min{|K|, |K ′|}

|γc|
(JpK, JqK)γc , (5.27c)

where K,K ′ ∈ P such that γc = K ∩K ′.

Remark 5.7. For q ∈ G we realise that sp(q, q) = 0. Consequently, sp is only relevant

to functions not in G. Moreover, if the mesh P0 does not contain corner patches, then

Sγc := 0 and the present term sp appears as an extension of the one from [LS13LS13] to the

Oseen equation.

5.2.1. Stability of the method

The stability and convergence will be analysed using the norm

|||(v, q)|||2 := ‖v‖2a+s + α‖q‖20,Ω + sp(q, q) with α :=
1

c2
a + c2

s

, (5.28)

with ca and cs defined by (5.85.8) and (5.245.24), respectively.

This section is devoted to proving that method (5.205.20) is stable with a stability con-

stant depending only on βG. The first step towards this result is stated next.

Lemma 5.8. Let qP ∈ MP, p ∈ H1(Ω) and ΠG be the projection from Lemma 5.2Lemma 5.2.

Then, the following holds

1

16
αp‖qP −ΠGqP‖20,Ω ≤ sp(qP, qP) , (5.29)

sp(qP, qP) ≤ Cαp
∑

K∈P

(
‖p− qP‖20,K + |e1,K |2‖∂t1p‖20,K + |e2,K |2‖∂t2p‖20,K

)
,

(5.30)

where e1,K and e2,K are two non-parallel edges of K, and ∂ti(i = 1, 2) are partial

derivatives in their directions and C is a constant independent of mesh, angles, and

data.
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Proof. We start with (5.295.29). This proof uses notation and conventions from Figure 5.55.5.

Our assumptions on the partitions P and P0 imply that every selected edge γc ∈ EC

satisfies γc ⊂M ∩M ′ where M,M ′ ∈ P0 and |M | ≤ |M ′|. For readability we define

ωγc := M ∪M ′. Now, from its definition ΠGq is given by

ΠGq
∣∣
M

=




〈q〉ωγc if M ⊂ ωγc ,

〈q〉M otherwise.
(5.31)

Therefore, bound (5.295.29) follows once we prove the local bounds

2αp‖qP − 〈qP〉M‖20,M ≤ αp SM (qP, qP) , (5.32a)

1

16
αp
∥∥qP − 〈qP〉ωγc

∥∥2

ωγc
≤ αp

(
SM + SM ′ + Sγc

)
(qP, qP) . (5.32b)

The first estimate follows from multiplying (4.184.18) through by αp. We recall notation

to prepare the proof of (5.32b5.32b).

Let M ∈ P0 be a macro element such that M 6⊂ ωγc , γc ∈ EC. Then, we recall

MP(M) ⊂ L2
0(M) and its orthogonal basis (cf. proof of Lemma 4.5Lemma 4.5):

φ1,M := χK1
− χK2

, φ2,M := χK1∪K2
− χK3∪K4

and φ3,M := χK3
− χK4

,

where χω is the characteristic function of ω. Moreover, ra := (qP − 〈qP〉M )|M belongs

to MP(M) and can be written as ra =
∑3

i=1 αiφi with appropriate coefficients αi.

To prove (5.32b5.32b), we fix an edge γc ∈ EC and let rb :=
(
qP − 〈qP〉ωγc

)∣∣
ωγc

. Then

rb = α0φ0 + ra + r′a ,

where φ0 = |M |−1χM − |M ′|
−1χM ′ , ra =

∑3
i=1 αiφi,M and r′a =

∑3
i=1 α

′
iφi,M ′ . Using

(5.32a5.32a), the definition of φ0 and |K| ≤ |K ′| (since |M | ≤ |M ′|) we get

(
SM + SM ′ + Sγc

)
(qP, qP) ≥ 2‖ra‖20,M + 2

∥∥r′a
∥∥2

0,M ′ +
|K|
|γc|
‖JrbK‖20,γc . (5.33)

It only remains to bound the last term. Using JrbKγc , Jφ0Kγc ∈ P0(γc) and the linearity

K1,M K2,M

K3,MK4,M

K1,M K2,M

K3,MK4,M

s {
K1,M ′ K2,M ′

K3,M ′K4,M ′

Fig. 5.5. A macro element M ∈ P0 (left) and set ωγc (right) with cells Ki,M ∈ P.
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of the jump, followed by ab ≤ 1
4a

2 + b2 we obtain

‖JrbK‖20,γc
|γc|

=
(
Jα0φ0Kγc + α2 − α′2 − α1 − α′1

)2

= Jα0φ0K2
γc

+ 2Jα0φ0Kγc
(
α2 − α′2 − α1 − α′1

)
+
(
α2 − α′2 − α1 − α′1

)2

≥ 1

2
Jα0φ0K2

γc
−
(
α2 − α′2 − α1 − α′1

)2

≥ 1

2
Jα0φ0K2

γc
− 4
(
α2

2 + α′22 + α2
1 + α′21

)
,

and conclude

|K|
|γc|
‖JrbK‖20,γc ≥

|K|
2|γc|

‖JrbK‖20,γc ≥
|K|
4

Jα0φ0K2
γc
− 2|K|

(
α2

2 + α′22 + α2
1 + α′21

)
. (5.34)

Now, using the definition of φ0 and |K| = |M |/4 we get

|K|
4

Jα0φ0K2
γc

= α2
0

|M |
16

(
1

|M | +
1

|M ′|

)2

≥ α2
0

16

(
1

|M | +
1

|M ′|

)
=

1

16
‖α0φ0‖20,ωγc , (5.35)

and, since |M | ≤ |M ′|

2|K|
(
α2

1 + α′21 + α2
2 + α′22

)
≤ |M |

2
(α2

1 + α2
2) +

|M ′|
2

(α′21 + α′22 )

≤ ‖ra‖20,M +
∥∥r′a
∥∥2

0,M .

(5.36)

Inserting (5.345.34)–(5.365.36) into (5.335.33) and using that φ0 is orthogonal to φi,M , φi,M ′ , i =

1, 2, 3 leads to

(
SM + SM ′ + Sγc

)
(qP, qP) ≥ ‖ra‖20,M +

∥∥r′a
∥∥2

0,M
+

1

16
‖α0φ0‖20,ωγc ≥

1

16
‖rb‖20,ωγc ,

which proves (5.32b5.32b).

Finally, using p ∈ H1(Ω), and JpKe = 0 a.e. on e ∈ EP, and the trace estimate (2.3b2.3b)

(Section 2.2.12.2.1) we bound each jump as follows:

|K|
|ei|
‖Jp− qPK‖20,ei ≤ 2

∑

K : ei⊂K
‖p− qP‖0,K

(
‖p− qP‖0,K + 2|ej | ‖tj · ∇ηp‖0,K

)

≤ 4
∑

K : ei⊂K

(
‖p− qP‖20,K + 2|ej |2‖tj · ∇ηp‖20,K

)
,

where i = 1, j = 2 or i = 2, j = 1. Then, we sum over the edges across which sp

contains jumps and note for each K ∈ P, that sp contains jumps across at least two

and at most three different edges. This proves estimate (5.305.30) and finishes the proof.

We now present the main stability result.
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Theorem 5.9. Let Assumption 5.6Assumption 5.6 be satisfied, let |||·||| be defined by (5.285.28), and sp by

(5.275.27) with αp ≥ α. Then,

sup
(v,q)∈Qc

1,P×MP

Bs(w, r;v, q)

|||(v, q)||| ≥ µs|||(w, r)||| for all (w, r) ∈ Qc
1,P×MP , (5.37)

where µs = β2
G/[2(1 + βG)(17 + 16βG)] where βG is the constant from (5.135.13). Hence,

Problem (5.205.20) is well-posed.

Proof. Let (w, r) ∈ Qc
1,P×MP be given. First, from the definition of Bs it follows that

Bs(w, r;w,−r) = ‖w‖2a+s + sp(r, r) . (5.38)

Additionally, given wδ ∈ Qc
1,P, using (5.85.8), (5.245.24) and α := 1/(c2

a + c2
s) we get

Bs(w, r;−wδ, 0) = (a+ sv)(w,−wδ) + (divwδ, r)Ω

≥ −
√
c2
a + c2

s ‖w‖a+s|wδ|1,Ω + (divwδ, r)Ω

≥ −1

2
‖w‖2a+s −

1

2α
|wδ|21,Ω + (divwδ, r)Ω. (5.39)

Next, we choose wδ. By (5.145.14) there exists z ∈ Qc
1,P such that |z|1,Ω = 1 and

(div z, r)Ω ≥ βG‖r‖0,Ω − (1 + βG)‖r −ΠGr‖0,Ω.

Defining wδ := δα‖r‖0,Ωz with δ > 0 to be chosen, this last estimate, (5.295.29) and α ≤ αp
give

(divwδ, r)Ω ≥ βGδα‖r‖20,Ω − (1 + βG)δα‖r‖0,Ωα−1/2
p C

−1/2
1 sp(r, r)

1/2

≥ βGδα‖r‖20,Ω −
α

2C1
δ2(1 + βG)2‖r‖20,Ω −

1

2
sp(r, r) , (5.40)

and |wδ|1,Ω = δα‖r‖0,Ω where C1 = 1/16. We then define (v, q) := (w −wδ,−r), and

(5.385.38), (5.395.39) and (5.405.40) yield

Bs(w, r;v, q) ≥
1

2

[
‖w‖2a+s + sp(r, r)

]
+

[
βG −

δ(1 + βG)2

2C1

]
δα‖r‖20,Ω −

1

2α
|wδ|21,Ω

=
1

2

[
‖w‖2a+s + sp(r, r)

]
+ βG

[
1− δ(1 + βG)2

2C1βG
− δ

2βG

]
δα‖r‖20,Ω

≥ δβG
2

(
‖w‖2a+s + sp(r, r) + α‖r‖20,Ω

)
,

where the choice δ := βGC1/(C1 + (1 + βG)2) and δβG ≤ 1 imply the last estimate.

On the other hand, using (5.85.8) and (5.245.24) shows ‖z‖a+s ≤ α−1/2|z|1,Ω for all z ∈
Qc

1,P. Therefore, the definition of wδ and |||·||| give

|||(v, q)||| ≤ |||(w, r)|||+ ‖wδ‖a+s ≤ |||(w, r)|||+ δα1/2‖r‖0,Ω ≤ (1 + δ)|||(w, r)||| ,
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which proves the stated stability condition with µs = δβG/(2+2δ). Recalling C1 = 1/16

proves the result.

Remark 5.10. We stress the fact that the stability constant µs only depends on βG

which is independent of mesh properties and data of the problem. Furthermore, the

stability estimate (5.375.37) is valid independently of the relation of ca and cs. In [MT15MT15]

velocity stabilisation terms that satisfy (5.245.24) with cs ≤ Cca are used. We avoid this

assumption, as large stabilisation parameters may be optimal for some problems (cf.

[JJLR14JJLR14]).

5.2.2. A priori estimates

This section is devoted to the a priori analysis of (5.205.20). We use ΠMP
: L2(Ω) → MP

to denote the L2-projection into MP satisfying

(p−ΠMP
p, 1)K = 0 for all K ∈ P . (5.41)

Theorem 5.11. Let us suppose the solution (u, p) of (5.25.2) satisfies p ∈ H1(Ω). Let sv

satisfy Assumption 5.6Assumption 5.6 and let sp be defined by (5.275.27) with αp ≥ α. Then, if uI ∈ Qc
1,P

is the interpolant defined in Lemma 5.5Lemma 5.5, then

|||(u− uP, p− pP)||| ≤ (1 + Cµ−1
s )

{
sv(u,u) + sv(u− uI ,u− uI) + σ‖u− uI‖20,Ω

+
∑

K∈P

(( 1

α+ αp
+ ν +

b2∞,KC
2
Ω

ν + σC2
Ω

)
|u− uI |21,K

+
(
α+ αp +

1

ν + γK

)
‖p−ΠMP

p‖20,K + αp
∑

i=1,2

|ei,K |2‖∂tip‖20,K
)}1/2

, (5.42)

where ei,K , ∂ti (i = 1, 2) are defined in Lemma 5.8Lemma 5.8, and the constant C is independent

of mesh and data.

Proof. As usual, we split the errors

(u− uP, p− pP) = (u− uI , p−ΠMP
p)− (uP − uI , pP −ΠMP

p) =: (ηv, ηp)− (ξv, ξp).

Using definition (5.225.22) the interpolation error satisfies

|||(ηv, ηp)|||2 = ν|ηv|21,Ω + σ‖ηv‖20,Ω + sv(ηv,ηv) + α‖ηp‖20,Ω + sp(ηp, ηp) .

Similar to (5.305.30) the term sp(ηp, ηp) is bounded by the last two terms in (5.425.42). To

bound the discrete error (ξv, ξp), from Theorem 5.9Theorem 5.9 there exists (wP, rP) ∈ Qc
1,P ×MP
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with |||(wP, rP)||| = 1 and

µs|||(ξv, ξp)||| ≤ Bs(ξv, ξp;wP, rP)

= B(ηv, ηp;wP, rP)− sv(uI ,wP) + sp(ΠMP
p, rP) ,

(5.43)

where we used (5.25.2) and (5.205.20). We estimate the right-hand side term by term. Using

(5.255.25) and |||(wP, rP)||| = 1 shows

−sv(uI ,wP) = sv(ηv,wP) + sv(u,wP) ≤ sv(ηv,ηv)1/2 + sv(u,u)1/2 ,

sp(ΠMP
p, rP) ≤ sp(ΠMP

p,ΠMP
p)1/2 ,

(5.44)

and applying p ∈ H1(Ω) and (5.305.30) the right-hand sides of the last two inequalities are

bounded by the first two and last two terms of (5.425.42). Next, using (5.75.7) we get

ν(∇ηv,∇wP)Ω + σ(ηv,wP)Ω ≤
(
ν|ηv|21,Ω + σ‖ηv‖20,Ω

)1/2
‖wP‖a,

(b · ∇ηv,wP)Ω ≤
(∑

K∈P
b2∞,K |ηv|21,Ω

)1/2
CΩ

(ν + σC2
Ω)1/2

‖wP‖a.
(5.45)

Moreover, for every K ∈ P we have

(divwP, ηp)K ≤
√

2 |wP|1,K‖ηp‖0,K . (5.46)

On the other hand, since (ηp, 〈divwP〉K)K = 0, we get

(divwP, ηp)K = (κK(divwP), ηp)K ≤ ‖κK(divwP)‖0,K‖ηp‖0,K . (5.47)

Then, using the inequality ab ≤
√
t |ab| +

√
1− t |ab| with t = ν/(ν + γK) to combine

(5.465.46) and (5.475.47) leads to

(divwP, ηp)K ≤
(√

2ν |wP|1,K +
√
γK ‖κK(divwP)‖0,K

)
(ν + γK)−1/2‖ηp‖0,K .

Summing over all K ∈ P and employing (5.225.22), (5.235.23) and Assumption (5.265.26) we arrive

at

(divwP, ηp)Ω ≤ C
(∑

K∈P

1

ν + γK
‖ηp‖20,K

)1/2

‖wP‖a+s . (5.48)

Finally, since ΠGrP ∈ G, we can apply (5.175.17) and (5.295.29) to conclude

(div ηv, rP)ω = (div ηv, rP −ΠGrP)ω

≤
√

2 |ηv|1,ω‖rP −ΠGrP‖0,ω ≤ Cα−1/2
p |ηv|1,ω sp(rP, rP)|1/2ω , (5.49)

where ω = M ∈ P0, or ω = M ∪M ′ if γc ⊂ M ∩M ′ for one γc ∈ EC. On the other
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hand, for any subset ω ⊂ Ω we have

(div ηv, rP)ω ≤ ‖div ηv‖0,ω‖rP‖0,ω ≤ α−1/2|ηv|1,ωα1/2‖rP‖0,ω . (5.50)

Following the same steps as for (5.485.48), with t = α/(α + αp) we combine (5.495.49) and

(5.505.50) to arrive at

(div ηv, rP)Ω ≤ C
(∑

K∈P

1

α+ αp
‖ηv‖20,K

)1/2(
α‖rP‖20,Ω + sp(rP, rP)

)1/2
. (5.51)

The result follows on collecting the estimates (5.435.43)–(5.455.45), (5.485.48), and (5.515.51).

We close this section with a few remarks on Theorem 5.11Theorem 5.11.

1) A reduced proof of (5.425.42) also implies a best approximation result. More precisely,

if the property (5.175.17) of uI (and hence (5.495.49)) is not used, then the terms involving

u− uI become

inf
vP∈Qc

1,P

|u− vP|2sv +
∑

K∈P

(
1

α
+ ν +

b2∞,KC
2
Ω

ν + σC2
Ω

)
|u− vP|21,K + σ‖u− vP‖20,K .

This result extends, for instance, [MT15MT15, Theorem 4.4] to the non-inf-sup stable

pair Qc
1,P ×MP on anisotropic meshes. On the other hand, the results in [Bra08Bra08]

for the Qc
1 × Qc

1 pair do not show the data dependency b2∞,ΩC
2
Ω/(ν + σC2

Ω) which

is achieved by penalising a fluctuation of ∇u. But, the therein defined LPS norm

does not control ‖p‖0,Ω (see also the appendix in [MPP03MPP03] for a similar issue) and

a priori estimates require p ∈ H2(Ω).

2) The choice αp > α is motivated by the fact that it leads stability constants which

are independent of the data of the problem, and the inclusion of the pressure sta-

bilisation term in the energy norm allows an error estimate containing 1/(α + αp).

This is a better bound than 1/α, which for σ = 0 behaves like ν−1.

3) The error estimate contains sv(ηv,ηv)
1/2 which may be much smaller for the pure

grad-div term than its crude bound cs|ηv|1,Ω. This, as well, provides more flexibility

for the choice of γK (see [JJLR14JJLR14] for a detailed discussion of this issue in the case

of the Stokes problem).

4) If the mixed method using Qc
1,P ×G is to be used as an approximation space, then

the proof of a priori estimate (5.425.42) changes, since we need to replace ΠMP
by ΠG.

Hence, (5.475.47) requires Assumption (5.265.26) to be replaced as follows. We observe
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that G has a locally constant basis {φj}dimG
j=1 and define ωj := suppφj , where either

ωj = M or ωj = M ∪M ′ with M,M ′ ∈ P0. Now, defining

sGv (u;v) :=

dimG∑

j=1

γωj
(
κωj (divu), div v

)
ωj
,

we can replace assumption (5.265.26) by sGv (u;v) ≤ sv(u;v). The latter definitions

directly imply (5.475.47) with κωj instead of κK . Then, (5.485.48) changes to

(divwP, ηp)Ω ≤ C
( dimG∑

j=1

1

ν + γωj
‖p−ΠGp‖20,ωj

)1/2

‖wP‖a+s .

On the other hand, estimate (5.495.49) is not needed as (div ηv, rG)ω = 0 by definition.

5.3. Examples of stabilisation terms for the velocity

The previous sections, in particular Section 5.25.2, leave the choice of velocity stabili-

sation terms flexible. Below we define the stabilisation terms used in the numerical

experiments.

Option one. Let bK := 〈b〉K and define

sv(u,v) :=
∑

M∈P0

γM (κM (divu),div v)M +
∑

K∈P

1

|bK |
(κK(bK · ∇u), bK · ∇v)K ,

(5.52)

where γM is chosen as one of the following options

γM := max
{

1,Pemin
P0

}
, (5.53a)

γM := 1 + ind(M)Pemin
M and ind(M) := 1− ρM |M |

maxω∈P0 |ω|
, (5.53b)

with local and global (minimal) Péclet numbers defined by Pemin
P0

:= minM∈P0 Pemin
M and

Pemin
M := ν−1b∞,M min{hx,M , hy,M}. The inverse euclidean length |bK |−1 is introduced

to have a proper physical scaling.

The choice (5.53b5.53b) is motivated by the fact that the minimal global Péclet number

does not contain information about local phenomena. Then the introduction of the

ind(·) function ensures that γM varies significantly with local geometric properties of

M . In fact γM ≈ 1 in large shape-regular elements and γM ≈ 1 + Pemin
M in highly

stretched elements and small corner elements, which is the desirable behaviour.
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Remark 5.12. The stabilisation term (5.525.52) satisfies Assumption 5.6Assumption 5.6 and the conti-

nuity estimate (5.245.24) with cs = (b∞,Ω +maxM∈P0 2γM )1/2. On the other hand, defining

sv by (5.525.52) guarantees that sv(u,u) and sv(ηu,ηu), appearing in the a priori estimate

(5.425.42), can be bounded in an optimal way.

Option two. We also consider the following stabilisation

sv(u,v) :=
∑

M∈P0

(κM (∂xu), δx∂xv)M + (κM (∂yu), δy∂yv)M , (5.54)

where (δx, δy) are given by

δK,x := ν−1b2∞,Kh
2
K,x min

{
1,Pe−1

min,K

}
,

δK,y := ν−1b2∞,Kh
2
K,y min

{
1,Pe−1

min,K

}
,

Pemin,K := ν−1 min{hK,x, hK,y}b∞,K .

This term has been introduced and analysed in [Bra08Bra08] for the Qc
1×Qc

1 pair. It satisfies

Assumption 5.6Assumption 5.6 with cs = max{δx, δy}1/2 and γK = γM := 1
2 min{δx, δy}, which is

obtained from
∑

K⊂M
‖κK(divu)‖20,K ≤ ‖κM (divu)‖20,M

=
∥∥∂xu1 + ∂yu2 − 〈∂xu1〉M − 〈∂yu2〉M

∥∥2

0,M

≤ 2‖∂xu1 − 〈∂xu1〉M‖20,M + 2
∥∥∂yu2 − 〈∂yu2〉M

∥∥2

0,M .

5.4. Numerical verification

In this section we report numerical results confirming our theoretical findings. We

present the results of two different experiments approximating a solution of (5.15.1) with

non-homogeneous boundary conditions in the domain Ω := (0, 1)× (0, 1).

Example 1. We define b = (−1,−1)>, ν = 10−6, σ = 0 and choose the right-hand-

side f and boundary conditions such that the exact solution is given by

u :=




1−exp(−y/ν)
1−exp(−1/ν) − y
1−exp(−x/ν)
1−exp(−1/ν) − x


 and p := sin(x− 1/2) sin(y − 1/2) . (5.55)

Example 2. We define b = (−1,−1)>, ν = 10−6, σ = 1 and choose the right-hand-

side f and boundary conditions such that the exact solution is given by

u :=




1− exp
(
−y 1+

√
1+4ν

2ν

)

1− exp
(
−x1+

√
1+4ν

2ν

)


 and p := sin(x− 1/2) sin(y − 1/2) . (5.56)
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In both cases the right-hand-side f is independent of ν, which makes the results

independent of the quadrature rules employed.

For the experiments we define parametrized partitions containing a corner patch. Let

PN,λ (N divisible by 4, and λ ∈ (0, 1/2]) be the tensor-product of the one-dimensional

interval subdivision that splits each of the intervals [0, λ] and [λ, 1] into N/2 intervals of

equal length, cf. Figure 5.15.1 (right) where P4,λ is shown. The mesh PN,λ is a Shishkin-

mesh, but we choose λ to be larger than the Shishkin parameter 2ν lnN ≤ 10−5.

Our aim is to explore how robust the methods with the previously defined stabilisa-

tion terms and parameters are with respect to the choice of λ. This is why we chose a

wide range for λ from λ = 1/2 (a shape-regular mesh) to λ = 10−4 (a highly anisotropic

corner patch with minimal aspect ratio % ≈ 10−4).

The purpose of the tables is to show how different stabilised methods perform com-

pared to the interpolation and best approximation errors, respectively. To this end,

the entries of a table show relative errors defined by

Erelu :=
|u− uP|1,Ω
|u− IPu|1,Ω

, Erelp :=
‖p− pP‖0,Ω
‖p−Πp‖0,Ω

and Erelnat :=
|||(u− uP, p− pP)|||
|||(u− IPu, p−Πp)||| ,

where |||·||| is defined in (5.285.28). Here IPu ∈ Qc
1,P stands for the nodal interpolant of u,

and Π ∈ {ΠMP
,ΠG} are the projections defined earlier, chosen depending on whether

we use pair Qc
1,P×MP or Qc

1,P×G. The last row shows the value of the denominators

used to define Erelu and Erelp . For Erelnat this value changes for different stabilisation

parameters and terms and is therefore not shown. The first two columns show the used

velocity stabilisation term sv and parameter γM (where appropriate). The columns 3–5

and 6–8 show relative errors obtained when using the pair Qc
1,P × G and Qc

1,P ×MP

with sp (αp = 1), respectively.

Since the results for Ex. 1 and Ex. 2 are qualitatively similar, we only show results

for Ex. 2 in Tables 5.15.1–5.95.9. The tables present experiments using N = 4, 8 and 16 as a

mesh parameter. Qualitatively similar results are obtained for all three cases. From the

tables we observe that the different stabilisation terms cause a comparable behaviour

of the pressure errors.

The robustness is mostly due to the second term in (5.525.52). As a matter of fact,

removing this term makes the error in pressure depend on λ in a more pronouced

way. On the other hand, the velocity errors do not seem to differ much. This is

why we provide plots of obtained velocity profiles in Figures 5.65.6–5.95.9. We note that

the present stabilisation term sv given by (5.525.52) always produces a profile that is

smoother, almost free of oscillations; whereas the profile obtained from the method

using sv given by (5.545.54) presents large oscillations. Naturally, the two choices for
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γM in (5.535.53) give different results on shape-regular meshes, cf. the plots for λ = 1/2.

However, on anisotropic meshes the behaviour is similar and oscillations and overshoots

are significantly reduced.

Table 5.1. Relative errors for Example 2, mesh (N,λ) = (4, 0.5)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 3.25 1.0000 1.0000 8.54 1.0000 1.0000
(5.525.52) (5.53a5.53a) 7.17 1 1.0000 13.67 1 1.0000
(5.525.52) (5.53b5.53b) 6.49 1.0000 1.0000 13.67 1.0000 1.0000

denominator 5.19 · 10−2 999.9965 – 2.72 · 10−2 999.9965 –

Table 5.2. Relative errors for Example 2, mesh (N,λ) = (4, 10−2)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 1.06 1.0000 1.0000 5.94 1.0000 1.0000
(5.525.52) (5.53a5.53a) 8.95 1.0000 1.0000 13.84 1.0000 1.0000
(5.525.52) (5.53b5.53b) 7.35 1.0000 1.0000 11.37 1.0000 1.0000

denominator 7.94 · 10−2 999.8005 – 5.14 · 10−2 999.8005 –

Table 5.3. Relative errors for Example 2, mesh (N,λ) = (4, 10−4)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 1.00 1.0017 1.0022 6.04 1.0007 1.0014
(5.525.52) (5.53a5.53a) 1.00 1.0000 1.0000 1.54 1.0000 1.0000
(5.525.52) (5.53b5.53b) 1.00 1.0000 1.0000 1.54 1.0000 1.0000

denominator 7.94 · 10−2 979.7964 – 5.20 · 10−2 979.7964 –
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sv, γM λ = 0.5000 λ = 1.0000 · 10−2 λ = 1.0000 · 10−4

(5.545.54),
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Fig. 5.6. Side profiles on meshes (N = 8). Using Qc
1,P×G.
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sv, γM λ = 0.5000 λ = 1.0000 · 10−2 λ = 1.0000 · 10−4
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Fig. 5.7. Side profiles on meshes (N = 8). Using Qc
1,P×MP with sp and αp = 1.
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sv, γM λ = 0.5000 λ = 1.0000 · 10−2 λ = 1.0000 · 10−4
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Fig. 5.8. Side profiles on meshes (N = 16). Using Qc
1,P×G.
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sv, γM λ = 0.5000 λ = 1.0000 · 10−2 λ = 1.0000 · 10−4

(5.545.54),
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Fig. 5.9. Side profiles on meshes (N = 16). Using Qc
1,P×MP with sp and αp = 1.
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Table 5.4. Relative errors for Example 2, mesh (N,λ) = (8, 0.5)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 5.79 1.0000 1.0000 13.73 1.0000 1.0000
(5.525.52) (5.53a5.53a) 13.69 1.0000 1.0000 27.08 1.0000 1.0000
(5.525.52) (5.53b5.53b) 9.58 1.0000 1.0000 21.04 1.0000 1.0000

denominator 2.72 · 10−2 999.9925 – 1.37 · 10−2 999.9925 –

Table 5.5. Relative errors for Example 2, mesh (N,λ) = (8, 10−2)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 1.40 1.0002 1.0001 7.47 1.0002 1.0001
(5.525.52) (5.53a5.53a) 27.93 1.0000 1.0000 53.35 1.0000 1.0000
(5.525.52) (5.53b5.53b) 28.01 1.0000 1.0000 53.77 1.0000 1.0000

denominator 5.12 · 10−2 999.6004 – 2.68 · 10−2 999.6004 –

Table 5.6. Relative errors for Example 2, mesh (N,λ) = (8, 10−4)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 1.22 1.0219 1.0078 6.73 1.0152 1.0077
(5.525.52) (5.53a5.53a) 1.10 1.0000 1.0000 3.62 1.0000 1.0000
(5.525.52) (5.53b5.53b) 1.10 1.0000 1.0000 3.39 1.0000 1.0000

denominator 5.19 · 10−2 959.1668 – 2.72 · 10−2 959.1668 –

Table 5.7. Relative errors for Example 2, mesh (N,λ) = (16, 0.5)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 7.81 1.0000 1.0000 18.08 1.0000 1.0000
(5.525.52) (5.53a5.53a) 26.03 1.0000 1.0000 51.91 1.0000 1.0000
(5.525.52) (5.53b5.53b) 12.27 1.0000 1.0000 28.01 1.0000 1.0000

denominator 1.37 · 10−2 999.9845 – 6.89 · 10−3 999.9845 –
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Table 5.8. Relative errors for Example 2, mesh (N,λ) = (16, 10−2)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 1.08 1.0006 1.0001 3.38 1.0006 1.0001
(5.525.52) (5.53a5.53a) 41.24 1.0000 1.0000 81.59 1.0000 1.0000
(5.525.52) (5.53b5.53b) 41.51 1.0000 1.0000 82.18 1.0000 1.0000

denominator 2.68 · 10−2 999.2002 – 1.35 · 10−2 999.2002 –

Table 5.9. Relative errors for Example 2, mesh (N,λ) = (16, 10−4)

Qc
1,P ×G Qc

1,P ×MP, αp = 1

sv γM Erelp Erelu Erelnat Erelp Erelu Erelnat

(5.545.54) – 1.03 1.0514 1.0162 2.15 1.0516 1.0161
(5.525.52) (5.53a5.53a) 2.43 1.0000 1.0000 9.00 1.0000 1.0000
(5.525.52) (5.53b5.53b) 2.47 1.0000 1.0000 8.89 1.0000 1.0000

denominator 2.72 · 10−2 916.5163 – 1.37 · 10−2 916.5163 –

5.5. Conclusion

In this chapter we have generalised the results from Chapter 44 and [ABW15ABW15, LS13LS13] to

the lowest order pair Qc
1 × P0 in partitions that contain refined corner patches, and

extended this generalisation to the Oseen equation. To analyse the resulting methods

we have used, and adapted when necessary, the abstract approach given in [MT15MT15]. This

allowed us to present stability and convergence results that are valid both in the inf-sup

stable and stabilised cases. A precise definition, by means of a weighted grad-div term

enhanced by a penalisation of the convective derivative, of the stabilisation term for

the velocity has been proposed, justified, and tested numerically. This new definition

seems to outperform some previously known alternatives, at least numerically.
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Chapter 6

Conclusions and future work

In this chapter, we first present conclusions, and then we show by numerical experiments

that our ideas for future projects are promising.

6.1. Conclusions

Our main goal was to propose methods (alternative to [AC00AC00]) that circumvent the

inf-sup deficiency caused by the presence of corner patches in anisotropic meshes.

The first methods and methodology were derived in Chapter 33 for the Stokes problem

and the pairQc
k+1×Pk−1 (k ≥ 1). The results in [AC00AC00,SSS99SSS99,AN04AN04] state that the inf-

sup degeneracy does not depend on local aspect ratios, but rather on the combination of

the aspect ratio and the presence of corner patches. These results allowed the authors

of [AC00AC00] to identify the pressure modes responsible for the undesirable behaviour.

We further reduced this number by Corollary 3.15Corollary 3.15 in Chapter 33. Then, we proved the

existence of alternative uniformly inf-sup stable subspaces V P×G in Theorem 3.3Theorem 3.3. We

used, as planned, arguments from PPS methods to derive the methods. A secondary

effect of the equivalence of stabilisation terms and inf-sup deficiency allowed us to prove

that the stabilised methods converge as fast as the methods using the reduced pressure

spaces, cf. Remark 3.9Remark 3.9.

The second goal was to derive methods for balanced-order pairs that allow corner

patches. We saw (Table 1.11.1) that the stability of such pairs may additionally depend

on local aspect ratios, and hence more stabilisation may be required. On anisotropic

meshes we were not able to find uniformly inf-sup stable, balanced-order pairs, with

the exception of non-conforming pairs. The stabilised method for Qc
1 × P0 proposed

in [LS13LS13] is uniformly stable on anisotropic meshes without corner patches, but a few

additional jumps (similar to those in Chapter 33) permit the use of corner patches, cf.

Chapter 44.

Finally, in Chapter 55 we extended the methods to the Oseen problem. This was
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done for the low order case Qc
1 × P0 (from Chapter 44). We saw that the general

analysis given in [MT15MT15] can be extended to non-inf-sup stable pairs on anisotropic

meshes. Furthermore, we made the choice of parameters for the velocity stabilisation

terms more flexible and derived a lower bound for the stabilisation parameter of the

pressure. It is evident, also from the analysis in [MT15MT15], that a small coefficient α

of the pressure norm reduces the given control over the pressure error. The methods

we proposed control the full L2-norm of the pressure, which is an improvement with

respect to equal-order methods on anisotropic meshes in [MPP03MPP03, AKL08AKL08, Bra08Bra08]. In

fact the method in [AKL08AKL08] imposes a restriction on the aspect ratio, and the appendix

in [MPP03MPP03] suggests that the control depends on the smallest aspect ratio. Furthermore,

corner patches are ruled out in [MPP03MPP03, AKL08AKL08, Bra08Bra08] and the convergence of the

methods therein requires more regularity than p ∈ H1(Ω). Finally, when (uP, pP) is

the solution of the discrete problem, then also the stabilised methods presented satisfy

(divuP, q)Ω = 0 for all q ∈ G, which is due to sp(q, q) = 0 for all q ∈ G. This is in fact

a local mass conservation result.

We may conclude that we achieved the goals posed in the introduction. However,

the results obtained just open the door for several future research directions. We list

these directions here; for some of them we show first experiments in the next sections.

• Extend the results in Chapter 33 to triangles and three-dimensional cases. For the

lowest order case P c
2 × P0 we will (in Section 6.36.3) sketch a proof on triangulated

corner patches. The stability for higher order pairs on triangular edge patches

has not been analysed yet. Therefore, we leave the proof as part of future work.

Also the analysis for three dimensional corner patches is part of future work.

• In fact, methods using balanced-order pairs are more desirable. The extension

of Chapter 33 to the case P c
2 × P0 allows us to propose a local jump-stabilised

method (similar to those in Chapter 44 and [LS13LS13]) using the pair P c
1 × P0 on

anisotropic triangles. Furthermore, we stated in the introduction, that coarse-

scale projection stabilisation may be an option to allow stabilised methods using

balanced-order pairs of higher degree. We show experiments confirming that this

actually works for the Qc
2×P1 and P c

2×P1 pairs (with discontinuous pressures),

cf. Section 6.46.4. Future work is to propose methods for higher (balanced) order

pairs Qc
k × Pk−1 and P c

k × Pk−1, (k ≥ 3) on anisotropic meshes.

• Once the extensions concerning balanced-order pairs are available for the Stokes

problem, the results can be generalised to the Oseen problem as in Chapter 55.

• The methods in Chapter 55 can be used (as presented) to solve the (non-linear)
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Navier–Stokes problem. However, a more sophisticated choice of the stabilisation

parameter γM is part of future research. We perform some preliminary experi-

ments in Section 6.26.2.

• Some other topics like a posteriori analysis and time dependent problems will also

be a subject of future research.

6.2. Numerical experiments for the Navier–Stokes equation

Let Ω := [−3, 20]× [−3, 3] \ [−1, 1]2 for the Navier–Stokes equation

−ν∆u+ u · ∇u+∇p = 0 in Ω

divu = 0 in Ω
(6.1)

using ν = 10−2 subject to the do-nothing condition on {20} × [−3, 3] and the other

conditions as shown in Figure 6.16.1. We approximated the solution of (6.16.1) on the mesh,

that was obtained as the third uniform refinement of the mesh in Figure 6.16.1 with

λ = 4 · 10−2. The non-linear problem was split into various (linear) problems of Oseen

type, which were solved with method (5.205.20), sv given by (5.525.52) with γM := 1 and sp

with αp = 1. The obtained approximation uP := (u1,u2) shows reasonable streamlines

(Figure 6.26.2) and surface elevations (Figure 6.36.3).

u = 0

∂nu1 = u2 = 0

∂nu1 = u2 = 0

u =

(
1
0

)

Fig. 6.1. A (coarse) mesh for the Navier–Stokes experiment (λ = 1/8).

Fig. 6.2. Streamlines of uP for λ = 4 · 10−2
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Fig. 6.3. Velocity components u1 (top) and u2 (bottom), λ = 4 · 10−2
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6.3. The P c
2 × P0 pair on triangulated corner patches

In Chapter 33 we proved the existence of uniformly inf-sup stable subspaces of V P ×MP

by restricting the pressure space. The assumptions made on the meshes can be gener-

alised. In fact, the idea of the proofs can be extended to triangles or three-dimensional

objects. This is possible because the proof of Corollary 3.15Corollary 3.15 is independent of the spa-

tial dimension and element shape, as long as uniform inf-sup conditions are satisfied

on parts of the mesh. Also, the main ingredient to prove Lemma 3.17Lemma 3.17 is an anisotropic

trace-inverse inequality, which is available on several affine elements (as we saw in Sec-

tion 2.2.22.2.2), and the assumption that the corners are not refined too many times. In the

following, we carry out the first step towards an extension to corner patches consisting

of triangles.

We have not found proof that the pairs P c
k+1 × Pk−1, (k ≥ 2) are uniformly inf-

sup stable on edge patches. The particular case P c
2 × P0 is proven (in [AN04AN04]) to be

uniformly inf-sup stable on anisotropic meshes stretched locally in one direction. Hence,

we extend the results of Chapter 33 to triangles, but we restrict ourselves to the pair

P c
2 × P0. To reduce notation, we sketch the sequence of proofs to derive the uniformly

inf-sup stable subspace and a stabilised method on one corner patch. The proofs in the

presence of multiple, disjoint corner patches then work in an analogous way to Section 33

(using a macro element technique).

Assumptions on the partition:

• Let P be one of the axis-parallel, corner patches shown in Figure 3.23.2. Let c be the

selected node, let ωc be the small shaded part, and let γc be an edge on ∂ωc \∂Ω.

• Let T be obtained by splitting each rectangle of P into exactly two triangles.

The following statements yield the methods. Let V T := P c
2,T and MT := P0,T.

• Let M?
T

:=
{
q ∈MT : 〈q〉ωc

= 0
}

. Then, V T ×M?
T is uniformly inf-sup stable.

The proof for axis-parallel, right-angled triangles (e. g. Figure 6.46.4a) is given in

Lemma 6.1Lemma 6.1 (below). For other meshes (e. g. Figure 6.46.4b), the local results in

[AN04AN04] may be connected by the proof of Corollary 3.15Corollary 3.15.

• Let G4 :=
{
q ∈MT : JqKγc = 0

}
. Then, V T × G4 is uniformly inf-sup stable.

The proof of this statement is analogous to the one of Lemma 3.17Lemma 3.17, but uses

the uniform inf-sup condition of V T ×M?
T (derived above) and the trace identity

|e|−1‖q‖20,e = |T |−1‖q‖20,T where q ∈MT.
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• The jump stabilisation is again motivated by the following equivalence

∥∥q −ΠG4q
∥∥2

0,Ω
=
|K||K ′|
|K ∪K ′|JqK

2
γc
,

where ΠG4 is defined as in (3.103.10) but using φc = |K|−1χK − |K ′|−1χK′ . The

proof of the equivalence is similar to Lemma 3.7Lemma 3.7, since φc satisfies all properties

given in Lemma 3.6Lemma 3.6.

• The convergence is proven in a similar fashion to Chapter 33. The only difference

is the use of the trace estimate Lemma 2.3Lemma 2.3 which holds for triangles (instead of

the one for parallelograms).

λ

λ

H

H

J K

(a)

λ

λ

H

H

J K

(b)

Fig. 6.4. A triangulated and a “circular” corner patch with aspect ratio % ≈ λ/H.

6.3.1. Numerical confirmation

We have computed the stability constants of the unstabilised and the stabilised method

using V T ×MT on the meshes shown in Figure 6.46.4 for small parameters λ. The results

are shown in Table 6.16.1 and confirm that there is an inf-sup deficiency depending on the

parameter λ and that this deficiency can be cured by penalising a single jump. The

numbers were computed by solving the eigenvalue problem (4.254.25) using the FEniCS

software [LMW+12LMW+12] to assemble the system matrices.

6.3.2. Proof for triangulated corner patches

Lemma 6.1. Let P be a partition consisting of axis-aligned rectangles and let T be a

partition obtained by splitting each K ∈ P into two triangles. Let

M?
T :=

{
q ∈MT : 〈q〉ωc

= 0 for c ∈ C
}
.

Then, for all q ∈M?
T there exists v ∈ V P such that v|ωc

∈H1
0(ωc) for c ∈ C and

(div v, q)Ω = ‖q‖20,Ω and |v|1,Ω ≤ C‖q‖0,Ω .
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Table 6.1. Stability constants of unstabilised and stabilised systems for P c
2 × P0.

mesh in Fig. 6.46.4a mesh in Fig. 6.46.4b

λ µT µs µT µs

10−1 1.32 · 10−1 2.81 · 10−1 1.44 · 10−1 2.25 · 10−1

10−2 1.79 · 10−2 2.16 · 10−1 1.97 · 10−2 1.50 · 10−1

10−3 1.86 · 10−3 2.06 · 10−1 2.04 · 10−3 1.39 · 10−1

10−4 1.87 · 10−4 2.05 · 10−1 2.05 · 10−4 1.38 · 10−1

10−5 1.87 · 10−5 2.05 · 10−1 2.01 · 10−5 1.38 · 10−1

Proof. Let K = [0, H]×[0, h] and split it as follows:

T1 :=
{

(x, y) ∈ R2 : 0 ≤ x ≤ H, xh/H ≤ y ≤ h
}

=
{

(x, y) ∈ R2 : 0 ≤ y ≤ h, 0 ≤ x ≤ yH/h
}
,

and

T2 :=
{

(x, y) ∈ R2 : 0 ≤ x ≤ H, 0 ≤ y ≤ xh/H
}
.

Let B ∈ H1
0 (K) be the bubble function that is quadratic on T1 and T2, and satisfies

B(H/2, h/2) = 1. On T1, this function is given by

B1 := B|T1 = 4
x

H

(
1− y

h

)
.

Now, let e := ∂T1 ∩ ∂T2 and q ∈ L2
0(K) ∩MT(K). Then, using integration by parts we

get

(div v, q)K =

∫

e
v · JnqK ds for v ∈H1

0(K).

Since q is constant on T1 and T2, we can write q = α(χT1 − χT2) where α ∈ R. Then,

choosing

v :=
3

2

‖q‖20,K
‖JnqK‖20,e

JnqKB(x, y) =
3

8

|K|
|e| JnqKB(x, y) ,

we get

(div v, q)K = ‖q‖20,K = α2|K|.

A direct computation yields ‖∂xB‖20,T2 = ‖∂xB‖20,T1 , ‖∂yB‖20,T2 = ‖∂yB‖20,T1 , and

‖∂xB‖20,T1 =
4h

3H
and ‖∂yB‖20,T1 =

4H

3h
.
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Then,

|v|21,K = 2|v|21,T1 = 2

(
3|K|
8|e|

)2(
(2αn1)2 + (2αn2)2

)(
‖∂xB‖20,T1 + ‖∂yB‖20,T1

)

= 2

(
3|K|
8|e|

)2

4α2 4

3

(
h

H
+
H

h

)

=
3

2
|K|α2h

2 +H2

|e|2
=

3

2
α2|K| .

Collecting the equalities we get the local inf-sup condition

|v|−1
1,K(div v, r)K =

√
2/3 ‖r‖0,K .

This proves that the additional local oscillations are controlled by the bubble func-

tion B. Then, the result follows using the uniform stability ofQc
2×P0 on edge patches.

6.4. New locally stabilised methods for balanced order pairs

It is stated in the introduction that balanced-order pairs are inf-sup stable, but their

inf-sup constants depend on the aspect ratio (at least for discontinuous pressures).

Furthermore, we conjectured that a coarse-scale projection like the pressure stabilisa-

tion term used for the Qc
1 × P0 pair may cure the dependency on the aspect ratio.

In this section we give preliminary arguments and numerical results, that confirm this

conjecture.

Preliminary conclusions from our numerical experiments are:

• The Taylor–Hood P c
2 × Pc1 pair is inf-sup stable on some anisotropic meshes;

• The pair P c
2 × P1 can be stabilised locally to produce a method which is mass-

conservative in patches, and stable independently of the aspect ratio;

• The inf-sup deficiency of the Qc
2 × P1 pair can be cured by local stabilisation

within anisotropic macro elements.

To present the numerical experiments we need the following definitions. By red

refinement (in two dimensions) we refer to splitting a triangle or parallelogram K into

four cells that have the same angles and same shape as the original cell K. The uniform

red refinement of a partition P0 refers to the partition that is obtained by applying the

red refinement to each K ∈ P0. The numerical experiments are carried out on the

meshes shown in Figure 6.56.5. In case of the stabilised methods, the jumps are added

only across dashed edges.
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λ

H

H

(a)

H

H

λ

(b)

Fig. 6.5. An edge patch and a triangular edge patch with aspect ratio % ≈ λ/H.

6.4.1. The P c
2 × P1 pair

Let the partition P be a uniform red refinement of P0 consisting of triangles. Let

V P := P c
2,P ∩ V , let MP := P1,P ∩ L2

0(Ω) be the discontinuous linear polynomials on

the fine mesh, and let

G :=
{
q ∈MP : q ∈ C0(M) for M ∈ P0

}
.

The element V P × G seems to be new. On shape-regular meshes we conclude (by

the following arguments) that this element is inf-sup stable. In each macro element

the pair V P(M) × G(M) is the Taylor–Hood element, which is inf-sup stable. By a

macro-element technique we conclude the stability of V P ×G.

Conjecture 6.2. The pair V P × G is uniformly stable also on anisotropic meshes

without corner patches, and the following equivalence holds

C1‖q −ΠGq‖20,M ≤
∑

e∈EM

|M |
4|e| ‖JqK‖

2
0,e ≤ C2‖q −ΠGq‖20,M .

A consequence of Conjecture 6.2Conjecture 6.2 and Pc1 ⊆ G is that the Taylor–Hood pair P c
2 × Pc1

is inf-sup stable on meshes which are uniform red refinements of coarse partitions, and

do not possess corner patches.

Furthermore, Conjecture 6.2Conjecture 6.2 allows to prove (as before) the inf-sup deficiency

sup
v∈V P

(div v, q)Ω

|v|1,Ω
≥ βG‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω for all q ∈MP ,

which justifies a local jump stabilised method for the pair P c
2 × P1. This method is

an extension of the one for the P c
1 × P0 pair. The numerical experiment in Table 6.26.2

confirms the two consequences of Conjecture 6.2Conjecture 6.2, the stability of the Taylor–Hood pair,

and of the jump stabilised method on the mesh shown in Figure 6.56.5b. We penalised

the jumps across the dashed edges.
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6.4.2. The Qc
2 × P1 pair

We also propose local jumps for the Qc
2×P1 pair. This pair is inf-sup stable on shape-

regular meshes. On the mesh shown in Figure 6.56.5a, however, the stability constant of

the system behaves like the square of the aspect ratio. Numerical experiments show that

adding jumps of the pressure across edges inside anisotropic macro elements removes

this deficiency, as we observe in Table 6.26.2.

Table 6.2. Stability constants of unstabilised and stabilised systems for {Qc
2,P

c
2} × P1.

Qc
2 × P1 on Fig. 6.56.5a P c

2 × Pc1 on Fig. 6.56.5b P c
2 × P1 on Fig. 6.56.5b

λ µP µs µP µs

10−1 2.879 · 10−2 2.114 · 10−1 6.618 · 10−2 6.215 · 10−2

10−2 3.333 · 10−4 2.191 · 10−1 6.018 · 10−2 5.702 · 10−2

10−3 3.363 · 10−6 2.198 · 10−1 5.768 · 10−2 5.520 · 10−2

10−4 3.366 · 10−8 2.198 · 10−1 5.736 · 10−2 5.494 · 10−2

10−5 3.366 · 10−10 2.198 · 10−1 5.732 · 10−2 5.491 · 10−2
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Chapter A

Appendix

A.1. Implementation of bases with linear constraints

The implementation of the mixed method using the pair V P × G with G defined in

Theorem 3.3Theorem 3.3 requires a basis of G. In this section we show how standard finite element

bases and assembly algorithms can be used to assemble the systems for G. More

precisely, we describe a general approach to assemble systems for bases arising from

linear restrictions.

Let V = span {φj , j = 1 . . . n} denote a (standard) finite element basis and let ` : V→
R be a linear functional (constraint). We define X := {Ψ ∈ V : `(Ψ) = 0}. Our aim is

to define a basis {Ψi}i of X. First, we realise that dimX ∈ {n− 1, n}. Furthermore,

dimX = n ⇐⇒ `(φj) = 0 , j = 1, . . . , n (the case when basis {φj}nj=1 already satisfies

the constraint imposed by `).

The interesting case is dimX = n− 1. For each basis function φj we define the value

wj := `(φj). Hence, using dimX = n−1 we have at least one wj 6= 0. In general, we can

enumerate the basis such that the first m − 1 values vanish for some m ∈ {1, · · · , n},
that is,

wj = 0 (j = 1, · · · ,m− 1) and wj 6= 0 (j = m, · · · , n) .

Now, the first m− 1 basis functions Ψi are given by

Ψi = φi for (i = 1, . . .m− 1) .

If m = n, then this is a basis of X. Otherwise, we define the missing functions by

Ψi = w−1
i φi − w−1

i+1φi+1 for i = m, . . . n− 1 .

Using the linearity of ` these functions satisfy the constraint. Also, since {φi}i is a

basis, we conclude that {Ψi}i is a basis of X. The following vector presentation of the
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basis {Ψi}i will be useful. We have




Ψ1

...

Ψn−1


 = W>




φ1

...

φn


 where W> =

(
Im−1 ·
· W>

)
(A.1)

or W> =
(
Im−1 0(m−1)×1

)
if m = n. Above, Im−1 denotes the identity matrix with

(m− 1) rows and W> is given by




Ψm

...

Ψn−1


 =




+w−1
m −w−1

m+1

. . .
. . .

+w−1
n−1 −w−1

n




︸ ︷︷ ︸
=:W>




φm

φm+1

...

φn




.

We obtain the following result.

Corollary A.1. Let bh be a linear form and let ah be bilinear. Then, the assembled

matrices and column-vectors

Aφ = [ah(φi, φj)]ij , AΨ = [ah(Ψi,Ψj)]ij , BΨ = [bh(Ψi)]i and Bφ = [bh(φi)]i

satisfy the relations

BΨ = W>Bφ and AΨ = W>AφW .

Corollary A.1Corollary A.1 shows that the matrices AΨ and BΨ can be assembled from standard al-

gorithms and matrix multiplications with the weight-matrix W. Evaluating the weights

`(φi) is the same as calculating a Lagrange multiplier. Multiple linear constraints can

be treated one-by-one.

Given the coefficients for basis {Ψi} (e. g. after solving the restricted system) one can

restore the coefficients of the standard basis using identity (A.1A.1), that is,

(
α1 · · · αn−1

)



Ψ1

...

Ψn−1


 =

(
α1 · · · αn−1

)
W>




φ1

...

φn




.

Therefore, the coefficients for the standard basis {φi}i are given by (α1 · · · αn−1)W> .

In the multiple constraint setting, say three constraints, the dimension of the con-

strained basis lies between n − 3 and n. In this case W> is replaced by W>`1W
>
`2
W>`3

with W>`i of appropriate dimension.
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Index

boundary

Lipschitz continuous, 33

cell, 1414

aspect ratio, 1515

Convection-diffusion-reaction equation,

1111

Galerkin method, 33

grading factor, 1616

inequality

Cauchy Schwarz’, 1717

Young’s, 1717

inf-sup condition, 33

inf-sup constant, 55

layer, 1111

LBB condition, 33

LBB constant, 55

mesh, 1414

anisotropic, 11, 1515

axis-parallel, 1414

conforming, 1414

isotropic, 1515

regular, 1515

Oseen problem, 22

pair

inf-sup stable, 55

uniformly inf-sup stable, 2828

partition, see mesh

Petrov–Galerkin method, 33

Poincaré inequality, 33, 6262

refinement

red, 9393

uniform red, 9393

set

closed, 1414

closure, 1414

interior, 1414

single corner patch, 2929

spurious pressure mode, 55

Stokes problem, 22

test space, 33

trial space, 33

triangulation, see mesh

well-posed, 33
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