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Abstract

The use of mathematical models has become a widespread and important aspect

of cellular biology to describe cell migration and chemotaxis. Many of these mod-

els give results which qualitatively match experimental data well, but most are

not calibrated to the data to quantitatively estimate the unknown parameters of

interest. This thesis focuses on using statistical inference approaches to estimate

the drift velocity and diffusion coefficient of a simple drift-diffusion stochastic dif-

ferential equation model describing directed cell movement. All approaches make

use of the mean square displacement as a summary statistic of the trajectory

data. When using least squares regression, the quality of the inference depends

on the number of regression fitting points or the measurement time interval over

which experiments are made, depending on the experimental protocol. Simple

and efficient iterative algorithms are presented to estimate the optimal number of

fitting points and measurement time interval, along with estimates of the drift and

diffusion coefficients. For inference using approximate Bayesian computation, the

quality of the inference is again shown to depend crucially on the measurement

time interval over which experiments are made. A number of different approx-

imate Bayesian computation approaches are presented and compared, showing

that the best approach changes depending on the value of the measurement time

interval. Finally, a hybrid model describing cell migration and chemical diffusion

is presented to investigate a process called self-generated gradient chemotaxis.

Numerical simulation from the generative model using physiologically relevant

parameter values produces data which agrees well with experimental data.
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Chapter 1

Introduction

1.1 Cell migration and chemotaxis

Cell migration is an essential component of several important biological processes

such as wound healing [1], collective cell migration in embryonic development [2],

the movement of leukocytes (white blood cells) to infections in immune response

[3] and cancer metastasis [4]. Most of these processes depend on a type of cell

migration known as chemotaxis, the movement of cells along chemical gradients

in response to a chemical stimulus. For example, it is well established that chemo-

taxis plays a key role in cancer metastasis [5]. Despite the obvious importance of

chemotaxis, the sources of chemoattractants, and how these chemical gradients

evolve in response to their depletion from cells, are often unknown [6].

In this thesis, we are mainly interested in eukaryotic cells, those which have a

nucleus, rather than prokaryotic cells, such as bacteria. Eukaryotic cell mobility

is controlled by the formation of pseudopods which are protrusions of the cell

membrane through actin polymerization at the front of the cell, which drives

the cell forward [7]. To do this, actin, a globular protein, polymerizes into actin

filaments (F-actin) which is a major component of the cell cytoskeleton. However,

actin polymerization creates new filaments at a slow rate and so the assembly of F-
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Chapter 1 – Introduction

actin can be stimulated by nucleation factors. F-actin in most cells is concentrated

directly beneath the cell membrane forming part of the cell cortex. Myosin II and

other motor proteins then bind to the F-actin in the cell cortex, cross-linking and

contracting the filaments, which causes cortical tension and mechanical resistance.

This causes actin polymerization to occur between the cell cortex and membrane

which pushes the cell membrane out from the pseudopod while cortical tension

moves the rest of the cell along.

New pseudopods can be created from a process called pseudopod splitting,

where a currently formed pseudopod splits in two. In fact, it has been observed

that in many cell types, around 90% of new pseudopods formed are due to the

bifurcation of existing pseudopods, for example, in human leukocytes, mouse em-

bryonic fibroblasts and Dictyostelium discoideum cells [8, 9]. Pseudopods play a

key role in eukaryotic cell movement as they determine the direction and speed

of a cell’s migration [10]. For directed motility, ligands bind to membrane bound

receptors to identify signiling cues, then pseudopods are formed, either as new

protrusions or by splitting, which guides the cell in the direction of attraction.

Groups of cells can also coordinate their pseudopod formation, resulting in col-

lective cell migration [11].

1.2 Self-generated gradients

Although cells often chemotax by detecting a high concentration of chemoattrac-

tant and then moving along the created chemical gradient, some cell types have

also been observed to create their own chemical gradients [12]. When these cells

are near an area of higher chemoattractant concentration, they begin to degrade

the chemoattractant, creating local, steep chemical gradients. Cells then migrate

2
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towards the region of higher chemoattractant concentration and continue to de-

grade and migrate in this fashion. This process where cells essentially create their

own chemical gradients is called self-generated chemotaxis.

There are several visual characteristics which can help identify whether cells

are moving according to self-generated gradients [6]. The most obvious charac-

teristic is a leading wave of cells. As the cells degrade the chemoattractant, those

closest will detect the chemical gradient and migrate forward. The cells which

are furthest away from the chemoattractant will migrate slower and eventually

will be unable to detect the chemical gradients. They will then fall behind while

the leading wave of cells continue to migrate forward. Physical experiments in

an Insall Chamber [13] have shown that Dictyostelium discoideum cells can move

according to self-generated gradients by degrading folate under-agarose [6].

It has been proposed that self-generated gradients could be a main driver for

cancer cell metastasis over long distances. It has been shown that melanoma cells

can degrade high levels of lysophosphatidic acid (LPA), creating their own chem-

ical gradients which allow the cells to chemotax outwards from the tumour [14].

Recent experimental work shows that cells have the ability to break down local

chemoattractants in order to solve maze problems [15]. In this study, mathemati-

cally modelled cells were able to navigate through mazes of different complexities

with the inclusion of dead ends. Cells were released into the maze from one

end with an attractant well of chemoattractant diffusing into the maze from the

other side. By degrading the chemoattractant and creating steep, local chemical

gradients, cells were able to migrate forward and ‘sense’ around maze junctions

before reaching them. They were also able to make clever decisions, taking the

optimal route through the maze and mostly avoiding dead ends. Physical exper-

iments with Dictyostelium discoideum and pancreatic cancer cells showed good

agreement with simulated experiments. Given that chemotaxis is known to be

inefficient over long distances, these results could help explain how cancer cells

3
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are able to metastasise away from the tumour: by degrading chemoattractants,

thus creating self-generated chemical gradients by which long distance migration

can occur. For a recent discussion on self-generated gradients, see [16].

1.3 Mathematical models

Mathematical models have become an important and often essential tool in un-

derstanding complex biological processes, evidenced by the abundance of models

in the literature, for example, [17–19]. These models can be used to help interpret

experimental data and better understand the underlying mechanisms which led

to the results. They can also be used to formulate hypotheses, make predictions

under perturbations and allow certain aspects of the model to be added or re-

moved to see its effect on the overall process, all of which can then be verified

experimentally.

We concentrate on quantitative models, those which describe and interpret

results by linking mathematical models to quantitative data. There are many

different types of quantitative models used within biology. For example, hybrid

models aim to combine different mathematical modelling approaches to try and

account for often complicated biological behaviours [20–23]. Whole-cell modelling

aims to understand the inner working of cells by accounting for every gene and

molecule within a cell [24–26]. These models are often very high-dimensional and

computationally expensive but are very realistic when modelling the underlying

mechanisms by which cells behave.

Neilson et al. [27] proposed a pseudopod-centered model for the simulation of

eukaryotic cell migration and chemotaxis by coupling pseudopod formation with

the movement of the cell membrane. The governing equations which drives the

formation of pseudopods is based on a discrete model developed by Meinhardt

[28]. This uses a set of reaction-diffusion equations to describe the interaction
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between an autocatalytic activator, a rapidly distributed inhibitor and a local

inhibitor. These equations depend on the cell boundary which is assumed to

evolve with time in two dimensions. Therefore, an Arbitrary Lagrangian-Eulerian

finite element method (ALE-FEM) approach was developed to solve the reaction-

diffusion equations on an evolving curve. To computationally model the evolving

surface of the cell membrane, a level set method (LSM) was used. They showed

that this hybrid ALE-FEM/LSM model could be used to model persistent random

cell movement, which is important to capture in the absence of chemoattractants,

as well as chemotaxis, with simulations matching well the migratory behaviour

seen in real experiments with a group of Dictyostelium discoideum cells.

Subsequent developments were made to improve the performance of the model.

The level set method used to move the cell boundary was computationally expen-

sive and so an alternative approach was considered which used the parameterised

finite element method (PFEM) [29]. This method was found to be far more ro-

bust and computationally efficient for evolving the cell boundary than the level

set method originally proposed. A change in the model to consider positive

and negative cell feedback accurately predicted multiple aspects of cell behaviour

in response to chemotaxis [30]. In [31], coupled bulk-surface reaction-diffusion

equations were used to model cell migration and chemotaxis. This new approach

included the solution of the chemotactic field. The bulk region corresponded with

the extracellular domain and the surface corresponded to the cell membrane. A

moving mesh finite element method was used to approximate the solutions of the

bulk-surface reaction-diffusion equations. This required the generation of meshes

for the bulk and surface which were created using a moving mesh partial differen-

tial equation (MMPDE) approach. More recently, the model in [31] was extended

to couple the effects of extracellular processes to intracellular processes through

membrane bound receptors [32]. For a review of mathematical models for cell

motility, see [33].
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In terms of models for self-generated gradients, Tweedy et al. [6] used a

hybrid individual-continuum modelling approach. They assume that cells move

in a two-dimensional chamber with cells starting from the left-hand side and

chemoattractant diffusing from the right-hand side. The chemoattractant profile

was modelled using the diffusion equation with constant diffusion coefficient and

an additional term to denote the degradation of the chemoattractant by the

cells. This latter term sums the degradation contribution from all the cells by

using the Kronecker delta function at a rate which depends on the cell position

and takes a Michaelis-Menten form. Numerical simulation of the chemoattractant

diffusion was done on a background grid using a central differences approximation

of the diffusion equation and the Euler method for the cell degradation term.

Since the cells do not move on this background grid, their location could take

intermediary positions. Therefore, the degradation of the chemoattractant was

taken from surrounding grid points, using linear interpolation to retrieve the rate

of degradation based on their distance from the cell. For numerical simulation of

the movement of the cells, they begin by randomly placing the cells in a small

well at the left-hand side of the chamber. Cells are then moved according to a

persistent random walk with a specified direction and constant speed. The angle

of persistence was taken as a weighed circular average of a persistent random

walk and a bias introduced by local chemical cues. The persistent direction was

taken to be a random variable sampled from a wrapped normal distribution,

centred on the previous angle of persistence. The bias term was taken to be the

difference of occupancy for a receptor between the very front and back of the

cell. Their model also accounts for contact inhibition of locomotion (CIL) [34], a

process where cells that come into contact with each other repolarise and migrate

away from one another. Good agreement was seen between the simulated cell

movement and those from real experiments with Dictyostelium discoideum cells.
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McLennan et al. [35] considered a group of neural crest (NC) cells migrating

in the growing domain of a developing embryo. In their paper, the NC cells enter

the domain and travel long distances by internalizing vascular endothelial growth

factor (VEGF), a chemoattractant for NC cells, in order to reach a target. They

formulate a two-dimensional off-lattice individual-based model for the NC cell

migration. The cells are modelled as circular discs which move with a constant

speed in the direction of the maximum chemoattractant gradient. For simplic-

ity, their computational experiments are performed on a 2D growing rectangular

domain. Cells are continually introduced into the domain at the left hand bound-

ary and movement only occurs if there is space for the cells to move into. The

chemoattractant VGEF was modelled using a reaction-diffusion equation and was

assumed to be produced logistically throughout the domain. Their model assumes

that the NC cells internalize VEGF by surface bound receptors, which has the

effect of depleting the amount of VEGF is the local vicinity of the NC cells. They

found that if there was no chemoattractant at the left hand boundary, then cells

introduced into the domain would migrate randomly, leading to a clog up and

stopping or delaying new cell intake. From this, they postulate that there must

be two types of cells, so-called leading and trailing cells. The leader cells follow

the chemoattractant gradients, while trailing cells use cell-cell contacts to direct

their movement forward. Their model successfully matches data collected on NC

cell migration.

In a later paper, McLennan et al. [36] refined their model in light of new

experimental findings. Some computational changes include allowing a wider

stream of cells to better represent multicellular stream migration, and introducing

a range of intracellular distances during cell-cell contact, which improved stream

cohesion and reduced stream breakup in model migration. A fruther modification

to their earlier model limits the accuracy of the cells to be able to determine the

chemoattractant direction. This sensing accuracy depends on the term ∆c/c̄,

7
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where ∆c is the spatial difference in the concentration and c̄ is the background

(average) chemoattractant concentration. If this term is small enough, then the

NC cells will not be able to chemotax and will instead migrate randomly. This

modification was motivated by the work of Berg and Purcell [37].

Ferguson et al. [38] looked to draw conclusions about the drivers of movement

in two cell types by applying model fitting methodologies to data and carrying

out model comparison. The data consisted of cell trajectories of Dictyostelium

discoideum cells collected in [6] and human melanoma cells collected in [14], both

moving according to self-generated gradient chemotaxis. They considered six

advection-diffusion partial differential equation (PDE) models for the cell density

which depended on the attractant concentration where the advection term was

adapted for each new model to investigate different hypotheses for the drivers

of cell movement. The cell density and attractant concentration were obtained

by solving the PDEs numerically by the method of lines. Ferguson et al. also

considered three additional PDE models in a related paper to better understand

the movement of the Dictyostelium discoideum cells collected in Tweedy et al.

[6].

The hybrid individual-continuum model considered by Tweedy et al. [6] can

model each cell individually and account for cell heterogeneity by allowing for

different diffusion coefficients and chemical degradation rates for each cell. While

extensive simulation of these models can be used to exam the emergent behaviour

of the individual models, this is typically computationally expensive and makes

analysis difficult. Individual-based models can be coarse-grained to give rise to

differential equation models. This approach can make analysis tractable and al-

low for investigations into population-level properties of individual-based models.

Master equations for the individual models can be derived and simplified to give

differential equation models. One of the most common simplifications is called

the mean-field assumption, which assumes that partitions of the modelled quan-

8
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tities are independent from one another. One of the main disadvantages of these

mean-field models is that they only give accurate results for certain parameter

regimes. A very recent paper by Nardini et al. [39] examines coarse-grained dif-

ferential equation models and compares these with equation learned differential

equation models, which have the advantage of being both accurate and analyti-

cally tractable.

PDE models, such as those considered by Ferguson et al. [38, 40], are based on

a density of cells, and can be cheaper to implement and allow for easier analysis.

However, they cannot be used to study individual cell behaviour. Additionally,

these PDE models do not capture the fluctuations resulting from random individ-

ual cell behaviour seen in small populations, as they are based on the assumption

of a large population size, where all fluctuations resulting from random individual

cell behaviour average out.

In this thesis, we will consider using stochastic differential equations (SDEs)

to model cell movement. SDEs can be used to describe the migration of individ-

ual cells, similar to individual-based models. SDE models can also be used to

describe collective migration but work better for small population sizes. When

the population size is taken much larger, they can become computationally ex-

pensive and so PDE models woud be better in that case. Stochastic modelling of

cell movement has been explored in, for example, [41–44].

1.4 Statistical inference

Using mathematical models with physiologically relevant parameter values with

the aim of replicating the results of an experiment is often called the forward

problem. Equally important is the opposite: being able to estimate parameter

values of a model from experimental data. This is known as the inverse problem

9
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or statistical inference. This is seldom done in this area due to the complexity of

the models and availability of the data. However, there is a history of statisical

inference being used for biological problems, for example, [45–48].

In the paper by Ferguson et al. [38], they used statistical inference to esti-

mate the parameters of their PDE models. A total weighted log-likelihood was

calculated from the cell densities at varying time points. For the inference of the

parameters, they sampled with replacement the cell density data for each time

point to obtain many bootstrap datasets. The total weighted-loglikehood was

then maximised for each of these bootstrap datasets for each new model. This

was done using the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm for the Dictyostelium discoideum data and the Nelder-Mead algorithm

for the melanoma data; the algorithms which worked best for the two different

datasets. By optimising over many re-samples of the data, values for the posterior

distributions were obtained. The widely applicable information criterion (WAIC)

was used to compare the different models for the two cell types. They found that

the receptor saturation model – which accounts for high concentrations of the

chemoattractant saturating cell receptors, hindering cell migration up the chem-

ical gradient – was the best model for the Dictyostelium discoideum data; while

the overcrowding model – which accounts for a slowing of cell migration when

the density of cells become large due to less physical space and the effect of CIL

– was the best model for the human melanoma data.

In their related paper [40], Ferguson et al. looked more closely at the Dic-

tyostelium discoideum cell movement data collected in [6] to identify the mech-

anisms that are involved in their movement. For this, they considered nine

advection-diffusion PDE models, similar to the models tested in [38]. The numer-

ical simulation of the PDEs and calculation of the log-likelihood were conducted

similarly as in [38]. Inference of the parameters was obtained by using Markov

chain Monte Carlo (MCMC) sampling; specifically, the delayed rejection adaptive

10
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Metropolis (DRAM) algorithm. The WAIC was again used for model comparison

between the nine candidate models. From this study, they made three conclusions

about the movement of the Dictyostelium discoideum cells that were observed in

the data. First, self-generated gradients play a key role in producing the observed

movement pattern: the formation of the leading wave and random migration of

cells behind the wave. Secondly, allowing for the interactions between cells gives

an improvement in the model performance. Lastly, spatio-temporal changes in

cell behaviour have a big effect on the produced movement patterns.

To our knowledge, the papers by Ferguson et al. were the first and only

attempt at using inference to estimate the parameters of a model describing self-

generated gradient chemotaxis. While the hybrid individual-continuum model

considered by Tweedy et al. [6] was shown to replicate self-generated gradient

chemotaxis well, they did not use inference to estimate the parameters of their

model.

In this thesis, we will use Bayesian inference to estimate parameter values

from data. Bayesian statistics is dependant on the calculation of the posterior

distribution, the distribution of the unknown parameter vector θ of a statistical

model given some observed data y, through use of Bayes’ theorem,

π(θ|y) =
p(y|θ) π(θ)

p(y)
, (1.1)

where p(y|θ), called the likelihood function, is the probability of observing the

data y given some parameter values θ; π(θ), called the prior distribution, is the

initial distribution of the unknown parameters θ; and p(y) is the marginal prob-

ability of y. Since models describing cell movement and chemotaxis are usually

complex, calculation of the likelihood function for use in Bayesian inference is

computationally expensive or intractable. In this case, likelihood-free methods

can be employed, for example, approximate Bayesian computation (ABC) which

11
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we will implement in later chapters. In ABC, the posterior distribution is found

not by calculation of the likelihood function, but by repeatedly sampling from

the prior distribution to generate simulated data which is then compared with

observed data through chosen metrics. Often the output data from these models

are high-dimensional and so summary statistics of the simulated and observed

data are usually compared instead. The decision of which summary statistics to

use and how these can be calculated and combined optimally is a complicated

matter in its own right. ABC has been widely used for parameter inference in

the biological sciences [49–52] including in cell biology [53–57].

1.5 Outstanding questions

One outstanding question in this area is how to optimally infer parameters of

drift-diffusion SDEs based on the regression of the MSD. This problem is of in-

terest in a number of areas and not just cell biology. Detailed analysis shows

how to optimise the number of points used in weighted least squares regression

and how the quality of the parameter estimates depends on the time step used

to measure the time evolution of the data. With a view to tackling parameter

estimation for a complex model of self-generated gradient chemotaxis, we then

considered the use of ABC methods for parameter estimation for a model drift-

diffusion SDE. The key question with this approach is the correct choice of sum-

mary statistics. We looked at the use of the MSD initially and then considered

more sophisticated techniques based on multivariate least squares and Gaussian

Processes. We discovered that one approach (GP with residual) delivered good

estimation of both model parameters and was relatively insensitive to the time

interval over which the data was collected. We then applied this ABC approach

to a hybrid-continuum model for self-generated chemotaxis. The model for the

movement of each cell is a SDE of drift-diffusion type so experience from previous

12
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chapters can be used to devise suitable summary statistics. We demonstrate that

the ABC method can be used to infer parameters of the model based on pilot

summary statistics based on the ensemble MSD. We also used Morris screening

method to investigate the identifiability of parameters using scalar outputs from

your model and these could be used to quickly test a range of summary statistics

before they are used with complex models in biology.

1.6 Outline of thesis

In this thesis, we concentrate on investigating approaches to optimally infer the

parameters of a simple SDE model for directed cell movement. We also present

a hybrid model describing self-generated gradient cell movement.

In Chapter 2, we use weighted least squares to estimate the diffusion coefficient

and drift magnitude of a drift-diffusion SDE model. We consider two different

experimental protocols: one where the data cannot be re-collected and so the

optimisation is done with respect to the number of regression fitting points; and

the other where experiments can be repeated and so the optimisation is done with

respect to the measurement time interval over which experiments are measured.

Iterative algorithms to calculate the optimal number of fitting points and the op-

timal measurement time interval are presented. We investigate the robustness of

these algorithms to infer the diffusion coefficient and drift magnitude for different

parameter choices, as well as for simulated experiments with a single particle and

an ensemble of particles. Note that the work in this chapter has been published

in Physical Review E as the reference [58].

In Chapter 3, we introduce in more detail the ABC method mentioned above

and review a range of different ABC procedures. This is in preparation of using

some of the ABC procedures in Chapter 4.

13
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In Chapter 4, we use the ABC approaches of Prangle [59] and Fearnhead

& Prangle [60] described in Chapter 3 to infer the diffusion coefficient and drift

velocity of a drift-diffusion SDE model. We investigate the quality of the posterior

distributions obtained using both procedures with respect to the measurement

time interval and compare these with the exact posterior distributions calculated

using the likelihood function. Adaptations of the Fearnhead & Prangle approach

are also considered and included in the comparison.

In Chapter 5, we introduce a hybrid model to describe self-generated cell

movement. The movement of the cells is governed by a drift-diffusion SDE where

the drift term relates to the chemical gradient and chemoattractant concentra-

tion. The chemical profile is modelled using the diffusion equation with an ad-

ditional term to model the degradation of the chemoattractant by the cells. We

solve numerically the drift-diffusion SDE by the Euler-Maruyama method and the

chemical equation by an implicit-explicit finite difference scheme. A sensitivity

analysis of our hybrid model is provided and ABC is used to try and infer the

random motility of the cells and the chemotactic velocity.

Finally, we present our conclusions and future work in Chapter 6.
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Chapter 2

Inferring the drift and diffusion

coefficients using regression

2.1 The drift-diffusion model

We will start by considering a simple drift-diffusion SDE model for directed cell

migration. Drift-diffusion models have been used in cell biology, for example,

to model leuckocyte migration [53] and for the detection of biased motion of

leukocytes [61] and T cells [62]. Drift-diffusion models have also been used in

other disciplines, such as understanding the causes of animal mass migration in

ecology [63], monitoring crowd behaviour in social science [64, 65], and studying

rumour diffusion in social networks [66]. Since these models can be used generally,

for this chapter, we will refer to an entity which moves as a particle.

This chapter aims to extend the work of Michalet [67] to include drift in

the analysis. To do this, a weighted least squares (WLS) fit to the MSD will

be used to estimate the diffusion and drift coefficients for both single-particle

and ensemble data. For this, we are required to calculate theoretical expressions

for the variance and the covariance of the MSD to use as weights in the fitting
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process. We will then look to optimally infer the diffusion and drift coefficients

by optimising over the number of regression points used in the fitting, as well as

the measurement time interval over which the experiments are made.

We will assume that all the particles move in two dimensions. The true

location of a particle at time t will be denoted by the random variable X̃t and it

will be assumed that it evolves according to the drift-diffusion SDE

dX̃t = α dt+
√

2D dWt, (2.1)

where the drift velocity α = α(cos(θd), sin(θd)), where α is the drift magnitude

and θd is the drift direction; for simplicity, we assume that α and θd are fixed

and so do not depend on time. The diffusion coefficient is denoted by D and

dWt = (dW1, dW2), where dW1, dW2 are independent Wiener processes. Here,

the domain of X̃t is R2, with the initial condition X̃0 = 0. Since the cells are

assumed to move in an infinite domain, we have no boundary conditions.

Typically, the position of a particle is extracted from a sequence of digital

images. The observed trajectory is the path observed using a device such as a

microscope connected to a video camera. The observed trajectory can be subject

to two different types of localisation error, usually referred to as static error

and dynamic error [68]. Static error is the difference between the measured and

true position of an immobile particle or the instantaneous position of a moving

particle. The source of static error therefore comes from the spatial resolution

of the measuring instrument. Dynamic errors are inaccuracies which arise when

measuring particles which move in time. An example of dynamic error is motion

blur which can occur due to the camera shutter being left open to maximise

the number of photons being recorded in any one frame. For transport by pure

diffusion it has been shown [69] that the precision of determining the diffusion

constant is negligibly effected by motion blur and hence in this chapter we will
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assume that it can be ignored (we present some numerical simulations of motion

blur in Section 2.9.4 to investigate the effect of this assumption). We will however

assume that the measured position of a particle is subject to additive independent

and identically distributed static error of the form N(0, η2I), where η2 is the

variance of the static error and I is the identity matrix. Throughout this chapter,

we will assume that the static error is independent of time. Note that we do not

consider experimental factors which affect the level of static error such as finite

frame duration and pixelization of video images; the interested reader can find

these issues addressed in Savin and Doyle [68].

2.2 The mean-square displacement curve

The analysis of the resulting trajectory data has traditionally been obtained using

the mean-square displacement (MSD) [68, 70–72]. The MSD is a sensible choice in

this context since, as we will see later in this section, its theoretical form depends

explicitly on the parameters of interest. However, the inference of parameters

using MSD data has never been considered for a drift-diffusion model with the

inclusion of static error. Michalet [67] and Berglund [73] used MSD analysis to

infer the parameters of a pure diffusion model in the presence of static error but

did not extend their analysis to include a drift term in the model. Qian et al. [70]

were the first to consider inference using the MSD for a drift-diffusion model but

did not consider the situation where static error is present in the data collection.

Assuming that the true displacement of the particles follow the drift-diffusion

equation (2.1), the probability density function (PDF) for their displacement at

time t is given by [74]

p̃(x̃, t) =
1

4πDt
exp

(
−|x̃−αt|2

4Dt

)
. (2.2)
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The observed displacement – the displacement observed and recorded under a

microscope – of a particle from the origin at time t will be denoted by the random

variable Xo
t . Since we assume that the displacements contain static error, we

know that Xo
t = X̃t + Z, where Z is the random variable denoting the static

error with PDF

p̃n(z) =
1

2πη2
exp

(
−|z|2

2η2

)
, (2.3)

then the PDF of Xo
t can be obtained by the convolution

po(xo, t) =

∫
R2

p̃(xo − z, t) p̃n(z) dz. (2.4)

This is a standard result and can be easily calculated since the convolution of

two Gaussian random variables is again Gaussian with mean and variance given

by the sum of the corresponding means and variances [75]. Therefore, the PDF

is

po(xo, t) =
1

2π(2Dt+ η2)
exp

(
−|xo −αt|2

2(2Dt+ η2)

)
. (2.5)

The measured displacement – the displacement extracted from the sequence of

digital images – of the particles is made relative to the origin, with the addition

of static error. If Xt denotes the random variable for the measured displacement,

thenXt = Xo
t −Z, and hence its PDF can be found by evaluating the convolution

p(x, t) =

∫
R2

po(x− z, t) p̃n(z) dz. (2.6)

Again this is a standard result, giving a Gaussian random variable whose mean

and variance are the difference of the two means and sum of the two variances,

respectively. Therefore, the PDF is given by

p(x, t) =
1

2π(2Dt+ 2η2)
exp

(
−|x−αt|2

2(2Dt+ 2η2)

)
. (2.7)

18



Chapter 2 – Inferring the drift and diffusion coefficients using
regression

The measured MSD is defined as

ρ(t) ≡ E(|Xt|2) =

∫
R2

|x|2p(x, t) dx. (2.8)

Using the PDF for the observed displacement (2.7) we have that

ρ(t) =
1

2π(2Dt+ 2η2)

∫ ∞
−∞

∫ ∞
−∞

(x2 + y2) exp

(
−|x−αt|2

2(2Dt+ 2η2)

)
dxdy. (2.9)

With α = (α1, α2) = (α cos(θd), α sin(θd)), we use the change of variables x =

α1t+ r cos θ and y = α2t+ r sin θ for 0 ≤ r <∞ and 0 ≤ θ ≤ 2π, then

dxdy =

∣∣∣∣∣∣∣
xr xθ

yr yθ

∣∣∣∣∣∣∣ drdθ =

∣∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣∣ drdθ = r drdθ, (2.10)

and

x2 + y2 = α2t2 + 2α1tr cos θ + 2α2tr sin θ + r2. (2.11)

When these expressions are substituted into (2.9), any terms involving cos θ or

sin θ will vanish since
∫ 2π

0
cos θ dθ =

∫ 2π

0
sin θ dθ = 0. For simplification let γ =

2Dt+ 2η2, giving

ρ(t) = α2t2
(

1

2πγ

∫ 2π

0

∫ ∞
0

r exp

(
−r2

2γ

)
drdθ

)

+
1

2πγ

∫ 2π

0

∫ ∞
0

r3 exp

(
−r2

2γ

)
drdθ. (2.12)

The two integrals evaluate to give 1 and 2γ respectively and so substituting back

in the original expression for γ, we obtain the measured MSD

ρ(t) = α2t2 + 4Dt+ 4η2. (2.13)
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This result has been derived previously without static error; for example, by [70]

and [74]. Note that ρ(t) is independent of the drift angle θd. If this is to be

determined from experimental data then a separate procedure must be used, and

we outline such an approach in Section 2.9.5.

2.3 The variance of the square displacement

The variance of the measured square displacement is given by

Var(|Xt|2) ≡ E(|Xt|4)− (E(|Xt|2))2. (2.14)

The latter term is simply the square of the MSD while the former term is calcu-

lated as

E(|Xt|4) =

∫
R2

|x|4 p(x, t) dx

=
1

2πγ

∫ ∞
−∞

∫ ∞
−∞

(x2 + y2)2 exp

(
−|x−αt|2

2γ

)
dxdy. (2.15)

Using the same change of variables as before, let x = α1t + r cos θ and y =

α2t+ r sin θ for 0 ≤ r <∞ and 0 ≤ θ ≤ 2π, then dxdy = r drdθ and

(x2 + y2)2 = α4t4 + 2α2α1t
3r cos θ + 2α2α2t

3r sin θ + α2t2r2

+ 2α2α1t
3r cos θ + 4α2

1t
2r2 cos2 θ + 4α1α2t

2r2 cos θ sin θ

+ 2α1tr
3 cos θ + 2α2α2t

3r sin θ + 4α1α2t
2r2 cos θ sin θ

+ 4α2
2t

2r2 sin2 θ + 2α1tr
3 sin θ + α2t2r2 + 2α1tr

3 cos θ

+ 2α2tr
3 sin θ + r4. (2.16)
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As before, any terms involving cos θ, sin θ and additionally sin θ cos θ will be equal

to zero once integrated. This leaves

E(|Xt|4) = α4t4
(

1

2πγ

∫ 2π

0

∫ ∞
0

r exp

(
−r2

2γ

)
drdθ

)
+ 2α2t2

(
1

2πγ

∫ 2π

0

∫ ∞
0

r3 exp

(
−r2

2γ

)
drdθ

)
+ 4α2

1t
2

(
1

2πγ

∫ 2π

0

∫ ∞
0

cos2 θ r3 exp

(
−r2

2γ

)
drdθ

)
+ 4α2

2t
2

(
1

2πγ

∫ 2π

0

∫ ∞
0

sin2 θ r3 exp

(
−r2

2γ

)
drdθ

)
+

1

2πγ

∫ 2π

0

∫ ∞
0

r5 exp

(
−r2

2γ

)
drdθ. (2.17)

These integrals are equal to 1, 2γ, γ, γ and 8γ2, respectively. Therefore, substi-

tuting in these quantities gives

E(|Xt|4) = α4t4 + 4α2t2γ + 4α2
1t

2γ + 4α2
2t

2γ + 8γ2

= α4t4 + 8α2t2γ + 8γ2. (2.18)

Therefore, the variance of the square displacement is given by

Var(|Xt|2) = E(|Xt|4)− (E(|Xt|2))2

= α4t4 + 8α2t2γ + 8γ2 − (α2t2 + 2γ)2

= 4α2t2γ + 4γ2

= 4α2t2(2Dt+ 2η2) + 4(2Dt+ 2η2)2. (2.19)

To our knowledge, this result has never been explicitly stated before, but has

previously been derived without drift [67]. In the absence of drift it is clear that

Var(|Xt|2) = (ρ(t))2 as the PDF for the measured squared displacement is an
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exponential distribution [67]. However, when drift is present then Var(|Xt|2) 6=

(ρ(t))2 and hence the PDF for the squared displacements cannot be exponential.

It is interesting to note that the variance of the squared displacement grows

cubically in time when drift is present, whereas it only grows quadratically in the

absence of drift. This observation has important implications when we consider

which time interval to take measurements over as time intervals which are too

large may result in extremely noisy estimates of the MSD.

2.4 Quantities retrieved from experimental data

In terms of the experimental data, we will assume that there are NS observed

trajectories, each comprising of particle coordinates using equal time interval

between frames tn = (n−1)T/N = (n−1)∆t, n = 1, . . . N +1, covering the mea-

surement time range [0, T ]. The entire observed experimental data will therefore

be denoted as

x (j)
n = (x (j)

n , y (j)
n )T , 1 ≤ n ≤ N + 1, 1 ≤ j ≤ NS. (2.20)

There are many possible ways to estimate the MSD [67] but the most widely used

is the time-average overlapping MSD. This way of estimating the MSD extracts

the most amount of information from the trajectory data, compared with the

other methods, although it results in the samples being correlated which can

make analysis more difficult. Since we have access to an ensemble of trajectories,

we will consider the ensemble time-average overlapping MSD. This is constructed

by first calculating NS time-averaged MSDs

ρ (j)
n =

1

N + 1− n

N+1−n∑
i=1

|x (j)
i+n − x

(j)
i |2, n = 1, . . . , N, j = 1 . . . , NS, (2.21)
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then averaging over the trajectories to obtain

ρn =
1

NS

NS∑
j=1

ρ (j)
n , n = 1, . . . , N. (2.22)

We assume that the MSD is always calculated starting from the initial time point,

as shown in (2.21). This means that the value of the MSD at time point tn is

calculated using a time lag of n.

2.5 The variance of the MSD

We will use a weighted least squares (WLS) fit to the ρn values later in the chapter

to estimate the parameters in the model and for this we require the variance σ2
n

of ρn.

First of all, we calculate the variance of the MSD for a single particle, denoted

by σ
2(S)
n . Then, due to the independence of the NS trajectories, the variance of

the MSD for an ensemble of particles is given by

σ2
n =

σ
2(S)
n

NS

. (2.23)

By denoting

ρ (1)
n =

1

N + 1− n

N+1−n∑
i=1

|xi+n − xi|2, n = 1, . . . , N, (2.24)

as the overlapping MSD for a single particle, then the variance of the MSD is

defined as

σ2(S)
n = E((ρ (1)

n )2)− (E(ρ (1)
n ))2. (2.25)
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Letting K = N + 1 − n be the number of samples of squared displacements of

length n∆t, then, due to the correlation between overlapping displacements, we

have that

σ2(S)
n =

K∑
i=1

K∑
j=1

Cov(i, j)

=
Var(|Xt|2|)(n∆t)

K
+

2

K2

K∑
i=1

K∑
j=i+1

Cov(i, j), (i < j) (2.26)

where Var(|Xt|2|)(n∆t) is the variance of the square displacement at time point

n∆t and

Cov(i, j) = E(|xi+n − xi|2|xj+n − xj|2)− E(|xi+n − xi|2)E(|xj+n − xj|2) (2.27)

is the covariance between square displacements. The first term in (2.26) can be

calculated from (2.19) and so in order to calculate the variance of the MSD we

need only to calculate the covariance of the square displacements. For this, we

have to consider the different ways the displacements |xi+n−xi|2 and |xj+n−xj|2

can overlap. This can be split into two cases as shown in Figure 2.1, whereR1,R2

and R3 are the displacements between the given vertices. We can then write the

covariance as

(a) Cov(i, j) = E(R2
1R

2
3)− E(R2

1)E(R2
3), j > i+ n,

(b) Cov(i, j) = E((R1 +R2)2(R2 +R3)2)

− E((R1 +R2)2)E((R2 +R3)2), j ≤ i+ n. (2.28)

Notice that when j > i+n (case (a) in Figure 2.1) the trajectories do not overlap

and so R2 = 0. Since the remaining displacements R1 and R3 are independent

then for (2.28a) we have that Cov(i, j) = 0. Therefore, we need only consider
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(a)
i

R1

i+ n

R2

j

R3

j + n

(b)
i

R1

j

R2

i+ n

R3

j + n

Figure 2.1: Diagram showing the two different combinations for overlapping
displacements used to calculate the variance of the MSD. The two cases are (a)
j > i+ n, and (b) j ≤ i+ n.

the case when j ≤ i + n (case (b) in Figure 2.1). In this case, we can write the

displacement vectors as

R1 = α dt1 +
√

2D dW1 +ψ1, (2.29)

R2 = α dt2 +
√

2D dW2 +ψ2, (2.30)

R3 = α dt3 +
√

2D dW3 +ψ3, (2.31)

where t1 = tj − ti = (j − i)∆t, t2 = ti+n − tj = (i+ n− j)∆t, t3 = tj+n − ti+n =

(j− i)∆t, dW1, dW2, dW3 are Weiner increments over the time length t1, t2, t3,

respectively, and ψ1 = ηj − ηi, ψ2 = ηi+n − ηj, ψ3 = ηj+n − ηi+n, where ηi is

the static error at time ti, etc. Note that when j = i + n, we have that R2 = 0.
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Expanding the right hand side of equation (2.28b) results in

Cov(i, j) = E(|R1|2|R2|2) + 2E(|R1|2(R2 ·R3)) + E(|R1|2|R3|2)

+ 2E(|R2|2(R1 ·R2)) + 4E((R1 ·R2)(R2 ·R3)) + 2E(|R3|2(R1 ·R2))

+ E(|R2|4) + 2E(|R2|2(R2 ·R3)) + E(|R2|2|R3|2)

−
(
E(|R1|2)E(|R2|2) + 2E(|R1|2)E(R2 ·R3) + E(|R1|2)E(|R3|2)

+ 2E(|R2|2)E(R1 ·R2) + 4E(R1 ·R2)E(R2 ·R3)

+ 2E(|R3|2)E(R1 ·R2) + (E(|R2|2))2 + 2E(|R2|2)E(R2 ·R3)

+ E(|R2|2)E(|R3|2)
)
. (2.32)

The first term is calculated as

E(|R1|2|R2|2) = E(|α dt1 +
√

2D dW1 +ψ1|2|α dt2 +
√

2D dW2 +ψ2|2)

= E
((
|α|2dt21 + 2

√
2Ddt1(α · dW1) + 2dt1(α ·ψ1) + 2D|dW1|2

+ 2
√

2D(dW1 ·ψ1) + |ψ1|2
)(
|α|2dt22 + 2

√
2Ddt2(α · dW2)

+ 2dt2(α ·ψ2) + 2D|dW2|2 + 2
√

2D(dW2 ·ψ2) + |ψ2|2
))
.

(2.33)

Multiplying out the brackets and taking the expectation of each term gives
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E(|R1|2|R2|2) = α4E(dt21dt22) + 2
√

2Dα2E(dt21dt2(α · dW2))

+ 2α2E(dt21dt2(α ·ψ2)) + 2Dα2E(dt21|dW2|2)

+ 2
√

2Dα2E(dt21(dW2 ·ψ2)) + α2E(dt21|ψ2|2)

+ 2
√

2Dα2E(dt1dt22(α · dW1))

+ 8DE(dt1dt2(α · dW1)(α · dW2))

+ 4
√

2DE(dt1dt2(α · dW1)(α ·ψ2))

+ 4D
√

2DE(dt1|dW2|2(α · dW1))

+ 8DE(dt1(α · dW1)(dW2 ·ψ2)) + 2
√

2DE(dt1|ψ2|2(α · dW1))

+ 2α2E(dt1dt22(α ·ψ1)) + 4
√

2DE(dt1dt2(α ·ψ1)(α · dW2))

+ 4E(dt1dt2(α ·ψ1)(α ·ψ2)) + 4DE(dt1|dW2|2(α ·ψ1))

+ 4
√

2DE(dt1(α ·ψ1)(dW2 ·ψ2)) + 2E(dt1|ψ2|2(α ·ψ1))

+ 2Dα2E(dt22|dW1|2) + 4D
√

2DE(dt2|dW1|2(α · dW2))

+ 4DE(dt2|dW1|2(α ·ψ2)) + 4D2E(|dW1|2|dW2|2)

+ 4D
√

2DE(|dW1|2(dW2 ·ψ2)) + 2DE(|dW1|2|ψ2|2)

+ 2
√

2Dα2E(dt22(dW1 ·ψ1)) + 8DE(dt2(dW1 ·ψ1)(α · dW2))

+ 4
√

2DE(dt2(dW1 ·ψ1)(α ·ψ2))

+ 4D
√

2DE(|dW2|2(dW1 ·ψ1))

+ 8DE((dW1 ·ψ1)(dW2 ·ψ2)) + 2
√

2DE(|ψ2|2(dW1 ·ψ1))

+ α2E(dt22|ψ1|2) + 2
√

2DE(dt2|ψ1|2(α · dW2))

+ 2E(dt2|ψ1|2(α ·ψ2)) + 2DE(|dW2|2|ψ1|2)

+ 2
√

2DE(|ψ1|2(dW2 ·ψ2)) + E(|ψ1|2|ψ2|2). (2.34)
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From here, we note that E(dti) = ti for i ∈ {1, 2, 3}, and since the Weiner

processes are independent, then (dWi · dWj) = 0 for i 6= j. Furthermore, since

the Weiner processes and static error terms are independent then (dWi ·ψj) = 0

for i, j ∈ {1, 2, 3}. However, due to the static error terms containing variances of

the static error which can share a common vertex, then (ψi ·ψj) 6= 0 for |i−j| = 1.

Using these properties, many of the terms in (2.34) will be zero. Therefore, we

are left with

E(|R1|2|R2|2) = α4t2i t
2
2 + 2Dα2t21E(|dW2|2) + α2t21E(|ψ2|2)

+ 4t1t2E((α ·ψ1)(α ·ψ2)) + 2Dα2t22E(|dW1|2)

+ 4D2E(|dW1|2|dW2|2) + 2DE(|dW1|2|ψ2|2)

+ α2t22E(|ψ1|2) + 2DE(|dW2|2|ψ1|2) + E(|ψ1|2|ψ2|2). (2.35)

We have that dWi = (dW 1
i , dW

2
i ) for i ∈ {1, 2, 3}, where dW 1

i , dW
2
i are inde-

pendent and identically distributed (i.i.d.) normal random variables with zero

mean and variance
√
ti, i.e. dW 1

i , dW
2
i are of the form N(0,

√
ti). Similarly for

the static error term, we have, for example, ψ1 = ηj−ηi, where ηi = (η1
i , η

2
i ) and

η1
i , η

2
i are also i.i.d. random variables of the form N(0, η2). These can be used to

calculate the final expectation terms left in (2.35). This gives

E(|R1|2|R2|2) = α4t21t
2
2 + 4Dα2t21t2 + 4α2η2t21

− 4α2η2t1t2 + 4Dα2t1t
2
2 + 16D2t1t2 + 16Dη2t1

+ 4α2η2t22 + 16Dη2t2 + 20η4. (2.36)
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The rest of the expectations will not be shown here but use similar algebra.

Instead, we will simply present the results.

E(Ri ·Rj) = α2titj − 2η2, |i− j| = 1,

E(R1 ·R3) = α2t1t3,

E(|Ri|2) = α2t2i + 4Dti + 4η2, i ∈ {1, 2, 3},

E(|R2|4) = α4t42 + 16Dα2t32 + 16α2η2t22

+ 32D2t22 + 64Dη2t2 + 32η4,

E(|Ri|2|Rj|2) = α4t2i t
2
j + 4Dα2t2i tj + 4α2η2t2i

− 4α2η2titj + 4Dα2tit
2
j + 16D2titj + 16Dη2ti

+ 4α2η2t2j + 16Dη2tj + 20η4, |i− j| = 1,

E(|R1|2|R3|2) = α4t21t
2
3 + 4Dα2t21t3 + 4α2η2t21

+ 4Dα2t1t
2
3 + 16D2t1t3 + 16Dη2t1 + 4α2η2t23

+ 16Dη2t3 + 16η4 + (4η4 − 4α2η2t1t3)δj, i+n,

E(|Ri|2(Ri ·Rj)) = α4t3i tj − 4α2η2t2i + 8Dα2t2i tj

− 16Dη2ti + 8α2η2titj − 16η4, i 6= j,

E(|Ri|2(Rj ·Rk)) = α4t2i tjtk + 4Dα2titjtk + 4α2η2tjtk

− 8Dη2ti − 8η4 − 2α2η2t2i − 2α2η2titk, i 6= j 6= k, i 6= 2,

E(|R2|2(R1 ·R3)) = α4t1t
2
2t3 + 4Dα2t1t2t3 + 4α2η2t1t3

+ 4η4 − 2α2η2t1t3 − 2α2η2t2t3,

E((R1 ·R2)(R2 ·R3)) = α4t1t
2
2t3 − 3α2η2t1t2 − 3α2η2t2t3

+ 2α2η2t1t3 + 2Dα2t1t2t3 + 6η4. (2.37)
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Here,

δj, i+n =


0, when j 6= i+ n,

1, when j = i+ n,

(2.38)

represents the Kronecker delta function. In the absense of drift, we recover the

same expressions as found in the supplementary material of Michalet’s paper [67].

Substituting these results into (2.32) and simplifying yields

Cov(i, j) ≡ Cov(l) = 16D2((n− l)∆t)2 + 8Dα2n2(n− l)(∆t)3

+ (4η4 − 4(αηn∆t)2)δj, i+n, (2.39)

where l = j − i. Now that the covariance has been calculated, to obtain the

variance of the MSD we must sum all the non-zero terms appearing in the double

sum in (2.26). This can be split into two cases. When n ≤ K we sum the non-

zero terms along the diagonals l = 1, ..., n − 1 of the covariance matrix. The lth

diagonal contains K − l identical elements, and therefore the non-zero terms are

n−1∑
l=1

(K − l)Cov(l), (2.40)

where Cov(l) = 16D2((n − l)∆t)2 + 8Dα2n2(n − l)(∆t)3. When l = n this

corresponds to the case when j = i + n and so the Kronecker delta term will

now be non-zero. This diagonal will contain K − n = N + 1− 2n elements, and

so will equal (N + 1 − 2n)(4η4 − 4(αηn∆t)2). When n > K we don’t have any

segments with no overlaps. Therefore, we only have overlapping contributions

to the covariance matrix. This time the upper limit in the sum (2.40) is N − n

rather than n− 1. So when n > K we have

N−n∑
l=1

(K − l)Cov(l), (2.41)
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where Cov(l) = 16D2((n− l)∆t)2 +8Dα2n2(n− l)(∆t)3. Summing all these terms

in either case (n ≤ K and n > K) as above allows us to calculate σ2
n. The final

result is

σ2
n =



[
n

6K2 (4n2K + 2K − n3 + n)(4D∆t)2

+8α2D(∆t)3
(

n3

3K2 (3Kn+ 1− n2)
)

+8η2

K2

(
(K − n)(η2 − (αn∆t)2) n ≤ K,

+K((αn∆t)2 + 4Dn∆t+ 2η2)
)]
/NS,

[
1

6K
(6n2K − 4nK2 + 4n+K3 −K)(4D∆t)2

+8α2D(∆t)3
(
n2

3K
(3nK −K2 + 1)

)
n > K.

+8η2

K
((αn∆t)2 + 4Dn∆t+ 2η2)

]
/NS,

(2.42)

To our knowledge, this result has never been derived before with the inclusion

of drift and static error. Note that in the absence of drift, the formulae above

reduces to that appearing in [67]. In Figure 2.2 we plot the theoretical variance

of the MSD (2.42) along with an empirical estimate of the variance of (2.22)

averaged over 1000 and 10,000 samples for the parameter values D = 2µm2/s,

α = 1µm/s, η = 2µm, NS = 10, N = 100 and T = 100 s. We can see that

as we increase the number of samples, the empirical estimate gets closer to the

theoretical expression (2.42).

To investigate the behaviour of the MSD (2.9), as well as the quality of the

ensemble time-averaged estimate (2.22), simulated data was obtained by solving

numerically the drift-diffusion SDE (2.1) by the Euler-Maruyama method using

a time step of ∆t with NS = 10 trajectories and N = 100 time points. Note

that this choice for the time step is sufficient due to the simple form of our SDE.

Figure 2.3 shows a plot of the theoretical MSD ρ(t) compared with the estimate

31



Chapter 2 – Inferring the drift and diffusion coefficients using
regression

0 20 40 60 80 100

0

0.5

1

1.5

2
10

6

0 20 40 60 80 100

0

0.5

1

1.5

2
10

6

Figure 2.2: A plot of the theoretical variance of the MSD (2.42) (solid black
line) along with an empirical estimate of the variance of (2.22) (dashed red line)
averaged over 1000 samples (a) and 10,000 samples (b) for D = 2µm2/s, α =
1µm/s, η = 2µm, NS = 10, N = 100 and T = 100 s.

ρn. These experiments were for D = 2µm2/s, α = 1µm/s and η = 2µm. To

illustrate the uncertainty in ρn, Figure 2.3 also includes ρn ± σn, where σn is the

standard deviation of the estimated MSD. Both the theoretical σn given by (2.42)

and an empirical estimate of σn, obtained using 100 independent sample values

of ρn, are shown. Figure 2.3(a) shows simulations with a time interval of T = 4 s,

while Figure 2.3(b) shows simulations with the same parameter values but with

a larger time interval of T = 100 s. We can see that as time increases the size

of the uncertainty in ρn increases, and for small times ρn does not approximate

ρ(t) well. This suggests a sufficiently large T is required in order to approximate

the MSD accurately. We have also observed that choosing T too small lowers the

accuracy of inferring the drift velocity, while taking the interval too large lowers

the accuracy of inferring the diffusion coefficient. This is due to the quadratic

form of the MSD, giving rise to two different time scales for the diffusive and drift

processes.
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Figure 2.3: A plot of the theoretical MSD curve (2.9) (solid black line), the
ensemble time-averaged estimate ρn (2.22) (dashed blue line), along with ρ(t)±σn,
where σn is estimated empirically using 100 samples (solid red line) and ρ(t)±σn
where σn is given by (2.42) (dashed black line) for n = 1, . . . , N, D = 2µm2/s,
α = 1µm/s, η = 2µm, NS = 10 and N = 100, for an end time of T = 4 s (a) and
T = 100 s (b).

2.6 Variance of the regression coefficients

We look to use WLS regression to infer the model parameters from the MSD curve.

Since ρ(t) = a + bt + ct2, where a = 4η2, b = 4D and c = α2, the coefficients

can be inferred by quadratic regression [76]. Let σ2
n be the variance of ρn at the

time point tn = nT/N , 1 ≤ n ≤ N , and σ2
nm = E(ρnρm) − E(ρn)E(ρm) be the

covariance between ρn and ρm, where 1 ≤ n,m ≤ N . For a quadratic polynomial

of the form µ(t) = a+bt+ct2, the variance of the regression coefficients, calculated

by fitting the first p MSD points, can be estimated by [67]

σ2
a ≈

p∑
n=1

σ2
n

(
∂a

∂µn

)2

+ 2

p∑
n=1

n−1∑
m=1

σ2
nm

(
∂a

∂µn

)(
∂a

∂µm

)
, 3 ≤ p ≤ N, (2.43)

σ2
b ≈

p∑
n=1

σ2
n

(
∂b

∂µn

)2

+ 2

p∑
n=1

n−1∑
m=1

σ2
nm

(
∂b

∂µn

)(
∂b

∂µm

)
, 3 ≤ p ≤ N, (2.44)

σ2
c ≈

p∑
n=1

σ2
n

(
∂c

∂µn

)2

+ 2

p∑
n=1

n−1∑
m=1

σ2
nm

(
∂c

∂µn

)(
∂c

∂µm

)
, 3 ≤ p ≤ N, (2.45)
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where

∂a

∂µn
=
S2S4 − S2

3 − S1S4tn + S1S3t
2
n + S2S3tn − S2

2t
2
n

σ2
n∆

, (2.46)

∂b

∂µn
=
S0S4tn − S0S3t

2
n − S1S4 + S2S3 + S1S2t

2
n − S2

2tn
σ2
n∆

, (2.47)

∂c

∂µn
=
S0S2t

2
n − S0S3tn − S2

1t
2
n + S1S2tn + S1S3 − S2

2

σ2
n∆

, (2.48)

and

Sk =

p∑
n=1

(tn)k

σ2
n

, k = 0, . . . , 4, 3 ≤ p ≤ N, ∆ =

∣∣∣∣∣∣∣∣∣∣
S0 S1 S2

S1 S2 S3

S2 S3 S4

∣∣∣∣∣∣∣∣∣∣
. (2.49)

Note that the lower limit for p reflects the minimum number of points needed to

fit a quadratic polynomial, while the upper limit corresponds to fitting using all

the MSD points.

2.7 The covariance of the MSD

The only quantity which is not known in (2.43)–(2.49) is the covariance of the

MSD σ2
nm. As with the calculation of the variance of the MSD, we consider

the covariance of the MSD for a single particle, denoted by σ
2(S)
nm . Then, the

covariance of the MSD for an ensemble of particles will be

σ2
nm =

σ
2(S)
nm

NS

. (2.50)

From the definition of the covariance, we have that

σ2(S)
nm = E(ρ (1)

n ρ (1)
m )− E(ρ (1)

n )E(ρ (1)
m ). (2.51)
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The process of calculating the covariance of the MSD is similar to that of deriving

the formula for the variance of the MSD. First, we assume that m > n, then

letting K = N + 1− n and P = N + 1−m we have that

σ2(S)
nm =

1

KP

K∑
i=1

P∑
j=1

Cov(i, j), (2.52)

where

Cov(i, j) = E(|xi+n−xi|2|xj+m−xj|2)−E(|xi+n−xi|2)E(|xj+m−xj|2). (2.53)

As before, we have to consider the different ways the trajectories can overlap.

These correspond to the five cases shown in Figure 2.4. The covariance for each

case can be written as

(a) Cov(i, j) = E(R2
1R

2
3)− E(R2

1)E(R2
3), i < i+ n < j < j +m.

(b) Cov(i, j) = E((R1 +R2)2(R2 +R3)2)

− E((R1 +R2)2)E((R2 +R3)2), i < j ≤ i+ n < j +m.

(c) Cov(i, j) = E(|R2
2|(R1 +R2 +R3)2)

− E(|R2
2|)E((R1 +R2 +R3)2), j ≤ i < i+ n < j +m.

(d) Cov(i, j) = E((R1 +R2)2(R2 +R3)2)

− E((R1 +R2)2)E((R2 +R3)2), j < i < j +m ≤ i+ n.

(e) Cov(i, j) = E(R2
1R

2
3)− E(R2

1)E(R2
3), j < j +m ≤ i < i+ n. (2.54)

These expectations can be calculated using the results of (2.37). From this we

obtain
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Figure 2.4: Diagram showing the five different combinations for overlapping
displacements used to calculate the covariance of the MSD. The five cases are (a)
i < i+ n < j < j +m, (b) i < j ≤ i+ n < j +m, (c) j ≤ i < i+ n < j +m, (d)
j < i < j +m ≤ i+ n, and (e) j < i < j +m ≤ i+ n.

(a) Cov(l1) = 0.

(b) Cov(l2) = 16D2((n− l2)∆t)2 + 8Dα2mn(n− l2)(∆t)3

+ (4η4 − 4α2η2mn(∆t)2)δj, i+n, where l2 = j − i.

(c) Cov(l3) = 16D2(n∆t)2 + 8Dα2n2m(∆t)3

+ (16Dη2n∆t+ 4η4 + 4α2η2mn(∆t)2)δi,j.

(d) Cov(l4) = 16D2(l4∆t)2 + 8Dα2mnl4(∆t)3

+ (16Dη2n∆t+ 4η4

+ 4α2η2mn(∆t)2)δi+n, j+m, where l4 = j +m− i.

(e) Cov(l5) = (4η4 − 4α2η2mn(∆t)2)δi, j+m. (2.55)
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We need to sum these different covariance values to obtain the overall covariance

of the MSD in the two cases m + n ≤ N and m + n > N . As before, this is

done by summing the non-zero terms along diagonals in the covariance matrix.

Also, note the Kronecker delta terms must be considered separately. The sums

are done as follows:

m+ n ≤ N

(a) 0.

(b)

(
n−1∑
l2=1

(P − l2)Cov(l2)

)
+ (P − n)(4η4 − 4α2η2mn(∆t)2).

(c)

(
m−n+1∑
l3=1

PCov(l3)

)
+ P (16Dη2n∆t+ 4η4 + 4α2η2mn(∆t)2).

(d)

(
n−1∑
l4=1

(P − (n− 1))Cov(l4)

)
+ P (16Dη2n∆t+ 4η4 + 4α2η2mn(∆t)2).

(e) (P − n)(4η4 − 4α2η2mn(∆t)2). (2.56)

m+ n > N

(a) 0.

(b)

(
P−1∑
l2=1

(P − l2)Cov(l2)

)
+ (P − n)(4η4 − 4α2η2mn(∆t)2).

(c)

(
m−n+1∑
l3=1

PCov(l3)

)
+ P (16Dη2n∆t+ 4η4 + 4α2η2mn(∆t)2).

(d)

(
n−1∑

l4=n+1−P

(P − (n− l4))Cov(l4)

)
+ P (16Dη2n∆t+ 4η4 + 4α2η2mn(∆t)2).

(e) 0. (2.57)
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We used the software Maple to evaluate these sums. Finally, we obtain

σ2
nm =



[
16nD2(∆t)2

6KP

(
− n3 − 2Pn2 + n(1− 6m2

+6(N + 1)m) + 2P
)

+ 8α2(∆t)3mn2D
3KP

(
− n2

−3m2 + 3m(N + 1) + 1
)

+ 8η2

KP

(
4nPD∆t m+ n ≤ N,

−nη2 + 2Pη2 + α2mn2(∆t)2
)]
/NS,

[
8D2(∆t)2

3K

(
−m3 + (3 + 3N − 4n)m2 + (8(N

+1)n− 2− 3N2 − 6N)m− 6n3 + 6(N + 1)n2

−(4N2 + 8N)n+N(N + 2)(N + 1)
)

m+ n > N.

+8α2D(∆t)3mn
3K

(
m2 − 2(N + 1)m+ 3n2

−3(N + 1)nN2 + 2N
)

+ 8η2

K

(
α2(∆t)2mn

+4Dn∆t+ η2
)]
/NS,

(2.58)

To our knowledge, this result has never been derived before. Figure 2.5 shows a

comparison between the theoretical covariance of the MSD (2.58) and an empirical

estimate of the covariance of the MSD averaged over 1000 and 10,000 samples,

along with a cross section of both quantities, for the parameters values D =

2µm2/s, α = 1µm/s, η = 2µm, NS = 10, N = 100 and T = 100 s. Note that

we only provide one plot of the full covariance as the plots over the two different

sample sizes are very similar. We see good agreement between the theoretical

covariance of the MSD (2.58) and its empirical estimate.

In this chapter, we are interested in the optimal estimation of the diffusion

coefficient D and the drift magnitude α. Since these are related to the regression

coefficients b and c, we look to minimise σb/b+ σc/c, the relative errors in b and

c. This can be done in two ways depending on the experimental protocol.
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Figure 2.5: A plot comparing the theoretical covariance of the MSD (2.58) (a)
and its empirical estimate averaged over 1000 samples (b), along with a plot of a
cross section along m = 40 of the theoretical covariance of the MSD (solid black
line) with its empirical estimate (dashed red line) averaged over 1000 samples
(c) and 10,000 samples (d) for D = 2µm2/s, α = 1µm/s, η = 2µm, NS = 10,
N = 100 and T = 100 s. Note that the jump in plots (c) and (d) are a consequence
of only calculating the upper triangular part of the covariance matrix.

2.8 Results using the optimal number of fitting

points

2.8.1 Existence of an optimal number of fitting points

If experiments cannot be repeated then the optimal estimates of the model pa-

rameters may be obtained by fitting a subset of the MSD points. For this, we

assume that the MSD is calculated using all N time points as in (2.21) and (2.22),

then fit using a subset of these points.
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Figure 2.6: A plot of the theoretical value of σb/b + σc/c (solid lines) and its
empirically estimated value using 1000 samples (dashed lines) when fit with the
first p MSD points for η = 0.5µm (blue lines), 2µm (red lines) and 8µm (black
lines). These experiments were for D = 2µm2/s, α = 1µm/s, NS = 10 and
N = 100, for ∆t = 1 s giving T = 100 s (a) and ∆t = 10 s giving T = 1000 s (b).
For η = 0.5µm, 2µm and 8µm, the optimal number of fitting points are 100 for
each curve in (a) and 7, 8 and 100, respectively, for the curves in (b).

To investigate optimising the number of fitting points, we look at the theoret-

ical value of the uncertainty σb/b+σc/c using (2.43)–(2.49) when fitting with the

first p MSD points and compare this with an empirical estimate calculated from

simulations. For the estimated uncertainty, we calculate the MSD data points

then use WLS regression to obtain estimates for b and c by fitting with the first p

points, where 3 ≤ p ≤ N . This was repeated 1000 times to empirically estimate

the values of σb and σc. Figure 2.6 shows the theoretical and simulated value of

σb/b + σc/c as a function of the number of fitting points p for two different ∆t

values for η = 0.5µm, 2µm and 8µm. These experiments were for D = 2µm2/s,

α = 1µm/s, η = 2µm, NS = 10 and N = 100, with ∆t = 1 s giving T = 100 s for

Figure 2.6(a), while ∆t = 10 s giving T = 1000 s for Figure 2.6(b). We denote the

optimal number of fitting points which minimises σb/b+σc/c by popt. Although it

is difficult to see, when ∆t is small, corresponding to Figure 2.6(a), the optimal

estimation of the parameters is obtained by fitting with all of the MSD points,

for all the values of η tested. On the other hand, if ∆t is taken to be larger,
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Figure 2.7: A plot of the theoretical value of σb/b + σc/c (solid lines) and its
empirically estimated value using 1000 samples (dashed lines) when fit with the
first p MSD points for η = 0.5µm (blue lines), 2µm (red lines) and 8µm (black
lines). These experiments were for D = 2µm2/s, α = 1µm/s, NS = 100 and
N = 10, for ∆t = 1 s giving T = 10 s (a) and ∆t = 10 s giving T = 100 s (b). For
η = 0.5µm, 2µm and 8µm, the optimal number of fitting points are 10 for each
curve in (a) and 9 for each curve in (b).

corresponding to Figure 2.6(b), then there may be an optimal number of fitting

points which is less than N . In this case, for η = 0.5µm, 2µm and 8µm, we have

that the optimal number of fitting points are popt = 7, 8 and 100, respectively.

To test the robustness of our calculations, we also tested with NS = 100 and

N = 10. Figure 2.7 shows the theoretical and simulated uncertainty σb/b + σc/c

as a function of the number of fitting points for the two different ∆t values for

η = 0.5µm, 2µm and 8µm. These experiments were for D = 2µm2/s, α =

1µm/s, with ∆t = 1 s giving T = 10 s for Figure 2.7(a), while ∆t = 10 s giving

T = 100 s for Figure 2.7(b). Here we see a similar result to that in Figure 2.6.

We find that, for a small value of ∆t, corresponding to Figure 2.7(a), the optimal

estimate of the parameters comes from fitting with all the MSD points. As ∆t

is increased, corresponding to Figure 2.7(b), we see that the optimal inference

comes from fitting with a subset of points; in this case, all values of η tested had

popt = 9.
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Figure 2.8: A plot of the theoretical value of σa/a + σb/b + σc/c (solid lines)
and its empirically estimated value using 1000 samples (dashed lines) when fit
with the first p MSD points for η = 0.5µm (blue lines), 2µm (red lines) and 8µm
(black lines). These experiments were for D = 2µm2/s, α = 1µm/s, NS = 10
and N = 100, for ∆t = 1 s giving T = 100 s (a) and ∆t = 10 s giving T = 1000 s
(b). For η = 0.5µm, 2µm and 8µm, the optimal number of fitting points are 11,
100 and 100, respectively, for the curves in (a) and 6, 8 and 100, respectively, for
the curves in (b).

We also looked for the existence of an optimal number of fitting points when

the static error η is included in the inference. Analogous to the two parameter

case, we look to minimise the uncertainty σa/a+σb/b+σc/c since the static error

term is related to the regression coefficient a. Figure 2.8 shows the theoretical

and simulated value of σa/a + σb/b + σc/c as a function of the number of fitting

points for the two different ∆t values for η = 0.5µm, 2µm and 8µm. These

experiments were for D = 2µm2/s, α = 1µm/s, NS = 10 and N = 100, with

∆t = 1 s giving T = 100 s for Figure 2.8(a), while ∆t = 10 s giving T = 1000 s for

Figure 2.8(b). Here we see that, with the inclusion of the static error term, the

value of the uncertainty σa/a+ σb/b+ σc/c does not follow an obvious trend like

the value of σb/b+ σc/c from Figures 2.6 and 2.7.

A MATLAB routine to calculate the optimal number of regression points popt

is presented in Appendix A
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2.8.2 Iterative algorithm to calculate optimal number of

fitting points

The difficulty with using popt(D,α, η,∆t, N) to infer the model parameters is we

require the values of D, α and η themselves in order to calculate it. We therefore

consider the following iterative technique for determining popt. The iterative algo-

rithm initially estimates D, α and η by fitting all N MSD points. The weighting

used in the fitting is initially taken to be uniform, then, for all future iterations, we

estimate the variance of the MSD by substituting the current parameter estimates

into (2.42). The algorithm then adapts the number of fitting points according

to Algorithm 1. The tolerance τ determines the stopping criterion depending on

the relative differences between two successive pi values.

We tested the iterative algorithm for the parameter values D = 2µm2/s,

α = 1µm/s and η = 2µm for three different time steps, ∆t = 1 s, ∆t = 10 s

and ∆t = 100 s. Each simulation run uses N = 1000 time points and NS = 10

trajectories to create the MSD data and a quadratic fit. Since simulations are

likely to end after a different number of iterations, Steps 9 – 11 of Algorithm

1 will be ignored and instead all simulations are stopped after 10 iterations.

These simulations were then repeated 100 times. By denoting the mean value

of a quantity by the angular brackets 〈·〉, we indicate the performance of the

algorithm by plotting 〈pi〉, 〈|Di/D− 1|〉 and 〈|αi/α− 1|〉 in Figure 2.9. The first

thing to notice is that the algorithm converges to popt in a couple of iterations

for the cases considered, with most being after just one iteration. We do not see

much improvement in 〈|αi/α − 1|〉 when fit with the optimal number of fitting

points, compared with all the MSD points, for any value of ∆t. However, we

do see a decrease in its value as we increase ∆t. This is due to the value of the

measurement time interval T increasing as we increase ∆t. This increase in T

moves us into the drift time scale where the inference of α is better. The value of
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〈|Di/D − 1|〉 decreases after one iteration in all cases, with a larger decrease for

larger values of ∆t. The final value of 〈|Di/D−1|〉 are similar for the three values

of ∆t. This example shows that the choice of ∆t is important for the optimal

inference of both parameters, particularly the diffusion coefficient D. Fitting with

the optimal number of fitting points leads to a reduction in the uncertainty in D,

particularly for large value of ∆t where the reduction is more prominent.

Algorithm 1 Iterative algorithm to find popt and estimates of D, α and η

Input: MSD data found at N fixed time points with time step ∆t = T/N ,

and convergence parameter τ .

Output: Estimates of optimal number of fitting points popt and parameters

D, α and η.

1: Set the number of fitting points p0 = N and set i = 0.

2: if i = 0 then

3: σ
2 (i)
n = 1, 1 ≤ n ≤ pi,

4: else

5: σ
2 (i)
n = σ2

n(Di−1, αi−1, ηi−1,∆t) using (2.42), 1 ≤ n ≤ pi.

6: end if

7: Use WLS regression with weights 1/σ
2 (i)
n on the first pi points of the MSD to

get the parameter estimates Di, αi and ηi.

8: Update pi+1 = popt(Di, αi, ηi,∆t, N).

9: if |pi+1 − pi|/pi+1 < τ then

10: end algorithm,

11: else

12: Set i = i+ 1 and go back to Step 2.

13: end if
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Figure 2.9: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. These experiments were for D = 2µm2/s,
α = 1µm/s, η = 2µm, NS = 10 and N = 1000, for ∆t = 1 s [(a) and (b)],
∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)]. The dashed line in the
plots of 〈pi〉 correspond to popt = 50 (a), popt = 16 (c), and popt = 7 (e), while
the dashed line in the plots of the relative errors correspond with the value 10−2,
indicating a 1% error.
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We test further examples of the iterative algorithm for more parameter values.

First we test for D = 2µm2/s, α = 7µm/s, η = 2µm, NS = 10 and N = 1000,

for ∆t = 1 s, ∆t = 10 s and ∆t = 100 s. The results are shown in Figure 2.10.

These are similar to the case shown in Figure 2.9. We see that the value of 〈pi〉

converges to popt in no more than two iterations for all the cases shown. The value

of 〈|αi/α−1|〉 does not decrease between iterations but decreases as ∆t increases.

The value of 〈|Di/D−1|〉 decreases when we fit with popt points rather than using

all the points, with a larger decrease in the uncertainty for larger values of ∆t,

and the final value of 〈|Di/D − 1|〉 is similar for all values of ∆t.

The algorithm was also tested for D = 6µm2/s and α = 1µm/s. The results

are shown in Figure 2.11. Again, we find very similar results. The value of

〈pi〉 converges quickly to popt, in this case, after one iteration each time. The

value of 〈|αi/α − 1|〉 remains similar between iterations but again decreases as

∆t increases. The value of 〈|Di/D− 1|〉 decreases after one iteration in each case

with the final value of 〈|Di/D − 1|〉 being similar.

2.8.3 Single particle parameter estimation using the op-

timal number of fitting points

While the analysis and results presented so far assume the availability of data for

an ensemble of particles, in some situations only single particle data are available.

We now consider how the results we have perform in the single particle case. An

important point to note is that the optimal number of fitting points for both the

single particle case and ensemble of particles case are identical. This is because

when calculating the variance and covariance of the MSD in the ensemble particle

case, we simply take the single particle variance and covariance and divide by NS,

as stated in Sections 2.5 and 2.7. Hence, when calculating the variance of the

regression coefficients in (2.43)–(2.45) for the ensemble case, we can take out
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Figure 2.10: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. These experiments were for D = 2µm2/s,
α = 7µm/s, η = 2µm, NS = 10 and N = 1000, for ∆t = 1 s [(a) and (b)],
∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)]. The dashed line in the plots
of 〈pi〉 correspond to popt = 22 (a), popt = 5 (c), and popt = 4 (e), while the dashed
line in the plots of the relative errors correspond with the value 10−2, indicating
a 1% error.
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Figure 2.11: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. These experiments were for D = 6µm2/s,
α = 1µm/s, η = 2µm, NS = 10 and N = 1000, for ∆t = 1 s [(a) and (b)],
∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)]. The dashed line in the
plots of 〈pi〉 correspond to popt = 88 (a), popt = 20 (c), and popt = 10 (e), while
the dashed line in the plots of the relative errors correspond with the value 10−2,
indicating a 1% error.
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a factor of 1/NS from σ2
n and σ2

nm. Therefore, the value of σb/b + σc/c in the

ensemble case will be a factor of
√
NS smaller than the single particle case but

the shape of the curve will be the same in both cases.

When using Algorithm 1 with an ensemble of particles, Steps 2 – 6 could

be ignored and the variance of the MSD can be estimated empirically from the

data. This obviously cannot be done for the single particle case. This stresses

the importance of having the theoretical expression for the variance of the MSD

(2.42) as WLS regression can be still be done using single particle data.

Figure 2.12 shows the results of the iterative algorithm for the same parameter

values as in Figure 2.9 but for NS = 1. Since we only have a single particle,

we expect the relative errors to be higher. Therefore, in each right plot, the

dashed line will now correspond to a 10% error. Notice that the value of 〈pi〉

takes a couple more iterations to converge but still does so in a small number of

iterations. We often see the relative errors converge before 〈pi〉, which is a result

of the shallow minimum around popt in Figure 2.6(b). We also observe similar

behaviour for repeatable experiments tested later in the chapter; for example,

later in Figures 2.15 and 2.23. We see the same trend for 〈|αi/α− 1|〉 as before,

namely that fitting with the optimal number of fitting points does not improve

its value much, but using a large value of ∆t does. However, we see that the

value of 〈|Di/D − 1|〉 is significantly improved; for example, looking at the case

where ∆t = 100 s, we start with around a 10,000% error and end below a 10%

error. This is a considerable improvement compared with the ensemble case seen

in Figure 2.9.

We also tested further examples of single particle experiments for different

parameter values. First we look at D = 2µm2/s, α = 7µm/s, η = 2µm, NS = 1

and N = 1000, for ∆t = 1 s, ∆t = 10 s and ∆t = 100 s. The results are shown

in Figure 2.13. We see similar dynamics to the results in Figure 2.12. In all

three cases, the value of 〈pi〉 converges close to popt, the value of 〈|αi/α − 1|〉
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Figure 2.12: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. These experiments were for D = 2µm2/s,
α = 1µm/s, η = 2µm, NS = 1 and N = 1000, for ∆t = 1 s [(a) and (b)],
∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)]. The dashed line in the
plots of 〈pi〉 correspond to popt = 50 (a), popt = 16 (c), and popt = 7 (e), while
the dashed line in the plots of the relative errors correspond with the value 10−1,
indicating a 10% error.
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only decreases significantly when ∆t is increased and the value of 〈|Di/D − 1|〉

is significantly improved when fit with popt points rather than all the points.

Notice, however, for corresponding ∆t values, that the final value of 〈|αi/α− 1|〉

are always smaller, while the final value of 〈|Di/D − 1|〉 are always larger, than

those given in Figure 2.12. This is expected as the larger value of α will cause

the MSD to increase quicker for larger times, and so a smaller value of ∆t would

be required for better inference of D.

The case where D = 6µm2/s, α = 1µm/s, η = 2µm, NS = 1 and N = 1000,

for ∆t = 1 s, ∆t = 10 s and ∆t = 100 s was also tested and is shown in Figure

2.14. Again, the results show the same dynamics as those in Figure 2.12. This

time, however, we see that the final value of 〈|αi/α − 1|〉 are always larger for

corresponding values of ∆t. Again, this is is expected as the larger value of D

will in turn require a larger value of ∆t to optimise the inference of α.

2.9 Results using the optimal measurement in-

terval

2.9.1 Existence of an optimal measurement time interval

If experiments are able to be repeated then the optimisation can be done with

respect to the measurement time interval T , rather than the number of MSD

fitting points. This has the advantage that the optimal measurement time interval

could help inform future experiments. For this method we assume that the MSD

is calculated from all N time points and that all ρn data points are used in the

fitting process. Note that since all the MSD points are used in the fitting, a new

value of T will correspond with a new value of ∆t. As before, we concentrate on

the optimal inference of the diffusion coefficient D and drift magnitude α.
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Figure 2.13: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. These experiments were for D = 2µm2/s,
α = 7µm/s, η = 2µm, NS = 1 and N = 1000, for ∆t = 1 s [(a) and (b)],
∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)]. The dashed line in the plots
of 〈pi〉 correspond to popt = 22 (a), popt = 5 (c), and popt = 4 (e), while the dashed
line in the plots of the relative errors correspond with the value 10−1, indicating
a 10% error.
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Figure 2.14: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. These experiments were for D = 6µm2/s,
α = 1µm/s, η = 2µm, NS = 1 and N = 1000, for ∆t = 1 s [(a) and (b)],
∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)]. The dashed line in the
plots of 〈pi〉 correspond to popt = 88 (a), popt = 20 (c), and popt = 10 (e), while
the dashed line in the plots of the relative errors correspond with the value 10−1,
indicating a 10% error.
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Figure 2.15: A plot of the theoretical value of σb/b + σc/c (solid line) and its
empirically estimated value using 1000 samples (dashed line) against T for η =
0.5µm (blue lines), 2µm (red lines) and 8µm (black lines). These experiments
were for D = 2µm2/s, α = 1µm/s, NS = 10 and N = 100. For η = 0.5µm,
2µm and 8µm, the optimal measurement time intervals are Topt ≈ 735 s, 780 s
and 1216 s, respectively.

Here, the theoretical uncertainty σb/b+σc/c is calculated over many different

values of T using (2.43)–(2.49) with p = N so that all the MSD points are used in

the fitting, and is compared with simulations. The simulated results were found

by calculating the MSD and using WLS regression to obtain estimates of b and c.

This was repeated 1000 times to obtain estimates of σb and σc. Figure 2.15 shows

the comparison between the theoretical and simulated value of σb/b + σc/c over

many different values of T for η = 0.5µm, 2µm and 8µm. These experiments

were for D = 2µm2/s, α = 1µm/s, NS = 10 and N = 100. We denote the

value of T which minimises the uncertainty σb/b + σc/c by Topt. We see good

agreement between the theory and simulations, particularly that both have their

minimum’s at the same measurement time intervals. For η = 0.5µm, 2µm and

8µm, these optimal measurement time intervals are Topt ≈ 735 s, 780 s and 1216 s,

respectively.
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Figure 2.16: A plot of the theoretical value of σb/b + σc/c (solid line) and its
empirically estimated value using 1000 samples (dashed line) against T for η =
0.5µm (blue lines), 2µm (red lines) and 8µm (black lines). These experiments
were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 10. For η = 0.5µm,
2µm and 8µm, the optimal measurement time intervals are Topt ≈ 189 s, 212 s
and 445 s, respectively.

As before, to test the robustness of our calculations, we now test for the ex-

istence of an optimal measurement time interval with NS = 100 and N = 10.

Figure 2.16 shows the value of σb/b + σc/c, again with a comparison between

theoretical expressions and simulations. We also notice that the optimal mea-

surement time intervals have decreased to Topt ≈ 189 s, 212 s and 445 s. We have

observed in general that as the value of N is increased, the optimal measurement

time interval Topt also increases.

Again, we also look for the existence of an optimal measurement time interval

which minimises the uncertainty σa/a+ σb/b+ σc/c in order to additionally infer

the static error η. The results are shown in Figure 2.17. Even when we include

the value of η in the inference, we still find a distinct minimum in the value of

σa/a + σb/b + σc/c. For η = 0.5µm, 2µm and 8µm, we have corresponding

optimal measurement time intervals Topt ≈ 32 s, 178 s and 708 s, respectively.

A MATLAB routine to calculate the optimal measurement time interval Topt

is presented in Appendix B.
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Figure 2.17: A plot of the theoretical value of σa/a+σb/b+σc/c (solid line) and
its empirically estimated value using 1000 samples (dashed line) against T for η =
0.5µm (blue lines), 2µm (red lines) and 8µm (black lines). These experiments
were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 10. For η = 0.5µm,
2µm and 8µm, the optimal measurement time intervals are Topt ≈ 32 s, 178 s and
708 s, respectively.

2.9.2 Iterative algorithm to calculate the optimal mea-

surement time interval

As before, since the function to calculate Topt depends on the model parameters,

another iterative algorithm was created. Note that in this case, each new iteration

corresponds with repeating the experiment with a new measurement time interval

T . To begin the iteration we need to provide an initial guess for Topt, which we

denote by T0, with corresponding time interval between frames ∆t0 = T0/N . The

algorithm then adapts the measurement time interval according to Algorithm

2. The role of the under-relaxation parameter ωi is to improve the robustness

of the algorithm by reducing oscillations; this is effectively a low-pass filter for

the time series of adjustments. For example, if the initial guess T0 is far from

the optimal value Topt, then the values Ti will quickly be adapted towards the

optimal time. Close to the optimal time the algorithm can display oscillations in

the convergence behaviour i.e. (Ti+1 − Ti) × (Ti − Ti−1) < 0. When this occurs
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the relaxation parameter ωi is decreased to smooth out the difference between

iterates. Here, the tolerance τ determines the stopping criterion depending on the

relative differences between two successive Ti values. The rate at which the value

of ωi is decreased in Step 10 is determined by the adjustment parameter ψ where

0 < ψ ≤ 1. In the experiments that follow, the value of ψ = 0.8 has been used;

however, further experiments which use different values of ψ are tested below.

The iterative algorithm was tested for the two different initial measurement

time intervals; a very large initial guess T0 = 107 s and a very small initial guess

T0 = 10−3 s. Both experiments were for D = 2µm2/s, α = 1µm/s, η = 2µm,

NS = 10 and N = 100; for these parameters Topt ≈ 780 s. Similar to Algorithm

1, Steps 14 – 16 of Algorithm 2 will be ignored and instead all simulations are

stopped after 10 iterations. These simulations were then repeated 100 times. The

quantities 〈Ti〉, 〈|Di/D−1|〉 and 〈|αi/α−1|〉 are shown in Figure 2.18. Notice that

the initial guess T0 = 107 s significantly overestimates the true value of Topt but

that 〈Ti〉 rapidly converges close to Topt. While the value of 〈|αi/α− 1|〉 becomes

less accurate as we progress, the value of 〈|Di/D − 1|〉 quickly falls from around

a 1000% error to under a 10% error in a small number of iterations. When using

a much smaller initial time of T0 = 10−3 s, we see that 〈Ti〉 continues to rapidly

converge to Topt. Initially the value of 〈|Di/D−1|〉 is of the order of magnitude 102

while 〈|αi/α−1|〉 is of the order of magnitude 103, corresponding to a 10,000% and

100,000% error respectively. This highlights the fact that an incorrect choice of T

can lead to very large inaccuracies in the value of inferred parameters. However,

using the iterative algorithm we see that as the 〈Ti〉 values get closer to Topt, the

errors both reduce to under 10%. This stresses the importance of using Topt when

inferring D and α using all the MSD points in the fitting.
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Algorithm 2 Iterative algorithm to find Topt and estimates of D, α and η

Input: Initial estimate of measurement time interval T0 and measurement

interval between frames ∆t0, number of time points N , adaptation parameter

ψ and convergence parameter τ .

Output: Estimates of optimal time Topt and parameters D, α and η.

1: Guess an initial time T0 with corresponding ∆t0 and set the relaxation pa-

rameter ω0 = 1 and set i = 0.

2: if i = 0 then

3: σ
2 (i)
n = 1, 1 ≤ n ≤ N ,

4: else

5: σ
2 (i)
n = σ2

n(Di−1, αi−1, ηi−1,∆ti) using (2.42), 1 ≤ n ≤ N .

6: end if

7: Calculate the MSD at the N time points with interval ∆ti up to Ti and use

WLS on all the points with weights 1/σ
2 (i)
n to get the parameter estimates

Di, αi and ηi.

8: Update Ti+1 = (1−ωi)Ti+ωiTopt(Di, αi, ηi, N) and calculate ∆ti+1 = Ti+1/N .

9: if i ≥ 2 and (Ti+1 − Ti)× (Ti − Ti−1) < 0 then

10: ωi+1 = ψ × ωi, 0 < ψ ≤ 1

11: else

12: ωi+1 = ωi

13: end if

14: if |Ti+1 − Ti|/Ti+1 < τ then

15: end algorithm

16: else

17: Set i = i+ 1 and go back to Step 2

18: end if
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Figure 2.18: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 2µm2/s, α = 1µm/s,
η = 2µm, NS = 10 and N = 100, with a starting time of T0 = 107 s [(a) and (b)]
and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond to
Topt ≈ 780 s, while the dashed line in the plots of the relative errors correspond
with the value 10−1, indicating a 10% error.

The iterative algorithm was tested for other values of the adaptation parame-

ter ψ, as well as more values of D and α, to test the robustness of the algorithm.

First, we look at testing the iterative algorithm but changing the adaptation

parameter (Algorithm 2, Step 10) to ψ = 0.5 and ψ = 0.2. Both of these ex-

periments were for D = 2µm2/s, α = 1µm/s and η = 2µm with the two initial

measurement time intervals, T0 = 107 s and T0 = 10−3 s. The results are shown in

Figures 2.19 and 2.20, respectively. The reduction of the adaptation parameter
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Figure 2.19: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 2µm2/s, α = 1µm/s,
η = 2µm, NS = 10, N = 100 and ψ = 0.5, with a starting time of T0 = 107 s
[(a) and (b)] and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉
correspond to Topt ≈ 780 s, while the dashed line in the plots of the relative errors
correspond with the value 10−1, indicating a 10% error.

does not appear to have affected the inference in either case. The value of 〈Ti〉 still

converges to a time close to Topt and the final relative error of both 〈|Di/D− 1|〉

and 〈|αi/α− 1|〉 are under 10% in both cases.

We now test adapting the values of D and α. The first experiment is for

D = 2µm2/s, α = 7µm/s and η = 2µm; for these parameters Topt ≈ 32 s.

The second experiment is for D = 6µm2/s, α = 1µm/s and η = 2µm; for

these parameters Topt ≈ 2195 s. The value of the adaptation parameter for both

experiments was set back to ψ = 0.8. The results are plotted in Figure 2.21 and

2.22, respectively. As before, the results are very similar to what has been seen
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Figure 2.20: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 2µm2/s, α = 1µm/s,
η = 2µm, NS = 10, N = 100 and ψ = 0.2, with a starting time of T0 = 107 s
[(a) and (b)] and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉
correspond to Topt ≈ 780 s, while the dashed line in the plots of the relative errors
correspond with the value 10−1, indicating a 10% error.

before. As both cases converge to Topt the relative errors are reduced, particularly

for a smaller value of the measurement time interval where the reduction is more

significant.
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Figure 2.21: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 2µm2/s, α = 7µm/s,
η = 2µm, NS = 10 and N = 100, with a starting time of T0 = 107 s [(a) and (b)]
and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond to
Topt ≈ 32 s, while the dashed line in the plots of the relative errors correspond
with the value 10−1, indicating a 10% error.

2.9.3 Single particle parameter estimation using the op-

timal measurement time interval

The results for Topt can also extend to the single particle case for the same reasons

as the popt method. As before, the optimal measurement time interval will be

the same for the ensemble of particles and the single particle case. Figure 2.23

compares the performances using the same initial measurement time intervals,

T0 = 107 s and T0 = 10−3 s, for the same parameter values as those in Figure 2.18

but with NS = 1. As expected, since we have less data in the single particle case,
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Figure 2.22: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 6µm2/s, α = 1µm/s,
η = 2µm, NS = 10 and N = 100, with a starting time of T0 = 107 s [(a) and (b)]
and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond to
Topt ≈ 2195 s, while the dashed line in the plots of the relative errors correspond
with the value 10−1, indicating a 10% error.

the relative errors are higher than in the ensemble of particles case. However, the

value of 〈Ti〉 continues to converge to Topt in a small number of iterations and we

observe that the results for 〈|Di/D−1|〉 and 〈|αi/α−1|〉 have similar dynamics to

the ensemble case. This shows the strength of the iterative algorithm as we obtain

good results even in the single particle case where we have less information.

The practical feasibility of this procedure to change the measurement time in-

terval depends on the chosen application domain. For instance, in environmental

statistics, where the task is, for example, to monitor the spread of pollutants and

contaminants in ground water, it is common practice to repeatedly estimate the
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Figure 2.23: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 2µm2/s, α = 1µm/s
and η = 2µm, NS = 1 and N = 100, with a starting time of T0 = 107 s [(a) and
(b)] and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond
to Topt ≈ 780 s, while the dashed line in the plots of the relative errors correspond
with the value 10−1, indicating a 10% error.

same physical quantities. This setting therefore naturally lends itself to the inte-

gration of the proposed iterative adjustment scheme. For other applications, like

the study of collective cell movement with high-resolution microscopy, a change of

the experimental protocol may be required, to allow (and budget) for a series of

experiments that enable iterative adjustments of the measurement time intervals.
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Figure 2.24: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 2µm2/s, α = 7µm/s
and η = 2µm, NS = 1 and N = 100, with a starting time of T0 = 107 s [(a) and
(b)] and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond
to Topt ≈ 32 s, while the dashed line in the plots of the relative errors correspond
with the value 10−1, indicating a 10% error.

We look at using the iterative algorithm for the single particle case for different

values of D and α. First we test for D = 2µm2/s, α = 7µm/s, η = 2µm, NS = 1

and N = 100, again for both T0 = 107 s and T0 = 10−3 s. For these parameter

values, we have that Topt ≈ 32 s. The results are given in Figure 2.24. The

algorithm takes a few more iterations to converge compared with the case in

Figure 2.23 but this is likely due to the value of Topt being further from the initial

guess T0. However, we continue see convergence and similar dynamics in the

values of 〈|Di/D − 1|〉 and 〈|αi/α− 1|〉.
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Figure 2.25: A plot of the value of 〈Ti〉 for each iteration with standard error
bars [(a) and (c)], along with a plot of the value of 〈|Di/D − 1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b) and (d)]. These experiments were for D = 6µm2/s, α = 1µm/s
and η = 2µm, NS = 1 and N = 100, with a starting time of T0 = 107 s [(a) and
(b)] and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond
to Topt ≈ 2195 s, while the dashed line in the plots of the relative errors correspond
with the value 10−1, indicating a 10% error.

The final parameter values tested are D = 6µm2/s, α = 1µm/s, η = 2µm,

NS = 1 and N = 100, again for both T0 = 107 s and T0 = 10−3 s. For these

parameter values, we have that Topt ≈ 2195 s. The results are given in Figure

2.25. The algorithm continues to converge in a small number of iterations and

reduce the errors significantly in both cases.
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2.9.4 Motion blur

It is of interest what effect motion blur has on the MSD. To answer this question

we follow the approach of Goulian and Simon [77], who considered the effect of

full-frame motion blur on the MSD of a purely diffusive motion. We assume that

the particle position in the nth image, x(t) with t = n∆t, is taken to be the

combination of the average of the true position of the particle x̃(t) over the time

frame and the addition of static Gaussian measurement error. If the time interval

∆t is divided by M smaller microsteps of size δt = ∆t/M , then we assume that

the measured position

x(t) =
1

M + 1

M∑
m=0

x̃(t−mδt) + ηt ≡ x̄(t) + ηt. (2.59)

We then have for t′ ≥ t+Mδt,

E((x(t)− x(t′))2) = E((x̄(t) + ηt − x̄(t′)− ηt′)2)

= E((x̄(t)− x̄(t′))2) + 2E((ηt − ηt′)(x̄(t)− x̄(t′)))

+ E((ηt − ηt′)2)

= E((x̄(t)− x̄(t′))2) + 4η2. (2.60)

Furthermore, we have
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E((x̄(t)− x̄(t′))2)

=
1

(M + 1)2

M∑
m1,m2=0

E([x̃(t−m1δt)− x̃(t′ −m1δt)][x̃(t−m2δt)− x̃(t′ −m2δt)]

=
1

2(M + 1)2

M∑
m1,m2=0

2E([x̃(t−m1δt)− x̃(t′ −m2δt)])

− E(x̃(t−m1δt)− x̃(t−m2δt))− E(x̃(t′ −m1δt)− x̃(t′ −m2δt))

=
1

(M + 1)2

M∑
m1,m2=0

[
α2(t′ − t− (m2 −m1)δt)2 + 4D(t′ − t− (m2 −m1)δt)

−(α|m2 −m1|δt)2 + 4D|m2 −m1|δt)
]

= α2(t′ − t)2 + 4D

(
t′ − t− (M + 1)2 − 1

3(M + 1)
δt

)
. (2.61)

For the MSD we take t′ − t = n∆t, and using (2.60) and (2.61) and letting

M →∞, we finally get

MSD(n∆t) = α2(n∆t)2 + 4Dn∆t+ 4

(
η2 − D∆t

3

)
. (2.62)

To our knowledge, this result has never been derived before. It is clear that motion

blur only effects the offset of the MSD curve for zero time lags. In particular, if

the MSD is fitted by a quadratic polynomial then the quadratic term can be used

to estimate the drift velocity and the linear term used to estimate the diffusion

coefficient.

The effect of motion blur and static error was simulated by first generating

true particle trajectories using microsteps of size

δt =
∆t

M
, (2.63)
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where ∆t is the time between frames and M is the number of microsteps between

frames. For the jth particle the displacement was updated as follows:

x̃
(j)
i+1 = x̃

(j)
i +αδt+

√
2DδtN(0, 1), i = 1, . . . , NM, (2.64)

with x̃1 = 0. The measured displacement at t = (n − 1)∆t was obtained by

averaging the true position of the particle over the previous M microsteps to

simulate full-frame motion blur, and a Gaussian static error was then added so

that

x(j)
n =

1

M + 1

(n−1)M+1∑
i=(n−2)M+1

x̃
(j)
i + ηn, n = 2, . . . , N + 1, (2.65)

and x
(j)
1 = η1.

The following results are for calculating the optimal number of fitting points.

First, we look for the existence of an optimal number of fitting points which

minimises the value of σb/b+ σc/c. Figure 2.26 shows a comparison between the

theoretical value of σb/b+ σc/c assuming no motion blur and its simulated value

which includes motion blur. We see that for small ∆t, corresponding to using all

the MSD points in the fitting, motion blur does not seem to have an effect on the

results. However, when ∆t is increased, motion blur appears to effect the value

of σb/b + σc/c. While the theoretical optimal number of fitting points is 8, the

simulated optimal number of fitting points is 5.

Since it can be seen that motion blur has an effect on the value of popt, we look

to see whether using our theoretical value for popt on data which includes motion

blur leads to a change in results. To test this, we will use the iterative algorithm to

see the effect of motion blur on the inference of D and α. For this, the simulated

data will include motion blur but will be driven towards the theoretical popt which

does not include motion blur (see Appendix A). In the absence of motion blur,

the regression coefficient c = 4η2. However, when motion blur is present, the
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Figure 2.26: A plot of the theoretical value of σb/b+ σc/c assuming no motion
blur (solid red line) and an empirically estimated value using 1000 samples which
include motion blur (dashed black line) when fit with the first p MSD points for
D = 2µm2/s, α = 1µm/s, η = 2µm, NS = 10 and N = 100, for ∆t = 1 s giving
T = 100 s (a), and ∆t = 10 s giving T = 1000 s (b). The optimal number of
fitting points for the curves in (a) are both 100, while for the curves in (b) it is
8 for the theoretical curve and 5 for the empirically estimated curve.

regression coefficient becomes c = 4η2 − 4
3
D∆t and so the value of η will be

inferred with this in mind. The results are shown in Figure 2.27. For this we

have D = 2µm2/s, α = 1µm/s, η = 2µm, NS = 10 and N = 1000 for ∆t = 1 s,

∆t = 10 s and ∆t = 100 s. Note that these plots are comparable with Figure

2.9. Even though we are driving pi to the theoretical optimal number of fitting

points which does not include motion blur, we do not see a significant difference

in the inference of D and α when motion blur is included. This suggests that

our theory for the optimal number of fitting points can still be used when motion

blur is present.

To further test the effects of motion blur, we also tested the iterative algorithm

for a single particle. The parameters values were chosen to be the same as those

above but for NS = 1. The results are shown in Figure 2.28. Note that these plots

are comparable with Figure 2.12. Again, we do not see a significant difference

with the inclusion of motion blur, further suggesting that our theoretical popt can

be used when motion blur is present.
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Figure 2.27: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D − 1|〉 (red line
with crosses) and 〈|αi/α − 1|〉 (blue line with circles) for each iteration with
standard error bars [(b), (d) and (f)]. The simulated values include motion blur.
These experiments were for D = 2µm2/s, α = 1µm/s, η = 2µm, NS = 10 and
N = 1000, for ∆t = 1 s [(a) and (b)], ∆t = 10 s [(c) and (d)] and ∆t = 100 s
[(e) and (f)]. The dashed line in the plots of 〈pi〉 correspond to popt = 50 (a),
popt = 16 (c), and popt = 7 (e), while the dashed line in the plots of the relative
errors correspond with the value 10−2, indicating a 1% error.
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Figure 2.28: A plot of the value of 〈pi〉 for each iteration with standard error
bars [(a), (c), and (e)], along with a plot of the value of 〈|Di/D−1|〉 (red line with
crosses) and 〈|αi/α− 1|〉 (blue line with circles) for each iteration with standard
error bars [(b), (d) and (f)]. The simulated values include motion blur. These
experiments were for D = 2µm2/s, α = 1µm/s, η = 2µm, NS = 1 and N = 1000,
for ∆t = 1 s [(a) and (b)], ∆t = 10 s [(c) and (d)] and ∆t = 100 s [(e) and (f)].
The dashed line in the plots of 〈pi〉 correspond to popt = 50 (a), popt = 16 (c), and
popt = 7 (e), while the dashed line in the plots of the relative errors correspond
with the value 10−2, indicating a 1% error.
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2.9.5 Determination of the drift direction

Until now we have assumed that the main interest is the determination of the

drift magnitude and the diffusion coefficient. If the drift angle is also of interest

then this can also be inferred using the trajectory data. To calculate the mean

direction and measures of the spread about the mean requires the use of circular

statistics, details of which can be found in, for example, Fisher [78] or Mardia

and Jupp [79]. Following in the same vain as the estimation of the MSD, we first

calculate the ensemble overlapping time-averaged quantities

Cn =

NS∑
j=1

N+1−n∑
i=1

cos θ
(j)
i,n and Sn =

NS∑
j=1

N+1−n∑
i=1

sin θ
(j)
i,n, (2.66)

where

cos θ
(j)
i,n =

x
(j)
i+n − x

(j)
i

|x (j)
i+n − x

(j)
i |

and sin θ
(j)
i,n =

y
(j)
i+n − y

(j)
i

|x (j)
i+n − x

(j)
i |

. (2.67)

The resultant vector using data with a time lag of n∆t is Rn =
√
C2
n + S2

n from

which we can define the cosine and sine of the average angle using a time lag of

n by

cos θd,n = Cn/Rn and sin θd,n = Sn/Rn. (2.68)

The average angle using displacements with a time lag of n∆t is given by

θd,n =


tan−1(Sn/Cn), Sn > 0, Cn > 0,

tan−1(Sn/Cn) + π, Cn > 0,

tan−1(Sn/Cn) + 2π, Sn < 0, Cn > 0.

(2.69)

To help quantify the uncertainty in inferring the drift angle, the circular variance

Vn is defined as

Vn = 1−Rn, (2.70)
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Figure 2.29: A plot of the circular variance V (a) and the mean drift angle θd,n
with standard error bars (b) for D = 2µm2/s, α = 1µm/s, η = 2µm, θd = π/3
(1.047) radians, NS = 10 and N = 100.

where

Rn = Rn/(NS(N + 1− n)) (2.71)

is the mean resultant length. Finally, the first and second central trigonometric

moments

m1,n =
1

NS(N + 1− n)

NS∑
j=1

N+1−n∑
i=1

cos (θ
(j)
i,n − θn), (2.72)

and

m2,n =
1

NS(N + 1− n)

NS∑
j=1

N+1−n∑
i=1

cos (2(θ
(j)
i,n − θn)), (2.73)

can be used to define the sample circular dispersion

δ̂n = (1−m2,n)(2m2
1,n). (2.74)

The error bars in the following plots use the circular standard error

σ̂n =

√
δ̂n/(NS(N + 1− n)). (2.75)
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Figure 2.29 shows the circular variance and mean drift angle using NS = 10 and

N = 100, where we have assumed that the optimal measurement time interval

has been used. We can see that the variance in the estimation of the drift angle

decreases rapidly over time. This would suggest that the optimal time to infer

the drift angle would be at the maximal measurement time interval. However,

due to the lack of samples in the time averaging using the large time lags, we find

that there is very little difference in the quality of the inferred drift angle other

than when very short lags are used.

2.10 Conclusions

In this chapter, we looked at the optimal estimation of the diffusion coefficient

D and the drift magnitude α from the drift-diffusion SDE (2.1) using weighted

least squares regression. We assumed that the trajectories are also subject to

static localisation error with strength η2. Optimisation of the fitting process was

carried out with respect to the number of regression points p used and the time

interval T over which measurements were made.

We estimated the model parameters using weighted least squares regression of

the ensemble time-average overlapping MSD (2.22). For the regression weights, it

is common to use the variance of the predictors, and so a theoretical expression for

the variance of the MSD was calculated, as given by (2.42). Simulations indicate

that the empirical estimate of the MSD is noisy for small values of T , while the

uncertainty in the MSD increases as T increases. This latter feature is a result of

the variance of the MSD increasing cubically with time. Also, the quadratic form

of the MSD gives rise to two different time scales associated with the diffusive

and drift processes. Therefore, we find that an intermediate value of T is needed

to balance these features of the MSD.
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Since the MSD is of the form a+ bt+ ct2, where a = 4η2, b = 4D and c = α2,

we use quadratic regression to infer D and α. Using theoretical estimates of the

variance of the regression coefficients, σ2
a, σ

2
b and σ2

c (2.43)–(2.45), we looked to

minimise σb/b+ σc/c. To calculate the regression variances, we were required to

find a theoretical expression for the covariance of the MSD, given by (2.58).

To optimise the inference with respect to the number of regression points

p, we calculate the theoretical value of σb/b + σc/c as a function of p. Figures

2.6 and 2.7 show the existence of popt which minimises the uncertainty in the

inference of the model parameters. Additionally, Figure 2.8 shows that an optimal

number of regression points exists which minimises σa/a + σb/b + σc/c in order

to optimally infer D, α and η together. Algorithm 1 describes a procedure to

iteratively find the value of popt. We see, from Figures 2.9–2.11, that the algorithm

converges quickly to popt. The relative error in the parameters decrease as we

approach popt, in particular, the relative error in D. We also see that the choice

of the timestep ∆t is important in optimising the inference of D and α. When

considering the single particle case, we showed that the relative error in D can

decrease significantly when popt is used, in one case showing a 1000% improvement.

To optimise the inference with respect to the measurement time interval T , we

calculated the theoretical value of σb/b + σc/c as a function of T . The existence

of Topt is shown in Figures 2.15 and 2.16, and again, an optimal measurement

time interval is shown to exist which minimises σa/a + σb/b + σc/c, as shown in

Figure 2.17. Algorithm 2 describes a procedure to iteratively find the value of

Topt. Compared with the regression points case, we found that using a value of T

other than Topt can result in large errors in both D and α. Looking, for example,

at Figure 2.18, we see that taking a value of T larger than Topt, while giving a

low relative error in α, gives a large relative error in D. When we converge to

Topt, we see a balance in the relative errors. When we use a value of T smaller
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than Topt, the relative errors in D and α are very high but decrease dramatically

as we converge to Topt. This shows the importance of using the optimal value of

T . We see similar results for the single particle case.

We showed that when motion blur is considered, only the constant term in

the MSD changes, given by (2.62). We found, as seen in Figure 2.26, that the

inclusion of motion blur can change the value of the optimal number of regression

points popt. However, when we use our previous theoretical value of popt on data

which includes motion blur, we do not see a significant difference in the inference

of the model parameters, as seen in Figures 2.27 and 2.28.

Finally, we considered the optimal estimation of the drift direction θd. We

found that, although the circular variance given by (2.70) decreases as t increases,

the lack of samples for large time lags results in little difference in the quality of

the average drift angle (2.69).

The approach described in this chapter provides a method for optimally esti-

mating the coefficients from the drift-diffusion model (2.1) where analytical forms

for the MSD and its properties can be found. When a more complex model is

considered, where an analytical form for the summary statistics is not available,

we require a more general approach for parameter inference.
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Approximate Bayesian

computation

3.1 Bayes’ theorem

Within Bayesian inference, it is of interest to calculate the distribution of the

unknown parameters θ of a statistical model given some observed data y. This

distribution, denoted by π(θ|y), is called the posterior distribution, and can be

calculated using Bayes’ theorem

π(θ|y) =
p(y|θ) π(θ)

p(y)
, (3.1)

where p(y|θ) is the likelihood function, π(θ) is the prior distribution and p(y)

is the marginal probability. The likelihood function denotes the probability that

we observe the data y given the parameter values θ. The prior distribution

encapsulates the prior belief about the parameters. When no prior knowledge is

known about the parameters, it is common to use uninformative priors. There

are several methods for creating uninformative priors, for example, Jeffreys priors
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[80]. The marginal probability, which for continuous data is given by

p(y) =

∫
p(y|θ) π(θ) dθ, (3.2)

is a normalisation factor to ensure that the posterior distribution is a true proba-

bility distribution. This factor is often not of interest and so we can simply write

π(θ|y) ∝ p(y|θ) π(θ). (3.3)

3.2 Likelihood-free inference

Application of Bayes’ theorem is dependent on having access to the likelihood

function; however, this is not always available. For stochastic systems, for exam-

ple, calculation of the likelihood depends on the solution of path integrals over all

realisations of the latent state, which is analytically intractable. Likelihood-free

methods are a common workaround for systems where the likelihood funciton is

not available. The two classical likelihood-free approaches are density estimation

methods, which approximates the likelihood function numerically, for example,

the synthetic likelihood method [81], and ABC, which compares observed and

simulated data, or statistics of the data, through use of a distance measure. In

recent years, mathematical developments have allowed for methods which can

overcome issues that are commonly faced in classical methods. For example, ma-

chine learning techniques allow us to make use of higher-dimensional data, while

active learning methods can improve sample efficiency. For a review of recent

developments in likelihood-free methods, see [82]. These newer methods can be

computationally expensive and many of the concepts used are beyond the remit of

the thesis. Therefore, we choose to investigate the performance of ABC schemes.
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3.3 Introduction to ABC

Rubin (1984) [83] discusses the interpretation of Bayesian statements and pro-

motes the applied statistician to use Bayesian statistics. He states that it is good

to be able to use approximate Bayesian methods and Monte Carlo simulations to

examine many different models, especially those which are too complicated for

exact inference, rather than one analytically simplified and examined model. In

Section 3.1 of [83], a hypothetical procedure to calculate the posterior distribu-

tion of an unknown parameter is given which matches the ideas of ABC. This is

thought to be the beginnings of ABC. Rubin’s hypothetical procedure is similar

to the exact ABC rejection scheme given in Algorithm 3. Notice that rather than

using the likelihood function, we instead make use of a generative model f(y|θ)

which can be used to generate data for a specified model. The accepted param-

eters θi, i = 1, . . . , Na, are actually draws from the true posterior distribution.

This can be seen because

θi =

∫
Y

p(y∗|θi) π(θi) Iy(y∗) dy∗ = p(y|θi)π(θi) ∝ π(θi|y), (3.4)

where Y is the space in which y takes values and

Iy(y∗) =


1, if y∗ = y,

0, otherwise,

(3.5)

is an indicator function. As stated above, the advantage of this method is that all

accepted parameter values will be from the true posterior distribution. However,

the difficulty with this procedure is that it could take a long time to find an
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appropriate number of y∗ values. For continuous data or large parameter spaces,

it may be impossible to find any values at all. Therefore, the exact rejection

algorithm is best used for problems involving discrete data.

Algorithm 3 ABC exact rejection algorithm

Input: The observed data y, prior distribution for the parameters π(θ), a

generative model f(y|θ) and the number of parameter acceptances Na.

Output: Samples θi, i = 1, . . . , Na, from the posterior distributions π(θ|y).

1: Set the number of accepted parameter values i = 0.

2: while i < Na do

3: Sample θ∗ from the prior π(θ).

4: Simulate data using the generative model y∗ ∼ f(y|θ∗).

5: if y∗ = y then

6: accept and store the parameters values θi = θ∗ and set i = i+ 1.

7: end if

8: end while

3.4 ABC rejection methods

Tavaré et al. (1997) [84] implemented the first ABC algorithm to estimate the

coalescence time (time since the most recent common ancestor) from DNA se-

quences. Their rejection algorithm, similar to acceptance-rejection algorithms,

calculated a summary statistic, the number of segregating sites, from simulated

data and accepted the estimation of the coalescence time based on some proba-

bility, which was calculated using prior knowledge about the population demog-

raphy. This method was specific to analysing genealogical data and could not be

directly implemented in other areas. A more general algorithm, similar to their

methods, is the ABC rejection scheme given in Algorithm 4. This time, we accept

the parameter values if ||y∗ − y|| < ε. The norm || · || must be specified by the
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user. A consequence of this is that the accepted parameter values now come from

approximate posterior distributions

πε(θ|y) ∝
∫
Y

p(y∗|θi)π(θi) ISε,y(y∗) dy∗, (3.6)

where Sε,y = {y ∈ Y : ||y∗ − y|| < ε}. As ε tends to zero, the approximate

posterior distribution approaches the exact posterior distributions. While we no

longer require the simulated data to match exactly the observed data, if the data

or parameter space is large then we can still run into issues where it will take a

long time to accept parameter values.

Algorithm 4 ABC rejection algorithm 1

Input: The observed data y, prior distribution for the parameters π(θ), a

generative model f(y|θ), the number of parameter acceptances Na and the

tolerance ε.

Output: Samples θi, i = 1, . . . , Na, from the approximate posterior distri-

butions πε(θ|y).

1: Set the number of accepted parameter values i = 0.

2: while i < Na do

3: Sample θ∗ from the prior π(θ).

4: Simulate data using the generative model y∗ ∼ f(y|θ∗).

5: if ||y∗ − y|| < ε then

6: accept and store the parameters values θi = θ∗ and set i = i+ 1.

7: end if

8: end while

Pritchard et al. (1999) [49] created a similar algorithm to the one used by

Tavaré et al. [84]; however, this algorithm accepts parameter values by looking

at the distance between a vector of summary statistics, rather than the complete

data. Specifically, a parameter value is accepted if ||S(y∗) − S(y)|| < ε. They
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used the relative l1 norm in their algorithms. A general version of their algorithm

is given in Algorithm 5. This time, the accepted parameter values are from the

approximate posterior distributions

πε(θ|S(y)) ∝
∫
Y

p(y∗|θi)π(θi) ISε,y(y∗) dy∗, (3.7)

where Sε,y = {y ∈ Y : ||S(y∗) − S(y)|| < ε}. It is important to note that if the

summary statistics used are sufficient, meaning that the conditional probability

distribution of y given the statistic S(y) does not depend on the parameters θ,

then πε(θ|S(y)) = πε(θ|y) [85]. However, it is not always possible to find a

sufficient statistic for a given distribution. The Factorization theorem [86] states

that a statistic is sufficient if and only if the joint PDF f(y,θ) can be factored

as

f(y,θ) = u(y)v(y,θ), (3.8)

where u and v are non-negative functions. The exponential family of distributions

satisfy the Factorization theorem, and so if a distribution is in the exponential

family, then it is possible to find a sufficient statistic.

Beaumont et al. (2002) [50] were the first to use the now accepted name

“approximate Bayesian computation”. They adapted the algorithm presented by

Pritchard et al. [49] in two ways. Firstly, they used the Euclidean norm instead

of the relative l1 norm, giving (for example, in two-dimensions) circular accep-

tance regions, rather than rectangular ones. Secondly, when Na parameter values

are accepted, θi, i = 1, . . . , Na, along with their associated summary statistics,

Si(y
∗), i = 1, . . . , Na, the values of θi are weighted according to their value of

||Si(y∗)−S(y)||, then these values are adjusted using local linear regression. They

also set the value of ε to be a quantile of the ||Si(y∗)− S(y)|| values. They coin

this method the regression method, which follows the same procedure as Algo-
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rithm 5 up to Step 5. At Step 6, the smooth weighting and local linear regression

techniques are used as described above. This method was shown to give more

accurate results compared with the rejection method.

Algorithm 5 ABC rejection algorithm 2

Input: Observed summary statistic(s) of the data S(y), prior distribution

for the parameters π(θ), a generative model f(y|θ), the number of parameter

acceptances Na and the tolerance ε.

Output: Samples θi, i = 1, . . . , Na from the approximate posterior distribu-

tions πε(θ|S(y)).

1: Set the number of accepted parameter values i = 0.

2: while i < Na do

3: Sample θ∗ from the prior π(θ).

4: Simulate data using the generative model y∗ ∼ f(y|θ∗).

5: Calculate the summary statistic(s) of the simulated data S(y∗).

6: if ||S(y∗)− S(y)|| < ε then

7: accept and store the parameters values θi = θ∗ and set i = i+ 1.

8: end if

9: end while

Rejection methods are the most basic ABC approach. One advantage of

these methods is that they often have a small number of initialisation parame-

ters needed to run. The simplicity of these methods make it appealing for non-

statisticians as they are easier to understand and work with. However, even with

modifications to the simple rejection algorithm, for example, the adjustments

made by Beaumont et al. [50], rejection methods are still often computationally

expensive when dealing with high dimensional parameter spaces or continuous

data [51]. These methods are also inefficient when the prior and posterior distri-

bution are vastly different, requiring a much smaller tolerance value to obtain an
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accurate estimate of the posterior distribution, which will increase the computa-

tional cost. The subsequent ABC methods discussed are examples of approaches

which aim to improve upon rejection methods.

3.5 ABC Sequential Monte Carlo methods

Sisson et al. (2007) [87] introduced an ABC version of Sequential Monte Carlo

(SMC). One of the main differences from rejection algorithms is the introduc-

tion of a schedule of tolerance values ε1, ε2, . . . , εNε . Typically, the algorithm is

started with a large tolerance value and then uses smaller values as the algorithm

progresses. The reason for this is to allow the algorithm to easily find parameter

acceptances initially and then progressively update with smaller tolerance values

so that the posterior distributions become more accurate. Initially, the parame-

ter samples are taken from the prior as normal, and at all future iterations, the

parameter samples come from the previously found posterior distribution. To

ensure that we do not sample the exact same values and create a bias in the pos-

terior samples, importance sampling is implemented by weighting the parameter

samples and then perturbing them using a kernel.

Importance sampling is a way of estimating an expectation of a distribution

by sampling from a different distribution. Suppose that X is a random variable

with probability density p(x), and we are looking to calculate the expectation

E(f(X)) =

∫
f(x) p(x) dx. (3.9)

Then given a probability density q such that q(x) > 0 whenever f(x)p(x) 6= 0,

we can estimate (3.9) by

E(f(X)) =

∫
f(x) p(x)

q(x)
q(x) dx ≈ 1

N

N∑
i=1

f(xi)w(xi), (3.10)
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where w(xi) = p(xi)/q(xi) are called the importance weights.

A typical choice for the kernel is the standard Gaussian kernel. However, the

algorithm was created to be used generally which resulted in a bias. Sisson et

al. corrected their original algorithm, as well as corrections and modifications

made by, for example, Beaumont et al. (2009) [88], Toni et al. (2009) [89]

and Beaumont (2010) [90]. A general version of Beaumont’s algorithm (2010) is

given in Algorithm 6. Beaumont uses a Gaussian kernel with a mean taken to be

the current sampled parameter and variance corresponding to twice the empirical

variance of the previous accepted parameters. However, there are still some issues

in generalising the algorithm. One issue is that the choice of the tolerance values

are chosen by the user and will likely need to be carefully specified for each new

problem. Another issue is that if the summary statistics are out of scale with

one another then the largest summary statistic can dominate over the others

during the acceptance step. Note that all the previous algorithms discussed here

share the first issue, while the algorithms presented by Pritchard et al. [49] and

Beaumont et al. [50] share the second issue.
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Algorithm 6 ABC SMC algorithm

Input: Observed summary statistic(s) of the data S(y), prior distribution

for the parameters π(θ), a generative model f(y|θ), the number of parameter

acceptances Na and a schedule of tolerances ε1, ε2, . . . , εNε .

Output: Samples θi, i = 1, . . . , Na from the approximate posterior distribu-

tions πε(θ|S(y)).

1: for t = 1, . . . , Nε do

2: Set the number of accepted parameter values i = 0.

3: while i < Na do

4: Sample θ∗ from

qt(θ) =


π(θ), if t = 1,∑Na

i=1w
t−1
i Kt(θ|θt−1

i )/
∑Na

i=1w
t−1
i , otherwise.

5: Simulate data using the generative model y∗ ∼ f(y|θ∗).

6: Calculate the summary statistic(s) of the simulated data S(y∗).

7: if ||(S(y∗)− S(y))|| < εt then

8: accept and store the parameters values θti = θ∗ and set i = i+ 1.

9: end if

10: end while

11: Calculate the importance weights wti = π(θ)/qt(θ
t
i).

12: Set t = t+ 1.

13: end for
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Prangle (2017) [59] collates different methods to help counteract these issues.

His paper concentrates on weighting the distance function used during the accep-

tance step. Throughout the paper, a weighted Euclidean distance is used. The

role of the weighting is to try and normalise the summary statistics to ensure

that they are in scale with each other. While a popular choice for the weighting

is an empirical estimate of standard deviation of the summary statistic, Csilléry

et al. (2012) [91] recommend using the median absolute deviation (MAD). The

advantage of the MAD is that it is robust to large outliers and better captures

the variation of each summary statistic. To apply this weighting in the algorithm,

during the first iteration, we give equal weights to the distance function, then, for

all later iterations, we weight by the MAD of accepted summary statistics from

the previous iteration. To counteract the issue of choosing the tolerance values,

Prangle uses the method of Drovandi and Pettitt (2011) [92] which adaptively

chooses a threshold value to be the φ quantile of the previous accepted distance

values. The initial tolerance value is taken to be very large, essentially accepting

all parameter values initially. The advantage of this approach is that the toler-

ance values are chosen in a range which have previously been observed, compared

with choosing the values in an ad hoc manner prior to running the algorithm.

The tolerance values are therefore chosen automatically which removes any user

input when changing experiments. His algorithm is presented in Algorithm 7.
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Algorithm 7 Prangle algorithm

Input: Observed summary statistic(s) of the data S(y), prior distribution

for the parameters π(θ), a generative model f(y|θ), the number of parameter

acceptances Na, a stopping tolerance εs and the quantile value φ.

Output: Samples θi, i = 1, . . . , Na from the approximate posterior distribu-

tions πε(θ|S(y)).

1: Set t = 1, ε1 =∞ and ω1
j = 1.

2: while εt > εs do

3: Set the number of accepted parameter values i = 0.

4: while i < Na do

5: Sample θ∗ from

qt(θ) =


π(θ), if t = 1 or 2,∑Na

i=1 w
t−1
i Kt(θ|θt−1

i )/
∑Na

i=1 w
t−1
i , otherwise.

6: Simulate data using the generative model y∗ ∼ f(y|θ∗).

7: Calculate the summary statistic(s) of the simulated data S(y∗).

8: if dt = ||(S(y∗)− S(y))/ωtj|| < εt then

9: accept and store the parameters values θti = θ∗ and set i = i+ 1.

10: end if

11: end while

12: Calculate the MAD, M t
1,M

t
2, . . ., for each summary statistic in Step 8.

13: Calculate the distance function weights ωt+1
j = M t

j .

14: Calculate the importance weights wti = π(θ)/qt(θ
t
i).

15: Let εt+1 be the φ quantile of the accepted dt values.

16: Set t = t+ 1.

17: end while
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The main advantage of SMC methods over rejection methods is that they are

usually more computationally efficient. The sequential nature of the procedure

means that, at each iteration, parameter values are sampled from distributions

which get closer to the true posterior. This reduces the number of parameter

values which are sampled from low probability regions, resulting in faster compu-

tational efficiency. A disadvantage of SMC methods is that, for small tolerance

values, the probability of accepting parameter values can become small, even if

the proposal distribution is close to the true posterior distribution. This results

in the algorithm being ran for longer than needed with little improvement in

the inference [51]. A further disadvantage is, due to their reliance on more ad-

vanced statistical properties, SMC methods can be difficult for non-statisticians

to understand, and could therefore be less appealing.

3.6 Semi-automatic ABC

Fearnhead and Prangle (2012) [60] proposed a method to select the summary

statistics in a semi-automatic way. For the true parameter values θ, they define

accuracy of the inferred estimates θ∗ in terms of loss functions, L(θ,θ∗), and

in particular, consider the quadratic loss, defined in terms of a positive definite

matrix A, as

L(θ,θ∗;A) = (θ − θ∗)TA(θ − θ∗). (3.11)

They found that for any choice of A that is full rank, the best summary statistic

to minimise the quadratic loss (3.11) was an estimate of the posterior mean. In

practice, this is not something that one has access to, and in fact is one of the

quantities ABC hopes to find. In order to implement their method, an initial

pilot run of ABC is used, with an arbitrarily chosen summary statistic, to find

a region closer to the posterior than the prior. This step is only done if the

prior is uninformative. Then, a set of M parameter values, θ(j), j = 1, . . . ,M ,
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and data, y(j), j = 1, . . . ,M , is simulated to estimate the summary statistic,

in this case, an estimate of the posterior mean. They found that a simple and

effective method to estimate the posterior means was by using linear regression,

with appropriate functions of the data as predictors. This function f(·) is a

vector-valued function whose entries are transformations of the data. Then, to

estimate the ith summary statistic, the parameter values θ
(j)
i , j = 1, . . . ,M , are

used as the response variables, while the transformations f(y(j)), j = 1, . . . ,M ,

are used as the predictors, so that

θi = E(θi|y) + εi = β
(i)
0 + (β(i) · f(y)) + εi, (3.12)

where εi is a zero-mean noise term. After using linear regression on these M data

sets, we are left with β̂
(i)
0 + (β̂(i) · f(y)), which is an estimate of the posterior

mean of θi. These are then used as the new summary statistics within a second

ABC run. To compare the summary statistics within the ABC framework, we

must calculate the new observed summary statistics from the observed data θi =

β̂
(i)
0 + (β̂(i) · f(y)), as well as the new simulated summary statistics from the

simulated data θ∗i = β̂
(i)
0 + (β̂(i) · f(y∗)).

3.7 Comparison with particle Markov chain

Monte Carlo

ABC methods, such as the ABC SMC method given in Algorithm 7, target the

approximate posterior distribution πε(θ|S(y)). When sufficient summary statis-

tics are used and we take ε → 0, the approximate posterior distribution tends

to the exact posterior distribution π(θ|y). However, in practice, we typically do
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not have access to sufficient summary statistics and we are required to take ε > 0

for computational efficiency. This is sometimes referred to as an “approximate

approximate” method.

A popular approach for sampling from the posterior distribution are Markov

chain Monte Carlo (MCMC) methods. These involve creating Markov chains

whose stationary distribution is the distribution of interest; in this case, the

posterior distribution of the parameters. One of these algorithms is called the

Metropolis-Hastings algorithm. For this, we first choose an initial value θ(0). We

then propose a new value by sampling from a proposal distribution K. This

new value is accepted according to some probability fraction. A version of the

Metropolis-Hastings algorithm is given in Algorithm 8. As can be seen in Step

5, the acceptance step relies on knowing the likelihood function, which is often

intractable for more complex problems.

An ABC version of MCMC was first proposed by Marjoram et al. [93] to deal

with problems where the likelihood function is unavailable. For this, after we have

sampled from the proposal distribution at Step 4 of Algorithm 8, data y∗ is then

generated using our generative function and we only proceed to Step 5 if ||(S(y∗)−

S(y))|| < ε, for some tolerance value ε. The probability fraction in Step 5 is then

adapted by removing the likelihood function. This ABC MCMC algorithm will

sample values from the approximate posterior distribution πε(θ|S(y)), similar to

ABC SMC.

Another MCMC algorithm which deals with problems where the likelihood

function is intractable is Particle Markov chain Monte Carlo (pMCMC) [94]. This

algorithm replaces the likelihood function in Step 5 of Algorithm 8 by a Monte

Carlo estimate. Andrieu et al. show that replacing the likelihood function by a

Monte Carlo estimate is still mathematically sound by proving that the stationary

distribution found by pMCMC converges to the true posterior distribution π(θ|y)
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asymptotically. This is an advantage over ABC MCMC which samples from an

approximate posterior distribution. This is sometimes referred to as an “exact

approximate” method.

Owen et al. [95] compared using pMCMC with ABC SMC for parameter

inference of stochastic kinetic models. The pMCMC algorithm used is similar to

Algorithm 8 where the likelihood function in Step 5 is replaced by a Monte Carlo

estimate. This Monte Carlo estimation of the likelihood function is calculated

using its own SMC algorithm. This approximation must be done at every iteration

of the pMCMC algorithm. The ABC SMC algorithm used is similar to Algorithm

7. For fair comparison, however, a Euclidean distance over the full set of data

points was taken for the norm in Step 8. This ensures that the SMC algorithm

targets the true posterior distribution.

The overall results show that pMCMC was a better choice than ABC SMC,

provided that it could be well initialised. The tuning parameters for this initiali-

sation step include the choice of the initial parameter values used for the MCMC

chains, the number of particles used during the SMC algorithm to estimate the

likelihood function, and the covariance matrix used in the proposal distribution.

The results which showed that pMCMC performed better than ABC SMC were

found when these initialisation parameters were chosen cleverly with knowledge of

the posterior distribution. When these values are chosen without any knowledge

of the posterior distribution, which is more realistic to real life, the computational

cost for pMCMC becomes very inefficient and it ‘made pMCMC look completely

uncompetitive.’
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Algorithm 8 Metropolis-Hastings MCMC algorithm

Input: Prior distribution for the parameters π(θ), a proposal distribution K

and the number of parameter acceptances Na.

Output: Samples θi, i = 1, . . . , Na, from the posterior distributions π(θ|y).

1: Set the number of accepted parameter values i = 0.

2: Choose an initial value θ(0).

3: for j = 1, . . . , do

4: Sample θ∗ ∼ K(θ∗|θ(j−1))

5: Calculate

r = min

(
1,

p(y|θ∗)π(θ∗)K(θ(j−1)|θ∗)

p(y|θ(j−1))π(θ(j−1))K(θ∗|θ(j−1))

)
.

6: Sample u ∼ U(0, 1).

7: Set

θ(t) =


θ∗, if u ≤ r,

θ(t−1), if u > r.

8: end for

9: Stop the algorithm after a large number of iterations and select the last Na

values as our samples.

3.8 Challenges in ABC

Although a lot of work has been done to advance the theory and application of

ABC since its introduction by Tavaré et al., a lot of challenges still remain.

One prominent question relates to the use of the summary statistics. As

we have discussed, sufficient summary statistics would be the optimal choice

within ABC, but this is not usually available in practice. Therefore, methods

94



Chapter 3 – Approximate Bayesian computation

to construct informative summary statistics has become an important topic of

study. Although work has been done to address this issue, for example, [60, 96],

a lot of work still remains to be done.

A related topic looks at effective ways to weight and/or combine the summary

statistics that are already availlable. We have already discussed the work of

Prangle [59] who weighted the summary statistics by their MAD in order to

address the issue of the summary statistics being out of scale with one another.

The issue of how to efficiently combine summary statistics has been adressed by,

for example, Harrison and Baker [97].

Another challenge is the need to adapt ABC approaches to accommodate for

the rise of big data. As the size of the data continues to increase, there is a need

to come up with ABC schemes which can effectively handle large dimensional

data or summary statistics. Some papers which look to address this issue are

[98, 99].
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Inferring the drift and diffusion

coefficients using ABC

4.1 ABC experiments for drift-diffusion

Rather than using regression as in Chapter 2, we look to infer the drift and

diffusion coefficients using ABC. This chapter aims to apply the ABC approaches

in a general setting, rather than making heavy use of specific analytical results like

in Chapter 2, to better reflect realistic situations where more complicated models

are used. We will start by running simulations using the basic ABC rejection and

SMC approaches, and will compare these with the Prangle [59] and Fearnhead &

Prangle [60] approaches outlined in Chapter 3.

The model we will use is a one-dimensional version of the drift-diffusion SDE

from Chapter 2. We choose this model as a way to look forward to Chapter 5,

where we will use a one-dimensional drift-diffusion SDE to model self-generated

gradient chemotaxis. In Ferguson et al. [40], differential equation models were

fit to self-generated gradient cell movement data, which follow a similar set-

up as in Figure 5.1. In the supplementary material of the paper, they used

two tests to decide whether using a one-dimensional model would significantly
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misrepresent the experimental data. The first was a Kolmogorov-Smirnov test

which confirmed that the y-coordinate data were not significantly different from

uniform distributions, meaning that there were no significant biological features

happening in this dimension. The second test confirmed that the x- and y-

coordinate data are independent from one another. Both of these tests showed

that a one-dimensional model would be appropriate to model the self-generated

gradient data.

In addition, we choose to remove static error from our model. Exact posterior

distributions can be calculated for our drift-diffusion SDE model, which cannot be

found when static error is present. Therefore, in order to calculate exact posterior

distributions for comparison with the simulated ABC posterior distributions, we

choose to remove static error from our model.

4.2 Drift-diffusion model

We assume that particles move according to the one-dimensional drift-diffusion

SDE

dXt = α dt+
√

2D dWt, (4.1)

where α is the drift velocity, D is the diffusion coefficient, and dWt is a Wiener

process. As before, we assume that the data comprises of NS trajectories, mea-

sured at the N + 1 time points tn = (n− 1)T/N = (n− 1)∆t, n = 1, . . . , N + 1,

covering the measurement time range [0, T ].

The following quantities will be used for all experiments in this chapter, unless

stated otherwise. The observed data will be generated by solving numerically

(4.1) by the Euler-Maruyama method with NS = 100 and N = 100. The true

values of the model parameters will be D = 2µm2/s and α = 1µm/s and the

number of parameter acceptancesNa = 1000. For the observed summary statistic,

we will use the ensemble time-average MSD given by (2.22), where the data
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is created using the true values of D and α. The prior distribution for both

parameters is taken to be the uniform distribution from 0 to 10, denoted U(0, 10).

Finally, we shall use the Euclidean norm during the acceptance step of each ABC

algorithm.

We will be comparing the different ABC algorithms given in Chapter 3. Since

we showed in Chapter 2 that the accuracy of regression depends crucially on

the value of T , we will also see whether the performance of the ABC schemes

are time dependent for our SDE model by testing the algorithms for the values

T = 0.05 s, 5 s and 500 s.

4.3 Exact posterior distributions

To start, it is of interest to calculate the exact joint posterior distribution in D

and α using the three different values of T to allow comparison with the posterior

distributions that will arise from the ABC schemes. Due to the simplistic form

of our model, we are able to generate exact joint posterior distributions through

use of the likelihood function.

Equation (2.2) from Chapter 2 gives the PDF for the displacement of particles

at time t assuming that the particles move according the model given by (2.1)

with no static error. This is in fact the likelihood of observing the trajectory

data given the parameter values. Notice that our current model (4.1) is simply a

one-dimensional form of this model, and so the likelihood will be given by

p(x, t) =
1√

4πDt
exp

(
−|x− αt|2

4Dt

)
. (4.2)

If we simulate data directly from our model (4.1), then we can calculate the

likelihood function. For this, we generate NS = 100 trajectories at N = 100 steps

of size dt = T/N , denoted by x
(j)
n , n = 1, . . . , N , j = 1, . . . , NS. Here, we assume
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that each step from x
(j)
n to x

(j)
n+1 is equivalent to taking a time step of size ∆t

starting from x
(j)
n = 0. Given this data, the likelihood function for trajectory j

is given by

L =
N∏
n=2

p(xn, t|xn−1)

=
N∏
n=2

1√
4πDdt

exp

(
−|∆x (j)

n − αdt|2

4Ddt

)

= (4πDdt)−
N
2 exp

(
−
∑N

n=2 |∆x
(j)
n − αdt|2

4Ddt

)
, (4.3)

where ∆x
(j)
n = x

(j)
n − x (j)

n−1. From this, the log-likelihood is calculated as

l = ln(L) = ln

(
(4πDdt)−

N
2 exp

(
−
∑N

n=2 |∆x
(j)
n − αdt|2

4Ddt

))

= −N
2

ln(4πDdt)−
∑N

n=2 |∆x
(j)
n − αdt|2

4Ddt
. (4.4)

To plot the exact joint posterior distribution in D and α, we will split the prior

distributions in D and α into 1000 uniformly distributed points each, creating

a mesh of 1000×1000 points over the parameter domain. We then calculate the

log-likelihood given by (4.4) at each of these points. To obtain a more accurate

log-likelihood, we do this for all NS trajectories and average over these. We then

exponentiate the averaged log-likelihood to obtain the likelihood in D and α.

The joint posterior distribution in D and α can then be found by using Bayes’

theorem

π(θ|y) =
p(y|θ) π(θ)

p(y)
. (4.5)
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In fact, since we assume uniform prior distributions for both parameters, the

shape of the joint posterior distribution will match that of the likelihood. The

marginal probability π(θ) will only adapt the value of the posterior distribution

and will not change the shape. Therefore, plots of the exact joint posterior

distribution will correspond with plots of the likelihood.

Figure 4.1 compares contour plots of the likelihood and the log-likelihood for

the values T = 0.05 s, 5 s and 500 s. We find that the log-likelihood and likelihood

have very similar shapes for a small and middle value of T , but for a large value

of T , the likelihood is more compact than the log-likelihood. As expected, the

shape of both distributions change as we change T . Similar to Chapter 2, for a

small value of T , α is difficult to infer accurately – illustrated here by the wide

distributions in α. As we increase T , the distributions become more isometric.

When we reach the largest value of T , the distributions in D begins to widen out.

4.4 ABC rejection method

4.4.1 Rejection algorithm

We will begin by using the rejection algorithm given in Algorithm 5 in Chapter 3

to infer the drift velocity α and the diffusion coefficient D for our three values of

T . The only input parameter that still needs to be defined to run the algorithm

is the tolerance ε. We will need to adapt the value of the tolerance for different

values of T . As we increase the value of T , we will also need to increase the value

of the tolerance. One of the reasons why larger values of T require a larger value

of ε is due to the MSD. In one dimension, the analytical form of the MSD is

ρ(t) = α2t2 + 2Dt. (4.6)

100



Chapter 4 – Inferring the drift and diffusion coefficients using ABC

Figure 4.1: Contour plots of the likelihood [(a), (c) and (e)] and the log-
likelihood [(b), (d) and (f)] in D and α for T = 0.05 s [(a) and (b)], T = 5 s
[(c) and (d)] and T = 500 s [(e) and (f)].

Therefore, as we increase T , the value of the MSD will increase quadratically and

so the value of the summary statistics will increase similarly. Also, from (2.42)

we see that the variance of the MSD increases cubically with time, and so the

estimated MSD will be less accurate as time increases. Due to both of these

properties, the value of the tolerance ε will need to be increased for a larger T .
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To illustrate how the posterior distributions change as we decrease ε, we will

test the algorithm for a schedule of decreasing tolerance values. For T = 0.05,

we will take ε = 2, 1, 0.5 and 0.25; for T = 5, we will take ε = 200, 100, 50 and

25; and for T = 500, we will take ε = 200000, 100000, 50000 and 25000. Figures

4.2-4.4 show samples from the joint posterior distributions for T = 0.05 s, 5 s and

500 s, respectively. As we decrease ε, the joint posterior distributions get slowly

closer to the exact posterior distributions for all values of T . We see a better

improvement for a small and middle value of T , while for a large value of T , the

joint posterior distribution in D covers the entire prior distribution.
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Figure 4.2: Samples from the joint posterior distributions for D and α using
the rejection algorithm for T = 0.05 s and ε = 2 (a), ε = 1 (b), ε = 0.5 (c) and
ε = 0.25 (d). These experiments were for D = 2µm2/s, α = 1µm/s, NS = 100
and N = 100.

102



Chapter 4 – Inferring the drift and diffusion coefficients using ABC

0 5 10

0

2

4

6

8

10

0 5 10

0

2

4

6

8

10

0 5 10

0

2

4

6

8

10

0 5 10

0

2

4

6

8

10

Figure 4.3: Samples from the joint posterior distributions for D and α using
the rejection algorithm for T = 5 s and ε = 200 (a), ε = 100 (b), ε = 50 (c) and
ε = 25 (d). These experiments were for D = 2µm2/s, α = 1µm/s, NS = 100 and
N = 100.

To see how good the joint posterior distributions are from the rejection algo-

rithm, we will create contour plots from the final ABC joint posterior distributions

samples. To do this, we calculate the mean vector and covariance matrix from

the ABC samples and create the contour plots assuming that the samples come

from a multivariate normal distribution. We will then compare these with the

exact joint posterior distributions superimposed with the final ABC joint poste-

rior distributions samples. The results are shown in Figure 4.5. We find that the

rejection joint posterior distributions are poor approximations of the exact joint

posterior distributions. It is suspected that these poor joint posterior distribu-

tions are due to using the MSD as the summary statistics.
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Figure 4.4: Samples from the joint posterior distributions for D and α using the
rejection algorithm for T = 500 s and ε = 200000 (a), ε = 100000 (b), ε = 50000
(c) and ε = 25000 (d). These experiments were for D = 2µm2/s, α = 1µm/s,
NS = 100 and N = 100.

Depending on the value of T , one of the parameters can become very difficult

to infer accurately. For example, for a small value of T , the posterior distributions

remain wide in α as the algorithm progresses, and so it becomes challenging to

accurately infer α. In this case, we will say that α is weakly identifiable. However,

the posterior distributions narrow at a much faster rate in D, making it easier to

infer. For this case, we will say that D is strongly identifiable.
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Figure 4.5: Contour plots of the exact joint posterior distributions with the ABC
samples [(a), (c) and (e)] and the contour plots created from the ABC samples
[(b), (d) and (f)] using the rejection algorithm for T = 0.05 s (a), T = 5 s (b) and
T = 500 s (c). The experiments for the rejection algorithm used D = 2µm2/s,
α = 1µm/s, NS = 100 and N = 100.

4.4.2 Accuracy measures

An alternative approach for the rejection algorithm, instead of accepting param-

eter values based on some tolerance value ε, would be to initially sample a large

number of parameter values from the prior and then accept a fraction of these
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which have the smallest distance measure; that is, the fraction that has the small-

est value as in Step 6 of Algorithm 5. This approach would remove the need to

find appropriate tolerance values for the different values of T .

In order to compare the original version of the rejection algorithm, which we

will call the tolerance rejection approach, with the adaptation described above,

which we will call the fraction rejection approach, we introduce two accuracy

measures.

Since there can be parameter identifiability issues when using the MSD as a

summary statistics, we will first introduce an accuracy measure that is predomi-

nately determined by the change in the strongly identifiable parameter. We will

call this the harmonic accuracy. To define this accuracy, we will calculate the

posterior mean for D and α for the ith tolerance value, denoted by Di and αi,

respectively, as well as the variance of the accepted values of D and α, denoted

by (σ2
D)i and (σ2

α)i, respectively. The mean squared error (MSE) for D and α for

the ith tolerance value is then given by

(MSED)i = (D −Di)
2 + (σ2

D)i, i = 1, . . . , Nε, (4.7)

(MSEα)i = (α− αi)2 + (σ2
α)i, i = 1, . . . , Nε, (4.8)

where Nε is the number of tolerance values. The harmonic accuracy for the ith

tolerance value is then be given by

(Accuracy)i =
1

(MSED)i
+

1

(MSEα)i
, i = 1, . . . , Nε. (4.9)

We will define the second accuracy measure so that a higher level of accuracy

corresponds with estimating both parameters well, rather than only the strongly

identifiable parameter. To do this, we need to think about what it means for

both parameters to be estimated well. In two dimensions, we could think of this
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as the shape of the level sets of joint posterior distribution being circular around

the true parameter values with a small radius. To implement this idea, we need

a measure of circularity of a general shape. One simple measure would be the

compactness measure [100], defined as C = 4πA/p2, where A is the area enclosed

and p is the perimeter of the shape. If the shape is a circle then C = 1 and

C < 1 otherwise. By treating our posteriors as roughly rectangular, then we have

that A = MSED ×MSEα and p = 2(MSED + MSEα). This would give an

approximate value of C ≈ (πMSED ×MSEα)/(MSED + MSEα)2. A possible

error measure could then be
√
A/C ≈ (MSED + MSEα)2/

√
MSED ×MSEα.

Notice that
√
A goes to zero as A goes to zero, and since C is maximised when

the area is close to a circle then dividing by C puts more emphasis on estimating

both parameters well, rather than just one of them. We then define our second

accuracy measure, which we call the circular accuracy, as the inverse of the error,

giving

(Accuracy)i =

√
(MSED)i × (MSEα)i

((MSED)i + (MSEα)i)2
, i = 1, . . . , Nε. (4.10)

This measure of accuracy could of course be extended to higher dimensional pa-

rameter spaces by using higher-dimensional analogues for the area and perimeter.

4.4.3 Fraction rejection approach

For the fraction rejection approach, we will always accept Na = 1000 parameter

values to match the tolerance rejection algorithm. To generate a group of poste-

rior distributions like in Figure 4.2–4.4, we will iteratively sample a larger amount

of parameter values from the prior. Since we always accept the best Na = 1000

parameter values, sampling more initial values from the prior will correspond

with accepting a smaller fraction. We will initially sample 104 parameter values,

corresponding with accepting 10% of the best values, and then iteratively increase
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this value until the final time roughly matches that for the tolerance approach.

Note that this will likely result in more iterations of the ABC algorithm for the

fraction approach than for the tolerance approach.

We will also need to define a simulation cost. Since both algorithms will be

tested on the same computer, we choose to use a measure of the real-life time

(in seconds) it takes for the algorithms to run. For this, we will use the in-built

MATLAB tic toc function.

The results for the harmonic and circular accuracy against the time to run

the algorithms for the tolerance and fraction rejection approaches are given in

Figure 4.6. The results show a number of points. Firstly, looking at the plots

of the harmonic accuracy, notice that although the highest accuracy is obtained

when T = 500 s, this does not mean that both parameters are best inferred for

this value of T . It simply means that the strongly identifiable parameter for the

large value of T – α in this case – is inferred more accurately than the strongly

identifiable parameter is inferred for the other values of T .

Secondly, looking at the plots of the circular accuracy, we see that the highest

accuracy is achieved when T = 5 s, which means that both parameters are inferred

best for this value of T . Looking at Figures 4.2–4.4, the joint posterior distribution

when T = 5 s is the most isometric and compact, and therefore does infer both

parameters best. The circular accuracy when T = 500 s decreases as we go

through the iterations. This reflects the fact that the joint posterior distributions

get thinner in α but remain the same in D, meaning that the joint distribution

becomes more rectangular and therefore less circular.

Lastly, we find that neither rejection approach is best since there are values

of T where the both the tolerance approach and the fraction approach are better

than one another.

108



Chapter 4 – Inferring the drift and diffusion coefficients using ABC

0 100 200 300 400 500 600

0

5

10

15

20

0 100 200 300 400 500 600

2

4

6

8

10

12

14

16

0 500 1000 1500

0

500

1000

1500

2000

2500

0 200 400 600

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500

0

1

2

3

4

5
10

-3

Figure 4.6: The harmonic accuracy [(a)–(c)] and the circular accuracy [(d)–(f)]
against the in-built MATLAB time for the tolerance scheme (black solid line)
and the fraction scheme (blue dashed line) for the ABC rejection approach for
T = 0.05 s [(a) and (d)], T = 5 s [(b) and (e)], T = 500 s [(c) and (f)]. These
experiments were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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4.5 ABC SMC method

4.5.1 SMC algorithm

It is of interest to see how the SMC algorithm described in Algorithm 6 com-

pares with the rejection algorithm. For the SMC method, we are required to

specify a schedule of tolerance values, rather than a single value. Similar to

the rejection algorithm, the value of the tolerances will depend on the summary

statistics used, and so since the scale and variability of our summary statistics

change depending on the value of T , we will need to use different tolerance val-

ues for the three different T values. We will initially choose larger values for

the tolerances than we did for the rejection algorithm as this is typical for SMC

schemes. For T = 0.05, we will take ε = 8, 4, 2, 1, 0.5 and 0.25; for T = 5,

we will take ε = 800, 400, 200, 100, 50 and 25; and for T = 500, we will take

ε = 800000, 400000, 200000, 100000, 50000 and 25000. Samples from the joint

posterior distributions for D and α are shown in Figures 4.7–4.9. The joint pos-

terior distributions are very similar to those from the rejection algorithm, as we

would expect. We still find that α is weakly identifiable for T = 0.05 s, while D is

weakly identifiable for T = 500 s. We choose not to create contour plots from the

results of the SMC algorithm as they are very similar to those from the rejection

approach.

Before we compare the accuracy of these results with those from the rejec-

tion algorithm, we will first introduce a similar fraction approach for the SMC

algorithm.
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Figure 4.7: Samples from the joint posterior distributions for D and α using
the Beaumont SMC algorithm for T = 0.05 s and ε = 8 (a), ε = 4 (b), ε = 2 (c),
ε = 1 (d), ε = 0.5 (e) and ε = 0.25 (f). These experiments were for D = 2µm2/s,
α = 1µm/s, NS = 100 and N = 100.
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Figure 4.8: Samples from the joint posterior distributions for D and α using the
Beaumont SMC algorithm for T = 5 s and ε = 800 (a), ε = 400 (b), ε = 200 (c),
ε = 100 (d), ε = 50 (e) and ε = 25 (f). These experiments were for D = 2µm2/s,
α = 1µm/s, NS = 100 and N = 100.
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Figure 4.9: Samples from the joint posterior distributions for D and α using
the Beaumont SMC algorithm for T = 500 s and ε = 800000 (a), ε = 400000
(b), ε = 200000 (c), ε = 100000 (d), ε = 50000 (e) and ε = 25000 (f). These
experiments were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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4.5.2 Fraction SMC approach

In this case, at each population of the SMC algorithm, we will run the fraction

SMC approach so that we initially sample 104 parameter values from the prior and

then accept the best Na = 1000 values. This corresponds with always accepting

the best 10% of the parameter values. As before, we will use the in-built MATLAB

tic toc function to measure the real life time (in seconds) it takes for the algorithm

to run.

When calculating the accuracies as in (4.9) and (4.10) for the SMC approach,

the ith iteration will correspond with the ith population of the SMC algorithm,

meaning that the Nε term will correspond with the number of tolerance values

used.

The results for the harmonic and circular accuracy against the time to run the

algorithms for the tolerance and fraction SMC approaches is given in Figure 4.10.

We find that the SMC approach gives similar results for the rejection approach.

The highest harmonic accuracy is found when T = 500 s, meaning that α is

inferred better for this value of T than the strongly identifiable parameters are

inferred for the other values of T . The circular accuracy is highest when T = 5 s,

meaning that both parameters are estimated best for this value of T . The circular

accuracy for T = 500 s decreases as we go through the iterations since the joint

posterior distributions become less circular. Once again, we find that neither the

tolerance or the fraction approach are consistently the best, with one approach

outdoing the other for different values of T .

Comparing these results with those from Figure 4.6 allows us to compare the

SMC approach with the rejection approach. We find that for all values of T , the

SMC approach produces roughly equal or higher values for both accuracies in a

much smaller amount of time than the rejection approach. This suggests that

the SMC approach is more efficient than the rejection approach.
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Figure 4.10: The harmonic accuracy [(a)–(c)] and the circular accuracy [(d)–(f)]
against the in-built MATLAB time for the tolerance scheme (black solid line) and
the fraction scheme (blue dashed line) for the ABC SMC approach for T = 0.05 s
[(a) and (d)], T = 5 s [(b) and (e)], T = 500 s [(c) and (f)]. These experiments
were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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4.6 Prangle approach

From Figure 4.5, we saw that the ABC rejection joint posterior distributions are

poor approximations of the exact joint posterior distributions, possibly due to

using the MSD as the summary statistics. The Prangle approach, described in

Algorithm 7, adapts the summary statistics by scaling by its MAD. This is done

to normalise the summary statistics so that they are in scale with one another. We

will test whether adapting the MSD in this fashion improves the joint posterior

distributions we get from ABC.

For the Prangle algorithm, the initial value of the tolerance will be large

enough to accept all parameter samples. All future tolerance values will then

be taken to be the φ quantile of the previous accepted distance values as in

Step 15 of Algorithm 7. Although the algorithm currently stops when the next

tolerance value is below a given threshold value, alternatively, the algorithm could

be stopped after a fixed number of iterations. We choose to stop the algorithm

after 8 iterations. As for deciding the value of φ, it was observed that φ = 0.5

was optimal in the examples Prangle tested in his paper [59]. However, the value

of φ determines how small the tolerance values go, and in our case, we found that

taking these values too small can cause issues in the acceptance rate. These issues

are caused by using the MSD as the summary statistics. Therefore, we will take

the smallest value of φ that allows for reasonable run times for the three different

values of T . For T = 0.05 s, 5 s and 500 s, we will take the values φ = 0.9, 0.5 and

0.6, respectively.

Figure 4.11 shows contour plots of the exact joint posterior distributions su-

perimposed with the final Prangle joint posterior distribution samples, along with

the contour plots created from these samples. We choose to zoom into the plots

for the middle and large value of T as the joint posteriors distributions become

small. We find that scaling the MSD by an estimate of its MAD gives similar re-
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sults as the SMC approach for a small value of T , but improves the joint posterior

distributions for a middle and large value of T . However, we see that the final

Prangle joint posterior distributions are underdispersed, and so the uncertainty

in the parameters are not well captured.

Figure 4.11: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the Prangle algorithm for T = 0.05 s (a), T = 5 s
(b) and T = 500 s (c). The experiments for the Prangle algorithm used D =
2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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When comparing ABC approaches going forward, we will continue to show

contour plots of the exact joint posterior distributions superimposed with the

ABC samples, along with contour plots created from these samples. We will

also plot both the harmonic and circular accuracy, since the joint posterior dis-

tributions for future ABC approaches may be similar to that from the Prangle

approach. Previously, we defined the simulation count as a measure of the real-life

time it took for the algorithm to run. We chose this measure since the fraction

approach always accepts the same number of samples. Since the rest of the ABC

approaches will accept parameter values based on some tolerance values, meaning

that a different number of samples will be accepted at each iteration, we have

decided to define a new simulation cost. We define this as the number of times

we solve numerically our drift-diffusion SDE throughout the algorithm, which we

call the simulation cost. This was chosen as it is a better indicator of cost than

the simulation run time which is computer dependent.

Figure 4.12 shows the harmonic and circular accuracy against the simulation

count for the three different values of T when using the Prangle algorithm. This

is generated for comparison with future ABC approaches.

4.7 Fearnhead & Prangle approach

4.7.1 Fearnhead & Prangle algorithm

An alternative approach that could improve the ABC posterior distributions

would be to use different summary statistics, rather than scaling the current

summary statistics as in the Prangle approach. The Fearnhead & Prangle (F&P)

approach described in Section 3.6 of Chapter 3 replaces the MSD based sum-

mary statistics with estimates of the posterior mean for D and α as the summary

statistics.
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Figure 4.12: The harmonic accuracy [(a)–(c)] and the circular accuracy [(d)–
(f)] against the simulation count for the Prangle approach for T = 0.05 s [(a) and
(d)], T = 5 s [(b) and (e)], T = 500 s [(c) and (f)]. These experiments were for
D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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It is of interest to test whether the F&P approach gives better results than

the Prangle approach. We will consider adaptations of the F&P approach later

in the chapter, and so we will refer to this method as the Fearnhead & Prangle

multivariate linear regression (F&P MVLR) approach. To implement the F&P

MVLR approach, we first need to run any ABC approach for a small number

of iterations. This step only needs to be done if the prior distributions are un-

informative. For this initial ABC step, we shall run the Prangle algorithm for

3 iterations. Next, we simulate M lots of NS trajectories by sampling M pairs

of parameter values, Di and αi, i = 1, . . . ,M , from the third and final popula-

tion obtained from the Prangle algorithm. We then calculate M estimates of the

ensemble time-average MSD, denoted by ρi, i = 1, . . . ,M . From this, we use

MVLR using the parameter estimates as responses and the MSD as predictors as

Di = βD0 + (βD · ρi) + εD, i = 1, . . . ,M,

αi = βα0 + (βα · ρi) + εα, i = 1, . . . ,M,

(4.11)

where βD0 ,β
D and βα0 ,β

α are the regression weights for D and α, respectively,

and εD and εα are zero-mean normally distributed error terms for D and α,

respectively. Our new observed summary statistics for the second ABC run will

then be estimates of the posterior mean for D and α, which can be calculated by

applying the regression weights to the observed MSD. During the second ABC

run, we continue to calculate the MSD from the sampled D and α values, but then

apply the regression weights to calculate the new simulated summary statistics.

The distance between the new observed and simulated summary statistics used

during the ABC algorithm will be taken to be the l1 norm. As before, we will

weight the summary statistics by an estimate of its MAD. For the initial tolerance

value in the second ABC scheme, we will calculate estimates of D and α and their

posterior means by applying the regression weights on all M parameter values

from the third Prangle population. We can then take the l1 norm of the difference
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of all M estimates and their posterior means, and take the φ quantile to be the

initial tolerance value. All future tolerance values are calculated as the φ quantile

of the previous accepted distance values. Note that we will adapt the value of φ

according to the value of T to match that of the Prangle approach.

Figure 4.13 shows contour plots of the exact joint posterior distributions su-

perimposed with the final F&P MVLR joint posterior distribution samples, along

with the contour plots created from these samples. We see that replacing the

summary statistics with estimates of the posterior means also improves the joint

posterior distributions, but continues to unreliably estimate the uncertainty in

the parameters. Comparing this with Figure 4.11, we find that the F&P MVLR

joint posterior distributions are wider in α but narrower in D. This may be ex-

pected as the MSD is linear in D while quadratic in α, and so we would expect

using linear regression to extract more reliable values for D than for α.

We now calculate the harmonic and circular accuracy to compare with the

Prangle approach. This is shown in Figure 4.14. These results reflect what we

found in Figure 4.13. For a small value of T , the harmonic accuracy for the

F&P MVLR approach is larger, highlighting that the posterior distribution in

the identifiable parameter D is narrower. The circular accuracy for this value of

T begins to increase as both parameters are inferred more accurately, but then

falls as the joint posterior distributions remain wide in α. For a middle value

of T , the harmonic accuracy for the F&P MVLR approach is larger since the

posterior distribution in D is narrower, but has a lower circular accuracy due to

both parameters not being inferred as well. We find the opposite results for a large

value of T – the harmonic accuracy is much lower as the posterior distribution for

α is wider, while the circular accuracy is larger as the joint posterior distribution

is more isotropic.

121



Chapter 4 – Inferring the drift and diffusion coefficients using ABC

Figure 4.13: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the F&P MVLR algorithm for T = 0.05 s (a),
T = 5 s (b) and T = 500 s (c). The experiments for the F&P MVLR algorithm
used D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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Figure 4.14: A comparison of the harmonic accuracy [(a)–(c)] and the circular
accuracy [(d)–(f)] against the simulation count for the Prangle approach (black
line with asterisks) and the F&P MVLR approach (blue line with circles) for
T = 0.05 s [(a) and (d)], T = 5 s [(b) and (e)], T = 500 s [(c) and (f)]. These
experiments were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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4.7.2 Gaussian Process approach

Fearnhead & Prangle use MVLR on the initial summary statistics to estimate

the posterior means of the parameters to be used as the new summary statistics.

However, if the parameters are not linear in terms of the initial summary statistics,

then this may not be an effective method. For example, in our case, the MSD

is of the form α2t2 + 2Dt and hence is linear in D, meaning that MVLR should

work well to infer D accurately. However, the MSD is quadratic in α and so

MVLR may not be a good method to infer α accurately. We saw this effect in

Figures 4.13 and 4.14. In general, it may not be known a priori whether an initial

summary statistic is linear in terms of its parameters.

A possible better alternative to using MVLR is Gaussian Processes (GP). GPs

are a stochastic process whose distributions is the distribution over continuous

functions. Since this does not assume linearity, GPs could give better results

compared with MVLR.

For linear regression models, we consider a linear combination of M basis

functions φ(x) given by

y(x) = wTφ(x), (4.12)

where x is the vector of the predictors and w is a weight vector. For w, we

assume the Gaussian distributional form

p(w) = N

(
0,

1

σ2
I

)
, (4.13)

where σ2 is the precision. We would like to evaluate y at N training points,

x1, x2, . . . , xN . To do so, we need to consider the joint distribution of y =

[y(x1), y(x2), . . . , y(xN)]. From (4.12), we have that

y = Φw, (4.14)
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where Φ is the design matrix with elements given by Φij = φi(xj). Since the

elements of w are Gaussian, y will also be Gaussian. Its mean and covariance

will therefore be [75]

E(y) = 0, (4.15)

Cov(y) =
1

σ2
ΦΦT = K, (4.16)

where K is called the Gram matrix whose elements are

Kij =
1

σ2
φ(xi)

Tφ(xj) = k(xi, xj), (4.17)

where k(·, ·) is the kernel function.

For Gaussian Processes, we can define the kernel function ourselves, rather

than having it defined by the basis functions. A widely used kernel function is

the squared exponential (SE) kernel function given by

k(xi, xj) = θ1 exp

(
−||xi − xj||

2

2θ2

)
, (4.18)

where θ1 and θ2 are hyperparameters of the GP model. The hyperparameter θ1

controls the amplitude of the kernel function and θ2 controls the length scale.

Obtaining values for the hyperparameters is usually done by maximising the

log-likelihood by efficient gradient-based optimisation methods such as conjugate

gradients [101]. If we allow the hyperparameter θ2 to have a different value for

each predictor, then this gives the ARD squared exponential (ARDSE) kernel

function. It is common practice to standardise the predictors when using GPs.

To do this, for each predictor, we shall subtract their mean and divide by their

standard deviation. We will refer to the approach which uses the SE kernel as

the F&P GP SE approach, and that which uses the ARDSE kernel as the F&P
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GP ARDSE approach. For both approaches, we use a zero mean GP. We will use

different GPs for D and α and calculate the posterior means by applying these

to the MSD. We would expect the ARDSE method to take longer to train as a

different value needs to be found for each length scale hyperparameter, but due

to the different time scales associated with the MSD, we would expect this extra

flexibility to give a higher accuracy compared with the SE kernel.

Contour plots of the exact joint posterior distributions superimposed with

the final F&P GP joint posterior distribution samples, along with the contour

plots created from these samples are given in Figures 4.15 and 4.16 for the F&P

GP SE and F&P GP ARDSE approaches, respectively. We do not find much

of a difference between the two F&P GP approaches. However, for a middle

value of T , the F&P GP approaches have identifiability issues, causing the ABC

joint posterior distributions to become bimodal. On the positive side however,

for a large value of T , the ABC joint posterior distributions for the F&P GP

approaches appear better than for the F&P MVLR approach.

A comparison of the harmonic and circular accuracy for the Prangle, F&P

MVLR and F&P GP approaches are given in Figure 4.17. For a small value of T ,

the harmonic accuracy for the F&P GP approaches are roughly equal to the F&P

MVLR approach. The circular accuracy for both F&P GP approaches are higher

than for the F&P MVLR as the posterior distributions are slightly narrower

in α. For a middle value of T , we find that the harmonic accuracy for both

F&P GP approaches are either equal or larger than the F&P MVLR approach.

This is surprising since the posterior distributions for both are bimodal. The

circular accuracy, however, for both F&P GP approaches are much lower than

for the Prangle and F&P MVLR approaches. This is due to the bimodality of the

posterior distributions. For a large value of T , while the posterior distributions

are narrower, they are less circular and so have a smaller circular accuracy.
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Figure 4.15: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the F&P GP SE algorithm for T = 0.05 s (a),
T = 5 s (b) and T = 500 s (c). The experiments for the F&P GP SE algorithm
used D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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Figure 4.16: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the F&P GP ARDSE algorithm for T = 0.05 s
(a), T = 5 s (b) and T = 500 s (c). The experiments for the F&P GP ARDSE
algorithm used D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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Figure 4.17: A comparison of the harmonic accuracy [(a)–(c)] and the circular
accuracy [(d)–(f)] against the simulation count for the Prangle approach (black
line with asterisks), the F&P MVLR approach (blue line with circles), the F&P
GP SE approach (red line with crosses) and the F&P GP ARDSE approach (green
line with squares) for T = 0.05 s [(a) and (d)], T = 5 s [(b) and (e)], T = 500 s
[(c) and (f)]. These experiments were for D = 2µm2/s, α = 1µm/s, NS = 100
and N = 100.
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Gaussian Processes are designed for interpolation and do not extrapolate well

[102]. SMC algorithms perturb parameter samples, meaning that values could be

sampled from outside the GP training region, requiring the GPs to extrapolate.

This extrapolation could be the explanation why the approaches involving GPs

have parameter identifiability issues, by giving rise to bimodality. As a way to

test if this is the issue, we will try restricting the sampling region for the SMC

algorithm to the convex hull of the GP training region to ensure the samples stay

within the training region.

4.7.3 GPs with convex hulls

To implement this approach, we will create a convex hull during the training step,

then when we perturb the parameter samples during ABC, if the perturbation

takes the samples outside of the training region, they will be rejected and re-

sampled.

Contour plots of the exact joint posterior distributions superimposed with

the final F&P GP joint posterior distribution samples, along with the contour

plots created from these samples are given in Figures 4.18 and 4.19 for the F&P

GP SE and F&P GP ARDSE approaches using convex hulls, respectively. We

find that restricting the sampled parameter values using convex hulls removes the

bimodality of the ABC joint posterior distributions. This suggests that extrapo-

lation from the GP training region was the reason for the parameter identifiability

issues. Again, we do not find much of a difference between the two GP approaches.

A comparison of the harmonic and circular accuracy for the Prangle, F&P

MVLR and F&P GP approaches using convex hulls are given in Figure 4.20.

Comparing this with Figure 4.17, we find a slight increase in the harmonic ac-
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curacies for the F&P GP approaches using convex hulls for all values of T . The

main difference we find for the circular accuracies is for a middle value of T , where

the F&P GP approaches using convex hulls now outperform all other approaches.

Figure 4.18: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the F&P GP SE algorithm using convex hulls for
T = 0.05 s (a), T = 5 s (b) and T = 500 s (c). The experiments for the F&P GP
SE algorithm using convex hulls used D = 2µm2/s, α = 1µm/s, NS = 100 and
N = 100.
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Figure 4.19: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the F&P GP ARDSE algorithm using convex
hulls for T = 0.05 s (a), T = 5 s (b) and T = 500 s (c). The experiments for the
F&P GP ARDSE algorithm using convex hulls used D = 2µm2/s, α = 1µm/s,
NS = 100 and N = 100.

One possible issue with using convex hulls is that restricting the sampling

region of the SMC algorithm to the GP training region could introduce a bias to

the ABC results. An alternative approach that does not require convex hulls is

to first use MVLR to obtain the residuals for the parameter values, which can
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then be fit with a zero-mean GP. This approach should hopefully circumvent the

possible issues that arise from using convex hulls, while still benefiting from the

advantages of GPs.

4.7.4 The residual approach

To impement the F&P residual (Res) approach, after we run the three Prangle

iterations, we will use MVLR on the parameter samples. Using the regression

weights from the MVLR, we will estimate the parameter values from the third

Prangle posterior and subtract these from the true values to retrieve the residuals.

A GP will be fit to the residuals using the SE kernel. This last step is done to

try and correct any errors when using MVLR. The posterior means are then

calculated by first applying the regression weights from the MVLR to the MSD,

then adding the prediction of the GP applied to the MSD.

Contour plots of the exact joint posterior distributions superimposed with

the final F&P Res joint posterior distribution samples, along with the contour

plots created from these samples is given in Figure 4.21. The joint posterior

distributions for a small and middle value of T seems very similar to the F&P

GP approaches using convex hulls, while for a large value of T , they are slightly

wider in both D and α.

A comparison of the harmonic and circular accuracy for the Prangle, F&P

MVLR, F&P GP approaches using convex hulls, and the F&P Res approaches

are given in Figure 4.22. While the harmonic accuracy for the F&P Res approach

underperforms for all values of T , meaning that the identifiable parameters in each

case are not inferred as accurately, we find that the F&P Res approach gives the

highest circular accuracies for all values of T , meaning that both parameters are

inferred best using this approach.
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Figure 4.20: A comparison of the harmonic accuracy [(a)–(c)] and the circular
accuracy [(d)–(f)] against the simulation count for the Prangle approach (black
line with asterisks), the F&P MVLR approach (blue line with circles), the F&P
GP SE approach using convex hulls (red line with crosses) and the F&P GP
ARDSE approach using convex hulls (green line with squares) for T = 0.05 s [(a)
and (d)], T = 5 s [(b) and (e)], T = 500 s [(c) and (f)]. These experiments were
for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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Figure 4.21: Contour plots of the exact joint posterior distributions with the
ABC samples [(a), (c) and (e)] and the contour plots created from the ABC
samples [(b), (d) and (f)] using the F&P Res algorithm for T = 0.05 s (a), T =
5 s (b) and T = 500 s (c). The experiments for the F&P Res algorithm used
D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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Figure 4.22: A comparison of the harmonic accuracy [(a)–(c)] and the cir-
cular accuracy [(d)–(f)] against the simulation count for the Prangle approach
(black line with asterisks), the F&P MVLR approach (blue line with circles), the
F&P GP SE approach (red line with crosses), the F&P GP ARDSE approach
(green line with squares) and the F&P Res approach (cyan line with triangles)
for T = 0.05 s [(a) and (d)], T = 5 s [(b) and (e)], T = 500 s [(c) and (f)]. These
experiments were for D = 2µm2/s, α = 1µm/s, NS = 100 and N = 100.
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4.8 Conclusions

In this chapter, we compared different ABC approaches to inferring the diffusion

coefficient D and the drift velocity α from the drift-diffusion SDE (4.1).

Our main conclusion is, regardless of the algorithm used, the ABC posterior

distributions depend crucially on the value of the measurement time interval T ,

as shown, for example, in Figures 4.7–4.9. For a small value of T , the posterior

distribution has a larger spread in α compared with D, meaning that α is inferred

less accurately. In contrast, for a large value of T , the posterior distribution has

a larger spread in D compared with α, meaning that D is inferred less accurately.

However, there is an intermediate value of T for which the posterior distribution

is more isotropic, leading to good inference for both D and α. These findings

mirror the results found in Chapter 2, where too small or large a value of T

results in poor inference in either D or α but an intermediate value of T was

shown to balance the accuracy of the inference of both parameter values.

We began by calculating the exact joint posterior distributions by making use

of the likelihood function. This was then used as a basis for comparison of all

the ABC results. Starting with the ABC rejection algorithm described in Algo-

rithm 5, we found that the resultant ABC joint posterior distributions were poor

approximations of the exact joint posterior distributions, as seen in Figure 4.5.

The harmonic and circular accuracy measures were introduced as an easier com-

parison between the different ABC approaches. An alternative approach, named

the fraction approach, which generates a large number of samples and accepts the

best fraction, was implemented with the ABC rejection algorithm. We found that

neither the original ABC approach or the fraction approach performs best. The

ABC SMC algorithm was then implemented and was found to outperform the

rejection algorithm, giving higher harmonic and circular accuracies in a shorter

time. The fraction approach was implemented with the SMC approach and again
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we found that neither the original or the fraction approach produces better re-

sults for all values of T . Going forward, we chose to compare the future ABC

approaches with the original SMC results.

The main focus of the chapter was to compare the approaches presented by

Prangle [59] and Fearnhead & Prangle [60]. The key difference between the

two approaches is the choice of summary statistics. For the Prangle approach,

the MSD is weighted by the MAD during the ABC acceptance step. For the

F&P approach, we use regression on the MSD to estimate the posterior mean

of the model parameters. These estimates are then used as the new summary

statistics within the ABC framework. The regression method that Fearnhead &

Prangle used was multivariate linear regression. We found that the Prangle and

F&P approaches resulted in better inference of the parameters in that the bias

was smaller, but the posterior variance was substantially underestimated. We

found that this was an intrinsic aspect of all ABC approaches going forward. A

comparison of the harmonic and circular accuracies showed that the two different

approaches performed better depending on the value of T . For a small and middle

value of T , the F&P MVLR approach has higher harmonic accuracies but lower

circular accuracies. This is due to the identifiable parameters being inferred more

accurately using the F&P MVLR approach, with both parameters being inferred

best together simultaneously using the Prangle approach. For a large value of T ,

the Prangle approach now has the higher harmonic accuracy but lower circular

accuracy.

Since the MSD is quadratic in α and linear in D, we believed that using

MVLR may not be an effective method to estimate the posterior means accu-

rately. Therefore, we adapted the F&P approach to use GPs instead of MVLR.

For this, we fit GPs to the sample data with the squared exponential and the

ARD squared exponential kernels. The hope was that the GP approach would

improve the accuracy of α while maintaining the high accuracy of D, resulting
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in a higher overall accuracy than the MVLR approach. Looking at Figures 4.15

and 4.16, we found that both approaches produced bimodal distributions for a

middle value of T . We suspected that this parameter identifiability issue was due

to the GPs having to extrapolate when the SMC algorithm perturbed the param-

eter samples outside the GP training region. To test if this was the reason, we

implemented an approach which restricted the ABC samples to the convex hull

of the GP training region. This approach ensured that the perturbed samples

from the SMC algorithm remained in the GP training region. We found that the

GP approach using convex hulls removed the bimodality of the resultant joint

posterior distributions, as seen in Figures 4.18 and 4.19.

A possible issue with using convex hulls is, since the perturbed parameter

samples during the SMC algorithm are forced to remain in the GP training region,

this could result in a bias to the ABC joint posterior distributions. To prevent

this, we implemented the F&P Res approach. For this, we initially used MVLR

to obtain the residuals of the parameter values, which were then fit with a zero-

mean GP. We found that the F&P Res approach ensured that the joint posterior

distributions remained unimodal for all values of T , as seen in Figure 4.21. A

comparison of the harmonic and circular accuracies, as seen in Figure 4.22, showed

that the F&P Res approach did not perform as well as the other approaches in

terms of the harmonic accuracy, meaning that the indentifiable parameters were

not inferred as accurately. However, the F&P Res approach produced the highest

circular accuracy for all values of T . Therefore, if the aim is to accurately infer

both parameters simultaneously then the F&P Res approach would be best.
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Chapter 5

Model for self-generated gradient

cell movement

5.1 Introduction

To our knowledge, no one has used a drift-diffusion stochastic model to describe

self-generated gradient chemotaxis. In this chapter, we present details of a hybrid

discrete-continuum model of a population of cells moving in response to a self-

generated chemotactic gradient. The experimental set-up is motivated by that

in the paper by Tweedy et al. [6]. After introducing the theory and numerical

solutions of the model, we will then perform a sensitivity analysis to see how the

identifiability of certain parameters depends on the time over which the MSD is

measured. Lastly, ABC will be used to try and infer the parameters of interest.

5.2 Experimental set-up

In the experiment by Tweedy et al. [6], Dictyostelium discoideum cells move

within a two dimensional chamber of length L and height H. Initially, a uni-

form amount of saturating level of folic acid is uniformly dissolved in an agarose
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gel. The cells start in a small well at the left hand side of the chamber and

gradually migrate away from the well by creating self-generated gradients of the

chemoattractant. A rough illustration of the set-up is given in Figure 5.1.

Figure 5.1: A rough illustration of the experimental set-up. The blue circles
represent cells and the red areas represent the chemical attractant.

5.3 Modelling cell movement

In terms of the mathematical model, we will use a one-dimensional version of

our drift-diffusion SDE. The reasoning for this is discussed in Section 4.1. To

briefly reiterate, Ferguson et al. [40] used a Kolmogorov-Smirnov test to confirm

that the y-coordinate data were not significantly different from uniform distribu-
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tions, along with a test that confirmed that the x- and y- coordinate data are

independent from each other. Both of these give evidence that a one-dimensional

model is appropriate to study the self-generated gradient data. Therefore, we

assume the data has been reduced in the y-direction, leaving the one-dimensional

x-coordinate data.

We will model the movement of each individual cell by the one-dimensional

drift-diffusion SDE

dXt = ν dl
Kd

(Kd + c)2

∂c

∂x
dt+

√
2D dWt, (5.1)

where Xt is the location of the cell at time t, ν is a chemotactic velocity parameter,

dl is the diameter of the cell, Kd is the disassociation constant, c ≡ c(x, t) is the

concentration of the chemical at position x at time t, D is a measure of the

random motility of the cells, assumed to be equal and constant for all cells, and

dWt is a Wiener processes. Here, the domain of Xt is [0, L], with the initial

condition X0 = υ, where υ follows the uniform distribution U(0, L/20). Note

that this uniform distributions ensures that the cells begin in a small well of

length L/20µm. To ensure that the cells remain in the chamber, we have the

boundary conditions Xt = −Xt if Xt < 0, and Xt = L−Xt (mod L) if Xt > L.

The chemotaxis velocity term in (5.1) is motivated by looking at receptor-

ligand kinetics. First, imagine cells interacting with a chemical attractant. Over

time, ligands begin to bind on and off the cell receptors. The rate at which

ligands bind on to the receptors depends on the number of free receptors and the

concentration of the chemical, while the rate at which they bind off the receptors

depends on the number of bound receptors. From this, if we let ψ denote the

number of bound receptors, then we have

∂ψ

∂t
= k1c(Rtot − ψ)− k−1ψ, (5.2)
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where k1, k−1 are the rates at which the ligand binds on and off the receptors,

respectively, and Rtot is the total receptor number. For simplicity, we will as-

sume that Rtot is constant. If we denote R = ψ/Rtot as the fractional receptor

occupancy, then we can rewrite (5.2) so that

∂R

∂t
= k1c(1−R)− k−1R (5.3)

= k1c− (k1c+ k−1)R (5.4)

= (k1c+ k−1)

(
k1c

k1c+ k−1

−R
)
. (5.5)

If the chemical concentration remains constant over a long time scale, then we can

assume that the receptor occupancy reaches an equilibrium value where ∂R/∂t =

0. Therefore, we get

R =
k1c

k1c+ k−1

(5.6)

=
c

Kd + c
, (5.7)

where Kd = k−1/k1 denotes the disassociation constant. Analysis by [103] showed

that the rate of change of the number of bound receptors given by (5.2) has

solution

ψ =
k1Rtotc

k1c+ k−1

+

(
ψ0 −

k1Rtotc

k1c+ k−1

)
exp(−(k1c+ k−1)t), (5.8)

where ψ0 is the initial number of bound receptors. We can see therefore that the

rate to reach equilibrium is determined by k1c + k−1. We will assume that the

initial background concentration c� Kd, and so

k1c+ k−1 = (k1c− k−1) + 2k−1 > k1c− k−1 � 0. (5.9)
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Therefore, the exponential term in (5.8) will decay rapidly, and so the timescale

to reach equilibrium will be small compared to the other processes taking place.

Denoting the difference in fractional receptor occupancy from the front to the

back of the cell by ∆R, we can approximate this by

∆R ≈ dl
∂R

∂x
(5.10)

= dl
∂R

∂c

∂c

∂x
(5.11)

= dl
Kd

(Kd + c)2

∂c

∂x
. (5.12)

If we assume that the chemotactic velocity is proportional to ∆R with velocity ν

then we arrive at (5.1). The chemotactic term in (5.12) is similar to that used in

Hillen and Painter [104] and others [105, 106]. They looked at PDE chemotaxis

models of advection-diffusion type, where the advection models the cell density

movement.

It is instructive to consider the behaviour of this chemotatic term under dif-

ferent scenarios. For example, if we have a fixed relative concentration gradient,

then

∆c

c0

≈ dl

c0

∂c

∂x
= constant,

where ∆c and c0 denotes the difference and average concentration across the cell,

respectively. In this situation we find that

∆R ∝ cKd

(Kd + c)2
. (5.13)

We can see that the chemotactic term therefore decays to zero as the absolute

concentration level tends to zero as expected. We also see that ∆R → 0 when

c � Kd as in this situation almost all of the cell’s receptors are occupied and

hence it is difficult for the cell to determine the gradient of the chemoattractant.
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It is easy to show that in fact ∆R is maximised when c ≈ Kd. At this level of

chemoattractant roughly half of the cell’s receptors are occupied at the front and

the back of the cell.

5.4 Modelling the chemical concentration

It is assumed that the chemical concentration evolves according to the diffusion

equation with constant diffusion coefficient and moving point sinks which model

the degradation of the chemical by membrane-bound enzymes on each cell. The

governing equation is therefore

∂c

∂t
= Dc

∂2c

∂x2
− 1√

2πσ2

NS∑
j=1

γ(c(x (j), t)) exp

(
−(x− x (j))2

2σ2

)
, (5.14)

c(x, 0) = c0, t > 0, (5.15)

where Dc is the diffusion coefficient of the chemical, x (j) is the location of the jth

cell, σ2 is variance of the Gaussian degradation term, c0 is the initial concentration

and γ(c(x (j), t)) denotes the rate of decay of the chemical at the jth cell. We will

assume that the strength of the cell degradation is given by the Michaelis-Menten

form

γ(c(x (j), t)) =
Vmax c(x

(j), t)

Km + c(x (j), t)
, (5.16)

where Vmax is the maximum rate of decay and Km is the Michaelis-Menten con-

stant.
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5.5 Experimental quantities and model param-

eters

From the data collected by Tweedy et al. [6] we can obtain estimates for the

experimental quantities. The dataset contains the coordinates of a group of

Dictyostelium discoideum cells moving by self-generated gradients under-agarose

of length L = 2500µm for a time of T = 5.5 h = 19800 s. Initially, there was

a uniform amount of folate of concentration c0 = 10µM that covered the entire

chamber. Many of the parameter values can be retrieved from the literature. The

chemotactic velocity parameter ν does not have an equivalent literature value.

This value controls how far along the domain the cells will travel. Therefore,

we choose a value which allows the cells to move a similar distance as those

from Tweedy et al. [6]. Although the diffusion coefficient for folic acid has been

estimated in [107], this value is likely calculated for the diffusion of folic acid in

solution, whereas we have folic acid diffusion in agarose gel. This would likely

lead to a reduced effective diffusion rate which we use here. The parameter values

that we will use for our numerical simulations are given in Table 5.1.
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Parameter Dimensional

D 3µm2/s

Kd 150 nM [108]

dl 10µm [109]

ν 31.57µm/s

Dc 11.05µm2/s

Vmax 3× 10−2 nM/s

Km 5µM [110]

Table 5.1: Nominal model parameter values for the simulation of Dictyostelium
discoideum cells moving in response to a self-generated gradient in the chemoat-
tractant folic acid.

5.6 Numerical discretisation

We will assume that there are NS = 100 cells calculated at N = 500 time points,

tn = (n − 1)T/(N − 1) = (n − 1)∆t, n = 1, . . . , N . This will give a value for

the time step of ∆t = 19800/499 = 39.68 s. The position of the jth cell at the

nth time point is given by x
(j)
n , 1 ≤ n ≤ N, 1 ≤ j ≤ NS. Initially, the cells are

given the position x
(j)

1 = 125υ, where υ follows a standard uniform distribution

U(0, 1). Note that this condition ensures that the cells begin in the small well.

The cells are moved by solving numerically the SDE (5.1) by the Euler-

Maruyama method. This gives

x
(j)
n+1 = x (j)

n + ν dl
Kd

(Kd + c
(j)
n )2

∂cn
∂x

∆t+
√

2D∆Wn, 1 ≤ n ≤ N, 1 ≤ j ≤ NS,

(5.17)
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where c
(j)
n is the chemical concentration evaluated at the location of the jth cell

at the nth time point, ∂cn/∂x is the chemical gradient evaluated at the location

of the jth cell at the nth time point, and ∆Wn = Wtn+1 −Wtn follows a normal

distribution of the form N(0,∆t).

Notice that equation (5.17) depends on the concentration and gradient of the

concentration for each cell over all time. To estimate these quantities, we will

use an implicit-explicit finite difference scheme to numerically solve (5.14). To do

this, we split the spatial domain into NX +1 points, xi = (i−1)L/NX = (i−1)h,

for i = 1, . . . , NX + 1. Then, denoting the approximation of the concentration at

the point xi at time point tk by cik, we look to solve

cik+1 − cik
∆t

= Dc

(
ci+1
k+1 − 2cik+1 + ci−1

k+1

h2

)

− 1√
2πσ2

NS∑
j=1

Vmax c(x
(j)
k )

Km + c(x
(j)
k )

exp

(
−(xi − x (j)

k )2

2σ2

)
, (5.18)

for cik+1, along with an approximation of the boundary conditions that ∂c/∂x = 0

at x = 0 and x = L which gives c0
k+1 = c2

k+1 and cNX−1
k+1 = cNX+1

k+1 . The updated

concentration cik+1, i = 1, . . . , NX + 1 can be obtained by solving a tri-diagonal

system of equations. Once we have calculated the concentration at the NX + 1

spatial points, we use linear interpolation to estimate the concentration at the

location of the cells. Similarly, we use a linear approximation of the gradient of

the concentration so that ∂c/∂x ≈ (ci+1
k+1 − c

i−1
k+1)/2h when x = xi, and again use

linear interpolation to estimate its value at the location of the cells. The same

size of time step is used to solve (5.18) as is used to moved the cells in (5.17).

Once we have solved numerically equation (5.17), we must ensure that the cells

remain in the simulated chamber by imposing appropriate boundary conditions.

This is done by assuming that if x
(j)
n+1 < 0 then x

(j)
n+1 = −x (j)

n+1, and if x
(j)
n+1 > L

then x
(j)
n+1 = L− x (j)

n+1 (mod L).
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Figure 5.2 shows a progression of the location of the cells, chemical concentra-

tion profile and the cell location PDF at six equally spaced time points. The PDF

for the cell density is obtained using Kernel Density Estimation with a normal

kernel and optimal bandwidth for estimating normal distributions. Note that this

is done using the default settings of the MATLAB function fitdist. We calculate

the location of the cells by (5.17) and the chemical concentration by (5.18). We

take NX = 1000, giving a spatial grid size of h = 2.5µm for the implicit-explicit

finite difference scheme. The parameters values for the simulations are taken

from Table 5.1. We can see that the cells move from the small well to the right as

expected. We see a leading wave of cells, a key property of self-generated gradient

chemotaxis. In the paper from Tweedy et al. [6], they are able to measure the

chemical concentration profile at a single time point corresponding to the end of

the experiment. They find that the chemical concentration is high in front of

the cell wave and quickly drops off to near zero concentration at the location of

the wave. We see very similar results with our simulated concentration profiles.

Finally, we find a single mode in the cell location PDF corresponding with the

cell wave, whereas the experiments done by Tweedy et al. [6] find a bimodal dis-

tribution for the PDF. In their experiments, new cells continue to move into the

chamber during the experiment, while in our simulated experiments, the number

of cells in the chamber is constant from the start. We believe this is why we do

not find a bimodal cell location PDF.
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Figure 5.2: A plot of the cell locations (red circles), the cell concentration
(dashed blue line) and the cell location PDF (solid red line) over time, where
time progresses from (a) to (f). The parameter values which produced these
plots are those from Table 5.1.

To test whether the time and space steps used in the Euler-Maruyama method

and the implicit-explicit finite difference scheme give rise to accurate numerical

approximations, we will repeat the simulations which led to Figure 5.2, but this

time we will double N and Nx, which results in a halving of both the time step and
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the spatial grid size. The results are shown in Figure 5.3. To plotting accuracy,

we find very similar results to Figure 5.2, suggesting that the original values give

rise to accurate numerical approximations.
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Figure 5.3: A plot of the cell locations (red circles), the cell concentration
(dashed blue line) and the cell location PDF (solid red line) over time, where
time progresses from (a) to (f). These plots use the same parameter values as
those which produced Figure 5.2, but instead we doubled the values of N and
Nx, which results in a halving of both the time step and the spatial grid size.
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5.7 Sensitivity analysis

We now look to perform a sensitivity analysis to see how the output from our

hybrid discrete-continuum model is affected by the input parameters, here called

input factors. For our model, we have six input factors: ν, Kd, D, Dc, Vmax and

Km. We initially considered the use of Monte Carlo techniques to estimate the

main and total Sobol indices for each of the model parameters. The number of

Monte Carlo samples required to estimate the Sobol indices accurately is often of

the order of 103 and with each sample requiring a full solution of the numerical

model, the cost of this approach was prohibitively high. Therefore, we chose to

use a screening method instead. These have the advantage of determining the

input factors which cause the biggest variation in the output from the model by

using a small number of model evaluations. Screening methods are qualitative

methods in that they ranks the input factors by their importance.

We will use the Morris screening method [111]. This method calculates so-

called elementary effects for each input factor. It does this by numerically cal-

culating the output at a number of points from each parameter’s assumed distri-

butions. To do this, points are sampled from the p-dimensional unit hypercube,

where p is the number of input factors, and an inverse cumulative function is used

to calculate the physical values for each parameter given the samples from the

unit hypercube. Note that the output from the model used in the Morris method

needs to be a scalar value. The outcome of the Morris method is a distribution of

elementary effects for each parameter which can then be plotted. A larger mean

and standard deviation in the distribution of elementary effects indicates that the

input factor has a higher importance.

We will test the Morris method by using the ensemble time-average overlap-

ping MSD as the output from our model. To do this, we calculate the time-average

overlapping MSD at the N − 1 non-zero time points for each cell and then av-
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Figure 5.4: A plot of the time-average overlapping MSDs for each individual
cell (red lines) and the ensemble MSD (dashed black line) using the parameter
values from Table 5.1.

erage over all NS cells to obtain the ensemble MSD. A plot of the time-average

MSDs for each individual cell along with the ensemble MSD is shown in Figure

5.4. It is important to note that there is variability in the individual MSD curves

for this particular problem. This is due to some cells staying at the front of the

propagating population, while others lose their chemotactic response as they get

left behind the travelling wave. Since the output from the model for the Morris

method needs to be a scalar value, we will take the value of the ensemble MSD at

a single time point as our output. From the previous chapters, we learned that

the time over which the MSD has been calculated has an effect on the quality of

inference of the drift and diffusion coefficients from our SDE model. Therefore,

we will see what effect using the MSD at different time points as output of the

model has on the identifiability of the random motility of the cells D and the

chemotactic velocity of the cells ν, which is a similar term to the drift velocity

from previous chapters. We will assume that each parameter is sampled from a

triangular distribution, as described in [112]. This distribution is characterised

by three values (a, b, c), where b is the nominal value of the parameter, which we

will take to be the values provided in Table 5.1, and a and c are the maximum
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and minimum values, respectively, which we take to be half and double the nomi-

mal value. The inverse of the cumulative distribution function for the triangular

distribution was therefore implemented within the Morris method, also given in

[112].

Figure 5.5 shows the distributions of the elementary effects for all six input

factors using the ensemble MSD evaluated at the first, 10th, 15th and final time

point (out of N − 1 = 499 time points) as the output from the model. We see

that using the first time point results in D being the most identifiable parameter.

As we increase the value of the time point, D become less identifiable, eventually

becoming less identifiable than ν when using the 15th time point. When we use

the final time point, D then becomes the least identifiable parameter. Although

we only have a scalar output here, these results suggest that the time over which

the MSD is calculated, or what fraction of MSD points are used, could have an

effect on the identifiability of D and ν when using ABC.

5.8 ABC for self-generated gradient model

We will now consider the use ABC to try and infer the parameters D and ν. We

have chosen to use the F&P Res approach, detailed in Section 4.7.4, since it was

found to be the best approach of those tested in Chapter 4 to accurately infer

the diffusion and drift coefficients simultaneously. Since we are trying to infer

D and ν, we will keep the other model parameters fixed at their values which

produced the results from Figure 5.2. We will take the prior distributions for D

and ν to be the triangular distributions described in Section 5.7. For this, the

nominal values for D and ν will be 3µm2/s and 31.57µm/s, with maximum and

minimum values equal to double and half the nominal values, respectively. For

the vector of summary statistics used during the initial Prangle ABC run, we
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Figure 5.5: Distributions of the elementary effects from the Morris method for
the input factors ν, Kd, D, Dc, Vmax and Km when using the MSD calculated at
the first (a), 10th (b), 15th (c) and final (d) time point as the output from the
model.

will use the ensemble MSD calculated at the N − 1 non-zero time points. The

observed vector of summary statistics will be the ensemble MSD calculated using

the nominal values from Table 5.1.

Samples from the joint posterior distributions for D and ν for 8 iterations of

the F&P Res approach are shown in Figure 5.6. The dashed lines correspond with

the true values of D and ν. Although we do not have access to estimates of the

exact joint posterior distributions, we find in the final joint posterior distribution

that both D and ν are inferred relatively well. However, there appears to be a

slight bias in the inference of D.
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Figure 5.6: Samples from the joint posterior distributions for D and ν using the
F&P Res algorithm. The value of ε decreases as we progress through (a) to (g).
The dashed lines correspond with the true values of D and ν. These experiments
were for NS = 100, N = 500 and T = 19800 s, with the parameter values given
in Table 5.1.
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In the previous chapters we found that taking a smaller value of T generally

improved the inference of the diffusion coefficient, while taking a larger value of T

generally improves the inference of the drift velocity. Here, we will test re-running

the ABC F&P Res approach where we calculate the ensemble MSD as before, but

the summary statistics will be taken to be the first and final ten MSD points. We

would expect using the first ten MSD points to improve the inference of D and

the final ten MSD points to improve the inference of ν. Figure 5.7 shows a plot

of the ABC F&P Res results when we use the first ten MSD points, all the MSD

points (note that this is the same plot as Figure 5.6(h)), and the last ten MSD

points as the summary statistics. We find that taking the first ten MSD points

corrects the bias in the inference of D. When we use the final ten MSD points,

D becomes unidentifiable as we would expect. For ν, however, the posterior

distributions appear similar using the three different summary statistics and we

do not find an improvement in the inference of ν when we use the final ten MSD

points. This is likely due to the chemotactic term of our chemotaxis model being

much more complex than the simple drift term considered in previous chapters.

5.9 Conclusions

In this chapter, we presented a hybrid discrete-continuum model describing self-

generated cell chemotaxis and the diffusion of a local chemoattractant. The cells

were moved according to the drift-diffusion SDE (5.1) and the evolution of the

chemical was modelled using the PDE (5.14). Sensitivity analysis was performed

using the Morris screening method to see how the identifiability of D and ν

changes as we change the output function. Finally, the F&P Res ABC approach

was used to try and infer the parameters D and ν.
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Figure 5.7: Samples from the joint posterior distributions for D and ν using the
F&P Res algorithm where the summary statistics is taken to be the first ten MSD
points (a), all the MSD points (b), and the final ten MSD points. The dashed
lines correspond with the true values of D and ν. These experiments were for
NS = 100, N = 500 and T = 19800 s, with the parameter values given in Table
5.1.

The drift term in the SDE was derived by considering receptor-ligand kinet-

ics. By looking at the rate at which ligands bind on and off the cell receptors,

assuming a constant total receptor concentration, we arrive at the chemotactic

term given by (5.12). This term allowed cells to chemotax proportional to the

chemical gradient when the concentration is small relative to the disassociation

constant Kd and induced random cell movement when the concentration is large

relative to the disassociation constant. The evolution of the chemoattractant was

described using the diffusion equation with constant diffusion coefficient, along

158



Chapter 5 – Model for self-generated gradient cell movement

with a Gaussian-like term which modelled the degradation of the chemical by

the cells. The strength of the cell degradation was assumed to have a Michaelis-

Menten form.

To numerically simulate the movement of the cells and the evolution of the

chemoattractant, experimental quantities for the self-generated gradient data

were retrieved from Tweedy et al. [6] and values for the model parameters

from the literature. We assumed that there were NS = 100 cells calculated

at N = 500 time points within a chamber of length L = 2500µm for a time of

T = 5.5 h = 19800 s. Initially, the cells were placed randomly in a small well of

length 125µm at the left side of the chamber. The initial chemical concentration

was c0 = 10µM. To simulate the movement of the cells, we solved our drift-

diffusion SDE numerically by the Euler-Maruyama method, as given by (5.17).

The evolution of the chemoattractant was simulated on a uniform background

grid using an implicit-explicit finite difference scheme to numerically solve (5.14).

The updated concentration was then found by solving a tri-diagonal system of

equations. Linear interpolation was used to estimate the chemical concentration

at the location of the cells, as well as using a linear approximation for the chemical

gradient at the location of the cells. The location of the cells, chemical concentra-

tion profile and the cell location PDF at six equally spaced time points was shown

in Figure 5.2. Our simulations showed a leading wave of cells, a key property of

self-generated gradient, and concentration profiles which matched that found in

Tweedy et al. [6]. This showed that our drift-diffusion model could give rise to

self-generated gradient chemotaxis.

We then performed a sensitivity analysis of our hybrid discrete-continuum

model. Our model consisted of the six input factors ν, Kd, D, Dc, Vmax and Km.

We initially investigated using the Sobol method but found that it was compu-

tationally expensive. Therefore, we chose to use the Morris screening method

instead. This method calculates a distribution of elementary effects for each
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input factor. A larger mean and standard deviation in the distribution of the

elementary effects indicates that the input factor has a higher importance. The

output from the model used in the Morris method needs to be a scalar value. We

tried using the value of the MSD at a single time point as the output from the

model. Since we have previously observed that the time over which the MSD is

calculated has an effect on the identifiability of the diffusion and drift coefficients

of the cells, we investigated how choosing the MSD calculated at different time

points affects the identifiability of the random motility D and the drift velocity ν

of the cells. We found that taking the first time point results in D being the most

identifiable parameter with ν being the second least identifiable. As we took the

value of the MSD at later time points, the identifiablility of D decreases, until it

becomes the least identifiable parameter when using the final time point. These

results suggested that the time over which we calculate the MSD could have an

impact on the inference of D and ν.

Finally, we used ABC to try and infer the parameters D and ν. We used the

F&P Res approach as this was found to be the best approach of those tested in

Chapter 4 for inferring both the diffusion and drift coefficients simultaneously.

The prior distributions for D and ν were taken to be triangular distributions, with

nominal values taken to be those that produced Figure 5.2, and maximum and

minimum values taken to be double and half the nominal values, respectively. The

summary statistic for the initial Prangle ABC run was taken to be the ensemble

time-average overlapping MSD calculated at the N−1 non-zero time points. The

observed summary statistic was also simulated from our model. We found that

D and ν are inferred fairly well using this approach, as seen in Figure 5.6, but

that there appears to be a bias in D. We also tried running ABC using the first

and final ten MSD points as the summary statistics. We find taking the first ten

MSD points corrects the bias and improves the inference in D, but all summary
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statistics infer ν with roughly the same accuracy. We believe this is due to the

chemotactic term of our hybrid model being more complex than the drift term

looked at in previous chapters.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we demonstrated that optimal estimation of the diffusion coefficient

D and the drift velocity α from a drift-diffusion SDE model depends crucially

on the time interval over which experiments are measured. Choosing too small

a time interval results in poor inference of the drift velocity, while choosing too

large a time interval results in poor inference of the diffusion coefficient. Ad-

ditionally, we found that choosing a small time interval can result in the data

being dominated by static localisation error, while choosing a large time interval

results in poor estimates of the MSD as the variance of the MSD scales cubically

in time. An intermediate time interval was found that balances the inference of

both parameters when using regression on the MSD curve and when applying

ABC procedures.

In Chapter 2, we used weighted least squares regression on the MSD to es-

timate the diffusion coefficient and the magnitude of the drift velocity. This

required the calculation of an analytical form for the variance and covariance of

the MSD. We showed that there exists an optimal number of regression points

which minimises the error in the parameter estimates when experiments can be
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carried out only once. An optimal measurement time interval was also shown

to exist when experiments were able to be repeated. Iterative procedures to cal-

culate the optimal number of regression points and optimal measurement time

interval have been presented and been shown to work well. Simulations show

that the error in the parameter estimates can be reduced when we use the opti-

mal number of regression points, and we find a dramatic reduction in the error

when we use the optimal measurement time interval.

In Chapter 3, we give a review of different ABC procedures used for parameter

inference. Two of these procedures are then used for parameter inference in the

next chapter.

In Chapter 4, we compared the quality of the inference of the diffusion coef-

ficient and the drift velocity. Exact joint posterior distributions were calulated

using the likelihood function which were then compared with all ABC joint pos-

terior distibutions calculated throughout the chapter. We initially tested the

rejection and SMC algorithms described in Chapter 3. Again we found that the

quality of the inference depended crucially on the time interval over which ex-

periments are measured. Similar to the results in Chapter 2, we showed that too

small a time interval results in wide posterior distributions in D, while too large

a time interval gives wide posterior distributions in α. An intermediate time

interval gave rise to more isotropic posterior distributions which balanced the

uncertainty in both parameters. We showed that the SMC algorithm was more

efficient than the rejection algorithm. The tested the Prangle approach [59],

which scales the MSD by its MAD to normalise the summary statistics, and the

Fearnhead & Prangle approach [60] (referred to as the F&P MVLR approach),

which attempts to calculate more informative summary statistics, to see whether

they could improve the joint posterior distributions. Two different accuracies –

the harmonic and circular accuracy – were used to compare different ABC ap-

proaches. The harmonic accuracy is predominately determined by the change in
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the strongly identifiable parameter, while a higher value of the circular accuracy

corresponds with better inferring both parameters simultaneously. We found that

both approaches improved the inference of both parameters, but resulted in the

uncertainty in the parameters being underestimated. Comparing both accuracies,

the best approach depends on the value of T . The Prangle approach had a higher

harmonic accuracy for a small and middle value of T , while for the same values of

T the F&P MVLR approach was better. For the rest of the chapter, we focused

on comparing the two approaches with adaptations of the Fearnhead & Prangle

approach. Two adaptations used GPs with the squared exponential and the ARD

squared exponential kernels in place of multivariate linear regression, referred to

as the F&P GP SE and F&P GP ARDSE approaches, respectively. The F&P GP

approaches gave rise to bimodal joint posterior distributions which were caused

by the perturbed parameter samples from ABC going outside the GP training

region. Restricting the sampling region to the complex hull of the GP training

region fixed this bimodality issue. However, it is not clear whether using complex

hulls would result in a bias in the joint posterior distributions. Therefore, we

considered a final approach which attempted to circumvent the issues with using

convex hulls but still allow us to make use of GPs. For this, we used GPs with

the squared exponential kernel on the residuals retrieved from the multivariate

linear regression method, referred to as the F&P Res approach. We found that

the F&P Res approach gave similar results to the F&P GP approaches using

convex hulls. Comparing all approaches, we found that the F&P Res approach

had the highest circular accuracy for all values of T , suggesting that it is the best

approach to infer both parameters simultaneously.

In Chapter 5, we presented a hybrid discrete-continuum model of a population

of cells moving in response to a self-generated gradient. The movement of the

cells was assumed to follow a drift-diffusion SDE, while the evolution of the

chemoattractant was calculated using a PDE model. The drift term in the cell
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movement SDE was motivated by receptor-ligands kinetics, giving a drift velocity

proportional to the chemical gradient when the chemical concentration is small

and no chemotaxis when the chemical concentration is large. We assumed that

the evolution of the chemical concentration follows the diffusion equation with the

inclusion of a term which models the degradation of the chemical by the cells. The

strength of the cell degradation term was assumed to have a Michaelis-Menten

form. Experimental quantities were retrieved from et al. [6] and some model

parameters were found by using literature values. We solved numerically the cell

movement SDE by the Euler-Maruyama method and the chemical PDE by an

implicit-explicit finite difference scheme. From this, we were able to simulate

cells movement which showed characteristic properties of self-generated gradient

movement. Further simulations provided evidence that the space and time steps

used in the numerical schemes gave rise to accurate numerical approximations.

We performed a sensitivity analysis of our hybrid discrete-continuum model. For

this, we used the Morris screening method which ranks the input parameters,

here called input factors, by their importance. The output from the model used

within the Morris method needs to be a scalar value. Therefore, we chose to use

the value of the ensemble MSD at a single time point. Since we saw in previous

chapters that changing the time over which the MSD is calculated and using a

subset of MSD points both affect the quality of the inference of the diffusion and

drift coefficient, we tested how using the ensemble MSD at different time points

affected the inference of the random motility of the cells D and the chemotactic

velocity ν. We found that using the first time point resulted in D being the most

identifiable parameter of the model, and that taking later time points resulted

in D becoming less identifiable, eventually becoming the least identifiable when

using the final time point. This suggested that the time over which the MSD

is calculated or taking a subset of the MSD points used would both affect the

quality of the inference of D and ν when using ABC. Finally, we performed the
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F&P Res ABC approach to try and infer the parameters D and ν. We used the

ensemble MSD calculated at all non-zero time points as the summary statistics.

Both D and ν were inferred fairly well, although we found a slight bias in D. We

also ran ABC using the first and final ten MSD points as our summary statistics.

We found that taking the first ten MSD points corrects the bias in D, but there

was no improvement in ν when using the final ten MSD points. We believe this

is due to the chemotactic term of our hybrid model being more complex than the

drift term looked at in previous chapters.

6.2 Future Work

We have shown that using the F&P Res approach with the MSD as the sum-

mary statistics can sufficiently infer the random motility of the cells D and the

chemotactic velocity ν. An interesting further investigation would be to see how

well we can infer the other model parameters using ABC. For example, from the

sensitivity analysis performed in Chapter 5, we found that, excluding the first

time point, the maximum rate of decay of the chemoattractant by the cells Vmax

was the most identifiable parameter for all outputs tested. Therefore, it would

be interesting to see whether we can reasonably infer Vmax along with D and ν.

It would also be interesting to investigate whether there are more informative

summary statistics for the self-generated gradient data. From Tweedy et al. [6],

we have access to experimental cell location data at given time intervals. To

our knowledge, there is no way of obtaining experimental data for the spatio-

temporal evolution of the concentration of the chemoattractant. However, the

single chemical profile found by Tweedy et al. appears to be roughly sigmoidal in

shape. Ferguson et al. [38, 40] performed inference on PDE equations modelling

self-generated gradient movement using the data from Tweedy et al. [6] and found

that assuming a sigmoid function form for the chemical concentration gave results
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that fit the data well. From the cell movement data, while we could calculate

the ensemble MSD as was done in Chapter 5, we could also calculate the cell

location PDF. The summary statistic for the ABC procedure could then be some

appropriate norm of the difference between the experimental PDF and the PDF

obtained from the numerical model. It is not known whether all the parameters

can be accurately inferred using the PDF for the cell density or the MSD or a

combination of both, for example, as in [97], as the summary statistic. There

could be identifiability issues which could require either a different summary

statistic or a combination of several statistics.

Daly et al. [113] investigated the identifiability of parameters from inference-

based approaches on non-linear biological models. One of their investigations

looked at using a Bayesian MCMC algorithm to infer the two parameters of a

logistic growth model. They found that when time is small, one of the parame-

ters becomes unidentifiable, while using a large time makes the other parameter

unidentifiable. They found that an intermediate time exists where the joint poste-

rior distribution of the parameters was curved but much more informative about

both parameters. This reflects the results we found in Chapter 4. Interestingly,

they looked at the effect of including a time point from the three different time

scales and found that this gave the best results, with a more isotropic and nar-

rower joint posterior distribution than any of the previous results. Another of

their investigations looked at using an ABC SMC algorithm to infer the param-

eters of the Hodgkin-Huxley model. Using what they found to be the best three

summary statistics, they showed that trying to infer the parameters from real

data resulted in very wide posteriors, meaning that no parameters could be iden-

tified reasonably. They comment that in this case, the experimental data would

need to collected in a more clever way, or a simplified model would need to be

used.
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Harrison and Baker [56] also considered the identifiability of parameters from

a velocity jump process (VJP) model using particle Markov Chain Monte Carlo

(pMCMC) and ABC methods. They examined the effect of changing the time

step and the measurement noise (static localisation error) on the identifiability of

a parameter of the VJP model and the measurement noise itself. When using the

pMCMC algorithm, they found that increasing the time step worsens the inference

of both parameters, with posteriors getting wider until they eventually become

uniform over the whole prior. Increasing the measurement noise was also shown

to create wider posteriors for the VJP model parameter, but didn’t have much

of an effect on the posteriors for the measurement noise. When using the ABC

algorithm, they considered the effect of changing the time step and measurement

noise, as well as using different summary statistics, on the identifiability of the

same parameters. Regardless of the choice of summary statistics, they found that

increasing the time step widened the posteriors to become uniform over the prior

as before. The posteriors for the measurement noise also widen when increasing

the time step, but even at the optimal time step are still poor. The choice of

summary statistic was shown to have a dramatic effect on the inference of the VJP

model parameter, but does not help with the poor inference of the measurement

noise.

The papers by Daly et al. [113] and Harrison and Baker [56] highlight impor-

tant issues on the identifiability of parameters. They reflect the importance of the

experimental set-up to the inference of the parameters. When the experimental

data is collected at inappropriate time measurements, the inference of certain

parameters can become challenging. Notice that the sensitivity analysis from

Chapter 5 suggests a similar finding. If the ensemble MSD is used as the sum-

mary statistic, we found that taking the measurement time interval to be small

resulted in D being the most identifiable parameter, while a large measurement
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time interval resulted in D becoming the least identifiable parameter. A further

investigation could be done for our self-generated gradient model to determine

the best experimental set-up to infer all the parameters accurately.

Additionally, the hybrid discrete-continuum model in Chapter 5 could be used

to investigate the effect of cell heterogeneity. Although we assume throughout

Chapter 5 that all the cell model parameters are constant, simulations could

be performed where we consider the parameters as random variables which can

be drawn from distributions covering physiologically relevant ranges. It may be

important to consider cell heterogeneity in order to model certain experimental

data. For example, in the papers by McLennan et al. [35, 36], they found that

different cell populations were necessary to model the NC cell migration in a

developing embryo. The inclusion of this type of modelling complexity could

easily be accommodated in our hybrid discrete-continuum model to see the effect

on the results.

169



Appendix A

MATLAB routine to calculate

the optimal number of fitting

points

Notice that the value of popt depends on the model parameters D, α and η, as

well as the size of the time interval between frames ∆t and the total number

of time points N . Therefore, we provide a MATLAB routine which determines

popt(D,α, η,∆t, N) given these input parameters.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Code to calculate the optimal number of fitting points for the %

% overlapping time-averaged mean-square displacement (MSD). %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Input: D - Estimate of the diffusion coefficient.

% al - Estimate of the drift magnitude.
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fitting points

% eta - Estimate of the static error.

% dt - The time interval between frames.

% N - The number of time points.

%

%

% Output: popt - The optimal number of fitting points for the given

% parameter values.

%

%

% Notes - This code works for the overlapping time-averaged MSD

% calculated both from a single particle and an ensemble of

% particles as they have the same optimal number of fitting

% points.

%

function [popt] = optimal preg(D,al,eta,dt,N)

T=N*dt;

alp=4*D*dt;

ep=4*etaˆ2;

%

% Calculate the variance of the MSD

%

for n=1:N

t(n)=n*dt;

K=N+1-n;

if n<=K

varmsd(n)=(n*(4*nˆ2*K+2*K-nˆ3+n)/(6*Kˆ2))*(4*D*dt)ˆ2+...

8*alˆ2*D*(dt)ˆ3*(nˆ3*(3*K*n+1-nˆ2)/(3*Kˆ2));

varmsd(n)=varmsd(n)+((8*etaˆ2)/(Kˆ2))*((K-n)*(etaˆ2-...

alˆ2*(n*dt)ˆ2)+K*(alˆ2*(n*dt)ˆ2+4*D*n*dt+2*etaˆ2));
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else

varmsd(n)=((6*nˆ2*K-4*n*Kˆ2+4*n+Kˆ3-K)/(6*K))*((4*D*...

dt)ˆ2)+8*alˆ2*D*(dt)ˆ3*(nˆ2*(3*n*K+1-Kˆ2))/(3*K);

varmsd(n)=varmsd(n)+8*etaˆ2*(alˆ2*(n*dt)ˆ2+4*D*n*dt+...

2*etaˆ2)/K;

end

end

%

% Calculate the covariance of the MSD

%

for n=1:N

for m=1:N

K=N-n+1;

P=N-m+1;

if m+n<=N

covarmsd(n,m)=((alpˆ2*n)/(6*K*P))*(-nˆ3-2*P*nˆ2+(1-...

6*mˆ2+(6*N+6)*m)*n+2*P)+2*ep*n*alp/K+((8*alˆ2*...

dtˆ3*m*nˆ2*D)/(3*K*P))*(-nˆ2+(-3mˆ2+3*m*(N+1)+...

1))+((-n+2*P)*epˆ2)/(2*K*P)+(2*alˆ2*dtˆ2*m*nˆ2*...

ep)/(K*P);

else

covarmsd(n,m)=((alpˆ2)/(6*K))*(-mˆ3+(3+3*N-4*n)*mˆ2+...

((8+8*N)*n-2-3*Nˆ2-6*N)*m-6*nˆ3+(6+6*N)*nˆ2-...

(4*Nˆ2+8*N)*n+N*(N+2)*(N+1))-...

((8*alˆ2*dtˆ3*m*n*D)/(3*K))*(mˆ2-2*(N+1)*m+...

(3*nˆ2-3*(N+1)*n+Nˆ2+2*N))+...

(2*(alˆ2*dtˆ2*m*n+n*alp)*ep+epˆ2/2)/K;

end

end

end
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for n=1:N

for m=1:n

covarmsd(n,m)=0;

end

end

%

% Calculate the variance of the regression coefficients

%

for p=3:N

s0over=0;s1over=0;s2over=0;s3over=0;s4over=0;

for n=1:p

tn=(n*T/N);

variover=varmsd(n);

s0over=s0over+1/variover;

s1over=s1over+tn/variover;

s2over=s2over+tnˆ2/variover;

s3over=s3over+tnˆ3/variover;

s4over=s4over+tnˆ4/variover;

end

del over=s0over*s2over*s4over-s0over*(s3over)ˆ2-...

(s1over)ˆ2*s4over+2*s1over*s2over*s3over-(s2over)ˆ3;

vara over(p)=0;

varb over(p)=0;

varc over(p)=0;

for n=1:p

tn=(n*T/N);

variover=varmsd(n);

da over(n)=(s2over*s4over-s3overˆ2-s1over*s4over*tn+...

173



Chapter A – MATLAB routine to calculate the optimal number of
fitting points

s1over*s3over*tnˆ2+s2over*s3over*tn-...

s2overˆ2*tnˆ2)/(del over*variover);

db over(n)=(s0over*s4over*tn-s0over*s3over*tnˆ2-...

s1over*s4over+s2over*s3over+s1over*s2over*tnˆ2-...

s2overˆ2*tn)/(del over*variover);

dc over(n)=(s0over*s2over*tnˆ2-s0over*s3over*tn-...

s1overˆ2*tnˆ2+s1over*s2over*tn+s1over*s3over-...

s2overˆ2)/(del over*variover);

vara over(p)=vara over(p)+variover*da over(n)ˆ2;

varb over(p)=varb over(p)+variover*db over(n)ˆ2;

varc over(p)=varc over(p)+variover*dc over(n)ˆ2;

if n>1

for m=1:n-1

vara over(p)=vara over(p)+2*covarmsd(m,n)*...

da over(n)*da over(m);

varb over(p)=varb over(p)+2*covarmsd(m,n)*...

db over(n)*db over(m);

varc over(p)=varc over(p)+2*covarmsd(m,n)*...

dc over(n)*dc over(m);

end

end

end

end

%

% Calculate the optimal number of fitting points

%

[~,I]=min(sqrt(varb over(3:N))/(4*D)+sqrt(varc over(3:N))/(al*al));

popt=I+2;

end
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MATLAB routine to calculate

the optimal measurement time

interval

Similar to the popt case, the value of Topt depends on the model parameters D, α

and η, as well the total number of time points N . Therefore, we again provide

a MATLAB routine which determines Topt(D,α, η,N) given these input param-

eters.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Code to calculate the optimal measurement time interval for the %

% overlapping time-averaged mean-square displacement (MSD). %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Input: D - Estimate of the diffusion coefficient.

% al - Estimate of the drift magnitude.
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% eta - Estimate of the static error.

% N - The number of MSD points.

%

% Output: Topt - An estimate of the optimal measurement time

% interval.

%

%

% Notes - This code works for the overlapping time-averaged MSD

% calculated both from a single particle and an ensemble

% of particles as they have the same optimal measurement

% time interval.

%

function [Topt] = optimal over(D,al,eta,N)

NT=251;

Topt init=100;

for i=1:NT

T=Topt init*(1.03)ˆ(i-(NT+2)/2);

time(i)=T;

dt=T/N;

alp=4*D*dt;

ep=4*etaˆ2;

%

% Calculate the variance of the MSD

%

for n=1:N

K=N+1-n;

if n<=K

varmsd(n)=(n*(4*nˆ2*K+2*K-nˆ3+n)/(6*Kˆ2))*(4*D*dt)ˆ2+...
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8*alˆ2*D*(dt)ˆ3*(nˆ3*(3*K*n+1-nˆ2)/(3*Kˆ2));

varmsd(n)=varmsd(n)+((8*etaˆ2)/(Kˆ2))*((K-n)*(etaˆ2-...

alˆ2*(n*dt)ˆ2)+K*(alˆ2*(n*dt)ˆ2+4*D*n*dt+2*etaˆ2));

else

varmsd(n)=((6*nˆ2*K-4*n*Kˆ2+4*n+Kˆ3-K)/(6*K))*((4*D*...

dt)ˆ2)+*alˆ2*D*(dt)ˆ3*(nˆ2*(3*n*K+1-Kˆ2))/(3*K);

varmsd(n)=varmsd(n)+8*etaˆ2*(alˆ2*(n*dt)ˆ2+4*D*n*dt+...

2*etaˆ2)/K;

end

end

%

% Calculate the covariance of the MSD

%

for n=1:N

for m=1:N

K=N+1-n;

P=N+1-m;

if m+n<=N+1

covarmsd(n,m)=((alpˆ2*n)/(6*K*P))*(-nˆ3-2*P*nˆ2+...

(1-6*mˆ2+(6*N+6)*m)*n+2*P)+2*ep*n*alp/K+...

((8*alˆ2*dtˆ3*m*nˆ2*D)/(3*K*P))*(-nˆ2+3*...

(-mˆ2+(N+1)*m+1/3))+((-n+2*P)*epˆ2)/(2*K*P)+...

(2*alˆ2*dtˆ2*m*nˆ2*ep)/(K*P);

else

covarmsd(n,m)=((alpˆ2)/(6*K))*(-mˆ3+(3+3*N-...

4*n)*mˆ2+((8+8*N)*n-2-3*Nˆ2-6*N)*m-6*nˆ3+(6+...

6*N)*nˆ2-(4*Nˆ2+8*N)*n+N*(N+2)*(N+1))-...

((8*alˆ2*dtˆ3*m*n*D)/(3*K))*(mˆ2-2*(N+1)*m+...

(3*nˆ2-3*(N+1)*n+Nˆ2+2*N))+...

(2*(alˆ2*dtˆ2*m*n+n*alp)*ep+epˆ2/2)/K;

end
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end

end

for n=1:N

for m=1:n

covarmsd(n,m)=0;

end

end

%

% Calculate the variance of the regression coefficients

%

s0=0;s1=0;s2=0;s3=0;s4=0;

for n=1:N

tn=(n*T/N);

vari=varmsd(n);

s0=s0+1/vari;

s1=s1+tn/vari;

s2=s2+tnˆ2/vari;

s3=s3+tnˆ3/vari;

s4=s4+tnˆ4/vari;

end

del=s0*s2*s4-s0*(s3)ˆ2-...

(s1)ˆ2*s4+2*s1*s2*s3-(s2)ˆ3;

var a(i)=0;

var b(i)=0;

var c(i)=0;

for n=1:N

tn=(n*T/N);
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vari=varmsd(n);

da(n)=(s2*s4-s3ˆ2-s1*s4*tn+...

s1*s3*tnˆ2+s2*s3*tn-s2ˆ2*tnˆ2)/...

(del*vari);

db(n)=(s0*s4*tn-s0*s3*tnˆ2-s1*s4+...

s2*s3+s1*s2*tnˆ2-s2ˆ2*tn)/...

(del*vari);

dc(n)=(s0*s2*tnˆ2-s0*s3*tn-...

s1ˆ2*tnˆ2+s1*s2*tn+s1*s3-s2ˆ2)/...

(del*vari);

var a(i)=var a(i)+vari*da(n)ˆ2;

var b(i)=var b(i)+vari*db(n)ˆ2;

var c(i)=var c(i)+vari*dc(n)ˆ2;

for m=1:n-1

var a(i)=var a(i)+2*covarmsd(m,n)*da(n)*da(m);

var b(i)=var b(i)+2*covarmsd(m,n)*db(n)*db(m);

var c(i)=var c(i)+2*covarmsd(m,n)*dc(n)*dc(m);

end

end

end

%

% Calculate the optimal measurement time interval

%

[~,I]=min(sqrt(var b)/(4*D)+sqrt(var c)/(alˆ2));

Topt=time(I);

end
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