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Abstract 

Nonlinear response of a structure to progressive loading may origin- 

ate from two different sources viz, geometric nonlinearity and material 

nonlinear behaviour. For a rationally proportioned concrete structure, the 

material nonlinear responses are believed to contribute the major part of 
its total nonlinear behaviour. Geometric nonlinearities, become significant 

only when the structure is relatively slender. It is the material non- 
linearities of reinforced concrete structures that are of interest in this 
investigation. 

Two plate bending finite elements have been generalised to include 

coupling of inplane actions with the bending effects. This was achieved 
through layering concept. One of these elements had been employed by some 
previous researchers. But the present formulation is different from theirs 
in that a numerical integration scheme is introduced to evaluate the 

stiffnesses and internal equivalent forces. 
A number of schemes for solving the nonlinear equations have been 

included in the present formulation. Suitability and effectiveness of 
these schemes in tracing the material nonlinear responses of concrete 

slabs have been examined. 
The numerical material model behaviour is based on the experimental 

observation reported by various authors. Readily available material 
characteristic properties are used in the description of the model. The 

overall response of reinforced concrete slabs is found to be significantly 
influenced by the cracking and post cracking treatment of concrete. Some 
form of tension stiffening scheme seems necessary to represent the 
structural response realistically. A number of conventional tension 
stiffening schemes have been incorporated, including a simple alternative 
formulation. The effect of different tension stiffening schemes and some 
other numerical parameters on the numerical solution of concrete 
structures have been investigated. 

Laboratory tests were carried out on a number of square and rect- 
angular model slabs. The supporting arrangement and the applied loading 
systems were the main variables. These experimental records were later 
compared with the numerical predictions. Some other test results from 
literature have been included also. 
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Chapter 1 

INTRODUCTION 

1.1 General 

The behaviour of reinforced concrete structural members has been 

the focus of the activity of several engineers for many years. Both ex- 

perimental and analytical studies have been extensively pursued to 

improve our knowledge in understanding the response of the concrete 

structures subjected to load and other external actions. Yet the success 

in developing a general basis for analytical design procedure has been 

less spectacular. This is due to the various inherent complexities of 

concrete behaviour which are perhaps not yet fully understood and they 

act as a formidable barrier in the development of rational analytical 

methods for reinforced concrete. This is why the present day codes of 

practice, in many respects, continue to be based on empirical approach, 

using the results of large amounts of experimental data. The design for 

shear in ordinary and deep reinforced concrete beams and the design for 

torsion in reinforced concrete members are two such instances. 

Simplified empirical approach has been necessary and still con- 

tinue to be the most convenient method for ordinary design. For example, 

the ultimate strength of reinforced concrete slabs based on assumed 

yield line patterns may be suitably employed to estimate the ultimate 

load carrying capacity of such structures. But the recent demand for 

estimating the serviceable limit state makes it necessary to seek for 

some other comprehensive approach. The finite element method contends 

with its versatility to provide one such approach. It offers a powerful 

and general analytical tool for study of reinforced concrete behaviour 

throughout the loading history. 
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The response of reinforced concrete structures, subjected to 

relatively higher intensity of loads, extends beyond the elastic range. 

Moreover, the formation of tensile cracks in concrete at an early stage 

makes the computation of deflection for a cracked concrete section more 

difficult. The complexity arises from the uncertainties in the assumed 

value of instantaneous rigidity of the cracked section. The estimation 

of the deformation under varying sectional stiffness under progressive 

loading is the nonlinear analysis problem that is of interest in this 

study. Nonlinearities may also result from the large displacement con- 

siderations, known as geometric nonlinearity. But, this is not 

considered in the formulation here in view of the fact that standard 

concrete structures usually fail, long before a significantly higher 

displaced configuration is reached. 

1.2 Brief Review of Finite Element Analysis of Reinforced Concrete 

Soon after its introduction, the finite element method was recog- 

nised as one of the most potential and powerful tools for structural 

analysis of various forms. However, its wide application and popularity 

is principally due to the availability of fast electronic computers. 

During its embryonic stage, the finite element method was applied to 

study the elastic responses of different structural components, commonly 

used in aircraft construction. Its application to reinforced concrete 

structures was relatively slow and gradual. Absence of any reference to 

concrete application of the method in the classic text book by 

Zienkiewicz98 clearly demonstrates its delayed inception into the field 

of reinforced concrete. 

The earliest reported application of the finite element method to 

reinforced concrete structure was by Ngo and Scordelis in 196767. They 

have used the method to analyse reinforced concrete simple beams. The 
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main constituents, concrete and reinforcing steel were idealised by two 

dimensional constant stress triangular elements. Special spring elements 

were devised to model the bond-slip interaction between steel and 

concrete. Basically, a linear elastic analysis was performed and 

predetermined discrete cracks were introduced along the mesh boundaries by 

separating and doubling the relevant nodes. For a given set of external 

loads, the displacements, strains and stresses were calculated. Both. 

concrete and steel were treated as linearly elastic material and the 

stiffness of bond-spring elements were arbitrarily assigned. The model was 

used to obtain the displacement, strain and stress patterns in a 

reinforced concrete beam for which the location of predetermined cracks 

and the stiffness properties of bond-spring elements were varied. 

In the following year, Nilson68 introduced the first nonlinear model 

to account for the nonlinear material response of concrete and that of 

bond-slip relationships. He included an incremental-iterative loading 

scheme to facilitate the tracing of structural nonlinear response. A set 

of unbalanced nodal forces were derived from resulting material 

nonlinearities and were fed back to obtain the new iterative displace- 

ments. The effect of cracking was accounted for by stopping the solution 

whenever two adjacent elements indicated a tensile failure. The new 

cracked structure was redefined manually and the changed configuration was 

again fed into the computer and reloaded incrementally. Both of these two 

early efforts had severe limitations. In the former, the crack patterns 

were predetermined, while the latter required mannual alteration of the 

element topology to allow for the propagation of cracks. However 

restrictive these models may appear now, it should be* recognised that they 

have paved the way for finite element analysis of reinforced concrete with 
due attention to the main sources of nonlinearity. 
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In the meantime, Zienkiewicz et a199 have developed a formulation 

for representing generalised elasto-plastic material behaviour. They 

have demonstrated the application of this formulation in the case of 

concrete type material using the initial stress approach. The released 

stresses due to elasto-plastic behaviour of the materials were converted 

into an equivalent set of excess nodal forces and reimposed on the 

structure to find a new equilibrium situation. Cervenka and Gerstlel5 

followed a somewhat similar approach. In addition, their effort also 

attempted to account for the cracking of concrete. They used constant 

strain triangular elements for structural discretisation. The effect of 

reinforcing steel in shifting the crack direction from usual principal 

stress direction was considered in their model. 

Valliapan and Doolan also used the triangular elements for 90 

representing concrete. But they made use of bar elements for reinforcing 

steel and assumed perfect bond between steel-concrete interface. The 

constitutive relationship for steel and concrete in compression were 

idealised as linear elastic-perfectly plastic. A von Mises yield 

criterion was used to determine the onset of the plastic condition. The 

effect of cracking was modelled by changing the material constitutive 

matrix in a way which later gained the reputation of the smeared crack- 

ing approach. A number of experimental results were compared with the 

respective analytical predictions demonstrating the effectiveness of the 

model. 

A fairly refined and versatile isoparametric element was brought 

to use by Philips and Zienkiewicz74 for discretisation of concrete in 

planer and axi-symmetric structures. Steel was represented by special 

line elements and perfect bond was assumed to exist between steel and 

concrete. The smeared cracking approach was followed to account for 
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cracking in concrete. The choice between two cracking criteria, one based 

on principal stress and the other on principal strain were allowed for. 

They observed better performance with the stress criterion. Two 

constitutive models, one applicable to biaxial plane stress condition and 

the other for axi-symmetric situations, were proposed. The provision for 

prestressing cables were also included in their formulation. The adopted 

solution techniques were either a variable stiffness method or a constant 

stiffness method like that of initial stress method. Numerical examples 

provided include reinforced concrete deep beams, prestressed concrete 

pressure vessels subjected to internal pressure and other flat slab cases. 

Nonlinear reinforced concrete models described so far were 

restricted to plane stress or plane strain cases or structures which could 

be idealised as such. In the analytical study of reinforced concrete 

plates, two distinctly different approaches have been followed in 

modelling the necessary constitutive relations. In the first approach, 

sometimes known as the modified 'EI' method, a macroscopic view point is 

taken. An overall moment curvature relationship is employed to represent 

the various stages of material behaviour. This approach was applied to 

reinforced concrete plates by Jofriet and McNeice47 and Bell and Elms6. 

The second approach is based on separately idealised stress-strain 

relations for concrete and steel. The assumption of compatibility of 

deformation synthesises the two constituent materials. This second 

approach can be materialised for flexural situations, if the material 

property variations across the thickness is properly accounted for. This 

is accomplished in a discretised fashion through the layering concept in 

which each layer may be allowed to have different properties. Several re- 

searchers27'28,33,34,36,37,92-94 have used this concept for the analysis 

of reinforced concrete and composite steel concrete structures. 
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Hand et al36 used a rectangular ACM plate bending element to which a 

bilinear inplane displacement function has been coupled. They have used 

explicit integration to evaluate the element stiffness matrix and 

consequently had to rely upon some averaging scheme to approximate the 

strains representative of the whole element. Thus, when a crack appeared, 

the whole layer over the element was assumed to have fissured. On the 

solution side, they have employed some form of Newton-Raphson scheme to 

achieve convergence within a load increment. The residual forces were 

obtained in a way like that of the initial stress method. A particular 

feature of their model was that the inplane and bending constitutive 

matrices were coupled. The effect of this coupling was demonstrated 

through a numerical example. 

Dotreppe et al27 followed similar analytical procedure as those just 

described. But instead of using a fully coupled constitutive relations, 

they have utilised the reduced bending stiffness concept with a view to 

minimise computational efforts. This was achieved by assuming the inplane 

stress resultants to be zero. Thus, if the incremental total constitutive 

relation is given as 

AN- D11 D12 Aö (1.1) 

AM 

{D21 

D22 AXo 

Then, 
AN =0 leads to 

{Deo} D11 D12 [AXo} (1.2) 

The incremental moments may be given by 

SAM) = D*tAX01 (1.3) 

where, 
D* = D22 -D D-11 (1.4) 

is the reduced bending stiffness relation. 
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Wanchoo and May92 have employed exactly the reduced bending 

stiffness approcah for analysis of reinforced concrete plates under 

cracking environment. They have used 4 noded Bogner elements for 

structural discretisation. Gilbert and Warner33 used the layering 

concept along with reduced bending stiffness approach to study the time 

dependent behaviour of reinforced concrete plates caused by creep and 

shrinkage. Compatible Bogner elements were employed for discretisation 

of the slab continuum. The analytical procedure was similar to any 

standard nonlinear solution scheme except that instead of incrementing 

the load, the incremental strains were derived from assumed creep law 

for concrete. The new equilibrium condition was established in an 

iterative way to satisfy the current strain state. 

Wegmuller93 has extended the layering concept to the analysis of 

eccentrically stiffened plates. He used layered element models for both 

plates and beams that form the composite bridges. He included the 

inplane and out of plane displacement functions for representing the 

element response to load. But he evaluated the inplane and out of plane 

stiffness matrix separately and then added the two in appropriate 

fashion to form the element stiffness. In doing so, he had certainly 

bypassed the coupling effect that exists between the inplane and bending 

actions. Gradual plastification of the steel stiffeners was the main 

nonlinear material feature that was included in his formulation. The 

nonlinear response of the concrete deck was not accounted for. These 

effects were included later by Wegmuller and Amer 94,95. It is apparent 

from their reports that an explicit integration was performed to 

evaluate the element stiffnesses. But what is more uncertain, is the 

planar location of the sampling point or points, used to estimate the 

representative layer strains and stresses in an element. 
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Cope and Rao is 
provided extensive analytical results for various 

reinforced concrete slab type structures. They have used an initial 

stress formulation to obtain the residual nodal forces resulting from 

material nonlinearities. The adopted solution procedure was based on 

incremental total strain approach, employing the constant stiffness 

method of solution for solving the equilibrium equations. The method of 

direct iteration was followed to achieve equilibrium at every loading 

step. The structural stiffness matrix was triangularised using the 

Cholesky decomposition procedure. They have employed two different 

elements for their analysis. One for plane stress problems and the other 

for plate bending situations. For the plate bending elements, they have 

used a3x3 points integration scheme in plan along the boundary of the 

elements with 5 sampling stations across the thickness. The numerical 

integration scheme across the thickness renders their model somewhat 

different from the layering concept, especially in the way the 

equivalent nodal forces are computed. This numerical aspect of the model 

was made more clear by them in a later paper19 in which the boundary 

integration stations on plan was replaced by the standard Gaussian 

locations. 

Johnarry49 on the other hand, used a layered plate element 

formulation with 5 degrees of freedom per element node. The adjacent 

orthogonal steel reinforcements were smeared into a single layer having 

zero Poisson's effect. This deliberate omission of Poisson's ratio has 

in effect restored the uniaxiality of the individual steel layers. Still 

an arbitrary criterion to mark the plastification of the steel layer was 

necessary for a combined equivalent layer of steel. On the numerical 

side, he has followed the initial stress concept with primarily constant 

stiffness solution procedure. He also studied two other variable 
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stiffness solution scheme, both employing some form of direct iteration 

method. One was based on incremental total strain while the other 

followed a step by step accumulative incremental-iterative strain path. 

With the initial stress approach, he has analysed a number of reinforced 

concrete structures. These include some skew and rectangular bridge slab 

models tested by him. 

Recently Cope and Rao 2l. have demonstrated the effectivness of 

different finite element models in predicting the shear force distri- 

bution of reinforced concrete slabs. Three elements were chosen for the 

comparative study. These included a linear moment triangular element 

based on classic thin plate theory, a heterosis quadrilateral element 

based on Mindlin thick plate theory and a standard isoparametric brick 

element. Obviously, the brick element should perform the best as it is 

free from any assumption bias. But it is perhaps the costliest one to 

use. Of the two plate elements, it is reported that the heterosis ele- 

ment with thick plate formulation is the better in predicting shear 

forces near the critical edge zones. Nevertheless, very fine meshes are 

necessary in the edge zones to obtain a reliable prediction and thereby 

increasing the cost of the analysis. On the other hand it was suggested 

that a thin plate formulation may be advantageously utilised if 

appropriate consideration is given to the reaction values which should 

guide to a better estimate of the shear forces in the edge zones. 

Nonlinear analysis of reinforced concrete is centred around a 

suitable model for the description of its nonlinear material response. 

With the growing interest in this field, various material models have 

emerged. A brief review of this aspect here seems in order for com- 

pleteness. More will be referred to later in Chapter 3, devoted to 

material modelling concepts. 
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Although test results on concrete specimens exhibit considerable 

scatter even in controlled laboratory environment, the general trend is 

fairly conclusive. The uniaxial strength properties are well established 

and are reasonably well understood by the practising engineer with some 

experience. The multiaxial behaviour of concrete is somewhat different 

from those exhibited under uniaxial state of stress. The experimental 

investigation of Kupfer et al58 has outlined the behaviour of concrete 

under biaxial state of stress. The ultimate strength envelope obtained 

by them may be described in terms of the readily obtainable uniaxial 
59 

properties. Such a description of material behaviour is necessary and 

forms the essential core of any nonlinear analytical solution procedure. 

Test results of Liu, Nilson and Slate61 simply confirms the 

findings of Kupfer et al. The proposed mathematical description of the 

ultimate strength envelope for concrete by Liu et al62 was similar to 

and perhaps slightly different from those of Kupfer and Gerstle59. The 

only important difference was that the former (Liu et al) postulated an 

orthotropic model while the latter suggested an isotropic description. 

The biaxial strength envelope of Kupfer and Gerstle has been widely 

accepted in the nonlinear analysis of concrete structures69, 

Various models for concrete differ from one another in the way of 

treating the crack formation and other nonlinear effects introduced 

before the ultimate strength is reached. A reasonable estimate of the 

elastic constants with varying level of stress are a prerequisite for 

any nonlinear analysis of concrete. Fundamentally, the problem was 

approached by various researchers from two different angles. In one 

approach, concrete is idealised as initially elastic and then 

elastic-perfectly-plastic or elasto-plastic strain hardening material 

under biaxial compression. Wanchoo and May92, Wegmuller95, Johnarry49 
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and Huq 45 
are some of the many researchers who have used some form of 

elasto-plastic models. Chen and Chen16 went further and proposed a 

generalised elasto-plastic strain hardening model based on Kupfer and 

Gerstle's strength envelope. They hoped perhaps, that the marriage 

between the plasticity concept and the experimental findings for 

concrete should bring about a realistic and permanent settlement for 

these mutually conflicting cohabitants. 

The second approach is based on fitting curves to the observed 

experimental behaviour of concrete. This has resulted in many different 

forms of simplified curves from which the elastic constants for concrete 

are derived. Darwin and Pecknold24 developed an equivalent unaxial 

stress-strain relation in order to obtain the elasticity constants in 

the two principal stress directions. Thus, a family of equivalent curves 

were necessary for different combinations of the principal stresses. 

Bashur and Darwin2 have in fact employed this model for reinforced 

concrete slab analysis. On the other hand, Cope et a120 proposed the use 

of uniaxial stress-strain curves directly and suggested that the strain 

in the maximum principal strain direction be employed in conjunction to 

assess the current material constants. Althouth, this simplification 

ignores the localised interaction of biaxial compressive field at higher 

load levels, the overall performance may not show any appreciable 

change. 

While uniaxial relations or its equivalents are conceptually 

simple, some researchers have noted a good correlation between 

octahedral stress-strain quantities of, concrete. Gerstle, Kotsovos and 

Newman are perhaps the leading exponents in exploring such possibili- 

ties. Gerstle31 in his effort for simple formulation of biaxial concrete 

behaviour, has shown a definitive trend in the octahedral stress-strain 
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relationship. On the basis of accumulated test results, he proposed two 

simple expressions for instantaneous shear and bulk modulus of concrete. 

Thus, with these two material modulii defined at any instant of loading, 

the basic elasticity modulus and Poisson's ratio may be obtained through 

standard elasticity relations. 

Kotsovos and Newman followed a similar approach. But in their 

derivation, they tried to outline the observed physical crack formation 

process in the context of increasing octahedral stress and strain54,55. 

They have identified three levels of changes in the concrete behaviour 

with progressive loading to failure. In their formulation to describe 

deformational behaviour of concrete, they have tried to quantify the 

effects of such changes. Their proposed octahedral stress-strain relat- 

ions were established by regressional analysis of a large number of 

available test data. Ina later paper, Kotsovos56 postulated an ultimate 

strength envelope of concrete to set the limiting boundary to the 

previously suggested deformational behaviour. Recently, Kotsovos57 has 

proposed simplifications to some of their previous formulations and 

delineated a loading-unloading criterion based on individual components 

of octahedral stress state. The proposed description of the 

deformational behaviour of concrete by Kotsovos and Newman are founded 

upon statistical correlation and in that sense can claim generality. 

Moreover, these relations describe both biaxial and triaxial state of 

stress in concrete. However, their expressions are unit dependent and 

some future effort to reduce them to a nondimensional form may widen the 

scope of its greater application. 

1.3 Complexities of Nonlinear Analysis of Reinforced Concrete 

The finite element method is now a well established tool for 

structural analysis. But when it comes to the application of reinforced 
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concrete structures, a number of special problems are posed. Reinforced 

concrete, behaving far from being an ideal material, has always offered 

some resistance in revealing its behaviour under different loading 

conditions. Its various complexities has delayed the progress in 

developing a rational method for its design and analysis. 
ýo, it is no L 

wonder that such complications are to be resolved in the analysis of /"° 

reinforced concrete by finite element method. The major complexities of 

reinforced concrete analysis may be summarised as follows: 

a) Reinforced concrete is composed of two materials, concrete 

and reinforcing steel, having widely different character- 

istic properties., While the properties of steel are 

possibly known within narrow limits, those of concrete are 

stochastic in nature and can vary greatly 

} 
b) The deformational behaviour of concrete is perhaps not 

explicitly understood. The constitutive relations are 

therefore only a close approximation to the real behaviour. 

c) Reinforced concrete is prone to tensile cracking 6d is 

,v infested with innumerable localised cracks from a very 
- grd 

early stage of loading history. These cracks have a pro- 

found effect on the local stresses and on the overall 

performance of the structure as well. 

d) The bond-slip relation between concrete and the embedded 

steel is highly nonlinear. Test results show wide scatter 

and an acceptable relations are yet to be agreed upon. 

e) Although concrete exhibits brittle failure under tension 

in standard tests, such behaviour can not be expected 

in continuum problem. Moreover, presence of reinforce- 

ments obviously delays the release of tensile forces 
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after the formation of a crack. But the quantification 

of this tension stiffening effect is difficult and rather 

arbitrary. 

f) Shear transfer mechanism across the crack due to aggre- 

gate interlock and dowel action may not be estimated 

properly. Their magnitude may differ significantly 

under different conditions. 

g) Concrete behaviour is time dependent. Creep and shrink- 

age effects are known to have appreciable influence on the 

deformational behaviour of concrete structures subject to 

sustained loading. 

h) Unlike isotropic situations, inplane forces are usually 

developed in a concrete structure. With progressive 

loading and sufficient boundary restraints, these forces 

may have significant bearing upon the structural response 

of concrete structures. 

1.4 Scope of Present Study 

The main objectives of this research are: 

a) To develop a special purpose computer programme for non- 

linear analysis of reinforced concrete flexural members 

taking into account of the coupling between inplane and 

bending actions. 

b) To make use of the readily available material character- 

istic properties for the description of nonlinear material 

response of the numerical model. 

c) To study the influence of some numerical parameters on the 

stability and practical usefulness of the model in the 

analysis of reinforced concrete plate structures. 
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d) To perform some experimental investigation, both, as a 

means of acquiring data for testing the performance of 

the numerical model and improving the understanding of 

the behaviour of reinforced concrete slabs under 

practical situations. 

The numerical formulation of the problem was based on small dis- 

placement theory of plate within the framework of the finite element 

method. The contribution of the transverse shearing effects have been 

excluded and therefore, its application would be limited to study the 

behaviour of reinforced concrete structures dominated by flexural 

actions. The coupling of inplane and bending stiffnesses is useful in 

simulating the realism of the behaviour of reinforced concrete struct- 

ures. The inplane forces are believed to exist in reinforced concrete 

members under cracking environment of such structures. 

A layered element approach has been adopted in realising the 

coupled actions between inplane and flexural response. This technique is 

useful and can account for the wide differences of material properties 

across the thickness of the plate. Such differences may exist from the 

start if different constituent materials form the composite plate or may 

ensue later as varying state of stress or strain across the thickness 

causes cracking, yielding, etc. of the layers at different load levels. 

The inclusion of the inplane forces, also provide the means for 

assessing numerically the distribution of such forces mobilised in a 

concrete structure which would otherwise remain unknown. 

The computer programme developed in this study will be broadly 

applied to investigate its adequacy and suitability in 

i) describing the complete load deflection response of 

reinforced concrete structures in flexure 
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ii) predicting the ultimate load carrying capacity of such 

structures 

and iii) simulating the overall crack patterns of the real 

structure at or near collapse. 

Effects of different numerical parameters such as equation 

solution algorithm, number of element layers, mesh refinements, etc., 

will be performed also, in order to establish the stability of the 

overall solution process and as a basic guide for subsequent analytical 

problems. Obvious though, it may appear that more emphasis has been 

attached to the numerical aspects of this research, nevertheless, a 

considerable amount of time and energy was expended to realise the 

experimental goal of this work. 



Chapter 2 

FINITE ELEMENT METHOD 

2.1 Introduction 

The growing need for a safe and rational structural design of 

modern aircrafts resulted in the development of the finite element 

method in its present form, although sheer intuitive analogy led to. its 

introduction. However the mathematical basis of the stiffness 
88 

relations for a continuum was soon recognised65. Since then considerable 

progress has been made in this field and its similarity with various 

classical mathematical procedures, e. g. Rayleigh-Ritz method, 

Collocation method, Galerkin's method etc. has been identified. Finite 

element method may now be viewed from all those different perspect- 

ives3,26,100 and this has led to its application to almost all branches 

of applied physics, engineering and mathematics100. In the current 

context, the necessary discussions and developments will be confined to 

thin plate bending situations. 

2.2 Basic Finite Element Procedure 

The primary step in the finite element method is to replace a 

given continuum by a set of appropriately selected smaller elements. The 

process is more commonly known as element discretisation. The total con- 

tinuum behaviour is in fact approximated by analysing a structure con- 

sisting of an assemblage of these (finite) elements interconnected at a 

finite number of joints. Obviously, the closeness of this assembled 

structural behaviour to that of the actual continuum depends on the 

closeness of the approximations by which these simple element behaviours 

has been idealised. In the displacement formulation, it is fundamental 

to select the appropriate degrees of freedom at each of the nodes of the 
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element. Thus, a displacement function consistent with the given element 

domain has to be chosen first. Usually, polynomials of suitable order 

with generalised co-ordinates (coefficients) are selected to represent 

the displacement 'field within the element. Thus 

d= f(x, y) (2.1) 

or d=Pa (2.2) 

where, d is the vector of displacement variables and f(x, y) 

are the corresponding polynomials in x and y with generalised 

coefficients a. 

Eq. 2.2 is an alternate way of representing Eq. 2.1 where the 

undetermined coefficients a are rearranged in a vector form 

and the elements of matrix P are the polynomial terms in 

x and y only. 

Substitution of the coordinates of the element nodes in Eq. 2.2 will 

give the nodal displacement vector 

de-Qa (2.3) 

from which the undetermined coefficients can be obtained as 

a=Q Ide (2.4) 

Substituting Eq. 2.4 back in Eq. 2,2 yields 

d= PQ Ide (2.5a) 

= Nde (2.5b) 

where, N= PQ 1 
(2.6) 

The matrix N is commonly referred to as the shape 
46,100 

unctions, 
100 

With displacements completely describable through Eq. 2.5, the 

strains, which are some form of displacement derivatives, can also be 

determined. These strain-displacement relations can be expressed in 

matrix notations as 
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e=Bd e 
(2.7) 

where, the elements of matrix B contains the appropriate 

derivatives of the shape functions in matrix N. 

Considering the first form of Eq. 2.5, Eq. 2.7 can be reproduced as 

C=HQlde (2.8) 

where, H is the derivative matrix of the P matrix. 

From the strains, the stresses can always be obtained if the 

constitutive relation between them is defined or can be approximated. 

" The stresses are, therefore 

a=De (2.9) 

where, D is the constitutive matrix and is also known as 

the Elasticity matrix100 or Modulus matrix 
41. 

Before the equilibrium relation is invoked, the term 'Equivalent 

Nodal Forces' need some illustration. In the finite element procedure, 

only an overall equilibrium condition of the structure is satisfied. 

Thus, the equivalent nodal forces may be defined as the forces at the 

nodes, corresponding to the direction of nodal displacements, which are 

statically equivalent to the boundary tractions and distributed loads on 

the element. 

The governing equilibrium equation can be formulated following 

different approaches3,100 , e. g. minimisation of the total potential 

energy, principle of virtual work, etc. The virtual work formulation has 

been adopted here. Hence, imposing arbitrary (virtual) nodal displace- 

ments 6e and equating the external work due to the applied nodal 

forces and other forces (e. g. body force, surface traction, etc. ) acting 

on the element to the internal work due to internal stresses sustained 
during that displacement, the basic equilibrium equation can be estab- 

lished as follows 
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*T *T External Work =6e (Fn )e+fd pdv (2.10) 

where, Fn is the vector of directly applied nodal forces. 

and p is the vector of generalised body forces per unit 

volume corresponding to the degrees of freedom. 

Using Eq. 2.5b to replace d* in Eq. 2.10, the latter takes the form 

External Work =6 
eT[(Fn)e + (fNTpdv)] (2.11a) 

=a *e((Fn)e + F] (2.11 b) 

= a*TR (2.11c) 
ee 

*T Internal Work = fc adv (2.12) 

Using Eq. 2.7 in Eq. 2.12 results 

Internal Work =d* of 
BTQdv (2.13) 

Equating the work quantities in Eq. 2.11 and Eq. 2.13 and noting their 

validity for any arbitrary imposed displacement, the term d*T can be 

omitted from either side resulting 

f BTadv = Re (2.14) 

Now replacing Cr using Eq. 2.9 and recalling Eq. 2.7, the expression of 

Eq. 2.14 changes to 

(jBTDBdv)de = Re 

or kd =R ee 

(2.15a) 

(2.15b) 

where, k is the element stiffness matrix and is given as 

k=f BTDBdv (2.16) 

considering the strain matrix form given by Eq. 2.8. The element 

stiffness matrix becomes 

k=Q 1(f HTDHdv)Q 1 (2.17) 

Now if the element of the structure have initial strains (e 
o) and 

initial stresses (o), then the constitutive relation of Eq. 2.9 may be 

restated as 

cr = D(e- 
äc 

)+ö (2.18) 
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And this would result in two additional terms at the left hand side of 

Eq. 2.15 which would take a more general form now 

Kde -JBTD ödv + JBT 
ödv = Re (2.19) 

Letting, f BTD odv = (Fe)e (2.20) 

and JBTQodv 
= (Fa)e (2.21) 

and rearranging the term of Eq. 2.19 would give 

kde - Re + (Fe)e - (FQ), 
e 

(2.22a) 

or kde = (RT)e (2.22b) 

where, RT = (R +FE- Fa), is the total equivalent 

nodal forces and now, FE and Fa may be thought of as the 

contributions to the consistent nodal forces due to initial 

strains and initial stresses respectively. 

Eq. 2.15 or in a more general form Eq. 2.22 represents the 

equilibrium equations of fundamental importance. However, these 

equations have so far been established at the element level. To obtain 

the overall equilibrium relations for the whole structure, both the 

stiffnesses and the load contributions of each element are to be added 

consistently. Then, the assembled stiffness and the load vector would 

correspond to the structural degrees of freedom. The total structural 

equilibrium equations may be stated in a form similar to that of Eq. 

2.15 or Eq. 2.22 as 

Ksds= RS (2.23) 

n 
where, KS =Ek (2.24) 

i=1 

nn 
Rs =E Re or RS =E (RT)e (2.25) 

i=1 i=1 

and nT number of elements. 
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2.3 Choosing a Suitable Plate Element 

Many finite elements are now available for plate bending 

analysis17,25,100. An acceptable and efficient element should norm- 

ally17 display CI continuity ensuring interelement compatibility. The 

deformation of a thin plate is completely described by its lateral 

displacement of the midsurface85. Thus, the compatibility requires that 

the lateral displacement and its first derivatives be continuous across 

interelement boundaries. Further, the element should be capable of 

representing a constant strain condition and rigid body motion in the 

limit of mesh refinement. 

An early but very useful rectangular element originally introduced 

by Adini, Clough and Melosh (consequently named after them as ACM rect- 

angle) has been generalised with the inclusion of inplane displacements 

for this study. This element is nonconformable in nature. But it satis- 

fies the necessary conditions for convergence25,100. Walz et a191 have 

shown that its convergence is almost guaranteed for homogeneous plates. 

Higher order elements retaining some curvatures as nodal degrees of 

freedom may restore the compatibility. Smith and Duncan81 examined the 

effect of imposing such additional continuities on several orders of 

higher derivatives. Many others7'8 have used this process successfully 

to model homogeneous plate bending situations. One such simple conform- 

able rectangular element which includes the twist as a nodal variable 

has been suggested by Bogner et a18. Higher order elements pose some 

problems of boundary condition application and physical interpretation 

of forces associated with the higher order degrees of freedom. However, 

the performance of the Bogner element including inplane degrees of 

freedom will also be investigated. 
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2.4 Plate Bending Relations 

A flat plate supports the transverse loads primarily by bending 

action. The assumed stress distribution in a plate is well described in 

85 
the classical theory of plates. Certain approximations are obviously 

introduced to simplify the two dimensional plate behaviour. For example, 

in the small displacement theory of thin plates, the normal to the 

initial midsurface is assumed to remain normal to the deformed mid- 

surface. This is well known as Kirchoff's approximation. 

Stresses aY and Xy are assumed to vary linearly with z (i. e. 

in thickness direction) and the transverse stresses Tyz and T 
Xz vary 

quadratical ly with z. These stresses as shown in Fig. 2.1, produce 

moments and shear forces commonly known as stress resultants. These 

stress resultants developed in a plate are shown in Fig. 2.2 and their 

magnitudes may be given as follows 

+t/2 
= N fadz 

x x 
-t/2 

t/2 
=f ydz N 

y 
-t/2 

+t/2 
Nx . =fTxydz y 

-t/2 

+t/2 
= rQ zdz M 

x x 
-t/2 

+t/2 
MY =f . zdz y 

-t/2 

+t/2 
zdz M =fT xY xy 

-t/2 

(2.26) 

(2.27) 
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+t/2 Qx = fTzxdz 

-t/2 

(2.28) 

+t/2 Qy = ftzydz 

-t/2 

It should be noted that the Kirchoff's thin plate theory, which 

has been adopted in this study, ignores the transverse shear deformat- 

ions. Consequently, Eq. 2.28 may be omitted from further consideration. 

Also, for homogeneous and isotropic plates, the axial forces Nx and Ny 

and the shear force Nxy are usually small compared to the moments. But 

for reinforced concrete slabs, the inclusion of reinforcing steel makes 

it nonhomogeneous and often nonisotropic. Further, the cracking of 

concrete at even low load level renders the behaviour of reinforced 

concrete slabs nonisotropic even though, initially it could have been 

isotropically reinforced. 

As the plate midsurface (also referred to as reference surface 

later) is assumed to experience transverse displacements only, the 

translational displacement relation for any point on the plate element 

may be given as 

U=- zaw 3x 

V=-z 
aw 

ay 
and hence the strains are 

a2 w 
xe =-z 

a2 X 
2 

e zw y ay2 

Y= -2z 
ýw 

xy axay 

(2.29) 

(2.30) 
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2.5 Finite Elements Used 

As mentioned earlier, two rectangular four noded finite elements, 

with layering concept, have been used in this study for discretisation 

of the reinforced concrete slabs. In such models, two dimensional plate 

bending problems are treated by dividing the plate thickness into a 

finite number of layers parallel to the plate midplane (reference 

plane)28'34,36. Each layer is considered to be in a state of plane 

stress with its properties defined through appropriate biaxial 

stress-strain relations. The usual assumptions of the first order theory 

of thin plates have been employed here. It is therefore, conceivable to 

view these layered elements as a congregation of two standard elements 

namely - i) a four noded rectangular plane stress element and ii) a four 

noded rectangular standard plate bending element. The two different 

elements considered in this study differ only in their plate bending 

functions while the inplane behaviour is identically modelled for both. 

In the following sections, the basic equilibrium equations are derived 

through standard procedures set forth in the preceding articles. 

Detailed derivation, specially for the second type of element will be 

limited for brevity. The two elements hereinafter may be referred to as 

the ACM element with inplane displacements and Bogner element with 

inplane displacements or simply as 5 degrees of freedom (D. O. F. ) ACM 

element and 6 D. O. F. Bogner element. 

Fig. 2.3 illustrates the local and global node numbering scheme 

adopted for discretisation of a slab and Fig. 2.4 shows the layered 

representation of the element section across the thickness. 

2.5.1 Displacement Functions 

2.5.1.1 Inplane Displacement Functions 

In both the elements, the inplane displacements are represented by 
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a bilinear function as 

u= [1 xy xy] al (2.31a) 
J°f2 

ra3 

a4 

v= [I xy xy] a5 (2.31b) 
a6 
a7 
a$ 

2.5.1.2 Out of Plane Displacement Functions 

For the first element, the transverse displacement is modelled 

through a nonconformable plate bending element (ACM rectangle100). Here, 

the out of plane movement is simulated by a 12-term incomplete quartic 

polynomial of the form 

w= [1 xy x2 xy y2 (2.32) 

IN x3 x2y xy2 y3 x3y xy3] a9 

a20 

On the other hand, the second element incorporates the standard 

Bogner8 element to represent the plate bending action. This is a con- 

formable element which includes the cross derivative (twist) as an 

additional degrees of freedom. The 16-term polynomial describing the 

transverse behaviour is 

w= [1 xy x2 xy y2 x 

x2y xy2 y3 x3y x2 y2 xy3 x3 y2 (2.33) 

x2y3 x3y3] a l9 a10 

a24 
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For the first element, 5 degrees of freedom has been assumed at 

each of the four nodes, totalling 20 degrees of freedom per element. The 

nodal degrees of freedom are 

dl =u=u (2.34) 

vv 

ww 

aW °X ay 
aW LOY 

i ax i 

It needs mentioning that the traditional sign convention for 0 (which 

follow right hand screw rule) has been deliberately reversed to get OX 

here in order to maintain positivity of ä" instead. Fig. 2.5 outlines ay 

the sign convention adopted for the displacement variables. The general 

form of the displacement vector at any point of the element follows Eq. 

2.2 and is 

d=u=P al (2.35) 
v 5x20 a 2 
w 

0 
a20 

Substitution of the four sets of nodal coordinates in Eq. 2.35 

successively will give the total element nodal displacement vector 

containing 20 elements 

de = di =Qa1 (2.36) 

dý 20 x 20 a 

dk 

ildl 

20 

And the twenty undetermined coefficients can be found 

a=Q 
lde (2.37) 

The Q matrix inversion is carried out numerically in the computer using 

standard package software, although, an explicit inversion could be 

possible algebraically' 
01" 
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For the Bogner element with inplane displacement, the general dis- 

placement vector would contain six elements and may be given as 

d=( u1 =1 u1 (2.38) 

vv 

ww 

0x aw 
äy 

0 aw 
y ax 

0 32W 
L xy axay 

In this case, the Q matrix will consist of 24 x 24 terms and can be 

inverted similarly as that of Eq. 2.37. 

2.5.2 Strain Displacement Relation 

The six components of strains associated with plate bending are 

some kind of displacement derivatives and may be represented as 

E_r 
au I_ 1c0(2.39) 

aý äY 

au av 
ay +ax 

a2 w 

.a XZ 

a2w 
a y2 

_2 a2w 
, axTy 

x0r 
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where, Cor and )Or refers to the midsurface (reference 

surface) inplane strains and curvatures respectively. 

Eq. 2.39 can be restated in matrix notations as 

E= Ad (2.40) 

where, Matrix A consists of relevant differential operators 

and vector d contains the displacement variables (Eq. 2.35). 

Substituting Eq. 2.35 in Eq. 2.40 and replacing c. using Eq. 2.37 would 

give 

E. APQ lde (2.41) 

The explicit form of matrix A and matrix P are given in the Appendix A. 

Performing the matrix multiplication between A and P would result in the 

familiar strain displacement relation of Eqs. 2.10 or 2.11 

C= HQ 1de (2.42a) 

or e= Bd 
e 

(2.42b) 

Obviously, B= HQ 1. (2.43) 

It should be recalled here that the strain vectors of Eqs. 2.39 

through 2.42 represent the midsurface (reference surface) strains of a 

plate element. Layer strains can be obtained through invoking the 

Kirchoff's hypothesis as 

E1= ex = Cor + z}br (2.44) 

ey 
LXYJ L 

This relation will be used later while evaluating the constitutive 

matrix. 

2.5.3 Constitutive Relation 

In the conventional plate bending analysis, the strain energy 

contribution of the inplane stress resultants (Eq. 2.26) are usually 

neglected. The generalised stress and strain vectors therefore, contain 
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the moment resultants (Eq. 2.27)) and the curvatures (ö 
r) respectively. 

The constitutive matrix relating these two quantities are well 
87 

. When the established for isotropic or even orthotropic situations '100 

inplane stresses and strains are included, the constitutive relations may 

be stated as 
p 

NX ° Dp 1v0 (2.45) 

Ny v100 Eor 
1-v Nxy 002, 

MX Db 1'v 0 

My Ov10 Xor 

Mxy 00 1-v 
2 

where, 

D_ Et (2.45a) 
p 1_v2 

D_ Et 3 (2.45b) 
b 12(1-v2) 

Cr and Xor are the vectors of reference surface inplane 

strains and curvatures (Eq. 2.39). 

Obviously, the interaction between inplane movement and the fluxural 

behaviour are not modelled through Eq. 2.45. In order to-incorporate 

these coupling effects in the constitutive relations, the layering 

concept36 has been used successfully by many previous 
34 

researchers, 80,92,95 
. Derivation of such a layered modulus matrix is 

described below. 

2.5.3.1 Formulation of Constitutive Matrix for Layered Elements 

In plate bending situations, the generalised stress vectors [NX, 

Ny, NXy, MX, My, MXy]T are usually obtained as a single step integrand 
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of the respective stresses over the plate thickness (Eq. 2.26-2.27). 

Considering the layering approach, the total plate thickness is divided 

into a number of finite layers, each lying in a state of plane stress. 

The contribution of each layer towards the total stress resultants are 

computed first. All such contributions are finally summed to get the 

total stress resultants. Thus, once the layer strains are computed from 

the plate reference surface generalised strains through Eq. 2.44, the 

layer stresses can be obtained as 
(2.46) 

Qy 

T xy 1 

where, Cl is the usual elasticity matrix for plane stress 

representation i. e. 

Cl 
21v0 

(2.47) 

_V 
v10 

00 1-. V 

2 

Contribution of a layer towards total stress resultant is 

z 
N= tTaldz (2.48) 

L zb 

z 
M ftazdz 

layer zb 

The limit of integration in Eq. 2.48 is from bottom to top surface 

of the layer concerned. 

Substituting Eq. 2.46 in Eq. 2.48 and recalling Eq. 2.44 results 

JN f Cidz 

m1 JClzd z 

f Cizdz or 

f Clz2dz 
tXor 

(2.49) 
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After integration over layer thickness, Eq. 2.49 becomes 

z2-z2 
N = Cl(zt zb) C1( 

2 
b) Eor (2.50a) 

22 
z zb 

33 
z zb 

M1 C t2 C1( t3 ) Xor 

or (2.50b) 
_D 1 xor 

The total stress resultant can be obtained as 

N NL N = E, 
(2. S1a) 

M i=1 M1 

N= 
EL Dl e 

or 
(2.51 b) 

i=1 X or 

=D Eor (2.51c) 

Xor 
NL 

where, D=ED 1 
(2.52) 

i=1 

NL = total number of layers. 

The total modulus matrix D is thus obtained by adding consistently the 

Dl matrix for each layer. The latter can be computed if the layer 

elasticity matrix Cl is defined and the top and bottom distances (zt and 

zb) of each layer from the reference surface is supplied. Obviously, if 

the material properties are symmetric with respect to the reference 

plane, then the total constitutive matrix D will revert to that of Eq. 

2.45. 

The various forms of the layer elasticity matrix Cl for different 

constituent materials and at different stress levels will be discussed in 

the next chapter. 
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2.5.4 Evaluation of Element Stiffness Matrix 

The stiffness matrix for these elements can be formed from first 

principles using Eq. 2.16 or Eq. 2.17. The H and Q1 matrices are those of 

Eq. 2.42. Recalling the derivation of the total modulus matrix D (Eq. 

2.49-2.52) where the integration has already been performed in the 

thickness direction, the remaining integration for stiffness has to be 

carried out over the element area. Hence the stiffness matrix takes the 

form 

k=Q1T (JHTDHdA)Q 1, 
(2.53) 

= Q-1 
T 

(f -lTDHdxdy)Q-1 

The matrices within the integration sign can be multiplied out and 

integrated explicitly term by term if the D matrix is computed a 

priori100. Hand et a136, Sarkar80, ýohnarry49 and perhaps many others had 

in fact done so. But here in this research, the integration of Eq. 2.53 

4 
. Thus, has been carried out numerically, 

41 
using Gauss's quadrature 

30,43 

the B matrix (i. e. HQ 1 here, Eq. 2.43) has to be evaluated at each of the 

Gaussian integration points and a weighted product of BTDB are added 

consistently to get the element stiffness. A2x2 station integration was 

found to evaluate the stiffness matrix almost exactly. The element 

integration point numbering system is shown in Fig. 2.6. The essential 

significance of numerical integration will become apparent when the 

equivalent nodal forces due to internal stresses are derived in Art. 

2.5.7. 

2.5.5 Evaluation of External Nodal Load Vector 

The nodal load vector due to externally applied load may be thought 

to be composed of forces comprising two different contributions. First, 

the loads directly applied to the nodes in consistent direction of the 
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assumed degrees of freedom. Second, the equivalent nodal forces which are 

statically equivalent to the applied body forces, distributed loads, etc. 

For the first category of loads, they are directly added to the 

structural load vector. But for the second type, the equivalent nodal 

load vector has to be formed at the element level before they can be 

added to structural load vector. From Eq. 2.11, these equivalent nodal 

forces can be evaluated as 

(Feq)e =f NTpdv (2.54) 

For the frequent case of uniformly distributed transverse loading, the 

load vector p shall contain a single element pW. Consequently, the 

corresponding rows from N matrix or rather P matrix (Eq. 2.6) can be 

eliminated and Eq. 2.54 may be revised to 
T 

(Feg)e =f (PredQ 1) 
Pwdxdy (2.55a) 

PW[UPreddxdy)Q 
I ]T (2.55b) 

where, Pred is a single row of original P matrix (Eq. 2.35) 

corresponding to the transverse degree of freedom. 

Integration of the elements of red 
is quite straight forward and has 

been explicitly performed for both the element types. Later, they are to 

be multiplied by the Q1 matrix to get the actual load vector. 

2.5.6 Evaluation of the Stress Resultants 

Once the assembled stiffness equations have been solved for the 

current loads to get the displacements, the midsurface strains can be 

computed. The total stress resultants can be evaluated then straight 

through Eq. 2.51c. But due to nonlinear behaviour of the constituent 

materials, the layer elasticity matrix may need updating depending upon 

the current stress level. Hence, during the internal stress resultant 

computations, the layer stresses are evaluated first through Eq. 2.46 and 
Eq. 2.44 and the appropriate adjustments, if necessary, are made to 
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update the layer constitutive matrix Cl. Then, the contribution of each 

layer to the total stress resultant is computed using Eq. 2.48 as 

N= al(zt-zb) (2.56) 

IM 1 Lai(zt zb). (zt + zb)/2. 

Finally, all such layer contributions are added to get the total. 

2.5.7 Equivalent Nodal Forces Due to Internal Stresses 

As can be seen from the basic equilibrium equation (Eq. 2.14),, the 

internal equilibrating forces is given by JBT6dv. Hence for plates, after 

obtaining the internal stress resultants, the consistent nodal forces due 

to these internal resultants can be found as 

Fi =j BTctdxdy (2.57) 

It should be emphasised here that the integration of Eq. 2.57 has to be 

carried out numerically. Some previous researchers 
36,49,80 followed some 

what different technique to evaluate these internal equilibrating forces 

but in doing so they had to forego the basic equilibrium checking which 

is used to test the convergence of a solution corresponding to a 

particular load level100. Hand et a136 used an integrated average of the 

B matrix to approximate the middle surface strains and curvatures. 

However, they recognised that this would make the "horizontal location" 

of this strain vector undefined. But they argued that their scheme would 

still be representing an overall average midsurface strains for the whole 

plate element. Later, they seem to have multiplied this average B matrix 

with the excess layer stress resultant vector to obtain the excess 

equivalent nodal forces. Johnarry49 on the other hand, averaged the four 

nodal midsurface strains and assumed this averaged set to be 

representative of the entire element. Finally, he used the product of 

explicitly integrated B matrix and the accumulated stress resultant (or 
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the excess stress resultant) vector to estimate the equivalent nodal 

internal forces (or excess forces). It seems, that both these schemes are 

susceptible to some error unless the element strain distribution is a 

constant or nearly so. During the initial stages of this research, 

Johnarry's scheme was followed but it failed to satisfy the equilibrium 

even for a single step linear elastic analysis in the case of an 

arbitrary loading. Although computational numerical errors, e. g. 

truncation error, rounding off error, etc. during equation solution stage 

and at every other stage73 would lead to some discrepancy32 between the 

external and the internal load vectors, the magnitude of the differences 

obtained were unrealistic and unacceptable. Moreover, in the case of 

constant curvature, when the averaged strains are in fact the constant 

strains all over, equilibrium was achieved completely. This finding 

convincingly establishes the fact that the error is practically 

introduced through the averaging process in an arbitrary general loading 

case. Duncan and Johnarry's28 comment, "attempts to satisfy complete 

equilibrium at each load level leads to expensive analysis and poor 

results" seem to have been partly due to this averaging error. However, 

it still remains an expensive analysis to satisfy strict equilibrium and 

the alternative scheme outlined by them is in fact the Initial Stress 

method of Zienkiewicz et a199 and may be followed within the framework of 

numerical integration. 

2.5.8 Residual Force Vector 

Once again recalling the equilibrium equation (Eq. 2.14) and 

rearranging the terms, it can be restated as 

ýY1=R-JBTadv=0 (2.58) 

In case of linear elastic analysis, T should normally be zero or nearly 

so. But while modelling nonlinear material response, the stress vector Q 



37 

has to be continuously updated corresponding to the stress level induced 

due to current deflected configuration. Thus, T will have nonzero 

elements which can be conceived of as residual nodal forces. These 

residual forces (sometimes referred to as transfer forces92) are to be 

reimposed on the structure in an iterative scheme until the residuals 

diminish to a preselected nominal value. It is then assumed that the 

solution has converged with respect to the current load level. 

As an alternative, the difference between the assumed stress 

vector aa (following previous constitutive relations) and the true 

stress vector at (after allowing for material nonlinear response) can be 

computed first 

ex as Ct (2.59) 

These stress differences may be thought to have resulted because of 

material nonlinear response and may be termed as excess stress vector. 

Subsequently, the excess nodal forces could be obtained directly using 

Eq. 2.57, replacing a by Qex0 

j, _ 
JBT Qexdv (2.60) 

Both these schemes for evaluating the residual forces have been 

described to be acceptable by the ASCE Task Committee69. 

It may be mentioned here that the second method (Eq. 2.60) had 

been followed by all those researchers 
28,36,49 

who have used an 

averaging technique of some fashion to represent the element strain as a 

whole. When numerically integrated elements are used, it remains the 

user's choice to follow either of the two methods or even an algorithm 

combining both may be incorporated. The computer programme developed 

during this investigation has the facility to trace either the first or 

the second or a various combination of these two methods for evaluating 

the residual or unbalanced forces. Thus, if desired, the first method 



38 

could be abandoned after first, second or third iterations at a load 

level and the second could then be followed for rest of the iterations. 

Alternatively, either the first or the second scheme could be used 

throughout all the iterations. But as can be expected, these apparently 

different schemes did not produce any appreciable variations on the 

final results. 

Finally, it should be noted that while evaluating Y' (Eq. 2.58), 

the external force vector should contain the reactions. Because, nodal 

reactions (although initially unknown) are actually external forces 

along with other imposed loads which maintain the overall equilibrium of 

the structure. 

2.5.9 Convergence Criterion 

The criterion for convergence of an iterative solution can be 

based on either the residual forces or on the current iterative 

displacements. As pointed out in the preceding subarticle, the iteration 

about a particular load level may be stopped when the vector of residual 

forces has substantially reduced to some predetermined small value. 

Usually this is a bit awkward and it may prove expensive to check that 

all the residual forces have reduced to a tolerable limit. Instead, some 

form of norms of the total residual force vector could advantageously be 

used. Here, a relative Eucleadian norm of residual forces, describing a 

relative measure of the total unbalanced force in an n-dimensional 

space, has been selected to estimate convergence. Mathematically, it can 

be expressed as, 

nr = 
ATT/RTR 

where, 

nr = (relative) norm of residual forces 

ý' = residual force vector 

(2.61) 

R= total applied load vector. 
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Whenever the norm of residual forces falls below or equals a minimum 

assigned value, i. e. 

nr 4 Tolerance (er) (2.62) 

iterations about a load level is terminated. The tolerance value (er) 

can be fed into the programme as an input data and the choice of an 

appropriate value is left open to the user depending upon the required 

accuracy of the problem. Experience with current problems show that er = 

0.01 or at most 0.001 would serve for common practical purposes. 

Alternatively or even in combination with the former, a relative 

norm of the iterative displacements could also be used to terminate the 

iterative process. The norm of iterative displacements can be stated 

similarly as 

nd =0 dTTd/dTd (2.63) 

and nd 4 ed (tolerable value) (2.64) 

where, 

Ad = vector of iterative deformation 

d= vector of total displacement. 

The total deformation vector 'd' in Eq. 2.63 may refer to the total dis- 

placement vector just following the load increment (i. e. after first 

iteration) or the most recent vector after every iteration. When inplane 

effects are coupled with bending action Johnarry suggests that49 it is 

better to use the most current vector of displacements. Because in such 

a situation, inplane movements and the corresponding actions may build 

up within iterations due to cracking of concrete and other nonlinear 

effects, although a truely inplane loading may be absent. 

A tolerable value of 0.001 to 0.0001 may need to be satisfied by 

the displacement norms (ed) to produce convergence in normal reinforced 

concrete plate bending situations. A value as low as 0.00001 has been 
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successfully used in connection with isotropic solids and may be used in 

any situation if the need for acuracy weighs more compared to the cost 

involved in additional computation. 

Some other forms of convergence criterion have also been used 

successfully by many previous researchers. Wegmuller and Amer 94 
1 

terminated the iteration process when the computed effective stress in 

every layer of all the elements was within a specified tolerance. Hand 

et a136 assumed their solution to have converged when there is no more 

than a tolerable amount (say ± 5%) of change in any of the displacement 

quantity between two successive solutions. 

However, in this study the first two criterion, i. e. relative 

residual force norm and relative iterative displacement norm has been 

used in conjunction with each other. Thus, the iteration loop about a 

load increment is terminated if either the first or the second or both 

the criterion are met and or a given number of iterations has been 

exhausted. If the tolerance limit for both the criterion were set equal 

to each other, then it was observed that the residual force norm was 

satisfied more frequently than the other. If both these criterion are to 

be satisfied simultaneously, then. it would be a good guess to set the 

residual force norm tolerance to about a tenth of the other. 

2.5.10 Criterion Indicating Collapse 

Theoretically, an analysis should continue up until the collapse 

load is reached when the stiffness matrix will become singular. It could 

really be possible if the set of equilibrium equations remain well 

conditioned throughout the solution process. In practice, it may not be 

possible to continue an analysis to such levels because instability con- 
ditions arising from the degradation of conditioning of the stiffness 

matrix would possibly break down the solution process long before the 
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matrix itself become singular. In fact, whenever a group of adjacent 

elements fail almost completely, the stiffness contribution to their 

common nodal degrees of freedom would reduce significantly. This would 

switch on the instability trigger and the iterative displacements may 

shoot up sharply during the subsequent iterations and the equilibrium 

situations may never be reached again. 

An attractive proposition is to analyse the structure up to a 

limit maximum displacement. But it is then necessary to set a limit to 

this limiting displacement. Specially, for the constant stiffness method 

of analysis, the stiffness remains well conditioned throughout the 

solution processes and the analysis can go almost indefinitely. 

Johnarry49 suggested that a limiting maximum deflection of magnitude 

L2/2000t should normally correspond to the ultimate states of any 

rationally proportioned reinforced concrete slab. But the author's 

experience during laboratory investigation shows that the maximum 

deflection at failure depends not only on the supporting length and 

thickness but also on type of loading, supporting arrangements and 

perhaps some other factors yet to be outlined. As an example, the fail- 

ure deflection of the two identical square slabs, one supporting uniform 

pressure load and the other with four point loads (see Chapt. 6), may be 

compared. The deflection at failure for the former was found to be about 

25% greater than the latter. 

From the literature, it is seen that Dotreppe et al27 analysed a 

corner supported slab under a central point load and has presented a 

load displacement curve up to a maximum deflection of about 0.18t. On 

the other hand Cope and Rao18 re-analysed the same problem and presented 

their load-deflection drawing up to about 0.45t, while the experimental 

observation was perhaps discontinued at a deflection equalling 0.2t. The 
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probable explanation for this could be that, the constant stiffness 

procedure with limited number of iterations delayed the numerical 

instability stage as equilibrium was not possibly established during the 

final load increments within the prescribed number of iterations. 

To conclude it may be said that a nonlinear analysis may be con- 

tinued up to a predetermined maximum deflection of the structure 
5 

which 

can be fed into the programme as a percentage of the nominal thickness. 

The programme would stop when the maximum deflection equals or exceeds 

the preselected failure deflection or when a given number of load 

increments have been exhausted. However, even as an initial estimate, 

the maximum collapse deflection should be within 100% of the slab 

thickness considering the thin plate small displacement theory as a 

basis of this formulation. From the load-deflection behaviour obtained 

from this first computer run, one should be able to identify the 

deflection level at which the stiffness instability has occured and plot 

the necessary curve manually up to that level. If the plotting has to be 

done through another plotting programme, it may be necessary to rerun 

the programme to terminate at or near this deflection level. 

2.5.11 Boundary Conditions 

Boundary conditions considered here are only of the displacement 

type corresponding to the choosen degrees of freedom per node and they 

may be set either free or fixed. Like the nodal degrees of freedom, the 

boundary conditions are considered to be applied at the reference sur- 

face which is usually the plate midsurface for uniformly thick plate. 

They are supposed to be either normal or parallel to the plate surface 

containing the node. Thus, if an inplane displacement is prescribed to 

be zero, then only the reference surface is constrained to that direct- 

ion. It does not restrict any other inplane movement through the depth. 
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If it is set free, then there is no constraint on the inplane movement 

of the reference surface. Similarly, when one of the slopes is specified 

to be zero, it requires that the corresponding inplane displacement 

through the plate depth remains constant but it does not constrain the 

reference surface displacements. 

It is aparent that the inclusion of bilinear inplane displacement 

functions introduces some difficulty in interpreting the application of 

the appropriate boundary condition. For linearly elastic analysis, the 

inability to define the boundary conditions completely may not lead to 

significant errors. But when nonlinear effects become pronounced, speci- 

ally due to substantial cracking, the coupling between inplane and 

flexural movements could enhance further cracking in the vicinity of a 

boundary which is supposedly free to move. The significance of this 

problem could become more prominent, if the structure has an assymetric 

supporting arrangement or if it is loaded unsymmetrically or both. 

It should also be realised that the boundary conditions are 

applied to the corresponding nodal points while in reality the physical 

location of the supports are away from the nodes. This is more so when 

stiffened slabs are idealised using plate elements. Obviously, the nodal 

boundary conditions could be related to the physical conditions using 

standard transformational relations17. But the loss of accuracy caused 

by not going through such additional computations is not significant in 

l 
. usual cases7,32 

Finally, the physical realisation of the boundary conditions can 

seldom be explicitly known. For example, the boundary conditions of a 

symmetric quadrant of a simply supported rectangular slab may be ration- 

ally idealised in a number of different ways. Fig. 2.7 shows six of the 

many more possible types of the probable boundary conditions for such 
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slabs. Each of them seem physically and computationally sound. Yet, the 

practical situations may be different in some way or other, from any of 

these six categories shown. All these facts should be brought to per- 

spective while interpreting the results from any nonlinear analysis 

programmes. 

2.6 Test of Convergence for the Elements Used 

2.6.1 Convergence With Respect to Element Subdivision 

In order to estimate the rate of convergence of the elements 

adopted (i. e. 5 D. O. F. ACM element and 6 D. O. F. Bogner element) with 

respect to increasing element subdivision, a simply supported isotropic 

plate, 1200 x 1200 x 60 in dimensions has been selected. The Poisson's 

ratio is set equal to 0.3. It has been analysed for an elastic case 

under both uniformly distributed load all over and a single point load 

at the centre span. The load has been applied in a single increment and 

results obtained after single iteration. The moment at the centre span 

has been obtained from extrapolating the Gauss point moments of the 

element containing the central node using smooth extrapolating technique 

of Hinton and Campbell40. Due to symmetry only a quarter of the plate 

has been discretised and the applied boundary conditions are those of 

type 1, Fig. 2.7. 

The computed central deflection and moments are presented in 

tabular form, Table 2.1 for 5 D. O. F. ACM element and Table 2.2 for 6 

D. O. F. Bogner element. The so called exact result of Timoshenko85 has 

also been included for comparison. The rate of convergence for both the 

elements seem equally good and a4x4 mesh show sufficiently good 

result to be acceptable. Although, the 5 D. O. F. ACM element is of non- 

conformable type, still the difference between the results of the two 

elements look trivial in an elastic analysis. 
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Table 2.1 Convergence of Computed Central Deflection and Moments 
With Respect to Element Subdivision for a Simply Supported 
Square Slab Using 5 DOF ACM Element. 

Element UDL All Over Single Point Load at 
Mesh Centre Span 

Deflection Moment Deflection Moment 
Coefficients Coefficient- Coefficient Coefficient 
al ßl a2 02 

2x2 0.004329 0.05081 0.01236 0.02448 

4x4 0.004129 0.04756 0.01184 0.03023 

6x6 0.004092 -0.04700 0.01172 0.03361 

8x8 0.004079 0.04681 0.01167 0.03603 

Exact85 0.004062 0.0479 0.01160 - (Ti moshenko) 

Definitions al = dc/(p) ßl = Mx/qa 2 2 
a2 = 6c/(Pa/D) 02 = 100Mx/Pa 

Note: No. of layers = 6, v=0.3. 
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Table 2.2 Convergence of Computed Central Deflection and Moments 
With Respect to Element subdivision for a Simply Supported 
Square Slab Using 6 DOF Bogner Element. 

Element UDL All Over Single Point Load at Mesh Centre Span 

Deflection Moment Deflection Moment 
Coefficient Coefficient Coefficient Coefficient 
a1 ßl a2 ß2 

2x2 0.04178 0.05320 0.01205 0.02512 

4x4 0.04084 0.04864 0.01175 0.03080 

6x6 0.04067 0.04753 0.01167 0.03416 

8x8 0.04063 0.04711 0.01164 0.03655 

Exact 85 
0.04062 0.0479 0.01160 - (Timoshenko) 

Definitions 
4 

al = 6c/(p) ßl = Mx/qa2 
2 D! N a2 = be/(P D) ß2 = l00Mx/Pa 

Note: No. of layers = 6, v=0.3. 
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2.6.2 Convergence With Respect to Number of Element Layers 

Table 2.3 and Table 2.4 provide the computed centre span moments 

for the same square slab of Art. 2.6.1 with different number of layers. 

A4x4 mesh was used for element discretisation for all the cases as 

the number of layers was varied from 2 to 12. As the material properties 

are symmetric about the mid surface, so the coupling effect unlocks and 

the stiffness will be evaluated exactly whether the number of layer is 

one or many. The computed deflection will also remain unaltered in this 

case, but the internal moments computed from average layer stresses 

would definitely vary with the number of layers. From the tables it is 

clear that a2 layer idealisation is quite far from real. Just 4 layers 

improve the results drastically and a6 or 8 layers is quite adequate. 

In a nonlinear analysis, increasing the number of layers and 

element mesh should theoretically, improve the performance. But the 

added cost of computation may be discouraging compared to the slight 

improvements. Bedard5 observed that a mesh size sufficient to monitor 

elastic behaviour produced equally good result in a nonlinear 

environment for plane stress problems. 
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Table 2.3 Convergence of Computed Moments at Centre Span with 
Respect to Increasing Number of Layers for a Simply 
Supported Square Slab Using 5 DOF ACM Element. 

Number of 
Layers 

UDL All Over 2 (q = 0.005 N/mm ) 
Single Point Load at 
Centre Span (P = 1000N) 

Computed 
Moment, Mx 

Moment 
Coefficient, ßl 

Computed 
Moment, Mx 

Moment 
Coefficient, ß2 

2 264.176 0.03669 279.836 0.02332 

4 330.219 0.04586 349.795 0.02915 

6 342.450 0.04756 362.751 0.03023 

8 346.730 0.04816 367.285 0.03061 

10 348.711 0.04843 369.384 0.03078 

12 349.788 0.04858 370.524 0.03088 

Definition - ßl = Mx/qa2 - ß2 = 100Mx/Pa 

Note: Element Mesh 4x4, -v= 0.3, a= 1200. 
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Table 2.4 Convergence of Computed Moments at Centre Span with 
Respect to Increasing Number of Layers for a Simply 
Supported Square Slab Using 6 DOF Bogner Element. 

Number of 
Layers 

UDL All Over 2 (q = 0.005 N/mm) 
Single Point Load at 
Centre Span (P = 1000N) 

Computed 
Moment,, Mx 

Moment 
Coefficient, ß1 

Computed 
Moment,, Mx 

Moment 
Coefficient, ß2 

2 270.154 0.03752 285.105 0.02376 

4 337.692 0.04690 356.381 0.02970 

6 342.229 0.04753 369.581 0.03080 

8 354.576 0.04925 374.20 0.03118 

10 356.60 0.04953 376.339 0.03136 

12 357.70' ' 0.04968 377.500 0.03146 

Definition - ß1 = Mx/qa2 - ß2 = 100Mx/Pa 

Note: Element Mesh: - 4x4, v=0.3, a= 1200. 
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Chapter 3 

MATERIAL MODELLING 

3.1 Introduction ' 

Reinforced concrete is a composite of concrete and steel. From the 

strength point of view, it is far from an ideal material. The concrete, 

itself being a composite, is subject to creep, microcracking and varying 

strength with age. Inclusion of reinforcement introduces the further 

problems of bond, anchorage and bond slip. Nevertheless, the layering 

concept would permit the idealisation of its constituent materials 

independently. The strain compatibility at the concrete-steel interface is 

the only link that holds them together as a composite. 

In any nonlinear analysis of reinforced concrete structures, the 

basic information required is the multi-dimensional stress-strain 

relations describing adequately the characteristics of reinforced concrete 

materials subjected to monotonic and/or cyclic loading. These are called 

the constitutive relations69 and may be viewed as the simplified 

mathematical description of the behaviour of the constituent materials, 

approximating closely to the real behaviour of reinforced concrete. In the 

following sections, the mathematical modelling for each of the constituent 

materials are described separately. 

3.2 Behaviour of Concrete in Compression 

Concrete can behave either elastically or inelastically depending 

upon the level and nature of stresses to which it is subjected. Under low 

stress levels, concrete behaves more or less as a linear elastic material. 

At higher levels of stress and under sustained loading it exhibits 

significant nonlinear response which have considerable effect on the 

behaviour of reinforced concrete structures. Besides, in a multiaxial 
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state of stresses, concrete displays somewhat different characteristic 

properties compared to those exhibited under uniaxial state58. These 

experimental observations act as the basis of the simplified models 

adopted for the analytical solution. 

3.2.1 Uniaxial Behaviour 

Under uniaxial compressive loading, concrete behaves almost linear 

elastically up to about 30-50% of its compressive strength. Beyond that 

level, concrete begins to soften gradually until it reaches the peak 

stress. Microcracks are believed to start forming in the mortar-aggregate 

interface at about the same stress level it begins to behave nonlinearly. 

But the macroscopic cracks indicating visual sign of damage are not 

usually noticeable prior to the attainment of its uniaxial compressive 

strength. 

A typical stress-strain curve for concrete under monotonic uniaxial 

loading and its idealised version is given in Fig. 3.1. The uniaxial 

tension branch of the curves have also been included in the figure. It is 

obvious from Fig. 3.1 that concrete has been modelled as a bilinearly 

elastic, perfectly plastic material in compression and elastic-brittle 

material in tension. Ec. and Ed are the respective modulus of elasticity 

for the first and second elastic regions, fc being the transitional 

stress level. Concrete is assumed to go perfectly plastic when it reaches 

its ultimate strength f' and remains so until complete failure occurs at 

the crushing strain c. An alternative formulation in which the modulus 

of elasticity becomes a function of stress level is described later (Art. 

3.2.2.4) in the context of biaxial compression. 

It is known that the shape of the stress-strain curves for low, 

normal and high strength concretes are similar96. The model stress-strain 

curve should, therefore, be able to approximate the actual behaviour for 
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any real concrete if the elastic modulii, transition stress, ultimate 

strength and crushing strains are known from a standard test. The initial 

modulus of elasticity for normal weight concrete may be reasonably 

estimated from the empirical relations provided in the codes of 

practice1,23. The second elastic modulus Ed may then be approximately 

taken as 30-40% of the initial value. A simple cube or cylinder crushing 

test would furnish the ultimate strength f' and 50% of this strength can 

be taken as the transitional value. In the alternative model, the initial 

modulus and the compressive strengths are the necessary data needed for 

the nonlinear description of constitutive relation under biaxial 

compression. 

3.2.2 Biaxial Behaviour 

Strength characteristics of concrete under different combinations 

of biaxial stresses are known to be different from those under uniaxial 

state of stress. In a state of biaxial compression, concrete displays 

increased compressive strength58. This gain in strength is dependent on 

the ratio of two principal compressive stresses and an increase of about 

25% to that of its uniaxial compressive value has been observed58,61. 

Fig. 3.2 illustrates a typical biaxial strength envelope for concrete 

under various combinations of biaxial stresses. 

3.2.2.1 Yielding and Failure Criteria 

Yielding is a frequently used term in metal plasticity indicating 

the onset of plastic flow. A mathematical description of the plastic 

behaviour of a material is characterised by the following39: 

a) Yield criterion - defining the elastic limit, 

b) Flow Rule - relating incremental stresses to plastic 

strain increments, and 

c) Hardening Rule - which determines the conditions for 

subsequent yielding after initial yield. 
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Thus a yield criterion may. be defined as a mathematically determined 

critical combination of stresses which initiates the plastic flow. It is 

usually expressed as a scalar function of stresses and a hardening 

parameter. It can also be visualised as a surface in an n-dimensional 

space of stress components. The position of this surface at any 

subsequent stage of loading is determined by the initial yield surface 

and a hardening rule. Theoretically, a yield criterion can be expressed 

as 

F(a, k) =0 (3.1) 

where, k is a hardening parameter. 

And the generally accepted flow rule relating the plastic strain 

increments to the yield surface may be stated as 

dc = Xa (3.2) 

where, dP denotes the plastic strain increments and 

A is a proportionality constant. 

This rule is widely known as the normality principle because the relation 

in Eq. 3.2 can be interpreted as requiring the normality of the plastic 

strain vector to the yield surface. 

3.2.2.2 Constitutive Relations After Yield 

The constitutive relations in the incremental elasto-plastic 

formulation are based on the fact that after the onset of plasticity, the 

total incremental strain dc may be divided into a recoverable elastic 

part and an irrecoverable plastic part, so that 

de=dee+de (3.3) 

The elastic strain component deeis related to the incremental stress d0 

by usual elasticity matrix as 
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de =D1. dc (3.4) 

The plastic strain component is obtainable from the selected yield 

criterion through Eq. 3.2. After some mathematical simplifications72'100 

the elasto-plastic constitutive matrix may be established. Thus, 

da = Dep de (3.5) 

where, elastoplastic matrix, Dep is 

aFl aFl I ° 
ýc 

Jf as 
D (3.6) 

DeP=D -Ho 
+ 

öF T° 

aaJ 
taF 
aQ 

The matrix Dep is dependant on the chosen yield criterion, the flow rule 

and the hardening parameter, H'. The last one, i. e. H' actually denotes 

the local slope of the uniaxial stress to plastic strain diagram. This 

elasto-plastic matrix will remain symmetric, only if, an associated flow 

rule of plasticity has been invoked and shall remain defined even for an 

elastic-perfectly plastic material in which case H' equals zero. The 

explicit form of this elasto-plastic matrix for Von-Mises yield surface 

with an associated flow rule was introduced by Yamada et a197 and 
99 66 Zienkiewicz et a1. Later, Nayak and Zienkiewicz suggested an 

alternative method of expressing the yield criterion which is indeed a 

convenient form to generalise several classical yield conditions. 

3.2.2.3 Applicability of Yielding to Concrete 

Although it is evident that the incremental stress-strain relations 

beyond initial yielding may be mathematically modelled adequately, the 

choice of a suitable yield criterion describing the yield phenomenon in 

concrete appropriately remains debatable. The plasticity theory was 
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actually evolved to describe the behaviour of metals and is based on the 

micromechanisms of plastic slip in crystals. The nonlinear behaviour of 

concrete may only partly be attributed to such phenomenon. A more 

significant contribution to its inelastic behaviour is perhaps due to 

microcracking or microfracturing which is accompanied by a decrease in 

elastic modulii. The ASCE Task Committee69 admits that the theory of 

incremental plasticity is not a very effective approach for modelling the 

behaviour of concrete. Nevertheless, the plasticity based models have 

been used successfully by many researchersl3,16,82_ In general, the 

plasticity based models describe concrete as an elastic-perfectly plastic 

material or as an elastic-plastic-hardening material. For the former 

case, the inelastic behaviour is in effect absent throughout the analysis 

because even after yielding the elastoplastic matrix (Eq. 3.6) could be 

assigned a zero value without formal evaluation and only the stresses 

need to be held constant before a crushing surface is met. The strain 

hardening theory of plasticity has been introduced by Chen and Chen16 to 

model the nonlinear behaviour of concrete under various combinations of 

stress. With this approach, an initial discontinuity surface is defined 

to mark the end of elastic behaviour. This initial surface is obtained by 

appropriately scaling down the assumed failure surface. On reaching the 

initial discontinuity surface, the subsequent stress increments are 

determined through an isotropic hardening rule which describes the 

subsequent loading surfaces, finally merging into the failure surface 

indicating total collapse. 

3.2.2.4 Alternative Modelling of Biaxial Behaviour 

In the alternative methods of formulating the behaviour of concrete 

under biaxial compressions two distinctive approaches may be identified. 

In one approach, the monotonic behaviour is of prime interest and in the 
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other the cyclic loading incorporating the path dependance of loading and 

unloading is carefully maintained. Obviously, the mathematical formulat- 

ion for modelling monotonically loaded concrete is quite straight forward 

and simpler compared to those which strictly follow the path dependant 

behaviour. Both these methods have been found to be satisfactory as they 

can simulate the experimentally observed test results of concrete under 

biaxial or multiaxial state of stresses. In fact, these models are based 

on fitting a best-fit curve to the test data. Two such models to describe 

concrete behaviour under monotonic biaxial compressive stresses are 

illustrated below. These two have been included in the computer programme 

developed during this study. 

In the first model, it is assumed that concrete is a bilinearly 

elastic material. If the representative unaxial stress-strain curve for 

concrete is available, then a bilinear fit to these data is easily 

possible. In absence of such data, the bilinear modulii of elasticities 

and the transitional stress may still be adequately estimated as 

described in Art. 3.2.1. In order to fuse this virtually uniaxial 

bilinear behaviour into concrete under biaxial compression, it is first 

necessary to assume a failure criterion under biaxial compression. The 

experimentally determined failure envelope (Fig. 3.2) of Kupfer et a158 

has been adopted here. The mathematical description of this surface in 

the biaxial principal stress space was given by Kupfer and Gerstle 59 
and 

has been included in this study without any modification for the biaxial 

compressive state of stresses. Thus, the failure surface is 

Ql H- 
2 a2 01 

F(Q) =(-+- - 3.65 -= 0 (3.7) 
\f' f' f' 

Cccc 
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Noting that Up a2 and f' are all negative and using absolute value for 

fc, Eq. 3.7 may be rearranged to give the major biaxial compression at 

failure as 

3.65 +kf, (3.8) 
2c (1 + k)2 C 

a 
where, k= 

Cr , the principal stress ratio. 
1 

Obviously, 

Qlc_k. a (3.9) 

A second surface is then derived by appropriately scaling down the 

assumed failure surface. This may be taken as the initial discontinuity 

surface and has a similar shape to that of the assumed failure surface. 

It is, therefore, bounded by the transitional stress (fc) at the two 

extremes instead of the ultimate strength (f') in case of the failure 

surface. Fig. 3.3 gives a typical illustration of these two surfaces. 

This method of modelling was used by Hand et a136 quite successfully. 

Romstad et al's79 concept of using a number of damage regions may be 

regarded as an extension of this two zone concept. They proposed that the 

material properties be altered (but shall remain constant within each 

zone) as a new damage zone is reached to match the softening effect 

displayed by concrete. 

The former model lacks the ability to represent the gradual 

degradation of the material properties continuously. To overcome this, a 

continuous uniaxial curve for concrete like that proposed by Cope et 

al20 could have been used and the maximum compressive principal strains 

developed at any stage may be independently utilised to evaluate the 

current elastic constants. Alternatively, the uniaxial curve could be 

transformed in some way to an equivalent stress-strain curve like that of 
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Philips and Zienkiewicz74 or Darwin and Pecknold24 separating the 

Poisson's effect. The current material state could then be approached 

through these equivalent curves. While such methods remain of interest 

and appealing by their own virtue, a different approach proposed by 

Gerstle31 has been followed to develop the second model. 

This formulation is based on the observed correlation of octahedral 

shear stress to octahedral shear strain and octahedral normal stress to 

octahedral normal strain obtained from various test data. In its essence, 

it is presupposed that the hydrostatic and deviatoric components of 

responses for concrete are uncoupled. Thus, following Gerstle's approach, 

the tangential bulk modulus (Kt) and shear modulus (Gt) at any stage of 

loading, may be obtained as 
a 

Kt=Ko(1-C2Q ) (3.10) 
ou 

where, C2 is an experimentally determined constant 

K0 is the initial bulk modulus and 

eou=3(1+Q )Q1u (3.11) 
1 

Ulu is the (algebraically) maximum principal stress at 

failure for the same principal stress ratio as the current one 

and 

0-TO 
0T ou 

(3.12) 

where, Go is the initial shear modulus 

Tou =3 (�1 k+ k2ý1 (3.13) 

where k is the principal stress ratio as defined in Eq. 3.8. 
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To evaluate alu at any stress ratio, a failure surface under biaxial com- 

pression must be defined. Herein, also the failure surface of Kupfer and 

Gerstle59 has been employed. The instantaneous values of elastic 

modulus (Et) and Poisson's ratio (V may then be obtained through the 

standard relations of theory of elasticity86. 

From the experimental observation 
58,61 it has been found that the 

Poisson's ratio remains almost constant throughout the loading history 

except, near failure it increases significantly. In view of that and due 

to the conflicting31 evidence of the variations of bulk modulus in 

different experiments, the Poisson's ratio (V) has been assumed to be 

constant throughout. This implies that the variation of elasticity 

modulus and hence the bulk modulus is entirely dependant on the variation 

of shear modulus only. 

3.3 Behaviour of Concrete in Biaxial Tension and Tension-Compression 

State 

The inherent weaknesses of concrete in tension do not seem to have 

any appreciable improvement under biaxial tension or in a tension 
ý=' 5861 

compression environment. On the contrary, experimental results ' show 

that the tensile strength falls short of unaxial value in a 

tension-compression situation. When both the stresses are tensile, the 

failure strength is only slightly greater than the uniaxial strength. 

Again the strength envelope of Kupfer et a158 has been selected for 

biaxial tension-tension and tension-compression state of stresses. But 

this time with little modification. The experimental curve (Fig. 3.2) in 

the biaxial tensile stress space has been idealised as an arc of a circle 

so that 
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F(Q) _ /(Q1 /f t)2 + (Q2/ft)2 -1=0 (3.14) 

where, ft = uniaxial tensile strength. 

In the tension-compression region, the observed curve has been replaced 

by a straight line of the form 

F(°) = 
al 

- 
_2 

-1=o 
f' fJI 

tc 

(3.15) 

Thus, under either uniaxial tension or compression, Eq. 3.15 reduces to 

their respective unaxial strengths. Whenever concrete is subjected to 

tensile forces, it behaves like a linear elastic-brittle material. This 

indicates that the idealised strength envelopes of Eq. 3.14 and 3.15, 

illustrated in Fig. 3.3, may be treated as a cracking surface. Tensile 

strength of concrete is very low compared to its compressive strengths. 

It is therefore very much unlikely that the elastic constants could 

change under such small loads. The elastic modulus is therefore left 

unaltered in biaxial tension or tension-compression stress conditions. 

3.4 Cracking of Concrete 

The onset of cracking in concrete may be defined as a combination 

of stress which initiates physical disintegration of the bond that holds 

cement and aggregates together in a concrete matrix. Although, some 

microcracks may have been present even before the structure sustains any 

external load61. They are formed by differential temperature and 

shrinkage effects, to which any concrete structure is subjected to during 

the hydration and curing process. Their existence can not be altogether 

eliminated and they seem to have no significant contribution in the 

ultimate behaviour of concrete. 
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In an analytical treatment of a concrete structure, the physical 

cracking condition is of importance. In this study, a real crack in 

concrete is assumed to have developed when stresses at a point exceeds 

(or equals) the mathematically described cracking surfaces given by Eq. 

3.14 and 3.15. Cracking in concrete introduces a physical discontinuity 

in the continuity of the structure which may be represented differently 

for numerical modelling. This has resulted in two different models of 

crack representation, namely, i) Discrete Cracking Model and ii) Smeared 

Cracking Model. 

3.4.1 Discrete Cracking Model 

The discrete crack approach introduces an actual gap in the finite 

element mesh. The physical separation is achieved by doubling and 

separating the nodal coordinates along the crack path. Ngo and 

Scordelis67 introduced this approach to study the effect of cracking 

numerically and carried out a linear analysis of reinforced concrete 

beams with predefined crack patterns. Nilson68 extended this approach to 

allow the finite element model to generate the location of the cracks. In 
e? 'Z 

any case, the physical bifurcation of the nodes necessitated renumbering 

of the nodes followed by changes in the element connectivity. The 

changing topology of the elements eventually destroys the narrow 

bandwidth of the structural stiffness matrix and demands additional 

computational efforts. The semi-automatic nature of this model restricted 

its wide application in the analysis of reinforced concrete structures. 

However, if localised behaviour of concrete structures like that of dowel 

action, bond, aggregate interlock, etc. are of interest, then discrete 

69 cracking model appears to be a natural choice and tool. 
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3.4.2 Smeared Cracking Model 

In the smeared cracking model, the material properties are 

drastically changed at the location of cracking as a means to simulate 

the effect of discontinuity. Such a change is achieved by significant 

reduction of the stiffness properties in the direction normal to the 

crack. This does not involve any physical gap in the element mesh. 

Rather, it represents a crack as a finely spaced fissures at the sampling 

point. The introduction of this smeared cracking concept is attributed to 

Rashid78 by the ASCE Committee on Finite Element Analysis of Reinforced 

69 Concrete. 

During the stiffness computation and stress evaluation stages, 

material properties are evaluated at some specific points in an element 

called the sampling points. Alteration of the material properties at any 

sampling point due to cracking eventually reflects an over all material 

damage of the contributing region from which these properties are made 

up, hence smearing the effect of cracking over all that region. While 

this approach allows complete generality to the direction of crack, but 

it does not specify the extent or physical length of the crack. The exact 

location and the extent of penetration of a crack are not of prime 

importance for the study of an overall response of concrete structure. 

Therefore, this model seems adequate for such situations, although it 
ý1 ti tJý/) 

fails to delineate a crack boundary. In view of the generality of 

application and relative ease of implementation compared to the discrete 

cracking method, the smeared cracking model has been adopted for crack 

representation. 

3.4.3 Orientation of the Cracks 

When the stress combination reaches one of the two cracking 
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criterion (Eq. 3.14 and 3.15), a crack is assumed to have formed. From 

the experimental evidence of Kupfer et a158 it is known that the tensile 

cracking is normal to the principal tensile stress. This is true even if 

the second principal stress is compressive with relatively low magnitude. 

When the compression is quite high, the test results do not show 

conclusively as to the preferred direction of crack. Therefore, the crack 

orientation would be based on the principal tension at the time of its 

formation. The angle between the crack and the positive x-axis is 

measured counter clockwise positive as shown in Fig. 3.4 and may be 

deduced from 

tan 2O=(G2 (3.16) 

If the absolute value of the numerator and denomerator are used, the 

crack angle (0) obtained from Eq. 3.16 would be always an acute angle 

between 0°-45°. The actual crack direction may be determined with 

reference to the Mohr's circle of stress. This is illustrated in 

Fig. 3.5. 

3.4.4 Post Cracking Behaviour 

The initiation of a crack at a point in no way indicates a complete 

failure of that point. Rather it should be treated as the starting point 

of nonlinear behaviour of concrete. In the cracking environment of 

concrete, the overall load deflection response depends significantly on 

how well the post cracking behaviour is modelled in the numerical 

solution of such problems. A practical analysis technique should not only 

be capable of describing the stress-strain relations following a crack, 

but should also include some additional factors such as multiple cracking 

criterion, shear transfer across the crack, tension stiffening, etc. The 

numerical technique incorporating these phenomenon follows. 
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3.4.4.1 Constitutive Relations After First Crack 

After the formation of the first crack, the concrete is assumed to 

lose its stiffness perpendicular to the crack direction. This implies 

that stress normal to the crack cannot develop henceforth. The elasticity 

matrix in this local crack oriented direction may be stated as 

CL =E00 (3.17) 

000 

00 ßG 

where, $ is a shear retension coefficient. 

If the angle between the crack direction and the global X-axis is 0, then 

the local elasticity matrix (CL) is transformed to Global Co-ordinate 

System as 

CG =T 
T CLTC (3.18) 

where, the standard strain transformation matrix 
17 TE is 

2 TE =c 
2 

s 

-2cs 

Note, c= cos 0, s 

s2 cs (3.19) 

2 
C -cs 

2cs (c-s2) 

sin 40= orientation of crack. 

3.4.4.2 Shear Retention Coefficient 

On formation of a crack, the texture of the cracked surface may 

play a signficant role on its subsequent behaviour. For normal concrete, 

the surface that results from cracking has a definite roughness. This may 

restrain the free movement of the separated pieces resulting in 

transferring some shear force along the cracked face. This phenomenon is 

known as aggregate interlock. Besides, some forces are transferred across 

a crack by dowel action which is due to the bearing of reinforcement 

passing a crack against uncracked concrete. To realise these facets of 

I 

cracking phenomenon, a reduced shear modulus term (ßG) has been included 
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in the post cracking constitutive relation of Eq. 3.17. This shear 

retention coefficient, ß may be assigned any value between 0 and 1. Some 

early researchers 
78'90,92 ignored this effect altogether, i. e. they 

assumed ß= 0. But this has led to some numerical difficulties and 

brought about the use of shear retention factor O with a value greater 

than zero37'82 

Thus, the shear retention coefficient has served the purpose of an 

escape goat to circumvent the ensued numerical difficulty. Hand et a137 

suggested that any value greater than zero should serve the purpose and 

the effect of varying ß is not too significant. A recent study by 

Bedard5 shows that too small a value (less than 0.1) for 0 can produce 

appreciable change in the predicted behaviour. Same applies for higher 

value near 1. But when the value of ß lie between 0.1 and 0.5, a 

practically stable and almost identical solution is achieved. In this 

study, the shear retention coefficient ß shall be deemed to have a value 

equal to 0.5 unless overruled by explicit mentioning. 

3.4.4.3 Tension Stiffening 

The post cracking constitutive relation of Eq. 3.17 imposes 

restriction on the growth of any further stresses normal to the crack. 

But it does not outline the way of treating the crack normal stress that 

initiated its formation. One way of handling this is to drop the crack 

normal stress to zero as soon as the crack develops. This implies that 

concrete is a brittle material and loses its strength and ability to 

transfer any stress perpendicular to crack direction. Considering the 

realism of crack propagation, it is known that the development of crack 

is a gradual process. Confining effect of the surrounding material and 

the presence of reinforcing steel restrains the sudden widening and full 

development of cracks until perhaps the yield strength of steel is 
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approached. The stress in concrete at a real crack is obviously zero, but 

it is not zero if averaged over a finite distance. With the increase in 

load, more cracks develop, and the tension carried by concrete is 

gradually reduced to zero. This observed phenomenon of gradual decay of 

tensile stress perpendicular to the crack is termed the Tension 

Stiffening effect. \ 

The effect of tension stiffening may be included in the numerical 

model by asigning a descending branch to the tension portion of the 

stress-strain curve for concrete. This may be represented as either a 

gradual decay of tensile stress or as a stepwise reduction. Lin and 

Scordelisýused the former while Cope et a120 suggested single step linear 

decay and Huq 45 
used both. Two types of gradually decreasing model have 

been implemented in this programme. In the first model, the decay is 

linear while in the second it is given a parabolic variation. They are 

illustrated in Fig. 3.6 and it may be seen that the descending branch 

meets the strain axis at n. cr. Strain ccr represents the uniaxial tensile 

strain corresponding to the tensile strength ft and may be estimated as 

f' t 
Ecr =E 

c 
(3.20) 

The value assigned to 'n' is either 10 or 20, thus resulting in four 

different curves of two general forms. 

At any stage after cracking, the sustained stress normal to the 

crack becomes a function of strain in that direction. Therefore, during 

subsequent computation either the whole (in case of no tension 

stiffening) or a part of this crack normal stress is thrown back to the 

structure and its effect is'sympathetically shared by other neighbouring 

regions. The stress released from a crack may be transformed to global 
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coordinate system as 

Qx =s pQ 1 (3.21) 

v c2 y 

T -Cs xy ex 

where, c= cos 0, s= sin 0,0 = crack orientation, 

AaI = magnitude of released stress from the crack normal 

direction, and left hand terms represent the excess stresses 

in global direction resulting from cracking. 

It may be noted that the strain normal to crack would usually be 

different from cr at the time of crack formation. This is because a 

stress criterion has been employed to detect the onset of cracking and 

under biaxial state of stress, the Poisson's effect will make the crack 

normal strain different from 
cr even if the corresponding stress is f t. 

This implies that since a uniaxial tension stiffening curve has been 

adopted, the crack normal stress may drop suddenly on formation of a 

crack and would remain constant at that value until increasing strain 

enables it to meet the descending branch. This is what has been followed 

and is schematically shown by dotted lines in Fig. 3.6. 

3.4.4.4 An Alternative Approach to Tension Stiffening 

From what has been discussed in the preceding articles it follows 

that, on formation of a primary crack, the stress-strain constitutive 

matrix is set crack oriented and stress normal to crack is gradually 

withdrawn. However, this scheme does not pay appropriate attention to the 

actual state of stress at a cracked point. To be precise, even the 

strictest adherence to such a scheme may lead to a stress state which 

exceeds the mathematically defined cracking surface and yet the secondary 

cracking criteria (Art. 3.4.4.6) are not violated. To avoid such a mathe- 
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matically inadmissible situation, a different approach is postulated 

here. 

This alternative approach is similar to much established method 

followed in plasticity relations to scale the state of stress exactly on 

to the yield surface72 after the plastic work has been accounted for. 

This will be illustrated with the help of a schematic drawing of cracking 

surface in principal stress space (Fig. 3.7). Defining a term effective 

stress index as 

ve = (Q12 + Q22)/ft (3.22) 

for tension-tension condition 

and Q=c1_c? 
'i 

(3.23) 
eff 

tc 

for tension-compression state. 

Both the cracking surfaces (Eq. 3.14 and 3.15) may be reduced to, 

e= a=1.0 (3.24) 

Therefore, if the stresses at a point results e 
less than then it 

implies that the concerned point is still uncracked. This would 

correspond to a point say A, (see Fig. 3.7) within the crack surface. In 

the following iteration, the stress increment would increase Cr by oQ 
ee 

leading to point B which falls outside the crack surface. Obviously, the 

exact cracking state corresponds to the point C on the crack surface. The 

current stress increment should be reduced by an amount corresponding to 

BC in order to get the exact state of stresses at the initiation of 

primary cracking. The reduction factor RF is given by 



_1 
RF =-= 

ee - Cc 
(3.25) 

Q1-Q1-1 
.ee 

where, e and 
1-1 

corresponds to the effective stress 

index for the current iteration and the previous iteration 

respectively. 

This linear interpolation technique or a similar has been followed 
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wherever a mathematically defined surface in stress space is exceeded for 

the first time. 

Now, once a crack has developed, the stress state will correspond 

to a point on the crack surface like that of C or D. After the 

constitutive matrix has been adjusted for following a crack, the next 

iteration may lead the stress state to point E, outside the crack 

surface. This seems mathematically inadmissible. So, this time the 

stresses will be simply scaled down to point F on the crack surface. 

Therefore, the reduction factor by which the total current stresses have 

to be factored to get the excess inadmissible portion of the stresses is 

-1 
RF _ 

FE 
_ 

ae 
OF -1 Qe 

(3.26) 

Thus, at any stage the stresses would always remain on the crack surf ace. 

After first cracking, the crack oriented constitutive relations (Eq. 3.17) res- 

trict the growth of any stress normal to the crack. So, whenever the subse- 

quent total stresses are -proportionally scaled down to the cracking surface, 

the stress normal to the crack is in effect progressively reduced. Therefore, 

the tension stiffening effect is automatically taken care of. However, in 

purely unidirectional bending situations, the post cracking constitutive relation 

may not produce any subsequent change in stress due to the predominantly uni- 

axial nature of the stress state. This scheme may then lock up the crack nor- 

mal stress at the initial cracking value until a secondary failure occurs. This 

would certainly overestimate the effect of tension stiffening in such cases. 
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3.4.4.5 Crack Closure 

In case of cyclic loading it is essential to include a criterion 

for crack closure. The effect of crack closure is to give back to the 

structure its lost stiffness in full or in part to retain the effect of 

damage already incurred upon. Even under monotonic loading, it is theo- 

retically possible that the effect of nonlinearities may cause sufficient 

stress redistribution over a small region causing an existing crack to 

close. 

Although such an unloading situation may seldom be encountered in 

monotonic loading, a crack closing criterion has been included to 

maintain generality. In the smeared cracking model, the strain normal to 

the crack has sometimes been used as a measure of crack width and is 

usually employed to follow up the tension stiffening effect. Therefore, 

the same can be addressed again to check crack closure. That is, when 

strain normal to the crack turns to be compressive the crack is deemed to 

have closed. But this criterion alone may give a false picture near 

failure condition. It has been observed5,49 that after extensive yielding 

of steel, the decay in the structural stiffness coefficients introduces 

numerical instability to the solution. This may result in unrealistic 

displacement and strain quantities. To avoid such a situation, the 

criterion for crack closing adopted also includes the stress component 

normal to the crack direction. That is when both stress and strain 

perpendicular to the crack is found to be compressive, the crack is 

assumed to have closed. The layer at that Gauss point is given back the 

original stiffness properties with or without an arbitrarily reduced 

elasticity modulus. 
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3.4.4.6 Multiple Cracking 

The direction of multiple cracking system depends on the stress- 

strain behaviour assumed subsequent to the initial cracking. In the 

smeared cracking model which does not include shear retention factor , 

the secondary crack is forced to develop perpendicular to the initial 

crack. On the other hand the model which incorporates the shear retention 

factor, allows the rotation of the concrete principal stress directions 

after primary cracking. The secondary cracks may not therefore be 

necessarily orthogonal to the initial crack. This demands that an admiss- 

ible angle between the two sets of crack should be supplied. From the 
zý 

previous experiences of Bell and Elms6 and Cope et a120, the admissible 

angle has been arbitrarily taken as 50°. 

In addition, the stress parallel to the crack has been subsequently 

checked after every iteration following the initial cracking. If this 

crack parallel stress exceeds the tensile strength ft, the secondary 

crack is assumed to have formed orthogonal to the primary crack. On the 

other hand, if this stress is compressive and exceeds the uniaxial 

compressive strength f' then a strut type compressive failure is assumed. 

In either case, the layer at that sampling point is assumed to loose its 

stiffness completely. 

3.5 Local Failure 

The term local failure is used to represent complete failure of a 

local sampling point. That is, when the total stiffness of a layer 

corresponding to the sampling point is completely lost. This can happen 

when a multiple crack has formed in the concrete or when the crack 

parallel stress has reached the uniaxial crushing strength of concrete. 

Under biaxial compression and in general a crushing surface has been 

defined in strain space to indicate a local failure. This has a similar 
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shape to that of biaxial compressive strength envelope and was employed 

by Rahman et al and others45,76. This crushing criterion is given as 

F(E) _ (X2 + ey2 - exey + 0.75Yxy2) - Eu (3.27) 

When any of these local failure conditions is met at a sampling point, 

the constitutive relationship is reduced to 

dv = Oc (3.28) 

3.6 Constitutive Modelling of Reinforcement 

Reinforcing steel is assumed to be smeared into a thin layer of 

thickness equivalent to its total area. This smeared layer of steel is 

assumed to have unidirectional stiffness corresponding to the direction 

of its physical layout. The stress-strain relations for steel rein- 

forcement in its local direction (Fig. 3.8)) is 

%v= CI, Ex' . 
(3.29) 

x' 
y: E 

y, 

LTXIYIJ yx1y, 

where CL is the elasticity matrix and is given as 

CL = Es 100 -(3.30) 

000 

yuý 
1200 

With the steel disposed of at an angle T counter clockwise, from the 

x-axis (Fig. 3.8), the local modulus matrix may be transformed to the 

Cartesian space, thus 

CG = TE T CLTC (3.31) 

where, TE is the same standard strain transformation matrix of 

Eq. 3.19 and now, note that c= cos cp, s= sin cp and cp is the 

steel angle w. r. t. x-axis. 

Steel reinforcement has been idealised as an elastic-perfectly 



plastic material. Thus, when yielded, it is assumed to be unable to carry 

any increase in load and the incremental stress-strain relation reduce to 

that of Eq. 3.28 indicating local failure. An idealised stress-strain 

curve for steel is provided in Fig. 3.9. 

3.7 Numerical Procedures for Material Property Changes 

Fundamentally, the solution scheme is an incremental-iterative 

type. Following a load increment, the internal equilibrium is checked in 

an iterative way. It is during this internal equilibrating force 

computation that the material characteristic changes are exclusively 

searched for. When cracking occurs in concrete, or steel yields, or any 

changes are noticed in the constituent materials, the current character- 

istic material properties are updated to match the appropriate models 

described in the preceding articles. The current stress vector is updated 
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after accounting for all the material characteristic changes in this 

current iteration and an excess stress vector comprising the inadmissible 

part of stresses resulting from the material nonlinearities is also 

computed. The equivalent internal nodal force vector corresponding to the 

current stress level and the internal nodal excess force vector due to 

the excess stresses are then computed as 

Rl =f BTQdv 

and Rex _ 5BTQexdv 

(3.32) 

(3.33) 

These force vectors are initially evaluated at the element level. So, 

they are to be appropriately summed to get the corresponding vectors at 

structure level. Finally, the residual nodal force vector for the total 

structure can be obtained as 
n 

either, Y' =R-E (RI) 
e 

e=1 
(3.34a) 

or 'y- En (R ex )e (3.34b) 
e=1 
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The computational procedures for evaluating the integrals in Eq. 3.32 and 

3.33 has been described in the previous Chapter (Art. 2.5.8). 

For reinforced concrete structures, the analytical results may 

depend significantly on the magnitude of the load increments. If the load 

increments are too large, the initial deflected shape may not follow the 

realistic path and a part of the model may prematurely fail due to high 

strains. Only sufficiently small load increments would enable to follow 

highly path-dependent material like reinforced concrete. From 

others' 
45,49 

experience and the present, the preferred load increments 

seem to be less than 15 per cent of the load that initiates the first 

crack in the structure. 
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Chapter 4 

SOLUTION OF NONLINEAR EQUATIONS 

4.1 Introduction 

Finite element discretisation eventually results in a set of 

simultaneous equations of the form 

fßTa dv = kde = Re (4.1) 

These equations are initially formed at the element level, where, k 

denotes the element stiffness matrix relating the element nodal degrees 

of freedoms de to the element nodal force vector Re. Element level 

stiffness relations are then transformed into the Global Structural 

Systems through appropriate assembling of element stiff nesses and the 

load vector. This would lead to the system of structural equilibrium 

equations which has the same format of Eq. 4.1 and is 

Kd =R (4.2) 

where, K is now the structural stiffness matrix and d and R 

corresponds to the structural displacement vector and load 

vector respectively. 

So, before the solution of the Eq. 4.2 can proceed, the element level 

equations are to be assembled. In the following article only a brief 

overview of the assembling, storage and solution scheme of these equat- 

ions will be outlined. Subsequently, the various methods of solving the 

nonlinear equations will be discussed, followed by the solution 

algorithms adopted in this study. 

4.2 Equation Assembly, Storage and Solution Strategy 

The element stiffness assembling process to form the global master 

stiffness matrix may be regarded as a housekeeping operation. A given row 
in the element matrix corresponds to a different row in the structural 
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matrix and so do their columns. The correspondence is established through 

the relation that the element local node number bears with the structural 

node number. However, because of the symmetric nature of the stiffness 

equations, the full structural matrix is never formed. Also, the struct- 

ural stiffness matrix is banded which implies that the coefficients 

beyond the bandwidth are zeros. This enables to store only the symmetric 

half of the banded part of the stiffness matrix. 

There are different schemes available to store these semi-band 

stiffness coefficients. All the coefficients within this semi-band width 

may be stored in a matrix form17,100 or they can be stored in a one 

dimensional array as a vector4,42. Also, there are options either to keep 

all these coefficients49 or only the currently active elements of 

continuously moving triangular matrix80 in the active memory. There is 

altogether a different scheme known as the frontal. solution technique 

where the element assembly and its reduction go hand in hand41,46. The 

suitability of one storage scheme over the other depends on the solution 

method adopted (e. g. Gauss elimination, Choleski decomposition), the 

problem size and also on the system hardware. Details may be found in the 

text by Irons and Ahmad46 or elsewhere. 

The stiffness assembly is therefore also dependant on the scheme 

adopted for the storage of the global stiffness matrix. Three addresses 

are necessary for any single variable to achieve the assembly of the 

corresponding stiffness co-efficient. They are 

i) Its position in the element stiffness matrix, 

ii) Its corresponding location in the actual structural matrix, and 

iii) Its actual location in the storage currently in core which 

depends on the adopted storage scheme. 
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In the present context, the upper semi-band of the stiffness matrix 

has been stored in core and the Gauss reduction scheme employed for 

solving the simultaneous equations. In a nonlinear analysis, the 

reactions corresponding to the prescribed displacements are needed to 

check the overall equilibrium situations. In order to compute the 

reactions, the corresponding equations are written out in a disc file 

before zeroing all but their diagonal element, which are set to 1. After 

solving for the displacements, these equations are recalled from the disc 

and respective reactions calculated. Every time the stiffness matrix is 

updated, so are the equations stored in the disc. The right hand side 

load vector is appropriately modified corresponding to the prescribed 

degrees of freedom. Following a load increment, the fixed displacement is 

set equal to the prescribed value for the first iteration. For rest of 

the iterations at a particular load level, the fixed displacements are 

all assigned zero values. 

4.3 Various Methods of Solution for Nonlinear Equations' 

The structural equilibrium equations expressed through Eq. 4.2 may 

be restated as 

Y'' =R- K(d)d 10 (4.3) 

This indicates that by the time Eq. 4.2 is solved, the stiffness matrix K 

may have been changed due to the nonlinearities introduced to achieve 

this current configuration. Following any load increment, the external 

loads would not necessarily equal the internal loads developed. This lack 

of equilibrium would give rise to the residual forces (sometimes referred 

as pseudo forces) which is in fact expressed through Eq. 4.3 It is 

apparent that the coefficients of the stiffness matrix K depend on the 

basic unknown variables d (and/or their derivatives) which makes the 

Eq. 4.3 nonlinear. 
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There is no general method of solving the nonlinear equations of 

the form considered here because of the non-uniqueness of the solutions. 

In spite of these entailing difficulties, various numerical solution 

techniques have been suggested and applied in the field of numerical 

analysis. Only some of the widely used methods will be discussed here. 

Haisler et a135 and Tillerson et a184 provided more comprehensive 

information on different solution algorithms. The commonly used solution 

methods for nonlinear equations may be broadly classed into three 

categories, viz, 

a) Incremental Methods 

b) Iterative Methods 

c) Combined Methods 

The choice of a suitable method depends on various factors such as cost, 

reliability and accuracy. In addition, the physical behaviour of the 

structure should be well anticipated in order to select an appropriate 

solution method. A method suitable to trace the moderately nonlinear 

response may fail altogether if the nonlinearity is highly pronounced. An 

adequate knowledge of numerical analysis blended with an insight into the 

nature of the structural problem should enable an analyst to adopt a 

solution method efficient for the problem concerned. 

4.3.1 Incremental Methods 

This is one of the earliest89 employed solution techniques for 

nonlinear analysis of structural problems. In this method, external load 

is applied as a sequence of sufficiently small increments so that the 

structure can be assumed to respond linearly within each increment. The 

structural response due to each load increment is accumulated to assess 

the overall behaviour at any stage of. the loading process. In this way, 

the incremental technique seeks to solve a sequence of linear problems 
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wherein the stiffness matrix is recomputed for each load increment. At 

each load step, the incremental stiffness corresponding to the current 

configuration is formed and the resulting incremental equilibrium 

equations are then solved. The recurrence relation at any general ith 

load increment may be given as 

KTiAdi = R. (4.4) 

di = di-1 + Adi (4.5) 

R. = Ri-1 + ARi (4.6) 

where, KTi is the current tangent stiffness matrix or an 

equivalent incremental stiffness matrix. A di and AR, 

are the incremental displacements and loads respectively 

and' di and R. are the total accumulated displacements 

and loads respectively following the current ith load step. 

The incremental displacement vector Adi may be obtained by solving 

the set of simultaneous equations expressed in Eq. 4.4. The total 

displacements are computed using Eq. 4.5 and the corresponding increments 

in strains and stresses are then determined. Next, the nonlinear 

stiffness matrix is updated and the subsequent incremental displacements 

computed for the following load increment. In this manner, the succeeding 

points in the load-deflection curve are obtained. 

It is apparent that the incremental technique seeks, without 

iteration, to march along the load-deflection curve. But this piecewise 

linearisation process introduces errors in the solution which accumulate 

with the increase in loads. This is evidenced by the drifting tendency of 

the solution from the true equilibrium curve. These truncation errors are 

inherent to the incremental methods since equilibrium is not satisfied 

exactly at any loading stage and therefore the corresponding estimate of 

the accuracy of the solution remains undetermined throughout. To improve 
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on this situation, an alternative approach incorporates a single step 

equilibrium correction following each load increment. That is, the 

residual forces after a load step is added to the next load increment. 

The basic incremental solution method and that with a single step 

correction scheme is represented schematically in Figs. 4.1 and 4.2 

respectively. In either case, the drifting tendency of the solution may 

be reduced by making the load increment size significantly small. 

4.3.2 Iterative Methods 

As pointed out by Turner et al89, a purely iterative solution 

scheme provides only a single point on the load-deflection curve. Thus, 

corresponding to a particular load level, the true solution is approached 

in an iterative way. There are various iterative schemes for solving the 

nonlinear equations. Almost invariably, all these schemes may be employed 

in an incremental iterative combined method of solution. In order to 

avoid repetition only a single scheme - method of direct iteration will 

be discussed here and some others will be elaborated in the context of 

the combined methods. 

4.3.2.1 Method of Direct Iteration 

In this method successive solutions are performed, in each of which 

the previous solution for the unknowns d is used to predict the current 

coefficients of the stiffness matrix K. Thus for every solution, the 

total deflections are recomputed using the preceeding stiffness coeffic- 

ients. Rewriting the basic equilibrium equation (Eq. 4.2) as 

d= [K(d)]-1R (4.7) 

then the recursive relation for the ith approximation beomes 

di = [K(di-1)r1R (4.8) 

It is clear from Eq. 4.8 that the stiffness matrix K has to be 

reformulated for each iteration. This successive solution method is also 
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called the method of successive approximation. The process is 

schematically shown in Fig. 4.3 from which it is apparent that the method 

employs successive secant stif f nesses to approach the true solution. 

4.3.3 Combined Methods 

If a complete load-displacement response of a structure is needed 

then an incremental method of solution must be employed. However, even 

with very small load increments, the solution would drift away from the 

true equilibrium path. In order to obtain a reliable solution, any 

suitable form of iterative correction scheme would be necessary to 

restore equilibrium after each load increment. Some of the commonly used 

iterative techniques are described here. 

4.3.3.1 The Newton-Raphson Method 

During any step of an iterative process following a load increment, 

the equilibrium (Eq. 4.2) will not usually be satisfied unless 

convergence has occurred. The lack of equilibrium would result in a 

system of residual forces T' given by Eq. 4.3. These residual forces may 

be interpreted as a measure of the departure from the equilibrium. Now, 

if an approximate solution d= dr is reached to Eq. 4.3 when the residual 

forces are 'Y = 'Y(dr), an improved solution can be approached using a 

curtailed Taylor series as 

i1, (dr+l) ='v(dr) + (d Adr =0 (4.9) 

where, (r =- J(dr) _ -KT(dr) (4.10) 

in which J(dr) is the Jacobian matrix at the rth solution step. In case 

of structural analysis problem, this Jacobian matrix may be identified as 

the tangent stiffness matrix KT at that solution stage. Using Eq. 4.10 in 

Eq. 4.9, the general recurrence relation may be obtained as 
ddr = [J(dr)]-I*r) (4.11) 
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and 

dr+l _ dr + 6dr (4.12) 

This Newton-Raphson method is also known as the tangent stiffness method 

because it uses the tangential stiffness matrix of the current step to 

reach an improved solution at the next step. Fig. 4.4 represents this 

solution process diagrammatically. 

Now a typical term in the Jacobian matrix J is 

ij ad 
1 )r (4.13) 
1 

Substituting Eq. 4.3 in Eq. 4.13, a generalised expression72 may be 

obtained 

n 3kim 
J1j Kj+E a)ýdk 

m=1 
mij 

(4.14) 

where Kij is a general term of the stiffness matrix K at the 

rth stage. 

The last term in Eq. 4.14 may give rise to nonsymmetric terms in the 

Jacobian matrix. In order to preserve the symmetry of the Jacobian 

matrix, these nonsymmetric terms are usually excluded. This reduces the 

tangent stiffness method to a form of quasi-Newton procedures70 which are 

a generalisation of one dimensional secant method to an n-dimensional 

problem. Thus, the recursive relation of Eq. 4.11 changes to 

Adr = (K(dr)J 1 Tidr) (4.15) 

It should be recalled here that this modification to the basic 

Newton-Raphson method has resulted in an almost identical procedure to 

that of direct iteration method. Only instead of total displacements, 

iterative displacement increments are solved for the residual forces 

using the current secant stiffness matrix. The total displacements are 

obtained through Eq. 4.12. Although a secant stiffness is used to 
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approximate the tangent stiffness, this method is known as the tangent 

stiffness method or the generalised Newton-Raphson method in the context 

of structural application72. 

4.3.3.2 Modified Newton Raphson Method 

The iterative solution methods described in the previous section 

demands reformulation and complete triangular decomposition of the 

structural stiffness matrix at every iteration step. For large system of 

equations, these operations may become very expensive. To reduce the 

amount of computational efforts, the use of a previously factored 

stiffness matrix is often advocated. The iterative solution is then 

achieved through the back substitution phase only. Any such method where 

a previously factored stiffness matrix is employed to estimate the 

current iterative displacements is termed a modified Newton-Raphson 

method. The recurrence relations may be stated in general form as 

Adr _ [K(di)I-1 T(dr) (4.16) 

where, K(d') is the stiffness matrix at step i<r. 

There are two major forms of the modified Newton-Raphson method. In 

one of the forms, the stiffness is held constant to the initial stiffness 

matrix corresponding to the initial condition at the start, hence the 

name Constant or Initial Stiffness method. This is very simple to 

formulate and often may prove very economical too. But in many cases, the 

rate of convergence to the true solution may be very slow. To improve 

convergence rate, the other form, in which the stiffness matrix is 

updated at certain intervals, may be used. Fig. 4.5 gives a schematic 

outline of solution procedure for both cases. The stiffness may be 

reformulated once after each load increment and this updated matrix may 
be used to compute the rest of the iterative displacements at that load 

level. The updating may take place at the first iteration following a 
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load increment or at the second iteration. Hinton and Pica75 reports that 

the latter update proves to be more efficient and economical. 

Modified newton-Raphson solution technique in general, has several 

other versions. Initial stress and initial strain methods are two such 

subtypes often employed in nonlinear analysis problems. While both these 

methods use either a constant or an infrequently updated stiffness matrix 

for solving the nonlinear equations, they differ only on how the residual 

forces are evaluated. In the former, the residual stresses resulting from 

the discrepancy between stresses developed and stresses admissible are 

consistently transformed to get the residual forces. On the other hand, 

initial strain method seeks to reach the stress-strain curve horizontally 

and estimates the additional strains necessary to match the currently 

known stress level. These strains are treated as a set of initial strains 

which are then transformed to estimate the residual forces. Initial 

stress method may effectively be applied for any materially nonlinear 

structural problems including elasto-plasticity99. But as Marcal64 

pointed out initial strain method may break down in case of perfect 

plasticity because of nonuniqueness of strain corresponding to the 

yielding stress. 

4.4 Solution Methods Adopted 

The various methods described above, for solving nonlinear struct- 

ural equations has been summarised in Fig. 4.6 Almost all the methods 

except constant stiffness method, need updating of the stiffness matrix 

at some stage in order to enhance the convergence of the solution. With 

this view in mind, a separate subroutine has been incorporated in the 

programme which triggers on or off the switch for stiffness update 

according to the solution algorithm selected. The different options 

available are 1) incremental method with single equilibrium check, 
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2) variable stiffness, i. e. generalised Newton-Raphson method with full 

equilibrium check, 3) constant stiffness method, 4) modified' 

Newton-Raphson method with stiffness update at the first iteration or 5) 

stiffness update at the second iteration following a load increment. 

In combination with the above algorithms, a separate parameter 

(value prescribed as a data) has been included. The value assigned to 

this parameter determines whether the residual forces are to be computed 

as a total discrepancy between the external and the internal loads or as 

a load equivalent to the initial stresses released due to material 

nonlinear response. The former ensures complete equilibrium check, while 

the latter is in fact the initial stress method. Also, an option is 

available to use them both in some combination (see Chapt. 2), i. e. 

checking equilibrium for some initial iterations and then evaluating the 

residuals using initial stress concept for rest of the iterations. With 

all these alternatives, the choice is left to the user and the 

suitability may then depend on the required accuracy of the solution and 

the cost involved. Obviously, the modified Newton-Raphson method provides 

the best trade off between the two factors. 

4.5 An Example Problem 

In order to study the effectiveness of the different solution 

algorithms, an experimental slab (model S63P1) has been selected. The 

details of this slab and its material characteristics are given in 

Chapters 6 and 7. Fig. 4.7 shows the element discretisation on symmetric 

half of the slab. The same slab has been analysed using five different 

solution algorithms included in the computer programme for 5 DOF ACM 

plate bending element. The total load displacement response for the 

middle point of the free edge (Node 25) are plotted in Fig. 4.8 along 

with the experimentally recorded values. It may be seen that all the 
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solution algorithms traces the load deflection response with reasonable 

accuracy. Other aspects of the different solution strategies are given in 

Table 4.1. It may be noted that the solution algorithms ALG2, ALG3 and 

ALG4 produced almost identical results. The remaining algorithms ALG1 

(constant stiffness) and ALG5 (variable stiffness with single equilibrium 

check) produced curves similar to each other. But both these cuves show 

more stiff results near failure. For ALG5 such behaviour is obvious 

because strict equilibrium was not enforced. For the constant stiffness 

case (ALG1), the principal reasoning remains the same. But the lack of 

convergence cropped up from the insufficient number of permitted 

iterations. The maximum number of iterations were held constant to 12 for 

all the solution algorithms and a convergence limit, of 0.001 was set for 

both the residual force and iterative displacement norms. As the initial 

stiffness coefficients were used throughout the solution process, the 

convergence norms were not satisfied within the specified iterations 

during the later stages of load increments. 

Another interesting feature of the constant stiffness approach is 

that it appears to be the costliest of all the solution algorithms incor- 

porated here (Table 
. 
4.1). Although the stiffness matrix was 

triangularised only once, but the slow convergence rate demands the 

solution of the iterative residual load vectors many more times compared 

to other algorithms. The increased number of solution processes 

ultimately offsets the time saved by not reformulating the stiffness 

matrix. Even the complete variable stiffness method (ALG4) with 81 times 

stiffness updates, saved about 30% of the CPU time compared to the 

constant stiffness method. Thus, it is believed that a trade off solution 

scheme like that of ALG2 or ALG3 with one stiffness update in every load 

increment is perhaps better suited for nonlinear analysis of concrete. These 

are economic considering cost and produce fairly acceptable results. 
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Table 4.1 Comparative Study of Various Solution Algorithms on Slab 
Model S63P1. 

Solution 
Algorithm 

Number of 
Stiffness Update 

dmax (mm) 

at failure 
Ultimate 
Load 
(KN) 

CPU 
Time 
(secs. ) 

ALGI 1 34.4 5.75 1795 

ALG2 34 37.27 5.02 902 

ALG3 36 36.32 5.02 864 

ALG4 81 35.78 5.02 1228 

ALG5 42 35.88 5.75 573 

Note: 

ALG1: Constant stiffness method 

ALG2: Stiffness update at first iteration following a load increment 

ALG3: Stiffness update at second iteration following a load increment 

ALG4: Variable stiffness method 

ALG5: Incremental variable stiffness method with single step 

equilibrium correction 

a, 
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FIG. 4.1 Basic Incremental Stiffness Method of Solution 

R 

d 

FIG. 4.2 Incremental Solution Scheme with Single Step 
Equilibrium Correction 



R 

Ri 
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FIG. 4.3 Method of Direct Iteration for a Single 
Stop Loading 

R 

d 
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FIG. 4.4 Incremental Newton - Raphson Solution Scheme 
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R 
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a) Constant Stiffness Solution Scheme 

R 

d 

b) Solution Scheme with Infrequent Stiffness Updates 

FIG. 4.5 Two Modified Newton- Raphson Solution Schemes 
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Nonlinear Equation Solution Methods 

Incremental 

Variable Stiffness 
without Equilibrium 
check 

Iterative 
(Single step 
loading) 

Combined 
Incremental- 
Iterative 

Variable Stiffness 
with Single Step 
Equilibrium check 

Method of 
Direct Iteration 

Some form of Modified Newton- 
Newton-Raphson Raphson Methods 
Method, i. e. 
Variable stiffness 
with full 
Equilibrium 
check 

Const. Stiffness 

Initial 
Stress 

Infrequent 
Stiffness update 

Initial 
strain 

FIG. 4.6. Various Methods of Solution of Nonlinear Equations. 
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Chapter 5 

COMPUTER IMPLEMENTATION 

5.1 General 

The finite element formulations and the mathematical description of 

the constituent materials, described in the previous chapters, have to be 

transformed into a computer programme in order to study the analytical 

response of the structure. One of the primary objectives of this work was 

to develop a special purpose computer programme capable of describing the 

complete nonlinear structural response for reinforced concrete flexural 

members. As mentioned earlier, two such programmes were developed from 

scratch. In one of them, the element discretisation was achieved through 

layered ACM rectangular plate bending element100 with 5 degrees of free- 

dom per node. In the other, a standard Bogner element 
8 

was used with 

generalised 6 degrees of freedom per node. The material modelling options 

remains the same for both cases. 

The element characteristic formulation was aimed at studying the 

predominantly flexural response of a reinforced concrete structure. Con- 

sequently, the element stiffness derivation is based on the small dis- 

placement theory of thin plates85. The strain energy contribution from 

the transverse shearing stress and strains have been excluded, their 

effect being considered insignificant for relatively thin plates. 

However, their inclusion would be realistic in considerably thick plate 

bending situations 
17,22. Leaving aside all the theoretical aspects, the 

practical computer implementation schemes adopted will be projected in 

the following sections of this chapter. 

5.2 Programme Structure 

In any finite element solution procedure, the overall programming 
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structure can be divided into several component modules. This modular 

structure of the programming lends generality and flexibility to the 

total computational procedures followed. The fundamental operational 

structuring of a computer programme for nonlinear analysis problems may 

be categorised as 

i) Input of Pertinent Data. 

ii) Evaluation of the Element Stiffnesses and their assembly to 

form structural stiffness. 

iii) Formation of the incremental (element) nodal load vectors 

and assembly to get the structural load vector. 

iv) Solution of assembled structural equations. 

v) Evaluation of stresses and equivalent nodal forces. 

vi) Check for convergence of solution. 

vii) Output of results. 

In nonlinear analysis of structural problems, each of the afore- 

mentioned steps are to be addressed in a repetitive manner following each 

load increment. So, separate subroutines can be employed to perform the 

different operations required in a nonlinear solution process. This 

modularity of the programme structure not only lends clarity to the 

overall programming effort but also add elegance and flexibility to it. 

Thus, each of the subroutines become a separate entity performing a 

distinct operational function and can be modified with ease, if necess- 

ary, by another user without upsetting rest of the modules designed for 

achieving other purposes. The logical sequence of the basic operational 

steps followed in the development of the current computer programmes is 

shown in Fig. 5.1 and may be elaborated in words as follows: 

a) Read all the necessary data, 
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b) Initialise to zero the various vectors and matrices 

subsequently required to store accumulated variables 

c) Compute the incremental external load vector ARi and 

accumulated total external load vector as 

R=RAR 

d) Get the incremental load vector taking into account 

of the residual forces from previous solution as 

=ARi+Ti-1' 

e) Compute the (structural) stiffness matrix Ki as per the 

specified solution algorithm 

f) Solve for the incremental displacements Adi = KI 1T 

and compute di = di_1 + Adi 

g) Evaluate incremental midsurface strains, Acri 
,= 

BAdi, 

hence the layer strains AEi 

h) Evaluate incremental layer stresses AQi= DLCi and the 

total stresses Qi = Qi-1 + Aa. 

i) Check this current stress state against the appropriate 

transitional criteria such as cracking, crushing, yielding, 

etc. Update the stress level as per the incorporated material 

model and obtain the excess inadmissible part of the stress 

a Keep record of the modified elastic constants of the 

layer 

j) Calculate the contribution of each layer towards element total, 

actual and excess stress resultant vectors 

k) Compute the contributions towards total equivalent nodal force 

and total excess equivalent nodal force as fi =fB 
adv 

and fe= JBT aexdv 
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1) Follow steps (g) to (k) for each element, each Gaussian 

sampling points within an element and each layer therein 

m) Obtain the residual force vector Ti as either 

T= Rift or `y = fle 

n) Check for convergence and total collapse 

o) If the solution has not converged, start from step (e) again 

with a new iterative value of T as given in (m) 

p) If solution has converged, print out some selected results or 

draw some contour maps as per the request data. Then begin from 

step (c) 

q) The programme finally stops, either if the total collapse 

criterion in (n) is met or if total number of specified load 

increment is depleted. 

5.3 Brief Description of Modular Routines 

The elementary steps of computer implementation, outlined in the 

previous article have to be expanded in order to formulate the various 

subroutines. Each of the subroutines is given a separate name for its 

distinctive identity. The overall computational procedure adopted here is 

accomplished through the various subroutines given in the general flow 

diagram of Fig. 5.2. A brief description of the operational functions 

achieved in these routines are furnished below. 

ACMLAY: This is the master segment controlling the entire solution 

procedure for nonlinear analysis of reinforced concrete slab problems 

using 5 D. O. F. ACM element. It calls the various subroutines in an 

orderly sequence to perform the different operations like that of reading 

in the relevant element data, slab geometry, loading data, etc. It also 

calls the subprograms that computes the applied load increment, evaluates 
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stiffness matrices, solves for incremental displacements, compute the 

strains, stresses and equivalent nodal forces and checks for convergence. 

When convergence is achieved, it calls some other subroutines to output 

some specified accumulated results, draw moment contours and crack 

patterns for different layers if initially requested for this load 

increment and store some relevant data in a separate file which will be 

used later by a separate plotting programme for drawing load-displacement 

curves for the specified nodes. 

INPUTP: This subroutine reads in most of the data necessary for solution 

of the currently discretised structural system. The control variables, 

the element material properties, the slab geometry, the different layer 

thicknesses along with their identifying codes are all fed into the 

programme through this subroutine. The element nodal connectivity is 

automatically generated within this subprogram. The node numbers with 

prescribed boundary conditions, the corresponding fixity codes and the 

prescribed value of the displacements are also read in here. From the 

fixity codes, the cumulative restraint list vector is formed which will 

be required for computing the reactions during the solution process. 

Finally, it calls in another subroutine CORDXY which generates the global 

coordinates of nodal points and all the Gaussian sampling points. 

ZERO: This module is entered before any load increment is applied. Its 

function is to initialise to zero various vectors and matrices at the 

beginning of the solution process. In some machines, the unassigned 

variables are initialised to zero by default while on others the 

programme would break down if unassigned variable is encountered. If the 

programme is executed in the former type of machine, this module can be 

omitted. 
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STIFPL/STIFPV: These two subroutines are almost identical functionally 

and are employed to evaluate the element stiffness matrices. STIFPL is 

called only once in the programme to form the element stiffnesses corres- 

ponding to the initial material characteristics of the elements. It calls 

MATXFG and MATXCI, to form the H matrix and the inverse of the 

undetermined coefficient matrix and get their product through matrix 

multiplication routine MATMUL to establish the B-matrix. It also asks 

GAUSSQ to supply the generalised Gaussian sampling point coordinates and 

the respective Gauss Weights. It also calls UDLRNA to form the equivalent 

element nodal vector for unit magnitude of the uniformly distributed 

loads. It then stores the B matrix, the nodal load vectors and the layer 

material constants in separate scratch disc files. Subroutine STIFPV 

differs from the former only in detail. Thus instead of forming the 

B-matrix, it restores them from the disc space and same applies for 

material constants. From both these routines ASEMPK is called to assemble 

the element stiffnesses to form the global master stiffness matrix. 

LOADPL: This routine is called following every load increment. It 

restores the element equivalent nodal load vector due to unit intensity 

of uniform load and scales that to the current state using the presently 

applied intensity. It assembles these element load vectors to form the 

structural load vector. The directly applied concentrated nodal loads are 

then added consistently to the master load vector. 

SETSOL: In this routine, the solution indicator is set to the appropriate 

value depending upon the solution algorithm adopted. This indicator, 

later dictates whether a reformulation of the stiffnesses have to be 

undertaken or not. Its value also determines whether the solution demands 

triangularisation of the master stiffness matrix or just a resolution of 
the current load vector using previously reduced coefficients is 
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sufficient. Stiffness reformulation dictated by the selected solution 

logic is overruled if a second counter indicates that nowhere in the 

structure any material constants has changed recently. 

BANSOL: The solution of the simultaneous stiffness equations are carried 

out in this module. The advantage of the bandedness of the stiffness 

relations are taken into consideration in its development. A full tri- 

angular decomposition of the stiffness matrix is carried out first before 

proceeding to the reduction of the current load vector. The reactions 

developed corresponding to the prescribed boundary conditions are also 

computed here. Before exit, the incremental displacements and reactions 

are added to the respective accumulative vectors. 

STRESP: Purposefully, this subroutine performs a number of operations. It 

evaluates the reference surface strains er Bide, computes the 

incremental layer strains and stresses and then obtains the layer total 

strains and stresses at each of the element Gauss points. It calls TENCOT 

and COMCOM to check if the concrete stress conditions are following the 

respective material description. The reinforcing steel characteristics 

are checked within itself. It also checks if the concrete strains have 

reached the definition of crushing. Accordingly, it updates the layer 

stresses and extracts the excess stresses. Finally, it evaluates the 

equivalent nodal total and excess forces due to internal stress states 

and assembles them to find the residual force vector in structural sense. 

TENCOT: This is called from subroutine STRESP when a concrete layer 

principal stresses are either both tensile or one of them tensile and the 

other compressive. The principal stress combinations are checked against 

cracking and the current stress state is updated accordingly. The angle 

of the formed crack is recorded and the material characteristics are set 

to crack oriented axes. These material constants are then transformed to 
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the global axes using standard transformation through another routine 

CRAMAT. 

COMCOM: This routine is also addressed from STRESP. It is called when 

both the principal stresses are compressive. The principal stress states 

are checked against the adopted transitional criterion and the material 

constants are updated accordingly. The stress state is also checked 

against the ultimate strength envelope of Kupfer et al (see Chapt. 3) and 

if it is exceeded, the further development of stress is totally 

restricted until a crushing surface is reached. 

ELDISP: The subroutine is called from STRESP to extract the element nodal 

displacement vector from the structural displacement vector. 

CONVER: The convergence of the solution is checked in this routine. Both 

the displacement and residual force convergence criterion are employed. 

The value assigned to the convergence counter (LITER) would later 

indicate which of the two criteria or if both were met to abandon the 

iterative loop. The maximum admissible vertical deflection criterion 

indicating total collapse is also checked in this subroutine. 

OUTPUT: This subroutine outputs some of the selected results. The layer 

stresses and strains, the total stress resultants at each of the element 

Gauss points for the selected elements may be printed out. In addition 

the imposed total load vector, the residual force vector and the 

reactions at the restrained boundary nodes may be listed in any 

combination. 

OUTP78: This is another outputing routine to print out some other results 

through channel 7 and 8. It employs another subroutine DISPNOD to print 

out the accumulated nodal displacements. During the execution of the 

programme, the layers are marked with different integer numbers to 

r 
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identify the state of stress it had experienced. These layer markings and 

the orientation of the crack (if cracked) at each of the Gauss points of 

the selected elements may be printed from this routine if desired. 

MATXCI: The undetermined coefficient matrix for each of the different 

types of element are formed here and then inverted through a standard 

matrix inversion routine of NAG Library. 

UDLRNA: In this routine, the element equivalent nodal load vector is 

formed corresponding to unit magnitude of applied distributed loading. 

ASEMPK: The element stiffness matrix is assembled in this segment to form 

the global stiffness matrix. Only, the upper symmetric band of the master 

stiffness matrix is stored. 

MATMUL: This is a matrix multiplication routine. Any two matrices 

(including vectors) may be multiplied here to obtain their product 

matrix. 

PRINST: This routine calculates the principal stresses or strains if the 

respective orthogonal coordinate quantities are supplied. It is called 

from STRESP, COMCOM and TENCOT. 

DISFIL: This subroutine is called from the master segment. If displace- 

ment quantities of a few nodes are of interest and a load vs. 

displacement curve is required, then this routine is employed. This 

routine writes some of the relevant parameters and the total load and 

selected displacement quantities in a file during the execution of the 

programme. These stored values are fed in directly as data for another 

plotting programme. 

CRADRA: This is a plotting routine called in from the main programme. The 

crack orientation at the Gaussian points of each layer is drawn through 

this subprogram. Thus, the discrete crack angles for the whole structure 
is represented separately for each of the layers. To get an overall 
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averaged picture of the crack direction, a second option is included in 

the programme. In this case, the crack angles of all the cracked layers 

at the same Gauss point is averaged to get a mean crack direction. This 

averaged crack directions are then plotted for the whole structure. But 

if the crack angles differ significantly through the layers at the same 

point, the second method may present a false picture of the crack 

patterns. 

CONTOR: This is the second plotting routine incorporated in the pro- 

gramme. It is called in if the contour map of the stress resultants are 

required. The distribution of the membrane forces NX, Ny, NXy and the 

moment resultants MX, My and MXy can be drawn in any combination for the 

whole structure. The input code values determine which of the stress 

resultant contours are required and at which load increment. In addition, 

the isometric view of the deflected shape of the discretised structure 

may be drawn through this routine. 

Some of the subroutine may have been omitted from the descriptions 

here. It is believed that they would be quite straight forward and self 

explanatory. The volume of the total programme listing deters its 

presentation here. Only, the input parameters are briefly provided in the 

Appendix C. The detail description and the programme listing is given 

elsewhere520 
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READ RELEVANT DATA 

INITIALISE SOME VARIABLES 

I FORM INITIAL STIFFNESS, Ko I 

COMPUTE INCREMENTAL LOAD, AR1 

GET TOTAL LOAD, Ri = Ri_I +AR1 
THEN ADD PREVIOUS RESIDUAL TO 

AR, ARI =AR I+T i-1 

REFORMULATE STIFFNESS K AS PER 

SELECTED SOLN. ALGORITHM 

SOLVE FOR INCR/ITERATIVE 

DISPLACEMENTS, 1d1 = IC IARI 

GET TOTAL di = dl_I +Ad. 

COMPUTE STRAIN, STRESS, ETC. 

UPDATE & NOTE NEW MATERIAL 

CONSTANTS 

COMPUTE RESIDUAL FORCES 

CHECK CONVERGENCE 

CONVERGED? 

YES 

PRINT SELECTED RESULTS 

FIG. 5.1. Basic Operational Steps Describing the Adopted 

Computational Procedure. 
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Fig. 5.2. Programme Flow Diagram for ACMLAY 

(Nonlinear RC Slab Analysis Programme Using 5DOF Layered 

ACM Element). 



Chapter 6 

EXPERIMENTAL INVESTIGATION 

6.1 Introduction 

The mathematical modelling and material idealisation necessary for 

finite element analysis of nonlinear behaviour of reinforced concrete 

flexural members have been described in some of the previous Chapters. 

But the numerical predictions need to be compared with some experimental 

observations for validation. Published results on experimental study of 

reinforced concrete structures have grown steadily throughout the past 

three decades. Yet, the importance of further experimental investigation 

should not be underrated. The practical implementation and the associated 

difficulties inherent to the experimental study lends deeper and clearer 

insight to an analyst in understanding the behaviour of reinforced 

concrete members. The experiments carried out in this investigation are 

described in this Chapter. 

6.2 Parameters of Study 

Geometrically the experimental slabs were either rectangular or 

square slabs. A total of six slabs were tested. Half of them were 

rectangular slabs and the rest were square. The side ratio, sometimes 

called the aspect ratio of all the rectangular slabs was kept constant at 

2.0. All the test slabs were 38 mm thick. Two different types of loading 

were considered namely, i) Uniformly distributed pressure loading and ii) 

Point loading system. The supports for all the slabs were simple supports 

in nature. Four of the six models had supports all around their four 

edges. The remaining two, both rectangular slabs had one of their longer 

sides completely free resembling that of a balcony type slab. 

For all the tests, the following things were recorded: 
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i) the lateral deflection at some preselected locations. 

ii) the steel strains in either direction at some 

predetermined locations. 

iii) the cracking load/pressure at first visible crack. 

iv) the failure load/pressure. 

In addition, the overall crack pattern after failure on both the tension 

and compression faces of the models were photographed. 

6.3 Slab Designation 

The six experimental slabs are designated as S14UD, S24P1, S34P4, 

S43UD, S54UD and S63P1. The first two letters represent the slab model 

number, the next letter -a numeral indicates the number of simply 

supported edges and the last two letters represents the type of loading 

which are either UD for uniformly distributed pressure loading or P1 for 

single point load and P4 for four point loads on the slab. 

Table 6.1 gives the details of slab dimension, steel percentages in 

either direction, type of loading and the boundary conditions associated 

with each of the model slabs. The location of the point loads and the 

edges having simple supports are shown in Fig. 6.1 for all the test 

slabs. Both in Table 6.1 and Fig. 6.1, the slab dimensions are the 

effective spans. All the slabs had an overhang of 40 mm beyond the centre 

line of the supports. 

6.4 Materials for Mirrnrnnrrete 

The constituents materials of the microconcrete used were cement, 

sand and water, Ordinary portland cement and normal tap water were used 
in all the tests., The sand suply was from the Springbank quarry in Bridge 

of Allan. 

The sand was air dried before use and sieved through a5 mm sieve 
in order to screen out any unusually large particles. The particle size 
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distribution of this sand was then performed using some representative 

samples and following the standard procedure set forth in BS 812 part 

1: 197510. A typical gradation curve for this sand is shown in Fig. 6.2 

and it seems to have complied with the requirements of Type S sand of BS 

1 1200: 19761. 

6.5 Properties of Microconcrete 

The characteristic properties of concrete required by an analyst 

are those of modulus of elasticity, compressive strength, tensile 

strength, strain at failure, etc. Determination of such properties is 

described in the following subsections. 

6.5.1 Uniaxial Stress-Strain Relations 

For the determination of modulus of elasticity and complete 

stress-strain uniaxial behaviour, a concrete prism specimen is required 

with a suitable means of measuring strain. In this investigation a 200 mm 

long and 100 mm in diameter microconcrete cylinder was used. The test 

procedure followed was that of BS 1881: Part 121: 198312 for determination 

of static modulus of elasticity. Thus an initial conditioning load 

corresponding to about a third of its estimated compressive strength was 

applied and held constant for one minute and then reduced to about 0.5 

N/mm2. This was repeated three times and at each of these load steps 

strains along three vertical lines at six different locations were 

recorded using a2 inch Demec strain gauge. The cylinder specimen was 

then steadily loaded to failure and strains were recorded at suitable 

load increments. The estimate of the compressive strength for initial 

conditioning load was made possible by prior testing of three 100 mm 

cubes which were cast along with the' cylinder itself. Fig. 6.3 shows two 

representative stress-strain curves for this cocnrete - one for vibrator 

compacted casting and the other for hand compacted one. As seen from the 
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figure a bilinear curve was drawn through the recorded points. The 

initial modulus of elasticity obtained from the first slope of this 

stress-strain curve are found to be nearly equal to the secant modulus of 

elasticity as defined in BS 1881 Part 121: 1983. 

From Fig. 6.3 it is also noticeable that the initial discontinuity 

starts at about 50% of the compressive strength. This is well within the 

generally accepted elastic range of 30% and 60%. Even much conservative 

codes of practice ACI 318-771 allows linear elastic behaviour up to 0.45 

f,. 
c 

6.5.2 Compressive Strength 

American concrete Institute Building Code ACI 318-77 relies upon 

concrete cylinder crushing strength to estimate the compressive strength 

of concrete in flexure. On the other hand CP 11023 normally suggests 

concrete cube strength tests and then to reduce the cube strength to 67% 

of its value to account for the flexural situations. It is well known 

that the cube strengths are usually about 25% to 33% higher than that of 

cylinder strengths because of its restraining effects due to smaller 

height to side ratios. Thus, both the codes of practice accept approxi- 

mately the same strength in flexural compression. 

Here in this study, the concrete cube strengths were multiplied by 

0.80 to estimate the compressive stress level at failure due to flexure. 

During the few laboratory tests the ratio of cylinder to cube compressive 

strength on mortar concrete was found to lie between 0.78 and 0.89. 

Considering practically the ideal controlled conditions of a laboratory 

mix, the reduction factor of 0.8 seems realistic and not too far beyond 

the value of 0.67 as suggested in CP 110. 

6.5.3 Tensile Strength 

Concrete is much too weak in tension compared to its compressive 
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strength. Practical design procedures frequently ignore its tensile 

strength. But for numerical analysis the onset of cracking depends on the 

value given to its tensile strength. There are different experimental 

methods for estimating the tensile strength of concrete. Some of these 

methods are 

a) Direct tension test on specially prepared specimens. 

b) Modulus of rupture test on beams. 

c) Cylinder splitting test. 

The last method, an indirect tension testing procedure was adopted 

here and the tensile strength being given as 
2P ft -n DL 

where, P= total force causing splitting 

D= diameter of cylinder 

L= length of cylinder. 

In general, the results obtained confirm the popularly accepted tensile 

strength value of the order of 7-10% of compressive strength29. 

6.6 Design of Microconcrete Mix 

The microconcrete for the test slabs were designed for a target 

mean cube strength of 21 N/mm2 at 7 day. Aggregate (sand) to cement 

content ratio was chosen to be 4 by weight. A number of trial mix with 

different water cement ratio was tried and finally the water-cement ratio 

of 0.6 was selected. 7-day mean cube strength of 22 N/mm2 was achieved on 

this trial mix at the selected water-cement ratio. The consistency of the 

mix was found to be just sufficient considering vibrator compaction of 

the models and the specimens. 

6.7 Properties of Reinforcing Steel 

Mild steel is a well behaved material compared to concrete. 
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Information regarding reinforcing steel needed in a numerical solution 

are the modulus of elasticity of steel, percentage of reinforcement and 

the yield strength of steel. The first two parameters are readily known 

but for the last bit of information a routine tension test would be 

necessary. Some high tensile strength steels and cold worked mild steels 

do not show a well defined yield phenomenon. But for all practical 

purposes, a simple tension test would furnish the 0.2% proof stress level 

which can be replaced for the yield value. The 4 mm nominal diameter 

(actual diameter also 4 mm after annealing and removing scales) mild steel 

bars used for the test slabs were annealed after purchase. The commercial 

bars not only lacked a well defined yield point but also failed to show 

any appreciable elongation prior to failure. Tension testing on the 

annealed bars were carried out following BS 18: Part 2: 19719. Instron 

autographic tension testing machine of the Mechanics of Materials 

Laboratory was used for this purpose. Fig. 6.4 shows a representative 

stress-strain curve for the used reinforcing bars. A number of randomly 

taken samples were tested and the average yield and ultimate strength are 

found to be 240 N/mm2 and 330 N/mm2 respectively. 

6.8 Design of Models 

Before proceeding to casting and subsequent testing of a model, one 

should estimate the ultimate load at failure with reasonable accuracy. A 

model should be as nearly equal to the prototype as is practicable 
1. But 

the available laboratory space, limited capacity of the loading rig, 

handling difficulties and costs involved are some of the many factors 63 

which curtail the physical dimension and limit the steel percentage of a 

model reinforced concrete structure. The materials used for fabricating 

the test models should be carefully selected so as to simulate the actual 
behaviour of the prototype with close conformity14. When the dimension 
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and the reinforcement amount is agreed upon, the ultimate capacity may be 

estimated using some method of limit state design. The yield line theory 

pioneered by Johansen48 and others50,51 is one such ultimate load theory 

for slab design. It is based on assumed collapse mechanisms and plastic 

properties of under reinforced concrete slabs. Yield line analysis is 

well established for estimating the failure load of reinforced concrete 

flexural members. Details can be found in any standard text on reinforced 
44, 

concrete design53. 

The yield line theory has been followed here to estimate the 

ultimate load capacity of the test slabs. The assumed yield line patterns 

for the test slabs are shown in Fig. B. 1 of the appendix B. A sample 

calculation to determine the ultimate load is also provided there. 

Reinforcement detailing for the different test slabs are shown in 

Fig. 6.5 through Fig. 6.7. Plates 6.1 and 6.2 are two representative 

photographs of the actual steel mesh provided. 

6.9 Loading Arrangement 

Two different types of loading were-applied on the test slabs. The 

means of achieving them are described below. 

6.9.1 Point Loads 

The range of point loading system considered were applied either as 

a single concentrated load or as a set of four concentrated loads each 

spread over a finite area. The distribution area for these point loads 

was determined following Section 3.4.5.2 of CP 11023, so as to prevent 

any premature failure due to punching. Thus, for slab S24P1 the single 

point load was distributed over 50 mm x 50 mm square area. For slabs 
S34P4 and S63P1 each of the 4 point loads and the single point load 

respectively was dispersed over 40 mm x 40 mm square area. Accordingly, 

an appropriate number of 12 mm thick steel square plates of required 
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dimension were prepared. To each of these plates 12 mm thick hard rubber 

pad was glued underneath using commercial adhesives - rapid setting 

araldite. On the top face of the steel plate a hemispherical groove was 

formed right at its centre. The rubber pad side of this assembly was 

placed on the concrete surface of the slab at the required location and a 

high strength steel ball bearing was placed into the groove of the steel 

plate. Load was applied to the ball bearing either directly from the ram 

of the jack for single point load or through an intermediate cross piece 

placed between the ram and the ball bearings for four point loading. The 

cross piece was made of rectangular hollow steel sections and 

semi-hemispherical cup groove was also formed underneath the cross piece 

at appropriate location of contact points. The location of the point of 

application of the concentrated loads is shown in Fig. 6.1. The physical 

arrangement of the point loading system may be seen in the photographs of 

Plate 6.3 through Plate 6.5. The total applied load could be directly 

read from the digital displaying unit of Dartec monitoring and 

controlling unit for the jack. It also provided a load-displacement curve 

for the jack. 

6.9.2 Uniformly Distributed Load 

Uniform pressure load was applied to the slabs through an air bag 

prepared from commercially available polyethelene cloth used for making 

shower curtains. The air bag dimensions were made equal to that of the 

slab under consideration. The complete closure of the bag was achieved by 

sealing the open edges using commercial adhesive evo-stick. The 

overlapping width of the joining cloths were about 60 mm on either face 

of the edges. Two holes were made at appropriate location on the bottom 

face of the bag. Two pressure valves were glued to these holes for air 
inlet and outlet. During a test, the pressure bag was completely enclosed 
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within 2" x 2" steel angles welded all around the 3 mm rectangular steel 

base plate. The base plate was stiffened by rectangular hollow steel 

sections running across its bottom at suitable close spacings. Wooden 

boards were placed within the enclosure in order to reduce the gap 

between the base for the bag and the rim of the enclosing angles. This 

gap was left at about 10 mm. The air bag was then laid over the wooden 

board and the two valves were led out through two pre-drilled holes in 

boards and base plate. A thin polyethelene sheet was then spread on top 

of the air bag passing over the angle rims. The slab was placed on top of 

the rims with its compression face down and the supporting frame put on 

top of the tension face. The whole assembly was then tied down to the 

floor. Fig. 6.9 and Plate 6.6 show this loading arrangement. 

The inlet valve was connected to an air pressure cylinder through a 

pressure transducer and a controlling valve. The transducer reading was 

transmitted to a digital voltmeter_"where the output was in millivolts 

(mV). The transducer-DVM assembly was precalibrated and the DVM output of 

1 mV was found to correspond to 1 psi of pressure. The outlet valve was 

connected to an extension tube with a stop valve attachment. 

6.10 Supports 

The simple supporting system for all the slabs was achieved by 

placing 12 mm diameter high strength steel bars all along the supporting 

edges of the slab. These bars were given a very smooth finish on their 

surface in order to reduce the possible friction to a minimum. The 

support bars were welded to steel flats of 50 mm x 12 mm in section. 

Subsequently the steel flat sections were tack welded to the main 

supporting frame. The main frame is shown in Fig. 6.8 and consisted of 
two long beams and two short beams. 200 mm x 133 mm x 25 Kg standard 
steel universal beams were used as the long beams and 150 mm x 110 mm 
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available steel beam sections were used for the shorter ones. The 

distance between the two short beams could be varied along the longer 

ones to give the side ratios necessary for the square and the rectangular 

test slabs. For the balcony type one edge free slabs, one of the longer 

beams was replaced by a smaller depth 100 x 100 x8 square hollow steel 

section. The bottom edge of this hollow section was made level with the 

bottom edge of the remaining long beam. Thus ample room was left above 

this smaller section for the free edge of the slab to deflect. The 3-way 

supporting system can be better visualized from the photograph of Plate 

6.5. 

For the slabs tested under point loads, the supporting frame was in 

turn supported on four steel columns which were themselves connected to 

steel beam sections at their bases. On the other hand for uniformly 

distributed loading case, the supporting frame was placed upside down on 

to the slab. The support lines of these slabs were in fact squeezed 

between supporting bars and the angles enclosing the pressure bag. The 

support frame was then tied down to the structural floor of the 

laboratory with the help of two 100 x 100 x8 steel hollow sections 

(running across the frame) and four long steel bolts passing through the 

holes provided in the laboratory floor. Fig. 6.9 and Plate 6.6 show this 

form of supporting arrangement. 

The corners of a simply supported slab subjected to transverse 

loading only are liable to lift up and might reduce the load carrying 

capacity of the slab. To prevent corner lift ups, the slabs under point 

loads were held down at their corners using a suitable clamping device. 

About 100 mm x 100 mm x3 mm thick ply wood board was placed at the 

corners infringing about a quarter (50 mm x 50 mm) of its own area from 

within the support lines. On top of these plywood boards, 12 mm thick 
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steel plate was placed and it was then clamped to the supporting frame. 

Moderate hand pressure was used to tighten these clamps. For the slabs 

under uniform pressure load, no such corner supports were necessary 

because they were actually sandwiched all along their support lines. 

6.11 Deflection Measurement 

Deflection of the test slabs at some preselected locations was 

recorded. Mechanical dial guages with a minimum subdivision corresponding 

to 0.01 mm were used for this purpose. Before putting the slab on to its 

supporting frame, a suitable grid was drawn on one of its faces. Later, 

the deflection dial gauges were placed at the required grid points either 

from the top or at the bottom face as suitable. For some of the slabs 

(see Plates 6.3 and 6.4) a separate frame was built around the loading 

frame to hold the deflectometers. 

Deflections were recorded on at least two symmetric locations 

wherever such symmetry existed and the average of such readings were 

taken as the deflection of any one of those symmetric locations. The 

locations of the deflection recording stations and the corresponding 

load-deflection curves for those points are shown in Fig. 6.10 through 

6.15 for all the test slabs. Each of these symmetrical locations on the 

slab are given identical grid point numbers in these figures. 

6.12 Steel Strain Measurement 

Two millimetre foil type electrical resistance strain gauges were 

used to measure the steel strains. Prior to casting, strain gauges were 

attached to the reinforcing bars at appropriately selected locations. The 

physical location of these gauges were so selected that they remain close 

to some Gaussian integration points during analytical discretisation of 
the slabs into finite elements. The coordinates of the actual location of 
the strain gauges and those of a nearby integration point are given in 
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Table B. 3 of Appendix B. 

Commercially available SHOWA strain gauges with a resistance of 120 ± 

0.5 ohms and gauge factor 2.1 ± 1% were used throughout. The gauges were 

installed on the reinforcing steel using an M-bond 200 adhesive following 

the manufacturer's instructions. After soldering the lead wires to the 

strain gauge terminals, the whole connection was coated with an air 

drying M-coat to protect against humidity and temperature. Later, another 

vinyl mastic coat was overlapped over the entire junction to guard 

against any water leakage and mechanical damage during casting. Load 

versus steel strain diagrams are provided in Figures 6.16 through 6.19. 

6.13 Casting and Curing 

The reinforcing mesh was assembled on the formwork (Fig. 6.20) 

after the position of the bars were marked with a chalk. Details of 

reinforcement mesh for the test slabs are shown in Fig. 6.5 through Fig. 

6.7. The steel bars with the strain gauges were placed last just before 

casting. The microconcrete mix was then prepared in a drum type rotating 

batch mixture. The amount of the constituent materials required for each 

of the square and rectangular slabs along with the control specimens are 

given in Table B. 2 of the Appendix B. Each model was cast by pouring 

fresh concrete into the form in 3 layers and vibrating the mould after 

each addition. A vibrating hammer called the Kango hammer was used for 

this purpose. At the end of the final layer, the excess concrete was 

screeded off and the top surface was trowel finished. Finally the mould 

was given some gentle tapping to ensure overall smoothness of the top 

surface. The control specimens were cast in a similar way simultaneously 

with the model. 

The test slab together with the control specimens were then covered 

completely with polyethelene sheets to control humidity. This cover was 
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removed after six days and the formwork stripped. The tension face of the 

slab was painted white with a solution of plaster of paris in water. On 

drying, other necessary preparations were carried on for the testing on 

the seventh day. 

6.14 Test Procedure 

After placing the test slab on its supports and securing the 

corners from lifting up, the strain gauge lead wires were connected to 

the strain indicator through a wheatstone bridge junction box. The strain 

readings were checked for any possible damage to the strain gauge 

connections. The strain indicator with its connection to the gauges was 

then given a heating up time of about 4-6 hours for stability of strain 

outputs during the test. In the mean time, the deflection dial guages 

were placed at their proper grid point locations and the verticality of 

these gauges were checked. 

At the beginning of the test, all the test slabs were subjected to 

a small amount of initial conditioning load while the contact between the 

deflectometers and the slab surface were checked. The conditioning load 

was then removed completely. Later, the slab was progressively loaded to 

failure. The load was applied at suitable increments so as to reach the 

estimated ultimate load in at least ten increments. Except for model S4 

3UD, the total number of load increments were actually much more than 

ten. For the point loading systems the load increments were usually 0.5 

KN or 1.0 KN and the jacking stroke was maintained, at 0.002 mm/sec until 

near failure when the stroke speed had to be increased considerably. In 

the case of pressure loading the increments were normally 0.5 psi or 0.25 

psi depending upon the expected ultimate load. 

At zero load and after each load increments, the deflection gauge 

and the strain gauge readings were read and recorded manually. As the 



129 

loading continued the tension f ace of the model was continuously 

inspected for the first visible crack. The load/pressure corresponding to 

the appearance of the first crack was recorded. The ultimate stage was 

assumed to have been reached when the deflection readings continuously 

moved on without any significant change in the applied load. Specially 

for the uniform pressure loads, a unique deflection corresponding to the 

ultimate load was not possible because the deflection gauges drifted on 

and on although the pressure was left almost stationary. 

At the end of the test, the accompanying test cubes and cylinders 

were tested for compressive and tensile strengths respectively. Usually 

an average of 3 cube test results and 2 cylinder split results were taken 

as their representative values. 

6.15 Brief Discussion of Test Results 

The details of the supporting arrangement and applied loading 

systems are shown in Fig. 6.1 and summarised in Table 6.1. The 

representative cube crushing strengths and the split cylinder tensile 

strengths of the accompanying control specimens for different test slabs 

are furnished in Table 6.2. The total load on the slab at the instant of 

sighting the first tensile crack and that at failure are termed herein, 

as the cracking load and the ultimate load respectively. In case of 

uniform pressure loading, the total load is obtained as the product of 

the pressure intensity and the total loaded area of the slab. The 

cracking and the ultimate loads for different experimental slabs are 

provided in Table 6.3. 

The test model S14UD was a square slab, simply supported all around 

the four edges and loaded with uniformly distributed load. The first 

crack was observed near the centre span at about 5.7 psi of pressure. 
This corresponds to 0.0393 N/mm2 and totals to 22,700 N of load on the 

ft 
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Table 6.2. Average Concrete Strengths of the Control Specimens for 

the Respective Test Slabs. 

Slab 
Model 

Cube Strength 
feu (N/mm2) 

Sp. Cylinder Strength 
ft (N/mm ) 

S14UD 21.9 2.29 

S24p 1 18.0 1.62 

S34P4 20.0 2.10 

S43UD 19.5 2.00 

S54UD 21.6 2.20 

S63P 1 18.3 1.69 

Table 6.3. Total Load at Cracking and Ultimate Stage of the Test Slabs. 

Slab Cracking Load Ultimate Load 
Model P r (KN) P (KN) 

c 
(Pressure, N/mm2) 

u 
(Pressure, N/mm2) 

S14UD 22.70 36.04 
(0.0393) (0.0624) 

S24P 1 5.15 9.29 

S34P4 16.00 25.20 

S43UD 9.55 15.93 
(0.00827) (0.01379) 

55 4UD 30.27 52.57 
(0.0262) (0.04551) 

S63P1 3.10 5.00 
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slab. The load vs steel strain diagrams are shown in Fig. 6.16. It may be 

observed from the figure that strain gauge 3, although only 55 mm away 

from gauge 2, had undergone relatively higher extension compared to the 

other even before the visible macro crack appeared. Gauge 3 was located 

very near to the centre span and it is more likely that the microcracks 

had developed over this location. Their gradual growth enhanced the 

strain increments in steel there while widening their crevices. The 

cracks propagated along the diagonal towards the corner and spread very 

quickly until they covered about two-thirds of their total journey. 

Relatively very low strains in gauge I indicates that the reinforcements 

towards the supporting edges remain understressed except perhaps near the 

corners. Subsequently, the slab failed at a pressure intensity of 0.0624 

2 N/mm. Plates 6.7 and 6.8 show the crack patterns of the tension and 

compression faces respectively for this slab after failure. 

The test slab S24P1 was identical to the first model except that it 

was loaded with a single point load at the centre span. The first visible 

crack was observed underneath the load when it reached a magnitude of 

5150 N. But this time the cracks propagated slowly towards the corners 

and instead of a single crack approaching the corners, the crack 

bifurcated near its origin. Thus a pair of branched cracks gradually 

moved on increasing the distance between them and finally crossed the 

supporting edges near the corners. Plates 6.9 and 6.10 show the crack 

patterns on both faces after failure. Although the photographs show a 

clear punching effect around the point load, the failure was primarily in 

flexural mode. The flexural cracks were developed fully and the slab 

sustained hardly any extra load during the formation of punching cracks. 

The ultimate load sustained by this slab was 9290 N. Steel strain 

recording for this slab and the following one (S34P4) were not possible 
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because of strain gauge installation error. 

The third slab S34P4 was also a square slab identical to the former 

two in dimension and supporting arrangements. But this slab was loaded 

with four point loads placed at the quarter spans. The first crack 

appeared at the centre span when the total load (sum of 4 loads) reached 

about 16 KN. The central cracks progressed along the diagonal but soon 

new cracks along lines joining the point loads and parallel to the 

supports were formed. On further loading these edge parallel cracks 

originating from under the loading points moved inwards to meet each 

other and the former diagonal cracks eventually split into two as they 

proceeded outwards to the corners. Photographs of Plates 6.11 and 6.12 

give details of the cracking patterns for this slab. The slab failed 

completely at a total load of 25.2 KN. 

Model S43UD was a rectangular balcony type slab which was supported 

on three sides and the fourth side was completely free. It was loaded 

with uniformly distributed pressure loading system. The first crack was 

observed near the centre of the free edge. It slowly progressed inwards, 

remaining parallel to the short edges. Soon afterwards, inclined cracks 

were sighted near the free edge which extended towards the supported 

corners. The pressure intensity at the time of first cracking was 

recorded as 0.00827 N/mm2. Fig. 6.17 shows the load-steel strain diagrams 

for this slab and Plates 6.13 and 6.14 furnish the crack patterns. 

Strains in the longer steel near the centre span (Gauge 2 and 3) is 

relatively very low while that in gauge I are considerably higher. This 

is because gauge 1 lies right across the potential inclined cracks. 
Strains in the central short bar (gauges 4,5 and 6) is relatively low as 

well. The recorded steel strains and the observed crack patterns suggest 
that the principal effect of bending is more prominent elsewhere away 
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from the centre of the slab. The slab failed at a pressure of 0.01379 

N/mm2 which amounts to 15.93 KN of total load on the slab. 

Slab S54UD was a two way rectangular slab, loaded with uniform 

pressure loads. Because of its higher aspect ratio, the principal bending 

action should be along the shorter direction. The first crack had formed 

at the centre span when the pressure reached about 0.0262 N/mm2. The 

crack gradually extended towards the shorter edges moving parallel, to the 

longer sides. As can be expected, these primary cracks bifurcated on 

reaching the quarter spans and the two branches gradually crept towards 

the corners. The overall crack patterns are shown in the photographs of 

Plates 6.15 and 6.16. It may be noticed that, instead of a single crack 

moving along, a system of evenly spaced cracks were developed along with 

the prominent cracks. This was more so for the branched inclined cracks 

reaching the corners. Load-steel strain diagrams are presented in Fig. 

6.18 and it may be seen that the strains in shorter direction were much 

higher compared to those in the longer direction. Specially, strain 

gauge 4 had shown appreciable extension soon after the long edge parallel 

crack appeared at the centre. The ultimate pressure at failure reached 

0.04551 N/mm2. 

Test slab S63P1 was the second balcony type rectangular slab like 

that of S43UD. But it was loaded with a single point load located midway 

along the longer sides and a quarter of the shorter span inside the free 

edge (Fig. 6.1. f). The first visible crack was observed underneath the 

load extending up to the free edge at 3.1 KN load. This crack then 

branched out as it moved towards the supported longer edge. These 

branched cracks did not move towards the corner, instead they widened 

apart only slightly before reaching the longer 'support. The crack 

patterns at the tension face are shown in Plate 6.17. Although some 



133 

evenly spaced fine inclined cracks were formed but none of them could 

reach the corners. The reason for such behaviour would become clear when 

the compression face crack patterns of Plate 6.18 is noticed carefully. 

Two prominently negative yield lines had developed connecting the long 

supported edge with the corners of the free edge. So, the progress of the 

inclined cracks at the tension face was arrested by the formation of the 

negative yield lines and they could not proceed much beyond these. 

negative cracks. The load-steel strain diagrams are presented in Fig. 

6.19. The slab collapsed at an ultimate load of 5 KN. 
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Plate 6.1 Reinforcement Mesh for the Square Slabs. 
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Plate 6.2 Roinforcement Mesh for the Rectangular Slabs. 
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Plate 6.3 'lost , et lip for Model S24P 1. 

Plate 0.4 Four F ornt Lo.: dtrig I hrough in Intrrrnedidte Croy, -piece 

for Slab S34P4. 



Plate 6.5 Single Point Loaded Rectangular Slab S63P1 
(after failure photograph). 

Plate 6.6 Test Set Up for Pressure Loaded Rectangular Slab 
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With a Free Edge (S43(1D). 
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Plate 6.7 Crack Patterns at Failure on the Tension Face of Model S14UD. 

Plate 6.8 Compression Face of Model S14UD After f=a; lur _. 
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Elate 6.9 Crack Patterns at Failure on the Tension Face of Model S24P1. 

Plate 6.10 Compression Face of Model S24P I After Failure. 
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Elate 6.11 Crick I tttern, at Faiiure on the Tension Face of Model S34P4. 

Plate 0.12 Compression Face of Model S34P4 After Failure. 
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Plate 6.13 Crack Patterns at Failure on the Tension Face of Model S43UD. 

Plate 6.14 Compression Face (f Model S43UD After Failure. 
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Plate 6.15 Crack Patterns at Failure on the Tension Face of Model S54UD. 

Plate 6.16 Compression Face of Model S54UD After Failure. 
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Chapter 7 

NUMERICAL EXAMPLES AND COMPARISON OF RESULTS 

7.1 Introduction 

The numerical formulation of the problem and the details of the 

experimental investigation have been already described in the preceding 

chapters. The outcome of the computer model will be exemplified here. 

Besides testing the sensitivity of the numerical solution with respect to 

some of the key parameters, the overall performance of the model in 

predicting the behaiour of reinforced concrete slab type structures is 

presented. The experimental results of the test slabs provide the bases 

for comparing the analytical predictions. The test results of some other 

reinforced concrete members reported by various authors will also be 

used. 

Graphs and figures are simple and sometimes more effective means of 

illustration. Hence, their presence in abundance in this chapter is not 

only a natural consequence but also a useful necessity. A number of 

figures have been transferred to the appendix D in an effort to optimise 

the volume of this chapter. 

7.2 The Experimental Slabs 

The geometric details of the test slabs and their characteristic 

material properties have been furnished in Chapter 6. The load-deflection 

records at some selected locations and the observed failure crack 

patterns have also been provided there. The numerical predictions for 

these slabs will be compared here. But before presenting the overall per- 
formance of the numerical model, the influence of some of the numerical 

parameters on the solution process will be outlined first. The effect of 
following different solution schemes has been given in Chapter 4 in 
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reference to the test slab S63P1. Here, the effects of some other 

parameters will be studied on one or the other experimental slabs. The 

choice of a test slab to study the effect of any particular parameter 

was made arbitrarily and was aimed at forming the guidelines as to their 

appropriate values to be used in the subsequent analyses. 

7.2.1 Effect of Load Increment Size 

The size of load increment is believed to have some influence on 

the solution of a nonlinear structural problem. The computer implement- 

ation scheme is based on the assumption that a very small amount of load 

will be input to initiate the solution process. The numerical cracking 

load will be then automatically scaled up in the subsequent load 

increment and all the following load increments will be made at a 

certain specified percentage of the cracking load (supplied as data). 

The effect of different load increment size was studied on test slab 

S14UD. A4x4 element mesh was used on a symmetric quarter of the slab 

(Fig. 7.9) and 8 layers was allowed across the thickness. The different 

load increment sizes were 5,10,20 and 30% of the numerical cracking 

load. The load displacement curves are provided in Fig. 7.1 for the 

centre point (Node 25) of the slab along with the experimentally 

recorded deflection. The key provided with Fig. 7.1 includes some 

trailing letters such as EXP, 5%P, 10%P, etc. after the slab identifier 

S14UD. The word experimental deflection is abbreviated to EXP and 5%P, 

10%P, etc. denote the load increment size in percent of the cracking 

load that has been followed to obtain the corresponding solutions. In 

the following figures similar convention has been pursued and the mean- 

ing of the trailing letters should become aparent from the respective 

discussions. 

As can be expected, the load increment size up to 20% do not 
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exhibit any appreciable influence on the load-deflection response. Even 

with 30% load increment size the noticeable difference stems out only at 

a later stage near failure. Complete equilibrium was checked at every 

load level following an increment. So, if equilibrium is reached within 

the specified number of iterations, the size of load increment should 

not have any significant effect during the early stages. This is true 

provided the load displacement response is only mildly nonlinear. In any 

case, when the load increment size is very large, the number of 

iterations required to satisfy equilibrium may increase significantly 

and the final load increment may lead to an unrealistic position of 

instability. For most of the analysis that follow, a 10% load increment 

size was adopted. 

7.2.2 Effect of Various Tension Stiffening Schemes 

The effect of following different tension stiffening schemes has 

been tested on model slab S24P1. Different tension stiffening models 

included in the programme have already been described in Chapter 3. Fig. 

7.2 provides the load displacement responses of the central node of slab 

S24P1. Allowing no tension stiffening, i. e. removing the principal 

tension completely soon after formation of a crack resulted the curve 

TSFO. It can be seen (Fig. 7.2) that this has considerably 

underestimated the actual response and the numerical failure was met at 

about 70% of the experimental failure load. Curve TSF1 allows for a 

linear descending branch which meets the strain axis at a strain level 

equal to 10 times the uniaxial cracking strain. This has improved the 

response remarkably. TSF4 performs even better where a parabolic 

descending branch up to 20 ccr has been allowed for. The automatic 

tension stiffening scheme (ASTF) which ensures that the stress state is 

always enclosed by the cracking surface, seem to have demonstrated the 
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best correlation with the experimental results. Similar trend of results 

was also observed in another test case with different tension stiffening 

schemes. This clearly demonstrates the need for including some form of 

tension stiffening scheme for concrete slabs. 

7.2.3 Effect of Different Biaxial Compressive Law 

Test slab 534P4 was selected to study the effect of two different 

biaxial law. (see Chapt 3) under both compressive stress state. It is. 

evident from Fig. 7.3 that the bilinearly elastic model (BIL) shows 

somewhat stiffer prediction near failure compared to simple formulation 

by Gerstle31 (SFG). But both lead to a satisfactory prediction and either 

of the formulation may be recommended. Gerstle's simple formulation has 

a little edge over the other because the second modulus need not be 

known. For the remaining test slabs the bilinear model was adopted as 

the second modulus of elasticity has already been determined 

experimentally. For the other slabs from literature Gerstle's simple 

formulation has been followed. 

7.2.4 Effect of Element Mesh Refinement 

The effect of increasing the number of elements for structural 

discretisation was carried out on slab S43UD. Load deflection response 

of the midpoint of the free edge was chosen to bring forth the effect. 

For symmetry, half of the slab was discretised. The different element 

mesh sizes considered are 4x4,4 x8 and 8x8 element subdivisions. 

The different responses are recorded in Fig. 7.4. It is interesting to 

note that even quadrupling the element numbers failed to produce any 

significant change in the load-displacement response for this particular 

problem. It therefore seems sufficient to discretise the rest of these 

small scale model slabs into 4x4 mesh on either symmetric half or 

symmetric quadrant of the actual slab. 
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7.2.5 Effect of Material Strengths 

Although the constituent material strengths are usually evaluated 

from the tests on accompanying control specimens, but these are only an 

estimate of the real strengths of the materials in the actual structure. 

Moreover, the strength of conrete is known to vary over the span of the 

structure. The centre span load displacement response of the model slab 

S54UD was replotted with slight change in the material strengths of-the 

constituent materials. All such curves with different material strength 

are grouped in Fig. 7.5. Curve COTO is with material strengths as 

obtained from tests. C1 TO is for 10% greater compressive strength of 

concrete while tensile strength is maintained at test value. COT1 is for 

other way round with tensile strength 10% higher. ST03 is the curve with 

steel yield strength 3% higher while the concrete strengths remain at 

the base value. Fig. 7.5 clearly demonstrates that the solution is more 

sensitive to the tensile strength of concrete and least to the 

compressive strength. This also indicates that the numerical analaysis 

of reinforced concrete structures is very much dependant on the 

numerical treatment of the cracking which in effect depends on the 

tensile strength of concrete. Yield strengths of steel are usually known 

within narrow limits. Here in this example, the change produced with 3% 

variation in steel strength is almost identical to that caused by 10% 

increase in compressive strength. In any case, slight uncertainties of 

materials strengths do not affect the overall response drastically. So, 

a fairly close estimate of material strengths seems acceptable. 

7.2.6 Effect of Number of Layers 

A4x4 grid of elements was maintained on symmetric half of the 

test slab 563P1 while the number of layers were changed from 8 to 12 

through 10. The effect of varying the number of layers is shown in Fig. 



165 

7.6. Load displacement curve for the free edge midpoint of this slab 

seem to remain unaffected with increased number of layers. For the 

elastic case it was demonstrated that a 6-8 layer proved satisfactory. 

In nonlinear environment also, more than 8 layers is perhaps 

unnecessary. Of the total number of layers, possibly two would be 

reserved for reinforcing steel disposed in two directions. Hence, 

concrete would in fact be divided into about 6 layers. 

7.2.7 Effect of Shear Retention Factor (ß) 

Susceptibility of the overall solution to the value assigned to 

the shear retention factor ß was studied on the test slab S14UD. As 

described earlier, shear retention factor was included in the crack 

oriented constitutive matrix in order to allow for dowel action and 

shear transfer across the numerical crack. Different values of $ 

assigned for this problem varied from 0.0 to 0.9 with two intermediate 

values of 0.1 and 0.5. The load displacement responses of the centre 

span are plotted in Fig. 7.7 The observed change is really insignificant 

even with ß equal to zero. This finding justifies the use of a constant 

value of shear retention factor as has been followed by some of the 

previous researchers36,37. However, theoretically a numerical problem 

can crop up if all the cracks formed have same inclination and the 

structure has freedom of movement in the crack normal direction. Such 

situations need further investigation, but in the present context shear 

retention factor can possibly be assigned any value between 0 to 1. 

7.2.8 Effect of Various Schemes of Residual Force Computation 

Residual forces could be evaluated either as a total discrepancy 

between the applied load and internal equilibrating equivalent loads or 

as an excess equivalent load due to stresses released from nonlinear 

actions (see Chapt. 2). Both these schemes have been incorporated in the 
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programme independently and in combination. Three different schemes were 

followed to obtain the load deflection curves of Fig. 7.8 for the middle 

point of the free edge of slab S43UD. Curve (EQA) is obtained in which 

complete equilibrium was checked at every iteration following a load 

increment. Curve (EQO) is just the opposite with no equilibrium check, 

i. e. the initial stress formulation. Finally, curve (EQI) is with single 

equilibrium check following a load increment and for rest of the 

iteration initial stress scheme followed. Comparing these curves with 

the experimental response, it is found that the total initial stress 

formulation results somewhat stiffer prediction beyond halfway mark. 

Checking equilibrium once only at every load increment has significantly 

reduced the drifting tendency of the initial stress method of residual 

force computation. 

7.2.9 Overall Behaviour of the Experimental Slabs 

Having studied the influence of different parameters on the 

numerical solution procedure, the overall numerical response of the test 

slabs can now be pursued. Some of the important features of interest 

include the numerical cracking and ultimate load, the overall crack 

pattern and the load deflection response. The geometric details of the 

test slabs and the material strengths of the constituents have been 

furnished in the preceding chapter (Fig. 6.1 and Tables 6.1 & 6.2). Just 

as a recap, the flexural compressive strengths are assumed to be 80% of 

the respective cube strengths and yield strength of steel is 240 N/mm2. 

Crushing strain and Poisson's ratio of concrete are respectively assumed 

to be 0.003 and 0.2 for all the test slabs. 

7.2.9.1 Comparison of Cracking and Ultimate Loads 

The analytical cracking loads for the test slabs are compared with 

the respective experimental values in Table 7.1. It may be seen that the 
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Table 7.1 Comparison of Cracking Loads. 

Slab 
Designation 

Experiment 
Cracking 
Load, 
Pe-r (KN) 

Analytical 
Cracking 

Load, P'cr (KN) 

Relative 
Ratio, P' /P 

ý. cr. 

514UD 22.70 15.565 0.685 

S24P1 -5.15 1.85 0.36 

S34P4 16.0 7.453 0.466 

S43UD 9.554 5.31 0.555 

S54UD 30.267 14.11 0.466 

S63P1 3.1 1.25 0.403 

Avg = 0.489 
Std. deviation = 0.117 

Table 7.2 Comparison of Failure Loads 

Slab 
Designation Total Load at Failure 

Ratio, 
PWPu 

Experimental 
Pu (KN) 

Analytical 
Pu (KN) 

514UD 36.042 35.048 0.972 

S24P1 9.29 9.497 1.022 

S34P4 25.20 23.673 0.939 

S43UD 15.93 15.698 0.985 

S54UD 52.57 50.679 0.964 

S63P1 5.00 5.021 1.01 

Avg = 0.98 
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analytical model underestimates the cracking load considerably. The 

ratio of analytical to experimental cracking loads ranges from 0.36 for 

slab S24P1 to 0.685 for slab S14UD - with an average of 0.489, standard 

deviation of 0.117. This is perhaps due to the fact that the analytical 

cracking load indicates the total load at which the cracking criterion 

is met for the first time at a sampling station, while in reality a 

crack is not visible unless it has spread over a certain distance and 

has widened enough. However, from these limited number of observations, 

it may be said that doubling the numerical cracking load value should 

give a reasonable estimate of the physical cracking load for reinforced 

concrete slabs. 

Table 7.2 compares the analytical loads at failure to the 

experimentally observed ultimate loads. The agreement appears to be 

fairly good in this case. It may be mentioned here that for most of the 

slabs complete equilibrium was not satisfied within the stipulated 

number of iterations at a load level just prior to the failure load. 

This implies that the numerical failure load can have any value between 

these last two load levels. Very small load increments (10% of cracking 

load) were applied in these analyses. So, even if the total load at the 

previous increment is taken to be the failure load, the figures in Table 

7.2 would at most be changed by 4%. 

7.2.9.2 Load Deflection Response 

As mentioned earlier, deflections were recorded at some 

preselected locations for the experimental slabs. Fig. 7.9 gives the 

element discretisation on the symmetric quadrant of the slab S14UD for 

numerical analysis. The analytical load-deflection responses at the 

centre of the slab S14UD (Node 25) are compared with the experimentally 

recorded values in Fig. 7.10. Two analytical curves are presented, one 
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using 5 DOF ACM element and the other using 6 DOF Bogner element. Both the 

analytical curves agree fairly well with the test results. 6DOF Bogner 

element show slightly stiffer predictions compared to the other analytical 

model. 

Fig. 7.11 compare the recorded deflection at Node 15 (see Fig. 7.9) 

of slab S24P1 and Fig. 7.12 compare that at centre span (Node 25) of slab 

534P4 with the respective analytical solutions. For these and the rest of 

the test slabs, the analytical curves using both the element types are 

included. Both these slabs had identical dimensions and supporting 

arrangement to that of the first square slab S14UD. Hence the 4x4 

element discretisation of Fig. 7.9 was maintained. 

Test slab S43UD had only one axis of symmetry. So, half of the slab 

was discretised to a4x4 grid as shown in Fig. 7.13. Nodes 21-25 are on 

the free edge of this slab and Nodes 5-25 are on the axis of symmetry. 

Fig. 7.14 groups the analytical load-deflection curves with the 

experimental one for the midpoint of the free edge. The element grid of 

Fig. 7.15 is on the symmetric quarter of the rectangular (all edges) 

simply supported slab. The experimental load-deflection records are 

compared with the analytical solutions in Fig. 7.16 for the central point. 

The element discretisation for slab S63P1 was identical to that of slab 

S43UD and is shown in Fig. 7.17. The load-deflection responses of the 

centre point of the free edge is compared in Fig. 7.18. 

The experimental load-deflection curves for some other grid point 

locations (recorded during experiment) are shown along with their 

respective analytical counterparts in the figures D. 1-D. 16 of Appendix D. 

It may be seen that in every case the analytical response is in fair 

agreement with the experimental records. It is noticed that the 6 DOF 

Bogner element is in general slightly stiffer near failure, only for the 
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slabs supporting point loads. In case of uniformly loaded slabs the 

difference in response is hardly distinguishable. 

7.2.9.3 Distribution of Internal Forces 

Nonlinear analysis by finite element method demands evaluation of 

the internal stress resultants at the sampling stations. These are 

needed in order to obtain the internal equivalent forces which in turn 

checks the equilibrium state. Thus, the current distribution of the 

internal forces at any stage of loading could be obtained as a 

by-product. Such distribution of inplane forces (NX and NXy) are shown 

in Figs. 7.19 and 7.20 for test slab S14UD at a total load level of 

about 26 KN. The contour maps of inplane forces for rest of the test 

slabs are given in Appendix D (Figs. D. 17-D. 26). 

The distribution of bending moments (MX and My or MXy) are given 

in Fig. 7.21-Fig. 7.32 for all the test slabs. All these contours were 

drawn at a total load level corresponding to about 75% of the respective 

ultimate loads. Standard GINO package routines were used for these 

drawings during the execution of the programmes. 

7.2.9.4 Overall Crack Pattern 

The inclination of the layer cracks at each of the Gaussian 

sampling points are recorded as soon as the numerical cracking condition 

is met. The orientation of the cracks at the discrete sampling stations 

are shown in Fig. 7.33 to Fig. 7.38 for all the experimental slabs. Each 

of these figures consist of several components representing each of the 

concrete layers used in element idealisation. It may be seen from these 

figures that the general trend in the crack direction agrees fairly well 

with the crack patterns obtained during the tests (Plates 6.7-6.18). The 

number of discrete numerical cracks may appear to be quite high compared 

to experimentally observed cracks. But it should also be realised that 
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many hairline cracks in the models would go unnoticed to the naked eye. 

Moreover, in real structure an already formed crack may intensify 

further before another crack can appear. Such a condition could possibly 

be included in a numerical model if they can be established from 

experimental investigation with sophisticated microscopic observation of 

crack propagation. For the present model, the direction of the cracks 

are based on principal stress criterion. It seems to be quite adequate 

in predicting the inclination of the major cracks that may develop in a 

reinforced concrete slab. 

7.2.9.5 Load-Steel Strain Response 

Steel strains were recorded at some preselected locations of the 

test slabs. Numerical predictions at a nearby Gaussian integration 

point. were output during the execution of the programme. The experi- 

mental values are compared with the numerical values of steel strains in 

the figures 7.39 through 7.42 for 4 test slabs. In each slab a com- 

parison is made here at the gauge with the greatest measured strains. 

The comparisons with some other gauges are given in Figs. D. 27-D. 30 of 

Appendix D. 

The numerically computed steel strains appear to be in fair 

agreement with the experimentally recorded values. In general, the 

analytical predictions tend to underestimate the actual steel strains. 

It may be recalled here that perfect bond has been assumed between steel 

and concrete in the analytical model. In the real structure, cracking of 

concrete in the vicinity of reinforcing steel would always be 

accompanied by some bond-slipping action. Dowel action, shrinkage of 

concrete and some other complex internal mechanisms may also influence 

the steel strains locally in an indeterminate way. Such considerations 

are important in the assessment of any numerical results. 
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7.3 Other Numerical Examples 

In order to study the effectivness and limitations of the present 

nonlinear model, test results reported by some other investigators are 

also analysed. Some more slabs and beam type structures are solved using 

the programme developed. The material properties used are mostly taken 

from the respective reports. But in some examples one or the other value 

had to be assumed because they were not reported by the respective 

authors. These will be duly mentioned in the ensuing 'discussion. The 

initial elasticity modulus Ec is estimated using the empirical relation 

of ACI-318-77 Building Code of Practice' as 

Ec = 33w1.5/ (7.1) 

where, f' = cylinder strength in psi 

w= unit weight of concrete in lbs/ft3. 

7.3.1 Johnarry's Rectangular Slab S590 

This is a simply supported rectangular one way slab tested by 

49 Johnarry. The slab dimensions are 760 mm x 1080 mm. It was loaded with 

an unsymmetrically placed single point load. The loading point was 

situated halfway in the shorter direction and one-sixth of the longer 

span inside from the free shorter edge (Node 16, Fig. 7.43). Only the 

longer two sides were simply supported. The other relevant properties 

are 

Ec = 14 KN/mm2 Ed = 6.43 KN/mm2 

fcu = 21 N/mm2 f' = 16.8 N/mm2 (0.8fcu 

ft=2.1 N/mm2 C=0.0025 

ES = 200 KN/mm2 fy = 250 N/mm2 

PX = 0.29% py = 0.61% (shorter direction) 

t =38 mm d=32 mm 

The whole slab has been (deliberately) discretised into 6x4 mesh 
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as shown in Fig. 7.43. The load displacement curves for the relevant 

node are compared in Fig. 7.44. An isometric view of the deflected shape 

of the slab is shown in Fig. 7.45. The inplane force distribution Ny 

(shorter direction) of Fig. 7.46 shows that virtually no significant 

force has developed in that direction. The distribution of the moments 

are given in Figs. 7.47-7.48 for this slab at about 65% of the ultimate 

load level. The probable crack patterns are presented in Fig. 7.49. All 

these predictions are found to be in good agreement with the 

experimental results reported. 

7.3.2 McNeice's Corner Supported Slab 

The corner supported slab reported by Jofriet and McNeice47 has 

been analysed using the present nonlinear model. The respective proper- 

ties used for the analysis are 

Ec = 4150 ksi, fI = 5500 psi, 

ft= 550 psi, Es = 29000 ksi, fy= 60,000 psi (assumed) 

pX = py = 0.85% t=1.75 in d=1.31 in. 

This slab was loaded with a single concentrated load at centre 

span. A quarter of the slab was discretised from symmetry (Fig. 7.50). 

The effects of boundary restraints was studied on this slab. Fig. 7.51 

includes three analytical curves (ROLL, UROL & HING) for each of the 

three different boundary conditions assigned to the corner node. The 

curve ROLL is for the slab having a ball roller at the corners permitt- 

ing free translation in any direction. UROL is for a unidirectional 

roller restraining movement in the other direction and HING denotes a 

corner hinge support preventing translation in both directions. It may 

be seen that restraining both the translational movement significantly 

increased the load carrying capacity. The unidirectional roller support 

approximates the experimental load deflection response closely indicat- 
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ing its closeness to the actual supporting arrangement in the test. 

Moment contours for this slab are shown in Figs. 7.52-7.53 and Fig. 7.54 

gives the numerical crack patterns. 

7.3.3 Taylor, Maher and Hayes's Slabs (S4 & S6) 

Two of the simply supported square plates S4 and S6 are selected 

from the experimental results of Taylor et a183. These were tested to 

study the effect of different reinforcement arrangements on the 

behaviour of slab. Both of these slabs were 6 ft. x6 ft. square slabs, 

simply supported all around. The overall slab thickness was 2 inch with 

an effective depth of 1.875 inch for the lowermost layer of steel. The 

reinforcement arrangements for these two slabs are reproduced in Fig. 

7.55. Closer spacings refer to the top of two bottom layers of steel. 

The material properties for the respective slabs are 

For slab S4, 

Ec = 3900 ksi fI = 4510 psi ft = 451 psi 

Es = 29000 ksi 

For slab S6, 

fY = 54.5 ksi t=2 inch 

Ec = 4000 ksi f. = 4980 psi ft = 498 psi 

Es = 29000 ksi fy= 61 ksi t=2 inch 

Both these slabs were loaded with sixteen point loads equally 

spaced over the span. Fig. 7.56 shows the element grid used for the 

analysis on a symmetric quarter of these slabs. The location of the four 

point loads on this quadrant are also shown in this figure. Load 

deflection responses at the centre span are compared in Figs. 7.57 and 

7.58 for slabs S4 and S6 respectively. The experiments were continued up 

to very high deflection level (1.5t), although the authors admitted that 

the verticality of the applied loads could not be maintained at higher 

deflections. In the present numerical formulations, the failure would be 

encountered at a much lower level of deflection. The analytical 
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solutions were carried up to the experimental failure deflection 

deliberately. But the flatter top portion of the analytical curves 

indicate that it was achieved without any further load increment. 

7.3.4 Ramakrishnan and Ananthanarayana's Deep Beams 

Two deep beams B3 and K2 (designated here as RDBB3 and RDBK2) 

tested by Ramakrishnan and Ananthanarayana77 has been analysed using the 

present model. The details of these beams are given in Fig. 7.59 and the 

analytical element grid used is shown in Fig. 7.60. The material 

properties for the respective beams are: 

RDBB3: 

Ec = 3200 ksi f' = 3590 psi ft = 335 psi 

Es = 29000 ksi fy = 46000 psi v=0.0 

RDBK2: 

Ec = 2600 ksi fI = 2020 psi ft = 229 psi 

Es = 29000 ksi fy = 46000 psi v=0.0 

The first of these two beams RDBB3 was loaded with two points 

loads while the latter, RDBK2 supported uniformly distributed loads 

(Fig. 7.59). The analytical load deflection responses of the centre span 

are compared with the experimental records in Figs. 7.61 and 7.62 for 

the respective beams. It may be observed that the numerical responses 

were far too stiff right from the start. In deep beams, the deflections 

are very small and a designer is seldom concerned about their magnitude. 

As regards the ultimate loads, it may be seen that the numerical 

predictions are fairly close to the actual values. In the former case, 

the numerical estimation is 16% higher while for the latter it is 5% 

lower than the actual loads reported. The high estimation of the 

ultimate load for RDBB3 is perhaps due to the lack of precise knowledge 

of the yield strength of steel used in that beam. Only an average value 
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has been reported although the bar size used in that beam was different 

from the average bars used in most of the test beams. 

7.3.5 Hayes and Taylor's Slab-Beams 

Two slab-beam panels Al and A2 of Hayes and Taylor38have been 

selected to study the performance of the present model in such situat- 

ion. Fig. 7.63 provides the details of these two panels while Fig. 7.64 

gives the element mesh used for discretisation. The material properties 

are 

HSBA 1: 

ý= 
25 KN/mm2 f* = 28.3 N/mm2 ft = 3.5 N/mm 

ES = 200 KN/mm2 

fy = 414 N/mm2 for slab steel 

fy = 300 N/mm2 for beam steel (assumed) 

HSBA2: 

ý= 
22 KN/mrn 2 fý = 21 N/mm2 ft = 2.99 N/mm2 

Es = 200 KN/mm2 

fy = 414 N/mm2 for slab steel 

fy = 320 N/mm2 for beam steel (assumed) 

Both of these slab-beam panels were loaded to failure by uniform 

pressure loads. The 51 mm thick slabs were monolithically cast with the 

152 mm thick edge beams running all round the four edges. Supports were 

placed at the four corners only under the beams. The load deflection 

curves for the centre of the slab of HSBAI are compared in Fig. 7.65. 

Similar curves for the centre of the edge beam and the centre of the 

slab in case of Panel HSBA2 are provided in Figs. 7.66 and 7.67 respect- 

ively. It may be mentioned here that the first numerical cracking 

appeared at the centre of the beams in both cases at a total load of 21 

KN and 19 KN for HSBAI and HSBA2 respectively. The experimental values 
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are reported to be between 18 to 22 KN. The agreement is very good in 

these cases compared to those in case of the test slabs. 

7.3.6 Cope and Rao's T Beam T2 

AT beam reported by Cope and Rao18 is considered here as another 

numerical example. The geometric details and the element grid used on 

symmetric quadrant are provided in Figs. 7.69 and 7.70. The relevant 

material properties are 

EC = 35 KN/mm2 fý = 38.4 N/mm2 ft = 3.84 N/mm2 

Es = 200 KN/mm2 fy = 250 N/mm2 

V 0.0 for beam segment 
and 

v=0.2 for flange part 

This beam was over reinforced and would therefore test the 

capability of the present formulation in coping with such problems. The 

numerical load displacement response at the centre span is compared with 

the experimental values in Fig. 7.68. The experimental deflection 

measurement was discontinued at 114 KN although failure was recorded at 

127 KN. With the present analysis, numerical failure was encountered at 

a total load of about 134 KN and the analytical curve is presented up to 

that level. The overall response and the ultimate loads are found to be 

in good agreement with the experimental values. 

0 
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Chapter 8 

CONCLUSIONS AND SUGGESTIONS 

8.1 Conclusions 

The numerical techniques for the complete description of the nonlinear 

response of reinforced concrete structures may be broadly grouped into two 

categories. The first group comprises the purely numerical aspects such as 

element discretisation, evaluation of the internal and external actions, 

various solution strategies, etc. The second group includes the mathematical 

idealisation for nonlinear constitutive relationships of the constituent 

materials. Both of these aspects have been investigated at some detail in 

this study. The principal findings emerging out from the discussions of the 

previous chapters are summarised below. 

1) The 5 DOF ACM plate bending element and the 6 DOF Bogner 

element are both equally efficient in describing the 

nonlinear response of reinforced concrete slabs provided 

the nonlinear material responses are adequately modelled. 

The 6 DOF Bogner element has shown slightly stiffer pre- 

dictions in the case of slabs supporting point loads. 

Computationally, the former element is slightly faster 

compared to the latter. Hence, the use of this 5 DOF ACM 

element may be recommended. Although it is a noncompat- 

ible element, it has been successfully employed in all 

the numerical examples studied. 

2) The numerical integration scheme for evaluation of the 
x-1,1- Qp, -p internal equivalent nodal forces seems essential because 

the averaging techniques followed by some previous re- 

searchers36,37,49 are not satisfactory in a general 
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type of loading. Such approaches are error-prone and can 

not satisfy equilibrium state for any arbitrary type of 

external loading. 

3) Any of the well established numerical solution algorithms 

described in Chapter 4 could be used for solution of the 

resulting nonlinear equations. But from this study it 

appears that the modified Newton-Raphson procedure with 

provision for at least one stiffness update at each load 

level is perhaps best suited. Such algorithms are effic- 

ient and economic in tracing the nonlinear response 

of reinforced concrete. 

4) Relative norms of residual forces and/or relative norms 

of iterative displacements can be used for terminating 

the iterative processes about a load increment. Their 

tolerable minimum value should preferably be limited 

between 0.01 and 0.001. Much lower tolerable limit could 

be set but it may increase the cost of computation without 

any appreciable overall influence. 

5) The number of elements for structural discretisation seem 

to have less pronounced effect on the overall load-dis- 

placement response of reinforced concrete members in 

flexure. Thus, the minimum number of element mesh size 

which is optimum for predicting elastic response seems 

to be adequate under nonlinear environment also. But if 

the localised stress or strain quantities are of interest 

then the element grid should be increased (if necessary) 

so that the point of interest fall as near to one of the 

element sampling stations as possible. 
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6) Six to ten layers including two steel layers are sufficient 

for sampling the nonlinear responses across the thickness 

of the element. In fact, increasing the number of layers 

beyond 8 are found to have no significant effect and is 

perhaps unnecessary. Care should be taken so that the 

centroid of any layer does not coincide with the reference 

axis. The effect is usually small but could become signifi- 

cant if the particular layer happen to be of considerable 

thickness. 

7) There are two ways of evaluating the residual forces (Chapt 2). 

Both can be advantageously used if the numerical integration 

schemes are adopted for their computation. However, if the 

initial stress approach is selected then a single equilibrium 

check after each load increment has shown better performance 

compared to the approach where such check has been omitted 

altogether. Complete equilibrium checking procedure is 

certainly the safer of the two. 

8) The load increment size should be small. The preferred size 

of load increment should be limited to between 5% and 20% of 

the cracking load. If the cracking load is well estimated 

numerically then 10-15% size of increment is fairly good. 

Pre-anticipation of the nonlinear response is also helpful 

in selecting the optimum load increment size. For highly 

nonlinear response, smaller increment size should always be 

preferred. In general, if relatively higher load increment 

size is selected then the permitted number of iterations 

should also be increased. This should permit the equilibrium 

to be achieved at each load level. A 10% load increment size 

is recommended as a general rule. 
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9) The numerical treatment of cracking appears to be the most 

important source of nonlinearity in the context of overall 

material model. Its numerical representation greatly in- 

fluences the postcracking constitutive relations. The 

primary features of cracking consists of i) a criterion to 

determine onset of cracking and ii) postcracking modelling. 
59 

10) The principal stress criterion of Kupfer and Gerstle 

has been adopted as a citerion for the onset of cracking. 

The orientation of the crack is also determined on the 

basis of maximum principal tension at the time of formation 

of the crack. The crack directions predicted for the rein- 

forced concrete example slabs are found to be in fair 

agreement with the respective experimental observations. 

11) Of the postcracking treatments, the tension stiffening 

schemes have a significant influence on the numerical model. 

Considering concrete as a no-tension material at the dis- 

crete sampling points may lead to considerable underesti- 

mation of actual loads. For realistic representation, some 

form of tension stiffening scheme is necessary. The pro- 

posed alternative approach of effecting tension stiffening 

in concrete appears to have performed satisfactorily for 

all the test cases. 

12) The theoretical predictions seem to be less sensitive to 

the value assigned to the shear retention factor. In other 

words, the numerical treatment of the dowel action and 

shear transfer across crack has insignificant influence on 

the overall response of the slabs considered. However, its 

importance in preventing the numerical instability can not 

be overruled. This may occur when all the layers in all 
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the sampling stations of some adjoining elements crack in 

the same directions. In view of that some fractional value 

greater than zero is recommended for the shear retention 

coefficient B. 

13) The representative strengths of the constituents of rein- 

forced concrete members are seldom known precisely. There- 

fore, some engineering judgement is always necessary in 

the interpretation of any analytical results. The present 

nonlinear model has been found to be relatively more 

influenced by tensile strength of concrete than compressive 

strengths. However, if the material properties are known 

within ±10% of the real value, the overall response could 

be assessed without serious error. 

14) Under biaxial compressive stress, both the bilinearly 

elastic model and the gradually softening model of 

Gerstle31 are found to perform satisfactorily. If the 

second elastic modulus is unknown, Gerstle's simple 

formulation is the obvious choice. Bilinearly elastic 

model may predict slightly stiffer response near failure 

compared to the other model. 

15) The inplane boundary restraints may have significant effect 

on the performance of the analytical models. This has been 

demonstrated with the McNeice's47 corner supported slab. 

The realistic use of the present model (which include in- 

plane degrees of freedoms) demands that the inplane bound- 

ary conditions be known with fair degree of precision. 

Otherwise, the analytical solution could differ considerably 

from the actual behaviour. 
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16) The generality of the present nonlinear analysis procedure 

has been demonstrated with the help of several numerical 

examples. Its capability to cope with different boundary 

conditions and loading systems are fairly conclusive. The 

numerical predictions regarding load-displacement curves, 

cracking patterns, load-steel strain response and ultimate 

load levels are found to be quite satisfactory in most cases. 

The present programme permits the analysis of reinforced 

concrete slabs where the slab thickness may discretely vary 

over the span. A beam slab assembly is an extreme of such 

cases. Some examples of this form (including aT beam) has 

been studied. The general agreement is fair. It is known 

that in deep members the transverse shear may affect the 

results. The present model ignores these effects. In view 

of that it is believed that further experimental results 

of these types of structures are needed to arrive at a 

definite conclusion. Only then the adequacy of the present 

model can be outlined for handling such structural forms. 

8.2 Suggestions 

As stated earlier, the present formulation is based on thin plate 

theory of flexure. This would meet the requirements of many of the rein- 

forced concrete structural slabs. Even, relatively shallow beams may be 

analysed using this formulations assigning a zero value to the Poisson's 

ratio. The numerical aspects are based on well established procedures such 

as numerical integration schemes, various solution algorithms, etc. The 

principal areas to which the present formulation may be extended, with 

slight alteration and addition to the present programme, are suggested 

below. 
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i) A different material model for the description of material 

responses may be incorporated. 

ii) Reinforcing steel response may be generalised to include the 

elasto-plastic strain hardening behaviour of steel. 

iii) Provision for description of cyclic loading may be included. 

iv) Time dependent behaviour of concrete such as creep and 

shrinkage can be added to the existing programme structure. 

They are known to have appreciable influence on the long 

term behaviour of reinforced concrete structures. 

v) Effect of geometric nonlinearities may be included to study 

how it influences the behaviour of reinforced concrete slabs. 

vi) The present formulation may be altered to Mindlin plate form- 

ulation which includes the effect of transverse shear forces. 

It should generalise the capabilities to handle relatively 

thick flexural structures with confidence. 

vii) A separate layered beam element may be included. This would (-I- 

enable the discretisation of beam-slab structures with two 

different types of elements. The present model makes use of 

the plate elements to discretise the beams. 

Some other aspects of future study could be directed to 

a) Formulate a generalised model for concrete in order to 

describe its behaviour under any combination of stress state 

unlike the present segmental representation as both tensile, 

tensile-compressive, etc. 

b) Study experimentally the behaviour of some slab-beam struct- L 

ures. Such experimental informations are necessary to test 

the capabilities of the present programme or any other 

analytical methods in predicting the behaviour of slab-beam 
type structures. 
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Appendix-A 

EXPLICIT FORM OF SOME OF THE MATRICES NEEDED IN 

MATHEMATICAL FORMULATIONS OF THE ELEMENTS USED 

The plate train operator Matrix, A 

a00 
ax 

0a 
ay 0 

aa0 
äy ax 

000 

o 0 

0 0 

0 

0 

o 0 0 

0 0 0 

0 

a2 ßx2 

0 

0 

00 

o0 

ao 
ay2 

a2 0 -2 MY 

The explicit form of the H matrix (Eq. 2.42) for 5 DOF ACM Plate Bending 

Element is given in the following page. 
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The vector, { f Preddxdyj (Eq. 2.55) for the 5 D. O. F. ACM element may 

be given as, 

[0,0, or 0,0,0,0,0, 

xy, x2y/2, xy2/2, x3y/3, x2 y2 /4, xy3/3, x4y/4, x3y2/6, 

x2y_! 6, xy4/4, x4 y2/8, x2 y4/8JT 

Putting the limits for x (-a to +a) and y(-b to +b), the above vector reduces 

to 

[0,0,0,0,0,0,0,0,4ab, 0,0,4a3b/3,0,4ab3/3,0,0,0,0,0,0]T 

Similarly, the vector[f Preddxdy} for the 6 D. O. F. Bogner element, after 

performing the integration and putting limits is, 

[0,0,0,0,0,0,0,0, 

4ab, 0,0,4a3b/3,0,4ab3/3,0,0,0,0,0,4a3b3/9,0,0,0,01T 
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Appendix B 

ESTIMATION OF ULTIMATE LOADS FOR THE TEST SLABS 

The assumed yield line patterns for the different test slabs are shown 
in Fig. B. I. The ultimate load expressions and their actual magnitudes for 

the test slabs are provided in Table B. I. The square slabs were assumed to 

be equally reinforced in either direction with a steel percentage of 0.5%. 

The rectangular slabs would have the same steel percentage in the longer 

direction while the shorter direction steel being doubled to 1%. A sample 

calculation for yield moment per unit length for 0.5% steel percentage and 

the resulting ultimate load for slab S4 3UD is given below. 

A SAMPLE CALCULATION: 0.65fc 
I Xn 

dn 

1f 
Fig. x Assumed ultimate stress block. 

The assumed stress block at ultimate state is that of ACI 318-77 and is 

shown in Fig. x. 
Given: target mean cube strength, fcu = 21 N/mm2 

yield strength of steel, fy = 250 N/mm2 

steel ratio ,p= bd = 0.005 

slab thickness, t= 38 mm 
effective depth, d= 38 - (5 + 2) = 31 mm 

So, 

steel area per unit length, As=0.005 xIx 31 = 0.155 mm2 
flexural compressive strength, f' = 0.8 x fcu = 16.8 N/mm2 

x_ 
Asfy 

__0.155 x 250 xI=2.71 mm n 0.85f' b 0.85 x 16.8 x1 

. '. the yield moment/unit length, m= Asfy (d - 2 

= 0.155 x 250 (31-1.355) 

= 1.15 Kn-mm 
Hence, for rectangular slabs 

0 

m1=m=1.15 KN-mm and m2 = 2m = 2.30 KN-mm 
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Ultimate load computation for slab S43UD: 

The assumed yield line is shown in Fig. B. l. d along with the probable 

rigid regions A, B&C. The ultimate load expression is obtained by equating 

the internal work to the external work at yielding 
Internal Work for Rigid Region, A= mla. 

X 

Internal Work for Rigid Region, C= mla 
X 

Internal Work for Rigid Region, B=m. 2x. 2ä 

Total Internal Work =2 (mIa/x+ m2x/a) 
Due to applied uniform loading of intensity, q per unit area and b= 2a, 

External Work = 4.3 (jax). q + 2(a-x). ý 

=(a2-ýq 3 

Equating the internal work expression to external work and using 

m1 = im2 = m, it can be shown that the yield condition attains a minimum 

energy dissipation (i. e. for m/q maxima) when x=0.56a. 
Hence, the expression for ultimate load intensity reduce to 

q=7.145 m/a2 

and the total ultimate load on the slab = q. a. b 

= 14.29 m. 
The material requirements for casting each of square and rectangular 

slabs are given in Table B. 2. Location of the strain gauges and that of a 

nearby Gaussian integration point are tabulated in Table B. 3 for the 
different test slabs. 
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TABLE B.! Estimated Ultimate Load Expressions and its Magnitude 

for the Test Slabs. 

Slab Ultimate Load Computed 
Model Expression Actual Magnitude 

of the Total 
Ultimate Load, 

(N) P 
u 

SI4UD = qa2 = 24 m P 27,600 
u 

S24P1 P =8m 9,200 
u 

S34P4 P = 16 m 18,400 
u 

S43UD = qab = 14.29 m P 16,433 
u 

S54UD = qab = 48 m P 55,200 
u 

S63P1 = 7.33 m P 8,430 
u 

TABLE B. 2 Material Quantities Required for Casting of Square and 

Rectangular Test Slabs Plus the Control Specimens. 

Slab 
Type 

Constituent 
Material 

Amount 
(kg) 

Cement 15 

Square Sand 60 

Water 9 

Cement 26 

Rectangular Sand 104 

Water 15.6 
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TABLE 6.3 Coordinates of Steel Strain Gauge Locations and a Nearby 

Gaussian Integration Point. 

Slab 
Model 

Gauge 
Location 

Physical 
Location 

Nearest 
Gauss Point 
Location 

Corresp. 
Elm No. 

Local 
Gauss 
Pt. No. 

Comment 

X Y X Y 

GI 380 170 359.9 169.9 8 4 

S14UD G2 380 305 359.9 305.1 16 3 4x4 Mesh on 

G3 380 360 359.9 359.9 16 4 Quarter Slab 

GI 340 400 339.9 400.1 18 3 

G2 610 400 610.1 400.1 20 1 4x8 Mesh 

S43UD G3 720 400 719.9 400.1 20 3 on Half Slab 

G4 720 400 719.9 400.1 20 3 

G5 720 455 719.9 454.9 20 4 

G6 720 590 719.9 590.1 28 3 

GI 340 360 339.9 359.9 14 4 

G2 610 360 610.1 359.9 16 2 

554UDý G3 720 360 719.9 359.9 16 4 4x4 Mesh on 

G4 720 360 719.9 359.9 16 4 Quarter Slab 

G5 720 305 719.9 305.1 16 3 

G6 720 170 719.9 169.9 8 4 

GI 340 600 339.9 590.1 26 3 

G2 610 600 610.1 590.1 28 1 

S63P1 G3 720 600 719.9 590.1 28 3 4x8 Mesh on 

G4 720 400 719.9 400.1 20 3 Half Slab 

G5 720 455 719.9 454.9 20 4 

G6 720 590 719.9 590.1 28 3 
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FIG. 9.1 Assumed Yield Line Patters for the Test Stabs 
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Appendix C 

BRIEF ACCOUNT OF DATA INPUT 

The sequential card by card input variables along with the format 

of the respective read statements are given in a following section. A sample 
data set for an example problem is also attached thereafter. But first, the 

meaning of the input variable names are briefly described below. 

TITLE Any title for user's convenience of identification of the current 

problem. Up to 60 Alpha-Numeric characters allowed. 
LABEL Up to 10 Alpha-Numeric Characters for problem identification. 

This label is tacked into the graphical outputs. 
NSCAL Possible value of 1,2 or 4 for Full, Half or 1 /4th part of the 

whole slab discretised for analysis. 
NALGO Solution Algorithm Selector. 

Hint: I- Constant Stiffness; 2 or 3 Newton-Raphson method with 

stiffness updates at Ist or 2nd iteration; 4- variable stiffness. 
NRESI Residual Force Computation Switch. 

Hint: 0- Initial stress method; 1- Equilibrium check after 
first iteration, then initial stress scheme; 5- Equilibrium 

check allthrough. _ 
NGAUS 2 

. 
for 2x2 Gaussian Integration Rule. 

NTENS Tension Stiffening Scheme Selector. 

Hint: I to 4- Four tension stiffening curves respectively; 
7- automatic scheme. 

NCOMP Biaxial Compressive Law Selector. 

Hint: 2 for Bilinearly elastic model; any other value for 

Gerstle's formulation, 

NCODE (1) - NCODE (10) Output control codes. 

NPROB Any nonzero value would permit the programme to run up to 
specified maxm. displacement if it does not fail due to 
ill conditioning. 

NINCR, NITER 

Number of specified Load Increments and Iterations respect- 
ively (Possible maximum NINCR is 100). 

SCALOD Fraction of Cracking Load by which the subsequent load incre- 
ments to be applied. 
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DNTOL, RNTOL 

Tolerance specification for iterative displacement and residual 
force norms. 

TOLDP Percentage of minimum element thickness up to which the analysis 

should be continued. 
NDIF, NELP, NLAY, NDFN 

Number of different element types (maxm. 6); Total number of 

elements (maxm. 64); Total number of layers per element 
(maxm. 12); Number of degrees of freedom per node (5 for 

ACM element). 
PROP(I, J) 

Various properties of each element types, (Hint: see following 

Input sequence section). 

STANG(I, J) 

Angles of steel layout for each element types (maxm. 2 directions 

permitted). 
LMARK(I, J) 

Layer markings for each layers of each element types (1 &2 for 

steel layers in two directions; 3 for concrete layer). 

PTHC(I, J) 

Thickness of each layer in percentage of total thickness of 

respective element types. 

MTYPE(I) 

Element types of each of the NELP elements. This is not to be 

supplied if all the elements are identical types. 
IREG Indicator for regular or irregular grid. 

Hint: 1 if both discretised lengths in X and Y directions are 

subdivided into regular grids;, Else any other value. 
NDX, NDY, XLENG, YLENG 

Number of divisions in X and Y directions; X and Y direction 
discretised lengths. 

XSIDE(I), YSIDE(I) 

Lengths of each subdivision in X and Y directions respectively; 
Not necessary if regular grid. 

NBOUN Number of Nodes where some boundary restraints are to be applied 
(maxm. 50). 
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NODBC (IFX), IDFIX (I), PRESC (IFX, J) 

Node Number, Fixity code value and the magnitude of prescribed 
displacements corresponding to each D. O. F. for each of the 

NBOUN boundary nodes; Fixity code example: 10101 indicates 

u, w and 0y restrained. 
NCONL Number of Point Loads. 

NUDL, NSEL, NUMO 
Indicators for existence of distributed load, self weight and 

point moments. 
SFACT(I) 

Relative ratio of the subsequent load increments for 

Applied Point Loads corresponding to each degrees of freedom. 

Even if there is no point load, SFACT (3) should be specified 
1.0 and rest zeros. 

UMOM(1) 

Applied moments Mx and My per unit length if any, although 
their equivalents are to be given as point loads (moments) at 
the appropriate nodes. 

LODPT(I), CONLD(I, J) 

Node numbers where the point loads are being applied and their 

magnitudes corresponding to each degrees of freedom. 
NOUTP, NPELO, NDISO 

Total number of specified Increments, Elements and Nodes 

respectively for which various output are to be made. 
IF (NOUTP. NE. NINCR) then the specified increment numbers are to be 

supplied. 
IF (NPELO. NE. NELP) then the specified element numbers are to be 

supplied. 
IDPNO(I), NPCOD(I) 

The specified node number and its code number (similar to 
fixity code). These will be stored in a separate file during 

execution which may be used after minimum editing by another 
plotting programme. 
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DATA INPUT SEQUENCE 

Card 1+ READ : TITLE & LABEL 
FORMAT 10A6/5A2 

Card 2 READ : NSCAL, NALGO, NRESI, NGAUS, NTENS, NCOMP 
FORMAT = 6I3 

Card 3 READ : NCODE (1-10) 
FORMAT 7I3,3I5 

Card 4 READ : NPROB, NINCR, NITER, SCALOD, DNTOL, RNTOL, TOLDP 
FORMAT = 3I3,4F8.3 

Card 5 READ NDIF, NELP, NLAY, NDFN 
FORMAT = 413 

Comment : For Each 'NDIF' (i. e. element type) 
Read Material Property set & Relevant Data. 

Note :: For each set, the Different Properties are 
C 1. ECON, 2. ECBI, 3. FCU, 4. FCA, 5. FCT, 6. ESTL, 7. FSU 
C B. POIS, 9. BETA, IO. ECRUS, 11. ECRIT, 12. SELW, 13. UDL, 
C 14. THICK, 15. ZMID 
C 
Card- 6+ READ : PROP (I, J) J=1, NPROP 

FORMAT = GE10.3 (usually in 2 Cards, NPROPa15) 
Card 7 READ : (STANG(I, J), J=1,2) 

FORMAT = 2F8.3 
Card Q READ : LMARK (I , J) , J=1 , NLAY 

FORMAT == 1213 
Card 9+ READ : PTHC (I, J), J=1, NLAY 

FORMAT = 10 F8.3 
Note : If FCA=0, Then FCA=0.45 * FCU 

If ECBI=O, Then ECBI=(FCU-FCA)/(. 72*ECRUS-FCA/ECON) 
Comment Material Sets End. So Next Card. 
Card 10+ If (NDIF. NE. 1 Then only 

READ : MTYPE(I) , I=1, NELP 
FORMAT = 2413 

Card 11 READ : IREG, NDX, NDY, XLENG, YLENG 
FORMAT = 3I3,2F8.3 

Note : If (IREG. NE. 1) 
)-Card 12 READ : XSIDE(I), I=1, NDX (maim NDX=9) 

Card 13 READ : YSIDE(I), I=1, NDY (maim NDY=9) 
FORMAT = 8F8.3 (for both cases) 

Card 14 READ : NBOUN (Maim. NBOUN=50) 
FORMAT = I3 

Card 15+ READ : NODBC(IFX), (IDFIX(I), I=1, NDFN) 

" , (PRESC(IFX, J), J=1, NDFN) 
FORMAT = I3,3X, 5I1,5F8.4 

Note : Supply Card 15 information 'NBOUN' times i. e 
for EACH Boundary Nodes. IDFIX is the FIXITY 
CODE corresponding to each degrees of freedom. 

Card 16 READ : NCONL, NUDL, NSEL, NUMO 
FORMAT = 413 

Card 17 READ : SFACT (I) , I=1,. NDFN 
FORMAT = 6F8.3 

Note : If (NUMO. NE. 0) Then-only 
Card 18 READ UMOM(I), I=1, NUMO 

FORMAT 3E10.3 
Note : If (NCONL. NE. 0) Then for each I of NCONL Card 19+ READ : LODPT(I), CONLD(I, J), J =1, NDFN 

FORMAT = Free format 
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Comment : Output Control Data follow Skipping 1 Card. 

Card 20 READ 
FORMAT 

Card 21 If (NOI 
READ 
FORMAT 

Note : Output 

NOUTP, NPELO, NDISO 
/313 

JTP. NE. NINCR) 
OUTPUT INCREMENTS 
2014 

Increment Nos -ve for which Plot asked. 

Card 22+ If (NPELO. NE. NELP) 
READ : SPECIFIED plate Elements 
FORMAT 2014 

Card 23+ IF (NDISO. NE. 0) 
READ :I DPNO (I) , NPCOD (I ) 
FORMAT (5(I3, I7)) 

Note : Put the Node Number followed by its Plotting code. 
Nodal Plotting CODES -ve for Smooth Curve fitting. 

AN EXAMPLE DATA SET 

EFFECT OF NO. OF LAYERS, (HALF) SLAB: S63P1; (0 LAYERS) 
S63P1 -OLR 

23 .52 72 
0001 33 01 000 100 001 
1 90 12 0.1 00E 00 0.001E 0 0 0.001E 00 0.900E 02 
1 16 85 0.200E D0ý 

0.160E 05 0. 600E 04 0.146E 02 0.730E 01 0.16 9E 01 0.200E 06 0.240E 03 
0.500E 00 0. 300E-02 0.000E 00 0.000E 00 0.00 0E 00 0.380E. 02 0.190E 02 

00.000 90. 000 
31J s2. 

3J.: 
) ti 

18.008 0.824 10.108 0. 412 20.6 48 16.6 70 16.670 16.660 
144 760.000 760.000 

13 
1 11111 0.0000 0.0000 0.0000 0.0000 0.0000 
2 00101 0.0000 0.0000 0.0000 0.0000 0.0000 
3 00101 0.0000 0.0000 0.0000 0.0000 0.0000 
4 00101 0.0000 0.0000 0.0000 0.0000 0.0000 
5 10101 0.0000 0.0000 0.0000 0.0000 0.0000 
6 00110 0.0000 0.0000 0.0000 0.0000 0.0000 

" 10 
. 

10001 0.0000 0.0000 0.0000 0.0000 0.0000 
11 00110 0.0000 0.0000 0.0000 0.0000 0.0000 
15 10001 0.0000 0.0000 0.0000 0.0000. 0.0000 
16 00110 0.0000 0.0000 0.0000 0.0000 0.0000 
20 10001 0.0000 0.0000 0.0000 0.0000 0.0000 
21 00110 0.0000 0.0000 0.0000 0.0000 0.0000 
25.10001 0.0000 0.0000 0.0000 0.0000 0.0000 
.1000, 0.000 00.000 1 . 000 00.000 00.000 
20 00.000 00.000 100.000 00.000 00.000 COMMENT:: OUTPUT COD E DATA 

831 
12 -4 9 16 -26 30 -36 12 14 16 

25 00100 
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