
Bivariate Piecewise Polynomials on

Curved Domains, with Applications to

Fully Nonlinear PDE’s

ABID SAEED

A Thesis submitted for the degree of Doctor of Philosophy

at the University of Strathclyde in the Faculty of Science.

Department of Mathematics and Statistics

University of Strathclyde

26 Richmond Street, Glasgow G1 1XH, United Kingdom

November 2012



The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material in, or

derived from, this thesis.

1



Acknowledgement

First of all I am extremely thankful to the only almighty ALLAH for everything

he blessed me with, in particular for the completion of this dissertation.

I would like to express my sincere gratitude to my supervisor Dr. Oleg Davydov

for all his continuous help and encouragement, always willing to offer his guidance

and useful advices.

I will always remember my parents and my wife for their unconditional love

and support. Their prayers were and will always be a hidden support for me.

I am also grateful to Kohat University of Science and Technology, Pakistan for

funding me.

2



Abstract

Using Bernstein-Bézier techniques we construct bivariate polynomial finite ele-

ment spaces of arbitrary order for curved domains bounded by piecewise conics,

which leads to an H1 conforming isogeometric method to solve Dirichlet problems

for second order elliptic partial differential equations. Numerical experiments for

several test problems over curved domains show the robustness of the method.

We then construct H2 conforming polynomial finite element spaces for curved

domains by extending the H1 construction. These spaces are used in Böhmer’s

method for solving fully nonlinear elliptic equations. Numerical results for several

benchmark problems including the Monge-Ampère equation over curved domains

confirm the theoretical error bounds given by Böhmer.
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Chapter 1

Introduction

1.1 What is the Finite Element Method?

The finite element method (FEM) is one of the most famous numerical techniques

to approximate the solution of boundary value problems [12, 18], particularly, due

to its ability to handle complicated geometries. There are different versions of the

method, with the Ritz-Galerkin version (conforming method) as the simplest one.

Let us briefly outline the method, for a full comprehensive treatment see e.g. [12,

18]. It will be helpful to take start with some particular partial differential equation

(PDE). There is no harm in considering the most familiar Poisson’s equation.

Assume we want to solve the problem

−∆u = f in Ω ⊂ R
n (1.1.1)

u = 0 on ∂Ω, (1.1.2)

where ∆ is the Laplacian operator defined by ∆ :=
∑n

i=1
∂2

∂2xi
. The first step is

conversion of the problem (1.1.1)-(1.1.2) to its equivalent variational form obtained

by multiplying (1.1.1) by some smooth test function v, satisfying homogeneous

boundary conditions, in conjunction with integrating over Ω. Then using the

13



integration by parts formula ends with

a(u, v) ≡
∫

Ω

∇uT∇v =

∫

Ω

fv ≡ L(v), (1.1.3)

where ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xn

)T
is the gradient vector of u. For the equality (1.1.3)

to make sense we need u, v ∈ H1
0 (Ω), where H1

0 (Ω) is the Sobolev space defined by

H1
0 (Ω) :=

{
u ∈ L2(Ω) :

∂u

∂xi
∈ L2(Ω), i = 1, . . . , n, u|∂Ω = 0

}
,

with

L2(Ω) :=

{
u : Ω → R ;

∫

Ω

u2 <∞
}
.

a(u, v) is usually referred to as a bilinear form over a space H1
0 (Ω), that also defines

an inner product on the same space H1
0 (Ω), and L(v) :=

∫
Ω
fv : H1

0 (Ω) → R, as

a linear form.

Thus the variational form corresponding to (1.1.1)-(1.1.2) can be formulated in an

abstract form as follows:

Find u ∈ H1
0 (Ω) such that a(u, v) = L(v) ∀ v ∈ H1

0 (Ω). (1.1.4)

The Riesz representation theorem tells us that (1.1.4) has a unique solution [12,

Theorem 2.5.6]. The Ritz-Galerkin method, actually, is to approximate u in a

finite dimensional subspace Sh of H1
0 (Ω) i.e. (1.1.4) is reformulated as

Find uh ∈ Sh such that a(uh, v) = L(v) ∀ v ∈ Sh. (1.1.5)

The finite dimensional space Sh is usually called a solution/approximating/discretizing

space for the Galerkin method. Using the basis {φ1, . . . , φm} of Sh, the problem

(1.1.5) is transformed to a finite dimensional linear algebra problem of the form

KU = F,

14



where

Kij :=

∫

Ω

∇φTi ∇φj and Fi :=

∫

Ω

fφi, i, j = 1, . . . , m,

and U = [u1, . . . , um] is the vector of unknowns such that

uh :=

m∑

i=1

uiφi

is an approximate solution to problem (1.1.1)-(1.1.2). The matrix K is, usually,

called the stiffness matrix and F the load vector. Thus choice of Sh plays a crucial

role in getting the corresponding system of linear equations that could be solved

computationally efficiently. The requirements a space Sh must have can be met

if Sh is chosen to be a finite dimensional space of piecewise polynomials(splines).

Definition of piecewise polynomial requires definition of partition of the physical

domain Ω which is defined as follows:

Definition 1.1.1. Let △ := {T1, . . . , Tk} be a set of simplices obtained by subdi-

viding the polygonal domain Ω into subdomains. Then △ is called a triangulation

of Ω if the intersection of any two neighboring simplices Ti and Tj is a common

face, a common vertex or a common edge.

Also a subdomain Ti is, usually, called an element for all i.

Now Sh is said to be a space of piecewise polynomials if it is a space of functions

that are polynomials on each triangle in △. In modern techniques, usually, local

basis functions for the space Sh are chosen i.e. the basis functions that are non-

zero over a small subdomain of Ω. In fact the local basis leads to sparse stiffness

matrix helps us solve the resultant system KU = F efficiently. In view of (1.1.3)

the space Sh will be a subspace of V = H1
0 (Ω) if we define it as follows:

Sh(△) :=
{
s ∈ C0(Ω) : s|Ti

∈ Pd ∀i, s|∂Ω = 0
}
,

where Pd is a space of n-variate polynomials of degree at most d. Thus, in other

words, we can say that Sh will be a subspace of V = H1
0 (Ω) if it satisfies two
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conditions

a) each s ∈ Sh is continuous over Ω and

b) each s ∈ Sh vanishes over ∂Ω.

In case Ω is polygonal both of the conditions can be met easily but for Ω with

curved boundaries the 2nd condition might be violated [12, 18], depending on what

approach is used to construct Sh (see Section 5.2 for the triangulation of curved

domains). In the finite element community this violation of 2nd condition is,

usually, termed as a variational crime. In this case Sh does not remain a subspace

of V = H1
0 (Ω) any more.

1.2 FEM for Domains with Curved Boundaries

In this section we briefly draw a sketch of some techniques that are used to deal

with domains having curved boundaries.

The standard and comparatively old technique to deal with curved boundaries

is that of isoparametric finite element method [18, 12] . In this approach nonlinear

isoparametric transformations FK are used that transform a reference triangle K̂,

with straight sides, onto the triangle K with curved sides (a pie shaped triangle),

see Figure 1.1. The mappings are defined with the help of polynomials of the same

degree as that of the elements over interior elements with straight sides. Obviously

theory imposes some conditions on these mappings to satisfy including bijection

and invertibility with non-zero Jacobians on curved element. Thus determining

such mapping is not very straightforward. Non-zero Jacobian is in fact needed

for the integration theory that comes into play while computing entries for ele-

ment matrices. In case of order d elements the data of
(
d+2
2

)
distinct nodes on the

curved element uniquely determine these isoparametric mappings. [18, Theorem
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4.3.3] provides sufficient conditions for the nodes to get a mapping with required

properties. A subtlety arises while implementing isoparametric method and plac-

ing the nodes interior to curved elements. R. Scott [48] presented an algorithm,

applicable in 2-D, to compute these nodes on curved elements that satisfy the

conditions of [18, Theorem 4.3.3]. The algorithm was later extended to 3-D in

[40]. This procedure needs to be followed for each curved element in a mesh.

For using higher order elements this obviously gets troublesome and makes the

method less attractive. Also it is well known that isoparametric method is not H1

conforming because it exhibits a variational crime since the non-polynomial shape

functions, obtained using nonlinear mappings, satisfy the boundary conditions on

approximated curved boundary. Moreover, it is also important to mention that

isoparametric approach is problematic when finite element spaces with enhanced

smoothness are sought [12, Section 4.7]. Such spaces are used to solve higher order

boundary value problems or second order fully nonlinear problems. For example

the spaces Sh ⊂ C1(Ω) are required for conforming methods to solve biharmonic

equations or second order fully nonlinear equations using Böhmer’s method [11].

Bernadou developed C1 curved element spaces of degree 5 using isoparametric ap-

proach [8]. If isoparametric mapping FK is defined with the help of polynomials

of degree 5 then this construction needs the shape functions of degree 9 on curved

elements to ensure global C1 smoothness, which makes this approach too intricate

and hardly practical.

Recently a new approach called the isogeometric method is introduced to solve

boundary value problems over curved domains [37]. The method has emerged by

the combination of finite element and Computer Aided Geometric Design (CAGD)

techniques. One of the primary goals of this approach is to be geometrically exact

while performing finite element simulations. Thus method is more geometric based
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K

K̂FK

Figure 1.1: Isoparametric mapping FK .

where the exact geometry of the physical domain is retainned by the appropriate

selection of the solution space Sh in conjunction with a geometry mapping that

maps the parametric domain onto a physical domain Ω defined with the help of

basis functions of the space Sh. Non-Uniform Rational B-Splines (NURBS) are

one of the choices to be used as basis for the space Sh that help keep the exact

geometry of the domain.

Another newly developed method is the so-called weighted extended B-spline

method (or web-spline method) [35] . The main idea for web-spline method is the

use of weighted B-splines as basis for finite element space where the globally defined

weight function vanishes on the boundary which helps impose the homogeneous

Dirichlet boundary conditions. But determining such a global weight function is,

obviously, not so easy, and there seems to be no natural extension of this approach

to deal with the non-homogeneous Dirichlet boundary conditions.
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1.3 Piecewise Polynomial Finite Elements on Do-

mains with Piecewise Conic Boundaries

Keeping in mind the difficulties to deal with domains having curved boundaries

discussed above, we develop a comparatively simple finite element method that

possess the following features.

1. It uses polynomial shape functions on pie shaped triangle.

2. It does not require any kind of geometry/isoparametric mapping.

3. It is isogeometric in the sense that the physical domain is exactly reproduced

if it is defined by a piecewise conic curve. Note that NURBS allow an exact

representation of conic curves [37, Section 2.9].

4. It is easily extendible to finite element spaces of higher smoothness.

More specifically we develop a finite element method for which we construct

spaces that satisfy boundary conditions on exact domains bounded by piecewise

conics. Note that a conic is an implicit quadratic polynomial curve which also has a

parametric representation as rational quadratic curve, and hence it is a particular

case of NURBS curve. To achieve our goal we make use of Bezout’s theorem.

The theorem says that if an algebraic curve f = 0 has infinitely many points of

intersection with a given algebraic curve q = 0 then f and q have a common factor

[34]. Thus if a conic q = 0 represents a curved boundary edge of a pie shaped

triangle T then we use shape functions in the space Pd−1q, where Pd−1 is a space

of all polynomials of degree at most d− 1 and

Pd−1q = {pq : p ∈ Pd−1} .
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Then a boundary edge of T is a zero curve for these shape functions. In this context

our method is in fact isogeometric method. Note that in contrast to the standard

isogeometric approach we do not require any kind of geometry mapping. Thus

there is no hurdle that prevents us from using higher order elements if needed.

In the context of the web-spline method we can say that we also use a kind of

weighted shape function on curved elements where the weight function is a conic

piece of boundary, i.e. q, is already known. An advantage of our approach over the

web-spline method is that our weight functions are local, already known and are

used only on curved elements (not on interior elements with all straight edges).

Using a kind of direct method we need to integrate on the original physical

domain. To this end we develop a quadrature rule to approximate integrals on a

pie shaped triangle.

The most attractive feature and in fact a motivation for developing our method

is its relatively straightforward extension to smooth spaces. In particular we also

construct H2 polynomial finite element spaces by a natural extension of the H1

construction. These space are required for Böhmer’s method to solve fully nonlin-

ear equations on a curved domain bounded by piecewise conics [10].

Before considering curved domains we study C1 spaces on polygonal domains

that possess the properties required in Böhmer’s method for fully nonlinear equa-

tions.

Bernstein-Bézier techniques [43] are our main tools to construct the required

finite element spaces. We have implemented, in MATLAB, a modified Argyris

finite element space on polygonal and curved domains and C0 finite elements of

any degree on curved domains. This implementation has been used in all numerical

experiments presented in the thesis.
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1.4 Outline of the Thesis

We are mainly concerned with the construction of H1 and H2 conforming finite

element spaces for curved domains bounded by piecewise conics to be used to solve

second order elliptic boundary value problems (BVPs).

In Chapter 2 we introduce fully nonlinear equations and formulate several

related definitions and results. Later, in the chapter, we also formulate Böhmer’s

finite element method.

In Chapter 3 the first section is devoted to a brief description of the relevant

Bernstein-Bézier techniques that will be used extensively in the sequel. In the

second part of the chapter we study C1 spline spaces on polygonal domains for the

possibility to be used in Böhmer’s method for fully nonlinear problems.

In Chapter 4 we report the numerical results for Böhmer’s method to solve

several fully nonlinear benchmark problems on polygonal domains using a modified

Argyris space as a discretizing space.

In Chapter 5 we develop a polynomial H1 conforming finite element method for

domains bounded by piecewise conics and present numerical results of our method

by considering a few linear elliptic Dirichlet test problems including the eigenvalue

problem.

In Chapter 6 we describe a construction of polynomial H2 conforming finite

element spaces for domains bounded by piecewise conics and present numerical

results of the Böhmer finite element method applied to several test problems for

the Monge-Ampère equation.

In Chapter 7 we compile all our achievements in this work and report some

possible future directions.
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Chapter 2

Fully Nonlinear PDEs and

Böhmer’s Method

The numerical solution of fully nonlinear elliptic partial differential equations is a

topic of intensive research and great practical interest, see [11]. The motivation

behind this interest is the presence of these equations in different fields of sci-

ence and engineering including differential geometry [3], fluid mechanics [44] and

optimal transportation [15].

Several numerical methods have been proposed in the literature for equations

of Monge-Ampère type such as the Monge-Ampère equation det(∇2u) = f(> 0),

the Gaussian curvature equation and Pucci’s equation etc [4, 13, 14, 24, 25, 30,

31, 41, 45, 46, 47].

In [45] the authors proposed a discretization of the Monge-Ampère equation

based on the geometric interpretation of the solution and solved the discretized

version of the problem using an iterative method that yields a convergent sequence.

Loeper [41] presented/proved a convergent Newton’s algorithm to solve the Monge-

Ampère equation with periodic boundary conditions, where the matrices involved
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in the algorithm are assembled using finite differences.

Adam Oberman [46, 47] developed finite difference methods of different orders

for the numerical solution of fully nonlinear elliptic equations. The methods are

proved to converge to the viscosity solution [16] of the problem. Obviously, being

finite difference methods, they have limitations. In [30, 31] Feng and Neilan inves-

tigated a finite element Galerkin method to approximate the viscosity solutions

of the Monge-Ampère equation det(∇2u) = f(> 0). The nonlinear problem is

approximated by a fourth order quasi-linear equation −ǫ∆2uǫ + det(∇2uǫ) = f

completed by some additional boundary conditions. The additional fourth order

term, obviously, introduces an additional approximation error. Recently a finite

element penalisation method has been developed and analyzed in [13] to solve

the Monge-Ampère equation where Newton method is used to solve the resultant

nonlinear algebraic system of equations. Omar Lakkis [42] with his co-author

used a kind of non-variational finite element method to solve linear equations in

a sequence after applying Newton’s method to a nonlinear problem. Dean and

Glowinski dedicated many of their papers to the numerical solution of nonlin-

ear problems [24, 25, 26, 27]. They have explored least squares and Lagrangian

methods to solve nonlinear problems.

The strong nonlinearity in higher order derivatives in fully nonlinear equations

makes the standard Galerkin finite element methods based on a direct weak form

formulation inapplicable. Recently, Böhmer [10, 11] introduced a general approach

that solves the Dirichlet problem for fully nonlinear elliptic equations numerically

with the help of a sequence of linear elliptic equations used within an appropriate

Newton scheme. These linear elliptic equations can be solved by the finite ele-

ment method, but the discretization has to be done by appropriate spaces of C1

finite elements (splines) that admit a stable splitting into a subspace satisfying
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zero boundary conditions, and its complement. Such a stable splitting has been

developed in [20, 21] for a modified space of the Argyris finite element.

2.1 Fully Nonlinear PDEs

Partial differential equations (PDEs) that contain nonlinear terms of the higher

order derivatives of unknown function are called fully nonlinear PDEs. To write

down a general expression for second order equations let us consider a bounded

domain Ω in R
n. Let G be a second order differential operator of the form

G(u) = G̃(·, u,∇u,∇2u),

where G̃ is a real valued function defined on a domain Ω̃ × Γ such that

Ω ⊂ Ω̃ ⊂ R
n and Γ ⊂ R × R

n × R
n×n,

and ∇u,∇2u denote the gradient and the Hessian of u, respectively. The points

in Ω̃ × Γ are denoted by w = (x, z, p, r), with x ∈ Ω̃, z ∈ R, p = [pi]
n
i=1 ∈ R

n,

r = [rij ]
n
i,j=1 ∈ R

n×n, to indicate the product structure of this set. We denote by

D(G) the domain of the differential operator G. Then the PDE

G(u) = G̃(·, u,∇u,∇2u) = 0,

is fully nonlinear if G̃ depends nonlinearly on ∇2u, otherwise it is either linear,

semi-linear or quasi-linear. One of the most prototypical example of such equations

is the Monge-Ampère equation given by

G(u) = det(∇2u) − f(x) = 0, x ∈ Ω. (2.1.1)

For n = 2 it can be explicitly written as

G(u) = ux1x1
ux2x2

− u2
x1x2

− f(x) = 0, x ∈ Ω. (2.1.2)
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The operator G is said to be elliptic in a subset Γ̃ ⊂ Ω̃ × Γ if the matrix

[Gij(w)] = [
∂G̃

∂rij
(w)]ni,j=1,

is well defined and positive definite for all w ∈ Γ̃ [11, 33].

Example 2.1.1. In case of Monge-Ampère equation the matrix Gij(w) is the

cofactor of [rij] =
[

∂2u
∂xi∂xj

]
. Accordingly, (2.1.1) is elliptic only for convex functions

u ∈ C2(Ω). For such solution of (2.1.1) to exist we must have f positive.

Note that the convexity condition for the solution of the Monge-Ampère equa-

tion is also essential for uniqueness. For example consider the Dirichlet boundary

condition

u|∂Ω = φ. (2.1.3)

Then if u is a convex solution to the problem (2.1.2)-(2.1.3), with φ = 0, then −u

is another, concave, solution [19, Chapter 4].

2.1.1 Linearization

The linearization of a nonlinear operator is an essential tool used in Böhmer’s

method to solve fully nonlinear equations. In fact, the Fréchet derivative of opera-

tor G, if it exists, is usually refered to as linearization of G. For this we formulate

the following definition.

Definition 2.1.2. The Fréchet derivative of an operator G at u = u0 ∈ Hγ(Ω),

γ ≥ 2, is a bounded linear operator G
′
(u) : Hγ(Ω) → L2(Ω) such that

limh→0
‖G(u+ h) −G(u) −G

′
(u)h‖L2

‖h‖Hγ

= 0,

where h ∈ Hγ(Ω).
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In fact the value of γ in the above definition depends on the operator G. We

show in Example 2.1.3 that γ = 5/2 for the two dimensional Monge-Ampère

operator.

In the neighborhood of a fixed function û ∈ D(G) ⊂ H2(Ω) the linear elliptic

operator G′(û) is defined by

G′(û)u =
∂G̃

∂z
(ŵ)u+

n∑

i=1

∂G̃

∂pi
(ŵ)∂iu+

n∑

i,j=1

∂G̃

∂rij
(ŵ)∂i∂ju, (2.1.4)

where ŵ = (x, û(x),∇û(x),∇2û(x)) is a function of x ∈ Ω, and ∂i denotes the

partial derivative with respect to the i-th variable [11, Section 5.2.3]. Now if

G : D(G) ⊂ H2(Ω) → L2(Ω) is Fréchet differentiable at û, then G′(û) : D(G) ⊂

H2(Ω) → L2(Ω) is its Fréchet derivative. If G′(û) depends continuously on û with

respect to the linear operator norm, then G is said to be continuously differentiable

at û.

Example 2.1.3. In the case of the two dimensional Monge-Ampère equation,

(2.1.4) can explicitly be written as

G
′

(û)u =

(
∂2û

∂x2
2

)
∂2u

∂x2
1

− 2

(
∂2û

∂x1∂x2

)
∂2u

∂x1∂x2
+

(
∂2û

∂x2
1

)
∂2u

∂x2
2

(2.1.5)

Fréchet differentiability of the Monge-Ampère operator

Let u, h ∈ D(G) ⊂ H2(Ω) and

R(h) = G(u+ h) −G(u) −G
′

(u)h = h11h22 − h2
12,

where hij = ∂i∂jh. Then it is easy to see, using the Cauchy-Schwarz inequality

26



and the embedding theorem, that

‖R(h)‖L2 = ‖h11h22 − h2
12‖L2

≤ ‖h11h22‖L2 + ‖h2
12‖L2

≤ ‖h11‖L4‖h22‖L4 + ‖h12‖2
L4

≤ C
(
‖h11‖H 1

2
‖h22‖H 1

2
+ ‖h12‖2

H
1
2

)

≤ 2C
(
‖h‖2

H
5
2

)
,

where C is a constant. Hence G
′
, given in (2.1.5), is Fréchet derivative of Monge-

Ampère operator G. It also shows that D(G) = H5/2(Ω) for a bounded domain

Ω ⊂ R
2. In other words G(u) ∈ L2(Ω) if u belongs to the Sobolev space H5/2(Ω)

and f ∈ L2(Ω). Moreover, G : Hγ(Ω) → L2(Ω) is continuously differentiable if

γ = 5/2.

2.1.2 Existence, Uniqueness and Regularity

Fully nonlinear equations do not necessarily have a smooth solution even if the

data is smooth [24]. Again the Monge-Ampère equation provides a good example

in this regard. Consider a Dirichlet problem (2.1.2)-(2.1.3), over Ω = [0, 1]2, with

f = 1 and any constant function φ. Then it can be seen that along the boundary

we arrive at the following contradiction

−u2
x1x2

= 1.

We formulate some theorems here that provide sufficient conditions for existence

and uniqueness of solutions of fully nonlinear equations.

Definition 2.1.4. A domain Ω satisfies an exterior sphere condition, for every

ξ ∈ ∂Ω, if there exist a ball B = BR(x) ⊂ R
n s.t. B ∩ Ω = {ξ}.
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Remark 2.1.5. The exterior sphere condition is clearly satisfied by a convex

domain.

We say that G̃ satisfies the structure conditions for w = (x, z, p, r) ∈ D(G̃) if

0 < λ|ξ|2 ≤ Gij(x, z, p, r)ξiξj ≤ Λ|ξ|2, (2.1.6)

and

|G̃z(w)|, |G̃p(w)| ≤ λµ,

|G̃x(w)| ≤ λµ(1 + |p| + |r|), (2.1.7)

|G̃z(w)|, |G̃p(w)|, |G̃rx(w)|, |G̃px(w)|, |G̃zx(w)| ≤ λµ,

|G̃x(w)|, |G̃xx(w)| ≤ λµ(1 + |p| + |r|), (2.1.8)

for all non zero ξ ∈ R
2, where λ is non-increasing function of |z| and Λ and µ are

non-decreasing functions of |z|.

Example 2.1.6. Again for two dimensional Monge-Ampère equation we have

G̃(x, z, p, r) = det(r) − f(x)

= r11r22 − r2
12 − f(x).

Hence

|G̃z(w)| = |G̃p(w)| = |G̃rx(w)| = |G̃px(w)| = |G̃zx(w)| = 0,

|G̃x(w)| = |∂f
∂x

(x)|, |G̃xx(w)| = |∂
2f

∂2x
(x)|,

where
∂f

∂x
and

∂2f

∂2x
are the gradient and Hessian of f respectively. Thus the

structure conditions will be satisfied by G̃ if

|∂f
∂x

(x)| , |∂
2f

∂2x
(x)| ≤ λµ(1 + |p| + |r|).
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Theorem 2.1.7. ([11, Theorem 2.80], [33, Theorem 17.17]). Assume Ω is a

bounded domain in R
n and φ ∈ C(∂Ω). Let Ω satisfy an exterior sphere con-

dition for every ξ ∈ ∂Ω and G̃ satisfy the conditions (2.1.6), (2.1.8), and let

G̃ ∈ C2(Ω × Γ) be concave (or convex) w.r.t. (z,p,r), and nonincreasing w.r.t. z.

Then the classical Dirichlet problem

G(u0) = 0 , x ∈ Ω (2.1.9)

u0 = φ , x ∈ ∂Ω (2.1.10)

has a unique solution u0 ∈ C2(Ω) ∩ C(Ω).

The following theorem provides sufficient conditions required for the existence

of a global smooth solution.

Theorem 2.1.8. ([11, Theorem 2.79],[33, Theorem 17.12]). Assume Ω is a bounded

domain in R
2 and φ ∈ C3(∂Ω). Let G̃ satisfy the structure conditions (2.1.6),

(2.1.7), and let G̃z ≤ 0 in D(G̃). Then the classical Dirichlet problem

G(u0) = 0 , x ∈ Ω (2.1.11)

u0 = φ , x ∈ ∂Ω (2.1.12)

has a unique solution u0 ∈ C2,α(Ω) for 0 < α < 1.

2.2 Böhmer’s Method for Fully Nonlinear Ellip-

tic PDEs

Bohmer’s method is, in fact, a finite element method to solve general fully nonlinear

Dirichlet problems. It is based on the ellipticity of the corresponding linearized

problem. We formulate the method in this section. The full theoretical justification

for the method can be seen in [11, 10].
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We consider the Dirichlet problem for the nonlinear operator G: Find u such

that

G(u) = 0, x ∈ Ω (2.2.13)

u = φ, x ∈ ∂Ω (2.2.14)

where φ is a continuous function defined on ∂Ω. Under certain assumptions,

discussed in Section 2.1.2, there exists a unique solution for this problem.

2.2.1 Spline Spaces and Stable Splitting

As usual in the finite element method, the discretization of the Dirichlet problem is

done with the help of spaces of piecewise polynomial functions (splines). To define

the spline spaces, let us assume that △ is a triangulation of a polyhedral domain

Ω ⊂ R
n, i.e. △ is a partition of Ω into simplices such that the intersection of every

pair of simplices is either empty or a common face. The space of multivariate

splines of degree d and smoothness r is defined by

Srd(△) = {s ∈ Cr(Ω) : s|T ∈ Pd for all simplices T in △} , (2.2.15)

where d > r ≥ 0 and Pd is the space of polynomials of total degree d in n variables.

Definition 2.2.1. The star of a vertex v of △, denoted by star(v) = star1(v),

is the union of all triangles T ∈ △ attached to v. We define starj(v), j ≥ 2,

inductively as the union of the stars of all vertices of △ contained in starj−1(v).

Let {△h}h∈H be a family of triangulations of Ω, where h is the maximum edge

length in △h. The triangulations in the family are said to be quasi-uniform if

there is an absolute constant c > 0 such that ρT ≥ ch for all T ∈ △h, where ρT

denotes the radius of the inscribed sphere of the simplex T .
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Let Sh ⊂ Srd(△h) be a linear subspace with basis s1, . . . , sN and dual functionals

λ1, . . . , λN such that λisj = δij . This basis is stable and local if there are three

constants m ∈ N and C1, C2 > 0 independent of h such that

(a). supp sk is contained in starm(v) for some vertex v of △h, for each k =

1, . . . , N ,

(b). ‖sk‖L∞(Ω) ≤ C1, k = 1, . . . , N , and

(c). |λks| ≤ C2‖s‖L∞(supp sk), k = 1, . . . , N , for all s ∈ Sh, [11, Section 4.2.6].

To handle the Dirichlet boundary conditions, the following subspace of Sh is im-

portant:

Sh0 :=
{
s ∈ Sh : s|∂Ω = 0

}
.

Moreover, Böhmer’s method of solving (2.2.13)–(2.2.14) proposed in [10, 11] re-

quires an additional property called stable splitting of Sh into a direct sum

Sh = Sh0 + Shb ,

such that a stable local basis {s1, . . . , sN} for Sh can be split into two parts

{s1, . . . , sN} = {s1, . . . , sN0
} ∪ {sN0+1, . . . , sN},

where {s1, . . . , sN0
} and {sN0+1, . . . , sN} are bases for Sh0 and Shb , respectively. Note

that the space Shb is not uniquely defined by the pair Sh, Sh0 . It was shown in [20]

(see also [11, Section 4.2.6]) how the stable splitting can be achieved for a modified

space of Argyris finite element using nodal techniques. Also see Chapter 3 for the

description of stable splitting using Bernstein-Bézier techniques and discussion of

other spaces that possess this property.
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2.2.2 Böhmer’s Method

Let u = û be the solution of (2.2.13)–(2.2.14). According to [10], its approximation

ûh ≈ û is sought as a solution of the following problem: Find ûh ∈ Sh such that

(G(ûh), vh)L2(Ω) = 0 ∀vh ∈ Sh0 , and (2.2.16)

(ûh, vhb )L2(∂Ω) = (φ, vhb )L2(∂Ω) ∀vhb ∈ Shb , (2.2.17)

where (·, ·) denotes the inner products in the respective Hilbert spaces. Since

Sh0 and Shb are finite dimensional linear spaces, the problem (2.2.16)–(2.2.17) is

equivalent to a system of algebraic equations with respect to the coefficients of ûh

in a basis of Sh.

Theorem 2.2.2. Let Ω be a bounded convex polyhedral domain, and let G :

D(G) → L2(Ω), with D(G) ⊂ H2(Ω), satisfy Condition H of [11, Section 5.2.3].

Assume that G is continuously differentiable in the neighbourhood of an isolated

solution û of (2.2.13)–(2.2.14), such that û ∈ Hℓ(Ω), ℓ > 2, and G′(û) : D(G) ∩

H1
0 (Ω) → L2(Ω) is boundedly invertible. Furthermore, assume that the spline

spaces Sh ⊂ S1
d(△h), d ≥ ℓ− 1, on quasi-uniform triangulations △h possess stable

local bases and stable splitting Sh = Sh0 + Shb , and include polynomials of degree

ℓ − 1. Then the problem (2.2.16)–(2.2.17) has a unique solution ûh ∈ Sh as soon

as the maximum edge length h is sufficiently small. Moreover,

‖û− ûh‖H2(Ω) ≤ Chℓ−2‖û‖Hℓ(Ω).

In particular, Condition H is satisfied by the Monge-Ampère operators on bounded

convex polygonal domains in R
2.

The nonlinear problem (2.2.16)–(2.2.17) can be solved iteratively by a Newton

method [10], where the initial guess uh0 ∈ Sh satisfies the boundary condition

(uh0 , v
h
b )L2(∂Ω) = (φ, vhb )L2(∂Ω) ∀vhb ∈ Shb ,
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and the sequence of approximations {uhk}k∈N of ûh is generated by

uhk+1 = uhk − wh, k = 0, 1, . . . ,

with wh ∈ Sh0 being the solution of the linear elliptic problem:

Find wh ∈ Sh0 such that (G′(uhk)w
h, vh)L2(Ω) = (G(uhk), v

h)L2(Ω) ∀vh ∈ Sh0 .

Clearly, wh can be found by using the standard finite element method. Under some

additional assumptions on G, it is proved in [10, Theorem 9.1] that uhi converges

to ûh quadratically. Note that in the case when G(u) is only conditionally elliptic

(e.g. elliptic only for a convex u for Monge-Ampère equation) the ellipticity of

the above linear problem is only guaranteed for uhk sufficiently close to the exact

solution û.
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Chapter 3

Stable Splitting of Bivariate

Smooth Splines using

Bernstein-Bézier Methods

In this chapter we systematically study the problem of stable splitting for the

spaces of bivariate C1 splines on triangulations of low degree using the Bernstein-

Bézier methods. It turns out that stable splitting can be easily formulated as

splitting of the minimal determining sets (MDS). We revisit the modified Argyris

space studied in [20] by a different technique, and show that its modification is

necessary at least if the convenient MDS splitting approach is used. In addition we

answer the question whether there are lower order C1 spaces that possess stable

splitting so that they can be considered as other possible candidates with the

modified Argyris space to be used in Böhmer’s numerical method to solve fully

nonlinear partial differential equations. We show that Clough-Tocher, Powell-

Sabin and quadrilateral macro-element spaces are among such spaces.

This chapter is organised as follows. Section 3.1 introduces necessary definitions
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from the theory of Bernstein-Bézier techniques [43], and define the stable splitting

of a minimal determining set. In Section 3.2 we discuss the stable splitting for the

Argyris space and modified Argyris space and show why stable splitting for the

Argyris space is not possible. Section 3.3 is devoted to C1 macro-element spaces.

3.1 Bernstein-Bézier Techniques

We use Bernstein-Bézier methods, as a tool, for the construction of spline spaces

(discussed in the next chapters) and implementation of Böhmer’s finite element

method. Bernstein polynomials were first introduced by Sergei Natanovich Bern-

stein in 1912 to provide a simple proof of the Weierstrass theorem regarding ap-

proximation of continuous functions by polynomials on a bounded domains [9]. R.

T. Farouki has recently compiled a brief survey that provides a historical develop-

ment, current state of the theory and applications of Bernstein polynomials [28] .

He praises this invention by the words

“. . .,methods introduced to facilitate theoretical proof of seemingly

limited scope and practical interest may eventually flourish into

useful tools that gain widespread acceptance in diverse practical

computations. This category undoubtedly includes the Bernstein

polynomial basis,. . .”

In the form of Bézier curves/surfaces Bernstein polynomials enjoyed their ap-

pearance/use in computer graphics (to model smooth curves and surfaces), engi-

neering design (to develop a quantitative description of the geometry of different

products) and CAGD [29, 32, 36] due to many of their desired properties and

efficient algorithms. Note that Bézier curves/surfaces are linear combination of
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Bernstein polynomials with control points as coefficients. The use of Bernstein

polynomials in finite elements remained negligible till the end of 20th century.

But currently it gained attention among the finite element community particu-

larly in the context of assembling element matrices efficiently for higher order

elements[1, 50, 38]. In [1] efficient algorithms are presented to assemble element

system matrices and to compute Bernstein-Bézier moments of coefficients that

come from partial differential equation under consideration. These properties add

enough attraction to Bernstein-Bézier polynomials to be used in FEM.

Let us recall some of the key concepts of Bernstein-Bézier techniques in this

section that will be used in the following chapters. A comprehensive treatment of

these techniques can be found in [43].

3.1.1 Bernstein-Bézier Methods for Bivariate Polynomials

As we will use bivariate polynomials we restrict ourselves to R
2. We start by

defining barycentric coordinates of a point. Let T := 〈v1, v2, v3〉 be a nondegenerate

triangle. The barycentric coordinates of any point v ∈ R
2 with respect to the

triangle T are given by a unique triplet (b1, b2, b3) such that

v =
3∑

i=1

bivi,
3∑

i=1

bi = 1,

and

Bd
ijk(v) :=

d!

i!j!k!
bi1b

j
2b
k
3, i+ j + k = d,

are the Bernstein-Bézier basis polynomials (BB-polynomials) of degree d associated

with triangle T . Bernstein-Bézier basis polynomials possess many nice properties.

For example one can readily see that they are non-negative over T and sum up to

unity as
∑

i+j+k=d

d!

i!j!k!
bi1b

j
2b
k
3 = (b1 + b2 + b3)

d = 1.
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And their most important property is that they form a basis for the space Pd of

polynomials of degree d [43, Theorem 2.4]. In other words every polynomial p of

degree d can be written in the BB-form as

p =
∑

i+j+k=d

cijkB
d
ijk, (3.1.1)

where cijk are called the Bézier coefficients of p. For given d ≥ 1, the set Dd,T

Dd,T :=

{
ξijk =

iv1 + jv2 + kv3

d
: i+ j + k = d, i, j, k ≥ 0

}
(3.1.2)

is usually named as the set of domain points associated with Bézier coefficients

cijk for triangle T := 〈v1, v2, v3〉. To store, evaluate, multiply, differentiate and

integrate the polynomials in form (3.1.1) we just need to store a vector c of
(
d+2
2

)

Bézier coefficients of the polynomial for each triangle. Hence we must agree on

some ordering of these coefficients to store them when dealing with more than one

triangle as in finite element methods over triangulations. For this we use lexico-

graphic order [43, p. 23] to arrange these coefficients throughout the dissertation.

That is the indices (i, j, k) are ordered according to the function

ς(i, j, k) =

(
j + k + 1

2

)
+ k + 1,

where
(
n
r

)
= n!

r!(n−r)!
as usual. Note that we take

(
n
r

)
= 0 for n < r. Then, for

example, for d = 2 the ordering is

c200, c110, c101, c020, c011, c002.

3.1.2 The de Casteljau Algorithm

To evaluate polynomials in BB-form at any point v ∈ R
2 we have an efficient

and numerically stable algorithm called de Casteljau algorithm. The algorithm is
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actually a recursive method based on an obvious recurrence relation for Bd
ijk given

by

Bd
ijk = b1B

d−1
i−1,j,k + b2B

d−1
i,j−1,k + b3B

d−1
i,j,k−1, i+ j + k = d.

Note that expressions with negative subscripts are considered to be zero. The

following theorem describes the algorithm in detail.

Theorem 3.1.1 ([43, Theorem 2.8]). Let p be a polynomial in BB-form with

coefficients

c
(0)
ijk := cijk, i+ j + k = d,

Suppose v has a triplet (b1, b2, b3) as its barycentric coordinates, and for all ℓ =

1, . . . , d, let

c
(ℓ)
ijk := c

(ℓ−1)
i+1,j,k + c

(ℓ−1)
i,j+1,k + c

(ℓ−1)
i,j,k+1, for i+ j + k = d− ℓ,

then

p(v) =
∑

i+j+k=d−ℓ

c
(ℓ)
ijkB

d−ℓ
ijk (v), ∀0 ≤ ℓ ≤ d.

In particular,

p(v) = cd000.

It is clear that bivariate polynomials restricted to a straight line are univariate

polynomials but the restriction of polynomials in BB-form to the edges of the

associated triangle T is more interesting in a sense that it keeps the univariate

BB-form. This makes evaluation more efficient at points on edges of T using a

simplified version of the de Casteljau algorithm [43, Remark 2.5].

38



3.1.3 Products and Integrals of BB-polynomials

One of the interesting properties of BB-polynomials is that their product again

results in a scaled BB-polynomial. For example for Bd
ijk and Bq

rst we have

Bd
ijkB

q
rst :=

(
i+r
i

)(
j+s
j

)(
k+t
k

)
(
d+q
d

) Bd+q
i+r,j+s,k+t.

As a consequence if

p1 =
∑

i+j+k=d

cijkB
d
ijk and p2 =

∑

r+s+t=q

c̃rstB
q
rst (3.1.3)

are two polynomials of degree d and q then simple algebra leads us to the formula

p1p2 =

( ∑

i+j+k=d

cijkB
d
ijk

)( ∑

r+s+t=q

c̃rstB
q
rst

)

=
∑

i+j+k=d
r+s+t=q

cijkc̃rst

(
i+r
i

)(
j+s
j

)(
k+t
k

)
(
d+q
d

) Bd+q
i+r,j+s,k+t.

It is easy to see that
(
i+r
i

)(
j+s
j

)(
k+t
k

)
(
d+q
d

) ≤ 1, for i+ j + k = d, r + s+ t = q.

Hence the Bézier coefficients for the product polynomial p1p2 remain bounded

provided the Bézier coefficients for p1 and p2 are bounded. In other words the

multiplication of polynomials in BB-form is a stable process.

Similarly, a simple and efficient formula for integrals of BB-polynomials is

formulated in the following theorem.

Theorem 3.1.2 ([43, Theorem 2.33]). Let p be a polynomial in BB-form (3.1.1)

over a triangle T , then

∫

T

pdxdy =
|T |(
d+2
2

)
∑

i+j+k=d

cijk,

where |T | is the area of triangle T .
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As a consequence of this theorem we get a formula for the inner product of two

polynomials p1 and p2, mentioned above in (3.1.3), as

∫

T

p1p2dxdy =
|T |(

d+q
d

)(
d+q+2

2

)
∑

i+j+k=d
r+s+t=q

cijkc̃rst

(
i+ r

i

)(
j + s

j

)(
k + t

k

)
,

=
|T |(

d+q
d

)(
d+q+2

2

)cTQc̃,

with c and c̃ are the (lexicographically) ordered vectors of coefficients of p1 and p2

respectively. Note that a matrix Q depends only on the degrees of two polynomials

but not on the shape of T . Hence Q can be computed once, for given d and q,

when using this formula. (particularly needed while computing entries for element

matrices in finite element methods).

3.1.4 Gradient of BB-polynomials

As one often needs to compute gradients of basis functions while assembling ele-

ment matrices we formulate an expression for the gradient of BB-polynomials. We

have

∇Bd
ijk = ∇

(
d!

i!j!k!
bi1b

j
2b
k
3

)
,

= d
(
Bd−1
i−1,j,k∇b1 +Bd−1

i,j−1,k∇b2 +Bd−1
i,j,k−1∇b3

)
.

Moreover the basic definition of barycentric coordinates leads us to the formula

∇bk :=
|ek|
2|T |nk, k = 1, 2, 3,

where nk is the unit inward normal to the edge ek opposite to the vertex vk of

triangle T := 〈v1, v2, v3〉 and |ek| denotes the length of the edge ek.
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3.1.5 Smoothness Conditions

Before our study of smooth spline spaces we give conditions for a smooth join of

two polynomials on neighbouring triangles. These conditions help us glue different

polynomial pieces up with desired smoothness. An interesting fact is that these

algebraic smoothness conditions can easily be expressed, interpreted and analyzed

geometrically. For example given two neighbouring triangles T := 〈v1, v2, v3〉 and

T̃ := 〈v4, v3, v2〉 sharing the edge e := 〈v2, v3〉 and two polynomials

p1 =
∑

i+j+k=d

cijkB
d
ijk and p2 =

∑

r+s+t=d

c̃rstB̃
d
rst, (3.1.4)

over T and T̃ respectively then p1 and p2 joins with Cr smoothness, r = 0, . . . , d−1,

if and only if for each n = 0, . . . , r,

c̃njk =
∑

ν+µ+κ=n

cν,k+µ,j+κB
n
νµκ(v4), j + k = d− n. (3.1.5)

Let us express these smoothness conditions for r = 0, 1, more explicitly. It is easy

to see that p1 and p2 join continuously (r = 0) along e if their BB coefficients over

e coincide, i.e. if

c̃0jk = c0kj, j + k = d, (3.1.6)

see Figure 3.1. Furthermore, the condition for C1 smoothness across e is that

(3.1.6) holds along with

c̃1jk = b1c1,k,j + b2c0,k+1,j + b3c0,k,j+1, j + k = d− 1, (3.1.7)

where (b1, b2, b3) are barycentric coordinates of v4 relative to T , see Figure 3.2.

As a consequence we note that the coefficients c̃ijk can be computed using

smoothness conditions from cijk’s involved in the conditions. In fact if we know

all coefficients of p then (3.1.5) can be used to compute the coefficients of p̃ cor-

responding to domain points in the first r rows parallel to the edge e and [43,

Lemma 2.29] shows that these computations are a stable process.
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v1

v3

v2

v4

Figure 3.1: Black dots are Bézier coefficients involved in C0 smoothness conditions

across the edge 〈v2, v3〉. (d = 5)

v1

v3

v2

v4

Figure 3.2: Bézier coefficients involved in C1 smoothness conditions across the

edge 〈v2, v3〉. The coefficients c̃1jk, j + k = d − 1, are marked as red dots while

coefficients on R.H.S of (3.1.7) are marked as black dots. (d = 5)
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3.1.6 Degree Raising

Since a polynomial p of degree d can be considered as a polynomial of degree d+r,

r > 0, thus p written in BB-form (3.1.1) can be expressed in terms of a Bernstein

basis of degree d + r. In other words we can compute the coefficients c
[d+r]
ijk from

known coefficients c
[d]
ijk = cijk [43, Section 2.15] to write p in the form

p =
∑

i+j+k=d+r

c
[d+r]
ijk Bd+r

ijk . (3.1.8)

For the sake of simplicity let r = 1. Then by [43, Theorem 2.39] we have

c
[d+1]
ijk :=

ici−1,j,k + jci,j−1,k + kci,j,k−1

d+ 1
, i+ j + k = d+ 1. (3.1.9)

Obviously to compute c
[d+r]
ijk the process can be repeated r times. From (3.1.9) we

see that

c
[d+1]
ijk ≤ max {ci−1,j,k, ci,j−1,k, ci,j,k−1} , i+ j + k = d+ 1.

and as a consequence this inequality tells us that the process of degree raising is a

stable process. Also see Remark 3.1.3.

Remark 3.1.3. Since degree raising can be used to create a sequence of control

surfaces and the fact that this sequence of control surfaces converges uniformly to

corresponding polynomial surface also indicates that the process of degree raising

is a stable process [43, Theorem 3.23]).

Remark 3.1.4. Note that the degree raising formulas can also be used over a

subdomain of T if required. For example if for given coefficients of a polynomial

of degree d in D2(v), where v is one of the vertices of T , then the corresponding

coefficients for higher degree in D2(v) can be computed by using (3.1.9) only over

a subdomain D2(v).
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3.1.7 Bernstein-Bézier Finite Elements and Spline Spaces

Recall that △ is a triangulation of a bounded domain Ω ⊂ R
2 as defined in

Definition 1.1.1, Dd,△ :=
⋃
T∈△Dd,T is a set of domain points associated with △

where Dd,T is as defined in (3.1.2) and Srd(△) is the space of bivariate splines of

degree d and smoothness r as defined in (2.2.15). Now (3.1.1) confirms that every

s ∈ Srd(△) can be written, over T , as

s|T =
∑

ξ∈Dd,T

cξB
T,d
ξ ,

where BT,d
ξ are BB-basis polynomials of degree d associated with triangle T in

△. Note that, in view of the smoothness condition (3.1.6), continuity of s implies

that the BB-vectors of s|T and s|T̃ agree on domain points on the edge shared by

triangles T and T̃ . We now introduce some additional notation. We refer to the

set

Rn(v) := {ξijk ∈ Dd,△ : i = d− n} , 0 ≤ n ≤ d,

of domain points as the ring of radius n around the vertex v and refer to the set

Dn(v) :=

n⋃

m=0

Rm(v)

as the disk of radius n around the vertex v.

3.1.8 Minimal Determining Set

A key concept for dealing with spline spaces, using Bernstein-Bézier techniques, is

that of a minimal determining set defined as follows.

Definition 3.1.5. A set M ⊂ Dd,△ is a determining set for a linear space S ⊂

Srd(△) if

s ∈ S and cξ = 0 ∀ξ ∈M ⇒ s = 0,
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and M is a minimal determining set (MDS) for the space S if there is no smaller

determining set.

Moreover, the property of MDS M that dimS := #{M} makes it more inter-

esting and shows that there is a one-to-one correspondence between points in M

and degrees of freedom for space S. In fact we can use an MDS to construct a

basis for the corresponding space. Before we go in detail about such a construction

we need to define some more properties an MDS M might possess. First let

Γη := {ξ ∈M : cη depends on cξ} ,

where we say that cη depends on cξ, ξ ∈M , if the value of cη is changed when we

change the value of cξ.

Definition 3.1.6. A minimal determining set M for a space S is said to be local

if there exists ℓ not depending on △ such that

Γη ⊂ starℓ(Tη) ∀η ∈ Dd,△\M,

where Tη is a triangle containing η.

Definition 3.1.7. A minimal determining set M for a space S is called stable if

there exists a constant K which may depend only on d, ℓ and the smallest angle θ△

in the triangulation △ such that

|cη| ≤ K max
ξ∈Γη

|cξ| ∀η ∈ Dd,△\M. (3.1.10)

Given a stable local minimal determining set M for space S ⊂ Srd(△), if we

assign values to the coefficients {cξ}ξ∈M , then the remaining coefficients cη, η ∈

Dd,△\M can be computed using the smoothness conditions. Thus a stable local

MDS M can be used to construct a stable local basis {sξ}ξ∈M for S [43, Section

5.8] defined as

B := {sξ : cξ = 1, and cη = 0 for all η ∈M \ {ξ}}. (3.1.11)
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This basis is usually named as an M-basis for S.

Remark 3.1.8. An M-basis, obtained using (3.1.11), satisfies the standard con-

ditions of stable local basis in a sense defined in Section 2.2.1.

3.1.9 Stable Splitting

A stable splitting of an M-basis B is achieved by an appropriate splitting of the

MDS, which leads to the following definition.

Definition 3.1.9. Assume that the space S ⊂ Srd(△) has a stable local MDS M

and let

S0 := {s ∈ S : s|∂Ω = 0} . (3.1.12)

The MDS M is said to admit a stable splitting if M is the disjoint union of two

subsets M0,Mb ⊂M such that

S0 = {s ∈ S : cξ = 0 ∀ξ ∈Mb} (3.1.13)

and M0 and Mb are stable local MDS for the spaces S0 and Sb, respectively, where

Sb := {s ∈ S : cξ = 0 ∀ξ ∈M0} . (3.1.14)

Note that if M is a stable local MDS, andM = M0∪Mb is a disjoint union, then

it is a stable splitting as soon as (3.1.13) holds. Indeed, assume (3.1.13) is correct.

If s ∈ S0, then its coefficients related to Mb are zero, and similarly if s ∈ Sb then

its coefficients related to M0 are zero. Hence computing s from the coefficients

corresponding to points in M0 (respectively, Mb) is equivalent to computing from

M , and so M0 and Mb are determining sets for S0 and Sb, respectively. They are

minimal determining sets because otherwise M would not be minimal. Obviously
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stability and locality properties of M0 and Mb are also inherited from M . If M

admits a stable splitting, then S = S0 + Sb and it is easy to see that

{sξ}ξ∈M = {sξ}ξ∈M0
∪ {sξ}ξ∈Mb

is a stable splitting of the stable local basis {sξ}ξ∈M with {sξ}ξ∈M0
and {sξ}ξ∈Mb

as basis for S0 and Sb respectively.

3.2 Stable Splitting for Argyris Finite Element

Argyris space is in fact a superspline subspace of S1
5(△). Superspline subspaces

have actually an enhanced smoothness at certain vertices of △. Generally the

superspline subspaces Sr,ρd (△), r ≤ ρ ≤ d, of Srd(△) are defined as

Sr,ρd (△) = { s ∈ Srd(△) : s ∈ Cρ(v) ∀v ∈ V } , (3.2.15)

where V is the set of all vertices of △. Then Argyris finite element space is obtained

with d = 5, r = 1 and ρ = 2 in (3.2.15). Before we describe a minimal determining

set for Argyris space we need to introduce some notation as follows. Let E be the

set of all edges of △. For each v ∈ V , let Tv be any one of the triangles sharing

the vertex v and let Mv := D2(v) ∩ Tv. For each edge e of the triangulation △,

let Te := 〈v1, v2, v3〉 be one of the triangles sharing the edge e := 〈v2, v3〉 and let

Me :=
{
ξTe

122

}
. Then from [43, Theorem 6.1] we have

Theorem 3.2.1. dimS1,2
5 (△) = 6#{V } + #{E} and

M =
⋃

v∈V

Mv ∪
⋃

e∈E

Me (3.2.16)

is a stable local minimal determining set for S1,2
5 (△).

An example of minimal determining set for Argyris space is given in Figure 3.3

(left).
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3.2.1 Modified Argyris Space

We now modify the Argyris space to achieve the stable splitting. A similar con-

struction is discussed in term of nodal basis functions in [20]. We will explain in

Section 3.2.3 why this modification is required. Let us denote the modified Argyris

space by S̃, where

S̃ :=
{
s ∈ S1

5(△) : s ∈ C2(v), for all interior vertices v of △
}
. (3.2.17)

Note that the modification is removing C2 smoothness only at boundary vertices.

Let us now distinguish between boundary vertices and interior vertices by using

VI and VB for the sets of interior and boundary vertices respectively. And let EI

and EB denote interior and boundary edges respectively, such that

V = VI ∪ VB, E = EI ∪ EB.

We describe a minimal determining set M̃ for this modified space S̃. Since we

have modified the space only at the boundary vertices, so the points in M related

to interior vertices and related to all edges, will belong to M̃ . That is,(⋃

v∈VI

Mv ∪
⋃

e∈E

Me

)
⊂ M̃.

However, we will have to modify the sets corresponding to the boundary vertices

v ∈ VB. First of all, we require that each Tv, v ∈ VB, is a triangle sharing an

edge with the boundary of Ω (we call it a boundary triangle). Furthermore, we

add some more points to Mv, v ∈ VB, as follows. Let us denote all edges of △

emanating from a vertex v ∈ VB, in counter-clockwise order, by

Ev = {e1, e2, · · · , en} .

Then clearly e1, en ∈ EB, and the triangle Tv is formed by either e1, e2 or en−1, en.

For each ei, let ξi be the (unique) domain point in R2(v)∩ ei, i = 1, . . . , n. We set

M̃v := Mv ∪ {ξ1, ξ2, · · · , ξn}.
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Theorem 3.2.2. dim S̃ = 6#{VI} + #{E} +
∑

v∈VB
(4 + #Ev) and

M̃ :=
⋃

v∈VI

Mv ∪
⋃

e∈E

Me ∪
⋃

v∈VB

M̃v. (3.2.18)

is stable local MDS for modified Argyris space S̃.

Proof. We set the coefficients {cξ}ξ∈M̃ for any spline s ∈ S̃ to arbitrary values

and show that all other coefficients, i.e. {cξ}ξ∈D5,△\M̃ , of s can be determined

consistently.

Now first note that for each v ∈ VI and for each e ∈ E the points in Mv

and Me are the same as for Argyris space. So we only need to prove that for

each v ∈ VB the set M̃v is an MDS on D2(v). To this end, for each v ∈ VB,

we set the coefficients of s corresponding to points in M̃v and see that, in view

of C1 smoothness conditions, all coefficients corresponding to domain points in

D2(v) can be determined consistently. Thus by [43, Theorem 5.15] M̃ is minimal

determining set for the space S̃. Observe that M̃ is a stable MDS. Indeed, for each

v ∈ VI and all edges e ∈ E the stability follows from [43, Lemma 2.29]. And for

each v ∈ VB the set M̃v is a stable MDS for S1
5 on D2(v) by [43, Theorem 11.7].

Standard arguments show that M̃ is local.

An example of minimal determining set for modified Argyris space is given in

Figure 3.3 (right).

3.2.2 Stable Splitting

Now we show how to determine a stable splitting M̃ = M̃0 ∪ M̃b of the MDS M̃

for modified Argyris space S̃.

It is already understood that all those points of M̃ which are on the boundary

will be in M̃b and those points lying in Mv, v ∈ VI , and Me along with the points
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Figure 3.3: Minimal determining sets for the Argyris space (left) and for the

modified Argyris space (right). The points in the sets Mv, M̃v are marked by

black dots, and those in Me by black squares.

in R2(v), v ∈ VB, but not on either e1 or en, will be in M̃0. Consider, for each

v ∈ VB, the remaining point which lies in R1(v), v ∈ VB, but not on the boundary

edges. We denote this point by ξv. Whether ξv belongs to M̃0 or M̃b = M̃ \ M̃0

depends on the geometry of the boundary edges e1 and en, as follows.

• If e1 and en are non-collinear, then ξv ∈ M̃b.

• If e1 and en are collinear, then ξv ∈ M̃0.

Indeed, in the non-collinear case the coefficient corresponding to ξv is zero for

all s ∈ S̃0, whereas in the collinear case it can be chosen freely. The Figures 3.4

and 3.5 show points in M̃0 and M̃b for the boundary vertex with collinear and

non-collinear edges respectively.

Theorem 3.2.3. M̃ = M̃0 ∪ M̃b is a stable splitting of MDS M̃ .

Proof. If s ∈ S̃0, then all its Bézier coefficients corresponding to domain points

on the boundary are zero since s|∂Ω = 0. For v ∈ VB, where the boundary

edges are non-collinear, the C1 smoothness implies that the gradient at v is also
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Figure 3.4: Splitting of points in M̃v, v ∈ VB for modified Argyris space with

collinear boundary edges. Left : M̃v ∩ M̃b, right : M̃v ∩ M̃0.

Figure 3.5: Splitting of points in M̃v, v ∈ VB for modified Argyris space with

noncollinear boundary edges. Left : M̃v ∩ M̃b, right : M̃v ∩ M̃0.

51



zero, and hence the coefficient of s at ξv is also zero. This shows that S̃0 ⊂

{s ∈ S̃ : cξ = 0 ∀ξ ∈ M̃b}. Conversely, assume s ∈ S̃ and cξ = 0 for all

ξ ∈ M̃b. Let v ∈ VB and Ev = {e1, e2, · · · , en} as before. Without loss of generality

assume that D2(v) ∩ e1 ⊂ M̃v and R2(v) ∩ en ⊂ M̃v. Therefore cξ = 0 at all

these points. However, due to the C1 smoothness cξ = 0 also for the domain

point in R1(v) ∩ en, both in the collinear and non-collinear case. This shows that

cξ = 0 for all domain points on the boundary of Ω and hence s|∂Ω = 0. Thus,

S̃0 = {s ∈ S̃ : cξ = 0 ∀ξ ∈ M̃b}, which completes the proof, see the discussion

following Definition 3.1.9.

3.2.3 Why Modification in Argyris Space is Required

We now prove that modification is needed in Argyris space at the boundary vertices

to achieve a stable splitting.

We first consider the Argyris space S1,2
5 (△) with M in Theorem 3.2.1 being

its MDS, and show that no splitting M = M0 ∪Mb is possible. For the sake of

simplicity consider a boundary vertex v with two triangles attached such that the

boundary edges are non-collinear. On the contrary, assume that such a splitting

has been found. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 be two triangles in △

with v3 as a boundary vertex and assume that the edges 〈v3, v4〉 and 〈v3, v1〉 are

boundary edges. Consider the set

Mv3 := D2(v3) ∩ T = {ξ005, ξ014, ξ023, ξ104, ξ113, ξ203} ⊂M,

see the Figure 3.6, and let

s|T =
∑

i+j+k=5

cijkB
5
ijk, s|T̃ =

∑

i+j+k=5

c̃ijkB̃
5
ijk,

where B5
ijk and B̃5

ijk are Bernstein basis polynomials associated with T and T̃

respectively. In the case that the edges 〈v3, v4〉 and 〈v3, v1〉 are non-collinear, the
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points {ξ005, ξ014, ξ104, ξ203} must be in Mb, because s ∈ S has zero coefficients

at these points. We show that {ξ113, ξ023} 6⊂ M0. Let (b1, b2, b3) be barycentric

coordinates of v4 relative to T . Then by a C2 smoothness condition, see [43,

Theorem 2.28], across the edge e := 〈v3, v2〉 we can write

c̃230 = b21c203 + 2b1b2c113 + 2b2b3c014 + b22c023 + 2b1b3c104 + b23c005,

and because c̃230 = c203 = c014 = c104 = c005 = 0,

0 = 2b1c113 + b2c023,

which shows that c113 and c023 are linearly dependent so that ξ113, ξ023 cannot be

both in M0. Moreover, we cannot shift one of these points to Mb because there is

a spline s ∈ S0 such that

c113, c023 6= 0,

e.g. s with c113 = b2 and c023 = −2b1. Note that b2 6= 0 if the boundary edges are

non-collinear.

Moreover, we prove that no other MDS admits a stable splitting, either.

Theorem 3.2.4. No MDS for the Argyris space can be stably split on arbitrary

triangulations.

Proof. Assume that the triangulation △ is such that there is a boundary vertex

v with two triangles T and T̃ attached, and the boundary edges are non-collinear

at v, as in the above proof. Let M be some MDS for Argyris space.

From the dimension argument we know that there must be exactly six points

in M ∩D2(v). For the non-collinear boundary edges, no points on boundary edges

or in R1(v) can be in M0 because, all the corresponding coefficients of splines in S0

are zero. So the only candidates for M0 are the points in R2(v) not on boundary

edges. Now we discuss the relation between the coefficients c̃131, c113, c023 of s ∈ S0
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Figure 3.6: The black dots are MDS points in Mv3 , v3 ∈ VB, for Argyris space.

The two domain points marked by black squares are involved in the smoothness

conditions discussed in the proof of Theorem 3.2.4.

at these points. By using C1 and C2 condition across the common edge of T and

T̃ we get

c̃131 = b1c113 + b2c023

0 = 2b1c113 + b2c023

By subtracting these equations we can write

c̃131 = −b1c113

Hence the three coefficients cannot be set arbitrarily. Only one of them can be

chosen freely, which cannot be either c̃131 or c113. Indeed, let us choose e.g. c113

arbitrarily, then from the above equations we obtain

c023 =
−2b1c113

b2
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and hence c023 → ∞ for b2 → 0 as the boundary edges get collinear. This would

be unstable as the minimum angles in T, T̃ do not degenerate.

Thus ξ023 is the only point to be in M0. It is easy to see that Mb must contain

ξ203, ξ̃230 and three points in D1(v). Consider the basis spline s in Sb corresponding

to ξ̃230. Then its coefficient satisfy

c̃230 = 1, c203 = c023 = 0, cξ = 0, ξ ∈ D1(v)

Now again using C1 and C2 smoothness conditions we find

c̃230 = 2b1b2c113 or c113 =
1

2b1b2
,

which is unbounded for b2 → 0 as the boundary gets flat.

Remark 3.2.5. If a boundary vertex v has exactly two triangles attached and the

boundary edges are not collinear at v, then stable splitting of an MDS is impossible

for any spline space S where each spline is C2 continuous at v. Indeed, this follows

by the arguments in the proof of Theorem 3.2.4. In fact, it is easy to see that the

set D2(v)∩T as MDS for S on D2(v) cannot be split stably for a boundary vertex

with any number of triangles attached.

3.2.4 Numerical Comparison of Stability of MDS for Ar-

gyris and Modified Argyris Spaces

To endorse Theorem 3.2.4 with numerical support we present numerical results

of comparison of stability of the minimal determining sets for Argyris space and

modified Argyris space in this section. We implement the second MDS for Argyris

space suggested in Theorem 3.2.4, see Figure 3.8, let us call it MA, and an MDS M̃

for modified Argyris space. We look and compare for the maximum of the absolute
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values of BB coefficients of basis functions corresponding to respective MDS’s for

both spaces to see the stability of M̃ and MA over a sequence of triangulations

where boundary edges gets more and more collinear. For example this happens

when one needs to approximate a circle by a polygonal domain where very refined

meshes result in triangulations with near collinear boundary edges. To illustrate

this we define a polygonal domain Ωh with boundary vertices on a circle with an

initial mesh △h, see Figure 3.7, where h is the maximum length of edges in △h.

We get a sequence of refined meshes △h by joining mid-points of edges where, for

boundary triangles, we take mid-point on circular arc for boundary edges. Let B̃

and BA be bases for modified Argyris and Argyris spaces corresponding to their

MDS’s M̃ and MA respectively obtained using (3.1.11).

We need to introduce some more notation. Let {Tκ}Nt

κ=1 be the set of triangles

in △h with some fixed ordering. Recall that any spline s ∈ S0
d(△h) restricted to

Tκ can be written in the form

s|Tκ =
∑

i+j+k=5

cijkB
d
ijk,

where cijk are Bézier coefficients of s on Tκ. Let CTκ, κ = 1, · · · , Nt, denote the

row vector of these coefficients cijk of s on Tκ, ordered lexicographically and let

V(s) be a row vector of all CTκ ’s, κ = 1, · · · , Nt, for a spline s,

V(s) =
[
CT1

,CT2
, · · · ,CTNt

]
. (3.2.19)

Furthermore let

c1 = max
ξ∈M̃

‖V (sξ)‖∞

c2 = max
ξ∈MA

‖V (sξ)‖∞.
(3.2.20)

We plot c1 and c2 against nr where nr denotes number of refinements as shown

in Figure 3.9. We see that c2 is growing exponentially with refinements,(i.e. as
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Figure 3.7: Initial triangulation △h of a circle.

boundary edges get near collinear), and c1 remains bounded for all meshes. Vio-

lation of the inequality (3.1.10) indicates the instability of MDS MA .

3.3 C1 Macro-element Spaces

Now we discuss the possibility of stable splitting of minimal determining sets of

some of the C1 macro-element spaces.

3.3.1 Stable Splitting of Clough-Tocher Macro-element Space

Given a triangulation △ of a domain Ω, let △CT be corresponding Clough-Tocher

refinement of △, where each triangle is split into three subtriangles, see Figure

3.10.

Consider the stable local MDS M given in [43, Theorem 6.5] for C1 Clough-
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v

Figure 3.8: MDS points for D2(v), v ∈ VB for Argyris space.
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Figure 3.9: Comparison of stability of MDS MA and M̃ . c1 and c2 are defined in

(3.2.20).
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Figure 3.10: A typical Clough-Tocher refinement of one triangle with points in Mv

marked as black dots and points in Me marked as black triangles.

Tocher macro-element space S1
3(△CT ) as

M =
⋃

v∈V

Mv ∪
⋃

e∈E

Me, (3.3.21)

where Mv := D1(v) ∩ Tv and Me :=
{
ξTe

111

}
, and Tv and Te are triangles in △CT .

Denote by V and E the sets of vertices and edges in △, respectively. Let

S0 :=
{
s ∈ S1

3(△CT ) : s|∂Ω = 0
}
.

Let VI and VB be the sets of interior and boundary vertices of △, respectively. We

assume that Tv is a boundary triangle for each Mv, v ∈ VB. Then stable splitting

for M is possible as follows. Let
(⋃

v∈VI

Mv ∪
⋃

e∈E

Me

)
⊂M0. (3.3.22)

However, M0 may contain some more points from Mv, v ∈ VB. Note that, for

boundary vertices v, two points in Mv are always on the boundary and one is not.
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These two boundary points are in Mb but the point ξv in Mv, which is not on the

boundary, belongs to either M0 or Mb depending on the geometry of boundary

edges attached to v in the same way as the point ξv in Section 3.2.2. This point

will be in M0 for those boundary vertices where boundary edges are collinear.

Otherwise it will be in Mb. Then we arrive at the following result.

Theorem 3.3.1. M := M0 ∪Mb is a stable splitting of a minimal determining set

M for Clough-Tocher macro-element space.

Proof. Let s ∈ S1
3(△CT ) and cξ = 0 for all ξ ∈Mb. Consider Ev = {e1, e2, · · · , en}

for v ∈ VB then D1(v) ∩ e1 ⊂ Mv and cξ = 0 for ξ ∈ D1(v) ∩ e1 by assumption.

Moreover the C1 smoothness condition means cξ vanishes for ξ ∈ R1(v) ∩ en as

well. Hence cξ = 0 for domain points on ∂Ω which results in s|∂Ω = 0. Thus

{s ∈ S1
3(△CT ) : cξ = 0 ∀ξ ∈ Mb} ⊂ S0.

Conversely, let s ∈ S0; we need to show that all Bézier coefficients cξ for ξ ∈ Mb

vanish. Since s|∂Ω = 0 therefore Bézier coefficients of s corresponding to domain

points on the boundary are zero. For v ∈ VB, where boundary edges are non-

collinear, the gradient of s at v is also zero, due to C1 smoothness of s at v, thus

the coefficient of s at ξv is zero as well. This implies that

S0 ⊂ {s ∈ S1
3(△CT ) : cξ = 0 ∀ξ ∈Mb}.

Stability and locality follows as M is a stable local MDS for S1
3(△CT ).

3.3.2 Powell-Sabin Macro-element Space

Now for a given triangulation △ of a domain Ω, let △PS be the corresponding

Powell-Sabin refinement [43, Definition 4.18], see the Figure 3.11. For each v ∈ V ,
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let Tv be some triangle of △PS attached to v, and Mv := D1(v) ∩ Tv. Then

M =
⋃

v∈V

Mv (3.3.23)

is a stable local minimal determining set for Powell-Sabin space S1
2(△PS) [43,

Theorem 6.9]. Now similarly if

S0 :=
{
s ∈ S1

2(△PS) : s|∂Ω = 0
}

and we take Tv to be a boundary triangle for Mv, v ∈ VB, then we split M given

in (3.3.23) for S1
2(△PS) in M0 and Mb as follows:

Let (⋃

v∈VI

Mv

)
⊂M0 and (Mv ∩ e1) ⊂Mb ∀v ∈ VB, (3.3.24)

where Ev = {e1, e2, · · · , en} is a set as defined in Section 3.2.1. The point ξv in

R1(v) ∩ e2 belongs to M0 or Mb based on discussion made in Section 3.2.2. Then

we formulate the following theorem.

Theorem 3.3.2. M := M0 ∪Mb is a stable splitting of a minimal determinig set

M for Powell-Sabin macro-element space.

Proof. Follow the same arguments as in the proof of Theorem 3.3.1.

3.3.3 Powell-Sabin-12 Macro-element Space

Let △PS12 be the Powell-Sabin-12 refinement [43, Definition 4.21] of a given trian-

gulation △ of a domain Ω, see Figure 3.12. For each e of △, let ue be the midpoint

of e and let vT be the incenter of a triangle T in △ attached to e. Let ξe := vT +ue

2

and Me := {ξe}. For each vertex v ∈ V , let Tv be a triangle of △PS12 attached to

v, and let Mv := D1(v) ∩ Tv. Then the set

M =
⋃

v∈V

Mv ∪
⋃

e∈E

Me (3.3.25)
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Figure 3.11: Powell-Sabin refinement of one triangle with points in Mv marked as

black dots.

is a stable local MDS for the space S1
2(△PS12) [43, Theorem 6.13]. Now let

S0 :=
{
s ∈ S1

2(△PS12) : s|∂Ω = 0
}
.

Again, we assume that Tv is a boundary triangle of △PS12 for any boundary vertex

v. Let us split M into M0 and Mb by the same method as for the Clough-Tocher

elements. Then we conclude with the following theorem.

Theorem 3.3.3. M := M0 ∪Mb is a stable splitting of a minimal determinig set

M for S1
2(△PS12).

Proof. Follow the same arguments as in the proof of Theorem 3.3.1.

3.3.4 Quadrilateral Macro-element Space

Let ♦ be a strictly convex quadrangulation of a polygonal domain Ω and let △Q

be triangulation obtained by drawing in the diagonals of each quadrilateral of ♦.
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Figure 3.12: A Powell-Sabin-12 refinement of one triangle with points in Mv

marked as black dots and points in Me marked as black triangles.

Let V and E be the sets of vertices and edges of ♦. Here we will discuss the cubic

spline space S1
3(△Q). Again let Mv := D1(v) ∩ Tv, for each v ∈ V , where Tv is

a triangle in △Q attached to v, and Tv is a boundary triangle in the case of a

boundary vertex v. For each e ∈ E, let Te be some triangle in △Q containing e

and let Me :=
{
ξTe

111

}
. Then

M =
⋃

v∈V

Mv ∪
⋃

e∈E

Me (3.3.26)

is a stable local MDS for the space S1
3(△Q) [43, Theorem 6.17]. Again the splitting

of M for S1
3(△Q) in M0 and Mb can be achieved by following similar arguments

as for the other C1 macro-elements discussed above which results in the theorem

formulated below.

Theorem 3.3.4. M := M0 ∪Mb is a stable splitting of a minimal determining set

M for S1
3(△Q).

Proof. Follow the same lines as in the proof of Theorem 3.3.1.
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Note that in [43, Section 6.5] the above triangle Tv is chosen such that it has

the largest shape ratio diam(T )/ρ(T ) among all triangles attached to v. This

allows stable MDS even in the presence of small angles in △Q if the smallest angle

in ♦ is separated from zero. However, this choice of Tv might be unsuitable for

stable splitting if v is a boundary vertex because we need Tv to be a boundary

triangle whereas the shape ratio might be larger for some interior triangle attached

to v. Therefore, our construction of stable splitting is valid only if △Q satisfies the

minimum angle condition.
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Chapter 4

Numerical Solution of Fully

Nonlinear Elliptic Equations by

Böhmer’s Method : Numerical

Results

4.1 Introduction

In this chapter we present a first implementation of Böhmer’s finite element method

for fully nonlinear elliptic partial differential equations on convex polygonal do-

mains, based on a modified Argyris element discussed in the previous chapter.

Bernstein-Bézier techniques are our main tools in this implementation. Our numer-

ical experiments for several test problems, including the classical Monge-Ampère

equation and an unconditionally elliptic equation, confirm the convergence and

error bounds predicted by Böhmer’s theoretical results.

Recall that Böhmer’s method [10, 11] permits solution of the Dirichlet problem
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for any fully nonlinear elliptic equations of second order. It is based on a finite

element discretization of the linearised elliptic equations, with C1 finite element

spaces that admit a stable splitting into the subspace satisfying zero boundary

conditions and its complement. Therefore we use a modified Argyris space S̃ with

splitting M̃ := M̃0 ∪ M̃b, see Theorem 3.2.3, instead of classical Argyris space.

Because we proved in last chapter that Argyris space does not admit a stable

splitting of the basis functions. Full theoretical justification of the method can

be seen in [10, 11], including a proof of convergence/stability and error bounds.

However, no numerical results have been provided.

Our numerical experiments include several standard test problems for the

Monge-Ampère equation on a square, an example for a non-rectangular convex

polygonal domain, and an unconditionally elliptic equation. The numerical results

confirm the theoretical error bounds given in [10, 11].

The chapter is organised as follows. In Section 4.2 we provide details of the

implementation of Böhmer’s method, including the assembly of the system matrix

for the linearised elliptic equations arising in each step of Newton iteration. Finally,

Section 4.3 is devoted to the numerical experiments.

As we will see in the next section, a key step in the implementation of the finite

element stiffness matrices using Bernstein-Bézier techniques is the computation of

the Bézier coefficients of the basis splines {sξ}ξ∈M corresponding to an MDS M .

We therefore conclude this section by providing Algorithm 1 that gives all details

of this computation for the basis splines of the modified Argyris space.

Algorithm for computing the Bernstein-Bézier coefficients

The algorithm to compute all Bézier coefficients of s ∈ S, the Argyris space, for

given coefficients {cη : η ∈ M} can be extracted from the proof of [43, Theorem

6.1]. The algorithm for modified Argyris space S̃, using MDS M̃ , is similar except
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at boundary vertices. We formulate Algorithm 1 to compute Bézier coefficients of

basis splines {sξ}ξ∈M̃ given that

cξ = 1, ξ ∈ M̃ and cη = 0, η ∈ M̃\{ξ}.

4.2 Implementation of Böhmer’s Method

In this section we describe in detail our implementation of Böhmer’s method using

Bernstein-Bézier techniques. We study the numerical approximation of Dirichlet

problem (2.2.13)-(2.2.14) for a fully nonlinear equation of second order.

Discretization

Recall that △h is a quasi-uniform triangulation of a convex polygonal domain Ω ⊂

R
2. As discussed in Section 2.2.2, solving the nonlinear problem (2.2.13)-(2.2.14)

by Böhmer’s method amounts to running a Newton-Kantorovich iteration scheme,

on each level of triangulation, to get a sequence
{
uhk
}
k∈Z+

of approximations of û

generated by

uhk+1 = uhk − wh, k = 0, 1, . . . , (4.2.1)

where wh ∈ Sh0 is the solution of the linear elliptic problem: Find wh ∈ Sh0 such

that

(G′(uhk)w
h, vh)L2(Ω) = (G(uhk), v

h)L2(Ω) ∀vh ∈ Sh0 , (4.2.2)

where G′ is the linearisation (2.1.2) of the nonlinear operator G. We solve this

linear equation for wh, for a given uhk, by using the standard Galerkin finite element

method with the modified Argyris space S̃h on △h as an approximating space, with

the stable splitting S̃h = S̃h0 + S̃hb according to Theorem 3.2.3.
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Algorithm 1 Compute Bézier coefficients of a basis spline sξ, ξ ∈ M̃ .

Require: Given ξ, initialize {cη : η ∈ D5,△} by zeros and set cξ = 1.

Ensure: Compute cη ∀η ∈ D△\M̃.

1. if ξ ∈Mv, v ∈ VI then

2. Find triangles {Tκ}kκ=1 attached to vertex v, arranged in anti-clockwise order,

with T1 := Tv.

3. Move anti-clockwise by computing cν , ν ∈ D2(v) ∩ Tκ+1 from known coeffi-

cients cη, η ∈ D2(v) ∩ Tκ, κ = 1, · · · , k − 1, using C1 and C2 smoothness

conditions [43, Lemma 2.30] and see Section 3.1.5.

4. For each edge e ∈ Ev. Let the edge e := 〈v, v1〉 be shared by triangles

Te := 〈v, v2, v1〉 and T̃e := 〈v3, v, v1〉. Since c302 is known, for ξ302 ∈ D2(v),

we compute cT̃e

122 using C1 smoothness condition over e

cT̃e

122 = b1c302,

where (b1, b2, b3) are barycentric coordinates of v3 w.r.to Te.

5. else if ξ ∈ M̃v, v ∈ VB then

6. Do as in 2) by choosing T1 := Tv be one of the boundary triangles attached

to v.

7. Compute cν , ν ∈ {D2(v) ∩ Tκ+1} \M̃v from known coefficients cη, η ∈ D2(v)∩

Tκ, κ = 1, · · · , k−1, again using C1 smoothness conditions, see Section 3.1.5.

8. Do as in 4) only for e ∈ Ev\EB.

9. else if ξ ∈ Me, e ∈ EI then

10. Let the edge e := 〈v1, v2〉 is shared by triangles Te := 〈v1, v4, v2〉 and T̃e :=

〈v3, v1, v2〉. Then ξ := ξTe

212 and we compute cT̃e

122 with the help of cTe

212 = 1

using C1 smoothness condition over e given by cT̃e

122 = b3, where (b1, b2, b3)

are barycentric coordinates of v3 w.r.to Te.

11. end if
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After a standard transformation to the weak form, (4.2.2) is translated into

the following problem: Find wh ∈ S̃h0 such that for all vh ∈ S̃h0 ,

∫

Ω

∇wh · A∇vhdx+

∫

Ω

vhb · ∇whdx+

∫

Ω

cwhvhdx =

∫

Ω

fvhdx, (4.2.3)

where A =
[
∂ eG
∂rij

(uhk)
]2
i,j=1

, b =
[
∂ eG
∂pi

(uhk)
]2
i=1

, f = G(uhk) and c = ∂ eG
∂z

(uhk).

If (s1, . . . , sN0
) is a basis of S̃h0 , then, as usual in the finite element method,

(4.2.3) results in the linear system

(S + Bt + M)a = L, (4.2.4)

where a is the vector of the coefficients in the expansion wh =
∑N0

i=1 aisi, and S,

B, M and L are the stiffness, convection and mass matrices and the load vector,

respectively, with the entries, for i, j = 1, . . . , N0, defined as

Sij =

∫

Ω

∇si ·A∇sjdx, Bij =

∫

Ω

sjb · ∇sidx, Mij =

∫

Ω

csisjdx, Li =

∫

Ω

fsidx.

It is worth emphasising that we do not use these formulae directly to compute

the system matrices. Before we describe how we compute them let us define a

transformation matrix T required for this.

Transformation Matrix

Let {Tκ}Nt

κ=1 be the triangles in △h with some fixed ordering. To define trans-

formation matrix we make use of vector V (s), defined in (3.2.19), for any spline

s ∈ S̃h. If we construct a matrix by taking these vectors V(si) for the basis splines

s1, . . . , sN0
as its rows, then this matrix is our desired transformation matrix T ,

T = [V(s1)
t, . . . ,V(sN0

)t]t, (4.2.5)

where t denotes a transpose of a matrix. Let S̃5(△h) denote the space of all dis-

continuous quintic splines over the same triangulation △h. Clearly, T t represents
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the transformation that maps the vector {cξ}ξ∈M̃ corresponding to s ∈ S̃h0 onto

the array of the coefficients of s in the basis of the space S̃5(△h) defined by the

quintic Bernstein basis polynomials B5
ijk on all triangles.

Now consider the block matrices Ŝ = diag
(
ŜTκ , Tκ ∈ △h

)
, B̂ = diag

(
B̂Tκ , Tκ ∈ △h

)

and M̂ = diag
(
M̂Tκ, Tκ ∈ △h

)
with blocks defined by

ŜTκ =

∫

Tκ

∇B5
ijk · A∇B5

rstdx, B̂Tκ =

∫

Tκ

B5
ijkb · ∇B5

rstdx, M̂Tκ =

∫

Tκ

cB5
ijkB

5
rstdx.

(4.2.6)

Then we can compute the system matrices in (4.2.4) by using the relations

S = T ŜT t, B = T B̂T t, M = T M̂T t. (4.2.7)

Note that this method of computing the system matrices is particularly efficient

as it is shown in [1] that the matrices Ŝ, B̂ and M̂ can be computed in optimal

complexity (constant cost per entry) even for high polynomial orders, and the

matrix T is sparse because the basis splines are locally supported.

Boundary Conditions

As discussed in Section 2.2.2, in order to impose the non-homogeneous boundary

conditions we require that the initial guess uh0 ∈ S̃h, satisfy the following condition

(uh0 , v
h
b )L2(∂Ω) = (φ, vhb )L2(∂Ω) ∀vhb ∈ S̃hb .

Now if (s1, . . . , sN0
, sN0+1, . . . , sN) is the M̃ -basis for the space S̃h and (sN0+1, . . . , sN)

is a basis for S̃hb , then the above boundary condition, following the usual procedure,

is reduced to the matrix equation

MbCb = Lb,

where

Mb =

[∫

∂Ω

sisjds

]N

i,j=N0+1

and Lb =

[∫

∂Ω

φsids

]N

i=N0+1

.
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It is important to mention that si|e, e ∈ E, are univariate polynomials and they

keep the univariate BB-form [43, Remark 2.4]. Moreover, there is an explicit

formula for integration of product of polynomials in BB-form given by

∫

e

sisjds =
|e|
11

5∑

α=0
β=0

cαc
′
β

(
5
α

)(
5
β

)
(

10
α+β

) ,

where |e| is the length of e,

si|e =

5∑

α=0

cαB
5
α and sj |e =

5∑

β=0

c′βB
5
β,

with B5
α =

(
5
α

)
tα(1 − t)5−α, α = 0, . . . , 5, being the univariate quintic Bernstein

polynomials on the edge e. Thanks to BB-form that helps us compute entries for

Mb exactly but the presence of the function φ in the integrals for Lb forces us to

use an appropriate quadrature rule. For this we see that

∫

e

φsids =

∫

e

φ
∑

α=5

cαB
5
αds =

∑

α=5

cα

∫

e

φB5
αds. (4.2.8)

Thus, computing the entries for Lb is reduced to approximating the Bernstein-

Bézier moments µ5
α(φ) =

∫
e
φB5

αds of φ using an appropriate quadrature rule [1].

We use the Gauss-Legendre 6-point rule to approximate the moments µ5
α(φ) which

returns the exact solution for polynomials of order up to 11. Note that, unlike

using C0 elements, here some degrees of freedom for S̃hb lie inside the domain Ω,

see Theorem 3.2.3. Thus it would be difficult to impose the boundary conditions

merely by interpolating the function φ at the points corresponding to the degrees

of freedom lying on the boundary.

4.3 Numerical Results

This section is devoted to the numerical results for several fully nonlinear problems,

involving the Monge-Ampère equation and an unconditionally elliptic problem
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considered in [42]. The numerics for these problems confirm the convergence and

the theoretical error bounds of Theorem 2.2.2.

4.3.1 The Monge-Ampère Equation

The Dirichlet problem for the Monge-Ampère equation is given by

GMA(u) = det(∇2u) − g(x) = 0, x ∈ Ω

u = φ, x ∈ ∂Ω

(4.3.9)

where g and φ are given functions with g > 0 on Ω required to keep the problem

elliptic. The weak formulation (4.2.3) of the linearised problem in this case is to

find wh ∈ Sh0 such that

∫

Ω

∇wh · A∇vhdx =

∫

Ω

fvhdx, for all vh ∈ Sh0 , (4.3.10)

with A = cof(∇2uhk) as b = 0, c = 0 and f = GMA(uhk) = det(∇2uhk)− g(x), where

cof(M) denotes the cofactor of a 2× 2 matrix M . As a result we are left with the

stiffness matrix and load vector to solve the linear system

SC = L,

for the unknown vector of Bézier coefficients C.

As the Monge-Ampère equation is elliptic only for convex functions, we need

the initial guess to be convex as well. In [24, Remark 2.1] it has been shown that

(4.3.9) and the Poisson-Dirichlet problem

∆u = 2
√
g, x ∈ Ω

u = φ, x ∈ ∂Ω

(4.3.11)

are closely related. Therefore we use the approximation solution of the Poisson-

Dirichlet problem (4.3.11) as an initial guess for the Newton scheme (4.2.1). The
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initial guess obtained this way performs very well in our experiments. However,

we get much faster convergence of the Newton method by using this initial guess

only on the initial mesh, whereas on the refined meshes we take a quasi-interpolant

[43, Section 5.7] of the solution from the previous level as an initial guess. We call

this a multilevel approach.

The first three and the fifth test problems are standard benchmark problems

for (4.3.9) over Ω = (0, 1)2 considered in many papers on the numerical solution of

the Monge-Ampère equation. In this case △h is the uniform triangulation obtained

by first dividing the domain into squares of side length h and then drawing in the

diagonals parallel to the line x2 = x1. In the fourth test problem a non-rectangular

domain is considered.

1. As the first test problem we solve (4.3.9) for the data

g(x) = (1 + |x|2)e|x|2, in Ω,

φ(x) = e
1

2
|x|2 ∀x ∈ ∂Ω,

where |x| =
√
x2

1 + x2
2. With this data the exact solution to the problem is

u(x) = e
1

2
|x|2 ∈ C∞(Ω). The numerical results are presented in Table 4.1.

They confirm the convergence rate O(h4) in the H2-norm predicted by The-

orem 2.2.2, where ℓ = 6 as we are using polynomials of degree 5. Moreover,

as expected, we observe the convergence rates of O(h6) and O(h5) in the

L2 and H1 norms, respectively. The first row of the table shows the errors

for the initial guess. In addition to the errors, Table 4.1 presents the num-

ber of Newton iterations (N) on each mesh, the L2-norm of the residuals

r := ‖G(uhk)‖L2(Ω), and the size ‖p‖L2(Ω) of the L2-projection p of G(uhk) on

the space S̃h0 . The projection p is found as a solution of the system MCp = L,

where M is the mass matrix, L is a load vector and Cp is the vector of co-

73



efficients of the expansion of p in the M̃0-basis. The size of the projection

measures how well the approximate solution uhk solves the problem (2.2.16).

We observe that the number of Newton iterations is extremely small thanks

to the fact that the initial guess is chosen by the multilevel approach. The

size of the residual is close to the H2-norm error, as one can expect, and the

size of the projection is close to the unit round-off initially, and gets larger

on further refinement levels, obviously due to growing condition numbers of

the system matrices.

Table 4.1: Errors of approximate solution and rate of convergence for the first test

problem, N denotes the number of Newton’s iterations, r := ‖G(uhk)‖L2(Ω) is the

size of the residual, and ‖p‖L2(Ω) is the size of the L2-projection of G(uhk) on S̃h0 .

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 5.78e-3 3.25e-2 2.66e-1 9.64e-1

1 1.17e-4 1.03e-3 1.74e-2 2 5.15e-2 2.30e-15

1/2 4.77e-6 4.6 7.75e-5 3.7 2.25e-3 3.0 1 5.14e-3 1.74e-14

1/4 1.92e-7 4.6 7.04e-6 3.5 3.32e-4 2.8 1 8.28e-4 9.44e-14

1/8 2.42e-9 6.3 1.65e-7 5.4 1.58e-5 4.4 1 3.93e-5 3.89e-13

1/16 4.31e-11 5.8 6.61e-9 4.6 1.20e-6 3.7 1 3.56e-6 1.79e-12

1/32 6.60e-13 6.0 1.95e-10 5.1 7.45e-8 4.0 1 2.04e-7 7.38e-12

1/64 1.14e-14 5.9 7.28e-12 4.7 6.06e-9 3.6 1 1.66e-8 2.83e-11

1/128 8.16e-15 0.5 2.96e-13 4.6 3.73e-10 4.0 1 1.07e-9 1.06e-10

2. Second test problem is defined by

g(x) =
R2

(R2 − |x|2)2
∀x ∈ Ω, with R ≥

√
2,

φ(x) = −
√
R2 − |x|2 ∀x ∈ ∂Ω,
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in (4.3.9). The exact solution is u(x) = −
√
R2 − |x|2. The function g(x)

has a singularity at R =
√

2 and u ∈ W 1
p (Ω), 1 ≤ p < 4 for this value of

R, lacking H2-regularity. The method diverges for R =
√

2, in line with

Böhmer’s theory that guarantees convergence only if the solution is in H2.

But for R >
√

2 we have u ∈ C∞(Ω) and again, in Table 4.2 and Table 4.3 for

two different values of R, the results show the same behaviour as in the first

problem. The tables confirm that the further the value of R is away from

singularity the faster convergence is achieved. Note that in this experiment

much higher accuracy is attained as compared to the results in [24] for the

same test problem.

Table 4.2: Errors of approximate solution and rate of convergence for the second

test problem with R =
√

2+ .1. The meaning of the last three columns is the same

as in Table 4.1.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 2.00e-3 1.67e-2 2.69e-1 1.02e0

1 2.34e-3 1.25e-2 2.15e-1 2 5.91e-1 1.92e-15

1/2 1.70e-4 3.8 1.57e-3 3.0 7.32e-2 1.6 2 1.68e-1 7.89e-15

1/4 6.01e-6 4.8 1.58e-4 3.3 1.75e-2 2.1 2 3.80e-2 2.92e-14

1/8 1.72e-7 5.1 1.31e-5 3.6 3.17e-3 2.5 1 6.61e-3 1.34e-13

1/16 3.92e-9 5.4 8.10e-7 4.0 4.05e-4 3.0 1 8.44e-4 5.04e-13

1/32 1.02e-10 5.3 3.71e-8 4.4 3.53e-5 3.5 1 7.23e-5 2.07e-12

1/64 1.93e-12 5.7 1.41e-9 4.7 2.80e-6 3.7 1 5.49e-6 8.45e-12
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Table 4.3: Errors of approximate solution and rate of convergence for the second

test problem with R =
√

2 + 2.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 1.34e-5 7.38e-5 6.07e-4 1.95e-4

1 7.66e-7 5.89e-6 8.20e-5 2 2.64e-5 1.84e-15

1/2 1.28e-8 5.9 2.50e-7 4.6 7.85e-6 3.4 1 2.49e-6 7.68e-15

1/4 4.33e-10 4.9 1.72e-8 3.9 8.65e-7 3.2 1 2.58e-7 2.97e-14

1/8 6.66e-12 6.0 4.94e-10 5.1 9.78e-8 4.1 1 1.46e-8 1.49e-13

1/16 1.10e-13 5.9 1.75e-11 4.8 3.36e-9 3.8 1 1.00e-9 5.71e-13

1/32 7.67e-15 3.6 5.53e-13 4.9 2.12e-10 3.9 1 6.17e-11 2.25e-12

3. Third test problem is defined by

g(x) =
1

|x| ∀x ∈ Ω,

φ(x) =
(2|x|) 3

2

3
∀x ∈ ∂Ω.

for the Monge-Ampère problem (4.3.9). The difference to the previous prob-

lems is that the exact solution u(x) =
(2|x|) 3

2

3
is not infinitely differentiable,

even u /∈ C2(Ω). However, as mentioned in [24], u ∈ W 2
p , for 1 ≤ p < 4.

It shows that u ∈ Hγ(Ω) for some γ > 2. The results in Table 4.4 shows

the convergence of O(h
5

2 ) in L2-norm which is an indication that u ∈ Hγ(Ω)

with γ approaching 5
2
.

4. Fourth test problem. This problem is different from the others because we

consider a non-rectangular domain Ω, as Böhmer’s method is applicable to
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Table 4.4: Errors of approximate solution and rate of convergence for third test

problem.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 6.08e-3 2.99e-2 4.02e-1 2.23e-2

1 8.18e-4 1.21e-2 3.87e-1 2 2.28e-2 1.23e-16

1/2 1.95e-4 2.1 4.55e-3 1.4 2.77e-1 0.48 2 1.13e-2 3.53e-16

1/4 6.76e-5 1.5 1.73e-3 1.4 1.95e-1 0.50 2 1.49e-2 1.54e-15

1/8 1.65e-5 2.0 6.40e-4 1.4 1.36e-1 0.51 2 3.68e-2 5.53e-15

1/16 3.46e-6 2.3 2.30e-4 1.5 9.44e-2 0.53 2 8.47e-2 2.50e-14

1/32 6.75e-7 2.4 8.08e-5 1.5 6.33e-2 0.57 2 1.82e-1 9.76e-14

any convex polygonal domain. Let Ω be bounded by the straight lines

x1 = ±0.75, x2 = ±0.75, and |x2| − |x1| = 1,

see Figure 4.1 (left), which also includes the initial triangulation. We gen-

erate a sequence of meshes by the uniform refinement, where each triangle

is split into 4 similar subtriangles. This test problem is for (4.3.9) with the

same data as in first test problem. Again we choose an initial guess by the

multilevel approach and use a solution of (4.3.11) on the first level. The

numerics again show the same rate of convergence as for the rectangular do-

mains, see Table 4.5. The graph of approximate solution uh on the last level

of triangulation is visualised in Figure 4.1 (right).

5. Fifth test problem. Here we consider a homogeneous Dirichlet problem for

(4.3.9) with g = 1 over Ω = [0, 1]2. This test problem is interesting because

it does not have a smooth classical solution. Clearly, Theorem 2.2.2 does
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Table 4.5: Errors of approximate solution and rate of convergence for the fourth

test problem.

Levels L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 9.30e-4 3.96e-3 3.58e-2 4.39e-2

1st 5.01e-7 8.39e-6 3.94e-4 2 5.83e-4 1.56e-14

2nd 1.18e-8 5.4 3.45e-7 4.6 2.87e-5 3.8 1 3.97e-5 6.47e-14

3rd 2.11e-10 5.8 1.11e-8 4.9 1.91e-6 3.9 1 2.67e-6 2.76e-13

4th 3.54e-12 5.9 3.36e-10 5.1 1.33e-7 3.8 1 1.85e-7 1.12e-12

5th 4.36e-14 6.3 1.12e-11 4.9 8.79e-9 3.9 1 1.20e-8 4.65e-12

6th 4.85e-14 -0.2 5.00e-13 4.5 5.69e-10 3.9 1 8.12e-10 1.82e-11

not apply in this case. Nevertheless, we applied the algorithm and noticed

the convergence of the Newton method on coarse levels, until h = 1
4
, but

when we moved to more refined meshes we did not see convergence any more

even if we used the multilevel approach. Let RF = G(uhk) be the residual

function where uhk is the approximate solution. The cross section of RF

along the straight line x2 = x1 is depicted in Figure 4.2 that shows the

strong singularity at the corners. It can also be seen that the method tries

to converge inside of the domain away from the singularity. Also see test 3 in

Chapter 6 where we consider the same problem over domains with smooth

boundaries. The approximate solution uh and its contour plot on a mesh

with h = 1
4

is visualized in Figure 4.3.
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Figure 4.1: Non-rectangular domain Ω for fourth test problem with initial tri-

angulation (left) and approximate solution uh on the last level of triangulation

(right).
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Figure 4.2: Cross section of RF = G(u
h
4

k ) along the straight line x2 = x1.
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Figure 4.3: Approximate solution uh of test 5 and its contour plot, h = 1
4

4.3.2 Second Example

Consider the problem suggested in [42]

G2(u) = u3
11 + u3

22 + u11 + u22 − g(x) = 0, x ∈ Ω

u = φ, x ∈ ∂Ω

(4.3.12)

where uii = (∂i)
2
u, i = 1, 2. This problem is unconditionally elliptic, i.e. the

operator G2 is elliptic for any function u ∈ D(G2) = C2(Ω). Note that Condition

H of [11] is satisfied in this example. The last of our test problems is for (4.3.12)

in the domain Ω = [−1, 1]2, with the data given by

g(x) = ((4x2
1 − 2)3 + (4x2

2 − 2)3)e−3|x|2 + (4|x|2 − 4)e−|x|2, ∀x ∈ Ω,

φ(x) = e−|x|2 ∀x ∈ ∂Ω.

The matrix A in this case is

A =




3u2
11 + 1 0

0 3u2
22 + 1




and b = 0, c = 0. Note that A is strictly positive definite for any function u. The

triangulations △h with side length h are generated the same way as for Ω = [0, 1]2

in Section 4.3.
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To find an initial guess for the Newton method on the initial triangulation △2

we use the approximate solution of the Laplace-Dirichlet problem

∆u = 0, x ∈ Ω,

u = φ, x ∈ ∂Ω,

(4.3.13)

whereas on the subsequent refinement levels we use the multilevel approach as

described in Section 4.3. Note that the method was divergent with initial guess

generated by (4.3.13) for h ≤ 1
2
.

The numerical results are presented in Table 4.6. We see a very slow conver-

gence of Newton’s iterations in this example, compare N in Tables 4.1–4.6. The

theoretical convergence rate of Böhmer’s method is, however, as expected as we

see that ‖u − uh‖H2(Ω) = O(h4). We also observe the difference in the behaviour

of ‖p‖L2(Ω), which seems to indicate that Newton method does not find a solution

of (2.2.16). This phenomenon requires further investigation.

81



Table 4.6: Errors of approximate solution and rate of convergence for the sixth

test problem.

h L2-error rate H1-error rate H2-error rate N r ‖p‖L2(Ω)

initial 3.32e-1 7.21e-1 1.62e0 5.81e0

2 2.85e-2 1.56e-1 9.72e-1 17 6.43e0 1.01e0

1 5.12e-4 5.8 4.33e-3 5.2 6.09e-2 4.0 10 1.45e-1 1.03e-3

1/2 1.76e-5 4.9 2.48e-4 4.1 5.72e-3 3.4 12 2.19e-2 2.16e-5

1/4 2.21e-7 6.3 5.52e-6 5.5 2.70e-4 4.4 11 1.27e-3 1.07e-7

1/8 3.07e-9 6.2 1.63e-7 5.1 1.58e-5 4.1 10 9.66e-5 8.29e-10

1/16 5.37e-11 5.8 4.95e-9 5.0 9.50e-7 4.1 12 5.68e-6 7.63e-12

1/32 8.21e-13 6.0 1.56e-10 4.9 6.03e-8 3.9 12 3.50e-7 8.01e-12

1/64 7.40e-14 3.5 4.86e-12 5.0 3.72e-9 4.0 9 2.16e-8 3.15e-11
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Chapter 5

H1 Polynomial Finite Element

Method for Domains Enclosed by

Piecewise Conics

5.1 Introduction

Let Ω ⊂ R
2 be a bounded curvilinear polygon with Γ = ∂Ω =

⋃m
j=1 Γj, where

each Γj is an open arc of an algebraic curve of at most second order ( i.e. either

a straight line or a conic). Let Z = {z1, . . . , zm} be the set of the endpoints of

all arcs numbered counter-clockwise such that zj , zj+1 are the endpoints of Γj ,

j = 1, . . . , m (we set zj+m = zj). Furthermore, for each j we denote by ωj the

internal angle between the tangents τ+
j and τ−j to Γj and Γj−1, respectively, at zj .

We assume that 0 < ωj ≤ 2π, see Figure 5.1 and set ω := min{ωj : 1 ≤ j ≤ m}.

The purpose of this chapter is to develop an H1 conforming finite element

method with polynomial shape functions suitable for solving second order elliptic

problems for curvilinear polygons of the above type.
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zj

ωj

Γj−1

Γj

Ω

Figure 5.1: Definition of ωj .

Let us now formulate some of the problems. For simplicity we restrict ourselves

to elliptic problems with Dirichlet boundary conditions and consider in detail

1) the case when the corresponding variational problem

u ∈ H1(Ω),

a(u, v) = (f, v), all v ∈ H1
0 (Ω),

(5.1.1)

with bounded and coercive bilinear form a(·, ·) and such that the regularity condi-

tion

‖u‖H2(Ω) ≤ CR‖f‖L2(Ω), (5.1.2)

holds.

2) The membrane eigenvalue problem,

λ ∈ R, ∃u ∈ H1
0 (Ω), u 6= 0,

−∆u = λu in Ω, u|Γ = 0,
(5.1.3)

which also has a variational formulation

λ ∈ R, ∃u ∈ H1
0 (Ω), u 6= 0,

∫
Ω
∇u · ∇v = λ

∫
Ω
uv, all v ∈ H1

0 (Ω).
(5.1.4)
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The chapter is organized as follows. Section 5.2 is reserved for the full detailed

description of construction of spaces along with integration technique over triangles

with a curved side. In Section 5.3 we describe how a conic given in rational Bézier

form can be transformed to BB-form. We formulate theorems, in Section 5.4,

regarding error bounds for our method. The implementation of the method for

general second order elliptic problems in two dimensions is discussed in Section 5.5,

while Section 5.6 is devoted to numerical results of some experiments for some

classical elliptic problems, followed by a discussion of the possible extensions of

the method to deal with non-homogeneous boundary conditions in Section 5.7.

5.2 Finite Element Spaces

Let △ = △0 ∪ △1 be a triangulation of Ω, i.e. a subdivision of Ω into triangles,

where each triangle T ∈ △1 either has one (and only one) edge replaced with a

curved segment of the boundary (a so called pie-shaped triangle), or has a common

edge with a pie-shaped triangle (we call these buffer triangles), while the remaining

triangles T ∈ △0 have all straight edges, see Figure 5.2. To be more clear, let

△1 = △Bf ∪△P ,

where △Bf and △P contains buffer and pie-shaped triangles respectively. Also let

T ∗ denote the triangle associated with T ∈ △P obtained by joining its boundary

vertices by a straight line, see Figure 5.8. Buffer triangles are used to maintain

global continuity as they “digest” everything that comes from neighbours. As

usual, we assume that no vertex of a triangle lies in the interior of an edge of

another triangle.

Suppose qj is a bivariate polynomial such that Γj ⊂ {z ∈ R
2 : qj(z) = 0},

j = 1, . . . , m. We assume that qj ∈ P1 or qj ∈ P2 depending on whether Γj is a
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Figure 5.2: A triangulation of curved domain with buffer triangles(blue), pie-

shaped triangles(pink) and ordinary triangles(green).

straight interval or a genuine conic arc, where Pd denotes the set of all algebraic

polynomials in two variables of total degree at most d. It is worth noting that if

qj ∈ P1 the boundary triangle with Γj as boundary edge belongs to △0 and we

use standard Bernstein-Bézier elements on it. A boundary triangle belongs to △P

when qj ∈ P2\P1.

Furthermore, let, V and E denote the set of all vertices and edges of △ respec-

tively. For each v ∈ V , star(v) is the union of all triangles in △ attached to v.

We also denote by θ the smallest angle of the triangles T ∈ △, where the angle

between an interior edge and a boundary segment is understood in the tangential

sense.

We assume that △ satisfies the following conditions :

(a) Z = {z1, . . . , zM} ⊆ V .

(b) No interior edge has both endpoints on the boundary.

(c) If qj/qj−1 6= const, if qj ∈ P2\P1 or qj−1 ∈ P2\P1 then there is at least one

86



triangle T ∈ △Bf attached to zj .

(d) For each T ∈ △P , with its curved side on Γj and its third (interior) vertex

v,

qj(z) 6= 0, ∀z ∈ T \ Γj , (5.2.5)

qj(v) = 1, (5.2.6)

qj(z) ≤ A ∀z ∈ T, (5.2.7)

for some constant A.

Note that (a)–(c) can always be achieved by slightly modifying a given trian-

gulation near the boundary, while (d) is obtained by re-scaling qj , if necessary,

assuming that the triangulation is fine enough.

Let d ≥ 1. We set

Sd(△) := {s ∈ C0(Ω) : s|T ∈ P d+i, T ∈ △i, i = 0, 1} ⊂ H1(Ω),

Sd,0(△) := Sd(△) ∩H1
0 (Ω),

when there is no ambiguity, we simply write Sd, Sd,0.

Let VI(EI) and VB(EB) be sets of interior and boundary vertices(edges) of the

triangulation △ of Ω. Note that EB := {Γj : j = 1, . . . , m}.

We describe the above space Sd(△), that possess a property of stable splitting

Sd := Sd,0 + Sd,b by constructing a minimal determining set (MDS) for it. We

start by first constructing an MDS for the space Sd,0 and then we will extend it

to the full space Sd. The main idea is to factorize polynomials over boundary

elements. Over each T ∈ △P , with curved side as Γj , we consider the polynomials

Pd−1qj ⊂ Pd+1 that satisfy the homogeneous Dirichlet conditions exactly. Recall

that by Bézout’s theorem every polynomial that vanishes on Γj is divisible by qj .
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Since the BB polynomials Bd−1
ijk , i+ j + k = d− 1 w.r.t. T ∗ form a basis for Pd−1

it is obvious that the set
{
Bd−1
ijk qj , i+ j + k = d− 1

}
is a basis for Pd−1qj.

Recall that Dd,△0
is the set of domain points associated with the subtriangu-

lation △0 of △. The main technicalities come while constructing an MDS on △Bf

and △P . For each T := 〈v1, v2, v3〉 in △Bf let D0
d+1,T be the set of interior domain

points over T i.e.

D0
d+1,T :=

{
iv1 + jv2 + kv3

d+ 1
: i+ j + k = d+ 1, i, j, k ≥ 1

}
,

see Figure 5.6. Finally, for each T ∈ △P , let D∗
d−1,T be domain points over T ∗

for degree d − 1. However, the meaning of the dual functionals associated with

domain points ξ ∈ D∗
d−1,T is non-standard. For p ∈ Pd+1 vanishing on the curved

boundary of T it is the coefficients cξ in the expansion

p = q
∑

ξ∈D∗
d−1,T

cξB
d−1
ξ ,

where q = 0 is the curved boundary edge of T . For example see Figure 5.4

depicting the points ξ ∈ D∗
d−1,T for d = 5 where as Figure 5.5 shows the Bézier

net for p ∈ Pd+1.

Then we have the following result.

Theorem 5.2.1. Let

M0 := Dd,△0\∂Ω ∪
⋃

T∈△Bf

D0
d+1,T ∪

⋃

T∈△P

D∗
d−1,T . (5.2.8)

Then M0 is a stable local minimal determining set for the space Sd,0.

Proof. We set the coefficients {cξ : ξ ∈M0} for any spline s ∈ Sd,0 and show

that all coefficients of s can be computed from them consistently.

As △ = △0 ∪ △Bf ∪ △P , let us consider the patches of s over △0, △Bf and

△P separately for the sake of convenience. We will glue these patches up at the

end of the proof.
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First the set Dd,△0\∂Ω being the set of domain points over △0 is a minimal

determining set for Sd,0(△0) by [43, Theorem 5.5] and hence {cξ : ξ ∈ Dd,△0\∂Ω}

uniquely determines s|△0
satisfying s|∂Ω = 0. In particularl BB-coefficients of s|△0

at domain points on the boundary are zero.

Now consider △P . Let T ∈ △P (with T ∗ being an associated triangle with

straight sides) and let q ∈ P2 be a conic representing the curved side of T . Since

s|T = pq ∈ Pd+1 for some p ∈ Pd−1 and the coefficients
{
cξ : ξ ∈ D∗

d−1,T

}
uniquely

describe p ∈ Pd−1, the product pq uniquely determines the patch s|T , T ∈ △P .

Note that D∗
d−1,T ∩ Dd,△0\∂Ω = {v}, where v is the interior vertex of T . Since

q(v) = 1, we have s(v) = p(v), so that cv is uniquely defined independently of

whether we treat v as element of D∗
d−1,T or Dd,△0\∂Ω.

For buffer triangles it is easy to see that the coefficients
{
cξ : ξ ∈ D0

d+1,T

}
give

us the interior part of the Bézier net of the patch s|T , T ∈ △Bf . Now we describe

how we determine the coefficients for s|T corresponding to domain points on edges

of T . This is actually how we use buffer triangles for global C0 smoothness among

pie-shaped triangles and interior triangles. To this end first let us consider the set

EI,Bf ⊂ E of edges shared by an interior and a buffer triangle. Let e ∈ EI,Bf with

TI and TBf being, respectively, the triangles in △0 and △Bf attached to e. Then

based on our construction we have s|TI
∈ Pd and s|TBf

∈ Pd+1. Let

s|TI
= sI and s|TBf

= sBf .

Now we have set the coefficients {cξ : ξ ∈ Dd,TI
∩ e} to arbitrary values for sI |e,

and coefficients
{
cξ : ξ ∈ Dd+1,TBf

∩ e
}

for sBf |e can be determined by raising the

degree of polynomial sI |e of degree d by 1 in conjunction with C0 smoothness

conditions (3.1.6) over the edge e.

Now let the set EP,Bf ⊂ E be the set of edges shared by pie-shaped and buffer

triangles. Let TP and TBf be pie-shaped and buffer triangles, respectively, attached
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to the edge e ∈ EP,Bf with

s|TP
= sP and s|TBf

= sBf .

Since sP , sBf ∈ Pd+1 thus in view of C0 smoothness conditions (3.1.6) over the edge

e the Bézier net for sBf |e can be determined from the Bézier net of sP |e already

computed. This completes the Bézier net for the spline s ∈ Sd,0 consistently.

We now show that M0 is stable in the sense of Definition 3.1.7. Indeed this

follows as all Bézier coefficients {cη : η 6∈ M0} for s ∈ Sd,0 can be computed by

product of polynomials and degree raising in conjuction with C0 smoothness con-

ditions, which are stable processes, see Section 3.1.3, Section 3.1.6 and [43, Lemma

2.29].

We now prove that M0 is local as defined in Definition 3.1.6. Let cη be the

Bézier coefficient of a spline s with η 6∈M0 but η ∈ Tη. Then it is easy to see that

Γη is always contained in star(Tη), which results in the locality of M with l = 1 in

the sense of Definition 3.1.6.

5.2.1 Integration over Curved Elements

To develop a finite element method, that does not use any kind of nonlinear map-

ping to transform curved triangles into reference triangle, we obviously need a

quadrature rule to integrate any function over pie-shaped triangles directly. For

this purpose we make use of a Gauss-Legendre quadrature rule to approximate in-

tegrals over pie-shaped triangles. Let us describe it in detail. Let T := 〈v1, v2, v3〉

be a pie-shaped triangle with v3 ∈ VI and let a conic arc v̂1v2 be given by q = 0.

Also let

T = T ∗ ∪R, if T is convex, (5.2.9)

T = T ∗ \R, otherwise, (5.2.10)
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c200 = 0

c101

c110

c002 = 1

c011

c020 = 0

Figure 5.3: Bézier net of q over a pie-shaped triangle.

Figure 5.4: The points ξ ∈ D∗
d−1,T for d = 5 over a pie-shaped triangle.
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Figure 5.5: Bézier net for polynomial p ∈ Pd+1 for d = 5.

T1

T2

Figure 5.6: The points ξ ∈ {D0
d+1,T1

∪D0
d+1,T2

} are marked as black dots for d = 5,

where T1, T2 ∈ △Bf .
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where T ∗ := 〈v1, v2, v3〉 is the triangle with all straight edges obtained by joining

v1 and v2 by line segment v2v3 and R denotes the curved region bounded by v̂1v2

and v1v2 as shown in Figure 5.8 and Figure 5.9. Then, obviously, for any function

f ∈ L1(T ∪ R) (to make quadrature well-defined in the case when the boundary

is nonconvex we need to extend the integrand so that it is defined at quadrature

points) we have

∫

T

f =

∫

T ∗

f +

∫

R

f, if T is convex, (5.2.11)
∫

T

f =

∫

T ∗

f −
∫

R

f, otherwise, (5.2.12)

Now the first integrals on R.H.S. of (5.2.11) and (5.2.12) is integration over the

straight triangle T ∗ which can be evaluated using any suitable quadrature rule, as

usual. The bottleneck is to approximate the second integral over the curved region

R to the desired accuracy.

To approximate the double integral over R we consider two orthogonal direc-

tions i.e. the directions parallel and perpendicular to the straight edge v1v2. We

assume that the perpendicular line at any point of v1v2 crosses v̂1v2 only once.

This is always the case if the triangulation of Ω is sufficiently fine. For the sake of

simplicity let the line segment v1v2 lie on the x-axis as shown in Figure 5.7. Let

x2 = ψ(x1) ≥ 0, a ≤ x1 ≤ b be the equation of the conic arc in explicit form.

Obviously ψ(x1) can be computed from the given implicit equation q = 0 of the

conic arc. Then

∫

R

f =

∫ b

a

∫ ψ(x1)

0

f(x1, x2)dx =

∫ b

a

g(x1)dx1, where g(x1) =

∫ ψ(x1)

0

f(x1, x2)dx2.

We use Gauss-Legendre quadrature rule of order n first for the integral
∫ b
a
g(x1)dx1
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−0.5

0

0.5

1

x1

x2

ψ(x1)

a b

Figure 5.7: A function ψ(x1) representing a conic.

and then for each of the integrals
∫ ψ(xi

1
)

0
f(xi1, x2)dx2 to get

∫

R

f ≈
m∑

i=1

wig(x
i
1) =

m∑

i=1

wi

∫ ψ(xi
1
)

0

f(xi1, x2)dx2 (5.2.13)

≈
m∑

i=1

wi

(
m∑

j=1

wijf(xij1 , x
j
2)

)
(5.2.14)

=
m∑

i,j=1

wiwijf(xij1 , x
j
2), (5.2.15)

where xi1, x
i
2 are nodes and wi are weights of the Gauss-Legendre quadrature rule

for [a, b] while xij1 and wij are nodes and weights of the Gauss-Legendre quadrature

rule for intervals [0, ψ(xi1)].

Remark 5.2.2. In case f ∈ P2d−2 then g(x1) = F (x1, ψ(x1)) − F (x1, 0), where
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F ∈ P2d−1 is an anti-derivative of f . Then

∫

R

f ≈
m∑

i=1

wig(x
i
1) (5.2.16)

≈
m∑

i=1

wi(F (xi1, ψ(xi1)) − F (xi1, 0)), (5.2.17)

where xi1 and wi are nodes and weights of the Gauss-Legendre quadrature rule for

intervals [0, ψ(xi1)].

Since the accuracy of the quadrature scheme used to approximate the entries

of element matrices affects the asymptotic convergence of FEM, a common rule is

to use a quadrature scheme with sufficient order so that the error produced from

the quadrature scheme does not dominate the approximation error of the finite

element method. It is shown in [7, 5] that this is achieved by using the Gauss

quadrature rule of order d+ 1, at least, when we use finite elements of order d for

solving second order partial differential equations. We follow the same by using

the Gauss-Legendre rule of order d + 2 because we use shape functions of order

d+1 on curved elements. Numerical experiments, discussed in Section 5.6, confirm

that order d+ 2 is sufficient to get optimal asymptotic convergence of FEM.

5.3 The Conics

Here we briefly discuss the conics, their rational Bézier representation and conver-

sion of conic written in parametric form to BB-form. It is well known that rational

Bézier curves of degree two can be used to represent conic sections exactly [36].

Given three control points P0, P1 and P2, the quadratic rational Bézier curve

can be described by

B(t) =
P0B

2
0(t) + βP1B

2
1(t) + P2B

2
2(t)

B2
0(t) + βB2

1(t) +B2
2(t)

, 0 ≤ t ≤ 1,
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A conic q = 0

R

v3

v1

v2

T ∗

Figure 5.8: A pie-shaped triangle with a convex curved side, associated triangle

T ∗ with straight sides and curved region R.

A conic q = 0

R

v3

v1

v2

T ∗

Figure 5.9: A pie-shaped triangle with a concave curved side, associated triangle

T ∗ with straight sides and curved region R.
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z(
β

β + 1
)

P1

v1 = P0Mv2 = P2

Figure 5.10: Conic as a rational Bézier curve.

where β > 0 is a weight and B2
i (t) =

(
2
i

)
ti(1 − t)2−i, i = 0, 1, 2 are quadratic

Bernstein polynomials. [36, Lemma 4.5] says that rational Bézier curve B(t) gives

us a parabolic arc, an elliptic arc or a hyperbolic arc for β = 1, β < 1 or β > 1

respectively. Now letM be the mid-point of line segment P0P2 and the line segment

MP1 can be parametrized as

z(s) = M(1 − s) + P1s, 0 ≤ s < 1.

For s = β
1+β

, z(s) lies on the conic arc [36] , see Figure 5.10.

Let (β1, β2, β3) be barycentric coordinates of control point P1 w.r.t. the bound-

ary triangle T = 〈v1, v2, v3〉 with v3 as interior vertex. Now our conic is given by

the implicit equation q = 0 where q is a quadratic polynomial written in BB-form

as

q =
∑

i+j+k=2

cijkB
2
ijk.

Since q(v1) = 0 = q(v2) we have c200 = c020 = 0 and since q(v3) = 1 we obtain
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c002 = 1, we can write

q = c110B
2
110 + c101B

2
101 + c011B

2
011 +B2

002,

or, more explicitly,

q = 2(c110b1b2 + c101b1b3 + c011b2b3 + 0.5b23), (5.3.18)

see Figure 5.3.

Now as barycentric coordinates of the point M w.r.t T are (1
2
, 1

2
, 0), we get for

z(s)

z(s) = M(1 − s) + P1s

=

(
1

2
,
1

2
, 0

)
(1 − s) + (β1, β2, β3) s

=

(
1 − s

2
+ sβ1,

1 − s

2
+ sβ2, sβ3

)
(5.3.19)

Now q = 0 is conic curve in the x1, x2 plane but q(x1, x2) can be considered as

a surface in 3-D. Thus using (5.3.19) in (5.3.18) gives us a parametrized curve

q(z(s)) in space lying on this surface by restricting it to line segment MP1. Then

obviously this curve has a root for parameter s = β
1+β

for given β, which results

in the equation

c110(
1 − s

2
+ sβ1)(

1 − s

2
+ sβ2) + c101(

1 − s

2
+ sβ1)(sβ3) +

c011(
1 − s

2
+ sβ2)(sβ3) + 0.5(sβ3)

2 = 0. (5.3.20)

To get all Bézier coefficients for q we need two more equations. For this we make

use of the fact that tangents to the conic q = 0 at v1 and v2 are parallel to P0P1

and P2P1 respectively.

Since β1(P0) = 1 = β2(P2) and β2(P0) = β3(P0) = β1(P2) = β3(P2) = 0, we

get (β1 − 1, β2, β3) and (β1, β2 − 1, β3) as directional coordinates of P0P1 and P2P1
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respectively. Note that β3 > 0(< 0) if P1 lies inside T (outside T ) and β3 = 0 if

P1 lies on line P0P2.

Now

DP0P1
q(v1) = 0,

where DP0P1
q(v1) is directional derivative of q in the direction of P0P1. Then using

[43, Theorem 2.12] we have

∑

i+j+k=1

c
(1)
ijkB

1
ijk(v1) = 0

c
(1)
100 = 0

(β1 − 1)c200 + β2c110 + β3c101 = 0

β2c110 + β3c101 = 0. (5.3.21)

Similarly DP2P1
q(v2) = 0 leads us to the equation

β1c110 + β3c011 = 0. (5.3.22)

thus from (5.3.20)–(5.3.22) we get a system

Ac = L

where

A =




β1 0 β3

β2 β3 0

(1−s
2

+ sβ1)(
1−s
2

+ sβ2) (1−s
2

+ sβ1)(sβ3) (1−s
2

+ sβ2)(sβ3)



,

c = [c110 c101 c011]
t and L = [0 0 − 0.5(sβ3)

2]t. Solving the system allows us to

write q in BB-form (5.3.18).
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5.4 Error Bounds

In this section we provide some typical routine error bounds in the context of

approximation theory and finite element techniques. The following theorem speaks

about the approximating order of the space Sd,0(△).

Theorem 5.4.1. [23, Theorem 5.1] Let d ≥ 1 and 1 ≤ m ≤ d + 1. For any

u ∈ Hm(Ω) ∩H1
0 (Ω),

inf
s∈Sd,0(△)

‖u− s‖L2(Ω) ≤ C1h
m‖u‖Hm(Ω), (5.4.23)

inf
s∈Sd,0(△)

‖u− s‖H1(Ω) ≤ C2h
m−1‖u‖Hm(Ω), (5.4.24)

where h is the maximal diameter of the triangles in △, and C1, C2 are constants

depending only on d, ω, A and θ.

Now the discretized version of (5.1.1) can be formulated as follows

Find ũ ∈ Sd,0(△), such that,

a(ũ, s) = (f, s), for all s ∈ Sd,0(△).
(5.4.25)

It is well known that this problem has a unique solution ũ by the Lax-Milgram

Theorem [12] for a coercive and bounded bilinear form a(·, ·).

As a consequence of Theorem 5.4.1, we obtain the following error estimate for

finite element approximations in Sd,0(△).

Theorem 5.4.2. Suppose the variational problem (5.1.1) is coercive and regular

in the sense of (5.1.2). Then for any 2 ≤ m ≤ d + 1, the unique solution ũ of

(5.4.25) satisfies

‖u− ũ‖L2(Ω) ≤ C1h
m‖u‖Hm(Ω), (5.4.26)

‖u− ũ‖H1(Ω) ≤ C2h
m−1‖u‖Hm(Ω), (5.4.27)

where h is the maximal diameter of the triangles in △, and C1, C2 are constants

depending only on d, ω, A and θ.
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Proof. Follows from the Céa Lemma in view of Theorem 5.4.4 and Theorem 5.4.8

in [12].

Note that the regularity condition (5.1.2) holds for the domains considered in

this work if ωj ≤ π, j = 1, . . . , m, see e.g. [51, p. 158].

Let us now turn towards the eigenvalue problem (5.1.3) whose corresponding

finite dimensional i.e. discritized problem is given as

λ ∈ R, ∃ ũ ∈ Sd,0(△), ũ 6= 0,
∫
Ω
∇ũ · ∇s = λ

∫
Ω
ũs, for all s ∈ Sd,0(△).

(5.4.28)

The following result follows from Theorem 5.4.1 and [6, Theorem 3.1].

Theorem 5.4.3. Suppose that ωj ≤ π, j = 1, . . . , m. Let

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·

and

λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N

be the eigenvalues of the problems (5.1.4) and (5.4.28), respectively, with N :=

dimSd,0(△). Then

|λn − λ̃n| ≤ Cnh
2d, n = 1, . . . , N, (5.4.29)

where h is the maximal diameter of the triangles in △, and the constants Cn depend

only on n, d, ω, A and θ.

5.5 Implementation of the FEM

In this section we briefly discuss the implementation of our FEM for solving second

order elliptic problems coupled with Dirichlet boundary conditions, over domains
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with piecewise smooth boundary. This is done in a similar way to the solution of

linearized problems in Section 4.2 of Chapter 3.

Recall that we confine ourself to problems where the bilinear form (not nec-

essarily symmetric) is coercive and bounded, and where the solution satisfies a

regularity condition (5.1.2). Consider a variational form, for a general second

order linear operator, defined by

a(u, v) =

∫

Ω

(∇u · A∇v + vb · ∇u+ cuv)dx, (5.5.30)

where A = A(x), b = b(x) and c = c(x) are bounded functions on Ω ⊆ R
2 and

u, v ∈ H1(Ω). Under certain assumptions on A, b and c [12, Theorem 2.9.4] we

know that there exist a unique solution to the variational problem

Find u ∈ H1(Ω) such that a(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω). (5.5.31)

Discretization

Assuming △h a triangulation of domain Ω, we use a standard Galerkin discretiza-

tion of (5.5.31) based on elements in Sd(△h). Thus the discretized version of

(5.5.31) can be formulated as

Find uh ∈ Sd(△h) such that a(uh, vh) =
〈
f, vh

〉
∀vh ∈ Sd,0(△h).

[12, Theorem 2.9.4] guarantees existence of a unique solution for this problem.

Given M a stable local MDS of Sd(△h), we use the M-basis for the space Sd(△h)

dual to M . Let {s1, . . . , sN} be the M-basis for Sd(△h) then the usual proce-

dure to solve the discretized problem leads to the following element matrices S

(the stiffness matrix), B (the convection matrix) and M (the mass matrix) whose

entries are given by

Sij =

∫

Ω

∇si · A∇sjdx, Bij =

∫

Ω

sjb · ∇sidx, Mij =

∫

Ω

csisjdx,
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for all i, j = 1, . . . , N , while an entry for load vector L is given as Li =
∫
Ω
fsidx.

As in Section 4.2, we again use transformation matrix T to compute element

matrices using relation (4.2.7). Note that the blocks of the block diagonal matrices

Ŝ, B̂ and M̂ are of different sizes as we are using polynomials of different degrees

for triangles in △h
1 . These blocks, for T ∈ △h

m as △h = △h
0 + △h

1 , are defined as

ŜT =

∫

T

∇Bd+m
ijk · A∇Bd+m

rst dx, (5.5.32)

B̂T =

∫

T

Bd+m
ijk b · ∇Bd+m

rst dx, (5.5.33)

M̂T =

∫

T

cBd+m
ijk Bd+m

rst dx. (5.5.34)

We get the block diagonal matrices as follows

Ŝ = diag
(
ŜTκ , Tκ ∈ △h

)
, (5.5.35)

B̂ = diag
(
B̂Tκ , Tκ ∈ △h

)
, (5.5.36)

M̂ = diag
(
M̂Tκ, Tκ ∈ △h

)
. (5.5.37)

Hence we assemble system matrices using the same relation (4.2.7) given by

S = T ŜT t, B = T B̂T t, M = T M̂T t. (5.5.38)

5.6 Numerical Experiments

To see the performance of our FEM we present numerical results, as obtained, of

implementation of the method in this section. We consider three of the classi-

cal elliptic test models including the membrane eigenvalue problem and Poisson’s

problem over different domains with curved boundaries. We consider both h and

p refinements and compare our results to the state-of-the-art software COMSOL

Multiphysics. COMSOL uses the standard isoparametric approach to deal with

curved domains. We use version 4.2a of COMSOL which allows us to use elements
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of order up to 5 in 2-D. To see the performance of the method we consider different

domains in test problems including the smoothest domain i.e. a circular disk and

a domain bounded by linear and quadratic pieces with C0 boundary.

The numerics confirm the theoretical rate of convergence given in Theorems 5.4.2

and 5.4.3.

Example 1 : Circular Membrane Problem

The free vibrations of a homogeneous membrane are governed by the equation

∆u+ λu = 0, x ∈ Ω. (5.6.39)

In addition, if the membrane is fixed along its boundary then (5.6.39) is coupled

with

u = 0, x ∈ ∂Ω. (5.6.40)

(5.6.39) and (5.6.40) actually comprises a problem of finding eigenvalues and eigen-

functions of the Laplacian completed by homogeneous Dirichlet boundary condi-

tion.

We consider Ω ⊆ R
2 to be a unit circular disk and approximate the smallest

few eigenvalues for the circular membrane. The exact solution to this problem is

known [39]. The eigenvalues of the circular membrane are given by

λm,n = (jm,n)
2, m = 0, 1, . . . , n = 1, 2, . . . ,

where jm,n is the nth root of the mth Bessel function Jm of the first kind.

The weak variational formulation corresponding to (5.6.39) and (5.6.40), for

λ ∈ R and u 6= 0, is

Find u ∈ H1
0 (Ω),

∫

Ω

∇u · ∇v = λ

∫

Ω

uv, ∀ v ∈ H1
0 (Ω). (5.6.41)
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We discretize this problem in the approximating space Sd,0, for λ ∈ R and uh 6= 0,

to get

Find uh ∈ Sd,0(Ω),

∫

Ω

∇uh · ∇vh = λ

∫

Ω

uhvh, ∀ vh ∈ Sd,0(Ω). (5.6.42)

Hence if {s1, . . . , sN} is an M0-basis for the space Sd,0(Ω) then as usual (5.6.42)

boils down to matrix equation of the form

S = λM,

where S and M are stiffness and mass matrices. We solve this system using the

MATLAB command

[V, λ] = eig(S,M).

To ensure a fair comparison of the numerical results with COMSOL, we import

the mesh from COMSOL to MATLAB and run our code on it. The initial mesh,

as visualized in Figure 5.12, is the same in all tests for different degrees while

solving problem (5.6.42). We get a sequence of meshes △h by uniform refinement

whereby each triangle is subdivided into four triangles, on each level, by joining the

midpoints of every edge. For a pie shaped triangle with Γj being the corresponding

curved boundary edge we take the midpoint of the curved boundary edge Γj, see

Figure 5.11.

In Figures 5.13–5.16 we plot absolute errors for approximating the few smallest

eigenvalues using our implementation and using COMSOL for degree d = 3 and

d = 5. It can be seen that, comparing to COMSOL, our method approximates the

1st two eigenvalues significantly better showing its effectiveness since in practical

applications usually the principal eigenvalue needs to be accurately approximated

as it plays an important role in many processes. Though for the other eigenvalues

the results are comparable for d = 3 but for higher degree d = 5 accuracy achieved

using our method is better.
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Figure 5.11: Refinement on a pie shaped triangle.

Since this problem is an example of a smooth problem thus to get higher order

accuracy we can use polynomials of higher orders. Figure 5.17 depicts the errors

for the smallest 15 eigenvalues for order d = 9 decays with the expected rate.

We also looked for p refinements for this problem on initial mesh. We plot

absolute errors for 1st, 7th and 15th eigenvalue in Figure 5.18 for comparing results

with COMSOL. COMSOL could only go to quintic. Figure 5.19 illustrate errors

for the 15 smallest eigenvalues. Results show the expected exponential order of

convergence for p method.

Example 2 : Poisson’s Problem

In our second example we consider a different curved domain bounded by a bound-

ary with non-constant curvature. The elliptic domain is one of such example. Let

us consider the most frequently used model i.e. Poisson’s equation coupled with
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Figure 5.12: Initial mesh of circle for eigenvalue problem imported from COMSOL.
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Figure 5.13: Absolute errors to 1st and 2nd eigenvalues from our method indicated

by (λ1, λ2) and from COMSOL for d = 3 (λC1 ,λC2 ).
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Figure 5.14: Absolute errors to 8th and 15th eigenvalues from our method and

from COMSOL for d = 3.
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Figure 5.15: Absolute errors to 1st and 2nd eigenvalues from our method and from

COMSOL for d = 5.
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Figure 5.16: Absolute errors to 8th and 15th eigenvalues from our method and

from COMSOL for d = 5.
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Figure 5.17: Absolute errors for smallest 15 eigenvalues using our method for

d = 9.
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Figure 5.18: Absolute errors for 1st, 7th and 15th eigenvalues using p method over

initial mesh shown in Figure 5.12.
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Figure 5.19: Absolute errors for smallest 15 eigenvalues using p method over initial

mesh shown in Figure 5.12.
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homogeneous Dirichlet data over an elliptic domain Ω ⊂ R
2 bounded by the ellipse

x2
1 + 6.25x2

2 = 1. The model as usual can be formulated by

∆u = f in Ω (5.6.43)

u = 0 on ∂Ω. (5.6.44)

We choose f such that the model possess the exact solution given as u = e0.5(x
2
1+6.25x2

2)−

e0.5, which can be used for precise error analysis. We follow the same procedure to

get a sequence of meshes as in the first test problem starting with initial mesh im-

ported from COMSOL. Error plots for ‖u−uh‖L2(Ω) and ‖u−uh‖H1(Ω) are depicted

in Figure 5.20 and in Figure 5.21, respectively, for d = 2, 3, 4, 5, where uh is the

approximate solution to the problem. Green colour is used to indicate errors from

COMSOL in these plots. The results show that both methods behave similarly

for all different orders and confirm the theoretical estimates of Theorem 5.4.2. We

also consider the p method for the example on third level of triangulation and

visualize errors in Figure 5.22 that again show the expected exponential decay of

errors.

Example 3

Here we consider a domain with C0 boundary bounded by linear and quadratic

boundary segments. Let Ω be a domain bounded by two straight lines x2 = ±2

and parabolas x1 = ±(x2
2 − 6). We design a homogeneous Poisson’s model over

Ω such that it has the exact solution u = (x2
2 − 4)(x2

1 − (x2
2 − 6)2)/100. We

consider elements of different orders and again compare our results with COMSOL.

Figure 5.23 and Figure 5.24 illustrate the L2 andH1 errors for degrees d = 2, 3, 4, 5.

Again the numbers show the robust behaviour of our method for different orders

while confirming the error bounds of Theorem 5.4.2.
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Figure 5.20: L2 errors for example 2 using our method and COMSOL.
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Figure 5.21: H1 errors for example 2 using our method and COMSOL.
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Figure 5.22: L2 and H1 errors for example 2 using p method.

Remark 5.6.1. Being polynomial of degree 6 the solution u in example 3 lies in

the approximating space for degree d ≥ 6 therefore we do not consider p refinement

for this example.

5.7 Non-homogeneous Boundary Conditions

Until now we discussed the construction of the space Sd,0 that satisfies homoge-

neous Dirichlet conditions. We want to construct a space Sd,b such that

Sd,0 + Sd,b,

is suitable for solving non-homogeneous problems. We summarize all of our at-

tempts we make in this regard.

Now we need to look to add more shape functions to Pd−1q, over a pie-shaped

triangle, that will deal with non-homogeneous conditions. We looked for the fol-
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Figure 5.23: L2-errors for example 3 using our method and COMSOL.
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Figure 5.24: H1-errors for example 3 using our method and COMSOL.
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lowing options.

1. The first and natural option is to consider the polynomials Bd
0jk, j + k = d,

over the triangle T ∗ associated with the pie-shaped triangle T with 1st vertex

as interior vertex. We need to raise the degree of polynomials Bd
0jk, j+k = d,

by 1, using the relation (3.1.9), just to make them compatible with Pd−1q.

Let P̂d,b = span{Bd
0jk, j + k = d}, then it is easy to see that

dim
(
Pd−1q + P̂d,b

)
=

(
d+ 2

2

)
= dimPd,

see Remark 5.7.2. Note that Pd 6⊂ Pd−1q + P̂d,b.

If u = g on the curved boundary q = 0 of T , then to approximate the

boundary conditions we solve the following interpolation problem

∑

j+k=d

Bd
0jk(zi)xi = g(zi), i = 0, . . . , d, (5.7.45)

for the xi, where zi for i = 0, . . . , d are interpolation points on boundary curve

q = 0 obtained by perpendicular projection (the direction perpendicular to

the straight boundary edge of T ∗) of Lobatto interpolation points of order d

lying on a straight boundary edge of T ∗. The problem (5.7.45) is solvable for

any choice of interpolation points, see Remark 5.7.3. Let us call the method

“Method 1” when we use the interpolation problem (5.7.45) to solve any

non-homogeneous problem.

The space Ŝd,b is spanned by 1) the functions Bd
0jk, j + k = d, j, k > 0, for

each triangle with a side on the boundary, extended by zero otherwise, as

well as by 2) piecewise polynomials sv, for each boundary vertex v, defined on

each triangle attached to v as the Bernstein polynomial BT,d
v corresponding

to the domain point v if T ∈ △0 ∪△Bf , or as BT ∗,d
v if T ∈ △P , and zero on

all other triangles of △. Note that Sd,0 + Ŝd,b 6= Sd.
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To describe the MDS for space Ŝd,b for Method 1 we proceed as follows. Let

for each T := 〈v1, v2, v3〉 in △P with v1 ∈ VI

M1
T :=

{
jv2 + kv3

d
: j + k = d

}
,

then the set M̂b :=
⋃
T∈△P

M1
T is, obviously, a stable MDS for Ŝd,b and we

arrive at the following result.

Theorem 5.7.1. M := M0∪M̂b is a stable local MDS for the space Sd,0+Ŝd,b.

Moreover, M0 ∪ M̂b is a stable splitting of M .

2. In this part we look for a complement Sd,b of Sd,0, to get the full space

Sd = Sd,0 +Sd,b. As we are already using polynomials of degree d+ 1 on pie-

shaped triangles we have to add such shape functions to Pd−1q that ensure

the reproduction of all polynomials of degree d+ 1. The polynomials

{
Bd+1
ijk , i+ j + k = d+ 1, i = 0, 1

}

over T ∗ help us in this regard because

Pd−1q + span
{
Bd+1
ijk , i+ j + k = d+ 1, i = 0, 1

}
= Pd+1,

(for proof see Remark 5.7.2). We therefore define for each T := 〈v1, v2, v3〉

in △P with v1 ∈ VI ,

M2
T :=

{
iv1 + jv2 + kv3

d+ 1
: i+ j + k = d+ 1, i = 0, 1

}
,

and set Mb :=
⋃
T∈△P

M2
T . Then M = M0 ∪Mb is easily seen to be an MDS

for Sd, and Sd,b is defined by (3.1.14).

In this case we can approximate the boundary conditions by solving the

following interpolation problem:

∑

i+j+k=d+1
i=0,1

Bd+1
ijk (zr)xr = g(zr), r = 0, . . . , 2d+ 2, (5.7.46)
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Figure 5.25: Condition numbers of the interpolation matrix obtained from (5.7.46)

for different degrees.

for the xr, where again zr’s are interpolation points on a curve side q = 0

obtained in a way as mentioned above.

The solvability of (5.7.46) follows from [17, Proposition 3.2]. However, its

condition number grows rapidly both with h and p refinements, see Fig-

ure 5.25. This can be explained by the fact that the polynomials Bd+1
1jk are

zero on the straight side v2v3 of T ∗. This makes interpolation on curved side

instable for refined meshes when the curved side q = 0 gets closer to the

straight one.

3. Due to the instability of interpolation problem (5.7.46) we consider a different

technique to approximate boundary conditions while using the same space

Sd,b as before. Let T ∈ △P . Given a function f defined on T ∗, we obtain

its approximation Q(f) ∈ span{Bd+1
ξ : ξ ∈ M2

T} with small error over the
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curved side q = 0 of T in the following way. We first interpolate f by

a polynomial pd+1 ∈ Pd+1 at the domain points Dd+1,T ∗ . Then a unique

polynomial pd−1 ∈ Pd−1 is found such that

pd+1 − pd−1q ∈ span{Bd+1
ξ : ξ ∈ M2

T}.

Clearly, the B-coefficients of pd−1 can be obtained by solving the linear sys-

tem resulting from the conditions that all B-coefficients of pd+1 − pd−1q

corresponding to domain points in Dd+1,T ∗ \M2
T vanish. We set Q(f) :=

pd+1 − pd−1q. Note that Q(f) interpolates f at the boundary vertices v2, v3

of T . Hence, by applying the above procedure to all pie-shaped triangles

and using the buffer triangles in the usual way we obtain an approximating

function in Sd,b.

If u is an exact solution to the BVP with u|∂Ω = g then we get a function

f in two different ways. One we define f = u|T and we refer to this method

as “Method 2” in the sequel. Second we define f as a constant projection

of boundary data g such that if x ∈ T then f(x) = g(x̂) where x̂ lies on

curved boundary q = 0 of T and is obtained by projection of x on boundary

in a direction perpendicular to straight boundary side of T ∗. We call this

approach “Method 3” while presenting numerical results for solving bound-

ary value problems below, whereas the method when we use interpolation

problem (5.7.46) to approximate the boundary conditions is referred to as

“Method 4”.

Let us now consider a non-homogeneous Poisson problem over an elliptic

domain Ω bounded by x2
1+6.25x2

2 = 1 with u = sin 2(x1+x2)+sin 2(x1−x2) as

an exact solution to compare performance of different approaches discussed

above. We also solve the problem using COMSOL and illustrate the errors
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in Figure 5.26 and Figure 5.27 for d = 5. Poor performance of Method 1

is obvious and we think it is due to the lack of its ability to reproduce all

polynomials of degree d on pie shaped triangles. Instability of Method 4

can be seen clearly. Method 2 seems to perform best but obviously it is

not practical since it relies on the knowledge of the exact solution on the

pie shaped triangles. The good performance of Method 2 seems to indicate

that Sd,b possesses a stable basis. Method 3 works well for this example but

it is not robust. We consider another non-homogeneous Poisson problem

over domain bounded by straight lines x2 = ±1 and parabolas x1 = ±(x2
2 −

3) with exact solution u = e
−

“
|x1|
10

”2

to compare Method 2 and Method 3.

Figure 5.28 depicts the L2 and H1 errors for this problem. It shows that,

though, convergence order is optimal for Method 3 but it is lagging behind

in accuracy comparing to Method 2.

Remark 5.7.2. Without any loss of generality we assume that the interior vertex

v1 of T ∈ △P lies at the origin. Then
{
Bd

0jk, j + k = d
}

are homogeneous poly-

nomials of degree d so that their span Hd := span
{
Bd

0jk, j + k = d
}

is the space

of all homogeneous polynomials of degree d.

Let qpd−1 + hd ∈ Pd−1q + Hd such that qpd−1 + hd = 0, where hd ∈ Hd and

pd−1 ∈ Pd−1. Then q and pd−1 can be written as q = c + h1 + h2 and pd−1 =

ĉ+ ĥ1 + . . .+ ĥd−1, where hi and ĥi are both homogeneous polynomials of degree

i. The condition q(v1) 6= 0, as assumed, results in c 6= 0. Now consider

qpd−1 = (c + h1 + h2)
(
ĉ+ ĥ1 + . . .+ ĥd−1

)

= cĉ +
(
cĥ1 + ĉh1

)
+
(
cĥ2 + h1ĥ1 + ĉh2

)
+ . . . .

Since qpd−1 = −hd ∈ Hd implies that all terms for qpd−1 with degree less than

d are zero. Hence cĉ = 0 ⇒ ĉ = 0 as c 6= 0. Similarly cĥ1 + ĉh1 = 0 results
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Figure 5.26: L2 errors obtained using different methods for non-homogeneous prob-

lem for d = 5.
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Figure 5.27: H1 errors obtained using different methods for non-homogeneous

problem for d = 5.
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Figure 5.28: Errors obtained using Method 2 and Method 3 for non-homogeneous

problem for d = 3.

in ĥ1 = 0. Proceeding in the same way ends with ĥi = 0, ∀i. So pd−1 = 0 and

as consequence hd = 0. This shows that {Pd−1q +Hd} is a direct sum hence the

functions
{
Bd−1
ijk q, B

d
0st : i+ j + k = d− 1, s+ t = d

}
are linearly independent.

Also note that

#
{
Bd−1
ijk q, B

d
0st : i+ j + k = d− 1, s+ t = d

}
=

(
d+ 1

2

)
+ d+ 1 =

(
d+ 2

2

)
,

which is equal to the dimension of Pd.

Remark 5.7.3. We show that (5.7.45) is solvable for any choice of interpolation

points zi as soon as [v1, zi] ⊂ T for all i. (Clearly, this condition is satisfied if the

triangulation △ is sufficiently fine.) Let ℓi denote a linear polynomial whose zero

line contains the segment [v1, zi], i = 0, . . . , d. Then the functions

ℓ̃i(x) =

d∏

j=0

j 6=i

ℓj(x)

ℓj(zi)
, i = 0, . . . , d,
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belong to Hd = span
{
Bd

0jk, j + k = d
}

and form the Lagrange basis for the inter-

polation problem (5.7.45), which shows its solvability.

Remark 5.7.4. We show that

Pd−1q + span
{
Bd+1
ijk , i+ j + k = d+ 1, i = 0, 1

}
= Pd+1.

Let Hd := span
{
Bd

0jk, j + k = d
}

and Hd+1 := span
{
Bd+1

0jk , j + k = d+ 1
}
. Now

we see that span
{
Bd+1
ijk , i+ j + k = d+ 1, i = 0, 1

}
is same as Hd + Hd+1. Let

qpd−1 + hd + hd+1 ∈ Pd−1q + Hd + Hd+1 such that qpd−1 + hd + hd+1 = 0 then

arguing in the same way as in Remark 5.7.2 implies that the set

{
Bd−1
ijk q : i+ j + k = d− 1

}
∪
{
Bd

0jk, j + k = d
}
∪
{
Bd+1

0jk , j + k = d+ 1
}

is linearly independent. Hence

dim
(
Pd−1q + span

{
Bd+1
ijk , i+ j + k = d+ 1, i = 0, 1

})
=

(
d+ 3

2

)
= dimPd+1.

Since Pd−1q +Hd +Hd+1 ⊂ Pd+1, we conclude that Pd−1q +Hd +Hd+1 = Pd+1.
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Chapter 6

H2 Polynomial Finite Elements

for Curved Domains bounded by

Piecewise Conics

6.1 Introduction

The purpose of this chapter is the construction of C1 finite element space required

to be used in Böhmer’s method for the numerical solution of fully nonlinear second

order elliptic partial differential equations over curvilinear polygons. In fact, it is

an extension of C0 polynomial finite elements, discussed in previous chapter, for

domains bounded by curved boundary.

The chapter is organised as follows. Section 6.2 is to describe the full detail of

construction of C1 finite element space for curved domain, while the application of

this construction in implementing Böhmer’s method is discussed in Section 6.3. In

the last Section we illustrate the numerical results of solving several test problems

for the Monge-Ampère equation using Böhmer’s method.
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6.2 Construction

Let Ω ⊂ R
2 be a bounded domain bounded by Γ = ∂Ω =

⋃m
j=1 Γj, where each Γj is

either a line segment or a conic (quadratic polynomial curve) and let △ = △0∪△1

be triangulation of Ω, where △1 = △P ∪△Bf contains the buffer and pie-shaped

triangles satisfying the same conditions as in Section 5.2. Again buffer triangles

play the same role of maintaining the global C1 smoothness in the interface between

the patches over pie-shaped and interior triangles. We want to construct a C1 space

over Ω that resembles a modified Argyris space discussed in Chapter 3 in a sense

that it has an enhanced smoothness only at the interior vertices. We use the

same idea to construct these spaces as we used for the construction of C0 curved

elements i.e. on pie-shaped triangles we use shape functions in Pd−1q ⊂ Pd+1, Pd+1

being the space of bivariate polynomials of degree d+ 1. It is well known that we

need the degree to be quintic, at least, to have C1 smoothness of elements (in the

case of non-macro elements). For the sake of simplicity we stick to d = 5. The

construction for higher order is the same. Thus, if

VI is the set of interior vertices of △,

VB is the set of boundary vertices of △,

V 1
B ⊂ VB is the set of those boundary vertices where the tangents τ+

j and τ−j are

parallel or when ωj = π,

EI is the set of interior edges of △,

EB is the set of boundary edges of △,

EI,Bf ⊂ EI is the set of interior edges that are shared by a buffer and an interior

triangle,

EP,Bf ⊂ EI is the set of interior edges that are shared by a buffer and a pie-shaped

triangle,
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then we define the space as follows

S1
5 :=

{
s ∈ C1(Ω) : s ∈ C2(v), v ∈ VI and s|T ∈ P5+i, T ∈ △i

}
, (6.2.1)

S0 :=
{
s ∈ S1

5 : s|∂Ω = 0
}
, (6.2.2)

where P5+i is space of bivariate polynomials of degree 5 + i. Before we outline

in detail the construction of a minimal determining set for the space S0 let us

introduce some more notation. For each v ∈ VI , let Mv := D2(v)∪ Tv, where Tv is

one of the triangles sharing the vertex v. In the case v is also shared by a pie shaped

triangle we choose Tv ∈ △0. For each edge e ∈ EI\EP,Bf , let Te := 〈v1, v2, v3〉

be one of the triangles sharing the edge e := 〈v2, v3〉 and let Me := {ξTe

122}. In

the case e ∈ EI,Bf we consider Te ∈ △0. For each T := 〈v1, v2, v3〉 in △Bf with

v1 ∈ VB let MBf
T := {ξ411, ξ222}, (see Figure 6.2), while for each pie-shaped triangle

T := 〈v1, v2, v3〉, with v1 ∈ VI , let MP
T := {ξ130, ξ121, ξ112, ξ103, ξ022} ⊂ D∗

4,T , where

D∗
4,T is the set of domain points as defined Section 5.2, also see Figure 6.1 where

the points in MP
T are marked as black squares. Finally, for each vertex v in V 1

B let

MP
v := {ξv}, where ξv ∈ D∗

4,T is the domain point lying at v for T ∈ △P . Since

s|TP
= sp = pq ∈ P6 for some p ∈ P4, where q is representing the curved edge of

TP , we will use the following notation for Bézier coefficients of sp, p and q over TP ,

sp =
∑

i+j+k=6

cijkB
6
ijk, p =

∑

i+j+k=4

pijkB
4
ijk and q =

∑

i+j+k=2

qijkB
2
ijk, (6.2.3)

also see Remark 6.2.1.

Remark 6.2.1. Let T := 〈v1, v2, v3〉 ∈ △P with v1 ∈ VI and since s|T = sp =

pq ∈ P6 for some p ∈ P4, where q is representing the curved edge of T , using the

notation in (6.2.3), we have

pq =

( ∑

i+j+k=4

pijkB
4
ijk

)( ∑

i+j+k=2

qijkB
2
ijk

)
=

∑

i+j+k=6

cijkB
6
ijk. (6.2.4)
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Since q is known, (6.2.4) can be used to compute the coefficients cijk’s provided

prst’s are known and vice versa. Note that (6.2.4) can also be used over a subdo-

main. For example let {cξ : ξ ∈ D2(v1) ∩ T ∗ ⊂ D6,T} be known, then we get the

following system by comparing the coefficients of B6
ξ , ξ ∈ D2(v1) ∩ T ∗, in (6.2.4)

given by

QX = C, (6.2.5)

where

Q =




q200 0 0 0 0 0

1
3
q110

8
15
q200 0 0 0 0

1
3
q101 0 8

15
q200 0 0 0

0 1
5
q110 0 2

5
q200 0 0

1
15
q011

2
15
q101

2
15
q110 0 4

15
q200 0

0 0 1
5
q101 0 0 2

5
q200




and C =




c600

c510

c501

c420

c411

c402




with unknown vector X = [p400 p310 p301 p220 p211 p202]
t. Since q200 = 1, it is easy

to see that the system (6.2.5) is uniquely solvable and stable. Figure 6.1 depicts

the domain points for the Bézier net of p where the domain points corresponding

to unknown coefficients in X are marked as circles.

Then we arrive at the following result.

Theorem 6.2.2. The set

M0 :=
⋃

v∈VI

Mv ∪
⋃

e∈EI\EP,Bf

Me ∪
⋃

T∈△Bf

MBf
T ∪

⋃

T∈△P

MP
T ∪

⋃

v∈V 1
B

MP
v , (6.2.6)

is a stable local minimal determining set for the space S0.

Proof. We set coefficients {cξ : ξ ∈ M0} for any spline s ∈ S0 and show that

all other coefficients of s can be determined from them consistently. We discuss

different cases separately for the sake of simplicity and show how we compute the

full Bézier net for s ∈ S0.

126



Case I : For each v ∈ VI such that v is not shared by any pie shaped triangle

then points in Mv are same as for Argyris space thus all coefficients {cη :

η ∈ D2(v)\Mv} are consistently determined by [43, Lemma 5.10], in view of

C2 smoothness conditions, by first setting the coefficients {cξ : ξ ∈Mv}.

Case II : Let v ∈ VI be such that v is shared by some T ∈ △P . In this case

we consider Tv ∈ △0 and set the coefficients {cξ : ξ ∈ Mv} of s ∈ S0

to arbitrary values. Let TP ∈ △P and TBf ∈ △Bf be among the triangles

attached to v. Then we determine the rest of the coefficients of s over D2(v)

for quintic polynomials over all triangles attached to v in a similar way as

in Case I. But recall that s|TBf
∈ P6 and s|TP

= sp = pq ∈ P6 for some

p ∈ P4, where q is representing the curved edge of TP . Hence the computed

coefficients at η ∈ D2(v) ∩ TBf ⊂ D5,TBf
and η ∈ D2(v) ∩ TP ⊂ D5,TP

are

not the coefficients of s. Therefore we denote them by c̃η. Hence for TBf we

compute the coefficients {cξ : ξ ∈ D2(v)∩ TBf ⊂ D6,TBf
} for s from already

known {c̃η : η ∈ D2(v)∩TBf ⊂ D5,TBf
} by using the degree raising formulas

with r = 1 over a subdomain D2(v) ∩ TBf , see Remark 3.1.4.

Now we turn to a pie shaped triangle TP . For TP we need to go one more

step apart from degree raising over D2(v) as done for TBf . In fact we need

to determine the coefficients {pξ : ξ ∈ D2(v) ∩ TP ⊂ D∗
4,TP

} for polynomial

p ∈ P4. To this end we first determine the coefficients {cξ : ξ ∈ D2(v)∩TP ⊂

D6,TP
} for s from already known {c̃η : η ∈ D2(v)∩TP ⊂ D5,TP

} by using the

degree raising formulas with r = 1 over a subdomain D2(v) ∩ TP . Then we

solve the system (6.2.5) for the unknown coefficients {pξ : ξ ∈ D2(v)∩TP ⊂

D∗
4,TP

}, see Remark 6.2.1.

Case III : For each e ∈ EI\ {EI,Bf ∪ EP,Bf} the point in Me is the same as
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for Argyris space so we restrict our discussion to each e ∈ EI,Bf ⊂ EI .

Let e := 〈v2, v3〉 be the edge shared by Te := 〈v1, v2, v3〉 ∈ △0 and T̃e :=

〈v4, v3, v2〉 ∈ △Bf . We set cTe

122 of s to an arbitrary value. In view of Case

I and II the full Bézier net of s|Te of degree 5 has been determined thus we

determine cT̃e

132 and cT̃e

123 by first raising the degree of s|Te by 1 and then apply

the C1 smoothness conditions across the edge e.

Case IV : For T := 〈v1, v2, v3〉 ∈ △Bf with v1 ∈ VB we set the coefficients cT411

and cT222 of s ∈ S0. Let e := 〈v1, v3〉 ∈ EP,Bf and let T2 := 〈v3, v4, v1〉 ∈ △P

share e with T . Now we show how we determine the coefficient p013 for the

polynomial p in s|T2
= pq. For this it is easy to see that C1 smoothness

conditions across e gives us the equation

c
T ∗
2

114 = b1c
T
501 + b2c

T
411 + b3c

T
402, (6.2.7)

where (b1, b2, b3) are barycentric coordinates of v4 w.r.t. T and T ∗
2 is straight

triangle associated with T2. Note that the coefficients of p corresponding

to points in MP
T2

and MP
v1 (if v1 ∈ V 1

B) are already set to arbitrary values.

They determine c
T ∗
2

204 and c
T ∗
2

105 for s|T ∗
2

= pq and in view of C0 smoothness

conditions we have

cT402 = c
T ∗
2

204 and cT501 = c
T ∗
2

105.

Moreover, comparison of coefficients of B6
114 on both sides of (6.2.4) results

in the equation

15c
T ∗
2

114 = q110p004 + 4q101p013 + 4q011p103. (6.2.8)

Thus we first compute c
T ∗
2

114 using (6.2.7) and then we use (6.2.8) to determine

p013 where the coefficients p103 and p004 are already prescribed in MP
T2

and

MP
v1 respectively. Similarly, p031 is computed using MP

T2
and MP

v4 and the
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coefficients of s on the buffer triangle sharing e := 〈v1, v2〉 ∈ EP,Bf with T2,

see Figure 6.1. This completes the full Bézier net {pξ : ξ ∈ D∗
4,T2

} of p for

s|T2
= pq. The Bézier net of s|T2

can be obtained by multiplying p with q.

Now the coefficients cT312 and cT213 can be determined using C1 smoothness

conditions across e.

To prove that M0 is local in the sense of Definition 3.1.6 let cη be the Bézier

coefficient of a spline s with η 6∈ M0 but η ∈ Tη. Then it is easy to see that Γη is

always contained in star(Tη), which results in the locality of M with l = 1.

We now show that M0 is stable as defined in the Definition 3.1.7. Since all

Bézier coefficients {cη : η 6∈M0} for s ∈ S0 can be computed by the processes

of product of polynomials, degree raising of polynomials and solution of system

(6.2.5) in conjunction with C1 smoothness conditions, which are stable processes,

see Section 3.1.3, Section 3.1.6, Remark 6.2.1 and [43, Lemma 2.29]. Hence M0 is

a stable MDS for the space S0.

An example of an MDS for the space S0 over a circular disk is depicted in

Figure 6.3, where the points in the sets
⋃
v∈VI

Mv,
⋃
e∈EI\EP,Bf

Me,
⋃
v∈V 1

B
MP

v ,

⋃
T∈△Bf

MBf
T and

⋃
T∈△P

MP
T are marked as black dots, diamonds, triangles, down-

ward pointing triangles and squares respectively. Note that V 1
B = VB for this

example.

6.3 Implementation of Böhmer’s Method using

C1 Curved Elements and Numerical Results

To judge the performance of our construction of C1 elements for curved domains

we implement Böhmer’s method for several fully nonlinear equations using S0 as
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v2

v1

v3

p031

p013

Figure 6.1: The points for the Bézier net of polynomial p over a pie shaped triangle.

Points of MP
T are marked as black squares, whereas points of MP

v2 ∪MP
v3 , in case

v2, v3 ∈ V 1
B, are marked as triangles.

T1

T2

Figure 6.2: The MDS points in the set MBf
T1

∪MBf
T2

are marked as black dots.
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Figure 6.3: Example of MDS for the space S0 over a circular domain Ω.

an approximation space. We study the numerical approximation of the Dirichlet

problem (2.2.13)-(2.2.14) for a fully nonlinear equation of second order.

In fact we focus on the prototypical and most interesting Monge-Ampère equa-

tion. Recall that the Dirichlet problem for the Monge-Ampère equation can be

formulated by

G(u) = det(∇2u) − g(x) = 0, x ∈ Ω

u = φ, x ∈ ∂Ω

(6.3.9)

where g ∈ L2(Ω) and φ ∈ L2(∂Ω) are given functions with g > 0 on Ω required to

keep the Monge-Ampère operator elliptic and note that, for the Monge-Am̀pere

equation, we have an additional condition of convexity of u for the sake of unique-

ness.

We follow the same lines for the implementation of Böhmer’s method as out-

lined, in detail, in Section 4.2. Therefore we keep ourselves very brief in recalling

some of the details of the implementation.

Let △h = △h
0 +△h

1 be a quasi-uniform triangulation of curved domain Ω ⊂ R
2.
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We get a sequence of meshes △h by uniform refinement whereby each triangle is

subdivided into four triangles, on each level, by joining the midpoints of every

edge. For a pie shaped triangle with Γj being the corresponding curved boundary

edge we take midpoint of the curved boundary edge Γj, see Figure 5.11. To

solve (6.3.9) by Böhmer’s method is, in fact, to perform the Newton-Kantorovich

iterative scheme, to get a sequence of {uhk}Z+
of approximations of û, generated

by (4.2.1). The difference is that we use the approximating space Sh0 , defined in

(6.2.2), with an M0-basis {s1, s2, . . . , sN} where M0 is MDS for the space Sh0 as

proved in Theorem 6.2.2. We obtain the basis {s1, s2, . . . , sN} for Sh0 using (3.1.11).

Again we use the relations (4.2.7) to assemble the element matrices for which we

obtain the transformation matrix T using relation (4.2.5) with basis functions

{s1, s2, . . . , sN}, where the required block diagonal matrices are obtained from

(5.5.32)-(5.5.34) with degree d = 5. We consider φ = 0 in all of our test problems.

6.3.1 Numerical Results

1. We consider the first test problem over a closed unit circular disk centred

at the origin and choose data function g such that u = e0.5(x
2
1+x2

2) − e0.5 is

a classical solution of (6.3.9) with φ = 0. The numerics for the problem

are compiled in Table 6.1. Since the solution is infinitely smooth we see the

convergence rate for the Böhmer’s method approaching O(h4) in the H2-

norm as expected, while the behaviour of errors in the L2 and H1-norms is

also near optimal. k denotes the number of Newton’s iterations to get to

the best solution on corresponding level of triangulation. Note that we use

the approximate solution of the Poisson problem (4.3.11) as an initial guess

for the Newton method only on the first level. On the next levels we again

use the multilevel approach as we used for polygonal domains in Chapter

132



Table 6.1: Errors of approximate solution and rate of convergence for the 1st test

problem over a circular domain.

Levels(l) L2-error rate H1-error rate H2-error rate k

initial 1.04e-2 3.20e-2 1.85e-1 0

1 2.12e-6 3.84e-5 1.25e-3 2

2 2.98e-7 2.83 8.47e-6 2.18 3.35e-4 1.90 1

3 6.79e-9 5.46 3.87e-7 4.49 2.86e-5 3.55 1

4 1.36e-10 5.64 1.46e-8 4.69 2.12e-6 3.76 1

5 2.52e-12 5.76 5.23e-10 4.81 1.47e-7 3.86 1

6 9.51e-14 4.73 1.76e-11 4.89 9.53e-9 3.93 1

3, where we use the quasi-interpolant of the approximate solution at the

previous level as initial guess. Though the Newton method converges on

each level if we use the approximate solution of (4.3.11) as an initial guess

but obviously the multilevel approach is efficient as we see, from the value of

k, that we need only one Newton’s method iteration to get to the solution

on the corresponding level. The stopping criteria for Newton’s iterations, on

each level, is when

‖uhk − uhk+1‖ < ǫ,

for ǫ = 10−15, where uhk is the approximate solution at the kth Newton’s

iteration.

2. In this case we consider Ω to be an elliptic disk having boundary with

varying curvature bounded by x2
1 + 6.25x2

2 = 1. We consider different test

problems by considering g1 = ex1 and, a significantly less smooth function,
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g2 = sin(π|x1|)+1.1 for (6.3.9). [33, Theorem 17.22] assures that there exists

a solution u ∈ C2,α(Ω), 0 < α < 1, at least, for g1 which is enough regularity

for Böhmer’s theory to be applicable. In case of g2 the structure conditions

required in [33, Theorem 17.22] are not satisfied. Nevertheless we apply the

method and numerically look for the solution. Since we do not know the

solution we look for the size of residual functions, denoted by R, to see the

behaviour of Böhmer’s method, where

R = ‖G(uh,lk )‖L2(Ω),

and uh,lk is the approximate solution to (6.3.9) at the kth Newton’s itera-

tion on level l. For the sake of convenience let us use the notation εh,l =

uh,l− uh,l+1 in the sequel. We also compute the errors between approximate

solutions of (6.3.9) on consecutive levels i.e. we compute ‖εh,l‖ in L2, H
1

and H2-norms because

‖εh,l‖
‖εh,l+1‖ ,

indicates the convergence behaviour of the method in the corresponding

norm, see Remark 6.3.1. We see that Böhmer’s method converges for g2

as well. Comparing the convergence for both test problems shows the slow

pace of convergence for g2 which is obvious due to its lack of smoothness

because of the presence of |x1|.

3. In the third test problem we consider (6.3.9) with data g = 1 and φ = 0 over

domains Ω1 and Ω2 with ∂Ω1 ∈ C1 and ∂Ω2 ∈ C2, see Remark 6.3.3. [33,

Theorem 17.22] demands a uniformly convex C3 boundary, at least, for the

existence of a classical solution u ( i.e. u ∈ C2,α(Ω), 0 < α < 1) for (6.3.9) in

this case. Since the theorem provides only sufficient conditions we want to

see numerically whether a smooth solution is likely to exist on domains with
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Table 6.2: Errors for the 2nd test problem over an elliptic disk with g1 = ex1.

l ‖εh,l‖L2
rate ‖εh,l‖H1 rate ‖εh,l‖H2 rate R k

6.58e-1 0

1 1.02e-8 3.64e-7 2.90e-5 4.95e-6 4

2 9.59e-10 3.4 5.26e-8 2.8 6.37e-6 2.2 1.62e-6 1

3 1.32e-11 6.2 1.29e-9 5.3 3.16e-7 4.3 1.37e-7 1

4 2.25e-13 5.9 4.27e-11 4.9 2.05e-8 3.9 9.83e-9 1

5 8.79e-15 4.7 1.61e-12 4.7 1.56e-9 3.7 6.61e-10 1

6 4.33e-11 1

Figure 6.4: The approximate solution uh of (6.3.9) with φ = 0 and g2 = sin(π|x1|)+

1.1 on 6th level of triangulation.
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Table 6.3: Errors for the 2nd test problem over an elliptic disk with g2 =

sin(π|x1|) + 1.1.

l ‖εh,l‖L2
rate ‖εh,l‖H1 rate ‖εh,l‖H2 rate R k

1.06e+0 0

1 2.92e-5 9.88e-4 9.48e-2 1.92e-2 3

2 5.41e-6 2.4 6.20e-5 3.9 4.44e-3 4.4 6.23e-3 2

3 1.21e-6 2.2 1.19e-5 2.4 1.40e-3 1.7 2.03e-3 1

4 6.84e-8 4.1 2.01e-6 2.6 4.90e-4 1.5 7.46e-4 1

5 1.44e-8 2.3 3.67e-7 2.5 1.47e-4 1.7 2.47e-4 1

6 9.04e-5 1

C1 or C2 boundary. Note that [33, Theorem 17.17] says that the solution

exists which is C2 inside the domain (in case of both Ω1 and Ω2). For Ω2 we

see that Böhmer’s method converges with about O(h4), O(h3) and O(h2) in

the L2, H
1 and H2-norm, respectively, see Table 6.4, which indicates that

the solution should be in Hγ(Ω) with γ approaching 4. We again use the

multilevel approach and compute the convergence rate in a same way as we

did for the 2nd test problem. The domain Ω2 is visualized in Figure 6.5 with

initial triangulation where the points marked as circles on the boundary are

C2 joints (the boundary is infinitely smooth at other points). Let RF be a

residual function defined by

RF = G(uh,l) = det(∇2uh,l) − 1,

where uh,l is the approximate solution of (6.3.9) at level l. The cross sec-

tion of RF , at level 6, along the straight line that passes through those
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boundary points where we have C2 smoothness, is plotted in Figure 6.6. It

clearly shows the mild singularities at the end points which slow down the

convergence of the method. In case of Ω1 the method does not converge but

the behaviour of the method is different from that observed for the square

domain in a sense that the approximate solution keeps the convex shape

and also the Newton method converges on each level. Also see the fifth

test problem in Section 3.3.1 and compare Figure 4.3 and Figure 6.9. Fig-

ure 6.7 depicts the cross section of the residual function RF , at level 4, along

the straight line x2 = x1 that passes through the boundary points with C1

smoothness. It shows that the singularity is stronger compared to Ω2 that

caused divergence in this case but, as expected, it is less strong compared

to the square domain, see Figure 4.2. Figure 6.7 also demonstrates that the

method tries to converge inside of the domain Ω1 away from the singularity.

Moreover, Figure 6.8 shows the plot of cross section of RF along the straight

line x1 = 0. Singularities at the end points are in fact due to straight line

boundary segments for Ω1, which was discussed in Section 2.1.2 that the

Monge-Ampère equation also has singularities along straight line boundary

segments.

Remark 6.3.1. Let u be an exact solution to (6.3.9). If uh,l denotes the approxi-

mate solution at level l then, in the case that method converges, we can assume

‖u− uh,l+1‖ ≤ γ‖u− uh,l‖,

for some γ < 1. The triangular inequality, then, leads us to

‖u− uh,l‖ ≤ 1

1 − γ
‖uh,l+1 − uh,l‖ =

1

1 − γ
‖εh,l‖,

and hence the ratio

‖εh,l‖
‖εh,l+1‖ ,
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Table 6.4: Errors for the 3rd test problem over domain Ω2.

l ‖εh,l‖L2
rate ‖εh,l‖H1 rate ‖εh,l‖H2 rate R k

2.01e+0 0

1 1.07e-3 1.00e-2 1.34e-1 9.10e-2 2

2 4.87e-5 4.5 8.56e-4 3.5 2.20e-2 2.6 2.20e-2 1

3 3.04e-6 4.0 1.04e-4 3.0 5.30e-3 2.0 5.87e-3 1

4 2.09e-7 3.7 1.39e-5 2.9 1.38e-3 1.9 1.56e-3 1

5 1.58e-8 3.7 2.01e-6 2.8 3.80e-4 1.9 4.15e-4 1

6 1.11e-4 1

Figure 6.5: The domain Ω2 such that ∂Ω ∈ C2 with initial triangulation.
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Figure 6.6: The cross section of RF = G(uh,6) = det(∇2uh,6)−1 along the straight

line x2 = 0.45x1 for Ω2.
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Figure 6.7: The cross section of RF = G(uh,4) = det(∇2uh,4)−1 along the straight

line x2 = x1 for Ω1.
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Figure 6.8: The cross section of RF = G(uh,4) = det(∇2uh,4)−1 along the straight

line x1 = 0 for Ω1.

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

Figure 6.9: Approximate solution uh of test 3 on Ω1 and its contour plot on second

level of triangulation.
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will indicate the convergence of the method in the corresponding norm.

Remark 6.3.2. If Ω is a domain bounded by ax2
1 +bx2

2 = 1 then the homogeneous

Dirichlet problem for (6.3.9) with g = 1 has a quadratic polynomial solution

u =
ax2

1 + bx2
2 − 1

2
√
ab

,

which is approximated exactly by our method.

Remark 6.3.3. The domain Ω1 with ∂Ω ∈ C1 is bounded by straight lines x2 =

±1 and semi-circles

x1 = ±
(

1 +
√

1 − x2
2

)
, −1 ≤ x2 ≤ 1.

Then it is easy to see that the points ±(1, 1) and ±(1,−1) are C1 joints on the

boundary (but they are not C2).

We design the domain Ω2 with ∂Ω ∈ C2 using the concept of osculating circle

to a given curve at any point that has the same curvature at that point. The

domain Ω2 is bounded by elliptic pieces

1.69x2
1 + 16(x2 ± 1.03)2 = 27.04 with |x1| ≤ 3.56,

and circular pieces

(x1 ± 2.53)2 + x2
2 = 3.69 with |x2| ≤ 1.62.

Then it is easy to see that the points ±(3.56, 1.62) and ±(3.56,−1.62) on the

boundary are C2 joints.
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Chapter 7

Conclusions and Future Work

Conclusions

The main objective of the work done in this thesis was the construction of bivariate

spline finite element spaces for curved domains that lead to new conforming finite

element methods to solve second order elliptic PDEs on curved domains, keeping

in mind that these spaces must possess an extra property called stable splitting

so that they can also be used in Böhmer’s method to solve second order fully

nonlinear elliptic problems. We summarise our achievements in this regard and

also report possible future directions below.

1. As our first goal we study different C1 spaces on polygonal domains. We

first return to modified Argyris space using Bernstein-Bézier techniques and

show that property of stable splitting can also be formulated as splitting of

a minimal determining set for the space. We also looked for lower order C1

spaces whether they possess the property of stable splitting so that there

might be other choices, to be used as approximating spaces, while using

Böhmer’s finite element method to solve nonlinear problems over polygonal
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domains. We end up with the answer that some of the C1 macro-element

spaces, including Clough-Tocher and Powell-Sabin macro-element spaces, are

also among the list as candidates for Böhmer’s method.

To analyse Böhmer’s method numerically we implement the method using

modified Aygyris space as a solution space and solve several benchmark

Dirichlet problems for fully nonlinear PDEs on polygonal domains, including

the prototypical Monge-Ampère equation. Numerical results confirm the

theoretical results.

2. For curved domains, bounded by piecewise conics, we construct C0 bivariate

spline spaces of arbitrary order and develop a new H1 conforming finite

element method to solve Dirichlet problems for elliptic PDEs. The method

is in fact isogeometric method in a sense that the shape functions we use on

pie shaped triangle also describe the exact geometry of the domain.

The numerical experiments for several second order elliptic linear problems,

including eigenvalue problem, over different curved domains show optimal

results both for lower and higher order elements. Since our construction

allows us to use higher order elements, if needed, we also looked for numerical

results in the context of the p method. Results are again up to expectations

with typical exponential decay of errors for p method.

3. Last and the most important achievement is the construction of H2 conform-

ing bivariate spline spaces over curved domains. The construction gave us

ability to solve Dirichlet problems for second order fully nonlinear elliptic

equations over curved domains using Böhmer’s method.

To see numerical results we considered several Dirichlet problems for the

Monge-Ampère equation over different curved domains using Böhmer’s method.
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The results again endorse the proved theoretical results by Böhmer.

Future Work

1. Improvement of the methods to deal with non-homogeneous Dirichlet bound-

ary conditions for C0 curved elements.

Development of such methods to C1 curved elements.

2. Proof of results providing error bounds (both for C0 and C1 elements).

3. Adaptive approach in conjunction with Böhmer’s method to tackle singular

problems (like in Test 3 in Chapter 6).

4. Extension of the same idea to construct C1 spaces to solve linear fourth order

equations over curved domains.

5. 3-D curved C0 elements over domains bounded by piecewise quadrics. Fur-

ther generalizations to domains bounded by piecewise higher order implicit

curves or surfaces.
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[5] I. Babuška, Manil Suri, The P and H-P Versions of the Finite Element Method,

Basic Principles and Properties, SIAM Review, 36(4), pp. 578-632, (1994).
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equations by Böhmer’s Method, University of Strathclyde Department of Math-

ematics and Statistics Research Report, 2012-01.

[23] O. Davydov, G. Kostin and A. Saeed, Polynomial Finite Element Method for

Domains Enclosed by Piecewise Conics, in preparation.

[24] E. J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic

equations of the Monge-Ampère type, Computer Methods in Applied Mechanics

and Engineering, 195 (2006), 1344-1386.

147



[25] E. J. Dean, R. Glowinski, Numerical solution of the two-dimensional ellip-

tic Monge-Ampère equation with Dirichlet boundary conditions: an augmented

Lagrangian approach, C. R. Acad. Sci. Paris, Ser. I 336(2003)779-784.

[26] E. J. Dean, R. Glowinski, On the numerical solution of the elliptic Monge-

Ampère equation in dimension two: a least squares approach, In Partial dif-

ferential equations, Comput. Methods Appl. Sci., 16 pp. 43-63. Springer, Dor-

drecht, 2008.

[27] E. J. Dean, R. Glowinski, T. W. Pan, Operator splitting methods and appli-

cations to the direct simulation of particulate flow and to the solution of the

elliptic Monge-Ampère equation, In Control and boundary ananlysis, volume

240 of Lect. Notes Pure Appl. Math., 1-27, chapman and Hall/CRC, Boca

Raton, FL, 2005.

[28] Rida T. Farouki, The Bernstein polynomial basis: a centennial retrospective,

Computer Aided Geometric Design, 29(6) (2012) pp. 379-419.

[29] G. Farin, Curves and surfaces for CAGD: a practical guide, Fifth edition,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[30] X. Feng, M. Neilan, Mixed finite element methods for the fully nonlinear

Monge-Ampère equation based on the vanishing moment method, SIAM J. Nu-

mer. Anal., 47(2) 1226-1250, 2009.

[31] X. Feng, M. Neilan, Vanishing moment method and moment solution for fully

nonlinear second order partial differential equations, J. Sci. Comput., 38(1)

78-98, 2009.

[32] J. Foley, A. Van Dan, S. Feiner, and J. Hughes, Computer Graphics: Princi-

ples and Practice, Adison-Wesley Publishing Company Inc., 1996.

148



[33] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of

Second Order, Springer-Verlag, Berlin, (2001).

[34] C. G. Gibson, Elementary Geometry of Algebraic curves: An undergraduate

introduction, Cambridge University Press, (1998).
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