
FEL Theory in the Ion Channel Wiggler

by

Sijia Chen

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

University of Strathclyde

September 2016

Professor Dino Jaroszynski







Acknowledgements

This thesis is completed with the indispensable help of many people, first among whom must

be mentioned is my supervisor Prof. Dino Jaroszynski, whose strong support of this work

has been most valuable, and whose optimism has always encourged me. I am much indebted

to the numerous discussions and suggestions along the way during the development of this

theory, and the tireless reviewing of my thesis by Dr. Bernhard Ersfeld, with whom I have

worked most closely, and always with pleasure.

My appreciation also goes to Qin Beibei for helping me with drawing plots and her

encouragement.

The greatest I owe to my mother for her patience and continous support for me, without

which I could not have finished this work.



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction 3

1 Introduction 7

1.1 Overview of Free-Electron Laser Theory and Devices . . . . . . . . . . . . . 7

1.1.1 FEL Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 FEL Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3 Electron Bunching and the High-gain Regime . . . . . . . . . . . . . 13

1.1.4 Laser Wigglers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.5 Plasma Wiggler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Ion Channel Wiggler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Creation of an Ion Channel Wiggler Using an Electron Beam . . . . . 17

1.2.2 Barrier Suppression Ionisation with a Laser Field . . . . . . . . . . . 18

1.2.3 The Non-relativistic Ponderomotive force . . . . . . . . . . . . . . . . 20

1.2.4 Relativistic Ponderomotive Force . . . . . . . . . . . . . . . . . . . . 21

1.2.5 Modelling Electron Cavitation in the Wake of an Ultra-intense Laser

Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.6 Laser Pulse Propagation in the Homogenous Plasma . . . . . . . . . 24

1.3 Plasma Bubble Wiggler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 The Plasma Bubble Structure . . . . . . . . . . . . . . . . . . . . . . 28

1.3.2 Resonance-Enhanced Betatron Oscillation in the Ion Channel . . . . 30

2 Electron Motion in an Ion Channel 34

2.1 Electron Dynamics and Particle Equations . . . . . . . . . . . . . . . . . . . 34

2.1.1 The Resonance Condition . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.2 Generalization to 3D theory . . . . . . . . . . . . . . . . . . . . . . . 38

1



2.2 High-Gain Steady-State Theory of the ICL . . . . . . . . . . . . . . . . . . . 39

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 The Slowly-Varying Envelope Approximation . . . . . . . . . . . . . 45

2.2.4 The Steady-State ICL Equations . . . . . . . . . . . . . . . . . . . . 46

2.2.5 Universal Scaling and Dimensionless Compton ICL Equations . . . . 51

2.2.6 Constants of Motion and Efficiency . . . . . . . . . . . . . . . . . . . 54

2.2.7 Gain Parameter and Raman Regime of the ICL . . . . . . . . . . . . 54

2.2.8 Energy and Betatron Amplitude Spread . . . . . . . . . . . . . . . . 60

2.3 Non-paraxial Extension of Whittum’s ICL Formulation . . . . . . . . . . . . 63

2.3.1 Resonance with the Betatron Phase and the Momentum Phase . . . . 64

2.3.2 Comparison of the Equations of Motion . . . . . . . . . . . . . . . . . 66

2.3.3 Gain Parameter Without the Small Betatron Amplitude Approximation 69

2.3.4 Dielectric Guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.1 Numerical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.2 The Coupled-Equation Solver . . . . . . . . . . . . . . . . . . . . . . 73

2.4.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.4 Compton Simulation Results and Analysis . . . . . . . . . . . . . . . 74

2.4.5 Simulations in the Microwave Regime . . . . . . . . . . . . . . . . . . 74

2.4.6 Sub-millimetre Example . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.7 Infra-red Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.8 X-Ray Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.9 Large Betatron Amplitude Beam Simulation in the UV Regime . . . 86

2.4.10 Raman Regime Simulation . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Steady-State Theory for High-Harmonics ICL Radiation 91

3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Field Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Particle Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Energy and Phase Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Compton Regime, Universal Scaling and Linear Analysis . . . . . . . . . . . 94

3.6 High Harmonics with Detuning . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Enhanced Coherent Radiation at the Fundamental Frequency . . . . . . . . 100

2



4 Superradiance and SASE in the ICL 101

4.1 SASE in the ICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Characteristics of the Startup . . . . . . . . . . . . . . . . . . . . . . 102

4.1.2 Time-domain Characteristics of a SASE Radiation Field . . . . . . . 104

4.2 The Superradiant Theory of ICL . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Dynamics and Parameters of ICL Pulse Propagation in the Superradiant Regime109

4.3.1 Scaled Spatio-Temporal ICL Equations . . . . . . . . . . . . . . . . . 109

4.3.2 Scaled co-moving coordinates . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3 ICL Equations in Transformed Coordinates . . . . . . . . . . . . . . . 112

4.4 Superradiant Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.1 Linear Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.2 Weak Superradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.3 Nonlinear Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.4 Strong Superradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Full SASE Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.2 The Noise Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.3 Simulation of Propagation Effect . . . . . . . . . . . . . . . . . . . . 129

5 Conclusion 135

3



Role of the Author

The author develops and extends the theory of the ion channel laser (ICL) by Whittum

[1, 2], to make it applicable to free electrons oscillating with large betatron amplitudes,

through a Hamiltonian-based approach. The linear ICL equations and steady state results

are derived using Bonifacio’s [3] universal scaling approach, a work done in collaboration with

Bernhard Ersfeld and published in Ref. [4]. The author also develops for the first time a

one-dimensional (1D) spatio-temporal ICL theory based on the time-dependent FEL theory,

which includes a high-harmonics theory of the ICL, along with the numerical modeling and

results for the spatio-temporal theory. In addition, an error in Whittum’s original phase

equation under eikonal formalism has been corrected.
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Abstract

The ion channel laser (ICL) is an ultra-compact version of the free-electron laser (FEL),

with the wiggler replaced by an ion channel. Given its small size and the large wiggler

field that can be created within a small volume, it has enormous potential for generating

high-frequency coherent radiation. Previous studies of the ICL [1,5], however, have assumed

transverse momentum amplitudes that are unrealistically small for experiments, and thus

concluded that high-gain high-frequency coherent radiation generation using the ICL is infea-

sible. In contrast, this thesis shows that this restriction can be removed by correctly taking

into account the dependence of the resonance between oscillations and emitted field on the

betatron amplitude, which must be treated as variable. The ICL model with this essential

addition is described using the well-known formalism for the FEL [3]. Both steady-state

and spatio-temporal analyses of the resulting scaled equations show a realistic prospect of

building a compact ICL source for fundamental wavelengths down to the UV, with harmon-

ics potentially extending to X-rays. The gain parameter ρ can attain values of the order of

0.01-0.1, which permits driving an ICL with electron bunches with realistic emittance and

achieving a radiation power gain comparable to FEL over a small distance.

In addition, we present the first results of superradiant simulations for the ICL, also

within the framework of the scaled formalism for the FEL, taking into account propagation

effects, as well as a full SASE simulation using shot noise as the startup.
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Chapter 1

Introduction

The possibility of generating coherent radiation in an ion channel wiggler was first proposed

by D. Whittum in 1990 [1], and a theory using an eikonal formalism in [2]. This theory

provides a satisfactory model for ion channel radiation with electrons performing small-

amplitude transverse oscillations, but has significant limitations in practice: the theory does

not correctly describe the interaction of electron beam and radiation field when the betatron

amplitude is large, which imposes severe and artificial limits on the design parameters of

an ion channel laser [5]. Moreover, when beams with large betatron amplitude are used,

a number of additional high-order effects arise, which are not accounted for in Whittum’s

theory framework, let alone propagation effects (slippage), and high-order harmonics.

In this chapter, we briefly review the two subjects of study on which the ion channel

laser theory is based: free-electron laser and laser-plasma interaction. The latter is discussed

mainly in the context of the creation of an ion cavity using a high-power laser beam.

1.1 Overview of Free-Electron Laser Theory and De-

vices

The free-electron laser (FEL), as any conventional laser, transforms the energy of electrons

into electromagnetic (e.m.) radiation. The state of electrons generating radiation in FELs,

however, is different from the bound electrons of traditional lasing media, which are restricted

to quantum transition energies between states, and thus can usually only produce a fixed las-

ing frequency. Instead, free electrons, usually moving at highly relativistic axial velocity v‖,

pass through a periodic magneto-static structure, which for FELs are strong magnetic fields,
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produced either by arrays of permanent magnets with alternating polarities or bipolar helical

coils with current circulating in opposite directions. To an electron, in its rest frame the

magnetic field appears like a counter-propagating radiation field, with a Lorentz-contracted

wavelength λ′w = λw/γ‖, where λw is the wiggler period and γ‖ =
√

1− v2
‖/c

2 the Lorentz

factor corresponding to v‖, with c the vacuum speed of light. In the Weizsäcker-Williams

approximation, the electrons interact with the virtual quanta of the static magnetic field and

scatter them into real photons of the stimulating field . In such a picture, the electron acts

as a “relativistic mirror” that reflects the pseudo-radiation via Compton back-scattering.

Thanks to the huge kinetic energy carried by the free electrons, which is easily tunable, a

FEL can be tuned over an unusually broad spectrum, ranging from microwaves to hard X-

rays (λ ≈ 0.1 nm). In addition, the FEL has the advantage that radiation occurs in vacuum,

with no thermal dispersion or breakdown effects of the medium to worry about; the latter

properties are also shared by the ICL, which uses a plasma wiggler.

When electrons are randomly distributed, the FEL is simply a synchrotron device,

whereas stimulated emission occurs when radiation resonantly co-propagates with the elec-

tron beam. Both of these processes are discussed in the next subsection, while spontaneous

emission in the plasma wiggler is discussed in a further subsection.

1.1.1 FEL Spontaneous Emission

A really “free” charge in vacuum is unable to radiate, due to the electron-photon energy-

momentum conservation relation introduced in Einstein’s theory of special relativity [6]. The

emission of photons by electrons, therefore, has to occur under the influence of a field, which

can be a static magnetic field (an undulator), an electromagnetic field (laser wiggler), a

symmetric electrostatic field (ion channel), or even a periodic electric field generated by a

plasma wake [7]. In short, FEL radiation is really synchrotron radiation, i.e. the radiation

emitted by an electric charge moving at relativistic speed with a transverse force applied to

it. The focus of FEL theory is usually on the electron motion under the influence of a static

magnetic field.

For a static magnetic wiggler, its simplest realization can be made in two ways: The easier

one to model is the helical wiggler consisting of two intertwined helical coils, while the one

made of two arrays of magnets with alternating polarities is called a “planar wiggler”. In

both cases, the electrons inside the wiggler are periodically deflected by the Lorentz force (or

“v×Bw”, where v is the electron velocity) generated by the wiggler field. The magnetic field

Bw is usually periodic due to the alternating polarities of the magnets or coils, respectively.
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Figure 1.1: sketches of two different types of FEL wigglers adapted from the book [8], with
λw representing the wiggler period, and g the gap length. The planar wiggler on the left is
composed of two two arrays of magnets with alternating polarities, while the helical wiggler
on the right is simply a bifilar helical coil

For a helical wiggler, the approximate expression for the vector potential is

Aw =
Bw

kw




[1 + k2
w(3y2 + x2)/8] sin(kwz)− (k2

wxy/4) cos(kwz)

[1 + k2
w(3x2 + y2)/8] cos(kwz)− (k2

wxy/4) sin(kwz)

0


 ,

where Bw and kw are the magnetic field amplitude and wave number of the wiggler field,

respectively. Close to the axis, Aw can be further approximated as

Aw =
Bw

kw




sin(kwz)

cos(kwz)

0


 .

Under the influence of such a field, electrons with high axial momentum (along z) will

oscillate transversely with almost identical transverse velocity, thereby emitting synchrotron

radiation that is circularly polarized. The main features of such radiation are the following:

i) Its intensity is proportional to the electric current and thus the number of electrons Ne in

the beam, i.e., the radiation is incoherent, with each electron emitting a field with random

phase to that of the others.

ii) The emitted radiation is confined in a narrow cone along the direction of electron motion,

the wiggler axis, within an angle of order of 1/γ‖ if the wiggler parameter aw, defined in
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Eq. (1.7) below as the normalized vector potential, is much smaller than unity.

iii) The bandwidth is narrow, with on-axis spectral distribution (i.e., intensity I per unit

intervals of solid angle Ω and frequency ω, respectively)

d2I

dΩdω
∝ sinc2

(
πNw

ω − ωs
ωs

)
, (1.1)

where sinc(x) = sin(x)/x, and Nw is the number of wiggler periods. Therefore, the spectrum

is peaked around a frequency ωs = 2πc/λs, with λs given by:

λs =
1− β‖
β‖

λw, (1.2)

where β‖ = v‖/c, with v‖ the average longitudinal velocity of the electron beam, and λw =

2π/kw is the wiggler period. Its FWHM spectral linewidth is

∆ω

ω
=

0.886

Nw

. (1.3)

This equation shows that the bandwidth of the spontaneous radiation decreases with increas-

ing number of wiggler periods. This result is most easily explained in the frame of co-moving

electrons: each electron “sees” the wiggler field as a counter-propagating pseudo-radiation

field, with Nw periods, and Lorentz-contracted wavelength λ′w = λw/γ‖. Hence it executes

Nw periods of oscillation, emitting a wave packet with a length of Nwλ
′
w , and a frequency

centered at 2πc/λ′w; its bandwidth is therefore the reciprocal of the duration of the wave

packet, using the Gabor limit from signal-processing theory. In fact, the one-dimensional

sinc spectral distribution can be obtained by Fourier-transforming a plane wave truncated

after Nw oscillations, resulting in the FWHM(full width at half maximum) relative band-

width given by Eqn. (1.3). The bunch acts as a “relativistic mirror” where the radiation

is reflected by Compton back-scattering, with the Compton shift neglected because of the

classical assumption. The relationship between the wavelength of the emitted radiation and

the wiggler period can also be derived in the laboratory frame. In the time an electron

takes to travel one wiggler period, λw, the electromagnetic radiation will slip over it by one

radiation wavelength, λr. The wiggler and the radiation wavelengths satisfy a “resonance

condition”

λw/(λr + λw) = v‖/c. (1.4)
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Using v‖ = dz/dt and λw/(λr + λw) = kr/(kw + kr), withkw and kr being the wiggler and

radiation wavenumber respectively, we can rewrite this equation as (kw + kr)dz/dt−ωr = 0.

The resonance relation is obtained by imposing that the phase difference between the electron

motion and radiation field is constant,

kwz + krz − ωrt = C. (1.5)

The longitudinal velocity, v‖ = cβ‖, is obtained from the total Lorentz factor γ using the

relation 1/γ2 = 1− β2
⊥ − β2

‖ ; the modulus of β⊥ will be shown in the next section to be

|β⊥| ≈
aw
γ
, (1.6)

where

aw =
eλwBw

2πmec
, (1.7)

with me the electron mass, is the wiggler parameter, which is the amplitude of the normal-

ized transverse momentum p⊥/(mec). Combining this expression with the definition of the

Lorentz factor, we obtain

1

γ2
‖

=
1 + a2

w

γ2
. (1.8)

Finally, after the resonance relation is applied to the above equation, in the ultra-relativistic

limit γ‖ � 1, the relation between the wiggler period and the resonant radiation wavelength

is obtained

λs =
1− β‖
β‖

λw ≈ λw
1 + a2

w

2γ2
. (1.9)

This relation shows the wide tunability and large frequency up-shift factor of an FEL. The

wavelength can be tuned by changing γ, λw, or Bw, and the emitted wavelength can reach

the hard X-ray regime if γ is large enough.

1.1.2 FEL Stimulated Emission

We know from solid-state laser theory that an electron emits “stimulated radiation” when

it is stimulated by an incident photon with the same energy as its transition energy, hence
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the released photon will have the same energy, and therefore frequency, as the incoming one.

Unlike the conventional lasing, which can only be described fully by quantum mechanics, the

free-electron lasing effect can be accurately modelled classically, although the requirements

on incident photons seem somehow comparable: both require the photons to have a certain

“resonant frequency”, but for the “free” electrons, the frequency of the emitted radiation is

freely tunable by changing their kinetic energies rather than being limited by the differences

between the discrete energy levels of orbital electrons. Furthermore, “free” electrons with

different phases relative to the radiation field would not end up with equal kinetic energies

even if they were equal at the start of the interaction, not to say that any realistic electron

bunch would have an intrinsic initial energy spread. Despite all these differences, a FEL

can still be employed as a high-power, high-tunability coherent light source with relatively

narrow bandwidth, which can be further improved using a resonant cavity.

The FEL stimulated emission takes place when a radiation field with wavelength λr ≈ λs,

co-propagates with the electron beam inside the wiggler. From the resonance relation one

can define the resonant electron energy

γr =

√
λw(1 + a2

w)

2λr
. (1.10)

It can be observed that if the electron energy and the radiation wavelength satisfy the above

relation, then the relative phase between the transverse oscillations of the electrons and the

radiation remain constant. Depending on the value of this relative phase, and the initial

power of the radiation field one of the following process occurs for each electron:

• the electron gives energy to the field and decelerates, i.e. stimulated emission, which

provides gain, or

• the electron takes energy from the field and accelerates, i.e. absorption.

If the first of these two processes dominates, then the injected radiation field is amplified

as in the first FEL amplifier experiment [9]. Moreover, if the wiggler is long enough or if the

process happens in an optical cavity, then the spontaneous emission is amplified, as in the

first FEL oscillator experiment [10]. If the second of these two processes dominates, then

the electrons are accelerated as in the inverse FEL [11].

A simplified picture of FEL gain can be obtained using perturbation theory, which ne-

glects the change of the electric field in the equations of motion and leads to Madey’s small
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signal regime [12] theory. This theory considers a “long” electron pulse with initial electron

phases randomly distributed over each radiation wavelength. In the case of a nearly mono-

energetic and resonant electron beam, on average half of the electrons will decelerate and

half of them will accelerate, resulting in no net gain. Madey’s small signal regime occurs,

therefore, when the average energy of the electrons is slightly above resonance, so that gain

prevails over absorption [12].

1.1.3 Electron Bunching and the High-gain Regime

The gain which can be achieved via energy-detuning in Madey’s small signal regime is quite

small. Such low gain, however, is not the limit of the potential of electrons for amplifying

an electromagnetic radiation field, because electron phases can evolve toward a common

value. As shown in the low-gain model, acceleration and deceleration of the electrons by the

radiation field will cause them to “bunch” spatially, which results in dense electron bunches

with a separation of λr and thus in a large number of electrons radiating coherently. Such

bunching allows the radiation field to be amplified far beyond the low fields of the initial

seeding, in the so-called “small-signal high-gain regime”. The variable representing how

strongly the electrons are bunched, is the bunching parameter

B =
1

Ne

Ne∑

j=1

e−iθj , (1.11)

where Ne is the number of electrons in the bunch previously defined, and θj = kwzj+kzj−ωt
is the (slowly changing) difference between the respective phases of an electron at position zj

and the laser field. We see that B is a measure of the longitudinal modulation of the electron

beam on the scale of the radiation wavelength. A uniform distribution of phases on [0, 2π] will

give a bunching factor of 0, while ideal bunching with ‖B‖ = 1 implies that all electrons are

perfectly in phase. We shall see that a collective instability for the system leads to electron

self-bunching and to exponential growth of radiation until saturation of amplification limits

the conversion of kinetic electron energy into radiation energy; this is the so-called “high-

gain steady-state regime”, where the saturated radiation power is proportional to N
4/3
e , due

to the collective radiation effect, whereas in the incoherent radiation case the power scales

as Ne.

The behaviour of the FEL is modified when beam transport and propagation effects,

and the initial spread in velocities of the electrons are taken into account. This is known
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as slippage, where the radiation pulse moves ahead with respect to the electron pulse by

a radiation wavelength λr for every wiggler period λw, i.e. by Ls = Nwλr at the end of

a Nw period wiggler. From analytical and numerical studies it has been shown [13, 14]

that when the slippage length Ls is large with respect to the “gain length”, the FEL can

operate in a different regime, called the superradiant regime, in which the peak intensity

of the radiation no longer saturates and scales as N2
e . The slippage effect allows us to

exploit the potential of generating weakly amplified coherent radiation without an external

input, yet it is not only with strong slippage that superradiance can be achieved; when

a very long, almost “steady-state” like electron pulse is used, strongly amplified coherent

radiation with intensity and power scaling with N2
e can be observed if the electron bunch

is seeded with an external source. (Radiation intensities scaling as N2
e may also arise from

coherent synchrotron radiation emitted by electron which have been pre-bunched by an

external source [15].)

A FEL can also utilize incoherent synchrotron radiation as a ‘startup’, with electrons

entering the wiggler in an unprepared state, in which case the initial emission is provided by

the shot noise of the electron bunch. The random nature of this seeding field implies that the

bandwidth of the spontaneous emission spectrum is broader than that of the FEL amplifier,

which leads to such self-emission FEL being always tuned to the resonant frequency with

the largest growth rate, and a spiky radiation pulse. The FEL self-emission phenomenon

in which the propagation effects are considered is called the Self -Amplified Spontaneous

Emission (SASE) [16] mode of operation. The SASE mode of operation is important at

wavelengths for which conventional radiation sources usually cannot be used for seeding,

such as the XUV or the far-infrared regime. The single-pass SASE FEL has been realised

in several projects such as the LCLS(Linac Coherent Light Source) [17] at Stanford, USA,

and SACLA [18] in Japan, and the future XFEL at DESY in Hamburg. These FELs are all

based on the classical theory of SASE, which models a source that radiates a pulse with a

broad spectrum composed of many random superradiant spikes [19–21]. It has recently been

proposed that a FEL can operate in a quantum regime (QFEL) [22], in which the spiking

behaviour observed in SASE mode disappears and the spectrum reduces to a single narrow

line, thanks to its much increased cooperation length.

1.1.4 Laser Wigglers

Magnetostatic wigglers can be hundreds of metres long and very expensive. This has led to

a search for other types of undulators. The limitations of magnetostatic wigglers become
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increasingly conspicuous in the design and construction of X-ray FEL and QFEL wigglers. A

possible alternative is to utilise a counter-propagating electromagnetic wave as a wiggler. An

infrared pulse from a high-power Nd or CO2 laser, with a wavelength of 1 or 10 µm, would

yield FEL radiation in the range of tens of nanometers with electrons of only a few MeV,

with the interaction region that defines the wiggler length only meters long. The resonance

relation becomes

γ =

√
λL(1 + a2

0)

4λr
, (1.12)

where λL is the laser wavelength and a0 = eA0/(mec) is the laser wiggler parameter equal

to its normalised vector potential. This dispenses with the need for large high-energy accel-

erators, and long magnetostatic undulators. However, the laser wiggler suffers from a small

effective FEL gain parameter, and tight tolerances on the field, which severely limits the

achieveable efficiency of the wiggler and requires a currently unrealistic small energy spread

to operate.

1.1.5 Plasma Wiggler

Another candidate for a short-period wiggler is the purely electric plasma wave wiggler first

proposed by C. Joshi et al. in [25], which is formed by a relativistic plasma density wave. This

plasma wave can be excited in several ways, such as with two beating laser beams, a short

laser pulse as proposed in the laser wakefield accelerator scheme (LWFA), or a relativistic

short electron pulse propagating through a plasma channel. The geometry of a beating

wave driven plasma wiggler is illustrated in Fig 1.1. In this simplified picture, the wiggler

consists of a purely electric field oscillating perpendicular to the injected electron beam at

the plasma frequency ωp =
√
npe2/(meε0), where np is the plasma electron density, −e is the

electric charge and me is the mass of the electron, and ε0 is the permittivity of free space,

but with no spatial dependence since the wave vector of the radiation is transverse to that

of the plasma wave. The electric field Epw of the plasma wave deflects the electron to the

side where the electron density is smaller; since both the electrons and the plasma wave

are moving at close to the speed of light, by the time the electrons move by half a plasma

wavelength λp = 2πc/ωp, the plasma wave moves orthogonal to it by λp/2 as well. This

reverses the polarity of the electric field, which now deflects the electrons to the opposite

side. Thus, the apparent wiggler wavelength is λp, and the time-dependent electrostatic field
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can be expressed as

Epw =
eδnp
ε0kp

sin(kpz − ωpt), (1.13)

where δnp is the amplitude of the electron density perturbation. Using a plasma wave

as a wiggler is attractive for two reasons. First, the effective wiggler wavelength (2πc/ωp,

typically of order 100 µm) is shorter than that available with conventional magnetic wigglers;

second, the effective wiggler strength can reach values equivalent to 100 MG for a magnetic

field. The major obstacle to realize such a plasma wave wiggler is to produce a uniform and

transversely wide plasma wave, which has yet to be demonstrated in experiments.

Figure 1.2: Schematic of the geometry of Joshi’s plasma wiggler FEL
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1.2 Ion Channel Wiggler

1.2.1 Creation of an Ion Channel Wiggler Using an Electron Beam

When the ionizing electric field from a laser pulse or an electron bunch is strong enough

to remove the plasma electrons directly from a neutral gas medium, and the pulse length

is shorter than the time scale for the expelled electrons to return to the plasma, then in-

stead of an electron density modulation as in the plasma wave wiggler, a plasma channel is

formed. The plasma channel produces a strong electrostatic field which wiggles the electrons

and in the process, as shown in Fig. 1.2, generates intense betatron radiation. The plasma

channel can be categorized as “underdense” or “overdense”, depending on whether the chan-

nel plasma density is lower or higher than the beam plasma density. When the channel is

ionized by an electron beam with density larger than the plasma density, the plasma elec-

trons pushed out of the channel will stream backward to neutralize the ions in the plasma

channel. The approximate time for these electrons to return to the channel is π/ωp, half a

plasma period, therefore the main body of a short electron bunch will propagate inside an

ion channel free of plasma electrons as long as its duration is shorter than that. Meanwhile,

if the electron bunch length is comparable to the channel length, its own electrostatic field

should be able to maintain the steady state of the electron vacuum. Electrons within such

a plasma channel are focused by the radial electrostatic field due to the ions. If the plasma

density is higher than the beam density of a long enough ionizing bunch, the plasma elec-

trons are not completely expelled from the channel, instead they are spatially configured so

that the plasma ions cancel the beam space charge and thus allow the beam to pinch under

its magnetic self-forces.

The transverse size of an ion channel formed by a relativistic electron bunch (REB) can

be simply estimated by requiring all plasma electrons at the edge of the plasma channel to

experience zero net transverse electrostatic force. E.g., in the case of ionized helium gas,

with channel radius b > σr, the RMS(root-mean-sqaure) radius of the electron beam, we can

express the balancing equation of an ion channel in the steady state as:

F⊥ = FREB + Fion = σ2
rnbe

2(1 + vp/c)/(2bε0)− bnpe2/(2ε0) = 0, (1.14)

where vp is the longitudinal velocity of plasma electrons pulling back towards the beam axis,
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and nb and np are beam and channel plasma density respectively. The above equation gives

b

σr
=

√
(1 + vp/c)nb

np
, (1.15)

which for vp/c� 1 is approximately

b

σr
=

√
nb
np
. (1.16)

From (1.16), it is clear why a beam-driven plasma channel is not suitable for a large betatron

amplitude ICL: Given that b is larger than the betatron amplitude rβ and rβ/σr � 1, and

the ionising beam density is in the range of 1017−1019 cm−3 (see e.g. [26]) the plasma density

produced in the channel would have to be in the range of 1015 − 1017 cm−3, which would

lead to a relatively weak electrostatic field and thus rather small gain, which scales with the

field strength.

Figure 1.3: Schematic of an ion channel wiggler with an electron bunch driven by the channel
field radiating at the extremities of their oscillations, with an opening angle of θ = aβ/γ for

the radiation cones, where aβ =
√
γ/2ωprβ/c is the betatron parameter and γ is the Lorentz

factor of the radiating electron.

1.2.2 Barrier Suppression Ionisation with a Laser Field

It is possible to produce ion channels with much higher density using an intense laser pulse.

The first step is plasma formation by ionizing a neutral gas, which requires the laser intensity
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to exceed the ionization intensity of 1013−1014 W/cm2, beyond which the liberated electrons

are able to escape freely from the atoms. The upper limit for the intensity needed for this

to occur can be estimated using the Bohr model of a hydrogen atom in which an electron is

on its orbit around a proton at a distance of a Bohr radius aB. The electric field strength

Ea, that keeps the electron on the orbit, can be calculated classically

Ea =
e

4πε0a2
B

≈ 5.1× 1011 V/m, (1.17)

which translates to an atomic unit of intensity

Ia =
ε0c

2
|Ea|2 ≈ 3.45× 1016 W/cm2. (1.18)

If the atom is placed in a laser field with an intensity exceeding Ia, formally the atomic

Coulomb potential binding the electrons would be completely suppressed. However, higher

ionisation rates than predicted by the quantum tunneling model [27] have been observed with

much lower field intensities, which leads to the conclusion that at much lower intensities the

laser electric field must have a significant impact on the atomic potential field already. In a

simple model developed by Bethe and Salpeter, ionization is explained by the distortion of

the atomic binding potential due to the electric field of the laser [28]. The model predicts an

appearance intensity, Iapp, at which ionization occurs. The starting point is the superposition

of the nuclear potential and a static external electric field. In the direction of the laser

polarisation where the barrier is most deeply suppressed, this superposition reads

V (x) = − Ze2

4πε0x
− eEx, (1.19)

with Z the charge of the ion that will be produced and E the external electric field strength.

Energetically, the region of lower energy for the electron is separated by a reduced potential,

The position of the barrier, xmax, can be derived by setting ∂V (x)/∂x = 0, yielding xmax =√
Ze/(4πε0E). By assuming V (xmax) = εion where εion is the ionisation energy, the critical

electric field strength, Ecrit, is given by

Ecrit =
πε0ε

2
ion

Ze3
. (1.20)

Since in this case the electric field of the laser is so strong that the Coulomb barrier is sup-

pressed, the electron can escape freely. This ionization process is termed barrier suppression
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ionization (BSI). The minimum laser intensity required for ionisation is given by

IBSI =
π2cε30ε

4
ion

2Z2e6
. (1.21)

In the case of a hydrogen atom, one finds:

IBSI =
Ia

256
= 1.37× 1014 W

cm2
, (1.22)

using the definition of Ia in (1.18). For different elements, the relation (1.21) is confirmed

over several orders of magnitude of intensity [29].

1.2.3 The Non-relativistic Ponderomotive force

With intensities significantly larger than required for BSI, modern high power lasers can

easily liberate electrons from the atomic potential, following which they are completely

subjected to the Lorentz equation

dp

dt
= −e(E + v ×B), (1.23)

where the time-dependent electric field of the laser at the position of the electron is denoted

by E, the magnetic field by B, the velocity of the electron is v, and its momentum p = γmev.

In this subsection we address the non-relativistic case of constant γ ≈ 1. For an electron

oscillating within a plane electromagnetic wave travelling in the z direction, its transverse

velocity in the y direction is

vy = −vq sin(ωt− kz), (1.24)

where

vq =
eE0

meω
, (1.25)

which is known as the quiver velocity. For such an electron executing harmonic motion, its

cycle-averaged energy is

Up =
e2E2

0

4meω2
, (1.26)
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which is also known as the ponderomotive potential of the laser.

Due to the radial intensity profile in focus, however, the electric field of the laser is far

from being a homogeneous plane wave. Assuming a Gaussian intensity distribution, the peak

intensity is achieved on the beam axis and a gradient across the field distribution is present.

This gradient introduces radially an additional cycle-averaged acceleration of the quivering

electrons in the direction of lower intensities. By averaging the dynamics over an oscillation

cycle, a ponderomotive force can be identified. Its origin is usually a spatial gradient in

laser intensity due to focusing. To derive the strength of the ponderomotive force, assume

a plane electromagnetic wave traveling in z-direction with the electric field component in

y-direction. The strength of the E-field may vary with y (e.g. E0(y) = E0,max exp(−y2/w2))

with a Gaussian width w and a peak electric field strength of E0,max.

Hence

E(y, z, t) = E0(y)ey cos(ωt− kz), (1.27)

where ey is the unit vector. The zeroth order motion of an electron under this electric field is

simply the oscillation in the y direction, with the average of its velocity remaining constant,

the zeroth order force however will cause the electron to explore the gradient of E(y), which

causes the average to drift and accelerate in the y direction,under a combination of electric

and Lorentz force. The electrons would also be subjected to a Lorentz force in x direction

if E0 also depends on x, such a force however, is vanishingly small in the non-relativistic

regime.

The ponderomotive force can be derived by solving the right hand side of (1.23) with the

expressions of E(y, z, t) and B(y, z, t) and the zeroth order approximation of vy (1.24)

Fp = − e2

4meω2
∇E2, (1.28)

with the term cos(2(ωt− kz)) omitted, which averages to zero over a cycle.

1.2.4 Relativistic Ponderomotive Force

The aforementioned treatment of ponderomotive force loses its validity for super-intense laser

fields. Relativistic nonlinearity in the electron dynamics occurs when the laser pulse used

is ultra-short, with its strength satisfying a Gaussian distribution, in a similar way to the

non-relativistic case. Differences in the dynamics arise from the relativistic mass increase
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at high quiver velocities and a non-vanishing, much stronger B-component in the Lorentz

force, which leads to a much larger v×B force in the x-direction when E0 depends on x. A

relativistic generalization of the ponderomotive force has been derived by Bauer et al. [30]

as well as Quesnel and Mora [31]. It is given by

Fp = − e2

4γmeω2
∇E2, (1.29)

where γ is the local relativistic, cycle-averaged γ-factor in a linearly polarized wave according

to

γ =
√

1 + a2
0/2, (1.30)

for a laser beam with a normalized amplitude of the vector potential a0 = eE0/(meωc) and

an initial transverse momentum p⊥ = 0. The relativistic ponderomotive force is responsible

for the average electron motion observed in the laboratory frame and can be written as the

negative gradient of a relativistic ponderomotive potential, Up = (m2
ec

4 + c2e2E2/ω2)1/2.

Quesnel and Mora [31] have shown with the help of 3D-simulations, that in the relativistic

case the electrons are pushed isotropically out of focus. Besides a radial acceleration, the

electrons are accelerated also in the laser propagation direction due to the magnetic field.

Here the electrons, scattered out of the focus, can gain a maximum kinetic energy Ekin =

(γ − 1)mc2, close to the ponderomotive potential of the pulse.

1.2.5 Modelling Electron Cavitation in the Wake of an Ultra-

intense Laser Pulse

The ponderomotive force, described in the previous two sections, exerts a slowly-varying

force on the electrons, which allows us to model the evolution of the number density n0 of

the plasma electrons.

We start with the electron momentum equation, reformulatedin terms of the field poten-

tials

dp

dt
= −e

(
−∂A

∂t
−∇⊥ψ + v × (∇⊥ ×A)

)
, (1.31)

written using the scalar field potential ψ and vector potential A instead of field strengths.

Given that the pulse duration of the field is much smaller than the plasma period, (1.31)
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can be transformed by substituting the following Quasistatic Approximation (QSA) of field

potentials:

A = A0(z1, εx, εy, εz) + εA1(z1, εx, εy, εz), (1.32)

ψ = ψ0(z1, εx, εy, εz) + εψ1(z1, εx, εy, εz), (1.33)

with z1 = z − ct and ε� 1, into the Lorenz gauge condition

∇ ·A +
1

c2

∂ψ

∂t
= 0. (1.34)

In zeroth order we have

∂

∂z1

(A0z − ψ0z) = 0 (1.35)

which when substituted into (1.31) will produce

∂p0z

∂z1

= 0, (1.36)

and

p0 = eA0, (1.37)

where p0 is the electron momentum in the zeroth order. We now introduce the dimensionless

units we will use later in this chapter:

p→ p/(mec),

A→ eA/(mec),

E→ eE/(mecωp),

B→ eB/(meωp),

ψ → eψ/(mec
2),

t→ ωpt,

r→ (ωp/c)r

n0 → n0/np. (1.38)
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Using (1.34), (1.36), (1.37), the momentum equation (1.31) can be reduced to

∇⊥ψ = v × (∇⊥ ×A) (1.39)

= ∇⊥γ,

Substituting this relation into the wave equation of the scalar electromagnetic field potential

yields

(
∇2
⊥ −

∂2

∂t2

)
ψ = n0 − 1, (1.40)

where n0 is the electron number density, np is its ambient value, and ε0 being the vacuum

permittivity. We obtain the following evolution equation for the number density n0 [32]

under the QSA:

n0 = 1 +∇2
⊥γ. (1.41)

With γ =
√

1 + a2
0/2, the distribution of n is entirely determined by the transverse distribu-

tion of the laser field strength. For an ultra-short Gaussian laser pulse, electrons are mostly

expelled out of the centre of the beam, as shown by simulations in [32–34].

1.2.6 Laser Pulse Propagation in the Homogenous Plasma

Group Velocity Dispersion (GVD)

At frequencies far above its highest resonant frequency, the dielectric function of a dielectric

medium takes the simple form of

ε(ω) ≈ 1− ω2
p

ω2
, (1.42)

according to [6]. Therefore, the refractive index of the medium is frequency-dependent,

η(ω) = [ε(ω)]1/2 = (1− ω2
p/ω

2)1/2. It can be expanded in a Taylor series around the central

frequency of the laser:

η(ω) = η0 +

(
dη

dω

)

ω=ω0

(ω − ω0) +
1

2

(
d2η

dω2

)

ω=ω0

(ω − ω0)2 + ... (1.43)
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The mode-propagation constant β(ω) = η(ω)ω/c, which determines the variation of the

amplitude and phase of a wave mode in the medium can be expanded similarly:

β(ω) = β0 + β1(ω − ω0) + β2(ω − ω0)2/2 + ..., (1.44)

with β1 =
(
dβ
dω

)
ω=ω0

and β2 =
(
d2β
dω2

)
ω=ω0

. Substituting the expression for η(ω) we obtain

β(ω) =
ω

c
η(ω) =

ω

c

(
1− ω2

p

ω2

)1/2

. (1.45)

Thus,

β1 =
1

c
√

1− ω2
p/ω

2
0

, (1.46)

β2 =
ω2
p

cω3
0(1− ω2

p/ω
2
0)3/2

. (1.47)

Following Agrawal [35], β1 is the first order dispersion or the reciprocal of the group velocity,

while β2 is related to the group velocity dispersion, which directly contributes to the temporal

broadening of the laser pulse; for ωp � ω however, such broadening effect is not significant.

Self-focusing of a Laser Beam in Plasma

At high laser intensities, the refractive index of a medium starts to show an intensity-

dependence of the form

η = η0 + η2I, (1.48)

where η0 and η2 are linear and nonlinear refractive indexes depending on the medium. For

solid-state media, this is the optical Kerr effect. For positive η2, a laser pulse with highest

intensity near the propagation axis will cause a refractive index profile which is also higher

near the axis. This implies that the medium will act like a continuous focusing lens, which

suppresses diffraction and creates higher and higher peak intensity as the laser pulse propa-

gates. In the case of the optical-Kerr effect, the critical power above which the self-focusing
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effect overcomes diffraction is [35]

Pcr = α
λ2

4πη0η2

,

with α ≈ 1.8962 for a Gaussian beam. The critical power for plasma self-focusing is instead

[32]

Pcr =
4πε0m

2
ec

5ω2

e2ω2
p

≈ 17

(
ω

ωp

)2

GW,

where ω and ωp are the wave and plasma frequencies respectively.

Similarly, self-phase modulation of a laser pulse propagating in plasma can be treated in

analogy to self-phase modulation of a laser pulse in a fiber: The refractive index will also

vary in time due to the temporal variation of the intensity, which means that different parts

of the pulse experience different responses from the medium. The variation in refractive

index causes a self-induced phase shift in the pulse, that increases with propagated distance

according to

φ = βz − ω0t =
ω0η(z, t)z

c
− ω0t (1.49)

=
ω0η0z

c
+
ω0η2I(z, t)z

c
− ω0t.

The phase φ can be divided into a linear part φL = ω0η0z/c−ω0t, and an intensity-dependent

nonlinear phase shift φ = ω0η2I(z, t)z/c due to nonlinear refraction. Since the instantaneous

frequency of the pulse is given by the time derivative of the phase, it will also show an

intensity dependence according to

ω = −∂φ
∂t

= ω0 −
ω0η2

c

∂I

∂t
z. (1.50)

It is thus clear that new frequency components will be generated as the pulse propagates

in the medium. Depending on the sign of ∂I/∂t, the spectrum will be either blue- or red-

shifted. For the leading edge of the pulse, ∂I/∂t > 0 and the spectrum correspondingly

shifts towards the red. For the trailing edge, ∂I/∂t < 0, the spectrum instead shifts towards

the blue. This phenomenon is referred to as self-phase modulation (SPM); it is the temporal

counterpart to self-focusing due to the optical Kerr-effect. The spectral broadening due to

SPM is associated with an oscillatory structure over the entire frequency range, where the
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outermost peaks are the strongest. Due to the generation of new frequencies as the pulse

propagates, SPM induces a chirp in the pulse. Unlike GVD the induced chirp is nonlinear,

which makes the pulse impossible to compress [35]. If however SPM and GVD act together

on equal footing, a spectral broadening will occur simultaneously with a linear chirp, which

can be used to compress pulses. If normal dispersion prevails, the pulse stretches more

rapidly compared to the situation when only GVD is present. This can be explained by

the fact that SPM generates red-shifted frequency components at the leading edge of the

pulse and blue-shifted at the trailing edge. Since low frequencies travel faster than high for

normal dispersion, the pulse shows an enhanced temporal stretching. Due to the decrease

in intensity, the SPM-induced phase shift decreases, according to equation (1.50). If the

dispersion is anomalous instead, the pulse initially stretches at a much lower rate than if

only GVD were present and eventually reaches a steady state. Since the SPM-induced chirp

is positive for the central part of the pulse, while the dispersion-induced chirp is negative,

the two contributions will counteract each other, thus limiting the temporal stretching of

the pulse, and the broadening of the spectrum.

1.3 Plasma Bubble Wiggler

The ion channel, despite all its advantages as a wiggler, is very difficult to create and main-

tain; especially when the required length is long. The maintenance of channel symmetry

and plasma density uniformity both become great experimental challenges. However, an ion

channel is not the only form of plasma cavity that can be used to contain a laser-electron

beam resonant interaction. A strongly nonlinear “bubble” regime has been observed in sim-

ulations and confirmed by experiments [36]. In this regime, the background electrons are

completely evacuated from the first period of the plasma wave excited behind the laser pulse,

as shown in Fig 1.3, and an “electron bubble” is formed. The ion density in this bubble is

many orders of magnitude higher than those observed in beam-plasma interaction experi-

ments using ionising beams with low density. For example, the ion density in the bubble

can be as high as 1019 cm−3, which is 105 times higher than the highest achievable plasma

density using beam-plasma interaction. Therefore the radiated power in the laser-produced

channel can be 1010 times higher than available with a beam-driven plasma channel using

the formula derived in [37]. The bubble moves with the group velocity of the laser pulse,

which is close to the speed of light. A relativistic electron bunch injected into the bubble can

propagate inside the bubble over a very long distance. Hence, in spite of the small length of
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the bubble, the electrons can oscillate in the bubble for a long time, if the acceleration force

from the plasma wave excited by the laser pulse can be sufficiently suppressed.

Figure 1.4: Schematic of wakefield bubbles trailing a laser pulse in the blowout regime,
from [38]

1.3.1 The Plasma Bubble Structure

We start with Kostyukov’s [39] results for fields within an ionic sphere at rest, before moving

on to the relativistic cavity moving in plasma. The electromagnetic field of the uniformly

charged sphere at rest is purely electrostatic. The electric field and the scalar potential inside

the sphere with radius R and with the charge density en0 are

E =
r

3
, (1.51)

B = 0, (1.52)

φ = 1 +
R2

6
− r2

6
, (1.53)

where we choose the boundary condition of the potential φ(R) to be equal to unity at the

sphere boundary, and normalize the fields to the units defined in (1.38). r is the distance

from the centre of the bubble. If the ionic sphere travels at the relativistic velocity βg ≈ 1

along the z-axis then the fields inside the sphere are:
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Ez = 0, Ey = Bx =
y

2
, (1.54)

Bz = 0, Ex = −By =
x

2
, (1.55)

after neglecting terms proportional to γ−1
0 � 1. We now investigate the fields inside a

spherical electron cavity moving in plasma. Contrary to the case discussed above, the ions

are now immobile in the cavity while the cavity moves at the relativistic velocity v0 ≈ 1

along the z-axis. The ion dynamics is neglected because the cavity radius is assumed to be

smaller than the ion response length ≈ c/ωpi, where ωpi = (Ze)2ni/(ε0mi) is the ion plasma

frequency, with Ze the ion charge and mi their mass. To calculate the fields we notice that

under the similar ultra-relativistic and quasi-static approximation used in 1.2.5 the Lorenz

gauge (1.34) admits another solution

Az =
Φ

2
= −φ, (1.56)

which can be used to obtain the Maxwell equations for potentials

∆Φ = 1− ne
(

1− pz
γ

)
+

(
∂

∂t
+

∂

∂z

)[
∇ ·A +

1

2

∂

∂t

(
∂

∂t
− ∂

∂z

)
Φ

]
, (1.57)

∇× (∇×A) + ne
p

γ
+
∂

∂t

(
∂A

∂t
− ∇Φ

2

)
= 0. (1.58)

Here we use the wake field potential Φ = Az − φ instead of the scalar one, ne is the electron

density, and p is the electron momentum. Solving the two equations of potentials with

spherical symmetry we get

Φ = 1− R2

4
+
r2

4
. (1.59)

The Lorentz force acting on a relativistic electron with βz = 1 inside the cavity is thus

Fz = −∂Φ

∂ξ
= −Ez =

ξ

2
, (1.60)

Fy = −∂Φ

∂y
= −Ey −Bx = −y

2
, (1.61)

Fx = −∂Φ

∂x
= −Ex +By = −x

2
. (1.62)
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Note that the x-component is not needed assuming that the electron remains in the y-z-plane.

The wake potential Φ can be considered as the potential of the Lorentz force on electrons

with vz = 1. The Lorentz force approaches its peak as the velocity of an electron approaches

vz = v0 ≈ 1 while it approaches zero the electron with speed close to vz = −1 because of the

relativistic compensation of the electrostatic force by the self-magnetic force. Notice that

this effect is opposite to that of the relativistically moving ionic sphere. This is because the

displacement current in the cavity is opposite to the ion current in the relativistically moving

ion sphere.

Let us now consider now an electron moving in the bubble field, with trajectory r(t). If

at some point dξ/dt = 0, with ξ(t) = z(t)− v0t, i.e., vz = v0, the electron can be “trapped”

within the bubble as it moves at the same velocity as the cavity base. If ξ remains slowly

varying, the electron Hamiltonian can be separated into a sum of parts corresponding to

transverse and longitudinal motion,

H = γ‖ + h⊥ +
ξ2

4
. (1.63)

Where γ‖ ≈ pz represents the kinetic energy corresponding to longtudinal motion, and

h⊥ ≈ R2
β/4 corresponds to the haromic motion in the transverse direction, with Rβ being the

amplitude of the oscillation. The conservation of h⊥ under the zeroth-order approximation

to A allows us to apply the analysis of the resonant electron-radiation interaction in the ion

channel, which will be developed in Chapter 2, to electrons in the plasma bubble as well.

1.3.2 Resonance-Enhanced Betatron Oscillation in the Ion Chan-

nel

If the electron beam co-propagates in the plasma channel or the moving bubble cavity with

a high-power laser beam, for which eAy � cpy, where py is the (average) transverse electron

momentum, and ∂Ay/∂t is non-negligible (the large-signal condition), and if furthermore

the betatron phases of the transverse electron oscillations match the phase of the laser field,

the betatron amplitude experiences a large growth [40–42]. This phenomenon gives rise to

a large-betatron amplitude oscillation of the electron beam, whose theoretical potential as a

source of coherent radiation will be explored in the following chapter. This can be described

by a similar theoretical model to the more rigorous one developed in Chapter 2. We use

the so-called ‘transverse energy’ term h⊥ defined in (1.63) for the ion channel Hamiltonian,

which expresses the maximum kinetic energy of the electron undergoing betatron oscillation.
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It is easy to see that, in non-normalized units,

h⊥ ≈
mω2

pR
2
β

4
, (1.64)

where Rβ is the unnormalised amplitude of the betatron oscillation. Since the extremities of

oscillation, where the transverse kinetic energy is fully converted to the harmonic potential,

are the points where y = Rβ, the maximum of the harmonic potential energy can not exceed

mω2
pR

2
β/4. We can then further express the Hamiltonian of an electron interacting with a

linearly polarized laser field in an ion channel, while oscillating in the y-z plane (a choice

made for simplicity’s sake, as a 3D model would be similar), which is

H =
√
m2c4 + (cpz − eAz)2 + (cpy − eAy)2 +

mω2
py

2

4
, (1.65)

in the form of longitudinal and transverse energy, namely H = cpz +mc2/(γ‖+pz/mc) +h⊥.

The variation equation for the transverse energy can then be written as

dh⊥
dt

= vy

(
∂

∂t
+ c

∂

∂z

)
Ay. (1.66)

When the electron is in resonance with a laser field with large field amplitude, the electrons

start to absorb energy from the laser field and their Rβ values no longer remain constant. If

the vector potential is so large that the loss of laser energy is negligible with respect to Ay

but not h⊥, it satisfies the wave equation in its free-space form

∂2Ay
∂z2

− ∂2Ay
c2∂t2

= 0, (1.67)

which has a solution in the form

Ay = A+(z − ct) + A−(z + ct), (1.68)

where A+ and A− are arbitrary functions. As the electron beam moves in the +z direction,

the resonant interaction only takes place between the beam and a radiation field moving

in the same direction, i.e., fields of the form A+(z − ct). Assuming the laser pulse has a

Gaussian shape and central wave number k, the expression for Ay(z, t) will be Ay(z, t) =

a0 cos(k(z−ct)), with a0 = A0 exp[−(z−zc)2/∆z2
L] where A0 is the maximum vector potential

amplitude, ∆zL is the pulse length, and zc = R+ vgt, where in turn vg is the group velocity
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of the pulse and R is the position of the centre of the bubble at t = 0. Substituting this

expression into Eq. (1.66) we obtain:

dh⊥
dt

= 2mcvy(c− vg)
(z − vgt−R)A0 exp[−(z − zc)2/∆z2

L] cos(k(z − ct))
∆z2

L

. (1.69)

Recalling that in the wave equation, vy is just the transverse current velocity term driving

the generation/absorption of the wave field, Eq. (1.66) can be transformed into the following

equation:

〈
dh⊥
dt

〉
=

2mc2

ω2
b

[(
∂2

∂z2
− ∂2

c2∂t2

)
a1 cos(k(z − ct))

](
∂

∂z
+

∂

c∂t

)
a0 cos(k(z − ct)), (1.70)

where the angle brackets denoting the averaging over the whole ensemble of electrons, ωb is

the plasma frequency of the electron beam, and a1 is the normalized amplitude of the wave

field generated by the collective movement of the electrons. Assuming a0 � a1, applying the

slowly varying envelope and amplitude assumptions [43]:

∣∣∣∣
∂a1(z, t)

∂z

∣∣∣∣� k|a1(z, t)|, (1.71)

∣∣∣∣
∂a1(z, t)

∂t

∣∣∣∣� ω|a1(z, t)|, (1.72)

which we will return to in Chapter 2, equation (1.70) can be further simplified to contain

only total time derivatives d/dt ≈ ∂/∂t+ c∂/∂z:

〈
dh⊥
dt

〉
=

2ωmc2

ω2
b

(
da1

dt
e−i(k(z−ct)) + c.c.

)
da0

dt
cos(k(z − ct)). (1.73)

After integrating both sides, and eliminating the oscillating cos(2(k(z− ct)) term, the slowly

varying envelope approximation is applied once again to eliminate terms proportional to

d2a1/dt
2

〈h⊥〉 ≈ h0 +
2ωmc2

ω2
b

a′1a0 + c.c.

≈ h0 + 〈vβa0 exp(−iψ)〉, (1.74)
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where vy = vβ cos(ωβt) has been assumed. Eq. (1.74) demonstrates that within a co-

propagating Gaussian pulse, the electrons with betatron oscillation frequencies equal to (i.e.

in resonance with) the frequency of the laser field will be driven to oscillate at an amplitude

that depends on the magnitude of the laser vector potential. High-frequency radiation from

such highly resonant betatron oscillations has been observed by, e.g., Cipiccia et al., [40],

both in experiment and simulation. The following OSIRIS [44] simulation results showing

the resonant growth of the betatron amplitudes of a monoenergetic ultrashort electron pulse

in the strongly damped, weakly and strongly resonant regimes are reproduced from Ref. [40]:

Figure 1.5: (a). Snapshot of the electron distribution from Cipiccia et al., [40]. (b)-(d),
Electron beam trajectories for the strongly damped (b), weakly resonant (c) and strongly
resonant (d) case.(e)-(h), The evolutions, for a selected trajectory, are shown of γ (e), aβ =
γ.rβ , (f), rβ (g), and the first (black line), second (green line) and third harmonics (blue
line) of ωβ, and ω, the Doppler-shifted laser frequency as seen by the electrons (red line)
(h). The three vertical dashed lines indicate the three different regimes that can occur with
almost the same γ. Parameters used in simulation: ne = 1.8 · 1018cm−3 λ= 800 nm, laser
spot size 35 µm, laser pulse duration 70 fs and initially a0 = 3. The normalized transverse
momentum varies from aβ = 5.6 for rβ = 1µm to aβ = 150 for rβ = 20µm, at γ = 1, 600.
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Chapter 2

Electron Motion in an Ion Channel

2.1 Electron Dynamics and Particle Equations

In this section, the single-electron dynamics for small initial radiation field in an ion channel

will be investigated using the Hamiltonian-separating method. In this method, the relativis-

tic Hamiltonian is separated into parts corresponding to electron motion in the longitudinal

and the transverse direction, respectively, and equations of motion are obtained for each. We

first consider the small-signal model of a single electron interacting with a co-propagating

monochromatic wave along the z-axis in an ion channel. We restrict ourselves to slab ge-

ometry with electrons oscillating only in the y − z plane, which, we will show later, is a

good approximation to electrons in a 3D model, where the harmonic potential depends on

both the x and y coordinates. The ion channel is assumed to be perfectly ionized and void

of free electrons, with a radius much larger than the laser beam radius, so that there is

no waveguiding and the phase velocity of light is equal to that in the vacuum. The initial

transverse momentum of the electron at its injection point, py0, is considered to be negligibly

small in comparison to the transverse momentum generated by the channel electric field, so

that the electron is pulled towards the channel axis immediately at the injection point. We

write down the Hamiltonian for such a model as given by [1]:

H =
√
m2c4 + c2p2

z + (cpy − eA)2 +
mω2

py
2

4
, (2.1)

where A is the transverse vector potential of the laser field, py and pz are the canonical

momenta along the y and z axis, respectively. Furthermore, ωp =
√
npe2/(meε0) is the
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plasma frequency, with np = Zni the electron density that would neutralize the ions, where

Ze is the ion charge and ni is their number density in the ion channel. Unlike in [45], the

time variable t, rather than z, is chosen to be independent, largely because the ion channel

beam electrons do not oscillate in a spatially periodic field as in a FEL wiggler. Instead, the

field strength the electron experiences is entirely dependent on its distance from the axis,

i.e., its y coordinate, which is in turn dependent on its initial position and the time variable,

but independent of z.

We derive the equations of motion using the following units normalized to ωp, wave

number kp = ωp/c, and wavelength λp = 2π/kp, in SI units

y, z → kpy, kpz,

vy, vz → vy/c, vz/c,

py, pz → py/mc, pz/mc

A→ eA/mc,

Φ→ eΦ/mc2,

t→ ωpt,

k, ω → k/kp, ω/ωp. (2.2)

Following this normalization, the Hamiltonian can be expressed as

H =
√

1 + p2
z + (py − A)2 +

y2

4
. (2.3)

Separating the Hamiltonian into two parts representing the kinetic energy and the elec-

trostatic potential energy, respectively, we obtain

H = γ +
y2

4
, γ =

√
1 + p2

z + (py − A)2. (2.4)

If the maximum excursion of the electron from the channel axis (known as the betatron

amplitude of the electron) is much smaller than the ion channel radius and the width of

the radiation pulse, the transverse variation of the laser field can be neglected. The vector

potential can be expressed as A = A0 sin(kz − ωt + φ), where A0 and φ are considered to

vary on a length scale much longer than the radiation wavelength, and can thus be treated as
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constant on this scale. The equations of motion can thus be obtained from the Hamiltonian,

y′ =
py − A
γ

, (2.5)

z′ =
pz
γ
, (2.6)

p′y = −y
2
, (2.7)

p′z =
py − A
γ

kA0 cos(kz − ωt+ φ), (2.8)

where the prime denotes the time derivative. All the wave and particle equations can be

transformed into a “harmonic oscillator” form, where the variables corresponding to slow

bunching motion and rapid betatron oscillation can be separated. Using the relation
dH

dt
=

∂H

∂t
=
ω

k

dpz
dt

=
dpz
dt

, assuming that ω = k in the last step, we obtain the following constant

of motion:

a2 ≡ H − pz = const. (2.9)

Explicitly,

a2 = γ − pz +
y2

4
=
γ2 − p2

z

γ + pz
+
y2

4
. (2.10)

Substituting γ2 − p2
z = 1 + (py − A)2 into the last equation, we obtain the transformed

Hamiltonian:

H = pz +
1 + (py − A)2

γ + pz
+
y2

4
. (2.11)

For pz � 1, the term
1

γ + pz
will remain nearly constant throughout the interaction time;

therefore, we can define the betatron amplitude rβ in terms of a new constant of motion, the

“transverse energy” term
r2
β

4
= a2 − 1

γ + pz
≈ a2 − 1

γ0 + pz0
, and further express y and the

transverse velocity vy in terms of rβ and the betatron oscillation phase θ

y = rβ sin(θ), (2.12)

vy = rβθ
′ cos(θ). (2.13)
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Combining (2.5) with (2.13), we can derive the betatron frequency ωβ, which is the first

order derivative of the betatron phase,

ωβ ≡ θ′ =

√
γ + pz
2γ

. (2.14)

The laser frequency as experienced by the electron (due to its axial velocity) is

ω − kvz = ω
γ − pz
γ

= ω

(
1

2γ2
+
r2
β cos2(θ)

8γ

)
. (2.15)

In the unscaled form, the frequency expressions are:

ωβ = ωp

√
γ + pz
2γ

, (2.16)

(2.17)

ω − kvz = ω

(
1

2γ2
+
ω2
pr

2
β cos2(θ)

8γ

)
. (2.18)

The cos2(θ) term gives rise to higher-order harmonics and a reduced coupling between the

electron beam and the fundamental harmonic. This coupling factor approaches its lowest

value, 0.7, when γrβ � 1 [46]. As the effective change in the amplitude of the field is less than

30%, we will assume r2
β ≈ r2

β cos2(θ)/2. in this chapter, and return to the discussion of high

harmonics and formally define the coupling factor in Chapter 4. The betatron amplitude rβ,

on the other hand, remains constant during the entire interaction with the laser field as long

as the variation in the envelope of field vector potential is much smaller than the oscillation

in amplitude within one betatron period, as will be elaborated later in this chapter.

2.1.1 The Resonance Condition

Efficient energy exchange between radiation field and the bunched electrons in the ICL, as

in the FEL, can only occur if the electrons are “in resonance” with the radiation field. That

is, the phase difference between the electron oscillation and the radiation field oscillation,

defined as

ψ = θ + kz − ωt, (2.19)

37



must vary on a time scale much longer than the betatron oscillation period.

There are two ways of defining the electron oscillation phase. Both involve separation of

the rapidly varying from the slowly varying components of the electron motion. In Whittum’s

original work, the phase is defined by expressing the transverse momentum in an eikonal form

py = qy sin(θy), where θy is the rapidly varying phase. In this thesis, however, we define the

rapidly varying term as the betatron oscillation phase of the position variable y, and the

slowly varying term as the betatron amplitude rβ. We favour this approach for a number of

reasons:

1. The definitions are simple and easily understandable, and capable of describing the

rapid evolution of both y and vy.

2. The formal expression of the betatron phase is similar to the FEL synchrotron oscilla-

tion phase kwz.

3. The eikonal formulation will introduce a slowly varying term proportional to the pon-

deromotive phase into the phase variation equation, significantly complicating the anal-

ysis.

The differential equation for the slowly varying phase is obtained simply by differentiating

the RHS of (2.19), using the definitions (2.17), (2.18)

ψ′ ≈ ωβ − ω
(

1

2γ2
+
ω2
pr

2
β

8γc2

)
. (2.20)

The electrons are then said to be in resonance with the radiation field, when their betatron

frequencies are equal to the wave frequency, i.e., ψ′ = 0, which leads to the following equation:

1

γ3/2
+

ω2
pr

2
β

4γ1/2c2
=
√

2
ωp
ω
. (2.21)

We can thus define the γ value satisfying this resonance condition as γr, which is important

for establishing the energy of the electron bunch to be used for generating radiation of a

particular wavelength.

2.1.2 Generalization to 3D theory

Although the relation (2.21), and the ICL theory that follows from it, have been derived

using slab geometry, they can be extended to model electrons in 3D, when the laser wave
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electric field is linearly polarised in the y direction, by simply redefining r2
β as

r2
β = 4

(
p2
x + (py − A)2

γ + pz
+
x2

4
+
y2

4

)
. (2.22)

It can then be checked that the constancy of r2
β is preserved as the relation r2

β/4 ≈ H − pz−
1/(γ0 +pz0) still holds regardless of which definition of r2

β is used, whereas the ponderomotive

phase of each electron will see a constant phase factor dependent on the direction of electron

oscillation added to it. The formulation of ICL theory can therefore be directly applied to a

3D model.

2.2 High-Gain Steady-State Theory of the ICL

2.2.1 Introduction

In the previous section, we showed that for slowly-varying field envelope, the betatron am-

plitude of an oscillating electron in an ion channel is not influenced by the energy exchange

between electron and the radiation field. Therefore, the initial betatron amplitude rβ,0 can

be solely defined by the electron’s initial transverse position y0 at injection into the channel,

and its initial phase θ0, through the relation

y0 = rβ,0 cos(θ0). (2.23)

If the electron is injected parallel to the channel axis, we have θ0 = 0 and y0 = rβ, i.e., the

maximum excursion of the electron from the axis is just its initial y value.

So far, we have considered a single electron. When referring to one of the electrons

(the jth) in a bunch or beam, we shall denote the corresponding electron variables by an

additional subscript j.

The method of injection used has a significant influence on the amplification. In the ICL

theory proposed by Whittum [1], a round beam with a finite betatron amplitude spread

centered on axis is proposed, as shown in Fig. 2.1. This assumption restricts the mean

betatron amplitude to be rb/
√

2, where rb is the beam radius. Additionally, in this case

the value of rb must be much smaller than 2/
√
γ, otherwise the spread, which depends on

rβ, will grow so large that it prevents amplification from taking place. In this section, we

investigate a new form of injection: off-axis injection of an electron beam displaced from the

channel axis by a distance larger than the beam radius. For an ion channel with a channel
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radius defined as ra, and ra � rb, it is possible to adjust the mean betatron amplitude

of an electron bunch, Rβ, to give a large initial mean transverse displacement from the

axis that is independent of the beam radius and also the betatron amplitude spread, with

Rβ � rb. The mean initial betatron phases of the electrons θβ0 will thus be non-zero, which

suggests that injecting electrons on-axis at an angle may lead to similar results. An electron

bunch with a large initial rβ and a narrow betatron phase distribution could possibly be

produced experimentally by harmonically driving them with a high-power laser during their

acceleration phase in the wakefield accelerator, as described in Chapter 1 and shown in

Figure 1.5.

Compared with on-axis injection described in Whittum’s paper [2], off-axis injection has

a number of advantages, including allowing adjustment of the betatron amplitude indepen-

dently from the beam radius, which enables the use of a much larger wiggler parameter

value aβ than feasible for a traditional FEL. (aβ = rβωp
√
γ/2, as described in Whittum’s

work, is analogous to the FEL wiggler parameter aw.) A high aβ value will also improve

amplifier efficiency, in addition to reducing the requirement for a small intrinsic energy and

betatron amplitude spread. The disadvantage of off-axis injection is that it makes coherent

amplification of high-frequency electromagnetic radiation, especially in the X-ray regime,

theoretically very difficult to achieve without using a very high energy beam, which can be

partly compensated for by amplification using high-harmonic production, a topic of discus-

sion in Chapter 3. In reality, however, the production of an electron beam with sufficiently

small mean betatron amplitude is so difficult that using off-axis injection maybe the only

realistic option for building an ICL to generate high-frequency radiation.
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Figure 2.1: On-axis injection using a round beam with a step radial profile with beam radius
rb in an ion channel with radius ra, surrounded by quasi-neutral plasma.

Figure 2.2: Scehmatic plot of the cross section of an ion channel when a ring-shaped beam
with σ(rβ)� Rβ and uniform θx and θy, is injected off-axis.

A ring-shaped injection beam as shown in the Figure 2.2 would be very difficult to realize

experimentally. However, injection of a small segment of the ring, as shown in Fig. 2.3 is

sufficient. The motion of electrons injected in such a manner can also be adequately modeled

using slab geometry if, for a co-propagating wave with linear polarization along y, say, the
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initial excursion and momentum in x direction are negligible. The equations of motion can

then be formulated without the x coordinate.

Figure 2.3: Off-axis injection at the channel entrance using a segment-shaped rather than a
ring-shaped beam with σ(rβ)� Rβ.

2.2.2 The Wave Equation

The following unscaled inhomogeneous wave equation for the vector potential Ay of the laser

field can be deduced from from the Maxwell equations

(
∇2
⊥ +

∂2

∂z2
− 1

c2

∂2

∂t2

)
Ay = −µ0Jy, (2.24)

where µ0 is the vacuum permeability and Jy the transverse current density. The latter

can be expressed in terms of delta functions representing individual electrons (Klimontovich

distribution) as

Jy(~r, t) =
∑

j

Jy,j(~r, t), with Jy,j(~r, t) = −evy,j(t)δ(~r − ~rj(t)), (2.25)

where ~rj(t) is the trajectory of the j-th electron and vy,j is the y-component of its velocity.

The Coulomb gauge, which removes the dependence of the vector potential on the longitu-

dinal current, is chosen so that the Hamiltonian in (2.3), which does not depend on Az, can

be used in this analysis.
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The y-dependence of the single-electron current density Jy,j(~r, t) = −e gj(y, t) δ(x −
xj(t)) δ(z − zj(t)) is given by

gj(y, t) = vy,j(t)δ(y − yj(t)), where yj(t) = rβ,j sin θj and thus vy,j(t) = ωβ,j rβ,j cos θj,

(2.26)

with θj being the betatron phase of the electron and ωβ,j = ωp
√
γj + pz,j/(2γj). This can be

expanded in a Fourier series

gj(y, t) =
∞∑

m=0

gm,j cos(mθj) +
∞∑

m=1

hm,j sin(mθj) (2.27)

=
∞∑

m=0

gm,jTm(cos(θj)) +
∞∑

m=1

hm,jUm−1(cos(θj))ŷj,

where ŷj = yj/rβ,j, Tm(cos(θj)) = cos(mθj) and Um(cos(θj)) = sin((m + 1)θj)/ sin(θj) are

Chebyshev polynomials of the first and second kind, respectively. The coefficients gm,j and

hm,j can therefore be evaluated by projecting the current density onto the Fourier series:

gm,j =

∫ 3π/2

−π/2
dθj cos(mθj)ωβ,jrβ,j cos(θj)δ(y − yj)

=
ωβ,jrβ,j
π

(

∫ 1

−1

dŷj Tm(
√

1− ŷ2
j )δ(ŷ − ŷj) +

∫ −1

1

dŷj Tm(−
√

1− ŷ2
j )δ(ŷ − ŷj)),

hm,j =

∫ 3π/2

−π/2
dθj sin(mθj)ωβ,jrβ,j cos(θj)δ(y − yj)

=
ωβ,jrβ,j
π

(

∫ 1

−1

dŷj Um−1(
√

1− ŷ2
j )ŷδ(ŷ − ŷj) +

∫ 1

−1

dŷj Um−1(−
√

1− ŷ2
j )ŷδ(ŷ − ŷj) ).

(2.28)

Using the relation δ(ŷ− ŷj) = δ(ŷj − ŷ), and
√

1− ŷ2 = cos(θ)the entire series expansion of

gj(y, t) is obtained:

gj(y, t) =
ωβ,jrβ,j
π

((T1(cos(θ))− T1(− cos(θ))) cos(θj) + (U0(cos(θ))− U0(− cos(θ)))ŷ sin(θj) + ...)

(2.29)
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Applying the symmetry properties of the Chebyshev polynomials to the expansion we have

gj(y, t) =
2ωβ,jrβ,j

π
(cos(θ) cos(θj) + sin(2θ) sin(2θj) + ...). (2.30)

The expression (2.30) shows that the fundamental Fourier term of the current density of

each electron is a smooth function of ŷ = cos(θ) with effective size comparable to the

betatron amplitude, and the strongest feedback occuring at the axis of the ion channel, which

decreases linearly towards the extremities of the betatron oscillation. For 2-D geometry to

be applicable, the bunch width in the perpendicular (x) direction should be small compared

to the betatron amplitude.

The source size determines how strongly the emitted radiation diffracts. We postpone

the discussion of diffraction and assume for the moment that it can be neglected. This leads

to the wave equation in one dimension (1-D)

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
Ay = −µ0Jy. (2.31)

As in FEL theory, coherent radiation emission is a collective process involving electrons

that initially oscillate at different phases, with the radiation field acting as a medium for

transmitting information between the electrons, creating a feedback loop that amplifies the

initial radiation field. Therefore, a model using collective variables is more suitable for

describing this process. The main difference from the FEL, however, is that the transverse

velocity of each electron is determined by its own betatron amplitude and phase through the

relation (2.26) Therefore the wave equation can be written as

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
Ay = µ0enx

∑

j

gj(y, t)δ(z − zj(t)), (2.32)

where nx = NeΠ(2x/∆x)/∆x represents the electron number density in the y− z plane after

the average over a top hat distribution Π(2x/∆x) in the x direction, with ∆x being the

effective width of the distribution.
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2.2.3 The Slowly-Varying Envelope Approximation

The wave equation Eq.(2.31) can be expressed in complex exponential form by introducing

the complex vector potential amplitude Ar defined by

Ay = −iAr exp[ik(z − ct) + iφ]/2 + c.c., (2.33)

where c.c. denotes the complex conjugate of the preceding term. We substitute this expres-

sion into the wave equation (2.32) (using ω = ck)

1

2

[
−i
(
∂2ar
∂z2
− ∂2ar
c2∂t2

)
+ 2k

(
∂ar
∂z

+
∂ar
c∂t

)]
ei(kz−ωt) + c.c. = µ0enx

∑

j

gj(y, t)δ(z − zj(t)),

(2.34)

The collective complex amplitude ar = Are
iφ of the radiation wave varies on the scale of

the interaction length, which is usually much larger than the radiation wavelength. For

the steady-state propagation model, this condition is always satisfied. The wave equation

can thus be simplified using the following relations, called the Slowly Varying Envelope

Approximation(SVEA):

∣∣∣∣
∂ar(z, t)

∂z

∣∣∣∣� k|ar(z, t)|, (2.35)

∣∣∣∣
∂ar(z, t)

∂t

∣∣∣∣� ω|ar(z, t)|. (2.36)

Now the wave equation can be reduced to the following form, with second order derivatives

of Ar neglected

1

2

[(
∂

∂z
+

1

c

∂

∂t

)
ar

]
ei(kz−ωt) + c.c. =

µ0enx
2k

∑

j

gj(y, t)δ(z − zj(t)). (2.37)

If we multiply both sides of the equation by e−i(kz−ωt), terms varying on the scale of the

radiation wavelength can be further removed from both sides of the equation, as can be

found from (2.30), only the term oscillating at the fundamental betatron frequency will

remain after integrating both sides of the resulting equation over the domain occupied by
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the electron bunch in the phase space χ[a,b;−Rβ ,Rβ ] with a < z < b and −Rβ < y < Rβ,

(
∂

∂z
+

1

c

∂

∂t

)
ar =

µ0enx
kNe

∑

j

∫ Rβ

−Rβ
dy

∫ a

b

dz vy,j(t) exp[−i(kz − ωt)]δ(y − yj(t))δ(z − zj(t))

=
µ0enx
kNe

∑

j

∫ 1

−1

dŷωβ,jrβ,j
√

1− ŷ2δ(ŷ − ŷj) exp[−i(kzj − ωt)]

=
µ0enx
2kNe

∑

j

ωβ,jrβ,j exp[−i(θj + kzJ − ωt)] + ωβ,jrβ,j exp[i(θj − kzj + ωt)]

(2.38)

The second exponential expression in Eq. (2.38) can be neglected, as a resonance relation

that will make it slowly-varying can never be satisfied due to the speed of the light limit.

Representing the slowly-varying phase difference between the rapidly-varying betatron and

radiation phases with the variable ψj = θj + kzj − ωt, introduced in Eq. (2.19). The angle

bracket symbols can be used to denote the averaging in the source term, as in Chap.1, which

leads to the unscaled wave equation of ICL

(
∂

∂z
+

1

c

∂

∂t

)
ar =

µ0enx
2k
〈ωβ,jrβ,je−iψj〉. (2.39)

Normalise the field potential with (2.2), we will have

(
∂

∂z
+

1

c

∂

∂t

)
A =

ω2
b

2ωc2
〈ωβ,jrβ,je−iψj〉 (2.40)

where ω2
b = ω2

pnb/np, with nb being the electorn bunch density and np the plasma density,

A = (mc/e)ar is the normalised field potential.

2.2.4 The Steady-State ICL Equations

The Particle Equations of Motion

The coordinate ψ represents the difference between the betatron and radiation phase, which

is just the slowly varying variable we were looking at in the first section. Using relations

obtained in the first section, it is straightforward to write down the first order equation of
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motion for this coordinate as a function of γj and rβ,j, for each electron:

dψj
dt

=
ωp√
2γj
− ω

(
1

2γ2
j

+
ω2
pr

2
β,j

8γjc2

)
. (2.41)

The energy variation equation expressed in slowly-evolving variables can also be obtained:

dγj
dt

=
ωprβ,j

4
√

2γj
exp(iψj)

(
kar − i

∂ar
∂z

)
− iω

2
b

ω
〈exp(−iψj)〉 exp(iψj) + c.c.. (2.42)

The wave equation obtained using the slowly varying envelope approximation is a first order

PDE with the mean beam electron velocity very close to the speed of light (e.g., for a electron

with γ = 400, the longitudinal velocity βz ≈ 0.999997). The highly relativistic nature of

the electron is not only vital for the electron to maintain a small ponderomotive phase drift

with its co-propagating radiation field (i.e., to satisfy the resonance condition), but also

to approximately maintain its relative position to the radiation profile. In this case the

radiation field ‘sees’ an almost infinitely long bunch and is considered to be in a “steady

state”.

In this chapter, we investigate the situation where the slippage between electrons and

radiation can be neglected (i.e. vz ≈ c). In this case, the wave equation can be transformed

into an ODE using the following relation:

(
∂

∂z
+

1

c

∂

∂t

)
ar =

1

c

(
c
∂

∂z
+
∂

∂t

)
ar ≈

1

c

(
vz
∂

∂z
+
∂

∂t

)
ar =

1

c

dar
dt
,

which gives us the steady-state wave equation for the normalised field potential

dA

dt
=

ω2
b

2ωc
〈ωβ,jrβ,je−iψj〉 (2.43)

Space Charge Effects

The repulsive force between electrons can inhibit the formation of a bunched electron beam.

To investigate the influence of the space charge effect on bunching, the longitudinal electro-

static field Esc,z can be approximated by neglecting the transverse derivatives in

∇ · ~Esc ≈
∂

∂z
Esc,z =

e

ε0

(
np −

1

∆x

N∑

j=1

δ(y − yj)δ(z − zj)
)
. (2.44)
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Assuming that the field is periodic on the scale of the radiation wavelength we can expand

the RHS into a Fourier series with respect to ψ̂, to obtain

∂

∂z
Esc,z =

e

ε0

(
np −

k

∆x∆y

N∑

j=1

δ(ψ − ψj)
)

=
e

ε0

(
np − nb

∞∑

n=−∞
exp(inψ)〈exp(−inψ)〉

)
.

(2.45)

By integrating this equation we find

esc =
eEsc,z
meωc

=
ω2
p

ω2
z + i

ω2
b

ω2

∞∑

n=−∞

exp(inψ)〈exp(−inψ)〉
n

. (2.46)

We keep only the first harmonic term, as is appropriate for the linear analysis of the ICL

equations carried out in the next section.

esc ≈ i(ωb/ω)2 exp(iψ)〈exp(−iψ)〉+ c.c. . (2.47)

The right hand side is proportional to the bunching factor 〈e−iψ̃〉, which means that the

electrons will tend to repel each other more as the bunching progresses.

Collective Radiation Feedback on the Betatron Amplitude and Frequency

The space charge force is not the only bunching-induced effect that needs to be considered.

The radiation envelope A0’s exponential growth causes the electrons to oscillate asymmet-

rically in the transverse direction, those with sin(ψ) > 0 will gain transverse energy, while

those with sin(ψ) < 0 will lose it, which leads to an increase or decrease in their betatron

amplitudes and betatron frequencies, respectively. The influence of bunching on the evo-

lution of betatron amplitude and frequency can be directly obtained with the Hamiltonian

approach, by using the single-electron Hamiltonian in the split form (2.11)

r′β ≈ (a2)′/(2rβ) = (H − pz)′/(2rβ)

= [iA′ exp(iψ) + c.c.]/[(8γ)1/2]. (2.48)
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The expression of betatron frequency can then be written by substituting (2.48) into the

equation

rβ
ωp
√
γ + pz
2γ

sin(θ) = rβθ
′ sin(θ)− r′β cos(θ), (2.49)

which gives:

θ′ =
ωp
√
γ + pz
2γ

+
icA′ exp(iψ) + c.c.

2ωp(2γ)1/2rβ
. (2.50)

Linearisation of the ICL Equations in the Compton Regime

With the ponderomotive phase and energy evolution equations at hand, the electron beam

dynamics can be described by utilizing the concept of the bunching factor, which is defined

as

b = 〈e−iψ〉. (2.51)

Its evolution equation can be obtained as

b
′
= −i〈ψ′e−iψ〉. (2.52)

As pointed out in the first chapter, the ICL betatron phases θj evolve rather independently

from the wave phase kz − ωt. We now have a set of self-consistent equations ((2.41)-(2.43)

and (2.48)) expressed in slowly-evolving variables which can fully describe the fundamental

physics of collective electron-radiation interaction within the ICL. This set of equations,

however, cannot be solved using analytical methods, though approximate solutions do exist,

see [47]. However, the essential dynamics of the ICL can be captured using a linearized

model, as in the FEL [3], if the average of the kinetic energies and betatron amplitudes

of the electrons in the bunch remain close to their resonance values throughout the whole

interaction, i.e.

∆γ

γr
=
〈(γ − γr)2〉1/2

γr
� 1. (2.53)

If the betatron amplitude variation is sufficiently small, the right hand side of the phase

evolution equation can be expanded in the so-called Compton limit, for a particular rβ,rto
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be:

dψj
dt

=

(
− ωp

2
√

2γr
+
ω

γ2
r

+
ωω2

pr
2
β,r

8γr

)
∆γj
γr

+O

((
∆γj
γr

)2
)

(2.54)

≈ ωp√
2γr

(
1

2
+

1

1 + ω2
pr

2
β,rγr/(4c

2)

)
γj − γr
γr

.

The difference from the FEL ponderomotive phase equation is evident: the amplitude of

the FEL total dimensionless vector potential |awekwz +are
i(kz−ωt)| contains no slowly varying

term in the lowest order under the condition aw � ar, while its counterpart in the ICL

resonance relation, the betatron parameter aβ is a variable depending on both γr and rβ,r.

Equally important is the slowly varying betatron frequency term: although the combined

ponderomotive phase evolves in much the same way as in the FEL theory, the betatron phase

evolves in direct proportion to the wave phase. Thanks to the γ dependence of the betatron

frequency, which introduces a slowly varying term into the betatron phases, the transverse

oscillation velocities of the electrons converge under the ponderomotive force, which leads to

the electrons forming a microbunch transversely on a scale much smaller than rβ, with their

phases centered around a value corresponding to sin(θ0) = 0. This slowly varying term, as

will be discussed in the Chapter 3, will contribute to the enhancement of the amplification

of the fundamental harmonics through the longitudinal jittering term cos2(θ). As a result of

both effects, the first-order coefficient in the linear term will be dependent on both γr and

rβ,r instead of being a constant. If ω2
pr

2
β,rγr/(4c

2) � 1 then the coefficient tends towards

ωp/(2
√

2γr). For the small-betatron amplitude scenario (rβ,r ∼ 0.5− 1 µm), which is useful

in the X-ray regime, due to the large value of γr the full expression must be used, and the

coefficient can vary between ωp/(2
√

2γr) and 3ωp/(2
√

2γr).

Utilizing this expansion in γ, the linearized first order ODE for the bunching factor can

be written as

db

dt
≈ −i ωp√

2γr

(
1

2
+

1

1 + ω2
pr

2
β,rγr/(4c

2)

)〈
p
rβ√
2γr

e−iψ
〉
, (2.55)

where pj = (γj−γr)/γr. We can therefore write down the linearized equation for 〈p(rβ/
√

2γr)e
−iψ̃〉

to complete the linearization, with Rβ being defined as the average of the rβ of the electrons,

d

〈
p
rβ√
2γr

e−iψ̃
〉/

dt ≈
ωpR

2
βkar

8γ
− iω

2
b

ω
〈e−iψ̃〉. (2.56)
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2.2.5 Universal Scaling and Dimensionless Compton ICL Equa-

tions

A dimensionless scaling [3] of the variables can be introduced so that no experimental pa-

rameter appears explicitly in the equations of motion, which greatly simplifies our analysis

of the ICL interaction in a way that only fundamental physical process are included. We first

define the parameter ρ which is central to the universal scaling, for an electron distribution

that is uniform in rβ

ρ =

[
ω2
bR

2
β

γrc2

(
1

2
+

1

1 + ω2
pR

2
βγr/(4c

2)

)]1/3

. (2.57)

If we apply the following universal scaling to the coordinates

p̂j =
1

ρ
pj, âr = 4c3ρar/ω

2
bωβR

3
β, (2.58)

z = (ρωβ/2c)z, t = (ρωβ/2)t,

we obtain the following dimensionless ICL equations

dψj
dt

= p̂j, (2.59)

dp̂j
dt

= −(âre
iψj + c.c), (2.60)

dâr
dt

= 〈e−iψ̃〉, (2.61)

with the space charge effect, which is of the order of ρ, neglected in this section. (It will be

re-introduced later along with the betatron variation effect in a more uniform way.) As we

focus the discussion on ICL dynamics in the Compton limit, it can be immediately noticed

that the scaled and linearized ICL equations in the Compton limit are identical to those of

the scaled and linearized FEL equations [3]. The collective scaled equations for an ideal cold
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beam will also be of an identical form

p(0) =
γ0 − γr
ργr

= δ, (2.62)

pj = p̂j − δ, (2.63)

ψj = ψj − δt, (2.64)

ar = âr e
iδt. (2.65)

In this way the detuning parameter appears explicitly in the equations, which read (dropping

the primes)

dψj
dt

= pj, (2.66)

dpj
dt

= −(ar e
iψ + c.c.), (2.67)

dar
dt

= 〈e−iψ〉+ iδar. (2.68)

The scaled ICL equations can thus be written in a collective form after defining the following

collective variables

A = ar, (2.69)

B = 〈e−iψ〉, (2.70)

P = 〈p e−iψ〉. (2.71)

Neglecting the second order terms as in Sec 3.3, we obtain a closed set of equations

dB
dt

= −iP , (2.72)

dP
dt

= −A, (2.73)

dA
dt

= B + iδA. (2.74)

The similarity between the Compton regime ICL equations, after the scaling (2.58) is applied,

and the classical scaled FEL equations used in [3] allows us to apply the same linear analysis
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to the ICL equations. A single linear differential equation for only A can thus be constructed:

d3A
dt

3 − iδ
d2A
dt

2 − iA = 0. (2.75)

Assuming a solution of the form A ∝ eiλt, we obtain the following characteristic equation,

which determines the instability (existence of a root of the dispersion relation with positive

real part) of the system

λ3 − δλ2 + 1 = 0. (2.76)

Depending on the value of δ, equation (2.76) can have three real roots or two complex

conjugate roots in addition to one real root. In the former case, there will be no growth of

the radiation amplitude and the system will remain stable. In the latter case, one of the

complex roots will lead to exponential growth of the field until non-linear effects become

non-negligible.

It is straightforward to find that the imaginary part of λ is maximum when δ = 0, exactly

at resonance; in this case, (2.76) has three solutions

λ1 = 1, λ2 =
−1−

√
3i

2
, λ3 =

−1 +
√

3i

2
, (2.77)

where λ3 is responsible for the growth of the radiation field.

If instead of choosing an ideal cold beam we assume an initial energy distribution f(p0)

with a finite energy spread, then (2.76) is modified to

λ− δp +

∫ +∞

−∞

f(p0)

(λ+ p0)2
dp0 = 0, (2.78)

according to [46]. The above integral can be analytically solved in certain cases. For the

case of a rectangular distribution in kinetic energy with a half-width δp, the characteristic

equation will become

(λ− δp)(λ2 − µ2) + 1 = 0, (2.79)

where µ2 = 〈p2〉 − 〈p〉2 is the kinetic energy spread. When the betatron amplitude spread is

also considered, the characteristic equation will taken on a more complex form, which will

be the topic of section 2.2.8.
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2.2.6 Constants of Motion and Efficiency

In addition to the conserved transverse energy, Equations (2.66)-(2.68) also admit two con-

stants of motion that can help gaining more physical insight into the interaction process.

The first is

〈p〉+ |ar|2 = C, (2.80)

where C is a constant.This conservation law shows that the energy of the radiation beam is

extracted from the energy of the electron beam and can be used to estimate the saturation

power of the radiation beam in the linear regime

|ar|2sat ≈ ∆|ar|2 =
2ω2

b

ω2
∆〈γ〉 ≈ 2ω2

bρ

ω2
γr. (2.81)

where ∆|ar|2 and ∆〈γ〉 represent the changes in |ar|2 and 〈γ〉, respectively. From the above

relation, we find that the saturation power |ar|2sat ∝ ω2
bρ ∝ n

4/3
e , which implies the existence

of collective behaviour within the electron beam. The efficiency of the ICL can also be found:

υ =
ε0|E0|2
mc2γrne

=
ρ

4
. (2.82)

The second constant of motion is the total Hamiltonian of the electrons and the radiation

field, similar to the one introduced in [45]:

Htot =
Ne∑

j=1

p2
j

2
+ i[ArB − c.c.]. (2.83)

2.2.7 Gain Parameter and Raman Regime of the ICL

The Definition of Gain Parameter and the Range of its Value

Given the definition of t in (2.59) and the exponential form of A, it is helpful to define a

gain length

Lg =
λβ√
3πρ

, (2.84)
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which corresponds to the distance the wave needs to travel for its power to grow by a factor

of e in the linear regime. With Lg we can also define a saturation length

Lsat ≈ Lg ln(9Psat/P0), (2.85)

where Psat is the saturation power, and P0 is the initial power of the beam. From Eq. (2.84)

it is immediately clear that the gain of the radiation amplitude in the wiggler is directly

determined by ρ and λβ, which is the reason why the ρ parameter is also called the gain

parameter.

The formulation of ICL equations under Compton limit is sufficient when the value of ρ

is small (ρ� 0.1). This, however, is not always the case for an ICL, even when an electron

beam with γ � 1 is used for amplification of short-wavelength radiation. This can be seen

by estimating the value of ρ for realistic ICL parameters. We first express the ρ value in

terms of parameters with equal dimensions:

ρ =

[
ω2
bR

2
β

γc2

(
1

2
+

1

1 + ω2
pR

2
βγr/(4c

2)

)]1/3

≈
[

4IπR2
β

IASb

(
1

2
+

1

1 + ω2
pR

2
βγr/(4c

2)

)]1/3

,

(2.86)

where Sb is the cross section of the electron beam and I is the current of the electron beam,

and IA = I0γrβz where I0 = 4πε0mc
3/e is the Alfven limiting current. With I = 4 kA and

γ = 400, parameters routinely attainable in wakefield acceleration experiments, ρ ≈ 0.105

(which corresponds to a ρ value of 0.027 defined using FEL scaling in [3], hereafter referred

to as a ‘FEL equivalent‘ ρ value) when the betatron amplitude is equal to the beam radius,

assuming Rβ = rb and no guiding effect. Therefore, for plausible experimental conditions,

the value of ρ can be large enough to require high density effects to be taken into account.

In addition, the value of ρ for a fixed wavelength can also be large for reasons other than

high electron beam density or low wiggler wavelength, e.g., a correlation in the transverse

betatron phases introduced through pre-bunching. Compared with an electron beam with

uncorrelated initial betatron phases, a beam with correlated betatron phases could have a

smaller beam radius.

It is worth pointing out that the definition of (2.86) ρ for the ICL reveals an important

difference between the ICL and FEL. For both paraxial oscillation and very large Rβ scenar-

ios, the value of ρ of the ICL is independent of the strength of the external electrostatic field.

(The gain, however, does depend on ωp, which determines the strength of the electrostatic
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field.) This property is useful in the following analysis of the influence of space charge effects

on the amplification process.

For large ρ values (Raman regime), a number of effects must be accounted for in the

linearized ICL formulation, namely the space charge effect, betatron amplitude and frequency

variations. We will repeat the process of linearizing the ICL equations, but now include all

terms up to the first order of ρ. We start by extending the scaling (2.59) to include:

sj = rβ,j/Rβ − 1, (2.87)

s = 〈sj〉, (2.88)

aβ =
ωpRβ

√
γ0/2

c
. (2.89)

and use q instead of p to denote the momentum change variable. (2.41)-(2.43), (2.48) can

thus be expressed in the following form by using the resonance relation:

a ′r = (1 + δrβ)〈(1 + s) exp(−iψ)/(1 + q)1/2〉, (2.90)

ψ′j = (2/ρ){(1 + qj)
−1/2 − ρ3a′r

1 + 1/a2
β

− (1 + a2
β)−1(1 + q)−2

− (1 + sj)
2(1 + δrβ)2/[(1 + δγ)

1/2(1 + 1/a2
β)(1 + qj)]}, (2.91)

q′j = −ρar(1 + sj)(1 + δrβ) exp(iψj)/(1 + qj)
1/2

− 2iρ2
(1 + a2

β)2

(3 + a2
β)a2

β

(1 + δt)〈exp(−iψ)〉 exp(iψj) + c.c., (2.92)

s′j = −i(ρ2/8)〈(1 + δt) exp(−iψ)〉 exp(iψj)/(1 + qj)
1/2 + c.c., (2.93)

where the primes denote derivatives with respect to τ , and aβ = ωprβ,r
√
γr/2, where in turn

rβ,r and γr are combinations of rβ and γ values that satisfy the resonance relation (2.21) for

ω and ωp, with their detunings being defined by δrβ and δγ respectively, which sum to the

total detuning δt.

Comparing Equations (2.90) -(2.93) with the linearized ICL equations in the Compton

regime and the FEL equations, we notice several important differences, which will be dis-

cussed below.

When feedback of the beam bunching on the betatron amplitude is taken into account, we

find that the derivative of the betatron amplitude sj becomes proportional to the bunching

factor and is similar to the longitudinal space charge force contributing to q′j. The term

describes a transverse bunching force that is a counter force to the repulsive space charge
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force. The coefficient of the qj term in the linearized phase variation equation depends on

aβ: The RHS of the phase variation equation will approach (qj + δγ)/ρ for aβ � 1, and

3(qj + δγ)/ρ for aβ approaching zero.

The space charge contribution also depends on aβ; the value of its coefficient can be

approximated with ρ in the large aβ case, and tends toward infinity as aβ approaches zero,

which can be understood through the definition of ρ, which tends to zero as Rβ approaches

zero. As a result the bunching effect of the beam will diminish with ρ, whereas the space

charge coefficient will remain above 2ω2
b/(ω

2
pγr). This shows that a small rβ ion channel

laser, as proposed in [1] and [48], is not only technically difficult to build, but would also be

theoretically undesirable since the space charge effects of the electron beam could be more

than two orders of magnitude larger than achievable for large rβ. When a2
β < ρ/7.6 (as

under parameters provided on p. 295 of Whittum’s thesis [2]) the characteristic equation of

the system will have three real roots and amplification will not occur.

Assuming aβ � 1 and applying the scaling

qj = qj/ρ, sj = 4sj/ρ
2, and δ = 2δt/ρ (2.94)

to eqns. (2.90)-(2.93), where δt = −2δrβ + δγ/2, these eqns. can be linearized by expanding

their right-hand sides into Taylor series in ρ and keeping only the zeroth and first order

terms:

a ′r = −i〈∆ψ exp(−iψ0)〉+ iρ〈q exp(−iψ0)〉/2, (2.95)

ψ′j = (1 + 2δt)qj − (1 + δt)ρsj + δ, (2.96)

q ′j = −[ar + 2iρ〈exp(−iψ − iδ t)〉] exp(iψj) + c.c., (2.97)

s ′j = −ia′r exp(iψj)/2 + c.c.. (2.98)

with ∆ψ representing the first-order phase variation. We redefine the collective variables as:

B = 〈∆ψ exp(−iψ0)〉, (2.99)

P = 〈q exp(−iψ0)〉, (2.100)

A = ar exp(iδt), (2.101)

S = 〈s exp(−iψ0)〉. (2.102)
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Their evolution follows from Eqns. (2.95)-(2.98):

A′ = −iB − ρ

2
P + iδA, (2.103)

B′ = P − ρS, (2.104)

P ′ = −A− 2iρ(A′ − iδA), (2.105)

S ′ = − i
2

(A′ − iδA), (2.106)

which reduces to a linear differential equation for A, by expressing all collective variables in

terms of A and its derivatives:

A′′′ − iδA′′
+ ρA′ − i(1 + 3ρδ/2)A = 0. (2.107)

The characteristic equation can be obtained in the same way as in the Compton regime FEL:

λ3 − δλ2 − ρλ+ (1 + 3ρδ/2) = 0. (2.108)

When δ = 0, the characteristic equation simplifies to:

λ3 − ρλ+ 1 = 0. (2.109)
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Figure 2.4: Instability domain: imaginary part of the unstable root of the dispersion relation
(2.108), as a function of δ for different values of ρ:(1) ρ = 0.005 (solid line). (2)ρ = 0.01
(dashed line). (3) ρ=0.05 (the dotted line) ρ = 0.1 (the dot-dashed line). The maximum
value of λ is obtained when δ = 0 and ρ = 0, while the maximum λ for sufficiently large ρ
occurs at δ ≈ √ρ. The larger the value of ρ, the smaller δ will be required for λ to approach
zero.

The plot shows that the value of the imaginary part of λ varies with the value of scaled

detuning δ. As in FEL theory, the growth rates with detuning are asymmetric between

positive and negative detuning. For positive values of detuning, Im(λ) attains a maximum

value at δ ≈ √ρ before rapidly declining to zero, at which point the instability vanishes. For

negative values of detuning, the value of Im(λ) will slowly decline, but will remain positive

instead of rapidly falling to zero. The saturation power is also affected differently by positive

and negative detuning values, a positive detuning, as long as it is below the threshold value,

can enhance the power gain, while a negative detuning will weaken it. The detuning factor

also adds the term iδA to the RHS of the differential equation (2.106) for S. Correspondingly,

〈s〉 no longer is a conserved quantity, but follows the differential equation

〈s′j〉 = −δ
2
ar〈exp(−iψ)〉. (2.110)
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A new conserved quantity can thus be defined, in the same way as (2.80):

〈sj〉+
δ

2
|ar|2 = C. (2.111)

For a positive δ, 〈s〉 will be reduced by a growing |ar|2, while a negative δ will increase it.

2.2.8 Energy and Betatron Amplitude Spread

A fundamental difference between the ICL and the FEL, is that the value of the betatron

amplitude rβ, and therefore, the wiggler parameter aβ is individually defined for each electron

in the beam. To model a realistic electron beam, the influence of spreads in both energy and

betatron amplitude on the amplification must simultaneously be considered. We therefore

consider the evolution of the electron beam in z − pz − rβ − θ phase space, where electron

distributions with both spreads can be best modelled using a Vlasov-Maxwell approach. We

start with the general form of the Vlasov equation:

(
∂

∂t
+ x′.

∂

∂x
+ p′.

∂

∂p

)
f = 0. (2.112)

We will start with the equilibrium distribution f0, which satisfies the following Vlasov equa-

tion:

∂f0

∂t
+ z′

∂f0

∂z
+ p′z

∂f0

∂pz
+ y′

∂f0

∂y
+ p′y

∂f0

∂py
= 0. (2.113)

The equilibrium phase space distribution function of the beam electrons, f0, can be defined

as a function of two variables, pz and r2
β:

f0 = f(pz, r
2
β). (2.114)

In the linear regime, we seek a solution in the form of

f = f0 + f1 = f0 + f 1e
iψ+iλt. (2.115)

Substituting the above equation into (2.112) and eliminating the rapidly oscillating terms,
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we obtain the linearised Vlasov equation, written using the slowly varying coordinates:

∂f1

∂t
+ ψ′

∂f1

∂ψ
+ p′z

∂f0

∂pz
+
dr2

β

dpz
p′z
∂f0

∂r2
β

= 0. (2.116)

Assuming the condition
dr2

β

dpz
p′z ∝ (kvz − ω)p′z � p′z, which is valid for aβ � 1, the

∂f0

∂r2
β

term

can be removed from Eq.(2.116). Replacing the variables pz and r2
β with q and s we obtain

∂f1

∂t
+ ψ′

∂f1

∂ψ
+ q′

∂f0

∂q
= 0, (2.117)

substituting the scaled equations of motion for ψ and q into the linearised Vlasov equation,

the first-order distribution function can be written in a form that contains the derivative of

f0,

f1 = −∂f0(q, s)

∂q

iare
iψ

(λ+ q − ρs) , (2.118)

after some rearrangements. We then rewrite the source term of the steady-state wave equa-

tion using the distribution function

dar
dt

=

∫ rβ

−rβ

∫ ∞

−∞

∫ ∞

−∞
f1e
−iψdpydpzdy, (2.119)

This equation can then be transformed using the coordinate transformation (py, pz, y →
θ, q, s), with the substitution of (2.115), to produce the following dispersion relation which

rules the stability of the system

∫ ∞

−∞

∫ π

−π
δ(θ − θ0)

∂f0(q, s)

∂q

1

λ(λ+ q − ρs)dθdqds+ 1 = 0. (2.120)

In the case of a monoenergetic beam (i.e., f(q, s) = δ(q)δ(s)), this can be reduced to the

familiar cubic equation λ3−δλ2+1 = 0. The dispersion relation starts to diverge significantly

from the one for the FEL when the electron bunch is modelled with a rectangular distribution
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f(q, s) = Π(q0)Π(s0)with half width µq, µs

Π(q0) =





1

2µq
if − µq < q0 < µq ,

0 elsewhere,

Π(s0) =





1

2µs
if − µs

ρ
< s0 <

µs
ρ
,

0 elsewhere,
(2.121)

for which the following dispersion relation can be obtained through a straightforward calcu-

lation:

1

4µqµsλ
ln
(

1− 4µqµs
(µq + µs)2 − λ2

)
= −1, (2.122)

Expanding the logarithmic term inside the transcendental dispersion relation yields:

1

4µqµsλ

[ 4µqµs
λ2 − (µq + µs)2

−
( 4µqµs
λ2 − (µq + µs)2

)2

/2 + ....
]

+ 1 = 0. (2.123)

When µs = 0, the dispersion relation can be reduced to the form seen in the FEL

literature (e.g., [46])

λ(λ2 − µ2
q) + 1 = 0. (2.124)

A formally similar dispersion equation taking into account both µq and µs can be obtained

from (2.123) if only the first-order term in the expansion is kept:

λ[λ2 − (µq + µs)
2] + 1 = 0. (2.125)

This approximate relation shows that at the lowest order, the spreads in γ and rβ will affect

the growth factor equally. In fact, this is the full dispersion relation for a beam with the

following distribution function:

f0(q) =





1

2µq
if − µq < p0 < µq ,

0 elsewhere,

f0(s) = δ
(
s+

µs
ρ

)
− δ
(
s− µs

ρ

)
. (2.126)

It is therefore imperative to include higher terms in the calculation of the growth factor,

when the value of µs is comparable to ρ. As no analytical solution exists for the equation

(2.122), the gain curve has to be obtained numerically.

We numerically solve the equation (2.123) to obtain the values of λ under a number of

62



different conditions for the spreads:

µq = 0.2 µq = 0.5 µq = 1.0 µq = 1.5

Im(λ) with µs=0 -0.8545 -0.7937 -0.5623 0

Im(λ) with µs=µq,

solved using the full

dispersion relation

-0.8429 -0.7244 -0.4221 -0.2322

Im(λ) with µs=µq,

solved using the low-

est order term in the

dispersion relation

-0.8198 -0.5623 0 0

It can be seen from the above table that for small µq (µq < ρ) the imaginary root value is

smaller with µs = µq than with µs = 0. However, when µq > ρ, the imaginary root for µs = 0

will rapidly decline to zero, while remaining positive for µq = µs. In fact, a complex root

corresponding to the exponentially growing solution of A can theoretically always be found,

however large µs or µq are, as long as the condition µq = µs is satisfied. Although counter-

intuitive, such an outcome can be explained considering that the electron distributions in q

and s coordinates are uniform and symmetric. If µq = µs, for any electron with a q value

outside the instability range corresponding to s = 0, there is a finite probability for an s value

in the interval that allows instability to occur with this value of q. The result demonstrates

that, unlike in FEL theory, larger spreads do not necessarily lead to stronger suppression

of the gain in the ICL. This result, however, cannot be generalised to other more realistic

forms of energy/betatron amplitude distributions, e.g., Gaussian distribution or Lorentzian

distribution commonly observed in the electron beam produced by wakefield accelerators,

both with less abrupt cut-offs of the tails.

2.3 Non-paraxial Extension of Whittum’s ICL Formu-

lation

In this section we will establish the connection between Whittum’s [1] formulation and ours

by deriving the set of equations of motion in his approach from the set of variables used

in the present thesis. The derivation will show that Whittum’s expression for ρ can be

considered an approximation to ours in the limit of small rβ, and his equation of motion for

θ is incorrect due to an inappropriate use of averaging.
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2.3.1 Resonance with the Betatron Phase and the Momentum

Phase

The first important differences between the two approaches are the different treatment of the

notion of “resonance” and the definitions of the ponderomotive phase. In Whittum’s thesis,

the ponderomotive phase is defined as the difference between the oscillation phase of the

momentum and the radiation wave phase, rather than the difference between the betatron

oscillation phase (i.e, phase of variation in y) and the radiation wave phase, as used in our

model. It is therefore useful to formally define the relation between the two phases.

We first express the momentum components of an electron under consideration in Whit-

tum’s eikonal formulation:

py = qy sin(θy), (2.127)

pz = qz. (2.128)

In the above equations, θy is considered to vary on a much faster time scale than qy, so that

after averaging over the betatron period, terms including sin(nθy), where n is an integer,

will become zero, while terms without sin(nθy), but including qy, remain constant. The

transverse momentum, expressed in coordinates of both systems, must be equivalent. Thus

we can obtain from the Hamiltonian, in the large rβ case, with the same scaling used in

Whittum’s thesis,

qy sin(θy) = rβ

√
γ + pz

2
sin(θ)− A0 sin(kz − ωt). (2.129)

The rapidly varying phases θy and θ can be expressed as:

θy = −(kz − ωt− ψ1), (2.130)

θ = −(kz − ωt− ψ2), (2.131)

where ψ1 and ψ2 are the ponderomotive phases defined for the momentum and betatron

phases, respectively.
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These relations can be used to rewrite Equation (2.129) as:

qy[sin(kz − ωt) cos(ψ1)− cos(kz − ωt) sin(ψ1)]

= rβ

√
γ + pz

2
[sin(kz − ωt) cos(ψ2)− cos(kz − ωt) sin(ψ2)] + A0 sin(kz − ωt). (2.132)

As qy, rβ
√
γ + pz/2, and A0 are all assumed to be slowly-varying terms, we observe that to

make the two sides of Eq. (2.132) always equal the following relations must be satisfied:

qy cos(ψ1) = rβ

√
γ + pz

2
cos(ψ2) + A0, (2.133)

qy sin(ψ1) = rβ

√
γ + pz

2
sin(ψ2). (2.134)

The expression of qy in non-canonical variables can thus be obtained:

qy =

√
r2
β(γ + pz)

4
+ A0rβ

√
γ + pz cos(ψ2) + A2

0. (2.135)

We then expand both sides of Eq.(2.129) around the point t = 0 into:

qy(sin(ψ1) + θ′y cos(ψ1)∆t) +O(∆t2)

= rβ

√
γ + pz

2
sin(ψ2) + (rβ

√
γ + pz

2
θ′ cos(ψ2) + A(kvz − ω))∆t+O(∆t2). (2.136)

Because the terms of the same order in t on the two sides of the above equation must be

equal, we have:

qyθ
′
y cos(ψ1) = rβ

√
γ + pz

2
θ′ cos(ψ2) + A(kvz − ω). (2.137)

We thus find from the above equation and Eq. (2.129) that:

θ′y =
rβ
√
γ+pz
2

θ′ cos(ψ2) + A(kvz − ω)

rβ
√
γ+pz
2

cos(ψ2)− A
, (2.138)
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which can be rewritten using the resonance relations Equation (2.130) and (2.131) as:

θ′y =
rβ
√
γ+pz
2

θ′ cos(ψ2) + A(ψ′2 − θ′)
rβ
√
γ+pz
2

cos(ψ2)− A
(2.139)

= θ′ − A ψ′2
qy cos(ψ1)

= θ′ − Aψ
′
1 − θ′y + θ′

qy cos(ψ1)
.

I.e., θ′y − θ′ =
Aψ′1

A− qy cos(ψ1)
. For ψ′1 = 0, we have:

θ′y = θ′ − A(−θ′y + θ′)

qy cos(ψ1)
(2.140)

= θ′ = ωβ.

Thus we conclude that the frequency of the momentum phase is equal to that of the betatron

phase, provided that the momentum phase is in exact resonance with the radiation wave

phase, and qy is slowly-varying. This result contradicts the one obtained for θy in Whittum’s

thesis, whose first-order derivative contains a term dependent on cos(ψ1). An analysis is

carried out in the following to understand the caveat in the derivation of equations of motion

in Whittum’s original thesis.

2.3.2 Comparison of the Equations of Motion

We start by following Whittum’s procedure in deriving the eikonal equations of motion.

Substituting the eikonal expression of transverse momentum into the following second-order

differential equation for py,

p′′y = −py + A0 sin(kz − ωt)
2γ

, (2.141)

which can be obtained from the Hamiltonian, will lead to the following equation

q′′y sin(θy) + 2q′yθ
′
y cos(θy) + qyθ

′′
y cos(θy)− qy sin(θy)(θ

′
y)

2 + ω2
βqy sin(θy) = −ω2

βA0 sin(kz − ωt).
(2.142)
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Multiplying both sides by sin(θy) and cos(θy) respectively, and averaging over the betatron

period gives:

q′′y − qy(θ′y)2 + ω2
βqy = ω2

βA0 cos(ψ1), (2.143)

2q′yθ
′
y + qyθ

′′
y = −ω2

βA0 sin(ψ1). (2.144)

To first order in A0 , the above set of equations reduces to:

dθy
dt

= ωβ

[
1− A0

2qy
cos(ψ1)

]
, (2.145)

dqy
dt

= − qy
2ωβ

dωβ
dt
− 1

2
ωβA0 sin(ψ1)

= −1

2

(
ωβ +

1

4

kcq2
y

q2
z

)
A0 sin(ψ1). (2.146)

The same procedure can be applied to obtain the equations of motion in the z direction:

dψy
dt

= kvz − ω + ωβ −
ωβ
2qy

A0 cos(ψ1), (2.147)

dqz
dt

= −1

2
ω
qy
qz
A0 sin(ψ1). (2.148)

The right hand side of the ponderomotive phase equation, which describes the resonance

relation, therefore contains a slowly varying term dependent on cos(ψ1). Such averaging

over the betatron period, however, is only valid as long as no term on the left hand sides of

(2.143) and (2.144) contain harmonics oscillating at frequencies higher than ωβ. While this

is true for qy and qz, it is not for q′y and q′z. In fact, Eq.(2.148) comes from the Hamiltonian

equation of motion for pz:

dpz
dt

= −kmc2py
pz
A0 cos(kz − ωt), (2.149)

= −kmc2 qy
qz
A0 sin(θy) cos(kz − ωt),

= −kmc2 qy
2qz

A0[sin(kz − ωt+ θy) + sin(kz − ωt− θy)],

which gives:

dqz
dt

= −kmc2 qy
2qz

A0[sin(kz − ωt+ θy) + sin(kz − ωt− θy)]. (2.150)
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Eq.(2.150) contains a term proportional to sin(kz − ωt − θy), oscillating at 2ωβ, which is

explicitly neglected in Whittum’s thesis. The existence of this term invalidates the premise

of the betatron period averaging, applied to Eq.(2.142), as can be seen by evaluating the

right-hand side of Eq.(2.146) using the complete expression of q′z:

dqy
dt

= −1

2
ωβ[A0 sin(ψ1) + A0 sin(kz − ωt− θy)]−

1

8
kc
q2
y

q2
z

[A0 sin(ψ1) + A0 sin(kz − ωt− θy)],

(2.151)

which can be used to obtain:

〈−2q′yθ
′
y cos(θy) sin(θy)〉 =

1

4
kcωβ

q2
y

q2
z

A0 sin(kz − ωt− θy) sin(2θy)

=
1

8
kcωβ

q2
y

q2
z

A0[cos(kz − ωt− 3θy)− cos(ψ1)]. (2.152)

A large rβ and the resonance condition ensure that kcq2
y/(4q

2
z) = [ωβ − kc/(2γ2)]/2 ≈ ωβ/2,

up to first order in A0. Therefore, the resonant term on the RHS of Eq. (2.151) can be found

to be roughly −ω2
βA0 cos(ψ1), which is the same resonant term that appears on the RHS of

Eq. (2.143). The removal of this term from Eq. (2.143) leads to the result θ′y = ωβ.

For rβ � 1, we have kcq2
y/(4q

2
z) � ωβ, the corresponding terms on the RHS of Eq.

(2.151) can therefore be negelected, with the RHS of the equation of motion for the betatron

frequency in turn depends on the ponderomotive phase through the term ωA cos(ψ1)/(4qy),

which is still reduced by half from the value obtained in the q′y ≈ 0 approximation.

However, the approach we take above can only serve as a heuristic statement, as the

time derivative of qy (Eq. (2.146) is obtained from Eq. (2.144), which already contains the

assumption that θ′y ≈ ωβ. A strict derivation that further demonstrates the power of our

approach, involves expressing qy in non-canonical variables as in Eq. (2.135), which gives:

dqy
dt
≈
[
rβ

√
γ + pz

2
+ A0 cos(ψ2)

]′
(2.153)

≈ rβωβ
2

p′z

= qyω
2
βp
′
z.
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Substituting from Eq. (2.150) for p′z, we have:

dqy
dt

= −kmc2
q2
y

4q2
z

A0[sin(kz − ωt+ θy) + sin(kz − ωt− θy)],

≈ −ωβA0 sin(ψ1), (2.154)

this result confirms the deficiency of Whittum’s formulation in the derivation of Eq.(2.147)

that was found using the eikonal assumption.

2.3.3 Gain Parameter Without the Small Betatron Amplitude

Approximation

A more structural and important difference between the two formulations is that in Whit-

tum’s original treatment, the small betatron amplitude approximation, i.e. qx, qy � 1, is

used to calculate the second-order derivative of the ponderomotive phase ψy = θy + kz − ωt
(and the bunching parameter),

d2ψy
dt2

=
(kzc)

2

4q4
z

qy

(
2 +

3

4
q2
y − 2

ωβ
kzc

q2
z

)
A sin(ψy), (2.155)

which is equal to the second-order derivative of ψ without the derivative of the betatron

oscillation term (−r2
β/8γ)′ = [r3

βkzc/(16
√

2γ5/2)]A0 sin(ψ). The value of ρ in this small

betatron amplitude approximation can be obtained from our equations of motion to be:

ρ =

[
ω2
bR

2
β

γrc2

(1

2
+

1

2

)]1/3

≈
( 2I

I0γr

)1/3

, (2.156)

which is just the general expression of (2.86) evaluated at rb ≈ Rβ and aβ � 1. With

the assumption of Rβ = rb, it appears that the ρ parameter for large Rβ is less than ideal

as formally it is always reduced by a factor of one half from the expression with equal

γr and negligible betatron amplitude. Such an assumption, as used in Whittum’s original

formulation, however, is unnecessary and unrealistic. Furthermore, the ρ value obtained

under large Rβ condition is usually much larger than under the small-betatron amplitude

limit.

69



2.3.4 Dielectric Guiding

For finite electron bunch width, small compared to the betatron amplitude, the size of the

radiation source is determined by the latter. Under the idealized assumption that electrons

radiate in vacuum, i.e., disregarding the dielectric properties of the plasma channel, the

radiation will diffract within a Rayleigh length LR ≈ πR2
β/λ, where λ is the radiation

wavelength. Using the resonance condition, it can be shown that LR is shorter than the gain

length Lg = λβ/(
√

3πρ), so that diffraction would suppress the gain. Therefore, diffraction

cannot be neglected and waveguiding in the plasma channel must be considered. Neglecting

any influence from the electron beam, the waveguide can be considered as having a step

discontinuity in the dielectric constant,

ε(r, ω) = 1− ω2
p

ω2
Θ(r − rc),

where r =
√
x2 + y2 is the radial coordinate, rc the channel radius, and Θ the Heaviside

step function. Such a waveguide will always have at least one guided mode, the HE11 mode.

In the limit ω � ωp, the overlap between this laser mode and the beam can be calculated

using the results of Marcuse [49] and Snitzer [50]. The transverse distribution of the vector

potential of the HE11 mode with frequency ω and axial wave number k is

Ay(r, t) = ar(z, t) exp(i[kz − ωt])F (r), (2.157)

where

F (r) =





J0(κr) for r < rc,

κJ0(κ̂)

µK0(µ̂)
K0(µr) for r ≥ rc,

(2.158)

satisfies [∇2
⊥+ε(r, ω)ω2/c2−k2]F (r) = [d(r dF/dr)/dr]/r+ω2/c2−(ω2

p/c
2)Θ(r−rc)−k2 = 0

for (ω2 − ω2
p)/c

2 < k2 < ω2/c2, i.e., J0 and K0 are the zeroth order Bessel and second-kind

modified Bessel functions, respectively, κ =
√
ω2/c2 − k2, µ =

√
k2 + (ω2

p − ω2)/c2, κ̂ = κrc,

and µ̂ = µrc.

Substituting the vector potential (2.157) into the Helmholtz wave equation

(
∇2 − 1

c2

∂2

∂t2

)
ar(z, t) exp(i[kz − ωt])F (r) = −µ0Jy(r, t), (2.159)
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using [∇2 − ∂2/∂(ct)2] exp(i[kz − ωt])F (r) = 0, and neglecting second derivatives of ar, we

obtain

2i

(
k
∂ar
∂z
− ω

c2

∂ar
∂t

)
exp(i[kz − ωt])F (r) = −µ0Jy(r, t). (2.160)

We then move exp[i(kz − ωt) to the RHS and project the current density profile on F(r)

2i

(
k
∂ar
∂z
− ω

c2

∂ar
∂t

)
= −µ0

Σ

∫∫ ∞

−∞
dxdy F ∗(r) exp(−i[kz − ωt])Jy(r, t), (2.161)

where

Σ = 2π

∫ ∞

0

dr r|F (r)|2 = πr2
c{J2

0(κ̂) + J2
1(κ̂) + (κ̂/µ̂)2J2

0(κ̂)[K2
1(µ̂)/K2

0(µ̂)− 1]} (2.162)

is the effective cross section of the radiation mode (2.158). The r.h.s. becomes slowly varying

close to resonance, ω − kvz = ωβ, when it can be averaged in a manner similar to (2.38) to

become

2i

(
k
∂ar
∂z
− ω

c2

∂ar
∂t

)
= −µ0

Σ

∑

j

∫∫ Rβ

−Rβ
dxdy F ∗(r)

√
1− y2/R2

β exp(−i[kzj − ωt])δ(y − yj),

(2.163)

As in (2.38) , we retain only the lowest order term cos(θ) cos(θj) in the Fourier series expan-

sion of the current density, to calculate the intgeral for the mode (2.158), which is

∫ π

−π
dθ F ∗(Rβ sin θ)Rβ cos(θ)2 =

πRβ

2

[
J2

0(κRβ/2) + J2
1(κRβ/2)

]
. (2.164)

The spatial overlap factor of current density and radiation mode, obtained by comparing the

wave equation with its one-dimensional equivalent, is

η =
πR2

β

2Σ

[
J2

0(κRβ/2) + J2
1(κRβ/2)

]
=
R2
β

2r2
c

J2
0(κRβ/2) + J2

1(κRβ/2)

J2
0(κ̂) + J2

1(κ̂) + (κ̂/µ̂)2J2
0(κ̂)[K2

1(µ̂)/K2
0(µ̂)− 1]

.

(2.165)

For small betatron amplitude, κRβ � 1, this simplifies to

η ≈
R2
β/(2r

2
c )

J2
0(κ̂) + J2

1(κ̂) + (κ̂/µ̂)2J2
0(κ̂)[K2

1(µ̂)/K2
0(µ̂)− 1]

. (2.166)
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With η thus defined, the ρ parameter in the large Rβ limit can be reformulated to include

the effect of finite bunch width:

ρ =

(
ηω2

bR
2
β

2γc2

)1/3

. (2.167)

2.4 Numerical Simulations

2.4.1 Numerical Algorithms

Phase Space Distribution Generation and Steady State Simulation

To carry out a successful ICL simulation, the first step is to generate an initial phase space

distribution for the electron bunch that represents the distribution of real electrons with

sufficient accuracy. To simulate a FEL electron bunch under typical conditions, the large

number of electrons per bunch, typically on the order of 109-1011 and 104−106 per wavelength

in the X-Ray spectral regime, makes it computationally prohibitive to simulate using all

the electrons. As an alternative, macro particles, each of which represents an aggregation

of particles with similar dynamic variables, have to be used. The use of macro particles,

however, introduces artificial numerical noise. The electron bunch generated by the wakefield

acceleration experiments, however, are ultrashort (bunch length 1−10 µm) and usually have

a lower electron number in the range of 106 − 108. This makes it possible, in principle, to

simulate all electrons independently, avoiding the numerical noise introduced by using macro

particles. To make sure the unbunched electron beam generates no radiation field, the initial

distributions of the electron phase and γ and rβ should be random and uniform so that the

initial bunching factor is zero. We make use of the Hammersley sequence generator in the

open sourced code GENESIS [52], and pair particles in phase. (Unfortunately, pairing does

not always work for warm beams because the phase-space distribution gets mixed up very

quickly erasing the effect of pairing.) Pairing is done by loading half of the macroparticles

with their phases evenly distributed in the range of 0 < ψ < π, and copying them into the

remaining phase, while keeping other coordinates unchanged. Having a particle with exactly

the same set of dynamic variables except a phase difference of π, the code proceeds to

numerically solve a set of 2Ne + 1 ordinary differential equations, Equations (2.66) - (2.68),

using a fourth-order Runge Kutta integrator. In a steady-state simulation with slippage

neglected, due to the absence of spatial fluctuation in the electron beam, only electrons in

one wavelength need to be simulated.
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2.4.2 The Coupled-Equation Solver

The Maxwell-Newtonian equations for the ICL contain two differential equations for the

coordinates of each (macro) particle, and one wave equation using the sum of the particle

phase factors as its source term. These equations can be solved following a simple explicit

leapfrog integration procedure: For a simulation after n steps, with length ∆t, we use the

electron coordinates and radiation field vector potential as the initial values and source term

of the particle equations (2.41), (2.42), respectively, to advance the particles by one step

using the Runge-Kutta fourth-order formula:

yn+1 = yn +
(k1

6
+
k2

3
+
k3

3
+
k4

6

)
∆t, (2.168)

with

k1 = f(tn, yn), (2.169)

k2 = f
(
tn +

∆t

2
, yn +

k1

2

)
, (2.170)

k3 = f
(
tn +

∆t

2
, yn +

k2

2

)
, (2.171)

k4 = f(tn + ∆t, yn + k3). (2.172)

After the particle coordinates are obtained, they are summed up as the source term of

the wave equation, and used to advance the wave equation using the same Runge-Kutta

integrator, and vice versa.

The space charge and betatron amplitude variation effects are included by simply substi-

tuting terms proportional to the “old” wave equation source term into the particle equations.

2.4.3 Parameter Selection

Two important parameters to be decided before a steady-state simulation are the number of

integration steps and the number of particles used. Saturation will usually occur after 50-100

plasma wavelengths, given the range of ICL’s ρ value. In order to average out the fluctuation

in γ within one betatron period, enough sampling points should be used for one half of a

betatron period, the number of sampling points used per plasma period should theoretically

scale with 1/
√

2γ, in the steady state simulation it is observed that 10-20 points per plasma

period are adequate for approximating both the exponential growth in the linear regime and

the synchrotron oscillation in the nonlinear regime. There is more flexibility in the choice
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of the number of macro particles, depending on the radiation wavelength and the current

density. To start the simulation with an uncorrelated electron bunch, however, the number

of electrons must be even, so that each electron can be paired with another with exactly π

difference in phase. It should also be noted that the assumption of a negligible space charge

field is only valid as long as the electron density of the bunch is much smaller than the

channel plasma density, so that the electrostatic field of the ions dominates. In the wakefield

acceleration experiments, it is observed that the total charge of the bunch produced is in the

range of 5-10 pC, which amounts to 3−6×107 electrons, and translates to an electron density

of 1020−1022 cm−3, at least ten times bigger than the theoretically attainable plasma density

for an ion channel, which is oF the order of 1018 − 1019 cm−3. Divided by the number of

wavelengths that can be accommodated in an electron bunch, the number of macroparticles

to be used for an X-Ray regime steady state simulation should be in the range of 104 − 106,

with each macroparticle accounting for about 30-3000 real electrons.

2.4.4 Compton Simulation Results and Analysis

In this chapter we numerically study several examples of ion channel lasers designed for

different wavelength ranges. In the first section, variants of a microwave ICL will be investi-

gated. Because microwave propagation in the channel is strongly influenced by the dielectric

guiding effect, waveguiding will be included in our analytical predictions and numerical sim-

ulations. In the second section, the simulations will be carried out for two different radiation

wavelengths in the X-Ray spectral range, which is the region of interest for practical appli-

cations. With the exception of X-ray regime simulation and the large betatron amplitude

simulation in the UV regime, all simulations are conducted using the parameters used in the

simulation of the corresponding wavelength in Whittum’s ion channel laser thesis [2], for the

purpose of better comparison.

The influence of detuning spread and spread in the transverse energy will also be studied,

in addition to the influence of guiding on the efficiency on the laser-electron interaction. The

guiding effect is calculated using Eq.(2.157).

2.4.5 Simulations in the Microwave Regime

In this section, high gain ICL designs in the microwave region are considered using parameters

in the following table, relying solely on dielectric guiding, but subject to different initial

detuning and spread conditions. The channel radius is thus considered to be relatively large,
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i.e., rc/rb � 1. The simulation is conducted using the parameters in the following table:

Table 2.1: Microwave Parameters

λ(cm) 1.75

E(MeV) 2

I(kA) 4

np(cm−3) 6.2× 1010

λβ(cm) 36

rb(cm) 1

At I=4 kA, the overlap between the laser beam and the electron bunch for the HE11

mode can be computed to be 0.066 using Eq.(2.166) with V =
√
κ̂2 + µ̂2 = 0.9, which gives

a ρ value of 0.28 (FEL equivalent ρ of 0.07). The gain length Lg is thus 33 cm according to

(2.84), the saturated beam power is expected to be ρEw = Imc2ργ/4e = 560MW, where Ew

is the electron beam power, which is about 8 GW in this case. For an initial field power P0

of 66 kW, the power should theoretically grow 2.4× 104 times before it reaches saturation.

The minimum length of ion channel required to reach radiation power saturation can be

calculated, using equation (2.85) to be Lsat ≈ Lg ln(9Psat/P0) = 266 cm, which is confirmed

by the numerical result shown below.
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Figure 2.5: The radiation power growth versus z for γ = 3.9, rb = 1 cm, λ = 1.75 cm, the
red curve shows the exponential growth prediction of linear analysis, in contrast to the blue
curve which is the simulation result obtained by solving (2.41)-(2.43) with the parameters
in Table 2.1, plotted on a semi-log scale.
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Figure 2.6: Simulated beam energy versus z for the same microwave parameters in Table
2.1.

76



0 200 400 600 800 1000 1200
−12

−10

−8

−6

−4

−2

0

z(cm)

Ψ

a 0 100 200 300 400 500 600
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

z(cm)

Ψ

b

Figure 2.7: a. Averaged ponderomotive phase versus z throughout the interaction. b. close-
up of the phase variation at the onset of nonlinearity. Simulated with the same parameters
as in Fig. 2.5
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Figure 2.8: a. Phase space plot for the electron beam at the onset of linear amplification using
selected samples of electron coordinates from the simulated electron bunch. b. Phase space
plot for the same bunch at the onset of nonlinearity. Simulated with the same parameters
as in Fig. 2.5

The electrons, evenly distributed along the ψ axis at the onset of amplification, be-

come concentrated in small regions separated by intervals of no electron, i.e., forming small

“bunches” in the phase space, at the onset of nonlinearity. The electron bunches tend to con-

centrate near the centre of the ψ axis, where ψ = π, and become more sparsely distributed
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at both ends of the axis, where sin(ψ) = 0, meanwhile, the electron distribution along the γ

axis shows similar features, symmetrically forming bunches on both sides of the line γ = 3.3,

the average value of γ of the electrons at saturation.

We check the simulation result with the energy conservation relation (2.81), which gives

the error of energy conservation to below ε ≈ 0.4%. Simulations using different energy

spreads σγ and betatron amplitude spread σrβ are also carried out, showing different degrees

of reduction to the saturation power. The cut-off energy spread for the amplification is at

σγ = 28%, about ρ, in rough agreement with the theory.
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Figure 2.9: The radiation power plot for σγ=0.14 simulated with the parameters in Table
2.1
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Figure 2.10: The beam energy evolution plot for σγ=0.14 simulated with the parameters in
Table 2.1

2.4.6 Sub-millimetre Example

In this section, we present a simulation for sub-millimetre radiation wavelength using the

parameters in the following Table:

Table 2.2: Sub-millimetre Parameters

λ(µm) 484

E(MeV) 4

I(kA) 4

np(cm−3) 7× 1012

λβ(cm) 4.84

rb(cm) 6× 10−2
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The overlap integral can be estimated to be 0.018 using Equation (2.166) with V =

0.8,which leads to a ρ parameter of 0.108 (FEL equivalent ρ of 0.027). The total beam power

is about 16 GW, which could thus generate a radiation power of 2.7%× 16 GW = 425 MW,

the gain length is thus 8.16 cm, for an input power P0 of 2 kW, the saturation length

should be Lg ln(9Psat/P0) = 1.18 m, while the simulation gives a saturation length of 1.29

m, confirming the theoretical prediction.
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Figure 2.11: Plot of simulation result for the evolution of radiation power, obtained by
numerically solving (2.41)-(2.43) with parameters set forth in the Table 2.2
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Figure 2.12: Plot of simulation result for the evolution of electron beam energy in units of
mc2, obtained by numerically solving (2.41)-(2.43) with parameters set forth in the Table
2.2

2.4.7 Infra-red Regime

In this section, we consider one example in the infrared regime, the amplification of 10 µm

radiation, with the typical wavelength of a CO2 laser, and a great number of industrial

applications.

We simulate for the following parameters:
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Table 2.3: Infrared Parameters

λ(µm) 10

E(MeV) 10

I(kA) 4

np(cm−3) 1× 1015

λβ(cm) 0.7

rb(cm) 3× 10−3

The overlap integral is estimated to be 0.007 for V = 0.62 using Equation (2.166), which

gives a ρ parameter of 0.0385. The total beam power is about 38 GW, which could can

generate a radiation power of 350 MW. The gain length is 3.34 cm for an input power P0 of

140 kW, the saturation length should be Lg ln(9Psat/P0) = 33.47 cm, while the simulation

gives a saturation length of about 29.4 cm, roughly confirming the prediction of the theory.
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Figure 2.13: Plot of simulation result for the evolution of radiation power, using Eqs. (2.41)-
(2.43) and parameters set forth in the Table 2.3
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Figure 2.14: Plot of simulation result for the evolution of electron beam energy in units of
mc2, using Eqs. (2.41)-(2.43) and parameters set forth in the Table 2.3

2.4.8 X-Ray Regime

Due to the difficulty of producing a small-betatron amplitude electron beam, the careful

adjustment of beam and channel parameters is essential to the production of coherent X-ray

radiation using an ion channel, since the resonance condition must be satisfied within the

experimental limitations. The following figure shows for a fixed combination of γ and rβ

that, as the plasma wavelength increases, the radiation wavelength decreases at a rapid rate

until it reaches about 5 nm, where the steep curve flattens out. The wavelength should

thus ideally be chosen within the region of the greatest curvature, to minimize the output

wavelength and the plasma wavelength (which determines the gain length Lg along with

ρ) together, so that X-ray radiation can be sufficiently amplified within an ion channel of

experimentally realistic length.
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Figure 2.15: Resonant wavelength λ as a function of channel plasma wavelength λp for
γ = 1600, rb = 1µm

Table 2.4: Soft X-ray Simulation Parameters

λ(nm) 6

E(MeV) 800

I(kA) 4

np(cm−3) 1× 1018

λβ(cm) 0.181

rb(µm) 1

Rβ(µm) 2
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In the X-ray regime with the parameters above, we can calculate an overlap factor of

0.0553 for a channel radius of about 45 µm. This leads to a ρ parameter of 0.026 (FEL

equivalent ρ of 0.0065), the total electron beam power is about 3.2 TW, which can generate

a radiation power of 0.0065 × 3.2 TW = 20.8 GW. The gain length is 12.79 mm. For an

experimentally achievable input power P0 of 10 W, the saturation length is Lg ln(9Psat/P0)

= 27.3 cm. While a channel of such a length may be difficult to maintain experimentally,

10-15 cm of amplification medium can produce a significant amount of coherent X-ray radi-

ation. However, creating a channel with a radius at least an order of magnitude larger than

the betatron amplitude could prove to be a significant engineering challenge. Radiation of

Ångström wavelength could potentially be produced if electrons with an energy of 2.5 GeV

or more are used, and the 1µm betatron amplitude is maintained; the ρ value in this case is

in the range of 0.01-0.015, indicating that an amplifier efficiency of an order of magnitude

larger than can be achieved by state-of-the-art XFEL such as the LCLS [17].

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

z(cm)

‖A‖2

Figure 2.16: The field intensity evolution generated by solving Eqs. (2.41)-(2.43) using the
X-ray parameters given in the Table.2.4.
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Figure 2.17: The electron beam energy evolution generated by solving Eqs. (2.41)-(2.43)
using the X-ray parameters given in the Table 2.4.

We can see that the simulation indicates an efficiency of about 3%, which is in good

agreement with the analytical prediction; the saturation took place after about 20 cm.

2.4.9 Large Betatron Amplitude Beam Simulation in the UV Regime

As can be calculated using Eq.(2.157), when Rc ≈ Rβ ∝ λp , the overlap factor will be

close to 1 thanks to the weak guiding effect, which makes ICL very useful for generating

high-power UV radiation. Consider Rβ = 2 µm, rb = 0.12 µm. The condition rb � Rβ

requires the electron beam to have an intrinsic betatron amplitude spread; for a uniform

distribution, we have rb = σ(rb) ≈ 0.12 µm where σ(f) = (〈f 2〉 − 〈f〉2)1/2. The simulation

parameters can be derived from these conditions to be:
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Table 2.5: Ultraviolet Parameters with Large Betatron Amplitude

λ(nm) 73

E(MeV) 400

I(kA) 0.07

np(cm−3) 3.2× 1018

λβ(cm) 0.054

rb(µm) 0.12

Rβ(µm) 2

This give a ρ value of 0.07 (FEL equivalent ρ of 0.0175), the efficiency is thus 1.75% for

a beam without detuning.
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Figure 2.18: Evolution of field intensity under small spread conditions obtained via solving
Eqs. (2.41)-(2.43) with parameters in Table 2.5 and a variety of initial spread conditions:
The solid line corresponds to the on-resonance result (µq = µs = 0), while the data obtained
with only energy/ betatron amplitude spread are shown with the dashed (µq = 0.5, µs = 0)
and dotted (µs = 0.5, µq = 0) lines, respectively. The dash-dotted line indicates the data
obtained using the condition µq = µs = 0.5.
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The simulation result is in good agreement with the Compton regime analysis for the

small-spread condition: the values of the peak intensity and gain factor obtained using only

energy and betatron amplitude spread conditions are nearly equal, but smaller than that in

the resonant case, while the peak intensity and gain obtained using both spread conditions

is even smaller. In the large spread scenario, however, the theory in Sec.2.2.8 has predicted

larger ρ, and correspondingly shorter gain length for electrons with both energy and betatron

amplitude spreads, which we will try to determine in the following large spread simulation.
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Figure 2.19: Evolution of field intensity under large spread conditions from solving Eqs.
(2.41)-(2.43) with σ(rβ) = 2.5% and beam radius rb = 0.36µm: the solid line corresponds
to the betatron amplitude spread only case, while the dotted and dashed lines show the
data obtained with additional energy spread condition ( σ(γ)=10% for the dashed line and
σ(γ)=7.5% for the dash-dotted line respectively.)
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Figure 2.20: The blow-up of the Figure 1.20 for the first 50 centimeters of propagation.

The simulation result qualitatively confirms the prediction of the analysis in Sec. 1.2.8:

for σ(rβ) values larger than ρ/4, the linear regime gain is significantly larger when a γ spread

is also present. Within the nonlinear regime, the peak intensity of the curve without energy

spread is still the largest, which is not considered in the model described in Sec. 1.2.8. Such

effects however, will not take place fully until after the laser field is propagated through a

meters-long, experimentally unsustainable plasma wiggler. Therefore, it would be potentially

beneficial to the amplification of the laser power to introduce an additional energy spread

to the electron beam, if beams with large intrinsic betatron amplitude spread have to be

used, albeit the need for unrealistically sharp edges in the electron distribution likely limits

its practical benefits.
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2.4.10 Raman Regime Simulation

With large curreents the ρ value could get close to 0.1 even in the UV regime, which makes

the space charge and betatron variation effect non-negligible, as being shown in Sec. 1.2.7.

The influence of the space charge and betatron variation effects on the value of Im(λ) is

expressed through the coefficient in the first-order term of the dispersion relation, like the

energy/ betatron amplitude spread. In the following plot the field intensity evolution curves

simulated with such effects included are plotted side-by-side with a curve simulated under

the Compton regime conditions.
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Figure 2.21: Field intensity ‖A‖2 versus z using the parameters in 2.5 under different theo-
retical assumptions, obtianed by solving Eqs. (2.41)-(2.43) and (2.48): the solid line is the
Compton regime result, while the dotted line takes into account the space charge effect, and
the dashed line takes into account both the space charge and the betatron variation effects.

The simulation clearly shows the reduction in the gain due to the space charge effect,

as both the dashed and dotted lines display a longer saturation length compared to the

solid line, the dashed line, however, exhibits a slightly shorter saturation length due to the

betatron amplitude variation effect.
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Chapter 3

Steady-State Theory for

High-Harmonics ICL Radiation

3.1 Concept

It has been pointed out in the previous chapter that coherent radiation at wavelengths

shorter than XUV would be very difficult to achieve, utilizing only the resonance between

the betatron phase and the radiation phase, since a high frequency up-conversion factor can

hardly be achieved for large Rβ. Nevertheless, it is well understood [53] that a highly rela-

tivistic electron oscillating transversely will have a longitudinal velocity oscillating about its

average, which could be integrated to give an oscillating contribution to the longitudinal (z)

coordinate. When observed in the co-moving average rest frame, said electron will perform

a so-called “figure-of-eight” motion. The corresponding rapid acceleration and deceleration

will produce a rich spectrum of frequency components, including many harmonics, which is

especially the case for large Rβ oscillations performed by ICL electrons. Previous works have

shown that by adjusting the γ value of the electrons, optimum gain can be achieved for a

desired wavelength, with the biggest part of the total energy emitted by the electrons being

released into the desired frequency component. In this section, the amplification of higher

harmonics will be analyzed in a similar way, with the relation between the gain factors of the

harmonics and the electron dynamic variables being derived, and the possibility of a realistic

high-harmonics ICL being discussed.
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3.2 Field Equation

As pointed out in the introduction, longitudinal velocity oscillations will lead to radiation

emission at higher frequencies. The steady state self-consistent equations thus have to be

rewritten accordingly to take into account the resonant energy exchange at higher frequen-

cies. It is convenient to transform the wave equation to the frequency domain, using the

Fourier transform relation:

Ay(z, t) =
−i
2

[∫ ∞

−∞
dν Aν(t)e

iνk0(z−ct)
]

+ c.c.. (3.1)

Inserting this expression into the paraxial wave equation Eq. (2.31), we obtain:

(
∂2

∂z2
− ∂2

c2∂t2

)∫ ∞

−∞
dν Aν(t)e

iνk0(z−ct) = −µ0Jy, (3.2)

2νk0
∂Aν(t)

∂t
+
∂2Aν(t)

∂t2
= −µ0

∫ ∞

−∞
dz e−iνk0(z−ct)Jy, (3.3)

which after applying the SVEA approximation gives:

∂Aν(t)

∂t
= − µ0

2νk0

∫ ∞

−∞
dz e−iνk0(z−ct)Jy (3.4)

=
µ0enx
νk0Ne

∑

j

∫ ∫ ∞

−∞
dzdy e−iνk0(z−ct)ωβ,jrβ,j

√
1− y2/r2

β δ(y − yj) δ(z − zj),

where the index j refers to a single electron, with betatron phase θj(t) and longitudinal

position zj(t).

3.3 Particle Trajectories

To evaluate the integral on the RHS of the equation (3.4), the ponderomotive phase under

the integral sign must be expressed in a form that explicitly includes jittering effect. To do

this the longitudinal velocity must be expressed using γ−2 = 1− β2
z − β2

y and the expression

of the transverse velocity in terms of aβ and θ, βy = (aβ/γ) cos(θ), which for 1 + a2
β � γ2

yields

βz = 1−
1 + a2

β cos2(θ)

2γ2
. (3.5)
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For constant γ this can be integrated to give

z = z0(t) + ξ sin(2θ), (3.6)

with z0(t) = ct[1− (1 + a2
β/2)/(2γ2)] and ξ = a2

βc/(8ωβγ
2) = aβrβ/(8γ). The ponderomotive

phase is thus

ψ = θ + kz0(t)− ωt+ kξ sin(2θ). (3.7)

The sin(2θ) term thus introduced into the exponent gives rise to high harmonic terms,

following the expansion of the exponential function

e−ikξ sin(2θ) =
∞∑

m=−∞
Jm(kξ)e−i2mθ, (3.8)

where Jm(kξ) is the m-th order Bessel function, with n also corresponding to the harmonic

order. When γ and rβ values satisfy the resonance condition ωβ − ω(1 + a2
β/2γ

2) = 0, the

argument of the Bessel function can be further simplified to kξ = a2
β/[2(1+a2

β)]. These values

are therefore limited to the interval between 0 (when aβ = 0) and 0.5 (when aβ approaches

∞). The field amplitude in frequency domain is then given by substituting Eq. (3.8) into

the steady state wave equation in the frequency domain Eq. (3.4)

∂Aν(t)

∂t

=
µ0enx
νk0Ne

∑

j

∫
dy

∫ ∞

−∞
dz0e

−iνk0(z0−ct)
∞∑

m=−∞
Jm(kξ)e−2imθωβ,jrβ,j

√
1− y2/r2

βδ(y − yj)δ(z0 − z0,j)

=
µ0enx

2νk0Ne

∑

j

∞∑

m=−∞

∫
dηJm(kξ)e−i2mθωβ,jrβ,j(η

2m+1 + η2m−1)δ(η − ηj)e−iνk0(z0,j−ct)

=
µ0enx

2νk0Ne

∞∑

m=−∞
〈Jmeiδνmθj(e−i(νk0(z0,j−ct)−(2m+1)θj) + e−i(νk0(z0,j−ct)−(2m−1)θj))〉,

(3.9)

where η = eiθ. If the resonance condition is chosen such that 〈ψ′
0,j〉 = 0, with ψ0,j =

nθj + νk0(z0,j − ct), to generate amplification at the fundamental wavelength, the above

equation can be averaged over the betatron period λβ, whereupon the RHS of the equation
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vanishes unless ν = n (as long as there is no detuning δt). Eq. (3.9) can thus be further

simplified to an ODE(ordinary differential equation)

dAn
dt
∝ −〈Fn(k0ξ) exp(−inψ0)〉, (3.10)

with Fn(ζ) = J(n−1)/2(nζ)− J(n+1)/2(nζ).

3.4 Energy and Phase Equations

We can now derive the averaged equations for the electron energy and phase in the presence

of the vector potential of the harmonic wave given above, inserting the expressions of βy and

(3.10) into equation (2.42) we have

dγj
dt

= −
∑

n odd

ωωβrβjan
2c

Fn(kξj) cos(n[kz − ωt] + φ) cos(θj). (3.11)

The harmonic wave number n satisfies a more general resonance condition nλn = λ = λβ(1+

a2
β)/2γ2

r , the ponderomotive phase variation equation should then be modified accordingly

to reflect this change in harmonic wave number

dψj
dt

= ωβ −
ωn
n

(
1

2γ2
j

+
ω2
pR

2
β

8γjc2

)
. (3.12)

3.5 Compton Regime, Universal Scaling and Linear

Analysis

Defining δt as the total detuning in the previous chapter, in the limit δt � 1, Eqs.(3.10),

(3.11), (3.12) reduces to the following system





dψj
dt

= ωβ
γ − γr

2γr
,

dγj
dt

= −kaβr
γr
anFn(kξj) exp(inψ0,j) + c.c.,

dAn
dt

=
−ω2

b

2ωc
〈Fn(kξ)vβ exp(−inψ0,j)〉,

(3.13)
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which after applying the universal scaling introduced in Chapter. 2

pj =
γj
γ0,j

− 1, (3.14)

an = 4c3ρAne
iφ/ω2

bωβR
3
β, (3.15)

t = ρωβt/2, (3.16)

aβ =
ωpRβ

√
γr

2c
, (3.17)

can be transformed into





dψj
dτ

= pj,

dpj
dτ

= −
∑

n odd

Fn(kξj)(an exp(inψj) + c.c.),

dan
dτ

= 〈Fn(kξ) exp(−inψ)〉.

(3.18)

The two generalized constants of motion can thus be written in a way similar to those in

Chap. 2, namely

〈p〉+
∑

n

‖an‖2 = const;
〈p2〉

2
− i
∑

n

Fn
n

(anb
∗ − a∗nb) = const. (3.19)

The gain coefficients for different harmonics can then be obtained by performing the

same linear analysis as in Chap. 2, looking for solutions of the form eiλt. Using the cubic

dispersion relation λ3 = 〈Fn(kξ)2n〉, we can find the growth factor λn of the n-th harmonic

λn = (n〈F 2
n(kξ)〉)(1/3)

(
−1

2
+

√
3i

2

)
, (3.20)

and the gain parameter:

gn = n1/3〈F 2
n(kξ)〉1/3g, (3.21)

where g = 4
√

3ρ/λβ is the gain parameter of the fundamental wavelength, and the relation

between the gain at higher-order and fundamental wavelength is shown in Fig. 3.1: The

above graph demonstrates that compared with a fixed gain parameter in the fundamental

wavelength, under conditions of fixed γr and rβr , gain parameters at higher harmonics will

95



0 10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

0.4

n

gn/g

Figure 3.1: Plot of the ratio of gain coefficient at higher harmonics to fundamental gain gn/g
versus harmonic order n for the first 100 harmonics, with a2

β = 49

always be smaller, and become relatively negligible at high orders, making high-harmonics

production difficult. This could be partly remedied by adjusting the value of γr and rβr , so

that a desired radiation wavelength λn is forced to be produced at higher orders of harmonics

of the fundamental resonant frequency. The lowest frequency component in the seeding field

would satisfy the following generalized resonance condition, under the condition of fixed Rβ:

γr = λ2
p(1 + a2

β)2/(8n2λ2) (3.22)

= λ2
p(1 + γrk

2
pR

2
β/2)2/(8n2λ2).

A cubic dependence of γ on n can be obtained from the above relation, with γr ∝ n−2, and

γr ∝ n2 for aβ � 1 and aβ � 1, respectively. Instead of the resonance relation ωβ = kvz−ω,

γ will instead satisfy the relation kvz − ω = nωβ. Due to the dependence of γ on n, the

gain coefficient with tunable γr is proportional to a higher power of n, through the relation

g ∝ n1/3ρ ∝ n1/3γ−1/3 ∝ n−1/3 for a2
β � 1 . However, because ξ also depends on γr through

aβ, it also has to be redefined to reflect the tunability of γr. The relation of the gain coefficient

gn(γ) to n becomes:

gγn ∝ n−1/3〈Fn(kξγ)〉2/3. (3.23)
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For a2
β � 1, the relation between γr and n is γr ∝ n−2, therefore we have:

gγn ∝ nFn(kξγ)2/3. (3.24)

It can be seen that tuning γr to produce higher frequency radiation becomes more produc-

tive when aβ � 1. At the same time R2
β also has a n dependence, which translates into

a g ∝ n1/3ρ ∝ n1/3R
2/3
β ∝ n2/3 relation. Such tuning, as suggested in [46], can theoreti-

cally achieve for any seeding radiation wavelength a more favourable scaling of power gain,

even if the values of γ and Rβ do not satisfy the fundamental resonance condition of the

seeding wavelength. Experimentally, γr does not usually have as large a tunable range as

Rβ, and therefore it is more desirable to tune Rβ towards large values to achieve harmonic

amplification.
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c d

Figure 3.2: From top to bottom, the figure panels (a) and (c) show the evolution of radiation
amplitude in z obtained by solving (3.13) and the harmonic frequency distribution of this
radiation field for an initial seeding field with a wavelength of 3916 ωp and Rβ = 0.022λp on
fundamental resonance, while the figure panels (b) and (d) show the same simulation carried
out with Rβ = 0.08λp which satisfies a 9-th order harmonic resonance relation with the same
wavelength. The radiation power is normalized and the length unit is normalized with λp;
γr = 400. The amplitude of the field in harmonic resonance oscillates at about 1.7 times the
frequency of that in fundamental resonance, and the maximum gain points (the 4th point
in the first plot and the 7th in the second) in the two frequency plots can be seen to satisfy
the same ratio. Thus we know that the dominant frequency of the two simulation results are
equal, and the second simulation saturates quicker than the first one, albeit with only 40%
of the output power.

3.6 High Harmonics with Detuning

To further verify that amplification occurs through harmonic resonance, a series of simu-

lations using the same γr and radiation wavelength as in Fig. 3.2, but with different Rβ
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detuning has been carried out. The results show that the saturated radiation field intensity

is significantly larger when Rβ satisfies a harmonic resonance condition than when it does

not, confirming our theoretical analysis.
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Figure 3.4: From top to bottom: the graphs on the left show dimensionless field intensities
evolving with only fundamental frequency resonance, while the graphs on the right show the
combined field intensities with resonances at harmonics included.
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3.7 Enhanced Coherent Radiation at the Fundamental

Frequency

An interesting characteristic of the ICL is identified from the group of eqns. (3.10)-(3.12): The

direct modulation of the betatron frequency by the Lorentz factor γ gives rise to an additional

slowly varying-component in the expression of the ponderomotive phase in Eq. (3.7) when

aβ � 1. The “jittering” motion therefore not only produces radiation at high harmonics,

but also enhances radiation at the fundamental resonant frequency. This can be seen by

assuming k0z0 − ωt = −θ and ψj = kz0j − ωt + θj , while keeping the product of all four

lowest order terms in the expansion of (3.9), rather than just the two resonant ones, which

can be summed to give

dA1

dτ
= 〈e−i(kz−ωt){(e−iθ + eiθ)[J0(k0ξ)− J1(k0ξ)(e

−i2θ − ei2θ)]}〉. (3.25)

(Calculations for higher order, less significant terms which contribute to the gain at the

fundamental frequency can be carried out, these transform the ICL dispersion relation into

a fourth-order algebraic equation, but are beyond the scope of this thesis.)

By calculating the third-order derivative of A1, we obtain:

A′′′1 = 2i〈J0(k0ξ)F
2
1 (k0ξ)〉1/3A1. (3.26)

Therefore in this case, the growth factor and gain parameter should be redefined as:

λ1 = 〈2J0(k0ξ)F
2
1 (k0ξ)〉1/3

(
−1

2
+

√
3i

2

)
, (3.27)

g1 = 〈2J0(k0ξ)F
2
1 (k0ξ)〉1/3g, (3.28)

for the fundamental resonant frequency. For 0 < k0ξ < 0.5, the value of (2J0(k0ξ))
1/3 will

remain above the unity, therefore the gain at the fundamental frequency is enhanced via the

direct modulation of the betatron frequency.
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Chapter 4

Superradiance and SASE in the ICL

4.1 SASE in the ICL

The relativistic Doppler effect makes the FEL/ICL a suitable candidate for high-frequency

coherent radiation generation. In the X-ray regime, however, the capability of an FEL/ICL

amplifier to radiate coherently is adversely affected by the scarcity of high reflective mirrors

in this frequency range. An alternative amplification scheme to a resonant cavity, must

be sought for the amplification of X-ray radiation. By adjusting ρ and the energy of the

electron beam, a FEL wiggler can produce coherent radiation beam in a single pass, in

the so-called single pass high gain process of FEL, thereby avoiding the need of mirrors.

When the electron bunch’s shot noise is used to seed the single pass high gain amplification,

the FEL is consider to work in the Self-Amplified Spontaneous Emission(SASE) [3, 19, 21]

regime. An ICL works in the SASE regime could potentially further reduce the size of an

X-ray FEL, where undulators are usually tens and even hundreds of metres long, to a size

that could fit in a University laboratory and considerably reduce the cost as well. As in

the FEL, however, SASE amplification in the ICL is an inherently noisy process, because it

relies on amplification of synchrotron radiation of an electron bunch at startup, which has

a bandwidth covering the whole spectrum. This section is devoted to the statistical and

frequency analysis of the SASE process, the SASE phenomenon with the slippage effect will

be discussed in the next section.
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4.1.1 Characteristics of the Startup

Of great interest and importance to the FEL and ICL theory is the shot noise inherent in any

realistic electron bunch, which originates from the discrete nature of the free electrons. The

positions of the electrons are not correlated with energy but rather random, whose phases

can sum to a non-zero bunching factor which serves as the initial signals that set off the

amplification. Unlike FEL electron bunches, where the randomness comes from the random

arrival times of electrons at the wiggler entrance, the initial ponderomotive phases of electrons

in an ICL wiggler can be split into two terms: a longitudinal term produced by the different

arrival times of electrons at wiggler entrance as in a FEL wiggler, and an independent

random transverse phase θ0 related to the random initial transverse position y0 = rβ cos(θ0).

This initial random phase distribution. unlike the FEL initial transverse phase kwz0, is not

determined by the initial electron pulse shape or their longitudinal positions in the wiggler.

Defining zm as the random longitudinal position of an electron m relative to the wiggler

entrance, and θm as the initial transverse betatron phase at time t = 0, these random

positions yield a sum of random phases exp(i(θm−kzm)) as the source term of the Maxwell’s

equation, with a non-zero average value. An ICL starting from a shot noise will have initial

power |b0|2 = 1/N , which is uniformly distributed in all frequencies. If the bunch length

is much longer than the radiation wavelength, the phases can be consider to be uniformly

distributed over the interval [0, 2π]. Under this assumption we can conclude that the real

and imaginary parts of b0(ω) are distributed in accordance with a Gaussian law. b0(ω) =

〈exp(−i(θm − kzm))〉 is the mean value of the bunching factor at frequency ω = kc, and

the frequency domain expression of b0. which satisfies a negative exponential probability

distribution [54]

p(|b(ω)|2) =
1

〈|b(ω)|2〉 exp

(
− |b(ω)|2
〈|b(ω)|2〉

)
. (4.1)

Next we will analyze the temporal and spectral characteristics of the startup bunch noise.

Due to its random nature statistical approaches [51] must be applied. Typical statistical

properties, including spectral and temporal correlation functions will be discussed in the

following paragraphs.

Defining the expression of the beam current as

I(t) = (−e)
N∑

m=1

cβ‖δ(z − zm) = (−e)
N∑

m=1

δ(t− tm). (4.2)
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Because shot noise comes from the aperiodicity of the electron distribution in space, its

frequency-domain expression should be obtained using a Fourier transform, rather than

Fourier series, which assumes negligible initial noise for the betatron phase distribution. We

can write down the Fourier transform of I(t) as

I(ω) =
I(k)

c
=

1

c

∫ ∞

−∞
eikzI(z)dz = (−ec)

N∑

m=1

eikzm . (4.3)

The spectral correlation function of I(ω) and I(ω′) can then be expressed as

〈I(ω)I∗(ω′)〉 =

〈
e2c2

N∑

m=1

N∑

n=1

exp(ikzm − ik′zn)

〉
. (4.4)

Here the angle brackets denoting the averaging over ensemble of bunches.

Assuming that the electron bunch profile can be described by a profile function F (t) =

〈−I(t)〉/(eN), it is easy to obtain the relation

〈exp(ikzm)〉 =

∫ ∞

−∞
F (zm)eikzmdzm = F (k). (4.5)

Using the property of a stationary process, which assumes that the mean, variance and

autocorrelation function of the probability distribution does not change over time, the cor-

relation function can be further expressed and normalized as

〈I(ω)I∗(ω′)〉√
〈I(ω)〉〈I∗(ω′)〉

= F (ω − ω′) + (N − 1)F (ω)F ∗(ω′). (4.6)

The second term on the RHS of the above equation corresponds to coherent emission due

to the bunch profile, which is usually negligible when the bunch length is much longer than

the radiation wavelength, even for a high current beam, because the resonant frequency is

large compared to the characteristic frequency of the bunch profile.

The spectral correlation function of the electric field can therefore be derived with the

expression of the current correlation function

S1(ω, ω′, t) = exp

(
i
ω − ω′
2ωβρ

t

)
F (ω − ω′). (4.7)

with t being the scaled time defined in Chapter 2. The second-order correlation function
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S2(ω, ω′, t) can be derived in an analogous way

S2(ω, ω′, t) =
〈|I(ω)I∗(ω′)|2〉
〈|I(ω)|2〉〈|I∗(ω′)|2〉 . (4.8)

For a bunch of electrons with completely randomized positions, S2 can be written in terms

of S1 as

S2(ω − ω′) = 1 + ‖S1(ω − ω′, t)‖2. (4.9)

The two correlation functions are useful in deriving the fluctuation of the radiation pulse

energy σ2
W , using the formula in [51]

σ2
W =

〈(W − 〈W 〉)2〉
〈W 〉2 =

∫∞
0

∫∞
0
〈|E(ω, t)|2〉〈|E∗(ω′, t)|2〉|S(ω − ω′)|2dωdω′

[
∫∞

0
〈|E(ω, t)|2〉]2 , (4.10)

where 〈W 〉 is the expression of the radiation energy |E(ω, t)|2 ∝ |I(ω)|2 measured by a

detector averaged over many shots, which is derived using Parseval’s theorem

〈W 〉 =
2Σ

Z0

∫ ∞

0

|E(ω, t)|2dω, (4.11)

where Σ is the cross section of the radiation pulse and Z0 the vacuum impedance. The

expression of the radiation energy must be derived using a similar method used in Chapter

2.

4.1.2 Time-domain Characteristics of a SASE Radiation Field

If we use the same approximation as in Chapter 2, where the value of betatron amplitude

for each electron is considered to be time-independent within a betatron period, then the

solution of steady state amplification with no seeding field, but initial bunching factor b0 can

be directly used with little modification, namely

A(t) =
b0

3i
exp

(√
3

2

(
1− 1

9
δ

2

t

)
t+ i

(1

2
− 2

3
δt +

1

18
δ

2

t

))
, (4.12)

for the growing mode, the δt within the exponential, which represents the total detuning

δt = δγ + δrβ is obtained from a Taylor expansion of the amplifying solution of the cubic
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characteristic equation λ3 − δtλ2 + 1 = 0 for a detuned ICL, around the point δt = 0, where

the growth rate reaches its maximum. This steady state solution implicitly depends on ω

through the detuning δt, which is related to ω by the resonance condition:

δt = −ω − ω0

2ρω0

, (4.13)

the k-dependent form of which is:

δt = −k − k0

2ρk0

. (4.14)

It can be seen that the frequency-domain expression depends on the wavenumber k, thus the

propagation is dispersive. In an ICL amplifier only a single frequency propagates through

the electron beam, and is amplified only when the values of γ and rβ satisfy the resonance

relation, in a SASE ICL, the radiation is seeded by broadband spontaneous emission, which

ensures that the electorn beam is atuomatically in resonance at a certain frequency. A

different set of values of γ and rβ only changes the frequency at which amplification achieves

maximum growth, without changing the growth rate, therefore in the SASE regime δt can

be taken to represent the frequency rather than energy deviation.

Thus for a startup noise defined as in Subsection 4.1.1, the absolute square of the vector

potential expression in the frequency domain is

‖A(ω, t)‖2 =
‖b0‖2

9
exp

(√
3
[
1− 1

9
δ

2

t

]
t

)

=
‖b0‖2

9
exp(
√

3t) exp

(
−
√

3(ω − ω0)2

36ρ2ω2
0

t

)
, (4.15)

which exhibits a Gaussian-shape amplification band around the resonant frequency ω0, with

the RMS bandwidth σA determined by ρ and ω0. Eq.(4.15) shows that the radiation ampli-

tude should fluctuate in the same manner as the Fourier component of the shotnoise. The

Fourier amplitude of the electric field, using the SVEA approximation, can be expressed as

E(ω, t) =
E0

3i
exp

([√3

2

(
1− 1

9
δ

2

t

)
+ i
( −ω

2ωβρ
+

1

2
− 2δt

3
+
δ

2

t

18

)]
t

)
I(ω)

I0

. (4.16)

The power spectrum density then follows the same negative exponential probability distri-

bution, which becomes a gamma distribution [51] if the integration is carried out over part
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of the frequency spectrum.

We define the effective angular frequency as

ωk =
−ck
2ωβρ

+
1

2
− 2δt

3
+
δ

2

t

18
. (4.17)

The group velocity of the field can be readily obtained from E(ω, t)

vg =
dωk
dk

∣∣∣∣
k=k0

= c

(
1−

1 + a2
β

3γ2
0

)
. (4.18)

The time domain expression of the field can then be obtained through a Fourier transform

E(z, t) =

√
8π√
3t

ecω0

I0

ρ exp

(
i+
√

3

2
t

)∑

m

exp
(
−σ2

A[z − zt − zm]2 + ik0zm
)
, (4.19)

which can be related, in the limit of a long electron bunch ∆ωC � σA, to the spectral power.

The statistical analysis demonstrates two important properties of the noise spectrum:

(1) The startup is noisy with multiple spikes; (2) The spectrum should narrow as 1/
√
t when

the radiation beam propagates in the wiggler. This understanding of the noise properties

will form the starting point of numerical investigation of the SASE ICL.

4.2 The Superradiant Theory of ICL

In Chapter 2, the electrodynamics of the ICL is studied with the assumption that the electron

and radiation beam propagate at nearly the same velocity, which is equivalent to the case

that the radiation beam interacts with a infinitely long electron beam, with electrons in

every section of the beam radiating equally and simultaneously. When the energy deviation

of the electrons from resonance becomes larger than the limit of linear analysis permits, and

nonlinear effects come into play, the amplification of the radiation beam amplitude saturates

and the amplitude starts to oscillate. In reality however, electrons always propagate at a

slower speed than the radiation in the vacuum. The radiation beam then slowly overtakes

the electrons from which it gains its energy, at the same time continuing to extract energy

from the succeeding sections of the electron beam, until it reaches the end of the bunch. A

radiation pulse amplified in such a way does not enter into the saturation regime, rather,

its power continues growing until it completely slips out of the electron bunch. Therefore,
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the radiation pulse will experience a variation in the electron density as it propagates, which

makes it necessary to take into account propagation effects on the length scale of the electron

bunch, rather than the wiggler-wavelength scale. The amplified radiation power will be

proportional to the square of the electron current. If electrons enter the amplifier in a

unprepared state randomly distributed, and only evolve to emit radiation with an intensity

proportional to n2
e under the influence of spontaneous radiation from the bunch itself, such

a self-organizing phenomenon, called “superradiance” in the FEL literature to reflect the

defining features of the radiation process.

It is thus immediately clear, that the radiation pulse will evolve in distinct ways at

different positions relative to the bunch. Defining the scaled propagation distance difference

z1 as

z1 =
4πρ

λ
(z − vt), (4.20)

and adopting slightly different definitions for scaled z and t from Chap. 2,

z =
4πρz

λ
, (4.21)

t =
4πρt

λ
, (4.22)

the propagation volume can be divided into three regions, depending on the value of z1, the

first region is the leading edge of the light pulse, which has escaped the electron bunch and

is no longer amplified. This area is characterized by

4πρ lb
λ

< z1 ≤
4πρ lb
λ

+ ct, (4.23)

followed by the region occupied by the electron bunch, where the radiation undergoes steady-

state amplification, which is defined by

ct ≤ z1 ≤
4πρ lb
λ

. (4.24)

The last region is the trailing edge at the end of the light pulse with

z1 < ct, (4.25)

where radiation evolves non-uniformly since electrons occupying this region have already
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been pre-bunched by the light pulse slipping over them. Sect. 4.3 will be dedicated to the

study of radiation dynamics in these three different regions.
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Figure 4.1: Schematic plot of the three regions in strong superradiance. (a) Slippage region,
(b) steady-state region, (c) radiation escaping from the electron bunch.

The study of superradiance is also vital to the study of the SASE regime of the ICL. Since

a SASE ICL starts from noisy spontaneous emission of the electron bunch, it is mostly used

for radiation at frequencies above the ultraviolet regime, and as a single-pass amplifier, where

a short electron bunch and a comparatively long undulator are utilized, and propagation

effects cannot be neglected. Such propagation effects are called “weak superradiance”, as

will be discussed in Subsect. 4.4.2. Moreover, even in the long bunch case it’s still possible to

generate superradiant radiation with an electron beam prebunched by modulating its energy

with a seeding laser field. There is always a region at the trailing edge of the electron bunch

that evolves as a short pulse, and emits radiation superradiantly. This region occurs because

no radiation enters from behind and all radiation propagates in the forward direction. The

radiation intensity emitted in such a way is much greater than the steady-state saturation

value, such a phenomenon is called “strong superradiance”, due to its high power output, as

will be discussed in Subsect. 4.5.3.
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4.3 Dynamics and Parameters of ICL Pulse Propaga-

tion in the Superradiant Regime

4.3.1 Scaled Spatio-Temporal ICL Equations

We start by writing down the self-consistent equations describing the evolution of the electron

variables and the complex field of the radiation in the one dimensional case

(
∂

∂z
+
∂

c∂t

)
ar = χ(z − v‖t)(1 + δ)〈(1 + s) exp(−iψ)/(1 + q)1/2〉, (4.26)

dψj
dt

= (2/ρ)(1 + qj)
−1/2 − (1 + a2

β)−1(1 + q)−2 − (1 + sj)
2/[(1 + δ)(1 + 1/a2

β)(1 + qj)],

(4.27)

dqj
dt

= −ρar(1 + sj) exp(iψj)/[(1 + δ)(1 + qj)
1/2]− iρ2

(1 + a2
β)2

(3 + a2
β)a2

β

〈exp(−iψ)〉 exp(iψj) + c.c.,

(4.28)

dsj
dt

= −i(ρ2/8)〈exp(−iψ)〉 exp(iψj)/(1 + qj)
1/2 + c.c.. (4.29)

The macroscopic electron density fluctuation function χ(z−v‖t) is introduced into the source

term to reflect the influence of the propagation effect on the source term. The ρ parameter

also needs to be slightly modified to reflect this change

ρ =

(
R2
βω̃

2
b

2γc2

)1/3

, (4.30)

by changing the plasma frequency into ω̃b =
√
ñee2/(meε0), where ñe is the peak electron

density such that ñ(z, t) = χ(z−v‖t)ñe. The definition of the averaging 〈...〉 is also modified

correspondingly; it is now carried out over N(z, t) electrons around position z at a fixed time

t, instead of over all electrons in the beam.

The spatio-temporal ICL equations formally resemble the time-dependent FEL equations,

and therefore we can apply the same standard transformation of coordinates

z′ = z, (4.31)

t
′
= t− z/v‖, (4.32)
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as defined in Chap. 2, to Eqs. (4.26) to (4.29). The transformed equations are

dψj

dt
′ = qj − ρsj + δ, (4.33)

dqj

dt
′ = −[ar + iρ〈exp(−iψ)〉 exp(iψj)] + c.c., (4.34)

∂ar

∂z′
− (1− β‖)

cβ‖

∂ar

∂t′
= −i〈δψ exp(−iψ0)〉 − ρ

2
〈q exp(−iψ0)〉, (4.35)

dsj

dt
′ = − i

2

(∂ar
∂z′
− (1− β‖)

cβ‖

∂ar

∂t′

)
eiψj + c.c.. (4.36)

The influence of slippage on the interaction can now clearly be seen: when the velocity

difference between the radiation and electron beam is not appreciable during the interaction

in the wiggler, i.e., the so-called “short wiggler” limit, in which the slippage length, defined

as the number of wiggler periods times the radiation wavelength Nβλr is much smaller than

the electron pulse length lb. This limit can be easily understood by normalizing z to Lβ, and

t to lb/c. In this case the ratio between the time and space derivative becomes

Lβ(1− β‖)
β‖lb

=
Nβλr
β‖lb

, (4.37)

using the resonance condition λr = λβ(1 − β‖). Hence if the value of Nβλr/lb, defined to

be the slippage parameter U , is much smaller than one, the time variation can be neglected

within the electron pulse length lb, except for a small region in the trailing edge. Under this

condition, radiation evolution in most parts of the electron beam will be governed by the

steady state ICL equations (4.26)-(4.29). When the slippage parameter is much larger than

one,however, the non-uniformity of the electron distribution will affect the amplification,

the following subsections are dedicated to the discussion of the difference between these two

different kinds of superradiance.

4.3.2 Scaled co-moving coordinates

To understand the phenomenon of the cooperative radiation effect, the scale in which it

takes place must be understood first. In the discussion of the steady-state SASE effect, we

have found the parameter characterizing the RMS bandwidth of the SASE spectrum to be

σA = (k− ks)/(2ρks), the FWHM(Full width at half maximum) bandwidth of the spectrum

is thus ∆k = 4πρ/λs. recalling that the coherence time of a radiation field is inversely
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proportional to its bandwidth, we define a unit of length characterizing the scale in which

the electrons interact cooperatively via the radiation field

lc =
λ

4πρ
, (4.38)

i.e., the “cooperation length” as defined in [55]. It can immediately be seen that this length

scale of cooperative radiation is the length scale of the slippage effect, which depends on

the difference between the velocities of the radiation propagation and bunch propagation.

Although both beams propagate at a speed close to the light in the vacuum, the relative

velocity between the two is quite small, and the dynamics of the interaction can thus be

better analysed on two different length scales: One length scale is, certainly, the wiggler

(betatron) wavelength, the other is the length of the bunch. We transform to the following

coordinates





z1 =
z − v‖t
lc

,

z2 =
ct− z
lc

,
(4.39)

which satisfy the condition z1+z2 = (4πρ(c−v‖)/λ)t = c(4πρ/λβ)t = ct, under the resonance

relation ωβ = ω−kv‖. The coordinate transformation used here is different from that adopted

by Bonifacio et al in [56]. Due to the difference in the resonance relation in ICL compared

with the FEL, the phase of electron synchrotron motion within an ion channel is a function

of t and unlike the FEL, does not depend on the longitudinal position of the electron. Thus

the electron-frame moves at a speed of β‖ = 1 − ωβ/ω, rather than 1/(1 + ωβ/ω), as in

FEL theory. In fact, if the FEL co-moving frame is used, the scaled ponderomotive phase

transforms in terms of the FEL co-moving coordinates to :

ψj =
z1

ρ
−
( 1

β
− 1
)z2

ρ
, (4.40)

which is not constant when the resonance condition is satisfied.
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4.3.3 ICL Equations in Transformed Coordinates

Applying the coordinate transformations (4.39) to the ICL equations (4.26)-(4.29), under

the Compton regime condition ρ� 1yields

∂ψj(z1, z2)

∂z2

= pj(z1, z2), (4.41)

∂qj(z1, z2)

∂z2

= −(a(z1, z2) exp
(
iψj(z1, z2)

)
+ c.c., (4.42)

∂ar(z1, z2)

∂z1

= χ(z1)〈exp
(
− iψj(z1, z2)

)
〉, (4.43)

where the variation in sj is neglected, and ψj, pj and A are scaled using the same universal

scaling as used in the previous chapter.

To facilitate our discussion regarding the radiation evolution in different regions, we

introduce the superradiant parameter K as in [56]:

K =
lc
lb
, (4.44)

that is, the ratio between the cooperation and the bunch length. A slippage parameter U

can also be defined using K and gain parameter G as U = KG, where G = 4πρNβ

If we assume a uniform electron density distribution over the whole bunch length, the

region occupied by the electron bunch is thus 0 < z− v‖t < lb, which can be rewritten using

the scaled coordinate as 0 < z1 < 1/K. Similarly, the limits of the three regions defined in

(4.2) can also be expressed using the transformed coordinates and the K parameter, with the

“steady-state” region defined as ct < z1 < 1/K, where slippage has no effect on the growth of

the field amplitude, the trailing edge region 0 < z1 < z, where the radiation pulse is affected

by propagation effect and is non-uniform, and the leading edge 1/K < z1 < ct+ 1/K, where

the radiation is no longer amplified.

The parameters K and U are also important for the radiation pulse evolution in the

trailing edge, which further determines the radiation power and other characteristics of the

pulse. Therefore, radiation amplification with different K and U are discussed separately in

the next section.
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4.4 Superradiant Regime

4.4.1 Linear Analysis

In this section, we proceed to discuss the linear regime of the (4.41)-(4.43), following the

approach described in [57]. (4.26)-(4.29) can be generalised using a set of dimensionless

variables that are slightly different from (4.39)




z1 =

4πρ

λ
(z − v‖t) =

z − cβ‖t
lc

,

t = t,

(4.45)

and the collective variables

B = 〈δψ exp(−iψ0)〉, (4.46)

P = 〈q exp(−iψ0)〉, (4.47)

A = ar. (4.48)

The self-consistent linearized ICL equations can be transformed to

1

c

∂B
∂t

= P − ρS + δ, (4.49)

1

c

∂P
∂t

= −A− ρB + c.c., (4.50)

(1

c

∂

∂t
+

∂

∂z1

)
A = −iB − ρ

2
P + iδA, (4.51)

following the method devised in [58] by applying the coordinate transformation from (z, ct)

to (ct, z1), thus eliminating the partial dependences of the particle evolution equations on

ct, and making the equations directly solvable using the Laplace transform method. If we

set the following initial condition at the wiggler entrance

A(z1,t = 0) = A0,

B(z1,t = 0) = 0,

P (z1,t = 0) = 0,

(4.52)
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the Laplace-transformed fields using the given conditions are





A(w) = AS(w) + ASR(w),

AS(w) = −A0
−iw2

∆w
,

ASR(w, z1) = A0
iw2

∆w
exp

(
− i∆w

w2
z1

)
,

(4.53)

where ∆w is the polynomial on the left hand side of the steady-state dispersion relation

w3 − δw2 + 1 = 0. It is easy to see that AS is just the frequency domain expression for the

steady-state solutions, with three singularities, each corresponding to the respective growth

rates of the three steady-state modes. The term ASR, which also depends on z1, has one

additional essential singularity ω = 0, which appears in the exponential factor. We invert

the Laplace transform to evaluate the singularities of ASR, and obtain:

ASR(t,z1) = exp(i[δγ + δrβ ]z1)
A0

2π

∫

B

−iw2

∆w
exp

(
iωct− iw

3 + 1

w2
z1

]
dω,

which can be simplified to give

ASR = exp(i[δγ + δrβ ]z1)
A0

2π

∫

B

−iw2

∆w
exp

(
iw(ct− z1)− i 1

w2
z1

)
dω, (4.54)

where the contour B is parallel to the real axis and lies below all the singularities of ASR, δγ

and δrβ are the detunings in the kinetic energy and betatron amplitude, respectively. In the

regime where z1 ≥ ct, the integral contour B can be closed in the lower-half complex plane,

since all of the singularities are out of the region enclosed by the contour and the integral

vanishes. Hence for ct ≤ z1, we have A = As(t).

When z1 ≤ ct, the contour can be closed in the upper half plane and the integral value is

given by 2πi times the sum of residues at the singularities of the function ASR. Evaluating all

the simple poles of the above contour integration will exactly cancel that of AS(ω), leaving

only the contribution of the essential singularity ω = 0. Therefore, for z1 ≤ ct we have

A = ASR, where

ASR = exp(i[δγ + δrβ ]z1)
A0

2π

∫

B

−iw2

∆w
exp

(
iwz2 − i

1

w2
z1

)
dω, (4.55)

where z2 = ct− z1 and B is a contour enclosing the essential singularity ω = 0.

When 1/K ≤ z1 ≤ ct + 1/K, we have radiation escaping from the leading edge of the
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electron pulse, no longer interacting with the electrons, while keeping track of the steady-

state exponential growth. A noticeable difference from FEL pulse propagation can be seen

here: In the FEL, the radiation pulse extends out of the electron beam head and thu always

maintains a region where the pulse is no longer amplified, with minimum length K1λ/λw,

while in the case of ICL the length of the region starts at 0. This difference arises from the

fact that in the ICL theory the t = 0 point is defined as the starting point of the bunch-field

interaction and when the bunch head enters the wiggler, while in FEL theory, it is the z = 0

point, with the t = 0 point being implicitly defined as when the entire electron bunch is

injected into the wiggler, and the radiation field generated by the preceding parts of the

bunch has already propagated outside of the bunch.

We can rewrite the integral (4.55) using the following variables, which are particularly

suitable for the discussion,

κ =
(z2

z1

)1/3

ω,

y =
√
z1z2,

into

ASR = exp(i[δγ + δrβ ]z1)
A0z

3
2
1

2πy

∫

B

−iκ2

∆κ
exp

(
iy2/3φ(κ)

)
dκ. (4.56)

The integral of ASR(z, z1) can then be evaluated asymptotically using the stationary phase

method. The principal contribution to the integral is due to the regions lying close to the

value k = ks, which satisify the condition φ′(κs) = 0. There are three points of stationary

phase, which correspond to a growing, an oscillatory, and a decaying exponential respectively.

By only keeping the growing exponential κs = 21/3(1−
√

3i)/2, we obtain

ASR =
exp(iδtz1)√

3πy4/3

A0z1

Q(z1, z2)
exp

(3

2
(
√

3 + i)(y/2)2/3 − iπ

4

)
, (4.57)

where

Q(z1, z2) = 1 + δt exp
(
i
π

3

)(2z1

z2

)2/3

− 2z1

z2

. (4.58)

The signal ASR exhibits an exponential growth that depends asymptotically on y2/3 (for

y > 1) in the exponential factor, and does not depend on δγ and δrβ , unlike the steady state
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signal AS.

If the initial field is A0 = 0, while the initial bunching factor b = b0 6= 0, as required for

SASE to take place, the expression for the signal ASR can be obtained as:

ASR =
exp(iδtz1)√

3πy

b0z1

Q(z1, z2)
exp

(3

2
(
√

3 + i)(y/2)2/3 − iπ

4

)
. (4.59)

4.4.2 Weak Superradiance

Electron bunches with pulse lengths as short as a few radiation wavelengths can now be

measured in plasma accelerators [59] [60], which translates to a K value close to unity. The

utilization of such electron beams as coherent radiation sources will give rise to U values

ranging from 1-5 to sometimes 50-100. In fact, if the high gain condition G > 1 is valid, U

is always greater than 1 when K > 1, thus a short wiggler length and a short electron pulse

length combination cannot produce high gain amplification and will not be discussed.

For y � 1 the relationship between z1/z2 and U is

0 <
z1

z2

<
1

U − 1
. (4.60)

Under such a condition, ct−z1 will always be larger than 0 within the electron beam, except

for a very short distance at the entrance of the interaction region. The term AS in the

expression (4.53) can thus be neglected, and Q(z1, z2) can be replaced with 1. We can then

simplify (4.59) to

ASR =
exp(iδz1)√

3πy4/3
A0z1 exp

(3

2
(
√

3 + i)(y/2)2/3 − iπ

4

)
. (4.61)

Expressions of ASR and bSR with no initial radiation field but an initial noise-induced

bunching factor can also be easily obtained as:

ASR =
b0z1√
3πy

exp
(3

2
(
√

3 + i)(y/2)2/3 − iπ

4

)
, (4.62)

bSR =
b0z1√

3π(4y)1/3
exp

(3

2
(
√

3 + i)(y/2)2/3 − iπ

4

)
. (4.63)

If we consider the entire slippage region for a point with fixed z1, expression (4.61) can
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be written as:

ASR =
exp(iδz1)√

3π(ct− z1)4/3
A0z

2/3
1 exp

(3

2
(
√

3 + i)[z
1/2
1 (ct− z1)/2]2/3 − iπ

4

)
, (4.64)

using the variables t and z1. At the pulse leading edge, we have z1 = 1/K. If we observe

the field in this point of the electron pulse, given that it is the point where radiation leaves

the pulse, the asymptotic formula (4.64) will turn into:

ASR =
A0√

3π(ct− 1/K)4/3K1/3
exp

(3

2
(
√

3 + i)(ct/2
√
K)2/3 − iπ

4

)
, (4.65)

with y ∼ ct/
√
K, the intensity grows exponentially if (ct/

√
K)2/3 > 1. Superradiant gain

can thus be defined in a form similar to the steady-state gain

GSR ∼
( ct√

K

)
=

G

U1/3
. (4.66)

For a short bunch, U is always larger than 1, and as a result the peak power of the weak

superradiant regime is always smaller than the steady-state regime; due to the short bunch

length the radiation generated at the tail of the bunch propagates out of the bunch before it

is sufficiently amplified. For K � 1, the averaged energy extraction in dimensionless units

in the linear regime can be defined by integrating ‖ASR‖2 in the expression Eq. (4.64) over

z1 on the entire bunch length

EL =
1

lb

∫ lb+ct

0

dz1〈|ASR|〉2. (4.67)

Due to the strong slippage, the radiation inside the bunch can be neglected. The above

integration can then be carried out solely in the region lb < z1 < lb + ct. An asymptotic

evaluation of EL, using the stationary phase method similar to [58] leads to the following

expression

EL =
1

3
√

4π
√

3ctNlc

e
√

3ct. (4.68)

It is easy to see that EL = Pave/(ρPw), where Pave is the unscaled average emitted power,

and Pw is the total electron beam power.
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Simulation Results

Simulations of pulse propagation in the weak superradiance regime are conducted, by solving

the equations (2.40)-(2.42) numerically, and plot the normalised field intensity ‖A‖2 against

z1 = z− v‖t/λ, to demonstrate the charateristics of the weak superradiance radiation pulse,

with the numerical methods used for the simulation be detailed in section 4.5.
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Figure 4.3: From (a) to (d), the four graphs show the gradual formation of a single radiation
pulse envelope at positions z=250, 300, 350, 400, by solving the equations for the weak
superradiance parameters ‖A0‖2 = 1.6× 10−9, G = 15, K = 2, U = 30.

We also plot the spectrum of a radiation pulse seeded with a plane wave. After in-
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teracting with a sub-cooperation length electron pulse, the pulse will retain its spectral

monochromaticity, all frequency components other than the resonant one have negligible

power.
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Figure 4.4: Spectrum of the radiated pulses for short electron pulse with K = 1, z = 400,
and ω = (ω − ω0)/ω0, other parameters are G = 10, γ = 400.

4.4.3 Nonlinear Regime

Superradiant results from the linear analysis can be extended to the nonlinear regime in the

short-pulse limit, by applying the ansatz used in [58] on the field and electron variables in

Eq.(4.34)-Eq.(4.36)

ar = z1 exp(iδtz1)A1(y), (4.69)

ψj = ψ1j(y)− δz1, (4.70)

qj =
√
z1p1j(y), (4.71)

sj =
√
z1s1j(y). (4.72)
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Eqs (4.34)-(4.36) are reduced to a system of ordinary differential equations





dψ1j

dy
= p1j,

dp1j

dy
= −A1 exp(iψ1j) + c.c.,

y

2

dA1

dy
+ A1 = 〈exp(−iψ1j)〉.

(4.73)

With all effects of order ρ neglected, it can be observed that the solution of Eqs. (4.73) does

not depend on z1 and δ, but only on the initial condition b0. Such independence implies

that ar only depends on ρ through z1, thus we have |ar|2 ∝ z2
1|A1|2 ∝ ρ2|A1|2. It is already

known that |ar|2 ∝ ρne, thus the radiation intensity is propotional to ρ2 × ρne ∝ n2
e, If we

define Ne as the number of electrons in the bunch with ne being used for the peak number

density in the spatio-temporal formulation, then the scaling of |ar|2 ∝ N2
e can be obtained

as well, compared with N
4/3
e in the steady state regime.

Another observation is that the electrons will be forced to radiate at their spontaneous

frequency by the phase factor exp(iδtz1), regardless of the value of δt or any predetermined

radiation frequency. This can be easily seen from the following relation

A exp(i[kz − ωt]) ∝ A1 exp(iδtz1), (4.74)

where the relation z1 + z2 = ct has been used, which can turn the radiation phase into

ks(z−ct), hence the detuning factor exp(iδz1) shifts the carrier frequency from ck to cks. The

solution (4.64) describes a superradiant process, with intensity scaling as n2
e and frequency

of cks, formally identical to what is described in [58].

Setting x ≡ y2, the wave equation of A1(y) can be written as

(d/dx)(xA1) = 〈exp(−iθ1)〉 ≡ b1. (4.75)

Integrating both sides of (4.75), we have

A1 =
1

x

∫ x

0

dx′b1(x′) ≡ b1, (4.76)

where b1 is defined as the average of b1 with respect to x. This result gives rise to an inter-

esting and useful interpretation of the superradiant process: in the electron rest frame, an

electron with betatron amplitude rβ in the laboratory frame will “see” the electrostatic wig-
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gler field as a counter-propagating pseudo-radiation field with amplitude Rβ and wavelength

λβ, and transfers the pump energy into the radiation by scattering the pseudo-radiation

field, a process dubbed as coherent relativistic Thomson scattering. If we take the square

modulus of both sides of the above equation, the power radiated out of the electron bunch in

the superradiant regime can be expressed using the original dimensionless quantities defined

in Chapter 2: A = 2Ay/(ρ
2aβ), the relations P = cneε0‖E‖2πr2

b/2 and E ≈ −iωar

Pc = (R2
β/Sb)ω

2r2
eCN

2
e ‖b1‖2 ∝ ‖b1‖2N2

e , (4.77)

with Sb = πr2
b and re = e2/(4πε0mec

2) being the classical electron radius, and C =

16π2ε0m
2
ec

3/e2. Equation (4.77) is the power radiated by the electrons in a coherent Thomson

backscattering of the pseudo-radiation field. We notice that the power expression depends

on N2
e ‖b1‖2, which becomes N2

e when ‖b1‖ approaches 1, indicating a cooperative process.

In the limit b1 ∝ 1/N
−1/2
e it becomes Ne and the power expression becomes

Pinc = Ne(R
2
β/r

2
b )ω

2r2
eC. (4.78)

Compare expression (4.78) with the spontaneous betatron radiation power expression for

a highly relativistic electron bunch in an ion channel wiggler oscillating with phase θ, defined

in [37]

Psp =
2

3
Nece

2γ4
rr

2
bk

4
β cos2(θ), (4.79)

which after averaging is

P sp =
1

3
Nece

2γ4
rr

2
bk

4
β. (4.80)

For aβ � 1, the expression can instead be simplified to

P sp =
1

3
ce2Neγ

4
rR

2
βk

4
β. (4.81)

The coherent radiation power is proportional to the square of the beam electron density,

and linearly proportional to the plasma density, while the spontaneous betatron radiation

power is proportional to the square of the plasma density, but linearly proportional to the

beam density.
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4.4.4 Strong Superradiance

In the last section, we describe the slippage effect for an electron bunch length of several

radiation wavelengths, for which the influence of slippage on the field evolution is best

observed, the requirement of an extremely short bunch for weak superradiance, however, is

too much of a limitation for real-world radiation amplification, and the sub-saturation power

output is also less than ideal. In addition, the usually large ρ value of ICL amplifier usually

makes the conditions for weak superradiance hard to satisfy. Therefore it is necessary to

investigate superradiance effect with a comparatively long bunch, with K � 1. Although

the electron beam used is sufficiently long that the slipping radiation does not propagate out

of the beam, at the trailing edge of the beam, where z1 � ct a short pulse forms as a result

of the superradiant effect, and slips through the electron beam. This pulse, propagating at

a group velocity of vg = 1 − (1 + a2
β)/3γ2

0 , obtained using the same dispersion relation as

(4.17)

ω(k) = c
[
k +

(1

2
− 2

3
δt +

1

18
δ

2

t

)
2ρkβ

]
, (4.82)

is then continuously amplified by absorbing the spontaneous radiation emitted from the

electrons entering the slippage region, with its width inversely proportional to the square

root of its height.

The intensity of such a radiation field can be described by a transformed version of the

expression of ASR,. When z1 � 1, the exponential factor in the expression (4.64) becomes

dominant, with y =
√
z1z2 as a function of z1 for a fixed t and, reaching a maximum value

at z1=ct/3, at which point, for nonzero δt(when δt=0 the stationary phase approximation

used to obtain the time-domain expression (4.57) for ASR is no longer valid), the expression

of the intensity can be written as

‖ASR‖2 =
‖b0‖2

4πctδt
exp(
√

3ct). (4.83)

This expression grows exponentially with t as the steady state intensity expression, with

the difference being the t and the detuning factor in the denominator. In addition to the

superradiant pulse propagation, from the discussion in section 4.2 we know that the long

pulse also produces a steady-state-like radiation field in the region where z1 > ct. Such a

mixture of different kinds of pulses is evident in the following simulation results:
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Simulation Results
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Figure 4.5: From (a) to (d), the four graphs show radiation and electron pulses at positions
z(z = z/λw)=120, 360, 480, 600,respectively, produced by numerically solving ‖A‖2 from
Eqs. (2.40), (2.41), and (2.42) with strong superradiance parameters ‖A0‖2 = 1.6 × 10−9,
G = 15, K = 0.042, U = 0.63, γ = 400.

At the beginning of the undulator, the flat-top and low power of the radiation pulse are

clearly indicative of a steady-state amplification process. As the pulse continues to develop,

the spike produced by the trailing edge of the electron beam slips through the steady-state

pulse and becomes clearly visible, with its power dominating that of the steady-state pulse.

Meanwhile, the trailing edge continues to generate radiation, which in turn gets amplified

superradiantly, at the end of the undulator, two spikes taking up most of the radiation power
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are clearly visible.
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Figure 4.6: The frequency spectra of the strong superradiance at the middle (above, with
z=150) and the end of the interaction region (below, with z = 600) plotted against ω =
(ω − ω0)/ωp (where ω0 is the central frequency) using parameters same as the time-domain
plots, showing the multiple frequency spikes.

Unlike the short-bunch weak superradiance simulation, in the long-bunch case the fre-

quency spectrum extends beyond the central frequency value. This can be attributed to
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the change in the distribution of the electron γ factors, which experiences a collective drop

from the absorption of the laser pulse. As unamplified laser radiation continues to propagate

through these electrons with reduced γ values, it will stimulate the electrons to emit radiation

at, according to Eq. (4.74), their spontaneous frequencies rather than the frequency of the

unamplified radiation field. In the following graph we plot the energy extraction efficiency

EL averaged over the whole bunch as defined in (4.67) as a function of t = ct/λw, to examine

the energy extraction efficiency of such long pulse scenario:
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0.6

t
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Figure 4.7: Long-pulse case: average energy extraction EL vs t = ct/λw obtained using
(4.68); the parameters are the same as in Fig. 4.5

Simulation Results

In Fig. 4.5, two different kinds of radiation evolution is clearly visible. In the leading edge,

the steady-state amplification is dominant and ‖A‖2 is uniform while at the trailing edge

we can clearly see a spike forming. The amplification of the spike is a purely superradiant

effect, the pulse attains its power through continuous amplification of the spontaneous radi-

ation pulse emitted by the trailing edge of the electron pulse, and therefore takes place no

matter how large the detuning is. To verify this, we need to simulate a beam sufficiently

detuned to prevent any steady-state amplification from taking place and compare this with

the simulation of a on-resonant beam, with all other parameters set to be identical. The

expression (4.83) shows that the signal will grow exponentially, as the steady state signal,
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so the growth factor should be large enough to allow over-saturation level amplification of

the superradiant signal to take place.
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Figure 4.8: From a to d, the four graphs show radiation and electron pulses at positions
z(z = z/λw)=160, 240, 320, 480 (the end of the interaction region), by solving Eqs. (2.40),
(2.41), and (2.42) for the parameters ‖A0‖2 = 1.6 × 10−11, G = 25, K = 0.042, U = 1.05,
γ=400.

As we have anticipated, the spike grows to a larger amplitude than the resonant case,

while the steady-state amplification, albeit does not disappear completely, becomes much

less pronounced. The energy extraction efficiency EL along the undulator is also plotted:
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Figure 4.9: Energy extraction efficiency over the whole electron bunch plotted as a function
of t = ct/λw showing the superradiant growth of radiation power, under the off-resonance
condition, with δ = 5
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4.5 Full SASE Numerical Simulation

4.5.1 Introduction

In this section, we describe the full simulation of a spatio-temporal SASE process in an ion

channel wiggler. In the first subsection we describe the noise algorithm used to generate

the phase drift in the initial phases of simulated particles, followed by the two subsections

describing the discretization of the wave-equation in spatio-temporal coordinates, and the

algorithm used to advance the partial equation solver, along with the conditions need to be

satisfied to carry out the simulation.

4.5.2 The Noise Algorithm

The initial shot noise algorithm must satisfy three criteria: (1) In the absence of shot noise,

the initial bunching at all harmonics of the fundamental frequency must be zero; (2) the initial

mean value of bunching factor |b|2 should be 1/Ne, where Ne is the number of electrons in the

bunch; (3) the initial macroparticles should be distinguishable not only in their longitudinal

coordinates, but also in their transverse coordinates, to account for the transverse bunching

effect. To achieve all three goals, we follow the approach described in [61] with minimal

change. The electron bunch is first divided into a number of macroparticles, with each

macroparticle, indexed by p only distinguishable from others by its longitudinal coordinate,

the collection of macroparticles are subdivided into a number of “beamlets”, each of which,

indexed by q has its own, statistically independent longitudinal microbunching distribution

spread among two or more macroparticles. Each of the macroparticles corresponding to

a given beamlet is initialized with the same set of coordinates (y,py,pz) but the different

individual beamlets carry with them unique and physically distinguishable coordinates.

A small amount of phase drift δθp,q is then added to the phase of each macroparticle

within a beamlet to simulate the effect of shot noise. From one beamlet to the next, there is

no correlation in the amount of phase difference added, otherwise there would be anomalous

temporal variation in dθ/dt from beamlet to beamlet; the random number used to generate

δθj,k should also be completely independent among beamlets. Therefore the phase drift can

be expressed as in [61]

δθp,q =
m=M∑

m=1

(am,q cosmθp,q + bm,q sinmθp,q) (4.84)
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This equation forms the basis of the algorithm for generating shot-noise in the simulation of

this section.

4.5.3 Simulation of Propagation Effect

Discretization of the Wave Equation

Compared with the steady-state formulation, in the spatio-temporal simulation the slippage

effect is non-negligible, the radiation beam will slowly overtake the electron bunch, and at the

same time continue to absorb energy from less bunched electrons. The electron bunch length

will thus have to be accounted for in the simulation. Consider an ion channel with a length

of Lu, plasma wavelength λp, an electron bunch with a bunch length of Lb is injected into

the channel, copropagating with a plane wave Ar = A0e
i(kz−ωt) initially. The wave equation

of the radiation can be discretised using a Crank-Nicholson scheme, however, using such

a scheme would require all phase-space coordinates of the macroparticles in all beam slices

discretized in z to be stored in a tridiagonal matrix in the memory, which is quite demanding

on the machine hardware. Instead, we choose to use a explicit differencing scheme, following

the assumption made in Reiche’s GENESIS [52] thesis, namely the interaction time between

the electron bunch and a single slice of radiation beam is too short to change the collective

instability significantly before the radiation field is advanced further. Such a scheme is much

less demanding:

(
∂

∂z
+

∂

c∂t

)
Ar = s(z, t)→ umn+1 − umn

∆z
+
um+1
n+1 − umn+1

c∆t
= smn , (4.85)

where n and m are the indices of the discretization in t and z in a Cartesian mesh, respec-

tively: tn = n∆t, zm = m∆z, and umn and smn are the values of Ar and the source term at

point(m,n), respectively. Using c = 1 and ∆z = c∆t we obtain

um+1
n+1 − umn = smn ∆z. (4.86)

Simulation Methods

With the discretization used in the previous subsection, the time-dependent simulation code

can be written without much modification to the steady state simulation code. At the end

of every step integration in every run of steady state simulation the value of the radiation

field, um+1
n is saved into a temporary array, which will be reused at the point rm+1

n+1 . However
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to produce a physically meaningful simulation result, caution must be taken in terms of

selection of simulation parameters.

Firstly, the stability of the differencing scheme (4.85) must be ensured through proper selec-

tion of the stepsizes in z and t coordinates. Rewriting Eq.(4.85) in the form

umn+1 − umn = −c∆t
∆z

(um+1
n+1 − umn+1) + smn . (4.87)

Performing a Von Neumann stability analysis [62], the amplification factor is

‖ξ‖2 = 1− 2‖c∆t
∆z
‖
(

1− ‖c∆t
∆z
‖
)

(1− cos k∆z). (4.88)

The stability condition ‖ξ‖2 ≤ 1 is the Courant-Friedrichs-Lewy condition c∆t ≤ ∆z. There-

fore if the z coordinate is to be discretized in units of λβ, the discretization unit of the t

coordinate must be no more than λβ/c to avoid numerical instability. This discretization,

however, is not very useful, since there is no information on the different scales of the prop-

agation to be obtained from such discretization, which would make, e.g., the representation

of bunch length very difficult. To address this problem we transform the wave equation to

the form established in (4.35)

∂ar

∂z′
− (1− β‖)

cβ‖

∂ar

∂t′
= s(z′, t′). (4.89)

The natural step sizes for this discretization are λβ for the z′ coordinate and λ/c for the t′

coordinate, respectively. The chosen stepsize in z′ is smaller than λβ, so as to make sure the

fluctuation within one wavelength does not become the source of an undesired instability and

at the same time improves accuracy. Also, to avoid instability in the Runge-Kutta solver,

the integration step ∆z should normally be relatively small compared to the gain length.

Caution should also be taken with the value of M , the number of beam slices to be used in

the simulation: Since each beam slice must be able to accommodate one radiation slice, the

value of M should not be larger than Lu/λ. At the same time, to guarantee that at least one

radiation slice remains in the simulated electron bunch, M should also fulfill the condition

M > Lu
∆z

. In addition, the interaction region length and the bunch length must be adjusted

accordingly depending on the kind of superradiance expected to be observed.
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Simulation of noise startup

To clearly observe the evolution of the noise spectrum within the bunch, we start with a

simulation using a low gain parameter and short bunch length, so that the phase space

coordinates (γ and rβ) of the bunch electrons do not change significantly due to the resonant

absorption of energy by the laser pulse,
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Figure 4.11: From top to bottom, left to right, shot-noise initiated radiation pulse as a
function of z1 at z = 32, 64, 128, 160; obtained by solving Eqs. (2.40), (2.41), and (2.42) for
initial parameters 〈|b0|2〉 = 10−10, G = 19, K = 2, γ=400, δ=0
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Figure 4.12: From top to bottom, the spectrum of a radiation pulse started up with shot-
noise as a function of ω = (ω − ω0)/ωp (where ω0 is the central frequency of the spectrum)
at z = 0, 4, 9 with Nw = 70, after filtering the frequency components generated by the
rectangular profile of the current. Other parameters are 〈|b0|2〉 = 10−10, G = 66, K = 0.026,
γ=400, δ=0. 132



It is apparent from the spectral plots that the initial shot noise power spectrum is rather

spiky, and the electron bunch with the narrow phase-space distribution serves as a monochro-

mator which narrows the bandwidth, thus the sharper power spectra near the end of the

interaction region.

The role of the bunch length in the formation of the temporal/spectral structure of a

noise-initiated pulse is also investigated, in the short bunch case a single smooth uniform

pulse shape is generated, while in the long bunch case, multiple spikes evenly spaced can be

observed in the time-domain plot.
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Figure 4.13: Temporal structure of the noise-initiated radiated pulse in the short bunch
(lb = 3lc), weak superradiance case, and the long bunch (lb = 30lc), strong superradiance
case, respectively, at the position of z = 20, with 〈|b0|2〉 = 1.6× 10−8. The temporal scale is
in units of z1 = (z − v‖t)/λ.
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Figure 4.14: Spectrum of the radiated pulses, for the same cases of Fig. 4.13, ω = (ω−ω0)/ωp,
where ω0 is the central frequency of the spectrum: the resonant frequency determined by
the beam bunch parameters.
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Chapter 5

Conclusion

This thesis has provided a theoretical investigation of the Ion Channel Laser (ICL) with

large amplitude betatron oscillations using steady-state and spatio-temporal models, which

have been compared with earlier works, in particular by Whittum [1]. To begin with, the

collective motion of highly relativistic electrons in the electrostatic field of an ion channel

has been studied in Chapter 2, using slab geometry and applying the universally scaled

linear theory of the Free-Electron Laser (FEL) by Bonifacio et al. [3]. This model extends

Whittum’s ICL theory to the large-betatron amplitude case. The electron motion is entirely

described by a set of ponderomotive coordinates obtained by separating the Hamiltonian

into two parts, which correspond to the longitudinal and transverse electron motion, respec-

tively. The energy exchange of a single electron with the radiation field is described by a

first order equation giving the time derivative of the Lorentz factor γ in dependence of the

ponderomotive phase, which is the difference between the electron betatron phase and the

radiation phase; its time derivative, in turn, depends on both γ and the betatron amplitude

rβ to first-order. This is in contrast to Whittum’s ICL theory, where only the γ dependence

is considered.

Next, the multi-particle equations and the steady-state field equation of the ICL have

been formulated with collective variables defined in analogy to Ref. [3]. Scaling of the

variables and linearization makes the form of the solution to the differential equation in-

dependent of the experimental parameters; the efficiency of the amplifier is determined by

only two parameters, the “gain parameter” ρ and the betatron wavelength λβ. The solution

of the characteristic equation of ICL, which determines its complex growth rate, has been

obtained, not only for the Compton regime where ρ is small, but for the Raman regime where

the ρ value is large not just as a result of high beam electron density, but also because of
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the high betatron amplitude and also for electron bunches with spreads in the kinetic energy

and betatron amplitude as well.

The theory has then been directly compared with Whittum’s theory to understand the

differences resulting from the different approaches. Apart from the different expressions for

ρ under the two approaches, we identify a caveat in Whittum’s derivation of equations of

motion, which introduces a redundant ponderomotive phase-dependent term into the phase

evolution equation. In addition, we show that the assumption of small betatron amplitude

in Whittum’s model is practically unworkable after accounting for the space charge effect in

the scaled model.

I have also analysed the effect of dielectric guiding on the amplification and shown that,

given properly selected beam/channel parameters for large betatron amplitude, its impact

on the gain of the ICL can be limited.

After having established the analytical model, the investigation proceeded with numerical

simulations, which demonstrate the amplification of radiation with wavelengths ranging from

microwaves to X-rays in an ion channel, under a variety of conditions, including different

energy and amplitude spreads.

In Chapter 3, I discussed electron dynamics in the ICL that leads to the generation and

amplification of high-order harmonics, which enables it to produce radiation at much higher

frequencies than the fundamental resonance relation permits.

In Chapter 4, I presented the statistical properties of the electron bunch as a SASE

radiation source. I have shown that radiation in the ICL can start from shot-noise and that

the stochastic properties are preserved after amplification.

I have gone on to discuss the propagation model of the ion channel laser, which takes

into account the slippage effect; an approximate solution to the 1D wave equation under the

SVEA approximation has been obtained using the stationary approximation method, which

in the time domain can be shown to depend on the length of the electron bunch relative

to the total interaction length. The evolution of the radiation pulse can be characterized

by two types of superradiant evolution: weak and strong superradiance respectively. The

former applies to the short bunch – long wiggler scenario, which produces widening pulses in

the time domain, with below-saturation radiation power, and the latter to the long bunch –

long wiggler scenario, which generates multiple spikes with above-saturation radiation power,

after evolving from a flat-top steady-state pulse, even at significant detuning.

The numerical simulations in chapter 3 not only demonstrate superradiant amplification,

but also amplification of shot noise of the electron bunch. This confirms that the theoretical

136



method for analyzing the time-dependent FEL can be applied to the spatio-temporal analysis

of the ICL.

On the basis of the analytical model and numerical simulations, we conclude that, unlike

proposed in Whittum’s thesis, an ICL generating high-frequency radiation is within the realm

of experimental possibility for large betatron amplitudes, with gain parameter exceeding that

of a traditional FEL by an order of magnitude.
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