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Abstract

This thesis focusses on the application of continuum theories and modelling tech-

niques of liquid crystalline fluids to the area of anisotropy and self-organisation

derived from active agents. The research involves a continuum description of

anisotropic active fluids, using adapted forms of continuum hydrodynamic theo-

ries of liquid crystals.

We first consider the director structures of inactive nematic liquid crystals

confined in rectangular regions. We use a mixture of analytical and numerical

calculations to examine the energies of non-trivial nematic equilibria which ex-

change stabilities with constant equilibria at critical anchoring strengths. For the

remainder of the thesis, we consider active nematic liquid crystals in confined

regions. We first use an adapted Ericksen-Leslie theory to investigate sponta-

neous flow transitions of active nematics, with the liquid crystal confined in a

one-dimensional shallow channel. We examine how internally generated flows

induced by activity are affected by externally induced flows due to, pressure gra-

dients and external orienting fields. We then investigate a shallow channel of

active nematic in terms of an adapted Q-tensor theory for uniaxial nematic liq-

uid crystals. Such a model allows for an investigation into the effects of variable

ordering caused by changes in the temperature. Finally, we investigate active ne-

matics confined in two-dimensional regions. We first consider wedge geometries

containing an active nematic with a singularity at the wedge corner, deriving

analytic solutions of a simplified version of the Ericksen-Leslie equations. We

then employ numerical calculations to find steady solutions of the full non-linear

Ericksen-Leslie equations for active nematics confined in rectangular regions.
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Chapter 1

Introduction

1.1 An Introduction to Inactive and Active

Liquid Crystalline Fluids

As the name suggests, liquid crystals are intermediate states of matter, with

characteristic properties which are used to describe both crystalline solids and

isotropic liquids. The discovery of liquid crystals is attributed to the Austrian

botanist Friedrich Reinitzer [117, 118] who observed that heating a sample of

cholesteryl benzoate (a solid at room temperature) led to two melting points.

The first of the melting points occurred at 145.5oC and led to the formation

of a cloudy liquid. Upon further heating, a second melting point occurred at

178.5oC, at which the cholesteryl benzoate turned into a transparent liquid. The

cloudy liquid reported by Reinitzer is now known to be a cholesteric liquid crystal

phase. The larger of the two melting points is termed as the clearing point and

corresponds to the temperature at which the cholesteryl benzoate turns into an

isotropic liquid. Reinitzer sent a letter to the German physicist Otto Lehmann,

along with two samples of cholesteryl benzoate, in which he requested an in-

vestigation to confirm his experimental observations [70]. Examination of these

samples led Lehmann to use the expression “flowing crystals” [79] to classify

these samples, before eventually settling on the term “liquid crystals” in 1900.

In 1907, Vorländer, a German chemist, discovered that anisotropic (either rod-
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like or disc-like) molecules were essential for a given material to exhibit the two

melting points described by Reinitzer [125, 145]. This discovery was of substan-

tial importance for the theoretical modelling of liquid crystals as it enabled for a

mathematical description of the molecular structure.

There are a number of possible liquid crystal phases, each with distinct

structural characteristics. The classification of different phases of inactive liquid

crystals was introduced by Friedel in 1922 [53], who proposed a classification

scheme for liquid crystals consisting of three categories: nematic, cholesteric and

smectic. The term “nematic” originates from the Greek word for thread, arising

due to the existence of thread-like lines found in these materials. These lines

are present due to a type of defect in nematic liquid crystals, known as disclina-

tions. In the nematic (or achiral nematic) phase the long axes of the constituent

molecules tend to align parallel to each along a single preferred direction referred

to as the anisotropic axis. The constituent molecules in a nematic liquid crys-

tal are often rod-like or disc-like in shape. The cholesteric (or chiral nematic)

liquid crystal phase is similar to the nematic phase, except that the molecular

orientation shows a preferred helical configuration. This helical structure arises

from the chiral properties of the constituent molecules. Smectic liquid crystals

are layered structures and are, therefore, more ordered than nematics and gener-

ally occur at lower temperatures than that of the nematic phase. We will not be

considering either the cholesteric or smectic liquid crystal phases in this thesis.

The interested reader is referred to Oswald and Pieranski [109] for background

reading on cholesteric liquid crystals, and the books of de Gennes and Prost [56]

and Stewart [129] for details on the continuum theories of smectic liquid crystals.

The area of active fluids is currently a topic of significant research interest in

biology, engineering, mathematics and physics. Active fluids consist of self-driven

agents which can be influenced by the flow of fluid around them but, crucially, also

influence the flow themselves. The active agents exhibit a continuous generation

of internal energy, as in suspensions of bacteria [66, 123], swimming organisms

[91] and cytoskeletal filaments such as microtubule networks [28, 135], allowing for

collective orientational ordering and spontaneous flow generation [12, 41, 63, 144].
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The continuous energy production leads to the active agents (the bacteria or

microtubule-forming motors) exerting a stress on the background fluid, which

generates a system that is always away from thermodynamic equilibrium [39, 92,

135]. By contrast, inactive (or passive) systems induce flow when the system

is driven out of equilibrium by some form of external forcing, which may act

on the entire system, such as pressure gradients and orienting fields, or at the

boundaries (e.g., shear gradients). Once the external forcing is no longer applied,

the externally induced flow begins to dissipate and eventually vanishes. Two

examples of inactive systems include isotropic liquids, such as water, and standard

molecular liquid crystals, the latter of which will, together with active fluids, be

considered in this thesis.

Flow-generating agents are generally considered to be anisotropic and are

defined by, for instance, the long axis of an active agent (e.g., the bacterium or

microtubule), with the macroscopic symmetry of a liquid crystalline-like phase.

The resulting states of matter are commonly referred to as active liquid crystalline

fluids. The fluids combine the flow-molecular orientation coupling phenomena

observed in standard molecular liquid crystals and the presence of internal energy

generation that leads to a spontaneous flow. Internally driven flows in active

liquid crystals can lead to interesting effects, including hydrodynamic instabilities

and non-equilibrium defect configurations [29, 39, 60, 62, 92, 115, 149].

The constituent units of an active fluid span not just subcellular length

scales, such as microtubules, and micron length scales, as in bacterial suspen-

sions, but also larger length scales, from centimetres to metres, (e.g., fish). The

orientational ordering of swarms of bacteria and fish are shown in Figure 1.1.

In both of these active systems, the agents tend to align parallel to one another

along an average preferred direction [25]. This is reminiscent of how elongated

rod-like organic molecules are ordered in inactive nematic liquid crystals. The

similarity between the orientational ordering of active agents in a fluid and elon-

gated rod-like molecules in a nematic liquid crystal means that continuum hy-

drodynamic models of nematic liquid crystals have frequently been used in the

theoretical modelling of active liquid crystalline fluids. The models are modi-

3



(a) (b)

Figure 1.1: Examples of active fluid systems which exhibit liquid crystalline order,

from smaller length scales such as (a) arrangements of bacteria, to larger length

scales such as (b) fish. Figure adapted from [92].

fied to include non-equilibrium terms in the governing equations due to activity

[41, 57, 58, 59, 61, 92, 131]. This is the approach which we will adopt throughout

this thesis in order to model active nematic liquid crystals confined in one and

two-dimensional geometries. Recent progress has also been made in modelling

three-dimensional active systems [9, 22, 36, 122], although this is outwith the

scope of the work considered here.

Another example of an active fluid system which has received significant

interest both from experimentalists and theoreticians is shown in Figure 1.2,

where the active system consist of a mixture of microtubule suspensions, molecu-

lar motors in the form of kinesin clusters and the non-adsorbing depleting agent

polyethylene glycol (PEG). The addition of PEG induces depletion forces that

results in the formation of microtubule bundles. In an aqueous suspension, the

addition of a chemical fuel such as adenosine triphosphate (ATP) to the kinesin

clusters leads to the conversion of the chemical energy from ATP hydrolysis into

mechanical movement. This allows the molecular motors to move along the mi-

crotubules, where the ends of two kinesin clusters can cause neighbouring micro-

tubules to cross-link as the molecular motors move along the microtubules. If

a kinesin cluster assembles two microtubules with differing polarities, the move-

ment of the motors can force the microtubules to slide relative to each other. At

large concentrations of ATP, the microtubule bundles are driven by the molecular

4



PEG

Depletion force

Microtubules

Kinesin clusters

Motor
force

Figure 1.2: Orientational ordering in an active liquid crystalline fluid consisting

of microtubules, kinesin clusters and PEG. Similar orientational ordering is ex-

hibited by elongated rod-like molecules in inactive nematic liquid crystals. Figure

adapted from [154].

motors, leading to an active nematic liquid crystalline phase with large distortions

in the director field and complex flow patterns. At low concentration of ATP,

the molecular motors are not sufficiently affected and there is no spontaneously

induced flow.

1.2 Classification of Active Matter

1.2.1 Classification Based on Damping

Active systems can be classified according to the nature of the internal forces

between the constituent active agents and the surrounding environment, or by

the symmetries of the individual agents. It is possible in some active systems for

hydrodynamic interactions between the constituent agents to be dominated by

the movement of the agents throughout a medium or on a substrate due to fric-

tional damping. An active system for which the viscous dissipation is dominated

by friction is referred to as a “dry” active system. Examples of “dry” active sys-

tems include vibrated granular rods and flocks of birds [91, 92, 135, 138]. In such

5



systems, there is no conservation of momentum between the active agents and

the surrounding environment. By contrast, when frictional damping is considered

to be negligible compared to viscous dissipation, the active system is referred to

as “wet”. Examples of “wet” active systems include cell cytoskeleton, swimming

organisms, microtubule bundles and suspensions of bacteria [71, 92, 98]. Such

systems must satisfy the conservation of momentum since the hydrodynamic in-

teractions between nearby active agents and the surrounding medium, usually

an incompressible viscous fluid, play a crucial role in the dynamics. The govern-

ing equations of “wet” active systems (e.g., the Navier-Stokes equations [4] and

Ericksen-Leslie equations [82]) must satisfy Galilean (or inertial frame) invariance.

In this thesis, we will only consider “wet” active systems.

1.2.2 Classification Based on Symmetries

Ordered liquid crystalline phases of active matter can be classified according to

the symmetry of the constituent agents, as is also the case for inactive liquid crys-

tals. Active agents such as some bacteria and fish (see Figure 1.1) have a head

and a tail, and are therefore intrinsically polar. These active agents exhibit long

range collective ordering and generate motion by self-propelling along their axis

towards their heads, leading to the generation of an active polar liquid crystal

phase. In this case the average preferred direction of the active agents can be

modelled by a polarisation vector field p. Alternatively, if the active agents align

parallel to one another along an average preferred direction which is head-tail

symmetric, then an active apolar (or nematic) phase will be generated. In such

materials, the direction of spontaneously broken symmetry is modelled by a unit

vector n, known as the director, which is also used to describe the average pre-

ferred direction of a group of elongated rod-like molecules in an inactive nematic

liquid crystal. Unlike active polar liquid crystals, the active nematic phase is

therefore invariant under the transformation n → −n. In other words, physical

properties of a nematic liquid crystal cannot change under this transformation.

Throughout this thesis, we will only be considering the active nematic phase,

6



although we briefly discuss in Chapter 2 how active polar liquid crystals can be

mathematically modelled using additional non-equilibrium terms in the governing

equations, as well as the activity term which we consider throughout this thesis.

As well as the average orientation, it is sometimes necessary to consider

how ordered active agents are with respect to the average orientation. If we

consider a ball B which contains active agents that are oriented on average in

the direction of the director n, a probability distribution of the orientations of

the active agents in B can be constructed. As well as the director orientation,

we can define a measure of the degree of local alignment to be the scalar order

parameter S, which is an average of the orientation angles θm between the long

axes and the director [103]

S = 〈P2(cos θm)〉 =

〈
3

2
cos2 θm −

1

2

〉
, (1.2.1)

where P2 is the second Legendre polynomial in the cosine of the angle between the

molecular axis and the director. The Legendre polynomials Pn(x) are solutions

to Legendre’s differential equation [1]

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n− 1)Pn(x) = 0. (1.2.2)

The brackets 〈...〉 in equation (1.2.1) denote the statistical average so that over

a volume V ,

S =
1

2

∫
(3 cos2 θm − 1)f(θm) dV, (1.2.3)

where f(θm) is the probability distribution function of the angle θm. Due to the

head-tail symmetry of apolar active agents, it follows that f(θm) is periodic so

that f(θm + π) = f(θm).

When the active agents are randomly orientated, the scalar order parameter

S = 0, and the material is in the isotropic phase, whereas a non-zero S indicates

a preferred direction. Two extremes of ordering are when the active agents are

all perpendicular to the director, so that θm = π/2 and S = −1/2, or when

θm = 0 so that the active agents align exactly parallel with the director with

S = 1 so that the material is in a crystalline phase. Although it is possible to

achieve configurations of the active agents for which S < 0 (i.e., −1/2 < S < 0),

7



it is more common for S to be positive in the equilibrium liquid crystal state. In

general, as the temperature of the material decreases the scalar order parameter

will increase, from S = 0 in the isotropic state, to S = 1 in the crystalline state.

1.2.3 Classification Based on Active Stresses

The mechanism by which momentum is transferred from the active agents into the

surrounding fluid allows for the classification of two types of active nematic fluid,

depending on the behaviour of the active agents relative to the surrounding fluid

- the active agents can either push the fluid out or pull the fluid in along the long

axis. This simple description of “pushers” and “pullers” to describe active agents

is commonly replaced by the terms “extensile” and “contractile”, respectively.

We will be discussing this in more detail in Chapter 2. The pushing and pulling

effect of active agents is usually taken into account in continuum models of active

fluids through an additional term in the stress tensor first proposed by Simha

and Ramaswamy [123]. This additional term corresponds to local active stresses

proportional to the degree of orientational order in which spontaneously induced

non-zero distortion of the director will generate fluid flow. The form of this active

stress term is given by

σζ = ζ (n⊗ n), (1.2.4)

where the dyadic product is defined as

[n⊗ n]ij = ei · [(n⊗ n)ej] = ni nj, (1.2.5)

and ni (i = 1, 2, 3) is the ith component of the nematic director. The coefficient

ζ is termed the activity strength parameter, which can be positive or negative,

thereby distinguishing extensile and contractile active nematic liquid crystals.

The magnitude of ζ quantifies the degree of activity, or equivalently and more

specifically, the pressure the active agents exert on the background fluid. We

will discuss this activity term in further detail in Chapter 2, where we introduce

mathematical models of active nematic fluids based on two continuum theories of

inactive nematic liquid crystals. A derivation of the active stress term (1.2.4) is

8



given in Appendix A, and closely follows the derivation in [123], where each indi-

vidual active agent is treated as a permanent force dipole, leading to local active

stresses proportional to the degree of orientational order. Alternative derivations

of (2.2.30) can be found in Hatwalne et al. [66] and Thampi and Yeomans [135].

In this thesis we will consider both extensile and contractile active nematic liquid

crystals, showing that they can be very different from each other.

1.3 Motivation

As we have already mentioned, a striking phenomenon of active nematic liq-

uid crystals is spontaneous flow generation. This behaviour was predicted the-

oretically using continuum models of active fluids [41, 93, 144, 151, 153], which

demonstrated that the active nematic fluid undergoes a spontaneous flow tran-

sition from a uniform director configuration to a non-trivial structure when the

activity strength magnitude exceeds a critical threshold value. This transition

is similar to a classic electric/magnetic field-induced Freedericksz transition in

inactive nematic liquid crystals [52, 54, 112]. When an electric/magnetic field is

applied to a sample of nematic liquid crystal in a direction perpendicular to an

initially uniform director orientation throughout the sample, there exists a criti-

cal field strength at which the orientation of the liquid crystal begins to change,

i.e., the Freedericksz threshold. Beyond this critical threshold value, a non-trivial

director configuration that minimises the free energy exists in which the director

aligns closer to the field as the magnitude of the field strength increases. One

of the ideas we will be exploring in this thesis is how similarities can be drawn

between spontaneous flow transitions and Freedericksz transitions.

Another interesting phenomenon of active fluids which we will examine in

this thesis and that has been extensively studied theoretically is the existence of

topological defects [58, 59, 111, 131]. These are discontinuities in the director

orientation and also exist in inactive nematics. Defects can be generated in liq-

uid crystals by, for example, incompatible boundary conditions for the director

orientation at orthogonal boundaries [86, 107]. In active liquid crystalline fluids,
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defect configurations can occur spontaneously in the bulk and can be continu-

ously regenerated due to irregular flow patterns, also known as active turbulence

[38, 57, 92]. Defects can occur as points, lines or sheets, and can be observed in

experimental samples of inactive nematics due to their optical pattern between

cross polarisers. Sheet defects occur on surfaces and are unstable [56] but point

or line defects are commonly found experimentally [85]. Point defects are isolated

points where the director orientation is undefined whereas line defects are lines

along which the director orientation is discontinuous, and are often termed discli-

nation lines. Each of these defects can be described in terms of their “strength”

s, or winding number, which represents the number of complete rotations of the

director on a closed circuit containing the defect. Examples of the director field

surrounding defects for a mixture of half-integer and integer strengths are shown

in Figure 1.3. In this thesis we concentrate only on axial disclinations, such as

those shown in Figure 1.3, where the director rotation occurs about the axis of

the disclination. Figure 1.4 shows examples of active turbulence in active sys-

tems, where higher levels of activity lead to high elastic energy densities, which

in turn lead to hydrodynamic instabilities. These hydrodynamic instabilities lead

to a continuous cycle of creation and annihilation of defect pairs in active sys-

tems [58, 135]. Figure 1.5 shows the presence of internally generated defects with

strengths s = ±1/2 in an active nematic liquid crystal consisting of microtubule

suspensions. The observation of these defects were based on (a) experiments and

(b) computer simulations. These computer simulations were carried out using a

continuum theory approach based on liquid crystalline hydrodynamics and show

remarkably good agreement with the experiments, thereby suggesting that the

theoretical approach which we consider in this thesis is a reasonable one.

1.4 Organisation of the Thesis

In this thesis, we present a range of theoretical studies examining the confinement

of inactive nematic and active nematic liquid crystals. For the most part, we

employ an adapted form of the Ericksen-Leslie dynamic theory of nematic liquid
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crystals [80, 81]. We also make use of a continuum theory which describes nematic

liquid crystals with variable scalar order parameter [48, 127].

The thesis is structured as follows. In Chapter 2 we review the Ericksen-

Leslie and scalar order parameter theories of liquid crystals mentioned above. In

order to model a system which is out of equilibrium, we adapt these two theories

by including additional terms in the governing equations for a standard inactive

nematic liquid crystal. In Chapter 3, we consider a static inactive nematic liq-

uid crystal confined to a rectangular region, subject to weak anchoring boundary

conditions. For very weak surface anchoring, we find non-trivial solutions that

emerge from two possible trivial states at critical anchoring strength values which

depend on the aspect ratio of the region. We then examine the system in the

limit of large anchoring strength, using a mixture of analytic and numerical cal-

culations. In this limit, we find there are similarities in the results with previous

experimental and theoretical investigations of similar systems.

Chapter 4 presents an investigation of spontaneous flow transitions that

occur in active nematic liquid crystals. We employ an adapted Ericksen-Leslie

theory and assume the active nematic is confined to be a thin film bounded by

solid surfaces. We show that non-trivial solutions exist at critical activity values

which depend on geometric and liquid crystal material parameters. Unlike a

classic external field-induced Freedericksz transition, we show that there are non-

trivial solutions which are not connected to a trivial state. We then consider

how the flows created by activity can be designed using similar methodologies

to those commonly used in the design of liquid crystal display devices, such as

pressure gradients and external orienting fields. In Chapter 5, we consider the

same geometrical set-up as in Chapter 4, except the model includes a variable

degree of orientation. We demonstrate that the model considered in this chapter

simplifies to that considered in Chapter 4 in the special case of uniform ordering.

The effect of changes in the system temperature is also examined.

Finally, Chapter 6 combines the ideas from the previous chapters in order

to investigate the flow of active fluids confined in two-dimensional geometries.

Throughout this chapter, we employ the adapted Ericksen-Leslie theory also used
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in Chapter 4. We first present an analytic study of the flow close to a sharp corner

of a wedge geometry which contains a discontinuity in the director structure. We

then present a numerical investigation of the director orientation and flow of an

active nematic liquid crystal confined within rectangular regions, with a particular

focus on the generation of flow due to distortion in the director close to the corners

and sides of the region. Finally, in Chapter 7 we draw conclusions and discuss

possible future areas of research.
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Figure 1.3: Local behaviour of the director about line disclinations of strength

(a) s = 1/2, (b) s = −1/2, (c) s = 1, (d) s = −1, (e) s = 2 and (f) s = 3. Each

of these line disclinations are located perpendicular to the page and pass through

the points indicated by the red markers.
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(a) (b)

Figure 1.4: Active turbulence in (a) a microtubule bundle and kinesin suspension

and (b) a suspension of bacteria. Figures (a) and (b) adapted from [57] and [92],

respectively.

(a) (b)

Figure 1.5: The presence of defects of strengths s = ±1/2 in an active liquid crys-

tal consisting of microtubules and kinesin clusters. These defects were observed

from (a) experiments and (b) computer simulations. Figures (a) and (b) adapted

from [37].
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Chapter 2

Continuum Theories of Inactive

and Active Nematic Liquid

Crystals

2.1 Introduction

As we discussed in Chapter 1, the similarity between the orientational ordering

of active agents in a fluid and elongated rod-like molecules in a nematic liquid

crystal means that continuum hydrodynamic models of nematic liquid crystals

have frequently been used in the theoretical modelling of active liquid crystalline

fluids with nematic ordering. One commonly adopted approach used in order

to model the active nematic liquid crystal phase is to take these continuum hy-

drodynamic models and include extra terms in the governing equations which

generate a system which is always out of thermodynamic equilibrium. This is the

only approach we will consider in this thesis, where we refer to such additional

terms as active terms. Throughout this thesis, we make use of adapted forms

of two continuum theories of nematic liquid crystals, namely, the Ericksen-Leslie

theory and the Q-tensor theory. The models of active nematic liquid crystals we

consider involve additional terms in the governing equations which are formulated

either in terms of a director field or an alignment tensor (i.e., a Q-tensor field). In
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both cases, a spontaneously induced non-zero distortion will generate fluid flow.

It is worth mentioning that there are other approaches to modelling active liquid

crystals. An entirely different approach has been considered by Brand et al. [14]

and Pleiner et al. [113, 114], where activity is introduced through a finite relative

velocity between the active and passive parts of the system, and the constitu-

tive equations of an active liquid crystal are derived using symmetry and linear

irreversible thermodynamics. The same arguments are also used by the same

authors in the derivation of an alternative set of hydrodynamic equations of inac-

tive liquid crystals (see [13] and Chapter 2 of [16]). There have also been recent

extensions in the modelling of other phases of active liquid crystal, including ac-

tive cholesteric liquid crystals [7, 88, 95, 148] and active smectic liquid crystals

[50, 119], although we do not consider either of these phases in this thesis. In

this chapter, we provide an overview of adapted forms of the Ericksen-Leslie and

Q-tensor theories, which will include active terms in the governing equations.

2.2 Ericksen-Leslie Theory

The earliest attempt at a theory which describes the dynamics of nematic liquid

crystals was undertaken in 1931 by Anzelius [3]. However, his theory was defi-

cient as the necessary concepts in continuum mechanics had not been established.

The first widely accepted dynamic theory of nematic liquid crystals was formu-

lated in 1961 by Ericksen [44] using conservation laws from continuum mechanics

and a generalisation of the static theory for nematic liquid crystals [45]. Erick-

sen’s dynamic theory was completed in 1968 by Leslie [81], who derived suitable

constitutive equations, and hence proposed a complete set of equations for the

various dynamic effects in nematic liquid crystals. This followed after Leslie de-

rived constitutive equations for general anisotropic fluids in 1966 [80], which were

previously considered in 1960 by Ericksen [43]. This theoretical description of

nematic liquid crystal dynamics is referred to as the Ericksen-Leslie theory. The

resulting non-linear equations couple the fluid flow to the director orientation.

Alternative formulations of the Ericksen-Leslie theory have been published since
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its establishment. For example, Leslie [82] published an alternative derivation

of the Ericksen-Leslie theory in 1992, which led to a simpler presentation of the

original results derived by Ericksen [44] and Leslie [80]. A full derivation of the

Ericksen-Leslie theory can be found in Leslie [81, 83] and Stewart [129].

In the following subsections, we will require a mathematical description of

the evolution of the nematic director n. Ericksen [47] presented a formulation

of the governing equations of motion for a nematic liquid crystal in which the

director is expressed as a function of two angles θ1 and θ2,

n = n(θ1, θ2), n · n = 1. (2.2.1)

In this thesis, we will consider only a nematic director of the form

n = (cos θ1 cos θ2, cos θ1 sin θ2, sin θ1), (2.2.2)

where for each problem we will define the two angles.

The starting point for the derivation of the Ericksen-Leslie equations is to

consider the conservation laws for mass, linear momentum and angular momen-

tum for a volume V of nematic liquid crystal bounded by a surface A. These

conservation laws are, respectively,

D

Dt

∫
V

ρ dV = 0, (2.2.3)

D

Dt

∫
V

ρv dV =

∫
V

ρF dV +

∫
A

σ dA, (2.2.4)

D

Dt

∫
V

ρ(x× v) dV =

∫
V

ρ(x× F + K) dV +

∫
A

(x× σ + l) dA, (2.2.5)

where ρ is the fluid density, x is the position vector, v is the velocity vector, F is

the external body force per unit mass, σ is the surface force per unit area, K is

the external body moment per unit mass, l is the surface moment per unit area

(also known as the couple stress vector), and D/Dt denotes the usual material

time derivative
D

Dt
=

∂

∂t
+ v · ∇. (2.2.6)

If νj is the jth coordinate of the unit outward normal to the surface A, then the

components of the surface force σi and surface moment li can be written in terms

17



of the components of the stress tensor σij and couple stress tensor lij, respectively,

through the relations

σi = σijνj, li = lijνj. (2.2.7)

If the sample is assumed to be of arbitrary volume V and incompressible (i.e.,

the fluid density ρ is constant), then the three conservation laws can be reduced

to the point forms

∂vi
∂xi

= 0, (2.2.8)

ρ
Dvi
Dt
− ρFi −

∂σij
∂xj

= 0, (2.2.9)

ρKi + εijkσkj +
∂lij
∂xj

= 0, (2.2.10)

where εijk is defined as the Levi-Civita symbol, also known as the alternator [129].

It proves convenient to introduce the symmetric rate of strain tensor A and the

anti-symmetric vorticity tensor W which, in component form, are given by

Aij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, Wij =

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
, (2.2.11)

respectively. Following Leslie [82], a vector N is introduced and defined in com-

ponent form by

Ni =
Dni
Dt
−Wijnj. (2.2.12)

In the terminology used by Truesdell and Noll [139], N is the co-rotational time

flux of the director and measures the rotation of the director relative to the

surrounding fluid.

In order to determine the constitutive equations for σij and lij, Leslie [82]

introduced a rate of work hypothesis. This hypothesis assumes that the rate at

which forces and moments do work on a volume of nematic liquid crystal will be

absorbed into changes in the nematic energy density wF or the kinetic energy, or

will be lost by means of dissipation. The principle of work proposed by Leslie is∫
V

ρ(F · v + K ·w) dV =
D

Dt

∫
V

(
1

2
ρv · v + wF

)
dV

+

∫
V

∆ dV −
∫
A

(σ · v + l ·w) dA, (2.2.13)
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where w is the local angular velocity of the nematic director, ∆ is the rate of

dissipation per unit volume, which is assumed to be positive semi-definite for

inactive nematics, and wF is the bulk energy density which, in this thesis, is

considered to be the sum of the elastic energy density, welastic, and the energy

density due to an externally applied orienting field, wfield. We will review one

example of an external orienting field later in this chapter, namely, a magnetic

field, with magnetic energy density wmagnetic. In addition, a surface energy density

wS can be specified so that the total free energy W can be defined as

W =

∫
V

wF dV +

∫
A

wS dA. (2.2.14)

With the aid of the relations in (2.2.7) and simplification through (2.2.9) and

(2.2.10), the rate of work hypothesis can be expressed in point form as

σij
∂vi
∂xj

+ lij
∂wi
∂xj
− wiεijkσkj =

DwF
Dt

+ ∆. (2.2.15)

Detailed calculations (see Stewart [129]) show that the components of the stress

and couple stress tensors proposed by Leslie [82] are given by

σij = −pδij −
∂wF

∂(∂jnp)

∂np
∂xi

+ σ̃ij, (2.2.16)

lij = εipqnp
∂wF

∂(∂jnq)
+ l̃ij, (2.2.17)

where p is a pressure resulting from the enforced incompressibility, δij is the

Kronecker delta [129], ∂jnp ≡ ∂np/∂xj, and σ̃ij and l̃ij are dynamic contributions

to the components of the stress tensor and couple stress tensor, respectively.

Further calculations shows that the expressions in (2.2.16) and (2.2.17) reduce

the rate of work hypothesis to the following result for ∆:

σ̃ij
∂vi
∂xj

+ l̃ij
∂wi
∂xj
− wiεijkσ̃kj = ∆. (2.2.18)

In the Ericksen-Leslie theory, it is assumed that the dynamic contributions to

the stress and couple stress depend on the director orientation ni, the velocity

gradients ∂jvi and the local angular velocity of the director wi at any material

point and at any instant. Since l̃ij is assumed not to depend upon the gradients

of the local angular velocity of the director ∂jwi, it follows from the assumption
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that ∆ is positive semi-definite that l̃ij = 0 because the gradients of the angular

velocity, which may be of arbitrary sign, appear in (2.2.18) linearly with l̃ij.

Therefore, (2.2.18) simplifies to

σ̃ij
∂vi
∂xj
− wiεijkσ̃kj = ∆. (2.2.19)

It can be assumed that the dynamic stress tensor σ̃ depends on the co-rotational

flux N instead of the local angular velocity of the director w [129]. This means

that σ̃ is assumed to be a function of n,A and N, all of which can easily be

shown to be frame-indifferent. The simplest form of σ̃ was constructed based

on the experiments of Miesowicz [96] and Zwetkoff [160], which suggested that

σ̃ depends on A and N linearly. Detailed calculations (see Stewart [129]) reveal

that the components of the dynamic stress tensor σ̃ij can be written as

σ̃ij = α1nkAkpnpninj + α2Ninj + α3niNj + α4Aij

+α5njAiknk + α6niAjknk. (2.2.20)

The coefficients αi, i ∈ {1, ..., 6} are known as the Leslie viscous coefficients and

will be discussed later in this chapter. From equation (2.2.20), and noting that

εijknknj = 0 and εijkAkj = 0 (since both nknj and Akj are symmetric tensors), it

follows that εijkσ̃kj can be expressed as

εijkσ̃kj = εijk(α2Nknj + α3nkNj + α5njAkpnp + α6nkAjpnp)

= εijknj g̃k. (2.2.21)

The vector g̃i can be expressed in terms of the viscosities γ1 and γ2 such that

g̃i = −γ1Ni − γ2Aipnp, (2.2.22)

γ1 = α3 − α2, (2.2.23)

γ2 = α6 − α5. (2.2.24)

It is possible to write σ̃ in terms of ∆ as follows. First, the local angular velocity

of the liquid crystal director w can be expressed in terms of two angular veloc-

ities: a regional angular velocity ŵ = (∇ × v)/2, which measures the average

rotation of the liquid crystal over a neighbourhood of the material element, and a
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relative angular velocity ω which measures the difference between w and ŵ [129].

Therefore, the relation between these three angular velocities is ω = w− ŵ. The

definitions of the co-rotational time flux (2.2.12) and material time derivative

of the director Dn/Dt can be re-written as N = ω × n and Dn/Dt = w × n,

respectively. From these definitions and equation (2.2.21), it can be shown that

the left hand side of (2.2.19) is given by

σ̃ij
∂vi
∂xj
− wiεijkσ̃kj = σ̃ijAij −Nig̃i = ∆. (2.2.25)

From (2.2.20) and (2.2.22), the expression for ∆ is given by

∆ = α1(niAijnj)
2 + (α2 + α3 + γ2)NiAijnj

+α4AijAij + (α5 + α6)niAijAjknk + γ1NiNi. (2.2.26)

The components of g̃i and σ̃ij can be obtained from (2.2.26) via [83]

g̃i = −1

2

∂∆

∂ṅi
, σ̃ij =

1

2

∂∆

∂(∂jvi)
. (2.2.27)

The superposed dot in (2.2.27) is used as a shorthand representation of the ma-

terial time derivative (2.2.6). It is common to write ∆(Aij, Ni, ni) in terms of a

(Rayleigh) dissipation function D which depends the velocity gradient ∂jvi and

the angles θα (α = 1, 2) using [83, 129]

∆(Aij, Ni, ni) = 2D
(
∂vi
∂xj

, θ̇α, θα

)
. (2.2.28)

In the Ericksen-Leslie theory, the dissipation function is given by

D =
1

2

(
α1(niAijnj)

2 + (α2 + α3 + γ2)NiAijnj + α4AijAij

+(α5 + α6)niAijAjknk + γ1NiNi

)
. (2.2.29)

In order to account for effects due to activity in liquid crystals, we include ad-

ditional terms in the Ericksen-Leslie equations. One possible form of an activity

term which has frequently been used in the theoretical modelling of active ne-

matic liquid crystals was first introduced by Simha and Ramaswamy [123], and

is given by equation (1.2.4), restated here in component form,

σζij = ζ ninj. (2.2.30)
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A stress term of the same form as (2.2.30) was considered as part of the continuum

theory for anisotropic fluids in 1960 by Ericksen [43] and in 1966 by Leslie [80].

In 1968, Leslie [81] used the Clausis-Duhem inequality to deduce that in order

for liquid crystals to satisfy the thermodynamic argument that dissipation must

be positive semi-definite, the coefficient of ninj must equal zero. In this thesis,

we adapt the Ericksen-Leslie equations by including (2.2.30) as a source of stress

due to activity.

2.2.1 Ericksen-Leslie Equations for an Active Nematic

Liquid Crystal

We now provide a summary of the Ericksen-Leslie equations for an active nematic

liquid crystal. The equations considered here are an adapted version of those

derived by Leslie [82, 83] for an inactive nematic liquid crystal. The conservation

of mass is
∂vi
∂xj

= 0. (2.2.31)

The balance of angular momentum is governed by the two equations

∂

∂xi

(
∂wF
∂(∂iθα)

)
− ∂wF
∂θα

− ∂D
∂θ̇α

= 0 (α = 1, 2). (2.2.32)

Finally, the balance of linear momentum with the additional active stress term

(2.2.30) is given by

ρ
Dvi
Dt

=
∂

∂xj

(
∂D

∂(∂jvi)
+ ζninj

)
− ∂D
∂θ̇α

∂θα
∂xi
− ∂p̃

∂xi
(i = 1, 2, 3), (2.2.33)

where p̃ is a modified pressure, defined in terms of the isotropic pressure p and

bulk energy density wF by

p̃ = p+ wF . (2.2.34)

In order to construct the Ericksen-Leslie equations (2.2.31)–(2.2.33), only the

bulk energy density wF , dissipation function D and activity strength ζ of the

liquid crystal are needed. When the activity strength ζ = 0 in equation (2.2.33),

we revert back to the classic Ericksen-Leslie equations for an inactive nematic.
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The Ericksen-Leslie equations govern the dynamic behaviour of the nematic

liquid crystal but can also be used in the static case. In a static situation, there

is no dissipation function or activity and so the Ericksen-Leslie equations reduce

to the equations

∂

∂xi

(
∂wF
∂(∂iθα)

)
− ∂wF
∂θα

= 0, (2.2.35)

which are the Euler-Lagrange equations for minimisation of the bulk energy den-

sity wF with respect to the angles θα.

2.2.2 Elastic Energy Density

The free energy W given by (2.2.14) is composed of energy densities in the bulk

due to elasticity and external orienting fields (e.g., magnetic field) and a surface

energy density. We now discuss each of these energy densities, beginning with the

elastic energy density. One of the characteristic features of a nematic liquid crystal

is the ability to maintain permanently an internal elasticity due to persistent

elastic distortions of the director structure, a property not found in isotropic

fluids. Such distortions are usually modelled through an elastic energy density

welastic of the form

welastic = welastic(n,∇n), (2.2.36)

often taken to be quadratic in n and the gradients of n, assuming that higher

order terms are small in comparison. An elastic energy density of the form given

by (2.2.36) originates with the work of Oseen [108] and Zocher [159] in the 1930s,

later constructed by Frank [51] in 1958 and is now commonly called the Frank-

Oseen elastic energy density. For any relaxed and unforced orientation of the

director, welastic = 0. Any other state or configuration of the nematic liquid

crystal yields an elastic energy density which is greater than or equal to that of

the relaxed orientation so that

welastic(n,∇n) ≥ 0. (2.2.37)
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Given the lack of polarity in nematic liquid crystals, it is required that welastic

remains unchanged under the transformation n→ −n, that is,

welastic(n,∇n) = welastic(−n,−∇n). (2.2.38)

The elastic energy density must also be the same when described in any two

reference frames, that is, it must be frame-indifferent. Consequently,

welastic(n,∇n) = welastic(Bn,B∇nBT), (2.2.39)

where B is an orthogonal matrix (i.e., BBT = I) and I is the identity tensor.

Using these constraints the Frank-Oseen elastic energy density for nematic liquid

crystals can be expressed as (see Stewart [129] for a derivation)

welastic =
1

2
K1(∇ · n)2 +

1

2
K2(n · ∇ × n)2 +

1

2
K3(n×∇× n)2

+
1

2
(K2 +K4)

(
tr((∇n)2)− (∇ · n)2

)
, (2.2.40)

where K1, K2 and K3 are the Frank elastic constants associated with splay,

twist and bend distortions of the nematic director, respectively. These elastic

constants are typically of the order 10−12 N to 10−11 N. The combination K2 +K4

in the elastic energy density (2.2.40) is known as the saddle-splay constant. The

associated saddle-splay term can be written in the alternative form

tr((∇n)2)− (∇ · n)2 = ∇ ·
(
(n · ∇)n− (∇ · n)n

)
, (2.2.41)

and is frequently omitted when modelling nematic liquid crystals since, being a

divergence term, it may be expressed as a surface energy using the divergence

theorem so that it does not contribute to the bulk equilibrium equations. Such

a term is known as a null Lagrangian and is examined in greater detail by Virga

[142] with an alternative derivation considered by Clark [23]. As part of the

hydrostatic theory of inactive nematic liquid crystals, Ericksen [46] derived a set

of inequalities that the Frank elastic constants must satisfy in order for the elastic

energy density to be positive semi-definite. These are known as the Ericksen

inequalities and are given by

K1 ≥ 0, K2 ≥ 0, K3 ≥ 0,

K2 ≥ |K4|, 2K1 ≥ K2 +K4 ≥ 0.
(2.2.42)
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It is sometimes useful to make use of a simplification known as “the one-constant

approximation” [20, 129] in which the elastic constants for splay, twist and bend

are all equal and with K4 set equal to zero, that is, K ≡ K1 = K2 = K3, K4 = 0.

This approximation is particularly useful if analytic progress is to be made, as

the elastic energy density (2.2.40) can sometimes lead to a complicated set of

equations which can only be solved numerically. With this approximation, the

elastic energy density (2.2.40) simplifies to

welastic(n,∇n) =
K

2
||∇n||2 =

K

2

(
tr[(∇n)T(∇n)]

)
. (2.2.43)

2.2.3 Magnetic Energy Density

The application of a magnetic field H across a sample of liquid crystal induces

a magnetisation M in the liquid crystal due to the magnetic dipole moments

imposed upon the molecular alignment by the magnetic field. Assuming a linear

dependence upon the field and taking into account nematic symmetries, when H

makes an angle with the director n the magnetisation is given by

M = χm⊥H + (χm‖ − χm⊥)(n ·H)n, (2.2.44)

where the coefficients χm‖ and χm⊥ denote the magnetic susceptibilities parallel

and perpendicular to the director, respectively. In most nematic liquid crystals,

both of the magnetic susceptibilities are negative dimensionless parameters. The

magnetic induction B is related to the magnetic field and magnetisation by

B = µ0(H + M), (2.2.45)

where µ0 = 4π × 10−7 Hm−1 is the permeability of free space. Substituting

(2.2.44) into (2.2.45) shows that the director dependent relation between the

magnetic induction and magnetic field is

B = µ0(1 + χm⊥)H + µ0∆χ(n ·H)n, (2.2.46)

where ∆χ = χm‖−χm⊥ is defined as the magnetic anisotropy. This is a dimension-

less quantity whose sign influences the preferred orientation of the molecules with

25



respect to the magnetic field. Specifically, when ∆χ < 0, the molecules prefer

to align perpendicular to the magnetic field, whilst with ∆χ > 0, the molecules

prefer to align parallel to the magnetic field. In most nematic liquid crystals, ∆χ

is a small and positive parameter, and of order 10−6 when described in SI units.

The magnetic energy density wmagnetic is calculated via

wmagnetic = −
∫

B · dH

= −
∫

(µ0(1 + χm⊥)H + µ0∆χ(n ·H)n) · dH

= −1

2

(
µ0(1 + χm⊥)H2 + µ0∆χ(n ·H)2

)
. (2.2.47)

Part of the magnetic energy density in (2.2.47) is independent of the orientation

of the director, so a more frequently adopted form of the magnetic energy density

used in calculations is

wmagnetic = −1

2
µ0∆χ(n ·H)2. (2.2.48)

In general, the magnetic induction B and magnetic field H must satisfy the

Maxwell equations

∇ ·B = 0, ∇×H = 0. (2.2.49)

It is known from experiments that in equilibrium situations, magnetic fields are

virtually unaffected by the presence of the liquid crystal since ∆χ is small, which

leads to

∇ ·H = 0, ∇×H = 0, (2.2.50)

and, therefore, H is constant. We will make use of this approximation in order to

examine the reorientation of an active nematic liquid crystal subject to a spatially

uniform orienting field. For a discussion on electric fields, we refer the interested

reader to Stewart [129].

2.2.4 Surface Energy Density

The influence of a solid boundary on the molecular alignment of a liquid crystal

is often characterised through the specification of a surface energy density, wS.
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This surface energy density, often termed weak anchoring energy, is a function

of the macroscopic variables, such as the director n, as well as parameters that

measure the strength of interaction between the molecular orientation and the

boundary. One of the first models of weak anchoring was proposed by Rapini

and Papoular [116], who introduced a weak anchoring surface energy density of

the form

wS =
ω

2
(n · ν)2, (2.2.51)

where ω is a constant anchoring strength and ν is the unit outward normal to the

surface. For ω > 0, the weak anchoring energy will prefer a director orientation

perpendicular to the unit outward normal, indicating that a homogeneous align-

ment tangential to the surface will be favoured. When ω < 0, wS will induce a

director alignment parallel to the unit outward normal and the preferred director

orientation will be homeotropic (i.e., perpendicular to the boundary surface).

Another possible form of surface anchoring is infinite anchoring. This oc-

curs when the director orientation is fixed at a boundary due to suitable treat-

ment of the boundary [86]. Two examples of infinite anchoring are planar and

homeotropic anchoring, where the director has, respectively, a fixed orientation

in one direction in the plane of the surface or perpendicular to it. Unlike weak

anchoring, infinite anchoring does not require any additional terms in the free

energy. In this thesis, we will consider weak surface anchoring with ω > 0, as

well as infinite planar anchoring of the director at surface boundaries.

2.2.5 Dissipation

We now discuss the physical interpretation of the viscous coefficients in the dis-

sipation function (2.2.29). In Newtonian isotropic fluids only one viscosity coef-

ficient is present in the stress tensor and is defined in terms of the relationship

between stress and shear rate. However, in nematic liquid crystals, there are six

Leslie viscosity coefficients, although only five of them are independent since the

sixth Leslie viscous coefficient, α6, can be written in terms of three Leslie viscosi-

ties, that is, α6 = α5+α2+α3, as proposed by Parodi [110] via an Onsager relation.
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The Leslie viscous coefficients are quite difficult to describe physically, but certain

linear combinations of them can be identified experimentally via measurements of

the type first proposed by Miesowicz [96, 97]. The measured viscosities are known

as the Miesowicz viscosities, which, in terms of the Leslie viscous coefficients are

η1 = (α3 + α4 + α6)/2 = (α2 + 2α3 + α4 + α5)/2, (2.2.52)

η2 = (α4 + α5 − α2)/2, (2.2.53)

η3 = α4/2, (2.2.54)

γ1 = α3 − α2, (2.2.55)

γ2 = α6 − α5 = α3 + α2, (2.2.56)

η12 = α1. (2.2.57)

The first three of the Miesowicz viscosities can be measured from a simple shear

experiment by considering the orientation of the director n with respect to the

velocity v and the velocity gradient: η1 when n is aligned parallel to v; η2 when

n is aligned in the velocity gradient direction; and η3 when n is perpendicular

to both v and the velocity gradient direction. The fourth viscosity, γ1, is known

as the rotational viscosity and determines the relaxation of the director through

rotation. The viscosity η12 can be measured experimentally when the director is

not aligned with an axis [101] and finally, the viscosity γ2 is commonly referred

to as the torsion viscosity and satisfies the relation γ2 = η1− η2. The expressions

for the Leslie viscous coefficients in terms of the Miesowicz viscosities are

α1 = η12, (2.2.58)

α2 = (η1 − η2 − γ1)/2 = (γ2 − γ1)/2, (2.2.59)

α3 = (η1 − η2 + γ1)/2 = (γ2 + γ1)/2, (2.2.60)

α4 = 2η3, (2.2.61)

α5 = (η1 + 3η2 − 4η3 − γ1)/2, (2.2.62)

α6 = (3η1 + η2 − 4η3 − γ1)/2. (2.2.63)

The signs of the Leslie viscous coefficients α2 and α3 are important in under-

standing the response of the director to a shear. Nematic liquid crystals are
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called flow-aligning when α2α3 > 0 and non-flow aligning, or tumbling, when

α2α3 < 0. In flow-aligning liquid crystals, the velocity gradient aligns the direc-

tor due to director-shear stress interaction at an angle called the flow-alignment

or Leslie angle. The requirement that the dissipation function is positive semi-

definite leads to a set of inequalities that the nematic viscosities must satisfy.

These inequalities were originally derived by Leslie [80] as part of his continuum

theory for anisotropic fluids and are given by

γ1 = α3 − α2 ≥ 0, (2.2.64)

α4 ≥ 0, (2.2.65)

2α4 + α5 + α6 ≥ 0, (2.2.66)

2α1 + 3α4 + 2α5 + 2α6 ≥ 0, (2.2.67)

4γ1(2α4 + α5 + α6) ≥ (γ2 + α3 + α2)2. (2.2.68)

Details on the derivation of these inequalities are also outlined by Leslie [83] and

Stewart [129].

2.2.6 Activity

The influence of activity of the liquid crystal is determined by the magnitude and

sign of the activity strength coefficient ζ in the active stress term (2.2.30). The

magnitude of ζ quantifies the amount of stress that the active agents exert on

the background fluid. The sign of ζ distinguishes how the active agents behave

relative to the surrounding fluid, with the agents either pushing the fluid out or

pulling the fluid in along the long axis. As discussed in Chapter 1, this sim-

ple description of “pushers” and “pullers” to describe active agents is commonly

replaced by the terms “extensile” and “contractile”, respectively. A schematic il-

lustration of these two contrasting behaviours for active agents is shown in Figure

2.1. In this description, extensile active nematic liquid crystals are identified by

an activity strength parameter ζ < 0, and for contractile nematic liquid crystals

ζ > 0, as adopted in, for example, [60, 63, 151, 153]. Note that the opposite sign

of the activity parameter has been assumed in a number of publications, with a
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ζ < 0
extensile (pushers)

ζ > 0
contractile (pullers)

Figure 2.1: A schematic illustration of the flow of extensile and contractile active

agents, with arrows indicating the direction of the flow around the long axes of

the active agent, indicated by the central thick solid line.

corresponding negative active stress term in (2.2.30) [41, 72, 135, 144]. The form

of the active stress term means that distortion in the director can generate a flow

within an active system. At first glance, this seems to suggest that there is a

similarity in the behaviour between these two active agents. However, as we will

see over the course of this thesis, extensile and contractile active nematics can

have completely different behaviours in terms of their orientation and flow.

2.2.7 Additional Active Terms

The inclusion of the active stress term (2.2.30) in the Ericksen-Leslie equations

is just one of many ways that can be adopted to model active liquid crystals.

Another example is an additional term in the stress tensor which models the

frictional effect due to the relative motion of the active agents [41, 151, 152, 153],

σβ = β(∇n + (∇n)T), (2.2.69)

where β in the above citations is referred to as an “active viscosity”, despite

having dimensions of surface tension, and can be positive or negative. This term is

derived using an analogy to the viscous stress in isotropic fluids when gradients in

the director field is recognised as being analogous to the velocity gradients for the

active particles. Another possible model of activity is an additional term which

accounts for self-advection in active liquid crystals by adapting the definition of
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the material time derivative of the director [12, 41, 136, 137],

∂n

∂t
+ (v · ∇)n→ ∂n

∂t
+ [(v + Ωn) · ∇]n, (2.2.70)

where Ω is the swimming speed relative to the bulk fluid, which, like the coefficient

β, can also be positive or negative. Such a term is incorporated due to the

tendency of some active agents to swim along the direction of their orientation.

Neither the active stress term (2.2.69) or the self-propelling speed term (2.2.70)

satisfy the symmetry between n and −n, and so cannot be used to model the

flows of apolar active nematic liquid crystals. They can, however, be used in

the mathematical modelling of active polar liquid crystals where the nematic

director n is replaced by a polar vector field p for which p and −p are no longer

indistinguishable. As we will only be considering apolar active nematic liquid

crystals, it follows that the two active terms considered in this subsection are

beyond the scope of the work presented in this thesis.

2.2.8 Boundary Conditions

We conclude our review of the Ericksen-Leslie theory with a summary of different

possible boundary conditions for the velocity and director. The classical no-slip

and no-penetration boundary conditions are usually considered for the velocity,

that is, v = 0 on the boundaries. This is the only boundary condition for

the velocity we consider in this thesis, although other examples for active liquid

crystals are considered in [144]. We consider two possible boundary conditions

for the director alignment in this thesis - infinite anchoring and weak surface

anchoring. The former is modelled by a Dirichlet boundary condition in which the

director orientation is fixed to a substrate. The equilibrium boundary conditions

for weak anchoring are derived from calculus of variations and are given by [68]

νi
∂wF
∂(∂iθα)

+
∂wS
∂θα

= 0. (2.2.71)

Dynamic versions of the boundary conditions (2.2.71) include a surface viscosity

for the motion of the director near a solid boundary [69], although these are not

considered in this thesis.
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2.3 Q-Tensor Theory

Despite being the first widely accepted dynamic theory of nematic liquid crys-

tals, the Ericksen-Leslie theory does have limitations. One such difficulty occurs

when modelling liquid crystals which contain defects. The Frank-Oseen version

of the elastic energy density leads to unphysical results for the free energy when

modelling liquid crystals which contain defects. Specifically, the free energy can

be shown to diverge logarithmically around defects [56]. As we have already dis-

cussed in Chapter 1, defects are important not just in inactive liquid crystals,

but also in active liquid crystalline systems. It follows, therefore, that if we want

to examine active liquid crystals containing defects using a continuum theory

approach, then we first need to introduce a continuum theory of liquid crystals

which can be used for modelling defects. One such continuum theory of liquid

crystals is the Q-tensor theory. In this section, we first introduce some of the

basic properties of the Q-tensor, before then examining an adapted version of the

dynamic equations which will be used in this thesis for modelling active nematic

liquid crystals.

A Q-tensor is defined as the traceless part of the second moment of the

probability distribution function discussed in Chapter 1, and contains informa-

tion about the average molecular axes orientations as well as the ordering about

these axes. The Q-tensor is, therefore, a second rank symmetric traceless 3 × 3

matrix. It can be written in terms of three eigenvalues Si (i = 1, 2, 3) satisfying

S1 + S2 + S3 = 0, and an orthonormal basis of three perpendicular eigenvectors

(i.e., nematic directors ni),

Q = S1(n1 ⊗ n1) + S2(n2 ⊗ n2) + S3(n3 ⊗ n3). (2.3.1)

The eigenvalues of physical Q-tensors are subject to the inequalities −1/3 < Si <

2/3 [90, 105]. Since each of the eigenvectors ni are unit vectors, it follows that

the condition

n1 ⊗ n1 + n2 ⊗ n2 + n3 ⊗ n3 = I, (2.3.2)

must also be satisfied. The representation of the Q-tensor given by (2.3.1) al-
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lows for the categorisation of three different configurations, depending on the

eigenvalues. One possible configuration is the isotropic phase for which the three

eigenvalues Si are equal to zero and there is no orientational ordering, therefore

Q=0. When two of the eigenvalues are equal, then the material is in the uni-

axial nematic phase. For example, if we assume that S2 = S3 = −S/3, so that

S1 = 2S/3, then (2.3.1) simplifies to

Q = S

(
n⊗ n− 1

3
I

)
. (2.3.3)

where we have set n1 = n in (2.3.3). Equation (2.3.3) is the standard form of a

second-rank tensor of a uniaxial nematic liquid crystal [105, 127], where S is a

scalar order parameter. As mentioned in Chapter 1, S determines the degree of

orientation. The third possible configuration occurs when the three eigenvalues

of Q are all distinct, which corresponds to biaxial ordering in the nematic phase.

We will not consider biaxial ordering in this thesis and refer the interested reader

to references [84, 103, 128].

By use of (2.3.3), a continuum theory for uniaxial nematic liquid crystals

with variable degree of order is obtained naturally as a special case of a theory for

the full second-rank alignment tensor [128]. In this thesis, we treat the director

n and scalar order parameter S as two independent variables instead of a single

alignment tensor Q, as done in Sonnet and Virga [127]. In this way we can relate

the results for the Q-tensor model of active nematic liquid crystals to those in the

adapted Ericksen-Leslie model. In this type of model of liquid crystals, defects

can be modelled by assuming that S = 0 where n is undefined. Since the scalar

order parameter S is permitted to vanish at the defects, the free energy remains

finite. This model was proposed by Ericksen in 1991 [48] as part of his continuum

theory for nematic liquid crystals with variable degree of orientation in order to

overcome the infinite energies that can occur when modelling defects with the

Frank–Oseen version of the elastic energy density.

33



2.3.1 Dynamic Equations for Uniaxial Active Nematic

Liquid Crystals With Variable Scalar Order

Parameter

The derivation of the dynamic equations for a uniaxial nematic liquid crystal with

variable degree of orientation can be found in Sonnet and Virga [127]. Using

a similar approach to that used for the Ericksen-Leslie theory, we adapt these

equations by including an additional term in the stress tensor to account for the

activity of the fluid. This additional active term is now also expressed in terms a

scalar order parameter as well as the nematic director [18, 72, 136],

σµ = µS(n⊗ n), (2.3.4)

where µ is a spatially homogeneous activity strength parameter. The system of

equations in the theory proposed by Sonnet and Virga consists of the incom-

pressibility condition and three coupled partial differential equations for the flow

velocity, the director orientation and the scalar order parameter:

∇ · v = 0, (2.3.5)

ρ
Dv

Dt
−∇ · σ = 0, (2.3.6)

∂w

∂n
−∇ ·

(
∂w

∂∇n

)
+
∂D
∂N

+ δn = 0, (2.3.7)

∂w

∂S
−∇ ·

(
∂w

∂∇S

)
+
∂D
∂Ṡ

= 0. (2.3.8)

In equations (2.3.5)–(2.3.8), ρ is the fluid density, D is the dissipation function,

w is the total bulk energy density, which we consider as composed of elastic and

thermotropic energy densities, δ is a Lagrange multiplier included to ensure that

n is a unit vector and, finally, σ is the stress tensor, which is composed of the

usual inactive terms (i.e., a hydrostatic pressure, elastic stresses and a viscous

stress), as well as the active stress (2.3.4), so that

σ = −pI− (∇n)T ∂w

∂∇n
−∇S ⊗ ∂w

∂∇S
+

∂D
∂∇v

+ µS(n⊗ n). (2.3.9)

In the following subsections, we will discuss the energy densities, dissipation

function and activity for this theory of liquid crystals.
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2.3.2 Elastic Energy Density

An elastic energy is induced by distortion of the Q-tensor in space. Similar to

the Frank-Oseen description in terms of a nematic director, any spatial gradients

in Q will lead to an increase in the elastic energy. The general form of the elastic

energy for a uniaxial nematic liquid crystal often used in Q-tensor theory [103]

is given by

wF =
L1

2

(
∂Qij

∂xk

)2

+
L2

2

∂Qij

∂xj

∂Qik

∂xk
+
L3

2

∂Qik

∂xj

∂Qij

∂xk
+
L4

2
Qlk

∂Qij

∂xl

∂Qij

∂xk
, (2.3.10)

where Li (i = 1, 2, 3, 4) are elastic coefficients assumed to be spatially homo-

geneous and temperature independent parameters. The first three terms are

quadratic in S, whilst the final term is cubic in S. This is only one of seven

possible terms which is cubic in the scalar order parameter and as we will see, is

included to allow K1 to be different to K3. In order to compare with the classical

Frank-Oseen elastic energy density we may consider the situation when the scalar

order parameter, S, in (2.3.3) is constant. Substitution of (2.3.3) into (2.3.10)

means that the elastic energy density can be expressed in terms of the director n

and scalar order parameter S as [105]

wF = L1S
2
[
tr((∇n)2) + (n · ∇ × n)2 + (n×∇× n)2

]
+

1

2
L2S

2
[
(∇ · n)2 + (n×∇× n)2

]
+

1

2
L3S

2
[
(n×∇× n)2 + tr((∇n)2)

]
+

1

3
L4S

3
[
2(n×∇× n)2 − tr((∇n)2)− (n · ∇ × n)2

]
. (2.3.11)

When we have a variable scalar order parameter, then the elastic energy density

becomes a function wF = wF (n, ∇n, S, ∇S), that is, (2.3.11) would include

terms due to gradients in S. If we compare (2.3.11) with the elastic energy density

in the Ericksen-Leslie theory (2.2.40), we see the same terms due to distortion

in the director. In the Ericksen-Leslie theory, the elastic coefficients Ki in the

Frank-Oseen elastic energy density (2.2.40) are constant parameters, measured at

a single value of temperature and therefore, do not vary spatially. In reality, each

of the elastic coefficients is a scalar order parameter dependent function, which
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can vary for different degrees of orientation. A comparison of the coefficients

means that each of the Frank elastic coefficients can be expressed as functions of

the spatially homogeneous elastic coefficients Li and the scalar order parameter

S. The calculations which determine expressions for each Ki in terms of Li and

S are not reproduced here but can be found in [105] where it is shown that the

S-dependent Frank elastic coefficients Ki(S) are

K1(S) = (2L1 + L2 + L3)S2 − 2

3
L4S

3, (2.3.12)

K2(S) = 2L1S
2 − 2

3
L4S

3, (2.3.13)

K3(S) = (2L1 + L2 + L3)S2 +
4

3
L4S

3, (2.3.14)

K4(S) = L3S
2. (2.3.15)

These expressions have also been derived by Ball [6]. As mentioned earlier, the

final term in the elastic energy density (2.3.11) is one of seven possible terms that

are linear in Q and quadratic in ∇Q and as mentioned earlier, allows for the S-

dependent splay and bend elastic coefficients to be differentiated, as these two are

the same up to order S2. The remaining six terms can be found in Ericksen [48],

where it is asserted that these seven terms are connected by a linear relation.

The values of each Li can therefore be determined by considering experimental

measurements of the Frank elastic constants and scalar order parameter at a

particular temperature. At the chosen temperature, the uniaxial scalar order

parameter takes a constant value which we define by S = S̄, with experimentally

measured Frank elastic coefficients K̄i. The relations (2.3.12)–(2.3.15) can then

be rearranged to calculate each Li in terms of K̄i and S̄,

L1 =
K̄3 − K̄1 + 3K̄2

6S̄2
, (2.3.16)

L2 =
K̄1 − K̄2 − K̄4

S̄2
, (2.3.17)

L3 =
K̄4

S̄2
, (2.3.18)

L4 =
K̄3 − K̄1

2S̄3
. (2.3.19)
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2.3.3 Thermotropic Energy Density

In the Ericksen-Leslie theory, it is assumed that the material is deep in the nematic

phase, and so potential phase transitions such as the nematic to isotropic phase

transition are not considered. Such transitions are connected with changes in the

ordering of a system induced by varying the temperature. In order to account

for possible phase transitions in liquid crystals, an additional contribution to

the free energy density is necessary. In the Q-tensor theory, phase transitions are

introduced via a thermotropic energy density, wT , which determines the preferred

state of the material at a particular temperature. At high temperatures this

potential function should have a minimum energy in the isotropic state. As the

temperature reduces, the nematic state will eventually become the energetically

preferred state. One form of wT that is commonly adopted is given by

wT = atr(Q2) +
2b

3
tr(Q3) +

c

2
(tr(Q2))2, (2.3.20)

where a is a temperature dependent coefficient, a = α(T − T ∗) ≡ α∆T , with

α > 0 and T ∗ defined as the temperature at which the isotropic state becomes

unstable [103]. In contrast to a, the coefficients b and c are commonly assumed to

be independent of temperature with b < 0 and c > 0. Each of the coefficients a, b

and c is typically of order 106 Nm−2 [103]. For uniaxial nematic liquid crystals,

(2.3.20) becomes

wT =
2a

3
S2 +

4b

27
S3 +

2c

9
S4. (2.3.21)

Minimisation of the thermotropic energy density (2.3.21) leads to equilibrium

values of the scalar order parameter S in terms of the coefficients a, b and c,

which are then subsequently used to determine the critical temperatures at which

phase transitions occur and stability conditions for each phase (see Mottram and

Newton [103]). The thermotropic energy density (2.3.20) is constructed using a

Taylor series expansion of a potential function close to the point Q = 0, meaning

that Q-tensor theory is only really valid close to the nematic-isotropic transition

temperature, where Q ≈ 0. It is for this reason that higher order powers of Q

are not considered in in (2.3.20).

37



2.3.4 Dissipation

The dynamic behaviour of uniaxial nematic liquid crystals in the Q-tensor the-

ory is derived from a dissipation principle in which the change in internal energy

within the system is balanced by the dissipation. Sonnet and Virga [128] use

symmetry arguments to construct the appropriate dissipation function for a ne-

matic liquid crystal with variable degree of orientation. The dissipation function

for a uniaxial nematic liquid crystal is

D =
1

2
ξ1tr(Q̊2) + ξ2tr(AQ̊) + ξ3tr(AQ̊Q) +

1

2
ξ4tr(A2Q)

+
1

2
ξ5tr(A2Q2) +

1

2
ξ6(tr(AQ))2 +

1

2
ξ7tr(A2)tr(Q2) +

1

2
ξ8tr(A2), (2.3.22)

where the ξi’s are spatially homogeneous viscosity coefficients, Q̊ = Q̇ −WQ +

QW is the co-rotational derivative of the Q-tensor and Q̇ is the material time

derivative of Q. As pointed out by Sonnet and Virga [126, 128], in order to

compare (2.3.22) with the dissipation function in the Ericksen-Leslie theory, the

viscosities ξ3, ξ5 and ξ7 can be neglected from (2.3.22) as they only contribute

corrections of order S2 in D. As in Subsection 2.3.2, in order to compare to

the classic Ericksen-Leslie theory, we consider the case in which the scalar order

parameter is constant. When the viscosities ξ3, ξ5 and ξ7 are set equal to zero

and S is constant, (2.3.22) can be rewritten in the familiar form of the dissipation

function used in the Ericksen-Leslie theory and, therefore, [126, 127],

D = ξ1S
2N2 + 2ξ2S(N ·An) +

1

2
ξ4S(An)2 +

1

2
ξ6S

2(n ·An)2

+
1

2

(
ξ8 −

1

3
ξ4S

)
tr(A2). (2.3.23)

The coefficient of each term in the dissipation function (2.3.23) can be compared

with that in the Ericksen-Leslie theory in order to determine how the Miesow-

icz viscosities depend on the scalar order parameter S, as well as the constant
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parameters ξi. We find that the S-dependent Miesowicz viscosities are

η1(S) =
1

2
ξ1S

2 + ξ2S +
1

12
ξ4S +

1

2
ξ8, (2.3.24)

η2(S) =
1

2
ξ1S

2 − ξ2S +
1

12
ξ4S +

1

2
ξ8, (2.3.25)

η3(S) =
1

2
ξ8 −

1

6
ξ4S, (2.3.26)

γ1(S) = 2ξ1S
2, (2.3.27)

γ2(S) = 2ξ2S, (2.3.28)

η12(S) = ξ6S
2. (2.3.29)

The viscous coefficients ξi can be determined by an experimental measurement of

the S-dependent nematic viscosities ηi(S), γi(S) and the scalar order parameter

S. We define these experimentally measured parameters by η̄i, γ̄i and S̄. The

relations (2.3.24)–(2.3.29) can then be rearranged to calculate ξi,

ξ1 =
γ̄1

2S̄2
, (2.3.30)

ξ2 =
γ̄2

2S̄
, (2.3.31)

ξ4 =
2η̄1 + 2η̄2 − 4η̄3 − γ̄1

S̄
, (2.3.32)

ξ6 =
η̄12

S̄2
, (2.3.33)

ξ8 =
2(η̄1 + η̄2 + η̄3)− γ̄1

3
. (2.3.34)

For the sake of completeness, we also provide the expressions for the S-dependent

Leslie viscous coefficients αi(S) in terms of the homogeneous coefficients ξi and

scalar order parameter S,

α1(S) = ξ6S
2, (2.3.35)

α2(S) = ξ2S − ξ1S
2, (2.3.36)

α3(S) = ξ2S + ξ1S
2, (2.3.37)

α4(S) = ξ8 −
1

3
ξ4S, (2.3.38)

α5(S) =
1

2
ξ4S − ξ2S, (2.3.39)

α6(S) =
1

2
ξ4S + ξ2S. (2.3.40)
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In terms of the experimentally measured Leslie coefficients parameters ᾱi and

scalar order parameter S̄, the coefficients ξi are given by

ξ1 =
ᾱ3 − ᾱ2

2S̄2
, (2.3.41)

ξ2 =
ᾱ3 + ᾱ2

2S̄
, (2.3.42)

ξ4 =
ᾱ6 + ᾱ5

S̄
, (2.3.43)

ξ6 =
ᾱ1

S̄2
, (2.3.44)

ξ8 =
ᾱ6 + ᾱ5 + 3ᾱ4

3
. (2.3.45)

When we have a variable scalar order parameter, the dissipation function (2.3.23)

is extended to include additional terms due to changes in S. The form of the

dissipation which includes changes in S has been constructed by Ericksen [48], as

well as Sonnet and Virga [127],

D =
1

2

(
γ1(S)N2 + 2γ2(S)N ·An + α4(S)tr(A2) +

(
α5(S) + α6(S)

)
(An)2

+α1(S)(n ·An)2 + β2(S)Ṡ2

)
+ β1(S)Ṡn ·An, (2.3.46)

where β1(S) and β2(S) are additional scalar order parameter dependent viscosities

that are included due to dynamic changes in the scalar order parameter. Since S

is a scalar, its material time derivative Ṡ is frame-indifferent. Equation (2.3.46)

represents a function which is quadratic in A, N and Ṡ, and is the same as that

given by (2.3.22) when the coefficients ξ3, ξ5 and ξ7 in (2.3.22) are set equal to

zero. When the scalar order parameter is constant (i.e., Ṡ = 0 and ∇S = 0), and

from the Parodi relation (2.2.56), it is clear that (2.3.46) simplifies to exactly the

same dissipation function used in the adapted Ericksen-Leslie theory (2.2.29).

2.3.5 Activity

For this model of uniaxial active nematic liquid crystals, the influence of activity

is governed by the active stress tensor (2.3.4), where µ is a spatially homoge-

nous activity strength parameter. Following the same approach used for the

elastic energy density and dissipation function, we can compare (2.3.4) with the
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corresponding active stress tensor used in the adapted Ericksen-Leslie theory

(i.e., equation (2.2.30)) in order to determine how ζ depends on S and µ. Com-

paring (2.2.30) and (2.3.4) reveals that the S-dependent activity strength ζ(S) is

defined in terms of the homogenous activity strength µ as

ζ(S) = µS. (2.3.47)

We can then determine µ by experimental measurement of ζ(S) and S. These

experimental values are defined by ζ̄ and S̄, where we find that

µ =
ζ̄

S̄
. (2.3.48)

We will only consider positive scalar order parameter values so that the sign of the

spatially homogenous activity strength parameter µ and the corresponding type

of active agent in this Q-tensor model is consistent with that in the Ericksen-

Leslie model. That is, µ < 0 corresponds to extensile active agents, whereas

contractile active agents are characterised by activity strength µ > 0.

2.4 Summary

In this chapter, we have introduced adapted versions of continuum theories of ne-

matic liquid crystals which will be employed throughout this thesis to model the

active nematic phase. In Chapter 3, we use the equilibrium Euler-Lagrange equa-

tions to investigate static director structures of inactive nematic liquid crystals

confined in rectangular regions. In Chapter 4, we employ the adapted Ericksen-

Leslie theory to model an active nematic liquid crystal confined in a shallow

channel. In Chapter 5, the Q-tensor model of active nematic liquid crystal will

be used to examine a uniaxial active nematic confined in the same shallow channel

as in Chapter 4. Finally, we use the adapted Ericksen-Leslie theory in Chapter 6

in order to model active nematic liquid crystals confined in two-dimensional ge-

ometries.
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Chapter 3

Nematic Liquid Crystal Director

Structures in Rectangular

Regions

3.1 Introduction

Interest in the confinement of liquid crystals between solid boundaries originally

came about through necessity, since viewing a liquid crystal under a microscope

was only possible if the material was held in place by at least one solid boundary.

Later it became clear that the competition between the orientational influence of

a solid boundary and the role of internal effects (such as elasticity) or external

effects (e.g., an applied electric field) could lead to interesting behaviour of both

scientific and technological interest. In fact, in liquid crystal display devices,

the bounding surface plays a crucial role in the optical switching [150]. Here we

consider an inactive nematic in a confined region as the precursor to a study of a

confined active nematic.

Confinement of a liquid crystal in shallow rectangular wells has been stud-

ied by a number of authors in recent years because it offers the possibility of

multiple stable director configurations [155]. The relative stability of these differ-

ent director structures and the mechanisms through which the system switches
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between different states is of particular interest if low-power electro-optic devices

are to be developed [8]. This was the motivation behind the work of Tsakonas et

al. [140], where a device consisting of an array of shallow rectangular wells was

considered experimentally and theoretically. In their theoretical work, where the

director was assumed to stay within a single plane, a two-dimensional analysis

was effective in modelling director configurations observed experimentally. The

Q-tensor modelling of [140] imposed infinite planar anchoring of the nematic di-

rector on the boundaries of the wells (where the preferred director orientation

is tangential to the boundaries) and predicted multistable configurations of the

director exhibiting defects at the corners of the wells. Their work has subse-

quently led a number of researchers to consider similar geometries of confined

nematics. Luo et al. [87] extend the analysis of [140] to incorporate surface en-

ergies and a degree of weak anchoring, still within the context of Q-tensor, or

Landau-de Gennes, theory. They also propose a dynamic model for switching

between equilibrium director states based on dielectric effects. Kusumaatmaja

and Majumdar [77] model the same device as [87] with a surface energy potential,

computing minimum energy pathways between the stable equilibria for variable

surface anchoring strength. Landau-de Gennes theory is also employed by Kralj

and Majumdar [74], Canevari et al. [17] and Slavinec et al. [124] in studies which

allowed for biaxial order reconstruction. Other work modelling confined liquid

crystal systems include using Monte Carlo techniques [21, 55], while Davidson

and Mottram [34] derive the director orientation in a variety of geometries via

conformal mappings. Studies of confined regions have not been restricted to pla-

nar (or near-planar) surface anchoring. For example, Zheng and Hu [157, 158]

examine models for polydimethylsiloxane micro-channels where the liquid crys-

tal molecules exhibit homeotropic ordering on boundary surfaces, so that the

preferred director orientation is perpendicular to the boundaries.

In recent work on nematics in a rectangular geometry, Lewis et al. [86]

examined a director model of equilibria in a well when the liquid crystal is subject

to fixed planar alignment on the four sides. Their theoretical model recovered

the director structures found experimentally and theoretically in [140], where the

43



infinite anchoring boundary conditions considered in [86] forced the liquid crystal

to adopt diagonal or rotated director structures in the bulk of the cell, as shown

in Figure 3.1 for a square well. The notation used in [86] to describe each nematic

state is D for the diagonal state and U1,2 for the two rotated states where the

director rotates by π radians across the well in the horizontal (U1) and vertical

(U2) directions. The director angle θ measures the rotation of the director with

respect to the positive, horizontal direction. For this case of infinite anchoring,

each state is characterised by the choice of director angle on the four boundaries

σi (i = 1, 2, 3, 4), as indicated in Figure 3.1. The approach of Lewis et al. [86]

was to introduce four fixed boundary director angles, the values of which, for each

of the states in Figure 3.1, are shown in Table 3.1.

However, in this situation difficulties arise because of incompatible director

angles on adjacent boundaries, leading to defects at each corner for which a

director-based model breaks down as the free energy diverges logarithmically

around such points [56]. By making use of the one-constant approximation for

the elastic constants, energy minimisation leads to a requirement that the director

angle θ satisfies Laplace’s equation in the domain Γ = {(x, y) ∈ [0, 1] × [0, λ]},

where λ is the aspect ratio. This equation was solved subject to the Dirichlet

boundary conditions θ = Θi, (i = 1, 2, 3, 4) on each boundary, using the method

of separation of variables. The solution for the director angle, which we denote

by θLewis, is expressed as a Fourier series in terms of a function Φ(X, Y, Λ) and

the angles Θi,

θLewis(x, y, λ) = Θ1Φ

(
y

λ
,

1− x
λ

,
1

λ

)
+ Θ2Φ

(
y

λ
,
x

λ
,

1

λ

)
+Θ3Φ(x, λ− y, λ) + Θ4Φ(x, y, λ), (3.1.1)

where

Φ(X, Y, Λ) =
∞∑
n=0

4 sin((2n+ 1)πX)

(2n+ 1)π

[
cosh((2n+ 1)πY )

− coth((2n+ 1)πΛ) sinh((2n+ 1)πY )
]
. (3.1.2)

As mentioned above, the Dirichlet boundary conditions mean that solution (3.1.1)

is not valid at the corners and leads to unphysical results for the energy. There-
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Figure 3.1: (a) The diagonal (D) state, (b) the rotated (U1) state and (c) the

rotated (U2) state in a square well.

fore, in order to calculate the energy of the system, Lewis et al. [86] remove a

small disc of radius ε around each defect, thought of as a model of a defect core

region. An asymptotic analysis of the regularised free energy per unit depth, Wε,

then leads to an energy expansion in terms of the defect core radius,

Wε ∼ 2π ln

(
1

ε

)
+ W̃ (θ) +O(ε2), (3.1.3)

where W̃ (θ) changes depending on the equilibrium state under consideration. We
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Boundary director angle D state U1 state U2 state

θ = Θ1 π/2 π/2 π/2

θ = Θ2 π/2 −π/2 π/2

θ = Θ3 0 0 0

θ = Θ4 0 0 π

Table 3.1: The infinite anchoring angles Θi for each of the states in Figure 3.1.

have mentioned this problem in detail here because we adopt a somewhat similar

approach in Section 3.5. In this chapter, we consider a shallow rectangular well

of nematic liquid crystal, but instead of imposing infinite planar anchoring on the

boundaries of the well, we introduce weak planar anchoring through a Rapini-

Papoular surface energy. This approach allows us to carry out an analysis of the

director configuration equilibria in the well without the need to exclude point

defects at the corners of the rectangle, in other words, avoiding the problems

faced in [86]. We are able to derive analytic expressions for the director alignment

angle, written as an infinite series involving roots of a transcendental equation,

finding a critical anchoring strength at which a uniform director configuration

exchanges stability with a distorted structure. Using the analytic form for the

director orientation, we are then able to examine the asymptotic behaviour of our

system both close to the critical anchoring strength and in the limit of infinite

anchoring. The latter analysis allows a comparison with the results of previous

work in this area. We also show that the asymptotic expansions agree very well

with numerical calculations.

3.2 Mathematical Model

We consider a static inactive nematic liquid crystal confined in a rectangular well

of depth µd, side lengths d and λd, so that the aspect ratio in the xy-plane is

λ (see Figure 3.2). We will assume that the depth of the well is considerably

smaller than the other two lengths, so that µ � 1 and µ � λ, and that planar

degenerate anchoring on the faces z = 0 and z = µd forces the director to remain
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on boundaries

director n
θ(x, y)

Figure 3.2: (a) Sketch of the rectangular well geometry containing the nematic

liquid crystal; (b) cross-sectional area Γ of the rectangular well. The director n

is described in terms of the angle θ(x, y). Each bounding surface σi (i = 1 to 4)

prefers planar director alignment.

in the xy-plane. These conditions lead us to assume that the director lies in the

xy-plane throughout the well and we may simplify the mathematical model to

consider only the director configuration in the cross-sectional area of the well,

specified as Γ = {(x, y) ∈ [0, d]× [0, λd]}. Since the nematic director is assumed

to lie in the xy-plane, we set the angles θ1 = 0 and θ2 = θ(x, y) in (2.2.2) so that

n = (cos θ(x, y), sin θ(x, y), 0), (3.2.1)

where θ(x, y) is the director angle measured relative to the positive x-direction.

The director configuration θ(x, y) can be determined by a minimisation of the

total free energy of the system, a sum of the bulk elastic energy and the surface

energies at each boundary. The elastic energy density is derived by substituting

(3.2.1) into (2.2.40), giving

wF =
1

4

(
(K3 −K1)

(
(θ2
x − θ2

y) cos(2θ) + 2θxθy sin(2θ)
)

+ (K1 +K3)(θ2
x + θ2

y)
)
,

(3.2.2)

where we adopt the notation that θx represents the first partial derivative of θ

with respect to x, etc. The four boundaries of region Γ are denoted by σi (i = 1

to 4) as indicated in Figure 3.2. Each boundary has associated with it an easy, or

preferred, direction whereby the director tries to align parallel to the boundary

47



surface (i.e., planar alignment). We introduce weak anchoring by employing the

Rapini-Papoular form for the surface energy density wσi given by (2.2.51) on each

surface σi. Although it is possible to proceed with the general situation in which

the anchoring strengths on each side of the region are all different (i.e., ωi for

i = 1, 2, 3, 4), the analysis is cumbersome and little is gained in terms of general

insights into this problem. Therefore, we restrict our attention to a uniform

anchoring strength ω > 0 to ensure planar alignment. We can now express the

total energy of the system as

W = µd

(
1

4

∫ λd

0

∫ d

0

(
(K3 −K1)

(
(θ2
x − θ2

y) cos(2θ) + 2θxθy sin(2θ)
)

+ (K1 +K3)(θ2
x + θ2

y)
)

dxdy +
4∑
i=1

ω

2

∫
σi

(n · ν)2 dσi

)
,

(3.2.3)

where dσi represents integration along the surface in the positive direction of

the corresponding Cartesian coordinate. We introduce dimensionless Cartesian

coordinates (x̄, ȳ) = (x/d, y/d) so that the cross-sectional region is now Γ̄ =

{(x̄, ȳ) ∈ [0, 1] × [0, λ]} with boundary surfaces σ̄i. We need only consider the

case λ ≥ 1 since the transformation λ → 1/λ with (x̄; ȳ) → (ȳ; x̄) will provide

solutions for the case λ < 1.

With the non-dimensionalisation above, we obtain the dimensionless free

energy

W̄ =
2W

µdK1

=
1

2

∫ λ

0

∫ 1

0

(
(k − 1)

(
(θ2
x̄ − θ2

ȳ) cos(2θ) + 2θx̄θȳ sin(2θ)
)

+ (1 + k)(θ2
x̄ + θ2

ȳ)
)

dx̄ dȳ +
4∑
i=1

τ

∫
σ̄i

(n · ν)2 dσ̄i,

(3.2.4)

where the parameter τ = ωd/K1 represents dimensionless anchoring strength

or, equivalently, the ratio of the surface extrapolation length K1/ω and the well

dimension d. The dimensionless constant k = K3/K1 measures elastic anisotropy

in the liquid crystal.

Our aim is now to minimise the dimensionless energy W̄ in equation (3.2.4)

with respect to the possible director angle configurations θ(x̄, ȳ) for a given an-
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choring parameter τ , elastic constant ratio k and aspect ratio λ. By a standard

application of the calculus of variations, the Euler-Lagrange equation (2.2.35)

derived from (3.2.4) is

0 = (k + 1)(θx̄x̄ + θȳȳ) + (k − 1)
(
(θx̄x̄ + 2θx̄θȳ − θȳȳ) cos(2θ)

+ (θ2
ȳ + 2θx̄ȳ − θ2

x̄) sin(2θ)
)
, (x̄, ȳ) ∈ (0, 1)× (0, λ). (3.2.5)

The boundary conditions due to weak anchoring at each boundary are obtained

via a balance of couples which relate the bulk energy density and surface energy

density [129]. From equation (2.2.71), the boundary conditions are

σ̄1 : (1 + k)θx̄ + τ sin(2θ) + (k − 1)(θx̄ cos(2θ) + θȳ sin(2θ)) = 0,

σ̄2 : (1 + k)θx̄ − τ sin(2θ) + (k − 1)(θx̄ cos(2θ) + θȳ sin(2θ)) = 0,

σ̄3 : (1 + k)θȳ − τ sin(2θ)− (k − 1)(θȳ cos(2θ)− θx̄ sin(2θ)) = 0,

σ̄4 : (1 + k)θȳ + τ sin(2θ)− (k − 1)(θȳ cos(2θ)− θx̄ sin(2θ)) = 0.

(3.2.6)

Equations (3.2.5) and (3.2.6) are solved by the trivial solutions θ(x̄, ȳ) = 0 and

θ(x̄, ȳ) = π/2 (or the equivalent solutions θ(x̄, ȳ) = nπ and θ(x̄, ȳ) = (n+ 1/2)π

for n ∈ Z), and in the next section we will first consider solutions that bifurcate

from these undistorted states as the anchoring parameter τ increases. We will

also consider the asymptotic limit for large anchoring parameter, i.e., τ → ∞,

which approximates the infinite anchoring limit considered by Lewis et al. [86].

In contrast to the work of Lewis et al. [86], the approach considered here

leads to no director discontinuities and there is no need to remove corner regions

to regularise the energy. Indeed, at each corner the boundary conditions (3.2.6)

for two adjacent walls do not conflict and can be satisfied independently. While

it is relatively straightforward to implement a numerical scheme to solve (3.2.5)

and (3.2.6), the non-linear nature of our system makes any type of analysis dif-

ficult. However, in the following sections we will also show how linearisation

can lead to very effective results in certain limits of the anchoring strength. In

the sections that follow, we omit the ¯ from all dimensionless quantities (specif-

ically, x̄, ȳ, Γ̄, σ̄i, W̄ ) with the understanding that, henceforth, in this chapter,

all quantities are dimensionless.
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3.3 Bifurcations From Undistorted States

3.3.1 Linearisation Around the Undistorted Solutions

As mentioned in Section 3.2, regardless of the anchoring parameter τ , elastic

constant ratio k and aspect ratio λ, equations (3.2.5) and (3.2.6) are solved by the

trivial solutions θ(x, y) = 0 and θ(x, y) = π/2. Using (3.2.4), we see that these

two constant equilibria correspond to total energies of W0 = 2λτ and Wπ/2 = 2τ ,

respectively, so that when λ = 1 the undistorted states have equal energies, and

λ ≶ 1 correspond to W0 ≶ Wπ/2.

Linearising equation (3.2.5) about θ = 0, we obtain

kθxx + θyy = 0, (x, y) ∈ (0, 1)× (0, λ), (3.3.1)

which we solve subject to corresponding linearised boundary conditions on each

boundary

σ1 : kθx + τθ = 0, σ3 : θy − τθ = 0,

σ2 : kθx − τθ = 0, σ4 : θy + τθ = 0.
(3.3.2)

A relatively straightforward application of separation of variables leads to the

non-trivial solution of (3.3.1) subject to (3.3.2), namely,

θ(x, y) = A0

(
cosh

(
px√
k

)
− τ

p
√
k

sinh

(
px√
k

))(
cos(py) +

τ

p
sin(py)

)
, (3.3.3)

for a constant A0 6= 0, and where the mode number p and anchoring strength τ

must satisfy the simultaneous equations

(τ 2 + kp2) sinh

(
p√
k

)
− 2pτ

√
k cosh

(
p√
k

)
= 0, (3.3.4)

(τ 2 − p2) sin(pλ) + 2pτ cos(pλ) = 0. (3.3.5)

Equation (3.3.4) yields two expressions for τ in terms of p and k, namely,

τ 0
± = p

√
k

(
coth

(
p√
k

)
± csch

(
p√
k

))
, (3.3.6)

which, upon substitution into (3.3.4), lead to two corresponding transcendental
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equations for p,

f±(p; λ) := 2
√
k sinh

(
p√
k

)
+

(
(k − 1) cosh

(
p√
k

)
± (1 + k)

)
tan(pλ) = 0.

(3.3.7)

The solutions of the transcendental equations (3.3.7) form an infinite set of values,

corresponding to mode numbers pi (i = 1, 2, . . .). Each mode has associated with

it a corresponding value τ given by (3.3.6). As we will see later, these values of

τ are critical anchoring strengths at which each mode appears in the system in

order to reduce the free energy. Corresponding to each mode number pi is an

amplitude A0,i so that the general solution of (3.3.1) and (3.3.2) is then

θ(x, y) =
∞∑
i=1

A0,i

[
cosh

(
pix√
k

)
−
(

coth

(
pi√
k

)
± csch

(
pi√
k

))
sinh

(
pix√
k

)]
×
[
cos(piy) +

(
coth

(
pi√
k

)
± csch

(
pi√
k

))
sin(piy)

]
. (3.3.8)

For the linearisation about θ = π/2, we adopt a similar approach, expressing the

general solution in terms of amplitudes Aπ/2,i and mode numbers qi as

θ(x, y) =
π

2
−
∞∑
i=1

Aπ/2,i

[
cos(qix) +

(
coth

(
qiλ√
k

)
± csch

(
qiλ√
k

))
sin(qix)

]
×
[
cosh

(
qiy√
k

)
−
(

coth

(
qiλ√
k

)
± csch

(
qiλ√
k

))
sinh

(
qiy√
k

)]
.

(3.3.9)

The critical values of the anchoring strengths τ
π/2
± are calculated from

τ
π/2
± = q

√
k

(
coth

(
qλ√
k

)
± csch

(
qλ√
k

))
, (3.3.10)

where the solutions for the mode numbers q satisfy the corresponding transcen-

dental equations

g±(q; λ) := 2
√
k sinh

(
qλ√
k

)
+

(
(k − 1) cosh

(
qλ√
k

)
± (1 + k)

)
tan(q) = 0.

(3.3.11)

It is worth noting that, depending on the choice of ± in equations (3.3.7) and

(3.3.8), we can combine each x-dependent term in (3.3.8) into the form cosh(pi(x−

1/2)) or sinh(pi(x− 1/2)). In other words, one solution for θ(x, y) in (3.3.8) will
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be symmetric with respect to x = 1/2 and the other anti-symmetric. (Symme-

try about x = 1/2 is equivalent to θ(x, y) = θ(1 − x, y) and anti-symmetry is

θ(x, y) = −θ(1− x, y).) The same can be said of equations (3.3.9) and (3.3.11)

with solutions symmetric or anti-symmetric with respect to y = λ/2 through a

combination of hyperbolic terms involving qi.

In order to calculate the critical anchoring strengths τ 0
± and τ

π/2
± , we first

solve equations (3.3.7) and (3.3.11) to find the critical mode numbers pi and

qi, before substituting into (3.3.6) and (3.3.10), respectively. In the calculations

that follow, our analysis focusses on the four first modes found from f+(p; λ) = 0,

f−(p; λ) = 0, g+(q; λ) = 0 and g−(q; λ) = 0. The p and q values which satisfy

these four equations have been obtained numerically in MATLAB [94]. This will

generate four symmetry breaking states, two of which originate from f±(p; λ) = 0

with the remaining two coming from g±(q; λ) = 0.

As an example, we plot the four director structures in Figure 3.3 for an

aspect ratio of λ = 1.5, anchoring strengths τ 0
± and τ

π/2
± , amplitudes A0 = Aπ/2 =

0.5 and elastic constant ratio k = 1. For three of the states (D, U1 and U2), we

have used the same notation as [86], indicating the Diagonal or U-shaped nature

of the distortion. We denote the fourth state by DD to recognise that it is,

essentially, a double D state with symmetric diagonal distortions in 0 < y < λ/2

and λ/2 < y < λ. We are able to classify the four different branches, and

associate them with solutions in [86] because the states exhibit particular (anti)-

symmetries with respect to x = 1/2 and/or y = λ/2. For example, in the D state,

θ(x, y) = θ(1 − x, λ − y). There are actually two versions of each of the four

non-trivial states that come out of our analysis, where the mirror images of the

director profiles in Figure 3.3 are also possible nematic states. The first modes of

f+(p; λ) = 0 and g+(q; λ) = 0, respectively, give rise to the U1 and U2 states. In

the case of f−(p; λ) = 0 and g−(q; λ) = 0, the first modes generate the DD and

D states, respectively.

In Figure 3.4(a), we plot the two values of p and two values of q mentioned

above when k = 1 as the aspect ratio λ varies. These p and q values are then

used to calculate the corresponding critical anchoring strengths plotted in Figure
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Figure 3.3: The four director structures bifurcating from the trivial solutions

θ = 0 ((a) U1 and (b) DD states) and θ = π/2 ((c) D and (d) U2 states) for an

aspect ratio λ = 1.5, anchoring strengths τ 0
± and τ

π/2
± , and elastic constant ratio

k = 1.
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3.4(b). These four lowest critical values of τ correspond to the four director dis-

tortion modes, described by the appropriate solutions (3.3.8) and (3.3.9). Figure

3.4(b) indicates that for the two states which bifurcate from the θ = π/2 trivial

solution (the D and U2 states, shown by the dotted and dot-dashed curves respec-

tively), it is always the D state that bifurcates at the lower critical τ value. In fact,

it is simple to show analytically that the first non-zero solution to g+(q; λ) = 0

tends to q = π/2 from above as λ → ∞, and the first non-zero solution to

g−(q; λ) = 0 tends to q = π/2 from below as λ→∞. The asymptotic behaviour

for the corresponding critical values of the anchoring parameter is then τ → π/2+

for the U2 state and τ → π/2− for the D state since, for q ∈ Z+,

lim
λ→∞

(coth(qλ)± csch(qλ)) = 1. (3.3.12)

For the two states bifurcating from the θ = 0 trivial solution (the DD and U1

states, shown by the solid and dashed curves respectively), the situation is slightly

more complicated. While the solutions of f±(p; λ) = 0 both tend to p = 0 from

above as λ→∞, the critical value of the anchoring parameter behaves as τ → 2+

for the U1 state and τ → 0+ for the DD state. The values of the critical anchoring

parameters at λ = 1 are found from equation (3.3.7) to be τ 0
+ ≈ 2.55 for the U1

state and τ 0
− ≈ 4.61 for the DD state. There is, therefore, a critical value of

λ, which we denote by λc, at which the critical values of τ for the U1 and DD

states cross, as can be seen in Figure 3.4(b). This value is found numerically to

be λc ≈ 1.75 corresponding to τc ≈ 2.24.

Figure 3.4(c) shows the smallest positive solutions of equations (3.3.7) and

(3.3.11) when the elastic anisotropy is reduced to k = 0.5. The corresponding

critical anchoring strengths are shown in Figure 3.4(d), where we observe that

reducing the elastic constant ratio has resulted in a change in the critical aspect

ratio at which the U1 and DD states exchange bifurcation ordering. Specifically,

when k = 0.5, the U1 state bifurcates from the zero state before the DD state

until a critical aspect ratio value of λc ≈ 2.32, at which τc ≈ 1.107. There is no

crossover in the bifurcation ordering of the D and U2 states, which was also the

case when k = 1. For each symmetry breaking solution, we are able to deduce
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from the numerical calculations that reducing k has led to a decrease in the

critical anchoring strength at which all four states emerge from the trivial states.

Figure 3.4(e) shows the smallest positive solutions of equations (3.3.7) and

(3.3.11) when the elastic anisotropy is increased to k = 2, with the corresponding

values of the critical anchoring strengths shown in Figure 3.4(f). We see that,

for the same aspect ratio, k > 1 causes an increase in the critical anchoring

strengths for each state compared to the special case of k = 1. When k = 2,

the DD state will be the first state to bifurcate from θ = 0 for aspect ratios

λ ≥ 1.33. The critical value of the anchoring strength at which the U1 and DD

states exchange bifurcation ordering is approximately τc ≈ 4.525. By contrast,

the critical anchoring strengths of the D state remain less than those for the U2

state. Therefore, the role of the elastic constant ratio k is to enhance (k < 1)

or delay (k > 1) the transition due to weak anchoring that we observed for an

elastically isotropic nematic liquid crystal.

Figure 3.5 shows the variation of the smallest positive solutions of equations

(3.3.7) and (3.3.11) with the elastic constant ratio k at aspect ratio (a) λ = 1.5,

(c) λ = 2, and (e) λ = 3. The critical anchoring strengths for each of the four

states when λ = 1.5 are shown in Figure 3.5(b), where we find that the bifurcation

ordering of the U1 and DD states change at elastic constant ratio k ≈ 1.48. By

increasing the aspect ratio to λ = 2, Figure 3.5(d) shows that the change in the

bifurcation ordering of the U1 and DD states occurs at k ≈ 0.72. In Figure 3.5(f),

we plot the critical anchoring strengths when λ = 3, which shows that the DD

state will bifurcate from the trivial state θ = 0 before the U1 state for all elastic

constant ratios 0.5 ≤ k ≤ 2. For all values of λ and k considered, the U2 state

will always bifurcate from the trivial state θ = π/2 at a larger critical anchoring

strength than that of the D state.

3.3.2 Energies of Elastically Isotropic Nematics

The presence of trigonometric terms in the energy (3.2.4) makes it exceptionally

difficult, if not impossible, to undertake an analytic investigation of the energy
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Figure 3.4: Smallest positive wavenumbers of the functions f±(p; λ) (labelled DD

and U1) and g±(q; λ) (labelled D and U2) for varying aspect ratio λ when (a)

k = 1, (c) k = 0.5 and (e) k = 2. The critical anchoring strengths as a function
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associated with the director profiles (3.3.8) and (3.3.9). The trigonometric terms

in the bulk energy density all include a factor of (k − 1), and so in order to

make progress, we focus on the special case of k = 1. Trigonometric terms

also occur in (3.2.4) through the surface energies. We therefore approximate the

non-linear Rapini-Papoular energies as Taylor polynomials to fourth order in θ

around the two trivial states. This now allows us to evaluate the energy for any

positive anchoring strength τ . In the calculations that follow, we restrict our

analysis to the first modes of the director profiles (3.3.8) and (3.3.9), therefore

our calculations will be valid only close to the respective bifurcation points.

Substituting the first modes of the director profiles (3.3.8) and (3.3.9) into

(3.2.4) and integrating, we find

W ≈ 2λτ + a2(τ)A2
0,1 + a4(τ)A4

0,1, (3.3.13)

for θ close to 0, and

W ≈ 2τ + b2(τ)A2
π/2,1 + b4(τ)A4

π/2,1, (3.3.14)

for θ close to π/2. The coefficients a2(τ), a4(τ), b2(τ) and b4(τ) are derived an-

alytically and presented in Appendix B. We now need to determine the critical

values of the amplitudes A0,1 and Aπ/2,1 associated with the first mode. We do so

by minimising the energies (3.3.13) and (3.3.14) with respect to the amplitudes.

The resultant cubic polynomials lead to non-trivial critical amplitudes

A0,1 = ±

√
− a2(τ)

2a4(τ)
, Aπ/2,1 = ±

√
− b2(τ)

2b4(τ)
, (3.3.15)

although A0,1 = Aπ/2,1 = 0 are also possible amplitudes from the energy min-

imisation and reproduce the energies of the two trivial states. Replacing A0,1 in

(3.3.13) and Aπ/2,1 in (3.3.14) by the non-trivial critical amplitudes (3.3.15), we

now have

W ≈ 2λτ − a2
2(τ)

4a4(τ)
, (3.3.16)

for θ close to 0, and

W ≈ 2τ − b2
2(τ)

4b4(τ)
, (3.3.17)
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for θ close to π/2. We can now compare the energies (3.3.16) and (3.3.17) with

those calculated numerically for the full non-linear system when k = 1. The

order of the bifurcations is illustrated in Figure 3.6. Since there are no linear

terms in A0 and Aπ/2 present in the energies (3.3.16) and (3.3.17), and all of

the symmetry breaking states we consider exist at anchoring strengths greater

than and equal to their critical threshold values, each of these bifurcations is a

supercritical pitchfork bifurcation. As mentioned previously, there are two forms

of the non-trivial states in Figure 3.3 as their mirror images are also possibilities.

Energetically, however, the states are equivalent to their mirror images, therefore

we do not observe typical pitchfork shaped bifurcation curves.

In Figure 3.6 we have considered equilibrium states obtained both numeri-

cally from equations (3.2.5) and (3.2.6) (solid curves, calculated using the finite-

element package COMSOL [26]) and analytically using the perturbation approach

around each of the bifurcation points (dashed curves). Figure 3.6 shows W0 and

Wπ/2, the energies for the trivial solutions, and energies for the bifurcating states

when λ = 1.5 < λc (Figures 3.6 (a) and (c)) and λ = 3 > λc (Figures 3.6 (b)

and (d)). We see that, as expected, for λ < λc the U1 state bifurcates at a lower

value of τ than the DD state while, for λ > λc the ordering exchanges and the

DD state bifurcates at a lower value of τ . For bifurcations from the trivial state

θ = π/2, however, the D state always bifurcates at a lower value of anchoring

parameter τ . As would be expected with a perturbation method, the analytic en-

ergy calculation agrees exactly with the numerics only at the bifurcation points,

though close to the respective bifurcation points we still see a level of agreement

between the two approaches.

3.3.3 Energies of Elastically Anisotropic Nematics

Since the energies of the base states are proportional to the anchoring strength,

it follows from previous calculations that for the same aspect ratio λ, the four

non-trivial states will bifurcate at a lower energy than (3.3.16) and (3.3.17) for

elastic constant ratios k < 1 and a higher energy than (3.3.16) and (3.3.17) when
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Figure 3.6: Total free energy W including elastic and surface contributions as

a function of anchoring parameter τ close to the bifurcation points, calculated

numerically (solid curves) and analytically (dashed curves) when k = 1. Also

shown are the energies W0 and Wπ/2 for the trivial states. Bifurcations from

θ = 0 for (a) λ = 1.5 and (b) λ = 3 show that the order of the U1 and DD

bifurcations exchanges as λ increases. Bifurcations from the θ = π/2 for (c)

λ = 1.5 and (d) λ = 3. In this case, the D state bifurcation always occurs at a

lower value of τ . In (d), the D and U2 numerical branches are very close.

k > 1. We now consider the energies of the four non-trivial nematic equilibria

for elastic constant ratio k 6= 1. Figures 3.7(a) and (c) show the energies as

a function of the anchoring strength for the nematic equilibria which bifurcate

from the trivial states θ = 0 and θ = π/2, respectively. These energies have been

calculated numerically at aspect ratio λ = 1.5 and elastic constant ratio k = 0.5.

This shows that the U1 state bifurcates from θ = 0 at a lower anchoring strength

than the DD state, with the U2 state emerging from θ = π/2 at a larger anchoring
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Figure 3.7: Total free energy W including elastic and surface contributions as

a function of anchoring parameter τ close to the bifurcation points, calculated

numerically at elastic constant ratios k = 0.5 and k = 2 and aspect ratio λ = 1.5.

Also shown are the energies W0 and Wπ/2 for the trivial states. Bifurcations

from θ = 0 for (a) k = 0.5 and (b) k = 2 show that the order of the U1 and

DD bifurcations exchanges as k increases. Bifurcations from the θ = π/2 for (c)

k = 0.5 and (d) k = 2. In this case, the D state bifurcation always occurs at a

lower value of τ . In (c), the D and U2 numerical branches are very close.

strength than the D state. The energies when k = 2 are shown in Figures 3.7(b)

and (d). We can see that the increase in k leads to a change in the bifurcation

ordering of the U1 and DD states, although the energy of the DD state is larger

than that of the U1 state at higher anchoring strengths. The difference in critical

anchoring strengths between the D and U2 states increases for larger k. As was

the case in Figure 3.6, we have also included the energies W0 and Wπ/2.
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3.4 Modelling Defects at Weakly Anchored

Corners For Large Anchoring Strength

Competing surface orientation angles, when the anchoring is infinite, can lead to

the formation of defects at the four corner points, as was the case in the model

considered in [86]. As we mentioned before, the analytic solution for the director

angle derived in [86] is not valid at the corners of the region due to the presence

of defects. In this section, we show that when the elastic constant ratio k = 1,

an approximate analytic solution for the director orientation which satisfies the

non-linear Robin boundary conditions (3.2.6) can be derived using the method of

matched asymptotic expansions. This process involves obtaining several different

approximate solutions of Laplace’s equation, each of which are valid for part of

the range of the independent variables x and y. The various solutions are then

combined to generate a single approximate solution that is valid for all values

of x and y. As we will see, this approach allows for an analytic solution for the

equilibrium director orientation to be derived which is valid in the bulk and close

to the corners of the region.

We divide the rectangular region into two subdomains, the first of which

consists of the director orientation in the bulk of the well (i.e., away from the

corners). The asymptotic series solution for the director orientation in this sub-

domain is referred to as the outer solution [10, 106] and is valid for x, y = O(1).

This solution for the director orientation in the bulk will not be accurate close to

the corners as the outer solution does not satisfy the Robin boundary conditions.

However, close to the corners, the corresponding solutions at each corner, known

as the inner solutions [10, 106], do satisfy the boundary conditions and can be

constructed analytically. An approximate solution for the director orientation,

valid for the whole domain is then obtained by combining the outer and inner

solutions via a process called “matching”.
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3.4.1 Outer Solution

We begin by solving (3.2.5) in the bulk of the region and define this solution by

θOuter (i.e., the outer solution), where x, y = O(1) and τ � 1. Setting τ = 1/ε,

where ε is a small parameter such that 0 < ε � 1, we seek an asymptotic series

solution of (3.2.5) of the form

θOuter = θ0 + εθ1 + ε2θ2 +O(ε3). (3.4.1)

At O(1), the asymptotic solution (3.4.1) simplifies the boundary conditions (3.2.6)

to sin(2θ0) = 0, which has solutions θ0 = nπ/2 for n ∈ Z. The solution of equation

(3.2.5) with Dirichlet boundary conditions on the boundaries is exactly the same

obtained by Lewis et al. [86]. At leading order, the solution in the outer region

is therefore

θOuter = θLewis +O(ε), (3.4.2)

where θLewis is given by (3.1.1) and is expressed in terms of the planar angles

Θi, (i = 1, ...4), which are defined in Table 3.1.

3.4.2 Inner Solution

As mentioned previously, the series solution (3.1.1) is not valid close to the cor-

ners. We now consider an asymptotic series solution for the director orientation

close to the corners, θInner, (i.e., the inner solution). For brevity, we only examine

the director orientation solution which is valid close to the corner (0, 0), where

the solutions close to the remaining corners can be obtained by a translation

and rotation of the solution close to (0, 0). In this subdomain, we solve (3.2.5),

subject to the local boundary conditions

2θx +
1

ε
sin(2θ) = 0 on x = 0, (3.4.3)

2θy −
1

ε
sin(2θ) = 0 on y = 0. (3.4.4)

In the inner region, x, y and ε are all very small and comparable in size. We

introduce two new O(1) length scales X and Y by setting x = Xε and y = Y ε,
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with τ = 1/ε, and seek an asymptotic series solution for (3.2.5) of the form

θInner = θ0 + εθ1 + ε2θ2 +O(ε3). (3.4.5)

At leading order, we solve (3.2.5) with the boundary conditions

2θX + sin(2θ) = 0 on X = 0, (3.4.6)

2θY − sin(2θ) = 0 on Y = 0. (3.4.7)

The inner solution of (3.2.5) is given by [73]

θInner(X, Y ) = s1 tan−1

(
Y − Y0

X −X0

)
, (3.4.8)

where s1 is a coefficient which will induce a different director structure close to

the corners, depending on the solution under consideration (i.e., D, U1 or U2),

and X0, Y0 are the “shifts” in the x and y coordinates, respectively. In the model

considered in [86], there are defects of strength ±1 at the corners and so we

consider values of s1 such that s1 = ±1. The boundary conditions (3.4.6) and

(3.4.7) reveal that X0 = −1 and Y0 = −1. The solution in the inner region can

then be expressed in terms of x and y such that

θInner(x, y) = s1 tan−1

(
y + ε

x+ ε

)
. (3.4.9)

The solution (3.4.9) is clearly singular at (x, y) = −(1/τ, 1/τ). However, since

τ > 0, this singularity lies outside the region and so there are no internal defects.

We can think of this solution as generating a “virtual” defect in the system and,

for sufficiently large τ , it leads to a director structure close to the corner (0, 0)

which is identical to that when there is a defect on the corners of the region. For

smaller values of τ , the “virtual” defect will move further away from the corner.

In total, there are four separate inner solutions, one for each corner. These four

solutions come together when we construct the composite solution in the next

subsection.

3.4.3 Asymptotic Matching

To obtain the final, matched composite solution, valid on the whole domain, we

combine the inner and outer solutions and subtract the values where the outer
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and inner solutions overlap [10, 106]. In this case, the outer and inner solutions

overlap in the limit lim
X,Y→∞

θInner, or equivalently, lim
ε→0

θInner. The final approximate

solution to this problem in terms of the anchoring strength τ is therefore

θ(x, y) ≈ θOuter + θInner − lim
ε→0

θInner

= θLewis + s1 tan−1

(
τy + 1

τx+ 1

)
− s2 tan−1

(
τy + 1

τ(x− 1)− 1

)
+s3 tan−1

(
τ(y − λ)− 1

τ(x− 1)− 1

)
− s4 tan−1

(
τ(y − λ)− 1

τx+ 1

)
−s1 tan−1

(
y

x

)
+ s2 tan−1

(
y

x− 1

)
−s3 tan−1

(
y − λ
x− 1

)
+ s4 tan−1

(
y − λ
x

)
. (3.4.10)

Despite having found an approximate analytic solution for the full non-linear

problem, computing the energy analytically using solution (3.4.10) is not possi-

ble. Another difficulty is the change in the value of the director angle along the

vertical boundaries in the DD state, which is not accounted for in the solution

(3.4.10). The outer and inner solutions would have to include an additional two

contributions, one for each of the vertical walls, as well as the solutions in the

inner regions at (0, λ/2) and (1, λ/2) in order to generate the solution for the

DD state. It therefore follows that if we are to gain any analytic insight into

the energies of the nematic equilibria found in Section 3.3 in the limit of infinite

anchoring, we require an alternative approach to that considered in this section.

3.5 Linearisation in the Large Anchoring

Strength Case

In this section, we will consider the asymptotic limit for large anchoring param-

eter, i.e., τ → ∞ using a different approach to that considered in the previous

section. As mentioned previously, due to the discontinuities in the director an-

gle θ at the four corners for the model with infinite anchoring at the boundaries

presented in [86], which can be thought of as line defects along the z-direction,

the free energy diverges logarithmically around these points [73]. A large anchor-
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ing strength τ in energy (3.2.4) corresponds to, for example, a well dimension d

that is much larger than the surface extrapolation length K/ω, where K is the

isotropic elastic constant. In this case, the director is anchored relatively strongly

at each well boundary and we may assume that on σi, away from the corners, the

director angle θ is close to the constant angle the director takes in the infinite

anchoring limit. The infinite anchoring angles Θi for the D, U1, U2 were shown

in Table 3.1, whereas those for the DD state are shown in Table 3.2.

3.5.1 Linearisation Around the Preferred Directions

By linearising the boundary conditions (3.2.6) around the preferred directions Θi,

we are able to derive analytic solutions for the director angle profiles associated

with the four non-trivial diagonal and U-shaped nematic equilibria. As was the

case in Section 3.3, we can only make analytic progress with the energies if we

assume that the nematic liquid crystal is elastically isotropic. Therefore for the

remainder of this chapter, we make the system more analytically tractable by

assuming that k = 1. As we saw in Section 3.4, it is possible to derive an analytic

solution for the director angle which satisfies the non-linear boundary conditions

(3.2.6) when k = 1 using the method of matched asymptotic expansions. How-

ever, it is impossible to calculate the energy analytically from this solution. The

linearisation approach adopted here allows for the derivation of asymptotic ap-

proximations for the energy in the limit of large anchoring strength. Linearising

the boundary conditions (3.2.6) about θ = Θi leads to

ν · ∇θ + τ(θ −Θi) = 0 on σi (i = 1, 2, 3, 4), (3.5.1)

or equivalently,

σ1 : θx − τ(θ −Θ1) = 0, σ3 : θy − τ(θ −Θ3) = 0,

σ2 : θx + τ(θ −Θ2) = 0, σ4 : θy + τ(θ −Θ4) = 0,
(3.5.2)

where ∇θ = (θx, θy). We can associate these linearised boundary conditions with

quadratic forms of the surface energy densities in (2.2.51) via

(n · ν)2 ≈ (θ −Θi)
2 (i = 1, 2, 3, 4), (3.5.3)
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Boundary director angle DD state

θ = Θ1 ±π/2 for y ≶ λ/2

θ = Θ2 ±π/2 for y ≶ λ/2

θ = Θ3 0

θ = Θ4 0

Table 3.2: The infinite anchoring angles Θi for the DD state found in Section 3.3.

up to an additive constant that will play no role in the minimisation of the total

energy. This linear approximation of the non-linear boundary conditions will

be valid everywhere except at the corners of the region, and also, at the points

(0, λ/2) and (1, λ/2) for the DD state.

3.5.2 Solutions for the Director Angle

The assumption of isotropic elasticity reduces the equilibrium equation for the

director angle (3.2.5) to Laplace’s equation, which can be solved in region Γ sub-

ject to boundary conditions (3.5.2) by separation of variables. Since the system

is now linear, we need only derive the solution in the case when three of the four

preferred directions Θi = 0, then employ the principal of superposition together

with appropriate rescaling and rotation. One complication in our analysis is the

presence of Robin boundary conditions (3.5.2) which we will show lead to eigen-

values that are solutions of a transcendental equation. Another difficulty is the

piecewise nature of the boundary conditions (3.5.2) for the DD state. In the anal-

ysis that follows, we adopt one approach to derive the director angle solutions for

the D, U1 and U2 states, with a separate method considered for the DD state.

A standard application of separation of variables is therefore used to find the

solution of Laplace’s equation in region Γ subject to Robin boundary conditions

(3.5.2). The series solutions for the D, U1, and U2 states can then be expressed
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in the form

θ(x, y) =
∞∑
j=1
j odd

[
Θ1Φj

(y
λ
,

1− x
λ

,
1

λ
, λτ

)
+ Θ2Φj

(y
λ
,
x

λ
,

1

λ
, λτ

)

+ Θ3Φj(x, λ− y, λ, τ) + Θ4Φj(x, y, λ, τ)

]
. (3.5.4)

In their most general forms, for odd and even j, Φj(U, V, Λ, T ) = Mj ×Nj (j =

1, 2, 3 . . .), where

Mj(U, T ) =

√
2[Pj cos(PjU) + T sin(PjU)]√

P 2
j + T 2 + 2T

, (3.5.5)

are orthonormal with respect to U ∈ (0, 1) and

Nj(V, Λ, T )

=

√
2T 2[(P 2

j + T 2) cos(Pj) + P 2
j − T 2][Pj cosh(PjV ) + T sinh(PjV )]

Pj(P 2
j − T 2)

√
P 2
j + T 2 + 2T [(P 2

j + T 2) sinh(PjΛ) + 2PjT cosh(PjΛ)]
.

The eigenvalues Pj(T ) are the positive solutions of the transcendental equation

(P 2
j − T 2) tan(Pj)− 2TPj = 0 (j = 1, 2, 3, . . .). (3.5.6)

For large T (representing an anchoring parameter), we can simplify and solve

(3.5.6) to find

Pj = jπ

(
1− 2

T

)
+O

(
1

T 2

)
(j = 1, 2, 3, . . .). (3.5.7)

Therefore, Pj must lie in the second quadrant for j odd and the fourth quadrant

for j even, both corresponding to tan(Pj) < 0. Restating (3.5.6) in terms of T

(> 0), we find that

T = (−1)j+1Pj
[
tan(Pj/2)

](−1)j+1

(j = 1, 2, 3, . . .). (3.5.8)

However, upon substitution of (3.5.8) into (3.5.6), we find that Nj(V, Λ, T ) = 0

for j even, hence the reason j is restricted to odd, positive integers in (3.5.4).

Therefore, the only contributions to the solution for θ(x, y) come from eigenvalues

Pj(T ) lying in the second quadrant satisfying the transcendental equation

T − Pj tan(Pj/2) = 0, Pj ∈ (jπ − π/2, jπ) (j = 1, 3, 5, . . .). (3.5.9)
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Furthermore, if we also replace T in Φj with Pj tan(Pj/2) (odd j ≥ 1), we even-

tually obtain the simplified form for Φj,

Φj(U, V, Λ, T ) =
2[cosh(PjV ) cos(Pj/2) + sinh(PjV ) sin(Pj/2)]

cosh(PjΛ) sin(Pj) + sinh(PjΛ)

× cos(Pj(U − 1/2))[1− cos(Pj)]

sin(Pj) + Pj
. (3.5.10)

This expression is then used to construct the solution θ(x, y) for the D, U1,

and U2 states. We see immediately from equation (3.5.10) that Φj is symmetric

with respect to U = 1/2 through a single U -dependent term, cos(Pj(U − 1/2)).

This will lead to symmetry in the x or y direction for each particular state,

depending on the combination of terms in solution (3.5.4) and the appropriate

Θi (i = 1, 2, 3, 4). It is less obvious from the nature of the V -dependent term

in Φj, but when combined with the different choices of Θi in equation (3.5.4),

symmetry or anti-symmetry is also introduced for the other x or y coordinate

through the addition of the hyperbolic terms.

The DD solution can also be found by separation of variables, although the

derivation is slightly different due to the piecewise nature of boundary condition

(3.5.2). By recognising that the DD state is characterised by a symmetry about

x = 1/2 and an anti-symmetry about y = λ/2, we seek a series solution for the

director angle of the form

θ(x, y) =
∞∑
j=1

Aj cosh

(
Qj(2x− 1)

λ

)
sin

(
Qj(2y − λ)

λ

)
, (3.5.11)

with eigenvalues Qj and the unknown coefficients Aj to be determined. Follow-

ing some relatively straightforward calculations, we obtain the following series

solution for the director angle θ(x, y) of the DD state:

θ(x, y) =
∞∑
j=1

π cos(Qj)(cos(Qj)− 1)

[cos(Qj) sin(Qj)−Qj][sinh(Qj/λ) sin(Qj)− cosh(Qj/λ) cos(Qj)]

× cosh

(
Qj(2x− 1)

λ

)
sin

(
Qj(2y − λ)

λ

)
, (3.5.12)

where the eigenvalues Qj are the positive solutions which satisfy the transcen-

dental equation

λτ tan(Qj) + 2Qj = 0. (3.5.13)
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Figure 3.8 shows the director configuration using the series solutions θ(x, y) in

(3.5.4) and (3.5.12) for aspect ratio λ = 1.5 and anchoring strength τ = 100, with

the infinite series truncated to a maximum j = 20. This truncation limit for j was

chosen so that the solutions (3.5.4) and (3.5.12) had an average relative error of

less than 1% compared to the numerical solution of the equivalent full non-linear

system. Comparing the director profiles in Figure 3.8 with those in Figure 3.3,

we see that a relatively large anchoring strength forces the liquid crystal in the

bulk to adopt director structures very similar to those found in Lewis et al. [86]

using infinite anchoring boundary conditions. Our solutions differ from those in

[86] at the corners, where, as mentioned previously, the series solution for the

director angle (3.1.1) is not valid.

To illustrate the behaviour at the corners, we plot the director angle at the

corner (1,λ) for various anchoring strengths for both the U1 and U2 states when

the aspect ratio λ = 1.5 in Figure 3.9. The solid curves are the values obtained

by solving (3.2.5) subject to the non-linear boundary conditions (3.2.6) in COM-

SOL, while the dashed curves are obtained by solving the linearised system in

COMSOL. This approach proved to be far more efficient compared to using the

series solution (3.5.4), where many more modes were required than that used in

Figure 3.8 in order to get a good approximation for θ(x, y) at the corners. There

is clearly a discrepancy between the linear and non-linear results when τ is far

from the large anchoring strength limit. However, the difference between the two

approaches reduces as τ increases, with the two results indistinguishable at large

τ , highlighting the effectiveness of our linearisation approach.

3.5.3 Asymptotic Approximations of the Energy

Having found the equilibrium solutions (3.5.4) and (3.5.12), we can calculate

the total free energy W in (3.2.4) associated with the director structure, albeit

using the quadratic forms of the surface energy densities (3.5.3). Although W is

now quadratic in θ(x, y), through both the elastic and surface energy terms, it

is possible to simplify the expression using Green’s First Identity [130] and the
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Figure 3.8: Director configuration for the series solutions (3.5.4) and (3.5.12)

truncated to 20 terms in the expansions. The four profiles correspond to the four

sets of preferred directions in Table 3.2 for the different bifurcation states. Aspect

ratio λ = 1.5 and anchoring strength τ = 100.
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Figure 3.9: Variation of the director angle with the anchoring strength at the

corner (1, 1.5) for the nematic states (a) U1 and (b) U2 when the aspect ratio

λ = 1.5. The dashed curves are obtained using (3.5.4) for the linear boundary

conditions, whereas the solid curves are calculated numerically for the system

subject to non-linear boundary conditions.

boundary condition (3.5.2):

W ≈
∫ λ

0

∫ 1

0

(θ2
x + θ2

y) dxdy +
4∑
j=1

τ

∫
σj

(θ −Θj)
2 dσj

=
4∑
j=1

∫
σj

θ(ν · ∇θ) + τ(θ −Θj)
2 dσj

=
4∑
j=1

∫
σj

−τθ(θ −Θj) + τ(θ −Θj)
2 dσj

=
4∑
j=1

τΘj

∫
σj

(Θj − θ) dσj. (3.5.14)

The free energy can now be calculated using the series solutions (3.5.4) and

(3.5.12), and integrated along the four boundaries. As was the case in deriving

the series solutions for the director angle, we adopt one approach to calculate
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the asymptotic energies of the D, U1 and U2 states, and consider an alternative

method for the DD state energy.

We first consider the energy of the D state, which is calculated to be

WD ≈
λτπ2

2
+

∞∑
j=1
j odd

Ej(1 + Fj), (3.5.15)

where

Ej =
−4π2λ4τ 4

Pj
2(λτ + Pj)(λ2τ 2 + Pj

2 + 2λτ)
, (3.5.16)

Fj =
Pj
[(
λτ + Pj

)
sech(Pj/λ) +

(
λτ − Pj

)(
tanh(Pj/λ)− 1

)
]

(λ2τ 2 + P 2
j ) tanh(Pj/λ) + 2Pjλτ

, (3.5.17)

and the positive eigenvalues Pj (odd j ≥ 1) satisfy the transcendental equation

λτ − Pj tan(Pj/2) = 0, Pj ∈ (jπ − π/2, jπ). (3.5.18)

In order to derive a compact expression for the WD energy, we first consider the

term (3.5.16). Given that we consider large anchoring strengths, we can simplify

and solve the transcendental equation (3.5.18) to obtain

Pj = jπ
(

1− 2

λτ

)
+O

(
1

τ 2

)
(j = 1, 3, 5, . . .). (3.5.19)

This allows us to approximate Ej as

Ej ≈
−4λ9τ 9

(λτ − 2)2j2
(
jπ(λτ − 2) + λ2τ 2

)(
j2π2(λτ − 2)2 + λ3τ 3(λτ + 2)

) . (3.5.20)

It is possible to express the sum of this approximation for Ej by expanding the

partial fractions in Ej in terms of j and using the identity

Ψ(z) = −γ +
∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
, (z 6= 0, −1, −2, . . .), (3.5.21)

where Ψ(z) is the digamma function [1] and γ ≈ 0.57721 is the Euler-Mascheroni

constant. We define Esum(λ, τ) as the sum of the rational approximation for Ej
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over odd j from j = 1 to ∞. Following this approach, we obtain

Esum(λ, τ) ≈
∞∑
j=1
j odd

−4λ9τ 9

(λτ − 2)2j2
(
jπ(λτ − 2) + λ2τ 2

)(
j2(λτ − 2)2 + λ3τ 3(λτ + 2)

)
=

πλ2τ 2

2(λ2τ 2 − 4)

{
λτ
(√

λτ + 2 + i
√
λτ
)

(λ τ + 1)
√
λ τ + 2

Ψ

(
1

2
−
iλτ
√
λτ(λτ + 2)

2π(λτ − 2)

)
+
λτ
(√

λτ + 2− i
√
λτ
)

(λ τ + 1)
√
λ τ + 2

Ψ

(
1

2
+
iλτ
√
λτ(λτ + 2)

2π(λτ − 2)

)
+ 8 ln(2)

+ 4γ − πτ 2λ2

λτ − 2
+

2(λτ + 2)

λτ + 1
Ψ

(
1

2
+

λ2τ 2

2π(λτ − 2)

)}
. (3.5.22)

Hence, we may now write WD as

WD ≈
λτπ2

2
+ Esum(λ, τ) +

∞∑
j=1
j odd

EjFj. (3.5.23)

Asymptotic expansions for Esum(λ, τ) and EjFj are then possible as τ →∞,

Esum(λ, τ) ≈ 2π

[
ln(τ) + ln

(2λ

π

)
− πλτ

4
− π

4
+ γ

]
, (3.5.24)

∞∑
j=1
j odd

EjFj ≈ 2π

[
s1

(
1

λ

)
− s2

(
1

λ

)]
, (3.5.25)

where the imaginary parts of Esum(λ, τ) disappear and, following the same nota-

tion adopted in Lewis et al. [86], we have introduced the functions

s1(Λ) = 2
∞∑
j=1
j odd

coth(jπΛ)− 1

j
, s2(Λ) = 2

∞∑
j=1
j odd

csch(jπΛ)

j
. (3.5.26)

Hence, the final asymptotic expansion for WD in the limit as τ →∞ is

WD = 2π

[
ln(τ) + ln

(
2λ

π

)
− π

4
+ γ + s1

(
1

λ

)
− s2

(
1

λ

)]
+O

(
ln(τ)

τ

)
. (3.5.27)

Following similar analyses, we can derive the asymptotic expansions of the ener-

gies for the U1 and U2 states,

WU1 = 2π

[
ln(τ) + ln

(
2λ

π

)
− π

4
+ γ + s1

(
1

λ

)
+ s2

(
1

λ

)]
+O

(
ln(τ)

τ

)
,

(3.5.28)

WU2 = 2π

[
ln(τ) + ln

(
2

π

)
− π

4
+ γ + s1(λ) + s2(λ)

]
+O

(
ln(τ)

τ

)
. (3.5.29)
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Although their analysis of the energy in a rectangular well employed a different

approach, Lewis et al. [86] derived asymptotic energies for the different states that

are similar to our expressions in a number terms (for example, those involving

ln(τ), ln(2λ/π) and the s1(·), s2(·) functions), but we have additional terms at

O(1) which are missing from [86]. Presumably this is due to the need in [86] to

remove parts of the region (at the corners) to produce an analytically tractable

problem.

It is more difficult to obtain the asymptotic approximation of the energy

for the DD state compared to the other three states. In [147], we assume that in

the limit of strong anchoring, the asymptotic energy for the DD state is twice the

energy of the D state with the aspect ratio λ replaced by λ/2. Here, we consider

an alternative approach using the series solution (3.5.12). First, we substitute

(3.5.12) into (3.5.14) to obtain

WDD ≈
π2λτ

2
+
∞∑
j=1

(wj + wtrig
j + whyp

j ), (3.5.30)

where

wj = −
2π2λ2τ 2(λ2τ 2 + 2Q2

j)

Q2
j(λ

2τ 2 + 4Q2
j + 2λτ)(λτ + 2Qj)

, (3.5.31)

wtrig
j =

2π2λ2τ 2(λ2τ 2 + 4Q2
j) cos(Qj)

Q2
j(λ

2τ 2 + 4Q2
j + 2λτ)(λτ + 2Qj)

, (3.5.32)

whyp
j =

4π2λ2τ 2(1− tanh(Qj/λ)) + λ2τ 2(cos(Qj)− 1) + 2Q2
j(2 cos(Qj)− 1)

Qj(λ2τ 2 + 4Q2
j + 2λτ)(λτ + 2Qj)(λτ + 2Qj tanh(Qj/λ))

.

(3.5.33)

As with the D state, we are able to simplify and solve the transcendental equation

(3.5.13) for large anchoring strengths,

Qj = jπ

(
1− 2

λτ

)
+O

(
1

τ 2

)
, (3.5.34)

where j ∈ Z+. We now examine the asymptotic behaviours for each of the indi-

vidual contributions to the energy (3.5.31)–(3.5.33) in the limit of large anchoring

strength. We first consider the contribution given by (3.5.34). If we substitute

(3.5.34) into (3.5.31) and compute the sum over j ∈ Z+, we obtain an expression
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in terms of the digamma function, namely,

∞∑
j=1

wj =
π(λτ)2(i

√
λτ +

√
λτ + 2)

2(λτ + 1)(λτ + 2)3/2
Ψ

(
1− i(λτ)3/2

√
λτ + 2

2π(λτ − 2)

)

−π(λτ)2(i
√
λτ −

√
λτ + 2)

2(λτ + 1)(λτ + 2)3/2
Ψ

(
1 +

i(λτ)3/2
√
λτ + 2

2π(λτ − 2)

)
+

3π(λτ)2

(λτ − 2)(λτ + 1)
Ψ

(
1 +

(λτ)2

2π(λτ − 2)

)
−π(λτ)2(π(λτ)2 − 12γ(λτ − 2))

3(λτ − 2)2(λτ + 2)
. (3.5.35)

The asymptotic expansion of (3.5.35) in the limit τ →∞ yields

∞∑
j=1

wj ≈ 4π

[
ln(τ) + ln

(
λ

2π

)
+ γ − π

24
− πλτ

12

]
. (3.5.36)

Following a similar asymptotic approximation, we also find that

∞∑
j=1
j odd

whyp
j ≈ 4π

[
s1

(
2

λ

)
− s2

(
2

λ

)]
, (3.5.37)

restricted to odd j because the sum of whyp
j over even j is zero. For the wtrig

j term

in (3.5.32), we use partial fractions to rewrite wtrig
j as

wtrig
j =

2π2λ2τ 2 cos(Qj)

(λτ + 2)Q2
j

− 4λτπ2 cos(Qj)

(λτ + 2)Qj

+ f(Qj), (3.5.38)

where

f(Qj) =
8λτπ2(λ2τ 2 + 4Q2

j + 4λτ) cos(Qj)

(λ2τ 2 + 4Q2
j + 2λτ)(λτ + 2Qj)(λτ + 2)

. (3.5.39)

The first two terms in (3.5.38) have analytic expressions for their respective sums

over j ∈ Z, but the term involving f(Qj) does not. Restricting our attention to

the first two terms, we can show that in the limit τ →∞,

∞∑
j=1

2π2λ2τ 2 cos(Qj)

(λτ + 2)Q2
j

= 4π ln(2) +O

(
1

τ 2

)
, (3.5.40)

∞∑
j=1

−4λτπ2 cos(Qj)

(λτ + 2)Qj

= −4π

[
πλτ

24
+

π

12

]
+O

(
1

τ

)
. (3.5.41)

Despite not being able to find an analytic expression to describe the asymptotic

behaviour of f(Qj), we can examine it in the limit of large anchoring strength
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if we assume that cos(Qj) ≈ (−1)j. This is, in fact, the leading behaviour of

cos(Qj) in the limit τ →∞. In making this assumption, we find that

∞∑
j=1

(−1)jf(Qj)

cos(Qj)
= −4π2

λτ
+O

(
ln(τ)

τ 2

)
. (3.5.42)

In the limit of τ → ∞, (3.5.42) tends to zero, and therefore does not contribute

to the total sum. Combining the contributions (3.5.36), (3.5.37), (3.5.40) and

(3.5.41), we obtain the asymptotic approximation of the DD state energy

WDD = 4π

[
ln(τ) + ln

(
λ

π

)
+ γ− π

8
+ s1

(
2

λ

)
− s2

(
2

λ

)]
+O

(
ln(τ)

τ

)
. (3.5.43)

There is no asymptotic energy for the DD state in [86] with which we can compare

our asymptotic result. Although Lewis et al. [86] mention that the functions s1(·),

s2(·) are both convergent, they do not calculate formulae for the values. The sum

s2(λ) is expressed analytically in Bruckman [15] as

s2(λ) = −1

4
ln(1−m), 0 < m < 1, (3.5.44)

where the elliptic parameter m is implicitly defined in terms of λ by λ = K(1−

m)/K(m), where

K(m) =

∫ π
2

0

dθ√
1−m sin2(θ)

(3.5.45)

is the complete elliptic integral of the first kind and K(1−m) is the complemen-

tary elliptic integral of first kind. In order to derive a similar result for the sum

s1(λ), we first introduce the elliptic nome q(m),

q(m) = exp

(
− πK(1−m)

K(m)

)
≡ exp(−πλ). (3.5.46)

In terms of q(m), the sum s1(λ) can be expressed in the form

s1(λ) = 2
∞∑
j=1

[ln(1 + (q(m))2j)− ln(1− (q(m))2j)]. (3.5.47)

The two infinite series in (3.5.47) have exact analytic expressions which, when

combined, lead to the analytic result

s1(λ) = −1

4
ln(1−m)− ln

(
2K(m)

π

)
. (3.5.48)
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Similarly, we find that the analytic expressions for the sums s1(1/λ) and s2(1/λ)

are

s1

(
1

λ

)
= −1

4
ln(m)− ln

(
2K(1−m)

π

)
, (3.5.49)

s2

(
1

λ

)
= −1

4
ln(m). (3.5.50)

Hence, the asymptotic energies for each state now reduce to

WD ≈ 2π

[
ln(τ)− π

4
+ γ − ln(K(m))

]
, (3.5.51)

WU1 ≈ WD − π ln(m), (3.5.52)

WU2 ≈ WD − π ln(1−m), (3.5.53)

WDD ≈ 2WD

(
λ

2

)
+
π2

2
. (3.5.54)

The differences between the approximate energies in equations (3.5.51)–(3.5.54)

and the numerically calculated energies for the full non-linear problem using

Rapini–Papoular boundary conditions (3.2.6) are shown in Figure 3.10, where

∆W = Wnumerical − Wasymptotic. In the limit of large anchoring strength, these

differences are the errors due to the linear approximation of the boundary con-

ditions close to the corners of the region. It is at the corners of the region, as

well as the midpoints of the two sidewalls x = 0 and x = 1 for the DD state,

where the linearisation breaks down due to non-linear effects and leads to an

offset between the asymptotic and numerical results. However, comparison of

energies (3.5.51)–(3.5.54) with numerical calculations for the non-linear system,

restricting attention to large values of τ , indicates that this error is neither a

function of λ nor τ . This suggests that, in the leading order, O(ln(τ)), and first

order, O(1), terms, these errors need only be obtained numerically once, and are

the same for all instances of a nematic confined in a rectangular region being

independent of any geometric or material properties. It should be noted that the

parameter independence of these constants, εDU and εDD in the expressions below,

is obtained numerically and we have not proved the result analytically. However,

after extensive calculations for a wide range of physically relevant parameters, we

can have a high level of confidence in this assertion. The asymptotic results for
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the four full non-linear energies are then

WD = 2π

[
ln(τ) + ln

(
2λ

π

)
− π

4
+ γ + s1

(
1

λ

)
− s2

(
1

λ

)
+ εDU

]
+O

(
ln(τ)

τ

)
, (3.5.55)

WU1 = 2π

[
ln(τ) + ln

(
2λ

π

)
− π

4
+ γ + s1

(
1

λ

)
+ s2

(
1

λ

)
+ εDU

]
+O

(
ln(τ)

τ

)
, (3.5.56)

WU2 = 2π

[
ln(τ) + ln

(
2

π

)
− π

4
+ γ + s1(λ) + s2(λ) + εDU

]
+O

(
ln(τ)

τ

)
, (3.5.57)

WDD = 4π

[
ln(τ) + ln

(
λ

π

)
− π

8
+ γ + s1

(
2

λ

)
− s2

(
2

λ

)
+ εDD

]
+O

(
ln(τ)

τ

)
, (3.5.58)

where εDU ' −0.068 and εDD ' −0.169. From equations (3.5.56)–(3.5.57), we see

that the expressions for WU1 and WU2 coincide for the special case of a square

domain, i.e., λ = 1, for which m = 1/2. This is to be expected from the symmetry

of a square nematic well. When λ is small, for which m is close to 1, it follows

from equations (3.5.51) and (3.5.52) that the asymptotic behaviour of WD is very

similar to that of WU1 . The same can be said of WD and WU2 when λ is large,

corresponding to m close to zero. We can find similar relationships between WDD

and WU1 or WU2 , except that the constant error εDU 6= εDD due to the presence

of high distortion regions at the midpoints of the sidewalls x = 0 and x = 1.

The asymptotic expansions for the U1 and U2 states differ from the D state

through the logarithmic terms in (3.5.52) and (3.5.53), respectively. Therefore,

since m ∈ (0, 1), it follows that, in the limit τ →∞, WD is the state with lowest

energy.

3.5.4 Comparison of Analytic and Numerical Energies

We can now compare various aspects of the approximate asymptotic expansions

in equations (3.5.55)–(3.5.58) to the energies derived from the numerical solution
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Figure 3.10: The energy differences ∆W for the (a) U1, (b) DD, (c) D and (d)

U2 states as the anchoring strength varies. Each curve corresponds to the energy

difference at a different aspect ratio. The solid lines with markers are the errors

due to the linear approximation of the boundary conditions.
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of the full non-linear problem. Unlike the previous section, we consider a range of

anchoring strengths, including those close to the critical bifurcation values derived

in the analysis of very weak anchoring. We solve the full non-linear system using

COMSOL with a non-uniform mesh, refined at the corners and sides of the region,

such that further refinement does not alter the numerical energy calculation by

more than 1%.

In Figure 3.11 we plot the four asymptotic energy expansions from equations

(3.5.55)–(3.5.58), up to O(τ−1 ln(τ)), against λ for τ = 10 and τ = 100 (dashed

curves). In addition, we also plot the numerical energies for the non-linear system

(solid curves). As expected, there is a significant difference between the asymp-

totic forms and numerical results for a relatively small value of τ = 10, whereas

for a large value τ = 100, the leading terms in the asymptotic results show good

accuracy over a range of aspect ratios λ.

Figure 3.12 combines our previous analytic results for bifurcations from the

trivial states and strong anchoring, and compares them to the energies obtained

numerically (solid curves) for λ = 1.5. The solutions in equations (3.3.8) and

(3.3.9) provide approximate energies for the weakly anchored system close to the

bifurcations from the trivial states (small τ , dash-dot curves), while the asymp-

totic behaviour as τ → ∞ is given by the leading terms in equations (3.5.55)–

(3.5.58) (large τ , dashed curves). The asymptotic energies for all four nematic

equilibria have been calculated for anchoring strengths τ ≥ 10. The energies of

the trivial states, W0 and Wπ/2, are also indicated. Note that it is difficult to

distinguish the graphs of the U2 and D states in Figure 3.12(b), as was suggested

by the forms of the asymptotic expansions in equations (3.5.55) and (3.5.57).

The analytic approximate energies agree very well with the equivalent numerical

graphs at anchoring strengths that are close to the bifurcation from the trivial

states and also at large values of τ , with less than 1% discrepancy for τ & 102.
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Figure 3.11: Comparison of the leading terms in the asymptotic energy expansions

in equations (3.5.55)–(3.5.58) (dashed curves) with numerical calculations (solid

curves) for (a) τ = 10 and (b) τ = 100.
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Figure 3.12: Comparison of the numerically obtained energies (solid curves) with

the approximate analytic forms derived from (a) equation (3.3.8) and (b) equation

(3.3.9), close to the bifurcation from the trivial states (a) θ = 0 and (b) θ = π/2

(dash-dot), and for the leading terms in the high τ asymptotic expansion (dashed

curves) as a function of τ for λ = 1.5. To illustrate, the analytic (weak anchoring

energy) curves are drawn for (a) τ ≤ 15 and (b) τ ≤ 10 as appropriate.
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3.5.5 Comparison of Numerical Energies in the Limit of

Large Anchoring Strength

To conclude this section, we now show how the energies calculated numerically

using the non-linear and linear boundary conditions compare in the limit of large

anchoring strength. Our calculations in the previous subsection suggest that

the differences between the asymptotic and numerical energies for each state is

independent of the aspect ratio λ and anchoring strength parameter τ in the large

anchoring strength limit. These differences arise due to the linear approximation

of the boundary conditions close to the corners of the region, as well as close to

the points (0,λ/2) and (1,λ/2) for the DD state. The parameter independence

of the constants εDU and εDD in the limit of strong anchoring is easier to deduce

when we calculate the differences in the numerical energies obtained from the

non-linear and linear boundary conditions, as shown in Figure 3.13, where the

energy difference is given by ∆W = Wnon−linear −Wlinear.

In Figure 3.14, we show the numerical energies for each of the states against

the aspect ratio λ calculated from the linearised system (dashed curves) and

the non-linear system (solid curves) at anchoring strengths (a) τ = 10 and (b)

τ = 100. As was also the case when the full numerical and asymptotic energies

were compared in Chapter 3, we find that there is a significant difference between

the two energies for a weaker level of anchoring strength of τ = 10. By contrast,

for a larger anchoring strength of τ = 100, there is better agreement between

the two energies. At higher anchoring strength, the difference between the two

energies are the errors calculated in Figure 3.13.

Figure 3.15 shows the bifurcations of each of the non-trivial states from the

corresponding trivial states, with the non-linear energies (solid curves) compared

to the energies calculated numerically from the linearised system (dashed curves)

in the limit of strong anchoring for λ = 1.5. The energies of the trivial states have

also been included. As the anchoring strength further increases, we again find

that there is very good agreement between the two sets of numerical energies.
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Figure 3.13: The differences between the numerical energies calculated from the

non-linear and linear boundary conditions for the (a) U1, (b) DD, (c) D and (d)

U2 states as the anchoring strength varies. Each curve corresponds to the energy

difference at a different aspect ratio. The solid lines with markers are the errors

due to the linear approximation of the boundary conditions.
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Figure 3.14: Comparison of the numerical energies calculated from the non-linear

system (solid curves) with the linearised system (dashed curves) for (a) τ = 10

and (b) τ = 100.

86



0 0.5 1 1.5 2
0

10

20

30

40

50

0 0.5 1 1.5 2
0

5

10

15

20

25

Figure 3.15: Comparison of the numerical energies obtained from the non-linear

system (solid curves) with the energies calculated by integrating the linearised

system numerically (dashed curves) as a function of τ for λ = 1.5. In both (a)

and (b), the dashed curves have been produced for anchoring strengths τ ≥ 10.
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3.6 Conclusions

In this chapter we have considered the director configuration of a nematic liquid

crystal confined in a rectangular region with finite anchoring. The use of a stan-

dard weak anchoring energy (the Rapini-Papoular surface energy) meant we were

able to find approximate analytic solutions for the nematic director angle config-

uration and calculate the corresponding energies, without the need to extract the

core of defects at the corner points.

We first examined the system when the anchoring strengths were very close

to the bifurcation from a trivial state (i.e., close to the point at which the dis-

torted state comes into existence). We were able to derive analytic solutions for

the nematic director angle in terms of an infinite series of modes, involving roots

of a transcendental equation. The analytic forms of the director configuration

were then used to calculate critical anchoring strengths at which uniform and

distorted director structures exchanged stability. We showed that for the special

case of isotropic elasticity, close to the transition from uniform to distorted states,

the approximate analytic energy expansions agree very well with the correspond-

ing numerical calculations of the full model. We then examined the effect of

anisotropic elasticity on the bifurcation ordering, which showed that changes in

the value of the elastic constant ratio had an impact on the critical values of the

anchoring strength at which different non-trivial states bifurcate from the trivial

states.

Next, we considered the limit of large anchoring strength, or alternatively,

the weak elasticity limit, for an elastically isotropic nematic liquid crystal. Using

the method of matched asymptotic expansions, an analytic solution for the di-

rector angle which satisfies the non-linear boundary conditions when k = 1 was

derived. However, it was impossible to calculate the energy analytically from

this director angle solution and so an alternative approach was required in order

to derive analytic results for the energies of each non-trivial nematic equilibria.

By linearising the system around the preferred directions along each boundary,

we were able to derive asymptotic expansions for the energy of each state, all of
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which agreed very well with the corresponding numerical calculations. It is worth

mentioning that relaxation of the one-constant approximation for the Frank elas-

tic constants in the limit of infinite anchoring did not lead to a significant change

in the behaviour of the system. Previous work in similar systems [85] suggests

that elastic anisotropy does not significantly affect the stability of states so that

the qualitative behaviour would remain the same.

Given typical values of the Frank elastic constantsK1, K3 ≈ 10−11 N and an-

choring strength ω ≈ 10−4 Nm−1 [129], the high-τ energy expressions in equations

(3.5.55)–(3.5.58) will be good approximations for wells of side length d & 10µm,

so that τ = ωd/K1 & 100. For larger anchoring strengths of ω ≈ 10−3 Nm−1,

the energy expressions are accurate for a wider range of well dimensions, with

d & 1µm. Since the accuracy of most common forms of construction of such

wells (i.e., photolithography) is around the length-scale of microns, it is clear

that the asymptotic energies are most likely to be valid for all but the weakest

of anchoring strengths. However, in this high-τ limit we have shown that it will

always be the D state that is the global energy minimiser. Therefore, if bistabil-

ity is required, with the possibility of switching between stable states, it may be

useful to consider anchoring strengths closer to those which occur at the critical

anchoring parameters for bifurcation from trivial states. It is at these anchoring

strengths that it will be easiest to switch between states since the energy barriers

are smaller.
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Chapter 4

Spontaneous and

Pressure-Driven States in

Channel Flow of Active Nematic

Liquid Crystals

4.1 Introduction

In the work of Voituriez et al. [144], it was predicted that an active polar liquid

crystal will spontaneously induce a flow at a critical value of activity. The model

considered in [144] was based on generalised hydrodynamics equations derived for

active gels [75, 76]. As mentioned in Chapter 1, the transition, from undistorted

to distorted director configurations in active liquid crystals, is similar to a classic

electric/magnetic field-induced Freedericksz transition in inactive nematic liquid

crystals, where now if the magnitude of the activity parameter exceeds a critical

value of activity, non-trivial director structures emerge from an undistorted, no-

flow solution. In the model considered in [144], the active polar liquid crystal was

confined to a one-dimensional geometry and was subject to a range of boundary

conditions for the velocity on the boundaries. By contrast, the polar director

field was subject to Dirichlet boundary conditions only, with the director fixed
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parallel to the boundaries.

The results of [144] were significant in the development of future investi-

gations into spontaneous flow generation in active liquid crystals. Edwards and

Yeomans [41] derived similar results to those in [144] for an apolar active ne-

matic liquid crystal, with the nematic director subject to Neumann boundary

conditions and the flow subject to no-slip boundary conditions. The effect of an

externally imposed shear on the non-trivial states found in [41] was also consid-

ered. Turzi [141] subsequently showed that when an active nematic is confined

in a one-dimensional channel, the interaction between nematic ordering and ac-

tivity could either lead to spontaneous flows, or self-organisation of the active

agents into sub-channels flowing in opposite directions. Marenduzzo et al. [93]

used hybrid lattice Boltzmann simulations to model spontaneous flows of active

nematic liquid crystals confined in both one-dimensional and two-dimensional

geometries using Q-tensor theory. Their one-dimensional model considered both

splay-bend Freedricksz and hybrid aligned nematic (HAN) cells, which gener-

ated spontaneous “boundary layer”-type flows between the boundaries, as well as

spontaneous flow-aligning states which are similar to those observed in Poiseuille

flow of inactive nematic liquid crystals [5, 31, 32]. Pressure driven flows of active

liquid crystals using Q-tensor theory were recently considered by Thampi et al.

[133], who observed that an active nematic liquid crystal responds like an inactive

nematic liquid crystal when subject to sufficiently large pressure gradients, with

the externally driven flow dominating the internal motion of the active agents.

By including symmetry breaking terms in the equations for active fluids,

Cortese et al. [28] used numerical calculations and non-linear theoretical anal-

ysis to show that active polar liquid crystals not only undergo a transition to

spontaneous flow above a critical threshold activity value, but they also exhibit a

spontaneous asymmetry. Similar symmetry breaking effects have been observed

in the model considered by Yang and Wang [153] for channel flows of active polar

liquid crystals and by Bonelli et al. [12] for an active polar fluid confined in a

square well.

In this chapter, we use the Ericksen-Leslie model of active nematics in-
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troduced in Chapter 2 to re-examine a similar active nematic system to that

considered in [93], finding new states, and explaining the large activity asymp-

totics of previously discovered states, i.e., in [93]. Through a decoupling of the

Ericksen-Leslie equations, we are able to indicate a link between spontaneous flow

transitions in active nematics and Freedericksz transitions in inactive nematics.

We also show how the stability of particular equilibria, in particular those of a

certain symmetry, can be promoted through an applied pressure gradient. Fi-

nally, we examine the reorientation of active nematic liquid crystals subject to

an external orienting field with the director fixed at the boundaries at non-zero

pretilt angles to ensure switching once the field is applied.

4.2 Mathematical Model

We consider an active nematic liquid crystal, confined between two parallel plates

at z = 0 and z = d, and subject to a pressure gradient parallel to the x-direction

(see Figure 4.1). The nematic director n is constrained to lie in the (x, z) plane.

We therefore set the angles θ1 = θ(z, t) and θ2 = 0 in (2.2.2) so that

n =
(
cos θ(z, t), 0, sin θ(z, t)

)
, (4.2.1)

where θ(z, t) is the director angle measured with respect to the x-direction. We

assume that surface treatment of the plates anchors the director such that it is

forced to lie in the x-direction at z = 0 and z = d, i.e., infinite planar anchoring.

The velocity of the fluid, v(z, t), is assumed to be in the x-direction and satisfies

the no-slip condition at the plates. The assumptions of a director confined to

the (x, z) plane and rectilinear flow are related and depend on the nematic being

flow-aligning and strongly anchored in the x-direction at the boundaries. For such

liquid crystals, rectilinear flow promotes alignment within the shear plane, at the

Leslie angle to the flow direction, as mentioned in Chapter 2, while rotation within

the plane, together with the presence of the solid boundaries, restricts the flow to

a single direction. In such a system, director instabilities out of the shear plane

will only occur if the nematic is tumbling, [67]. We will also assume that fluid

inertia is negligible, an approximation that is valid when the Reynolds number
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Figure 4.1: An active nematic liquid crystal in a channel between two solid plates,

at z = 0 and z = d, with flow parallel to the x-direction. The director is

constrained to lie in the (x, z) plane and is infinitely anchored in the x-direction

on the plates. The flow velocity satisfies the no-slip condition on both plates.

is small or, equivalently in this situation, when the timescale of changes in the

velocity are much smaller than the timescale of director rotation [30, 104].

The dynamics of the director angle and fluid velocity are governed by the

adapted Ericksen-Leslie equations (2.2.32) and (2.2.33). In this chapter, we adopt

the same subscript notation for partial derivatives used in Chapter 3. The elastic

energy density (2.2.40) is given by

wF =
1

2

(
K1 cos2 θ +K3 sin2 θ

)
θ2
z . (4.2.2)

The dissipation function (2.2.29) is found to be

D =
1

2
g(θ)v2

z +m(θ)vzθt +
1

2
γ1θ

2
t , (4.2.3)

where the viscosity terms m(θ) and g(θ) in terms of the Miesowicz viscosities

(2.2.52)–(2.2.57) are given by

m(θ) =
1

2
(γ1 + γ2 cos(2θ)) , (4.2.4)

g(θ) =
1

2

(
η1 cos2 θ + η2 sin2 θ + η12 sin2 θ cos2 θ

)
. (4.2.5)
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The viscosity term m(θ) governs the rotation and stretching of the liquid crystal,

while g(θ) is an effective shear viscosity of the liquid crystal. Substituting the

elastic energy density and dissipation function into the Ericksen-Leslie equations

(2.2.32) and (2.2.33) leads to

γ1θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2 −m(θ)vz, (4.2.6)

for the balance of angular momentum, and

0 = (g(θ)vz +m(θ)θt + ζ sin θ cos θ)z − p̃x, (4.2.7)

0 = −p̃y, (4.2.8)

0 = (ζ sin(2θ)−m(θ)vz − γ1θt)θz − p̃z, (4.2.9)

for the balance of linear momentum. From equation (4.2.8) we can deduce that

p̃ = p̃(x, z, t). Assuming there is a pressure difference ∆P in the x-direction

between x = 0 and x = L, where L is a length in the x-direction, the modified

pressure p̃(x, z, t) is subject to the boundary conditions

p̃(x = 0, z, t) = 0, p̃(x = L, z, t) = ∆P. (4.2.10)

Integrating equation (4.2.7) with respect to x leads to

p̃(x, z, t) = x(g(θ)vz +m(θ)θt + ζ sin θ cos θ)z +G(z, t) ≡ xFz +G(z, t),

(4.2.11)

where G(z, t) is an integration function of z and t. Differentiating (4.2.11) with

respect to z gives, with equation (4.2.9),

p̃z = xFzz +Gz = (ζ sin(2θ)−m(θ)vz − γ1θt)θz. (4.2.12)

Since equation (4.2.12) is true for all x, it follows that Fzz = 0, which further

means that Fz = C(t), where C(t) is a function of time. We can then integrate

(4.2.12) with respect to z and substitute the resultant definition for G(z, t) into

(4.2.11) to determine p̃, which leads to

p̃(x, z, t) = xC(t) +D(t) +

∫ z

0

(ζ sin(2θ)−m(θ)vz − γ1θt)θz dz, (4.2.13)
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where D(t) is another function of time. Using the boundary conditions (4.2.10)

and assuming that ∆P is independent of time, we find that the modified pressure

p̃ only depends on x, and is given by

p̃ =
∆P

L
x. (4.2.14)

We now have a non-linear system comprising two coupled partial differential

equations,

γ1θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2 −m(θ)vz, (4.2.15)

0 = (g(θ)vz +m(θ)θt + ζ sin θ cos θ)z − px, (4.2.16)

where, by use of the definition (2.2.34), px ≡ p̃x = ∆P/L. Throughout this

chapter, the imposed pressure gradient px is independent of time. The infinite

planar anchoring and no-slip assumptions on the boundary plates mean that

equations (4.2.15) and (4.2.16) will be solved subject to the boundary conditions

θ(0, t) = θ(d, t) = 0, (4.2.17)

v(0, t) = v(d, t) = 0. (4.2.18)

At this stage it is worth considering the possible symmetries of solutions of equa-

tions (4.2.15) and (4.2.16), with boundary conditions (4.2.17) and (4.2.18). The

transformation θ(z, t) → −θ(d − z, t) together with v(z, t) → v(d − z, t) leave

equations (4.2.15) and (4.2.16) unchanged for any value of the pressure gradi-

ent px, so we expect to obtain solutions for the director angle which are anti-

symmetric together with velocity solutions that are symmetric, about the chan-

nel midpoint z = d/2. For the opposite symmetries, θ(z, t) → θ(d − z, t) and

v(z, t) → −v(d − z, t), equations (4.2.15) and (4.2.16) are unchanged only if

px = 0. We therefore expect to find symmetric director and anti-symmetric

velocity solutions only for zero pressure gradient. In addition to symmetry/anti-

symmetry about the channel midpoint, we notice that the governing equations are

also unchanged under the transformation θ(z, t) → −θ(z, t), v(z, t) → −v(z, t)

and px → −px. Therefore, changing the sign of the pressure gradient will simply

result in a change of sign of both the director angle and velocity.
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4.3 Asymptotic Solutions and Linear Stability

Analysis

In this section we show that by decoupling the Ericksen-Leslie equations (4.2.15)

and (4.2.16) using the same approach considered in Mottram et al. [104], we can

determine equilibrium director orientations in the asymptotic limits of large pres-

sure gradients and activity strengths. For large magnitudes of activity strengths,

we derive an analytic expression for a critical activity at which the active fluid

will spontaneously transition from the no-flow state to a flowing state.

4.3.1 Decoupling of the Ericksen-Leslie Equations

The calculations used to decouple equations (4.2.15) and (4.2.16) are outlined in

Appendix C, which lead to a single, non-local dynamic equation for the director

angle, namely(
γ1 −

m2(θ)

g(θ)

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

−m(θ)

g(θ)

[
Ā
B̄
− ζ
(

sin θ cos θ − C̄ − D̄
B̄

)
+ px

(
z − F̄ − Ḡ

B̄

)]
.

(4.3.1)

The velocity is then a function of the director orientation, namely

v(z, t) =

∫ z

0

1

g(θ)

[
Ē −m(θ)θt − ζ(sin θ cos θ − C̄) + px(z − F̄)

]
dz, (4.3.2)

where

Ā =

∫ d

0

m(θ)[(K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2]

γ1g(θ)−m2(θ)
dz, (4.3.3)

B̄ =

∫ d

0

γ1

γ1g(θ)−m2(θ)
dz, C̄ =

∫ d

0

sin θ cos θ

g(θ)
dz

/∫ d

0

1

g(θ)
dz, (4.3.4)

D̄ =

∫ d

0

m2(θ)(sin θ cos θ − C̄)
g(θ)(γ1g(θ)−m2(θ))

dz, Ē =

∫ d

0

m(θ)

g(θ)
θt dz

/∫ d

0

1

g(θ)
dz, (4.3.5)

F̄ =

∫ d

0

z

g(θ)
dz

/∫ d

0

1

g(θ)
dz, Ḡ =

∫ d

0

m2(θ)(z − F̄)

g(θ)(γ1g(θ)−m2(θ))
dz. (4.3.6)
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In equation (4.3.1) we see that, as a result of the decoupling, the effective

rotational viscosity, the coefficient of θt, has been modified and is now director-

dependent through the viscosity terms m(θ), g(θ). The modified rotational vis-

cosity is less than γ1, so that, in this geometry, the influence of flow allows faster

rotation of the director. The first two terms on the right-hand side of equation

(4.3.1) are due to elasticity in the liquid crystal and are unchanged compared to

the original angular momentum equation (4.2.15). The third and fourth terms on

the right hand side of equation (4.3.1) are non-local contributions due to director-

flow coupling. The activity parameter ζ enters equation (4.3.1) only through the

fourth term whose form, sin θ cos θ, is similar to a magnetic or electric field term

in the classic problem of director reorientation during a Freedericksz transition

[129], albeit rescaled by the director dependent factor m(θ)/g(θ) and normalised

by the non-local term C̄ + D̄/B̄.

4.3.2 Asymptotic Solutions for Large Pressure Gradients

Non-trivial analytic solutions to the non-linear, non-local partial differential equa-

tion in (4.3.1) are not possible. However, we can still establish information about

the system, and further progress can be made using certain simplifying assump-

tions. We first consider two important asymptotic limits for the behaviour of

the director in the bulk of the channel: the situation when the magnitude of the

applied pressure gradient is large; and when the magnitude of the activity param-

eter is large. In the case of large values of |px|, the dynamics of the director in

the bulk of the channel, away from any boundary or internal reorientation layers,

where elastic effects can be ignored so that θ = θ(t), are governed by the equation(
γ1 −

m2(θ)

g(θ)

)
θt = −pxm(θ)

g(θ)

(
z − F̄ − Ḡ

B̄

)
. (4.3.7)

The only equilibrium solutions of (4.3.7), so that θt = 0, will be those θ values

that satisfy m(θ) = 0. Such solutions only exist in flow-aligning nematics and are

θ = nπ ± θL, where n ∈ Z and

θL = ± tan−1

(√
γ2 + γ1

γ2 − γ1

)
, (4.3.8)
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is the Leslie angle [129]. For these constant director angle solutions the velocity

is then the classic Poiseuille parabolic profile,

v(z) =
px

2g(θL)
z(z − d). (4.3.9)

This is to be expected when an externally driven flow, and corresponding flow-

alignment of the director, dominate over activity-induced alignment.

4.3.3 Asymptotic Solutions for Large Activity

The situation for highly active systems, where |ζ| is large, is more complicated.

In this case we would expect the dynamics in the bulk of the channel, where

spatial gradients are negligible and θ = θ(t), to be governed by the equation(
γ1 −

m2(θ)

g(θ)

)
θt =

ζm(θ)

g(θ)

(
sin θ cos θ − C̄ − D̄

B̄

)
. (4.3.10)

We can now consider two possible symmetries of the director profile within the

channel. If θ is anti-symmetric with respect to the centre of the channel, then

the integrals C̄ and D̄ in equations (4.3.4) and (4.3.5) are both zero. Therefore,

in the bulk of the channel, away from boundary and internal reorientation layers

where director distortions are relatively large, anti-symmetric equilibria solutions

for the director angle must satisfy m(θ) sin θ cos θ = 0, leading to the possibilities

θ = ±θL, 0 or π/2 rad (plus all π rotations of the director).

For symmetric director profiles C̄ 6= 0. If we were to consider the local

behaviour in the bulk of the channel, where the director angle does not vary

spatially, then we would see from equations (4.3.4) and (4.3.5) that C̄ = sin θ cos θ

and D̄ = 0. The right-hand side of equation (4.3.10) would then be zero for all

values of θ. Rather than all director angles in the bulk of the channel being

equilibria, as this result would suggest, it is necessary to consider the non-local

behaviour in the system. In this case the bulk director angle at large |ζ| can only

be determined through a consideration of spatial gradient and non-local effects.

In order to make progress we consider a set of simplifying assumptions. We

first use the relatively standard one-constant approximation, equating the elastic

splay and bend constants, K1 = K3 = K, which simplifies the elastic terms
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in equation (4.3.1). Secondly, we will use two assumptions about the nematic

viscosities, namely η1 = η2 and η12 = 0. Physically, these assumptions are an

approximation of “isotropic orientational viscosity”, in a similar way to the one-

constant approximation being an assumption of isotropic elasticity. They mean

that the effective viscosity of the liquid crystal is constant for all values of θ, such

that g(θ) = η1. Since the Parodi relationship [110] insists that γ2 = η1 − η2, the

assumption of isotropic viscosity also leads to γ2 = 0 and, hence, that m(θ) =

γ1/2 > 0. These assumptions on the viscosities mean that, for the following

analysis, we are considering non-flow aligning nematics, we later see in Section

4.4 that a very similar numerical solution is found for a flow-aligning nematic.

Although the assumptions on the nematic viscosities considered for this piece

of analysis are quite restrictive, further analysis has now been conducted that

allows us to consider the bulk equilibrium director angle for a flow-aligning active

nematic liquid crystal (see Walton et al. [146]).

Applying the various assumptions mentioned above to the integrals in equa-

tions (4.3.3)–(4.3.6), we can now obtain a simplified governing equation for the

dynamics of the director angle in the limit of large activity,

γ1

(
1− γ1

4η1

)
θt = K

(
θzz −

γ1

4η1d

∫ d

0

θzz dz

)
+
ζγ1

2η1

(
sin θ cos θ − 1

d

∫ d

0

sin θ cos θdz

)
. (4.3.11)

Introducing dimensionless time, τ , and coordinate ξ, through the scalings t =

(γ1d
2/K)(1− γ1/(4η1))τ and z = dξ, we can rewrite equation (4.3.11) as

θτ = θξξ − β1

∫ 1

0

θξξ dξ + β2

(
sin θ cos θ −

∫ 1

0

sin θ cos θ dξ

)
, (4.3.12)

where β1 = γ1/(4η1) and β2 = ζγ1d
2/(2Kη1). When we consider steady state

solutions of equation (4.3.12), so that θτ = 0, integration of the equation between

ξ = 0 to ξ = 1 shows that

∫ 1

0

θξξ dξ = 0. Therefore, for steady state solutions,

equation (4.3.12) becomes

0 = θξξ + β2

(
sin θ cos θ −

∫ 1

0

sin θ cos θ dξ

)
, (4.3.13)

99



which will be solved subject to the boundary conditions θ(0) = θ(1) = 0. Stan-

dard analysis of the stability of solutions to equation (4.3.13) shows that it is only

for contractile active nematics, for which β2 > 0, that non-trivial solutions will

exist. This means that for large magnitude activity parameter values we would

only expect stable bulk director angle orientations for which m(θ) 6= 0 if ζ > 0.

We now seek the positive solution to equation (4.3.13) for θ in the limit as

β2 → ∞. As we will see from the numerical solutions in Section 4.4, in this

limit the director angle tends towards a fixed value θ → θ∗, almost everywhere in

the channel and, therefore,∫ 1

0

sin θ cos θ dξ → sin θ∗ cos θ∗ = I. (4.3.14)

To find θ∗ we first consider the related local problem

0 = θξξ + β2 (sin θ cos θ − I) , (4.3.15)

where I is a constant. Equation (4.3.15) is of Hamiltonian form, with Hamiltonian

H(θ, θξ) =
1

2
θξ

2 − β2

4
(cos(2θ) + 4Iθ) . (4.3.16)

For any particular value of I it can be shown that there are solutions to equa-

tion (4.3.15) provided β2 is larger than a minimum value, i.e., β2 > βmin
2 (I) (see

Schaaf [121]). Furthermore, when β2 = βmin
2 (I) the solution to equation (4.3.15)

satisfies the level curve of the Hamiltonian H(θ, θξ) = H(0, 0) = −β2/4, and,

importantly, is also the steady state solution to the non-local problem in equa-

tion (4.3.13). Through solving the local problem in equation (4.3.15) directly, we

find that the function βmin
2 (I) is monotonic increasing with βmin

2 →∞ as I → I∗.

In this limit (θ → ∞, I → I∗, βmin
2 → ∞) we therefore have θξ → 0 and so θ∗

must satisfy H(θ∗, 0) = H(0, 0), or equivalently

−1

4
(cos(2θ∗) + 4I∗θ∗) = −1

4
. (4.3.17)

Given the definition of I∗, namely I∗ = sin θ∗ cos θ∗, equation (4.3.17) is equivalent

to tan θ∗ = 2θ∗. This equation may be solved numerically to give θ∗ ≈ 1.1656

rad. This is the predicted director angle in the bulk of the region, away from any

100



boundary or reorientation regions, for symmetric θ solutions in the limit of large

positive (contractile) activity parameter. Although we have made assumptions

of isotropic elasticity and viscosity to derive this result, we will see in Section 4.4

that the value of the preferred angle for more realistic parameters is very close

to the value given by equation (4.3.17). Furthermore, we find that the value of

θ∗ obtained by solving (4.3.15) numerically at large positive β2 is in very good

agreement with the value calculated from the asymptotic approach.

Therefore, in the large activity parameter limit, we expect to find solutions

for which the director angle in the bulk of the channel may take values θ =

±θL, 0, π/2 or θ∗ ≈ 1.1656 rad, and all π rotations of these angles. While the

first four values may be anticipated due to the presence of flow-alignment or the

activity term being similar to an electric field-like reorientation torque of the form

sin θ cos θ, the final value θ∗ is unexpected and occurs only because of non-local

effects derived from contractile activity-induced flow and director distortion in

boundary layers.

4.3.4 Linear Stability Analysis of Bifurcations from the

Trivial Solution with Zero Pressure Gradient

In the special case where there is no applied pressure gradient, px = 0, equation

(4.3.1), subject to the strong anchoring boundary conditions in (4.2.17), is sat-

isfied by the trivial solution θ ≡ 0, leading to no flow, v ≡ 0, through equation

(4.3.2). However, the presence of the activity term in equation (4.3.1) introduces

the possibility that θ ≡ 0 may become unstable, in a manner analogous to the

effect of a magnetic or electric field in a Freedericksz transition. In a similar way

to the work of Voituriez et al. [144] and Edwards and Yeomans [41], we exam-

ine this instability by linearising (4.3.1) around θ ≡ 0 to produce the governing

equation

ηsplayθt = K1θzz −
K1(γ1 + γ2)2

4γ1η1d

∫ d

0

θzz dz +
ζ(γ1 + γ2)

2η1

[
θ − 1

d

∫ d

0

θ dz

]
,

(4.3.18)
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where ηsplay = γ1−(γ1 + γ2)2/(4η1) > 0 is the effective viscosity that is also found

in the analogous Freedericksz transition [129].

We now consider two sets of potential instability modes, for which the di-

rector angle is either anti-symmetric or symmetric with respect to the centre of

the channel. The anti-symmetric modes are of the form

θo(z, t) = ±Θ sin

(
2nπz

d

)
exp(σt), (n ∈ N), (4.3.19)

where Θ is the mode amplitude, n is the mode number, σ is the mode growth

rate and the subscript in θo indicates that this mode is an odd function with

respect to the channel centre. It is apparent from equation (4.3.2) that these anti-

symmetric director profiles will lead to symmetric velocity profiles. Substituting

(4.3.19) into (4.3.18) we find an expression for the growth rate σ in terms of the

nematic parameters for any given mode number n,

σ =
(γ1 + γ2)(ζ − n2ζc)

2η1ηsplay

, (4.3.20)

where the critical activity for the n = 1 fundamental mode, ζc, is given by

ζc =
8π2K1η1

(γ1 + γ2)d2
. (4.3.21)

Arguments based on the boundedness of the elastic energy and positivity of the

dissipation [129] show that, with the exception of γ1 + γ2, all the parameters in

the definition of ζc are positive. When the viscosity γ1 + γ2 is negative, which is

often the case when the active agent is rod-like, we find that ζc < 0 and the nth

mode becomes unstable when ζ < n2ζc < 0 for n = 1, 2, . . .. Therefore, for rod-

like active agents the trivial state (θ ≡ 0, v ≡ 0) is unstable to anti-symmetric

perturbations only for extensile activity. Conversely, when γ1 + γ2 > 0, often

a feature of disc-like active agents, ζc > 0 and the nth mode becomes unstable

when ζ > n2ζc > 0. So, for disc-like active agents the trivial state is unstable to

anti-symmetric perturbations only for contractile activity.

The symmetric modes can be written as, following Pieranski et al. [112],

θe(z, t) = ±Θ

[
cos

(
2qn(z − d/2)

d

)
− cos qn

]
exp(σt), (4.3.22)
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for mode number qn (n ∈ N), and where the subscript in θe indicates the mode

is even with respect to the channel centre. Equation (4.3.2) shows that these

symmetric director profiles will lead to anti-symmetric velocity profiles. From

(4.3.1) we find that non-trivial states, such that Θ 6= 0, are possible if both

ζ =
q2
n

π2
ζc

(
1 +

ηsplay

γ1

tan qn
qn − tan qn

)
, (4.3.23)

and σ =
(γ1 + γ2)

2γ1η1

q2
n

π2
ζc

( tan qn
qn − tan qn

)
(4.3.24)

are satisfied simultaneously. The marginal stability curve, σ = 0, provides critical

mode numbers qn = nπ (n ∈ N), corresponding to the critical activity ζ = n2ζc for

the nth mode, exactly the same value as the anti-symmetric director case. There-

fore, when there is no applied pressure gradient, we have two symmetry breaking

modes that lead to bifurcations from the trivial solution branch (θ ≡ 0, v ≡ 0)

at each value of the critical activity ζ = n2ζc (n ∈ N). As we will see in the next

section, these are pitchfork bifurcations although only one of them results in the

formation of stable non-trivial solutions. We also show that due to the symmetry

of a pressure gradient-induced flow, only one of these bifurcations is perturbed to

produce a preferred state and a classic perturbed pitchfork bifurcation structure

when the active nematic is subject to a pressure gradient.

4.4 Numerical Calculations

In order to examine the role of activity more fully, we now consider numerical

steady state solutions
(
θ(z), v(z)

)
of the full equations (4.2.15) and (4.2.16). In

order to obtain numerical solutions, and continue along solution branches, we

have employed both the finite-element package COMSOL, and the MATLAB-

based bifurcation analysis package MATCONT [35]. The material parameters,

i.e., elastic constants and viscosities, of active nematics have not yet been fully

characterised and therefore we use the material parameters measured for the

liquid crystal 5CB [129] and a channel width of d = 10µm. We will examine

extensile and contractile active nematics separately, discussing the simpler case

of zero pressure gradient before considering the effects of an applied pressure
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gradient. In Section 4.5 we will summarise the behaviour of the system for ex-

tensile and contractile active nematics for various activity strengths and pressure

gradients.

4.4.1 Extensile Active Nematic Liquid Crystals with

Zero Pressure Gradient

In the previous section we saw that for zero pressure gradient the trivial state

(θ ≡ 0, v ≡ 0) is a solution for all values of the activity parameter, and that

non-trivial states bifurcate from the trivial state at critical activities ζ = n2ζc

(n ∈ N), with ζc given by equation (4.3.21). For the material parameters of the

liquid crystal 5CB, the first critical activity (n = 1 mode) is ζ = ζc = −13.87 Pa

and the Leslie angle is θL ≈ 0.2 rad.

Setting px = 0, we find numerical solutions for the steady state director

angle and corresponding velocity. Three types of solutions are shown in Figure

4.2. The equilibria are plotted for activities greater in magnitude than the crit-

ical value for the trivial branch, ζc = −13.87 Pa, and confirm that a symmetric

director angle is accompanied by an anti-symmetric velocity, and vice versa. The

director angle solutions in Figures 4.2(a, c) are the anti-symmetric and symmet-

ric modes bifurcating from the trivial state suggested by equations (4.3.19) and

(4.3.22), respectively, as well as the trivial state itself. The equilibria in Fig-

ure 4.2(e) correspond to symmetric director angle profiles which do not bifurcate

from the trivial branch and are associated with large elastic energies due to their

spatial gradients. Note that, although not shown in Figure 4.2 but as suggested

at the end of Section 4.2, negative versions of all the solutions in Figure 4.2 also

exist due to the symmetry θ(z) → −θ(z), v(z) → −v(z) when px = 0. The

modes in Figures 4.2(a, b) and (c, d) are all to be expected, with director dis-

tortion being linked to activity-induced flow, and have been found previously in,

for example, Marenduzzo et al. [93]. In Figures 4.2(a, c) we see that for large

activities (in magnitude), the director aligns in the bulk of the channel, i.e., away

from boundary and internal reorientation regions, at ±θL ≈ ±0.2 rad, which was
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Figure 4.2: (a), (c), (e) Director angle θ(z) and (b), (d), (f) velocity v(z) equilib-

rium profiles for activity parameter values ζ = −20, −50, −100, −250 Pa and

pressure gradient px = 0. The solutions in (a)-(d) bifurcate from the trivial state,

which is also shown.

predicted as one possibility in Section 4.3. The mode in Figure 4.2(e, f) is less

well studied, perhaps because the solution branch is not connected to the trivial

state and contains high gradients in θ (note the different scale of the vertical axis

in Figure 4.2(e) compared to Figures 4.2(a, c)). For all solutions in Figure 4.2, the

director angle exhibits flow alignment to θL in regions of positive shear, vz > 0,

and flow alignment to −θL or π − θL in regions of negative shear, vz > 0. As

105



predicted in Subsection 4.3.3, there will be higher order mode (n > 1) solutions

at higher magnitude values of the activity parameter, similar to Figure 4.2(a) and

Figure 4.2(c) but in which the director angle alternates between θL and −θL an

increasing number of times. We also predict that there will be equivalent higher

order mode solutions that are not connected to the trivial solution branch, similar

to Figure 4.2(e) but with the director angle alternating between (nπ + θL) and

(mπ− θL), for n,m ∈ Z. However, all these higher order modes will involve large

elastic distortions and may be unstable or metastable.

In order to investigate how the equilibrium solutions in Figure 4.2 change as

the activity parameter changes, in Figure 4.3 we have plotted solution branches

for the trivial solution and all three non-trivial modes shown in Figure 4.2. In

plotting these branches we use two measures of the director angle solution in

order to characterise the symmetry of θ(z) and allow comparison to the modes

found in Subsection 4.3.4, namely

φo =
〈 θ(z) θ̄o(z) 〉
〈 θ̄2

o(z) 〉
, φe =

〈 θ(z) θ̄e(z) 〉
〈 θ̄2

e(z) 〉
, (4.4.1)

where 〈 · 〉 represents integration across the channel from z = 0 to d, and θ̄o and

θ̄e are normalised forms of the first modes in equations (4.3.19) and (4.3.22),

θ̄o(z) = sin

(
2πz

d

)
, θ̄e(z) =

1

2

(
cos

(
2π(z − d/2)

d

)
+ 1

)
. (4.4.2)

For a solution θ(z) that is anti-symmetric about the centre of the channel we will

therefore have φo 6= 0 and φe = 0, while for θ(z) that is symmetric, φo = 0 and

φe 6= 0. To help focus on the different types of mode, the equilibria branches

in Figure 4.3 have also been projected onto the shaded horizontal and vertical

planes. In order to examine the detail close to the bifurcations from the trivial

branch, in Figure 4.4 we reproduce the plots of Figure 4.3 in the vicinity of the

plane φe = 0, so that the branches associated with the states in Figure 4.2(e)

are excluded. Figures 4.3 and 4.4 also indicate the stability of the equilibria

branches. Using the continuation package MATCONT, the eigenvalues of the

Jacobian of the discretised numerical system of equations are calculated for each

equilibrium solution as activity varies. Solution branches for which all eigenvalues
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Figure 4.3: Bifurcation diagram for negative activity parameter values and zero

pressure gradient, px = 0, using the measures for θ(z) solutions given in (4.4.1).

Stable equilibria solution branches are indicated by solid curves and unstable

equilibria solution branches are indicated by either dashed (one positive eigen-

value) or dotted (two positive eigenvalues) curves.

are negative, and thus the system is stable, are indicated by a solid curve. If

exactly one eigenvalue is positive, the branch is presented as a dashed curve,

while a dotted curve corresponds to two positive eigenvalues. For any branch

with a positive eigenvalue the solution is unstable.

In Figure 4.4, as predicted by the analysis in Subsection 4.3.3, at the crit-

ical activity ζc = −13.87 Pa, two coincident pitchfork bifurcations occur pro-

ducing four solution branches. On two of these branches φe = 0 (solid curve),

corresponding to the positive and negative versions of the anti-symmetric θ(z)

solutions shown in Figure 4.2(a). These solutions are stable to all perturbations.

The other two branches φo = 0 (dashed curve), corresponding to the positive and

negative versions of the symmetric θ(z) solutions in Figure 4.2(c). These solutions

are unstable but, importantly, only to anti-symmetric θ(z) perturbations - the

solutions are stable to any perturbation that retains the symmetry of the director

107



Figure 4.4: Bifurcation diagram for negative activity parameter values and zero

pressure gradient, focussing on the bifurcations from the trivial state in the vicin-

ity of φe = 0. Stable equilibria solution branches are indicated by solid curves

and unstable equilibria branches are indicated by either dashed (one positive

eigenvalue) or dotted (two positive eigenvalues) curves.

angle (and the corresponding anti-symmetry of the velocity). In Figure 4.4 we

have highlighted only the first mode bifurcations, i.e., n = 1 in equations (4.3.19)

and (4.3.22), although there are similar pitchfork bifurcations at each critical ac-

tivity parameter value ζ = n2ζc. The symmetric θ(z) solutions in Figure 4.2(e) lie

on the non-trivial, stable branch in the φo = 0 plane in Figure 4.3 that is discon-

nected from the trivial state branch. For the post-bifurcation trivial state (the

dotted curves in Figures 4.3 and 4.4), the solutions are unstable to both symmet-

ric and antisymmetric perturbations, as are higher mode bifurcations from the

unstable trivial branch.
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4.4.2 Extensile Active Nematic Liquid Crystals with

Non-Zero Pressure Gradient

The introduction of a non-zero pressure gradient alters the θ(z) and v(z) profiles

along with the associated bifurcation structures. At this point our primary fo-

cus is the trivial state and its bifurcations and so Figure 4.5 shows the effect of

varying the pressure gradient on the equilibrium solutions seen previously in Fig-

ures 4.2(a)–(d), and for a particular value of the activity parameter, ζ = −20 Pa.

In an inactive Newtonian fluid, the addition of a negative pressure gradient,

px < 0, would lead to a parabolic velocity profile with a maximum velocity in

the centre of the channel, similar to the flow shown in Figure 4.2(b). For an

active nematic, such a pressure gradient therefore reinforces the positive flow ve-

locity associated with an anti-symmetric director angle solution, thus enhancing

the alignment with the Leslie angle and increasing the magnitude of the shear

gradients near the boundaries, as seen in the curves for px < 0 in Figures 4.5(a)

and (b). The addition of a positive pressure gradient, px > 0, would, in a New-

tonian fluid, lead to a parabolic velocity profile with a minimum velocity in the

centre of the channel which will be in opposition to the activity-induced flow

shown in Figure 4.2(b). Such a pressure gradient therefore acts to negate the

positive flow velocity associated with an anti-symmetric director angle solution,

thus reducing the alignment with the Leslie angle and decreasing the magnitude

of the shear gradients near the boundaries, as seen in the curves for px > 0 in

Figures 4.5(a) and (b). Further increases in the positive pressure gradient lead to

reverse flow near the channel boundaries and, at sufficiently high px values, force

the active nematic to flow in the negative x-direction throughout the channel.

For both px < 0 and px > 0, the pressure gradient-induced and activity-induced

velocity profiles share the same symmetry about the centre of the channel, and

therefore the spatial symmetry of the final state is unaffected.

The equivalent opposite anti-symmetric solutions (the negative of the so-

lutions in Figure 4.5(a)) are not presented in Figures 4.5(a) and (b). However,

as mentioned in Section 4.2, the governing equations (4.2.15) and (4.2.16) are
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Figure 4.5: (a), (c) Director angle θ(z) and (b), (d) velocity v(z) equilibrium

profiles for activity ζ = −20 Pa and pressure gradients px = −5, −2.5, 0, 2.5, 5×

104 Pa m−1.

unchanged under the transformation θ → −θ, v → −v, px → −px so that the

equivalent opposite sign of pressure gradient will have the similar effect on the

negative velocity solution. We can therefore see that for a fixed pressure gradient

(i.e., px = −2.5 × 104 Pa m−1 as in Figure 4.6) will enhance one version of the

anti-symmetric θ(z) solution (that shown in Figure 4.5(a)) while the opposite

anti-symmetric θ(z) solution will be diminished. This effect can be seen in the

breaking of the φo → −φo symmetry of the bifurcation diagram resulting in a

perturbed pitchfork bifurcation structure for the stable branches in the φe = 0

plane, as shown in Figure 4.6.

For symmetric director angle profiles, both for the θ(z) shown in Fig-

ure 4.2(c), and the equivalent opposite state −θ(z), the introduction of a pressure

gradient will increase the velocity in one half of the channel while decreasing it in

the other. Consequently, both positive and negative pressure gradients will induce
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Figure 4.6: Bifurcation diagram for negative activity parameter values and pres-

sure gradient px = −2.5×104 Pa m−1, focussing on the effect of the pressure gradi-

ent on the bifurcations from the trivial state. Stable equilibria solution branches

are indicated by solid curves and unstable equilibria branches are indicated by ei-

ther dashed (one positive eigenvalue) or dotted (two positive eigenvalues) curves.

a flow that will lead to an asymmetry with respect to the centre of the channel, as

shown in Figures 4.5(c) and (d). As a result, the equilibrium branches move out

of the plane φo = 0, as shown by the dashed curve in Figure 4.6. However, even

when a pressure gradient is applied the θ(z) solution shown in Figure 4.2(c), and

the equivalent opposite state −θ(z) retain a symmetry with each other, namely

θ(z) = −θ(d − z). Therefore, although the symmetry of the individual states is

broken, the bifurcation diagram in Figure 4.6 retains the φe → −φe symmetry

that was found in the case of zero pressure gradient.
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4.4.3 Contractile Active Nematic Liquid Crystals with

Zero Pressure Gradient

We now turn our attention to contractile agents, for which ζ > 0, and, at least

initially, the case when there is no applied pressure gradient, px = 0. From

the linear analysis in Section 4.3.4 we know that, for the rod-like active agents

we consider here, the trivial state is stable for all ζ > 0. While there are no

bifurcations from the trivial state branch, other solutions of equations (4.2.15)

and (4.2.16) do exist. Figure 4.7 shows solutions obtained numerically for activity

parameter values ζ = 5, 10, 50, 250 Pa. As with the extensile active agents,

we find symmetric or anti-symmetric director angle configurations, paired with

velocities of the opposite symmetry. The solutions for contractile active nematics

are characterised by director angle configurations that exhibit large gradients

close to the boundaries or the centre of the channel (Figure 4.7(a, c), respectively)

that are associated with localised “jets” in the velocity (Figure 4.7(b, d)) which

increase in magnitude and become increasingly sharp as the activity increases.

From Figures 4.7(a) and (c) we see that, for high values of activity parameter,

our solutions match the predicted behaviour from Subsection 4.3.2, namely that

the director angle may take the value θ = π/2 or θ = θ∗ ≈ 1.1656 rad in the bulk

of the channel. While Subsection 4.3.2 used an assumption of isotropic viscosity

and considered a non-flow aligning nematic to obtain the value for θ∗, and here

we have obtained solutions numerically using the anisotropic viscosity values of

the liquid crystal 5CB, we see that our numerically calculated value θ ≈ 1.199 rad

is very similar to the value determined analytically. As in the extensile case, the

symmetry θ(z) → −θ(z), v(z) → −v(z) means that there are opposite signed

states possible, as well as those in Figure 4.7. The solutions in Figure 4.7(a, b)

have, we believe, been observed previously, in the paper of Marenduzzo et al. [93]

although for lower values of the activity so that the asymptotic value θ∗ was

less readily observable. The bifurcation diagram for contractile active nematics

is shown in Figure 4.8, where we see that the non-trivial branches annihilate at

fold (or saddle-node) bifurcations. When we include the trivial state, there are
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Figure 4.7: (a), (c) Director angle θ(z) and (b), (d) velocity v(z) equilibrium

profiles for activity parameter values ζ = 5, 10, 50, 250 Pa.

up to nine possible equilibria for each activity parameter. In Figure 4.8 we have

only shown solutions on two of the eight non-trivial solution branches, the two

solutions (up to sign reversal) that are either stable, in the case of the symmetric

director profile for Figure 4.8(a, b), or only unstable up to a single perturbation

mode, in the case of the anti-symmetric director profile for Figure 4.8(c, d). These

solutions can be thought of as the “most stable” for each particular symmetry.

The stable symmetric director solution branches, corresponding to Fig-

ure 4.7(a) and the equivalent solution of opposite sign, are the non-trivial solid

curves in the plane φo = 0 in Figure 4.8. The unstable antisymmetric director

solution branches, corresponding to Figure 4.7(c) and the equivalent solution of

opposite sign, are the the dashed curves in the plane φe = 0 in Figure 4.8 and

are stable to antisymmetric director angle perturbations but stable to symmetric

director angle perturbations. Note that, in general, the fold bifurcations for the

symmetric and antisymmetric director angles do not occur at the same critical
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Figure 4.8: Bifurcation diagram for positive activity parameter values and zero

pressure gradient, px = 0, using the measures for θ(z) solutions given in (4.4.1).

Stable equilibria solution branches are indicated by solid curves and unstable

equilibria branches are indicated by either dashed (one positive eigenvalue) or

dotted (two positive eigenvalues) curves.

activities. For instance, in Figure 4.8 the solutions shown in Figure 4.7(a, b) exist

for ζ & 4.93 Pa and the solutions in Figure 4.7(c, d) exist for ζ & 7.03 Pa.

4.4.4 Contractile Active Nematic Liquid Crystals with

Non-Zero Pressure Gradient

When a pressure gradient is introduced, the solutions in Figure 4.7 adapt in

a similar way to the extensile case, as seen in Figure 4.9. For equilibria with

antisymmetric velocity profiles (e.g., Figure 4.7(a, b)), the introduction of a pres-

sure gradient leads to asymmetry in both the director angle and velocity (Fig-

ure 4.9(a, b)). The positive and negative solution branches in the plane φo = 0 in

Figure 4.8 both adapt in the same way and are promoted to occur at lower values

of the activity parameter. For a negative pressure gradient, equilibria for which
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Figure 4.9: (a), (c) Director angle θ(z) and (b), (d) velocity v(z) equilibrium

profiles for activity ζ = 10 Pa and pressure gradients px = −5, −2.5, 0, 2.5, 5 ×

105 Pa m−1.

the velocity is symmetric and positive (Figure 4.7(c, d)) will be enhanced and oc-

cur at smaller values of activity. Conversely, the pressure gradient-induced flow

will retard negative velocity solutions meaning they can occur only for larger ac-

tivities. This breaking of the φo → −φo symmetry is observed in the plane φe = 0

in Figure 4.10.

4.5 Two-Parameter Continuation

We can summarise the effect of varying the activity parameter and applied pres-

sure gradient on the various equilibria, for both extensile and contractile active

nematics, by considering the bifurcation set in (ζ, px) space, i.e., the location of

fold and pitchfork bifurcations.

There are seven possible critical bifurcation points: the single fold/pitchfork
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Figure 4.10: Bifurcation diagram for positive activity parameter values and pres-

sure gradient px = −105 Pa m−1, using the measures for θ(z) solutions given in

(4.4.1). Stable equilibria solution branches are indicated by solid curves and un-

stable equilibria solution branches are indicated by either dashed (one positive

eigenvalue) or dotted (two positive eigenvalues) curves.

point in Figure 4.6 associated with the branches of positive and negative versions

of the solutions shown in Figure 4.5; the two fold points shown in Figure 4.3

associated with the positive and negative solution branches of solutions shown in

Figure 4.2(e, f); and the four fold points shown in Figure 4.10 associated with

the positive and negative solution branches of solutions shown in Figure 4.9.

However, for clarity we do not plot the locations of the two fold points of the

branches of unstable solutions in the φe = 0 plane in Figure 4.10 because, being

unstable, these solutions are unlikely to be observed in reality. Of the remaining

five critical points, the two pairs of fold points occur at the same value of the

activity parameter and so the locations of the critical points will lead to only

three loci in (ζ, px) space. We plot these three loci in Figure 4.11.

Curve (A) in Figure 4.11(a) indicates the location of the fold bifurcations

where the four solution branches meet in Figure 4.6 for px 6= 0 (or the pitchfork
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bifurcation point in Figure 4.3 when px = 0). The fold bifurcation points in the

plane φo = 0 in Figure 4.3 for px = 0 correspond to symmetric director angle

profiles. The position of these bifurcation points as px varies, coinciding with the

director angle losing symmetry, is represented by curve (B). Similarly, curve (C)

corresponds to the fold bifurcation points lying in the plane φo = 0 in Figure 4.8.

In the region between curves (B) and (C), the only stable equilibria will therefore

be on the continuous, stable branch of the perturbed pitchfork bifurcation seen

in Figures 4.6 and 4.10. This region in (ζ, px) space is characterised by solutions

of relatively low director distortion and velocity, for which the activity parameter

is too small in magnitude to dominate either the elastic or the pressure gradient

effects. In fact, when the pressure gradient is absent, the solutions revert to the

trivial case (θ ≡ 0, v ≡ 0). Therefore, in Figure 4.11 we denote the low distortion

regime as the “trivial state”, though it is generally more accurate to describe it

as the perturbed trivial state. For (ζ, px) to the left of curve (A) there are four

stable equilibria, characterised by anti-symmetric flow-alignment close to ±θL

rad and asymmetric flow-alignment close to ±(π − θL) rad. (The asymmetry is

the result of a pressure gradient on a symmetric director angle structure similar

to the behaviour in Figures 4.5(c) and 4.9(a).) Between curves (A) and (B) for

extensile active nematics, and to the right of (C) for a contractile agent, there

are two stable, asymmetric director angle solutions as well as the trivial state.

These correspond, respectively, to alignment close to ±(π − θL) rad in much of

the channel for extensile activity or at the angle approximated by ±θ∗ as found in

Subsection 4.3.3 for contractile activity. The process of transition between these

states in the connected region surrounding the shaded area between curves (B)

and (C) is now investigated.

The extent of region between (B) and (C), where the perturbed trivial

state is the only equilibrium, decreases as the magnitude of the pressure gra-

dient increases, with the two curves meeting at approximately ζ = −2.05 Pa.

Figure 4.11(b) focusses on the region close to this activity parameter for px < 0

highlighted by the grey box in Figure 4.11(a) and demonstrates a swallowtail

catastrophe [156]. Curves (B) and (C) are symmetric with respect to the pres-
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Figure 4.11: (a) Location of pitchfork and fold bifurcation points for solution

branches exhibiting stable equilibria. (b) An expanded view in the grey boxed

area in (a), close to ζ = −2.1 Pa.

sure gradient, so a similar swallowtail feature occurs for px > 0. The process

is expanded upon in Figure 4.12, where we show bifurcation plots in the (ζ, φe)

plane as |px| increases. The φo measure for equilibria θ(z) will be non-zero for

these solutions, but the transition can be illustrated by restricting attention to φe.

The horizontal dotted lines in Figure 4.11(b) correspond to the pressure gradients

used in Figure 4.12. The perturbed trivial branch is not shown in Figure 4.12,

but it does also exist for this range of pressure gradients and activities.

For px = −7.7 × 105 Pa m−1 in Figure 4.12(a), there is a small interval of

activity over which the trivial state is the only equilibrium, between the left-
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hand fold point (curve (B) in Figure 4.11) and the right-hand fold (curve (C) in

Figure 4.11). In Figure 4.12(b), the right-hand fold has transformed at a cusp

catastrophe and this branch now has three fold points associated with it. In

Figure 4.12(b) there is still an interval of activities close to ζ = −2.03 Pa where

only the trivial state exists. However, there is also a very narrow range of activities

close to ζ = −1.99 Pa where extra states exist. Once px = −7.739×105 Pa m−1 in

Figure 4.12(c), the range of activity for these extra states has widened. Also, there

are no longer any activities for which the trivial state is the unique equilibrium.

Between Figure 4.12(c) and Figure 4.12(d) the two uppermost fold points have

merged creating a continuous stable branch of solutions in Figure 4.12(d), when

px = −7.76×105 Pa m−1, with two unstable branches now linked through two fold

points and a stable branch. Finally, for large enough |px| in Figure 4.12(e), the

two fold points have annihilated leaving individual continuous stable and unstable

branches. It is the formation of this continuous stable branch that allows the

transition between solutions with director alignment close to ±(π − θL) rad, for

extensile activity, to solutions with director alignment close to ±θ∗ for contractile

activity.

In Figures 4.13 and 4.14, we consider this transition between ±(π−θL) rad,

and ±θ∗ alignments for a value of |px| greater than the value considered in Fig-

ure 4.12(e). Clearly pressure gradient-induced flow dominates for small activity

parameter values ζ. However, activity still dominates the pressure gradient effects

for sufficiently large magnitude ζ values. Figure 4.13 shows the measure φe as the

activity strength values with the pressure gradient fixed at px = −106 Pa m−1.

This choice of pressure gradient leads to a continuous stable equilibrium branch

in which there is an equilibria transition from (π − θL) solutions to θ∗ solutions

as the activity strength increases. Figure 4.14(a) shows the transformation from

a solution in which there is alignment with (π − θL) rad (e.g., ζ = −200 Pa, to

a solution in which there is alignment with θ∗ rad (e.g., ζ = 200 Pa). The cor-

responding flow profiles are plotted in Figure 4.14(b, c), It is worth noting that

the special case ζ = 0 Pa in Figure 4.14 does not represent classic Poiseuille flow

for an inactive nematic with a parabolic velocity profile. Poiseuille flow would
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Figure 4.12: Bifurcation diagrams for pressure gradients, px, equal to (a) −7.7,

(b) −7.738, (c) −7.739, (d) −7.76, and (e) −7.82 ×105 Pa m−1, using the mea-

sure φe for θ(z). The five pressure gradients correspond those indicated in Fig-

ure 4.11(b). Solid curves are stable equilibria solution branches, while unstable

equilibria solution branches with one positive eigenvalue are dashed curves.

be the result of applying a pressure gradient to the trivial state in the absence

of activity, leading to a symmetric velocity and an anti-symmetric director angle

solution which vanishes in the centre of the channel. The states examined in Fig-

ures 4.13 and 4.14 are inherently asymmetric with the director angles non-zero

except at the boundaries.

In Figure 4.11 we have therefore summarised the areas in (ζ, px) space for

which the most important solutions exist. However, as mentioned previously,

there are many more possible solutions at higher magnitude activity parameter

values but which are unstable to either symmetric or anti-symmetric director

angle perturbations, and contain regions of high elastic energy.
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Figure 4.13: Stable equilibrium branch for pressure gradient px = −106 Pa m−1,

using the measure φe for θ(z). As the activity parameter ζ increases, the equilibria

transition from (π − θL) solutions to θ∗ solutions.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

-2

0

2

4

6

8

0 2 4 6 8 10

-2

0

2

4

Figure 4.14: The director angle transition from (π− θL) solutions to θ∗ solutions,

with associated velocity profiles, along the solution branch in Figure 4.13 as

the activity parameter increases:(a) Director angle θ(z) and (b) velocity v(z)

equilibrium profiles for pressure gradient px = −106 Pa m−1 and a range of activity

parameter values between ζ = −200 and 200 Pa. The velocity solution for ζ =

0 Pa is shown in both plots in (b).
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4.6 Reorientation of Active Nematic Liquid

Crystals Subject to an External Orienting

Field

In the work of Pieranski et al. [112] on the dynamics of the Freedericksz transi-

tion in nematic liquid crystals, it was shown that the reorientation of the director

due to an externally applied field can induce fluid flow. The enhanced flow that

is caused by molecular rearrangement during the switch-on of an external orient-

ing field is known as backflow [129]. When the field is switched off, the director

can either begin to relax back to its pre-switched configuration, or alternatively,

the fluid can move one way before reversing direction, and then eventually dissi-

pate, with the director decaying back to the pre-switched orientation. This initial

movement of the fluid upon removal of an applied field often coincides with the di-

rector orientation overshooting past its switched-on configuration. This increase

in the director is known as kickback and occurs due to the coupling between the

backflow and director orientation [129]. The dynamics of the Freedericksz transi-

tion was considered recently by Mottram et al. [104] for an inactive nematic liquid

crystal confined between two parallel electrodes and subject to a spatially varying

electric field across the layer. The model considered in [104] showed, through a de-

coupling of the non-linear Ericksen-Leslie equations that kickback can be avoided

for an appropriate choice of applied voltage. This followed from the linearised

Ericksen-Leslie model considered by Da Costa et al. [30], who examined kickback

in nematic liquid crystals due to a large magnetic field analytically. The avoid-

ance of kickback can have practical implications for switching in devices since any

increase in the director angle when the field is switched off can lead to an increase

in the cell switch-off time. The realignment of active agents in a liquid crystal

subject to a uniform magnetic field has recently been considered experimentally

by Guillamat et al. [64, 65] and theoretically by Doostmohammadi et al. [37],

which showed similar reorientations to those observed in inactive nematic liquid

crystals. The motion of active colloids in liquid crystals subject to an electric field
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was considered by Lavrentovich [78]. This was extended by Conklin et al. [27],

who proposed an analogy between the active stresses which induce flow in active

liquid crystals and the backflow induced in inactive liquid crystals due to electric

fields. In this section we consider the transient behaviour of an active nematic

liquid crystal confined in a shallow channel, subject to a uniform orienting field,

where a transient flow will be created by director rotation due to the uniform

orienting field. A similar approach to that in [104] will be adopted here, where

we assume zero pressure gradient and decouple the Ericksen-Leslie equations in

order to examine the dynamics of the director orientation of an active nematic

liquid crystal when the field is applied, and then switched off. We consider direc-

tor configurations which are symmetric and anti-symmetric with respect to the

channel centre.

A uniform orienting field F is applied perpendicular to the boundaries of

the channel such that F = (0, 0, F ), where F = |F|. Note that, if we were

to interpret this orienting field as a classic electric/magnetic field applied to an

inactive nematic, then the applied field would need to also satisfy the appropriate

Maxwell equations (see Chapter 2). In order to ensure that the director switches

after the field is turned on, a small pretilt of the director is imposed on the plates

such that θ(0, t) = Φ0 and θ(d, t) = Φd. In the absence of pretilt, the initial

director tilt angle is zero at both plates, which leads to a discontinuity when

the field is switched on. Initially, the liquid crystal is at rest and the director

orientation changes linearly across the channel,

θ(z, 0) = Φ0 +
z(Φd − Φ0)

d
. (4.6.1)

We include a classic magnetic/electric energy density in the bulk energy density

of the form

wfield = −1

2
χf (n · F)2, (4.6.2)

where χf is the anisotropic susceptibility of the active nematic to the aligning

field, which we assume is positive so that for a sufficiently strong orienting field,

the director will align with the field in the bulk of the channel in the same way as

it would due to an electric/magnetic field. In comparison with a classic magnetic
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field energy density, χf is analogous to the coefficient µ0∆χ in a magnetic-field

induced Freedericksz transition, where µ0 = 4π× 10−7 Hm−1 is the permeability

of free space and ∆χ is the magnetic anisotropy of the liquid crystal (see Chapter

2). Minimisation of (4.6.2) with respect to the director angle θ generates the same

term in the angular momentum equation due to a magnetic field when modelling

one-dimensional splay-bend Freedericksz cells [104, 129]. In the absence of fluid

inertia and assuming that the hydrostatic pressure is constant across the channel

in the x-direction, the Ericksen-Leslie equations with the external orienting field

and activity terms are

γ1θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2 + χfF

2 sin θ cos θ

−m(θ)vz, (4.6.3)

0 = (g(θ)vz +m(θ)θt + ζ sin θ cos θ)z. (4.6.4)

with boundary conditions

θ(0, t) = Φ0, v(0, t) = 0, (4.6.5)

θ(d, t) = Φd, v(d, t) = 0. (4.6.6)

The individual dimensions of χf and F are unknown. However, in order to match

with the dimensions of the rest of the terms in equation (4.6.3), it follows that the

product χfF
2 must have dimensions of pressure, which means that the external

orienting field can be thought of as a pressure-like driving field. Employing the

calculations outlined in Appendix C, the decoupled dynamic equation for the

director angle is(
γ1 −

m2(θ)

g(θ)

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

+ χfF
2 sin θ cos θ − m(θ)H̄

g(θ)B̄

+
ζm(θ)

g(θ)

(
sin θ cos θ − C̄ − D̄

B̄

)
, (4.6.7)

where the definitions of the integrals B̄, C̄ and D̄ are the same as those given
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previously in equations (4.3.4)–(4.3.5), and

H̄ =

∫ d

0

m(θ)

γ1g(θ)−m2(θ)

[
(K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

+ χfF
2 sin θ cos θ

]
dz. (4.6.8)

We will solve equation (4.6.7) numerically in COMSOL for both a contractile

and extensile active nematic liquid crystal. We assume that the magnitude of the

two pretilt angles Φ0 and Φd are the same, where the relative signs of the pretilt

angles determine whether we have a director angle solution which is symmetric

or anti-symmetric with respect to the centre of the channel. If we choose our

boundary conditions such that the signs of the pretilts on both boundaries are

the same, then this will induce a director profile which is symmetric with respect

to the centre of the channel. This technique is known as anti-parallel rubbing

[104]. The alternative scenario is when the pretilts at the two boundaries are

equal in magnitude but opposite in sign - this is known as parallel rubbing. In

the calculations that follow, we impose small pretilts Φ0 = ±0.01 radians and

Φd = 0.01 radians. For future reference, we define the director profile obtained

from anti-parallel rubbing as Mode I, and the director structure derived from

parallel rubbing as Mode II.

4.6.1 Reorientation of Contractile Active Nematic

Liquid Crystals

We first consider the reorientation of a contractile active nematic liquid crystal

subject to anti-parallel rubbed anchoring. An external pressure driving field

with coefficient χfF
2 = 100 Pa is applied to the liquid crystal, which proves

to be sufficiently large enough to reorient the director such that it aligns with

the orienting field in the bulk of the channel during switch-on. Figure 4.15(a)

shows the initial stages of the dynamics of the director angle when the orienting

field is switched on for an active nematic liquid crystal with activity ζ = 50 Pa.

This value of activity is chosen on the basis that it exceeds the critical value of

activity for this mode when we had zero pretilt and orienting field. During switch-
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on, the orienting field forces the director angle to increase from an initial state of

θ = 0.01 rad for all z to a distorted director structure with θ ≈ π/2 in most of

the channel, which is also what occurs in the early stages of the dynamics of a

Freedericksz transition for a strong electric/magnetic field [104], so the influence

of the activity during switch-on appears to be minimal.

Figure 4.15(b) shows the dynamics of the director angle configuration af-

ter the applied field is removed at switch-off time toff = 0.05 seconds, where

we find that the director angle structure has relaxed into an equilibrium state

which resembles the bulk symmetric director angle structure we found previ-

ously. We have plotted each of the director structures in Figure 4.15(b) labelling

time as a difference of the times after switch-off and the switch-off time toff so

that θ(z, toff) = θeq(z), (i.e., the system is “initially” at equilibrium after the

field is switched off). We find that due to the strength of the activity of the

liquid crystal, there is no evidence of kickback upon removal of the applied field.

An investigation into kickback in contractile and extensile active nematic liquid

crystals will be discussed in Subsection 4.6.3.

When we consider the boundary conditions for parallel rubbing, this will

generate a solution for θ which is odd in z. In this case, the integrals C̄, D̄ and

H̄ are all equal to zero so that equation (4.6.7) simplifies to(
γ1 −

m2(θ)

g(θ)

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

+

(
χfF

2 +
ζm(θ)

g(θ)

)
sin θ cos θ. (4.6.9)

Therefore, when we have a solution for the director angle which is anti-symmetric

with respect to the centre of the channel, the only terms which are associated

with the flow when the field is switched off are the reduced rotational viscosity

and the simplified activity term. For this symmetry, the flow is always aiding

director relaxation and leads to faster switching. We use the same values of the

applied field and activity as used for Mode I where like Mode I, the chosen activity

exceeds the numerically calculated critical activity value for Mode II with zero

pretilt and orienting field. The strength of the orienting field forces the director

to adjust its orientation such that it aligns with the field in most of the channel
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during switch-on, as shown in Figure 4.15(c). Figure 4.15(d) shows the dynamics

of the director angle profile once the field is switched off, where the director angle

relaxes towards the anti-symmetric structure we found before in the bulk of the

channel. Even though we found that this director configuration was unstable in

Section 4.4, we have shown here that the symmetry of the system means that we

can at least access this unstable solution transiently through an external orienting

field. We find that for times larger than the final time shown in Figure 4.15(d)

(t − toff = 10 seconds), the director structure does not change appreciably and

we remain on the solution branch. Unlike Mode I, we find that for a value of

activity which is less than the critical value, there is no evidence of kickback and

the Mode II director configuration relaxes towards its alignment prior to the field

being switched on. Anti-symmetric director structures of inactive nematic liquid

crystals also do not appear to exhibit any kickback upon removal of an applied

field [104].

4.6.2 Reorientation of Extensile Active Nematic Liquid

Crystals

We now consider the reorientation of extensile active nematics subject to a driv-

ing field. First, we examine the scenario of anti-parallel rubbing. In our previous

investigation with zero pressure gradient and orienting field, we found four possi-

ble director angle configurations which were symmetric with respect to the centre

of the channel, with two of them the mirror images of each other. One of these

solutions was stable to both symmetric and anti-symmetric perturbations in θ,

where the director angle aligned at π − θL in the bulk of the channel. The other

solution we found was unstable to anti-symmetric perturbations in θ and the

director angle aligned at θL in most of the channel. In the calculations that

follow, we fix the activity strength parameter at ζ = −250 Pa. Unlike the con-

tractile active nematic liquid crystal, we consider two values of the coefficient of

the orienting field, one of which is the same value considered for the contractile

active nematic liquid crystal, with the other significantly smaller. As we will see,
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Figure 4.15: The evolution of the director angle θ(z, t) throughout the channel

during (a, c) switch-on and (b, d) switch-off for a contractile active nematic with

activity strength ζ = 50 Pa. The orienting field coefficient during switch-on is

χfF
2 = 100 Pa.

changing the size of the field strength allows for both of the symmetric director

structures to be obtained for a fixed value of activity strength. We also find that

a smaller orienting field proves necessary in order to access the anti-symmetric

director configuration for an extensile active nematic.

Figure 4.16(a) shows the evolution of the director angle during switch-on

with field strength χfF
2 = 100 Pa, where we find that a combination of the

backflow caused by the activity and the orienting field have forced the director to

evolve to an angle θ ≈ π−θL in most of the channel. The response of the director

angle during switch-off is shown in Figure 4.16(b) where we find that the removal

of the field leads to more pronounced kickback. For a symmetric director angle

profile of an inactive nematic liquid crystal, application of a sufficiently strong
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external orienting field will always lead to kickback when the field is switched

off [30]. Combining the initial increase in the director angle in the middle of

the channel that occurs after the field is switched off due to kickback with the

realignment of the director induced by activity forces the director angle to evolve

closer to θ ≈ π − θL in most of the channel. Whenever we consider a large

orienting field, our dynamic solver always equilibrates at the solution branch

shown in Figure 4.16(b) when the field is switched off. Therefore, in order to

access the remaining two director configurations found previously for an extensile

active nematic, where the director aligns with the flow at the Leslie angle in most

of the channel for large magnitudes of extensile activity, we need to use a smaller

orienting field.

When we consider a much smaller value of a driving field, we find that the

dynamics of the director orientation of Mode I change significantly. The evolution

of the director angle during switch-on with field coefficient χfF
2 = 10 Pa is

shown in Figure 4.16(c). At switch-off time t = 0.05 seconds, we find that the

magnitude of the director orientation in most of the channel has slightly increased

beyond the Leslie angle θL = 0.2 rad. This means that upon removal of the field,

there is less of an energy cost for the liquid crystal to relax towards the unstable

symmetric mode than there is for the liquid crystal to evolve towards the high

elastic energy stable mode we discussed above. This is exactly what we can see

happens in Figure 4.16(d), where we find that the director structure does not

change appreciably for larger times (t− toff = 10 seconds). Therefore, one way in

which the symmetric director structure which aligns at the Leslie angle in most

of the channel can be accessed transiently is through a reduced orienting field

for a large magnitude of activity strength. Even though this configuration was

shown to be unstable, we have again shown how we can access unstable solutions

transiently. In the analysis considered earlier in this chapter with zero pretilt

and orienting field, we found a non-trivial anti-symmetric director structure for

an extensile active nematic in which the director aligned with the flow in most

of the channel. This mode was shown to be stable to both symmetric and anti-

symmetric perturbations in θ. In order to achieve an anti-symmetric director
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configuration, we find that a much smaller orienting field coefficient is needed

as a large field leads to the equilibrium director configuration in Figure 4.16(b).

From Figure 4.16(e), we observe that when a field with coefficient χfF
2 = 10 Pa

is applied to the liquid crystal, the director orientation in most of the channel is

close to the Leslie angles. The evolution of the director angle profile for Mode

II when the field is switched off is shown in Figure 4.16(f), which demonstrates

that the director angle relaxes towards the anti-symmetric flow-aligning structure

we found from our previous analysis in the bulk of the channel. In summary,

we have shown how stable and unstable active nematic liquid crystal director

configurations can be accessed transiently through an external orienting field.

4.6.3 Kickback in Active Nematic Liquid Crystals

To conclude this section, we now examine kickback in active nematic liquid crys-

tals. We do so for a range of positive and negative activity strengths. Our

attention is focussed on the symmetric director configurations in Figures 4.15(a,

b) for a contractile active nematic, and Figures 4.16(a, b) for an extensile active

nematic. As mentioned previously, we find that anti-symmetric director configu-

rations do not exhibit any kickback once the external orienting field is switched

off, similar to the findings in [104].

We first consider the dynamics of contractile active nematic liquid crystals

subject to an external orienting field of strength χfF
2 = 100 Pa. Figure 4.17(a)

shows the variation of the director angle in the centre of the channel θ(d/2, t)

with time for positive activity strengths. For each of the activity strength values,

we can see that as time progresses, the director at the centre of the channel

evolves towards a switch-on equilibrium value of θon(d/2) / π/2. We include

a zoomed-in plot of θ(d/2, t) in order to distinguish the equilibrium values of

the director orientation at the channel centre for each activity strength. Once

the director in the centre of the channel has achieved its equilibrium switch-

on value, the orienting field is switched off at time t = toff and we solve the

evolution equation (4.6.7) for the switch-off equilibrium director orientation. The
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Figure 4.16: The evolution of the director angle θ(z, t) throughout the channel

during (a, c) switch-on and (b, d) switch-off for an extensile active nematic with

activity strength ζ = −250 Pa. The orienting field coefficients during switch-on

are (a) χfF
2 = 100 Pa, and (c, e) χfF

2 = 10 Pa.

dynamics of the director in the centre of the channel when the field is switched off

are shown in Figure 4.17(b). Our calculations show that for the activity strengths

ζ = 0.5 and 1 Pa, the director angle at the centre of the channel does not simply

decrease towards its pre-switched state value, θ(d/2, 0) = 0.01 rad. Instead, the
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director angle in the centre of the channel increases during a short interval before

decreasing to an equilibrium value of θoff(d/2) = 0.01 rad. This initial increase in

the director orientation at the centre of the channel is the kickback effect, where

we highlight the increase in the director orientation in the centre of the channel

by zooming in at times close to when the field is switched off. At activity strength

ζ = 2.5 Pa, we find that there is no kickback, and the director decays back to

its pre-switched configuration θ = 0.01 rad for all z ∈ [0, d] upon removal of the

field. For larger values of positive activity strengths (e.g., ζ = 5 Pa), the director

structure decays towards a non-trivial configuration without kickback, similar to

that in Figure 4.15(b). For large positive activity strengths, the director in the

centre of the channel approaches a switch-off equilibrium value of θoff(d/2) ≈ θ∗.

We now concentrate on the director orientation of an extensile active ne-

matic liquid crystal subject to an external orienting field. Figure 4.18(a) shows

the variation of the director angle in the centre of the channel with time for

various negative activity strengths. We find that the combination of the reori-

entation of the director due to the external orienting field and the spontaneous

director rotation induced by the activity leads to switch-on equilibrium values

θon(d/2) ' π/2. This is in contrast to both inactive nematics and contractile ac-

tive nematics which, as mentioned previously, have switch-on equilibrium values

θon(d/2) / π/2. In order to distinguish the director orientations for each activ-

ity strength, we include a zoomed-in caption in Figure 4.18(a) of the director

orientation at the channel centre for values of times close to when the system

starts to equilibrate once the field is switched on. Figure 4.18(b) shows how the

director orientation in the centre of the channel adapts once the field is switched

off. For each of the activity strengths, we find that the extensile active nematic

liquid crystal exhibits kickback. Our numerical calculations show that for nega-

tive activity strengths which are large in magnitude, the director in the centre of

the channel equilibrates at a switch-off value of θoff(d/2) ≈ π − θL. By contrast,

when the extensile activity strength is smaller in size, the liquid crystal director

structure decays to its configuration prior to switch-on.
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Figure 4.17: Variation of the director angle in the centre of the channel with

time for a contractile active nematic liquid crystal when an external orienting

field χfF
2 = 100 Pa is (a) switched-on and then (b) switched-off. At activity

strengths ζ = 0.5 and 1 Pa, the liquid crystal exhibits kickback, whereas there

is no kickback at activity strengths ζ = 2.5 and 5 Pa. As the activity strength

increases, the active nematic liquid crystal director structure decays to a non-

trivial configuration. For large positive activity strengths, the director in the

centre of the channel approaches a switch-off equilibrium value of θoff(d/2) ≈ θ∗.
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Figure 4.18: Variation of the director angle in the centre of the channel with

time for an extensile active nematic liquid crystal when an external orienting field

χfF
2 = 100 Pa is (a) switched-on and then (b) switched-off. At activity strengths

ζ = −2.5 and −5 Pa, the liquid crystal director structure exhibits kickback, before

decaying to θ = 0.01 rad for all z ∈ [0, d]. By contrast, at activity strengths ζ =

−10 and −20 Pa, the director in the centre of the channel does not decrease with

time. For large magnitudes of extensile activity strength, the director in the centre

of the channel approaches a switch-off equilibrium value of θoff(d/2) ≈ π − θL.
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4.7 Conclusions

In this chapter we have modelled spontaneous and pressure-driven flows in a

channel containing an active nematic liquid crystal with infinite planar anchoring

and no-slip conditions on the boundaries of the channel. We employed a model

based on an adapted form of the Ericksen-Leslie equations, where the stress tensor

comprises the usual nematic viscous stress and an additional active term which

accounts for the activity of the fluid. A constant pressure gradient was applied

across the channel to drive an external flow which competed with the flow caused

internally by the motion of the active agents.

As expected, in the limit of large pressure gradients, the non-linear equation

for the director angle had equilibrium solutions that demonstrate flow-alignment

with the Leslie angle, θ = ±θL, with an associated classic Poiseuille parabolic

flow. However, less intuitively, in the limit of large activity, we found that there

were five possible director orientations in the bulk of the channel. These were

θ = ±θL, 0, π/2 or θ∗ ≈ 1.1656 rad.

By linearising the decoupled director angle equation about the trivial solu-

tion, and assuming zero pressure gradient, we found that two symmetry breaking

modes for the director angle, one of which is anti-symmetric with the respect to

the centre of the channel and the other symmetric, bifurcate from the trivial state

θ = 0 at the same critical value of activity. These are two subcritical pitchfork

bifurcations where four solution branches appear, since mirror images of the two

symmetry breaking modes are also possible solutions when there is no pressure

gradient.

We then considered steady state solutions of the full non-linear system both

with and without an applied pressure gradient. For an extensile active nematic

with zero pressure gradient, we found that as the magnitude of the activity in-

creased, the symmetric and anti-symmetric non-trivial director structures align at

the positive and negative Leslie angles in the bulk of the channel. By calculating

the eigenvalues of the Jacobian of the discretised numerical system of equations,
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we were able to determine the stability of each of the non-trivial solutions. Apply-

ing a pressure gradient then leads to a perturbed pitchfork bifurcation diagram

in which the pressure introduced elements of directional bias in the system. We

observed that the anti-symmetric director structure with zero pressure gradient

remained anti-symmetric when a pressure gradient is applied. However, the zero

pressure gradient symmetric director structure became asymmetric as a result of

the applied pressure gradient. For a contractile active nematic, we found nine

possible solution branches, including the trivial state. Two of these branches

contain stable solutions and the remaining six non-trivial solutions are unsta-

ble. The pressure gradient had the same effect on the symmetry of the solutions

as it did in the extensile case and either enhanced or delayed the spontaneous

flow transition. Finally, we investigated how it could be possible to manufacture

various non-trivial extensile and contractile active nematic liquid crystal direc-

tor structures through pretilt and an external orienting field. The competition

between the backflow caused by activity and an external orienting field could be

examined to a similar level of detail as has been done with a pressure gradient.

We have discovered a rich bifurcation structure in this model of flow of

an active nematic within a channel. However, there may still be more solution

branches at higher activity parameter values, where the high levels of activity

induced flow could stabilise regions of high elastic energy. For instance, as well as

solutions in which the director aligns with an angle π−±θL, as in Figure 4.7(a),

there may be solutions where the bulk director orientation is nπ−±θL for integer

values of n > 1. Such areas of high distortion may lead to a reduction in scalar

order parameter, and indeed phase “melting” and topological change, and thus

a model based on a Q-tensor would then be more suitable. We will consider a

Q-tensor model of active nematics in the next chapter which will allow for an

investigation into the effects of changes of the system temperature and ordering.

136



Chapter 5

Active Nematic Liquid Crystals

with Variable Degree of

Orientation

5.1 Introduction

As discussed in Chapters 2 and 4, it is possible to model active nematic liquid

crystals in terms of an alignment tensor (i.e., the Q-tensor) instead of a nematic

director. Such tensor models have an advantage over director-based approaches in

that they can be used for modelling active nematic liquid crystals which contain

defects without generating unphysical free energies, as well as the effects due to

changes in the temperature of the system. The latter of these effects will be one

of our key focusses in this chapter. A recent theoretical investigation of active

nematics based on a Q-tensor theory was considered by Kitavtsev et al. [72],

who examined a free-boundary problem for an active liquid crystal containing

defects in the bulk. Their thin-film model of an active gel suggested that an

active nematic liquid crystal can exhibit non-zero flow that can be spontaneously

initiated from a homogeneous state by increasing the thickness of the film. Such

behaviour had also been observed in the studies of Voituriez et al. [143, 144].

Hybrid lattice Boltzmann simulations were used by Coelho et al. [24] in order to
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model channel flows of active fluids between nematic and isotropic phases. The

nematic phase was set in the centre of the channel with isotropic fluid either side of

the interface. Their numerical simulations showed that at large activity strengths,

the interface disappeared and the system became nematic. At the boundaries of

the channel, the director was subject to homeotropic anchoring and the velocity

satisfied the classical no-slip and no-penetration conditions. Chandragiri et al.

[19] demonstrated that at temperatures below and above the passive isotropic-

nematic phase transition, nematic ordering in active fluids confined in shallow

channels is predominantly induced by thermodynamic forces and self-generating

motion due to activity, respectively. Each of the theoretical investigations [19, 24,

72] were based on a continuum description of an active nematic liquid crystal in

terms of the Beris-Edwards equations [11], which are another example of dynamic

equations of liquid crystal hydrodynamics written in terms of an alignment tensor.

In this chapter, we continue our investigation into spontaneous flow tran-

sitions in active nematic liquid crystals confined in a shallow one-dimensional

channel, but now in terms of the Q-tensor model of active nematics introduced

in Chapter 2. Employing a simplified approach similar to that used in Chapter 4,

we show that an analytic expression for the critical activities at which the active

nematic liquid crystal undergoes a spontaneous flow transition can be derived in

terms of nematic parameters which now include the scalar order parameter. We

then consider numerical calculations of the full non-linear problem for a range of

temperatures for which the nematic phase exists. The main aim of this chapter is

to examine how the results of a tensor-based model of active nematic liquid crys-

tals may differ from those obtained from the director-based approach considered

in Chapter 4.

5.2 Mathematical Model

We consider a uniaxial, active nematic liquid crystal, confined between two par-

allel plates at z = 0 and z = d (see Figure 5.1). The forms of the director

and velocity are the same as those in Chapter 4. We also include a scalar or-
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der parameter S(z, t) in this model, which we assume is homogenous in the x

and y-directions. In contrast to the model considered in Chapter 4, we assume

throughout this chapter that there is no pressure gradient applied across the

channel. The director and velocity profiles are subject to the same infinite planar

anchoring and no-slip conditions as in Chapter 4. The scalar order parameter

is assumed to be fixed at both boundaries at constant values S(0, t) = S0 and

S(d, t) = Sd. The total bulk energy density, w, is the sum of the elastic energy

density (2.3.10) and thermotropic energy density (2.3.20),

w =w1(S, θ)θ2
z + w2(S, θ)θzSz + w3(S, θ)S2

z +
2

3
α∆TS2 +

4

27
bS3 +

2

9
cS4,

(5.2.1)

where

w1(S, θ) =
1

2

(
(2L1 + L2 + L3)S2 − 2

3
L4S

3

)
cos2 θ

+
1

2

(
(2L1 + L2 + L3)S2 +

4

3
L4S

3

)
sin2 θ, (5.2.2)

w2(S, θ) =
1

3
(L2 + L3)S sin θ cos θ, (5.2.3)

w3(S, θ) =

(
1

3
L1 +

1

18
(L2 + L3)− 1

9
L4S

)
cos2 θ

+

(
1

3
L1 +

2

9
(L2 + L3) +

2

9
L4S

)
sin2 θ. (5.2.4)

As mentioned in Chapter 2, the coefficients α, b and c are constants which do

not depend on temperature, and ∆T = T − T ∗ is the temperature difference

between the system temperature, T , and the critical temperature at which the

isotropic phase becomes unstable, T ∗. The coefficients Li are the elastic constants

which are homogeneous in space and defined by (2.3.16)–(2.3.19). The dissipation

function (2.3.22) is given by

D =
1

2
g(S, θ)v2

z +m(S, θ)θtvz + ξ1S
2θ2
t + ξ2St sin θ cos θvz +

1

3
ξ1S

2
t , (5.2.5)

where the S and θ-dependent viscosity terms are

g(S, θ) =
1

2
ξ1S

2 + ξ2S cos(2θ) +
1

12
ξ4S + ξ6S

2 sin2 θ cos2 θ +
1

2
ξ8, (5.2.6)

m(S, θ) = ξ2S cos(2θ) + ξ1S
2. (5.2.7)
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Figure 5.1: A uniaxial, active nematic liquid crystal in a channel between two

plates at z = 0 and z = d, with flow parallel to the x-direction. The director is

constrained to lie in the (x, z) plane and is fixed in the x-direction on the plates.

The velocity satisfies the no-slip condition on both plates, while the scalar order

parameter satisfies a Dirichlet condition at each boundary.

The coefficients ξi are the spatially independent nematic viscosities defined by

(2.3.30)–(2.3.34). The activity of the liquid crystal is governed by the active

stress term (2.3.47), with homogenous activity strength µ.

If we assume that fluid inertia is negligible, as we did in Chapter 4, then the

dynamics of the director angle, velocity and scalar order parameter are governed

by the three non-linear coupled partial differential equations (2.3.6)–(2.3.8),

2ξ1S
2θt = (2w1(S, θ)θz + w2(S, θ)Sz)z −

∂w1

∂θ
θ2
z −

∂w2

∂θ
θzSz −

∂w3

∂θ
S2
z

−m(S, θ)vz, (5.2.8)

0 = (g(S, θ)vz +m(S, θ)θt + (ξ2St + µS) sin θ cos θ)z , (5.2.9)

2

3
ξ1St = (2w3(S, θ)Sz + w2(S, θ)θz)z −

∂w1

∂S
θ2
z −

∂w2

∂S
θzSz −

∂w3

∂S
S2
z

− 4α∆T

3
S − 4b

9
S2 − 8c

9
S3 − ξ2 sin θ cos θvz, (5.2.10)
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with boundary conditions

θ(0, t) = 0, v(0, t) = 0, S(0, t) = S0, (5.2.11)

θ(d, t) = 0, v(d, t) = 0, S(d, t) = Sd. (5.2.12)

We will examine these equations using a mixture of linear stability analysis and

numerical calculations.

5.3 The Effect of Temperature Changes on the

Bifurcation of Non-Trivial States

5.3.1 Linear Stability Analysis

Equations (5.2.8) and (5.2.9) are satisfied when θ(z, t) = 0, v(z, t) = 0 and S

is constant. In this case, equation (5.2.10) provides a polynomial equation for

equilibrium values of the nematic scalar order parameter Seq, namely,

3α∆TSeq + bS2
eq + 2cS3

eq = 0, (5.3.1)

which has solutions

Seq = 0, Seq =
−b±

√
b2 − 24α∆Tc

4c
. (5.3.2)

The solutions (5.3.2)2 depend on temperature due to the ∆T contribution to

the thermotropic energy density. As mentioned in Chapter 1, the equilibrium

scalar order parameter for the nematic liquid crystal phase is usually positive

and so we will only consider the positive value for Seq in (5.3.2). It can be

shown analytically that the nematic phase disappears at the critical temperature

difference ∆T = b2/(24αc) [103]. In order for the boundary conditions to be

compatible with (5.2.10) when θ(z, t) = 0, v(z, t) = 0 and S is constant, we must

restrict our attention in this subsection to the special case S0 = Sd = Seq.

We now consider the linear stability of the state θ(z, t) = 0, v(z, t) = 0

and S(z, t) = Seq. Linearisation of equations (5.2.8), (5.2.9) and (5.2.10) around
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this state leads to, at leading order,

2ξ1S
2
eqθt =

(
(2L1 + L2 + L3)S2

eq −
2

3
L4S

3
eq

)
θzz − (ξ1S

2
eq + ξ2Seq)vz, (5.3.3)

0 =

(
1

2
ξ1S

2
eq + ξ2Seq +

1

12
ξ4Seq +

1

2
ξ8

)
vzz + (ξ1S

2
eq + ξ2Seq)θtz + µSeqθz,

(5.3.4)

where the equation for S is satisfied by S = Seq at leading order. We can re-write

equations (5.3.3) and (5.3.4) in the same form as those in the Ericksen-Leslie

theory,

γ1θt = K1θzz −
1

2
(γ1 + γ2)vz, (5.3.5)

0 = η1vzz +
1

2
(γ1 + γ2)θtz + ζθz, (5.3.6)

where γ1 ≡ γ1(Seq), K1 ≡ K1(Seq), etc. It is possible to decouple equations

(5.3.5) and (5.3.6) using the calculations outlined in Appendix C, which leads to

the linearised dynamic equation for the director angle

ηsplayθt = K1θzz −
K1(γ1 + γ2)2

4γ1η1d

∫ d

0

θzz dz +
ζ(γ1 + γ2)

2η1

[
θ − 1

d

∫ d

0

θ dz

]
, (5.3.7)

where ηsplay = γ1 − (γ1 + γ2)2/(4η1) > 0. We consider the same two sets of

potential instability modes (4.3.19) and (4.3.22) considered in Chapter 4, both

of which lead to an instability at ζ̄ = S̄n2ζc/Seq for n = 1, 2, . . ., where S̄ is the

experimentally measured scalar order parameter we introduced in Chapter 2, and

the critical activity for the n = 1 mode ζc is

ζc =
8π2K1η1

(γ1 + γ2)d2
, (5.3.8)

or equivalently, an instability occurs at µ = n2µc, where the critical activity for

the n = 1 mode µc is

µc =
π2(6L1 + 3L2 + 3L3 − 2L4Seq)(6ξ1S

2
eq + 12ξ2Seq + ξ4Seq + 6ξ8)

9(ξ1Seq + ξ2)d2
. (5.3.9)

Since the equilibrium scalar order parameter value Seq is temperature dependent,

it follows that the critical activity strength will also change with temperature. We

assume that in the special case of ∆T = 0 K, the scalar order parameter values
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Seq and S̄ are equal at this particular value of temperature difference, where

S̄ = 0.6 is a typical value of the experimentally measured scalar order parameter

[103]. We can now rearrange (5.3.1) in order to specify b in terms of c,

b = −6c

5
. (5.3.10)

An increase in the value of ∆T will mean that Seq < S̄, that is, there will be a

reduction in the ordering of the liquid crystal in the bulk of the channel at higher

temperature differences.

5.3.2 Numerical Calculations I: Extensile Active

Nematic Liquid Crystals

We now consider numerical solutions of the full non-linear system (5.2.8)–(5.2.10),

with boundary conditions (5.2.11) and (5.2.12). In contrast to the numerics

considered in Chapter 4, where the corresponding non-linear system was solved

using both COMSOL and MATCONT, all of the numerical calculations in this

chapter are undertaken only in COMSOL. Since we have an additional equation

to solve for as part of this model, using MATCONT could potentially lead to a

significant increase in the computational times compared to those in Chapter 4,

and so we use COMSOL.

In order to generate a scalar order parameter structure which is no longer

uniform throughout the channel, we now set S0 = Sd = S̄. We use the same

liquid crystal parameters as in Chapter 4 and only consider solutions with mode

number n = 1. Furthermore, we use the same values for the coefficients α and c

in the thermotropic energy density used in [103], with the value of b calculated

via (5.3.10),

α = 0.042× 106 Nm−2K−1, b = −0.42× 106 Nm−2, c = 0.35× 106 Nm−2.

(5.3.11)

For our choice of liquid crystal parameter values, the nematic phase disappears at

temperature difference ∆T = b2/(24αc) = 0.5 K. We first examine the variation

of the critical threshold activity with the temperature difference ∆T for both
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symmetry breaking modes. Figure 5.2 shows the critical values calculated from

both the linear stability analysis and the numerical scheme in COMSOL as ∆T

increases. We have indicated the disappearance of the nematic phase in Figure 5.2

with a dashed vertical line at ∆T = 0.5 K, where the nematic phase only exists for

temperature difference values to the left of this line. Since both of the symmetry

breaking modes have exactly the same analytic value for the critical activity,

we can only see one curve in Figure 5.2. The numerical critical activities are

indicated by the markers, where the crosses and circles are the critical activities

for the symmetric and anti-symmetric director angle modes, respectively. For all

temperature differences for which the nematic phase exists, i.e., 0 ≤ ∆T < 0.5 K,

we can see that an increase in ∆T increases the critical activity. In other words,

the spontaneous flow transition of extensile active nematics occurs at a smaller

magnitude of activity for higher values of ∆T . When ∆T = 0 K, the scalar

order parameter is uniform throughout the channel and, as we would expect, we

recover the same critical activity values derived in Chapter 4 for both symmetry

breaking modes. The results from the linear stability analysis of equations (5.2.8),

(5.2.9) and (5.2.10) show very good agreement with the corresponding numerical

calculations based on the full non-linear system. For each value of ∆T used to

calculate the numerical critical activities, we find that the difference between

the analytic and numerical critical activities for both modes is less than 1%.

Furthermore, this agreement supports our assumption of S0 = Sd = Seq for the

linear stability calculations in Subsection 5.3.1.

The equilibrium director structures for both symmetry breaking modes at

activity strength ζ̄ = −250 Pa and temperature differences ∆T = 0, 0.14, 0.28

and 0.49 K are shown in Figure 5.3, along with the corresponding steady state so-

lutions for the velocity and scalar order parameter structures. We saw in Chapter

4 that, for a negative activity of large magnitude, the director aligns in the bulk

of the channel close to the positive and negative Leslie angles ±θL. This is also

what we observe from the Q-tensor model in Figures 5.3(a) and (b), where the

maximum director angles for each ∆T are very close to the corresponding value

of θL. Since the nematic viscosities are affected by changes in the scalar order
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Figure 5.2: Variation of the critical activity calculated from the linear stability

analysis (solid curve) and numerically (markers) with the temperature difference

∆T . The nematic phase disappears at ∆T = 0.5 K.

parameter, it follows that θL will also vary with the scalar order parameter via

θL = tan−1

(√
γ2(S) + γ1(S)

γ2(S)− γ1(S)

)
, provided

γ2(S) + γ1(S)

γ2(S)− γ1(S)
≥ 0. (5.3.12)

The variation of the Leslie angle (5.3.12) with the temperature difference ∆T

is indicated by the solid curve in Figure 5.4, which shows that the Leslie angle

increases as ∆T increases. The maximum director angles obtained from the

numerical solutions at various values of ∆T for both symmetry breaking modes

are shown by the markers in Figure 5.4. These maximum angles have been

calculated using the same activity strength used in Figure 5.3 and are all within

1% of the Leslie angle (5.3.12) for each value of ∆T . We can see from the profiles in

Figures 5.3(c) and (d) that the speed increases in most of the channel for the first

three temperature differences (∆T = 0, 0.14 and 0.28 K), before decreasing for

∆T = 0.49 K. We explore this further in Figure 5.5, which shows the maximum

speed, |v|max, for an extensile active nematic. The reduction in the maximum
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speed at large temperature for both symmetry breaking modes may be explained

in terms of the changes in the director orientation and scalar order parameter that

occur when ∆T increases. Both the Leslie angle and the gradients in the director

angle increase as the temperature difference increases. These increases coincide

with a reduction in the scalar order parameter as the liquid crystal starts melting,

which leads to a decrease in the stress due to activity and less flow. In the case

of Figure 5.5(a), numerical calculations show that after initially increasing with

∆T , |v|max starts to decrease at ∆T = 0.25 K, while the reduction of |v|max in

Figure 5.5(b) begins at ∆T = 0.23 K.

As can be seen in Figures 5.3(e) and (f), the competition between the pre-

ferred ordering in the bulk, S = Seq, and the Dirichlet condition, S = S̄, at the

boundaries leads to the creation of boundary layers in S as ∆T increases. This

increase in ∆T also leads to small reductions in S at the centre of the channel for

scalar order parameter structure in Figure 5.3(e) and approximately at z = d/4

and z = 3d/4 for the scalar order parameter structure in Figure 5.3(f), i.e., wher-

ever |θz| is large. In order to minimise the free energy, regions of increased director

distortion must coincide with regions of lower ordering. Both of the scalar order

parameter structures in Figures 5.3(e) and (f) are symmetric with respect to the

channel centre. Similar scalar order parameter structures have been found in

the kinetic model considered by Ezhilan and Saintillan [49] for a suspension of

Brownian active particles confined in a shallow channel with the fluid flow driven

internally by activity and externally by a pressure gradient. The configuration of

the active suspension is governed by a conservation equation for the probability

distribution function of active particle positions and orientations throughout the

channel.

We now examine the bifurcation of the non-trivial states from the trivial

state θ(z, t) = 0 as ∆T increases. Figure 5.6 shows the measure φe, defined by

(4.4.1), as the activity strength changes for director angle solutions which are

symmetric with respect to the channel centre using the same values of ∆T as

Figure 5.3. The bifurcation diagrams for anti-symmetric director angle solutions

are shown in Figure 5.7, where we use φo, defined by (4.4.1), as the choice of
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Figure 5.3: ((a), (b)) The equilibrium director angle, ((c), (d)) velocity and ((e),

(f)) scalar order parameter structures at various temperature differences for an

extensile active nematic with activity ζ̄ = −250 Pa. At the boundaries of the

channel, S = S̄ = 0.6.

147



0 0.1 0.2 0.3 0.4 0.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 5.4: Variation of the Leslie angle (5.3.12) with the temperature difference

∆T (solid curve). The markers show the maximum director angles calculated

numerically for both symmetry breaking modes.

measure. Since the negatives of the director solution profiles in Figure 5.3 are

also possible solutions, two solution branches appear in Figures 5.6 and 5.7, where

each of the bifurcations from the trivial state are subcritical pitchforks. As was

suggested from the linear stability calculations in Subsection 5.3.1, an increase in

∆T leads to an increase in the critical activity value.

Our numerical calculations reveal that the stability of each equilibrium di-

rector angle solution is consistent with the results in Chapter 4. That is, the

trivial state is stable when S̄ζc/Seq < ζ̄ < 0 and unstable when ζ̄ < S̄ζc/Seq. The

solution branches of the anti-symmetric director structures in Figure 5.3(a) are

stable, whereas those in Figure 5.3(b) are unstable.
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velocity structure is (a) anti-symmetric and (b) symmetric for activity strength

ζ̄ = −250 Pa.
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Figure 5.6: Bifurcation diagrams for negative activity parameter values, using

the measure of even θ(z) solutions at various temperature differences. The stable

equilibria solution branch is indicated by a solid curve and unstable equilibria

solution branches are indicated by either dashed or dotted curves.

5.3.3 Numerical Calculations II: Contractile Active

Nematic Liquid Crystals

In Chapter 4 we found that, while there are no bifurcations from the trivial state

branch θ(z, t) = 0, there are non-trivial solutions on branches that terminated at

fold bifurcations. For all positive values of the activity strength, the trivial state

θ(z, t) = 0 was shown to be always stable. The director-based model consid-

ered in Chapter 4 generated non-trivial solutions in which the director structures

were characterised by regions of large distortion. The associated velocity profiles

exhibited either boundary or central jets of fluid which were increasingly sharp

for larger activity strengths. These jets of fluid coincide with the regions of high
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Figure 5.7: Bifurcation diagrams for negative activity parameter values, using

the measure of odd θ(z) solutions at various temperature differences. Stable

equilibria solution branches are indicated by solid curves and the solution branch

which is unstable to any non-zero initial guess is indicated by a dotted line.

gradients in the director structure. We now examine the existence of similar

solutions using a Q-tensor approach.

The steady state director structures at activity strength ζ̄ = 100 Pa and

temperature difference values ∆T = 0, 0.28, 0.42 and 0.49 K are shown in Figure

5.8, along with the steady state velocity solutions and scalar order parameter

profiles. As we would expect, the director and velocity profiles derived from the

Ericksen-Leslie and Q-tensor approaches are the same at ∆T = 0 K. For both the

symmetric and anti-symmetric director structures, we show an expanded view of

regions in the channel where the director orientation shows significant change

with ∆T . In the remaining regions of the channel, we do not observe any major

variations in the director orientation. Figure 5.9 shows how the maximum of the
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absolute value of the director angle, |θ|max, changes as ∆T increases. It is not

clear how the value of |θ|max for the symmetric director structure depends on the

nematic viscosities and so we cannot explain why |θ|max is non-monotonic with

∆T . We find that as ∆T increases for the anti-symmetric director structure, |θ|max

increases towards π/2, which was one of the equilibrium director orientations we

predicted analytically in Chapter 4. We can see the effect of an increase in

∆T for the symmetric velocity structure close to the boundaries and for the anti-

symmetric velocity structure in the bulk of the channel. These velocity structures

contain jets of fluid which exist due to the activity of the liquid crystal and reduce

in magnitude for a fixed value of activity as ∆T increases. Other than close to

the boundaries of the channel, the symmetric velocity structures in Figure 5.8(c)

are very similar for all values of ∆T considered, whereas the anti-symmetric

velocity structure in Figure 5.8(d) shows a reduction in the bulk velocity as ∆T

increases. Figure 5.10 shows the variation of the maximum speed, |v|max, as ∆T

increases. In each case, we can see that an increase in ∆T leads to a reduction

in the maximum speed. The decrease in the flow occurs due to the decrease in

the scalar order parameter as the liquid crystal starts to melt. The scalar order

parameter structures in Figures 5.8(e) and (f) are again symmetric with respect

to the channel centre and are characterised by boundary layers which increase

with ∆T , but also by regions of large distortion which are caused by melting, and

coincide with the regions where the boundary and central jets of fluid flow exist.

As was also the case in Chapter 4, we find that the non-trivial solutions

in Figure 5.8 do not bifurcate from the trivial state. This means that the triv-

ial state is always stable for positive activity strengths. Furthermore, we find

that the solution branches of the director structures in Figure 5.8(a) are stable,

whereas the solution branches of the director structures in Figure 5.8(b) are un-

stable, which is again consistent with our findings in Chapter 4. As mentioned

previously, we derive numerical solutions of the non-linear system (5.2.8)–(5.2.10)

in this chapter using COMSOL. One disadvantage of using COMSOL to find so-

lutions of a system of partial differential equations is that it is not always able

to find unstable equilibrium solutions. The solution branches which connect to

152



the branches of the non-trivial director angle solutions in Figure 5.8(a, b) are not

accessible in COMSOL, presumably because they are unstable. The inability of

COMSOL to find these unstable solution branches means that we have not been

able to complete the bifurcation diagrams for a contractile active nematic liquid

crystal in the same way as we did in Chapter 4. Therefore, in order to be able to

find disconnected unstable branches, we would need to make use of MATCONT

in a similar manner as done for Chapter 4, albeit we would have an additional

variable to solve for, namely the scalar order parameter S.

Despite not being able to find the solution branches which connect to those

for the director structures in Figures 5.8(a) and (b), we are able to calculate nu-

merically the fold bifurcation points at which these solutions no longer exist. Fig-

ure 5.11 shows how the critical activities of the symmetric and anti-symmetric

director structures in Figure 5.8 vary as a function of ∆T . The critical activities

for each value of ∆T are indicated by the markers. As was also the case in Chap-

ter 4, the fold bifurcations for the symmetric and anti-symmetric director angles

do not occur at the same critical activities. We find that the critical activities

for the symmetric director structures always appears to be less than those for

the anti-symmetric director structure at the same value of ∆T . Our calculations

show that for temperature differences 0 ≤ ∆T < 0.5 K, an increase in ∆T leads to

an increase in the critical activity at which a spontaneous flow transition occurs

for both the symmetric and anti-symmetric director structures. This increase in

the critical activity for contractile active nematic liquid crystals corresponds to a

delay in the spontaneous flow transition.
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Figure 5.8: ((a), (b)) The equilibrium director angle, ((c), (d)) velocity and ((e),

(f)) scalar order parameter structures at various temperature differences for a

contractile active nematic with activity ζ̄ = 100 Pa. At the boundaries of the

channel, S = S̄ = 0.6.
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with ∆T for the (a) symmetric and (b) anti-symmetric director structure of a

contractile active nematic. The activity strength used to calculate these values

is ζ̄ = 100 Pa.
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Figure 5.10: Variation of the maximum speed with ∆T for the (a) anti-symmetric

and (b) symmetric velocity structure of a contractile active nematic for activity

strength ζ̄ = 100 Pa.
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Figure 5.11: Variation of the critical activities ζ̄c for the symmetric and anti-

symmetric director structures of a contractile active nematic liquid crystal with

the temperature difference ∆T .
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5.4 Conclusions

In this chapter we have considered a Q-tensor model of uniaxial active nematic

liquid crystals confined in a shallow channel. We have examined the same ge-

ometry as that considered in Chapter 4, with the key aim of examining how the

results for the director and Q-tensor approaches may differ. We first considered

a linear stability analysis of the non-linear system in which the scalar order pa-

rameter was assumed to be constant throughout the channel. By decoupling the

linearised dynamic equations, we were able to derive an analytic critical activity

in terms of mode numbers and nematic parameters at which spontaneous flow

transitions occur. By assuming that the experimental and equilibrium scalar or-

der parameters were the same at temperature difference ∆T = 0 K, we showed

that the analytic results in this chapter matched with those in Chapter 4.

The full non-linear system was then solved numerically at different temper-

ature differences ∆T . For all values of ∆T , we fixed the scalar order parameter

on the boundaries as the value at which we fix the constant parameters. Compar-

ing the results of the linear stability analysis with the numerical calculations, we

showed that there was very good agreement between the critical threshold activ-

ities for an extensile active nematic, which justified our assumption of a constant

scalar order parameter for the linear stability analysis. We observed that when

the magnitude of the activity strength for an extensile active nematic is large,

the flow induced by activity lead to flow-aligning director structures, where the

Leslie angle increased as a result of the reduction in the ordering caused by melt-

ing. Similar to the results in Chapter 4 for a contractile active nematic, our

Q-tensor model of active nematics generated director structures which exhibit

large gradients either close to the boundaries or the centre of the channel. The

associated velocity solutions were characterised by either central or boundary jets

of fluid flow, where the magnitude of the jets of velocity for both the symmetric

and anti-symmetric profiles decreased in the bulk of the channel as a result of

the reduced ordering due to melting. The competition between the order at the

boundaries and bulk of the channel led to the formation of boundary layers in
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the scalar order parameter structures for both extensile and contractile active

nematics at higher temperature differences. For each value of ∆T , the numerical

values of the order in the bulk of the channel were close to the equilibrium scalar

order parameter values calculated analytically by minimising the thermotropic

energy density with respect to S. We observed that a reduction in S leads to an

increase in the critical activities at which non-trivial director structures for ex-

tensile and contractile active nematic liquid crystals exist. Therefore, an increase

in the temperature difference means that the extensile active system will exhibit

a spontaneous flow transition at a lower magnitude of activity strength. The

increase in the critical activity for contractile active nematic liquid crystals as a

result of higher temperature differences corresponds to a delay in the spontaneous

flow transition.

This chapter and the results in Chapter 4 have a number of similarities.

That being said, there are still some areas that need further examination with

the Q-tensor approach. For the extensile active nematic liquid crystal, we only

considered non-trivial solutions which emerge from the trivial state at subcritical

pitchfork bifurcations in this chapter. A solution branch which is not connected

to the trivial state was found in Chapter 4, and an examination of how a similar

solution derived from the Q-tensor model is affected by changes in the tempera-

ture would be of some interest. Completed bifurcation diagrams for a contractile

active nematic liquid crystal which include the unstable solution branches also

need to be constructed.
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Chapter 6

Active Fluids Confined in

Two-Dimensional Geometries

6.1 Introduction

In biological systems, one of the key factors that determine the organisation of

active agents in a fluid environment is confinement, where the interaction of self-

propelling agents with the walls of a region can lead to structures that compete

with those formed in the bulk. For example, Dammone et al. [33] used Lattice

Boltzmann simulations to model a colloidal liquid crystalline virus (the fd-virus)

confined within a wedge. An experimental investigation of this system was un-

dertaken using laser scanning confocal microscopy. By increasing the wedge angle

between the two boundaries, the director underwent a splay to bend transition.

This experimental approach provided an estimation of the ratio of splay-to-bend

elasticity ratios, namely, K3/K1 of the virus as the wedge angle changes. Lattice

Boltzmann simulations were also used by Cates et al. [18] and Marenduzzo et

al. [93] for an active liquid crystal confined in two-dimensional geometries. These

simulations were based on Q-tensor theory and showed that spontaneous flows

of an active fluid formed a pair of localised high speed jets of flow in the bulk

of the geometry. Confinement of active nematic fluids in rectangular regions was

considered experimentally and theoretically by Lewis et al. [86], where they used
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confocal scanning laser microscopy on the fd and Y21M viruses. Their experi-

ments showed that the viruses aligned into various ordered steady state director

configurations which were similar to the D and U1 states found using a theoret-

ical director-based model of liquid crystals. A continuum model based on the

Beris–Edwards equations of nematic liquid crystals was recently used by Mondal

et al. [100] to simulate colloidal particles confined in a microfluidic channel, with

a particular focus on the mechanisms of particle migration, self-reorganisation

and separation in liquid crystals.

Defects in active nematics occur spontaneously and can be generated due to

continuous production and expenditure of internal energy [59, 131]. Experimental

studies by Sanchez et al. [120] identified disclinations in active nematic gels which

were assembled from microtubules and kinesins. These defects demonstrated the

ability to drive shear flows internally. Subsequent theoretical investigations into

the dynamics of defects in active systems using a Q-tensor model were consid-

ered by Giomi et al. [58, 59] and Thampi et al. [134], each of which showed very

good agreement with the experimental observations in [120]. The theoretical

models considered in [58, 59] showed how defects of strengths ±1/2 behave as

self-propelled particles. The direction of motion is determined by the extensile or

contractile nature of the active stress exerted by the agents on the surrounding

fluid. The mechanisms which lead to the formation of defects in active nematics

were examined in [134] via numerical simulations of a model based on Q-tensor

theory. Defects have also been investigated theoretically in polar active fluids.

For example, Elgeti et al. [42] used Lattice Boltzmann simulations to study the

hydrodynamic interaction between defects close to each other in a polar active

fluid. Their simulations showed that due to the activity of the fluid, tumbling

active liquid crystals can exhibit stable steady states, which of course does not

happen in inactive liquid crystal for any amount of shear. Furthermore, it is

shown that when two nearby defects in an active fluid interact, they can contin-

uously rotate, oscillate around each other, and spontaneously form a distorted

and rotating droplet of active fluid.

In this chapter, we examine the flow of active nematic fluids confined in
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two-dimensional geometries. We first use an adapted Ericksen-Leslie model with

significant simplifications in order to model the flow of an active fluid in a wedge

geometry close to a defect. We show how the modelling assumptions allow an-

alytic solutions of the simplified Ericksen-Leslie equations. We then investigate

numerically the full Ericksen-Leslie model for an active fluid in the rectangular

regions first examined in Chapter 3. We obtain director and velocity profiles for

each of the nematic equilibria when the Ericksen number is zero, showing that

there are similarities with the analytic results derived for the wedge geometry.

Finally, we examine how a non-zero Ericksen number can influence the director

and velocity structures for the D, U1 and U2 states described in Chapter 3.

6.2 A Simplified Ericksen-Leslie Model of

Active Fluids

The non-linearity of the Ericksen-Leslie equations (2.2.31)–(2.2.33) makes them

impossible to solve analytically unless significant simplifications are made. We

will therefore use a simplified system to model the flow of an active fluid close

to the corner of a wedge. First, we assume the one-constant approximation for

the Frank elastic coefficients (i.e., K1 = K2 = K3 ≡ K, K4 = 0). When elastic-

ity dominates flow effects (i.e., small Ericksen number), the angular momentum

equation (2.2.32) simplifies to an Euler-Lagrange equation which, due to the one

constant approximation, reduces to Laplace’s equation for the director,

∇2n = 0, (6.2.1)

where ∇2n = (∇2n1, ∇2n2, ∇2n3). We also introduce simplifications for the

nematic viscosities. As the temperature approaches the critical temperature at

which an nematic-isotropic phase transition occurs, i.e., TNI, the Miesowicz vis-

cosities η1, η2 and η3 converge to the same viscosity, η [40] which, from (2.2.59)

and (2.2.60), means that the active nematic fluid is tumbling. Experimental

evidence also shows that the viscosity η12 is small in comparison to the other

viscosities, and so we neglect it from the viscous stress tensor. This means that
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the only nematic viscosities in the viscous stress tensor are γ1 and η. Finally, we

include activity in the model by adopting the same active term that was also used

in Chapter 4. When fluid inertia is ignored, along with the above assumptions

on the elastic and viscous coefficients, the flow equations (2.2.31) and (2.2.33) in

vectorised form simplify to [128]

0 = ∇ · v, (6.2.2)

0 = ∇ ·
(

2ηA + ζ(n⊗ n) +
γ1

2

(
n⊗N−N⊗ n−An⊗ n− n⊗An

)
− p̃I

)
.

(6.2.3)

This system of equations is identical to those considered by Tang and Selinger [131]

in their study of defect motion in 2D inactive and active nematic liquid crystals.

In making the modelling assumptions on the elastic and viscous parameters, we

can see that the director angle is no longer coupled to the fluid velocity and can

be solved for independently via (6.2.1). The velocity is then a function of the

director orientation through (6.2.3).

6.3 Flow of Active Fluids in a Wedge

Geometry

In this section, we employ the simplified Ericksen-Leslie system (6.2.1)–(6.2.3) to

model the flow of an active nematic fluid confined in a wedge geometry which

contains a defect at the corner (see Figure 6.1). We model this system in cylin-

drical polar coordinates (r, φ, z), where r is the radial distance, φ is the polar

angle and z is the out-of-plane Cartesian z-coordinate. We assume that both the

director orientation and velocity are uniform in the z-direction, thereby simpli-

fying the model to two dimensions. The director n makes an angle θ with the

Cartesian x-axis. The corner of the wedge is assumed to be at the origin, with

wedge boundaries at φ = −Θ and φ = Θ, so that the wedge angle separating the

two boundaries is 2Θ. We introduce a defect into our model by assuming that

the nematic director is subject to infinite planar anchoring at the two boundaries,

θ = −Θ on φ = −Θ and θ = Θ + mπ on φ = Θ, where m ∈ Z is introduced
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Figure 6.1: A wedge geometry of angle 2Θ containing active fluid in the bulk

with a defect pinned at the origin. The velocity (indicated by the curved arrows)

is subject to no-slip conditions and the director orientation (indicated by the

ellipsoids) is subject to infinite planar anchoring. The polar coordinates (r, φ)

used to specify the director orientation around a defect are also shown, with the

corner corresponding to r = 0.

to ensure that the director aligns parallel to the boundary φ = Θ after possi-

ble multiple rotations in the bulk of the wedge. Since the director undergoes

m half-turn rotations as we proceed in the polar direction from one boundary

to the other for a fixed value of r > 0, the director orientation is undefined at

r = 0, the corner of the wedge. In other words, a defect exists at the corner of

the wedge, which we model as a line defect that lies along the z-axis with the

director lying perpendicular to the z-axis. Such defects are commonly referred to

as axial line disclinations since the director needs to rotate about an axis parallel

to the disclination in order for these line defects to form [129]. With this setup,

the director takes the form

n = cos(θ − φ)er + sin(θ − φ)eφ, (6.3.1)
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where er and eφ are the basis vectors for polar coordinates, which are related to

the basis vectors in Cartesian coordinates ex and ey via

er = cosφ ex + sinφ ey, (6.3.2)

eφ = − sinφ ex + cosφ ey. (6.3.3)

We obtain the governing equation for the director angle θ by substituting (6.3.1)

into (6.2.1), which yields Laplace’s equation in polar coordinates,

θrr +
1

r
θr +

1

r2
θφφ = 0, (6.3.4)

where we adopt the same subscript notation for partial derivatives in this chapter

as used in Chapters 3 and 4. For axial disclinations, the director angle is expected

to be independent of r [129], which means that (6.3.4) simplifies to the second

order, ordinary differential equation

θφφ = 0. (6.3.5)

The velocity of the active fluid is expressed in terms of a radial and a trans-

verse component, which in turn can be expressed in terms of derivatives of a

streamfunction ψ(r, φ),

v =
1

r
ψφer − ψreφ. (6.3.6)

This form of the velocity means that the incompressibility condition (6.2.2) is au-

tomatically satisfied. In component form, the flow equations in polar coordinates

with the additional active forcing term are then

0 = η

(
1

r
ψrrφ +

1

r2
ψrφ +

1

r3
ψφφφ

)
+
ζ

r
θφ cos(2(φ− θ))− p̃r + γ1F1(r, φ),

(6.3.7)

0 = η

(
2

r3
ψφφ − ψrrr −

1

r
ψrr +

1

r2
(ψr − ψrφφ)

)
− ζ

r
θφ sin(2(φ− θ))− 1

r
p̃φ

+ γ1F2(r, φ), (6.3.8)
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where

F1(r, φ) =
∂

∂r

(
2(ψφ − rψrφ−) cos(φ− θ)− (r2ψrr − rψr − ψφφ) sin(φ− θ)

2r2

)
× cos(φ− θ) +

∂

∂φ

(
ψrr − ψrθφ

2r2

)
+
ψφ − rψrφ

r3
, (6.3.9)

F2(r, φ) =
∂

∂r

(
rψr − rθφψr − ψφφ

2r2

)
+
r2ψrr − rψr − ψφφ

2r3
− sin(φ− θ)

× ∂

∂φ

(
2(ψφ − rψrφ) sin(φ− θ) + (r2ψrr − rψr − ψφφ) cos(φ− θ)

2r3

)
.

(6.3.10)

The velocity of the active fluid is subject to no-slip and no penetration boundary

conditions which, along with the boundary conditions for the director angle, are

given by

φ = −Θ (r > 0) : θ = −Θ, ψφ = 0, ψr = 0, (6.3.11)

φ = Θ (r > 0) : θ = Θ +mπ, ψφ = 0, ψr = 0. (6.3.12)

6.3.1 Calculating the Streamfunction

In order to derive the streamfunction, we first need to obtain the director field

angle θ. Integrating (6.3.5) with respect to φ twice and using the boundary

conditions (6.3.11) and (6.3.12), we arrive at the solution

θ =

(
1 +

mπ

2Θ

)
φ+

mπ

2
(m ∈ Z). (6.3.13)

The coefficient of φ in (6.3.13) is commonly referred to as the strength, or winding

number, of a defect and is denoted by s,

s = 1 +
mπ

2Θ
. (6.3.14)

As discussed in Chapter 1, for a defect in an unconfined system, this parameter

represents the number of complete rotations of the director on a closed circuit

containing the defect for Θ = π. The strength of the defect now depends on the

value of the wedge angle 2Θ and m, the number of half-turn rotations for a fixed

r. For example, consider a wedge geometry with wedge angle 2Θ = 3π/2. For
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such a wedge geometry, the relationship between s and m simplifies to

s = 1 +
2m

3
. (6.3.15)

When m = −1, then the defect strength is s = 1/3, a value that would be

impossible for a defect in an unconfined system, where s is restricted to s = k/2

for some integer k in order for n to be continuous. Throughout this analysis, we

consider examples such that the wedge angle is an integer multiple of π/2, that

is, 2Θ = nπ/2, n ∈ Z. This means that the strength of the defect (6.3.14) can be

expressed as

s = 1 +
2m

n
. (6.3.16)

The two specific cases we will examine in this chapter are a sharp corner with

perpendicular boundaries and a flat plate, which correspond to the integer values

n = 1 and 2, respectively. Since m is necessarily an integer value in order for the

director to align parallel to the boundary φ = Θ, it follows that when n = 1, then

the only admissible values of s are the odd integers. When the wedge geometry

is a flat plate, so that n = 2, then the defect strength can be any integer value.

The strength of the defect is then related to m via (6.3.16).

Having derived the solution for the director angle, we substitute (6.3.13)

into equations (6.3.7) and (6.3.8), which are then combined to generate a single

equation for the streamfunction ψ(r, φ), independent of the modified pressure

gradient terms. The single governing equation for the streamfunction is

∇4ψ =
2(−1)mζs(s− 1) sin(2(s− 1)φ)

ηr2
− γ1s(r

3ψrrr − r2ψrr + rψrφφ + rψr)

2ηr4
.

(6.3.17)

From equation (6.3.17), it is clear that no flow will be induced in this system

unless the activity strength parameter ζ 6= 0. It is not obvious how this equation

can be solved analytically unless we consider some simplifications, where analytic

solutions for active fluid flows are our primary focus in this section. In order

to derive analytic solutions for the streamfunction, we consider the special case

of when the activity term is dominant compared to the terms pre-multiplied by

γ1, that is, the special case of when γ1 = 0 Pa s in equation (6.3.17), thereby
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reducing the flow equation to a forced biharmonic equation. A similar system of

equations were solved by Giomi et al. [59] for an isolated defect in an active fluid

confined in a circle. We will re-introduce all of the nematic viscosities and elastic

constants in Section 6.4, where we implement a numerical scheme in COMSOL

to solve the fully coupled Ericksen-Leslie equations for an active nematic liquid

crystal confined in a rectangular region. Our main focus in this section is to get

qualitative pictures for director and flow structures of active fluids close to regions

of high director distortion using an analytic approach. While setting γ1 = 0 Pa s

is a significant modelling simplification, we will see over the course of the chapter

that there are some similarities in the analytic and numerical flow structures

close to regions of high director distortion. Furthermore, when we consider the

streamfunction solution for an active fluid close to a flat plate with a defect of

strength s = −1 and compute the ratio of γ1 and ζ terms in equation (6.3.17),

we find that neglecting γ1 from (6.3.17) is a very good approximation except for

when φ = ±π/4,±3π/4. It is only at these points where we may need to consider

the role of the γ1 terms in equation (6.3.17). We therefore consider the effects

due to the advection term (v · ∇)θ negligible.

For the remainder of this section, the governing equation for the stream-

function is

∇4ψ =
2(−1)mζs(s− 1)

ηr2
sin(2(s− 1)φ). (6.3.18)

Similar to the solution for the velocity in [111], we find that the magnitude of flow

is proportional to the ratio of active and viscous forces, ζ/η. We seek a separable

solution for (6.3.18) of the form ψ(r, φ) = rjg(φ), where g(φ) is a function to be

determined, and j is an exponent which will be a positive integer to ensure there

is no singularity in the flow at r = 0 [99]. Substituting this expression for ψ into

(6.3.18), we obtain the fourth order, ordinary differential equation(
d4g

dφ4
+ 2(j2 − 2j + 2)

d2g

dφ2
+ (j(j − 2))2g

)
rj−4

=
2(−1)mζs(s− 1)

ηr2
sin(2(s− 1)φ). (6.3.19)

By solving this differential equation for g(φ), we find that the streamfunction has
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the general solution [2]

ψ(r, φ) = −r
2

4

(
A2 cos(2φ) +B2 sin(2φ)− 4(C2φ+D2)

− (−1)mζ

2η(s− 1)(s− 2)
sin(2(s− 1)φ)

)
+
∑
j≥3

rjfj(φ) (s 6= 1, 2),

(6.3.20)

where A2, B2, C2, D2 are arbitrary constants associated with terms of O(r2), and

fj(φ) = Aj cos(jφ) +Bj sin(jφ) + Cj cos((j − 2)φ)

+Dj sin((j − 2)φ). (6.3.21)

In (6.3.21), Aj, Bj, Cj, Dj are arbitrary constants associated with terms of O(rj),

with j ≥ 3. We have not considered a contribution to the general solution (6.3.20)

of O(r) since it could lead to a velocity which is non-zero at the location of the

defect, r = 0, where no-slip and no-penetration of the velocity must be satisfied.

As mentioned previously, we will only consider the special cases of a wedge

with perpendicular boundaries and a flat plate (i.e., a wedge with angles 2Θ = π/2

and π, respectively). For these two special cases, the no-slip and no-penetration

conditions can only determine the values of the constants A2, B2, C2, D2. It is

also clear from the solution (6.3.20) that in the limit as r →∞, we have infinite

flow. We will consider only finite flows induced by activity close to the defect,

and so only the contributions to (6.3.20) which are of the smallest order in the

radial direction, (i.e., O(r2)), will be considered. Although this is a significant

simplification, and the higher order terms may be required if the flow far away

from the corner necessitates it, we expect this O(r2) solution to contain the

dominant terms close to the corner. All of the higher order terms in r tend to

infinity faster and so we remove them from the solution (6.3.20). Furthermore,

there will be zero flow generated when there is no activity, and so any terms in the

general solution which do not contain the activity strength ζ will not contribute to

the flow. The arbitrary constants A2, B2, C2, D2 are determined via the no-slip
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and no-penetration conditions,

A2 = 0, (6.3.22)

B2 =
(−1)mζ (2Θ(s− 1) cos(2(s− 1)Θ)− sin(2(s− 1)Θ))

2η(s− 1)(s− 2)(2Θ cos(2Θ)− sin(2Θ))
, (6.3.23)

C2 =
(−1)mζ ((s− 2) sin(2sΘ)− s sin(2(s− 2)Θ))

8η(s− 1)(s− 2)(2Θ cos(2Θ)− sin(2Θ))
, (6.3.24)

D2 = 0. (6.3.25)

We can see from these constants, as well as the activity term in (6.3.20), that the

streamfunction solution (6.3.20) is undefined when s = 1 and s = 2. These are

two special cases which we will consider independently later in this chapter.

6.3.2 Active Fluid Flows Close to Sharp Corners

The director structures and velocity profiles of a contractile system (i.e., ζ > 0)

confined in a wedge with angle 2Θ = π/2 (n = 1) close to defects of strengths

s = −1 and s = 3 (m = −1 and m = 1, respectively), are shown in Figures 6.2(a)

and (c). The two director structures in Figures 6.2(a) and (c) are the same as

those observed for inactive nematics, albeit restricted by the boundaries of the

wedge. The streamfunction solutions in this case are

ψ =


ζr2 (4φ− π sin(2φ) + sin(4φ))

48η
when s = −1,

−ζr2 (4φ− π sin(2φ) + sin(4φ))

16η
when s = 3.

(6.3.26)

These streamfunction solutions exhibit the same dependence on the polar angle

φ, and only differ due to the change in the sign and size of the ratio of active and

viscous forces. This will simply lead to different velocity magnitudes for the same

values of ζ and η. The curves in the flow profiles shown in Figures 6.2(b) and (d)

represent the streamlines, with the arrows indicating the direction of flow. The

colouring indicates the magnitude of the velocity, with red regions corresponding

to areas of weakest flow and yellow regions corresponding to areas of strongest

flow. Figure 6.2(b) shows that close to the boundaries of the wedge with an

s = −1 defect, the active fluid is pulled towards the singularity before then being
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expelled out into the bulk, leading to localised regions of high speed as r increases

near the centre line φ = 0. Figure 6.2(d) shows the flow near a sharp corner with

a defect of strength s = 3, where the fluid is now pulled in from the bulk before

being pushed parallel to the boundaries away from the singularity. When we

consider an extensile active nematic, the directions of the flows are the opposite

of those for the contractile active nematic because, for this particular model, the

director structures of extensile and contractile active nematics are unaffected by

the flow and so are exactly the same.

6.3.3 Active Fluid Flows Close to Flat Plates

We now consider the orientational ordering and flow of a contractile active fluid

close to a flat plate, i.e., a corner of angle 2Θ = π. The director and flow profiles

close to a flat plate containing defects of strengths s = −1 (with m = −2) and

s = 3 (with m = 2) are shown in Figure 6.3. The solutions for the streamfunction

in this case are

ψ =


−ζr2 (2 sin(2φ) + sin(4φ))

48η
when s = −1,

ζr2 (2 sin(2φ) + sin(4φ))

16η
when s = 3.

(6.3.27)

As was the case for the results near a sharp corner, we find that these stream-

function solutions have the exactly same dependence on the polar angle φ, and

only differ due to the sign and size of the ratio of active to viscous forces. Com-

paring the flow profiles in Figures 6.2 and 6.3, we can see that the directions of

flow, both close to and away from the boundaries, are different. This change in

the direction of flow can be seen clearly by the change in the sign of the activity

strength ζ in the solutions (6.3.26) and (6.3.27) for both defect strengths. In the

case of the s = −1 defect, Figure 6.3(b) shows the flow close to the flat plate is

being pulled in the direction of the singularity, before then being expelled away

from the defect close to the boundaries. A similar conclusion can be drawn for

the flow near a flat plate with an s = 3 defect, shown in Figure 6.3(d), although

we do not investigate this change in the flow direction further.
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(a) (b)

(c) (d)

Figure 6.2: (a), (c) Director structures and (b), (d) associated flow profiles of a

contractile active fluid close to a sharp corner containing defects of strengths (a),

(b), s = −1 and (c), (d), s = 3, with wedge angle 2Θ =
π

2
.
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(a) (b)

(c) (d)

Figure 6.3: (a), (c) Director structures and (b), (d) associated flow profiles of a

contractile active fluid close to a flat plate containing defects of strengths (a),

(b), s = −1 and (c), (d), s = 3, with wedge angle 2Θ = π.
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6.3.4 The Special Cases of s = 1 and s = 2 Defects

As mentioned previously, the solution (6.3.20) was not valid in the special cases

s = 1 and s = 2. So we now return to (6.3.18) for these two special cases. For

a defect of strength s = 1, the streamfunction satisfies the biharmonic equation

∇4ψ = 0, which has the general solution at O(r2)

ψ(r, φ) = r2(A cos(2φ) +B sin(2φ) + Cφ+D), (6.3.28)

where A,B,C,D are arbitrary constants. We have neglected terms in the general

solution (6.3.28) which are of higher order in the radial distance r for the same

reason as before. Using the no-slip and no-penetration boundary conditions,

where we find that the constants A,B,C,D are all equal to zero and so the

solution for the streamfunction is ψ = 0. This means that for all wedge angles,

there is no flow generated within the wedge for a defect of strength s = 1.

For a defect of strength s = 2, there are only two compatible wedge geome-

tries corresponding to 2Θ = π or 2π. We consider the former, which corresponds

to a flat plate geometry. In this case, m = 1 and the director angle solution

(6.3.13) simplifies to

θ = 2φ+
π

2
, (6.3.29)

and equation (6.3.18) becomes

∇4ψ = −4ζ sin(2φ)

ηr2
. (6.3.30)

The solution of (6.3.30) subject to the no-slip and no-penetration conditions is

ψ = −ζr
2φ cos2 φ

2η
. (6.3.31)

The director structure of an s = 2 defect near a flat plate when ζ > 0 is shown in

Figure 6.4, along with the associated velocity profile. From the velocity profile,

we see that, like the s = −1 defect, the fluid closest to the boundaries of the

wedge initially flows towards the defect, before then travelling away from it.

However, the behaviour is slightly different from the case s = −1 in Figure 6.3.

In particular, the velocity profiles exhibit different behaviours close to the plates.
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We explore this further by calculating the Cartesian x-component of the velocity,

u, for s = −1 and s = 2 defects in the flat plate situation. From equations (6.3.2)

and (6.3.3), we can obtain u in terms of the streamfunction,

u =
1

r
ψφ cosφ+ ψr sinφ. (6.3.32)

For the s = −1 and s = 2 defects, equation (6.3.32) leads to an x-component of

the velocity of

u =


−ζr cos(2φ) cos3 φ

6η
when s = −1,

−ζr cos3 φ

2η
when s = 2.

(6.3.33)

We can solve (6.3.33) in order to determine the first non-zero values of φ when

u = 0. We find that the first non-zero solutions for the polar angle are φ = ±π/4

when s = −1 and φ = ±π/2 when s = 2. Figure 6.5 shows the velocities (6.3.33)

as a function of the polar angle φ for a contractile active nematic. The solid curve

shows that the x-component of velocity for the s = −1 defect is non-monotonic,

with the flow initially moving away from the wall and increasing, before eventually

decreasing towards it. By contrast, the dashed curve shows that away from the

line φ = 0, the x-component of velocity for the s = 2 defect continuous to increase

towards the wall.
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(a) (b)

Figure 6.4: (a) Director angle and (b) velocity structures of a contractile active

fluid close to a flat plate containing a defect of strength s = 2 with wedge angle

2Θ = π.
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Figure 6.5: The velocities u(r, φ) defined in (6.3.33) as a function of the polar

angle φ with radial distance r = 10−3, activity strength ζ = 10 Pa and viscosity

η = 0.1 Pa s.
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6.4 Director and Flow Structures of Active

Nematic Liquid Crystals in Rectangular

Regions

The results of the previous section, as well as Chapters 4 and 5, have shown that

close to regions of director distortion, an active fluid can spontaneously generate

a flow for any magnitude of activity. In Chapter 3 we demonstrated various di-

rector distortions that occur in confined rectangular regions. In this section, we

bring all of this work together and examine the flow spontaneously generated by

a flow aligning active nematic liquid crystal in the rectangular regions considered

in Chapter 3. As in Chapter 4, we use an adapted Ericksen-Leslie model, where

the velocity and director angle are governed by equations (2.2.31), (2.2.32) and

(2.2.33). Unlike in the wedge geometry, we will now retain each of the elastic and

viscous coefficients in the elastic energy density and dissipation function, respec-

tively. As in Chapter 3, the liquid crystal is subject to a Rapini-Papoular surface

anchoring condition at each boundary, thus avoiding the presence of defects at

the corners of the region that arise when infinite planar anchoring is considered.

The nematic director is assumed to be of the form

n = (cos θ(x, y), sin θ(x, y), 0), (6.4.1)

and the velocity of the active nematic is

v = (u(x, y), v(x, y), 0). (6.4.2)

The elastic energy density (2.2.40) can now be written as

wF =
1

4

(
(K3 −K1)((θ2

x − θ2
y) cos(2θ) + 2θxθy sin(2θ)) + (K1 +K3)(θ2

x + θ2
y)
)
,

(6.4.3)
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while the dissipation function from (2.2.29) becomes

D =
η12

8

(
(uy + vx) sin(2θ) + (ux − vy) cos(2θ) + ux + vy

)2

+
γ2

4
(2θ̇ + uy − vx)((uy + vx) cos(2θ)− (ux − vy) sin(2θ))

+
η3

2

(
2u2

x + u2
y + 2uyvx + v2

x + 2v2
y

)
+
γ1

8

(
2θ̇ + uy − vx

)2

+
1

2
(2η1 + 2η2 − 4η3 − γ1)

((
ux cos θ +

1

2
(uy + vx) sin θ

)2

+
(1

2
(uy + vx) cos θ + vy sin θ

)2
)
. (6.4.4)

We use a superposed dot to represent the material time derivative which, as we

are seeking steady solutions of a two-dimensional system in Cartesian coordinates,

is θ̇ ≡ Dθ/Dt = uθx + vθy. The Ericksen-Leslie equations (2.2.31), (2.2.32) and

(2.2.33), for which we will seek steady solutions, are now

0 = ux + vy, (6.4.5)

ρu̇ =
∂

∂x

(
∂D
∂ux

+ ζ cos2 θ

)
+

∂

∂y

(
∂D
∂uy

+ ζ sin θ cos θ

)
− ∂D
∂θ̇

θx − p̃x, (6.4.6)

ρv̇ =
∂

∂x

(
∂D
∂vx

+ ζ sin θ cos θ

)
+

∂

∂y

(
∂D
∂vy

+ ζ sin2 θ

)
− ∂D
∂θ̇

θy − p̃y, (6.4.7)

0 = −p̃z, (6.4.8)

0 =
∂

∂x

(
∂wF
∂θx

)
+

∂

∂y

(
∂wF
∂θy

)
− ∂wF

∂θ
− ∂D
∂θ̇

. (6.4.9)

6.4.1 Non-Dimensionalisation

We introduce dimensionless quantities (indicated by a bar) as follows:

x = dx̄, y = dȳ, u = V ū, v = V v̄, p̃ = P ¯̃p, (6.4.10)

where V and P are velocity and pressure scales, respectively, and d is the length of

the channel. Given that we are interested in activity driven flow, by considering

equations (6.4.6)–(6.4.9), we can define both V and P in terms of the activity

magnitude |ζ|,

V =
|ζ|d
η3

and P = |ζ|. (6.4.11)
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The non-dimensionalisation results in a set of dimensionless constants: a measure

of the deviation from isotropic elasticity, k = K3/K1; dimensionless nematic

viscosities ηi/η3 and γi/η3; the aspect ratio λ; and the Reynolds and Ericksen

numbers,

Re =
ρV d

η3

=
ρ|ζ|d2

η2
3

, (6.4.12)

Er =
η3V d

K1

=
|ζ|d2

K1

. (6.4.13)

The Reynolds number is a ratio of inertial to viscous forces, while the Ericksen

number measures the ratio of viscous to elastic forces. Using typical values for

the Miesowicz viscosities, channel length, fluid density and elastic constants (for

example, 5CB at 26oC [129] with d = 10−5 m), we obtain Re ' 10−3|ζ| and

Er ' 102|ζ| and therefore, we assume that Re � 1 and neglect terms of O(Re).

The dimensionless system under consideration is then

0 = ūx̄ + v̄ȳ, (6.4.14)

0 =
∂

∂x̄

(
∂D̄
∂ūx̄

+ sgn(ζ) cos2 θ̄

)
+

∂

∂ȳ

(
∂D̄
∂ūȳ

+ sgn(ζ) sin θ̄ cos θ̄

)
− ∂D̄
∂ ˙̄θ

θ̄x̄ − ˜̄px̄,

(6.4.15)

0 =
∂

∂x̄

(
∂D̄
∂v̄x̄

+ sgn(ζ) sin θ̄ cos θ̄

)
+

∂

∂ȳ

(
∂D̄
∂v̄ȳ

+ sgn(ζ) sin2 θ̄

)
− ∂D̄
∂ ˙̄θ

θ̄ȳ − ˜̄pȳ,

(6.4.16)

0 = − ˜̄pz̄, (6.4.17)

0 =
∂

∂x̄

(
∂w̄F
∂θ̄x̄

)
+

∂

∂ȳ

(
∂w̄F
∂θ̄ȳ

)
− ∂w̄F

∂θ̄
− Er

∂D̄
∂ ˙̄θ

, (6.4.18)

where sgn(ζ) denotes the sign (or signum) function. We swap between contractile

and extensile active nematics by setting sgn(ζ) = 1 in equations (6.4.15) and

(6.4.16) for contractile active nematics, and sgn(ζ) = −1 for extensile active

nematics. For convenience, we will now remove the ¯ from each of the quantities in

equations (6.4.14)–(6.4.18) with the understanding that, henceforth, all quantities

in this chapter are dimensionless. The derivatives of the dimensionless free energy

density and dissipation function are
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∂wF
∂θx

=
1

2
(k − 1)(θx cos(2θ) + θy sin(2θ)) +

1

2
(1 + k)θx, (6.4.19)

∂wF
∂θy

=
1

2
(k − 1)(θx sin(2θ)− θy cos(2θ)) +

1

2
(1 + k)θy, (6.4.20)

∂wF
∂θ

=
1

2
(k − 1)(2θxθy cos(2θ)− (θx − θy)(θx + θy) sin(2θ)), (6.4.21)

∂D
∂θ̇

=
1

2

(
γ1(2θ̇ + uy − vx)− γ2

(
(ux − vy) sin(2θ)− (uy + vx) cos(2θ)

))
,

(6.4.22)

∂D
∂ux

=
η12

4

(
(uy + vx) sin(2θ) + (ux − vy) cos(2θ) + ux + vy

)
(1 + cos(2θ))

− γ2

4
(2θ̇ + uy − vx) sin(2θ) + 2ux

+ (2η1 + 2η2 − 4− γ1)
(
ux cos θ +

1

2
(uy + vx) sin θ

)
cos θ, (6.4.23)

∂D
∂uy

=
η12

4

(
(uy + vx) sin(2θ) + (ux − vy) cos(2θ) + ux + vy

)
sin(2θ)

+
γ2

4

(
2(θ̇ + uy) cos(2θ) + (vy − ux) sin(2θ)

)
+

1

4
(2η1 + 2η2 − 4− γ1)

(
(ux + vy) sin(2θ) + uy + vx

)
+ uy + vx +

γ1

4
(2θ̇ + uy − vx), (6.4.24)

∂D
∂uy

=
η12

4

(
(uy + vx) sin(2θ) + (ux − vy) cos(2θ) + ux + vy

)
sin(2θ)

+
γ2

4

(
2(θ̇ − vx) cos(2θ)− (vy − ux) sin(2θ)

)
+

1

4
(2η1 + 2η2 − 4− γ1)

(
(ux + vy) sin(2θ) + uy + vx

)
+ uy + vx −

γ1

4
(2θ̇ + uy − vx), (6.4.25)

∂D
∂vy

=
η12

4

(
(uy + vx) sin(2θ) + (ux − vy) cos(2θ) + ux + vy

)
(1− cos(2θ))

+
γ2

4
(2θ̇ + uy − vx) sin(2θ) + 2vy

+ (2η1 + 2η2 − 4− γ1)
(
vy sin θ +

1

2
(uy + vx) cos θ

)
sin θ. (6.4.26)
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Finally, the dimensionless boundary conditions for the director angle due to weak

surface anchoring are

σ1 : (1 + k)θx + τ sin(2θ) + (k − 1)(θx cos(2θ) + θy sin(2θ)) = 0,

σ2 : (1 + k)θx − τ sin(2θ) + (k − 1)(θx cos(2θ) + θy sin(2θ)) = 0,

σ3 : (1 + k)θy − τ sin(2θ)− (k − 1)(θy cos(2θ)− θx sin(2θ)) = 0,

σ4 : (1 + k)θy + τ sin(2θ)− (k − 1)(θy cos(2θ)− θx sin(2θ)) = 0,

(6.4.27)

where τ is the dimensionless anchoring strength. The boundary conditions for

the velocity are the classic no-slip and no-penetration boundary conditions, u = 0

and v = 0. In the calculations that follow, we have assumed the liquid crystal

has the physical parameters of 5CB given in Appendix D of Stewart [129] as in

the investigations considered in Chapters 4 and 5.

6.4.2 Flow Induced with Zero Ericksen Number

We first consider the flow of active nematic liquid crystals in a rectangle for zero

Ericksen number, Er = 0. In this case, the equation for the director angle (6.4.18)

no longer contains terms due to gradients in the velocity and, therefore, the di-

rector orientation is the same for both extensile and contractile agents. We solve

the non-linear system (6.4.14)–(6.4.18) numerically in COMSOL. The governing

equation for the director angle solved here is similar to the equation solved in

Chapter 3, where we assumed that the inactive nematic liquid crystal was elasti-

cally isotropic. For the active nematic liquid crystal, we use the experimentally

measured values for the splay and bend elastic constants for the liquid crystal

5CB given in Appendix D in Stewart [129]. so that the liquid crystal is elastically

anisotropic. We would not expect any significant changes visually in the director

structures of elastically isotropic and anisotropic liquid crystals for large anchor-

ing strength, although a quantitative difference between the two will exist due to

the presence of extra non-linear terms in the director angle equation when k 6= 1.

Director profiles for the U1 and DD states when the active system is contractile

are given in Figures 6.6, along with the associated velocity profiles. Director and

flow structures for the D and U2 states are given in Figure 6.7. The direction of
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fluid flow in Figures 6.6 and 6.7 is indicated by the arrowheads, with the colour

bar used to indicate the velocity magnitude (i.e., speed) in the rectangular region.

The regions of strong flow are indicated by the bright regions, whereas regions

of weak flow are dark. An increase in the size of the arrows coincides with a

higher speed. Similar to the velocity profiles found by Marenduzzo et al. [93],

we find that our adapted Ericksen-Leslie model shows the spontaneous flow of

the active nematic liquid crystal appearing as a pair of circulating jets in the

bulk in Figures 6.6 and 6.7. The Q-tensor model of active nematics considered

in [93] was based on the Beris-Edwards equations, and generated flow profiles for

which the velocity was subject to periodic boundary conditions, with the director

orientation subject to infinite planar anchoring along the boundaries.

We will now examine the flows generated close to sharp corners and flat

plates in the rectangular region, with a particular focus on the similarities between

the numerically calculated flows for the rectangular region and those calculated

analytically for the wedge geometry. If we consider, for example, the D state, the

director structures close to the corners (0, 0) and (1,λ) are similar to the director

structure close to a defect of strength s = 1 (see Figure 6.8(a)). By contrast, the

director structures close to the corners (1, 0) and (0,λ) are similar to the director

structure close to a defect of strength s = −1 (see Figure 6.8(b)). Figure 6.9(a)

shows the velocity structure for the D state close to the corner (1,λ), while Figure

6.9(b) shows the D state velocity structure near the corner (0,λ). Comparing

these two plots, we see that the velocity magnitude close to the corner (0,λ) is

much stronger than that near (1,λ). Furthermore, close to the corner (0,λ), we

find that there is flow near the boundaries which travels in towards the corner,

i.e., inflow. This inflow is then expelled out in the bulk of the region, i.e., outflow.

This flow structure is similar to that in Figure 6.2(b), which shows inflow close to

the boundaries of the wedge, with an outflow close to the centre line of the wedge.

The wedge model suggested zero flow near s = 1 defects. However, we recognise

that since we are examining a fully confined rectangular region, the distortion in

the director close to each of the corners will lead to a non-zero flow close to each

corner, including those with director structures which resemble those near s = 1
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defect. These flows are however much weaker than those in the vicinity of director

structures which are similar to those near s = −1 defects, as indicated by the

increase in darker regions and the reduced arrows in Figure 6.9(a). The distortion

in the director close to the corners (1, 0) and (0,λ) leads to swirls of fast fluid flow

around the centre of the region, with very weak flow induced near the remaining

two corners. We have therefore observed similar inflow and outflow behaviour for

tumbling and flow-aligning active nematic liquid crystals close to sharp corners.

Similar conclusions can be drawn for the two rotated states. The U1 state velocity

structure is given by Figure 6.6(c), where we find that the regions of strongest

flow occur near the vertical walls and centre of the rectangular region. The flow

is generated due to the distortion in the director close to the corners (0,λ) and

(1,λ). Figure 6.7(d) shows the U2 state velocity structure, where the regions of

strongest flow occur near the horizontal boundaries, with the flow generated near

the corners (1, 0) and (1,λ).

So far, we have discussed only the flows close to a sharp corner of a rectan-

gular region. When we examined the wedge geometry in Subsection 6.3.3, we also

considered the flow induced by activity close to the special case of a flat plate. In

order to compare these two geometries, we now consider the DD state which con-

tained regions of strong director distortion close to the midpoints of the vertical

boundaries. We find that close to the points (0,λ/2) for the velocity structure

in Figure 6.6(d), there appears to be generation of a central jet of fluid, with the

inflow of the active agents towards the vertical boundary on the left, followed by

outflow away from the boundaries. By contrast, there is very weak flow close to

the point (1,λ/2). As can be seen in Figure 6.10, the director structures close

to the points (0,λ/2) and (1,λ/2) are similar to those near defects of strengths

s = −1 and s = 1, respectively. Comparing the numerical flow structure in Figure

6.6(d) with the analytic flow structure near a flat plate shown in Figure 6.3(b),

we again see similar inflow and outflow behaviour for tumbling and flow-aligning

active nematic liquid crystals, despite the large number of modelling simplifica-

tions that were made for the analytic approach considered for a tumbling active

nematic.
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Figure 6.6: (a), (b) Director and (c), (d) flow structures of the U1 and DD states

for a contractile active nematic in a rectangle with aspect ratio λ = 1.5, elastic

constant ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen number Er = 0.

The colour bar indicates the magnitude of the velocity throughout the rectangular

region.
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Figure 6.7: (a), (b) Director and (c), (d) flow structures of the D and U2 states

for a contractile active nematic in a rectangle with aspect ratio λ = 1.5, elastic

constant ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen number Er = 0.

The colour bar indicates the magnitude of the velocity throughout the rectangular

region.
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Figure 6.8: Director structures close to the corner (a) (1, λ) and (b) (0, λ) for

the D state with aspect ratio λ = 1.5, elastic constant ratio k ≈ 1.31, anchoring

strength τ = 100 and Ericksen number Er = 0.
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Figure 6.9: Flow structures close to the corner (a) (1, λ) and (b) (0, λ) for the

contractile D state with aspect ratio λ = 1.5, elastic constant ratio k ≈ 1.31, an-

choring strength τ = 100 and Ericksen number Er = 0. The colour bar indicates

the magnitude of the velocity close to the corners.
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Figure 6.10: Director structures close to the point (a) (0,λ/2) and (b) (1,λ/2) for

the DD state with aspect ratio λ = 1.5, elastic constant ratio k ≈ 1.31, anchoring

strength τ = 100 and Ericksen number Er = 0.
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6.4.3 Flow Induced with Non-Zero Ericksen Numbers

In Chapters 4 and 5, we saw that the flows of extensile and contractile active

nematic systems were very different due to the differences in director structures

for the two types of active agents. When we considered the flow induced in the

rectangular region in the last subsection when Er = 0, the director structure was

the same for extensile and contractile agents and, therefore, a change in the sign

of ζ simply leads to a flow moving in the opposite direction. In this subsection,

we examine the system (6.4.14)–(6.4.18) for a non-zero Ericksen number, so that

the director structure may be affected by the flow. An increase in the Ericksen

number can be thought of as increasing the magnitude of the activity parameter.

The director structures for a contractile D state (i.e., sgn(ζ) = 1) with

Ericksen numbers Er = 250 and 500 are shown in Figures 6.11, along with the

associated flow profiles. We have chosen these values for the Ericksen number in

order to highlight clearly the influence of activity on the system when compared

to the zero Ericksen number state in Figure 6.7. From Figures 6.11(a) and (b), we

can see that the director adopts a uniform diagonal structure in the bulk of the

region as the Ericksen number increases, which coincides with regions of weaker

flow, as shown by the velocity profiles in Figures 6.11(c) and (d). The strongest

regions of flow are found close to the vertical walls where the active agents flow

parallel to the vertical walls. Comparing the velocity profiles in Figures 6.11 with

the velocity profile in Figure 6.7(c), we can see that an increase in the Ericksen

number has led to a reduction in the maximum speed.

Figure 6.12 shows the director and velocity profiles for an extensile D state

(i.e., sgn(ζ) = −1) at Ericksen numbers Er = 75 and 100. The director structures

for contractile active nematics at Ericksen numbers Er = 75 and 100 are not

significantly different from those when Er = 0, and so we have not shown them

here. In order to see any significant change in the contractile director structures,

larger Ericksen numbers are used than those for the extensile case. Even with the

choice of smaller Ericksen number, the director structure in Figure 6.12(a), the

extensile active nematic exhibits larger regions of director distortion compared to
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the contractile agents. The increased director distortion appears as a wave-like

pattern in the director structure and looks like a region of high fluid velocity

will be formed from the boundary as the activity magnitude further increases.

We indicate this by the markers and arrows in Figure 6.12(b). This change then

leads to a complicated flow structure in which the regions of strongest flow occur

where there is greater distortion in the director. Comparing the velocity profiles

in Figures 6.12 with Figure 6.7(c), we can see that, unlike the contractile case, an

increase in the Ericksen number has led to faster spontaneous flow and, similar to

the zero Ericksen number case, the strongest flow occurs as a swirl-like structure

around the centre of the region.

The structures for a contractile and extensile U1 state at the same Ericksen

numbers used for the D state, are shown in Figures 6.13 and 6.14, respectively.

We can see that, like the D state, increasing the Ericksen number of contractile

and extensile active nematics leads to completely different director and velocity

structures. Similar to the zero Ericksen number case, the regions of strongest

flow for the contractile U1 state are observed near the vertical boundaries, with

an increase in activity causing a reduction in the maximum speed. By contrast,

there is faster spontaneous flow in the extensile active nematic close to the centre

of the region as the Ericksen number increases. The director and velocity profiles

for the U2 state are shown in Figures 6.15 and 6.16. Once again, we find that

increasing the magnitude of activity for a contractile active nematic leads to a

reduction in the velocity magnitude, with the strongest regions of flow for this

state now observed close to the horizontal boundaries, as it also did when Er = 0.

As was also the case for the extensile D and U1 states, we find that the extensile

U2 state exhibits faster flow as the magnitude of activity increases, with the active

agents closer to the centre of the region swimming faster than those elsewhere.

Similar to the extensile D state, both the extensile U1 and U2 states exhibit a

wave-like pattern in the director structure. Our numerical scheme in COMSOL

has not been able to find solutions for the DD state at non-zero Ericksen numbers,

possibly due to the activity inducing a flow that causes a break in the symmetry

of the DD state director structure, leading to an unstable configuration.
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Figure 6.11: (a), (b) Director and (c), (d) flow structures of the D state for a

contractile active nematic in a rectangle with aspect ratio λ = 1.5, elastic constant

ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen numbers Er = 250 and

Er = 500. The colour bar indicates the magnitude of the velocity throughout the

rectangular region.
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Figure 6.12: (a), (b) Director and (c), (d) flow structures of the D state for an

extensile active nematic in a rectangle with aspect ratio λ = 1.5, elastic constant

ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen numbers Er = 75 and

Er = 100. The colour bar indicates the magnitude of the velocity throughout the

rectangular region.
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Figure 6.13: (a), (b) Director and (c), (d) flow structures of the U1 state for

a contractile active nematic in a rectangle with aspect ratio λ = 1.5, elastic

constant ratio k ≈ 1.31, anchoring strength τ = 100 Ericksen numbers Er = 250

and Er = 500. The colour bar indicates the magnitude of the velocity throughout

the rectangular region.
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Figure 6.14: (a), (b) Director and (c), (d) flow structures of the U1 state for an

extensile active nematic in a rectangle with aspect ratio λ = 1.5, elastic constant

ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen numbers Er = 75 and

Er = 100. The colour bar indicates the magnitude of the velocity throughout the

rectangular region.
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Figure 6.15: (a), (b) Director and (c), (d) flow structures of the U2 state for a

contractile active nematic in a rectangle with aspect ratio λ = 1.5, elastic constant

ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen numbers Er = 250 and

Er = 500. The colour bar indicates the magnitude of the velocity throughout the

rectangular region.
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Figure 6.16: (a), (b) Director and (c), (d) flow structures of the U2 state for an

extensile active nematic in a rectangle with aspect ratio λ = 1.5, elastic constant

ratio k ≈ 1.31, anchoring strength τ = 100 and Ericksen numbers Er = 75 and

Er = 100. The colour bar indicates the magnitude of the velocity throughout the

rectangular region.
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6.5 Conclusions

In this chapter, we have examined the flow of active fluids confined in two-

dimensional geometries using an adapted Ericksen-Leslie theory. First, we con-

sidered a simplified adapted Ericksen-Leslie model to solve for the director orien-

tation and flow of a tumbling active nematic fluid in a wedge geometry, close to a

singularity in the director structure. By examining the limit of large elasticity, we

decoupled the director orientation from the flow. The director angle could then

be solved for independently, with the velocity determined subsequently from the

director orientation. This meant that extensile and contractile director structures

were indistinguishable, with the only difference being that the direction of flow is

reversed. By changing the wedge angle of the geometry, we found that different

director and flow structures were possible. Our analysis led to two special cases in

the velocity solution for defects of strengths s = 1 and s = 2, where we were able

to find analytic solutions for the flow. Our two-dimensional model has therefore

demonstrated that tumbling active fluids can exhibit steady director and flow

structures, which we also observed in Chapter 4 for a contractile active nematic

liquid crystal confined in a shallow one-dimensional channel.

We then re-examined the rectangular region considered in Chapter 3, ex-

tending the analysis to introduce a flow-aligning active nematic liquid crystal.

We first considered zero Ericksen number, so that the governing equation for the

director angle contained no terms due to flow. As was the case for the wedge ge-

ometry, our numerical calculations for the rectangular region showed that when

the director orientation decoupled from the velocity, extensile and contractile

director structures are identical. By increasing the Ericksen number, thereby al-

lowing for the flow to affect the director orientation, we showed that extensile and

contractile active nematics have different director and flow structures. In the case

of the extensile active nematic, we found increased regions of director distortion

as the Ericksen number was increased, which lead to faster spontaneous flow close

to the centre of the region. The increased distortion in the director structure for

the extensile active nematic led to what seems a wave-like pattern in the director
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structure and looks like a defect will be formed from the boundary as the activ-

ity magnitude further increases. This is outwith the scope of an Ericksen-Leslie

model, but will be an interesting area of future research in which a Q-tensor

model could be used to model the formation of defects. By contrast, increasing

the Ericksen number for a contractile active nematics led to a reduction in the

maximum speed, with the director adopting a uniform orientation in the bulk of

the region. The regions of strongest flow for the contractile active nematic were

close to either the horizontal or vertical boundaries of the region.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Work Undertaken

This thesis details a series of theoretical investigations into inactive nematic and

active nematic liquid crystals confined in different geometries. The research con-

sidered here is based on adapted forms of the Ericksen-Leslie and Q-tensor theo-

ries of nematic liquid crystals in which extra terms were included in the governing

equations to generate an out-of-equilibrium system. A summary of the key find-

ings in each chapter is provided below.

In Chapter 3, we considered the director configuration of a static inactive

nematic liquid crystal confined in a shallow rectangular well subject to weak an-

choring on the sides. For relatively weak anchoring, we derived expressions for

the critical anchoring strengths at which uniform and distorted director struc-

tures exchanged stabilities. In the limit of infinite anchoring, we showed that

linearisation of the non-linear system allowed for the derivation of asymptotic

approximations for the energy which agreed very well with numerical calcula-

tions of the full non-linear model.

In Chapter 4, we used an adapted Ericksen-Leslie model of active nematic

liquid crystals to examine the phenomena of spontaneous flow transitions that

occur in active nematic liquid crystals confined in a shallow channel. Decoupling

of the Ericksen-Leslie equations into a single dynamic equation for the director
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angle meant we were able to find asymptotic solutions for the director orientation

in the bulk of the channel in the limits of large pressure gradients and activity

strengths. By linearising the decoupled dynamic equation for the director angle,

we showed that when there is no pressure gradient, the critical activities for an

active nematic at which non-trivial director structures exist can be calculated

analytically. By solving the steady state equations numerically, we found non-

trivial solutions for an extensile active nematic which bifurcate from the trivial

state as subcritical pitchforks, but also solution branches which were not con-

nected to the trivial state. When the active nematic was contractile, we found

disconnected solution branches. The competition between internally driven flows

due to activity and externally driven pressure gradient flows was then examined,

which introduced elements of directional bias in the system. Finally, we explored

the possibility of manufacturing the various active nematic director structures

with an external orienting field applied to the channel and pretilt of the director

at the boundaries.

In Chapter 5, we explored the same shallow channel as in Chapter 4 except

in terms of Q-tensor theory. Unlike Chapter 4, we did not consider effects due to

pressure gradients or external orienting fields. We first considered a linear sta-

bility of the system. This showed very good agreement with the corresponding

numerical calculations in predicting the activity at which non-trivial solutions

exist. Our numerical calculations showed how increasing the temperature also

increases the critical activity strength at which a spontaneous flow transition oc-

curs. The effect of larger temperatures on the director, flow and order parameter

structures was also considered.

Finally, Chapter 6 combined the phenomena observed in Chapters 3, 4 and

5 in order to examine active nematic liquid crystals confined in two-dimensional

geometries. First, we considered an active fluid confined in a wedge geometry,

showing that by simplifying the Ericksen-Leslie equations to a decoupled system

of equations. Non-trivial analytic solutions for the director angle and velocity

were possible. By changing the angle between the two boundaries, we showed

that only certain director and velocity structures are possible for certain wedge
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angles. We then returned to the rectangular regions considered in Chapter 3,

showing that by putting an active nematic liquid crystal in the rectangle, extensile

and contractile active nematics exhibit different director and flow profiles for

sufficiently large Ericksen numbers.

7.2 Future Work

We now outline some possible general directions for future research following

on from the work presented in this thesis. Throughout this thesis, we have only

considered active liquid crystals in which the molecules exhibit nematic symmetry.

As we discussed in Chapter 2, active polar liquid crystals allow for the inclusion

of additional activity terms in the governing equations which lead to a break

in symmetry. It would be interesting to consider the effect of terms unique to

polar active liquid crystals individually before building a thorough model of active

liquid crystals which combines apolar and polar active terms. We have also not

considered the effects that changes in the concentration can have on the system.

This is governed by an additional partial differential equation which is coupled

to those for the orientation and flow [28, 60, 62, 63]. For such models of active

liquid crystals, the free energy and stress tensor include additional terms due to

changes in the concentration and lead to a system of partial differential equations

which will be more complicated to solve than those considered in this thesis. This

is something which can be done for both apolar and polar active liquid crystals.

Another effect which has not been considered in this thesis is the occurrence of

friction due to the transfer of momentum between active liquid crystals and the

surrounding environment. One way in which friction can be accounted for is to

add a term of the form −γv in the flow equations [37, 89, 132], where γ is the

friction coefficient.

In Chapter 3, we considered a shallow rectangular well of nematic liquid

crystal, subject to a Rapini-Papoular surface energy in which each boundary

surface preferred planar director alignment. It is possible for a nematic director

to instead prefer a homeotropic alignment at the boundaries, that is, the director
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is parallel to the unit outward normal at each boundary. It would, therefore,

be worthwhile to investigate the possible non-trivial director structures and to

derive asymptotic energies in the limit of strong anchoring. Our weak anchoring

director model found an additional director structure composed of two diagonal

states, as well as single diagonal and rotated states which have already been

observed theoretically from both director and Q-tensor models of nematic liquid

crystals. It would be interesting to examine the behaviour of high elastic energy,

rotated director structures both in the limit of weak and infinite anchoring. The

application of an external orienting field to the liquid crystal in both limits is

also something which could be examined, and how the alignment induced by the

field would affect the bifurcation of non-trivial director structures due to surface

anchoring. Finally, the director model could readily be made three-dimensional

by relaxing the assumption of a two-dimensional director angle independent of

the z-coordinate, by which we may hope to describe more complicated director

structures. This will inevitably lead to a more complicated system of equations

to solve which might only be possible to achieve numerically, thereby removing

the possibility of any form of analysis which could be used to derive forms of the

director angle solutions and energies.

In Chapter 4, we showed how pretilt and an external orienting field can be

used as a technique to manufacture the director structures we found when the

only source of flow was the activity. One could investigate the influence of an

external orienting field on the orientation of an active nematic liquid crystal to

a similar level of detail with which we investigated the role of a pressure gradi-

ent. A deeper understanding of effects due to externally applied field on active

liquid crystals would then allow for the possibility of combining the effects due

to pressure gradients and external orienting fields. This has been done recently,

experimentally and theoretically, by Mottram et al. [102] for an inactive nematic

liquid crystal layer in a rectangular cross-section manometer, which showed that

a pressure gradient causes a delay to the classical electric-field-induced Freeder-

icksz transition. All of the results derived in Chapter 4 were in terms of Dirichlet

boundary conditions for the director angle and velocity. A mixture of Dirichlet
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and Neumann boundary conditions have been considered in previous theoretical

studies of active liquid crystals [41, 144], although not in terms of the complete

Ericksen-Leslie theory. These boundary conditions could be examined further,

with the potential of generating bifurcation diagrams which contain different pos-

sible director and velocity structures using the full Ericksen-Leslie theory. This

may lead to similar disconnected solution branches to those found in Chapter

4. Finally, the analysis undertaken in Chapters 4 and 5 was based around the

trivial state θ = 0. Another constant director structure which leads to zero flow

is θ = π/2. Therefore, it may be possible to find steady state solutions in which

the director exhibits a homeotropic alignment at the boundaries.

In Chapter 6, we first used a simplified Ericksen-Leslie theory to model an

active nematic fluid confined in a wedge geometry which contained a defect at

the corner. We made various modelling assumptions on the elastic and viscous

coefficients in order to simplify the governing equations to a system which could

be solved analytically. A comparison between the analytic results with potential

numerical solutions of both the simplified and full system of equations would

be useful. In order to avoid unphysical energies at the corners of the wedge, a

Q-tensor model would need to be considered. We also examined the full Ericksen-

Leslie model for an active nematic confined in the rectangular regions considered

in Chapter 3. Our numerical scheme was unable to find solutions when the ac-

tivity was more prominent. In particular, we found that a defect could form near

the boundary of a rectangle containing an extensile active nematic. An alterna-

tive Q-tensor theory approach could allow us to obtain results for larger Ericksen

numbers and the possible formation of defects. Finally, the two dimensional

geometry considered in Chapter 6 could be extended to three dimensions.
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Appendix A

Derivation of the Active Stress

Tensor

In Chapter 1, we introduced the active stress tensor (1.2.4) as one possible term

which can be used the theory of active nematic liquid crystals. We made use of

this active stress tensor in Chapters 4 and 6, whereas a scalar order parameter

version of (1.2.4) was considered in Chapter 5. In this appendix, we outline one

possible way of deriving the active stress tensor (1.2.4). The derivation presented

here follows the approach considered by Simha and Ramaswamy [123].

We consider an active fluid system consisting of apolar self-propelling par-

ticles (SPPs) in which the activity of these particles will drive the system out

of equilibrium. In order to derive the stress σζ associated from the dynamics

of individual SPPs, we make use of Newton’s Third Law, which states that the

forces exerted by an SPP on the fluid and by the fluid on an SPP are equal and

opposite. First, we consider the force density f(r) acting on the fluid solvent due

to a single force dipole of magnitude F (see Figure A.1). This force density is

related to the stress tensor via

f(r) = −∇ · σζ . (A.1)

and can be written as

f(r) = Fnαδ

(
r− rα −

L

2

)
− Fnαδ

(
r− rα +

L

2

)
, (A.2)
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F

−F

rα

L

nα

Figure A.1: Geometry of the force dipole considered in the derivation of the active

stress tensor.

where r is the position vector, nα is the director orientation, rα is the centre of

mass and L is the length of the SPP. We have assumed that rα is equidistant

from the two point forces and that the shape of the SPP is symmetric about the

midpoint. For a collection of permanent force dipoles, we can write the force

density as

f(r) = F
∑
α

nα

[
δ

(
r− rα −

L

2

)
− δ

(
r− rα +

L

2

)]
. (A.3)

To proceed further, we now consider a Taylor series expansion of the delta func-

tions in (A.3) about rα, which leads to

δ

(
r− rα ±

L

2

)
= δ(r− rα)± L

2
∇ · nαδ(r− rα) +O(L2∇2). (A.4)

Terms ofO(L∇) are considered as small in the above Taylor series expansions [136].

Substituting (A.4) into (A.3) leads to a force density which, in component form,

can be written at leading order as

fi(r) ≈ −FL∇j

∑
α

nαinαjδ(r− rα). (A.5)

In equation (A.5), the delta function corresponds to the concentration of the

SPPs C(r) [136]. Throughout this thesis, we assume that the concentration of

SPPs is constant. Therefore, we can write the force density in component form

as

fi = −FLC∇jninj = −ζ∇jninj, (A.6)
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where ζ = FLC is an activity parameter proportional to the strength of the force

dipoles. This parameter has the dimensions of pressure. Using equation (A.1),

we can define the stress due to the activity of the fluid as

σζij = ζninj. (A.7)

In vectorised form, equation (A.7) is given by

σζ = ζ(n⊗ n). (A.8)

In Chapters 4 and 6, the activity strength parameter is treated as a constant. By

contrast, it is considered as a function of the scalar order parameter in Chapter 5.
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Appendix B

Energies Close to the Critical

Anchoring Strengths

In Subsection 3.3.2 we derive polynomial approximations of the energies for four

non-trivial elastically isotropic nematic equilibria. The approximations are ex-

pressed in terms of critical values of the wavenumbers p/q and anchoring strengths

τc and contain coefficients in terms of the anchoring strength τ .

The polynomial approximations for the energy given by equations (3.3.16)

and (3.3.17), restated, are

W ≈ 2λτ − a2
2(τ)

4a4(τ)
, (B.1)

W ≈ 2τ − b2
2(τ)

4b4(τ)
. (B.2)

The expressions a2,4(τ) in (B.1) and b2,4(τ) in (B.2) are the coefficients of A2
θ,1/B

2
θ,1

and A4
θ,1/B

4
θ,1 (where θ = 0, π/2) in the energies (3.3.13) and (3.3.14), respectively

and are given by
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a2(τ) =

(
sinh(2p)

(
τ(p4 − 4p2τc

2 − τc4) cos(2pλ) + 4p3ττc sin(2pλ) + 2p6λ

+ (4λττc + 4λτc
2 + 3τ)p4 + (4λττc

3 + 2λτc
4 + 8ττc

2)p2 + τc
4τ
)

+ cosh(2p)
(
− τ(p4 + 4p2τc

2 − τc4) sin(2pλ)− 2p(−2ττc
3 cos(2pλ)

+ λ(2τc + τ)p4 + 2τc(λττc + λτc
2 + 2τ)p2 + ττc

3(λτc + 2))
)

+ 4((2τc + τ)p4 − 2τc(ττc + τc
2 − 2τ)p2 + ττc

3(τc − 2))p(cos(pλ))2

− 4(p6 + (−2ττc − 2τc
2 + 3/2τ)p4 + (2ττc

3 + τc
4 − 4ττc

2)p2

+ τc
4τ/2) sin(pλ) cos(pλ)− 6(((−2λ/3 + 4/3)τc + τ(λ− 2/3))p4

+ 2((−λ− 2)τc
2 + ττcλ+ 2τ)τcp

2/3− τ(4 + (λ− 2)τc)τc
3)p/3

)
×
(

1

8p5

)
, (B.3)

b2(τ) =

(
sinh(2qλ)

(
τ(q4 − 4q2τc

2 − τc4) cos(2q) + 4ττcq
3 sin(2q) + 2q6

+ (4ττc + 4τc
2 + 3τ)q4 + (4ττc

3 + 2τc
4 + 8ττc

2)q2 + τc
4τ
)

+ cosh(2qλ)
(
− τ(q4 + 4q2τc

2 − τc4) sin(2q)− 2(−2ττc
3 cos(2q)

+ (2τc + τ)q4 + 2τc(ττc + τc
2 + 2τ)q2 + ττc

3(τc + 2))q
)

+ 4(λ(2τc + τ)q4 − 2τc(ττcλ+ τc
2λ− 2τ)q2 + ττc

3(λτc − 2))q

× (cos(q))2 − 4(q6λ+ (−2ττcλ− 2τc
2λ+ 3τ/2)q4 + (2λττc

3 + λτc
4

− 4ττc
2)q2 + τc

4τ/2) sin(q) cos(q) + 4(((−2λ+ 1)τc + τ(λ− 3/2))q4

− τc((−2λ− 1)τc
2 + ττc + 2τ)q2 − (−2 + (λ− 1/2)τc)τc

3τ)q

)
×
(

1

8q5

)
, (B.4)
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a4(τ) =

(
16τ sinh(2p)

(
(5p5τc − 6p3τc

3 − 3pτc
5) sin(2pλ) cos(2pλ) + (p6 − 9p4τc

2

− p2τc
4 + τc

6)(cos(2pλ))2 + 6p6τcλ+ 12p4τc
3λ+ 6λp2τc

5 + (8p5τc

+ 8p3τc
3) sin(2pλ) + (2p6 − 6p4τc

2 − 10p2τc
4 − 2τc

6) cos(2pλ) + 5p6

+ 23p4τc
2 + 11p2τc

4 + τc
6)(p2 − τc2)

)
− 48 cosh(2p)(p+ τc)τ(p− τc)

×
(

((−4p3τc
3 + 4pτc

5/3)(cos(2pλ))2 + ((p6/6 + 11p4τc
2/6− 7p2τc

4/2

+ τc
6/6) sin(2pλ)− 8pτc

3(p2 + τc
2)/3) cos(2pλ) + ((2p4/3 + 8τc

2p2/3

− 2τc
4/3) sin(2pλ) + p(p4λ+ (2τc

2λ+ 16τc/3)p2 + τc
4λ+ 4τc

3/3))

× (p2 + τc
2))
)

+ 48 sinh(4p)τ
(

(−2τc
2p6/3− 17τc

4p4/12 + 2τc
6p2/3

+ (p8 + τc
8)/24)(cos(2pλ))2 + (p3τc(p

4 − 5τc
4) sin(2pλ)/3 + (p2

+ τc
2)(p6 − 11p4τc

2 − 21p2τc
4 − τc6)/12) cos(2pλ) + ((5p5τc/6 + (pτc)

3

− pτc5/2) sin(2pλ) + (τcλ+ 5/24)p6 + (2τc
3λ+ 79τc

2/24)p4 + (τc
5λ

+ 9τc
4/8)p2 + τc

6/24)(p2 + τc
2)
)
− 12 cosh(4p)τ

(
(−20τc

3p5/3

+ 4τc
7p/3)(cos(2pλ))2 + ((p8/6 + 8τc

2p6/3− 17τc
4p4/3− 8τc

6p2/3

+ τc
8/6) sin(2pλ)− 8τc

3p5 − 32τc
5p3/3− 8τc

7p/3) cos(2pλ) + 2/3

× (p2 + τc
2)(p6 + 9p4τc

2 − p2τc
4 − τc6) sin(2pλ) + p(p8λ+ (16τc/3

+ 8τc
2λ)p6 + (14λτc

4 + 20τc
3)p4 + (32τc

5/3 + 8τc
6λ)p2 + τc

8λ

+ 4τc
7/3)

)
+ τ
(

(−96p8τc + 96p6τc
3 + 96p4τc

5 − 96p2τc
7 + 88p8

− 208p6τc
2 − 128p4τc

4 + 144p2τc
6 − 24τc

8) sin(2pλ) + (−48p8τc

+ 144p6τc
3 − 144p4τc

5 + 48p2τc
7 + 11p8 − 152p6τc

2 + 178p4τc
4

− 72p2τc
6 + 3τc

8) sin(4pλ) + (−48p9 + 96p7τc
2 − 96p3τc

6 + 48pτc
8

− 256p7τc − 32p5τc
3 + 128p3τc

5 − 96pτc
7) cos(2pλ) + (96p7τc

2 − 12p9

− 168p5τc
4 + 96p3τc

6 − 12pτc
8 − 64p7τc + 200p5τc

3 − 128p3τc
5

+ 24pτc
7) cos(4pλ) + 132λp9 + 192λp7τc

2 + 24λp5τc
4 + 36λpτc

8

− 132p9 + 192p7τc
2 − 24p5τc

4 − 36pτc
8 + 24p5τc

3 + 72pτc
7
))

×
(
− 1

768p9

)
, (B.5)
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b4(τ) =

(
16τ sinh(2qλ)

(
(5q5τc − 6q3τc

3 − 3qτc
5) sin(2q) cos(2q) + (q6 − 9q4τc

2

− q2τc
4 + τc

6)(cos(2q))2 + (8q5τc + 8q3τc
3) sin(2q) + (2q6 − 6q4τc

2

− 10q2τc
4 − 2τc

6) cos(2q) + 6q6τc + 12q4τc
3 + 6q2τc

5 + 5q6 + 23q4τc
2

+ 11q2τc
4 + τc

6)(q2 − τc2)
)
− 48 cosh(2qλ)(q + τc)τ(q − τc)

(
(−4q3τc

3

+ 4qτc
5/3)(cos(2q))2 + ((q6 + 11q4τc

2 − 21q2τc
4 + τc

6) sin(2q)− 8qτc
3

× (q2 + τc
2)/3) cos(2q)/6 + (q2 + τc

2)((2q4/3 + 8τc
2q2/3− 2τc

4/3)

× sin(2q) + (q4 + (2τc
2 + 16τc/3)q2 + τc

3(τc + 4/3))q)
)

+ 48 sinh(4qλ)

× τ
(

(q8/24 + τc
8/24− 2τc

2q6/3− 17τc
4q4/12 + 2τc

6q2/3)(cos(2q))2

+ (q3τc(q
4 − 5τc

4) sin(2q)/3 + (q2 + τc
2)(q6 − 11q4τc

2 − 21q2τc
4

− τc6)/12) cos(2q) + (q2 + τc
2)((5q5τc/6 + q3τc

3 − qτc5/2) sin(2q)

+ (5/24 + τc)q
6 + (2τc

3 + 79τc
2/24)q4 + τc

4(τc + 9/8)q2 + τc
6/24)

)
− 12 cosh(4qλ)τ

(
(−20q5τc

3/3 + 4qτc
7/3)(cos(2q))2 + ((q8/6

+ 8τc
2q6/3− 17τc

4q4/3− 8τc
6q2/3 + τc

8/6) sin(2q)− 8q5τc
3

− 32q3τc
5/3− 8qτc

7/3) cos(2q) + 2(q2 + τc
2)(q6 + 9q4τc

2 − q2τc
4

− τc6) sin(2q)/3 + (q8 + (8τc
2 + 16τc/3)q6 + (14τc

4 + 20τc
3)q4 + (8τc

6

+ 32τc
5/3)q2 + τc

7(τc + 4/3))q
)

+ τ
(

(−12λq9 + 96λq7τc
2 − 168λq5τc

4

+ 96λq3τc
6 − 12λqτc

8 − 64q7τc + 200q5τc
3 − 128q3τc

5 + 24qτc
7) cos(4q)

+ (−48λq8τc + 144λq6τc
3 − 144λq4τc

5 + 48λq2τc
7 + 11q8 − 152q6τc

2

+ 178q4τc
4 − 72q2τc

6 + 3τc
8) sin(4q) + (−48λq9 + 96λq7τc

2 − 96λq3τc
6

+ 48λqτc
8 − 256q7τc − 32q5τc

3 + 128q3τc
5 − 96qτc

7) cos(2q) + (88q8

− 96λq8τc + 96λq6τc
3 + 96λq4τc

5 − 96λq2τc
7 − 208q6τc

2 − 128q4τc
4

+ 144q2τc
6 − 24τc

8) sin(2q)− 132λq9 + 192λq7τc
2 − 24λq5τc

4

− 36λqτc
8 + 132q9 + 192q7τc

2 + 24q5τc
4 + 36qτc

8 + 24q5τc
3

+ 72qτc
7
))
×
(
− 1

768q9

)
, (B.6)
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Appendix C

Decoupling of the Ericksen-Leslie

Equations

In Subsection 4.3.1 we decouple the Ericksen-Leslie equations using the same ap-

proach considered by Mottram et al. [104]. The Ericksen-Leslie equations (4.2.15)

and (4.2.16), restated, are

γ1θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2 −m(θ)vz, (C.1)

0 = (g(θ)vz +m(θ)θt + ζ sin θ cos θ)z − px, (C.2)

with boundary conditions for the director angle and velocity

θ(0, t) = θ(d, t) = 0, (C.3)

v(0, t) = v(d, t) = 0. (C.4)

We decouple the Ericksen-Leslie equations by first integrating (C.2) with respect

to z from 0 to z,

0 = g(θ)vz +m(θ)θt + ζ cos θ sin θ − zpx − g(0)vz(0, t)−m(0)θt(0, t), (C.5)

where infinite planar anchoring of the director at z = 0 implies that θt(0, t) = 0,

so (C.5) can be rearranged in terms of the velocity gradient to give

vz =
1

g(θ)

[
g(0)vz(0, t)−m(θ)θt − ζ sin θ cos θ + zpx

]
. (C.6)
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Integrating (C.6) from z = 0 to z = d and employing the no-slip boundary

conditions leads to the following expression for vz(0, t):

vz(0, t) =
1

g(0)

[
Ē + ζC̄ − pxF̄

]
, (C.7)

where

Ē =

∫ d

0

m(θ)

g(θ)
θt dz

/∫ d

0

1

g(θ)
dz, (C.8)

C̄ =

∫ d

0

sin θ cos θ

g(θ)
dz

/∫ d

0

1

g(θ)
dz, (C.9)

F̄ =

∫ d

0

z

g(θ)
dz

/∫ d

0

1

g(θ)
dz. (C.10)

We substitute (C.7) into (C.6) in order to yield an expression for the velocity

gradient in terms of only θ, namely,

vz =
1

g(θ)

[
Ē −m(θ)θt − ζ(sin θ cos θ − C̄) + px(z − F̄)

]
. (C.11)

Integrating (C.11) from 0 to z and employing the no-slip boundary condition at

z = 0 generates the flow velocity

v(z, t) =

∫ z

0

1

g(θ)

[
Ē −m(θ)θt − ζ(sin θ cos θ − C̄) + px(z − F̄)

]
dz. (C.12)

It is clear from (C.12) that the velocity is “slaved” to the director orientation.

Substituting (C.11) into (C.1) generates a dynamic equation for the director

orientation without any explicit velocity gradients, namely,(
γ1 −

m2(θ)

g(θ)

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

−m(θ)

g(θ)

[
Ē − ζ(sin θ cos θ − C̄) + px(z − F̄)

]
. (C.13)

By rearranging (C.13) and integrating between z = 0 and z = d, we can obtain

an expression for the integral involving θt in (C.8),

Ē =
Ā
B̄

+
ζD̄
B̄
− pxḠ
B̄
, (C.14)
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where

Ā =

∫ d

0

m(θ)[(K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2]

γ1g(θ)−m2(θ)
dz, (C.15)

B̄ =

∫ d

0

γ1

γ1g(θ)−m2(θ)
dz, (C.16)

D̄ =

∫ d

0

m2(θ)(sin θ cos θ − C̄)
g(θ)(γ1g(θ)−m2(θ))

dz, (C.17)

Ḡ =

∫ d

0

m2(θ)(z − F̄)

g(θ)(γ1g(θ)−m2(θ))
dz. (C.18)

Consequently, the decoupled dynamic equation for the director angle is(
γ1 −

m2(θ)

g(θ)

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

−m(θ)

g(θ)

[
Ā
B̄
− ζ
(

sin θ cos θ − C̄ − D̄
B̄

)
+ px

(
z − F̄ − Ḡ

B̄

)]
.

(C.19)

From the definition (C.14), the solution for the flow velocity (C.12) can alterna-

tively be expressed as

v(z, t) =

∫ z

0

1

g(θ)

[
Ā
B̄
−m(θ)θt − ζ

(
sin θ cos θ − C̄ − D̄

B̄

)
+ px

(
z − F̄ − Ḡ

B̄

)]
dz. (C.20)
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tributions to macroscopic dynamics: the role of time-reversal symmetry and

entropy production. Rheol. Acta, 57, pp. 773–791, (2018).

[14] H.R. Brand, H. Pleiner, and D. Svenšek. Reversible and dissipative macro-
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[73] M. Kléman. Defects in liquid crystals. Rep. Prog. Phys., 52, pp. 555–654,

(1989).

220



[74] S. Kralj and A. Majumdar. Order reconstruction patterns in nematic liquid

crystal wells. Proc. R. Soc. A, 470, art. ID. 20140276, (2014).
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